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Abstract

The effective description and fundamental understanding of turbulent flows
remains elusive to modern physics despite centuries of research and its great
importance in numerous fields. The theoretical difficulties of the topic (non-
linear, nonlocal, or unclosed equations) are accompanied by the multiscale
characteristics, large number of degrees of freedom, and strong sensitivity
to initial conditions that make numerical and laboratory experiments equally
challenging. One potential way to unravel the dynamics underlying turbulent
motions is the separation of inertial forces from viscous forces, i.e. the study
of turbulence at very large Reynolds numbers. The Max Planck Variable Den-
sity Turbulence Tunnel (VDTT) is a facility well-suited for the study of such
large Reynolds numbers under controlled conditions. Its active grid allows
the creation of turbulence at Taylor-scale Reynolds numbers R, > 6000 that
can be investigated with state-of-the-art subminiature hot wires and whose
turbulence generation can be controlled with great flexibility. This allows the
study of fine details of the turbulence energy spectrum, such as the bottle-
neck effect, which are difficult to investigate even at small R). We show for
the first time experimentally that the bottleneck effect decreases with increas-
ing Reynolds number up to R, ~ 5000 confirming previous numerical studies
at lower Reynolds numbers.

A very influential phenomenological model is the seminal self-similar model
of the velocity increment statistics by Kolmogorov' and its intermittency re-
finements®. In this thesis the cornerstones of this scaling theory are confirmed
approximately throughout the range of R, studied (150-6000) using hot wire
data from the VDTT. This constitutes the most extensive dataset in this range
of R) to the author’s best knowledge. The local scaling exponents of the in-
crement statistics becomes R,-independent for R) > 2000. They do however

not allow the immediate identification of an inertial range scaling exponent,

'A. Kolmogorov. “The Local Structure of Turbulence in Incompressible Viscous Fluid for
Very Large Reynolds” Numbers”. In: Dokl. Akad. Nauk SSSR 30 (1941), pp. 301—305.

2U. Frisch. Turbulence. Cambridge University Press, Nov. 1995. por: 10 . 1017/
CB09781139170666.
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but carry the imprints of the turbulence decay and certain dissipative effects.
The effect of decay is more dramatic, but can be explained by a model3 for
the statistics of decaying turbulence. This allows the extraction of an iner-
tial range scaling exponent that agrees with those obtained by the extended
self-similarity technique*. The dissipative effects take the form of log-periodic
oscillations on the scaling functions, whose exact physical origin remains elu-
sive.

The remainder of the thesis deals with the design and implementation of
a particle tracking system in the VDTT. The system allows the measurement
of statistics in the Lagrangian framework, where instead of a multi-location
measurement, individual fluid parcels are followed throughout the flow and
multi-time statistics are obtained. The setup records the motion of cellulose
particles of Stokes numbers between 0.0001 and 2 illuminated by a high-power
laser using four stationary high-speed cameras. It is shown that the setup is
capable of acquiring acceleration statistics and record particle tracks of up to
15 viscous time scales. This allows the systematic investigation of Lagrangian
turbulence at Ry > 2000 where such investigations were impossible hereto-

fore.

3P-F. Yang, A. Pumir, and H. Xu. “Generalized self-similar spectrum and the effect of
large-scale in decaying homogeneous isotropic turbulence”. In: New J. Phys. 20.10 (Oct.
2018), p. 103035. DOIL: 10.1088/1367-2630/aae72d.

4R. Benzi et al. “Extended self-similarity in turbulent flows”. In: Phys. Rev. E 48.1 (1993),
pp- 29-32. DOL: 10.1103/PhysRevE.48.R29.
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Chapter 1

Definition and Motivation

1.1 Defining Turbulence

"Turbulence" is a rare case of an object of active physical research in the
21st century that immediately creates a picture or an idea in the mind of most
people. This picture might be the whirls of a small wild river, an unpleasant
airplane ride, or simply water flowing out of a fully opened tap. It is part of
the fascination of the topic that despite a common intuition about turbulence
and its importance to be described in the next section, scientific approaches
to the subject notoriously face extreme challenges both theoretically and tech-
nologically yet to be overcome. A sufficiently general and effective theory of
turbulence is yet to be found [1] and might elude us for a long time.

It is thus perhaps not surprising that even a formal definition beyond "I
know it when I see it" is difficult to find. A collection of approaches can be
found in the appendix of Ref. [2]. Here, the following definition is offered
based on the famous experiment by Osbourne Reynolds [3] in 1880. He stud-
ied the flow of water through a glass pipe of diameter D. The flow rate (and
thus the mean flow speed U) was controlled by an inlet valve. The viscosity
of the water v could be controlled by changing its temperature. Reynolds ob-
served that two distinct flow states develop depending on the choice of these
parameters by adding a line of dye into the fluid. At low flow speeds, in
small pipes and at high viscosity, the dye flowed parallel to the glass pipe.
The flow was well-predictable and not very complex. We call this a laminar
flow. Under certain circumstances described by the pipe’s Reynolds number

_upb

R , .
e ” (1.1)

the flow became "sinuous" (the term "turbulence" was introduced by Lord

3



4 CHAPTER 1. DEFINITION AND MOTIVATION

Kelvin only four years later) and the dye quickly mixed across the pipe di-
ameter. This is the turbulent flow state. By carefully incrementing the ex-
perimental parameters, he found turbulence to prevail if Re > 2000 . This
number defining the onset of turbulence was recently refined to be 2040 & 10
[4] indicating a very high quality of the original experiment almost 150 years
ago.

A more general description should be concerned with the properties of
turbulent flows, in particular its large number of degrees of freedom, the in-
termittent distribution of vorticity, its strong dependence on initial conditions,

its dissipative nature and the large number of time- and length scales present.

1.2 Motivation for Studying Turbulence (at High
Reynolds Numbers)

The prime motivations for the study of turbulence are - apart from scien-
tific curiosity - the almost countless realisations of the phenomenon in nature.
The earth is enclosed by the atmosphere - a huge turbulent multiphase flow.
Its large-scale flow structures shape our climate and weather. The turbulent
mixing inside a cloud is the prime suspect for the initiation of droplet growth
that ultimately leads to rainfall [5]. Similarly, the organisation of the turbulent
oceanic flows [6] has a great, though often underappreciated impact on our
climate through coupling to the atmosphere [7], transport warm waters over
thousands of kilometers or by influencing the growth of oxygen-producing
ocean organisms on the small scale [8, 9]. Realising the inherent complex-
ity of turbulence and the lack of an efficient theory of the phenomenon, the
uncertainties of climate and weather forecasts are easy to explain.

In engineering, turbulent flows are equally omnipresent. The scale-thinning
properties of turbulence allow the design of efficient airfoils that carry the
globalised economy. At the same time, turbulent drag is responsible for large
amounts of the associated carbon emissions [10] and noise pollution. Yet,
the properties of turbulence as an extremely efficient mixer allow for more
efficient combustion engines that release less noise and emissions.

Turbulent flows also occur in the context of the human body: The carbon-
rich air we exhale is mixed sufficiently with fresh, oxygen rich air within about
a second. The turbulent mixing is so efficient that we normally generate the
necessary flow subconsciously without much effort. In contrast, turbulence in

blood vessels can cause a deadly condition and some mechanisms that trigger
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turbulent patches have been discovered only recently [11].

This incomplete list is concluded with stating that carbon-free ways of
energy harvesting such as wind power [12, 13, 14, 15] or nuclear fusion [16,
17] would benefit considerably from a better knowledge of turbulence.

Most examples offered here belong to a class of flows, where turbulent
kinetic energy exists on many different time- and length scales. That is to say
that the scale of the energy source is much larger than the scale of viscous
dissipation. This means that an intermediate range of scales is likely to exist,
where neither viscous dissipation, nor the flow boundary conditions play a
major role. It is intuitive that the separation of these effects is desirable for a

theoretic understanding of the governing dynamics.

1.3 Modern Turbulence Research at High R,

This section will give a brief overview of the state-of-the-art experiments
known to the author that explicitly aim at creating turbulence at high Reynolds
numbers. It is not a historical review, but focused on current efforts. To
compare the different experimental setups, it is most useful to introduce a
Reynolds number that does not depend on the specific flow geometry. This is
the Taylor-scale Reynolds number R, defined through the RMS of the velocity
fluctuations ugps (the residual of a velocity signal after subtracting its mean),
the kinematic viscosity and the Taylor length scale A [18]. A can be seen as
the typical length scale for an eddy dominated by inertial energy transfer. It
is closely related to the average length between two zero-crossings of the ve-
locity fluctuation signal [19]. The transition Reynolds number Re = 2020 of
the pipe flow mentioned in Sec. 1.1 would correspond to R, ~ 100. To put
into context, R, of an atmospheric flow can be (9(104)(e.g. Ref. [20]).

The most obvious place to investigate high Reynolds number turbulence
is the atmosphere, where no particular effort has to be made to generate a
very high Reynolds number flow. However, the flow is known to be unsteady
and influenced by rotation and stratification. To escape boundary layer effects
and the influence of the terrain, measurements have to be performed at great
heights, typically using tall measurement towers in flat parts of the earth (e.g.
[26], measuring at mountain research stations [27, 28], or with measurement
balloons [29]. Moreover, statistical averaging over long periods is difficult due
to possibly changing flow states. The recent availability of easy-to-operate
unmanned aerial vehicles has opened the interesting possiblity of spatially

sampling the velocity field of large areas in a relatively short time, i.e. in an
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Figure 1.1: Separation of scales vs. Reynolds number for selected high-Reynolds number
experiments. L is the typical length scales of the largest flow structure, while 7 is the length
scale of viscous dissipation (see Ch. 3.3 for details). Flows with severe anisotropies and
inhomogeneities are plotted in open symbols. VDTT data from [21], ONERA data from [22,
23], SHReK data derived from information in [24], GReC data derived from information in
[25], Atmospheric data from [20].

approximately constant flow state [30].

Direct numerical simulations (DNS), i.e. the numerical integration of the
Navier-Stokes-Equations (2.5) usually in a periodic box forced at particular
wavenumbers, strongly depend on the availability of supercomputers. Even
with the most advanced supercomputers, one must compromise between the
Reynolds number, the temporal and spatial resolution of the simulation, and
the duration of the simulation [31]. The largest Reynolds number (R, = 2297)
in a DNS was obtained by Ishihara et al. [32], compromising small scale
resolution and statistical fidelity. A better resolved DNS at R, ~ 1300 was ob-
tained by PK. Yeung and coworkers [31]. Even though the computing power
needed for a DNS scales unfavourably with R}\S/ 4, numerical simulations will
reach larger and larger values in the future and have come a long way since
the first DNS by Orszag & Patterson [33].

In pipe flows, extremely large Reynolds numbers are achieved in the Prince-
ton Superpipe, which operates with air at almost 200 bars [34]. Pipe flows are
in general wall-bounded flows, i.e. dominated by contributions of the flow
boundaries, which inject turbulent kinetic energy through friction. They are
therefore strongly influenced by mean shear and anisotropies. Wall-bounded
flows are very common in nature and engineering and their understanding
is of great importance. However, pipe flows do not feature a homogeneous,

isotropic region and are therefore not well suited to study the nonlinear, iner-



1.3. MODERN TURBULENCE RESEARCH AT HIGH R, 7

tial transport of energy.

When using experimental apparati of small dimensions, high R, can be
obtained by using fluids of low kinematic viscosity v, which allows the exis-
tence of very small, low-energetic eddies. The extreme case is superfluid or
ultra-cold helium. In the SHReK experiment, turbulence is created by coun-
terrotating two disks (von-Kédrman mixer) in helium between 1.6 and 4.5K,
and R, ~ 20000 can be reached [24]. The GReC experiment at CERN is a
low-temperature helium jet, which reaches R, ~ 8000. While creating among
the highest Reynolds numbers without wall effects, the usage of ultra-cold or
superfluid helium bears extreme practical challenges. The facilities are very
costly to operate and difficult to maintain due to the lengthy process of cool-
ing the gas. Moreover, the small viscosity causes the smallest flow features
to be smaller than 10 ym, which is a considerable technological challenge to

measure [35].

Experiments operating in air at atmospheric pressures have to be very
large to obtain large Reynolds numbers in free stream turbulence or must
feature specialised forcing mechanisms. Such experiments are typically wind
tunnels. A historical review of wind tunnels can be found in Ref. [36], this
section concentrates on three air wind tunnels. First, the wind tunnel at Cor-
nell University achieved R, ~ 1000 using an active grid and a detailed study
of its small-scale turbulence has been performed [37]. The wind tunnel at
the University of Oldenburg contains a 3 X 3 m large active grid as well
as the possibility to influence the largest flow scales by individually control-
ling its four fans. Using specialised active grid turbulence generation [37]
and additionally modulating the rotation frequency of the fans, they reported
R, ~ 16000 [38]. Given that the longitudinal correlation length of the velocity
fluctuations was about 30 x the size of the tunnel height, large flow inhomo-
geneities can be expected. Their tunnel is however ideal to recreate realistic
inflow conditions for wind energy devices in a laboratory, i.e. similar to the
unsteady turbulence in the atmosphere. Finally, the return flow of the com-
mercial ONERA wind tunnel has delivered one of the most cited datasets on
high Reynolds number turbulence [22] (R, ~ 2500). Its operation is however
extremely expensive (500 ooo Euros per week of operation), since up to 88
MW are applied on the fan shaft [39].

The state of turbulence research at the highest Reynolds numbers is roughly
summarised in Fig. 1.1. (Approximately) homogeneous and isotropic turbu-
lence studies exist up to a Ry ~ 2000, but only very few datasets exist for

R) > 1000. Data at larger R) are even more scarce and to the author§ knowl-
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edge subject to substantial inhomogeneities and anisotropy in all cases.

This thesis is concerned with another experiment explicitly aimed at cre-
ating high R) under (approximately) homogeneous and isotropic conditions.
The VDTT combines two of the approaches mentioned above to create a flow
at R) < 6000 in a wind tunnel that easily fits into a relatively small experi-
mental hall, can be operated at moderate costs, and whose flow properties are
such that high-resolution measurements with state-of-the-art equipment are
still possible. The fact that its flow properties can also be very finely tuned
both at large and small scales makes it perhaps the single experiment most
ideally suited for the study of turbulent flows worldwide at the time of writ-

ing. The experiment and its flow properties are described in detail in Ch.
4.

1.4 This Thesis

The main purpose of this thesis is to establish precision measurements at
high R, in the Max Planck Variable Density Turbulence Tunnel (VDTT). After
a brief introduction of the necessary theoretical background in fluid dynam-
ics and statistics of turbulence, as well as existing phenomenological models,
the flow conditions in the VDTT in its configuration at the point of writing
are discussed. In the following part, results from hot wire measurements are
reported. To this end, first the technique is introduced emphasising proce-
dures employed to optimise and verify hot wire anemometry in the specific
environment of the VDTT. In the following chapters, new insights into high-
R, turbulence obtained using this technique are presented to complete Part II.
Part Il introduces a setup capable of performing Lagrangian Particle Tracking
in the VDTT. The thesis is concluded by a Discussion and an Outlook.



Chapter 2

The Equations of Motion

This chapter will introduce the fundamental equations that govern turbu-
lence dynamics largely following Davidson [40], Monin & Yaglom [41], and
Pope [42]. For details and more thorough derivations, the reader is kindly

referred to those references.

2.1 The Navier-Stokes Equations

To derive the most fundamental equations of incompressible fluid me-
chanics, Newton’s Second Law is applied to an infinitesimal fluid element of
volume V' and density p to yield the equation of motion in terms of the ve-
locity field u. The relevant forces are due to pressure and shear stresses. The
pressure P creates a force —PA, which acts on all surfaces dA and yields a
net force of

Fp— f _PdA — / —VPdV. (2.1)

Here, the surface integral has been replaced by a volume integral by means of
the Gauss theorem. The viscous forces are induced by the molecular coupling
of the fluid element to its direct neighbours. Such internal forces per area are
known as stresses described by the stress tensor 7;;. It denotes the component
i of the viscous stresses acting on the surface labeled j. In a Newtonian fluid,
which shall be assumed here, the shear stress depends on the fluid density p,
its kinematic viscosity v, and the velocity gradients.

LA
Tij = pvV (8_x] + 8_xl> = 20vS;;. (2.2)

In passing, the strain-rate tensor S;; has been introduced for convenience. The

net force per unit volume in direction i due to the stresses at the surfaces is

9
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then given by the gradients of these stresses in all j directions:

f = 2 (23)
;= . 2.3
! ax]

Here, as well as in the remainder of this thesis we use the Einstein summation
convention that repeated indices are summed over.

In the absence of external forces (e.g. gravity), the forces on a fluid parcel
are entirely due to the presence of neighbouring fluid parcels. Similarly, the
kinematics these forces induce contain a term due to the immersion of the
fluid parcel in a larger flow field. For example, the flow profile of a station-
ary pipe flow (du/dt = 0 everywhere) depends on the radial distance r from
the pipe centerline. Therefore, a fluid parcel that is displaced in the radial
direction will experience a change in u proportional to the local radial gra-
dient du/dr. In general, the change in u can be due to a temporal change
du /0t or an advection towards a region of different flow speeds uVu. This is

commonly summarised into the convective derivative *

Dl/ll’ 8u,' aui

E == g + M]a—x] (2.4)

Combining egs. (2.1), (2.2), and (2.4) one arrives at the balance of forces

ou O\ _ 9P o (2.5)
P\ T ) T Tax T axjxg ”

In addition to these dynamical equations, the conservation of mass

d(pu;)/9x; = dp/ ot

is required. In the case of an incompressible fluid, i.e. when dp/dt = 0, this
reduces to
V-u=0. (2.6)

Egs. (2.5) and (2.6) form the incompressible Navier-Stokes equations of a
Newtonian fluid. They are nonlinear, coupled differential equations. Their
complexity is mainly due to the nonlinear term u;(du;/dx;) and the nonlocal
pressure term (see following section). It is therefore most interesting to study
situations where those terms dominate the dynamics. This is the case when

'In the Lagrangian framework, introduced in Sec. 3.4.1 the convective derivative results
naturally from deriving the equation of motion in the comoving coordinate system of the
fluid parcel
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the viscous term is small, i.e. when the Reynolds number is high. In this
regime the properties of turbulence are expected to be universal. This makes
the study of high Reynolds number turbulence important from a theoretical
point of view.

It is important to mention that in most flows additional forces act on the
infinitesimal fluid volume as a whole - so called body forces. For example,
in the case of the atmosphere the coriolis forces play an essential role in the
turbulence dynamics, and in numerical simulations particular wavenumbers
are excited by an idealised forcing term. As shall be shown in the next section,
a localised external force will have a global impact mediated by the infinite

propagation speed of pressure waves in an incompressible medium.

2.2 Nonlocality of the Pressure Term

Upon application of the divergence to the Navier-Stokes equations (2.5)

one obtains after considering the incompressibility result (2.6),

02 J Ju;
]

axiz axi

The solution of this equation is the Biot-Savart law [40]:

2 (w38
P(x;) = P /def (2.8)

4] |x -]

One can now insert eq (2.8) into (2.5) and arrive at a closed equation for
the velocity field u. The equations got however even more difficult to treat
analytically, because they are not only nonlinear, but also nonlocal. Physically,
this means that any disturbance or flow structure at a point x/ influences
all other points x; in the entire flow field. In an incompressible fluid this

influence happens instantaneously.

2.3 The Energy Equation and Dissipation

The forces acting on the infinitesimal fluid element we consider here, per-
form work, which will be dissipated into random molecular motion, i.e. heat.

To obtain the energy equation, we multiply eq. (2.5) by u; and expand the
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viscous term.

au?/2 D [, 9 (P 9
ot ox; (“ /2) YT o (E) e a_xi”JTzJ/P — 2SS (29)

This is an evolution equation for the kinetic energy density inside the fluid

parcel. The terms on the right-hand side are as follows:

¢ convection of kinetic energy across the boundary,

deformation of the boundary due to pressure forces,

deformation of the boundary due to viscous coupling to adjacent fluid

parcels,
¢ conversion of kinetic energy into heat.

The last term is of great importance, because it is the only global energy
sink of the system (except for work done on the flow boundaries, often also
in the form of heat). Thus, turbulence converts kinetic energy into heat at a

dissipation rate

ou; ou;
& = <21/Si]'51']'> =2v <a—x;a—x;> . (2.10)

() denotes a spatial average unless stated otherwise. The strain-rate tensor

o 1 (du; au]
Sij = 5 <8_x] + a—xl) . (2.11)

Because of the Second Law of Thermodynamics, this heat cannot be trans-

is given by

formed back into the structured fluid motion of turbulence. Its role as a
well-defined, unique sink of energy puts the dissipation rate in the center of
many turbulence theories encompassing all turbulence length scales. If the
turbulence is homogeneous, and isotropic [41]

2
e = 15v < (%) > . (2.12)

This definition will be used throughout Part II to estimate ¢ from one-dimensional
velocity measurements.

In spectral space, eq. (2.12) reads by the derivative property of the fourier
transform

£ =2v / ICE(K)dk = 15 / K21 (k) dky (2.13)
0 0
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Again, the second equality is only valid in homogeneous, isotropic turbu-
lence.

2.4 Vorticity

The presence of rotational motions has been identified as a defining fea-
ture of turbulent flows ever since the experiments of Reynolds [3]. This is
quantified by the vorticity of the flow defined as

w=V xu. (2.14)

Using the vector calculus identity

(u-V)-u:V(b;)—uxw, (2.15)

the Navier-Stokes equation (2.5) can be rewritten as
P
ou/of =u X w— VT —Vu?/2 +vVu (2.16)

Note that this equation is in principle Bernoulli’s equation for a stationary,
irrotational flow in an inviscid fluid. Taking the curl along with a version of
the aforementioned vector identity yields the vorticity equation
dw 2
E—F(u-V)w:(w-V)u—kva (2.17)
In analogy to the energy equation (2.9), the square of the vorticity - called
enstrophy - is introduced. Its equation of motion reads [40]

D(wiw;)/2 dwy Ow 0 dw
D{wiwi)/2 ll:)tl) = w;w;S;j — V‘C"'f"e”ma_x;(a_; + Va—xl <€lmnwm€njka_x]]‘<> - (2.18)

The velocity gradients can be decomposed into a rotational and a potential

component:

ou; 1 ou; al/l] 1 ( du; au] _ o CijkWk
a_x]' N 5 <8x] + axi * 2 E)x] 8xi N Sl] 2 7 (2.19)

where €;j is the Levi-Civita symbol. Therefore, the velocity gradients are

the combined result of strain and vorticity.
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Through the derivative property of the Fourier transform, (w?) can be
expressed in terms of the energy spectrum of the velocity fluctuations (see
Ref. [41] for details):

(w?) = /O " 2E(k)dk (2.20)

Upon comparison of (2.20) with (2.13), the correspondence between enstrophy

and dissipation becomes evident:

e =v(w?). (2.21)



Chapter 3

The Statistics of Homogeneous

Isotropic Turbulence

3.1 Three Statistical Objects

The purpose of this section is to define the three most important statisti-
cal objects that will be studied for the remainder of this thesis, namely the

correlation function, the energy spectrum, and the structure functions.

3.1.1 The Correlation Function

The correlation function of a velocity field u;(x) is defined as

Cij (1) = (u; (x) uj (x + 1)) (3.1)

Unless denoted otherwise, () denotes an average over the flow field. In the
case of a statistically isotropic field, the correlation function is independent
of the direction of r. We can therefore consider the correlation function (and
the other two statistics introduced here) in a coordinate system, where one
axis (x1) is parallel to r and the other two perpendicular. In this case, only
the diagonal components are nonzero and Cy; = Cs3 # Cqp [41]. Le. there
are only two components that need to be considered here: the longitudinal
correlation function Cyqp (also called C;;) and the transverse correlation func-
tion Cy; = Cz3 = Cnn, where the velocity components are normal to r. In

summary:

Ci1(r) = Cre(r) = ((u(x) -er)(u(x+1)-er)), (3-2)

15
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Ca(r) = Gaa(r) = Can(r) = ((u(x) x er)(u(x+1) xer)),  (3.3)

where e, denotes the unit vector in the direction of the increment vector r.
Since both the energy spectrum and structure function can be derived from (n-
th order) correlation functions, similar simplifications exist for these statistical
objects as well.

3.1.2 The Energy Spectrum

The energy spectrum tensor is the fourier transform of the correlation
function [41]:

() = [ (r) ek
i (k) = (27_[)3 /CZ] (r) e "dr. (3.4)

In the case of an incompressible fluid, we know that k;¢;; = kj¢;; = 0. In
combination with the simplifications through isotropy outlined in the previ-
ous section, the energy spectrum of homogeneuos, isotropic turbulence in an
incompressible fluid can be expressed by a single function E(k):

E (k) kik;
$ij = 32 ((51']' 2 ) (3.5)
In Part II of this thesis, the results from hot wire measurements will be
discussed. The only component of the energy spectrum tensor accessible to

such measurements is ¢11(k1), also denoted as Eq;(k1). In terms of the energy
spectrum function

0

ki E (k k2
E1i (ki) = / # < - k_;) dk. (3-6)

3.1.3 Structure Functions

The statistical information about a phenomenon can be described by a
probability distribution function (PDF). Since in turbulent flows structures
of different scales interact with each other, the scale-by-scale statistics are of
prime interest. To combine the two approaches, one traditionally measures
the n-th order velocity increment statistics, also called structure functions

Su(r) = (1 (x + 1) = u; (x))"). (3.7)

Si, and the n-th order correlation function ((u; (x + 1) u; (x))") are trivially
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connected. Therefore, just as correlation functions, Si, can be fully decom-
posed into a component in the direction of r (longitudinal) and a component
normal to r (transverse). Since we consider longitudinal structure functions

in most cases, we call the longitudinal structure function of order n
Su(r) = {(ux(x +71) = ux(x))") (38)

Thus, structure functions exhibit similar properties in terms of complexity
as correlation functions and energy spectra. They can in fact be converted
into each other. The structure function is however easier to interpret at higher
orders than correlation functions or higher-order spectra. Further, the struc-
ture function is smoother than the energy spectrum, because it is an average
of local quantities (the velocity increments), whereas the energy spectrum im-
plicitly assumes the existence of some periodicity, which is in general not
present. For this reason, structure functions can be considered a very simple

wavelet transform [43] with a wavelet consisting of two J-distributions.

3.2 The Karman-Howarth-Equation

After introducing the canonical tools of statistical analysis of turbulence,
we merge the definitions from the previous section with the fundamental
fluid dynamics equations from Sec. 2.1. For this, we consider the Navier-
Stokes-Equations (2.5) for the velocity field u; and the velocity field shifted by
an increment r called uf. Following Davidson [40],

duj _d(ug) d(p/p) 0?

oui _, Ok) w0, .
ot Mmooy axox, G9)

An equivalent equation can be written down for the shifted velocity field
u;(x). We now multiply equation (3.9) by 1}, add it to the equivalent equation

for u; and average. Assuming isotropy, one arrives at
o (ujuj) d &
J
T <<uiuku;-> + (uiu;-u@) +2var%(uiu;-> (3.10)

with 7 = x — x7.
This equation is easier to interpret when written in terms of the nor-

malised longitudinal correlation functions f(r) = Cy1(r)/u%,s and K(r) =
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(u(x)?u(x + 1))/ ugps:

J , 10 (43 19 (4 ,0f
3t f(r,t)= I3, (r u K(r)) +2ur—4§ (r W= (3.11)

We have arrived at an evolution equation for the second-order longitudinal
correlation function in isotropic turbulence (removing the simplification of
isotropy yields a longer, but otherwise similar equation, see e.g. [44, 41, 45]).
However, this equation has two unknowns: The second- and third order cor-
relation functions f(r), and K(r), respectively. This is the closure problem
of turbulence arising in the equations of turbulence statistics. It is a major
addition to the mathematical complexity of the problem. To circumvent the
closure problems, several closure assumptions have been suggested. For ex-
ample, the quasi-normal approximation assumes the fourth-order statistics to
be Gaussian even at small increments [46]. This is not only contradicting ex-
perimental data (see Sec. 3.3.4), but also leads to serious theoretical problems.
For example, E(k) < 0 in an important range of wavenumbers [47]. Some
of these inconsistencies are removed by the eddy-damped quasi-normal ap-
proximation, where an additional time-irreversibility is installed by adding an
eddy-viscosity term. More detailed views on closure schemes can be found

in e.g. [48, 40].
Eq. 3.11 can be recast in terms of the structure functions Sy(r) and S3(7).

It is straightforward to see that S,(r) = 2u?(1 — f(r)), and S3(r) = 6u3K(r).
With this one arrives at

2 10Sy(r) Lar453(1’) v 0 < 4252(1/)).

37 2 ot  6rt  or r4 or

(3.12)

Evidently, the third order structure function is completely determined by the
time- and scale dependence of S;. S3 is unique in this sense, because the evo-
lution equations of higher orders contain additional pressure contributions.
The terms in eq. (3.12) correspond to different ranges of scales. The second
term on the left hand side comes from the statistical nonstationarity, e.g. due
to the decay of turbulent kinetic energy. The last term on the right hand side
describes the effects of viscosity on Ss.

In a statistically stationary flow dS;/0t = 0 *. In the limit of very large R,

'Statistical stationarity means that averaged quantities are constant throughout one in-
stance of the flow. It makes no statement about the repeatability of such a flow.
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v — 0. In this case, eq. (3.12) can be integrated over r leaving [49]

S3(r) = —er. (3.13)

Hence, at those scales in a stationary flow, where viscous effects (and any
large-scale forcing) are negligible, the third order statistics are uniquely de-
termined by the dissipation rate e. This range of scales is called the inertial
range. In Sec. 3.3 it will become apparent that (3.13) is only a special case of a
hierarchy of scaling laws for the n-th order structure function, albeit the only
one that can be derived rigorously from the equations of motion.

This section closes by the conversion of (3.11) into spectral space. The
application of a Fourier transform yields

d

5 E(k,t) = T(k,t) — 2vk®E(k, t), (3.14)

where the spectrum of scale-by-scale energy transfer T'(k,t) has been intro-
duced.

3.3 Phenomenology and Scaling

3.3.1 The Cascade Picture

Already Leonardo da Vinci must have realised the multiscale organisation
of turbulent flow in his studies of water leaving a rectangular channel [50].
Richardson [51] was the first to hypothesise the existence of an energy cascade
from large scales to smaller ones. In particular, he envisioned turbulence as a
sea of vortex structures ("whorls" or "eddies"), that subsequently break up into
smaller and smaller eddies "and so on to viscosity (in the molecular sense)".

As outlined in Sec. 1.1, the presence of turbulence is immediately recog-
nisable when presented with a sufficiently visualised turbulent flow. This is
likely owing to the presence of easily recognisable, unique structures. Just
as turbulence itself, these structures are difficult to capture in a strict, mathe-
matical sense. In the literature (and this thesis) such structures are referred to
as "eddies". They can be loosely described as (weakly) coherent fluid motion
with a length scale /.

The cascade picture of turbulence - in particular in its original form envi-
sioned by Richardson [51] - makes frequent use of this picture. In the Richard-

son picture of turbulence, a turbulent flow originates from eddies of size /1,
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that carry the majority of the turbulent kinetic energy. These eddies break up
into a number of smaller eddies of size ¢, which in turn break up into even
smaller eddies. The cascade ends when the energy within each eddy can be

directly dissipated into heat.

This picture has been very influential for the turbulence research it pre-
ceded, but its strict hierarchy of eddies breaking up into smaller eddies has
proven inaccurate. In particular, these eddies coexist at many different length
scales and interact with each other nonlinearly. This is reflected in the two
different approaches to turbulence. In the Eulerian framework one or more
snapshots of the fluid field are considered and scale-by-scale statistics emerge.
Because Eulerian measurements are relatively straightforward to realise, this
has been the major way to study turbulence and the vast majority of statistical

theories is centered around spatially resolved flow fields.

The insufficiencies of the strict Richardson cascade picture are even more
obvious when considering the motion of a single fluid parcel over time. It
shall be argued in Sec. 3.4.1 that this Lagrangian framework is equivalent
to the Eulerian and in some sense a more natural way to study turbulence
(cf. [52, 53]). We observe that fluid parcels regularly experience extreme ac-
celerations suggesting a small-scale motion followed by relatively quiescent
periods, which cannot be captured by the simple Richardson cascade model.
Such measurements are however extremely difficult and the underlying phe-

nomenology is not nearly as well-developed as in the Eulerian case.

We have thus introduced the length scale ¢ of an eddy, which can be sup-
plemented by an eddy time scale (eddy turnover time) 7,, and an eddy veloc-
ity scale uy, = £/ 7.

This phenomenological model implicitly introduced a far-reaching assump-
tion, namely that the power introduced at the beginning of the cascade (the
large scale L) and the power ultimately dissipated into heat are connected by a
simple factor. The power present at any scale ¢ can be defined by dimensional
analysis as u3/{. In the particular case of the energy injection scale L the rel-
evant velocity is the root mean square (RMS) of the velocity fluctuations. The
power dissipated into heat is given by the dissipation rate & ~ v{(du;/9x;)?).

The cascade picture implies that

3
€= Csuf (3.15)
This relation is frequently called the "Zeroth Law" of turbulence. The value of

Ce depends on the precise definition of L, and the flow geometry or forcing
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scheme, but is constant at large Reynolds numbers. Eq. 3.15 has particular
implications for the limit of Re— oo, which can be seen as v — 0 with L =
const. If this relation holds as v becomes smaller and smaller, the velocity
gradients du;/dx; must become steeper and steeper, ultimately causing sin-
gularities. This is called the dissipation anomaly and is discussed in greater
detail in Sec. 7.1.

3.3.2 Self-Similarity

The previous section has made clear that the velocity field of a turbulent
flow cannot be smooth in the limit of infinite R). Indeed, O. Reynolds ob-
served in his groundbreaking experiments [3] described in Sec. 1.1 that as
soon as the energy input exceeded a certain threshold, the smooth flow broke
down into a flow with steep velocity gradients efficiently mixing the dye he
used to visualize it. The flow apparently changed its geometry dramatically,
because the kinetic energy could not be dissipated efficiently enough by the
gradients of a smooth velocity field. The system then forms a fractal to ac-
comodate the excess energy input giving it a non-smooth character. Such
phenomena are prevalent in numerous physical and biological systems, such
as metabolism, fractures, and geology. They typically exhibit fractal or self-
similar features (see [54, 55] for more examples). As Jiménez [56] writes: "It
may be said that the reason why fractals, geometric or otherwise, are preva-
lent in nature is the need of handling solicitations that cannot be managed by
smooth means.".

A defining feature of fractals is their self-similarity, i.e. its features f at a
scale ¢ appear again in a scaled version of themselves when observing it at a
scale A¢. Mathematically, a scalar field f(r) is called self-similar if [54]

F(0) = ASF(AL) (3.16)

for all A > 0. The scaling exponent ( is an important characteristic of the
fractal properties of the system.

3.3.3 Kolmogorov’s 1941 Theory

In 1941, Kolmogorov published his seminal work that would influence
generations of researchers [57, 49]. It is commonly abbreviated as K41. It
combines the Richardson conjecture of an energy cascade [51] and the con-

cept of self-similarity. The work is centered around three hypotheses and
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two definitions regarding the statistics of velocity increments u(x +r) — u(x).
Those statements are paraphrased in the following.

Definition of Local Homogeneity and Isotropy A flow is locally homoge-
neous and isotropic in a region of the flow, if the statistics of velocity differ-
ences are invariant under translations (homogeneity), rotations and reflections
(isotropy) over that domain.

Hypothesis of Local Isotropy and Homogeneity The velocity difference
statistics are homogeneous and isotropic over a region of the flow’s typical
length scale L, time scale T = L/U, and sufficiently far away from the flow
boundaries.

First Similarity Hypothesis The statistics of the small-scale (r < L) velocity
differences in locally isotropic turbulence depend only on the dissipation rate
e and the kinematic viscosity v.

Second Similarity Hypothesis If L > r > 15, where 7 is the typical length
scale of viscous dissipation, the velocity increment statistics depend on the
dissipation rate € only and are independent of viscosity.

These hypotheses have far-reaching consequences. First, they allow to
quantify the typical length scales of the flow. The size of smallest length scale
in the flow (the size of the smallest eddies) is proportional® to the Kolmogorov
length 7. According to the first similarity hypothesis, 7 can only depend on
e and v. The only dimensionally correct length scale that can be formed by

3\ 1/4
n= (V—> : (3.17)

s

these two quantities is

Similarily, a time- and velocity scale of the dissipative regime can be formed:

T =Vv/e, (3.18)
Uy = (ev)1/4. (3.19)

The size of the largest length scale over which local isotropy can be as-
sumed according to K41 is less well defined. A common estimate is the in-
tegral over the correlation function Cy1(r) starting from r = 0. The upper

*Note that Kolmogorov never claimed equality. In fact, the smallest eddies are likely
roughly of size ~ 10y [58].
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Figure 3.1: Left: Illustration of the second order structure function Sy(r). Blue line: small-
scale scaling ~ 2, red line: K41 inertial range scaling ~ r2/3. S, (r) is constant at the largest
scales. Right: Measurement of the one-dimensional energy spectrum. Red line: K41 inertial
range prediction ~ k~>/3. At large scales, Ej; = const., whereas E(k < 1/L) ~ k% with 2 <
a < 4. The large-scale behaviour of E(k) is not recovered in the one-dimensional surrogate
due to the integral in eq (3.6).

boundary is often taken as the first point where Cy1(79) = 0, but other defini-
tions are possible [59, 60].

There exists another important length scale first defined by Taylor [18].
The Taylor scale A is originally defined over the correlation function as well

[18, 42], but the more practical definition

u? _[15vu? (3.20)
u/ox2 Ve 3

A=

is presented here. It is of great importance for fundamental turbulence stud-
ies, as the commonly used Taylor-scale Reynolds number is based on this
length scale. However, its interpretation is not as clear as in the case of 7, or
L. A was originally meant to characterise the scale at which dissipative effects
become negligible [18]. It has been observed in the past that the average dis-
tance between zero-crossings of the fluctuation signal is very close to A [19],
and that A is linked to the onset of Markovian properties in the turbulent
cascade [61].

K41 augments the phenomenology of the Richardson cascade picture of
turbulence by a quantification of the most important length- and time scales
involved. Kolmogorov’s theory further makes detailed predictions about how
the velocity increment statistics scale with the increment r. The n-th order
structure function defined by (3.8) has units of (m/s)". A family of func-

tion that fulfils the self-similarity condition (3.16) are power laws of the form
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f(r) ~ 1%, Assuming a self-similar power law for S, (r), the only dimension-
ally correct result with ¢ as the only free parameter is

Su(r) ~ (er)"3. (3.21)

Note that for n = 3, the scaling is readily confirmed by the 4/5-law derived
directly by averaging the Navier-Stokes equations. This lends support to the
ad-hoc assumption of a power law.

From this the following overall picture emerges for S,: At very small scales

2 as can be seen

r < 1, where viscosity dominates the dynamics, S, ~ r
from a Taylor expansion around r = 0. For very large separations r > L,
the velocity field is decorrelated and S,(r) ~ uf,s- If those two regimes
are separated well enough, a third distinct range of scales emerges, where
nonlinear dynamics (inertia) dominate. Here, viscosity and flow geometry
play only a minor role and the structure function follows eq. (3.21).

Through equivalent arguments, Kolmogorov could predict the scaling of

the energy spectrum in the inertial range
E(p7 ' < k < L7Y) = Cge?/3k5/3, (3.22)

These results have far-reaching consequences. They imply that in a statisti-
cal sense only the largest scales are flow dependent. The statistics of the small
scales (including but not limited to the dissipation scales) do not depend on
their origin, i.e. are universally shared among different types of flow up to
a constant prefactor. It turns out that even the prefactors are at least similar
from flow to flow.

In the decades following its original publication, the spirit of the K41 pre-
dictions has been confirmed in experiments too numerous to list. At leading
order, K41 is a remarkably good description of turbulence statistics, in partic-
ular given its simple derivation.

It should be noted that the history of these predictions is much richer than
suggested here. In fact, Prandtl [62], Onsager [63], and Heisenberg [64] and
Weizsdcker [52] arrived at the same conclusions independently.

3.3.4 Intermittency

The K41 framework was a milestone in the understanding of turbulence
statistics. However, it was quickly realised [65, 66] that € is an intermittent

function of space and time, and therefore a simple average is an oversim-
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Figure 3.2: The time series of the dissipation rate (R ~ 4000) computed from the a single ve-
locity component illustrating the intermittency of e. The signal is an extremely spiky function
of time (and space) regularly taking values several hundred times its mean.

plification. Fig. 3.2 illustrates that the dissipation rate frequently departs
extremely far from its average values. This objection has led to the develop-
ment of several theories that aim at modelling this intermittency. Historically,
Kolmogorov quickly refined his original theory [66] assuming a probability
distribution that accounts for the abundance of extreme dissipation values.
Such a distribution is the log-normal distribution, which causes corrections to

the structure function scaling exponents of the form

o
Gn =73 —1g"(n—3). (3.23)

u is the intensity of the intermittency.

Different assumptions for the PDF of € have been proposed. For example,

Andrews et al. [67] assume a Gamma-Distribution for .

Another probability-based model is the Log-Poisson model by Dubrulle
[68]. It yields
A=)
1-8

B is equivalent to y in eq. (3.23), and A is proportional to the codimension

n=01-A8)n/3+ (3.24)

of the "most intermittent dissipative structures" [68]. These structures are
explicitly captured by the largest statistical moments, since higher moments
emphasise the tails of the distribution. An intuitive assumption for the nature
of these structures are extremely thin vortex filaments, which are practically

one-dimensional. For this special case of eq (3.24) one gets § = A = 2/3. This
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is known as the She-Leveque model [69], which precedes the Dubrulle model
historically. Incidentially, this yields an acceptable fit to measured values of
{n without the need for free parameters (see Fig. 7.6, and e.g. Ref. [70]))
and with a plausible physical interpretation. The two models furthermore
predict a order-by-order hierarchy of scaling laws, i.e. S, ~ S,. This is
strikingly similar to the empirical observation that S, scales with S, over a
much longer range of scales than S, (r) (known as "Extended Self-Similarity"
(ESS), see Chs. 6 and 8 [71]. Finally, the Dubrulle model is a limiting case of
the random B model[72].

The random B model belongs to a class of models that are based on the
geometric interpretation of intermittency [72, 73]. Intermittency of e implies
that certain regions of space contain large values of ¢, whereas others do not.
A way to construct such a spatial distribution is to start at a scale ¢y (in tur-
bulence: the length scale, where the energy is injected into the cascade) and
to subdivide the volume £3 into smaller volumes of size (£y/2)? (or any other
factor> 0). A fraction f of these subvolumes carry "active" eddies (strong dis-
sipation). These "active" subvolumes are subsequently divided in N steps into
even smaller subvolumes of scale /y/sY, such that the energy transfer at the
N-th iteration is ey = /SN u3 /0. Here, uy is the RMS velocity within all active

subvolumes at scale ¢y. This yields structure function scaling exponents

n

Gi=5+6-D)(1-3)- (3.25)
D can then be interpreted as the fractal dimension of the active eddy volume.
According to eq. (3.25), the structure function scaling exponents are still a
linear function of n. While measurements of {,, are subject to large uncertain-
ties at high n, they generally point towards a nonlinear behaviour of {, [74].
However, when looking at the closed-loop integral over the velocity field in-
stead of velocity differences, the available data points towards a combination
of two linear functions valid for different ranges of n [75]. This would cor-
respond to a bifractal model, where the dissipation can exist on two different
fractal sets, where the measured scaling exponent is the smaller of the two at
any given order n. The next step is naturally to assume the existence of in-
finitely many fractal sets with scaling exponents between (fmin, imax ), which
is known as the multifractal model [76, 77, 78, 72]. An example of such a model
is the random B-model [72], where the fraction S occupied by active eddies
(strong dissipation) is an independent random variable for each subvolume

and cascade step. Together with the arguments made for the f-model, the
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random B model yields for the structure function scaling exponents

n

Gn =3 —logy ((B)' 7). (3-26)

3.4 Lagrangian Turbulence

3.4.1 The Lagrangian Framework

The preceding chapters of this thesis have been exclusively concerned with
the Eulerian description of the flow field, i.e. the vector field of the flow ve-
locity u(x, t). The corresponding statistical objects are based on observations
of that flow field at one or two locations in the flow. There exists however a
different, but equivalent method of describing fluid flow. Instead of consider-
ing the fluid parcel at each point in the volume, we label each fluid parcel by
its location X at the point t = 0 by x¢ and track its position as a function of
time.

The relation between this Lagrangian description in a comoving reference

frame and the Eulerian description in the laboratory frame is straightforward
[54]:

PO0D) _ w(x(xa, 1) 627)
X(xo,t) = xo (3-28)

Similarily, the Lagrangian velocity is defined as

Ulxo,£) = - X(x0, 1) = u(X(x0,1)) (3.29)

Writing down the Navier-Stokes equations in an entirely Lagrangian frame-
work yields complicated shear-stress terms and is of little insight [79]. Here,
only the implicit version using the Eulerian equations shall be presented [54]:

d
U0 t) = [=VP(x t) + vV2u(x )] [xx(xg.t) (3:30)

The nonlinearity of the advective gradient has been absorbed into the La-
grangian acceleration. Therefore, measurements of the acceleration of a fluid
particle contain direct information about the nonlinear facets of turbulence.
The Lagrangian description is furthermore of great practical importance, since

transport and mixing processes are more intuitively understood in a comov-
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ing reference frame [80]. However, wind tunnel experiments of transport
phenomena, such as two-particle dispersion, are a practical challenge. These
phenomena require particle tracking over long periods of time > 507, such
that a stationary measurement device would need to resolve a very large field
of view sufficiently or the device needs to be moved with the mean flow. The
dispersion characteristics of turbulence are beyond the scope of this thesis.

3.4.2 Lagrangian Structure Functions

In principle, all statistical objects defined in Sec. 3.1 exist in the Lagrangian
reference frame with spatial increments usually replaced by temporal incre-
ments along the trajectory of a fluid parcel. However, quantities like the en-
ergy spectrum rely on unbiased sampling, i.e. a constant sampling indepen-
dent of the value under study. Faster particles cross any finite measurement
volume in a shorter time than slower ones, which introduces a sampling bias.
Since structure functions are local in scale and space, they are less plagued by

preferential sampling.

The n-th order structure function is defined as the n-th order moment of
the velocity increments separated by a time step T along the trajectory of a

fluid element:
S(T) = (it + 1) — ui(£))") (3-31)

Equivalent to the Eulerian Framework, the K41 theory yields for the inertial
range of scales
Si(T) = Cu(eT)"?, (3:32)

which is straightforward to derive by dimensionally matching 7 and & under
the assumption of self-similarity. If the inertial range statistics take a universal
form at larger R, C,, should approach the same constant for every homoge-
nous, isotropic turbulent flow. In the case of n = 2 (typically called Cy), this
constant is closely connected to the Richardson constant of pair dispersion for
separations in the inertial range and the structure functions of passive scalars
[81]. It furthermore appears in relative dispersion- and transport models. The
experimental measurement of Cp is however very difficult. In general, La-
grangian statistics of adequate precision have been accessible for little more
than two decades at the point of writing [82, 83] with some earlier atmo-
spheric measurements being subject to large uncertainties [84]. This is a very
short time frame compared to the body of Eulerian measurements acquired

over more than one century. The measurement of inertial range quantities
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in the Lagrangian reference frame is particularly difficult, because its inertial
range grows by a factor R}\/ 2 slower than the Eulerian [85]. The existing mea-
surements and numerical simulation arrive at values of 2 < Cy < 9 with very
small or absent inertial range scalings.

As T — 0, a Taylor expansion yields that SL(t < 1;) ~ 1. Using in

addition, Kolmogorov’s First Hypothesis of Similarity along with dimensional

3
Sr(T K 1) = apy/ ?Tz. (3.33)

ap is called the normalised acceleration variance. It is predicted to ap-

arguments,

proach a universal constant in the limit of very large R, (cf. Sec. 3.4.3).

Note that in the Lagrangian framework a straightforward relation between
statistics of different orders such as the Kdrman-Howarth equation (3.12) does
not exist. Therefore, the scaling laws (3.32) are only based on dimensional ar-
guments. The closest to a Lagrangian "4/5th-law" is the Ott-Mann-Gawedcki
relation [86, 87, 88]. Considering two particles with velocities v1 and v, and

an initial separation in the inertial range,

<%(v1(t) — vz(t))2|t_0> = —4e. (3-34)

This is intimately connected with the time-irreversiblity of turbulence [89].

3.4.3 Lagrangian Accelerations

The Lagrangian acceleration is a fundamental quantity in the study of
turbulent flows, since it is equivalent to the convective derivative as demon-
strated in Sec. 3.4.1. It is furthermore a direct measure of the smallest scales
and its magnitude scales with £~1/3 in the inertial range, i.e. fluid element
accelerations become smaller with increasing length scale.

Heisenberg [64] and Yaglom [53] derived a relation for the acceleration

variance based on Kolmogorov’s K41 self-similarity theory:
(a?) = age®2v™1/2, (335)

In the presence of small-scale intermittency, (a?) might carry a Reynolds num-
ber dependence. For example, if the dissipation rate is log-normally dis-
tributed, (a?) ~ Riﬂ /16 [90]. Since the measurement of accelerations at high
R, requires extremely well-resolved spatiotemporal coordinates of the fluid

parcel locations, its statistics are accessible in experiments only relatively re-
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cently [83, 91, 90].

Since the Lagrangian acceleration directly probes the small-scale structure
of the flow, its probability distribution function (PDF) has to reflect the relative
abundance of extreme events. In other words, the PDF of accelerations must
be heavy-tailed. This has been confirmed in DNS [92] and experiments [91].



Chapter 4

Experimental Setup and Flow

Properties

The purpose of this chapter is twofold: First, the experimental facility in
which the experiments were performed is described. Particular attention is
paid to the active grid that allowed the creation of higher R) and is the most
recent addition to the wind tunnel structure. Then, the large-scale flow prop-
erties are discussed in three brief sections. The corresponding measurements
are the hot wire measurements tabulated in Appendix unless stated other-

wise.

4.1 The Variable Density Turbulence Tunnel

The Variable Density Turbulence Tunnel (VDTT) is a closed-loop high-
pressure wind tunnel. It is described in detail by Bodenschatz et al. [36]. In
the following a brief description of the facility is provided for the reader’s
convenience. The wind tunnel consists of two parallel, horizontal 11.68m
long tubes with an inner diameter of 1.84m connected by two elbows of inner
diameter 1.52m. The centerlines of the tubes are 3.5m apart. The total volume
is ~ 88m? enclosed by 20 mm thick steel (18 mm in the elbows). The pressure
vessel is approved for operation with sulphur-hexaflouride (SFg) up to 15 bar
between 15 and 30°C.

The gas is propelled by a 210kW electric motor, which is located at one
end of the lower straight tube. The motor rotates a fan with 20 blades at up
to 24 Hz accelerating the working fluid to mean flow speeds between 0.5 and
5.5 m/s. It is water cooled with the cooling water provided by the institute

cooling system through a dedicated water line into the tunnel.

31
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Figure 4.2: Vertical traverse with hot wire holders and pitot tubes installed looking down-
stream. A vertically mounted linear stage on the left side can be used to record velocity
profiles
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The operating gas first flows through one elbow, which is immediately fol-
lowed by a 240kW heat exchanger at the beginning of the upper straight cylin-
drical tube. This heat exchanger removes the heat injected into the flow by the
electrical motor once it has dissipated into heat. The heat exchanger consists
of two registers of water-cooled plates that are stacked in such a way that cool
water flows from both the top and the bottom of the cross-section to avoid
a temperature gradient along the tunnel height. The cooling water supply is
isolated from the pressurised tunnel inside and the laboratory environment.
Leaks of SFs into the cooling water as well as cooling water leaks into the SFq
would be detected. The rectangular heat exchanger is smoothly adapted to
the cylindrical cross section through a contraction and subsequently adapted
to the approximately octangular cross section shape of the following mea-
surement section by an expansion. During the expansion the flow encounters
three meshes of increasing mesh spacing (0.85omm, 1.26ymm, 2.833mm). To-
gether with the heat exchanger slots these meshes laminarise the flow and
destroy any residual mean vorticity introduced by the rotating fan. At the
beginning of the upper measurement section turbulence production mecha-
nisms are installed. The measurements in this thesis were carried out using an

active grid (see Sec. 4.2), in previous experiments a passive grid was installed

[93, 94, 95].

After the active grid the flow passes through another vertical expansion
from 104 cm to 116 cm height and is then left to develop freely within the
boundaries of the 8.8m long, 1.5m wide, and 1.17m high (measured at the
downstream end) measurement section. Note that the section was elevated
by 12cm compared to the setup described in Ref. [36]. The section features
a traverse that can be moved in the streamwise and vertical directions. A
cable guide brings digital connections, RG223 coaxial signalling cables, as
well as plastic pipes to the traverse, which provide the basis for hot wire
measurements. Ch. 10 describes the implementation of a camera platform
that is about 6m downstream from the active grid. After leaving the upper
measurement section the flow is guided through the other elbow through
another set of three meshes before entering the lower measurement section.
This measurement section was not in use during the experiments presented

here. After this section the fluid enters the fan again.
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Figure 4.3: Side view of the Max Planck Variable Density Turbulence Tunnel indicating es-
sential parts of the flow. Graphic by A. Kubitzek.

4.2 The Active Grid

The most classic turbulence experiment is perhaps the wind tunnel flow
in the far-field wake of a solid grid of regularly spaced bars [96]. This flow is
very close to the idealised case of homogeneous, isotropic turbulence [97]. It
also has a rather low turbulence intensity, which allows the application of Tay-
lor’s frozen flow hypothesis (see Sec. 5.2, Ref. [98]) to convert single-location
time series into one-dimensional flow fields. The energy injection scale L is
well-defined by the spacing D of the grid bars. While these properties make
it a very good choice to study fundamental aspects of decaying turbulence,
they also bring difficulties: The Reynolds number R, depends on the RMS of
the velocity fluctuations u. Thus, when the turbulence intensity u/U is low,
a high mean flow velocity U is required to obtain high Reynolds numbers.
High mean flow velocities require very fast sensors (see Ch.5).

Further, the grid spacing D is limited by the wind tunnel dimensions to
maintain a high degree of homogeneity and isotropy. Therefore, the energy
injection scale L is limited to a fraction of the wind tunnel dimensions and
difficult to adjust. The aim of the active grid in the VDTT is to create higher
turbulence intensities and larger energy injection scales while sacrificing only
little of the flow isotropy and homogeneity.

Makita & Sassa [99] were the first to create an active grid and show that
it produces turbulence that is comparable to the canonical passive grid tur-
bulent flow. Their grid consisted of agitator winglets mounted to rotating
rods. This setup and variations of it were the blueprint of most active grids
built subsequently (see Ref. [100] for a review). Active grids with rotat-

ing rods were used to generate homogeneous, isotropic turbulence at high
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Figure 4.4: Left: Overview of active grid structure with most flaps in closed state. The outer
aluminum structure is not exposed to the flow. Right: Close view on some active grid flaps
with flaps pointing at (clockwise) 0°, 45° 90°, and -45° with the flow pointing out of the plane.
The center of each flap has a servo motor, which is decorated by plastic plates to form a 11cm
side length winglet. Graphic by A. Kubitzek, reprinted with permission from [108].

Reynolds numbers [101], generate conditions that closely resemble the at-
mospheric boundary layer [102, 103], create uniform velocity gradient [102],
avoid or generate shear [104, 105], and to investigate wind turbines [106] and
wind turbine arrays [107].

The active grid installed in the VDTT is a significant advancement over the
Makita-style grids of rotating rods. It consists of 111 winglets that are com-
pletely independent, i.e. not connected by rods. Each 11cm x 11cm square
winglet has a Futaba BLS152 servo motor mounted in its center. This allows
the winglet to rotate by +£90deg from its open position at 0 deg at a speed
of 40° per o.1s. In the open position, the winglet’s blockage is minimal and
one of their diagonals is parallel to the streamwise direction (see Fig. 4.4).
At +£90 deg one side of the winglets directly faces the flow, respectively. The
winglets are mounted in such a way that strong deflections of the flow are
prevented and the turbulence is generated by the interaction of several wakes
rather than large-scale vortices. The servo motors are powered by 12 24V
power supplies within the tunnel and controlled by two SD84 boards con-

nected to a computer via USB and Ethernet.

The blockage of the active grid to the fluid inertia can be up to practically
100%. When filled with SF¢ at 15 bars and the fan pushing fluid towards it
this would correspond to >8 tons of fluid being pushed through the remaining
slots between the flaps. This is not only a danger to the winglets, but comes
close to the structural limits of the entire tunnel due to the sudden loss of
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angular momentum and the associated torque. Such a situation can occur
either when commanded by the user or when for some reason the active
grid motors receive no power or signal. The former case is prevented by the
software that controls the grid (see below). When the total blockage exceeds
70%, all angles are reduced by a common factor to bring the blockage below
that threshold. The latter case of sudden loss of power or signal is even more
dramatic, because the stable position of the flaps in the presence of flow is
closed, i.e. blocking the flow. Thus, a loss of power leads to the sudden
closure of the active grid flaps. To prevent damage to the grid and the tunnel,
the active grid is constantly monitored and a loss of power or signal triggers

an emergency stop of the wind tunnel fan.

The unique flexibility of the active grid allows for unseen ways to create
turbulence, which has been shown in Ref. [109]. The authors use an active
grid that is virtually identical to the one installed in the VDTT, but slightly
larger. They have developed a protocol that drives the active grid and is de-
scribed here briefly. It rests upon operations on a N x M x T-Matrix of grid
angles Ay, ¢, where n and m are the coordinates of a virtual grid. Seven
wingelts are padded to each dimension of the matrix to avoid boundary ef-
fects when computing correlations. The index t corresponds to the order in
which the angle configurations are realised on the active grid. The algorithm
starts by creating a completely random instance of Ay, ;. The matrix A, ,, 7/2
is chosen as the first set of grid angles. The key step is to correlate A,, , 7/ in
all three dimensions before initiating the motion of the winglets on the active
grid. The correlation function and its parameters determine the exact form
of the forcing and have a big impact on the turbulence properties [109, 108].
To illustrate this we consider a top-hat correlation function Cry of correlation
length os and -time 0} centered around the indices (5, 5, T/2):

1 forb—ogs<mmn<5+csand T/2—0: <t<T/2+0;
Cry=1 (4.1)
0 else

I is a normalisation constant. In this case an averaging over the oy adja-
cent winglets in each direction and the values As5; for t = T/2 4 0; would
take place and lead to the final angle for winglet coordinate (5,5). This pro-
cedure is repeated for all values of A, , 7/> and the resulting matrix deter-
mines the next set of angle sent to the active grid. The matrix A, ,, 7/, is now
updated with the correlated values. Finally, the matrix A,,, is discarded,

Amnt — Amni—1, and Ay, 7 is a new, random NxM matrix with values
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Figure 4.5: Long Tail and Top Hat correlation functions used to calculate the stream of corre-
lated grid angles

between £90deg with a pre-defined RMS. This algorithm forms a random
stream of grid angle sets that are correlated in space and time. Crpy is only
a simple, illustrative example, much more complex shapes of the correlation

function are possible and the effects are described in detail in [109].

This thesis does not contain a detailed study of active grid protocols, but
some experience on the effects of different grid protocols is communicated.
The measurements presented here were taken exclusively using either a fully
random mode with a pre-defined angle RMS, a top hat correlation function
(TH), a long tail correlation function (LT) or a completely opened, stationary
grid. The top hat and long tail correlation functions are sketched in Fig. 4.5.
The grid protocols used are indicated by the following identifiers: Spatial
Correlation Function ¢5/0.11m; Temporal Correlation Function or/0.1s. For
example, a grid protocol with a long tail spatial correlation with cs = 0.55m
and a top hat temporal correlation with or = 0.3s would be abbreviated as
LTsTHs3.

The active grid allows turbulent kinetic energy to be injected into the flow
with unseen flexibility and opens possiblities for studies on the effects of
different turbulence forcings.

This thesis is centered around the measurement of ultra-high Reynolds
numbers, for which the active grid is driven with the aim to generate energy
injection scales of different sizes. The relevant grid parameters is the spatial
correlation length os and the temporal correlation length or. og determines
the energy injection scale in the spanwise (transverse) directions, while orU
determines the injection scale in the streamwise (longitudinal) direction at a

given mean flow velocity U. The volume of a correlation is therefore given by

Veorr = 0'§(7'T u. (4.2)
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Figure 4.6: Left: The flap correlations of the active grid measured by L.y, determine the
correlation length of the velocity time series even at the end of the measurement section
about gm (~ 80 flap sizes) downstream of the active grid. Therefore, the energy injection
scale is efficiently controlled by the active grid correlations. Right: The a priori grid Reynolds
number is a good predictor of the final Taylor scale Reynolds number R,. The red line shows
the function 0.9845,/Reg,iq. The outlier corresponds to a case where the grid was stationary
and open.

It can be seen as the average fluid volume that is influenced by one grid
correlation. It can be converted into a length scale Ly = Vclo/r?. Fig 4.6
shows that the scale at which the active grid correlations occur influences the
correlation lengths of the velocity time series in the far-field (>80 flap lengths
downstream) of the active grid.

To quantify the relation between the active grid and the creation of large
Reynolds numbers we define the Reynolds number based on the active grid

by

Sin(q)RMS ) ULcorr
1%

Regrig = (4.3)

where ®rps is the RMS of the flap angles with respect to the mean flow
velocity, i.e. a measure for the grid blockage. Reg,iq can be calculated purely
from input quantities, i.e. before the actual experiment. As can be seen in Fig.
4.6 the grid Reynolds number is a good predictor for the Taylor-scale Reynolds
number R, which is based on quantities that are typically only available after
conducting an experiment. Moreover, the simple relation R, ~ 0.985\/Reg;iq
is a good description of the data and resembles the isotropic relation between
R, and Re. It can therefore be used to estimate the R, completely from a priori
quantities, i.e. active grid setting, facility pressure, and mean flow velocity
(c.f. Ref. [108], and Sec. 9).



4.3. VELOCITY DISTRIBUTIONS 39

107" 1
4000
10-3
g 2000
=
LL4 ~<
) ~
-5
E; 10
1000
10771 *g
i
r 500
1079 1= . . : : : :
-75 —5.0 —25 0.0 25 5.0 7.5 10.0
(u—U)/urms

Figure 4.7: Normalised PDFs of the velocity fluctuation color coded by their Taylor-scale
Reynolds number R,. The black curve is the normal distribution. The measurements
show a noticeable deviation from the normal distribution, albeit acceptable in most cases.
Three curves have a strong positive skewness. In these cases the active grid was driven
in a very anisotropic way to create very large R, (LT3.5LT6, LT5LT10, LT5.2LT15 to reach
R) = 4141,5006, 5865, respectively.)

4.3 Velocity Distributions

The velocity fluctuations u in a homogeneous turbulent flow are typi-
cally assumed to be normally distributed. This means that their flatness
F = (u*)/{u?)?> = 3 and their skewness S = (u3)/(u?)3/2 = 0. The for-
mal justification for this assumption is the central limit theorem, by which the
superposition of independent random variables will be Gaussian distributed
[110]. In a turbulent velocity field these random variables are the Fourier co-
efficients into which the velocity field can be decomposed at any time. How-
ever, this justification has to be questioned if the Fourier amplitudes span a
wide range of scales. In particular, if the spectrum falls off steeper than k!
as it is typically the case in a turbulent flow, the velocity PDF is expected to
be slightly sub-Gaussian [111]. A more comprehensive theoretical treatment
[112] yields similar results. These authors find that forced and decaying tur-
bulence are not fundamentally different in their velocity distributions. Still,
Maxey [113] applies simple eddy-diffusivity arguments to arrive at the con-

clusion that in grid turbulence the flux of turbulent kinetic energy in the
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streamwise direction should have a small, positive skewness on the order of
the turbulence intensity. Mouri et al. [114] found that the tails of the velocity
PDF develop from sub-Gaussian to hyper-Gaussian with increasing distance

from their passive grid.

Even though the velocity PDF is strongly influenced by the specific large-
scale inhomogeneities of real flows, slightly sub-Gaussian statistics are ob-
served in a wide variety of different flows [20, 115, 116]. Metzer & Klewicki
[117] find that skewness and flatness increase with decreasing distance from
the turbulent boundary layer. Hearst [118] carried out an extensive study of
the wake of a fractal grid and found that skewness and flatness of the ve-
locity distributions deviate from their Gaussian values only in the near-field
of the grid (<30 mesh sizes). Similarly, in a strongly anisotropic wind tunnel
flow, skewness and flatness settled to (sub-)Gaussian values quickly behind
the turbulence generator (an active grid with only three or four horizontal
rows) [119]. In summary, the a priori expectation for the velocity distribution
in grid turbulence appears to be a Gaussian shape, but deviations from this
shape (even strong ones) are not entirely surprising. In the following, the
shape of the distributions measured in the VDTT with an active grid shall
be described and analysed. The data was sampled with the hot wire sys-
tem described in 5.3.1 and corresponds to that of Tab. 11.1 . The normalised
PDFs measured with our constant temperature hot wire setup are shown in
Fig. 4.7. With the exception of the case where the active grid was constantly
in its most open state (i.e. closely representing a passive grid) the PDFs are
skewed towards higher velocities. The majority of them show a skewness
—0.1 < S, < 0.25 and a flatness 2.9 < F, < 3.2 (see also Fig. 4.8 ). There
appears to be a small trend of larger skewness and flatness values towards
higher R). Three measurements show very large deviation from a normal
distributions. Because the velocity PDF is strongly influenced by the large-
scale structure of the flow, the dependence of the two shape parameters on
the active grid initial conditions and the decay of the flow is investigated in
the following.

Fig. 4.8 shows the dependence of the shape parameters on the active grid
initial conditions. These measurements were all taken at the downstream end
of the measurement section. Note that they are therefore in different positions
when normalising by active grid units. The spatial and temporal correlation
lengths o5 and or were introduced in Sec. 4.2. The quantity orlU/0s is the
dimensionless grid anisotropy that describes the ratio between streamwise

(temporal) and transverse (spatial) correlations introduced by the grid. We
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Figure 4.8: Dependence of the PDF shape on the active grid initial conditions. The temporal
correlation length Uor appears to be the main contributor to both increased flatness and
skewness, whereas the PDF shape is relatively independent of the spatial correlation length
or
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Figure 4.9: Dependence of the PDF shape on the distance from the active grid normalised by
the flap size M = 0.11 m for two different grid protocols (LT7LT5, LT3.5LT3.5, see Sec. 4.2
for details). F, and S, deviate more and more from their Gaussian values with increasing
distance from the grid, but saturate in both cases. Facility pressure: 5.95 bar, mean flow speed
~ 3.6 m/s.

can see from Fig. 4.8 that the PDF skewness and (less clear) flatness is rel-
atively independent of 0s. The PDF shape is much more sensitive to the
streamwise correlation length orU. Larger values of this parameter seem to

lead to stronger deviations from a Gaussian velocity distribution.

Refs. [113, 112, 118, 120] suggest that the PDF shape depends on the
distance from the turbulence generator. Fig. 4.9 therefore shows S, and F,
as a function of the distance from the grid for to different grid protocols. As
anticipated by Ref. [113], the skewness increases with increasing distance
from the grid x. The difference between the two grid protocols becomes more
and more pronounced with x. It is however difficult to compare these data to
other studies or draw further conclusions, because the interpretation depends
sensitively on the choice of M. In our active grid it is not clear, which value to
choose. The flap dimensions are certainly a lower bound for the “grid spacing’
M, because the their motions are correlated over multiple flaps.

This section concludes by recognising that the PDFs of velocity fluctua-
tions behind our active grid are more complex than in conventional passive
grids or even fractal grids [118]. Namely, they are in general flatter than a
Gaussian distribution and skewed towards positive fluctuations. This seems
to be mainly due to the streamwise correlations introduced by the active grid.
If this correlation length Uor < 0.4, skewness and flatness are restricted to
acceptable values. This was the case in most, but not all of our measurements.
A velocity distribution close to a Gaussian is ‘desirable’ for a homogeneous
flow, but not strictly necessary. In summary, particular attention should be

paid to those cases, where Ucr > 0.4, and this limit should be exceeded only
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if strictly necessary. Furthermore, the influence of the decay on the PDF shape
should be investigated in greater detail and the meaning of M in the context
of the VDTT active grid should be elucidated.

4.4 Decay of Turbulent Kinetic Energy

Even though the turbulence in this experiment is actively stirred through-
out a single experiment, the flow has to be regarded as non-stationary. The
turbulence in a volume of fluid is excited at one location in the tunnel (the
location of the active grid) and then carried with the mean flow without fur-
ther injection of energy (except wall friction). Therefore, the energy injected
at some scale L will be transported to smaller and smaller scales, where it
is dissipated by viscosity into heat. Because there is no other mechanism to
replace the dissipated energy, the turbulent kinetic energy in the fluid volume
is decaying. The way turbulent kinetic energy decays in (grid) turbulence
has been investigated in-depth for decades [121, 122, 123, 124, 125, 126, 127,
40]. A very brief summary of the findings could read as follows [40]: The
turbulent kinetic energy u? in an unforced fully developed turbulence decays
with a power law t" with —2 < n < —0.9 over time (the exception of expo-
nential decay [124] is noted). The length scales grow also with power laws,
unless suppressed by the boundaries (e.g. [128]). During the decay certain
quantities remain constant, namely either the Loitsyansky integral

1= —/rz(u-u' Vdr, (4.4)

which implies a constant, but finite global angular momentum of the flow, or
the Saffman integral

L= /(u -u')dr, (4-5)

which is connected to the linear momentum of the flow. In the former case,
the small-wavenumber part of the energy spectrum is expected to grow as
E(k) ~ k* and n = —10/7, in the latter case E(k) ~ k* and n = —6/5
is found. In practice, both laws are observed, with passive grid turbulence
usually preferring the latter (e.g. [95]).

The attractiveness of decaying turbulence behind a (passive) grid is that
it is known to be very close to the canonical ideal of homogeneous isotropic
turbulence [97] (with the obvious exception of the streamwise inhomogeneity

due to the presence of a mean flow). The main purpose of this section is to
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Figure 4.10: Decay of turbulent kinetic energy and development of the energy injection scale
L as function of time. L was estimated as [ Cy1(r)dr in this case. Two different grid protocols
are shown (blue squares: LT7LT5, red circles: LT3.5LT3.5, see Sec. 4.2 for details). The kinetic
energy decays as a power law. In contrast to freely decaying turbulence, the size of the energy
injection scale does not grow. This is most likely associated to the confinement of the flow
in the transverse directions. t is a Galilei transform from the downstream distance from the
active grid and the mean flow velocity U.

verify that the measurements we take are recorded in the decaying part of
the active grid wake in contrast to the near-field buildup. Fig. 4.10 illustrates
that the turbulence in the VDTT with an active grid is decaying for both
grid protocols tested. As they represent a strongly correlated forcing (blue
squares) as well as a more moderate forcing (red circles), we deduce that the
active grid in general produces decaying turbulence. As the right panel of
Fig. 4.10 shows, the turbulence is not freely decaying, because the largest
scales do not grow, but decrease. This is most likely because the growing
wall boundary layers confine the flow to a shrinking domain. This effect is
less severe when estimating L = u3/¢ (not shown). Since the purpose of this
experiment was merely to confirm the decaying nature of the flow, the near-
tield was not examined. It is thus not possible to identify the beginning of the
decay region (fp) from this data. Therefore, crucial information to measure
the decay exponent 7 is missing. Sinhuber et al. instead related u?(t) to L(t)
to distinguish between the decay theories (4.4) and (4.5), but because L is
not growing in the present case, n cannot be extracted this way. In theory,
decaying turbulence with L = const. leads to n = 2 [129].

4.5 Flow Profiles

This thesis aims to contribute to the field of homogeneous, and isotropic
turbulence. It is therefore of interest to verify that the flow under study is

to a reasonable extent homogeneous and isotropic. To measure the isotropy
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of the flow, it is necessary to measure two velocity components. This can
be achieved in principle using a pair of crossed hot wires [130], but sensors
at the degree of miniaturisation necessary in the VDTT are still in their in-
fancy [131] and their directional calibration in a pressure vessel is a technical
challenge. Preliminary data from a Lagrangian particle tracking system (see
Ch. 11) suggests a significant presence of anisotropy that depends on the
employed active grid forcing. The author therefore had to rely on indirect
methods to verify the isotropy of the flow, the knowledge that wind tunnel
flows behind a grid are in general close to isotropic [97], and evidence from
passive grid measurements inside the VDTT [36]. Bodenschatz et al. [36] have
acquired flow profiles along the height of the wind tunnel measurement sec-
tion (total height H). They have shown that the mean flow is approximately
homogeneous between 0.3H and 0.6H with a visible deficit around 0.5H. For
the turbulence intensity u/U the homogeneous region is about 0.05H higher
with a small local maximum around 0.6H. They also find that the flow has
an isotropy ratio v/u ~ 1.1, as expected for passive grid turbulence[97]. Note
that the measurement section was about 12cm higher in their case.

In the following a similar set of vertical profiles is presented. The data
was acquired in the VDTT filled with 2.92 bar of SF6. The rotation rate of the
wind tunnel fan was set at 19.2 Hz (slightly lower than in Ref. [36] to allow
a larger calibration range relative to the measurement speed). Two 450pm
conventional hot wires were mounted on a vertical traverse of 50o0mm travel
and driven by a Dantec StreamWare CTA. The traverse was positioned at the
downstream end of the measurement section. When the traverse was at the
position closest to the floor of the measurement section, one probe was 21.6cm
above the floor and 9.5 cm away from the center of the section, while the
other was 34.5 cm (11.0 cm) above the floor (away from the center). Velocity
time series at different heights spaced 1 cm were recorded for go seconds.
The measurements were repeated with three different grid protocols (LT1LT1,
LT3.5LT.5, and LT7LT5, see Sec. 4.2 for details), and the mean flap angle was
always set at 40°. The original active grid code was adjusted to include the
option of decreased solidity at the measurement section boundaries. The flap
angles of the four outermost rows could be reduced by a constant factor from
their prescribed values. This way, the correlation lengths were kept constant,
but the grid solidity was slightly reduced with the aim of decreasing the size
of the boundary layers.

Fig. 4.11 shows profiles of the mean velocity acquired from those mea-

surements. The distance from the tunnel floor ¥ has been normalised by the
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Figure 4.11: Vertical velocity profiles for different grid protocols. Heights are normalised
by the measurement section total height H, velocities are normalised by the velocity at the
center of the measurement section. Vertical profiles with colored background were taken
with adjusted active grid solidity: The outer flap angles of the active grid were continuously
reduced by a constant factor . Lighter color correspond to more open flaps. The black line is
the velocity profile measured in the VDTT with a passive grid installed [36]. Different marker
colors indicate different probes.

total height of the measurement section H. The mean velocity U has been
normalised by its value at y = 0.5H. This removed some of the existing dif-
ferences in the measured values of U between the two probes at similar po-
sitions. These differences were within the expected calibration errors typical
for CTA measurements [132]. Flow profiles, without boundary layer reduc-
tion through the active grid (white backgrounds) are approximately homoge-
neous only between 0.3 < y/H < 0.55. These profiles are most representative
of the situations that were investigated in Pt. II (see Appendix B). Active grid
protocols LT3.5LT3.5 and LT7LT5 show more scatter than LT1LT1, which is at-
tributed to the inferior relative convergence of the statistics due to the larger
eddy turnover time and the overall increased turbulence intensity. The flow
profile of LT1LT1 does not seem to be perfectly flat at any point. LT7LT5 ap-
pears to show the velocity deficit at the center of the tunnel already observed
in the passive grid case [36].

Fig. 4.12 shows the RMS value of the velocity fluctuations normalised
by their value at y/H = 0.5. The regular LT1LT1 and LT3.5LT3.5 profiles
show similar boundary layers as deduced from Fig. 4.11. It is notable that
the fluctuation intensity in the homogeneous part of the flow (bulk) is less

different for large active grid correlation lengths (LT7LT5, LT3.5LT3.5) than
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Figure 4.12: Vertical profiles of the velocity fluctuations for different grid protocols. Heights
are normalised by the measurement section total height H, velocities are normalised by the
velocity at the center of the measurement section. Vertical profiles with colored background
were taken with adjusted active grid solidity: The outer flap angles of the active grid were
continuously reduced by a constant factor. Lighter colors correspond to more open flaps.

for smaller correlation lengths (LT1LT1). A possible explanation is that the
larger Reynolds number of these flows increase the mixing between the bulk
and the boundary layer and therefore cause the their fluctuation intensity to
become more similar.

Fig. 4.13 shows the values of dU/dy for different heights. This quantity
is a measure for the mean shear of the flow, which is an indication for the
presence of anisotropy [105]. To obtain the gradient, the data from Fig. 4.11
has been smoothed by a moving average of kernel size 9 and the second-order
numerical derivative of the smoothed data was calculated.

For the cases in which the active grid solidity close to the tunnel boundary
was not reduced (white background), only a relatively small region is approx-
imately free of mean shear (0.4 < y/H < 0.5). This is largely independent
of the grid protocol used. The data for grid protocol LT7LT5 would justify a

slightly larger shear-free region due to the large scatter.

In addition to the investigation of the regular grid protocols used to ob-
tain the statistics presented in Part II, the possibility of minimising the mean
shear present in the system by adjusting the active grid flap angles was ex-
plored. Mean shear is produced by the friction between the moving fluid and
the stationary tunnel walls slowing the fluid down. This could be counter-

acted by providing the regions of the flow close to the tunnel boundaries with
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Figure 4.13: Profiles of mean shear along the tunnel height for different grid protocols. The
data was obtained by applying a moving average smoothing to the data in 4.11. Vertical
profiles with coloured background were taken with adjusted active grid solidity. The outer
flap angles of the active grid continuously reduced by a constant factor. Lighter colours
correspond to more open flaps.

additional kinetic energy relative to the bulk flow.

To this end, the active grid algorithm introduced in [133] and described
in 4.2 was adjusted as follows: Each of the four outermost rings of flaps has
a constant factor assigned to it. The algorithm produced the sets of grid
angles in the regular way, but before these sets were sent to the servo motors
to move the active grid flaps, the angles of the outer rings of angles were
multiplied by the constant factor § set in the program. For example, if the
regular setting of the RMS of grid angles was set to 50°, and the outermost
ring had a boundary correction factor of 0.1 set to them, the RMS of the
outermost ring would be calculated as 5°. Assuming the next ring of flaps
closer to the center had B = 0.3 assigned to it, the RMS angle of this ring
would be 15°. Since smaller active grid angles cause smaller flow obstruction,
it is expected that this technique causes higher mean flow velocities on the
edges of the tunnel and thus less mean shear.

Figs. 4.11, 4.12, and 4.13 confirm this expectation to a good extent. To
obtain the upper right and lower middle plots of this figures, the outer rings
were set to B = 0.5, B = 0.6, B3 = 0.7, B4 = 0.8, where index 1 corresponds
to the outermost ring of flaps. To obtain the lower right plot in these figures,
B1-4 was set to 0.1,0.2,0.3,0.5, respectively. Figs. 4.11, 4.12, and 4.13 clearly
show that this procedure reduces the size of the boundary layers and brings
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the flow profile closer to that of the passive grid. The homogeneous region
becomes larger and the mean shear is reduced albeit large scatter. However,
when applying a strong boundary layer correction as in the lower right plots,
a small constant mean shear appears instead of a homogeneous region as
shown in Fig. 4.11. The profile of the velocity fluctuations is constant across
the entire height investigated, but Fig. 4.13 shows clearly the existence of a
relatively constant nonzero value of dU/dy. The reason for this behaviour is
not clear at this moment and demands further investigation.

In summary, the flow shows only a small homogenous region when using
the active grid without correction of the boundary layer. This was the case for
all hot wire measurements. These results are therefore likely influenced by
large-scale inhomogeneities, and large-scale anisotropies. The degree of inho-
mogeneity and anisotropy is however small compared to those considered by
e.g. Shen & Warhaft [104]. These authors consider a purely shear-driven flow,
where the mean velocity changes by a factor of 3 over a similar range of y as
considered here. They find that at second order, the postulate of local isotropy
is valid even in strongly sheared turbulence, but departures begin already at
third order. Chang et al. [134] similarly find that anisotropy in the absence of
shear influences the inertial range statistics at levels below their experimental
uncertainty.

In the future, the use of the boundary layer correction is strongly recom-
mended since it significantly increases the homogeneity of the flow and most
likely reduces the level of anisotropy. The new feature is also a prime example
of the flexibility of active grids. The boundary layer correction can in prin-
ciple also be used to improve active grids after the example of Makita [99],
where only rows and columns can be controlled individually.

4.6 Summary

This thesis presents data from the wind tunnel that achieves the largest
Taylor-scale Reynolds number in the world (at the point of writing) under
well-controlled conditions. This is possible due to the unique combination
of a low-viscosity pressurised gas (SF6) and a very flexible active grid. The
turbulence created in such a way is decaying, its velocity PDFs are slightly
skewed and super-Gaussian, and the vertical velocity profiles have a small,
but sufficient homogeneous region, which can be extended by adjusting the
active grid. To obtain extreme R,, some of the "cleanliness" of passive grid

turbulence had to be sacrificed. It is therefore of great importance to verify
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that the conclusions drawn from the active grid data are robust against differ-
ent active grid configurations and comparisons to the (isotropic) passive grid
data presented most throughly in Ref. [93] are to be carried out whenever
possible given the lower R, of that data. Thus, when care is being taken,
the data from the VDTT with the active grid can contribute to the knowledge
about (closely) homogeneous and isotropic turbulence.
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Chapter 5

On Hot Wire Measurements

This chapter serves three purposes: (i) introduction of the measurement
principle used in this part of the thesis (ii) verify its applicability to the flow
under study, and (iii) report on progress regarding the technique that has
been used in the VDTT. First, a general introduction to the measurement
principle is provided loosely following Ch. 5.2 of [1]. Then, the limiting time-
and length scales of the system introduced by the sensing element are given
for the conditions in the VDTT. Afterwards, two main circuits are introduced
and some new insights into their operation with nanoscale sensors are pre-
sented. Next, the validity of Taylor’s Hypothesis is studied for measurements
at turbulence intensities >10 % (typical for active grid turbulence). Finally,
the hot wire measurement protocol used here is described along with routine
calculations and a comparison of different ways to determine the turbulent

dissipation rate e.

5.1 Introduction to Hot Wire Anemometry

5.1.1 Operating Principle and King’s Law

Hot wire anemometry is a technique to measure the local fluid velocity
through the flow’s advective cooling. The electric resistance of a conduct-
ing wire depends in many cases on the temperature of the wire material.
Typically, a higher temperature corresponds to a higher electrical resistance
(positive temperature coefficient of resistivity). This phenomenon is exploited
to transform a temperature signal into a voltage signal. For example, PT100
elements that are commonly used for a rough temperature measurement are
simply a platinum film with a resistance of 100() at 20 °C.

In hot wire anemometry this physical phenomenon is applied to the mea-
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Figure 5.1: Illustration of the hot wire measurement principle. The ohmic heating Ry I3
heats the wire to its operating temperature Tyy. It is cooled by a flow of velocity U. This
causes a change in the wire resistance, which can be picked up by connected electronics.

surement of flow velocities. The idea is that a fluid flow over a material carries
away excess heat it might have compared to the environment and thus causes
a change in the material’s temperature (forced convective cooling). It is clear
that a direct change of the temperature in the surrounding fluid has the same
effect and pollutes the velocity measurement. To make this effect negligible,
the wire is operated at a temperature Tyy significantly higher than the ambient
temperature T, (Tyy — T, > 100°C).

The Nusselt number Nu is the dimensionless number that characterises the
relative importance of convective over conductive heat transport and therefore
allows insights into the effect of convective cooling of a heated wire of diam-
eter d and length [. It is typically defined as

Nu = = (5.1)

k is the thermal conductivity of the fluid, and L is a characteristic length scale
(in this case the wire diameter d). h is the convective heat transfer coefficient,
which quantifies the heat flux through a surface of area A = 7ld given a tem-
perature difference Tyy — T, across the surface. The heat flux dQ/dt is given
by the ohmic heating Ryy I3, necessary to maintain the wire temperature. The
Nusselt number can therefore be reexpressed as

Rw I3

Nu = m (52)

The wire resistance is assumed to be a linear function of its temperature, i.e.
Tw — T, = (Rw — R;)/ (xRa) , where R, is the wire temperature in quiet fluid,

and x the temperature coefficient of resistivity of the wire material.
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The Nusselt number dependence on the wire Reynolds number Re has
been investigated empirically (see [2] for a list of references). The one com-
monly used for hot wire anemometry reads Nu = A + B(Re)". Setting equal

the wire Nusselt number and (5.2), one arrives at King’s Law
vZ=A'+BU" (5:3)

Here, I%v ~ VI%, was used, and the fluid and material coefficients were ab-
sorbed into the coefficients A’, and B’. n is around o.50 for conventional

wires, but can be higher for film-like miniature wires [3].

5.1.2 Wire Requirements

The sensing element is naturally an essential factor for the performance of
any hot wire system. Ideally, its thermal coefficient of resistance yx is large,
and its thermal conductivity low to ensure a good sensitivity and quick re-
sponse to changes in the flow velocity. Nickel, Silver, and Platinum are regu-
larly used to build hot wire sensors [1].

The length of a hot wire determines its spatial resolution, which is ideally
< 1. However, end conduction effects limit the ratio of wire length [ to its
diameter d. A common rule of thumb is //d > 200, which was recently
revisited by Hultmark et al. [4]. Still, shorter wires must be thinner and thus
more delicate to operate.

Since 1 can be as small as 10 pm in the VDTT, experiments in this fa-
cility require the use of the smallest sensors available. These are currently
the so-called Nanoscale Thermal Anemometry Probes (NSTAPs) produced
by Princeton University [5, 6, 7]. An alternative was developed recently by
Twente University [8]. While the NSTAP sensing element is technically a film
of dimensions 30/60 pm x 2.5 pm X 10oonm, the Twente wire is an almost
cylindrical sensor of similar length.

Unless stated otherwise, the experiments in this part of the thesis were
conducted with 30 ym NSTAP or a conventional platinum wire of 450 pm
length and 2.5 pm diameter. These probes are well-established and the reader
is referred to the literature [5, 9, 10, 11, 12, 13, 14, 7, 15] for the details.

Particular to the flow under study are the extremely high Reynolds num-
bers, the operating gas, and the associated small Kolmogorov scales #. Such
environments are similar to those found in liquid helium, where the thermal
boundary layer around a probe can significantly impact the measurements

of small-scale turbulence [16, 17, 18]. This viscous boundary layer does not
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Figure 5.2: Critical Frequency wp; = x/d? induced by the presence of a viscous bound-
ary layer through which the temperature differences between wire and flow must diffuse.
For comparison, the experimental frequency where 107 are typically found is indicated for
different values of the turbulent dissipation rate e.

follow the flow and any temperature difference between the flow and the
wire must diffuse through it. Considering the Reynolds number based on the
probe diameter d, it is found that the relevant boundary layer size scales with
d. Following the arguments of Emsellem et al. [16], the thermal boundary
layer affects the flows time scales faster than the diffusive time scale through
the boundary layer

gL = d?/x, (5-4)

where « is the thermal conductivity of the material. This time scale induces a
critical frequency wpy = 1/7pr, which is shown in Fig. 5.2 as a function of the
ambient pressure. The highest frequencies encountered in the experiments
presented here are given by the Kolmogorov scale #, which is swept by the
sensor at the speed of the mean flow U in the most demanding cases. For
U = 4.5 m/s the experimental frequency where 10y would be measured is
shown in Fig. 5.2 as well. At high pressures and for large dissipation rates
¢, this frequency exceeds that of the thermal boundary layer and the statistics
may therefore be influenced by the viscous boundary layer around the probe.
It is however clear that in the inertial range, which starts around 1007, the

thermal boundary layer around the probe does not play a role.
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Figure 5.3: Example for a simple constant current anemometer. The Wheatstone bridge
improves the noise characteristics if the potentiometer is used to balance the bridge. To
compensate for the time constant of the wire, a RC-circuit can be placed between the bridge
and the output amplifier.

5.1.3 Anemometry Circuits

There exist three common methods to drive hot wires, each with intrinsic
advantages and disadvantages. The reader is referred to the review in Ref.
[1]. An overview is provided in the following paragraphs along with results
on the frequency response of the system used in this thesis. These results are

complemented by the discussion found in Ch. 9.

Constant Current Anemometer (CCA) The simplest form of the CCA con-
sists of a high-precision current source or a low-noise voltage source with a
large resistor whose output is driven through the wire and the voltage drop
across it is measured. The main attractiveness of the circuit lies in its simplic-
ity and low costs. For conventional hot wires it will result in a poor frequency
response, high noise, and small sensitivity towards flow changes. Some of
these problems can be reduced by electronic correction (e.g. [19]) and place-
ment of a wire in a Wheatstone bridge. A basic circuit without frequency
compensation is shown in Fig. 5.3.

As the wire becomes smaller and smaller, i.e. has a smaller and smaller
thermal mass, these problems also gradually disappear. The time constant
of the wire decreases, because the thermal equilibrium after an initial change
in wind speed is restored quicker and quicker. This can become particularly
relevant when using MEMS-manufactured nanowires, such as the NSTAP [5,
9, 7] or similar approaches [8, 3]. Such wires are notoriously difficult to oper-

ate and are known to cause instabilities in conventional CTA circuits, which
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Figure 5.4: Upper plot: comparison of different power spectra recorded with different com-
binations of sensing wire and anemometer circuit under similar flow conditions. The CCA-
operated wires start to deviate from the CTA curve around 1 kHz. Lower Plot: Comparison
of the performance of two different micromachined wires using the same CCA bridge (PSD
CCA) using a CTA measurement with an NSTAP as benchmark (PSD CTA). While the cylin-
drical Twente wire follows the CTA measurement fairly well, the NSTAP response differs
significantly.

leads to fatal wire burning [7]. The CCA provides a way to operate the wire
in a very controlled way allowing a slow increase in heating current free of
teedback-loops. Although these wires have a respectable frequency response
even when operated with a very simple CCA, the system cannot take advan-
tage of the wire’s fine spatial resolution, because substantial damping occurs
for frequencies above 1 kHz as can be seen in Fig. 5.4. The commercial CTA
circuit can be tuned to optimise the frequency response using a square wave
test, which corrects for the wire thermal lag. In the CCA system as imple-
mented here, the finite wire response is not compensated and completely

dictates the system frequency response.

Here, the spectra of a 60 pm long NSTAP and a "Twente Wire" of sim-
ilar length (both with overheat ratio 1.18) are compared to a 30 pm long
NSTAP driven by a commercial Dantec StreamWare Constant Temperature
Anemometer. The main difference between the NSTAP and the Twente Wire is
their cross-section. While the NSTAP is strictly speaking a film 100 nm thick-
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Output

Figure 5.5: Schematic of a simple CTA circuit [1]. The feedback loop corrects any imbalance in
the otherwise balanced bridge, such that the wire resistance Ryy remains constant. Typically,
R1 = Ry, and Rj is a variable resistor

ness and 2.5 um width, the Twente Wire is close to a round cylinder [8]. It is
apparent that both CCA-spectra cut the spectrum off significantly compared
to a CTA. Building the ratio between the two CCA spectra and the CTA spec-
trum reveals that the Twente Wire is essentially parallel to the CTA curve up
to the cutoff frequency. The 60 pm NSTAP driven with a CCA has a less con-
stant frequency response. In any case, the nanoscale sensor cannot overcome
the disadvantages of the circuit and a frequency-dependent compensation is

required for them to compete with constant temperature anemometers.

Constant Temperature Anemometer (CTA) The CTA has been the most
widely used hot wire anemometer for decades, because it provides a very
good frequency response, excellent noise characteristics and allows measure-
ments at a constant wire temperature. The principle is based on a feedback
loop that corrects any change in wire resistance by increasing or decreasing
the current through the wire. A simplified example circuit is shown in 5.5.
Because the wire is immediately driven back to its nominal overheat, the
thermal lag of the wire is reduced significantly leading to a superior frequency
response over CCA or constant voltage anemometry (CVA). This comes at the

expense of a more complex system. While CCA and CVA are linear systems
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Figure 5.6: Measured frequency response using a CTA with two different NSTAPs. Spectra
at equal R,, but different frequency contents are compared. Both show a dampening be-
tween 0.5 and 1kHz and a subsequent amplification of the signal. The effects are small, but
significant. There appears to be a relatively small probe-to-probe variance.

that are easy to analyse, the CTA is a nonlinear system. In a linearized form
its theory has been studied extensively [20, 21, 10]. It has been found that
a CTA performance is very sensitive to all parts of the system, including
cable inductances and probe support resistance [1, 22]. While the frequency
response of a CCA or CVA is essentially that of a low-pass filter (provided
no frequency compensation has been added), the response of a CTA is more
complex. Unexpected damping or amplification effects can occur at rather

low frequencies, in particular when using nanoscale probes [10, 23].

For example, Hutchins et al. [23] have compared spectra of identical
Reynolds numbers, but different frequency contents with combination of an
NSTAP and a Dantec StreamWare CTA (the same system used for most mea-
surements presented in this thesis). They concluded that this system exhibits
a damping of up to 10% starting around 500 Hz. This is a substantial ef-
fect when small features in scale-resolved statistics are investigated (see also
Ch. 9). Their measurements have been performed in a high pressure pipe
flow. By changing both the kinematic viscosity through the fluid density and
the mean flow speed they can create flows at practically identical Reynolds
numbers, very different frequency ranges. Comparison of these features then
yields a measure of the damping at a given frequency. In the VDTT such
measurements can be performed at constant pressures, by varying turbulence
intensity through the active grid and mean flow speed at the same time. It is

assumed that at low frequencies the frequency response curve is essentially
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flat, and at the more interesting higher frequencies, the details of the turbu-
lence generation play only a minor role. One therefore measures a velocity
spectrum once at small wind speeds, but high grid solidity (active grid flaps
at 70°) and once at high mean flow speed, but small grid solidity (active grid
flaps at 10°). This method presented essentially confirms the results of Ref.
[23] as shown in Fig. 5.6. The signal is dampened between 500 Hz and 1 kHz,
then amplified up to around 3 kHz. Beyond 3 kHz definite conclusions are
difficult, because the curve is very sensitive to the frequency normalisation.

Alternative methods of obtaining the frequency response are electrical
heating through square- or sine waves [24], laser heating of the wire[25], and
fluid 'square waves’ [26]. Square waves were routinely used in this study to
optimise the frequency response (see Sec. 5.3.1).

In combination, Figs. 5.4 and 5.6 show that the Dantec StreamWare CTA
is far superior over the in-house CCA, but its frequency response is still far
from ideal. Furthermore, the tendency of the CTA to break wires oftentimes
prevents the consistent use of a specific hot wire for many measurements.
A frequency-compensation of the CCA or the design of a constant voltage
anemometer should be considered to allow high-fidelity hot wire measure-
ments optimised for miniature hot wires and with a high degree of control.
The use of the constant tempertaure system considered here requires great
care in the interpretation of data. It is an important asset of the VDTT that
similar Reynolds numbers can be created in many different ways unless the
Reynolds number is extremely high. This provides an important means of
distinguishing turbulence phenomena from probe effects.

5.2 Taylor’s Hypothesis

5.2.1 Random Sweeping Hypothesis and One-Dimensional

Spectra (joint project with M. Wilczek)

The aim of the hot wire measurements presented here is to obtain statis-
tics about the turbulent flow field that passes by the sensor, i.e. a spatially
resolved measurement of flow velocities. However, a single hot wire can only
provide time series of flow velocities U (). These time series are commonly
converted into one-dimensional flow fields U (x) by the following approxi-
mation first stated by Taylor in 1938 [27]: In situations where the mean flow

(U ) is relatively constant and unidirectional compared to its fluctuations
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u(t) =U((t)— (U (t)), i.e. where 1/<u (t)2> < (U), the fluctuating part of
the velocity signal is passively advected past the sensor by the mean flow -
the turbulent field is ‘frozen” and carried over the sensor. Then time f can
be replaced by x = (U)t. For the remainder of this part of the thesis, only
the fluctuating part of the velocity signal will be of importance and (U) is
denoted as U for simplicity.

Taylor’s assumption is a fundamental part of almost all studies of turbu-
lence statistics that rely on one-point measurements, such as Laser-Doppler
anemometry or single hot wire anemometry. In this section, the validity of
Taylor’s Hypothesis is critically assessed by comparing it to the alternative
concept of a turbulence field that is advected past the sensor by a sweeping
velocity V, which is a random variable with a Gaussian distribution. This
will yield an estimate of the potential error due the imperfections of Taylor’s
Hypothesis.

The hypothesis of large-scale eddies carrying the turbulent velocity field
was first introduced by Kraichnan [28] and Tennekes [29]. The corresponding
change of variables is u(x) — u((U+ V)t), which leads to the differential

equation

e Wv) (Vo). (5:5)

In fourier space this gives [28]

du(k,t)
dt

= —ik- (U + V)u(k,t), (5.6)
which can be solved exactly:
u(k,t) = u(k,0)explk - (U + V)] (5.7)

It can then be shown [30, 31], that the wavenumber-period spectrum is

related to the wavenumber spectrum by

E(k,t) = E(k)(exp|—ik - (U + V)t]) (5.8)

Assuming a Gaussian distribution of large-scale sweeping velocities of
mean U and variance V' we obtain after a fourier transform the wavenumber-

frequency spectrum

E(k,w) = ﬂ Xp {_M} (5.9)
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The full spectral tensor of the velocity field ®;;(k) contains information
about the correlations between velocity components u; and u; separated by
the wavevector k. The measurement of a single hot wire will yield the one-
dimensional spectrum in longitudinal direction [32] E11 (k1) =2 [ fooo [ ®11dkpdks.
Under the assumption of statistical isotropy and homogeneity the full spec-
tral tensor can be reduced to the energy spectrum function (energy spectrum)
E(k) (k = |k|), to which it is related by

E(k kik;
Djj(k) = # {51']' - k—zj] : (5.10)

Therefore, the one-dimensional longitudinal wavenumber spectrum is given
by [33] (see also 3.1.2)

0 kZ
Bu (k) = [ 10 (1 - kz) ak (5.11)

in isotropic and homogeneous turbulence. The one-dimensional frequency
spectrum that is actually measurable by the hot wire can then be obtained by
eliminating all directional information. Using the Gaussian sweeping model
eqg. 5.9 one obtains

27 k3 1 (w—k-U)?
2 — - 7

Eq(w) —/ k dk/ d<p/ sin(6 d94 2 (1 k2> — > exp ( T
(5.12)

_ /Ooo 12dk /Om d¢ /On sin(e)d()f:;{)z (1 - cosz((?)) \/ﬁ (5.13)
exp <_ (w— kUcos(G))2>

2k2V2
e v E(k) . 4 (w — kU cos(9))?
_/0 dk/o dG—\/W sin’(6) exp( 272 (5.14)

Evidently, under random sweeping all k contribute to the frequency spec-
trum through a weighting function. This weighting function is illustrated in
Fig. 5.7. At a given frequency wy, points that correspond to a wavenumber
about 0.2w), contribute strongest to E(wy). In the following, we replace E(k)
in eq. (5.14) by different model spectra.
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Figure 5.7: The weighting function \/ﬁ sin®(0) exp (— %) that determines the

contributions of k and w to the one-dimensional frequency spectrum E(k).

5.2.2 Application to Model Spectra

The energy spectrum E(k) follows a power law with an exponent close to
5/3 in the inertial range. Wilczek et al. [34] have shown that the application
of a random sweeping model (5.14) sustains such a power law. Therefore,
Taylor’s hypothesis can be applied up to very high turbulence intensities V /U
to obtain the value of the spectral exponent. They found however, that the
value of the Kolmogorov constant Ck is impacted by random sweeping and
predict that spectral features such as the small- and large-scale cutoffs or
the bottleneck effect are smeared out by the presence of large-scale random
sweeping. Here model spectra are used in place of E(k) in eq. (5.14) to
elucidate the relevance of these effects for turbulence measurements in a wind
tunnel with the increased turbulence intensities introduced by an active grid.
To simplify the notation, without loss of generality, U = 1 is chosen.

k—5/3-spectrum with cutoffs To explore the effects of random sweeping in

the most simple way, we consider a k~5/3-Spectrum with sharp cutoffs at
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Figure 5.8: Compensated one-dimensional spectra based on a k=/3-spectrum with cutoffs
at small and large scales. The sharp cutoffs are smeared out by the projection on the single
component of the spectral tensor (dashed curve). The effects of the random advection ve-
locity V cause additional smoothing of these edges and their apparent shift towards higher
frequencies. The Kolmogorov constant Ck is increasingly overestimated with increasing V.

scales 17 and L:

k=5/3, for 2m/L <k <2m/y
E(k) = (5.15)
0, else

This "spectrum” is inserted into eq. (5.14) and the integrals evaluated nu-
merically using dblquad from scipy. integrate. The integration is carried out
for different values of V while keeping 7 (and thus L) constant. ¢ = 0.5V3/L,
and the kinematic viscosity v = (r%¢)!/3 are adjusted in such a way that the
Reynolds number R, = 3000 is the same for all cases. Fig. 5.8 shows the
spectra compensated by the Kolmogorov prediction and compares them to
the case V/U — 0. The flat segment is located at the level of the resulting
Kolmogorov constant Ck and clearly rises with increasing sweeping velocity
V. The sharp edges of the original E(k) are rounded off by both the con-
version to Ej1, and the random sweeping effects. Furthermore, the apparent
position of these cutoffs is shifted towards higher frequencies, which can be
anticipated from the random-sweeping term in the integrand. The example in
Fig. 5.7 shows that the maximum contribution to E(w) occurs a wavenumbers
< 27ntw. Thus, features at a given k in the original one-dimensional spectrum
calculated by (5.11) are shifted towards larger frequencies.
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Figure 5.9: Spectra resulting from the random sweeping model to the comprehensive model
spectrum by Meyers & Meneveau [35] compensated by the Kolmogorov prediction. Dotted
black lines denote the one-dimensional spectrum in the limit V' — 0, i.e. when Taylor’s
Hypothesis is prefectly valid. Left: The level of the inertial range rises as a result of ran-
dom sweeping. Right: The same curves are collapsed at w# /U = 0.015, which corresponds
approximately to the position of the minimum in the inertial range. Features such as the
bottleneck effect are attenuated by the random sweeping model. The spectra are also shifted
towards higher frequencies. The effect is rather small for turbulence intensities occuring in
active grid turbulence.

Model Spectrum by Meyers & Meneveau (2008) There exists a long tradi-
tion of attempts to provide functional forms of scale-resolved statistical quan-
titites such as the energy spectrum function E(k) that effectively describes
the data obtained from measurements and numerical simulations. An early
example for the second order structure function was given by Batchelor [36],
which was later transformed into spectral space [37]. Pope [32] provided a
spectral form with more parameters by combining a spectrum of exponent
5/3 + B and functional forms of he large- and small-scale ends of the spec-
trum. Meyers & Meneveau [35] use a similar approach, but also parameterise
the the bump at the transition between inertial and disspation range (bot-

tleneck effect). Their model is further consistent with fundamental physical
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relations, such as u%,,c = V> ~ [ E(k)dk. The full model reads

E(k) = %CKSZ/SkS/S(kL)ﬁfL(kL)fn(kW) (5.16)
5/3+8+2
kL
kL) = .
M {ka +a51“”} )
k s
fy(kip) = exp (—arkn) {1 + 1“1((,?17//“;4))“3] (5.18)

This model is implemented into the random sweeping framework with R, =
3000, and 1 = 0.01 for different V and the corresponding values of L, 77, and
e. Fig. 5.9 shows that the random sweeping has three main effects on the
compensated spectra: First, the apparent Kolmogorov constant, i.e. the level
of the inertial range in compensated plots, increases with increasing sweeping
velocity. This is in agreement with earlier findings [34]. Second, the positions
of distinct features, such as the bottleneck effect, are shifted towards higher
frequencies. Third, the random sweeping causes an attenuation of these fea-
tures depending on the sweeping velocity. These effects are rather weak when
V/U < 0.2, in accordance with the empirical rule-of-thumb that the turbu-
lence intensity must not exceed 20% for Taylor’s Hypothesis to be applicable.
In the VDTT with the active grid turbulence intensities can reach up to 15%.
Therefore, some care must be taken when studying the fine details of spectra.
Conclusions from measurements at very high turbulence intensities should

be cross-checked with measurements at lower intensities.

5.3 Measurement Protocol and Data Analysis

The previous sections have been concerned with some potential sources
for systematic errors when acquiring (scale-resolved) measurements of Eule-
rian statistics using hot wire anemometry. Naturally, the particular difficulties
within the VDTT environment were emphasised. Since these error sources
span all ranges of scales, their systematic elimination is practically impos-
sible. The overall strategy for acquiring the data was therefore to generate
dataset that scan the available range of Reynolds numbers in different ways
whenever possible. This way, observations that are not robust against differ-
ent probes, values of 77, flow speeds, or turbulence intensity can be identified.
This section will introduce the hot wire system used in this thesis, the data
analysis algorithm applied routinely to any dataset, and will present different

ways of estimating the turbulent dissipation rate e.
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5.3.1 Calibration and Data Acquisition

The hot wire measurements presented here were recorded using either
Nanoscale Thermal Anemometry Probes (NSTAPs) [5, 6, 7] provided by Prince-
ton University or 450 ym long conventional Dantec Hot Wires. The wires were
mounted on the traverse depicted in Fig. 4.2 between 0.45 and 0.65 m from
the measurement section floor and less than 1ocm away from its center. The
sensors were connected by 2om long RG223 BNC cables through NPT cable
feedthroughs to a Dantec StreamWare Constant Temperature Anemometer.

In the case of the NSTAPs the protocol recommended by Princeton Univer-
sity [38] was followed. For this, an external resistor R.y; was included in the
bridge. Since the CTA feedback attempts to maintain a zero potential differ-
ence between the arms of its bridge and its two top resistors are identical, the
value of this resistor is equal to the wire’s (hot) resistance. The wire overheat
is therefore determined by ayw = Rext/Reo14, Wwhere R,y is the resistance of
the wire measured in its unheated state. Typical values for ay were 1.2-1.3,
i.e. slightly lower than those reported by Princeton University. It was essen-
tial to bypass all automatic overheat settings provided by the system to avoid
wire burning.

The overheat ratio of the conventional wires could be automatically set to
1.8 by the system in all cases.

After setting the overheat, a square wave test was performed and its re-
sponse was optimised. After conditioning the signal to fall within the bounds
of the data acquisition system, the hot wires were ready to be calibrated.

Calibration and data acquisition were controlled by a MATLAB program.
To calibrate the wires, the flow velocity was measured directly by means of a
pitot tube and a static pressure tube attached to the two ports of a SITRANS
DS-PIII differential pressure transducer outside the wind tunnel. The pressure
transducer was referenced by applying zero pressure difference at the begin-
ning of each measurement day. Its output (4-20mA) was calibrated to the
voltage measurement of the data acquisition system before each calibration.
Mean CTA output and differential pressure were recorded for 6o seconds for
15-30 different flow speeds by incrementally changing the wind tunnel fan ro-
tation speed. In between measurements the flow was allowed to homogenise
for 45 seconds. The active grid was fully opened during calibration. At the
end of each measurement day the calibration was repeated. Fig. 5.10 shows
an example calibration. Throughout the measurement the calibration drifted
very slightly.

The data was recorded using a National Instruments PCI-6123 16 bit data
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Figure 5.10: Typical calibration data with King’s law fit. Calibration 1 was taken before
the measurement, Calibration 2 afterwards. Errorbars indicate the standard deviation of the
fluctuations around the mean while acquiring the calibration point.

acquisition card. The sampling rates were dictated by the internal low pass
filters of the CTA that were set to 30 kHz (conventional wires) or 100 kHz
(NSTAPs), such that the sampling frequencies were 60 kHz, and 200 kHz,
respectively. The data was sampled in chunks of 6 Mio. samples and stored
in a binary format.

During each recording the ambient pressure in the tunnel and the temper-

ature were recorded. The fluctuations of both were typically <2%.

5.3.2 Routine Calculations

The same initial data analysis was applied to all hot wire datasets pre-
sented here and is described briefly in the following. Each datasets consists
of multiple chunks of Ns =6 Mio velocity samples, which are analysed in
parallel. The following procedures are carried out on each chunk of data. The
results are averaged once all chunks have been analysed.

The voltages are converted into flow velocities using King’s Law of the
form V? = A + BU" (see. Sec. 5.1). The resulting velocity arrays are flipped,
such that throughout the analysis the x-coordinate is parallel to the flow di-
rection.

Then, the data is filtered using an 8th-order butterworth low pass filter.
The filter frequency fr is determined by finding the minimum of the unfil-
tered energy spectrum, which indicates the beginning of the frequency regime

in which noise dominates. The filtering introduces edge effects, which are
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eliminated by discarding the first and last 6o values of a dataset. The en-
ergy spectrum is calculated by first calculating the fourier transform using
the MATLAB implementation of FFTW routines [39]. The squared absolute
value of the result is divided by Nsf;, where f; is the sampling frequency to
yield the energy spectrum.

The correlation function is calculated using MATLAB’s xcorr function.
This function estimates the correlation function through a fast fourier trans-
form employing the Wiener-Khinchin-Theorem [40, 41] for speed. The veloc-
ity structure functions are calculated equally exploiting the speed of the fast

fourier transform. They can be rewritten as

n
((u(x+1r) —ux))") = kzé < Z ) (u(x+ 1) (—u(2))"F). (5.19)
This way, the fast fourier transform can be used to reduce the time required
to calculate the structure functions by > 10x. Further quantities routinely
calculated are histograms of velocity and voltage, as well as mean velocity
(U), the RMS value of the velocity fluctuations u(t) = U(t) — (U), and the
mean value of squared velocity derivatives {(du/dx)?).

5.3.3 Estimation of ¢

The turbulence dissipation rate

2
e = 15v < <g—z> > (5.20)

is one of the central turbulence parameters to be estimated from a hot wire
dataset. Three methods to estimate ¢ are considered here.

Second-Order Structure Function According to Kolmogorov’s K41 theory

[42]
Sy ~ Ck(er)*/3 (5.21)

in the inertial range, where Cg is the Kolmogorov constant taking values
around 2.0 [31]. A measure for €2/3 is therefore the peak of S/ Cxr?/3. The
advantage of this technique is that this peak lies at smaller experimental fre-
quencies, which are less demanding for the instrumentation. The value of Cg

depends however on the Reynolds number [31].
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Figure 5.11: Filter Effects on the rate of dissipation estimated from a model spectrum after
Pope [32]. Left: Effect of low pass filtering during post-processing. Typical value for the most
demanding situations in the experiment are f, = U/# = 0.1. The blue line shows a fit of the
form 1 —1.06 exp(—27.2fr/ f;). Right: Effect of spatial averaging across the hot wire sensor
following Wyngaard [44]. Typically, Iy < 3. The blue line shows 1 — 0.0058(Iyy /17)"78.

Third-Order Structure Function According to Kolmogorov’s K41 theory

[42]
4

53 = 5(57) (5.22)
in the inertial range. A measure for ¢ is therefore the peak of S3/(4/5)r. As in
the case of S, this measure of ¢ lies in a range of frequencies that is not very
demanding for the measurement system used. Further, (5.22) is an analytic
result for homogeneous, isotropic, and statistically stationary turbulence at
high Reynolds numbers (3.11) and no empirical constants appear. However,

the approach to the 4/5-law with R) is very slow [43] for decaying flows.

Velocity Gradients The method of choice for the remainder of this part of
the thesis is to directly estimate ¢ by numerically deriving the filtered veloc-
ity fluctuation time series. This procedure is free of assumptions and valid
in inhomogeneous, as well as in low-R, flows. It is however most severely
affected by finite hot wire resolution. In contrast to the effects of large-scale
inhomogeneities and finite Reynolds number effects on inertial range statis-
tics, these systematic errors introduced by spatial or temporal filtering of the
small scales are well-known. It is easy to show [32] that

e — 15v /O K2E1 (ky)dky (5.23)

is identical to eq. (5.20). Therefore, a model spectrum based on a known value

of ¢ can be used to estimate the effects of different filters on the measured
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value of €,,. Wyngaard [45] derived a formula describing the effect of spatial
averaging along the length Iy of a single hot wire on the one-dimensional
spectra. This theory was applied to a model spectrum presented in Ref. [32]
to estimate the effect of spatial filtering on the wire dissipation rate. The re-
sults are presented in Fig. 5.11. Equally, the effect of the employed temporal
filtering to reduce noise effects can be investigated using a model spectrum.
The results are shown in the left panel of Fig. 5.11. Typical values for fr/ fy,
where f.ta = U/1 is the experimental frequency where 7 is found, are o.1,
typical values for Iy /7 are <3. Therefore, the systematic error on € measured
this way is ~ 5%, which is on the order of the general experimental uncer-
tainty for the velocity measurements. Thus, corrections for filtering effects
on the dissipation rate need to be employed only when a very high accuracy
is required. These results are generally confirmed by experiments investi-
gating spatial resolution effects on turbulence statistics [46]. The correction
procedure is simplified with an empirical fit to the simulated corrections to
the dissipation. Such fits are added in Fig. 5.11. They are valid for single
hot wires whenever the Pope model spectrum is a acceptable approximation
of the energy spectrum of the flow, in particular in homogenous, isotropic

turbulence.



Chapter 6

Scaling In Decaying High-Reynolds

Number Turbulence

This chapter is a reprint of the manuscript "Scaling in Decaying High-
Reynolds Number Turbulence", which was in the peer review process at the
point of writing [1]. The author of the thesis performed the measurements,
and data analysis and prepared the text. The coauthors organised the re-
search, helped in interpreting the data, and edited the manuscript.

[1] C. Kiichler, E. Bodenschatz, and G. P. Bewley. Scaling in Decay-
ing Turbulence at High Reynolds Numbers. June 2020
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We report increment statistics of turbulent velocity fluctuations and on the way they scale with
increment size, which are centerpieces of turbulence theories. The data were acquired in decaying
turbulence in the Max Planck Variable Density Turbulence Tunnel (VDTT). Inertial range statistics

approach a universal and nontrivial shape with increasing Reynolds number.

This shape is in

part explained, at the larger scales, by the energy decay. We employed a model of this energy-
decay effect on the second-order statistics to measure corresponding scaling exponents. We found
the scaling exponents to be independent of the Reynolds number and equal to 0.693 4+ 0.003 for
2000 < Ry < 6000. Toward smaller scales and at high orders, the universality at high Reynolds
numbers persists and does so in a way that is qualitatively similar to the larger scales and at the
second order, but in a way not captured by any model, to our knowledge.

I. INTRODUCTION

Turbulence transfers kinetic energy from its largest
scales of motion, whose dimension is L, to its smallest
scales, measured by the Kolmogorov scale 7. The energy
is transferred from scale to scale at a rate e, which is
the power per unit mass. Turbulent fluid motion is thus
multi-scale in space and time and its statistical prop-
erties are thought to be universal in the intermediate
range of scales between L and 7, where the dynamics are
dominated by fluid inertia. The extent of this intermedi-
ate range, called the inertial range, is determined by the
Reynolds number of the flow, which quantifies the rela-
tive importance of inertial forces over viscous forces. The
Reynolds number used here, Ry = urpsA/v, is based on
the Taylor scale A [1]. One key question since the seminal
work by Kolmogorov in 1941 [2] is the extent to which
the inertial range is universal, i.e. independent of the
Reynolds number and flow geometry.

In fully developed statistically isotropic turbulence of
an incompressible fluid, the inertial range is character-
ized by scalar statistics of the velocity differences [3].
The statistics are the n-th order moments of the veloc-
ity increments Au(r) = u(x + r) — u(z), i.e., Sy(r) =
((Au(r))™), and are called structure functions. At high
Reynolds numbers the turbulent dissipation rate, e, is
the only relevant parameter in the inertial range and S,

*
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t gpbl@cornell.edu
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follows scaling laws such that S,, ~ r¢». If the statistics
are self-similar with respect to scale r, then ¢, = n/3 [2].
The observed scaling exponents, (,, deviate substantially
from n/3 and are a convex function of the order n due
to intermittency. The understanding of the role of in-
termittency in the energy cascade is a major problem
of modern turbulence research and subject of numerous
models [4-16].

Laboratory experiments [17-23], field measurements
[24-28], and numerical simulations [29-31] support the
existence of scaling laws, but differ in their details. In nu-
merical simulations forced to maintain a statistical steady
state and not to decay, S, ~ 7" is a good approximation
of the data in the inertial range [32, 33]. Because increas-
ing the Reynolds number is computationally costly, nu-
merical studies have so far been limited to Reynolds num-
bers of 1300, and exhibit Reynolds number dependencies
over the range of observed Reynolds numbers. When
turbulence decays freely, power laws are more difficult to
identify in computer-generated data [34, 35]. Data from
recent laboratory results of extreme statistical fidelity
[36] and experiments in the atmospheric boundary layer
[28, 37] suggest a complicated shape of ((Au(r))™). The
latter data was acquired in the atmospheric boundary
layer, whose flow parameters cannot be changed system-
atically. Atmospheric turbulence measurements provide
important insights because the large Reynolds numbers
in the atmosphere reduce the influence of large-scale ef-
fects and viscous dissipation on the inertial range. The
flows are however known to be very anisotropic and inho-
mogeneous and the flow parameters are not controllable.

Departures from power law scaling have been sum-



marized as finite Reynolds number effects that were ex-
pected to vanish once at large enough R)y. Special data
analysis schemes [38, 39], that have been developed to cir-
cumvent these effects, find power laws over wider ranges
of scales and thus more robust estimates of ¢,,. One es-
tablished technique is to use the extended self-similar
scaling that appears when plotting S,(r) vs (|Aul®)
known as Extended Self-Similarity (ESS) [38]. ESS has
proven to yield reproducible scaling exponents (,, across
experiments pointing towards a universal regularity with
respect to the order of the structure function. ESS effec-
tively removes the parts of the structure function that do
not show scaling. The underlying assumption is that the
finite Reynolds number effects shadow the scaling that
carries information about the general dynamics.

Despite these empirical successes and large number of
studies, the shape of S, is still not fully explained. Nu-
merous turbulence theories rest on the assumption that
the statistics are a combination of universal scaling laws
and non-universal effects that disappear at large R).

To test this assumption, the Reynolds number must
be gradually increased towards a regime, where the iner-
tial range statistics are indeed independent of Ry. The
reason this has not been achieved to date, is that L and
n must differ by many orders of magnitude to ensure
that viscosity and flow geometry have little effect on the
inertial range. This is a considerable challenge in a well-
controlled laboratory flow. In addition, to show univer-
sality in the sense of independence from experimental pa-
rameters, the turbulence forcing and the viscosity have to
be controlled independently. These properties are unified
within the Variable Density Turbulence Tunnel at the
MPI for Dynamics and Self-Organisation in Gottingen,
Germany. The viscosity is controlled by the fluid den-
sity, while the turbulence can be forced by an extremely
flexible active grid. This way, Reynolds numbers in ex-
cess of 6000 can be created while keeping anisotropy and
requirements on instrumentation modest.

In this article we demonstrate how the n-th order
structure functions approach Rj-independent forms be-
tween 2000 < Ry < 6000. Increases in Ry change only
the extent of the inertial range, not its shape, which is
more complex than a power law. We proceed to offer a
possible explanation for this shape by employing a model
that accounts for the decay of turbulent kinetic energy.
The functional form underlying this model allows the es-
timation of a scaling exponent very similar to that ex-
tracted from ESS.

1II. EXPERIMENT

The Reynolds number of the flow in the Variable Den-
sity Turbulence Tunnel [40] (VDTT) can be finely ad-
justed in three largely independent ways up to levels typi-
cal for atmospheric turbulence: (i) the large-scale forcing
with a novel active grid, (ii) the mean flow speed U up to
5.5 m/s by adjusting the rotation frequency of its fan, and

(iii) the kinematic viscosity v by changing the static pres-
sure. The VDTT is filled with sulfur-hexaflouride (SFg)
at pressures lmbar < p < 15 bar [40]. Flow structures of
variable size are introduced using a mosaic-like arrange-
ment of individually controllable paddles (”active grid”).
It allows us to obstruct the flow on finely adjustable time-
and length scales [41, 42]. In this way we control the en-
ergy injection scale between about 0.1m < L < 0.6m.
The small kinematic viscosity of pressurized SFg per-
mits the existence of very small flow structures. The
size of these structures scales with the dissipation length
n = (1¥/e)Y/4, where ¢ = 150((0u/dx)?). For the range
of ambient pressures 1 bar < p < 15 bar, this dissipation
length is between 250pum 2 1 2 10pum.

We record time series of hot-wire signals and convert
them into one-dimensional flow fields assuming that the
turbulent fluctuations are passively advedcted across the
sensor by the mean flow U. Thus, a time step At is con-
verted to a spatial increment Az = UA¢t [43]. We use a
commercial constant temperature anemometer to drive
and acquire data from Nanoscale Thermal Anemome-
try Probes (NSTAP) provided by Princeton University
[44-46]. These ultra-small hot wire probes average the
flow field over a length of only 30um, which is suffi-
cient for this experiment. For flows where the turbu-
lence length scales are larger, we also use commercial hot-
wires from Dantec Dynamics with sensing length 450um
(Z 47m). The frequencies (and wavenumbers) encountered
in the measurements presented here are in a range that is
not particularly demanding for this combination of sen-
sor and anemometer circuitry [47-49]. The experiments
presented here were taken under different ambient pres-
sures and different active grid forcing schemes to allow
for a careful check of the hot wire fidelity. We thus en-
sure the robustness of the results against probe- or flow
geometry-induced biases. We emphasise that all conclu-
sions presented here are independent of the type of probe
used (NSTAP or commercial hot wire), the frequencies
where turbulent fluctuations are measured, the dissipa-
tion length scale, and the active grid forcing (see Supple-
mentary Material for more details).

III. SMALL SCALE UNIVERSALITY

We investigate whether the shape of the velocity in-
crement statistics approach a universal form at large
Reynolds numbers Ry . In particular, we seek a universal
scaling exponent ¢, such that S, ~ ré».

A rigorous method to find and extract power laws is
to calculate the local scaling exponents

Gulr) = ), (1)

Cn(r) is constant when power law scaling exists in the
data. At the same time, it is a measure of the shape
of S,, free from constants that are known to be sensitive
to flow configuration and Reynolds number. Fig. 1 (A)
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FIG. 1. (A): ¢2(r) for Ra=144, 413, 620, 931, 1520, 2400, 3690, and 5890. The curves collapse approximately to a universal
form for Ry > 2000 that extends from the smallest scales up to 0.1L and is different from a constant, which indicates that
power law scaling is masked in these data. In contrast, the curves at Ry < 2000 change significantly with Ry. Inset: Zoom on
the inertial range of the same curves. At the largest R a wave-like fine structure can be seen as in [36]. Dashed lines: ro/n of
curves in (D); (B): Same as (A), but normalised by L. The curves approach a universal form from the largest scales down to
0.2L. (C): Structure functions S» compensated by the self-similar prediction ~ (er)?/3. (D): (a(r) evaluated at fixed ro/n. The
curves approach constants, but their values depend on r. Thus, the value of (> (assumed constant across a wide range of scales
and universal in Ry in many turbulence models) is a function of both r and Rx. The curves saturate at finite Ry indicating
that this apparent discrepancy with the models persists as long as Ry takes finite values. The lines are fits of C1 — C2RY. The
red inverted triangles correspond to the dashed line in (B), i.e. they show the scaling exponent at a fixed scale relative to L.

Black points above this curve are within the inertial range (except for the case ro/n = 10).

shows measurements of (3(r) for flows at different Rj.
Above some finite Ry = 2000 the curves begin to collapse
from the dissipation range up to ~ 0.1L. The collapse
in the dissipation range r < 207 is expected and the
exponent at r — 0 corresponds to a Taylor expansion
around that point. Around r/n = 100 the curves deviate
slightly from each other even for Ry > 2000. This region
is influenced by the bottleneck effect [36, 50-53], whose
Reynolds number dependence even at high R, has been
shown [42]. Above the bottleneck in the inertial range,
the curves collapse again for Ry > 2000, i.e. they are
are independent of R). This is precisely the situation
we looked for: The shape of S,, does not change when
increasing the separation between L and 7. However, the
curves are not flat as would be expected from a simple
power law scaling.

We investigate this observation with greater rigour in

Fig. 1 (D). We pick several values of ro/n (indicated as
dotted lines in Fig. 1 (A) and (B)) and plot (2(ro/n)
for different Ry. For each 7o/, the curves approach a
different constant at high R). In contrast, if a scaling
exponent were to emerge at even higher Ry, these curves
would approach a common constant independent of ro/n
(as long as ro is in the inertial range). Fig. 1 (B) shows
that equivalent arguments can be made when normalizing
by the energy injection scale L instead of the dissipation
scale 7.

The procedures outlined above for the case of n = 2
are repeated in Figs. 2 and 3 for higher orders n with
overall similar results. The odd orders suffer from in-
creased noise compared to even ones. In Fig. 2 all data
collapse in the inertial and dissipation range with the ex-
ception of the highest R). While this could point towards
a transition at these higher Ry, we regard instrumenta-
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FIG. 2. Same as Fig. 1 (A), but for 2 < n < 7. (5 has
been smoothed using cubic splines. The curve of the highest
Ry = 5890 is influenced by instrumentation limitations.

tion limitations as more likely. Consequently, final con-
clusions should not be drawn from these three datasets
alone and they have been excluded when performing the
fits presented in Fig. 3. As expected, (,(r — 0) = n
for all data. Defining as the inertial range all scales be-
tween 1007 and 0.1L, similar inertial range trends as for
n = 2 can be identified for higher orders. With increasing
R, the local slopes become increasingly flat, i.e. S, (r)
approaches an inertial range power law. However, this
trend stops around Ry = 2000, even though (,(r) still
depends on r/7 in the inertial range. As for n = 2, we
have found a transition, where separating inertial, dissi-
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FIG. 3. Same as Fig. 1 (D), but for 2 <n < 7.

pative, and energy injection scales further does not alter
the shape of S, in the inertial range.

Similar to the case n = 2, four different inertial range
increments rq/n were selected and (,(ro/n) was plotted
vs Ry in Fig. 3 to rigorously demonstrate this effect. For
Ry < 4000, fits of the form C — CoR$ were performed.
Fig. 3 shows that the asymptotic value of C; depends on
the inertial range increment chosen at all orders studied
here.
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FIG. 4. Demonstration of the fit results for Ry = 1600 (lower
curves) and Ry = 3700 (upper curves, offset by 0.5 for clar-
ity). The black dots are experimental data, the red curves
are the fit to the physics-based model eq. (2) with three fit
parameters. The green curves represent four-parameter fits
of the Batchelor interpolation formula. The region of inter-
est is the inertial range between 100 < r/n < 10000 in the
high-R) case as highlighted by the inset, where the red curves
follow the experimental data more closely. For r/n < 100 the
Batchelor interpolation is superior, where the physics-based
model is expected to perform poorly. At scales larger than
the inertial range, both fits have a similar quality. The lower
panel shows the compensated third order structure function.
The high-Ry asymptote in the inertial range is indicated by
dotted lines. The model prediction from the fits to (2(r) fits
the experimental data well in the low-R) case. In the offset
case of Ry = 3700, the model predicts an extensive scaling
range that cannot be observed in the data.

IV. INTERPRETATION IN TERMS OF
DECAYING TURBULENCE

In the previous section we show that the local slopes
C2(r) of the second order structure function Sy (r) take a
universal form at finite Ry different from a clear power
law scaling. These are most likely explained by depar-
tures from the ideal of homogeneous, and isotropic tur-
bulence.

A decomposition of S, (r) into isotropic and

anisotropic contributions might lead to much flatter ¢, (r)
in the isotropic sector [54]. However, such analysis re-
quires knowledge of at least two velocity components.
Instrumentation with the required spatial resolution is
still in its infancy and in particular not yet compatible
with large fluid densities [55].

To consider the potential effects of anisotropy, we first
note that at low Ry < 1300 our results are in very good
agreement to passive grid experiments conducted in the
same facility [36], which has been shown to contain very
small anisotropy [56]. (2(r) similar to those shown in
the previous section have been found in a rough-wall
boundary layer, where significant large-scale anisotropy
Sx = /v/edU /0y > 0.1 exists [57]. We have verified
that the mean shear in the measurement section is small
(S* < 0.02). Finally, our active grid dataset contains a
wide variety of different wake generation schemes, which
do not appear to impact our results in the inertial range.
For example, (5(r) measured behind a passive grid, and
in the wake of two entirely different active grid algo-
rithms all collapse throughout dissipation and inertial
ranges. We thus argue that the observed shapes are ro-
bust against dramatic alterations in the turbulence gen-
eration mechanism and associated potential large-scale
anisotropies.

The shapes found in Figs. 1 - 3 regularly appear in
laboratory [36, 58] and field [28] experiments, but are
in contrast to forced direct numerical integrations of the
Navier-Stokes-equations[33], where (2(r) is flatter in the
inertial range. The main difference between experiments
and simulations is that the latter is usually forced con-
tinuously, whereas most measurements can be performed
in unsteady flow states only, where the turbulent kinetic
energy decays over time. (o(r) is tilted in simulations
of decaying turbulence[34, 35] as it is in experiments
[58]. In our experiment, the turbulent kinetic energy
u%,s¢ decays along the length of the measurement sec-
tion, but the integral length scale L remains constant or
also decays over time. This is in contrast to freely de-
caying turbulence, where L grows with time[3, 59]. We
believe that the boundaries of the measurement section
with cross-section 1.2 m x 1.5 m (with 0.1 m <L < 0.6
m) suppress this growth. We found this to be relatively
independent of the way we estimate L. We chose to use
L= [ (u(@)u(z+7)) /ubgdr with (u(z)u(z+7,)) = 0.
Other definitions of L impact the results at small Ry and
the scatter of the data otherwise.

Recent work in Yang et al. [35] provides a model spec-
trum based on decaying turbulence in a confined domain.
It rests on an inertial range scaling k=%/3 (equivalent to
the self-similar scaling of Sy ~ r%/3) and generic functions
to describe the behaviour at the large- and dissipation
scales. We have replaced the k~%/3- term by the more
general k~(©2F 1) to account for effects of potential iner-
tial range intermittency. To extract the function that de-
scribe finite-R) effects, the model assumes a self-similar
decay of turbulent kinetic energy, i.e. ugrps(t) ~ t~%,
and applies a model [60] for the scale-by-scale energy



transfer term in the evolution equation of the energy
spectrum. For the case of constant L, the model reads
(see Appendix C and [35] for details)

—A —2 4
E(k) ~ 7CK (kL)~(C2rtD) o(BAx/O)(KL) ™/ (—(1.5/C)(km)*/?

(2)
Apart from the intermittency parameter we introduced,
the model contains a parameter Ag, which describes the
influence of the decay. In our measurements, A depends
only slightly on Ry. This is consistent with Fig. 1 (B)
and earlier studies [59] that measured that the decay ex-
ponent and thus the large-scale part of the energy spec-
trum are largely independent of the Reynolds number.
It further agrees with the observation that Ay is related
to the cascade efficiency C. = eL/ubyg = (—Ax)3/?
[35, 61-63].

We fit the logarithmic derivative eq.(1) of So calculated
from (2) to the measured values of (5(r). Fig. 4 compares
the experimental data with the model (2) and a three-
parameter Batchelor fit. The latter is a parametric fit
that models the structure function shape without phys-
ical justification [53, 64]. The Batchelor fit appears to
be slightly superior in the case of low Ry (lower curves).
However, as R) increases, it cannot follow the inertial
range shape. In contrast, eq. (2) does follow the experi-
mental data in the inertial range.

The deviations around r/n = 60 are due to the bottle-
neck effect described earlier. The model (2) allows us to
obtain estimates for ((or) in the form of a fit parameter.

In the following analysis we therefore assume that
a self-similar organisation of the flow structures exists,
which is distorted by the nonstationarity effects induced
by the decay. While the model predicts an inertial range
power law to appear at very large R, our data is in agree-
ment with the asymptotic approach towards a complex
inertial range shape different from a power law scaling.

Fig. 5 shows how (o depends on R). We observe
the approach towards a common scaling exponent around
(Cor) = 0.69 for Ry = 2000. This is a little higher than
the prediction for intermittency-free turbulence (o = 2/3
and almost identical to the values that can be read off
typical DNS data [30-32, 65] and the ESS estimate from
the data. However, the ESS scaling exponent is practi-
cally constant around 0.69 over all Ry. The range of val-
ues that (2(r) takes between r/n = 100 and r = 0.1L in
our measurements is indicated by the shaded region. The
variation of (3r over one decade of Ry is much smaller
than the variation in (5(r) within a single measurement
in the inertial range. We also compare the data to the
measurements by Mydlarski & Warhaft [20]. We finally
revisit data that was acquired in the VDTT in the far-
field of a passive grid and apply the aforementioned fit.
For a passive grid the decay in this experiment has been
shown by Sinhuber et al. [59] to follow the self-similar
decay predicted by Saffman [66]. In this case, the integral
scale grows as a function of the decay time. However, as
can be seen from Fig. 3 in their paper [59], the integral
length saturates at the most downstream positions. The
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FIG. 5. Circles: Results of fitting the parameters in eq. (2).
(2> approaches a constant ((or) = 0.693 + 0.003 (dashed),
higher than Kolmogorov’s prediction (dotted) [2]. We at-
tribute the slight downward trend in last two data points of
(¢2F) to the anisotropic grid forcing that was used to reach
these high Rx. For comparison we show the extended self-
similarity estimates (squares), i.e. the scaling of S2(|S3|) and
the data from Mydlarski & Warhaft [20]. The shaded re-
gion corresponds to the values that the local slope (2(r) takes
within 100n < r < 0.1L.

reason is likely the same as in the active grid case in-
vestigated here: The tunnel boundaries inhibit a further
growth of L. To make a fair comparison, we use those
downstream positions in the passive grid data and apply
the theory for the case of L = const.

The model eq. (2) is based on a closure hypothesis
that links second and third order statistics based on di-
mensional arguments. Thus, a prediction of S5 can be
obtained from the model (see Appendix). Fig. 4 shows
that such an estimate provides good results for low R).
However, at larger Ry the model predicts a power law
scaling ~ r, which cannot be found in the data. This is
due to the aforementioned qualitative difference between
the model and the data. While the model predicts the
finite- Ry corrections to become less and less important,
our data indicates that these effects saturate at Ry ob-
servable in the VDTT (see Fig. 1 - 3). This is more
obvious at third order, where the model predicts a faster
diminishing of finite-R) effects than at second order.



V. DISCUSSION

In this paper we consider the foundation of multiple
models of turbulence, namely the presence of a well-
defined power law scaling in the inertial range. We con-
firm experimental results that such a power law is a
reasonable approximation to the shape of the nth-order
velocity increment moments S, (r). Existing differences
between the experimental data, theoretical predictions,
and numerical simulations were in the past attributed
to an insufficient range of inertial scales [58, 67]. There
seemed to be a consensus that in a wind tunnel at ex-
tremely large Reynolds numbers, viscosity and flow ge-
ometry would become unimportant, and S, would ap-
proach a clear power law of exponent (,. We test this
consensus first by analysing the local scaling exponent
Calr).

We find that the shape of S, (r) measured by (,(r)
follows a universal function from the dissipation scales
up to the largest scales in the flow, but does not follow
a power law. In particular, increasing Ry beyond 2000
does not improve the validity of S, ~ r¢» further. Even
at Ry ~ 6000 we cannot find a range of scales where
(n = const.

Cn(r) is strikingly similar throughout the inertial range
for all orders n < 7. This is in principle not surprising,
since the scaling of S, (S,,) is well-documented [38, 68].
In combination with the observation of a quasi-universal
inertial range, we would like to mention the functional
similarity to a result based on the She-Leveque model
[69], which is tightly connected to a log-Poisson dis-
tributed dissipation rate [13]. It can be recast in terms
of the velocity structure function [70], which can then be
decomposed into a n-dependent term, raised by a uni-
versal exponent 5 and a term independent of the order n
related to the most singular structures in the flow (most
likely vortex filaments).

On the grounds of the Ry-independence, we infer that
the physical effect that causes the observed structure
function shape must (i) be active along the entire in-
ertial range, (ii) active across different flow conditions,
and (iii) similar across orders n < 7. It is evident that
we cannot make any conclusive statements about even
higher Ry, or even the actual limit Ry — oco. However
our data raises the question whether a power-law scaling
can be observed in any terrestrial flow. It is therefore
crucial to understand this shape.

In a next step, we investigate whether the decay of
the turbulent kinetic energy present in the flow is a po-
tential explanaition for the observed structure function
shape at second and third order. A model of the energy
spectrum derived from a popular closure model [60] while
accounting for the decay [35], yields predictions of So that
are superior to those of a interpolation formula (Batch-
elor) aiming to empirically describe the effects of finite
Reynolds numbers alone [64]. Our explanation is also
supported by observations from numerical simulations:
While (2(r) = const. can be found in numerical simula-

tions even at moderate Reynolds numbers [31], this is not
possible in simulations of decaying turbulence [34, 35].
However, the approach to the model towards an inertial
range free of finite-R) effects is much faster than sup-
ported by the data - in particular at third order.

Under the assumption that a self-similar scaling un-
derlies the finite-Reynolds number effect, we used the
aforementioned model of nonstationarity effects to ex-
tract an inertial range scaling exponent for S;. We ar-
rive at a value value of ((or) = 0.698 + 0.011 by aver-
aging all values of (3r measured at R) > 2000. This
value is very close to the value ((gpss) = 0.692 £ 0.001
extracted by comparing structure functions of different
order (extended self-similarity, ESS). This suggests that
the physical processes underlying the almost 30-year long
successful application of ESS are small-scale universality
combined with large-scale effects influencing almost all
turbulence length scales.

The scaling exponent ((oF) extracted from the model
fit shows a clear Rj-dependence, whereas the ESS esti-
mate is constant over the whole range of Ry. This study
indicates that the second-order statistics scale differently
at small and high R). Nevertheless, the asymptotic scal-
ing exponents we extract agree with the ESS estimates
at much lower Reynolds numbers. It is therefore a mat-
ter of future studies to elucidate the underlying reasons.
Finally, recent experimental results[36] suggest that dissi-
pative effects occur over the entire inertial range, which is
in agreement with small-scale universality from the small-
est scales up to 0.1L observed here.

By creating an inertial range with unmatched control
over the flow parameters, we show the emergence of a Ry -
universal inertial range at Ry > 2000. We claim that dis-
sipative and large-scale effects cause the universal inertial
range to deviate from a power law scaling. We argue that
knowledge of these effects allow the extraction of scaling
exponents that describe the self-organisation that might
be shadowed by these effects. At the same time we ask
the question how relevant power laws and related con-
cepts are practically given that they cannot be expected
to dominate the statistics for at least another decade in
Ry.

VI. ACKNOWLEDGEMENTS

We thank Marcus Hultmark and Yuyang Fan for pro-
viding the nanoscale hot wire probes and helping with
their operation. We thank M. Sinhuber for help with
using the passive grid data and helpful discussions. We
thank A. Pumir, H. Xu, M. Wilczek, and D. Lohse for
helpful discussions. The VDTT is maintained and op-
erated by A. Kubitzek, A. Kopp, and A. Renner. The
machine workshop led by U. Schminke and the electronic
workshop led by O. Kurre built and installed the active
grid. The Max Planck Society and Volkswagen Founda-
tion provided financial support for building the VDTT.



[1] G. I. Taylor, Statistical theory of turbulence, Proc. R.
Soc. London 156A, 307 (1936).

[2] A. Kolmogorov, The Local Structure of Turbulence in

Incompressible Viscous Fluid for Very Large Reynolds’

Numbers, Dokl. Akad. Nauk SSSR 30, 301 (1941).

P. Davidson, Turbulence - An Introduction For Scientists

and Engineers (Oxford University Press, 2015).

[4] A. N. Kolmogorov, A refinement of previous hypotheses

concerning the local structure of turbulence in a viscous

incompressible fluid at high Reynolds number, J. Fluid

Mech. 13, 82 (1962).

U. Frisch, P.-L. Sulem, and M. Nelkin, A simple dynam-

ical model of intermittent fully developed turbulence, J.

Fluid Mech. 87, 719 (1978).

[6] R. Benzi, G. Paladin, G. Parisi, and A. Vulpiani, Multi-
fractal nature of fully developed turbulence and chaotic
systems., (1984).

[7] K. R. Sreenivasan and C. Meneveau, The fractal facets
of turbulence, J. Fluid Mech. 173, 357 (1986).

[8] C. Meneveau and K. R. Sreenivasan, Simple multifractal
cascade model for fully developed turbulence, Phys. Rev.
Lett. 59, 1424 (1987).

[9] L. C. Andrews, R. L. Phillips, B. K. Shivamoggi, and
J. K. Beck, A Statistical Theory for the Distribution
of Energy Dissipation in Intermittent Turbulence, Phys.
Fluids A 1, 999 (1989).

[10] K. R. Sreenivasan, Fractals and Multifractals in Fluid
Turbulence, Annu. Rev. Fluid Mech. 23, 539 (1991).

[11] S. Kida, Log-Stable Distribution and Intermittency of
Turbulence, J. Phys. Soc. Japan 10.1143/JPSJ.60.5
(1991).

[12] Z.-S. She and E. Leveque, Universal scaling laws in fully
developed turbulence, Phys. Rev. Lett. 72, 336 (1994),
arXiv:arXiv:1011.1669v3.

[13] B. Dubrulle, Intermittency in fully developed turbulence:
Log-poisson statistics and generalized scale covariance,
Phys. Rev. Lett. 10.1103/PhysRevLett.73.959 (1994).

[14] S. Grossmann and D. Lohse, Fractal-Dimension
Crossovers in Turbulent Passive Scalar Signals, Euro-
phys. Lett. 27, 347 (1994).

[15] K. R. Sreenivasan and R. A. Antonia, The Phenomenol-
ogy of Small-Scale Turbulence, Annu. Rev. Fluid Mech.
29, 435 (1997).

[16] B. Mandelbrot, Scaling in financial prices: II. Multifrac-
tals and the star equation, Quant. Financ. 1, 124 (2001).

[17] S. G. Saddoughi, Veeravalli, and S. V., Local isotropy in
turbulent boundary layers at high Reynolds number, J.
Fluid Mech. 268, 333 (1994).

[18] H. Kahalerras, Y. Malécot, Y. Gagne, and B. Castaing,
Intermittency and Reynolds number, Phys. Fluids 10,
910 (1998).

[19] M. Ferchichi and S. Tavoularis, Reynolds number effects
on the fine structure of uniformly sheared turbulence,
Phys. Fluids 12, 2942 (2000).

[20] L. Mydlarski and Z. Warhaft, On the onset of high-
Reynolds-number grid-generated wind tunnel turbulence,
J. Fluid Mech. 320, 331 (1996).

[21] Z. She and E. Jackson, On the universal form of energy
spectra in fully developed turbulence, Phys. Fluids A
Fluid Dyn. 5, 1526 (1993).

[3

[5

[22] B. Rousset, P. Bonnay, P. Diribarne, A. Girard, J. M.
Poncet, E. Herbert, J. Salort, C. Baudet, B. Castaing,
L. Chevillard, F. Daviaud, B. Dubrulle, Y. Gagne,
M. Gibert, B. Hebral, T. Lehner, P.-E. Roche, B. Saint-
Michel, and M. Bon Mardion, Superfluid high REynolds
von Karmén experiment, Rev. Sci. Instrum. 85, 103908
(2014).

[23] H. L. Grant, R. W. Stewart, and A. Molliet, Turbulent
Spectra From a Tidal Channel, J. Fluid Mech. 12, 241
(1962).

[24] M. M. GIBSON, Spectra of Turbulence at High Reynolds
Number, Nature 195, 1281 (1962).

[25] A. Praskovsky and S. Oncley, Measurements of the Kol-
mogorov constant and intermittency exponent at very
high Reynolds numbers, Phys. Fluids 6, 1048 (1994).

[26] K. R. Sreenivasan, An update on the energy dissipation
rate in isotropic turbulence, Phys. Fluids 10, 528 (1998).

[27] G. Gulitski, M. Kholmyansky, W. Kinzelbach, B. Liithi,
A. Tsinober, and S. Yorish, Velocity and temperature
derivatives in high-Reynolds-number turbulent flows in
the atmospheric surface layer. Part 2. Accelerations and
related matters, J. Fluid Mech. 589, 83 (2007).

[28] Y. Tsuji, Intermittency effect on energy spectrum in
high-Reynolds number turbulence, Phys. Fluids 16, 11
(2004).

[29] T. Ishihara, Energy spectrum in high-resolution direct
numerical, 082403, 1 (2016).

[30] T. Ishihara, T. Gotoh, and Y. Kaneda, Study of
High-Reynolds Number Isotropic Turbulence by Direct
Numerical Simulation, Annu. Rev. Fluid Mech. 41, 165
(2009).

[31] Y. Kaneda, T. Ishihara, M. Yokokawa, K. Itakura,
and A. Uno, Energy dissipation rate and energy spec-
trum in high resolution direct numerical simulations
of turbulence in a periodic box, Phys. Fluids 15,
10.1063/1.1539855 (2003).

[32] N. Cao, S. Chen, and Z.-S. She, Scalings and Relative
Scalings in the Navier-Stokes Turbulence, Phys. Rev.
Lett. 76, 3711 (1996).

[33] K. P. Iyer, K. R. Sreenivasan, and P. K. Yeung, Reynolds
number scaling of velocity increments in isotropic turbu-
lence, Phys. Rev. E 95, 21101 (2017).

[34] D. Fukayama, T. Oyamada, T. Nakano, T. Gotoh, and
K. Yamamoto, Longitudinal structure functions in decay-
ing and forced turbulence, J. Phys. Soc. Japan 69, 701
(2000).

[35] P.-F. Yang, A. Pumir, and H. Xu, Generalized self-similar
spectrum and the effect of large-scale in decaying homo-
geneous isotropic turbulence, New J. Phys. 20, 103035
(2018).

[36] M. Sinhuber, G. P. Bewley, and E. Bodenschatz, Dissipa-
tive Effects on Inertial-Range Statistics at High Reynolds
numbers, Phys. Rev. Lett. 119, 134502 (2016).

[37] K. R. Sreenivasan and B. Dhruva, Is There Scaling in
High-Reynolds-Number Turbulence?, Prog. Theor. Phys.
Suppl. 130, 103 (1998).

[38] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Mas-
saioli, and S. Succi, Extended self-similarity in turbulent
flows, Phys. Rev. E 48, R29 (1993).

[39] J. Schumacher, K. R. Sreenivasan, and V. Yakhot,
Asymptotic exponents from low-Reynolds-number flows,



New J. Phys. 9, 89 (2007), arXiv:0604072 [nlin.CD].

[40] E. Bodenschatz, G. P. Bewley, H. Nobach, M. Sinhuber,
and H. Xu, Variable Density Turbulence Tunnel Facility,
Rev. Sci. Instrum. 85, 1 (2014), arXiv:1401.4970.

[41] K. P. Griffin, N. J. Wei, E. Bodenschatz, and G. P. Bew-
ley, Control of long-range correlations in turbulence, Exp.
Fluids 60, 55 (2019).

[42] C. Kiuchler, G. Bewley, and E. Bodenschatz, Experimen-
tal Study of the Bottleneck in Fully Developed Turbu-
lence, J. Stat. Phys. 175, 617 (2019).

[43] G. 1. Taylor, The Spectrum of Turbulence, Proc. R. Soc.
A Math. Phys. Eng. Sci. 164, 476 (1938).

[44] G. Kunkel, C. Arnold, and A. Smits, Development of
NSTAP: nanoscale thermal anemometry probe, 36th
ATAA Fluid Dyn. Conf. , 1 (2006).

[45] M. Vallikivi and A. J. Smits, Fabrication and Charac-
terization of a Novel Nanoscale Thermal Anemometry
Probe, J. Microelectromechanical Syst. 23, 899 (2014).

[46] Y. Fan, G. Arwatz, T. W. Van Buren, D. E. Hoffman,
and M. Hultmark, Nanoscale sensing devices for tur-
bulence measurements, Exp. Fluids 56, 10.1007/s00348-
015-2000-0 (2015).

[47] N. Hutchins, J. P. Monty, M. Hultmark, and A. J.
Smits, A direct measure of the frequency response of hot-
wire anemometers: temporal resolution issues in wall-
bounded turbulence, Exp. Fluids 56, 10.1007/s00348-
014-1856-8 (2015).

[48] M. Samie, N. Hutchins, and I. Marusic, Revisiting
end conduction effects in constant temperature hot-wire
anemometry, Exp. Fluids 59, 133 (2018).

[49] A. Ashok, S. C. C. Bailey, M. Hultmark, and A. J. Smits,
Hot-wire spatial resolution effects in measurements of
grid-generated turbulence, Exp. Fluids 53, 1713 (2012).

[50] G. Falkovich, Bottleneck phenomenon in developed tur-
bulence, Phys. Fluids 6, 1411 (1994).

[51] D. A. Donzis and K. R. Sreenivasan, The bottleneck ef-
fect and the Kolmogorov constant in isotropic turbulence,
J. Fluid Mech. 657, 171 (2010).

[52] M. K. Verma, A. Ayyer, O. Debliquy, S. Kumar, and
A. V. Chandra, Local shell-to-shell energy transfer via
nonlocal interactions in fluid turbulence, Pramana 65,
297 (2005).

[53] D. Lohse and A. Muller-Groeling, Bottleneck effects in
turbulence: Scaling phenomena in r versus p space, Phys.
Rev. Lett. 74, 1747 (1995), arXiv:9405002 [chao-dyn)].

[54] S. Kurien and K. R. Sreenivasan, Measures of Anisotropy
and the Universal Properties of Turbulence, in New
trends Turbul. Turbul. Nouv. Asp. (Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2001) pp. 53-111.

[55] M. K. Fu, Y. Fan, and M. Hultmark, Design and vali-
dation of a nanoscale cross-wire probe (X-NSTAP), Exp.
Fluids 60, 99 (2019).

[56] E. Bodenschatz, G. P. Bewley, H. Nobach, M. Sinhuber,
and H. Xu, Variable density turbulence tunnel facility,
Rev. Sci. Instrum. 85, 093908 (2014), arXiv:1401.4970.

[57] Y. Tsuji, Large-scale anisotropy effect on small-scale
statistics over rough wall turbulent boundary layers,
Phys. Fluids 15, 3816 (2003).

[58] R. A. Antonia, S. L. Tang, L. Djenidi, and Y. Zhou,
Finite Reynolds number effect and the 4/5 law, Phys.
Rev. Fluids 4, 10.1103/PhysRevFluids.4.084602 (2019).

[59] M. Sinhuber, E. Bodenschatz, and G. P. Bewley, Decay of
Turbulence at High Reynolds Numbers, Phys. Rev. Lett.
114, 034501 (2015).

[60] Y.-H. Pao, Structure of Turbulent Velocity and Scalar
Fields at Large Wavenumbers, Phys. Fluids 8, 1063
(1965).

[61] F. Lepreti, V. Carbone, and P. Veltri, Model for inter-
mittency of energy dissipation in turbulent flows, Phys.
Rev. E 74, 026306 (2006), arXiv:0702015 [nlin].

[62] K. R. Sreenivasan, An update on the energy dissipation
rate in isotropic turbulence, Phys. Fluids 10, 528 (1998).

[63] K. R. Sreenivasan, On the scaling of the turbulence en-
ergy dissipation rate, Phys. Fluids 27, 1048 (1984).

[64] B. Dhruva, An Ezperimental Study of High Reynolds
Number Turbulence in the Atmosphere, Ph.D. thesis, Yale
University (2000).

[65] T. Gotoh, D. Fukayama, and T. Nakano, Velocity field
statistics in homogeneous steady turbulence obtained us-
ing a high-resolution direct numerical simulation, Phys.
Fluids 14, 1065 (2002).

[66] P. G. Saffman, The large-scale structure of homogeneous
turbulence, J. Fluid Mech. 27, 581 (1967).

[67] S. Tang, R. A. Antonia, L. Djenidi, and Y. Zhou, Can
small-scale turbulence approach a quasi-universal state?,
Phys. Rev. Fluids 4, 10.1103/PhysRevFluids.4.024607
(2019).

[68] a. Arneodo, C. Baudet, F. Belin, R. Benzi, B. Castaing,
B. Chabaud, R. Chavarria, S. Ciliberto, R. Camussi,
F. Chilla, B. Dubrulle, Y. Gagne, B. Hebral, J. Her-
weijer, M. Marchand, J. Maurer, J. F. Muzy, A. Naert,
A. Noullez, J. Peinke, F. Roux, P. Tabeling, W. V. D.
Water, and H. Willaime, Structure functions in turbu-
lence, in various flow configurations, at Reynolds num-
ber between 30 and 5000, using extended self-similarity,
Europhys. Lett. 34, 411 (2007).

[69] Z.-S. Z. She, E. Jackson, and Z.-S. Z. She, On the univer-
sal form of energy spectra in fully developed turbulence
Technique for the experimental estimation of nonlinear
energy transfer in fully developed turbulence On the uni-
versal form of energy spectra in fully developed turbu-
lence, Phys. Fluids A 5, 1526 (1993).

[70] G. Ruiz Chavarria, C. Baudet, R. Benzi, and S. Ciliberto,
Hierarchy of the Velocity Structure Functions in Fully
Developed Turbulence, J. Phys. II 5, 485 (1995).

[71] S. B. Pope, Turbulent Flows, in Cambridge Univ. Press,
Vol. 1 (2000) Chap. 6 - Scalin, pp. 232—-233.

[72] A. S. Monin, A. M. Yaglom, and T. S. Lundgren, Sta-
tistical Fluid Mechanics, Vol. 11, J. Appl. Mech. 43, 521
(1976).

Appendix A: Measurements of Decay

We have measured time series of velocity fluctuations
along the centerline of the measurement section in vari-
ous distances from the active grid with two different forc-
ing mechanisms that produce different energy injection
scales. Fig 6 shows that the turbulent kinetic energy
measured by u%,,¢ is decreasing at all points considered
here for both grid protocols. It further shows that the
integral scale is not growing, but slightly decreasing.
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FIG. 6. Development of the integral scale (left) and turbulent
kinetic energy (right) for different distances from the grid.
The distances are normalised by the active grid length scale
defined by the correlation lengths of the paddle protocol (see
[42] for details). This scale is different from the mesh size
normally used in passive grid turbulence. L was estimated
using from fom C11(r) Ju%prsdr with 7o the first zero-crossing
of the correlation function. Results for different definitions of
L are similar.

Appendix B: Experimental Conditions

Fig. 7 indicates critical experimental length scales
along the measurements of (5. The probe averaging
length mainly influences smaller scales and is far away
from the region of interest. The temporal resolution is
determined by the noise filtering frequency and the fre-
quency response of the measurement system. The fre-
quency response of the system is not perfectly flat any-
more starting around 1kHz [47]. The range of scales we
are interested in is therefore in the flat part of the fre-
quency response curve. The noise filtering frequency is
always at frequencies above 1kHz.

Appendix C: The Model Spectrum

The evolution equation of the energy spectrum E(k,t)
can be derived directly from the Navier-Stokes-Equation
in the isotropic case and is known as the Karman-
Howarth-Lin equation.

OE(k,t) = —0kI1(k,t) — 2vk*E(k, t). (C1)
The first term on the RHS describes the nonlinear trans-
fer of energy from small to large wavenumbers and ulti-
mately prevents the closure of the equation, since it is a
third-order term. The Pao closure [60] used in the model
by Yang et al. [35] assumes that the transfer term II is
local in wavenumber space and has a self-similar form:

(k,t) = Coe Pk E(k, t) (C2)
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FIG. 7. Same as Fig. 1 (A) with the addition of probe length
(dotted vertical lines), the value of r/n corresponding to a
measurement frequency of 1 kHz through Taylor’s Hypothe-
sis (vertical lines), the values of 79/n chosen to assemble Fig.
1 (D) (dashed black lines), the length of the energy injec-
tion scale (vertical black lines), and the grid length scale (red
lines).

The second term on the RHS of C1 represents the vis-
cous dissipation at the smallest flow scales. This yields a
closed form of the Karman-Howerth-Lin equation. The
model by Yang et al. further assumes that the en-
ergy spectrum can be assembled by a large scale term
fr(kL), a small scale term f,(kn), and a self-similar in-
ertial range:

E(k,t) = Cxe*/*k°/ f, (kn) fr (kL) (C3)

These assumptions are now combined with a general, self-
similar decay of turbulent kinetic energy. In the case of a
confined domain, where the parameter describing dL/d¢
tends to zero, this model predicts the energy spectrum
E(k) ~ %(kL)—(<2p+1>6<3AK/0><kL>*2/36—(1v5/0>(kn>4/3,
(C4)

For the purpose of measuring a scaling exponent, we
replaced the term (kL)~5/% with (kL)~(¢r*D  where
the fitting parameter (o is the inertial range scaling
exponent for the second order structure function[71].
The parameters C' and Ay are related through C' =
—Ag(6/m)'/3. In practice, Ax describes the large-scale
part of the energy spectrum, which is heavily influenced
by the decay.

The one-dimensional versions of S, and E(k) are re-
lated through the following integral transform [72]:

So(r) = /O " B <§ + CE’ZS’;;“ ) _ SI(I;’;Z)) dk. (C5)

To obtain the fits shown in Fig. 4, we have searched
for parameters Ag, and (or that yield best fits of the
logarithmic derivative of eq. C5 to the experimentally
measured (2(7).



It can be shown that C' = — A (6/7)'/3. This quantity
is related to the dissipation constant C. = eL/u? relating
the large scale energy injection and the small scale en-
ergy transfer rate e. Ak is the non-dimensionalized time-
evolution of the energy spectrum prefactor d(Ce?/3) /dt,
which is a free parameter.

The energy transfer spectrum II(k) is related to Ss via

1 cos(kr)  sin(kr)
G )

o k2 0k dr

S5 = 12 laﬂd(l

(C6)
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Therefore, the model 2 in combination with its un-
derlying closure hypothesis C3 implicitly predicts Ss.
Note that strictly speaking the combination of the
intermittency-corrected model 2 and the K41-type clo-
sure (C3) yields a third order exponent (3 slightly differ-
ent from 1. It is reassuring to see that instead leaving
the 5/3-term in (C3) as a generic scaling and fitting the
resulting model to Sz yields IT ~const. in the inertial
range, i.e. S3 ~ 7.



Chapter 7

Extension of Eulerian Predictions to

This chapter stands in the long tradition of classical Eulerian two-point
statistics. The dataset presented here allows the extension of this profound
body of literature towards larger R, than previously obtainable in laboratory
experiments. It is therefore well-suited to study the approach towards the
values expected in the limit of high-R. In particular, the dissipation constant
Ce = eL/u%, s, the Kolmogorov constant Cx = max(S,/ (er)?/?), the 4/5-law,

and the extended self-similarity scaling are investigated.

7.1 The Dissipation Constant

The quantity
Ce = sL/u%MS (7.1)

was introduced in Sec 3.3. Eq. (7.1) rests on the realisation that if the viscous
dissipation at small scales ¢ is the only sink of turbulent kinetic energy and
there exists an energy cascade towards these smaller scales scales, e must be at
least proportional to the power injected at the largest flow scales. The power
injected at scale L can be estimated by dimensional arguments as u%,,s/L. C;
can therefore be seen as a cascade efficiency.

Under the hypothesis of a universal energy cascade, the cascade efficiency
should be independent of the Reynolds number, i.e. C; = const. for large
Re. This has fundamental consequences for the inviscid limit v — 0: Since
any increase in Reynolds number through a decrease in viscosity v must sus-
tain C; =const. and & ~ v(du;/dx;)?, the velocity gradients (du;/dx;)> must
diverge in this limit. The existence of singularities is an active field of math-
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Figure 7.1: Dissipation Rate constant C; = eL/u3 ms- Closed symbols: Data from the VDTT.
Passive grid data courtesy of M. Sinhuber [50]. Open symbols denote the prediction of C,
from the model by Yang et al. [51] based on the fits described in Ch. 6.

ematical research in both the inviscid Euler equations, and the Navier-Stokes
equations [48, 49]. €L/ u%Ms = const can be reformulated in terms of the
enstrophy (w?) =¢e/v (see eq. (2.21)). Inserting this into eq. (7.1) yields

Ce = (wW*)VL/u} s (7.2)

Therefore, a reduction in v in an otherwise unchanged flow must be accom-
panied by an increase in the enstrophy. In combination with the blow-up of
gradients, the constancy of C, points towards the regular appearance of small,
structures of intense vorticity, i.e. vortex filaments.

The measurement of C, poses two difficulties. First, e is notoriously dif-
ficult to estimate from hot-wire data as discussed in Sec. 5.3.3. Here, ¢ =
15v(duy /dx1)* was chosen and no corrections were applied. The second com-
plication is the measurement of L. The most common way to estimate L is the
integral over some part of the autocorrelation function of the velocity fluctu-
ations.

Ly = [+ nu(o)dr 7:3)

The result depends sensitively on the choice of rg. At large r, C11 = (u1(x1 +
r)u(x1)) fluctuates around 0. While the theoretical limit of 7y — oo cannot
be realised in any real measurement, the location of the first zero-crossing of
Cyq; is often used for rg instead. This choice has been employed here as well.
In active grid turbulence, C;; can have nonzero values even for very large

r [52, 53]. This has motivated alternative integration boundaries, since it is
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unclear whether the long-range correlations present at these very large sep-
arations significantly contribute to the nonlinear cascade. Pearson et al. [54]
argued that estimating the energy injection scale from the peak of the spectral
quantity k1Eq1 (k1) provides a more universal estimate of L and improves the
collapse of data from different types of flow.

Fig. 7.1 shows the values of C; extracted from the hot-wire data. A com-
parison is made to data acquired by M. Sinhuber [50]. Further, the model of
decaying turbulence in a confined domain introduced in Ch. 6 connects C;
to the decay parameter Ax = —ng/ 3. The value of C, corresponding to the
titted values of Ak is shown by open symbols for both the active and the pas-
sive grid cases. The data shows a good collapse at R, > 500 towards a value
of slightly below 1. No R,-dependence can be discerned up to Ry ~ 6000
confirming the prediction of C; = const. at large Reynolds numbers. To the
author’s knowledge this is the largest R, where this was measured in a clas-
sical fluid with negligible mean shear. Risius et al. [55] investigated C. under
atmospheric conditions on a mountain research station finding C, ~ 0.5 over
a comparable range of R). Eq. (7.2) was explored in the SHREK experi-
ment (Superfluid Helium high REynolds number von Karmén flow) up to
R, =~ 30000 in superfluid helium [56] showing that both viscous and super-
fluid helium approach a constant at large R,. At lower R), an abundance of
measurements of C, exists [57, 58, 59, 60, 54, 61, 53] . The high-R, asymptotic
value appears to depend on the turbulence generation mechanism and typi-
cally varies between 0.5 and 1. Forced DNS and [62] active and fractal grid
turbulence [63, 64] appear to result in values close to 1, whereas passive grid
data and sheared flows result in lower values around 0.5 [60].

7.2 The Kolmogorov Constant and the 4/5-th Law

This section offers results from the VDTT on two classical inertial range
predictions at large Reynolds number. By averaging the Navier-Stokes equa-
tions, one obtains the exact Karman-Howarth relations (see Sec. 3.2). In terms
of the structure functions it reads for the isotropic case [67]

2, r*aS; 9r'S3 9 r'9s,

__r S — i —

375729 o 6 Vor or (7.4)

Under the assumption of statistical stationarity, the first term on the LHS
vanishes. In the limit of large Reynolds number, the last term on the RHS

becomes negligible for r > 5. Upon integration, one therefore recovers the
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Figure 7.2: Left: S3/(er) as function of scale r/# for selected R, =147, 413, 619, 888, 1550,
2143, 2892, and 5865. Errors include 95% CI of the statistical error, a 3% error from velocity
calibration, and a 5% error on the dissipation measurement. The incomplete collapse at the
highest R is most likely due to insufficient small-scale resolution. Note a bump in the large-
scale cutoff. Right: Value of the peak of S3/(er) as function of R, along with models by Qian
[65], Lundgren [66], and the Yang model dicussed in detail in Ch. 6.

4/ 5th-law

S3(r) = %SV (7:5)
in the inertial range for large enough R, . Since this relation can be derived in
an exact way for homogeneous, isotropic turbulence, it must be approached
in the limit of extremely large R,. It is however observed, that in decaying
turbulence such as in the wake of an (active) grid, the compensated third-
order structure function S3/(er) approaches 0.8 rather slowly [68]. This has
been related to instationarity effects, i.e. the second term on the RHS of eq.
(7.4) does not vanish. In numerical simulations of turbulence in a forced
periodic box, nonstationarity effects decay quickly, and only viscous effects
reduce S3/(er) in the inertial range. Consequently, eq. (7.5) is fulfilled at
lower R). To the author’s knowledge, the data obtained in the ONERA wind
tunnel in Modane at Ry = 2260 constitute the highest R, at which the 4/5
law was studied experimentally [69, 68] until now. This thesis extends this

range towards R, ~ 6000 as shown in Fig. 7.2.

As discussed in Ch. 6, the scaling range S3/(er) = const. cannot be iden-
tified due to effects of finite Reynolds number, and lack of statistical station-
arity. The approach to the 4/5-law is studied nevertheless by observing the
increase of the maximum of the compensated structure function for different
R). The active grid data approaches 0.8 slightly slower than the predictions by
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Figure 7.3: Left: Sp/(er)?/3 as function of scale r/1 for selected R, =147, 413, 619, 888, 1550,

2143, 2892, and 5865. Errors as in Fig. 7.2. Right: Value of the Kolmogorov constant Cxk as
function of R, along with the prediction by the Yang model [51] dicussed in detail in Ch. 6.

Yang et al. [51] and Lundgren [66], which account for finite-Reynolds number
effects and decaying turbulence using matched asymptotic expansions. The
data is well-described by the one-parameter fit to 0.8 — CR;N 3 predicted by
Qian for decaying turbulence [65].

Combining equation (7.4) with the K41 framework reveals that the skew-
ness S = S3/ Sg/ 2 is related to the Kolmogorov constant Ck [67] in the inertial
range:

4
S3/83/% = —BCK?’/? (7.6)

Ck is related to both the prefactor of the energy spectrum and S, and shall be
defined here as

A consequence of the Kolmogorov framework is that Ck is a universal func-
tion, i.e. independent of the flow under study. In particular, it should be inde-
pendent of R,. Experiments and simulations regularly find values around 2.0,
albeit with more scatter from experiment to experiment than for the 4/5th-
law [70, 71, 72]. Fig. 7.3 shows the Kolmogorov constant as a function of
R,.

Unlike the corresponding quantity for Sz, no clear approach towards a
high-R, asymptote can be identified even after correction of probe induced
biases into e in the spirit of Sec. 5.3.3 (open symbols). However, the mea-
surement of ¢ relies on local isotropy. In weakly anisotropic flows, ¢ is always
higher than estimated by the isotropic estimate [71]. Similarly, the scatter is

relatively large when compared to S3/(er). This is particularly interesting,
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Figure 7.4: Illustration of ESS scaling for n = 4 (green) and n = 5 (red) for Ry = 4141. Left:
Ilustrative example that S, vs 5|3/ scales over a wider range of scales than S, vs. r. Right:
Procedure used to extract ESS scaling exponents. The blue range indicates the averaging area
interpreted as inertial range.

because the shape of S; and S3 when measured by the logarithmic derivative
is both independent of R, and shows only little scatter from experiment to
experiment (see Ch. 6).

7.3 ESS-Exponents at large R,

An influential result regarding scaling of the structure functions S, is that
in experimental and numerical data, S, scales with S, considerably better
than with r [73, 74]. This procedure is known as extended self-similarity
(ESS). In particular, the inertial range scaling is extended towards large scales,
if 54(S)) is plotted, where S, (r) = (|u(x +7) —u(x)|™). It is convenient
to choose m = 3, since S3 ~ r!, such that the ESS scaling exponent is directly
related to the actual scaling exponent ;. Grossmann et al. [75] found that the

usage of the absolute velocity difference is essential in the application of ESS.
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They suggest in fact that the scaling S,,(S|,,|) shows an even better scaling.
This is, because the ESS procedure extends the inertial range scaling primarily
towards large scales, where the scaling behaviour differs drastically between
even and odd order structure functions. The scaling of the absolute velocity
differences is 7V for large r, whereas the scaling of the pure velocity differences
is 9 for even orders only. In all cases, S,(r < 1) ~ r" at small scales, such
that an extended scaling cannot be expected here.

ESS became a standard tool to extract scaling exponents in flows where
the inertial scaling range is nonexistent or small due to insufficient R,, or
strong large-scale inhomogeneities. In this section the scaling exponents are
extracted by calculating

Ess,. _ d10g(Sn)
no(r) = w- (7.8)

The ESS scaling exponent ZBSS is then taken as the mean of ¢E55(200y <
r < 0.2L), which is indicated by blue overlays in Fig. 7.4. The procedure is
illustrated in Fig. 7.4 for n = 4 and 5. It illustrates that the scaling range for
even orders is extended, whereas the inertial range for odd orders is about as
large as in the direct scaling S, (7). Nevertheless, the local slope of 5, (S
is substantially flatter than dlog(S,)/dlog(r) (see Fig. 8.1). It was shown in
Ch. 6 that the ESS estimate of {,, compares well to alternative methods of
investigating the scaling exponent at second order.

The scaling exponents extracted in this fashion are illustrated in Fig. 7.6
for three R) (1305, 3070, 4141). For n < 9, no Reynolds number dependence
of 7555 can be identified. At n > 9, the data is not statistically converged as
indicated in Fig. 7.5 and longer datasets would have to be taken to reduce
the statistical uncertainty. For completeness, the unconverged exponents are
shown as open symbols in the inset of Fig. 7.6.

The data is compared to several models of ;. The Kolmogorov predic-
tion from 1941 [42] without inertial range intermittency states that {,, = n/3.
This is clearly violated even at the largest R, indicating the presence of iner-
tial range intermittency. Furthermore, no trend can be observed that would
indicate a slow approach towards (, = n/3 at any terrestrial R). The re-
fined similarity hypothesis [76] accounts for a intermittent distribution of
in space. It assumes in particular that ¢ is log-normally distributed and the
n-th order moments of the velocity increment statistics therefore scale with
(n/3) — u/18(n(n — 3)), where u is a free intermittency parameter ~ 0.2.
Here, u was taken as a fit parameter to the highest R, data. The fit yields
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Figure 7.5: n-th order moment PDF for 2 < n < 8 incrementally offset by 1 for clarity. The
increments were taken over r = 24275. The PDFs return to o for n < 9 indicating statistical
convergence.



7.3. ESS-EXPONENTS AT LARGE R) 105

2.50

— K41
2251 She-Leveque
bood K62

== Dubrulle
1.75 1

1.50 1

CESS
n

1.25 ~

1.00 1

0.75 1

0.50

Figure 7.6: ESS exponents as function of order n. Three datasets were chosen: R, = 4141
(blue squares), Ry = 3070 (green triangles), and Ry ~ 1305 (red circles). Inset: Extension
towards higher orders. The data for n > 8 is not statistically converged and consequently
shown in open symbols.

p = 0.23 £ 0.01, which is in good agreement with previous measurements in
the atmosphere [77, 72]. The She-Leveque model assumes that the moments
of the dissipations form a hierarchy. This hierarchy of moments approaches
a constant in the limit of n — oo, which corresponds to the dissipation of
the vortex filaments. This model predicts {, = n—9+2(1 — (2/3)"). It
overestimates the scaling exponents, i.e. predicts weaker intermittency levels
than the data indicates, but only slightly so. Dubrulle [78] showed that the
She-Leveque model is a special case of Log-Poisson distributed dissipation
statistics, which she generalised (see Sec. 3.3.4 for details). The most dissi-
pative structures that dominate the statistics of n — co are allowed to have
any codimension, whereas the She-Leveque model requires them to be one-
dimensional, i.e. to be vortex filaments. The Dubrulle model further contains
a parameter for the intermittency level . Unsurprisingly, the two-parameter
fit describes the data better than the She-Leveque model.

In summary, this section confirms previous findings that significant depar-
tures from the 1941 Kolmogorov prediction exist and that they become more
pronounced at higher orders. This is commonly attributed to the intermit-

tent nature of dissipative structures. After taking into account the statistical
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uncertainty, the data presented here show no significant R)-dependence, in
accordance with the findings in Ch. 6 and results from measurements with a
passive grid installed in the VDTT [50]. The data further confirms the findings
in Ch. 6 that the measurement of a scaling exponent in structure functions
is a delicate task bearing substantial uncertainties. The data does not clearly
favor one of the models shown in Fig. 7.6 and cannot lend particular support
to any of the associated theories.



Chapter 8

Log-Periodic Oscillations in

Even-Order Structure Functions

8.1 Introduction

The data presented in this thesis is uniquely suited to provide insights
into the inertial range scaling, because it permits the study of scale-dependent
statistics, such as the longitudinal structure function S, with unprecedented
detail. In particular, statistical uncertainties can be mitigated to a large degree,
because the sampling of thousands of large eddies is very cheap compared to
to high-resolution DNS, whose results are oftentimes averaged over only a
couple of large eddies or even less than one [79, 80]. Compared to previous
wind tunnel experiments, the data presented here allow an examination of the
inertial range at scales, where both the scale of turbulence forcing and viscous
dissipation are so far apart that their continued separation does not appear
to significantly change the inertial range shape. Features found in the inertial
range can therefore be reliably distinguished from a "bleed-in" of either the
energy-injection or the dissipation scale.

This chapter investigates the scale-by-scale behaviour in the inertial range
in detail. We are in particular interested a fine-structure, which has been
found in wind tunnel data of extreme statistical fidelity [81], but whose extent
is still a matter of debate [82]. This fine-structure is reminiscent of the predic-
tion of log-periodic oscillations and lacunarity, which have been speculated
to be a feature of turbulence under certain assumptions (see Sec. 8.2). The
active grid increases the time required to achieve a certain degree of statistical
convergence. To reveal the fine details in the inertial range, we develop an

approximation of the general shape in the inertial range and use it to detrend
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Figure 8.1: Logarithmic derivative of the second-order structure function for selected R, and
fit of a + blog(r/1) for the case Ry = 5865. The fit is a good description of this quantity in
the inertial range.

the local scaling exponent in the inertial range.

Fig. 8.1 shows the value of the local scaling exponent {, = dlog(S2)/dlog(r)
of the second order structure function for different R,. The following analysis
makes use of the strikingly simple shape of {, in the inertial range between
100y < r < 0.1L. Fig. 8.1 shows that in this range of scales, {>(r) follows a
line in the log-linear plot, i.e. should be well-described by the functional form
a+ blog(r/f) (see also Ref. [83]). The parameter a is trivially determined as
the value of {»(r = ¢), where / is an arbitrary normalisation scale (here: 7). It
is shown in Ref. [83], that the slope of the line approaches a constant at high
R,. Fig. 8.2 shows that the log-linear curve

an + by log(r/0) (8.1)

approximates the general trend in the inertial range rather well also for higher
orders n.

In the context of this chapter eq. (8.1) will be used to compensate for the
general trend of {,(r) in the inertial range and study small features on top
of this trend in detail. This should be considered a purely geometrical tool,
while the reader is referred to Ref. [51] and Ch. 6 for a more physical, but
much more complicated model of the shape of S;. The quantity under study
is thus

Sn(r/1) = Gu(r) — (a+blog(r/1)), (8-2)



8.2. LOG-PERIODIC OSCILLATIONS IN EVEN-ORDER STRUCTURE FUNCTIONS109

R, = 866

R, =931

R, = 1481

R, = 2244

R, = 2680

R, = 5006

Fit a + blog(r/n)

dlog(S3)/dlog(r)

Figure 8.2: Same as Fig. 8.1, but for orders 3 and 4. The fit is indicated for the higher R, only.

where a and b are fit parameters acquired directly from each measurement of
{n by fitting eq. (8.1) to £, (100 < r < 0.1L). This procedure is superior to the
study of e.g. dlog(Sy,)/dlog(Sm), because it separates the different orders of
the structure functions. It further reduces the necessary degree of statistical
convergence to distinguish the fine structure from noise. The integral scale L
of the data presented here is up to 6x larger than that of the data shown by
Sinhuber et al. [81]. As the mean flow was similar to their study, a single time
series would have to be about a week long to achieve comparable statistical
convergence. In contrast, the time series from which the data presented here
was extracted were only 6-8h long. Avoiding the noise-amplifying calculation
of dlog S,,/dlog Sy is thus crucial.

8.2 Log-Periodic Oscillations in Even-Order Struc-

ture Functions

It has been hypothesised that the structure functions of velocity fluctua-
tions might exhibit small oscillations around the prevailing self-similar scal-
ing. These log-periodic oscillations naturally occur when assuming a self-
similar process with discrete steps between scales, rather than a continuous
scale-dependence [84, 85, 86, 87]. Hints of such log-periodic oscillations were

found by Anselmet et al. [88] in sixth-order structure functions. Recent exper-
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Figure 8.3: (A)-(C) Difference between the local scaling exponent (, and its general trend
in the inertial range reveals oscillations for even orders, but not for odd orders. The black
curves show fits of the log-periodic cosine (eq. 8.3) to the largest R). (D) and (E) shows the
alternative way of extracting these oscillations using ESS-like ratios. The offset of the brown
curve in (E) is attributed to instrument effects. The colors in (D) represent R logarithmically
spaced from 100 to 1400 wiht darker colors corresponding to larger Reynolds numbers
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iments of extreme statistical fidelity in the VDTT revealed such a fine structure
in plots of d1og(S,)/dlog(Sy) [81], i.e. the local scaling exponent of ESS plots
[89]. The limited Reynolds number and statistical resolution of modern DNS
make conclusive statements on the existence of such oscillations difficult. A
recent comparison between experimental and numerical data on the matter
can be found in Ref. [82].

Fig. 8.3 shows plots of J,(r/n) for the active grid data and plots of
C4(r)/Ca(r) = dlog Sy /dlog Sy, from passive grid data of high statistical con-
vergence and active grid data of lower statistical fidelity.

Plot (A) most clearly shows the presence of a fine-structure throughout
the inertial range. The number of visible peaks increases with R), while their
amplitude saturates at values around o0.01. Plot (A) also points towards a
constant logarithmic spacing of these peaks, also independent of R,.

Plot (C) of d4(7/n) similarily reveals the the existence of a series of peaks,
whose number increase with R,. As for n = 2, the data for J; indicates
that the position of these peaks is logarithmically spaced. Perhaps owing
to the scatter of this data, which has been smoothed by a Konno-Ohmachi-
Smoothing [90, 91], this is not as clear as in plot (A).

Plot (B) of J3 is at odds to the two even orders, because no periodic features
can be distinguished from noise, where again a Konno-Ohmachi-Smoothing
was applied. Some of these curves show a peak at the large-scale end of the
inertial range. There are indications that this peak is related to the forcing
mechanism, because its intensity depends on the active grid configuration.

Plots (D) and (E) show (4(r)/{2(r) as a function of scale /7. As pointed
out by Sinhuber et al. [81], this quantity equally shows signs of an oscillating
fine structure. The most prominent feature in these plots around ~ 107 does
not appear in plots (A)-(C). The location of the other local extrema visible
in (D) and (E) correspond well to those in (A). The first minimum in (D) is
also more pronounced than the extrema at higher r/#, which appear to have
similar heights. Furthermore, this minimum has a clear Reynolds-number
dependence and becomes more pronounced with increasing R). This is again
at odds with the other extrema of this plot, but owing to the small number of
oscillations visible at these rather small R, < 2000, no conclusive statement
can be made.

The first extremum appears to become R)-independent in (D), but (E)
shows that at the R)-dependence extends well beyond the Reynolds num-
bers studied with a passive grid. Most likely, filtering effects smoothed out

the dependence in the passive grid case. This effect can also be observed in
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the active grid data (E) when 7 reaches the size of the sensing element. At this
point a comment on the largest R is necessary. This curve differs from the
other measurements from the dissipation range throughout the inertial range.
Closer inspection shows that this is due to {4(r), whose value is reduced at
the largest Ry compared to all other experiments. Higher order moments em-
phasise the tails of a distribution, in this case the velocity increments. It is
hence plausible that higher orders are more challenging for the instrumenta-
tion and more prone to related errors. It is nevertheless unsettling that the
deviations persist deep into the inertial range.

8.3 Discussion

The results indicate that a fine-structure exists in the inertial range that
modulates the prevailing trend of scaling statistics of structure functions such
as dlog(S,)/dlog(r) or dlogS,,/dlog S,. A novel method based on a simple
tit is suggested that all allows the extraction of this fine structure. The results
are compared to the conventional method [81, 82] based on extended self-
similarity [73]. The latter method reveals a local minimum around r/# ~ 20,
that the method presented here does not capture. This minimum is clearly
outside the inertial range, its amplitude depends on the Reynolds number,
and it is a natural outcome of the multifractal p-model [92] with a small-scale
cutoff [81]. These properties are at odds with all other extrema observable in
Fig. 8.3. It is therefore not surprising that a different method to extract the
scaling fine structure does not capture this initial oscillation.

The remaining data is consistent with the following picture: The even
order structure functions are modulated by oscillations with a logarithmi-
cally increasing period and an amplitude that depends neither on scale r, or
Reynolds number, but increases with order n. The data presented here can
only show this behaviour up to n = 4, since measurement noise prevents
statements for higher orders n. These oscillations are most likely linked to the
dissipation range, as pointed out by Sinhuber et al. [81], because the peaks
coincide upon normalisation by #, but not by L (not shown).

Even though only a maximum of two full cycles can be observed in Fig.
8.3, the existence of log-periodic oscillations in even-order structure functions
will be taken for granted in the remaining discussion. Such oscillations can
be parameterised as

P(r) = Acos(2rtflog(r/¥)). (8.3)
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Figure 8.4: Dependence of the logarithmic "frequency” on R,. f appears to assume values
between 0.25 and 0.6 corresponding to a scaling factor y between 12 and 30. Error bars mark
fit parameter uncertainties.

The parameters A, f, and ¢ can be obtained by a fit to the data in the range
100n7 < r < 0.1L and the results of such fits are shown in Fig. 8.3 (A) and (C).
It can be seen from plot (A) that the parameters of these fits are not expected
to change significantly with R,, they seem to be universal in this sense. This
is confirmed by plotting the extracted values of f vs. R, as in Fig. 84. f

approaches a value around 0.3 for Ry > 2000, albeit with significant scatter.

According to the discrete scale invariance theory presented in Ref. [93],
this frequency is related to a preferred scaling factor 7, which can be inter-
preted very loosely as the typical number of eddies that one mother eddy
"breaks up" into. If that number is around 2 or 3, but not as large as 10, the
log-periodic oscillations are to be expected in statistical objects such as the

structure function [86]. Since

In(y) =1/f, (8.4)

v ~ 12 for n = 2 in our data. This is precisely the regime, which Novikov
[86] excluded from his prediction of log-periodic corrections to structure func-

tions.

The conclusions of this chapter could therefore be, that undulations to the

prevailing scaling of structure functions exist, that these occur in the form of
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logarithmically-spaced peaks, but the spacing of these peak is not as expected
originally. The data instead reveals a more than 4x larger universal scaling
factor. This behaviour appears to be limited to even-order structure functions,

where only orders 2-4 could be considered.



Chapter 9

Experimental Study of the
Bottleneck Effect in Fully
Developed Turbulence

This chapter is a reprint with permission of the paper "Experimental Study
of the Bottleneck Effect in Fully Developed Turbulence", which appeared in
the special issue dedicated to the memory of Pierre Hohenberg of the Journal
of Statistical Physics [1]. The author of the thesis performed the measure-
ments, and data analysis and prepared the text. The coauthors organized the

research, helped in the interpretation of the data, and edited the manuscript.

[1] C. Kiichler, G. Bewley, and E. Bodenschatz. “Experimental
Study of the Bottleneck in Fully Developed Turbulence”. In: . Stat. Phys.
175.3-4 (May 2019), pp. 617-639. DOI: 10.1007/510955-019-02251-1
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Abstract

The energy spectrum of incompressible turbulence is known to reveal a pileup of energy at
those high wavenumbers where viscous dissipation begins to act. It is called the bottleneck
effect (Donzis and Sreenivasan in J Fluid Mech 657:171-188, 2010; Falkovich in Phys
Fluids 6:1411-1414, 1994; Frisch et al. in Phys Rev Lett 101:144501, 2008; Kurien et al.
in Phys Rev E 69:066313, 2004; Verma and Donzis in Phys A: Math Theor 40:4401-4412,
2007). Based on direct numerical simulations of the incompressible Navier-Stokes equations,
results from Donzis and Sreenivasan (657:171-188, 2010) pointed to a power-law decrease
of the strength of the bottleneck with increasing intensity of the turbulence, measured by the
Taylor micro-scale Reynolds number R;. Here we report the first experimental results on
the dependence of the amplitude of the bottleneck as a function of R; in a wind-tunnel flow.
We used an active grid (Griffin et al. in Control of long-range correlations in turbulence,
arXiv:1809.05126, 2019) in the variable density turbulence tunnel (VDTT) (Bodenschatz
et al. in Rev Sci Instrum 85:093908, 2014) to reach R;, > 5000, which is unmatched in
laboratory flows of decaying turbulence. The VDTT with the active grid permitted us to
measure energy spectra from flows of different R;, with the small-scale features appearing
always at the same frequencies. We relate those spectra recorded to a common reference
spectrum, largely eliminating systematic errors which plague hotwire measurements at high
frequencies. The data are consistent with a power law for the decrease of the bottleneck
strength for the finite range of R; in the experiment.

Keywords Turbulence - Fluid dynamics - Anemometry

1 Introduction

Turbulence is omnipresent in natural and technological flows. Its consequences for the asso-
ciated processes are essential in the fields of astrophysics, geophysics, meteorology, biology,
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and in many engineering disciplines from chemical engineering, combustion science, heat
and mass transfer engineering to aeronautics, marine science and renewable energy research.
From the fundamental perspective the mathematical field theory of the incompressible Navier
Stokes equation continues to challenge pure and applied mathematicians [1]. In turbulence
fluid velocities and accelerations fluctuate greatly and any description can only be statistical
in nature. It is believed that at very high turbulence levels at spatial scales smaller than the
energy injection scale the turbulence shows universal properties, independent of the partic-
ular driving. According to Kolmogorov’s phenomenology from 1941 [2] (abbreviated K41),
the universal statistical spatial properties of fully developed turbulence can be captured in
three ranges of spatial scales. Kinetic energy is injected into the turbulent fluctuations at the
largest scales, whose properties are particular to the driving mechanism. The kinetic energy
is transformed into heat at the very smallest scales through viscous dissipation. If the range
of spatial scales found in the turbulent structures is large enough, a third range of scales
develops, where neither the peculiarities of energy injection, nor viscous dissipation influ-
ence the spatial scale-to scale energy transfer. This range is called the inertial range. In this
intermediate range statistical properties can be interpreted by the scale-to-scale transfer of
kinetic energy only, described by the kinetic energy dissipation range ¢(dissipated power per
unit mass). The dimensionless quantity used to give the strength of turbulence and thus the
size of the inertial range scaling is the Taylor microscale Reynolds number

Ur
o

R, =

u is the rms of the velocity fluctuations, v is the kinematic viscosity of the fluid, and A is
the Taylor microscale, which is a measure for the mean length between two zero-crossings
of the velocity fluctuations [3]. A can be thought of as a typical size of an inertial range
eddy. In statistically isotropic and homogeneous turbulence R, can be linked to the well-
known Reynolds number Re = uL /v based on the large scales L via R, = +/15Re [4].
The integral scale L can be estimated as the integral over the velocity correlation function
Lii = [(u(x 4 ryu(r))dr.

In K41 phenomenology for spatially homogeneous and statistically isotropic turbulence
the spatial energy spectrum in the inertial range is given by

E(k) = Cge?Pk™13, (1)

Ck 1s the Kolmogorov constant, k is the wavenumber. In this K41 spectrum the only free
parameter is the dissipation rate ¢ as indicated above.

Despite its simplicity, Eq. (1) describes the energy spectrum of observed and simulated
turbulent flows quite well (see [5] for a compilation and [6] for an experimental study on the
R;-dependence of the spectral slope). Nevertheless, important deviations are well known.
When analyzing the compensated spectrum E (k)e ~2/3k>/3, deviations from a k—>/3 scaling
are found. Prominent is an increase in amplitude of the compensated spectrum at the high-
wavenumber end of the inertial range. This pileup of energy is commonly called the bottleneck
effect [7-12]. It has been observed in laboratory flows (e.g. [5,13—15]) and direct numerical
simulations (DNS) [16-19] alike and is typically preceded by a distinct local minimum of
the compensated spectrum. The bottleneck peak is very shallow or almost absent in hot-wire
measurements of atmospheric boundary layer turbulence at very high R, > 10* [20-22]. It
is generally less pronounced in one-dimensional spectra than in three-dimensional ones [23].
The effect is also present in structure functions and influences the rapidity of the transition
between the viscous and inertial ranges in the second-order structure function [19,24], hints
of which can also be found in structure functions of higher orders [25]. The most extensive
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analysis of the bottleneck effect has been performed by Donzis and Sreenivasan [19] on
DNS at R, up to 1000. They found that the bottleneck effect can be characterized as the
difference between the bottleneck peak height and the level of the preceding minimum in
the compensated spectrum. They conclude that the bottleneck effect weakens as a function
of R; and report a scaling of h ~ R;O‘m. Furthermore, they find that the peak of the bump
occurs around kn ~ 0.13 in three-dimensional spectra, independent of R;. Here n is the
Kolmogorov length scale, where dissipative effects are expected to dominate.

From a theoretical perspective, various explanations exist for the bottleneck effect.
Falkovich [10] showed that a small perturbation to a K41 spectrum in the energy trans-
fer equation leads to a correction of the form § E (k) = E(k)(k /kp)_4/ 3In—! (kp/k), where
kp is the bottleneck wavenumber. Kurien et al. [9] argued that the time scale of helicity can
be comparable to the energy time scale in the inertial range, where the relative helicity is
already weak. They propose that the bottleneck effect is a change in the scaling exponent
of the energy spectrum from —5/3 to —4 /3. Their DNS supports this claim as they find a
corresponding scaling range in the three-dimensional spectrum. The scaling is absent in the
one-dimensional versions of their spectra. Frisch etal. [8] studied hyperviscous Navier-Stokes
equations (Laplacian of order « > 2) and attribute the bottleneck effect to an incomplete ther-
malization of high-wavenumber modes in the spatial spectrum. None of these studies directly
incorporates a R -dependence of the bottleneck height. Verma and Donzis [11] study the non-
local and nonlinear mode-to-mode energy transfer in a shell model of turbulence and find
that a significant portion of the energy flux away from a wavenumber shell goes to distant
shells. Thus an efficient energy cascade requires a large inertial range. If the inertial range is
insufficient, the energy piles up at the dissipative drop-off. As the length of the inertial range
is tightly linked to R;, this implies a dependence of the bottleneck intensity on the Reynolds
number.

In summary, the bottleneck effect has been studied systematically in DNS and various
models. Numerical simulations indicate that the effect gets weaker with increasing R;, which
is also predicted by Verma and Donzis [11] and in agreement with atmospheric measurements
at ultra-high R;, where it is absent.

Here we present a detailed analysis of the R;-scaling of the bottleneck effect over an
unprecedented range of R; in a well controlled laboratory flow. The analysis of the bottle-
neck effect from experimental data can be demanding as systematic errors can cloud the
results. From the perspective of the measuring instrument a small bump in the compensated
spectrum is a subtle effect that occurs at rather high frequencies not yet resolvable in PIV or
PTV measurements and very difficult to achieve in LDV. We use classical constant temper-
ature hot-wire anemometry (CTA) assuming Taylor frozen flow hypothesis [26] in the Max
Planck variable density turbulence tunnel (VDTT) [15]. Even with very well-established hot-
wire technology, subtle changes in the energy spectrum at high frequencies can be heavily
influenced by amplification or attenuation at such frequencies (see Sect. 2.2 for a review).

In this manuscript we work around those effects and investigate the bottleneck effect from
the lowest Reynolds number at which it can be identified (~ 200) up to the highest R; ever
measured in a wind tunnel flow.

The paper is organized as follows: first, we present a concise compilation of experimental
efforts to reach high R and describe the variable density turbulence tunnel. We continue with
a brief review of challenges posed by constant temperature hot-wire anemometry, especially
its frequency responses. In Sect. 3 we introduce the relative spectra that allow us to eliminate
instrumentation errors to a large extent. Finally we report the results of our analysis and
discuss their relevance for the scaling of the bottleneck effect with R;.
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2 Experimental Methods

2.1 High R, and the Variable Density Turbulence Tunnel

Kolmogorov’s 1941 predictions of universal scaling in turbulent flows refer to the limit of
large R;, such that the regimes of energy injection and viscous dissipation are well separated
[2]. This condition is cumbersome to achieve practically. A large separation of scales and
therefore a large R, is found in atmospheric flows [20-22], where control is impossible and
stationary conditions are difficult to achieve. Flows of high R, are difficult to achieve in
controlled laboratory flows, where all scales can be reliably measured. To reach high R;
one can turn two knobs: the size of the energy injection scale L and the dissipation scale
n = (v3/&)/*. In direct numerical simulations (DNS), a compromise between the size of the
periodoc box, (limiting L), the spatial and temporal resolution, the convergence time, and the
available resources needs to be found [27]. The largest R; = 2340 achieved in a DNS under
these constraints to date has been performed by Ishihara [17]. The limits of computational
capabilities in terms of resolution have been recently pointed out by Yeung et al. [27].

In a laboratory experiment the energy injection scale L is limited by the dimensions
of the apparatus. Large apparati can be built, e.g. the Modane wind tunnel [28], but are
prohibitively expensive to operate, especially considering the many realizations needed for
dedicated statistical studies of turbulence. To expand the inertial range the dissipative scales
of size ~ n can be decreased by lowering the kinematic viscosity v of the working fluid
demanding a higher resolution of the measurement instrument. Examples for experiments
in liquid helium, which has an ultra-low kinematic viscosity, are found for example in Refs.
[29-32]. The authors use liquid helium as working fluid in various flow configurations and
have been reported to reach R; up to 10000. The dissipative scales of these flows are so small
that they cannot be resolved by current technology.

Our approach to create a large inertial range is to use a closed-loop wind tunnel filled with
sulfur-hexaflouride (SFg) at pressures up to 15 bar [15]—the variable density turbulence
tunnel (VDTT). With classical grids it has been shown to create R; up to 1600 and Kol-
mogorov scales ~ 10 um, making even the smallest spatial scales experimentally accessible
[33]. With a specially designed autonomous active grid (see below) it is possible to increase
the energy injection scale and thus the inertial range. As R, ~ (L/n)?/3, the VDTT features
two independent handles to change R)—pressure and active grid forcing. In combination
they create a laboratory flow of R; more than 5000 at scales resolvable with modern thermal
anemometry under the limitations described below.

The autonomous active grid consists of 111 individually controllable flaps of dimensions
11 cm x 11 cm that rotate around their diagonal. This is different from the Makita-style
grids, where the rows and columns of the flaps are mounted rigidly on rotating horizontal
and vertical bars [34]. The angle of rotation can be set to any angle between = 90° The flow
obstruction is smallest (flap parallel to the flow) at 0°. At angles £ 90° one of the flap sides
is facing the incoming flow, while the other side is facing away from the flow. The sign of the
angles determines the side that is facing the flow, while the magnitude defines the deviation
of the flap from the parallel position. As in a classical grid with rigid grid bars, wakes are
formed that interact with each other downstream of the grid to form a turbulent flow field.
The flexibility of the grid allows the superposition of larger structures onto those induced by
the individual flaps. A detailed account of the autonomous active grid and the algorithm is
given in Ref. [35] and briefly summarized here. A snapshot of several flaps of the autonomous
active grid is illustrated in Fig. 1.
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Fig. 1 Several flaps of the active grid. The flow points out of the page. Starting from the top left flap in
clockwise direction the flaps are set to 0°, 45°, 90°, and 45°. The side length of one flap is 11 cm, the black
boxes in the flap center are servo motors, the blue rods are the grid support

The algorithm updates the angle of each flap every 0.1s. Each time step starts with a
random set of angles and convolves each of those angles with the grid history and a pre-
defined kernel. The kernel is always defined by a certain shape (e.g. Gaussian), the spatial and
temporal correlations (the number of neighbors and time-steps included in the convolution),
and the desired mean absolute angle ¢r 5. For the experiments presented here, a ’Long Tail’
kernel has been used, whose description can be found in [35].

This algorithm leads to dynamically evolving patches of more open and more closed
flaps without periodicity, which in turn leads to spatial and temporal correlations of the flow
structures. The parameters o and o; describing the correlation lengths that define the grid
behavior are typically linked via the mean flow velocity U to avoid a strongly inhomogeneous
flow. The grid correlation lengths define the large-scale flow properties. To link these, we
consider the overall fluid volume that passes through a typical correlation patch given by
Veorr = GSZG,U . The dimensions Lcoy ~ Vééfr are proportional to the largest scales in
the flow as demonstrated in Fig. 2a. The sine of the mean flap angle ¢rms is proportional
to the mean area blocked by a single flap. The larger this blockage is, the stronger are the
fluctuations induced by the flaps. The product sin(®rms)U is therefore a predictor for the
fluctuating velocity component. The knowledge of typical length scales and velocity defined
by the active grid naturally leads to the definition of a Reynolds number using the kinematic
viscosity v of the gas.

R \/3 Veorr sin(@rms)U
€Grid ™ » s
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Fig.2 a The correlation volume Veorr = aszot U influences the size of the largest flow scales L = f C(r)dr.

b The grid Reynolds number defined as Regig = S Veorr sin(pr s)U /v determines R;. The black line

indicates the isotropic relation Re = ¢ - /R;, where ¢ was chosen to fit the data best. ¢ The separation of
scales L/n as a function of R, . The black line indicates a best fit of the K41 prediction of L/n ~ Ri/ 2.

We attribute the slight deviations from the scaling to the relation between L and 1> /&, which depends on the
large-scale structure of the flow (see Appendix D). The first spectrum of Dataset 1 is not shown in (a) and (b),
because Vorr is not defined for a stationary, open grid

Figure 2b shows that the a priori quantity Reggig scales with the a posteriori R; with devi-
ations at Regrig > 10°. Each Dataset has been obtained by increasing Vcorr While keeping
the pressure (and therefore v) constant as indicated in Table 1. We attribute the slight devi-
ations at large Regrig from a power law dependence to the fact that L is approaching half
the diameter of the measurement section because the rule-of-thumb o; ~ o; - U is relaxed
slightly. This is a natural limit for a sensible energy injection in any tunnel. We would like
to add the word of caution that when approaching this limit, isotropy and homogeneity can-
not be assumed easily anymore, which leads to said deviations from the isotropic relation

Ry ~ Reérid with ¢ & 0.5 (black line in Fig. 2b). This effect can also be observed in Fig. 2c).
When approximating L = fooo C(r)dr, deviations from the K41 prediction L/n ~ Ri/ 2

appear. The scaling is recovered when calculating L = C,u?/e (not shown). We attribute
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Table 1 Properties of all spectra

l Dataset [ Ry [ p(bar) [ U(m/s) [ u(m/s) [ Sensor [ L= fC(r)dr (m) [ n (pm)  fy(kHz) ]
1 193 1.5 2.75 0.04 Regular HW 0.12 277 9.9
1 500 1.5 2.41 0.14 Regular HW 0.19 139 17.3
1 690 1.5 2.41 0.18 Regular HW 0.23 127 19.0
1 735 1.5 2.65 0.19 Regular HW 0.27 127 20.9
1 757 1.5 2.43 0.20 Regular HW 0.24 116 20.9
1 989 1.5 2.72 0.22 Regular HW 0.32 120 22.7
1 1305 1.5 2.28 0.34 Regular HW 0.70 91 25.1
2 1308 5.95 3.64 0.20 NSTAP 1 0.19 37 98.4
2 1539 5.95 3.68 0.22 NSTAP 1 0.24 36 102.2
2 2385 5.97 3.64 0.35 NSTAP 1 0.33 28 130.0
2 2704 5.97 3.61 0.40 NSTAP 1 0.43 26 138.9
3 3641 14.62 3.75 0.44 NSTAP 2 0.38 10 375.0
3 3821 14.71 3.83 0.41 NSTAP 2 0.27 12 319.2
3 4247 14.65 3.97 0.53 NSTAP 2 0.54 9.2 431.5
3 5130 14.66 4.01 0.58 NSTAP 2 0.86 9.1 440.7

All spectra of a Dataset are distorted by the same function 7' (f) describing the sensor- and instrument-
induced bias. This is ensured by changing R; only through large scales L and fixing the position of the small
scales in frequency space indicated by fy. A reference spectrum has been chosen from each dataset, which is
emboldened in this table

this to differences in C, due to the turbulence forcing as discussed e.g. in Refs. [36-39] and
plotted for our experiments in the appendix. From a phenomenological of view, introducing
correlations into the flow using the active grid increases R, only up to a certain limit (prob-
ably related to the tunnel dimensions). When exceeding this limit, the integral length scale
L can no longer be estimated by the correlation length. Nevertheless, these data confirm that
the active grid is indeed another "knob’ to change R, through the largest scales.

2.2 Thermal Anemometry

More than a century after its invention [40], hot-wire anemometry remains the technique of
choice to measure the energy spectrum of turbulent velocity fluctuations in a strong mean
flow. Constant temperature anemometry is responsive to fluctuations up to very high frequen-
cies. The sensing element’s resistance—and therefore its temperature—is kept constant by a
feedback circuit. As long as the feedback circuit is fast enough, the thermal lag of the wire
does not attenuate fluctuations faster than the thermal time scale of the wire. This comes at
the expense of a more complicated circuitry and frequency response.

The frequency response of CTA circuits has been studied extensively both through the-
oretical models and experimental testing. Freymuth [41] linearized a circuit with a single
feedback amplifier of infinitely flat frequency response and analyzed its response to square
and sine waves. He finds that the system can be modeled by a third-order ODE if the circuit
responds faster than the wire, and the frequency response is optimal (flat over the entire
range of frequencies) when the system response to a step perturbation by a single, slight
overshoot (critically damped system). Perry and Morrison [42] investigated more moder-
ate amplifier gains and bridge imbalances in their study yielding similar results. Wood [43]
expanded the Perry and Morrison analysis, but considered a single-stage amplifier with a
frequency-dependent response. Watmuff [44] further expanded the model with multiple, non-
ideal amplifier stages. He showed that at least two amplifier stages are necessary to model
the real amplifier properly. This introduces two additional poles to the system and makes the
frequency response more complicated. Samie et al. [45] recently studied anemometry with
sub-miniature probes in this model and compared it to a real CTA measurement. The results
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supported the further development of their in-house circuit, such that sub-miniature hot wire
probes could be operated successfully on this CTA for the first time.

These theoretical attempts to predict the frequency response of a CTA circuit are accompa-
nied by experimental approaches. Bonnet and de Roquefort [46] heated the wire periodically
by a perturbation voltage as well as laser heating to determing the frequency response. Weiss
et al. [47] used the aforementioned square wave test and interpreted its power spectrum as
a measure for the frequency response curve. Hutchins et al. [48] exploited the well-defined
frequency content of pipe flow at different operating pressures to obtain frequency response
curves without artificial heating. They were able to create flows of almost identical Reynolds
number, but different frequency content and could deduce the frequency-response curves
for different circuits and wires. They compared several anemometer circuits and wires and
found that the frequency responses are non-constant at frequencies as low as 500 Hz. For the
combination of CTA circuit and wire used in the present study, they report an attenuation
between 400 Hz and 7 kHz followed by a strong amplification of the signal. We therefore
cannot assume a flat frequency response for our measurements and adress these effects below.

The energy spectrum measured by a hot wire is influenced by the effects of finite wire
length. Length scales smaller than the sensor’s sensing lengths / will be attenuated, but
also larger wavenumbers are influenced. Wyngaard [49] used a Pao model spectrum [50] to
investigate this attenuation of small scales. These results were reviewed in Ref. [51] indicating
that for / /n = 2, the attenuation of the one-dimensional spectrum is still minimal at kn ~ 0.3,
which was supported by Ashok et al. [52]. Sadeghi et al. [53] used sub-miniature hot wires
(NSTAPs) as a benchmark and found that spatial filtering of the energy spectrum is minimal
forl/n <3.7atkn < 0.1.

In this study we used conventional hot wires of sensing length 450 um for pressures
below 2 bar, as well as nanoscale thermal anemometry probes (NSTAP) of sensing length
30 um provided by Princeton University with a Dantec Dynamics StreamWare CTA circuit.
The NSTAP is a 100 nm thick, 2.5 um wide, and 30 or 60 um long free-standing platinum
film supported by a silicon structure and soldered to the prongs of a Dantec hot wire. The
production process and characteristics are detailed in Refs. [54—57]. For the conventional hot
wire //n < 5in all cases and for the NSTAP [/n < 3. Therefore, n cannot be fully resolved in
all cases. However, the bottleneck effect is typically found around 1007. The aforementioned
references show that we can regard the distortions due to finite wire length as minor in this
part of the energy spectrum.

To summarize, the spatial resolution of our measurement instruments is sufficient to study
the R, -dependence of the bottleneck effect. Nevertheless the nonlinear frequency response
of the circuitry remains a source of systematic error that is different from random noise
occuring at very high frequencies. Here we describe a procedure that takes the response into
account and thus removes this systematic measurement error.

3 Relative Spectra
3.1 The Concept
As outlined above, systematic errors influence the energy spectra recorded with a hot-wire

anemometer. Formally, this means that the one-dimensional energy spectrum E11(f) is dis-
torted by a frequency-dependent transfer function 7°( f):

Eu(f)=Eu(f)T(f)
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T (f) describes the effects of the thermal wire response, which depends on pressure and
speed, and the reponse of the constant temperature anemometry circuit. Ideally, 7(f) is
a constant over the whole range of relevant frequencies, but the evidence detailed above
indicates a complex shape of amplification and attenuation of the signal. In this study we do
not make any attempt to find 7 ( f). Instead, we control its effects by keeping 7 ( f) the same
for several flows at different R} .

To ensure that the spectra only differ because of changes in the turbulent fluctuation and
not because of the frequency response curve of the anemometer, we need to ensure that the
response curve 7'( f) is unaltered between spectra. We achieve this in two steps. The ambient
pressure might influence the heat transfer of the wire and therefore 7 ( f). Furthermore, T ( f)
is influenced by the CTA tuning (in particular the overheat), and the sensor itself. Therefore,
we fix the ambient pressure within a set of spectra (a "Dataset’) and measure using the same
sensor and the same CTA settings.

The second step is to ensure that a given k7 is influenced by the same part of the frequency
response curve T (f). Thus, we need to fix the position of a spectral feature in frequency
space. This means that the mean velocity U must be the same within one Dataset. T'(f)
mainly distorts the small-scale end of the spectrum [41-45,47,48,51], whose location in
frequency space at a given U is determined by the kinematic viscosity v. v is fixed within a
Dataset because the pressure remains constant.

We can, however, change the energy injection scale and thus R; with the autonomous
active grid. This way we can conduct measurements at different R;. Ultimately, we can
eliminate 7' ( f) by relating each spectrum to a reference spectrum:

EL(f)  ELNDT(S)

EN'(f)  EXINHTRS)
_EL(NT(f) _ E} (kU 2m)
CERNHT()  EN (kU /2m)

(2)

In the following we call the ratio of a spectra divided by a reference spectrum in the frequncy
domain, relative spectrum. We emphasize that the notion of relative spectra is not necessary
to investigate R)-scaling within one Dataset prepared in the aforementioned way. However,
the accessible range of R; by changing only the active grid forcing is limited. Therefore,
several of such Datasets with different frequency distortions need to be prepared by changing
kinematic viscosity v and mean flow speed U to obtain a convincing scaling range. The notion
of relative spectra is then required to compare those Datasets.

3.2 Results

We created three sets of spectra that have identical 7'( f) each. We call these sets ‘Datasets".
Table 1 shows important parameters for each spectrum. Note that L changes significantly
within a given dataset leading to changes in R;, while f,, = U /n remains almost constant
within the dataset. This indicates that we changed R, only by increasing the large scales,
while keeping all small-scale features of the spectrum at the same frequency. For example, in
Dataset 2, the peak of the spectral bump always lies at a frequency of ~ 700 Hz, whereas the
beginning of the inertial range spans a factor of 4 in frequency (2 to 8 Hz). This exemplifies
the excellent control over R, permitted by the autonomous active grid as indicated in Fig. 2.

The lower graphs of Figs. 3, 4 and 5 show the spectra from each of the respective datasets
divided by the reference spectrum E ﬁef. E }fff is plotted pre-compensated in the upper graphs
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Fig.3 Reference spectrum at R, = 1305 (upper plot) and relative spectra from Dataset 1. The data have been
collapsed at kn = 0.015, which we defined as the beginning of the bottleneck region. We identified the peaks in
the relative spectra with the bottleneck peak of the absolute spectra. The peak height decreased with increasing
R; and different spectra of similar R, result in very similar relative spectra as expected. Furthermore, the
slope of the spectrum at kn < 0.015 seems to decrease with R) . The shaded areas are a measure of the noise
level
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Fig.4 Reference spectrum at R) = 1308 (upper plot) and relative spectra from Dataset 2. The trends in peak
height and slope from Fig. 3 continue
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Fig.5 Reference spectrum at R; = 4247 (upper plot) and relative spectra from Dataset 3. Unlike in Datasets
1 and 2, the beginning of the bottleneck region around kn = 0.015 is identifiable in the relative spectra as a
local extremum

of the respective figure. Note that the absolute spectra in the upper graphs are multiplied by an
unknown transfer function 7 ( f) accounting for probe effects and therefore can not be used
to reliably measure the features of the bottleneck. However, the relative curves are corrected
and allow a measurement. The graphs are the result of a smoothing procedure and error
estimate detailed in the appendix. In brief, the spectra were smoothed using a 1/ f octave
filtering and the error is related to the noise level removed by the smoothing procedure. The
spectra have been divided by the reference spectrum in the frequency domain and collapsed at
kn = 0.015 afterwards to simplify interpretation.This is the approximate location of the local
minimum regularly found in compensated spectra and directly precedes the bottleneck peak
in wavenumber space. DNS studies by Donzis and Sreenivasan [19] and Ishihara et al. [17]
have shown that the magnitude of the compensated spectrum at kn = 0.015 is practically
independent of R;. It is difficult to achieve such a good collapse of compensated spectra
in experimental data, because of uncertainties in the measurement of the dissipation rate ¢.
Donzis and Sreenivasan [19] regard the compensated spectrum around kn = 0.015 as the
true measure of the Kolmogorov constant and build their analysis of the bottleneck effect
on the difference between the local minimum and the bottleneck peak. By normalizing the
relative spectra at this point we follow their procedure and remove the effects of imperfect
estimates of €. In other words, we define the bottleneck height as the relative departure of the
compensated spectrum from its magnitude at kn = 0.015 following the procedure described
in Ref. [19]. The remainder of the analysis is carried out on these relative spectra normalized
at kn = 0.015.

While in Dataset 3 the beginning of the bottleneck region around kn = 0.015 is accom-
panied by a change in the shape of the relative spectra, this point cannot be identified in the
relative spectra of Datasets 1 and 2. In the following we concentrate on the bottleneck effect
found at kn > 0.015 for the remainder of this section.
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The location of the spectral bump forming the bottleneck effect in relative spectra is
not obvious. Our data from one-dimensional spectra suggests that the peak occurs between
kn = 0.03 and kn = 0.06, which is consistent with the findings from DNS, where the
peak typically occurs at kn = 0.046 in the one-dimensional spectra (see e.g. Refs. [19],
[17]). However, when considering the background noise, the peak location is not the major
source of error. E.g. for R; = 1539, all points between 0.015 < kn < 0.07 are within the
errorband at kn = 0.05. We therefore define the extremum in the relative spectrum between
0.015 < kn < 0.08 as the relative height & of the bottleneck effect. This has the additional
advantage to be independent of the errors in the estimate of 7. To preclude biases from this
definition, we repeat our analysis with different definitions of the relative bottleneck height
in Fig. 11 in the appendix.

Finally, the measured bottleneck height cannot depend on which spectrum is chosen as
reference. We have calculated the bottleneck height with all possible choices of E Fff and
found our results to be largely independent of that choice (see Appendix for details).

Figure 6 shows the bottleneck height—defined as above—as a function of R, / R?ef within
each dataset. The data shows a trend towards smaller peak heights in the relative spectrum with
increasing R;. The data follows the numerical data we have compiled from various sources
[17,58-60]. We have analyzed the data from Buariaetal. [60] at R; up to 1000 (R; / Rfef < 1).
The increased small-scale resolution in comparison to [19] seems to have no noticable impact
on the bottleneck. Therefore, this data at is practically the same as the one used by Donzis &
Sreenivasan [19] for our purposes. The data from R, = 1300 (R, / R}fef = 1) was reported
in Ref. [58]. The numerical data at R; / R)lfef ~ 1.9, which corresponds to R; = 2340, is the
highest R, reported by Ishihara et al. [17]. The relative spectra of the numerical data were
analyzed equivalently to the experimental data and the spectrum at R; = 1300 was chosen
as a reference spectrum. We have used the one-dimensional spectra in our analysis of the
numerical data.

When excluding the lowest R), the experimental data is in agreement with the power law
of

I~ (RA/R,\Ref) —0.061:0.007
The fit was obtained by a bootstrap procedure based on the error bars. It compares well with
the findings of Donzis and Sreenivasan [19], who report a bottleneck scaling of &7 ~ R, 0-04,
Their analysis similarly defines the bottleneck height as the difference between the height
of the compensated spectrum at the bottleneck peak and the local minimum preceding this
peak.

The spectrum at R) = 193 follows the general trend of decreasing peak height with R;,
but its peak differs substantially from the predictions. The absolute spectrum (not shown)
exhibits no signs of a 5/3-scaling, and consequently the bottleneck region cannot be clearly
separated from the rest of the spectrum. This is substantially different from the other spectra,
where the end of the integral range could always be observed in the absolute spectra and we
therefore are not surprised that the relative spectrum at R, = 193 deviates from the remainder
of the data. This spectrum has consequently been ignored in our interpretation.

Further, we can change R; only by a factor of 5 through the autonomous active grid. While
Dataset 1 and 2 each feature a spectrum at the same R}, there is a gap between the highest R;,
of Dataset 2 (2704) and the lowest of Dataset 3 (3641). To plot 4 as a function of R, alone,
we use the aforementioned power law fit from Fig. 6. Under this assumption we can bridge
the gap between the two datasets, because i1 /hy> = (R;1/R Az)_0'006lio'007. Using the final
point of Dataset 2 as R = 2704 and the corresponding height /11 we can construct s, using
the lowest R;> = 3641 from Dataset 3 to arrive at Fig. 7

@ Springer



Experimental Study of the Bottleneck in Fully Developed Turbulence 629
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Fig. 6 Bottleneck height relative to the corresponding reference spectra for all datasets as a function of
R,/ R}?ef. The reference spectra collapse at R; / R}?ef = 1 and have a relative bottleneck height of 1 by

construction. Numerical simulations from Buaria et al. [60] at Ry up to 1000 (R, / R)lfef < 1), Buaria et al.
[58] (R), = 1) and Ishihara [17] (R; > 1) are added for reference. The DNS data for R) < 2000 is practically
identical to the data analyzed by Donzis and Sreenivasan [19]. A power law is fitted to the experimental data
with the lowest R; / R;}ef excluded. (R, / Ri{ef) —0.061+0.007 5 4 good description of the experimental data
over one decade of R; (from 500 to 5000) and agrees with the numerical simulations as well. This power law
is used in Fig. 7 to combine Datasets 2 and 3
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Fig. 7 We have shifted Dataset 3 from Fig. 6 under the assumption of a power law ~ (RA / R}I?ef)a with
o = —0.061£0.007, i.e. the position of Dataset 3 with respect to the other Datasets is constructed artificially

from the power law in Fig. 6 to allow us to plot the bottleneck scaling with R; alone, i.e. without dividing
by R)}fef. We have no physical justification for this power law and stress that the position of Dataset 3 in this
figure is speculative
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4 Discussion

In this paper we studied the spectra of a turbulent wind tunnel flow of R, between 193
and 5131. We have used regular hot-wires as well as NSTAPs with a state-of-the-art
constant temperature anemometer to record single-point two-time statistics of the tur-
bulent fluctuations, in particular energy spectra. However, such spectra can be heavily
influenced by non-ideal frequency responses of the circuit. The frequency response is par-
ticularly complicated when operating sub-miniature wires like the NSTAP with a CTA
[45,48]. A constant current anemometer (CCA) might perform better in this respect, because
the frequency reponse is limited only by the thermal lag of the wire and no feedback
loop is involved. Still, this comes at the expense of a variable wire temperature and -
resistance.

In an attempt to interpret CTA data suffering from a non-flat frequency response, we con-
sider energy spectra relative to a reference spectrum. Such an analysis significantly restricts
the phenomena that can be observed. The bump in the energy spectrum at the transition from
the inertial to the dissipation range can still be identified in the relative spectra as a local
extremum beyond kn = 0.015.

To the best of our knowledge, no other wind tunnel achieves R; > 5000 in a gas. More-
over, we do not know of any other quantitative study of the scaling of the bottleneck effect
with R; in a laboratory experiment. We attribute this to the difficulties one faces when inter-
preting energy spectra from CTA measurements at relatively high frequencies: The spectrum
is stronlgy influenced by the CTA circuitry and these influences are hard to quantify or
eliminate.

With the aforementioned procedures we are able to extract information about the bottle-
neck effect from instrument-distorted hot wire spectra. We find indications that the bottleneck
effectdecreasesup to R, ~ 5000. We fit a power law of (R, / Ri{ef) ““witha = 0.061£0.007,
which is close to the value of (RA)_O'04 found by Donzis and Sreenivasan [19]. Their
numerical results are in general in good agreement with our experimental data, lending
support to the experiment and data anlysis procedure. Our data equally supports Verma
and Donzis [11], who predict that the bottleneck scales as h ~ 1 — y (1.5 logz(Rk))2/3.
Revisiting Fig. 6, the data is not inconsistent with different R; / REef-scalings of the rela-
tive bottleneck height in the different datasets. We have therefore calculated the scaling of
the individual datasets and found that while Dataset 2 and 3 have almost identical scaling
exponents (— 0.032 + 0.012, and — 0.034 £ 0.029, respectively), Dataset 1 shows a scaling
of —0.1528 £+ 0.012. When excluding the two lowest R;, the scaling exponent becomes
—0.083 £ 0.024. This points towards different behaviours at low R;, probably due to the
effects of a not properly developed inertial range, which contaminates the bottleneck scal-
ing. Such a claim is supported by the slopes of the spectra at 0.001 < kn < 0.015, which
clearly get steeper with increasing R, in Dataset 1, but change very little in Datasets 2
and 3, indicating a properly developed inertial range. Interestingly, this effect cannot be
seen in DNS, where the bottleneck scaling of R, 0-04 can be found at low Reynolds num-
bers.

We attempt to plot the relative bottleneck height as a function of R, alone. This requires
the assumption that the aforementioned power law holds and can be extrapolated. Such an
assumption is highly speculative and the results should be considered as such.

We can not quantify the absolute height of the bottleneck bump. Yet, we can argue that
if the relative spectra are still changing with R, in the relevant region, the effect has not
completely vanished. We can find a systematic decrease of the peak in the relative spectra

@ Springer



Experimental Study of the Bottleneck in Fully Developed Turbulence 631

for R; < 3000. The data for R; > 3000 in Dataset 3 is inconclusive. A small, decreasing
trend can be found, consistent with the power law fit. However, the differences in height
are so small compared to the error bars that the claim of a constant bottleneck height at
R; > 3000 would also be supported by the data, especially when considering alternative
definitions of the bottleneck height in relative spectra as in Fig. 11 found in the appendix.
This is not in contradiction to the atmospheric spectra mentioned above, as they have an
even higher R;. Further, we note that a bottleneck effect might not show up as a peak in a
5/3-compensated spectrum, yet might be present when compensating by an intermittency-
corrected slope —(5/3 + B). In this case, the bottleneck effect would still be visible in the
relative spectrum. However, the claim that the bottleneck height does not change with R; for
R; > 3000 is not ruled out by the data.

As far as this study is concerned, the data matches the predictions of Verma and Donzis
[11]: The bottleneck height decreases with increasing R;, but relatively high R, are neces-
sary to make the effect vanish completely. Based on nonlinear and nonlocal shell-to-shell
energy transfer Verma and Donzis [11] estimate that the bottleneck is basically absent for
R;. > 10% but acknowledge that this might be an overestimate. While lending support
to existing studies of the bottleneck effect, especially [19] and theories that incorporate a
R;-dependence of the peak height, an inves