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Abstract

The effective description and fundamental understanding of turbulent flows
remains elusive to modern physics despite centuries of research and its great
importance in numerous fields. The theoretical difficulties of the topic (non-
linear, nonlocal, or unclosed equations) are accompanied by the multiscale
characteristics, large number of degrees of freedom, and strong sensitivity
to initial conditions that make numerical and laboratory experiments equally
challenging. One potential way to unravel the dynamics underlying turbulent
motions is the separation of inertial forces from viscous forces, i.e. the study
of turbulence at very large Reynolds numbers. The Max Planck Variable Den-
sity Turbulence Tunnel (VDTT) is a facility well-suited for the study of such
large Reynolds numbers under controlled conditions. Its active grid allows
the creation of turbulence at Taylor-scale Reynolds numbers Rl > 6000 that
can be investigated with state-of-the-art subminiature hot wires and whose
turbulence generation can be controlled with great flexibility. This allows the
study of fine details of the turbulence energy spectrum, such as the bottle-
neck effect, which are difficult to investigate even at small Rl. We show for
the first time experimentally that the bottleneck effect decreases with increas-
ing Reynolds number up to Rl ⇡ 5000 confirming previous numerical studies
at lower Reynolds numbers.

A very influential phenomenological model is the seminal self-similar model
of the velocity increment statistics by Kolmogorov1 and its intermittency re-
finements2. In this thesis the cornerstones of this scaling theory are confirmed
approximately throughout the range of Rl studied (150-6000) using hot wire
data from the VDTT. This constitutes the most extensive dataset in this range
of Rl to the author’s best knowledge. The local scaling exponents of the in-
crement statistics becomes Rl-independent for Rl > 2000. They do however
not allow the immediate identification of an inertial range scaling exponent,

1A. Kolmogorov. “The Local Structure of Turbulence in Incompressible Viscous Fluid for
Very Large Reynolds’ Numbers”. In: Dokl. Akad. Nauk SSSR 30 (1941), pp. 301–305.

2U. Frisch. Turbulence. Cambridge University Press, Nov. 1995. doi: 10 . 1017 /

CBO9781139170666.
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but carry the imprints of the turbulence decay and certain dissipative effects.
The effect of decay is more dramatic, but can be explained by a model3 for
the statistics of decaying turbulence. This allows the extraction of an iner-
tial range scaling exponent that agrees with those obtained by the extended
self-similarity technique4. The dissipative effects take the form of log-periodic
oscillations on the scaling functions, whose exact physical origin remains elu-
sive.

The remainder of the thesis deals with the design and implementation of
a particle tracking system in the VDTT. The system allows the measurement
of statistics in the Lagrangian framework, where instead of a multi-location
measurement, individual fluid parcels are followed throughout the flow and
multi-time statistics are obtained. The setup records the motion of cellulose
particles of Stokes numbers between 0.0001 and 2 illuminated by a high-power
laser using four stationary high-speed cameras. It is shown that the setup is
capable of acquiring acceleration statistics and record particle tracks of up to
15 viscous time scales. This allows the systematic investigation of Lagrangian
turbulence at Rl > 2000 where such investigations were impossible hereto-
fore.

3P.-F. Yang, A. Pumir, and H. Xu. “Generalized self-similar spectrum and the effect of
large-scale in decaying homogeneous isotropic turbulence”. In: New J. Phys. 20.10 (Oct.
2018), p. 103035. doi: 10.1088/1367-2630/aae72d.

4R. Benzi et al. “Extended self-similarity in turbulent flows”. In: Phys. Rev. E 48.1 (1993),
pp. 29–32. doi: 10.1103/PhysRevE.48.R29.

http://dx.doi.org/10.1088/1367-2630/aae72d
http://dx.doi.org/10.1103/PhysRevE.48.R29
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Chapter 1

Definition and Motivation

1.1 Defining Turbulence

"Turbulence" is a rare case of an object of active physical research in the
21st century that immediately creates a picture or an idea in the mind of most
people. This picture might be the whirls of a small wild river, an unpleasant
airplane ride, or simply water flowing out of a fully opened tap. It is part of
the fascination of the topic that despite a common intuition about turbulence
and its importance to be described in the next section, scientific approaches
to the subject notoriously face extreme challenges both theoretically and tech-
nologically yet to be overcome. A sufficiently general and effective theory of
turbulence is yet to be found [1] and might elude us for a long time.

It is thus perhaps not surprising that even a formal definition beyond "I
know it when I see it" is difficult to find. A collection of approaches can be
found in the appendix of Ref. [2]. Here, the following definition is offered
based on the famous experiment by Osbourne Reynolds [3] in 1880. He stud-
ied the flow of water through a glass pipe of diameter D. The flow rate (and
thus the mean flow speed U) was controlled by an inlet valve. The viscosity
of the water n could be controlled by changing its temperature. Reynolds ob-
served that two distinct flow states develop depending on the choice of these
parameters by adding a line of dye into the fluid. At low flow speeds, in
small pipes and at high viscosity, the dye flowed parallel to the glass pipe.
The flow was well-predictable and not very complex. We call this a laminar
flow. Under certain circumstances described by the pipe’s Reynolds number

Re =
UD

n
, (1.1)

the flow became "sinuous" (the term "turbulence" was introduced by Lord

3



4 CHAPTER 1. DEFINITION AND MOTIVATION

Kelvin only four years later) and the dye quickly mixed across the pipe di-
ameter. This is the turbulent flow state. By carefully incrementing the ex-
perimental parameters, he found turbulence to prevail if Re > 2000 . This
number defining the onset of turbulence was recently refined to be 2040 ± 10
[4] indicating a very high quality of the original experiment almost 150 years
ago.

A more general description should be concerned with the properties of
turbulent flows, in particular its large number of degrees of freedom, the in-
termittent distribution of vorticity, its strong dependence on initial conditions,
its dissipative nature and the large number of time- and length scales present.

1.2 Motivation for Studying Turbulence (at High
Reynolds Numbers)

The prime motivations for the study of turbulence are - apart from scien-
tific curiosity - the almost countless realisations of the phenomenon in nature.
The earth is enclosed by the atmosphere - a huge turbulent multiphase flow.
Its large-scale flow structures shape our climate and weather. The turbulent
mixing inside a cloud is the prime suspect for the initiation of droplet growth
that ultimately leads to rainfall [5]. Similarly, the organisation of the turbulent
oceanic flows [6] has a great, though often underappreciated impact on our
climate through coupling to the atmosphere [7], transport warm waters over
thousands of kilometers or by influencing the growth of oxygen-producing
ocean organisms on the small scale [8, 9]. Realising the inherent complex-
ity of turbulence and the lack of an efficient theory of the phenomenon, the
uncertainties of climate and weather forecasts are easy to explain.

In engineering, turbulent flows are equally omnipresent. The scale-thinning
properties of turbulence allow the design of efficient airfoils that carry the
globalised economy. At the same time, turbulent drag is responsible for large
amounts of the associated carbon emissions [10] and noise pollution. Yet,
the properties of turbulence as an extremely efficient mixer allow for more
efficient combustion engines that release less noise and emissions.

Turbulent flows also occur in the context of the human body: The carbon-
rich air we exhale is mixed sufficiently with fresh, oxygen rich air within about
a second. The turbulent mixing is so efficient that we normally generate the
necessary flow subconsciously without much effort. In contrast, turbulence in
blood vessels can cause a deadly condition and some mechanisms that trigger
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turbulent patches have been discovered only recently [11].
This incomplete list is concluded with stating that carbon-free ways of

energy harvesting such as wind power [12, 13, 14, 15] or nuclear fusion [16,
17] would benefit considerably from a better knowledge of turbulence.

Most examples offered here belong to a class of flows, where turbulent
kinetic energy exists on many different time- and length scales. That is to say
that the scale of the energy source is much larger than the scale of viscous
dissipation. This means that an intermediate range of scales is likely to exist,
where neither viscous dissipation, nor the flow boundary conditions play a
major role. It is intuitive that the separation of these effects is desirable for a
theoretic understanding of the governing dynamics.

1.3 Modern Turbulence Research at High Rl

This section will give a brief overview of the state-of-the-art experiments
known to the author that explicitly aim at creating turbulence at high Reynolds
numbers. It is not a historical review, but focused on current efforts. To
compare the different experimental setups, it is most useful to introduce a
Reynolds number that does not depend on the specific flow geometry. This is
the Taylor-scale Reynolds number Rl defined through the RMS of the velocity
fluctuations uRMS (the residual of a velocity signal after subtracting its mean),
the kinematic viscosity and the Taylor length scale l [18]. l can be seen as
the typical length scale for an eddy dominated by inertial energy transfer. It
is closely related to the average length between two zero-crossings of the ve-
locity fluctuation signal [19]. The transition Reynolds number Re = 2020 of
the pipe flow mentioned in Sec. 1.1 would correspond to Rl ⇠ 100. To put
into context, Rl of an atmospheric flow can be O(104)(e.g. Ref. [20]).

The most obvious place to investigate high Reynolds number turbulence
is the atmosphere, where no particular effort has to be made to generate a
very high Reynolds number flow. However, the flow is known to be unsteady
and influenced by rotation and stratification. To escape boundary layer effects
and the influence of the terrain, measurements have to be performed at great
heights, typically using tall measurement towers in flat parts of the earth (e.g.
[26], measuring at mountain research stations [27, 28], or with measurement
balloons [29]. Moreover, statistical averaging over long periods is difficult due
to possibly changing flow states. The recent availability of easy-to-operate
unmanned aerial vehicles has opened the interesting possiblity of spatially
sampling the velocity field of large areas in a relatively short time, i.e. in an
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102 103 104

Rl

102

103

104

105

106

L/
h

⇠ R3/2
l

VDTT, Passive Grid
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Figure 1.1: Separation of scales vs. Reynolds number for selected high-Reynolds number
experiments. L is the typical length scales of the largest flow structure, while h is the length
scale of viscous dissipation (see Ch. 3.3 for details). Flows with severe anisotropies and
inhomogeneities are plotted in open symbols. VDTT data from [21], ONERA data from [22,
23], SHReK data derived from information in [24], GReC data derived from information in
[25], Atmospheric data from [20].

approximately constant flow state [30].

Direct numerical simulations (DNS), i.e. the numerical integration of the
Navier-Stokes-Equations (2.5) usually in a periodic box forced at particular
wavenumbers, strongly depend on the availability of supercomputers. Even
with the most advanced supercomputers, one must compromise between the
Reynolds number, the temporal and spatial resolution of the simulation, and
the duration of the simulation [31]. The largest Reynolds number (Rl = 2297)
in a DNS was obtained by Ishihara et al. [32], compromising small scale
resolution and statistical fidelity. A better resolved DNS at Rl ⇡ 1300 was ob-
tained by P.K. Yeung and coworkers [31]. Even though the computing power
needed for a DNS scales unfavourably with R18/4

l , numerical simulations will
reach larger and larger values in the future and have come a long way since
the first DNS by Orszag & Patterson [33].

In pipe flows, extremely large Reynolds numbers are achieved in the Prince-
ton Superpipe, which operates with air at almost 200 bars [34]. Pipe flows are
in general wall-bounded flows, i.e. dominated by contributions of the flow
boundaries, which inject turbulent kinetic energy through friction. They are
therefore strongly influenced by mean shear and anisotropies. Wall-bounded
flows are very common in nature and engineering and their understanding
is of great importance. However, pipe flows do not feature a homogeneous,
isotropic region and are therefore not well suited to study the nonlinear, iner-
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tial transport of energy.

When using experimental apparati of small dimensions, high Rl can be
obtained by using fluids of low kinematic viscosity n, which allows the exis-
tence of very small, low-energetic eddies. The extreme case is superfluid or
ultra-cold helium. In the SHReK experiment, turbulence is created by coun-
terrotating two disks (von-Kármán mixer) in helium between 1.6 and 4.5K,
and Rl ⇠ 20000 can be reached [24]. The GReC experiment at CERN is a
low-temperature helium jet, which reaches Rl ⇠ 8000. While creating among
the highest Reynolds numbers without wall effects, the usage of ultra-cold or
superfluid helium bears extreme practical challenges. The facilities are very
costly to operate and difficult to maintain due to the lengthy process of cool-
ing the gas. Moreover, the small viscosity causes the smallest flow features
to be smaller than 10 µm, which is a considerable technological challenge to
measure [35].

Experiments operating in air at atmospheric pressures have to be very
large to obtain large Reynolds numbers in free stream turbulence or must
feature specialised forcing mechanisms. Such experiments are typically wind
tunnels. A historical review of wind tunnels can be found in Ref. [36], this
section concentrates on three air wind tunnels. First, the wind tunnel at Cor-
nell University achieved Rl ⇠ 1000 using an active grid and a detailed study
of its small-scale turbulence has been performed [37]. The wind tunnel at
the University of Oldenburg contains a 3 ⇥ 3 m large active grid as well
as the possibility to influence the largest flow scales by individually control-
ling its four fans. Using specialised active grid turbulence generation [37]
and additionally modulating the rotation frequency of the fans, they reported
Rl ⇠ 16000 [38]. Given that the longitudinal correlation length of the velocity
fluctuations was about 30 ⇥ the size of the tunnel height, large flow inhomo-
geneities can be expected. Their tunnel is however ideal to recreate realistic
inflow conditions for wind energy devices in a laboratory, i.e. similar to the
unsteady turbulence in the atmosphere. Finally, the return flow of the com-
mercial ONERA wind tunnel has delivered one of the most cited datasets on
high Reynolds number turbulence [22] (Rl ⇠ 2500). Its operation is however
extremely expensive (500 000 Euros per week of operation), since up to 88
MW are applied on the fan shaft [39].

The state of turbulence research at the highest Reynolds numbers is roughly
summarised in Fig. 1.1. (Approximately) homogeneous and isotropic turbu-
lence studies exist up to a Rl ⇠ 2000, but only very few datasets exist for
Rl > 1000. Data at larger Rl are even more scarce and to the authorś knowl-
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edge subject to substantial inhomogeneities and anisotropy in all cases.
This thesis is concerned with another experiment explicitly aimed at cre-

ating high Rl under (approximately) homogeneous and isotropic conditions.
The VDTT combines two of the approaches mentioned above to create a flow
at Rl . 6000 in a wind tunnel that easily fits into a relatively small experi-
mental hall, can be operated at moderate costs, and whose flow properties are
such that high-resolution measurements with state-of-the-art equipment are
still possible. The fact that its flow properties can also be very finely tuned
both at large and small scales makes it perhaps the single experiment most
ideally suited for the study of turbulent flows worldwide at the time of writ-
ing. The experiment and its flow properties are described in detail in Ch.
4.

1.4 This Thesis

The main purpose of this thesis is to establish precision measurements at
high Rl in the Max Planck Variable Density Turbulence Tunnel (VDTT). After
a brief introduction of the necessary theoretical background in fluid dynam-
ics and statistics of turbulence, as well as existing phenomenological models,
the flow conditions in the VDTT in its configuration at the point of writing
are discussed. In the following part, results from hot wire measurements are
reported. To this end, first the technique is introduced emphasising proce-
dures employed to optimise and verify hot wire anemometry in the specific
environment of the VDTT. In the following chapters, new insights into high-
Rl turbulence obtained using this technique are presented to complete Part II.
Part III introduces a setup capable of performing Lagrangian Particle Tracking
in the VDTT. The thesis is concluded by a Discussion and an Outlook.



Chapter 2

The Equations of Motion

This chapter will introduce the fundamental equations that govern turbu-
lence dynamics largely following Davidson [40], Monin & Yaglom [41], and
Pope [42]. For details and more thorough derivations, the reader is kindly
referred to those references.

2.1 The Navier-Stokes Equations

To derive the most fundamental equations of incompressible fluid me-
chanics, Newton’s Second Law is applied to an infinitesimal fluid element of
volume V and density r to yield the equation of motion in terms of the ve-
locity field u. The relevant forces are due to pressure and shear stresses. The
pressure P creates a force �PA, which acts on all surfaces dA and yields a
net force of

FP =
I

�PdA =
Z

�rPdV. (2.1)

Here, the surface integral has been replaced by a volume integral by means of
the Gauss theorem. The viscous forces are induced by the molecular coupling
of the fluid element to its direct neighbours. Such internal forces per area are
known as stresses described by the stress tensor tij. It denotes the component
i of the viscous stresses acting on the surface labeled j. In a Newtonian fluid,
which shall be assumed here, the shear stress depends on the fluid density r,
its kinematic viscosity n, and the velocity gradients.

tij = rn

 
∂ui
∂xj

+
∂uj

∂xi

!
⌘ 2rnSij. (2.2)

In passing, the strain-rate tensor Sij has been introduced for convenience. The
net force per unit volume in direction i due to the stresses at the surfaces is

9
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then given by the gradients of these stresses in all j directions:

fi =
∂tij

∂xj
. (2.3)

Here, as well as in the remainder of this thesis we use the Einstein summation
convention that repeated indices are summed over.

In the absence of external forces (e.g. gravity), the forces on a fluid parcel
are entirely due to the presence of neighbouring fluid parcels. Similarly, the
kinematics these forces induce contain a term due to the immersion of the
fluid parcel in a larger flow field. For example, the flow profile of a station-
ary pipe flow (∂u/∂t = 0 everywhere) depends on the radial distance r from
the pipe centerline. Therefore, a fluid parcel that is displaced in the radial
direction will experience a change in u proportional to the local radial gra-
dient ∂u/∂r. In general, the change in u can be due to a temporal change
∂u/∂t or an advection towards a region of different flow speeds uru. This is
commonly summarised into the convective derivative 1

Dui
Dt

=
∂ui
∂t

+ uj
∂ui
∂xj

. (2.4)

Combining eqs. (2.1), (2.2), and (2.4) one arrives at the balance of forces

r

 
∂ui
∂t

+ uj
∂ui
∂xj

!
= �

∂P
∂xi

+ n
∂2ui

∂xj∂xj
. (2.5)

In addition to these dynamical equations, the conservation of mass

∂(rui)/∂xi = ∂r/∂t

is required. In the case of an incompressible fluid, i.e. when ∂r/∂t = 0, this
reduces to

r · u = 0. (2.6)

Eqs. (2.5) and (2.6) form the incompressible Navier-Stokes equations of a
Newtonian fluid. They are nonlinear, coupled differential equations. Their
complexity is mainly due to the nonlinear term uj(∂ui/∂xj) and the nonlocal
pressure term (see following section). It is therefore most interesting to study
situations where those terms dominate the dynamics. This is the case when

1In the Lagrangian framework, introduced in Sec. 3.4.1 the convective derivative results
naturally from deriving the equation of motion in the comoving coordinate system of the
fluid parcel
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the viscous term is small, i.e. when the Reynolds number is high. In this
regime the properties of turbulence are expected to be universal. This makes
the study of high Reynolds number turbulence important from a theoretical
point of view.

It is important to mention that in most flows additional forces act on the
infinitesimal fluid volume as a whole - so called body forces. For example,
in the case of the atmosphere the coriolis forces play an essential role in the
turbulence dynamics, and in numerical simulations particular wavenumbers
are excited by an idealised forcing term. As shall be shown in the next section,
a localised external force will have a global impact mediated by the infinite
propagation speed of pressure waves in an incompressible medium.

2.2 Nonlocality of the Pressure Term

Upon application of the divergence to the Navier-Stokes equations (2.5)
one obtains after considering the incompressibility result (2.6),

∂2(P/r)

∂x2
i

= �
∂

∂xi

 
uj

∂ui
∂xj

!
. (2.7)

The solution of this equation is the Biot-Savart law [40]:

P(xi) =
r

4p

Z ∂
∂xi

⇣
uj

∂ui
∂xj

⌘

|xi � x0

i|
dx0

i (2.8)

One can now insert eq (2.8) into (2.5) and arrive at a closed equation for
the velocity field u. The equations got however even more difficult to treat
analytically, because they are not only nonlinear, but also nonlocal. Physically,
this means that any disturbance or flow structure at a point x0

i influences
all other points xi in the entire flow field. In an incompressible fluid this
influence happens instantaneously.

2.3 The Energy Equation and Dissipation

The forces acting on the infinitesimal fluid element we consider here, per-
form work, which will be dissipated into random molecular motion, i.e. heat.
To obtain the energy equation, we multiply eq. (2.5) by ui and expand the
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viscous term.

∂u2/2
∂t

= �
∂

∂xi

⇣
u2/2

⌘
ui �

∂

∂xi

✓
P
r

◆
ui +

∂

∂xi
ujtij/r � 2nSijSij (2.9)

This is an evolution equation for the kinetic energy density inside the fluid
parcel. The terms on the right-hand side are as follows:

• convection of kinetic energy across the boundary,

• deformation of the boundary due to pressure forces,

• deformation of the boundary due to viscous coupling to adjacent fluid
parcels,

• conversion of kinetic energy into heat.

The last term is of great importance, because it is the only global energy
sink of the system (except for work done on the flow boundaries, often also
in the form of heat). Thus, turbulence converts kinetic energy into heat at a
dissipation rate

# = h2nSijSiji = 2n

*
∂ui
∂xj

∂ui
∂xj

+
. (2.10)

h·i denotes a spatial average unless stated otherwise. The strain-rate tensor
is given by

Sij =
1
2

 
∂ui
∂xj

+
∂uj

∂xi

!
. (2.11)

Because of the Second Law of Thermodynamics, this heat cannot be trans-
formed back into the structured fluid motion of turbulence. Its role as a
well-defined, unique sink of energy puts the dissipation rate in the center of
many turbulence theories encompassing all turbulence length scales. If the
turbulence is homogeneous, and isotropic [41]

# = 15n

*✓
∂u1
∂x1

◆2
+

. (2.12)

This definition will be used throughout Part II to estimate # from one-dimensional
velocity measurements.

In spectral space, eq. (2.12) reads by the derivative property of the fourier
transform

# = 2n
Z •

0
k2E(k)dk = 15n

Z •

0
k2

1E11(k1)dk1 (2.13)
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Again, the second equality is only valid in homogeneous, isotropic turbu-
lence.

2.4 Vorticity

The presence of rotational motions has been identified as a defining fea-
ture of turbulent flows ever since the experiments of Reynolds [3]. This is
quantified by the vorticity of the flow defined as

! = r ⇥ u. (2.14)

Using the vector calculus identity

(u · r) · u = r

✓
u2

2

◆
� u ⇥!, (2.15)

the Navier-Stokes equation (2.5) can be rewritten as

∂u/∂t = u ⇥! �
rP

r
� ru2/2 + nr

2u. (2.16)

Note that this equation is in principle Bernoulli’s equation for a stationary,
irrotational flow in an inviscid fluid. Taking the curl along with a version of
the aforementioned vector identity yields the vorticity equation

∂!

∂t
+ (u · r)! = (! · r) u + nr2! (2.17)

In analogy to the energy equation (2.9), the square of the vorticity - called
enstrophy - is introduced. Its equation of motion reads [40]

D(wiwi)/2
Dt

= wiwjSij � n#ijk#ilm
∂wk
∂xj

∂wm
∂xl

+ n
∂

∂xl

 
# lmnwm#njk

∂wk
∂xj

!
. (2.18)

The velocity gradients can be decomposed into a rotational and a potential
component:

∂ui
∂xj

=
1
2

 
∂ui
∂xj

+
∂uj

∂xi

!
+

1
2

 
∂ui
∂xj

�
∂uj

∂xi

!
= Sij �

eijkwk

2
, (2.19)

where eijk is the Levi-Civita symbol. Therefore, the velocity gradients are
the combined result of strain and vorticity.
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Through the derivative property of the Fourier transform, h!2i can be
expressed in terms of the energy spectrum of the velocity fluctuations (see
Ref. [41] for details):

h!2
i =

Z •

0
k2E(k)dk (2.20)

Upon comparison of (2.20) with (2.13), the correspondence between enstrophy
and dissipation becomes evident:

# = nh!2
i. (2.21)



Chapter 3

The Statistics of Homogeneous
Isotropic Turbulence

3.1 Three Statistical Objects

The purpose of this section is to define the three most important statisti-
cal objects that will be studied for the remainder of this thesis, namely the
correlation function, the energy spectrum, and the structure functions.

3.1.1 The Correlation Function

The correlation function of a velocity field ui(x) is defined as

Cij (r) = hui (x) uj (x + r)i (3.1)

Unless denoted otherwise, h·i denotes an average over the flow field. In the
case of a statistically isotropic field, the correlation function is independent
of the direction of r. We can therefore consider the correlation function (and
the other two statistics introduced here) in a coordinate system, where one
axis (x1) is parallel to r and the other two perpendicular. In this case, only
the diagonal components are nonzero and C22 = C33 6= C11 [41]. I.e. there
are only two components that need to be considered here: the longitudinal
correlation function C11 (also called CLL) and the transverse correlation func-
tion C22 = C33 ⌘ CNN, where the velocity components are normal to r. In
summary:

C11(r) = CLL(r) = h(u (x) · er)(u (x + r) · er)i, (3.2)

15
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C22(r) = C33(r) = CNN(r) = h(u (x) ⇥ er)(u (x + r) ⇥ er)i, (3.3)

where er denotes the unit vector in the direction of the increment vector r.
Since both the energy spectrum and structure function can be derived from (n-
th order) correlation functions, similar simplifications exist for these statistical
objects as well.

3.1.2 The Energy Spectrum

The energy spectrum tensor is the fourier transform of the correlation
function [41]:

fij (k) =
1

(2p)3

Z
Cij (r) e�ikrdr. (3.4)

In the case of an incompressible fluid, we know that kifij = kjfij = 0. In
combination with the simplifications through isotropy outlined in the previ-
ous section, the energy spectrum of homogeneuos, isotropic turbulence in an
incompressible fluid can be expressed by a single function E(k):

fij =
E (k)
4pk2

✓
dij �

kikj

k2

◆
. (3.5)

In Part II of this thesis, the results from hot wire measurements will be
discussed. The only component of the energy spectrum tensor accessible to
such measurements is f11(k1), also denoted as E11(k1). In terms of the energy
spectrum function

E11(k1) =
Z k1

0

E (k)
k

 
1 �

k2
1

k2

!
dk. (3.6)

3.1.3 Structure Functions

The statistical information about a phenomenon can be described by a
probability distribution function (PDF). Since in turbulent flows structures
of different scales interact with each other, the scale-by-scale statistics are of
prime interest. To combine the two approaches, one traditionally measures
the n-th order velocity increment statistics, also called structure functions

Si
n(r) = h(ui (x + r) � ui (x))n

i. (3.7)

Si
n and the n-th order correlation function h(ui (x + r) ui (x))n

i are trivially
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connected. Therefore, just as correlation functions, Si
n can be fully decom-

posed into a component in the direction of r (longitudinal) and a component
normal to r (transverse). Since we consider longitudinal structure functions
in most cases, we call the longitudinal structure function of order n

Sn(r) = h(ux(x + r) � ux(x))n
i (3.8)

Thus, structure functions exhibit similar properties in terms of complexity
as correlation functions and energy spectra. They can in fact be converted
into each other. The structure function is however easier to interpret at higher
orders than correlation functions or higher-order spectra. Further, the struc-
ture function is smoother than the energy spectrum, because it is an average
of local quantities (the velocity increments), whereas the energy spectrum im-
plicitly assumes the existence of some periodicity, which is in general not
present. For this reason, structure functions can be considered a very simple
wavelet transform [43] with a wavelet consisting of two d-distributions.

3.2 The Karman-Howarth-Equation

After introducing the canonical tools of statistical analysis of turbulence,
we merge the definitions from the previous section with the fundamental
fluid dynamics equations from Sec. 2.1. For this, we consider the Navier-
Stokes-Equations (2.5) for the velocity field ui and the velocity field shifted by
an increment r called u0

i. Following Davidson [40],

∂ui
∂t

= ui
∂(uk)
∂xk

�
∂(p/r)

∂xi
+ 2n

∂2

∂xi∂xj
ui (3.9)

An equivalent equation can be written down for the shifted velocity field
u0

j(x0

k). We now multiply equation (3.9) by u0

j, add it to the equivalent equation
for u0

j and average. Assuming isotropy, one arrives at

∂huiu0

ji

∂t
= �

∂

∂rk

⇣
huiuku0

ji + huiu0

ju
0

ki
⌘

+ 2n
∂2

∂r2
k
huiu0

ji (3.10)

with rk = xk � x0

k.

This equation is easier to interpret when written in terms of the nor-
malised longitudinal correlation functions f (r) = C11(r)/u2

RMS and K(r) =
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hu(x)2u(x + r)i/u3
RMS:

∂

∂t
u2 f (r, t) =

1
r4

∂

∂r

⇣
r4u3K (r)

⌘
+ 2u

1
r4

∂

∂r

✓
r4u2 ∂ f

∂r

◆
. (3.11)

We have arrived at an evolution equation for the second-order longitudinal
correlation function in isotropic turbulence (removing the simplification of
isotropy yields a longer, but otherwise similar equation, see e.g. [44, 41, 45]).
However, this equation has two unknowns: The second- and third order cor-
relation functions f (r), and K(r), respectively. This is the closure problem
of turbulence arising in the equations of turbulence statistics. It is a major
addition to the mathematical complexity of the problem. To circumvent the
closure problems, several closure assumptions have been suggested. For ex-
ample, the quasi-normal approximation assumes the fourth-order statistics to
be Gaussian even at small increments [46]. This is not only contradicting ex-
perimental data (see Sec. 3.3.4), but also leads to serious theoretical problems.
For example, E(k) < 0 in an important range of wavenumbers [47]. Some
of these inconsistencies are removed by the eddy-damped quasi-normal ap-
proximation, where an additional time-irreversibility is installed by adding an
eddy-viscosity term. More detailed views on closure schemes can be found
in e.g. [48, 40].

Eq. 3.11 can be recast in terms of the structure functions S2(r) and S3(r).
It is straightforward to see that S2(r) = 2u2(1 � f (r)), and S3(r) = 6u3K(r).
With this one arrives at

�
2
3

# �
1
2

∂S2(r)
∂t

=
1

6r4
∂r4S3(r)

∂r
�

n

r4
∂

∂r

✓
r4 ∂

∂r
S2(r)

◆
. (3.12)

Evidently, the third order structure function is completely determined by the
time- and scale dependence of S2. S3 is unique in this sense, because the evo-
lution equations of higher orders contain additional pressure contributions.
The terms in eq. (3.12) correspond to different ranges of scales. The second
term on the left hand side comes from the statistical nonstationarity, e.g. due
to the decay of turbulent kinetic energy. The last term on the right hand side
describes the effects of viscosity on S3.

In a statistically stationary flow ∂S2/∂t = 0 1. In the limit of very large Rl,

1Statistical stationarity means that averaged quantities are constant throughout one in-
stance of the flow. It makes no statement about the repeatability of such a flow.
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n ! 0. In this case, eq. (3.12) can be integrated over r leaving [49]

S3(r) =
4
5

#r. (3.13)

Hence, at those scales in a stationary flow, where viscous effects (and any
large-scale forcing) are negligible, the third order statistics are uniquely de-
termined by the dissipation rate #. This range of scales is called the inertial
range. In Sec. 3.3 it will become apparent that (3.13) is only a special case of a
hierarchy of scaling laws for the n-th order structure function, albeit the only
one that can be derived rigorously from the equations of motion.

This section closes by the conversion of (3.11) into spectral space. The
application of a Fourier transform yields

∂

∂t
E(k, t) = T(k, t) � 2nk2E(k, t), (3.14)

where the spectrum of scale-by-scale energy transfer T(k, t) has been intro-
duced.

3.3 Phenomenology and Scaling

3.3.1 The Cascade Picture

Already Leonardo da Vinci must have realised the multiscale organisation
of turbulent flow in his studies of water leaving a rectangular channel [50].
Richardson [51] was the first to hypothesise the existence of an energy cascade
from large scales to smaller ones. In particular, he envisioned turbulence as a
sea of vortex structures ("whorls" or "eddies"), that subsequently break up into
smaller and smaller eddies "and so on to viscosity (in the molecular sense)".

As outlined in Sec. 1.1, the presence of turbulence is immediately recog-
nisable when presented with a sufficiently visualised turbulent flow. This is
likely owing to the presence of easily recognisable, unique structures. Just
as turbulence itself, these structures are difficult to capture in a strict, mathe-
matical sense. In the literature (and this thesis) such structures are referred to
as "eddies". They can be loosely described as (weakly) coherent fluid motion
with a length scale `.

The cascade picture of turbulence - in particular in its original form envi-
sioned by Richardson [51] - makes frequent use of this picture. In the Richard-
son picture of turbulence, a turbulent flow originates from eddies of size `1,
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that carry the majority of the turbulent kinetic energy. These eddies break up
into a number of smaller eddies of size `2, which in turn break up into even
smaller eddies. The cascade ends when the energy within each eddy can be
directly dissipated into heat.

This picture has been very influential for the turbulence research it pre-
ceded, but its strict hierarchy of eddies breaking up into smaller eddies has
proven inaccurate. In particular, these eddies coexist at many different length
scales and interact with each other nonlinearly. This is reflected in the two
different approaches to turbulence. In the Eulerian framework one or more
snapshots of the fluid field are considered and scale-by-scale statistics emerge.
Because Eulerian measurements are relatively straightforward to realise, this
has been the major way to study turbulence and the vast majority of statistical
theories is centered around spatially resolved flow fields.

The insufficiencies of the strict Richardson cascade picture are even more
obvious when considering the motion of a single fluid parcel over time. It
shall be argued in Sec. 3.4.1 that this Lagrangian framework is equivalent
to the Eulerian and in some sense a more natural way to study turbulence
(cf. [52, 53]). We observe that fluid parcels regularly experience extreme ac-
celerations suggesting a small-scale motion followed by relatively quiescent
periods, which cannot be captured by the simple Richardson cascade model.
Such measurements are however extremely difficult and the underlying phe-
nomenology is not nearly as well-developed as in the Eulerian case.

We have thus introduced the length scale ` of an eddy, which can be sup-
plemented by an eddy time scale (eddy turnover time) t`, and an eddy veloc-
ity scale u` = `/t`.

This phenomenological model implicitly introduced a far-reaching assump-
tion, namely that the power introduced at the beginning of the cascade (the
large scale L) and the power ultimately dissipated into heat are connected by a
simple factor. The power present at any scale ` can be defined by dimensional
analysis as u3

`/`. In the particular case of the energy injection scale L the rel-
evant velocity is the root mean square (RMS) of the velocity fluctuations. The
power dissipated into heat is given by the dissipation rate # ⇠ nh(∂ui/∂xi)2i.
The cascade picture implies that

# = C#
u3

L
(3.15)

This relation is frequently called the "Zeroth Law" of turbulence. The value of
C# depends on the precise definition of L, and the flow geometry or forcing
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scheme, but is constant at large Reynolds numbers. Eq. 3.15 has particular
implications for the limit of Re! •, which can be seen as n ! 0 with L =

const. If this relation holds as n becomes smaller and smaller, the velocity
gradients ∂ui/∂xi must become steeper and steeper, ultimately causing sin-
gularities. This is called the dissipation anomaly and is discussed in greater
detail in Sec. 7.1.

3.3.2 Self-Similarity

The previous section has made clear that the velocity field of a turbulent
flow cannot be smooth in the limit of infinite Rl. Indeed, O. Reynolds ob-
served in his groundbreaking experiments [3] described in Sec. 1.1 that as
soon as the energy input exceeded a certain threshold, the smooth flow broke
down into a flow with steep velocity gradients efficiently mixing the dye he
used to visualize it. The flow apparently changed its geometry dramatically,
because the kinetic energy could not be dissipated efficiently enough by the
gradients of a smooth velocity field. The system then forms a fractal to ac-
comodate the excess energy input giving it a non-smooth character. Such
phenomena are prevalent in numerous physical and biological systems, such
as metabolism, fractures, and geology. They typically exhibit fractal or self-
similar features (see [54, 55] for more examples). As Jiménez [56] writes: "It
may be said that the reason why fractals, geometric or otherwise, are preva-
lent in nature is the need of handling solicitations that cannot be managed by
smooth means.".

A defining feature of fractals is their self-similarity, i.e. its features f at a
scale ` appear again in a scaled version of themselves when observing it at a
scale l`. Mathematically, a scalar field f (r) is called self-similar if [54]

f (`) = lz f (l`) (3.16)

for all l > 0. The scaling exponent z is an important characteristic of the
fractal properties of the system.

3.3.3 Kolmogorov’s 1941 Theory

In 1941, Kolmogorov published his seminal work that would influence
generations of researchers [57, 49]. It is commonly abbreviated as K41. It
combines the Richardson conjecture of an energy cascade [51] and the con-
cept of self-similarity. The work is centered around three hypotheses and
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two definitions regarding the statistics of velocity increments u(x + r) � u(x).
Those statements are paraphrased in the following.

Definition of Local Homogeneity and Isotropy A flow is locally homoge-
neous and isotropic in a region of the flow, if the statistics of velocity differ-
ences are invariant under translations (homogeneity), rotations and reflections
(isotropy) over that domain.

Hypothesis of Local Isotropy and Homogeneity The velocity difference
statistics are homogeneous and isotropic over a region of the flow’s typical
length scale L, time scale T = L/U, and sufficiently far away from the flow
boundaries.

First Similarity Hypothesis The statistics of the small-scale (r < L) velocity
differences in locally isotropic turbulence depend only on the dissipation rate
# and the kinematic viscosity n.

Second Similarity Hypothesis If L � r � h, where h is the typical length
scale of viscous dissipation, the velocity increment statistics depend on the
dissipation rate # only and are independent of viscosity.

These hypotheses have far-reaching consequences. First, they allow to
quantify the typical length scales of the flow. The size of smallest length scale
in the flow (the size of the smallest eddies) is proportional2 to the Kolmogorov
length h. According to the first similarity hypothesis, h can only depend on
# and n. The only dimensionally correct length scale that can be formed by
these two quantities is

h =

✓
n3

#

◆1/4

. (3.17)

Similarily, a time- and velocity scale of the dissipative regime can be formed:

th =
p

n/#, (3.18)

uh = (#n)1/4. (3.19)

The size of the largest length scale over which local isotropy can be as-
sumed according to K41 is less well defined. A common estimate is the in-
tegral over the correlation function C11(r) starting from r = 0. The upper

2Note that Kolmogorov never claimed equality. In fact, the smallest eddies are likely
roughly of size ⇡ 10h [58].
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Figure 3.1: Left: Illustration of the second order structure function S2(r). Blue line: small-
scale scaling ⇠ r2, red line: K41 inertial range scaling ⇠ r2/3. Sn(r) is constant at the largest
scales. Right: Measurement of the one-dimensional energy spectrum. Red line: K41 inertial
range prediction ⇠ k�5/3. At large scales, E11 = const., whereas E(k < 1/L) ⇠ ka with 2 

a  4. The large-scale behaviour of E(k) is not recovered in the one-dimensional surrogate
due to the integral in eq (3.6).

boundary is often taken as the first point where C11(r0) = 0, but other defini-
tions are possible [59, 60].

There exists another important length scale first defined by Taylor [18].
The Taylor scale l is originally defined over the correlation function as well
[18, 42], but the more practical definition

l =

s
u2

(∂u/∂x)2 =

r
15nu2

#
(3.20)

is presented here. It is of great importance for fundamental turbulence stud-
ies, as the commonly used Taylor-scale Reynolds number is based on this
length scale. However, its interpretation is not as clear as in the case of h, or
L. l was originally meant to characterise the scale at which dissipative effects
become negligible [18]. It has been observed in the past that the average dis-
tance between zero-crossings of the fluctuation signal is very close to l [19],
and that l is linked to the onset of Markovian properties in the turbulent
cascade [61].

K41 augments the phenomenology of the Richardson cascade picture of
turbulence by a quantification of the most important length- and time scales
involved. Kolmogorov’s theory further makes detailed predictions about how
the velocity increment statistics scale with the increment r. The n-th order
structure function defined by (3.8) has units of (m/s)n. A family of func-
tion that fulfils the self-similarity condition (3.16) are power laws of the form
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f (r) ⇠ rz . Assuming a self-similar power law for Sn(r), the only dimension-
ally correct result with # as the only free parameter is

Sn(r) ⇠ (#r)n/3. (3.21)

Note that for n = 3, the scaling is readily confirmed by the 4/5-law derived
directly by averaging the Navier-Stokes equations. This lends support to the
ad-hoc assumption of a power law.

From this the following overall picture emerges for Sn: At very small scales
r / h, where viscosity dominates the dynamics, Sn ⇠ r2 as can be seen
from a Taylor expansion around r = 0. For very large separations r > L,
the velocity field is decorrelated and Sn(r) ⇠ un

RMS. If those two regimes
are separated well enough, a third distinct range of scales emerges, where
nonlinear dynamics (inertia) dominate. Here, viscosity and flow geometry
play only a minor role and the structure function follows eq. (3.21).

Through equivalent arguments, Kolmogorov could predict the scaling of
the energy spectrum in the inertial range

E(h�1
⌧ k ⌧ L�1) = CK#2/3k�5/3. (3.22)

These results have far-reaching consequences. They imply that in a statisti-
cal sense only the largest scales are flow dependent. The statistics of the small
scales (including but not limited to the dissipation scales) do not depend on
their origin, i.e. are universally shared among different types of flow up to
a constant prefactor. It turns out that even the prefactors are at least similar
from flow to flow.

In the decades following its original publication, the spirit of the K41 pre-
dictions has been confirmed in experiments too numerous to list. At leading
order, K41 is a remarkably good description of turbulence statistics, in partic-
ular given its simple derivation.

It should be noted that the history of these predictions is much richer than
suggested here. In fact, Prandtl [62], Onsager [63], and Heisenberg [64] and
Weizsäcker [52] arrived at the same conclusions independently.

3.3.4 Intermittency

The K41 framework was a milestone in the understanding of turbulence
statistics. However, it was quickly realised [65, 66] that # is an intermittent
function of space and time, and therefore a simple average is an oversim-
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Figure 3.2: The time series of the dissipation rate (Rl ⇡ 4000) computed from the a single ve-
locity component illustrating the intermittency of #. The signal is an extremely spiky function
of time (and space) regularly taking values several hundred times its mean.

plification. Fig. 3.2 illustrates that the dissipation rate frequently departs
extremely far from its average values. This objection has led to the develop-
ment of several theories that aim at modelling this intermittency. Historically,
Kolmogorov quickly refined his original theory [66] assuming a probability
distribution that accounts for the abundance of extreme dissipation values.
Such a distribution is the log-normal distribution, which causes corrections to
the structure function scaling exponents of the form

zn =
n
3

�
µ

18
n(n � 3). (3.23)

µ is the intensity of the intermittency.

Different assumptions for the PDF of # have been proposed. For example,
Andrews et al. [67] assume a Gamma-Distribution for #.

Another probability-based model is the Log-Poisson model by Dubrulle
[68]. It yields

zn = (1 � D)n/3 +
D(1 � bn/3)

1 � b
. (3.24)

b is equivalent to µ in eq. (3.23), and D is proportional to the codimension
of the "most intermittent dissipative structures" [68]. These structures are
explicitly captured by the largest statistical moments, since higher moments
emphasise the tails of the distribution. An intuitive assumption for the nature
of these structures are extremely thin vortex filaments, which are practically
one-dimensional. For this special case of eq (3.24) one gets b = D = 2/3. This
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is known as the She-Leveque model [69], which precedes the Dubrulle model
historically. Incidentially, this yields an acceptable fit to measured values of
zn without the need for free parameters (see Fig. 7.6, and e.g. Ref. [70]))
and with a plausible physical interpretation. The two models furthermore
predict a order-by-order hierarchy of scaling laws, i.e. Sm ⇠ Sn. This is
strikingly similar to the empirical observation that Sn scales with S|m| over a
much longer range of scales than Sn(r) (known as "Extended Self-Similarity"
(ESS), see Chs. 6 and 8 [71]. Finally, the Dubrulle model is a limiting case of
the random b model[72].

The random b model belongs to a class of models that are based on the
geometric interpretation of intermittency [72, 73]. Intermittency of # implies
that certain regions of space contain large values of #, whereas others do not.
A way to construct such a spatial distribution is to start at a scale `0 (in tur-
bulence: the length scale, where the energy is injected into the cascade) and
to subdivide the volume `3

0 into smaller volumes of size (`0/2)3 (or any other
factor> 0). A fraction b of these subvolumes carry "active" eddies (strong dis-
sipation). These "active" subvolumes are subsequently divided in N steps into
even smaller subvolumes of scale `0/sN, such that the energy transfer at the
N-th iteration is #N = bNu3

n/`N. Here, uN is the RMS velocity within all active
subvolumes at scale `N. This yields structure function scaling exponents

zn =
n
3

+ (3 � D)
⇣

1 �
n
3

⌘
. (3.25)

D can then be interpreted as the fractal dimension of the active eddy volume.
According to eq. (3.25), the structure function scaling exponents are still a
linear function of n. While measurements of zn are subject to large uncertain-
ties at high n, they generally point towards a nonlinear behaviour of zn [74].
However, when looking at the closed-loop integral over the velocity field in-
stead of velocity differences, the available data points towards a combination
of two linear functions valid for different ranges of n [75]. This would cor-
respond to a bifractal model, where the dissipation can exist on two different
fractal sets, where the measured scaling exponent is the smaller of the two at
any given order n. The next step is naturally to assume the existence of in-
finitely many fractal sets with scaling exponents between (hmin, hmax), which
is known as the multifractal model [76, 77, 78, 72]. An example of such a model
is the random b-model [72], where the fraction b occupied by active eddies
(strong dissipation) is an independent random variable for each subvolume
and cascade step. Together with the arguments made for the b-model, the
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random b model yields for the structure function scaling exponents

zn =
n
3

� log2(hbi
1�n/3). (3.26)

3.4 Lagrangian Turbulence

3.4.1 The Lagrangian Framework

The preceding chapters of this thesis have been exclusively concerned with
the Eulerian description of the flow field, i.e. the vector field of the flow ve-
locity u(x, t). The corresponding statistical objects are based on observations
of that flow field at one or two locations in the flow. There exists however a
different, but equivalent method of describing fluid flow. Instead of consider-
ing the fluid parcel at each point in the volume, we label each fluid parcel by
its location X at the point t = 0 by x0 and track its position as a function of
time.

The relation between this Lagrangian description in a comoving reference
frame and the Eulerian description in the laboratory frame is straightforward
[54]:

dX(x0, t)
dt

= u(X(x0, t)) (3.27)

X(x0, t) = x0 (3.28)

Similarily, the Lagrangian velocity is defined as

U(x0, t) =
d
dt

X(x0, t) = u(X(x0, t)) (3.29)

Writing down the Navier-Stokes equations in an entirely Lagrangian frame-
work yields complicated shear-stress terms and is of little insight [79]. Here,
only the implicit version using the Eulerian equations shall be presented [54]:

d
dt

U(x0, t) = [�rP(x, t) + nr
2u(x, t)]|x=X(x0,t). (3.30)

The nonlinearity of the advective gradient has been absorbed into the La-
grangian acceleration. Therefore, measurements of the acceleration of a fluid
particle contain direct information about the nonlinear facets of turbulence.
The Lagrangian description is furthermore of great practical importance, since
transport and mixing processes are more intuitively understood in a comov-
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ing reference frame [80]. However, wind tunnel experiments of transport
phenomena, such as two-particle dispersion, are a practical challenge. These
phenomena require particle tracking over long periods of time > 50th, such
that a stationary measurement device would need to resolve a very large field
of view sufficiently or the device needs to be moved with the mean flow. The
dispersion characteristics of turbulence are beyond the scope of this thesis.

3.4.2 Lagrangian Structure Functions

In principle, all statistical objects defined in Sec. 3.1 exist in the Lagrangian
reference frame with spatial increments usually replaced by temporal incre-
ments along the trajectory of a fluid parcel. However, quantities like the en-
ergy spectrum rely on unbiased sampling, i.e. a constant sampling indepen-
dent of the value under study. Faster particles cross any finite measurement
volume in a shorter time than slower ones, which introduces a sampling bias.
Since structure functions are local in scale and space, they are less plagued by
preferential sampling.

The n-th order structure function is defined as the n-th order moment of
the velocity increments separated by a time step t along the trajectory of a
fluid element:

SL
n(t) = h(ui(t + t) � ui(t))n

i (3.31)

Equivalent to the Eulerian Framework, the K41 theory yields for the inertial
range of scales

SL
n(t) = Cn(#t)n/2, (3.32)

which is straightforward to derive by dimensionally matching t and # under
the assumption of self-similarity. If the inertial range statistics take a universal
form at larger Rl, Cn should approach the same constant for every homoge-
nous, isotropic turbulent flow. In the case of n = 2 (typically called C0), this
constant is closely connected to the Richardson constant of pair dispersion for
separations in the inertial range and the structure functions of passive scalars
[81]. It furthermore appears in relative dispersion- and transport models. The
experimental measurement of C0 is however very difficult. In general, La-
grangian statistics of adequate precision have been accessible for little more
than two decades at the point of writing [82, 83] with some earlier atmo-
spheric measurements being subject to large uncertainties [84]. This is a very
short time frame compared to the body of Eulerian measurements acquired
over more than one century. The measurement of inertial range quantities
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in the Lagrangian reference frame is particularly difficult, because its inertial
range grows by a factor R1/2

l slower than the Eulerian [85]. The existing mea-
surements and numerical simulation arrive at values of 2 < C0 < 9 with very
small or absent inertial range scalings.

As t ! 0, a Taylor expansion yields that SL
n(t ⌧ th) ⇠ tn. Using in

addition, Kolmogorov’s First Hypothesis of Similarity along with dimensional
arguments,

S2(t ⌧ th) = a0

r
#3

n
t2. (3.33)

a0 is called the normalised acceleration variance. It is predicted to ap-
proach a universal constant in the limit of very large Rl (cf. Sec. 3.4.3).

Note that in the Lagrangian framework a straightforward relation between
statistics of different orders such as the Kármán-Howarth equation (3.12) does
not exist. Therefore, the scaling laws (3.32) are only based on dimensional ar-
guments. The closest to a Lagrangian "4/5th-law" is the Ott-Mann-Gawedcki
relation [86, 87, 88]. Considering two particles with velocities v1 and v2 and
an initial separation in the inertial range,

⌧
d
dt

(v1(t) � v2(t))2
|t=0

�
= �4#. (3.34)

This is intimately connected with the time-irreversiblity of turbulence [89].

3.4.3 Lagrangian Accelerations

The Lagrangian acceleration is a fundamental quantity in the study of
turbulent flows, since it is equivalent to the convective derivative as demon-
strated in Sec. 3.4.1. It is furthermore a direct measure of the smallest scales
and its magnitude scales with `�1/3 in the inertial range, i.e. fluid element
accelerations become smaller with increasing length scale.

Heisenberg [64] and Yaglom [53] derived a relation for the acceleration
variance based on Kolmogorov’s K41 self-similarity theory:

ha2
i = a0#3/2n�1/2. (3.35)

In the presence of small-scale intermittency, ha2i might carry a Reynolds num-
ber dependence. For example, if the dissipation rate is log-normally dis-
tributed, ha2i ⇠ R9µ/16

l [90]. Since the measurement of accelerations at high
Rl requires extremely well-resolved spatiotemporal coordinates of the fluid
parcel locations, its statistics are accessible in experiments only relatively re-
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cently [83, 91, 90].
Since the Lagrangian acceleration directly probes the small-scale structure

of the flow, its probability distribution function (PDF) has to reflect the relative
abundance of extreme events. In other words, the PDF of accelerations must
be heavy-tailed. This has been confirmed in DNS [92] and experiments [91].



Chapter 4

Experimental Setup and Flow
Properties

The purpose of this chapter is twofold: First, the experimental facility in
which the experiments were performed is described. Particular attention is
paid to the active grid that allowed the creation of higher Rl and is the most
recent addition to the wind tunnel structure. Then, the large-scale flow prop-
erties are discussed in three brief sections. The corresponding measurements
are the hot wire measurements tabulated in Appendix unless stated other-
wise.

4.1 The Variable Density Turbulence Tunnel

The Variable Density Turbulence Tunnel (VDTT) is a closed-loop high-
pressure wind tunnel. It is described in detail by Bodenschatz et al. [36]. In
the following a brief description of the facility is provided for the reader’s
convenience. The wind tunnel consists of two parallel, horizontal 11.68m
long tubes with an inner diameter of 1.84m connected by two elbows of inner
diameter 1.52m. The centerlines of the tubes are 3.5m apart. The total volume
is ⇡ 88m3 enclosed by 20 mm thick steel (18 mm in the elbows). The pressure
vessel is approved for operation with sulphur-hexaflouride (SF6) up to 15 bar
between 15 and 30°C.

The gas is propelled by a 210kW electric motor, which is located at one
end of the lower straight tube. The motor rotates a fan with 20 blades at up
to 24 Hz accelerating the working fluid to mean flow speeds between 0.5 and
5.5 m/s. It is water cooled with the cooling water provided by the institute
cooling system through a dedicated water line into the tunnel.

31
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Figure 4.1: Upper measurement section looking upstream with the active grid at the end.

Figure 4.2: Vertical traverse with hot wire holders and pitot tubes installed looking down-
stream. A vertically mounted linear stage on the left side can be used to record velocity
profiles
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The operating gas first flows through one elbow, which is immediately fol-
lowed by a 240kW heat exchanger at the beginning of the upper straight cylin-
drical tube. This heat exchanger removes the heat injected into the flow by the
electrical motor once it has dissipated into heat. The heat exchanger consists
of two registers of water-cooled plates that are stacked in such a way that cool
water flows from both the top and the bottom of the cross-section to avoid
a temperature gradient along the tunnel height. The cooling water supply is
isolated from the pressurised tunnel inside and the laboratory environment.
Leaks of SF6 into the cooling water as well as cooling water leaks into the SF6

would be detected. The rectangular heat exchanger is smoothly adapted to
the cylindrical cross section through a contraction and subsequently adapted
to the approximately octangular cross section shape of the following mea-
surement section by an expansion. During the expansion the flow encounters
three meshes of increasing mesh spacing (0.850mm, 1.267mm, 2.833mm). To-
gether with the heat exchanger slots these meshes laminarise the flow and
destroy any residual mean vorticity introduced by the rotating fan. At the
beginning of the upper measurement section turbulence production mecha-
nisms are installed. The measurements in this thesis were carried out using an
active grid (see Sec. 4.2), in previous experiments a passive grid was installed
[93, 94, 95].

After the active grid the flow passes through another vertical expansion
from 104 cm to 116 cm height and is then left to develop freely within the
boundaries of the 8.8m long, 1.5m wide, and 1.17m high (measured at the
downstream end) measurement section. Note that the section was elevated
by 12cm compared to the setup described in Ref. [36]. The section features
a traverse that can be moved in the streamwise and vertical directions. A
cable guide brings digital connections, RG223 coaxial signalling cables, as
well as plastic pipes to the traverse, which provide the basis for hot wire
measurements. Ch. 10 describes the implementation of a camera platform
that is about 6m downstream from the active grid. After leaving the upper
measurement section the flow is guided through the other elbow through
another set of three meshes before entering the lower measurement section.
This measurement section was not in use during the experiments presented
here. After this section the fluid enters the fan again.
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Figure 4.3: Side view of the Max Planck Variable Density Turbulence Tunnel indicating es-
sential parts of the flow. Graphic by A. Kubitzek.

4.2 The Active Grid

The most classic turbulence experiment is perhaps the wind tunnel flow
in the far-field wake of a solid grid of regularly spaced bars [96]. This flow is
very close to the idealised case of homogeneous, isotropic turbulence [97]. It
also has a rather low turbulence intensity, which allows the application of Tay-
lor’s frozen flow hypothesis (see Sec. 5.2, Ref. [98]) to convert single-location
time series into one-dimensional flow fields. The energy injection scale L is
well-defined by the spacing D of the grid bars. While these properties make
it a very good choice to study fundamental aspects of decaying turbulence,
they also bring difficulties: The Reynolds number Rl depends on the RMS of
the velocity fluctuations u. Thus, when the turbulence intensity u/U is low,
a high mean flow velocity U is required to obtain high Reynolds numbers.
High mean flow velocities require very fast sensors (see Ch.5).

Further, the grid spacing D is limited by the wind tunnel dimensions to
maintain a high degree of homogeneity and isotropy. Therefore, the energy
injection scale L is limited to a fraction of the wind tunnel dimensions and
difficult to adjust. The aim of the active grid in the VDTT is to create higher
turbulence intensities and larger energy injection scales while sacrificing only
little of the flow isotropy and homogeneity.

Makita & Sassa [99] were the first to create an active grid and show that
it produces turbulence that is comparable to the canonical passive grid tur-
bulent flow. Their grid consisted of agitator winglets mounted to rotating
rods. This setup and variations of it were the blueprint of most active grids
built subsequently (see Ref. [100] for a review). Active grids with rotat-
ing rods were used to generate homogeneous, isotropic turbulence at high
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Figure 4.4: Left: Overview of active grid structure with most flaps in closed state. The outer
aluminum structure is not exposed to the flow. Right: Close view on some active grid flaps
with flaps pointing at (clockwise) 0º, 45º, 90º, and -45º with the flow pointing out of the plane.
The center of each flap has a servo motor, which is decorated by plastic plates to form a 11cm
side length winglet. Graphic by A. Kubitzek, reprinted with permission from [108].

Reynolds numbers [101], generate conditions that closely resemble the at-
mospheric boundary layer [102, 103], create uniform velocity gradient [102],
avoid or generate shear [104, 105], and to investigate wind turbines [106] and
wind turbine arrays [107].

The active grid installed in the VDTT is a significant advancement over the
Makita-style grids of rotating rods. It consists of 111 winglets that are com-
pletely independent, i.e. not connected by rods. Each 11cm x 11cm square
winglet has a Futaba BLS152 servo motor mounted in its center. This allows
the winglet to rotate by ±90 deg from its open position at 0 deg at a speed
of 40° per 0.1s. In the open position, the winglet’s blockage is minimal and
one of their diagonals is parallel to the streamwise direction (see Fig. 4.4).
At ±90 deg one side of the winglets directly faces the flow, respectively. The
winglets are mounted in such a way that strong deflections of the flow are
prevented and the turbulence is generated by the interaction of several wakes
rather than large-scale vortices. The servo motors are powered by 12 24V
power supplies within the tunnel and controlled by two SD84 boards con-
nected to a computer via USB and Ethernet.

The blockage of the active grid to the fluid inertia can be up to practically
100%. When filled with SF6 at 15 bars and the fan pushing fluid towards it
this would correspond to >8 tons of fluid being pushed through the remaining
slots between the flaps. This is not only a danger to the winglets, but comes
close to the structural limits of the entire tunnel due to the sudden loss of
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angular momentum and the associated torque. Such a situation can occur
either when commanded by the user or when for some reason the active
grid motors receive no power or signal. The former case is prevented by the
software that controls the grid (see below). When the total blockage exceeds
70%, all angles are reduced by a common factor to bring the blockage below
that threshold. The latter case of sudden loss of power or signal is even more
dramatic, because the stable position of the flaps in the presence of flow is
closed, i.e. blocking the flow. Thus, a loss of power leads to the sudden
closure of the active grid flaps. To prevent damage to the grid and the tunnel,
the active grid is constantly monitored and a loss of power or signal triggers
an emergency stop of the wind tunnel fan.

The unique flexibility of the active grid allows for unseen ways to create
turbulence, which has been shown in Ref. [109]. The authors use an active
grid that is virtually identical to the one installed in the VDTT, but slightly
larger. They have developed a protocol that drives the active grid and is de-
scribed here briefly. It rests upon operations on a N ⇥ M ⇥ T-Matrix of grid
angles Am,n,t, where n and m are the coordinates of a virtual grid. Seven
wingelts are padded to each dimension of the matrix to avoid boundary ef-
fects when computing correlations. The index t corresponds to the order in
which the angle configurations are realised on the active grid. The algorithm
starts by creating a completely random instance of Am,n,t. The matrix Am,n,T/2

is chosen as the first set of grid angles. The key step is to correlate Am,n,T/2 in
all three dimensions before initiating the motion of the winglets on the active
grid. The correlation function and its parameters determine the exact form
of the forcing and have a big impact on the turbulence properties [109, 108].
To illustrate this we consider a top-hat correlation function CTH of correlation
length sS and -time st centered around the indices (5, 5, T/2):

CTH = I

8
<

:
1 for 5 � sS < m, n < 5 + sS and T/2 � st < t < T/2 + st

0 else
(4.1)

I is a normalisation constant. In this case an averaging over the ss adja-
cent winglets in each direction and the values A5,5,t for t = T/2 ± st would
take place and lead to the final angle for winglet coordinate (5,5). This pro-
cedure is repeated for all values of Am,n,T/2 and the resulting matrix deter-
mines the next set of angle sent to the active grid. The matrix Am,n,T/2 is now
updated with the correlated values. Finally, the matrix Am,n,1 is discarded,
Am,n,t ! Am,n,t�1, and Am,n,T is a new, random NxM matrix with values
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Long Tail
Top Hat

Figure 4.5: Long Tail and Top Hat correlation functions used to calculate the stream of corre-
lated grid angles

between ±90 deg with a pre-defined RMS. This algorithm forms a random
stream of grid angle sets that are correlated in space and time. CTH is only
a simple, illustrative example, much more complex shapes of the correlation
function are possible and the effects are described in detail in [109].

This thesis does not contain a detailed study of active grid protocols, but
some experience on the effects of different grid protocols is communicated.
The measurements presented here were taken exclusively using either a fully
random mode with a pre-defined angle RMS, a top hat correlation function
(TH), a long tail correlation function (LT) or a completely opened, stationary
grid. The top hat and long tail correlation functions are sketched in Fig. 4.5.
The grid protocols used are indicated by the following identifiers: Spatial
Correlation Function sS/0.11m; Temporal Correlation Function sT/0.1s. For
example, a grid protocol with a long tail spatial correlation with sS = 0.55m
and a top hat temporal correlation with sT = 0.3s would be abbreviated as
LT5TH3.

The active grid allows turbulent kinetic energy to be injected into the flow
with unseen flexibility and opens possiblities for studies on the effects of
different turbulence forcings.

This thesis is centered around the measurement of ultra-high Reynolds
numbers, for which the active grid is driven with the aim to generate energy
injection scales of different sizes. The relevant grid parameters is the spatial
correlation length sS and the temporal correlation length sT. sS determines
the energy injection scale in the spanwise (transverse) directions, while sTU
determines the injection scale in the streamwise (longitudinal) direction at a
given mean flow velocity U. The volume of a correlation is therefore given by

Vcorr = s2
SsTU. (4.2)
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Figure 4.6: Left: The flap correlations of the active grid measured by Lcorr determine the
correlation length of the velocity time series even at the end of the measurement section
about 9m (⇠ 80 flap sizes) downstream of the active grid. Therefore, the energy injection
scale is efficiently controlled by the active grid correlations. Right: The a priori grid Reynolds
number is a good predictor of the final Taylor scale Reynolds number Rl. The red line shows
the function 0.9845

p
ReGrid. The outlier corresponds to a case where the grid was stationary

and open.

It can be seen as the average fluid volume that is influenced by one grid
correlation. It can be converted into a length scale Lcorr = V1/3

corr . Fig 4.6
shows that the scale at which the active grid correlations occur influences the
correlation lengths of the velocity time series in the far-field (>80 flap lengths
downstream) of the active grid.

To quantify the relation between the active grid and the creation of large
Reynolds numbers we define the Reynolds number based on the active grid
by

ReGrid =
sin(FRMS)ULcorr

n
(4.3)

where FRMS is the RMS of the flap angles with respect to the mean flow
velocity, i.e. a measure for the grid blockage. ReGrid can be calculated purely
from input quantities, i.e. before the actual experiment. As can be seen in Fig.
4.6 the grid Reynolds number is a good predictor for the Taylor-scale Reynolds
number Rl, which is based on quantities that are typically only available after
conducting an experiment. Moreover, the simple relation Rl ⇡ 0.985

p
ReGrid

is a good description of the data and resembles the isotropic relation between
Rl and Re. It can therefore be used to estimate the Rl completely from a priori
quantities, i.e. active grid setting, facility pressure, and mean flow velocity
(c.f. Ref. [108], and Sec. 9).
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Figure 4.7: Normalised PDFs of the velocity fluctuation color coded by their Taylor-scale
Reynolds number Rl. The black curve is the normal distribution. The measurements
show a noticeable deviation from the normal distribution, albeit acceptable in most cases.
Three curves have a strong positive skewness. In these cases the active grid was driven
in a very anisotropic way to create very large Rl (LT3.5LT6, LT5LT10, LT5.2LT15 to reach
Rl = 4141, 5006, 5865, respectively.)

4.3 Velocity Distributions

The velocity fluctuations u in a homogeneous turbulent flow are typi-
cally assumed to be normally distributed. This means that their flatness
F = hu4i/hu2i2 = 3 and their skewness S = hu3i/hu2i3/2 = 0. The for-
mal justification for this assumption is the central limit theorem, by which the
superposition of independent random variables will be Gaussian distributed
[110]. In a turbulent velocity field these random variables are the Fourier co-
efficients into which the velocity field can be decomposed at any time. How-
ever, this justification has to be questioned if the Fourier amplitudes span a
wide range of scales. In particular, if the spectrum falls off steeper than k�1

as it is typically the case in a turbulent flow, the velocity PDF is expected to
be slightly sub-Gaussian [111]. A more comprehensive theoretical treatment
[112] yields similar results. These authors find that forced and decaying tur-
bulence are not fundamentally different in their velocity distributions. Still,
Maxey [113] applies simple eddy-diffusivity arguments to arrive at the con-
clusion that in grid turbulence the flux of turbulent kinetic energy in the
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streamwise direction should have a small, positive skewness on the order of
the turbulence intensity. Mouri et al. [114] found that the tails of the velocity
PDF develop from sub-Gaussian to hyper-Gaussian with increasing distance
from their passive grid.

Even though the velocity PDF is strongly influenced by the specific large-
scale inhomogeneities of real flows, slightly sub-Gaussian statistics are ob-
served in a wide variety of different flows [20, 115, 116]. Metzer & Klewicki
[117] find that skewness and flatness increase with decreasing distance from
the turbulent boundary layer. Hearst [118] carried out an extensive study of
the wake of a fractal grid and found that skewness and flatness of the ve-
locity distributions deviate from their Gaussian values only in the near-field
of the grid (<30 mesh sizes). Similarly, in a strongly anisotropic wind tunnel
flow, skewness and flatness settled to (sub-)Gaussian values quickly behind
the turbulence generator (an active grid with only three or four horizontal
rows) [119]. In summary, the a priori expectation for the velocity distribution
in grid turbulence appears to be a Gaussian shape, but deviations from this
shape (even strong ones) are not entirely surprising. In the following, the
shape of the distributions measured in the VDTT with an active grid shall
be described and analysed. The data was sampled with the hot wire sys-
tem described in 5.3.1 and corresponds to that of Tab. 11.1 . The normalised
PDFs measured with our constant temperature hot wire setup are shown in
Fig. 4.7. With the exception of the case where the active grid was constantly
in its most open state (i.e. closely representing a passive grid) the PDFs are
skewed towards higher velocities. The majority of them show a skewness
�0.1 < Su < 0.25 and a flatness 2.9 < Fu < 3.2 (see also Fig. 4.8 ). There
appears to be a small trend of larger skewness and flatness values towards
higher Rl. Three measurements show very large deviation from a normal
distributions. Because the velocity PDF is strongly influenced by the large-
scale structure of the flow, the dependence of the two shape parameters on
the active grid initial conditions and the decay of the flow is investigated in
the following.

Fig. 4.8 shows the dependence of the shape parameters on the active grid
initial conditions. These measurements were all taken at the downstream end
of the measurement section. Note that they are therefore in different positions
when normalising by active grid units. The spatial and temporal correlation
lengths sS and sT were introduced in Sec. 4.2. The quantity sTU/sS is the
dimensionless grid anisotropy that describes the ratio between streamwise
(temporal) and transverse (spatial) correlations introduced by the grid. We
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Figure 4.8: Dependence of the PDF shape on the active grid initial conditions. The temporal
correlation length UsT appears to be the main contributor to both increased flatness and
skewness, whereas the PDF shape is relatively independent of the spatial correlation length
sT
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Figure 4.9: Dependence of the PDF shape on the distance from the active grid normalised by
the flap size M = 0.11 m for two different grid protocols (LT7LT5, LT3.5LT3.5, see Sec. 4.2
for details). Fu and Su deviate more and more from their Gaussian values with increasing
distance from the grid, but saturate in both cases. Facility pressure: 5.95 bar, mean flow speed
⇡ 3.6 m/s.

can see from Fig. 4.8 that the PDF skewness and (less clear) flatness is rel-
atively independent of sS. The PDF shape is much more sensitive to the
streamwise correlation length sTU. Larger values of this parameter seem to
lead to stronger deviations from a Gaussian velocity distribution.

Refs. [113, 112, 118, 120] suggest that the PDF shape depends on the
distance from the turbulence generator. Fig. 4.9 therefore shows Su and Fu

as a function of the distance from the grid for to different grid protocols. As
anticipated by Ref. [113], the skewness increases with increasing distance
from the grid x. The difference between the two grid protocols becomes more
and more pronounced with x. It is however difficult to compare these data to
other studies or draw further conclusions, because the interpretation depends
sensitively on the choice of M. In our active grid it is not clear, which value to
choose. The flap dimensions are certainly a lower bound for the ’grid spacing’
M, because the their motions are correlated over multiple flaps.

This section concludes by recognising that the PDFs of velocity fluctua-
tions behind our active grid are more complex than in conventional passive
grids or even fractal grids [118]. Namely, they are in general flatter than a
Gaussian distribution and skewed towards positive fluctuations. This seems
to be mainly due to the streamwise correlations introduced by the active grid.
If this correlation length UsT < 0.4, skewness and flatness are restricted to
acceptable values. This was the case in most, but not all of our measurements.
A velocity distribution close to a Gaussian is ’desirable’ for a homogeneous
flow, but not strictly necessary. In summary, particular attention should be
paid to those cases, where UsT > 0.4, and this limit should be exceeded only
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if strictly necessary. Furthermore, the influence of the decay on the PDF shape
should be investigated in greater detail and the meaning of M in the context
of the VDTT active grid should be elucidated.

4.4 Decay of Turbulent Kinetic Energy

Even though the turbulence in this experiment is actively stirred through-
out a single experiment, the flow has to be regarded as non-stationary. The
turbulence in a volume of fluid is excited at one location in the tunnel (the
location of the active grid) and then carried with the mean flow without fur-
ther injection of energy (except wall friction). Therefore, the energy injected
at some scale L will be transported to smaller and smaller scales, where it
is dissipated by viscosity into heat. Because there is no other mechanism to
replace the dissipated energy, the turbulent kinetic energy in the fluid volume
is decaying. The way turbulent kinetic energy decays in (grid) turbulence
has been investigated in-depth for decades [121, 122, 123, 124, 125, 126, 127,
40]. A very brief summary of the findings could read as follows [40]: The
turbulent kinetic energy u2 in an unforced fully developed turbulence decays
with a power law tn with �2 < n < �0.9 over time (the exception of expo-
nential decay [124] is noted). The length scales grow also with power laws,
unless suppressed by the boundaries (e.g. [128]). During the decay certain
quantities remain constant, namely either the Loitsyansky integral

I = �

Z
r2

hu · u0
idr, (4.4)

which implies a constant, but finite global angular momentum of the flow, or
the Saffman integral

L =
Z

hu · u0
idr, (4.5)

which is connected to the linear momentum of the flow. In the former case,
the small-wavenumber part of the energy spectrum is expected to grow as
E(k) ⇠ k4 and n = �10/7, in the latter case E(k) ⇠ k2 and n = �6/5
is found. In practice, both laws are observed, with passive grid turbulence
usually preferring the latter (e.g. [95]).

The attractiveness of decaying turbulence behind a (passive) grid is that
it is known to be very close to the canonical ideal of homogeneous isotropic
turbulence [97] (with the obvious exception of the streamwise inhomogeneity
due to the presence of a mean flow). The main purpose of this section is to
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Figure 4.10: Decay of turbulent kinetic energy and development of the energy injection scale
L as function of time. L was estimated as

R
C11(r)dr in this case. Two different grid protocols

are shown (blue squares: LT7LT5, red circles: LT3.5LT3.5 , see Sec. 4.2 for details). The kinetic
energy decays as a power law. In contrast to freely decaying turbulence, the size of the energy
injection scale does not grow. This is most likely associated to the confinement of the flow
in the transverse directions. t is a Galilei transform from the downstream distance from the
active grid and the mean flow velocity U.

verify that the measurements we take are recorded in the decaying part of
the active grid wake in contrast to the near-field buildup. Fig. 4.10 illustrates
that the turbulence in the VDTT with an active grid is decaying for both
grid protocols tested. As they represent a strongly correlated forcing (blue
squares) as well as a more moderate forcing (red circles), we deduce that the
active grid in general produces decaying turbulence. As the right panel of
Fig. 4.10 shows, the turbulence is not freely decaying, because the largest
scales do not grow, but decrease. This is most likely because the growing
wall boundary layers confine the flow to a shrinking domain. This effect is
less severe when estimating L = u3/# (not shown). Since the purpose of this
experiment was merely to confirm the decaying nature of the flow, the near-
field was not examined. It is thus not possible to identify the beginning of the
decay region (t0) from this data. Therefore, crucial information to measure
the decay exponent n is missing. Sinhuber et al. instead related u2(t) to L(t)
to distinguish between the decay theories (4.4) and (4.5), but because L is
not growing in the present case, n cannot be extracted this way. In theory,
decaying turbulence with L = const. leads to n = 2 [129].

4.5 Flow Profiles

This thesis aims to contribute to the field of homogeneous, and isotropic
turbulence. It is therefore of interest to verify that the flow under study is
to a reasonable extent homogeneous and isotropic. To measure the isotropy
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of the flow, it is necessary to measure two velocity components. This can
be achieved in principle using a pair of crossed hot wires [130], but sensors
at the degree of miniaturisation necessary in the VDTT are still in their in-
fancy [131] and their directional calibration in a pressure vessel is a technical
challenge. Preliminary data from a Lagrangian particle tracking system (see
Ch. 11) suggests a significant presence of anisotropy that depends on the
employed active grid forcing. The author therefore had to rely on indirect
methods to verify the isotropy of the flow, the knowledge that wind tunnel
flows behind a grid are in general close to isotropic [97], and evidence from
passive grid measurements inside the VDTT [36]. Bodenschatz et al. [36] have
acquired flow profiles along the height of the wind tunnel measurement sec-
tion (total height H). They have shown that the mean flow is approximately
homogeneous between 0.3H and 0.6H with a visible deficit around 0.5H. For
the turbulence intensity u/U the homogeneous region is about 0.05H higher
with a small local maximum around 0.6H. They also find that the flow has
an isotropy ratio v/u ⇡ 1.1, as expected for passive grid turbulence[97]. Note
that the measurement section was about 12cm higher in their case.

In the following a similar set of vertical profiles is presented. The data
was acquired in the VDTT filled with 2.92 bar of SF6. The rotation rate of the
wind tunnel fan was set at 19.2 Hz (slightly lower than in Ref. [36] to allow
a larger calibration range relative to the measurement speed). Two 450µm
conventional hot wires were mounted on a vertical traverse of 500mm travel
and driven by a Dantec StreamWare CTA. The traverse was positioned at the
downstream end of the measurement section. When the traverse was at the
position closest to the floor of the measurement section, one probe was 21.6cm
above the floor and 9.5 cm away from the center of the section, while the
other was 34.5 cm (11.0 cm) above the floor (away from the center). Velocity
time series at different heights spaced 1 cm were recorded for 90 seconds.
The measurements were repeated with three different grid protocols (LT1LT1,
LT3.5LT.5, and LT7LT5, see Sec. 4.2 for details), and the mean flap angle was
always set at 40°. The original active grid code was adjusted to include the
option of decreased solidity at the measurement section boundaries. The flap
angles of the four outermost rows could be reduced by a constant factor from
their prescribed values. This way, the correlation lengths were kept constant,
but the grid solidity was slightly reduced with the aim of decreasing the size
of the boundary layers.

Fig. 4.11 shows profiles of the mean velocity acquired from those mea-
surements. The distance from the tunnel floor y has been normalised by the
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Figure 4.11: Vertical velocity profiles for different grid protocols. Heights are normalised
by the measurement section total height H, velocities are normalised by the velocity at the
center of the measurement section. Vertical profiles with colored background were taken
with adjusted active grid solidity: The outer flap angles of the active grid were continuously
reduced by a constant factor b. Lighter color correspond to more open flaps. The black line is
the velocity profile measured in the VDTT with a passive grid installed [36]. Different marker
colors indicate different probes.

total height of the measurement section H. The mean velocity U has been
normalised by its value at y = 0.5H. This removed some of the existing dif-
ferences in the measured values of U between the two probes at similar po-
sitions. These differences were within the expected calibration errors typical
for CTA measurements [132]. Flow profiles, without boundary layer reduc-
tion through the active grid (white backgrounds) are approximately homoge-
neous only between 0.3 . y/H . 0.55. These profiles are most representative
of the situations that were investigated in Pt. II (see Appendix B). Active grid
protocols LT3.5LT3.5 and LT7LT5 show more scatter than LT1LT1, which is at-
tributed to the inferior relative convergence of the statistics due to the larger
eddy turnover time and the overall increased turbulence intensity. The flow
profile of LT1LT1 does not seem to be perfectly flat at any point. LT7LT5 ap-
pears to show the velocity deficit at the center of the tunnel already observed
in the passive grid case [36].

Fig. 4.12 shows the RMS value of the velocity fluctuations normalised
by their value at y/H = 0.5. The regular LT1LT1 and LT3.5LT3.5 profiles
show similar boundary layers as deduced from Fig. 4.11. It is notable that
the fluctuation intensity in the homogeneous part of the flow (bulk) is less
different for large active grid correlation lengths (LT7LT5, LT3.5LT3.5) than
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Figure 4.12: Vertical profiles of the velocity fluctuations for different grid protocols. Heights
are normalised by the measurement section total height H, velocities are normalised by the
velocity at the center of the measurement section. Vertical profiles with colored background
were taken with adjusted active grid solidity: The outer flap angles of the active grid were
continuously reduced by a constant factor. Lighter colors correspond to more open flaps.

for smaller correlation lengths (LT1LT1). A possible explanation is that the
larger Reynolds number of these flows increase the mixing between the bulk
and the boundary layer and therefore cause the their fluctuation intensity to
become more similar.

Fig. 4.13 shows the values of ∂U/∂y for different heights. This quantity
is a measure for the mean shear of the flow, which is an indication for the
presence of anisotropy [105]. To obtain the gradient, the data from Fig. 4.11
has been smoothed by a moving average of kernel size 9 and the second-order
numerical derivative of the smoothed data was calculated.

For the cases in which the active grid solidity close to the tunnel boundary
was not reduced (white background), only a relatively small region is approx-
imately free of mean shear (0.4 < y/H < 0.5). This is largely independent
of the grid protocol used. The data for grid protocol LT7LT5 would justify a
slightly larger shear-free region due to the large scatter.

In addition to the investigation of the regular grid protocols used to ob-
tain the statistics presented in Part II, the possibility of minimising the mean
shear present in the system by adjusting the active grid flap angles was ex-
plored. Mean shear is produced by the friction between the moving fluid and
the stationary tunnel walls slowing the fluid down. This could be counter-
acted by providing the regions of the flow close to the tunnel boundaries with
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Figure 4.13: Profiles of mean shear along the tunnel height for different grid protocols. The
data was obtained by applying a moving average smoothing to the data in 4.11. Vertical
profiles with coloured background were taken with adjusted active grid solidity. The outer
flap angles of the active grid continuously reduced by a constant factor. Lighter colours
correspond to more open flaps.

additional kinetic energy relative to the bulk flow.

To this end, the active grid algorithm introduced in [133] and described
in 4.2 was adjusted as follows: Each of the four outermost rings of flaps has
a constant factor assigned to it. The algorithm produced the sets of grid
angles in the regular way, but before these sets were sent to the servo motors
to move the active grid flaps, the angles of the outer rings of angles were
multiplied by the constant factor b set in the program. For example, if the
regular setting of the RMS of grid angles was set to 50°, and the outermost
ring had a boundary correction factor of 0.1 set to them, the RMS of the
outermost ring would be calculated as 5°. Assuming the next ring of flaps
closer to the center had b = 0.3 assigned to it, the RMS angle of this ring
would be 15°. Since smaller active grid angles cause smaller flow obstruction,
it is expected that this technique causes higher mean flow velocities on the
edges of the tunnel and thus less mean shear.

Figs. 4.11, 4.12, and 4.13 confirm this expectation to a good extent. To
obtain the upper right and lower middle plots of this figures, the outer rings
were set to b1 = 0.5, b2 = 0.6, b3 = 0.7, b4 = 0.8, where index 1 corresponds
to the outermost ring of flaps. To obtain the lower right plot in these figures,
b1�4 was set to 0.1,0.2,0.3,0.5, respectively. Figs. 4.11, 4.12, and 4.13 clearly
show that this procedure reduces the size of the boundary layers and brings
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the flow profile closer to that of the passive grid. The homogeneous region
becomes larger and the mean shear is reduced albeit large scatter. However,
when applying a strong boundary layer correction as in the lower right plots,
a small constant mean shear appears instead of a homogeneous region as
shown in Fig. 4.11. The profile of the velocity fluctuations is constant across
the entire height investigated, but Fig. 4.13 shows clearly the existence of a
relatively constant nonzero value of ∂U/∂y. The reason for this behaviour is
not clear at this moment and demands further investigation.

In summary, the flow shows only a small homogenous region when using
the active grid without correction of the boundary layer. This was the case for
all hot wire measurements. These results are therefore likely influenced by
large-scale inhomogeneities, and large-scale anisotropies. The degree of inho-
mogeneity and anisotropy is however small compared to those considered by
e.g. Shen & Warhaft [104]. These authors consider a purely shear-driven flow,
where the mean velocity changes by a factor of 3 over a similar range of y as
considered here. They find that at second order, the postulate of local isotropy
is valid even in strongly sheared turbulence, but departures begin already at
third order. Chang et al. [134] similarly find that anisotropy in the absence of
shear influences the inertial range statistics at levels below their experimental
uncertainty.

In the future, the use of the boundary layer correction is strongly recom-
mended since it significantly increases the homogeneity of the flow and most
likely reduces the level of anisotropy. The new feature is also a prime example
of the flexibility of active grids. The boundary layer correction can in prin-
ciple also be used to improve active grids after the example of Makita [99],
where only rows and columns can be controlled individually.

4.6 Summary

This thesis presents data from the wind tunnel that achieves the largest
Taylor-scale Reynolds number in the world (at the point of writing) under
well-controlled conditions. This is possible due to the unique combination
of a low-viscosity pressurised gas (SF6) and a very flexible active grid. The
turbulence created in such a way is decaying, its velocity PDFs are slightly
skewed and super-Gaussian, and the vertical velocity profiles have a small,
but sufficient homogeneous region, which can be extended by adjusting the
active grid. To obtain extreme Rl, some of the "cleanliness" of passive grid
turbulence had to be sacrificed. It is therefore of great importance to verify
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that the conclusions drawn from the active grid data are robust against differ-
ent active grid configurations and comparisons to the (isotropic) passive grid
data presented most throughly in Ref. [93] are to be carried out whenever
possible given the lower Rl of that data. Thus, when care is being taken,
the data from the VDTT with the active grid can contribute to the knowledge
about (closely) homogeneous and isotropic turbulence.
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Chapter 5

On Hot Wire Measurements

This chapter serves three purposes: (i) introduction of the measurement
principle used in this part of the thesis (ii) verify its applicability to the flow
under study, and (iii) report on progress regarding the technique that has
been used in the VDTT. First, a general introduction to the measurement
principle is provided loosely following Ch. 5.2 of [1]. Then, the limiting time-
and length scales of the system introduced by the sensing element are given
for the conditions in the VDTT. Afterwards, two main circuits are introduced
and some new insights into their operation with nanoscale sensors are pre-
sented. Next, the validity of Taylor’s Hypothesis is studied for measurements
at turbulence intensities >10 % (typical for active grid turbulence). Finally,
the hot wire measurement protocol used here is described along with routine
calculations and a comparison of different ways to determine the turbulent
dissipation rate #.

5.1 Introduction to Hot Wire Anemometry

5.1.1 Operating Principle and King’s Law

Hot wire anemometry is a technique to measure the local fluid velocity
through the flow’s advective cooling. The electric resistance of a conduct-
ing wire depends in many cases on the temperature of the wire material.
Typically, a higher temperature corresponds to a higher electrical resistance
(positive temperature coefficient of resistivity). This phenomenon is exploited
to transform a temperature signal into a voltage signal. For example, PT100
elements that are commonly used for a rough temperature measurement are
simply a platinum film with a resistance of 100W at 20 °C.

In hot wire anemometry this physical phenomenon is applied to the mea-
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Figure 5.1: Illustration of the hot wire measurement principle. The ohmic heating RW I2
W

heats the wire to its operating temperature TW . It is cooled by a flow of velocity U. This
causes a change in the wire resistance, which can be picked up by connected electronics.

surement of flow velocities. The idea is that a fluid flow over a material carries
away excess heat it might have compared to the environment and thus causes
a change in the material’s temperature (forced convective cooling). It is clear
that a direct change of the temperature in the surrounding fluid has the same
effect and pollutes the velocity measurement. To make this effect negligible,
the wire is operated at a temperature TW significantly higher than the ambient
temperature Ta (TW � Ta > 100°C).

The Nusselt number Nu is the dimensionless number that characterises the
relative importance of convective over conductive heat transport and therefore
allows insights into the effect of convective cooling of a heated wire of diam-
eter d and length l. It is typically defined as

Nu =
hL
k

. (5.1)

k is the thermal conductivity of the fluid, and L is a characteristic length scale
(in this case the wire diameter d). h is the convective heat transfer coefficient,
which quantifies the heat flux through a surface of area A = pld given a tem-
perature difference TW � Ta across the surface. The heat flux dQ/dt is given
by the ohmic heating RW I2

W , necessary to maintain the wire temperature. The
Nusselt number can therefore be reexpressed as

Nu =
RW I2

W
plk(TW � Ta)

. (5.2)

The wire resistance is assumed to be a linear function of its temperature, i.e.
TW � Ta = (RW � Ra)/(cRa) , where Ra is the wire temperature in quiet fluid,
and c the temperature coefficient of resistivity of the wire material.
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The Nusselt number dependence on the wire Reynolds number Re has
been investigated empirically (see [2] for a list of references). The one com-
monly used for hot wire anemometry reads Nu = A + B(Re)n. Setting equal
the wire Nusselt number and (5.2), one arrives at King’s Law

V2 = A0 + B0Un. (5.3)

Here, I2
W ⇠ V2

W was used, and the fluid and material coefficients were ab-
sorbed into the coefficients A0, and B0. n is around 0.50 for conventional
wires, but can be higher for film-like miniature wires [3].

5.1.2 Wire Requirements

The sensing element is naturally an essential factor for the performance of
any hot wire system. Ideally, its thermal coefficient of resistance c is large,
and its thermal conductivity low to ensure a good sensitivity and quick re-
sponse to changes in the flow velocity. Nickel, Silver, and Platinum are regu-
larly used to build hot wire sensors [1].

The length of a hot wire determines its spatial resolution, which is ideally
 h. However, end conduction effects limit the ratio of wire length l to its
diameter d. A common rule of thumb is l/d > 200, which was recently
revisited by Hultmark et al. [4]. Still, shorter wires must be thinner and thus
more delicate to operate.

Since h can be as small as 10 µm in the VDTT, experiments in this fa-
cility require the use of the smallest sensors available. These are currently
the so-called Nanoscale Thermal Anemometry Probes (NSTAPs) produced
by Princeton University [5, 6, 7]. An alternative was developed recently by
Twente University [8]. While the NSTAP sensing element is technically a film
of dimensions 30/60 µm ⇥ 2.5 µm ⇥ 100nm, the Twente wire is an almost
cylindrical sensor of similar length.

Unless stated otherwise, the experiments in this part of the thesis were
conducted with 30 µm NSTAP or a conventional platinum wire of 450 µm
length and 2.5 µm diameter. These probes are well-established and the reader
is referred to the literature [5, 9, 10, 11, 12, 13, 14, 7, 15] for the details.

Particular to the flow under study are the extremely high Reynolds num-
bers, the operating gas, and the associated small Kolmogorov scales h. Such
environments are similar to those found in liquid helium, where the thermal
boundary layer around a probe can significantly impact the measurements
of small-scale turbulence [16, 17, 18]. This viscous boundary layer does not
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Figure 5.2: Critical Frequency wBL = k/d2 induced by the presence of a viscous bound-
ary layer through which the temperature differences between wire and flow must diffuse.
For comparison, the experimental frequency where 10h are typically found is indicated for
different values of the turbulent dissipation rate #.

follow the flow and any temperature difference between the flow and the
wire must diffuse through it. Considering the Reynolds number based on the
probe diameter d, it is found that the relevant boundary layer size scales with
d. Following the arguments of Emsellem et al. [16], the thermal boundary
layer affects the flows time scales faster than the diffusive time scale through
the boundary layer

tBL = d2/k, (5.4)

where k is the thermal conductivity of the material. This time scale induces a
critical frequency wBL = 1/tBL, which is shown in Fig. 5.2 as a function of the
ambient pressure. The highest frequencies encountered in the experiments
presented here are given by the Kolmogorov scale h, which is swept by the
sensor at the speed of the mean flow U in the most demanding cases. For
U = 4.5 m/s the experimental frequency where 10h would be measured is
shown in Fig. 5.2 as well. At high pressures and for large dissipation rates
#, this frequency exceeds that of the thermal boundary layer and the statistics
may therefore be influenced by the viscous boundary layer around the probe.
It is however clear that in the inertial range, which starts around 100h, the
thermal boundary layer around the probe does not play a role.
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Figure 5.3: Example for a simple constant current anemometer. The Wheatstone bridge
improves the noise characteristics if the potentiometer is used to balance the bridge. To
compensate for the time constant of the wire, a RC-circuit can be placed between the bridge
and the output amplifier.

5.1.3 Anemometry Circuits

There exist three common methods to drive hot wires, each with intrinsic
advantages and disadvantages. The reader is referred to the review in Ref.
[1]. An overview is provided in the following paragraphs along with results
on the frequency response of the system used in this thesis. These results are
complemented by the discussion found in Ch. 9.

Constant Current Anemometer (CCA) The simplest form of the CCA con-
sists of a high-precision current source or a low-noise voltage source with a
large resistor whose output is driven through the wire and the voltage drop
across it is measured. The main attractiveness of the circuit lies in its simplic-
ity and low costs. For conventional hot wires it will result in a poor frequency
response, high noise, and small sensitivity towards flow changes. Some of
these problems can be reduced by electronic correction (e.g. [19]) and place-
ment of a wire in a Wheatstone bridge. A basic circuit without frequency
compensation is shown in Fig. 5.3.

As the wire becomes smaller and smaller, i.e. has a smaller and smaller
thermal mass, these problems also gradually disappear. The time constant
of the wire decreases, because the thermal equilibrium after an initial change
in wind speed is restored quicker and quicker. This can become particularly
relevant when using MEMS-manufactured nanowires, such as the NSTAP [5,
9, 7] or similar approaches [8, 3]. Such wires are notoriously difficult to oper-
ate and are known to cause instabilities in conventional CTA circuits, which
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Figure 5.4: Upper plot: comparison of different power spectra recorded with different com-
binations of sensing wire and anemometer circuit under similar flow conditions. The CCA-
operated wires start to deviate from the CTA curve around 1 kHz. Lower Plot: Comparison
of the performance of two different micromachined wires using the same CCA bridge (PSD
CCA) using a CTA measurement with an NSTAP as benchmark (PSD CTA). While the cylin-
drical Twente wire follows the CTA measurement fairly well, the NSTAP response differs
significantly.

leads to fatal wire burning [7]. The CCA provides a way to operate the wire
in a very controlled way allowing a slow increase in heating current free of
feedback-loops. Although these wires have a respectable frequency response
even when operated with a very simple CCA, the system cannot take advan-
tage of the wire’s fine spatial resolution, because substantial damping occurs
for frequencies above 1 kHz as can be seen in Fig. 5.4. The commercial CTA
circuit can be tuned to optimise the frequency response using a square wave
test, which corrects for the wire thermal lag. In the CCA system as imple-
mented here, the finite wire response is not compensated and completely
dictates the system frequency response.

Here, the spectra of a 60 µm long NSTAP and a "Twente Wire" of sim-
ilar length (both with overheat ratio 1.18) are compared to a 30 µm long
NSTAP driven by a commercial Dantec StreamWare Constant Temperature
Anemometer. The main difference between the NSTAP and the Twente Wire is
their cross-section. While the NSTAP is strictly speaking a film 100 nm thick-
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Figure 5.5: Schematic of a simple CTA circuit [1]. The feedback loop corrects any imbalance in
the otherwise balanced bridge, such that the wire resistance RW remains constant. Typically,
R1 = R2, and R3 is a variable resistor

ness and 2.5 µm width, the Twente Wire is close to a round cylinder [8]. It is
apparent that both CCA-spectra cut the spectrum off significantly compared
to a CTA. Building the ratio between the two CCA spectra and the CTA spec-
trum reveals that the Twente Wire is essentially parallel to the CTA curve up
to the cutoff frequency. The 60 µm NSTAP driven with a CCA has a less con-
stant frequency response. In any case, the nanoscale sensor cannot overcome
the disadvantages of the circuit and a frequency-dependent compensation is
required for them to compete with constant temperature anemometers.

Constant Temperature Anemometer (CTA) The CTA has been the most
widely used hot wire anemometer for decades, because it provides a very
good frequency response, excellent noise characteristics and allows measure-
ments at a constant wire temperature. The principle is based on a feedback
loop that corrects any change in wire resistance by increasing or decreasing
the current through the wire. A simplified example circuit is shown in 5.5.

Because the wire is immediately driven back to its nominal overheat, the
thermal lag of the wire is reduced significantly leading to a superior frequency
response over CCA or constant voltage anemometry (CVA). This comes at the
expense of a more complex system. While CCA and CVA are linear systems
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Figure 5.6: Measured frequency response using a CTA with two different NSTAPs. Spectra
at equal Rl, but different frequency contents are compared. Both show a dampening be-
tween 0.5 and 1kHz and a subsequent amplification of the signal. The effects are small, but
significant. There appears to be a relatively small probe-to-probe variance.

that are easy to analyse, the CTA is a nonlinear system. In a linearized form
its theory has been studied extensively [20, 21, 10]. It has been found that
a CTA performance is very sensitive to all parts of the system, including
cable inductances and probe support resistance [1, 22]. While the frequency
response of a CCA or CVA is essentially that of a low-pass filter (provided
no frequency compensation has been added), the response of a CTA is more
complex. Unexpected damping or amplification effects can occur at rather
low frequencies, in particular when using nanoscale probes [10, 23].

For example, Hutchins et al. [23] have compared spectra of identical
Reynolds numbers, but different frequency contents with combination of an
NSTAP and a Dantec StreamWare CTA (the same system used for most mea-
surements presented in this thesis). They concluded that this system exhibits
a damping of up to 10% starting around 500 Hz. This is a substantial ef-
fect when small features in scale-resolved statistics are investigated (see also
Ch. 9). Their measurements have been performed in a high pressure pipe
flow. By changing both the kinematic viscosity through the fluid density and
the mean flow speed they can create flows at practically identical Reynolds
numbers, very different frequency ranges. Comparison of these features then
yields a measure of the damping at a given frequency. In the VDTT such
measurements can be performed at constant pressures, by varying turbulence
intensity through the active grid and mean flow speed at the same time. It is
assumed that at low frequencies the frequency response curve is essentially
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flat, and at the more interesting higher frequencies, the details of the turbu-
lence generation play only a minor role. One therefore measures a velocity
spectrum once at small wind speeds, but high grid solidity (active grid flaps
at 70°) and once at high mean flow speed, but small grid solidity (active grid
flaps at 10°). This method presented essentially confirms the results of Ref.
[23] as shown in Fig. 5.6. The signal is dampened between 500 Hz and 1 kHz,
then amplified up to around 3 kHz. Beyond 3 kHz definite conclusions are
difficult, because the curve is very sensitive to the frequency normalisation.

Alternative methods of obtaining the frequency response are electrical
heating through square- or sine waves [24], laser heating of the wire[25], and
fluid ’square waves’ [26]. Square waves were routinely used in this study to
optimise the frequency response (see Sec. 5.3.1).

In combination, Figs. 5.4 and 5.6 show that the Dantec StreamWare CTA
is far superior over the in-house CCA, but its frequency response is still far
from ideal. Furthermore, the tendency of the CTA to break wires oftentimes
prevents the consistent use of a specific hot wire for many measurements.
A frequency-compensation of the CCA or the design of a constant voltage
anemometer should be considered to allow high-fidelity hot wire measure-
ments optimised for miniature hot wires and with a high degree of control.
The use of the constant tempertaure system considered here requires great
care in the interpretation of data. It is an important asset of the VDTT that
similar Reynolds numbers can be created in many different ways unless the
Reynolds number is extremely high. This provides an important means of
distinguishing turbulence phenomena from probe effects.

5.2 Taylor’s Hypothesis

5.2.1 Random Sweeping Hypothesis and One-Dimensional
Spectra (joint project with M. Wilczek)

The aim of the hot wire measurements presented here is to obtain statis-
tics about the turbulent flow field that passes by the sensor, i.e. a spatially
resolved measurement of flow velocities. However, a single hot wire can only
provide time series of flow velocities U (t). These time series are commonly
converted into one-dimensional flow fields U (x) by the following approxi-
mation first stated by Taylor in 1938 [27]: In situations where the mean flow
h U i is relatively constant and unidirectional compared to its fluctuations
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u (t) = U (t) � hU (t)i, i.e. where
rD

u (t)2
E

⌧ hUi, the fluctuating part of

the velocity signal is passively advected past the sensor by the mean flow -
the turbulent field is ‘frozen’ and carried over the sensor. Then time t can
be replaced by x = hUit. For the remainder of this part of the thesis, only
the fluctuating part of the velocity signal will be of importance and hUi is
denoted as U for simplicity.

Taylor’s assumption is a fundamental part of almost all studies of turbu-
lence statistics that rely on one-point measurements, such as Laser-Doppler
anemometry or single hot wire anemometry. In this section, the validity of
Taylor’s Hypothesis is critically assessed by comparing it to the alternative
concept of a turbulence field that is advected past the sensor by a sweeping
velocity V, which is a random variable with a Gaussian distribution. This
will yield an estimate of the potential error due the imperfections of Taylor’s
Hypothesis.

The hypothesis of large-scale eddies carrying the turbulent velocity field
was first introduced by Kraichnan [28] and Tennekes [29]. The corresponding
change of variables is u(x) ! u((U + V)t), which leads to the differential
equation

du
dt

= �(U + V ) · (r · u). (5.5)

In fourier space this gives [28]

du(k, t)
dt

= �ik · (U + V )u(k, t), (5.6)

which can be solved exactly:

u(k, t) = u(k, 0) exp[k · (U + V )t] (5.7)

It can then be shown [30, 31], that the wavenumber-period spectrum is
related to the wavenumber spectrum by

E(k, t) = E(k)hexp[�ik · (U + V )t]i (5.8)

Assuming a Gaussian distribution of large-scale sweeping velocities of
mean U and variance V we obtain after a fourier transform the wavenumber-
frequency spectrum

E(k, w) =
E(k)

p

2pk2V2
exp


�

(w � k ·U )2

2k2V2

�
(5.9)
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The full spectral tensor of the velocity field Fij(k) contains information
about the correlations between velocity components ui and uj separated by
the wavevector k. The measurement of a single hot wire will yield the one-
dimensional spectrum in longitudinal direction [32] E11(k1) = 2

R •
�•
R

F11dk2dk3.
Under the assumption of statistical isotropy and homogeneity the full spec-
tral tensor can be reduced to the energy spectrum function (energy spectrum)
E(k) (k = |k|), to which it is related by

Fij(k) =
E(k)
4pk2


dij �

kikj

k2

�
. (5.10)

Therefore, the one-dimensional longitudinal wavenumber spectrum is given
by [33] (see also 3.1.2)

E11 (k1) =
Z •

0

E(k)
4pk2

 
1 �

k2
1

k2

!
dk (5.11)

in isotropic and homogeneous turbulence. The one-dimensional frequency
spectrum that is actually measurable by the hot wire can then be obtained by
eliminating all directional information. Using the Gaussian sweeping model
eq. 5.9 one obtains

E11(w) =
Z •

0
k2dk

Z 2p

0
df
Z p

0
sin(q)dq

E(k)
4pk2

 
1 �

k2
1

k2

!
1

p

2pk2V2
exp

 
�

(w � k ·U )2

2k2V2

!

(5.12)

=
Z •

0
k2dk

Z 2p

0
df
Z p

0
sin(q)dq

E(k)
4pk2

⇣
1 � cos2(q)

⌘ 1
p

2pk2V2
(5.13)

exp
✓

�
(w � kU cos(q))2

2k2V2

◆

=
Z •

0
dk
Z p

0
dq

E(k)
p

8pk2V2
sin3(q) exp

✓
�

(w � kU cos(q))2

2k2V2

◆
(5.14)

Evidently, under random sweeping all k contribute to the frequency spec-
trum through a weighting function. This weighting function is illustrated in
Fig. 5.7. At a given frequency wp, points that correspond to a wavenumber
about 0.2wp contribute strongest to E(wp). In the following, we replace E(k)
in eq. (5.14) by different model spectra.
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that determines the

contributions of k and w to the one-dimensional frequency spectrum E(k).

5.2.2 Application to Model Spectra

The energy spectrum E(k) follows a power law with an exponent close to
5/3 in the inertial range. Wilczek et al. [34] have shown that the application
of a random sweeping model (5.14) sustains such a power law. Therefore,
Taylor’s hypothesis can be applied up to very high turbulence intensities V/U
to obtain the value of the spectral exponent. They found however, that the
value of the Kolmogorov constant CK is impacted by random sweeping and
predict that spectral features such as the small- and large-scale cutoffs or
the bottleneck effect are smeared out by the presence of large-scale random
sweeping. Here model spectra are used in place of E(k) in eq. (5.14) to
elucidate the relevance of these effects for turbulence measurements in a wind
tunnel with the increased turbulence intensities introduced by an active grid.
To simplify the notation, without loss of generality, U = 1 is chosen.

k�5/3-spectrum with cutoffs To explore the effects of random sweeping in
the most simple way, we consider a k�5/3-Spectrum with sharp cutoffs at
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component of the spectral tensor (dashed curve). The effects of the random advection ve-
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frequencies. The Kolmogorov constant CK is increasingly overestimated with increasing V.

scales h and L:

E(k) =

8
<

:
k�5/3, for 2p/L < k < 2p/h

0, else
(5.15)

This "spectrum" is inserted into eq. (5.14) and the integrals evaluated nu-
merically using dblquad from scipy.integrate. The integration is carried out
for different values of V while keeping h (and thus L) constant. # = 0.5V3/L,
and the kinematic viscosity n = (h4#)1/3 are adjusted in such a way that the
Reynolds number Rl = 3000 is the same for all cases. Fig. 5.8 shows the
spectra compensated by the Kolmogorov prediction and compares them to
the case V/U ! 0. The flat segment is located at the level of the resulting
Kolmogorov constant CK and clearly rises with increasing sweeping velocity
V. The sharp edges of the original E(k) are rounded off by both the con-
version to E11, and the random sweeping effects. Furthermore, the apparent
position of these cutoffs is shifted towards higher frequencies, which can be
anticipated from the random-sweeping term in the integrand. The example in
Fig. 5.7 shows that the maximum contribution to E(w) occurs a wavenumbers
< 2pw. Thus, features at a given k in the original one-dimensional spectrum
calculated by (5.11) are shifted towards larger frequencies.
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Figure 5.9: Spectra resulting from the random sweeping model to the comprehensive model
spectrum by Meyers & Meneveau [35] compensated by the Kolmogorov prediction. Dotted
black lines denote the one-dimensional spectrum in the limit V ! 0, i.e. when Taylor’s
Hypothesis is prefectly valid. Left: The level of the inertial range rises as a result of ran-
dom sweeping. Right: The same curves are collapsed at wh/U = 0.015, which corresponds
approximately to the position of the minimum in the inertial range. Features such as the
bottleneck effect are attenuated by the random sweeping model. The spectra are also shifted
towards higher frequencies. The effect is rather small for turbulence intensities occuring in
active grid turbulence.

Model Spectrum by Meyers & Meneveau (2008) There exists a long tradi-
tion of attempts to provide functional forms of scale-resolved statistical quan-
titites such as the energy spectrum function E(k) that effectively describes
the data obtained from measurements and numerical simulations. An early
example for the second order structure function was given by Batchelor [36],
which was later transformed into spectral space [37]. Pope [32] provided a
spectral form with more parameters by combining a spectrum of exponent
5/3 + b and functional forms of he large- and small-scale ends of the spec-
trum. Meyers & Meneveau [35] use a similar approach, but also parameterise
the the bump at the transition between inertial and disspation range (bot-
tleneck effect). Their model is further consistent with fundamental physical
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relations, such as u2
RMS = V2 ⇠

R
E(k)dk. The full model reads

E(k) =
55
18

CK#2/3k�5/3(kL)�b fL(kL) fh(kh) (5.16)

fL(kL) =

(
kL

[(kL)p + a5]
1/p

)5/3+b+2

(5.17)

fh(kh) = exp (�a1kh)


1 +

a2 (kh/a4)
a3

1 + (kh/a4)
a3

�
(5.18)

This model is implemented into the random sweeping framework with Rl =

3000, and h = 0.01 for different V and the corresponding values of L, h, and
#. Fig. 5.9 shows that the random sweeping has three main effects on the
compensated spectra: First, the apparent Kolmogorov constant, i.e. the level
of the inertial range in compensated plots, increases with increasing sweeping
velocity. This is in agreement with earlier findings [34]. Second, the positions
of distinct features, such as the bottleneck effect, are shifted towards higher
frequencies. Third, the random sweeping causes an attenuation of these fea-
tures depending on the sweeping velocity. These effects are rather weak when
V/U < 0.2, in accordance with the empirical rule-of-thumb that the turbu-
lence intensity must not exceed 20% for Taylor’s Hypothesis to be applicable.
In the VDTT with the active grid turbulence intensities can reach up to 15%.
Therefore, some care must be taken when studying the fine details of spectra.
Conclusions from measurements at very high turbulence intensities should
be cross-checked with measurements at lower intensities.

5.3 Measurement Protocol and Data Analysis

The previous sections have been concerned with some potential sources
for systematic errors when acquiring (scale-resolved) measurements of Eule-
rian statistics using hot wire anemometry. Naturally, the particular difficulties
within the VDTT environment were emphasised. Since these error sources
span all ranges of scales, their systematic elimination is practically impos-
sible. The overall strategy for acquiring the data was therefore to generate
dataset that scan the available range of Reynolds numbers in different ways
whenever possible. This way, observations that are not robust against differ-
ent probes, values of h, flow speeds, or turbulence intensity can be identified.
This section will introduce the hot wire system used in this thesis, the data
analysis algorithm applied routinely to any dataset, and will present different
ways of estimating the turbulent dissipation rate #.
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5.3.1 Calibration and Data Acquisition

The hot wire measurements presented here were recorded using either
Nanoscale Thermal Anemometry Probes (NSTAPs) [5, 6, 7] provided by Prince-
ton University or 450 µm long conventional Dantec Hot Wires. The wires were
mounted on the traverse depicted in Fig. 4.2 between 0.45 and 0.65 m from
the measurement section floor and less than 10cm away from its center. The
sensors were connected by 20m long RG223 BNC cables through NPT cable
feedthroughs to a Dantec StreamWare Constant Temperature Anemometer.

In the case of the NSTAPs the protocol recommended by Princeton Univer-
sity [38] was followed. For this, an external resistor Rext was included in the
bridge. Since the CTA feedback attempts to maintain a zero potential differ-
ence between the arms of its bridge and its two top resistors are identical, the
value of this resistor is equal to the wire’s (hot) resistance. The wire overheat
is therefore determined by aW = Rext/Rcold, where Rcold is the resistance of
the wire measured in its unheated state. Typical values for aW were 1.2-1.3,
i.e. slightly lower than those reported by Princeton University. It was essen-
tial to bypass all automatic overheat settings provided by the system to avoid
wire burning.

The overheat ratio of the conventional wires could be automatically set to
1.8 by the system in all cases.

After setting the overheat, a square wave test was performed and its re-
sponse was optimised. After conditioning the signal to fall within the bounds
of the data acquisition system, the hot wires were ready to be calibrated.

Calibration and data acquisition were controlled by a MATLAB program.
To calibrate the wires, the flow velocity was measured directly by means of a
pitot tube and a static pressure tube attached to the two ports of a SITRANS
DS-PIII differential pressure transducer outside the wind tunnel. The pressure
transducer was referenced by applying zero pressure difference at the begin-
ning of each measurement day. Its output (4-20mA) was calibrated to the
voltage measurement of the data acquisition system before each calibration.
Mean CTA output and differential pressure were recorded for 60 seconds for
15-30 different flow speeds by incrementally changing the wind tunnel fan ro-
tation speed. In between measurements the flow was allowed to homogenise
for 45 seconds. The active grid was fully opened during calibration. At the
end of each measurement day the calibration was repeated. Fig. 5.10 shows
an example calibration. Throughout the measurement the calibration drifted
very slightly.

The data was recorded using a National Instruments PCI-6123 16 bit data
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Figure 5.10: Typical calibration data with King’s law fit. Calibration 1 was taken before
the measurement, Calibration 2 afterwards. Errorbars indicate the standard deviation of the
fluctuations around the mean while acquiring the calibration point.

acquisition card. The sampling rates were dictated by the internal low pass
filters of the CTA that were set to 30 kHz (conventional wires) or 100 kHz
(NSTAPs), such that the sampling frequencies were 60 kHz, and 200 kHz,
respectively. The data was sampled in chunks of 6 Mio. samples and stored
in a binary format.

During each recording the ambient pressure in the tunnel and the temper-
ature were recorded. The fluctuations of both were typically <2%.

5.3.2 Routine Calculations

The same initial data analysis was applied to all hot wire datasets pre-
sented here and is described briefly in the following. Each datasets consists
of multiple chunks of NS =6 Mio velocity samples, which are analysed in
parallel. The following procedures are carried out on each chunk of data. The
results are averaged once all chunks have been analysed.

The voltages are converted into flow velocities using King’s Law of the
form V2 = A + BUn (see. Sec. 5.1). The resulting velocity arrays are flipped,
such that throughout the analysis the x-coordinate is parallel to the flow di-
rection.

Then, the data is filtered using an 8th-order butterworth low pass filter.
The filter frequency fF is determined by finding the minimum of the unfil-
tered energy spectrum, which indicates the beginning of the frequency regime
in which noise dominates. The filtering introduces edge effects, which are
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eliminated by discarding the first and last 60 values of a dataset. The en-
ergy spectrum is calculated by first calculating the fourier transform using
the MATLAB implementation of FFTW routines [39]. The squared absolute
value of the result is divided by Ns fs, where fs is the sampling frequency to
yield the energy spectrum.

The correlation function is calculated using MATLAB’s xcorr function.
This function estimates the correlation function through a fast fourier trans-
form employing the Wiener-Khinchin-Theorem [40, 41] for speed. The veloc-
ity structure functions are calculated equally exploiting the speed of the fast
fourier transform. They can be rewritten as

h(u(x + r) � u(x))n
i =

n

Â
k=0

 
n
k

!
hu(x + r)k(�u(x))n�k

i. (5.19)

This way, the fast fourier transform can be used to reduce the time required
to calculate the structure functions by > 10⇥. Further quantities routinely
calculated are histograms of velocity and voltage, as well as mean velocity
hUi, the RMS value of the velocity fluctuations u(t) = U(t) � hUi, and the
mean value of squared velocity derivatives h(∂u/∂x)2i.

5.3.3 Estimation of #

The turbulence dissipation rate

# = 15n

*✓
∂u
∂x

◆2
+

(5.20)

is one of the central turbulence parameters to be estimated from a hot wire
dataset. Three methods to estimate # are considered here.

Second-Order Structure Function According to Kolmogorov’s K41 theory
[42]

S2 ⇠ CK(#r)2/3 (5.21)

in the inertial range, where CK is the Kolmogorov constant taking values
around 2.0 [31]. A measure for #2/3 is therefore the peak of S2/CKr2/3. The
advantage of this technique is that this peak lies at smaller experimental fre-
quencies, which are less demanding for the instrumentation. The value of CK

depends however on the Reynolds number [31].
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Figure 5.11: Filter Effects on the rate of dissipation estimated from a model spectrum after
Pope [32]. Left: Effect of low pass filtering during post-processing. Typical value for the most
demanding situations in the experiment are fh = U/h = 0.1. The blue line shows a fit of the
form 1 � 1.06 exp(�27.2 fF/ fh). Right: Effect of spatial averaging across the hot wire sensor
following Wyngaard [44]. Typically, lW < 3h. The blue line shows 1 � 0.0058(lW/h)1.78.

Third-Order Structure Function According to Kolmogorov’s K41 theory
[42]

S3 =
4
5
(#r) (5.22)

in the inertial range. A measure for # is therefore the peak of S3/(4/5)r. As in
the case of S2, this measure of # lies in a range of frequencies that is not very
demanding for the measurement system used. Further, (5.22) is an analytic
result for homogeneous, isotropic, and statistically stationary turbulence at
high Reynolds numbers (3.11) and no empirical constants appear. However,
the approach to the 4/5-law with Rl is very slow [43] for decaying flows.

Velocity Gradients The method of choice for the remainder of this part of
the thesis is to directly estimate # by numerically deriving the filtered veloc-
ity fluctuation time series. This procedure is free of assumptions and valid
in inhomogeneous, as well as in low-Rl flows. It is however most severely
affected by finite hot wire resolution. In contrast to the effects of large-scale
inhomogeneities and finite Reynolds number effects on inertial range statis-
tics, these systematic errors introduced by spatial or temporal filtering of the
small scales are well-known. It is easy to show [32] that

# = 15n
Z •

0
k2

1E11(k1)dk1 (5.23)

is identical to eq. (5.20). Therefore, a model spectrum based on a known value
of # can be used to estimate the effects of different filters on the measured
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value of #m. Wyngaard [45] derived a formula describing the effect of spatial
averaging along the length lW of a single hot wire on the one-dimensional
spectra. This theory was applied to a model spectrum presented in Ref. [32]
to estimate the effect of spatial filtering on the wire dissipation rate. The re-
sults are presented in Fig. 5.11. Equally, the effect of the employed temporal
filtering to reduce noise effects can be investigated using a model spectrum.
The results are shown in the left panel of Fig. 5.11. Typical values for fF/ fh,
where feta = U/h is the experimental frequency where h is found, are 0.1,
typical values for lW/h are <3. Therefore, the systematic error on e measured
this way is ⇠ 5%, which is on the order of the general experimental uncer-
tainty for the velocity measurements. Thus, corrections for filtering effects
on the dissipation rate need to be employed only when a very high accuracy
is required. These results are generally confirmed by experiments investi-
gating spatial resolution effects on turbulence statistics [46]. The correction
procedure is simplified with an empirical fit to the simulated corrections to
the dissipation. Such fits are added in Fig. 5.11. They are valid for single
hot wires whenever the Pope model spectrum is a acceptable approximation
of the energy spectrum of the flow, in particular in homogenous, isotropic
turbulence.



Chapter 6

Scaling In Decaying High-Reynolds
Number Turbulence

This chapter is a reprint of the manuscript "Scaling in Decaying High-
Reynolds Number Turbulence", which was in the peer review process at the
point of writing [1]. The author of the thesis performed the measurements,
and data analysis and prepared the text. The coauthors organised the re-
search, helped in interpreting the data, and edited the manuscript.

[1] C. Küchler, E. Bodenschatz, and G. P. Bewley. Scaling in Decay-
ing Turbulence at High Reynolds Numbers. June 2020
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We report increment statistics of turbulent velocity fluctuations and on the way they scale with
increment size, which are centerpieces of turbulence theories. The data were acquired in decaying
turbulence in the Max Planck Variable Density Turbulence Tunnel (VDTT). Inertial range statistics
approach a universal and nontrivial shape with increasing Reynolds number. This shape is in
part explained, at the larger scales, by the energy decay. We employed a model of this energy-
decay e↵ect on the second-order statistics to measure corresponding scaling exponents. We found
the scaling exponents to be independent of the Reynolds number and equal to 0.693 ± 0.003 for
2000 . R� . 6000. Toward smaller scales and at high orders, the universality at high Reynolds
numbers persists and does so in a way that is qualitatively similar to the larger scales and at the
second order, but in a way not captured by any model, to our knowledge.

I. INTRODUCTION

Turbulence transfers kinetic energy from its largest
scales of motion, whose dimension is L, to its smallest
scales, measured by the Kolmogorov scale ⌘. The energy
is transferred from scale to scale at a rate ", which is
the power per unit mass. Turbulent fluid motion is thus
multi-scale in space and time and its statistical prop-
erties are thought to be universal in the intermediate
range of scales between L and ⌘, where the dynamics are
dominated by fluid inertia. The extent of this intermedi-
ate range, called the inertial range, is determined by the
Reynolds number of the flow, which quantifies the rela-
tive importance of inertial forces over viscous forces. The
Reynolds number used here, R� = uRMS�/⌫, is based on
the Taylor scale � [1]. One key question since the seminal
work by Kolmogorov in 1941 [2] is the extent to which
the inertial range is universal, i.e. independent of the
Reynolds number and flow geometry.

In fully developed statistically isotropic turbulence of
an incompressible fluid, the inertial range is character-
ized by scalar statistics of the velocity di↵erences [3].
The statistics are the n-th order moments of the veloc-
ity increments �u(r) = u(x + r) � u(x), i.e., Sn(r) =
h(�u(r))ni, and are called structure functions. At high
Reynolds numbers the turbulent dissipation rate, ", is
the only relevant parameter in the inertial range and Sn

⇤ christian.kuechler@ds.mpg.de
† gpb1@cornell.edu
‡ eberhard.bodenschatz@ds.mpg.de

follows scaling laws such that Sn ⇠ r⇣n . If the statistics
are self-similar with respect to scale r, then ⇣n = n/3 [2].
The observed scaling exponents, ⇣n, deviate substantially
from n/3 and are a convex function of the order n due
to intermittency. The understanding of the role of in-
termittency in the energy cascade is a major problem
of modern turbulence research and subject of numerous
models [4–16].

Laboratory experiments [17–23], field measurements
[24–28], and numerical simulations [29–31] support the
existence of scaling laws, but di↵er in their details. In nu-
merical simulations forced to maintain a statistical steady
state and not to decay, Sn ⇠ r⇣n is a good approximation
of the data in the inertial range [32, 33]. Because increas-
ing the Reynolds number is computationally costly, nu-
merical studies have so far been limited to Reynolds num-
bers of 1300, and exhibit Reynolds number dependencies
over the range of observed Reynolds numbers. When
turbulence decays freely, power laws are more di�cult to
identify in computer-generated data [34, 35]. Data from
recent laboratory results of extreme statistical fidelity
[36] and experiments in the atmospheric boundary layer
[28, 37] suggest a complicated shape of h(�u(r))ni. The
latter data was acquired in the atmospheric boundary
layer, whose flow parameters cannot be changed system-
atically. Atmospheric turbulence measurements provide
important insights because the large Reynolds numbers
in the atmosphere reduce the influence of large-scale ef-
fects and viscous dissipation on the inertial range. The
flows are however known to be very anisotropic and inho-
mogeneous and the flow parameters are not controllable.

Departures from power law scaling have been sum-
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marized as finite Reynolds number e↵ects that were ex-
pected to vanish once at large enough R�. Special data
analysis schemes [38, 39], that have been developed to cir-
cumvent these e↵ects, find power laws over wider ranges
of scales and thus more robust estimates of ⇣n. One es-
tablished technique is to use the extended self-similar
scaling that appears when plotting Sn(r) vs h|�u|

3
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known as Extended Self-Similarity (ESS) [38]. ESS has
proven to yield reproducible scaling exponents ⇣n across
experiments pointing towards a universal regularity with
respect to the order of the structure function. ESS e↵ec-
tively removes the parts of the structure function that do
not show scaling. The underlying assumption is that the
finite Reynolds number e↵ects shadow the scaling that
carries information about the general dynamics.

Despite these empirical successes and large number of
studies, the shape of Sn is still not fully explained. Nu-
merous turbulence theories rest on the assumption that
the statistics are a combination of universal scaling laws
and non-universal e↵ects that disappear at large R�.

To test this assumption, the Reynolds number must
be gradually increased towards a regime, where the iner-
tial range statistics are indeed independent of R�. The
reason this has not been achieved to date, is that L and
⌘ must di↵er by many orders of magnitude to ensure
that viscosity and flow geometry have little e↵ect on the
inertial range. This is a considerable challenge in a well-
controlled laboratory flow. In addition, to show univer-
sality in the sense of independence from experimental pa-
rameters, the turbulence forcing and the viscosity have to
be controlled independently. These properties are unified
within the Variable Density Turbulence Tunnel at the
MPI for Dynamics and Self-Organisation in Göttingen,
Germany. The viscosity is controlled by the fluid den-
sity, while the turbulence can be forced by an extremely
flexible active grid. This way, Reynolds numbers in ex-
cess of 6000 can be created while keeping anisotropy and
requirements on instrumentation modest.

In this article we demonstrate how the n-th order
structure functions approach R�-independent forms be-
tween 2000 < R� < 6000. Increases in R� change only
the extent of the inertial range, not its shape, which is
more complex than a power law. We proceed to o↵er a
possible explanation for this shape by employing a model
that accounts for the decay of turbulent kinetic energy.
The functional form underlying this model allows the es-
timation of a scaling exponent very similar to that ex-
tracted from ESS.

II. EXPERIMENT

The Reynolds number of the flow in the Variable Den-
sity Turbulence Tunnel [40] (VDTT) can be finely ad-
justed in three largely independent ways up to levels typi-
cal for atmospheric turbulence: (i) the large-scale forcing
with a novel active grid, (ii) the mean flow speed U up to
5.5 m/s by adjusting the rotation frequency of its fan, and

(iii) the kinematic viscosity ⌫ by changing the static pres-
sure. The VDTT is filled with sulfur-hexaflouride (SF6)
at pressures 1mbar < p < 15 bar [40]. Flow structures of
variable size are introduced using a mosaic-like arrange-
ment of individually controllable paddles (”active grid”).
It allows us to obstruct the flow on finely adjustable time-
and length scales [41, 42]. In this way we control the en-
ergy injection scale between about 0.1m . L . 0.6m.
The small kinematic viscosity of pressurized SF6 per-
mits the existence of very small flow structures. The
size of these structures scales with the dissipation length
⌘ = (⌫3/")1/4, where " = 15⌫h(@u/@x)2i. For the range
of ambient pressures 1 bar < p < 15 bar, this dissipation
length is between 250µm & ⌘ & 10µm.

We record time series of hot-wire signals and convert
them into one-dimensional flow fields assuming that the
turbulent fluctuations are passively advedcted across the
sensor by the mean flow U . Thus, a time step �t is con-
verted to a spatial increment �x = U�t [43]. We use a
commercial constant temperature anemometer to drive
and acquire data from Nanoscale Thermal Anemome-
try Probes (NSTAP) provided by Princeton University
[44–46]. These ultra-small hot wire probes average the
flow field over a length of only 30µm, which is su�-
cient for this experiment. For flows where the turbu-
lence length scales are larger, we also use commercial hot-
wires from Dantec Dynamics with sensing length 450µm
(& 4⌘). The frequencies (and wavenumbers) encountered
in the measurements presented here are in a range that is
not particularly demanding for this combination of sen-
sor and anemometer circuitry [47–49]. The experiments
presented here were taken under di↵erent ambient pres-
sures and di↵erent active grid forcing schemes to allow
for a careful check of the hot wire fidelity. We thus en-
sure the robustness of the results against probe- or flow
geometry-induced biases. We emphasise that all conclu-
sions presented here are independent of the type of probe
used (NSTAP or commercial hot wire), the frequencies
where turbulent fluctuations are measured, the dissipa-
tion length scale, and the active grid forcing (see Supple-
mentary Material for more details).

III. SMALL SCALE UNIVERSALITY

We investigate whether the shape of the velocity in-
crement statistics approach a universal form at large
Reynolds numbers R�. In particular, we seek a universal
scaling exponent ⇣n such that Sn ⇠ r⇣n .

A rigorous method to find and extract power laws is
to calculate the local scaling exponents

⇣n(r) =
d log(Sn)

d log(r)
. (1)

⇣n(r) is constant when power law scaling exists in the
data. At the same time, it is a measure of the shape
of Sn free from constants that are known to be sensitive
to flow configuration and Reynolds number. Fig. 1 (A)
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FIG. 1. (A): ⇣2(r) for R�=144, 413, 620, 931, 1520, 2400, 3690, and 5890. The curves collapse approximately to a universal
form for R� > 2000 that extends from the smallest scales up to 0.1L and is di↵erent from a constant, which indicates that
power law scaling is masked in these data. In contrast, the curves at R� < 2000 change significantly with R�. Inset: Zoom on
the inertial range of the same curves. At the largest R� a wave-like fine structure can be seen as in [36]. Dashed lines: r0/⌘ of
curves in (D); (B): Same as (A), but normalised by L. The curves approach a universal form from the largest scales down to
0.2L. (C): Structure functions S2 compensated by the self-similar prediction ⇠ ("r)2/3. (D): ⇣2(r) evaluated at fixed r0/⌘. The
curves approach constants, but their values depend on r. Thus, the value of ⇣2 (assumed constant across a wide range of scales
and universal in R� in many turbulence models) is a function of both r and R�. The curves saturate at finite R� indicating
that this apparent discrepancy with the models persists as long as R� takes finite values. The lines are fits of C1 �C2R

↵
� . The

red inverted triangles correspond to the dashed line in (B), i.e. they show the scaling exponent at a fixed scale relative to L.
Black points above this curve are within the inertial range (except for the case r0/⌘ = 10).

shows measurements of ⇣2(r) for flows at di↵erent R�.
Above some finite R� ⇡ 2000 the curves begin to collapse
from the dissipation range up to ⇡ 0.1L. The collapse
in the dissipation range r < 20⌘ is expected and the
exponent at r ! 0 corresponds to a Taylor expansion
around that point. Around r/⌘ = 100 the curves deviate
slightly from each other even for R� > 2000. This region
is influenced by the bottleneck e↵ect [36, 50–53], whose
Reynolds number dependence even at high R� has been
shown [42]. Above the bottleneck in the inertial range,
the curves collapse again for R� > 2000, i.e. they are
are independent of R�. This is precisely the situation
we looked for: The shape of Sn does not change when
increasing the separation between L and ⌘. However, the
curves are not flat as would be expected from a simple
power law scaling.

We investigate this observation with greater rigour in

Fig. 1 (D). We pick several values of r0/⌘ (indicated as
dotted lines in Fig. 1 (A) and (B)) and plot ⇣2(r0/⌘)
for di↵erent R�. For each r0/⌘, the curves approach a
di↵erent constant at high R�. In contrast, if a scaling
exponent were to emerge at even higher R�, these curves
would approach a common constant independent of r0/⌘
(as long as r0 is in the inertial range). Fig. 1 (B) shows
that equivalent arguments can be made when normalizing
by the energy injection scale L instead of the dissipation
scale ⌘.

The procedures outlined above for the case of n = 2
are repeated in Figs. 2 and 3 for higher orders n with
overall similar results. The odd orders su↵er from in-
creased noise compared to even ones. In Fig. 2 all data
collapse in the inertial and dissipation range with the ex-
ception of the highest R�. While this could point towards
a transition at these higher R�, we regard instrumenta-
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FIG. 2. Same as Fig. 1 (A), but for 2 < n < 7. ⇣5 has
been smoothed using cubic splines. The curve of the highest
R� = 5890 is influenced by instrumentation limitations.

tion limitations as more likely. Consequently, final con-
clusions should not be drawn from these three datasets
alone and they have been excluded when performing the
fits presented in Fig. 3. As expected, ⇣n(r ! 0) = n
for all data. Defining as the inertial range all scales be-
tween 100⌘ and 0.1L, similar inertial range trends as for
n = 2 can be identified for higher orders. With increasing
R�, the local slopes become increasingly flat, i.e. Sn(r)
approaches an inertial range power law. However, this
trend stops around R� = 2000, even though ⇣n(r) still
depends on r/⌘ in the inertial range. As for n = 2, we
have found a transition, where separating inertial, dissi-
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FIG. 3. Same as Fig. 1 (D), but for 2 < n < 7.

pative, and energy injection scales further does not alter
the shape of Sn in the inertial range.

Similar to the case n = 2, four di↵erent inertial range
increments r0/⌘ were selected and ⇣n(r0/⌘) was plotted
vs R� in Fig. 3 to rigorously demonstrate this e↵ect. For
R� < 4000, fits of the form C1 � C2R↵

� were performed.
Fig. 3 shows that the asymptotic value of C1 depends on
the inertial range increment chosen at all orders studied
here.
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FIG. 4. Demonstration of the fit results for R� = 1600 (lower
curves) and R� = 3700 (upper curves, o↵set by 0.5 for clar-
ity). The black dots are experimental data, the red curves
are the fit to the physics-based model eq. (2) with three fit
parameters. The green curves represent four-parameter fits
of the Batchelor interpolation formula. The region of inter-
est is the inertial range between 100 < r/⌘ < 10000 in the
high-R� case as highlighted by the inset, where the red curves
follow the experimental data more closely. For r/⌘ < 100 the
Batchelor interpolation is superior, where the physics-based
model is expected to perform poorly. At scales larger than
the inertial range, both fits have a similar quality. The lower
panel shows the compensated third order structure function.
The high-R� asymptote in the inertial range is indicated by
dotted lines. The model prediction from the fits to ⇣2(r) fits
the experimental data well in the low-R� case. In the o↵set
case of R� = 3700, the model predicts an extensive scaling
range that cannot be observed in the data.

IV. INTERPRETATION IN TERMS OF

DECAYING TURBULENCE

In the previous section we show that the local slopes
⇣2(r) of the second order structure function S2(r) take a
universal form at finite R� di↵erent from a clear power
law scaling. These are most likely explained by depar-
tures from the ideal of homogeneous, and isotropic tur-
bulence.

A decomposition of Sn(r) into isotropic and

anisotropic contributions might lead to much flatter ⇣n(r)
in the isotropic sector [54]. However, such analysis re-
quires knowledge of at least two velocity components.
Instrumentation with the required spatial resolution is
still in its infancy and in particular not yet compatible
with large fluid densities [55].

To consider the potential e↵ects of anisotropy, we first
note that at low R� < 1300 our results are in very good
agreement to passive grid experiments conducted in the
same facility [36], which has been shown to contain very
small anisotropy [56]. ⇣2(r) similar to those shown in
the previous section have been found in a rough-wall
boundary layer, where significant large-scale anisotropy
S⇤ =

p
⌫/"@U/@y > 0.1 exists [57]. We have verified

that the mean shear in the measurement section is small
(S⇤ < 0.02). Finally, our active grid dataset contains a
wide variety of di↵erent wake generation schemes, which
do not appear to impact our results in the inertial range.
For example, ⇣2(r) measured behind a passive grid, and
in the wake of two entirely di↵erent active grid algo-
rithms all collapse throughout dissipation and inertial
ranges. We thus argue that the observed shapes are ro-
bust against dramatic alterations in the turbulence gen-
eration mechanism and associated potential large-scale
anisotropies.

The shapes found in Figs. 1 - 3 regularly appear in
laboratory [36, 58] and field [28] experiments, but are
in contrast to forced direct numerical integrations of the
Navier-Stokes-equations[33], where ⇣2(r) is flatter in the
inertial range. The main di↵erence between experiments
and simulations is that the latter is usually forced con-
tinuously, whereas most measurements can be performed
in unsteady flow states only, where the turbulent kinetic
energy decays over time. ⇣2(r) is tilted in simulations
of decaying turbulence[34, 35] as it is in experiments
[58]. In our experiment, the turbulent kinetic energy
u2
RMS decays along the length of the measurement sec-

tion, but the integral length scale L remains constant or
also decays over time. This is in contrast to freely de-
caying turbulence, where L grows with time[3, 59]. We
believe that the boundaries of the measurement section
with cross-section 1.2 m ⇥ 1.5 m (with 0.1 m . L . 0.6
m) suppress this growth. We found this to be relatively
independent of the way we estimate L. We chose to use
L =

R rs
0 hu(x)u(x+r)i/u2

RMSdr with hu(x)u(x+rs)i = 0.
Other definitions of L impact the results at small R� and
the scatter of the data otherwise.

Recent work in Yang et al. [35] provides a model spec-
trum based on decaying turbulence in a confined domain.
It rests on an inertial range scaling k�5/3 (equivalent to
the self-similar scaling of S2 ⇠ r2/3) and generic functions
to describe the behaviour at the large- and dissipation
scales. We have replaced the k�5/3- term by the more
general k�(⇣2F+1), to account for e↵ects of potential iner-
tial range intermittency. To extract the function that de-
scribe finite-R� e↵ects, the model assumes a self-similar
decay of turbulent kinetic energy, i.e. uRMS(t) ⇠ t�↵,
and applies a model [60] for the scale-by-scale energy
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transfer term in the evolution equation of the energy
spectrum. For the case of constant L, the model reads
(see Appendix C and [35] for details)

E(k) ⇠
�AK

C
(kL)�(⇣2F+1)e(3AK/C)(kL)�2/3

e�(1.5/C)(k⌘)4/3 .

(2)
Apart from the intermittency parameter we introduced,
the model contains a parameter AK , which describes the
influence of the decay. In our measurements, AK depends
only slightly on R�. This is consistent with Fig. 1 (B)
and earlier studies [59] that measured that the decay ex-
ponent and thus the large-scale part of the energy spec-
trum are largely independent of the Reynolds number.
It further agrees with the observation that AK is related
to the cascade e�ciency C" = "L/u3

RMS = (�AK)3/2

[35, 61–63].
We fit the logarithmic derivative eq.(1) of S2 calculated

from (2) to the measured values of ⇣2(r). Fig. 4 compares
the experimental data with the model (2) and a three-
parameter Batchelor fit. The latter is a parametric fit
that models the structure function shape without phys-
ical justification [53, 64]. The Batchelor fit appears to
be slightly superior in the case of low R� (lower curves).
However, as R� increases, it cannot follow the inertial
range shape. In contrast, eq. (2) does follow the experi-
mental data in the inertial range.

The deviations around r/⌘ = 60 are due to the bottle-
neck e↵ect described earlier. The model (2) allows us to
obtain estimates for h⇣2F i in the form of a fit parameter.

In the following analysis we therefore assume that
a self-similar organisation of the flow structures exists,
which is distorted by the nonstationarity e↵ects induced
by the decay. While the model predicts an inertial range
power law to appear at very large R�, our data is in agree-
ment with the asymptotic approach towards a complex
inertial range shape di↵erent from a power law scaling.

Fig. 5 shows how ⇣2F depends on R�. We observe
the approach towards a common scaling exponent around
h⇣2F i = 0.69 for R� & 2000. This is a little higher than
the prediction for intermittency-free turbulence ⇣2 = 2/3
and almost identical to the values that can be read o↵
typical DNS data [30–32, 65] and the ESS estimate from
the data. However, the ESS scaling exponent is practi-
cally constant around 0.69 over all R�. The range of val-
ues that ⇣2(r) takes between r/⌘ = 100 and r = 0.1L in
our measurements is indicated by the shaded region. The
variation of ⇣2F over one decade of R� is much smaller
than the variation in ⇣2(r) within a single measurement
in the inertial range. We also compare the data to the
measurements by Mydlarski & Warhaft [20]. We finally
revisit data that was acquired in the VDTT in the far-
field of a passive grid and apply the aforementioned fit.
For a passive grid the decay in this experiment has been
shown by Sinhuber et al. [59] to follow the self-similar
decay predicted by Sa↵man [66]. In this case, the integral
scale grows as a function of the decay time. However, as
can be seen from Fig. 3 in their paper [59], the integral
length saturates at the most downstream positions. The

200 500 1000 2000 6000
R�

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

� 2

h�� 41i

h�2� i

Passive Grid - ESS

Passive Grid - Model Fit

Mydlarski & Warhaft

Active Grid - Model Fit

Active Grid - ESS

FIG. 5. Circles: Results of fitting the parameters in eq. (2).
⇣2 approaches a constant h⇣2F i = 0.693 ± 0.003 (dashed),
higher than Kolmogorov’s prediction (dotted) [2]. We at-
tribute the slight downward trend in last two data points of
h⇣2F i to the anisotropic grid forcing that was used to reach
these high R�. For comparison we show the extended self-
similarity estimates (squares), i.e. the scaling of S2(|S3|) and
the data from Mydlarski & Warhaft [20]. The shaded re-
gion corresponds to the values that the local slope ⇣2(r) takes
within 100⌘ < r < 0.1L.

reason is likely the same as in the active grid case in-
vestigated here: The tunnel boundaries inhibit a further
growth of L. To make a fair comparison, we use those
downstream positions in the passive grid data and apply
the theory for the case of L = const.

The model eq. (2) is based on a closure hypothesis
that links second and third order statistics based on di-
mensional arguments. Thus, a prediction of S3 can be
obtained from the model (see Appendix). Fig. 4 shows
that such an estimate provides good results for low R�.
However, at larger R� the model predicts a power law
scaling ⇠ r, which cannot be found in the data. This is
due to the aforementioned qualitative di↵erence between
the model and the data. While the model predicts the
finite-R� corrections to become less and less important,
our data indicates that these e↵ects saturate at R� ob-
servable in the VDTT (see Fig. 1 - 3). This is more
obvious at third order, where the model predicts a faster
diminishing of finite-R� e↵ects than at second order.
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V. DISCUSSION

In this paper we consider the foundation of multiple
models of turbulence, namely the presence of a well-
defined power law scaling in the inertial range. We con-
firm experimental results that such a power law is a
reasonable approximation to the shape of the nth-order
velocity increment moments Sn(r). Existing di↵erences
between the experimental data, theoretical predictions,
and numerical simulations were in the past attributed
to an insu�cient range of inertial scales [58, 67]. There
seemed to be a consensus that in a wind tunnel at ex-
tremely large Reynolds numbers, viscosity and flow ge-
ometry would become unimportant, and Sn would ap-
proach a clear power law of exponent ⇣n. We test this
consensus first by analysing the local scaling exponent
⇣n(r).

We find that the shape of Sn(r) measured by ⇣n(r)
follows a universal function from the dissipation scales
up to the largest scales in the flow, but does not follow
a power law. In particular, increasing R� beyond 2000
does not improve the validity of Sn ⇠ r⇣n further. Even
at R� ⇡ 6000 we cannot find a range of scales where
⇣n = const.

⇣n(r) is strikingly similar throughout the inertial range
for all orders n < 7. This is in principle not surprising,
since the scaling of Sn(Sm) is well-documented [38, 68].
In combination with the observation of a quasi-universal
inertial range, we would like to mention the functional
similarity to a result based on the She-Leveque model
[69], which is tightly connected to a log-Poisson dis-
tributed dissipation rate [13]. It can be recast in terms
of the velocity structure function [70], which can then be
decomposed into a n-dependent term, raised by a uni-
versal exponent � and a term independent of the order n
related to the most singular structures in the flow (most
likely vortex filaments).

On the grounds of the R�-independence, we infer that
the physical e↵ect that causes the observed structure
function shape must (i) be active along the entire in-
ertial range, (ii) active across di↵erent flow conditions,
and (iii) similar across orders n < 7. It is evident that
we cannot make any conclusive statements about even
higher R�, or even the actual limit R� ! 1. However
our data raises the question whether a power-law scaling
can be observed in any terrestrial flow. It is therefore
crucial to understand this shape.

In a next step, we investigate whether the decay of
the turbulent kinetic energy present in the flow is a po-
tential explanaition for the observed structure function
shape at second and third order. A model of the energy
spectrum derived from a popular closure model [60] while
accounting for the decay [35], yields predictions of S2 that
are superior to those of a interpolation formula (Batch-
elor) aiming to empirically describe the e↵ects of finite
Reynolds numbers alone [64]. Our explanation is also
supported by observations from numerical simulations:
While ⇣2(r) = const. can be found in numerical simula-

tions even at moderate Reynolds numbers [31], this is not
possible in simulations of decaying turbulence [34, 35].
However, the approach to the model towards an inertial
range free of finite-R� e↵ects is much faster than sup-
ported by the data - in particular at third order.

Under the assumption that a self-similar scaling un-
derlies the finite-Reynolds number e↵ect, we used the
aforementioned model of nonstationarity e↵ects to ex-
tract an inertial range scaling exponent for S2. We ar-
rive at a value value of h⇣2F i = 0.698 ± 0.011 by aver-
aging all values of ⇣2F measured at R� > 2000. This
value is very close to the value h⇣ESSi = 0.692 ± 0.001
extracted by comparing structure functions of di↵erent
order (extended self-similarity, ESS). This suggests that
the physical processes underlying the almost 30-year long
successful application of ESS are small-scale universality
combined with large-scale e↵ects influencing almost all
turbulence length scales.

The scaling exponent h⇣2F i extracted from the model
fit shows a clear R�-dependence, whereas the ESS esti-
mate is constant over the whole range of R�. This study
indicates that the second-order statistics scale di↵erently
at small and high R�. Nevertheless, the asymptotic scal-
ing exponents we extract agree with the ESS estimates
at much lower Reynolds numbers. It is therefore a mat-
ter of future studies to elucidate the underlying reasons.
Finally, recent experimental results[36] suggest that dissi-
pative e↵ects occur over the entire inertial range, which is
in agreement with small-scale universality from the small-
est scales up to 0.1L observed here.

By creating an inertial range with unmatched control
over the flow parameters, we show the emergence of a R�-
universal inertial range at R� > 2000. We claim that dis-
sipative and large-scale e↵ects cause the universal inertial
range to deviate from a power law scaling. We argue that
knowledge of these e↵ects allow the extraction of scaling
exponents that describe the self-organisation that might
be shadowed by these e↵ects. At the same time we ask
the question how relevant power laws and related con-
cepts are practically given that they cannot be expected
to dominate the statistics for at least another decade in
R�.
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Appendix A: Measurements of Decay

We have measured time series of velocity fluctuations
along the centerline of the measurement section in vari-
ous distances from the active grid with two di↵erent forc-
ing mechanisms that produce di↵erent energy injection
scales. Fig 6 shows that the turbulent kinetic energy
measured by u2

RMS is decreasing at all points considered
here for both grid protocols. It further shows that the
integral scale is not growing, but slightly decreasing.
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FIG. 6. Development of the integral scale (left) and turbulent
kinetic energy (right) for di↵erent distances from the grid.
The distances are normalised by the active grid length scale
defined by the correlation lengths of the paddle protocol (see
[42] for details). This scale is di↵erent from the mesh size
normally used in passive grid turbulence. L was estimated
using from

R r0
0

C11(r)/u
2
RMSdr with r0 the first zero-crossing

of the correlation function. Results for di↵erent definitions of
L are similar.

Appendix B: Experimental Conditions

Fig. 7 indicates critical experimental length scales
along the measurements of ⇣2. The probe averaging
length mainly influences smaller scales and is far away
from the region of interest. The temporal resolution is
determined by the noise filtering frequency and the fre-
quency response of the measurement system. The fre-
quency response of the system is not perfectly flat any-
more starting around 1kHz [47]. The range of scales we
are interested in is therefore in the flat part of the fre-
quency response curve. The noise filtering frequency is
always at frequencies above 1kHz.

Appendix C: The Model Spectrum

The evolution equation of the energy spectrum E(k, t)
can be derived directly from the Navier-Stokes-Equation
in the isotropic case and is known as the Karman-
Howarth-Lin equation.

@tE(k, t) = �@k⇧(k, t) � 2⌫k2E(k, t). (C1)

The first term on the RHS describes the nonlinear trans-
fer of energy from small to large wavenumbers and ulti-
mately prevents the closure of the equation, since it is a
third-order term. The Pao closure [60] used in the model
by Yang et al. [35] assumes that the transfer term ⇧ is
local in wavenumber space and has a self-similar form:

⇧(k, t) = C0"
1/3k5/3E(k, t) (C2)
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FIG. 7. Same as Fig. 1 (A) with the addition of probe length
(dotted vertical lines), the value of r/⌘ corresponding to a
measurement frequency of 1 kHz through Taylor’s Hypothe-
sis (vertical lines), the values of r0/⌘ chosen to assemble Fig.
1 (D) (dashed black lines), the length of the energy injec-
tion scale (vertical black lines), and the grid length scale (red
lines).

The second term on the RHS of C1 represents the vis-
cous dissipation at the smallest flow scales. This yields a
closed form of the Karman-Howerth-Lin equation. The
model by Yang et al. further assumes that the en-
ergy spectrum can be assembled by a large scale term
fL(kL), a small scale term f⌘(k⌘), and a self-similar in-
ertial range:

E(k, t) = Ck"
2/3k5/3f⌘(k⌘)fL(kL) (C3)

These assumptions are now combined with a general, self-
similar decay of turbulent kinetic energy. In the case of a
confined domain, where the parameter describing dL/dt
tends to zero, this model predicts the energy spectrum

E(k) ⇠
�AK

C
(kL)�(⇣2F+1)e(3AK/C)(kL)�2/3

e�(1.5/C)(k⌘)4/3 .

(C4)
For the purpose of measuring a scaling exponent, we

replaced the term (kL)�5/3 with (kL)�(⇣2F+1), where
the fitting parameter ⇣2F is the inertial range scaling
exponent for the second order structure function[71].
The parameters C and AK are related through C =
�AK(6/⇡)1/3. In practice, AK describes the large-scale
part of the energy spectrum, which is heavily influenced
by the decay.

The one-dimensional versions of S2 and E(k) are re-
lated through the following integral transform [72]:

S2(r) =

Z 1

0
E(k)

✓
1

3
+

cos(kr)

(kr)2
�

sin(kr)

(kr)3

◆
dk. (C5)

To obtain the fits shown in Fig. 4, we have searched
for parameters AK , and ⇣2F that yield best fits of the
logarithmic derivative of eq. C5 to the experimentally
measured ⇣2(r).
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It can be shown that C = �AK(6/⇡)1/3. This quantity
is related to the dissipation constant C" = "L/u3 relating
the large scale energy injection and the small scale en-
ergy transfer rate ". AK is the non-dimensionalized time-
evolution of the energy spectrum prefactor d(CK"2/3)/dt,
which is a free parameter.

The energy transfer spectrum ⇧(k) is related to S3 via

S3 = 12

Z 1

0

1

k2
@⇧

@k

d

dr

✓
1

3
+

cos(kr)

(kr)2
�

sin(kr)

(kr)3

◆
dk.

(C6)

Therefore, the model 2 in combination with its un-
derlying closure hypothesis C3 implicitly predicts S3.
Note that strictly speaking the combination of the
intermittency-corrected model 2 and the K41-type clo-
sure (C3) yields a third order exponent ⇣3 slightly di↵er-
ent from 1. It is reassuring to see that instead leaving
the 5/3-term in (C3) as a generic scaling and fitting the
resulting model to S3 yields ⇧ ⇡const. in the inertial
range, i.e. S3 ⇠ r.



Chapter 7

Extension of Eulerian Predictions to
High Rl

This chapter stands in the long tradition of classical Eulerian two-point
statistics. The dataset presented here allows the extension of this profound
body of literature towards larger Rl than previously obtainable in laboratory
experiments. It is therefore well-suited to study the approach towards the
values expected in the limit of high-Rl. In particular, the dissipation constant
C# = #L/u3

RMS, the Kolmogorov constant CK = max(S2/(#r)2/3), the 4/5-law,
and the extended self-similarity scaling are investigated.

7.1 The Dissipation Constant

The quantity
C# = #L/u3

RMS (7.1)

was introduced in Sec 3.3. Eq. (7.1) rests on the realisation that if the viscous
dissipation at small scales # is the only sink of turbulent kinetic energy and
there exists an energy cascade towards these smaller scales scales, # must be at
least proportional to the power injected at the largest flow scales. The power
injected at scale L can be estimated by dimensional arguments as u3

RMS/L. C#

can therefore be seen as a cascade efficiency.
Under the hypothesis of a universal energy cascade, the cascade efficiency

should be independent of the Reynolds number, i.e. C# = const. for large
Re. This has fundamental consequences for the inviscid limit n ! 0: Since
any increase in Reynolds number through a decrease in viscosity n must sus-
tain C# =const. and # ⇠ n(∂ui/∂xi)2, the velocity gradients (∂ui/∂xi)2 must
diverge in this limit. The existence of singularities is an active field of math-

97



98 CHAPTER 7. EXTENSION OF EULERIAN PREDICTIONS TO HIGH Rl

0 1000 2000 3000 4000 5000 6000
Rl

0.5

1.0

1.5

2.0

2.5

3.0

C
e

(�AK)3/2 - Passive Grid
3eL/(4pu3

RMS)

3eL/(4pu3
RMS)-Passive Grid

(�AK)3/2

Figure 7.1: Dissipation Rate constant C# = #L/u3
RMS. Closed symbols: Data from the VDTT.

Passive grid data courtesy of M. Sinhuber [50]. Open symbols denote the prediction of C#

from the model by Yang et al. [51] based on the fits described in Ch. 6.

ematical research in both the inviscid Euler equations, and the Navier-Stokes
equations [48, 49]. #L/u3

RMS = const can be reformulated in terms of the
enstrophy hw2i = #/n (see eq. (2.21)). Inserting this into eq. (7.1) yields

C# = hw2
inL/u3

RMS (7.2)

Therefore, a reduction in n in an otherwise unchanged flow must be accom-
panied by an increase in the enstrophy. In combination with the blow-up of
gradients, the constancy of C# points towards the regular appearance of small,
structures of intense vorticity, i.e. vortex filaments.

The measurement of C# poses two difficulties. First, # is notoriously dif-
ficult to estimate from hot-wire data as discussed in Sec. 5.3.3. Here, # =

15n(∂u1/∂x1)2 was chosen and no corrections were applied. The second com-
plication is the measurement of L. The most common way to estimate L is the
integral over some part of the autocorrelation function of the velocity fluctu-
ations.

Lu =
Z r0

0
hu(x + r)u(x)idr (7.3)

The result depends sensitively on the choice of r0. At large r, C11 = hu1(x1 +

r)u(x1)i fluctuates around 0. While the theoretical limit of r0 ! • cannot
be realised in any real measurement, the location of the first zero-crossing of
C11 is often used for r0 instead. This choice has been employed here as well.
In active grid turbulence, C11 can have nonzero values even for very large
r [52, 53]. This has motivated alternative integration boundaries, since it is
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unclear whether the long-range correlations present at these very large sep-
arations significantly contribute to the nonlinear cascade. Pearson et al. [54]
argued that estimating the energy injection scale from the peak of the spectral
quantity k1E11(k1) provides a more universal estimate of L and improves the
collapse of data from different types of flow.

Fig. 7.1 shows the values of C# extracted from the hot-wire data. A com-
parison is made to data acquired by M. Sinhuber [50]. Further, the model of
decaying turbulence in a confined domain introduced in Ch. 6 connects C#

to the decay parameter AK = �C2/3
# . The value of C# corresponding to the

fitted values of AK is shown by open symbols for both the active and the pas-
sive grid cases. The data shows a good collapse at Rl > 500 towards a value
of slightly below 1. No Rl-dependence can be discerned up to Rl ⇡ 6000
confirming the prediction of C# = const. at large Reynolds numbers. To the
author’s knowledge this is the largest Rl, where this was measured in a clas-
sical fluid with negligible mean shear. Risius et al. [55] investigated C# under
atmospheric conditions on a mountain research station finding C# ⇡ 0.5 over
a comparable range of Rl. Eq. (7.2) was explored in the SHREK experi-
ment (Superfluid Helium high REynolds number von Kármán flow) up to
Rl ⇡ 30000 in superfluid helium [56] showing that both viscous and super-
fluid helium approach a constant at large Rl. At lower Rl, an abundance of
measurements of C# exists [57, 58, 59, 60, 54, 61, 53] . The high-Rl asymptotic
value appears to depend on the turbulence generation mechanism and typi-
cally varies between 0.5 and 1. Forced DNS and [62] active and fractal grid
turbulence [63, 64] appear to result in values close to 1, whereas passive grid
data and sheared flows result in lower values around 0.5 [60].

7.2 The Kolmogorov Constant and the 4/5-th Law

This section offers results from the VDTT on two classical inertial range
predictions at large Reynolds number. By averaging the Navier-Stokes equa-
tions, one obtains the exact Karman-Howarth relations (see Sec. 3.2). In terms
of the structure functions it reads for the isotropic case [67]

�
2
3

r4# �
r4

2
∂S2
∂t

=
∂

∂r
r4S3

6
� n

∂

∂r
r4∂S2

∂r
. (7.4)

Under the assumption of statistical stationarity, the first term on the LHS
vanishes. In the limit of large Reynolds number, the last term on the RHS
becomes negligible for r � h. Upon integration, one therefore recovers the
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Figure 7.2: Left: S3/(#r) as function of scale r/h for selected Rl =147, 413, 619, 888, 1550,
2143, 2892, and 5865. Errors include 95% CI of the statistical error, a 3% error from velocity
calibration, and a 5% error on the dissipation measurement. The incomplete collapse at the
highest Rl is most likely due to insufficient small-scale resolution. Note a bump in the large-
scale cutoff. Right: Value of the peak of S3/(#r) as function of Rl along with models by Qian
[65], Lundgren [66], and the Yang model dicussed in detail in Ch. 6.

4/5th-law

S3(r) =
4
5

#r (7.5)

in the inertial range for large enough Rl. Since this relation can be derived in
an exact way for homogeneous, isotropic turbulence, it must be approached
in the limit of extremely large Rl. It is however observed, that in decaying
turbulence such as in the wake of an (active) grid, the compensated third-
order structure function S3/(#r) approaches 0.8 rather slowly [68]. This has
been related to instationarity effects, i.e. the second term on the RHS of eq.
(7.4) does not vanish. In numerical simulations of turbulence in a forced
periodic box, nonstationarity effects decay quickly, and only viscous effects
reduce S3/(#r) in the inertial range. Consequently, eq. (7.5) is fulfilled at
lower Rl. To the author’s knowledge, the data obtained in the ONERA wind
tunnel in Modane at Rl = 2260 constitute the highest Rl at which the 4/5
law was studied experimentally [69, 68] until now. This thesis extends this
range towards Rl ⇡ 6000 as shown in Fig. 7.2.

As discussed in Ch. 6, the scaling range S3/(#r) = const. cannot be iden-
tified due to effects of finite Reynolds number, and lack of statistical station-
arity. The approach to the 4/5-law is studied nevertheless by observing the
increase of the maximum of the compensated structure function for different
Rl. The active grid data approaches 0.8 slightly slower than the predictions by
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Figure 7.3: Left: S2/(#r)2/3 as function of scale r/h for selected Rl =147, 413, 619, 888, 1550,
2143, 2892, and 5865. Errors as in Fig. 7.2. Right: Value of the Kolmogorov constant CK as
function of Rl along with the prediction by the Yang model [51] dicussed in detail in Ch. 6.

Yang et al. [51] and Lundgren [66], which account for finite-Reynolds number
effects and decaying turbulence using matched asymptotic expansions. The
data is well-described by the one-parameter fit to 0.8 � CR�2/3

l predicted by
Qian for decaying turbulence [65].

Combining equation (7.4) with the K41 framework reveals that the skew-
ness S = S3/S3/2

2 is related to the Kolmogorov constant CK [67] in the inertial
range:

S3/S3/2
2 = �

4
5

C�3/2
K . (7.6)

CK is related to both the prefactor of the energy spectrum and S2 and shall be
defined here as

CK = max
✓

S2

(#r)2/3

◆
. (7.7)

A consequence of the Kolmogorov framework is that CK is a universal func-
tion, i.e. independent of the flow under study. In particular, it should be inde-
pendent of Rl. Experiments and simulations regularly find values around 2.0,
albeit with more scatter from experiment to experiment than for the 4/5th-
law [70, 71, 72]. Fig. 7.3 shows the Kolmogorov constant as a function of
Rl.

Unlike the corresponding quantity for S3, no clear approach towards a
high-Rl asymptote can be identified even after correction of probe induced
biases into # in the spirit of Sec. 5.3.3 (open symbols). However, the mea-
surement of # relies on local isotropy. In weakly anisotropic flows, # is always
higher than estimated by the isotropic estimate [71]. Similarly, the scatter is
relatively large when compared to S3/(#r). This is particularly interesting,
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Figure 7.4: Illustration of ESS scaling for n = 4 (green) and n = 5 (red) for Rl = 4141. Left:
Illustrative example that Sn vs S|3| scales over a wider range of scales than Sn vs. r. Right:
Procedure used to extract ESS scaling exponents. The blue range indicates the averaging area
interpreted as inertial range.

because the shape of S2 and S3 when measured by the logarithmic derivative
is both independent of Rl and shows only little scatter from experiment to
experiment (see Ch. 6).

7.3 ESS-Exponents at large Rl

An influential result regarding scaling of the structure functions Sn is that
in experimental and numerical data, Sn scales with Sm considerably better
than with r [73, 74]. This procedure is known as extended self-similarity
(ESS). In particular, the inertial range scaling is extended towards large scales,
if Sn(S|m|) is plotted, where S|m|(r) = h|u(x + r) � u(x)|mi. It is convenient
to choose m = 3, since S3 ⇠ r1, such that the ESS scaling exponent is directly
related to the actual scaling exponent zn. Grossmann et al. [75] found that the
usage of the absolute velocity difference is essential in the application of ESS.
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They suggest in fact that the scaling S|n|(S|m|) shows an even better scaling.
This is, because the ESS procedure extends the inertial range scaling primarily
towards large scales, where the scaling behaviour differs drastically between
even and odd order structure functions. The scaling of the absolute velocity
differences is r0 for large r, whereas the scaling of the pure velocity differences
is r0 for even orders only. In all cases, Sn(r < h) ⇠ rn at small scales, such
that an extended scaling cannot be expected here.

ESS became a standard tool to extract scaling exponents in flows where
the inertial scaling range is nonexistent or small due to insufficient Rl, or
strong large-scale inhomogeneities. In this section the scaling exponents are
extracted by calculating

zESS
n (r) =

d log(Sn)
d log(S|3|)

. (7.8)

The ESS scaling exponent zESS
n is then taken as the mean of zESS

n (200h <

r < 0.2L), which is indicated by blue overlays in Fig. 7.4. The procedure is
illustrated in Fig. 7.4 for n = 4 and 5. It illustrates that the scaling range for
even orders is extended, whereas the inertial range for odd orders is about as
large as in the direct scaling Sn(r). Nevertheless, the local slope of Sn(S|m|)

is substantially flatter than d log(Sn)/d log(r) (see Fig. 8.1). It was shown in
Ch. 6 that the ESS estimate of zn compares well to alternative methods of
investigating the scaling exponent at second order.

The scaling exponents extracted in this fashion are illustrated in Fig. 7.6
for three Rl (1305, 3070, 4141). For n < 9, no Reynolds number dependence
of zESS

n can be identified. At n > 9, the data is not statistically converged as
indicated in Fig. 7.5 and longer datasets would have to be taken to reduce
the statistical uncertainty. For completeness, the unconverged exponents are
shown as open symbols in the inset of Fig. 7.6.

The data is compared to several models of zn. The Kolmogorov predic-
tion from 1941 [42] without inertial range intermittency states that zn = n/3.
This is clearly violated even at the largest Rl indicating the presence of iner-
tial range intermittency. Furthermore, no trend can be observed that would
indicate a slow approach towards zn = n/3 at any terrestrial Rl. The re-
fined similarity hypothesis [76] accounts for a intermittent distribution of #

in space. It assumes in particular that # is log-normally distributed and the
n-th order moments of the velocity increment statistics therefore scale with
(n/3) � µ/18(n(n � 3)), where µ is a free intermittency parameter ⇡ 0.2.
Here, µ was taken as a fit parameter to the highest Rl data. The fit yields
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increments were taken over r = 242h. The PDFs return to 0 for n < 9 indicating statistical
convergence.
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µ = 0.23 ± 0.01, which is in good agreement with previous measurements in
the atmosphere [77, 72]. The She-Leveque model assumes that the moments
of the dissipations form a hierarchy. This hierarchy of moments approaches
a constant in the limit of n ! •, which corresponds to the dissipation of
the vortex filaments. This model predicts zn = n � 9 + 2(1 � (2/3)n). It
overestimates the scaling exponents, i.e. predicts weaker intermittency levels
than the data indicates, but only slightly so. Dubrulle [78] showed that the
She-Leveque model is a special case of Log-Poisson distributed dissipation
statistics, which she generalised (see Sec. 3.3.4 for details). The most dissi-
pative structures that dominate the statistics of n ! • are allowed to have
any codimension, whereas the She-Leveque model requires them to be one-
dimensional, i.e. to be vortex filaments. The Dubrulle model further contains
a parameter for the intermittency level b. Unsurprisingly, the two-parameter
fit describes the data better than the She-Leveque model.

In summary, this section confirms previous findings that significant depar-
tures from the 1941 Kolmogorov prediction exist and that they become more
pronounced at higher orders. This is commonly attributed to the intermit-
tent nature of dissipative structures. After taking into account the statistical
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uncertainty, the data presented here show no significant Rl-dependence, in
accordance with the findings in Ch. 6 and results from measurements with a
passive grid installed in the VDTT [50]. The data further confirms the findings
in Ch. 6 that the measurement of a scaling exponent in structure functions
is a delicate task bearing substantial uncertainties. The data does not clearly
favor one of the models shown in Fig. 7.6 and cannot lend particular support
to any of the associated theories.



Chapter 8

Log-Periodic Oscillations in
Even-Order Structure Functions

8.1 Introduction

The data presented in this thesis is uniquely suited to provide insights
into the inertial range scaling, because it permits the study of scale-dependent
statistics, such as the longitudinal structure function S2 with unprecedented
detail. In particular, statistical uncertainties can be mitigated to a large degree,
because the sampling of thousands of large eddies is very cheap compared to
to high-resolution DNS, whose results are oftentimes averaged over only a
couple of large eddies or even less than one [79, 80]. Compared to previous
wind tunnel experiments, the data presented here allow an examination of the
inertial range at scales, where both the scale of turbulence forcing and viscous
dissipation are so far apart that their continued separation does not appear
to significantly change the inertial range shape. Features found in the inertial
range can therefore be reliably distinguished from a "bleed-in" of either the
energy-injection or the dissipation scale.

This chapter investigates the scale-by-scale behaviour in the inertial range
in detail. We are in particular interested a fine-structure, which has been
found in wind tunnel data of extreme statistical fidelity [81], but whose extent
is still a matter of debate [82]. This fine-structure is reminiscent of the predic-
tion of log-periodic oscillations and lacunarity, which have been speculated
to be a feature of turbulence under certain assumptions (see Sec. 8.2). The
active grid increases the time required to achieve a certain degree of statistical
convergence. To reveal the fine details in the inertial range, we develop an
approximation of the general shape in the inertial range and use it to detrend
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Figure 8.1: Logarithmic derivative of the second-order structure function for selected Rl and
fit of a + b log(r/h) for the case Rl = 5865. The fit is a good description of this quantity in
the inertial range.

the local scaling exponent in the inertial range.
Fig. 8.1 shows the value of the local scaling exponent z2 = d log(S2)/d log(r)

of the second order structure function for different Rl. The following analysis
makes use of the strikingly simple shape of z2 in the inertial range between
100h < r < 0.1L. Fig. 8.1 shows that in this range of scales, z2(r) follows a
line in the log-linear plot, i.e. should be well-described by the functional form
a + b log(r/`) (see also Ref. [83]). The parameter a is trivially determined as
the value of z2(r = `), where ` is an arbitrary normalisation scale (here: h). It
is shown in Ref. [83], that the slope of the line approaches a constant at high
Rl. Fig. 8.2 shows that the log-linear curve

an + bn log(r/`) (8.1)

approximates the general trend in the inertial range rather well also for higher
orders n.

In the context of this chapter eq. (8.1) will be used to compensate for the
general trend of zn(r) in the inertial range and study small features on top
of this trend in detail. This should be considered a purely geometrical tool,
while the reader is referred to Ref. [51] and Ch. 6 for a more physical, but
much more complicated model of the shape of S2. The quantity under study
is thus

dn(r/h) = zn(r) � (a + b log(r/h)), (8.2)
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Figure 8.2: Same as Fig. 8.1, but for orders 3 and 4. The fit is indicated for the higher Rl only.

where a and b are fit parameters acquired directly from each measurement of
zn by fitting eq. (8.1) to zn(100h < r < 0.1L). This procedure is superior to the
study of e.g. d log(Sn)/d log(Sm), because it separates the different orders of
the structure functions. It further reduces the necessary degree of statistical
convergence to distinguish the fine structure from noise. The integral scale L
of the data presented here is up to 6x larger than that of the data shown by
Sinhuber et al. [81]. As the mean flow was similar to their study, a single time
series would have to be about a week long to achieve comparable statistical
convergence. In contrast, the time series from which the data presented here
was extracted were only 6-8h long. Avoiding the noise-amplifying calculation
of d log Sm/d log Sn is thus crucial.

8.2 Log-Periodic Oscillations in Even-Order Struc-
ture Functions

It has been hypothesised that the structure functions of velocity fluctua-
tions might exhibit small oscillations around the prevailing self-similar scal-
ing. These log-periodic oscillations naturally occur when assuming a self-
similar process with discrete steps between scales, rather than a continuous
scale-dependence [84, 85, 86, 87]. Hints of such log-periodic oscillations were
found by Anselmet et al. [88] in sixth-order structure functions. Recent exper-
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in the inertial range reveals oscillations for even orders, but not for odd orders. The black
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curve in (E) is attributed to instrument effects. The colors in (D) represent Rl logarithmically
spaced from 100 to 1400 wiht darker colors corresponding to larger Reynolds numbers
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iments of extreme statistical fidelity in the VDTT revealed such a fine structure
in plots of d log(Sn)/d log(Sm) [81], i.e. the local scaling exponent of ESS plots
[89]. The limited Reynolds number and statistical resolution of modern DNS
make conclusive statements on the existence of such oscillations difficult. A
recent comparison between experimental and numerical data on the matter
can be found in Ref. [82].

Fig. 8.3 shows plots of dn(r/h) for the active grid data and plots of
z4(r)/z2(r) = d log Sm/d log Sn from passive grid data of high statistical con-
vergence and active grid data of lower statistical fidelity.

Plot (A) most clearly shows the presence of a fine-structure throughout
the inertial range. The number of visible peaks increases with Rl, while their
amplitude saturates at values around 0.01. Plot (A) also points towards a
constant logarithmic spacing of these peaks, also independent of Rl.

Plot (C) of d4(r/h) similarily reveals the the existence of a series of peaks,
whose number increase with Rl. As for n = 2, the data for d4 indicates
that the position of these peaks is logarithmically spaced. Perhaps owing
to the scatter of this data, which has been smoothed by a Konno-Ohmachi-
Smoothing [90, 91], this is not as clear as in plot (A).

Plot (B) of d3 is at odds to the two even orders, because no periodic features
can be distinguished from noise, where again a Konno-Ohmachi-Smoothing
was applied. Some of these curves show a peak at the large-scale end of the
inertial range. There are indications that this peak is related to the forcing
mechanism, because its intensity depends on the active grid configuration.

Plots (D) and (E) show z4(r)/z2(r) as a function of scale r/h. As pointed
out by Sinhuber et al. [81], this quantity equally shows signs of an oscillating
fine structure. The most prominent feature in these plots around ⇡ 10h does
not appear in plots (A)-(C). The location of the other local extrema visible
in (D) and (E) correspond well to those in (A). The first minimum in (D) is
also more pronounced than the extrema at higher r/h, which appear to have
similar heights. Furthermore, this minimum has a clear Reynolds-number
dependence and becomes more pronounced with increasing Rl. This is again
at odds with the other extrema of this plot, but owing to the small number of
oscillations visible at these rather small Rl < 2000, no conclusive statement
can be made.

The first extremum appears to become Rl-independent in (D), but (E)
shows that at the Rl-dependence extends well beyond the Reynolds num-
bers studied with a passive grid. Most likely, filtering effects smoothed out
the dependence in the passive grid case. This effect can also be observed in
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the active grid data (E) when h reaches the size of the sensing element. At this
point a comment on the largest Rl is necessary. This curve differs from the
other measurements from the dissipation range throughout the inertial range.
Closer inspection shows that this is due to z4(r), whose value is reduced at
the largest Rl compared to all other experiments. Higher order moments em-
phasise the tails of a distribution, in this case the velocity increments. It is
hence plausible that higher orders are more challenging for the instrumenta-
tion and more prone to related errors. It is nevertheless unsettling that the
deviations persist deep into the inertial range.

8.3 Discussion

The results indicate that a fine-structure exists in the inertial range that
modulates the prevailing trend of scaling statistics of structure functions such
as d log(Sn)/d log(r) or d log Sm/d log Sn. A novel method based on a simple
fit is suggested that all allows the extraction of this fine structure. The results
are compared to the conventional method [81, 82] based on extended self-
similarity [73]. The latter method reveals a local minimum around r/h ⇡ 20,
that the method presented here does not capture. This minimum is clearly
outside the inertial range, its amplitude depends on the Reynolds number,
and it is a natural outcome of the multifractal p-model [92] with a small-scale
cutoff [81]. These properties are at odds with all other extrema observable in
Fig. 8.3. It is therefore not surprising that a different method to extract the
scaling fine structure does not capture this initial oscillation.

The remaining data is consistent with the following picture: The even
order structure functions are modulated by oscillations with a logarithmi-
cally increasing period and an amplitude that depends neither on scale r, or
Reynolds number, but increases with order n. The data presented here can
only show this behaviour up to n = 4, since measurement noise prevents
statements for higher orders n. These oscillations are most likely linked to the
dissipation range, as pointed out by Sinhuber et al. [81], because the peaks
coincide upon normalisation by h, but not by L (not shown).

Even though only a maximum of two full cycles can be observed in Fig.
8.3, the existence of log-periodic oscillations in even-order structure functions
will be taken for granted in the remaining discussion. Such oscillations can
be parameterised as

y(r) = A cos(2p f log(r/`)). (8.3)
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Figure 8.4: Dependence of the logarithmic "frequency" on Rl. f appears to assume values
between 0.25 and 0.6 corresponding to a scaling factor g between 12 and 30. Error bars mark
fit parameter uncertainties.

The parameters A, f , and ` can be obtained by a fit to the data in the range
100h < r < 0.1L and the results of such fits are shown in Fig. 8.3 (A) and (C).
It can be seen from plot (A) that the parameters of these fits are not expected
to change significantly with Rl, they seem to be universal in this sense. This
is confirmed by plotting the extracted values of f vs. Rl as in Fig. 8.4. f
approaches a value around 0.3 for Rl > 2000, albeit with significant scatter.

According to the discrete scale invariance theory presented in Ref. [93],
this frequency is related to a preferred scaling factor g, which can be inter-
preted very loosely as the typical number of eddies that one mother eddy
"breaks up" into. If that number is around 2 or 3, but not as large as 10, the
log-periodic oscillations are to be expected in statistical objects such as the
structure function [86]. Since

ln(g) = 1/ f , (8.4)

g ⇡ 12 for n = 2 in our data. This is precisely the regime, which Novikov
[86] excluded from his prediction of log-periodic corrections to structure func-
tions.

The conclusions of this chapter could therefore be, that undulations to the
prevailing scaling of structure functions exist, that these occur in the form of
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logarithmically-spaced peaks, but the spacing of these peak is not as expected
originally. The data instead reveals a more than 4⇥ larger universal scaling
factor. This behaviour appears to be limited to even-order structure functions,
where only orders 2-4 could be considered.
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Abstract
The energy spectrum of incompressible turbulence is known to reveal a pileup of energy at
those high wavenumbers where viscous dissipation begins to act. It is called the bottleneck
effect (Donzis and Sreenivasan in J Fluid Mech 657:171–188, 2010; Falkovich in Phys
Fluids 6:1411–1414, 1994; Frisch et al. in Phys Rev Lett 101:144501, 2008; Kurien et al.
in Phys Rev E 69:066313, 2004; Verma and Donzis in Phys A: Math Theor 40:4401–4412,
2007). Based on direct numerical simulations of the incompressible Navier-Stokes equations,
results from Donzis and Sreenivasan (657:171–188, 2010) pointed to a power-law decrease
of the strength of the bottleneck with increasing intensity of the turbulence, measured by the
Taylor micro-scale Reynolds number Rλ. Here we report the first experimental results on
the dependence of the amplitude of the bottleneck as a function of Rλ in a wind-tunnel flow.
We used an active grid (Griffin et al. in Control of long-range correlations in turbulence,
arXiv:1809.05126, 2019) in the variable density turbulence tunnel (VDTT) (Bodenschatz
et al. in Rev Sci Instrum 85:093908, 2014) to reach Rλ > 5000, which is unmatched in
laboratory flows of decaying turbulence. The VDTT with the active grid permitted us to
measure energy spectra from flows of different Rλ, with the small-scale features appearing
always at the same frequencies. We relate those spectra recorded to a common reference
spectrum, largely eliminating systematic errors which plague hotwire measurements at high
frequencies. The data are consistent with a power law for the decrease of the bottleneck
strength for the finite range of Rλ in the experiment.

Keywords Turbulence · Fluid dynamics · Anemometry

1 Introduction

Turbulence is omnipresent in natural and technological flows. Its consequences for the asso-
ciated processes are essential in the fields of astrophysics, geophysics, meteorology, biology,
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and in many engineering disciplines from chemical engineering, combustion science, heat
and mass transfer engineering to aeronautics, marine science and renewable energy research.
From the fundamental perspective themathematical field theory of the incompressible Navier
Stokes equation continues to challenge pure and applied mathematicians [1]. In turbulence
fluid velocities and accelerations fluctuate greatly and any description can only be statistical
in nature. It is believed that at very high turbulence levels at spatial scales smaller than the
energy injection scale the turbulence shows universal properties, independent of the partic-
ular driving. According to Kolmogorov’s phenomenology from 1941 [2] (abbreviated K41),
the universal statistical spatial properties of fully developed turbulence can be captured in
three ranges of spatial scales. Kinetic energy is injected into the turbulent fluctuations at the
largest scales, whose properties are particular to the driving mechanism. The kinetic energy
is transformed into heat at the very smallest scales through viscous dissipation. If the range
of spatial scales found in the turbulent structures is large enough, a third range of scales
develops, where neither the peculiarities of energy injection, nor viscous dissipation influ-
ence the spatial scale-to scale energy transfer. This range is called the inertial range. In this
intermediate range statistical properties can be interpreted by the scale-to-scale transfer of
kinetic energy only, described by the kinetic energy dissipation range ε(dissipated power per
unit mass). The dimensionless quantity used to give the strength of turbulence and thus the
size of the inertial range scaling is the Taylor microscale Reynolds number

Rλ = uλ

ν
.

u is the rms of the velocity fluctuations, ν is the kinematic viscosity of the fluid, and λ is
the Taylor microscale, which is a measure for the mean length between two zero-crossings
of the velocity fluctuations [3]. λ can be thought of as a typical size of an inertial range
eddy. In statistically isotropic and homogeneous turbulence Rλ can be linked to the well-
known Reynolds number Re = uL/ν based on the large scales L via Rλ =

√
15Re [4].

The integral scale L can be estimated as the integral over the velocity correlation function
L11 =

∫
〈u(x + r)u(r)〉dr .

In K41 phenomenology for spatially homogeneous and statistically isotropic turbulence
the spatial energy spectrum in the inertial range is given by

E(k) = CK ε2/3k−5/3. (1)

CK is the Kolmogorov constant, k is the wavenumber. In this K41 spectrum the only free
parameter is the dissipation rate ε as indicated above.

Despite its simplicity, Eq. (1) describes the energy spectrum of observed and simulated
turbulent flows quite well (see [5] for a compilation and [6] for an experimental study on the
Rλ-dependence of the spectral slope). Nevertheless, important deviations are well known.
When analyzing the compensated spectrum E(k)ε−2/3k5/3, deviations from a k−5/3 scaling
are found. Prominent is an increase in amplitude of the compensated spectrum at the high-
wavenumber end of the inertial range. This pileup of energy is commonly called the bottleneck
effect [7–12]. It has been observed in laboratory flows (e.g. [5,13–15]) and direct numerical
simulations (DNS) [16–19] alike and is typically preceded by a distinct local minimum of
the compensated spectrum. The bottleneck peak is very shallow or almost absent in hot-wire
measurements of atmospheric boundary layer turbulence at very high Rλ > 104 [20–22]. It
is generally less pronounced in one-dimensional spectra than in three-dimensional ones [23].
The effect is also present in structure functions and influences the rapidity of the transition
between the viscous and inertial ranges in the second-order structure function [19,24], hints
of which can also be found in structure functions of higher orders [25]. The most extensive
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analysis of the bottleneck effect has been performed by Donzis and Sreenivasan [19] on
DNS at Rλ up to 1000. They found that the bottleneck effect can be characterized as the
difference between the bottleneck peak height and the level of the preceding minimum in
the compensated spectrum. They conclude that the bottleneck effect weakens as a function
of Rλ and report a scaling of h ∼ R−0.04

λ . Furthermore, they find that the peak of the bump
occurs around kη ≈ 0.13 in three-dimensional spectra, independent of Rλ. Here η is the
Kolmogorov length scale, where dissipative effects are expected to dominate.

From a theoretical perspective, various explanations exist for the bottleneck effect.
Falkovich [10] showed that a small perturbation to a K41 spectrum in the energy trans-
fer equation leads to a correction of the form δE(k) = E(k)(k/kp)−4/3 ln−1(kp/k), where
kp is the bottleneck wavenumber. Kurien et al. [9] argued that the time scale of helicity can
be comparable to the energy time scale in the inertial range, where the relative helicity is
already weak. They propose that the bottleneck effect is a change in the scaling exponent
of the energy spectrum from −5/3 to −4/3. Their DNS supports this claim as they find a
corresponding scaling range in the three-dimensional spectrum. The scaling is absent in the
one-dimensional versions of their spectra. Frisch et al. [8] studied hyperviscousNavier-Stokes
equations (Laplacian of order α ≥ 2) and attribute the bottleneck effect to an incomplete ther-
malization of high-wavenumber modes in the spatial spectrum. None of these studies directly
incorporates a Rλ-dependence of the bottleneck height. Verma andDonzis [11] study the non-
local and nonlinear mode-to-mode energy transfer in a shell model of turbulence and find
that a significant portion of the energy flux away from a wavenumber shell goes to distant
shells. Thus an efficient energy cascade requires a large inertial range. If the inertial range is
insufficient, the energy piles up at the dissipative drop-off. As the length of the inertial range
is tightly linked to Rλ, this implies a dependence of the bottleneck intensity on the Reynolds
number.

In summary, the bottleneck effect has been studied systematically in DNS and various
models. Numerical simulations indicate that the effect gets weaker with increasing Rλ, which
is also predicted byVerma andDonzis [11] and in agreement with atmosphericmeasurements
at ultra-high Rλ, where it is absent.

Here we present a detailed analysis of the Rλ-scaling of the bottleneck effect over an
unprecedented range of Rλ in a well controlled laboratory flow. The analysis of the bottle-
neck effect from experimental data can be demanding as systematic errors can cloud the
results. From the perspective of the measuring instrument a small bump in the compensated
spectrum is a subtle effect that occurs at rather high frequencies not yet resolvable in PIV or
PTV measurements and very difficult to achieve in LDV. We use classical constant temper-
ature hot-wire anemometry (CTA) assuming Taylor frozen flow hypothesis [26] in the Max
Planck variable density turbulence tunnel (VDTT) [15]. Even with very well-established hot-
wire technology, subtle changes in the energy spectrum at high frequencies can be heavily
influenced by amplification or attenuation at such frequencies (see Sect. 2.2 for a review).

In this manuscript we work around those effects and investigate the bottleneck effect from
the lowest Reynolds number at which it can be identified (∼ 200) up to the highest Rλ ever
measured in a wind tunnel flow.

The paper is organized as follows: first, we present a concise compilation of experimental
efforts to reach high Rλ and describe the variable density turbulence tunnel.We continue with
a brief review of challenges posed by constant temperature hot-wire anemometry, especially
its frequency responses. In Sect. 3 we introduce the relative spectra that allow us to eliminate
instrumentation errors to a large extent. Finally we report the results of our analysis and
discuss their relevance for the scaling of the bottleneck effect with Rλ.
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2 Experimental Methods

2.1 High R! and theVariable Density Turbulence Tunnel

Kolmogorov’s 1941 predictions of universal scaling in turbulent flows refer to the limit of
large Rλ, such that the regimes of energy injection and viscous dissipation are well separated
[2]. This condition is cumbersome to achieve practically. A large separation of scales and
therefore a large Rλ is found in atmospheric flows [20–22], where control is impossible and
stationary conditions are difficult to achieve. Flows of high Rλ are difficult to achieve in
controlled laboratory flows, where all scales can be reliably measured. To reach high Rλ

one can turn two knobs: the size of the energy injection scale L and the dissipation scale
η = (ν3/ε)1/4. In direct numerical simulations (DNS), a compromise between the size of the
periodoc box, (limiting L), the spatial and temporal resolution, the convergence time, and the
available resources needs to be found [27]. The largest Rλ = 2340 achieved in a DNS under
these constraints to date has been performed by Ishihara [17]. The limits of computational
capabilities in terms of resolution have been recently pointed out by Yeung et al. [27].

In a laboratory experiment the energy injection scale L is limited by the dimensions
of the apparatus. Large apparati can be built, e.g. the Modane wind tunnel [28], but are
prohibitively expensive to operate, especially considering the many realizations needed for
dedicated statistical studies of turbulence. To expand the inertial range the dissipative scales
of size ∼ η can be decreased by lowering the kinematic viscosity ν of the working fluid
demanding a higher resolution of the measurement instrument. Examples for experiments
in liquid helium, which has an ultra-low kinematic viscosity, are found for example in Refs.
[29–32]. The authors use liquid helium as working fluid in various flow configurations and
have been reported to reach Rλ up to 10000. The dissipative scales of these flows are so small
that they cannot be resolved by current technology.

Our approach to create a large inertial range is to use a closed-loop wind tunnel filled with
sulfur-hexaflouride (SF6) at pressures up to 15 bar [15]—the variable density turbulence
tunnel (VDTT). With classical grids it has been shown to create Rλ up to 1600 and Kol-
mogorov scales ∼ 10 µm, making even the smallest spatial scales experimentally accessible
[33]. With a specially designed autonomous active grid (see below) it is possible to increase
the energy injection scale and thus the inertial range. As Rλ ∼ (L/η)2/3, the VDTT features
two independent handles to change Rλ—pressure and active grid forcing. In combination
they create a laboratory flow of Rλ more than 5000 at scales resolvable with modern thermal
anemometry under the limitations described below.

The autonomous active grid consists of 111 individually controllable flaps of dimensions
11 cm × 11 cm that rotate around their diagonal. This is different from the Makita-style
grids, where the rows and columns of the flaps are mounted rigidly on rotating horizontal
and vertical bars [34]. The angle of rotation can be set to any angle between ± 90◦ The flow
obstruction is smallest (flap parallel to the flow) at 0◦. At angles ± 90◦ one of the flap sides
is facing the incoming flow, while the other side is facing away from the flow. The sign of the
angles determines the side that is facing the flow, while the magnitude defines the deviation
of the flap from the parallel position. As in a classical grid with rigid grid bars, wakes are
formed that interact with each other downstream of the grid to form a turbulent flow field.
The flexibility of the grid allows the superposition of larger structures onto those induced by
the individual flaps. A detailed account of the autonomous active grid and the algorithm is
given in Ref. [35] and briefly summarized here. A snapshot of several flaps of the autonomous
active grid is illustrated in Fig. 1.
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Fig. 1 Several flaps of the active grid. The flow points out of the page. Starting from the top left flap in
clockwise direction the flaps are set to 0◦, 45◦, 90◦, and 45◦. The side length of one flap is 11 cm, the black
boxes in the flap center are servo motors, the blue rods are the grid support

The algorithm updates the angle of each flap every 0.1s. Each time step starts with a
random set of angles and convolves each of those angles with the grid history and a pre-
defined kernel. The kernel is always defined by a certain shape (e.g. Gaussian), the spatial and
temporal correlations (the number of neighbors and time-steps included in the convolution),
and the desired mean absolute angle φRMS . For the experiments presented here, a ’Long Tail’
kernel has been used, whose description can be found in [35].

This algorithm leads to dynamically evolving patches of more open and more closed
flaps without periodicity, which in turn leads to spatial and temporal correlations of the flow
structures. The parameters σs and σt describing the correlation lengths that define the grid
behavior are typically linked via themean flow velocityU to avoid a strongly inhomogeneous
flow. The grid correlation lengths define the large-scale flow properties. To link these, we
consider the overall fluid volume that passes through a typical correlation patch given by
VCorr = σ 2

s σtU . The dimensions LCorr ≈ V 1/3
Corr are proportional to the largest scales in

the flow as demonstrated in Fig. 2a. The sine of the mean flap angle φRMS is proportional
to the mean area blocked by a single flap. The larger this blockage is, the stronger are the
fluctuations induced by the flaps. The product sin()RMS)U is therefore a predictor for the
fluctuating velocity component. The knowledge of typical length scales and velocity defined
by the active grid naturally leads to the definition of a Reynolds number using the kinematic
viscosity ν of the gas.

ReGrid ∼
3
√
VCorr sin(φRMS)U

ν
,
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(b)

(c)

(a)

Fig. 2 a The correlation volume Vcorr = σ 2
s σtU influences the size of the largest flow scales L =

∫
C(r)dr .

b The grid Reynolds number defined as ReGrid = 3√Vcorr sin(φRMS)U/ν determines Rλ. The black line
indicates the isotropic relation Re = c · √

Rλ, where c was chosen to fit the data best. c The separation of
scales L/η as a function of Rλ. The black line indicates a best fit of the K41 prediction of L/η ∼ R3/2

λ .
We attribute the slight deviations from the scaling to the relation between L and u3/ε, which depends on the
large-scale structure of the flow (see Appendix D). The first spectrum of Dataset 1 is not shown in (a) and (b),
because VCorr is not defined for a stationary, open grid

Figure 2b shows that the a priori quantity ReGrid scales with the a posteriori Rλ with devi-
ations at ReGrid > 109. Each Dataset has been obtained by increasing VCorr while keeping
the pressure (and therefore ν) constant as indicated in Table 1. We attribute the slight devi-
ations at large ReGrid from a power law dependence to the fact that L is approaching half
the diameter of the measurement section because the rule-of-thumb σs ≈ σt · U is relaxed
slightly. This is a natural limit for a sensible energy injection in any tunnel. We would like
to add the word of caution that when approaching this limit, isotropy and homogeneity can-
not be assumed easily anymore, which leads to said deviations from the isotropic relation
Rλ ∼ Reζ

Grid with ζ ≈ 0.5 (black line in Fig. 2b). This effect can also be observed in Fig. 2c).
When approximating L =

∫ ∞
0 C(r)dr , deviations from the K41 prediction L/η ∼ R3/2

λ
appear. The scaling is recovered when calculating L = Cεu3/ε (not shown). We attribute
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Table 1 Properties of all spectra

All spectra of a Dataset are distorted by the same function T ( f ) describing the sensor- and instrument-
induced bias. This is ensured by changing Rλ only through large scales L and fixing the position of the small
scales in frequency space indicated by fη . A reference spectrum has been chosen from each dataset, which is
emboldened in this table

this to differences in Cε due to the turbulence forcing as discussed e.g. in Refs. [36–39] and
plotted for our experiments in the appendix. From a phenomenological of view, introducing
correlations into the flow using the active grid increases Rλ only up to a certain limit (prob-
ably related to the tunnel dimensions). When exceeding this limit, the integral length scale
L can no longer be estimated by the correlation length. Nevertheless, these data confirm that
the active grid is indeed another ’knob’ to change Rλ through the largest scales.

2.2 Thermal Anemometry

More than a century after its invention [40], hot-wire anemometry remains the technique of
choice to measure the energy spectrum of turbulent velocity fluctuations in a strong mean
flow. Constant temperature anemometry is responsive to fluctuations up to very high frequen-
cies. The sensing element’s resistance—and therefore its temperature—is kept constant by a
feedback circuit. As long as the feedback circuit is fast enough, the thermal lag of the wire
does not attenuate fluctuations faster than the thermal time scale of the wire. This comes at
the expense of a more complicated circuitry and frequency response.

The frequency response of CTA circuits has been studied extensively both through the-
oretical models and experimental testing. Freymuth [41] linearized a circuit with a single
feedback amplifier of infinitely flat frequency response and analyzed its response to square
and sine waves. He finds that the system can be modeled by a third-order ODE if the circuit
responds faster than the wire, and the frequency response is optimal (flat over the entire
range of frequencies) when the system response to a step perturbation by a single, slight
overshoot (critically damped system). Perry and Morrison [42] investigated more moder-
ate amplifier gains and bridge imbalances in their study yielding similar results. Wood [43]
expanded the Perry and Morrison analysis, but considered a single-stage amplifier with a
frequency-dependent response.Watmuff [44] further expanded themodel withmultiple, non-
ideal amplifier stages. He showed that at least two amplifier stages are necessary to model
the real amplifier properly. This introduces two additional poles to the system and makes the
frequency response more complicated. Samie et al. [45] recently studied anemometry with
sub-miniature probes in this model and compared it to a real CTA measurement. The results
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supported the further development of their in-house circuit, such that sub-miniature hot wire
probes could be operated successfully on this CTA for the first time.

These theoretical attempts to predict the frequency response of a CTA circuit are accompa-
nied by experimental approaches. Bonnet and de Roquefort [46] heated the wire periodically
by a perturbation voltage as well as laser heating to determing the frequency response. Weiss
et al. [47] used the aforementioned square wave test and interpreted its power spectrum as
a measure for the frequency response curve. Hutchins et al. [48] exploited the well-defined
frequency content of pipe flow at different operating pressures to obtain frequency response
curves without artificial heating. They were able to create flows of almost identical Reynolds
number, but different frequency content and could deduce the frequency-response curves
for different circuits and wires. They compared several anemometer circuits and wires and
found that the frequency responses are non-constant at frequencies as low as 500 Hz. For the
combination of CTA circuit and wire used in the present study, they report an attenuation
between 400 Hz and 7 kHz followed by a strong amplification of the signal. We therefore
cannot assume a flat frequency response for ourmeasurements and adress these effects below.

The energy spectrum measured by a hot wire is influenced by the effects of finite wire
length. Length scales smaller than the sensor’s sensing lengths l will be attenuated, but
also larger wavenumbers are influenced. Wyngaard [49] used a Pao model spectrum [50] to
investigate this attenuation of small scales. These resultswere reviewed inRef. [51] indicating
that for l/η = 2, the attenuation of the one-dimensional spectrum is still minimal at kη ∼ 0.3,
which was supported by Ashok et al. [52]. Sadeghi et al. [53] used sub-miniature hot wires
(NSTAPs) as a benchmark and found that spatial filtering of the energy spectrum is minimal
for l/η < 3.7 at kη < 0.1.

In this study we used conventional hot wires of sensing length 450 µm for pressures
below 2 bar, as well as nanoscale thermal anemometry probes (NSTAP) of sensing length
30 µm provided by Princeton University with a Dantec Dynamics StreamWare CTA circuit.
The NSTAP is a 100 nm thick, 2.5 µm wide, and 30 or 60 µm long free-standing platinum
film supported by a silicon structure and soldered to the prongs of a Dantec hot wire. The
production process and characteristics are detailed in Refs. [54–57]. For the conventional hot
wire l/η < 5 in all cases and for the NSTAP l/η < 3. Therefore, η cannot be fully resolved in
all cases. However, the bottleneck effect is typically found around 100η. The aforementioned
references show that we can regard the distortions due to finite wire length as minor in this
part of the energy spectrum.

To summarize, the spatial resolution of our measurement instruments is sufficient to study
the Rλ-dependence of the bottleneck effect. Nevertheless the nonlinear frequency response
of the circuitry remains a source of systematic error that is different from random noise
occuring at very high frequencies. Here we describe a procedure that takes the response into
account and thus removes this systematic measurement error.

3 Relative Spectra

3.1 The Concept

As outlined above, systematic errors influence the energy spectra recorded with a hot-wire
anemometer. Formally, this means that the one-dimensional energy spectrum E11( f ) is dis-
torted by a frequency-dependent transfer function T ( f ):

EM ( f ) = E11( f )T ( f )
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T ( f ) describes the effects of the thermal wire response, which depends on pressure and
speed, and the reponse of the constant temperature anemometry circuit. Ideally, T ( f ) is
a constant over the whole range of relevant frequencies, but the evidence detailed above
indicates a complex shape of amplification and attenuation of the signal. In this study we do
not make any attempt to find T ( f ). Instead, we control its effects by keeping T ( f ) the same
for several flows at different Rλ.

To ensure that the spectra only differ because of changes in the turbulent fluctuation and
not because of the frequency response curve of the anemometer, we need to ensure that the
response curve T ( f ) is unaltered between spectra. We achieve this in two steps. The ambient
pressure might influence the heat transfer of the wire and therefore T ( f ). Furthermore, T ( f )
is influenced by the CTA tuning (in particular the overheat), and the sensor itself. Therefore,
we fix the ambient pressure within a set of spectra (a ’Dataset’) and measure using the same
sensor and the same CTA settings.

The second step is to ensure that a given kη is influenced by the same part of the frequency
response curve T ( f ). Thus, we need to fix the position of a spectral feature in frequency
space. This means that the mean velocity U must be the same within one Dataset. T ( f )
mainly distorts the small-scale end of the spectrum [41–45,47,48,51], whose location in
frequency space at a given U is determined by the kinematic viscosity ν. ν is fixed within a
Dataset because the pressure remains constant.

We can, however, change the energy injection scale and thus Rλ with the autonomous
active grid. This way we can conduct measurements at different Rλ. Ultimately, we can
eliminate T ( f ) by relating each spectrum to a reference spectrum:

Ei
M ( f )

ERef
M ( f )

= Ei
11( f )T

i ( f )

ERef
11 ( f )TRef( f )

= Ei
11( f )T ( f )

ERef
11 ( f )T ( f )

= Ei
11(kU/2π)

ERef
11 (kU/2π)

. (2)

In the following we call the ratio of a spectra divided by a reference spectrum in the frequncy
domain, relative spectrum. We emphasize that the notion of relative spectra is not necessary
to investigate Rλ-scaling within one Dataset prepared in the aforementioned way. However,
the accessible range of Rλ by changing only the active grid forcing is limited. Therefore,
several of such Datasets with different frequency distortions need to be prepared by changing
kinematic viscosity ν andmean flow speedU to obtain a convincing scaling range. The notion
of relative spectra is then required to compare those Datasets.

3.2 Results

We created three sets of spectra that have identical T ( f ) each. We call these sets ‘Datasets‘.
Table 1 shows important parameters for each spectrum. Note that L changes significantly
within a given dataset leading to changes in Rλ, while fη = U/η remains almost constant
within the dataset. This indicates that we changed Rλ only by increasing the large scales,
while keeping all small-scale features of the spectrum at the same frequency. For example, in
Dataset 2, the peak of the spectral bump always lies at a frequency of ∼ 700 Hz, whereas the
beginning of the inertial range spans a factor of 4 in frequency (2 to 8 Hz). This exemplifies
the excellent control over Rλ permitted by the autonomous active grid as indicated in Fig. 2.

The lower graphs of Figs. 3, 4 and 5 show the spectra from each of the respective datasets
divided by the reference spectrum ERef

11 . ERef
M is plotted pre-compensated in the upper graphs
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Fig. 3 Reference spectrum at Rλ = 1305 (upper plot) and relative spectra from Dataset 1. The data have been
collapsed at kη = 0.015, which we defined as the beginning of the bottleneck region.We identified the peaks in
the relative spectra with the bottleneck peak of the absolute spectra. The peak height decreased with increasing
Rλ and different spectra of similar Rλ result in very similar relative spectra as expected. Furthermore, the
slope of the spectrum at kη < 0.015 seems to decrease with Rλ. The shaded areas are a measure of the noise
level

Fig. 4 Reference spectrum at Rλ = 1308 (upper plot) and relative spectra from Dataset 2. The trends in peak
height and slope from Fig. 3 continue
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Fig. 5 Reference spectrum at Rλ = 4247 (upper plot) and relative spectra from Dataset 3. Unlike in Datasets
1 and 2, the beginning of the bottleneck region around kη = 0.015 is identifiable in the relative spectra as a
local extremum

of the respective figure. Note that the absolute spectra in the upper graphs aremultiplied by an
unknown transfer function T ( f ) accounting for probe effects and therefore can not be used
to reliably measure the features of the bottleneck. However, the relative curves are corrected
and allow a measurement. The graphs are the result of a smoothing procedure and error
estimate detailed in the appendix. In brief, the spectra were smoothed using a 1/ f octave
filtering and the error is related to the noise level removed by the smoothing procedure. The
spectra have been divided by the reference spectrum in the frequency domain and collapsed at
kη = 0.015 afterwards to simplify interpretation.This is the approximate location of the local
minimum regularly found in compensated spectra and directly precedes the bottleneck peak
in wavenumber space. DNS studies by Donzis and Sreenivasan [19] and Ishihara et al. [17]
have shown that the magnitude of the compensated spectrum at kη = 0.015 is practically
independent of Rλ. It is difficult to achieve such a good collapse of compensated spectra
in experimental data, because of uncertainties in the measurement of the dissipation rate ε.
Donzis and Sreenivasan [19] regard the compensated spectrum around kη = 0.015 as the
true measure of the Kolmogorov constant and build their analysis of the bottleneck effect
on the difference between the local minimum and the bottleneck peak. By normalizing the
relative spectra at this point we follow their procedure and remove the effects of imperfect
estimates of ε. In other words, we define the bottleneck height as the relative departure of the
compensated spectrum from its magnitude at kη = 0.015 following the procedure described
in Ref. [19]. The remainder of the analysis is carried out on these relative spectra normalized
at kη = 0.015.

While in Dataset 3 the beginning of the bottleneck region around kη = 0.015 is accom-
panied by a change in the shape of the relative spectra, this point cannot be identified in the
relative spectra of Datasets 1 and 2. In the following we concentrate on the bottleneck effect
found at kη > 0.015 for the remainder of this section.

123



628 C. Küchler et al.

The location of the spectral bump forming the bottleneck effect in relative spectra is
not obvious. Our data from one-dimensional spectra suggests that the peak occurs between
kη = 0.03 and kη = 0.06, which is consistent with the findings from DNS, where the
peak typically occurs at kη = 0.046 in the one-dimensional spectra (see e.g. Refs. [19],
[17]). However, when considering the background noise, the peak location is not the major
source of error. E.g. for Rλ = 1539, all points between 0.015 < kη < 0.07 are within the
errorband at kη = 0.05. We therefore define the extremum in the relative spectrum between
0.015 < kη < 0.08 as the relative height h of the bottleneck effect. This has the additional
advantage to be independent of the errors in the estimate of η. To preclude biases from this
definition, we repeat our analysis with different definitions of the relative bottleneck height
in Fig. 11 in the appendix.

Finally, the measured bottleneck height cannot depend on which spectrum is chosen as
reference. We have calculated the bottleneck height with all possible choices of ERef

11 and
found our results to be largely independent of that choice (see Appendix for details).

Figure 6 shows the bottleneck height—defined as above—as a function of Rλ/RRef
λ within

each dataset. The data shows a trend towards smaller peak heights in the relative spectrumwith
increasing Rλ. The data follows the numerical data we have compiled from various sources
[17,58–60].Wehave analyzed the data fromBuaria et al. [60] at Rλ up to 1000 (Rλ/RRef

λ < 1).
The increased small-scale resolution in comparison to [19] seems to have no noticable impact
on the bottleneck. Therefore, this data at is practically the same as the one used by Donzis &
Sreenivasan [19] for our purposes. The data from Rλ = 1300 (Rλ/RRef

λ = 1) was reported
in Ref. [58]. The numerical data at Rλ/RRef

λ ≈ 1.9, which corresponds to Rλ = 2340, is the
highest Rλ reported by Ishihara et al. [17]. The relative spectra of the numerical data were
analyzed equivalently to the experimental data and the spectrum at Rλ = 1300 was chosen
as a reference spectrum. We have used the one-dimensional spectra in our analysis of the
numerical data.

When excluding the lowest Rλ, the experimental data is in agreement with the power law
of

h ∼
(
Rλ/RRef

λ

)−0.061±0.007
.

The fit was obtained by a bootstrap procedure based on the error bars. It compares well with
the findings of Donzis and Sreenivasan [19], who report a bottleneck scaling of h ∼ R−0.04

λ .
Their analysis similarly defines the bottleneck height as the difference between the height
of the compensated spectrum at the bottleneck peak and the local minimum preceding this
peak.

The spectrum at Rλ = 193 follows the general trend of decreasing peak height with Rλ,
but its peak differs substantially from the predictions. The absolute spectrum (not shown)
exhibits no signs of a 5/3-scaling, and consequently the bottleneck region cannot be clearly
separated from the rest of the spectrum. This is substantially different from the other spectra,
where the end of the integral range could always be observed in the absolute spectra and we
therefore are not surprised that the relative spectrum at Rλ = 193 deviates from the remainder
of the data. This spectrum has consequently been ignored in our interpretation.

Further, we can change Rλ only by a factor of 5 through the autonomous active grid.While
Dataset 1 and 2 each feature a spectrum at the same Rλ, there is a gap between the highest Rλ

of Dataset 2 (2704) and the lowest of Dataset 3 (3641). To plot h as a function of Rλ alone,
we use the aforementioned power law fit from Fig. 6. Under this assumption we can bridge
the gap between the two datasets, because h1/h2 = (Rλ1/Rλ2)

−0.0061±0.007. Using the final
point of Dataset 2 as Rλ1 = 2704 and the corresponding height h1 we can construct h2 using
the lowest Rλ2 = 3641 from Dataset 3 to arrive at Fig. 7
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1.3

Fig. 6 Bottleneck height relative to the corresponding reference spectra for all datasets as a function of
Rλ/RRef

λ . The reference spectra collapse at Rλ/RRef
λ = 1 and have a relative bottleneck height of 1 by

construction. Numerical simulations from Buaria et al. [60] at Rλ up to 1000 (Rλ/RRef
λ < 1), Buaria et al.

[58] (Rλ = 1) and Ishihara [17] (Rλ > 1 ) are added for reference. The DNS data for Rλ < 2000 is practically
identical to the data analyzed by Donzis and Sreenivasan [19]. A power law is fitted to the experimental data
with the lowest Rλ/RRef

λ excluded. (Rλ/RRef
λ )−0.061±0.007 is a good description of the experimental data

over one decade of Rλ (from 500 to 5000) and agrees with the numerical simulations as well. This power law
is used in Fig. 7 to combine Datasets 2 and 3

200 500 1000 2000 5000

1

1.1

1.2

1.3

Fig. 7 We have shifted Dataset 3 from Fig. 6 under the assumption of a power law ∼
(
Rλ/RRef

λ

)α
with

α = − 0.061±0.007, i.e. the position of Dataset 3 with respect to the other Datasets is constructed artificially
from the power law in Fig. 6 to allow us to plot the bottleneck scaling with Rλ alone, i.e. without dividing
by RRef

λ . We have no physical justification for this power law and stress that the position of Dataset 3 in this
figure is speculative

123



630 C. Küchler et al.

4 Discussion

In this paper we studied the spectra of a turbulent wind tunnel flow of Rλ between 193
and 5131. We have used regular hot-wires as well as NSTAPs with a state-of-the-art
constant temperature anemometer to record single-point two-time statistics of the tur-
bulent fluctuations, in particular energy spectra. However, such spectra can be heavily
influenced by non-ideal frequency responses of the circuit. The frequency response is par-
ticularly complicated when operating sub-miniature wires like the NSTAP with a CTA
[45,48]. A constant current anemometer (CCA) might perform better in this respect, because
the frequency reponse is limited only by the thermal lag of the wire and no feedback
loop is involved. Still, this comes at the expense of a variable wire temperature and -
resistance.

In an attempt to interpret CTA data suffering from a non-flat frequency response, we con-
sider energy spectra relative to a reference spectrum. Such an analysis significantly restricts
the phenomena that can be observed. The bump in the energy spectrum at the transition from
the inertial to the dissipation range can still be identified in the relative spectra as a local
extremum beyond kη = 0.015.

To the best of our knowledge, no other wind tunnel achieves Rλ > 5000 in a gas. More-
over, we do not know of any other quantitative study of the scaling of the bottleneck effect
with Rλ in a laboratory experiment. We attribute this to the difficulties one faces when inter-
preting energy spectra from CTAmeasurements at relatively high frequencies: The spectrum
is stronlgy influenced by the CTA circuitry and these influences are hard to quantify or
eliminate.

With the aforementioned procedures we are able to extract information about the bottle-
neck effect from instrument-distorted hot wire spectra.We find indications that the bottleneck
effect decreases up to Rλ ∼ 5000.Wefit a power lawof (Rλ/RRef

λ )−α withα = 0.061±0.007,
which is close to the value of (Rλ)

−0.04 found by Donzis and Sreenivasan [19]. Their
numerical results are in general in good agreement with our experimental data, lending
support to the experiment and data anlysis procedure. Our data equally supports Verma
and Donzis [11], who predict that the bottleneck scales as h ∼ 1 − γ (1.5 log2(Rλ))

2/3.
Revisiting Fig. 6, the data is not inconsistent with different Rλ/RRef

λ -scalings of the rela-
tive bottleneck height in the different datasets. We have therefore calculated the scaling of
the individual datasets and found that while Dataset 2 and 3 have almost identical scaling
exponents (− 0.032± 0.012, and − 0.034± 0.029, respectively), Dataset 1 shows a scaling
of − 0.1528 ± 0.012. When excluding the two lowest Rλ, the scaling exponent becomes
− 0.083 ± 0.024. This points towards different behaviours at low Rλ, probably due to the
effects of a not properly developed inertial range, which contaminates the bottleneck scal-
ing. Such a claim is supported by the slopes of the spectra at 0.001 < kη < 0.015, which
clearly get steeper with increasing Rλ in Dataset 1, but change very little in Datasets 2
and 3, indicating a properly developed inertial range. Interestingly, this effect cannot be
seen in DNS, where the bottleneck scaling of R−0.04

λ can be found at low Reynolds num-
bers.

We attempt to plot the relative bottleneck height as a function of Rλ alone. This requires
the assumption that the aforementioned power law holds and can be extrapolated. Such an
assumption is highly speculative and the results should be considered as such.

We can not quantify the absolute height of the bottleneck bump. Yet, we can argue that
if the relative spectra are still changing with Rλ in the relevant region, the effect has not
completely vanished. We can find a systematic decrease of the peak in the relative spectra
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for Rλ < 3000. The data for Rλ > 3000 in Dataset 3 is inconclusive. A small, decreasing
trend can be found, consistent with the power law fit. However, the differences in height
are so small compared to the error bars that the claim of a constant bottleneck height at
Rλ > 3000 would also be supported by the data, especially when considering alternative
definitions of the bottleneck height in relative spectra as in Fig. 11 found in the appendix.
This is not in contradiction to the atmospheric spectra mentioned above, as they have an
even higher Rλ. Further, we note that a bottleneck effect might not show up as a peak in a
5/3-compensated spectrum, yet might be present when compensating by an intermittency-
corrected slope −(5/3 + β). In this case, the bottleneck effect would still be visible in the
relative spectrum. However, the claim that the bottleneck height does not change with Rλ for
Rλ > 3000 is not ruled out by the data.

As far as this study is concerned, the data matches the predictions of Verma and Donzis
[11]: The bottleneck height decreases with increasing Rλ, but relatively high Rλ are neces-
sary to make the effect vanish completely. Based on nonlinear and nonlocal shell-to-shell
energy transfer Verma and Donzis [11] estimate that the bottleneck is basically absent for
Rλ > 104, but acknowledge that this might be an overestimate. While lending support
to existing studies of the bottleneck effect, especially [19] and theories that incorporate a
Rλ-dependence of the peak height, an investigation of the effect in terms of absolutemeasure-
ments of spectra seems necessary to confirm these claims experimentally. With subminiature
probes of low thermal lag, such a study might be possible with a constant current anemome-
ter, whose frequency response is intriniscally more simple. However, the present study could
reliably measure how the bottleneck decreases with increasing Rλ for the first time in an
laboratory experiment and for Rλ much higher than achieved in DNS or other wind tunnel
studies.
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Appendix A: Brief Description of theWind Tunnel

The VDTT consists of two 11.7 m long straight cylindrical tubes connected by two elbows of
center-line radius of 1.75 m. The tunnel was filled with sulfur-hexaflouride (SF6) at pressures
between 1.5 and 15 bar for the measurements presented here.

The flow is propelled by a fan rotating at up to 24 Hz creating mean flow speeds of
up to 5.5 m/s. It passes the first elbow and enters a heat exchanger, which removes any
turbulent energy dissipated into heat and thus keeps the temperature in the tunnel constant.
The rectangular cross-section of the heat exchanger is smoothly adapted to the tunnel’s
circular geometry by contractions. The vertical slots of the heat exchanger are expected to
destroy large-scales structure present in the flow. After the heat exchanger, the flow passes
an 80 cm long expansion, which adapts it to the measurement section. While passing this
expansion the flow is stabilized and homogenized by three consecutive meshes of ascending
spacing. The flow enters a 9 m long measurement section through an 104 cm high active grid,

123



632 C. Küchler et al.

which is directly followed by a 70 cm long expansion to the measurement section’s height
of 117 cm. The measurement section is followed by another elbow and enters a second
measurement section through another sequence of three meshes before being accelerated
again by the fan.

Appendix B: Data Acquisition and Analysis Procedure

TheNSTAPswere operated following largely [61] using aDantec StreamLine 90C10module
within a 90N10 frame. The CTA bridge was set to a 1:1 ratio and the overheat is determined
by an external resistor Rext connected to the system. Typical overheat ratios Rext/RProbe
were 1.2–1.3, where RProbe ∼ 100. denotes the probe cold resistance. The Dantec wires
were used in a 1:20 bridge utilizing the internal automatics to set the overheat. The data was
acquired in the following procedure: The hot wire frequency response and proper operation
was tested on a very basic level using the square wave test built into the Dantec CTA-system.
The hot-wire system was calibrated by scanning a range of mean flow speeds set by the fan
frequency in the tunnel. We determined the mean flow speed through the differential pressure
between a pitot tube and a static pressure probe. The differential pressure was picked up by
a Siemens SITRANS differential pressure transfucer/ We chose ∼ 20 calibration points
spaced by ∼ 0.1 m/s. The probe voltage was recorded for 60 s along with the mean pressure
difference, a voltage-velocity curve was calculated, and King’s law was fitted to the data. In
between calibration points we waited for 45 s for the mean flow to become stationary. The
data was recorded with a National Instruments NI PCI-6123 16-bit DAQ-Card at sampling
rates of 60 or 200 kHz. Higher sampling rates were used for NSTAP measurements, where
the CTA analog low-pass filter was set to 100 kHz. When using standard hot wires, the
filter frequency was set to 30 kHz and the data was sampled at 60 kHz. The data was
recorded in segments of 6 million voltage samples, each saved to disk in a 16-bit binary
format.

We shall briefly outline the initial data analysis procedure used to obtain essential tur-
bulence statistics as well as the power spectrum. Each of the following steps was carried
out on each segment and the results were averaged over all files in the end. We used King’s
law with parameters obtained from the calibration data to convert the voltages to veloci-
ties. Note that the shape of the energy-frequency spectrum is independent of the calibration,
which is only required to obtain its absolute value. Because the analog filtering was not
sufficient to filter out all noise, we low-pass filtered the data digitally using a butterworth-
Filter of order 3 in forward and reverse directions. This introduces edge effects, which
we remove by cutting the first and last 60 points of the time series. We then subtract the
mean U from the velocity time series to obtain a time series of u. The remaining analysis
is performed on this filtered dataset. The power spectra were calculated using MATLB’s
fft function, which is based on the FFTW-package . We calculate the correlation function
usingMATLAB’s xcorr function, which itself relies on the aforementioned fourier transform
procedure as well as structure functions of order 1 to 8. Finally, we obtain histograms of
velocity and voltage. We use Taylor’s Hypothesis, which assumes that a one-dimensional
velocity field can be obtained from a time series by multiplying the time increments by the
mean velocity: /x = /t · U . The power spectra are normalized using the assumption that∫
E(k)dk = u2.
We routinely calculate basic turbulence quantities in different ways and check the results

for consistency. The quantites Rλ, and η depend on the mean energy dissipation rate ε,

123



Experimental Study of the Bottleneck in Fully Developed Turbulence 633

which we measure using the third-order structure function S3(r) = 〈(u(x + r) − u(x))3〉 =
4/5(εr). The last step follows from the Navier-Stokes equations and is also predicted by
Kolmogorov’s 1941 theory. In practice we estimate ε = max(5/4 S3/r) and check the result
with ε = 15ν

∫
k2E(k)dk, and ε = max(S3/22 /r). The integral length scale is calculated as

L =
∫ ∞
0 C(r)dr , where C(r) = 〈u(x + r)u(x)〉 is the velocity auto-correlation function. Its

error mainly stems from the ambiguous choice of the upper integration limit, which leads to
a relative error about 10% in L .

Appendix C: Calculation and Cross-Check of Relative Spectra

To obtain relative spectra, the initial spectrum consisting of 3 million points was downsam-
pled to 50 000 logarithmically spaced datapoints. To remove the noise from these spectra,
we have smoothed them using a fractional octave smoothing algorithm. It multiplies the
spectrum at each frequency with a Gaussian centered around the current frequency fi with a
width of σi = ( fi/n)/π , where n determines the smoothing level. Therefore, the smoothing
window is larger for higher frequencies. To estimate the noise level in the spectrum and the
associated statistical error, we consider the data within 3σi of each frequency.We estimate the
standard error as δ = √

Var/N , where N is the number of points considered and Var denotes
their variance. Finally, the compensated spectra are calculated as ψ(k) = E11(k)k5/3ε−2/3,
which can be written as ψ( f ) by Taylor’s Hypothesis. Finally, we divide the i-th spec-
trum in a dataset by the reference spectrum: ψi ( f )/ψRef( f ). The result is normalized at
kη = 0.015 to remove offsets introduced by uncertainties in ε and to simplify compar-
isons.

An important cross-check of the technique is its independence from the choice of
reference spectrum. To this end we have calculated the bottleneck effect according to

Fig. 8 The bottleneck height in Dataset 1 with different choices of ERef
11 . If the analysis is independent of the

choice of reference spectrum, the graphs are parallel in this representation. Note that the reference spectrum
always has bottleneck height 1
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Fig. 9 Same as Fig. 8 for Dataset 2

Fig. 10 Same as Fig. 8 for Dataset 3

the analysis outlined above for all possible choices of reference spectra. The results are
shown in Figs. 8, 9 and 10. They show the peak height in the relative spectra as a
function of Rλ/RRef

λ . Rλ/RRef
λ has been normalized to the value that was chosen in the

main part of the paper to increase the clarity of the figures. If the analysis is indepen-
dent of the choice of reference spectrum ERef

11 , a different choice E ′Ref
11 , should move

the resulting curve by a factor of ERef
11 /ERef

11 upwards and RRef
λ /R′Ref

λ to the right. The
latter is trivial and has been removed from Figs. 8, 9 and 10 by the additional normal-
ization. Thus, if the spectra are independent of the choice of reference spectrum, the
bottleneck curves should be parallel. Figures 8, 9 and 10 show that this is valid in good
approximation showing that the analysis is largely independent of the choice of reference
spectrum within a dataset. In a similar way, Fig. 11 shows that the qualitative results are
largely independent of where the bottleneck effect is measured. The details are found in
Sect. 3.2.
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Fig. 11 Bottleneck height as function of Rλ/RRef
λ with different bottleneck definitions based on the height of

the relative spectra at a fixed kη. The power law is the one found using the initial definition of the bottleneck
height in Fig. 6. Upper graph: Bottleneck at kη = 0.03, middle graph at kη = 0.04, lower graph at kη = 0.046
(as predicted byDNS).Datasets 1 and 2 still follow the trend found in themain part. Dataset 3 is not inconsistent
with the claim of a constant bottleneck height at Rλ > 3000

Appendix D: On the quantity C" = L"/u3

In Fig. 2c we plot L/η as a function of Rλ and recover to a good approximation the expected
scaling of L/η ∼ R3/2

λ . This scaling is derived from the relation ε = Cεu3/L and the
definitions of η = (ν3/ε)1/4 and λ =

√
15νu2/ε. Thus, the scaling depends on the constant

Cε, which is flow-dependent (see e.g. [36–38] for a review).We plot this constant as a function
of Rλ in Fig. 12, where we have used L =

∫
C(r)dr . Between Rλ 500 and 2000 the value

is approximately constant after being higher at lower Rλ. This behaviour is qualitatively
consistent with the findings reported by Sreenivasan [36]. In general, Cε is scattered around
1. We attribute the scatter to the fact that the exact vaue of Cε depends on the larg-scale flow
structure and is thereby influenced by the forcing mechanism. Considering that the active
grid forcing is our main means of fine-tuning Rλ, we expect such a scatter in Cε.
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Fig. 12 Cε = Lε/u3 as a function of Rλ. The data is scattered around Cε = 1. We attribute the scatter to the
dependence of Cε on the large scale flow structure, which is our main means of changing Rλ
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Chapter 10

Lagrangian Particle Tracking in the
Variable Density Turbulence
Tunnel

This chapter introduces the current implementation of Lagrangian Parti-
cle Tracking in the Variable Density Turbulence Tunnel. It is structured as
follows: First, the design considerations necessary to realise the tracking of
particles moving in a extremely turbulent flow inside a SF6 filled pressure
vessel are introduced. The current camera technology is compared to the tur-
bulent time scales to be expected, and the resulting requirements on the tracer
particles are discussed. Finally, the necessary illumination is assessed. Then,
the realisation of Lagrangian particle tracking in the VDTT is detailed. This
rather technical section will introduce the particles chosen as well as their dis-
persion mechanism, then the imaging setup will be described and finally, the
illumination system is presented.

10.1 Design Considerations

10.1.1 Turbulent Length- and Time Scales

The central turbulence quantity for the assessment of a Lagrangian parti-
cle tracking system is the Kolmogorov time th =

p
n/#. Fig. 10.1 shows how

th behaves in the VDTT flow. Since the kinematic viscosity scales with 1/p,
a higher facility pressure leads to a smaller th. Equally, a larger turbulence
dissipation rate # yields a smaller th. At a fixed facility pressure, # is deter-
mined by the ratio u3/L. Thus, th ⇠

p
L/u3. In an experiment with a strong

mean flow, such as a wind tunnel, the time- and length scales are closely
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Figure 10.1: th as a function of ambient SF6 pressure for # = 0.005, 0.01, 0.05, 0.1, 0.2, 0.5.

connected. For example, the size of a measurement volume in the direction
of the mean flow ultimately determines the number of time scales that can
be observed while a particle passes this volume. Fig. 10.1 shows that given a
measurement volume, the number of th can be adjusted quite freely by chang-
ing the facility pressure, the turbulence intensity, the active grid forcing, and
the mean flow speed.

The most critical turbulence length scale is the Kolmogorov scale h, which
predominantly depends on n and is therefore largely determined by the facil-
ity pressure. The experiment therefore has to be designed to meet the most
demanding case of h = 10�5 m.

10.1.2 Particles

The purpose of this setup is to study the motion of tracer particles, i.e.
particles that very closely follow the flow without influencing it significantly.
The relevant characterisation is therefore the particle response time to a given
change in flow [1]

tP =
2
9

a2 rP � r f

µ
. (10.1)

Here, a is the particle radius, µ is the dynamic viscosity, and rp, and r f are
the particle and fluid density, respectively. Setting this property in relation to
the Kolmogorov time yields the Stokes number

St =
tP
th

. (10.2)
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The smaller this number, the closer a particle follows the flow and the smaller
are inertial effects. If St < 0.1, a particle can be considered a tracer [1, 2, 3, 4].

Therefore, small particles with a density close to that of SF6 are preferred
in terms of inertial effects, but require stronger illumination and magnification
to record on video. Further, even if density matched, the particles should not
be much larger than the Kolmogorov length scale, i.e. a ⇠ 10�5 m.

Since the working gas SF6 is a non-polar gas, any charge present on the
particles will likely remain on them. If they come close enough to each other,
these charges will influence their motion. Since the Coulomb force FC de-
creases with 1/r2 with distance r from the charge, dissipation scale dynamics
are most likely influenced by FC. Lu et al. [5] have introduced the Coulomb
turbulence number that relates the Kolmogorov velocity uh to the typical ve-
locity uC = tPaC = tPFC/mP of induced by the presence of charges separated
by h.

Ct = tP
q2

4pe0h2uh
(10.3)

The measurement of the particle charge within the experiment is difficult.
However, the maximum allowable charge given an acceptable value of Ct = 0.1
can be calculated. For the particles chosen here (see following section) be-
tween O(103) and O(104) elementary charges per particle are acceptable be-
fore the charges influence the particle motions. These values are relatively
large, but not large enough to exclude charge effects a priori. An important
aspect of the data analysis will therefore be the radial distribution function
of the particles, since its shape changes dramatically if the particle charge
influences their dynamics [5].

Particles of 10µm size are difficult to remove from the tunnel entirely,
even though the VDTT features a bypass equipped with high efficiency fil-
ter. Therefore, particles must be chosen in such a way that the tunnel remains
a safe work place also after the experiment. They cannot be toxic and should
ideally be safe to breathe, since particles of size < 10 µm can enter the lungs.

10.1.3 Imaging

While the first Lagrangian particle tracking setups capable of measuring
accelerations in a high-Rl flow were silicon-strip detectors from high en-
ergy physics experiments [6], modern setups employ high-speed cameras
with CMOS (complementary metal-oxide semiconductor) sensors [7]. The
charges on their photodiodes are read out in parallel for all pixels, which
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Figure 10.2: Illustration of the limiting conditions for the particle tracking setup. The particle
size is approximately fixed at 10 µm, and the tracking algorithm requires the particle images
to be at least 2 px in diameter. This determines the magnification of the camera optics, which
together with the sensor size limits the field of view.

allows higher frame rates.

Voth et al. [2] have shown that the reliable tracking of tracer particles
requires an oversampling of th by more than 10 times. Together with th > 0.5
ms this yields a frame rate of > 20 kHz for the most demanding situations in
the experiment.

There exist numerous commercial [8, 9], open source [10], and in-house
algorithms capable of tracking particles that move in a turbulent flow [11].
They typically achieve subpixel accuracy, i.e. the particles’ locations within
a single pixel can be extracted. Nobach et al. [12] have shown that such
schemes require particle images > 2 px. In this case a precision of up to 0.1px
is possible.

High speed cameras and their optics have a significant aerodynamic in-
fluence when placed inside the flow, which has to be avoided. Their closest
position to the center of the measurement section cross section is therefore
below the tunnel flow.

These considerations in combination with the length- and time scales de-
scribed in the previous section, and the presence of mean flow quickly show
that accelerations can only be efficiently measured by the most advanced high
speed cameras available. For example, the Phantom v2511 can record 25 000
frames per second at its full resolution of 1280x720 px.

The pixel size of these cameras is 28 µm. Thus, the particle image must
be about 60 µm to allow efficient subpixel tracking. The image of a spherical
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particle in a optical setup of magnification M is given by

dI =
q

(2aM)2 + d2
A, (10.4)

where dA is the size of its Airy disk

dA = 2.44(1 + M)(NA)l (10.5)

induced by the diffraction due to the system’s numerical aperture NA. All
illumination sources under considerations are green lasers of wavelength l =

532 or 515 nm. For example, an imaging setup with M = 1, and NA= 22
would yield a particle image of 56 µm.

Assuming a magnification of M = 1, the size of the measurement volume
can be approximated. At full resolution the longer side of the sensor has
1280px, the shorter 720px, each of size 28 µm. With M = 1 the focused
measurement volume is as large as the sensor: about 3.6 cm ⇥ 2.1 cm.

The knowledge of the measurement volume allows to estimate the approx-
imate time the particles will spend within the measurement volume. This de-
pends predominantly on the mean flow speed U, which is typically between
2 and 5 m/s. If the particles move along the diagonal of the measurement
volume, they can be expected to cross it within ⇠ 10 ms, i.e. ⇠ 1 � 20th.

Apparently, the size of the measurement volume is ultimately determined
by the size and number of camera pixels and the particle diameter. While
the turbulence properties prohibit the use of larger particles, cameras with
smaller sensors could be used, such as the Phantom VEO 4k, whose pixels
are only 6.75 µm large. However, these cameras can only acquire 1000 fps at
full resolution. Moreover, using single pictures of long exposure would reveal
the paths of individual particles as streaks. The available light sources (see
next section) can be programmed in such a way that time information could
be encoded in their intensity, such that the brightness of these streaks would
vary in time. For example, the Phase One XF iXM features 11664px along its
longer axis, each only 3.76 µm large, allowing a measurement volume of >0.5
m length. The time information of such a setup would not be sufficient to
measure accelerations, but the concept provides an interesting path towards
measurement of dispersion statistics in a stationary setup.
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Figure 10.3: Refractive index n for the conditions experienced in the VDTT evaluating the
empirical formulas presented in Refs. [13, 14] and using the parameters found by [14]. The
refractive index varies severely with pressure and at high pressures also with temperature.
Therefore, any optical setup must be adjustable for different pressures and temperature con-
trolled.

10.1.4 SF6 as a working gas

The particle tracking setup necessarily has to account for the properties of
the working gas SF6 under pressures up to 15 bar. First, any equipment in use
has to be vented, i.e. existing pressure differences between the environment
and the inside of the device have to be equilibrated. This is the case for most
equipment that is not watertight. An exception are the high speed camera
sensors, which have a protective glass sealed on, but can be vented by the
manufacturer.

The refractive index of SF6 is sensitive to pressure p and temperature T.
The dependence is fitted in general by [13]

n = 1 + A
p

RT
+ B(t)

✓
P

RT

◆2
(10.6)

using the gas constant R. Thomas & Tayag have determined the fit parameters
A and B(T) [14]. For the conditions experienced in the VDTT, the results are
illustrated in Fig. 10.3.

The temperature dependence is stronger at larger densities, where even
small temperature fluctuations distort an image locally ("barbecue effect").
Further, the refractive index varies by almost 0.5 between 1 and 15 bar. There-
fore, any optics focused in air will be strongly out of focus in SF6 at higher
pressures. Therefore any refractive optical component inside the tunnel needs
to be adjustable. It is advantageous to locate as many of such optical compo-
nents outside the tunnel to make basic realignment possible and reduce the
number of remote controlled devices in the tunnel.
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The VDTT is known to deform under pressure by up to 7mm [15]. It is
therefore possible, that also light paths (e.g. from an illumination laser) vary
between different pressures and should be adjustable.

10.2 Realisation of a Lagrangian Particle Tracking
Setup

10.2.1 Particles

The particles chosen for this setup and fulfilling the requirements defined
in Sec. 10.1.2 are cellulose particles commonly used in the cosmetics industry
[16]. In particular, KOBO Products Inc.’s CELLULOBEADS USF, D-5, D-10,
and D-30 are suited for this experiment. Their properties are listed in Tab.
10.1. The density of the particle material is not known, but its bulk density
rb is specified. Assuming a porosity e ⇡ 0.4, the particle density can be
estimated

rp =
rb � (er f )

(1 � e)
. (10.7)

Diameter (µm) Approx. Density (kg/m3)
USF 4 270
D-5 10 1000
D-10 15 1200
D-30 30 1400

Table 10.1: Properties of particles considered in this study. Diameters taken from their
datasheet [16], density estimated from the bulk density assuming a packing fraction of 0.4

With this information, the expected Stokes number eq. (10.2) for different
values of the turbulent dissipation rate # can be estimated. Fig. 10.4 shows
the Stokes number estimated from the particle data and the fluid properties
[17]. The errorbars indicate the uncertainty in the Stokes number due to an
error in the packing fraction by ±0.2. The only particles that yield St<0.1
for all situations considered, are USF particles. However, due to their small
size, they require very strong illumination to be visible. D-30 particles are
in the inertial regime (St>0.1) in all situations. D-5, and D-10 particles pro-
vide a compromise between inertial effects and illumination requirements. In
general, lower pressures, low turbulence intensities, and large integral scales
(# ⇠ u3/L) are most likely to create situations, where the inertial effects on
the particle motion are negligible. Incidentially, the wider variety of available
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Figure 10.4: Stokes number defined in eq. (10.2) as a function of the facility pressure for
different values of the turbulent dissipation rate ⇠ u3/L. Red circles: D-30; green triangles:
D-10; orange squares: D-5; blue crosses: USF. The critical value of St=0.1 is indicated by a
black line. Error bars indicate uncertainty due to unknown particle density.

Stokes numbers is exciting in its own right and allows studies on the inertial
particles in turbulence. This has a great relevance to atmospheric processes,
where water droplets with St>1 play a crucial role.

The most important danger in handling any of these particles is their in-
flammability and the associated risk of a large dust explosion. Therefore,
the particles are stored in a fire safe board and significant quantities are only
dispersed in the abscence of oxygen (i.e. in the SF6-filled wind tunnel). Oth-
erwise, these particles provide no particular known health hazard.

The dispersion of particles is an essential part of any particle tracking
setup. The mechanism has to be designed, such that a controllable amount of
monodisperse particles is discharged homogeneously into the measurement
volume. Sampling the entire wind tunnel in such a way would be ideal, but
requires large amounts of particles, which need to be replenished frequently.
From initial experiments, the author estimates that >50% of particles get are
removed from the flow per tunnel revolution. For this reason, the particles
are dispersed about 5.0 m upstream of the measurement volume, and 0.485
m above the floor of the measurement section. The dispersion mechanism is
illustrated in Fig. 10.5. A strong pipe flow into the wind tunnel is created,
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Figure 10.5: Illustration of the particle dispersion system. The particles are initially filled
directly into the pipes that connect valves 1 and 2. The gas bottle delivers SF6 at pressures
⇡ 5 bar higher than the wind tunnel pressure. When valves 1, 2, and the magnetic vale are
open, a jet emerges at the nozzle that carries the particles within the pipes into the tunnel.
The nozzle points about 45º upstream.

which is ultimately discharged into the flow through a nozzle and carries
with it particles that are within the pipe. The source of the pipe flow is a SF6

gas cylinder, whose effective pressure is controlled by an attached pressure
regulator to about DpInjection ⇡ 5 bar above the current wind tunnel pressure.
A section of the pipes that connect gas cylinder and wind tunnel flow can be
isolated by two manual valves. It can then be opened safely and particles can
be filled directly into the pipes. Once resealed, the two manual valves can
be opened. The discharge of particles is initiated by an additional magnetic
valve 1 (numbers in circles indicate parts found in Appendix A). It is operated
by a Berkeley Nucleonics Corporation 555 pulse delay generator 2 . Its TTL
(transistor time logic) signal initiates two relais, which open the magnetic
valve.

The number of particles discharged by this techniques depends on the
number of particles within the pipes (decreases with time after replenish-
ment), the duration for which the magnetic valve allows flow, and the pres-
sure difference between the gas cylinder and the wind tunnel. Below pressure
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Figure 10.6: Measurement of the particle size distribution. Left: cumulative probability den-
sity showing that 80% of detected particles are smaller than two particle diameters. Right:
number of particles at a given diameter am normalised by the single particle theoretical di-
ameter ap.

differences of 4 bar, the majority of the particles remains so close to the mea-
surement section wall that they get trapped within its boundary layers. If the
flow leaving the nozzle is too strong, the actual wind tunnel flow might be
strongly affected. A rough guidance from experience could read: 30 ml of
particles last for about 60 injections at jet durations between 0.3 and 0.7s.

An important property of any particle dispersion mechanism is the size
distribution of the resulting particle cloud, i.e. how many clumps of two or
more particles are ejected. Since realistic experiments involving the setup
are only possible inside the SF6-filled wind tunnel, and a large magnifica-
tion is necessary to distinguish single particles from doublets, the following
experiment was carried out to estimate the particle number of multi-particle
clusters ejected: After particle tracking experiments using D-10 particles were
carried out (p = 14.9bar, DpInjection > 5bar), the tunnel was evacuated and
filled with air. In this case, an apparently single layer of particles is clearly
visible on the tunnel floor. A black tape was carefully stuck onto the particle-
covered tunnel floor and removed again. On the area where the tape had
been located, all particles were picked up by the tape. The tape was then
placed under a Keyence VK-X210 confocal 3D laser scanning microscope and
an area of ⇡ 11.5mm ⇥ 9.1mm was imaged. The image was processed in Im-
ageJ (Despeckle, Threshold, Median Filter (r = 0.8 px)) and the particles were
measured using the built-in algorithm. Detected particles with a size <120
µm2 and a circularity <0.30 were rejected. A part of the original image, the re-
duced version with detected particles indicated, and the particle size statistics
are shown Fig. 10.6.

The measured projected area of the particle AM was predominantly smaller
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than 2⇥ the expected area of the particle given its nominal radius aP. Since no
peaks at integer multiples of the nominal particle size are visible, a significant
amount of noise and erroneously detected particles is expected. Even after
denoising, the picture was heavily influenced by the glue structures on the
tape, which could not be removed entirely by thresholding and size filtering.
Nevertheless, most objects detected by the algorithm were particles. The right
panel shows that only a very small number of objects has radii that exceed
that of the particles. It is therefore concluded that the appearance of clumps
with significantly enhanced Stokes number is relatively unlikely and will only
marginally influence measurements, at least when using D-10 particles.

In summary, a simple particle dispersion system was built that allows
for automated release of particles into the wind tunnel, particle replenishing
while the VDTT is filled with SF6, and produces predominantly monodisperse
particle clouds. A more sophisticated system using liquid SF6 in a separate
pressure vessel stirred constantly by a cooling fan proved to be too compli-
cated for efficient operation.

10.2.2 Imaging

As indicated in Sec. 10.1.3, the imaging system should be placed as close
to the measurement volume as possible (usually close to the center of the
tunnel cross section), but outside the mean flow. Given the constraints of
camera size, resolution, and the associated need for large focal lengths, the
tunnel offers only two possible locations for high-speed cameras: Below the
measurement section floor utilising mirrors, and the manholes. However, the
manholes can only carry compact camera arrangements, i.e. are unsuited for
the ultra high speed cameras required to measure Lagrangian accelerations.

A sled previously built to allow particle tracking in a comoving reference
frame was adjusted to accommodate four Phantom v2511 high speed cameras
3 - 6 . The platform consists of an aluminium plate, which is freely movable

for about 2.5m in the streamwise direction along two rails mounted inside
the wind tunnel. The cameras and their optics are placed on two steel plates,
which are connected firmly by two arms to avoid relative motion of the cam-
eras. This arrangement of steel plates is connected to the aluminium base
plate through springs (see Fig. 10.7). This way, the cameras are mechanically
decoupled from the tunnel, which vibrates considerably during operation.
Such vibrations would severely impact the measurements, since already a vi-
brational displacement of 10 µm corresponds to a noise level of 1h.
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Figure 10.7: Cut through the camera platform. The four cameras (two visible here) are
mounted on L-shaped steel camera supports, which are connected by two arms. This ar-
rangement is connected through springs to the main platform, which is connected to the
wind tunnel rail system. This way, the cameras are mechanically decoupled from vibrations
during operation of the wind tunnel.
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Table 2: Table with questions

No Description Manufacturer Part No Serial
1 magnetic valve 50 bar, 24V DC, 6.8W FESTO VZWD-L-M22C-M-G14-

15-V-1P4-30
2 Pulse Delay Generator Berkeley Nucleonics Corporation 555
3 Phantom v2511 High-Speed Camera Phantom High Speed 16682
4 Phantom v2511 High-Speed Camera Phantom High Speed 16676
5 Phantom v2511 High-Speed Camera Phantom High Speed 16678
6 Phantom v2511 High-Speed Camera Phantom High Speed 16677
7 2⇥ Telekonverter
8 2⇥ Telekonverter
9 2⇥ Telekonverter

10 2⇥ Telekonverter
11 2⇥ Telekonverter
12 2⇥ Telekonverter
13 2⇥ Telekonverter
14 2⇥ Telekonverter
15 Objektiv 200mm f/1,4 Nikon
16 Objektiv 200mm f/1,4 Nikon
17 Objektiv 200mm f/1,4 Nikon
18 Objektiv 200mm f/1,4 Nikon
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mean flow

Figure 10.8: Schematic (top view) of the optics arrangement for the imaging. A magnification
M ⇡ 1 is achieved by combining a 200mm lens ( 15 - 18 ) with two 2⇥ teleconverters ( 7 - 14 )
. Adjustable mirrors ( 19 - 22 ) on each camera guide the light from the field of view (FOV)
into the camera optics.

The considerations presented in Sec. 10.1.3 lead to the requirement that the
optical magnification M = 1 to obtain particle images usable for Lagrangian
tracking. The optical setup to achieve this magnification is illustrated in Fig.
10.8. Each camera has two teleconverters with 2⇥ magnification and a 200mm
Nikkor lens mounted to it. The cameras are pointing towards mirrors, such
that they can observe the measurement volume. The mirrors are mounted
in kinematic mirror mounts ( 25 , 26 ) that can be remote controlled through
piezo motors.

As outlined in Sec. 10.1.4, the refractive index of SF6 depends sensitively
on the pressure. Therefore, the effective focal length of the camera optics
changes and needs to be compensated remotely. Since the chosen combination
of lenses and cameras only supports manual focusing on the lens itself, the
following mechanism was implemented: A timing belt is tightly fixed around
each lens with its teeth pointing outwards. A gear 23 is attached to the
timing belt and operated by four stepper motors 24 , which are controlled by
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Figure 10.9: Illustration of a single camera optical setup. The timing belt and gear 23 trans-
mit the stepper motor 24 rotation to the focus of the lenses. The kinematic mirror mount
provides the view to the measurement volume, which lies behind the camera.

an Arduino Uno.

The positions of the particles recorded in units of pixels on the two- di-
mensional sensor need to be converted into units of meters in the three-
dimensional measurement volume. To achieve this, several camera calibra-
tion models have been invented in the past. For high-precision measurements,
only systematic calibrations using a pre-defined mask in a separate procedure
can be used. In general, a suitable camera calibration consists of two matrices:
the intrinsic matrix, and the extrinsic matrix. The intrinsic matrix contains in-
formation about the camera optics and therefore depends on the index of
refraction. The calibration of the camera intrinsics must be performed in-situ
at every ambient pressure. To this end, the existing hot wire traverse (see
Sec. 4.1) is equipped with a calibration mask. This traverse can be moved
in the streamwise direction and has an additional vertical traverse mounted.
The calibration mask mounted on the vertical traverse can therefore be moved
into the measurement volume for calibration, the position of the mask relative
to the cameras can be changed, and the traverse can be moved downstream of
the measurement volume after calibration as to not influence the flow during
measurement. Because the movement of the calibration mask is limited to two
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directions, images where the calibration plate is at the corners of the image
can only be captured when parts of the pattern are obstructed. In this case,
the calibration is only possible when the visible area of the calibration pattern
can be identified. This is possible for so-called ChAruco patterns, where the
white areas of a checkerboard pattern are equipped with a pixel code (ArUco
pattern [18]). These patterns are taken from a standard library and can be
read out by existing calibration algorithms, implemented, e.g. in the OpenCV
library [19] to obtain a direct correspondence between a detected checker-
board corner on the image and the real-world corner on the calibration plate.
This way, also calibration images with only partially visible patterns can be
used [20]. The calibration pattern for the intrinsic calibration is a chemical
development of a digitally created ChAruco pattern, which was mounted on
a flat aluminium plate by the manufacturer. The pattern has a size of 8 ⇥ 8
fields of marker size 3mm taken from the original ArUco library [18]. It is
depicted in Fig. 10.10.

The extrinsic matrix consists of a rotation matrix and a translation vec-
tor, which define the position of the camera with respect to an arbitrarily
chosen world coordinate system. Three possible strategies exist within the
current setup to obtain the extrinsic matrix. The calibration matrix can be
placed at well-known positions with respect to the chosen coordinate system
origin. The traverse system described above does not offer the accuracy re-
quired to perform such a calibration in-situ. In principle calibration schemes
that work without knowledge of the calibration mask position [21, 22] can be
used to obtain the camera intrinsic matrix. The most widely employed of such
schemes is Zhang’s method. It requires at least three views of a flat, asym-
metric calibration plate with patterns of known dimensions, but to achieve
the precisions required here, more views are needed. Most importantly, the
position or orientation of the calibration plate is not needed.

The camera extrinsic matrix is independent of the refractive index (it only
contains geometric information about the camera locations) and can therefore
be obtained in air. When in air the calibration mask can be positioned freely
in space and Zhang’s method can be used. In addition, a temporary setup
can be employed, which performs a one-time extrinsic calibration where the
position of the calibration mask in space is known. For this, a calibration
target is mounted on a manual high-precision horizontal stage.

The calibration plate is mounted on a aluminium holder, which can be
moved remotely in streamwise and vertical directions. The holder is also
equipped with two LED strips. Along with an additional LED strip located
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Figure 10.10: Left: Calibration pattern used to calibrate the cameras. The use of a ChArUco
pattern allows the inclusion of only partially visible calibration images. Right: Looking up at
the calibration plate mounted on its holder with LED-Strips for illumination. The holder is
mounted on a vertical traverse

d1 f1 d2 f2 beam size in measurement volume
63 mm 62.9 mm - - 90 mm
30 mm 75 mm 50 200mm 70 mm
80 mm 75 mm - - 60 mm

100 mm 100 mm - - 50 mm

Table 10.2: Possible beam forming optics. Focal lengths and distances (±5 mm) on the optical
axis from Fig. 10.11

on the measurement section floor directly underneath the particle tracking
volume, this provides the illumination during calibration when the laser illu-
mination would pose a risk to the hot wires installed close to the calibration
pattern.

10.2.3 Illumination

The light emitted from an illuminated source scales with its surface area,
i.e. with the square of its length scales. Therefore, particles for Lagrangian
tracking in an environment where the Kolmogorov scale is particularly small,
need a strong illumination. The setup presented here utilises a Trumpf TruMi-
cro 7642 Nd:YLF laser 28 with a maximum output power of 300W at 100kHz
pulse frequency and an energy per pulse of up to 7.5 mJ. The laser light is
coupled into an optical fiber 29 , which guides the light towards the optical
setup. The optical setup is based on a optical breadboard enclosed by alu-
minium plates. It is mounted on two rails connected to the tunnel to avoid
large relative motions between the wind tunnel during operation and the op-
tical setup. The laser fiber head can be mounted to the cavity such that no
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Figure 10.11: Illustration of the beam path starting from the optical fiber 29 , through two
lenses of focal lengths f1 and f2. The mirrors 34 in the optical cavity can be adjusted to
guide the beam path through windows 31 and 32 onto another mirror mounted on a remote
controllable mirror mount 25 . The beam is then guided to a large mirror 38 , and through
the measurement volume to a metal plate

light can leak except for the specified openings.

The laser light enters the cavity at an opening angle of 5.91 ± 0.2° (A.
Bertens, personal communication, Jun 26, 2019) and needs to be collimated.
Three optical setups of collimation were investigated and the results are listed
in Tab. 10.2. The first lens in the optical setup needs to be slightly tilted to
avoid back reflections to hit the optical fiber or couple back into the laser
cavity. The beam is further guided in such a way that the reflection from the
pressure sealed window 30 is not focused back into the fiber. The outlet of
the optical cavity is mounted as close to the pressure sealed window 30 as
possible and the remaining gap is covered by laser safety fabric. Therefore,
all active optical elements of the beam forming setup are outside the pressure
vessel and thus unaffected by the change in index of refraction. The beam
enters the measurement section through another high-efficiency window 31 .
Once inside the tunnel the beam can only be moved by a single remotely
controllable kinematic mirror mount 25 . This mirror is aligned in such a
way that the beam hits another, very large mirror, from which it enters the
measurement volume. The beam is terminated at a black steel plate. The area
where the beam hits this steel plate is marked before pressurising the wind
tunnel, and observed by a USB camera.
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Figure 10.12: Image from a conventional camera taken during a typical experiment looking
upstream. The overexposed parts of the green laser beam are regions of high particle den-
sity. Note that the laser beam was wider during this experiment than described here. The
measurement volume is above the white light visible in the front of the picture.

10.2.4 Operating Procedure and Data Transfer

An experiment is typically initiated by a BNC Model 555 pulse delay gen-
erator 2 . It first opens the magnetic valve 1 and initiates a particle discharge
into the tunnel. The second output is connected to the 24V digital inputs
of the laser 28 . It is configured in such a way that laser pulses of a certain
energy are released for a pre-defined duration. The pulse frequency of the
laser can be provided to the FSYNC port of the high speed cameras, such
that frame rate and laser frequency are synchronised. Double exposures are
possible through a frequency divider. The third output of the pulse delay
generator is connected to the trigger input of the high speed cameras. This
way, the release of particles, the start of the illumination, and the trigger of a
recording can occur in quick, and adjustable progression.

Each recording of all four cameras yields >80 GB of data. The data can be
reviewed and downloaded directly to a server with a storage capacity of 35TB
over 10Gbit ethernet. This computer serves as an intermediate storage. Once
a measurement session is finished, the data can be transferred to the institute
storage system.

Four USB webcams observe the experiment. In particular, the laser beam
path can be controlled through these cameras. Beam displacements can be
detected and adjusted using a kinematic mirror.
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The situation in the measurement section during a typical experiment is
illustrated in Fig. 10.12. The laser beam enters as a relatively narrow beam,
hits the first mirror 33 behind the right row of windows, then the second
mirror 38 on the left row of windows. The clouds of particles are visible as
overexposed portions of the beam. The measurement section is located above
the LED strip in the front of the picture.



Chapter 11

Results of Particle Tracking
Experiments in the VDTT

This chapter presents the results of initial particle tracking experiments
in the VDTT. The study was designed to demonstrate the capability of the
particle tracking system in the pressurised facility, in particular its potential
to obtain statistics of velocity and acceleration of particles in the extremely
turbulent flow.

11.1 Characterisation of the Data and Data Analy-
sis

Three recording sessions consisting of approximately 10 videos each of
particle tracking data were performed with the setup described in Ch. 10.
The facility pressure was 4.92 bar in all cases (31.3 kg/m3) and the Reynolds
number was altered by changing the active grid actuation. Tab. 11.1 pro-
vides an overview over the measurement conditions. The number of particles
visible in one frame varied strongly throughout the video as shown in Fig.
11.2. We attribute this to the particle injection mechanism, which was close to
the wall to minimise the flow disturbance by the nozzle. We suspect that the
many particles got trapped in the sidewall boundary layer and consequently
did not pass the measurement volume. Furthermore the injection mechanism
was found to eject particles intermittently. Therefore, the timing between the
particle injection and camera trigger must be relatively finely tuned to capture
as many particles as possible.

The varying particle density in the measurement volume illustrated in Fig.
11.2 causes a severe sampling bias towards those parts of the flow that happen

167
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Rl P/bar U/(m/s) Grid Ntracks fps th/ms #/(m2/s3)

2180 4.92 6.07 LT3LT2
RMS50

39875
(12227) 25000 0.76 0.81

2740 4.92 5.99 LT5LT3
RMS50

61659
(19135) 25000 0.93 0.61

3460 4.92 5.76 LT6LT1
RMS50

110860
(27303) 25000 1.33 0.50

Table 11.1: Overview of particle tracking experiments. Numbers in brackets denote the
number of tracks whose length exceeded the filter length and thus allowed the calculation
of velocity and acceleration. FPS is the number of camera frames captured per second. For
details on the grid forcing algorithms see Sec. 4.2.

to be particle-laden.

The videos were analysed with the in-house particle tracking code by Dr.
Jan Molacek. It provided tracks consisting of time, three-dimensional po-
sition, and tracking errors. Due to the relatively low seeding density and
high distortion of the optical transfer function, the subpixel positions of the
particles on the camera sensors were found using a simple blob detection.
The three-dimensional triangulation is inspired by the Shake-the-box (STB)
algorithm [9]. This involves a polynomial extrapolation of existing tracks to
obtain a new candidate position. These positions are then "shaken" around in
space until the difference between the images observed on the camera sensors
and those projected by a model is minimised. Our code optimises all image
properties on a given sensor simultaneously instead of individually like the
STB algorithm. The final particle positions in 3D space are then obtained by
standard line-of-sight triangulation. Furthermore, the code generalises the ex-
trapolation step by considering multiple possible extensions of each trajectory
at once. This reduces the requirements on the temporal resolution and makes
tracking of particles with larger position uncertainty or higher acceleration
possible. The algorithm further requires stereo-matches to be unique and thus
removes "ghost" particles. The number of particles found this way is given in
Tab. 11.1 and example tracks are shown in Fig. 11.3. Positions with a trian-
gulation error (sum of squared residuals between measured sensor position
and reprojected sensor positions) of >1.5 px2 were rejected. Gaps within the
tracks (through the aforementioned rejection or failed triangulation) smaller
than 16 frames were interpolated through a cubic spline to obtain continu-
ously sampled tracks. The longest tracks sampled in this way were about 7th

long. It is therefore clear that detailed investigations of the Lagrangian iner-
tial range require lower mean flow velocities to increase the residence time of
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Figure 11.1: Typical sequence of three consecutive frames.
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Figure 11.2: Left: Two examples of particle numbers as a function of acquisition time from
Experiment 3. The flow is very sparsely seeded for the majority of the acquisition time with
only relatively short periods with >10 particles in the field of view. Middle: Distribution of
track lengths. The red line denotes the length of the chosen differentiation filter. Tracks right
of it are suitable for acceleration and velocity measurements. Right: Normalised probability
of finding a particle a distance r away from another particle. The abscissa was normalised by
the particle diameter a.

the particles in the measurement volume.

To obtain statistics of acceleration and velocity in the Lagrangian sense,
the tracks were differentiated by convolving them with a (two times) differ-
entiated Gaussian. This yields a smoothed estimate of the velocity and accel-
eration. The convolution kernel was normalised according to Mordant et al.
[23] to account for the finite filter length L f at a given filter width w f . This
method was recently compared to the application of penalised splines [24].
It was found that the Gaussian differentiation introduces a significant bias in
comparison to such splines and reference data from numerical simulations.
The Gaussian differentiation has been chosen here nevertheless to obtain a
preliminary set of data. A relatively small filter width of w f ⇡ 0.2th (7 frames,
filter length 60 frames) was chosen to minimise the filter bias. As expected,
increasing w f reduces the acceleration variance ha2i (not shown here).

The typical quantities characterising a turbulent flow such as Rl or h rely
on the value of the turbulence dissipation rate #. While its extraction from
velocity time series or fully sampled velocity fields is a standard procedure
(cf. Sec. 5.3.3), its estimation from sparse Lagrangian particle tracks is much
more difficult [VOTH2002]. For this demonstration of the tracking system, we
use the relations between the experimental parameters (fluid density, mean
flow speed, and active grid) and the resulting turbulence parameters shown
in Sec. 4.2 and Ch. 9. From the active grid forcing we estimate L = V1/3

corr =

(s2
Sst)1/3 and Rl = 0.9845

p
ReGrid with ReGrid as defined in eq. (4.3). We use

# = C#u3
RMS/L to estimate # using C# = 1 (cf. Sec. 7.1).
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11.2 Velocity Statistics

The determination of statistics that typically require a constantly sampled
velocity field is more difficult in Lagrangian datasets. The seeding density of
the flow is a function of time throughout the duration of one acquisition. For
large-scale quantities, such as the RMS of the velocity fluctuations, this can
be circumvented by studying frame-by-frame averages. If the field of view
is smaller than one integral scale, such averages can be regarded as rough
estimates of the true fluctuation intensities and the bias in the velocity PDFs
is reduced. Fig. 11.4 shows that the velocities measured this way are have a
similar distribution as those obtained from classic hot wire measurements (cf.
Fig. 4.7). Most importantly, the differences between streamwise (x-direction)
and spanwise (y/z-directions) component of the velocity fluctuations are ap-
parent, but no dramatic anisotropies can be observed in this plot. We estimate
the large-scale anisotropy by relating the standard deviations s of the veloc-
ity fluctuations in x- and y-directions and arrive at s(ux)/s(uy) = 1.4, 1.1,
and 1.6 for experiments 1, 2, and 3, respectively. The spanwise velocity com-
ponents show small non-zero means (< 0.33 m/s) and the ux-distribution of
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Experiment 3 shows a flattened peak. We attribute these unexpected effects to
large-scale intermittency and expect them to disappear with increasing num-
ber of samples. Equally, the Lagrangian velocity statistics, i.e. the distribution
of all velocities found within the particle tracks requires a larger sample size
and special weighting procedures to remove the effects of large-scale intermit-
tency and preferential sampling of slower particles. Another possible reason
for a small, but finite mean velocity in the spanwise directions is a potential
misalignment between the mean flow direction and the calibration mask, i.e.
the x-component of the data is not parallel to the streamwise direction. Of
course, this has no influence on the interpretation of the data since this would
correspond to a simple Galilei transformation.

The statistics of the inter-particle distance reveal that the particles very
rarely get close to each other. In particular, distances on the order of the Kol-
mogorov length are generally not observed. The h2-term in the equation for
the Coulomb turbulence number (10.3) can therefore be replaced by a much
larger number. Typically, 97% of particles are more than 200h away, such that
the maximally allowed particle charge is increased to O(105) to O(106) el-
ementary charges per particle. Such a large charge cannot be expected and
electrostatic effects can therefore be neglected in the current setup.

11.3 Acceleration Statistics of Lagrangian Tracks

The acceleration of tracer particles probes the highly intermittent small
scales of the flow. Consequently, they depend less on the large-scale structure
of the flow field and converge towards their presumably universal statistics
faster. The data presented here can therefore be used to extract such statistics
even though the larger scales are plagued by the small number of large ed-
dies that were sampled. As mentioned above, the velocities were extracted by
convolution of the time-resolved particle positions with a two-times differen-
tiated Gaussian kernel of width w = 0.3th and a length of 4w. The resulting
acceleration PDFs are shown in Fig. 11.5 for all three experiments in all three
directions. The errors are estimated as proportional to 1.96

p
Nc, where Nc is

the number of counts in each bin.
In addition, the ad-hoc stretched exponential shape for the acceleration

suggested by LaPorta et al. [6]

PDF(a) = C exp
✓

�a2

(1 + |ab/s|g)s2

◆
(11.1)
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is shown in each plot using the parameters found by Mordant et al. [23].
This function has proven to describe appropriately normalised acceleration
statistics very well [25, 26, 27, 28]. We stress that the curves in Fig. 11.5
have not been fitted to the data, but can be seen as a representation of similar
curves at lower Rl.

The normalised PDFs of all three measurements collapse in all three di-
rections to within errors, as well as on the stretched exponential representing
earlier data. The PDFs are heavy-tailed and far from Gaussian as expected.
The shape of the normalised PDFs appears to be universal.

Fig. 11.5 also shows the normalised acceleration for each direction. Except
for the y-direction, it is significantly larger than reported in previous studies.
It furthermore decreases with Reynolds number, which is also in contrast to
earlier measurements [6, 24] and numerical simulations [29, 30, 31].

11.4 Discussion

The results presented in this chapter demonstrate that the setup described
in Ch. 10 is capable of measuring velocity and acceleration with satisfactory
precision when combined with a state-of-the-art particle tracking algorithm.
It could be shown for the first time that the anisotropy in the VDTT with
the active grid can be varied between at least 1.1 and 1.5, because the particle
tracking allows for well-resolved velocity measurements in all three spatial di-
rections. Furthermore, the PDFs of the velocity do not show strong directional
dependencies with the exception of the streamwise component of experiment
3. The author stresses however that the basis of these PDFs and the velocity
fluctuation intensity is a crude average of all velocities found within a single
frame. This is the likely explanation for the somewhat surprising result that a
relatively weakly correlated grid protocol produces stronger anisotropy mea-
surements than a stronger correlated grid forcing. It is furthermore expected
that a more thorough treatment of the velocity statistics and increased number
of samples removes features like that seen in the x-direction in Experiment 3
and small mean velocities in the spanwise directions (cf. Fig 11.4).

We have demonstrated that after appropriate treatment of the trajectories,
acceleration PDFs can be acquired. They collapse satisfactorily on a stretched
exponential with parameters found in earlier studies at lower Rl [23]. How-
ever, the values of the normalised acceleration variance a0 as well as their Rl-
scaling and the apparent anisotropy are far away from the theoretical expec-
tation [32, 33] and previous studies. The Gaussian differentiation employed
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for this has recently shown to yield biased estimates of the normalised accel-
eration variance a0 (see eq. (3.35)). Along with the imprecise estimate of # and
the relatively small number of independent samples, we therefore believe that
a measurement of a0 requires data conditioning and measurement campaigns
that are beyond the scope of this thesis.

It is important to stress that the particles used for this study (KOBO Mi-
crospheres D-30) were most likely in the inertial regime with a Stokes number
>1 and a diameter close to the flow Kolmogorov scale. This was necessary,
because the setup did not yield useable recordings if smaller particles with
smaller amounts of light were used. It is therefore slightly surprising that
the acceleration statistics are still similar to those obtained by tracing particles
in Ref. [23]. It shows that more detailed measurements of the Stokes num-
ber of the particles is required, e.g. by measuring their settling velocity in a
quiescent fluid.

The preliminary study presented here reveals that the setup can be im-
proved substantially by relatively minor adjustments. The amount of light
that hit the camera sensors from particles with St>1 was small and smaller
particles with St<1 would yield even lower amounts of light. To increase the
amount of light, the laser beam can be narrowed by a factor of 2. This reduces
the requirements on the depth of field of the camera optics allowing us to
open the camera aperture and thereby further increasing the amount of light
on the sensor pixels.

The observation of the facility during data acquisition revealed that a sub-
stantial amount of particles gets trapped within the wind tunnel boundary
layers and never reaches the flow center line. Moving the particle injection
nozzle towards the centerline of the tunnel is therefore likely to result in a
larger amount of trackable particles that is more constant over time.

Despite these caveats, the preliminary data shows that the setup is capa-
ble of generating particle tracking data as intended. At least the acquisition
of acceleration data and associated quantities such as a0 will be possible with
the present setup at Reynolds numbers previously out of reach for any La-
grangian experiment. The sampling of Lagrangian structure functions (cf.
3.4.1) in the inertial range will require lower mean flow velocities and larger
facility pressures to increase the particle residence time and reduce th. Ex-
trapolating the results from Fig. 11.2, we estimate that tracks up to 30 th

could be obtained when finely tuning the experimental parameters.
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Chapter 12

Discussion

Turbulent fluid motion is widely regarded as the "most important un-
solved problem of classical physics" (Richard Feynman). While the corre-
sponding equations of motion can be straightforwardly formulated (see Sec.
2.1), their nonlinear and non-local nature makes analytical treatments chal-
lenging. Their numerical integration bears extreme computational costs if the
fundamentals of turbulent flows are to be studied. Statistical theories regu-
larly end in closure problems, which require the ad-hoc assumption of closure
models (see. Sec. 3.2). The turbulence problem could therefore be described
as a quest for an analytically tractable, or numerically cheap theory that accu-
rately describes the process through which the coherent fluid motion at very
large scales is transported towards a regime where viscosity transforms the
turbulent kinetic energy into unordered heat. Such a theory appears out of
reach at the point of writing and it is unlikely that this will change soon. Such
a hypothetical model would have to answer - among many others - the follow-
ing questions: Does a regime exist at finite Rl, where the flow is dominated
by inertial effects, and flow geometry and viscosity have a negligible impact?
How do the inertial motions organise the scale-to-scale energy transfer? How
universal is this process, i.e. how much does it vary from flow to flow? The
extent to which the thesis at hand provides insights towards those questions
shall be discussed in the following paragraphs.

12.1 Large Reynolds Numbers in the VDTT

This thesis approaches the aforementioned key questions purely from an
experimentalist’s point of view. The facility of choice is the Variable Den-
sity Turbulence Tunnel [1] as described in Ch. 4, since it is uniquely suited

183
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Figure 12.1: Separation of scales as a function of Rl for selected high Reynolds number
flows (same as Fig. 1.1, with the active grid data added). The range of Rl, where data at
approximately homogeneous and isotropic turbulence exists (indicated by closed symbols) is
augmented by a factor of more than 3.

to study (approximately) homogeneous and isotropic turbulence at high Rl.
This ability has been demonstrated mainly in Ch. 4. In particular, the range
of Reynolds numbers obtainable in the VDTT is increased by a factor of more
than 4 compared to the same setup with only a passive grid (see [2]). Fig.
12.1 shows that the installation of an active grid has opened a new regime of
Rl that can be studied systematically under approximately homogeneous and
isotropic conditions. Since the separation of viscous and inertial length scales
holds the promise to reveal some of the underlying dynamics of turbulence
(see Ch. 3 and references therein), this is an important advancement in the
topic.

The homogeneity of the flow in the Variable Density Turbulence Tunnel
with an active grid installed was explored in Ch. 4. It was found that the
region of negligible shear is smaller than in the case of the passive grid [1], but
can be expanded substantially by limiting the solidity of the boundary flaps.
Furthermore, the size of the shear-free region and therefore the homogeneity
of the flow depends on the grid motions chosen. It thus allows tailoring the
flow towards homogeneous, and isotropic conditions (see below). The active
grid motions are well-characterised by the grid’s mean solidity, and its spatial
and temporal correlation lengths. Larger mean solidities and correlations lead
to larger integral scales and turbulence intensities, but a smaller shear-free
region. There is therefore a compromise between the size of the homogeneous
region and the Reynolds number of the flow.
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This manifests itself also in one-point statistics of the velocity fluctuations,
which depart from Gaussian statistics if intense correlations are introduced
into the flow by the active grid (see Figs. 4.7 and 4.8). It is not trivial to
what extent these large-scale phenomena influence the statistics of the iner-
tial and dissipative scales [3, 4, 5]. Since double- or triple wires at sufficient
spatial resolution have not been realised to date, it is difficult to even mea-
sure the anisotropy at small scales in the VDTT. Measurements in a slightly
higher, but otherwise identical measurement section under air have shown
that the active grid can introduce substantial anisotropy if the spatial and
temporal correlation lengths are mismatched drastically [6]. This is in agree-
ment with the results presented in Ch. 4. In this regard, the particle tracking
system presented in Part III is an important progress, because it allows the
measurement of all three velocity components and thus an assessment of the
flow anisotropy. Preliminary measurements (see Sec. 11.2) suggest that the
anisotropy varies approximately as predicted in the air wind tunnel [6]. This
means that the data presented here contains flows close to homogeneous,
isotropic turbulence as well as anisotropic flows. The thesis only makes state-
ments that are robust against changes in the active grid protocol, i.e. where
these effects do not influence the statistics.

These experimental challenges can be approached more rigorously by util-
ising the unique flexibility of the facility itself. The flow at a given Rl can be
recreated at various different length scales. For this, active grid and facility
pressure are adjusted accordingly. This makes the facility ideally suited to
explore the universality of the results across different flows. Furthermore, the
resolution of the instrumentation can be tested in the spirit of Ref [7], and
measurement biases excluded, since the same Reynolds number can be re-
produced with different instrumentation requirements (usually given by the
Kolmogorov time- and length scales).

This thesis presents a large database of turbulent time series that con-
tains flows over a wide range of experimental parameters and Reynolds num-
bers. Observations that hold across these measurements are therefore robust
against substantial changes in the large-scale flow structure, i.e. large-scale
inhomogeneities and anisotropies. They are further shown to be indepen-
dent of the relative sensor resolution. These arguments fail at the limit of
the facility, where all experimental parameters have to be optimised to reach
Rl > 3500. The results further cannot be carried over to entirely different
flow geometries, such as a von-Karman mixer.

During the course of this thesis the influence of the active grid motions
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on the downstream turbulence properties were systematised through the in-
troduction of a correlation volume and a related grid Reynolds number. This
allows an a priori estimate of the Taylor-scale Reynolds number a set of ex-
perimental parameters will yield.

To summarise, the VDTT can be regarded as the most advanced facility
to study turbulence at large Rl. Its flow is closest to the canonical ideal of
homogeneous isotropic turbulence at Rl > 2500 worldwide. The ability to
control three different parameters independently (active grid, wind speed,
and facility pressure) is equally unmatched at the point of writing. It allows
the exploration of the robustness of turbulence statistics against different de-
grees of anisotropy and inhomogeneity. This is particularly important when
making statements about the universality of the results.

12.2 High-Resolution Measurements of Turbulence

The fully resolved measurement of flow velocities at pressurised facilities
such as the VDTT is challenging because the flow structures are particularly
small. The majority of the data presented in this thesis were sampled using
a subminiature hot wire (NSTAP, see Ch. 5 and references therein). Even
though the NSTAP represents the state-of-the-art at the point of writing, it
cannot resolve the smallest Kolmogorov scales h < 10 µm present in the
VDTT at the highest Reynolds numbers. Furthermore, the attached constant
temperature circuitry proved to introduce frequency-dependent biases [7]. Fi-
nally, the probe boundary layer might play a significant role where small ve-
locity fluctuations need to be sampled with a high temporal resolution. Those
probe effects were analysed for the given setup. It was found that the tem-
poral and spatial resolution introduces errors on second-order statistics such
as the turbulence dissipation rate of less than 10%. The probe boundary layer
was found to be of minor importance for all but the highest Rl, where small
effects might influence the statistics at the smallest scales.

The frequency response of the hot wire system was investigated in detail.
The previous findings of Hutchins et al. [7] that the frequency response of
the used hot wire system slightly attenuates the velocity signal at relatively
small frequencies were confirmed. Recent progress in micromachining pro-
cesses allowed the production of novel subminiature hot wires (Twente Hot
Wire) that potentially resolve several shortcomings of the NSTAP [8] (see Ap-
pendix C for a reprint). In particular, the frequency response of this new wire
was tested against the NSTAP. It was found that the wire’s thermal time con-



12.2. HIGH-RESOLUTION MEASUREMENTS OF TURBULENCE 187

stant limits the temporal resolution of both wires to around 1kHz, which is
insufficient for measurements of small scale turbulence. Interestingly, when
operated with a constant current anemometer, the NSTAP, which has a rect-
angular cross-section, shows a slight roll-off starting around 100 Hz (see Fig.
5.6). A similar behaviour can be observed when they are operated in con-
stant temperature mode, albeit at much larger frequencies. The Twente Hot
Wire, whose cross-section is almost quadratic (see Appendix C and [8]), does
not show this roll-off. One might therefore speculate that the shape of the
wire significantly influences the aerodynamics around the probe and hence
its response at small frequencies.

A strategy was developed to investigate the Rl-dependence of extremely
small structures present at large wavenumbers, where the system’s frequency
response cannot be assumed constant. It makes use of the active grid’s ability
to change the Reynolds number at constant wind tunnel pressure and mean
flow speed. Because the frequency at which a spectral feature occurs remains
the same for different Rl, the biases in the measured feature due to a variable
frequency response also remain the same. The applicability of this method is
limited to flows with a well-controlled, flexible turbulence production mech-
anism, such as active grids or jet arrays. In principle, the method should also
be helpful in exploring questions of scaling to some degree, but this remains
to be shown in practice. To the author’s knowledge, no other method ex-
ists that allows the extraction of the Rl-scaling of very small spectral features
under unknown instrument frequency responses.

An important aspect of turbulent flows, especially with regards to engi-
neering applications, is their excellent mixing efficiency and transport prop-
erties. These phenomena are best studied by shifting the point of view away
from one- or two-point measurements of the flow towards the motion of in-
dividual fluid elements over time, i.e. the Lagrangian framework. When
studying turbulence in this way, even larger Reynolds numbers (by a factor of
R1/2

l [14]) compared to the Eulerian picture are required to observe an inertial
scaling range. Therefore, facilities such as the VDTT are even more important
to gain knowledge about Lagrangian turbulence.

Lagrangian measurements typically rely on tracer particles that follow a
single fluid element without significantly influencing the flow. These mea-
surements are extremely challenging and became available in turbulent flows
only around the turn of the century through the pioneering works of Virant,
Dracos, Mordant, Bodenschatz, and their respective coworkers (see [14] for
a review). Since the extraction of Lagrangian quantities from DNS is also
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Figure 12.2: Separation of large-eddy and viscous time scales vs Reynolds number for a se-
lection of Lagrangian measurements and numerical simulations. The shaded area indicates
the region of Rl that can be explored with the LPT system in the VDTT with the data pre-
sented in Ch. 11. DNS data from Ref. [9], Acoustic Doppler data from [10, 11], atmospheric
measurements with "tracer" balloons [12], LPT measurements using high speed cameras [13].

challenging [15, 16], Lagrangian datasets are very scarce. In particular, mea-
surements at high Rl require such high sampling frequencies (imaging frame
rates) that they are notoriously limited by the available camera technology.

In the VDTT, the presence of a mean flow and Kolmogorov length scales
of less than 10 µm and time scales of faster than 1 ms complicate Lagrangian
measurements further. For this reason, the Lagrangian setup presented in
Pt. III is a leap forward in terms of measurement technology. To the au-
thor’s knowledge Lagrangian particle tracking has not been demonstrated
in a pressurised environment before. The Reynolds numbers at which La-
grangian quantities are accessible have definitely been tripled, most likely in-
creased by almost a decade. Finally, the particle tracking system complements
the single-directional hot wire measurements allowing time-resolved Eulerian
measurements in all three spatial directions provided a large seeding density
and suitable analysis techniques.
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12.3 Inertial Range Universality

The question, whether the inertial range statistics of homogeneous isotropic
turbulence are independent of the flow geometry at very large Rl has con-
cerned researchers for almost a century. Universality was first postulated by
Kolmogorov in 1941 [17] and the corresponding scaling laws were refined
subsequently. Until now, the Reynolds numbers where such statistics could
be measured systematically in well-controlled environments were too low to
exclude effects of flow geometry or viscosity on the inertial range [18, 19], sub-
ject to extreme anisotropies [20], or lack of suitable instrumentation [21, 22].
This thesis represents progress on this matter, because inertial range statistics
can be observed over a wide range of scales (up to three decades) and certain
statistics do not change any longer with increasing Rl.

The findings are best discussed in terms of the frequently used decompo-
sition

Sn(r) = Cn(#r)n/3 fn(r/h), (12.1)

where fn is a positive, concave function and Cn depends on flow geometry
and Reynolds number.

The Kolmogorov theory predicts scaling of structure functions in the in-
ertial range of Sn ⇠ (#r)n/3. The precise value of the exponent is almost
certainly influenced by intermittency and therefore different from n/3. One
way to investigate the structure function scaling is to study the local scaling
exponent defined as zn(r) = d log(Sn)/d log(r) as described in detail in Ch. 6.
The structure function shape measured in this way becomes independent of
Rl in the inertial range if the Reynolds number exceeds approximately 2000.
This holds up to order n = 6. In fact, the zn(r) collapse even within the dis-
sipation range and differ only slightly up to r ⇡ 0.1L. The author concludes
that fn is independent of Rl in this regime.

An exception are the three largest Rl above 4000, where both the active
grid and the measurement instruments were operated at their limits, which
likely explains the deviations that are visible for n > 2.

In addition to the Rl-independence we find that the structure-function
shapes are robust against substantial changes in the active grid protocol.
However, when investigating the nondimensionalised structure functions them-
selves, i.e. Sn/(#r)n/3, a significant Rl-dependence as well as substantial scat-
ter remains (see Figs. 7.3 and 7.2). Therefore, fn is relatively independent
of the turbulence generation, whereas Cn is sensitive towards it, also when
considering measurement errors of #. The latter observation is in agreement



190 CHAPTER 12. DISCUSSION

100 101 102 103 104 105 106

r/h

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
z 2

(r
)

Atmosphere (Tsuji, 2004)
DNS (Ishihara et al, 2009)
ONERA (Frisch, 1995)
Boundary Layer
(Saddoughi & Veeravalli, 1994)

101 102 103 104 105
0.5

0.6

0.7

0.8

0.9

1.0
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the inertial range.

with previous studies at lower Rl [23, 24, 25, 26].
The universality of fn (measured by zn(r)) only comes to effect when Rl >

2000, and therefore comparing studies are scarce. However, even at lower Rl

it is clear that the local slopes in numerical simulations are fundamentally
different [27, 28]. We offer an explanation for these differences in Ch. 6 in
terms of the flow instationarity. Antonia et al. [25] assembled various z2(r)
and z3(r) from different flows that are roughly similar to those found in Ch.
6 as shown in Fig. 12.3. All laboratory experiments agree well given their
different geometries. The atmospheric data shows a similar trend in that no
clear region where z2 = const. can be identified. However, the inertial range
appears flatter than in the wind tunnel data. The DNS data shows a clear
inertial range plateau in contrast to the experimental data.

The author infers that the shape of S2 is universal within a given class
of flows at large Rl. If Rl is large enough, even substantial changes of the
active grid forcing have little effect on the shape of S2. However, moving
towards continuously forced turbulence such as in most DNS or the stratified,
inhomogeneous, multiphase flow of the atmosphere changes the shape of S2.
In the light of these results, the author further raises the question whether
existing departures from self-similar scaling laws should still be regarded as
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"finite Reynolds number effects", since they appear to influence the entire
energy cascade independent of Rl. Finally, the author advocates a separate
treatment and understanding of S2/(#r)2/3 and z2(r) = d log(S2)/d log(r),
since the former is much more sensitive towards changes in the turbulence
forcing.

Under these considerations, eq. (12.1) could be refined as

Sn(r) = Cn(Rl, TF)(#r)n/3 f1(r/h, n) f2(r/h, Rl). (12.2)

f1,2 depend on the broad category of turbulent flows and f2 decays with Rl

relatively fast. TF denotes a (small) dependence on the details of the energy
injection and varies from flow to flow. Intermittency corrections to the scaling
functions would appear as f1(r/h, n) = (r/h)zn�n/3 f̃1(r/h), where zn is the
intermittency-corrected scaling exponent.

In physical terms, this suggests that even at the large Rl presented in
this thesis the nonlinear transfer mechanisms of the energy cascade do not
decouple completely from the way they are initiated. For example, the differ-
ence between the data presented here and DNS at large Rl could be partially
explained by comparing decaying and continuously forced turbulence in a
self-similar model of decaying turbulence. This explains why scaling laws are
more easily observed when considering Sn vs S|3| (ESS) [33]. The geometry-
and Rl-dependence vanish and the underlying, presumably universal struc-
ture is revealed. Accordingly, attempts to extract scaling exponents using a
model for f1 (Ch. 6) yield scaling exponents that are in good agreement with
those calculated from ESS (Sec. 7.3).

A similar, though more subtle effect can be observed at dissipative scales
(see Ch. 8). When removing the general inertial range trend within zn(r),
a fine structure becomes apparent that is well-approximated by log-periodic
oscillations (Fig. 8.3). These oscillations are reminiscent of the structure Sin-
huber et al. [34] observed in d log(Sn)/d log(Sm), even though systematic
differences exist. As they point out, this fine structure is linked to the dissi-
pation range, since it collapses upon normalisation by the Kolmogorov scale
h. However, it persists throughout the entire inertial range. The extended
inertial range allowed the detailed analysis of these oscillations over a wide
range of Rl. Earlier studies such as Ref. [35] also identify oscillating features
in structure functions, but do not explore them in detail.

The physical origin of this fine structure is unclear. It was shown in this
thesis that the frequency of the log-periodic oscillations is too low to be ex-
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plained by the breakup of eddies into a small number of daughter eddies only,
as suggested by Novikov [36]. Furthermore, it would be plausible that the
collapse happens upon normalisation at larger scales in this scenario. Even
though the underlying physical mechanisms have to be explored further, the
data supports some sort of discrete scale invariance [37].

The results are somewhat reminiscent of intermittency models that con-
struct a hierarchy of moments based on the fractal dimension of the most
dissipative structures [38, 39, 40] that ultimately dictates the inertial range
scaling exponents. However, this connection is circumstantial at best and
further study of the origin of the log-periodic oscillations is necessary. The
important observation is that dissipative effects, as well as certain properties
of the large-scales, influence the statistics throughout the entire inertial range
and show no sign of reduction with Rl.

12.4 Towards Statistics of the Small Scales

The dissipation range, where the dynamics are governed by the transfer
of structured fluid motion into heat is at the heart of fundamental questions
in turbulence. The reason is that the symmetry breaking by viscosity forces
the steep "ramps" in the velocity signal that ultimately lend shape to the frac-
tal characteristics of turbulence. Consequently, the small scales also contain
the flow structures of strongest intermittency, namely vortex filaments. Even
though the small scales are the least anisotropic and thus less sensitive to
varying large-scale anisotropy, they are the most challenging to measure ex-
perimentally. This thesis demonstrates progress in the measurement of ex-
tremely small turbulent scales.

The velocity field at the smallest scales needs to accommodate for what-
ever turbulent power is delivered by the energy cascade. The "coupling con-
stant" between the velocity field and heat is the viscosity. As the viscosity
becomes smaller, the velocity field forms sharper and sharper gradients. It is
fundamental in the understanding of turbulence [41] as well as the Navier-
Stokes equations in a mathematical sense [42], whether singularities in the
field of velocity gradients arise at large, but finite Reynolds numbers. One in-
dication of this is the constancy of the normalised dissipation rate C# = u3#/L.
While the value of C# depends on the overall structure of the flow (see [43]
for a recent review), its Rl-scaling provides information about the presence
of singularities, since # ⇠ n(∂u/∂x)2. The data presented in Sec. 7.1 show
that for our scan of almost one decade in Rl > 800, no substantial departure
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from C# = const. could be found. The data is therefore not inconsistent with
the rise of singularities in the limit Rl ! •. These results extend the existing
body of literature on C# by systematically gathered data with a larger Rl in
a laboratory and are in overall agreement with previous studies. The author
knows of no wind tunnel study that has measured C# at larger Reynolds num-
bers. Risius et al. [44] measured C# on a mountain research station at Rl up to
5000 and equally find an independence of Rl, although their measured value
of C# is smaller.

Another effect linked to the dissipation range of scales is the bottleneck
effect, i.e. the prominent bump in the compensated energy spectrum at the
transition from the inertial to the dissipation range. The origin of this bump
has been the subject of several theories outlined in Ch. 9. Furthermore, it
has been shown in DNS that the intensity of the maximum diminishes with
increasing Reynolds number. In this thesis, it was shown for the first time
systematically in an experiment that the bottleneck effect gets smaller with
increasing Rl up to Rl < 4000. A good agreement with the DNS results
[24] as well as a shell model [45] was found. However, the absolute height of
the bottleneck could not be quantified as a function of Rl. Furthermore, the
experimental errors at the largest Rl were too large to conclude whether the
bottleneck effect saturates at these large Reynolds numbers.

Important aspects of the velocity derivative statistics could not be ap-
proached with the current dataset. The skewness and flatness of the velocity
derivatives are important quantities characterising the inertial range nonlin-
earity and the small-scale intermittency, respectively. Showing their approach
towards a constant value at finite Rl would be an essential case in favour of
K41. The hot wire data at the smallest scales failed to provide enough res-
olution to measure these quantities reliably. However, the particle tracking
system is capable of measuring such small-scale quantities in the Lagrangian
frame of reference. This capability has been demonstrated and will be ex-
ploited in the future. Preliminary results on Lagrangian small-scale proper-
ties reveal results that are only partially in accordance with the existing body
of literature. The data acquisition and analysis need to be improved to yield
more reliable results. The following chapter will elaborate on the studies that
will be possible once these improvements have been accomplished.
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Chapter 13

Outlook

In terms of fundamental insights into turbulence, this thesis’ main find-
ings are concerned with the transition from a regime where the inertial range
statistics strongly depend on Reynolds number towards a regime when they
are at least partially Rl-independent. A surprising finding is that viscosity
and flow geometry still influence the inertial range throughout its entire ex-
tent. The author believes that it is important to trace back these statistical im-
prints of large-scale effects to specific physical processes. While models, such
as the one by Yang et al. [48] used extensively in this thesis, are very helpful
in finding the possible origin of a given observation, numerical simulations
provide a level of detail that allows for much deeper insight. For this, the
experimental configuration should be more closely resembled in numerical
setups even at the expense of Reynolds number. For example, identifying the
structural differences between a forced and a decaying flow could provide im-
portant physical insights even at modest Rl. Machine Learning technologies
might be able to reveal geometric differences between such flows following
ideas such as the structure identification of Leung et al. [47].

In general, the author argues based on the results of this thesis that devi-
ations from canonical strictly homogeneous and isotropic turbulence should
be considered as potentially insightful into the principles that govern the flow-
organisation instead of undesirable finite-Reynolds-number effects. Even when
the statistics are independent of Rl in the inertial range, the large-scale struc-
ture and dissipative effects cannot be neglected. Therefore, even when Rl is
extremely large, any model accurate for perfectly homogeneous and isotropic
turbulence might provide poor descriptions of real-world flows that usually
carry at least small anisotropies and inhomogeneities. The limit of Rl ! •
might turn out to be a misleading theoretical simplification.

The interdependence of scales and the successful description of data when

195
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using models, which consider the experimental reality should motivate efforts
to find models such as the generalised self-similar model by Yang et al. [48]
also for strong anisotropies, stratification and other common large-scale ef-
fects.

The fine-structure in the dissipation range discussed in Ch. 8 equally
spans many scales. Its presence in DNS is still subject to ongoing research
[49]. It would be of great interest to revisit existing theories on discrete scale-
invariance in the light of the results presented here and elsewhere [34]. The
author speculates that the termination of the cascade at the dissipation scale
causes some scales to be preferred, while others are slightly suppressed. As
in the case of the bottleneck effect [50, 45], shell models can be of help in
disentangling the scale dynamics that cause this oscillating fine structure.

The experiment presented here could contribute further to the matter
through time series whose statistical fidelity approaches those of Ref. [34]
at larger Rl. Due to the larger integral scales involved in the active grid case,
about one week of continuous data acquisition would be required and experi-
mental conditions should thus be chosen carefully. This would also allow the
study of higher order structure functions Sn. The data presented here points
towards a gradual flattening of the local exponent as n > 6 in the inertial
range, but the statistical uncertainties prevent conclusive statements.

Ideally, such measurements would be performed with an improved hot-
wire system. Even though imaging methods become easier to operate and
afford and provide much more information, hot wires remain the method of
choice when good statistical convergence is required and one-dimensional in-
formation is sufficient or particle seeding is not an option. For precision mea-
surements in flows of low kinematic viscosity (and therefore small h), sub-
miniature wires developed only during the last decade are necessary. Their
operation with CTAs is still a practical challenge, because the feedback loops
of commercial CTAs are designed for standard wires and frequently cause
structural damage to subminiature wires. The author believes that the devel-
opment of a constant voltage anemometer (CVA) is a path towards a setup,
where the operating point of the subminiature wire can be finely adjusted,
while maintaining a constant response at very high frequencies.

Subminiature wires themselves are still a matter of active development,
where the Twente Wire presented in Ref. [8] (see Appendix C) is the most
recent addition. It will be important to verify and explain the discrepancies in
frequency response indicated in Fig. 5.4. One possible line of thinking would
be that the aerodynamics of the flat NSTAP cause a reduction in the frequency
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response.

The Lagrangian particle tracking system introduced in this thesis will
spark a series of groundbreaking experiments. While the Reynolds numbers
found in the VDTT are not entirely unseen in the Eulerian reference frame
(Atmospheric measurements and experiments in liquid and superfluid he-
lium provide some data), Lagrangian turbulence has never been explored at
Rl > 1300 to the author’s knowledge. Measurements of the normalised accel-
eration a0 and potentially the inertial range constant C0 at high Rl are within
reach and can be performed within months at the point of writing. Several
small adjustments described in Ch. 11 will make these measurements more
reliable than the preliminary results shown in this thesis.

The Lagrangian data will furthermore allow experimental tests of recent
theoretical results regarding a correspondence between Eulerian and Lagrangian
statistics [51] and a hierarchy of Gaussian statistics based on the coarse-
grained acceleration [52].

Closely connected to the Lagrangian inertial range constant C0 is the con-
stant that characterises the Richardson-Obhukov regime of two-particle dis-
persion statistics in the inertial range. Namely, the distance |r| between two
initially close particles is expected to grow with time t as |r| = g#t3 with a
universal constant g if the value of t exceeds the Batchelor time (see reviews
[53, 14], as well as [54] for details). To observe this behaviour, tracks of length
30 � 100th would be required. Furthermore, a decade of t3-scaling is expected
only at Rl > 6000 [13, 55], which explains why the extensive study of this
regime has remained elusive. The VDTT is capable of achieving large enough
Rl, but tracking particles for such a long time is difficult due to the presence
of a mean flow. One way to circumvent this is to move the image acquisition
system with the mean flow. This is however a major technological challenge
even though the existing particle tracking setup can be built upon. The author
estimates that such an endeavour would prevent measurements in the facility
for more than one year. A relatively quick alternative was already mentioned
in Sec. 10.1.3. If the camera resolution and sensitivity are large enough, a
larger measurement volume can be allowed for. Naturally, a large number of
pixels reduces the frame rate of the camera. The author therefore suggests to
acquire long exposure photographs instead of high speed videos using a cam-
era of suitable resolution. The moving particles would appear as bright lines
on the images. The time information that is lost can be partially recovered by
modulating the illumination intensity and thereby the lines’ brightness on the
camera sensors over time. Using two 100 Mpx camera, such as the Phase One
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XF iXM, a 3D measurement volume can be created, which spans up to 0.5m
in the streamwise direction allowing particle tracking for > 100th at 5 m/s.

The thesis has shown that around Rl ⇡ 2000 the scaling of the inertial
range can be clearly distinguished from the dissipation range even though it
appears different than expected. We are therefore approaching an era where
Eulerian and Lagrangian data at large-enough Reynolds number exists in both
experiments and direct numerical simulations. The collaboration between
these efforts might not lead to a general "Ising model of turbulence", but will
certainly deepen our knowledge of the subject, and perhaps put to rest some
long-standing questions.
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Appendix A: Parts of the particle
tracking system

The following table lists the basic parts used for assembly of the particle
tracking system in detail. Its design and properties are described in Ch. 10.
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Appendix B: Hot Wire Datasets

The following table provides an overview over the datasets that were the
basis for 4 and Pt. II. Dissipation rate #, and therefore h, l, and Rl were
estimated from the gradients of the one-dimensional velocity field, errors are
estimated smaller than ±8%, based on the results of Sec. 5.3.3. L was es-
timated as

R r0
0 C11(r)dr, where r0 is the smallest separation, where the cor-

relation function C11 crosses 0. The errors of this quantity are estimated as
4%. The errors for fluctuation velocity uRMS and mean flow velocity U are
predominantly due to calibration, i.e. ⇡4%. The facility pressure could be
measured up to ±0.01 bar. n was taken from Hoogland et al. 1 interfaced by
an in-house program (courtesy of Prof. G. Ahlers).

The probe positions are measured as follows: x: Probe position away from
the active grid. y: Distance from tunnel centerline. z: height from tunnel floor.

Details on the grid protocols can be found in Sec. 4.2.

1J. H. Hoogland, H. R. Van Den Berg, and N. J. Trappeniers. “Measurements of the vis-
cosity of sulfur hexaflouride up to 100 bar by a capillary-flow viscometer”. In: Phys. A Stat.
Mech. its Appl. (1985). doi: 10.1016/0378-4371(85)90160-8
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Appendix C: Fabrication of
Free-standing Pt Nanowires for Use
as Thermal Anemometry Probes in
Turbulence Measurements

This chapter is a reprint with permission of the paper "Fabrication of free-
standing Pt nanowires for use as thermal anemometry probes in turbulence
measurements", which is submitted to Nature Microsystems and Nanoengi-
neering [1]. The author of the thesis performed the measurements in the wind
tunnel, organised the production of a suitable operation circuit and analysed
the corresponding data. The coauthors developed the probe and the produc-
tion process, prototyped a measurement circuit, performed all measurements
outside the Variable Density Turbulence Tunnel, organised the research, and
wrote the manuscript.

[1] H. Le-The, C. Küchler, A. van den Berg, E. Bodenschatz, D.
Lohse, and D. Krug. “Fabrication of free-standing Pt nanowires used as ther-
mal anemometry probes for turbulence measurements”. In: Nat. Microsystems
Nanoeng. under consideration (2020)
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ABSTRACT 

We report a robust fabrication method for patterning free-standing Pt nanowires for the use as 

thermal anemometry probes for small-scale turbulence measurements. Using e-beam 

lithography, high aspect ratio Pt nanowires (~300 nm width, ~70 µm length, ~100 nm thickness) 

were patterned on the surface of oxidized silicon (Si) wafers. Combining precise wet etching 

processes with dry etching processes, these Pt nanowires have been successfully released free-

standing between two silicon dioxide (SiO2) beams supported on Si cantilevers. Moreover, the 

unique design of the bridge holding the device allowed to release the device gently without 

damaging the Pt nanowires. The total fabrication time was minimized by restricting the use of 

e-beam lithography to the patterning of the Pt nanowires while standard photolithography was 

employed for other parts of the devices. We demonstrate that the fabricated sensors are suitable 

for turbulence measurements when operated in a constant-current mode. A robust calibration 

between output voltage and fluid velocity was established over the velocity range from 0.5 m 

s-1 to 5 m s-1 in an SF6 atmosphere at a pressure of 2 bar and a temperature of 21℃. The sensing 

signal from the nanowires showed negligible drift over a period of several hours. Moreover, we 

confirmed that the nanowires are able to withstand high dynamic pressures by testing them in 

air at room temperature velocities up to 55 m s-1.  
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INTRODUCTION 

Even today, fully resolved measurements of flow velocities in highly turbulent flows remain 

highly challenging. The difficulty is best illustrated by considering the non-dimensional 

Reynolds number (Re), which measures turbulence intensity by relating the magnitudes of 

inertial and viscous forces acting in the flow. Accessing high Re flows experimentally is 

important from a practical perspective as many engineering applications, such as the boundary 

layers on the hulls of ships and planes, fall into this regime. Moreover, measurements in high 

Re flows are also highly relevant to foster and to validate our theoretical understanding of the 

turbulence problem. 

A hallmark of turbulence is the fact that ‘eddying motions’, i.e. seemingly random velocity 

fluctuations, across a wide range of scales contribute to the evolution of the flow. The range of 

spatial scales with Re as L/η ∼ Re3/4, which renders the measurement challenge obvious1. If the 

largest scale L is fixed, e.g. by the size of the lab facilities, high Re can only be reached if the 

smallest scale η is decreased in size. Typical sizes of η – and consequently the spatial resolution 

requirements – are in the order of micrometers. Also the temporal resolution is essential to 

resolve the short turnover timescales of such small eddies2,3. Especially in cases where flow 

structures are advected past the probe by a strong mean flow, frequency requirements can reach 

orders of 100kHz4. 

To date, the best resolution and bandwidth characteristics are achieved using ‘hotwire 

anemometry’ (HWA), which is a proven technique with a long history5–8. Its measurement 

principle is based on the velocity dependent convective cooling of a heated wire element (with 

wire diameter d) that is placed in the fluid. The time varying cooling leads to changes in the 

electrical circuit (e.g. a change in wire resistance as the wire temperature changes if the heating 

current is kept constant), which can be calibrated to yield a fluid velocity measurement. The 

effective sensor size in HWA is given by the length (ℓ) of the wire. However, ℓ cannot be 
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decreased arbitrarily. This is because a shorter wire length also increases the portion of the heat 

that leaves the wire via end-conduction, which is unwanted and detrimental to the measurement. 

This issue can only be overcome if shorter wires are also made thinner. Traditionally a 

minimum aspect ratio ℓ/d ≤ 200 has been used9, while more recently Hultmark et al.10 provided 

a refinement of this criterion. The conventional wire filaments with the best performance 

characteristics are produced from Wollaston wires by etching away part of the silver jacket. 

The sensing element is then formed by the exposed platinum (Pt) wire for which minimum 

diameters of about 1 µm can be achieved in this way. Pushing beyond this limit has proven very 

difficult despite significant efforts. For example, Willmarth & Sharma produced wires with the 

length of 50 μm using a Wollaston wire of 0.5 μm in diameter11. However, given the relatively 

low aspect ratio, the performance of this design was hampered by end-conduction effects. 

Ligrani & Bradshaw9 stuck to an aspect ratio of approximately 200 when designing the wires 

with a diameter of 0.625 μm, but with a minimum of 125 μm the resulting wire length was still 

rather large. The need to decrease sensor sizes below this limitation initiated a push towards 

nanofabrication techniques. Early efforts by Löfdahl et al.12 yielded only moderate 

improvements as their probes featured a large sensing area. Jiang et al.13 employed 

microelectromechanical systems (MEMS) techniques to fabricate a poly-silicon thermal 

anemometry probe but the very good spatial resolution came at the price of significant end-

conduction losses in their case. End-conduction is also a problem for the multi-component hot-

wire probes (50 μm × 6 μm × 2.7 μm) fabricated by Chen et al.14. Moreover, being fixed to a 

wall, these sensors are also not suitable for conventional turbulence measurements.  

More recently, the development of the nanoscale thermal anemometry probe, termed 

NSTAP, at Princeton15–19 provided a breakthrough towards unprecedented small-scale 

resolution. Some noteworthy later developments, such as a micro fabricated multi-array probe 

that provides access to the full velocity gradient tensor20, or a specialized hotwire sensor for 
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measurements in cryogenic helium21 have been reported since. For completeness, it should also  

be mentioned that MEMS techniques have been employed to fabricate small-scale cantilevers 

for flow measurements22,23, but the measurement principle (beam deflection) is different in 

those cases., In terms of sensor size the NSTAP remains the state of the art to date. The 

production process of the NSTAP combines standard photolithography with a series of dry-

etching and wet-etching processes. The sensing element consists of a Pt wire, which is 

approximately 100 nm thick, while its width is still 1 μm. The latter is a limitation of the 

photolithography process but in part also a choice in order to enhance the convective heat 

transfer from the wire16. Note also that for a variant of the NSTAP, the q-NSTAP reported by 

Fan et al.18, electron-beam lithography is employed. This reduces the width of the wire to 

between 600 nm and 800 nm. However, with a length of only 10 µm, the q-NSTAP is designed 

to measure humidity and is not suited for anemometry. Even with these reduced wire 

dimensions, the authors report issues regarding the structural integrity of the sensor due to 

internal stresses originating from wet etching of silicon dioxide (SiO2) to release the wire.  

In this paper, we report a robust method for fabrication of free-standing Pt nanowires (300 

nm width, 100 nm thickness) with length as long as 70 µm for the use as thermal anemometer 

probes for turbulence measurements. We describe how by combining e-beam lithography with 

precise wet etching processes and dry etching processes, Pt nanowires have been successfully 

fabricated free-standing between two silicon dioxide (SiO2) beams supported on Si cantilevers. 

We further confirm that the fabricated nanowires are capable and sufficiently robust to measure 

the velocity of turbulent flows even at large fluid densities. We tested this in the Max Planck 

Variable Density Turbulence Tunnel (VDTT) with pressurized SF6 as working fluid as well as 

in an air flow with velocities up to 5 m s-1 without damaging the wires. 
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RESULTS AND DISCUSSION 

Figure 1 presents an overview over the processing sequence for the fabrication process of a 

device featuring a free-standing Pt nanowire. Further details on the dimensions of the structure 

are provided in the Supplementary information(Figure S1). We elaborate on individual 

fabrication steps in the following. Further details and the specific processing parameters 

employed are provided in the Materials and Methods section. 

 

Figure 1 Fabrication process for patterning free-standing Pt nanowires. (a) Wet thermal 

oxidation of a Si wafer. (b) Patterning a Pt nanowire using e-beam lithography. (c) Frontside 
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patterning Pt connections to the Pt nanowire using standard photolithography. (d) Spin-coating 

of photoresist (PR) on the frontside of the patterned wafer, and (e) wet etching of SiO2 layer on 

its backside using a BHF solution. (f) Backside patterning a PR structure of the device base, 

followed by (g) deep dry etching of Si. (h) Frontside patterning a PR structure of the support 

cantilevers. (i) Wet etching of SiO2 using a BHF solution, resulting in a free-standing PR line 

with the Pt nanowire. (k) Dry etching of Si, followed by (ℓ) dry etching of PR using O2 plasma 

at low power. (m) Isotropic dry etching of Si using XeF2 for self-releasing of the device. 

 

Patterning Pt nanowires using electron beam lithography 

An e-beam lithography (EBL) system operating at 100 kV (Raith EBPG 5150, Raith GmbH, 

Germany) was used to pattern Pt nanowires on the surface of oxidized Si wafers (Figure 1b). 

These wafers were prepared by wet thermal oxidation of conventional (100) 4-inch silicon (Si) 

wafers (385 μm thick, Okmetic, Finland) (Figure 1a). Prior to the sputtering of Pt, a thin 

titanium (Ti) layer of ~13 nm thickness was sputtered in order to improve the adhesion of these 

patterned Pt nanowires. The choice of Ti for the adhesion layer is beneficial here because it can 

be easily removed together with SiO2 layer in a buffered hydrofluoric acid (BHF) solution, thus 

leaving free-standing pure Pt nanowires. Figure 2 shows the high-resolution scanning electron 

microscopy (HR-SEM) images of a Pt nanowire fabricated on the surface of an oxidized Si 

wafer. A well-defined Pt nanowire was obtained with dimensions matching the specifications 

(~300 nm width, ~70 µm length, ~100 nm thickness). The pattern was expanded slightly at the 

wire tips to facilitate the electrical connection 
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Figure 2 Top-view HR-SEM image (scale bar: 10 µm) of a Pt nanowire patterned on the surface 

of an oxidized Si wafer, with a close-up image of the tip of the wire which is expanded slightly 

to facilitate the connection with the Pt micropattern (scale bar: 1 µm). 

 

Patterning Pt connections to the Pt nanowires 

For the electrical connection to the Pt nanowire, Pt micropatterns (termed Pt connections) were 

fabricated by combining standard photolithography with a lift-off process (Figure 1c). Figure 3 

shows the optical microscopy images of Pt connections patterned on the surface of an oxidized 

Si wafer. It should be noted that the precision of the overlay of the Pt connections with the Pt 

nanowire is crucial in this step as any misalignment between these structures can disrupt the 

electrical connection with the Pt nanowire. 

 

Figure 3 Optical microscopy image (scale bar: 500 µm) of Pt connections, with a close-up 

image at the Pt nanowire location (scale bar: 5 µm). 
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Backside patterning of the device base using dry etching of Si  

Prior to the backside patterning of the wafer, its frontside was covered with a PR layer (Figure 

1d). The wafer was then immersed in a BHF solution in order to completely remove the SiO2 

layer on the backside (Figure 1e), while the SiO2 layer on the frontside containing the patterned 

Pt structures remained protected by the PR coating. 

Subsequently, a PR structure of the device base was patterned on the backside of the wafer 

using a standard photolithography process (Figure 1f). The patterned PR structure was hard-

baked at 120℃ for 10 min to harden the PR areas before conducting the etching of Si in an 

inductively coupled plasma (ICP) deep reactive ion etching (DRIE) instrument (SPTS Pegasus 

system, UK), using the standard Bosch process (Figure 1g). Figure 4 shows the HR-SEM 

images of the device base after the dry etching process. It is worth mentioning that a negatively 

tapered profile was obtained after the deep Si etching. This needs to be taken into account when 

designing the holding bridge for the self-releasing of the device (Figure 1ℓ). 

 

Figure 4 Side-view and cross-sectional HR-SEM images (scale bar: 200 µm) of backside 

patterning of the device base using dry etching of Si. 

 

Frontside patterning of the device  

Figure 5 shows the optical microscopy images of a PR structure patterned on top of the Pt 

structure. Also in this case, the alignment of the patterned PR structure with the Pt structure 

needs to be precise so that the PR structure completely covers the Pt structure, especially at the 

Pt nanowire location where it is covered by a PR line, as shown in the close-up image (Figure 



Free-standing Pt nanowires 

10 
 

5). This ensures that the Pt structure is not damaged during the subsequent patterning of the 

cantilevers by wet etching and dry etching processes (Figures 1i and 1k). 

 

Figure 5 Optical microscopy image (scale bar: 500 µm) of a PR structure patterned on top of 

the Pt structure, with a close-up image at the Pt nanowire location (scale bar: 100 µm). 

 

For releasing the PR line, the patterned wafers were immersed in a BHF solution for 30 min. 

As a result, the SiO2 under the PR line was etched, thus leaving the free-standing PR line with 

the Pt nanowire stuck to it (Figures 1i and 6b). Since both PR and Si are hydrophobic any liquid 

trapped between the PR line and the Si surface was removed quickly and easily when spin-

drying the wafers. Importantly, this resulted in no damage to the free-standing PR line 

supporting the Pt nanowire. 

Figure 6a shows the side-view HR-SEM image of the support cantilevers after dry etching 

of Si from the frontside of the wafer. This etching process needs to be stopped when the 

thickness of the remaining Si membrane (Figure 1k) is down to approximately 10 μm. Etching  

through the Si-layer can lead to a leak of cooling gas from the backside, thus terminating the 

etching process. Crucially, further etching without cooling can result in burning of the Pt line, 

and hence a breaking of the Pt nanowire. 
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Figure 6 (a) Side-view HR-SEM image (scale bar: 500 µm) support cantilevers after dry 

etching of Si from the frontside of the wafer. Note that the slight damage visible on the top 

surface of the device base was caused by handling during the SEM inspection. (b) Cross-

sectional HR-SEM image (scale bar: 20 µm) of a free-standing PR line with the Pt nanowire. 

 

To remove the PR covering the Pt nanowire, reactive O2 plasma etching was used (Figure 

1ℓ). This needs to be done gently at low power to avoid burning the PR line, and thereby 

breaking the Pt nanowire. The removal of PR was conducted before releasing the device 

because it turned out that the PR line became brittle after the dry etching process (Figure 1k). 

This resulted in frequent damage of the PR line during the releasing which then also affected 

the Pt nanowire.  

 

Isotropic dry etching of Si using XeF2 

Figure 7 shows the HR-SEM images of a fabricated device consisting of a Pt nanowire free-

standing between two SiO2 beams supported on Si cantilevers (Figure 1m). After isotropic dry 

etching of Si in XeF2, the remaining Si membrane was completely etched, forming two free-

standing SiO2-coated Si cantilevers (Figure 7b). It should be noted that the Si underneath the Pt 

nanowire as well as the Si at the tip of two cantilevers were also etched, thus resulting in the Pt 

nanowire free-standing on SiO2 beams (Figure 7c).  

Thanks to special design of the device holding bridge (Figure 1ℓ), the final etching step also 

served to self-release the device from the wafer. The holding bridge also has a remaining Si 
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layer of ~10 μm and is thus etched away in XeF2. This self-releasing procedure has proven 

necessary and important since it appeared that breaking the device led to frequent failures of 

the Pt nanowire (presumably due to the vibrations of the cantilevers). As confirmed in the close-

up images, the resulting free-standing Pt nanowire has a width of ~300 nm and a length of ~70 

μm. 

 

Figure 7 (a) Top-view and (b) side-view HR-SEM images (scale bar: 1 mm) with close-up 

images (scale bar: 5 µm) of a fabricated device consisting of a free-standing Pt nanowire (~300 

nm width, ~70 µm length, ~100 nm thickness). (c) Cross-sectional HR-SEM image (scale bar: 

50 µm) of a fabricated Pt nanowire hanging between two SiO2 beams supported on Si 

cantilevers. 

 

Performance of the fabricated devices used as thermal anemometer probes 

A typical initial cold resistance for the nanowire is 820Ω, but this value was seen to drop 

significantly when the wire was first heated up. Annealing the nanowire with currents of ~1 

mA reduced the resistance to Rw ≈ 740Ω, and this value was found to be stable over repeated 
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heating cycles with comparable currents. By measuring the wire resistance in a temperature 

controlled environment we determined the temperature coefficient of resistivity to be α20℃ = 

0.0021 K-1.  

 

Figure 8 (a) Sketch of the CCA circuit. (b) Measurement setup in the VDTT. (c) Calibration 

results in the VDTT taken before and after a measurement campaign. (d) Measured velocity 

time trace compared to results from a reference probe located nearby. (e) Calibration results in 

air at room temperature. 

 

The nanowires were operated in a bridge circuit (see figure 8a) and tested in the Max Planck 

Variable Density Turbulence tunnel (VDTT) in Göttingen24 in a gaseous sulfur hexafluoride 

(SF6) environment at extremely high Reynolds numbers (see schematic in figure 8b). Further 

details of the setup and operating conditions are given in the Materials and Methods section. In 

order to calibrate the sensor output voltage Eb against the fluid velocity, a time average of Eb 

was recorded for several settings of the tunnel velocity V in non-turbulent conditions. In order 

to gauge a potential drift of the bridge voltage, the calibration was performed both before and 

after a measurement campaign that spanned several hours. The calibration results are presented 
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in Figure 8(c). There is a clear and monotonic trend between Eb and V that can be captured very 

accurately over the full velocity range by fitting a fourth-order polynomial (indicated by the 

lines), which is a standard procedure for hotwire measurements25. Importantly, calibration 

results before and after the measurement campaign are almost indistinguishable, indicating that 

the drift of the sensor is negligible over an operation period of several hours. As an additional 

validation, we compare the time trace of the measured fluctuating velocity v(t) to results 

obtained using a standard probe (length 450 µm, diameter 2.5 µm, DANTEC custom design) 

as a reference in Figure 8(d). The probes were not located at the exact same location such that 

a one-to-one comparison is not possible. It does, however, become clear at least qualitatively 

that the present wire captures velocity fluctuations across the full range of magnitudes and time 

scales consistently with the reference. Further, there were no issues operating the wires at 

pressures up to 15bar in SF6 , at which the gas density is more than 1/10th that of water at room 

temperature.  To test whether the wires also perform well in other fluids and at larger flow 

speeds, we additionally operated the wire in air at room temperature. In this case the flow was 

generated by pressurized air exiting a nozzle. Also here, the data can be very well represented 

by a monotonically increasing fourth-order polynomial across the full range of 5 m s-1 ≤ V ≤ 55 

m s-1. The wire was able to withstand the dynamic pressure at the highest velocities without any 

problems (Figure 8e). 

 

CONCLUSION 

In summary, we report a robust fabrication method, combining e-beam lithography with wet 

etching and dry etching processes, for patterning free-standing Pt nanowires used as thermal 

anemometer probes for turbulence measurements. With precise control of the dry etching 

processes, Pt nanowires (~300 nm width, ~100 nm thickness) with a length of 70 µm have been 

successfully released free-standing between two SiO2 beams that are supported on Si cantilevers. 
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A critical aspect is the design of the holding bridge, which ensures a safe and gently release of 

the device without damaging the wires. Further, limiting the use of e-beam lithography to the 

patterning of the Pt nanowires renders the process cost and time efficient. These benefits far 

outweigh the additional complication arising from the resulting need to align e-beam and optical 

lithography patterns with high accuracy.  

The operational tests have confirmed that the wires are suitable for turbulence measurements 

in different working media and at a high dynamic pressures. For this purpose the nanowire 

design presented here holds a lot of promise regarding several aspects: (i) A more slender wire 

allows to use shorter wire lengths without being compromised by end-conduction effects; (ii) 

Smaller sensing elements are expected to improve the frequency response of the anemometer 

even if the wire is operated in a constant temperature mode26; (iii) Due to its very small thermal 

inertia, the wires can yield sufficient frequency resolution for many flow cases even when 

operated in constant-current mode. This eliminates the need for a feedback loop, thereby 

simplifying the circuitry significantly; (iv) The quasi circular shape of the sensing element is 

expected to avoid an unwanted pitch sensitivity of the sensor. We aim to explore and quantify 

these benefits in the future in an effort to push the limits for highly resolved high Re turbulence 

measurements. 

 

MATERIALS AND METHODS 

Wet thermal oxidation of Si wafers 

Conventional (100) 4-inch Si wafers (385 μm thick, Okmetic, Finland) with a thick thermal 

oxide layer of approximately 2 μm were prepared by wet thermal oxidation (Figure 1a). Prior 

to the wet thermal oxidation process, all the Si wafers were cleaned to prevent cross-

contamination27. Subsequently, the Si wafers were loaded into a high temperature tube furnace 

(Model 287, TEMPRESS), using a quartz carrier to implement the wet oxidation at 1150℃ for 
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12 h. During the oxidation process, the flow rate of a mixture of water vapor and nitrogen gas 

was fixed at 2 ℓ min-1. The ramping and cooling rates were set at 10℃ min-1 and 7℃ min-1, 

respectively. 

 

Patterning Pt nanowires using electron beam lithography 

Prior to the e-beam writing, positive resist (NANOTM 950PMMA Series Resists in 

Chlorobenzene, MicroChem, US) was spin-coated over the surface of the oxidized Si wafers at 

2500 rpm for 45 s, followed by baking at 165℃ for 2 min. Subsequently, an e-beam lithography 

(EBL) system with a 100-kV (Raith EBPG 5150, Raith GmbH, Germany) was used to write the 

nanowire pattern into the resist layer. The written wafers were then developed in a developer 

solution (MIBK-IPA mixture) in 90 s, followed by rinsing with deionized (DI) water using a 

quick dump rinser and spin-drying with nitrogen (N2). 

A titanium (Ti) layer of ~13 nm and a platinum (Pt) layer of ~100 nm were sputtered over 

the patterned wafers using an ion-beam sputtering system (home-built T’COathy system, 

MESA+, NanoLab)28. The sputtering processes were performed at 200 W and at a pressure of 

6.6×10-3 mbar which was adjusted using an argon (Ar) flow. Subsequently, the wafers were 

immersed in acetone with sonication to perform the lift-off process. After rinsing the wafers 

with DI water and spin-drying with N2, the fabrication of Pt nanowires patterned on the surface 

of the oxidized Si wafers was finished (Figure 1b). 

 

Patterning Pt connections to the Pt nanowires 

A positive photoresist (PR) layer (OiR 907-17i, Fujifilm, Japan) was spin-coated over the wafer 

surface at 4000 rpm for 45 s, followed by baking at 95℃ for 1 min. A photo-mask made of 

quartz containing inverted chromium (Cr) patterns connected to the patterned Pt nanowires was 

fabricated in-house by using a mask-making system (DWL 2000 Laser Lithography System, 
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Heidelberg Instruments, Germany). The exposure process was performed by using a mask 

alignment system (EVG620, EV Group, Austria) for 5 s at an intensity of 12 mW cm-2 in hard 

contact mode. Thereafter, the wafers were post-baked at 120℃ for 1 min, followed by 

developing in a OPD4246 solution for 1 min, rinsing with DI water, and drying with N2. A Ti 

layer of ~6 nm and a Pt layer of ~100 nm were sputtered over the patterned wafers using the 

T’COathy system. The lift-off process was conducted in acetone with sonication, followed by 

rinsing the wafers with DI water. After spin-drying with N2, the fabrication of Pt connections 

to the Pt nanowires was completed (Figure 1c). 

 

Backside etching of the thermal oxide layer  

The patterned surface of the oxidized Si wafers was covered with a PR layer (OiR 908-35, 

Fujifilm, Japan) by spin-coating at 2000 rpm for 45 s, followed by baking at 95℃ for 3 min 

(Figure 1d). The wafers were then immersed in a buffered hydrofluoric acid (BHF) solution for 

30 min to remove the SiO2 layer completely (etch rate of ~68 nm min-1) on their backside 

(Figure 1c). 

 

Backside patterning of the device base using dry etching of Si  

After removing the PR layer in acetone, cleaning with DI water and drying with N2 gas, the 

backside of the wafers was spin-coated with a PR layer (OiR 908-35, Fujifilm, Japan) at 2000 

rpm for 45 s, followed by baking at 95℃ for 3 min. A photo-mask containing a Cr pattern of 

the device base was used for the exposure process, which was performed by using the mask 

alignment EVG620 system for 15 s at an intensity of 12 mW cm-2 in hard contact mode. The 

alignment with the frontside Pt structures was performed using the bottom alignment with 

cross-hair mode. Thereafter, the wafers were post-baked at 120℃ for 1 min, followed by 

developing in the OPD4246 solution for 3 min, rinsing with DI water, and drying with N2. 
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Subsequently, the wafers were baked at 120℃ for 10 min to harden the remaining PR areas for 

further backside etching of the Si (Figure 1f). 

The etching of Si was conducted in an inductively coupled plasma (ICP) deep reactive ion 

etching (DRIE) instrument (SPTS Pegasus system, UK), using the standard Bosch process with 

105 cycles (0.6 s deposition of C4F8, 1.75 s etching of Si by SF6) (Figure 1g). After the deep Si 

etching, the wafers were immersed in a 99% nitric acid (HNO3) solution for 30 min to 

completely remove the PR layer and any other residues. 

 

Frontside patterning of the device  

Subsequently, the wafers were flipped and their frontside was spin-coated with a positive PR 

layer (OiR 907-17i, Fujifilm, Japan) at 4000 rpm for 45 s, followed by baking at 95℃ for 1 

min. A photo-mask containing Cr pattern of support cantilevers was used for the exposure 

process was performed by using the mask alignment EVG620 system for 5 s at an intensity of 

12 mW cm-2 in hard contact mode. The wafers were then post-baked at 120℃ for 1 min, 

followed by developing in the OPD4246 solution for 1 min, rinsing with DI water, and drying 

with N2. Subsequently, the wafers were baked at 120℃ for 10 min to harden the PR layer 

(Figure 1h). 

 

Releasing of the PR line with the Pt nanowire 

The patterned wafers were then immersed in the BHF solution for 30 min to remove the 

unprotected SiO2 layer completely. Since the PR line covering the Pt nanowire at the tip of the 

cantilevers has a small width of approximately 3 μm, etching in the BHF solution for 30 min 

resulted in a complete removal of SiO2 under the PR line and Ti under the Pt nanowire. As a 

result, the PR line with the Pt nanowire stuck to it got released in this step (Figure 1i). 
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Patterning support cantilevers using dry etching of Si 

The wafers were then etched in the SPTS Pegasus system using the fine-etching process with 

90 cycles (Figure 1k) until the remaining Si layer reached a thickness of approximately 10 µm. 

 

Etching of the PR line using O2 plasma 

To remove the PR covered the Pt nanowire, oxygen (O2) plasma etching was performed in a 

parallel plate reactive ion etching system (home-built TEtske system, MESA+, NanoLab) at 

wafer-level, 10 mTorr, and 25 W for 20 min. A low power etching was used in order to not 

break the Pt nanowire during the etching of PR (Figure 1ℓ). 

 

Isotropic etching of Si using XeF2 

For the final patterning of the cantilevers and for releasing the devices, the wafers were put in 

a gas phase Xactix XeF2 E1 system (etching time per cycle: 30 s, temperate: 35℃, pressure: 

3000 mTorr), so that the Si was isotropically etched by xenon difluoride (XeF2, etching rate of 

~1 μm) (Figure 1m). This resulted in an etching through of the remaining Si layer, thus forming 

two free-standing SiO2-coated Si cantilevers. The Si underneath the Pt nanowire and the Si at 

the tip of two cantilevers were also etched, thus resulting in the Pt nanowire free-standing on 

SiO2 beams. The device was also self-released after this etching step thanks to the special design 

of the device holding bridge. 

 

Electrical connection to the device using a silver conductive glue 

For the electrical connection, the fabricated device was mounted on the prongs of a commercial 

probe holder (Dantec Dynamics A/S, Denmark) using a silver conductive glue (Figure S2). In 

order to cure the glue, the device mounted probe was baked in an oven at 120℃ for at least 15 

min. 
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Testing the fabricated devices used as thermal anemometer probes 

To operate the nanowire, we used a constant current anemometer (CCA) circuit as sketched in 

Figure 8a. Here, the device was placed in a bridge that features large ballast resistances Rb = 12 

kΩ at the top of both arms. Since Rb �  Rw, this ensures that the wire current iw remains 

essentially constant, even as Rw changes slightly. With the nanowire exposed to the flow, we 

adjust the bridge voltage U0 until the desired overheat ratio a = Rw = Rw;20℃ is reached with 

typical values of a = 1.2 – 1.4 corresponding to wire overheat temperatures of 100℃ – 200℃. 

The resistance Rp is chosen such that the bridge is balanced at working conditions. The bridge 

voltage is then proportional to small differences in Rw that come about as the time varying 

cooling by the flow changes the wire temperature slightly. Amplified by a factor K = 100 via 

an instrumentation amplifier, the bridge voltage Eb is recorded as the output parameter of the 

CCA using an analogue-digital converter (ADC). A calibration and additional signal processing 

(e.g. filtering) as required finally yield the desired measurement of the fluctuating fluid velocity. 

The nanowire was tested in the Max Planck VDTT in Göttingen described elsewhere24. The 

device was placed in the freestream behind an active turbulence generating grid as sketched in 

Figure 8b. The grid triggers turbulent motion in the fluid such that the fluid velocity v(t) at the 

hotwire location fluctuates in time around its mean V. For the present set of measurements, the 

VDTT was operated at a pressure p = 2 bar with SF6 at a temperature of 21℃ as the working 

medium. The overheat ratio was set to a = 1.24 and the wire current was iw = 0.622 mA. 
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