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Summary  

Distribution and variability of precipitation are predicted to shift in Chile and are expected to lead 

to increases in frequency and duration of droughts. These developments can lead to a cascade of 

environmental changes that are likely to alter biogeochemical cycles and ecosystem functioning. 

The ability of vegetation to adapt to changing conditions affects the response of natural ecosystems 

to predicted precipitation changes. The strategy to acquire and the ability to retain resources can 

be an important factor for determining the adaptation ability of plants. Thus, to assess the potential 

for adaptation, it is crucial to understand plant nutrient acquisition strategies under current climatic 

settings. Aim of this research project was, therefore, to identify plant nutrient acquisition strategies 

of natural perennial woody vegetation under three levels of aridity along the Chilean Coastal 

Cordillera: arid, Mediterranean, and humid-temperate. Nutrient availability can have a critical role 

on plant drought sensitivity. Therefore, the first objective was to determine the nutrient availability 

at the site of each aridity level. As second objective we assessed plant nutrient recycling and uplift 

at each aridity level as well as root traits that are indicative for the plant nutrient uptake capacity. 

The third objective was to determine the importance and function of recycling and weathering 

agents as well as plant symbionts for plants’ nutrient acquisition. Sites with similar granitoid parent 

material but contrasting climatic conditions were selected for this study across a >900 km long 

precipitation gradient in the Chilean Coastal Cordillera. From north to south, the mean annual 

precipitation (MAP) increased from 80 to >1500 mm a-1, accompanied by an increase of soil 

thickness.  

Carbon (C), nitrogen (N), phosphorus (P), and potassium (K) contents in soil and plants were 

measured. N stocks in soil increased with increasing precipitation, but N availability declined, 

which was indicated by the highest C:N ratios in soil under humid conditions. While plant 

available P increased with decreasing precipitation, water shortage in the semiarid and arid 

ecosystems likely restricts P mobility and accessibility.  

Following a soil labeling experiment with 15N as N tracer and rubidium (Rb) and cesium (Cs) as 

K tracers, short-term (<1 year) N and K plant acquisition from topsoil, subsoil, and saprolite was 

determined. Additionally, the vertical distribution of exchangeable K and the natural 15N 

abundance of plants and topsoil was assessed to evaluate long-term (>decades) N and K uplift and 

recycling. Further, the P speciation and contents of low molecular weight organic acids (LMWOA) 

were measured in rhizosphere soil from topsoil, subsoil, and saprolite.  

Under arid conditions, N was not only strongly reutilized (short- and long-term) from topsoil but 

also from subsoil and saprolite. Similarly, the rock-born nutrient K was reutilized equally from 

topsoil and uplifted from subsoil and saprolite. Increasing LMWOA per microbial biomass carbon 
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(MBC) with increasing depth, pointed to an intended LMWOA exudation by plants for biological 

weathering of minerals to cover their P demand. Under Mediterranean conditions, high denudation 

rates likely reduced long-term N recycling but induced intensive short-term reutilization of N as 

well as K from topsoil. This was indicated by a higher N (9 times) and K (7 times) tracer recovery 

in shoots from topsoil than from subsoil. Plant P acquisition seemed to rely on, both, recycling of 

organic P from topsoil as well as biological weathering and uplift of inorganic P from subsoil. 

Under humid conditions, N was strongly reutilized from topsoil (short- and long-term) as well as 

recaptured from subsoil and saprolite. Similarly, K was reutilized from topsoil and uplifted from 

saprolite. Short-term uplift of both nutrients, however, was lower than under arid conditions. The 

recycling of P from organic pools seemed to be the main acquisition strategy of plants growing on 

these P depleted soils under humid conditions.  

Root length density (RLD), specific root length (SRL), and root tissue density (RTD) were 

determined to assess whether plants express acquisitive or conservative root traits. Roots with 

acquisitive traits have a high nutrient uptake capacity, whereas roots with conservative traits have 

a lower capacity but longer lifespans. Not only expressed plants at the arid site conservative root 

traits, but also plants at the humid site, which grow under conditions of low N and P availability. 

Only the plants at the Mediterranean site expressed acquisitive roots traits in the upper 10 cm. 

Thereby, plants at the Mediterranean site are able to fast and efficiently exploit available topsoil 

nutrients; likely as an adaptation to high denudation rates and the resulting necessity to retain 

nutrients from ecosystem losses. 

To investigate acquisition agents and symbionts, activities of the extracellular enzymes acid 

phosphatase, aminopeptidase, and chitinase as well as the total bacterial and fungal abundance and 

abundance of diazotroph bacteria (i.e. abundance of the gene nifH), were measured in rhizosphere 

soil from topsoil, subsoil, and saprolite. To evaluate the importance of arbuscular mycorrhizal 

fungi (AMF) for plant N and P acquisition, the AMF root colonization was determined, and AMF 

abundance in soil was assessed by AMF-specific phospho- and neutral lipid fatty acids (16:1ω5c 

PLFA and NLFA). Further, plant allocation of freshly assimilated 13C to fine roots and AMF was 

determined following a 13CO2 pulse labeling of woody vegetation. Extracellular enzyme activities, 

microbial abundance, and abundance of diazotroph bacteria in the rhizosphere declined with 

increasing aridity. When normalized to the soil organic carbon (SOC), however, activities of acid 

phosphatases (up to 3 times) and aminopeptidase (up to 9 times) as well as bacterial abundance 

(>2 times) were higher in rhizosphere soil under arid than humid conditions. This pointed to a 

greater relative importance of the rhizosphere as hotspot of nutrient release and acquisition in dry 

soils. AMF abundance decreased from 45% to 20% root surface with increasing aridity. The 

extraradical AMF mycelium, however, was supplied with C similarly, independent of precipitation 
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(max. 0.2-0.5‰ of assimilated 13C), to scavenge for P in all sites. At the site under arid conditions 

were no indications found that AMF also support plant N acquisition, likely because a close contact 

of hyphae to minerals/nutrient sources is important for the acquisition of immobile P, but not for 

the acquisition of mobile N. For the acquisition of N, plants growing under arid conditions invested 

into their fine root system, which was indicated by higher SRL under low soil C:N. At the site 

under humid conditions, on the contrary, the symbiosis seemed to be strengthened for the N 

transfer from fungi to plant by increasing the root colonization. Maintaining a close contact to 

sources of immobile P, while ensuring a fast transfer of mobile N from fungi to plant, indicates 

different AMF functions in the P and N acquisition of plants in the humid ecosystem. At the site 

under Mediterranean conditions, indications were found that not only root colonization is 

increased for the N transfer from fungi to plant, but that also the extraradical AMF mycelium is 

supplied with C to support saprotrophs’ scavenging for N. Thereby, AMF exert a function that was 

not observed at the humid or arid site: retaining mobile nutrients and preventing losses from soil. 

With the predicted precipitation changes in Chile, it is likely that abiotic conditions and biotic 

interactions in one ecosystem along the precipitation gradient shift towards the current conditions 

of another. Based on the results on plant nutrient acquisition strategies, an assessment was made 

on possible shifts and responses of the arid and humid ecosystems. Increasing durations of dry 

periods between rain events likely exacerbate plants’ nutrient supply. To increase their N gain, 

plants invested greatly into N fixing bacteria at the humid-temperate site, which will likely decline 

with reduced water availability and primary productivity. With a potential temporal decoupling of 

microbial activity and plant nutrient uptake (as seen already today under Mediterranean 

conditions), inorganic N could accumulate in topsoil and be highly susceptible to leaching. 

Whether AMF can support the slow acquiring roots in retaining mobile nutrients in soil is unclear, 

as the AMF community is not adapted to prolonged drought conditions. The acquisition from 

subsoil and saprolite by roots, however, will be favorable under prolonged dry periods. This is 

only possible, however, if deep water pools are available and replenished during wet seasons and 

years.  

In arid regions, a concentration of precipitation in fewer events could increase water availability 

due to a deeper infiltration and lower evaporation of water pulses. Deep rooting (shrub) species 

would benefit from a greater water availability in depth. Greater water availability would also 

allow deep rooting plants to increase their photosynthetic activity and invest more C in 

belowground processes for nutrient acquisition. Thereby, they can accelerate SOM decomposition 

and nutrient mineralization, which would increase OM-derived nutrient availability. Depending 

on the magnitude of rain events, however, fewer but more intensive rain events can lead to higher 

run-off, which would result in greater soil erosion and nutrient losses. Plants in this system are not 
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adapted to high losses or to exploit available resources fast and could likely not retain nutrients 

against increased leaching and erosion. 

The required shifts of nutrient acquisition traits in both ecosystems evaluated here will have to go 

along with a shift of species compositions and functional groups. Many of the traits beneficial 

under the predicted climate change scenarios exist in the Mediterranean ecosystem and, thus, are 

in principle available along the Chilean Coastal Cordillera. The magnitude and temporal dynamic 

of the climate change, however, will be decisive for whether and to which extent species with the 

required traits can migrate from the Mediterranean area and immigrate into the adjacent regions. 

This study showed that the investigation of ecosystems along a climate sequence with similar 

parent material allows to identify and evaluate the portfolio of available nutrient acquisition 

properties under different climatic conditions. The knowledge of available traits allows to assess 

possible and necessary shifts to maintain the functionality of ecosystems. This knowledge can 

improve and refine the predictions of ecosystem responses to climatic changes.  
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Zusammenfassung 

Aufgrund des voranschreitenden Klimawandels verändern sich die Niederschlagsverteilung und -

variabilität in Chile, was voraussichtlich zu einer Zunahme der Häufigkeit und Dauer von Dürren 

führen wird. Dies kann zu einer Kaskade von Umweltveränderungen führen, die die 

biogeochemischen Zyklen und die Funktionsweise des Ökosystems beeinflussen. Die 

Anpassungsfähigkeit der Vegetation beeinflusst die Reaktion natürlicher Ökosysteme auf diese 

Veränderungen. Die Strategie des Ressourcenerwerbs und die Fähigkeit Ressourcen im System zu 

halten, kann ein wichtiger Faktor für Pflanzen sein, mit sich ändernden Wasser- und 

Nährstoffverfügbarkeiten umzugehen. Zur Beurteilung des Anpassungspotentials von Pflanzen ist 

es wichtig, deren Strategien zum Nährstofferwerb unter den gegenwärtigen klimatischen 

Bedingungen zu verstehen.  

Ziel dieses Forschungsprojektes war es Nährstofferwerbstrategien von natürlicher, mehrjähriger 

und holziger Vegetation in drei Ariditätsstufen zu identifizieren: arid, mediterran und humid 

gemäßigt. Die Verfügbarkeit von Nährstoffen kann eine entscheidende Rolle für die 

Dürreanfälligkeit von Pflanzen spielen. Das erste Ziel dieser Arbeit bestand darin, die 

Nährstoffverfügbarkeit an den Standorten in den einzelnen Ariditätsstufen zu bewerten. Als 

zweites Ziel wurde das Nährstoffrecycling und der Nährstoff-Uplift der Pflanzen untersucht, sowie 

Wurzeleigenschaften, die auf die Nährstoffaufnahmekapazität hinweisen. Das dritte Ziel bestand 

darin die Bedeutung und Funktion von Recycling- und Verwitterungsmitteln sowie von 

Pflanzensymbionten für die Nährstoffaufnahme zu bestimmen. Für diese Arbeit wurden Standorte 

mit ähnlichem granitoiden Ausgangsmaterial, aber kontrastierenden klimatischen Bedingungen 

ausgewählt. Über einen >900 km langen Niederschlagsgradienten in der chilenischen 

Küstenkordillere nahm der mittlere Jahresniederschlag (MAP) von Norden nach Süden von 80 auf 

>1500 mm a-1 zu, begleitet von einer Zunahme der Bodendicke.  

Es wurden Kohlenstoff- (C), Stickstoff- (N), Phosphor- (P) und Kalium- (K) Gehalte in Boden- 

und Pflanzenmaterial gemessen. Die Stickstoffvorräte im Boden nahmen mit zunehmendem 

Niederschlag zu, während die N-Verfügbarkeit abnahm, was sich durch hohe C:N-Verhältnisse im 

Boden unter feuchten Bedingungen zeigte. Pflanzenverfügbares P nahm mit abnehmendem 

Niederschlag zu, aber Wassermangel in den semiariden und ariden Ökosystemen schränkt die 

Mobilität und Zugänglichkeit von P ein. 

Mit einem Bodenmarkierungsexperiment, mit 15N, Rubidium (Rb) und Cäsium (Cs) als N- bzw. 

K-Tracern, wurde die kurzfristige (<1 Jahr) N- und K-Pflanzenaufnahme aus Oberboden, 

Unterboden und Saprolith bestimmt. Zusätzlich wurde die vertikale Verteilung von 

austauschbarem K und die natürliche 15N-Häufigkeit von Pflanzen und im Oberboden bewertet, 
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um die langfristige (>Dekaden) N- und K-Aufnahme und das Recycling zu bewerten. Außerdem 

wurden die Phosphorarten und der Gehalt an niedermolekularen organischen Säuren (LMWOA) 

in Rhizosphärenboden aus dem Oberboden, dem Unterboden und dem Saprolith gemessen.  

Unter ariden Bedingungen wurde N nicht nur aus dem Oberboden, sondern auch aus dem 

Unterboden und dem Saprolith stark wiederverwertet (kurz- und langfristig). In ähnlicher Weise 

wurde K zu gleichen Teilen aus dem Oberboden wiederverwendet sowie aus dem Unterboden und 

dem Saprolith erworben. Die Zunahme der LMWOA pro mikrobiellem Biomassekohlenstoff mit 

zunehmender Tiefe deutete auf eine beabsichtigte LMWOA-Exsudation durch Pflanzen zur 

biologischen Verwitterung von Mineralien hin, um ihren P-Bedarf zu decken. Unter mediterranen 

Bedingungen verringern hohe Abtragungsraten wahrscheinlich die langfristige N-Rückführung, 

induzieren jedoch ein intensives kurzfristiges Recycling von N sowie von K aus dem Oberboden. 

Dies wurde durch eine höhere N- (9-mal) und K- (7-mal) Tracer-Rückgewinnung aus dem 

Oberboden gegenüber dem Unterboden angezeigt. Die P-Gewinnung von Pflanzen schien sowohl 

auf der Wiederverwertung von organischem P aus dem Oberboden als auch auf der biologischen 

Verwitterung und dem Erwerb von anorganischem P aus dem Unterboden zu beruhen. Unter 

humiden Bedingungen wurde N aus dem Oberboden stark recycelt sowie aus dem Unterboden und 

dem Saprolith wiedergewonnen. In ähnlicher Weise wurde auch K aus dem Oberboden 

wiederverwendet und aus dem Saprolith erworben. Das Recycling von P aus organischen Pools 

schien allerdings die wichtigste Erwerbsstrategie von Pflanzen zu sein, die auf diesen P-armen 

Böden unter feuchten Bedingungen wachsen. 

Die Wurzellängendichte (RLD), die spezifische Wurzellänge (SRL) und die Wurzelgewebedichte 

(RTD) wurden bestimmt, um zu beurteilen, ob Pflanzen erwerbsorientierte oder konservative 

Wurzeleigenschaften aufweisen. Wurzeln mit erwerbsorientierten Merkmalen haben eine hohe 

Nährstoffaufnahmekapazität. Die Aufnahmekapazität von Wurzeln mit konservativen Merkmalen 

ist dagegen geringere, erreichen aber dafür längere Lebensdauern. Nicht nur Pflanzen unter ariden 

Bedingungen besaßen konservative Wurzelmerkmale, sondern auch Pflanzen unter humiden 

Bedingungen mit geringer N- und P-Verfügbarkeit. Nur die Pflanzen unter mediterranen 

Bedingungen bildeten Wurzeln mit erwerbsorientierten Merkmalen in den oberen 10 cm. Dadurch 

sind die Pflanzen in der Lage, verfügbare Nährstoffe im Oberboden schnell und effizient zu nutzen; 

wahrscheinlich als Anpassung an hohe Abtragungsraten und die Notwendigkeit, Nährstoffe 

zurückzuhalten und Verlusten zu verhindern.  

Zur Untersuchung von Agenzien und Symbionten für die Nährstoffakquise wurden die Aktivitäten 

der extrazellulären Enzyme saure Phosphatase, Aminopeptidase und Chitinase, die 

Gesamtabundanz von Bakterien und Pilzen, wie auch die Häufigkeit diazotropher Bakterien (d.h. 

die Abundanz des Gens nifH), in Rhizosphärenboden aus dem Ober- und Unterboden sowie dem 
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Saprolith bestimmt. Um die Bedeutung der arbuskulären Mykorrhizapilze (AMF) für die N- und 

P-Akquise der Pflanzen zu beurteilen, wurde die AMF-Wurzelbesiedlung ermittelt und die AMF-

Häufigkeit im Boden anhand der AMF-spezifischen Phospho- und neutralen Lipidfettsäuren 

beurteilt (16:1ω5c PLFA und NLFA). Darüber hinaus wurde die Allokation von frisch 

assimiliertem 13C in Feinwurzeln und AMF nach einer 13CO2-Pulsmarkierung der holzigen 

Vegetation bestimmt. Die extrazellulären Enzymaktivitäten, die Gesamtabundanz von Bakterien 

und die Häufigkeit diazotropher Bakterien in der Rhizosphäre nahmen mit zunehmender 

Trockenheit ab. Relativ zum organischen Bodenkohlenstoff waren jedoch die Aktivitäten der 

sauren Phosphatasen (bis zu 3-fac) und der Aminopeptidasen (bis zu 9-fach) sowie die 

Gesamtabundanz der Bakterien (>2-fach) im Rhizosphärenboden unter trockenen Bedingungen 

höher als unter feuchten Bedingungen. Dies wies auf eine größere Bedeutung der Rhizosphäre als 

Hotspot der Nährstofffreisetzung und -aufnahme in trockenen Böden hin. Die AMF-

Wurzelkolonisierung nahm mit zunehmender Trockenheit von 45% auf 20% ab. Das extraradische 

AMF-Myzel wurde jedoch unabhängig vom Niederschlag in allen Untersuchungsgebieten 

ähnliche mit C versorgt (max. 0,2-0,5‰ des assimilierten 13C), um nach P zu suchen. Am Standort 

unter ariden Bedingungen wurden keine Hinweise darauf gefunden, dass die AMF auch den 

Erwerb von N unterstützt, wahrscheinlich weil ein enger Kontakt der Hyphen mit 

Mineralien/Nährstoffquellen für den Erwerb von immobilem P wichtig ist, nicht aber für den 

Erwerb des mobileren N. Für den Erwerb von N investierten Pflanzen, die unter ariden 

Bedingungen wachsen, in ihr Feinwurzelsystem, was durch eine höhere spezifische Wurzellänge 

bei niedrigem Boden-C:N angezeigt wurde. 

Am Standort unter feuchten Bedingungen hingegen schien die Symbiose für den N-Transfer von 

Pilz zu Pflanze durch eine intensivere Wurzelbesiedlung verstärkt zu werden. Die 

Aufrechterhaltung eines engen Kontakts zu Quellen von immobilem P bei gleichzeitiger 

Gewährleistung einer schnellen Übertragung von mobilem N von Pilz auf Pflanze deutet auf 

unterschiedliche AMF-Funktionen in der P- und N-Akquise von Pflanzen im humiden Ökosystem 

hin. Am Standort unter mediterranen Bedingungen wurden weiter Hinweise darauf gefunden, dass 

nicht nur die Wurzelbesiedlung für den N-Transfer von Pilzen zur Pflanze verstärkt wird, sondern 

dass auch das extraradische AMF-Myzel mit C versorgt wird, um die Akquise von N durch 

saprotrophe Organismen zu unterstützen. Dabei üben die AMF eine Funktion aus, die im humiden 

oder trockenen Standort nicht beobachtet wurde: die Rückhaltung mobiler Nährstoffe und 

Reduzierung von Nährstoffverlusten aus dem Boden. 

Mit den vorhergesagten Niederschlagsveränderungen in Chile ist es wahrscheinlich, dass sich die 

abiotischen Bedingungen und biotischen Interaktionen in einem der Ökosysteme hin zu den 

aktuellen Bedingungen in einem der anderen Ökosysteme entlang des Niederschlagsgradienten 
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verschieben. Auf der Grundlage der Ergebnisse zu den Strategien für den Erwerb von 

Pflanzennährstoffen wurde eine Bewertung der möglichen Verschiebungen und Reaktionen des 

ariden und humiden Ökosystems vorgenommen. Mit zunehmender Dauer der Trockenperioden 

zwischen den Regenereignissen wird sich die Nährstoffversorgung der Pflanzen wahrscheinlich 

verschlechtern. Um ihren N-Gewinn zu erhöhen, investieren die Pflanzen stark in N-fixierende 

Bakterien, deren Häufigkeit wahrscheinlich mit abnehmender Wasserverfügbarkeit und 

Primärproduktivität in Zukunft abnehmen wird. Bei einer möglichen zeitlichen Entkopplung von 

mikrobieller Aktivität und pflanzlicher Nährstoffaufnahme (wie bereits heute unter mediterranen 

Bedingungen zu beobachten) könnte sich anorganisches N im Oberboden anreichern und damit 

sehr anfällig für Auswaschung werden. Ob die AMF die langsam wachsenden Wurzeln dabei 

unterstützen können, mobile Nährstoffe im Boden zurückzuhalten, ist unklar, da die AMF-

Gemeinschaft nicht an langanhaltende Trockenheitsbedingungen angepasst ist. Die Aufnahme aus 

dem Unterboden und dem Saprolith durch Wurzeln wird bei längeren Trockenperioden von Vorteil 

sein. Dies ist jedoch nur möglich, wenn tiefe Wasserreservoirs verfügbar sind und diese sich 

während der Regenzeiten und in feuchten Jahren wieder auffüllen.  

In ariden Regionen könnte eine Konzentration der Niederschläge in weniger Regenereignisse die 

Wasserverfügbarkeit aufgrund einer tieferen Infiltration und geringeren Verdunstung von 

Regenwasser erhöhen. Tiefwurzelnde (Strauch-) Arten würden von einer größeren 

Wasserverfügbarkeit in der Tiefe profitieren. Es würde tiefwurzelnden Pflanzen ebenfalls 

ermöglichen, ihre Photosyntheseaktivität zu erhöhen und mehr C in unterirdische Prozesse zur 

Nährstoffgewinnung zu investieren. Dadurch könnten sie die Zersetzung von organischer 

Bodensubstanz und die Nährstoffmineralisierung beschleunigen, und damit die Verfügbarkeit von 

Nährstoffen erhöhen. Je nach Ausmaß der Regenereignisse können jedoch weniger, aber 

intensivere Regenereignisse auch zu einem höheren Abfluss führen, was zu größerer Bodenerosion 

und Nährstoffverlusten führen würde. Die Pflanzen in diesem System sind jedoch weder an hohe 

Verluste noch an die schnelle Nutzung der verfügbaren Ressourcen angepasst und könnten die 

Nährstoffe wahrscheinlich nicht vollständig gegen verstärkte Auswaschung und Erosion 

zurückhalten. 

Die erforderlichen Veränderungen in der Nährstoffakquise in beiden hier untersuchten 

Ökosystemen müssen mit einer Verschiebung der Artenzusammensetzungen und funktionellen 

Gruppen einhergehen. Viele der unter den vorhergesagten Szenarien des Klimawandels 

vorteilhaften Eigenschaften sind im mediterranen Ökosystem vorhanden und somit im Prinzip 

entlang der chilenischen Küstenkordillere verfügbar. Das Ausmaß und die zeitliche Dynamik des 

Klimawandels werden jedoch entscheidend dafür sein, ob und in welchem Ausmaß Arten mit den 

erforderlichen Merkmalen aus dem mediterranen Gebiet abwandern und in die angrenzenden 
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Systeme einwandern können. Diese Studie zeigte, dass die Untersuchung von Ökosystemen 

entlang einer Klimasequenz mit vergleichbarem Ausgangsmaterial es ermöglicht, das Portfolio 

verfügbarer Nährstoffaufnahmeeigenschaften unter verschiedenen klimatischen Bedingungen zu 

erfassen. Die Kenntnis der verfügbaren Eigenschaften erlaubt es, mögliche und notwendige 

Verschiebungen für die Erhaltung der Funktionalität von Ökosystemen abzuschätzen. Dieses 

Wissen kann die Vorhersagen der Reaktionen von Ökosystemen auf klimatische Veränderungen 

verbessern. 
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1 Extended Summary  

1.1  Introduction 

1.1.1 Background and Motivation 

With a rapid proceeding climate change, the distribution of precipitation is projected to shift and 

precipitation variability to increase markedly (IPCC, 2014, 2013). These changes can result in a 

concentration of annual rainfall in fewer but stronger rain events with prolonged durations of dry 

periods in between (Knapp et al., 2008a; Sala et al., 2015). These shifts can lead to a cascade of 

environmental changes (see e.g., Figure 1.1-1) that might markedly alter biogeochemical cycles 

and the functioning and services ecosystems provide (Gerten et al., 2008; Knapp et al., 2008a; 

Kreuzwieser and Gessler, 2010).  

 

Figure 1.1-1: Multi-model mean changes in (a) precipitation (mm day–1), (b) soil moisture content (%), (c) runoff 

(mm day–1) and (d) evaporation (mm day–1). To indicate consistency in the sign of change, regions are stippled 

where at least 80% of models agree on the sign of the mean change. Changes are annual means for the SRES A1B 

scenario (emission scenario of the IPCC Special Report on Emission Scenarios (2000) with 850 ppm CO2 in 

atmosphere 2100 for the period 2080 to 2099 relative to 1980 to 1999. Soil moisture and runoff changes are shown 

at land points with valid data from at least 10 models. Figure from Meehl et al. (2007) 

Decreasing precipitation but increasing inter- and intra-annual precipitation variability might have 

opposing effects on humid and arid ecosystems (Knapp et al., 2008a; Sala et al., 2015). Arid 

ecosystems might profit from less frequent but larger rainfall events. Large water pulses can 

infiltrate deeper into soil than small water pulses, which can reduce soil evaporation losses and 

increasing water availability at depth (Knapp et al., 2008a; Kulmatiski and Beard, 2013; Sala et 

al., 2015). Depending on the magnitude of the water pulses, however, larger rainfall events could 

lead to increased surface run-off and erosion, and thus, nutrient losses (Boy et al., 2008; Yahdjian 
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and Sala, 2010). Humid ecosystems, on the contrary, might suffer when rainfall is concentrated in 

few precipitation events. Here, intensive rainfall might lead to deep percolation out of reach for 

roots, which would reduce water availability and increase nutrient loss (Sala et al., 2015). Longer 

dry periods between events will further intensify water stress for plants adapted to humid 

conditions (Knapp et al., 2008a). Belowground processes and fine root dynamics are especially 

sensitive to spatial and temporal water availability (Wang et al., 2020). An offset of precipitation 

and plant activity can tip the fragile balance within an ecosystem (Austin et al., 2004; Knapp et 

al., 2008a). If the timing of precipitation shifts and it falls outside the vegetation period, the rain 

water cannot be utilized by plants, leading to additional water stress despite sufficient precipitation 

(Fernández, 2007; Hodge, 2010).  

Depending on the vegetation responses to these changes, the plant community composition will 

be altered markedly (Pérez Navarro et al., 2019; Ploughe et al., 2019; Sala et al., 2012a). This in 

turn will inevitably affect biogeochemical cycles (de Vries et al., 2016; Dijkstra et al., 2010) by, 

for example, altered primary productivity and belowground plant C allocation as well as changed 

litter compositions and decomposability (Hsu et al., 2012; Makkonen et al., 2012; Sardans and 

Peñuelas, 2012). If and how vegetation adapts to reduced water availability and/or higher temporal 

variability will affect the continuation of an ecosystem’s functionality (Knapp et al., 2008a; 

Schwalm et al., 2017; Zhou et al., 2020), for which multiple factors such as plant-plant interactions 

and community stability will be decisive (Hallett et al., 2014; Lloret et al., 2012; Ploughe et al., 

2019). 

Maintaining water uptake and avoiding physiological failure is often regarded as one of the main 

factor for plant survival under drought (Gessler et al., 2017). Nutrient availability, however, can 

have a critical role on plant drought sensitivity (Gessler et al., 2017; Royo and Knight, 2012). To 

assess the adaptation ability, it is crucial to understand plant nutrient acquisition strategies under 

current climatic settings (Knapp et al., 2008a; Wang et al., 2020). Whether plants exploit available 

resources fast or slow, or whether they acquire water and nutrients dominantly from shallow soil 

or from depth, determines their sensitivity to precipitation shifts: Are their roots affected by water 

logging in depth or drying topsoil? Can they dip into water reservoirs in depth during prolonged 

dry periods? Are they able to retain nutrients against leaching and run-off or can they recapture 

nutrients from depth? Depending on the strategy, a plant-microbe-soil system can be less or more 

susceptible to abiotic disturbances (Anderegg et al., 2018; Knapp et al., 2008a; Wang et al., 2020) 

and is therefore a prerequisite to be able to estimate and predict responses of natural ecosystems 

to climatic and environmental changes. 
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1.1.2 Plant nutrient acquisition – recycling and uplift 

Susceptibility of an ecosystem to climatic and environmental changes depends (inter alia) on when 

and where plants are active to acquire water and nutrients, and how efficient they are to (re)utilize 

available resources. Erosion, leaching, gaseous losses, deep weathering, and high plant and 

microbial nutrient demand lead to a depletion of nutrient pools over time (Chen et al., 2019; Uhlig 

and von Blanckenburg, 2019). The acquisition from deep soil and saprolite is an important 

mechanism to replenish nutrient pools in the long-term (Gao et al., 2019; Uhlig and von 

Blanckenburg, 2019; Vitousek et al., 2003). Especially in systems with high precipitation and, 

thus, intensive erosion and leaching, plant uplift can counterbalance nutrient losses (Brantley et 

al., 2017; Jobbágy and Jackson, 2001). On shorter time scales, fast nutrient recycling from plant 

litter and microbial necromass retains nutrients within a system and ensures plant nutrition 

(Cleveland et al., 2013; Gao et al., 2019; Perakis and Hedin, 2001).  

Whether and to which extent nutrients are uplifted and reutilized depends on their initial source 

(rock-born vs. biological fixation), their retention by minerals and soil organic matter (SOM) (i.e. 

sorption and leaching potential), and the plant and microbial demand.  

Nitrogen (N) in soil is primarily bound in organic matter (OM), which needs to be decomposed 

and mineralized to release N available for plant uptake (Blume et al., 2010). The dominant mineral 

N form in most soils (especially when well aerated) is nitrate (NO3
-), which is highly mobile, does 

not bind to clay minerals, and is easily leached down the soil profile (Blume et al., 2010). 

Potassium (K), on the contrary, is rock-born and the main pool of available K in soil is adsorbed 

to clay minerals, whereas only a small portion remains in soil solution (Sardans and Peñuelas, 

2015). K in plant and microbial cells is only present in soluble form, which makes it prone to 

leaching from litter, upon it easily binds to clay minerals in soil (Sardans and Peñuelas, 2015).  

When comparing the acquisition of rock-born and OM-derived nutrients, rock-born phosphorus 

(P) takes on a special role. Contrary to K, P can be bound in complex organic molecules and large 

amounts of organic P can accumulate in soil (Turner et al., 2007). Contrary to N, mobility of P in 

soil is low and the pool of inorganic P sorbed to primary and secondary minerals can be large 

(Turner et al., 2007). The dominance of either P pool (inorganic vs. organic) shifts with increasing 

precipitation and proceeding weathering and soil development (Feng et al., 2016; Walker and 

Syers, 1976; Yang and Post, 2011).  

The extent and intensity of recycling and plant uplift can therefore differ markedly between arid 

and humid ecosystems. While in natural humid (and often strongly nutrient-limited) systems, 

nutrients such as N and organic P are strongly recycled and recaptured from depth (i.e. a closed 

cycling), semiarid ecosystems were shown to be less nutrient conservative (Feng et al., 2016; Hou 
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et al., 2018; McCulley et al., 2009; Reichmann et al., 2013). The efficiency of nutrient reutilization 

from OM further depends on the spatial and temporal nutrient availability in an ecosystem 

(Dunbabin et al., 2004; Han et al., 2013). Strongly limited nutrients are more likely to be efficiently 

and extensively recaptured by plants and microbes and accumulate in topsoil. If the respective 

nutrient is not limiting for plant growth, the reutilization is likely to be less intensive (Sardans and 

Peñuelas, 2015; Vergutz et al., 2012; Yuan and Chen, 2015).  

How deep plants scavenge for resources and how well they can utilize them, however, does not 

only depend on the given nutrient pools and their distribution in soil, but also on the growth form 

and stress adaptation strategy of plants.  

1.1.3 Plant nutrient economics – acquisitive or conservative? 

Plant nutrient acquisition strategies are strongly linked to plant growth forms and their resource 

management. Plants must adapt their resource acquisition to environmental conditions and have 

to trade-off between growth and survival, between being a fast and efficient competitor for 

resources to outgrow neighbors vs. the conservation of resources to enhance survival under 

resource limitation (Reich, 2014; Roumet et al., 2016). Plants adapt their investment into resource 

acquisition according to the balance between costs and benefits of such an investment, and display 

a plasticity of root traits when confronted with resource shortages and limitations (e.g., water, 

nutrients, space) (Comas et al., 2013; Croft et al., 2012; Pérez-Ramos et al., 2012; Volaire, 2008). 

‘Fast’ or ‘acquisitive’ root traits such as high specific root length (i.e. high proportion of fine 

roots), small diameters (i.e. high surface to volume ratio), low tissue density (low carbon (C) 

costs), and high N content are advantageous under high nutrient availability, allowing plants to 

outcompete neighbors (de Vries et al., 2016; McCormack and Iversen, 2019; Reich, 2014). Roots 

with ‘fast’ traits have a high capability for nutrient uptake but come at the cost of shorter lifespans, 

as they are more sensitive to dehydration and nutrient shortage and are susceptible to 

decomposition (McCormack et al., 2012; McCormack and Iversen, 2019). 

‘Slow’ or ‘conservative’ root traits, on the contrary, have a low capability of uptake but are 

favorable under low nutrient availability (McCormack and Iversen, 2019; Reich, 2014). The 

thicker, denser, and often shorter roots associated with a ‘slow’ acquisition are less capable to 

explore the soil for water and nutrients but are less susceptible to environmental changes. Longer 

lifespans of such roots provide the advantage of sustaining a functioning root system under 

limitation, while reducing maintenance costs (Bristiel et al., 2019; Lynch and Ho, 2005; Reich, 

2014). Plants with ‘slow’ traits, however, are easily outcompeted by ‘fast’ neighbors once resource 

availability increases. 



Extended Summary  5 

 

Water shortage can strongly modulate root architecture and might overrule plant responses to 

nutrient availability. Thick and dense roots in a dehydrated topsoil reduce the risk of tissue damage 

and dieback, as those thick roots withstand dehydration longer than thin roots (Bristiel et al., 2019; 

Pérez-Ramos et al., 2013; Volaire et al., 2014). Under prolonged water shortage, however, plants 

can avoid dehydration while maintaining growth by extending their fine root system into deeper 

soil, scavenging for deep water sources (Muñoz et al., 2008; Nicotra et al., 2002; Sala et al., 

2012b). Thus, root traits cannot always be ranked within the plant economic spectrum of 

‘acquisitive’ and ‘conservative’ behavior (Kembel et al., 2008; Kramer-Walter et al., 2016; 

Valverde‐Barrantes et al., 2015). This is also the case because roots exert multiple additional 

functions such as storage, anchorage, or vegetative reproduction (McCormack and Iversen, 2019). 

Further, the resource acquisition function of fine roots can be largely supported by symbiotic 

microorganisms, in the following called symbionts (McCormack and Iversen, 2019).  

1.1.4 Plant carbon investment – agents and symbionts 

Mycorrhizal fungi 

Mycorrhizal symbiosis is one of the most common forms of mutualistic relationships, with crucial 

ecological and evolutionary roles in the terrestrial colonization of vascular plants (Brundrett and 

Tedersoo, 2018; Godoy and Marín, 2019). Approximately 80% of terrestrial vascular plant species 

form a symbiosis with arbuscular mycorrhizal fungi (AMF; Brundrett and Tedersoo, 2018). 

Mycorrhizal fungi support plants resource acquisition by transferring water and nutrients to their 

host plants in exchange for photosynthetic C (Allen, 2007; Fellbaum et al., 2012; Ryan et al., 

2012). AMF hyphae branch far beyond the rhizosphere (i.e. the soil directly influenced by living 

roots) and into soil pores. Thereby, AMF expand the range to scavenge for nutrients and water and 

increase the uptake surface, and can further access resources that are excluded even from finest 

roots (Parniske, 2008).  

Other advantages of the symbiosis are that (1) the production of thin AMF hyphae is less C and 

nutrient expensive than the production of comparable thick fine roots (Fitter, 1991; Hodge, 2004; 

Pregitzer et al., 1997). This is especially important in ecosystems with restricted primary 

productivity and belowground C investment. (2) Mycorrhizal fungi can respond fast to brief water 

pulses that plant roots would not be able to utilize (Austin et al., 2004; Schwinning and Sala, 2004). 

This might even compensate for the shorter lifespans of hyphae compared to plant roots. (3) 

Mycorrhizal hyphae form a direct link between the surface of organic matter and minerals and 

photosynthetic C from plants (Godoy and Marín, 2019; Taylor et al., 2009), which can be 

especially advantageous in dry soils with limited nutrient mobility (Aaltonen et al., 2017; Augé, 

2001; Li et al., 2014; Ruiz-Lozano et al., 2016). Via the direct pathway between plant-derived C 
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and mineral surfaces, AMF can contribute to biological mineral weathering, even if to a lower 

extent than ectomycorrhizal fungi that possess the ability to actively secrete low molecular organic 

acids (LMWOA or ‘organic acids’) contrary to AMF (Taylor et al., 2009).  

Organic acids 

Not only fungi but also plants release LMWOA as well as protons into the soil to accelerate mineral 

dissolution by: acidifying the rhizosphere, block sorption sites for phosphate anions, and enhance 

the dissolution of Ca-, Fe-, and Al-minerals by the chelation of the respective cation (Hinsinger, 

2001; Jones, 1998; Jones and Darrah, 1994). Organic acids, however, cannot only increase mineral 

dissolution, but can also play an important role in P acquisition from OM, for example, by the 

desorption of organic P and its exposure to enzymatic breakdown (Giles et al., 2014; Lan et al., 

1995) 

Extracellular enzymes 

For the reutilization and uptake of nutrients bound in OM, extracellular enzymes are needed as 

agents to break down complex polymers into assimilable monomers (Allison and Vitousek, 2005; 

Sinsabaugh et al., 2008). Plant roots and saprotrophic microbes are the main source of extracellular 

enzymes in soil (Burns et al., 2013). Producing enzymes, however, is resource costly and depends 

strongly on abiotic conditions such as water or substrate availability as well as on the nutrient 

demand of plants and microbes (DeForest et al., 2012; Olander and Vitousek, 2000; Sanaullah et 

al., 2011; Treseder and Vitousek, 2001).  

Nitrogen fixation 

The association with diazotrophic bacteria, capable of fixing atmospheric N2, can provide an 

advantage for plants to sustain in an N-limited environment (Vitousek et al., 2002). The process 

of N fixation, however, is immensely C costly and an oxygen-free environment hast to be provided 

(Gallon, 2006; Vance and Heichel, 1991). Thus, the benefit of supporting symbiotic or associated 

free-living diazotrophs to increase the N gain has to outweigh the high C costs for plants.  

1.1.5 Objectives and hypotheses 

Climatic conditions – especially precipitation patterns – strongly modulate processes and 

interactions of plant nutrient acquisition as they control soil water availability, regulate plant 

primary productivity and belowground C allocation, modify decomposition of SOM and biological 

weathering, and control plant-microbe-interactions. Nutrient acquisition strategies of plants – with 

their agents and interactions (depicted in Figure 1.1-2) –therefore depend on the given 

environmental conditions that plants are exposed to. It is important to understand acquisition 
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strategies under current environmental settings in order to estimate and predict responses of natural 

ecosystems to future climatic and environmental changes. Climate gradients, along which other 

abiotic parameters such as parent material, uplift rates, glaciation history (i.e. time of soil 

development), or slope are similar, are valuable study objects to evaluate acquisition strategies and 

biotic interactions depending on climatic conditions. Aim of this research project was, therefore, 

to identify plant nutrient acquisition strategies under three levels of aridity: arid, Mediterranean, 

and humid.  

 

Objective 1: The first objective was to assess the nutrient availability at the sites of each aridity 

level.  

Hypotheses: We expected that (a) N availability increases with increasing precipitation due to 

accumulation of soil organic nitrogen (SON) (Study 3), while (b) P availability decreases due to 

depletion of the primary mineral P stock by weathering (Study 4). Further, we assumed that (c) 

plants would be P limited under humid conditions as part of the weathered P is lost during 

ecosystem succession (Study 4), but N limited under arid and semiarid conditions as SON barely 

accumulates under low net primary production (NPP) (Study 1, Study 3). (d) A limitation of K 

was not expected across the precipitation gradient. (Study 1). 

 

Objective 2: As second objective we assessed plant nutrient recycling and uplift as well as plant 

resource economics under the three levels of aridity.  

Hypotheses: We anticipated that OM-derived nutrients are (a) strongly recycles in arid ecosystems 

(due to low input) as well as in humid ecosystems (due to high demands) (Study 1). It was further 

presumed that (b) plants under arid conditions, with restricted primary productivity, rely on 

biological weathering and uplift of rock-born nutrients, while (c) plants in humid ecosystems with 

high NPP rely dominantly on the recycling of rock-born nutrients (Study 1, Study 5). Further, we 

expected that (d) conservative root traits are expressed under arid conditions (due to drought-

induced risk of dieback), but acquisitive root traits under humid conditions (due to low risk of 

dieback, high nutrient demands, and great competition for nutrients) (Study 2, Study 3).  

 

Objective 3: The third objective was to determine the importance and function of recycling and 

weathering agents as well as plant symbionts for plant nutrient acquisition in each aridity level. 

Hypotheses: We anticipated that (a) extracellular enzyme activities and abundance of diazotroph 

bacteria in the rhizosphere decrease with increasing aridity (as NPP declines and both agents are 

C-costly) (Study 3), but that (b) the relative importance of the rhizosphere as hotspot of nutrient 
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release and acquisition increases with increasing aridity (due to decreasing bulk soil OM content 

and water availability, and, thus, microbial activity) (Study 3, Study 4). We expected (c) that AMF 

are important for P acquisition in dry soils (due to low mobility of P), but that AMF are important 

for P and N acquisition under high precipitation (due to high demands of both nutrients) (Study 

2). Finally, it was assumed that (d) the importance of AMF increases with increasing aridity, due 

to low nutrient mobility in soil and restrictions on root growth under water shortage (Study 2). 

1.2  Material and Methods 

1.2.1 Project Framework and study areas  

The project was conducted within the framework of the German-Chilean DFG priority program 

‘EarthShape – Erath Surface Shaping by Biota’, which investigates the “influence of plant, 

animals, and microorganisms on the formation of soils and the shape of topography 

(earthshape.net)”. The Chilean Coastal Cordillera was chosen as a study region, because sites 

could be selected here with similar granitoid parent material along a precipitation gradient from 

(hyper)arid to humid. The whole gradient was glaciation free during the last glacial maximum and 

well-documented climate change records exist. The four study areas studied in this thesis are 

located in the Cordillera from 29° to 38° southern latitude and cover a >900 km long precipitation 

gradient from 80 mm a-1 mean annual precipitation (MAP) in the north to >1500 mm a-1 in the 

south (Fick and Hijmans, 2017).  

 

Figure 1.1-2: Overview of the aspects investigated in objective 1 (nutrient availability), objective 2 (plant nutrient 

recycling and uplift and plant resource economics), and objective 3 (agents and symbionts for plant nutrient 

acquisition). 

http://www.earthshape.net/
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Figure 1.2-1: Study site overview. Showing mean annual precipitation (MAP) and mean annual temperature (MAT) 

along the gradient (WorldClima data Version 2, Fick and Hijmans et al., 2017). Study site locations indicated by 

triangles from north to south: arid shrubland, coastal matorral, Humid-temperate forest. Adapted from Stock et al. 

(2019).  

The northern sites are classified as arid ecosystems (‘arid shrublands’) with an aridity index of 

0.06 and 0.05 (Trabucco and Zomer, 2018). The first shrubland site is located in a grazing 

exclusion area in Quebrada de Talca (30.05 S, 71.09 W), at an altitude of 645 m a.s.l. and in 23 

km distance from the Pacific Ocean. The second arid shrubland is located in the Reserva Santa 

Gracia (29.76 S, 71.14 W) at an altitude of 680 m a.s.l. and in 23 km distance to the Pacific Ocean 

as well. Both arid shrublands resemble each other in their environmental conditions, with an mean 

annual precipitation (MAP) and mean annual temperature (MAT) of 80 mm and 13.8 °C (Fick and 

Hijmans, 2017). Cambisols (pH 5.5-7.0) are 30-40% covered with vegetation, which is dominated 

by drought-deciduous shrubs and cacti.  

The third site along the precipitation gradient is classified as a Mediterranean ecosystem 

(‘Mediterranean coastal matorral’) with an aridity index of 0.24 (Trabucco and Zomer, 2018), and 

represents the intermediate level of the three aridity intensities. The site is located in the National 

Park La Campana (32.96 S, 71.06 W) at approx. 70 km northwest of Santiago and 43 km 

landwards, at an altitude of 730 m a.s.l. and with a MAP and MAT of approx. 400 mm and 13.1 °C 

(Fick and Hijmans, 2017). The vegetation covered 100% of the Cambisols (pH 4.5-6.1), dominated 

by evergreen-sclerophyllous trees, deciduous shrubs, and a dense herb layer (Bernhard et al., 

2018).  

The southernmost and fourth site is classified as a humid ecosystem (‘humid-temperate forest’) 

with an aridity index of 1.4 (Trabucco and Zomer, 2018). The site is located in the National Park 

Nahuelbuta (37.81 S, 73.01 W) at 1240 m a.s.l. elevation and in 55 km distance to the Pacific 

Ocean, with a MAP and MAT of >1500 mm and 7.4 °C (Fick and Hijmans, 2017). Vegetation 

here covered 100% of the Umbrisols and Podzols (pH 3.7-5.1), dominated by the evergreen 
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conifers Araucaria araucana (Mol.) K. Koch and winter deciduous broadleaved Nothofagus spp. 

trees, with a rich understory. From north to south, soils developed all on similar granitoide parent 

material. The extent of the soil profiles (including A, Bw, and BCw horizons) varied markedly 

between sites. Under the arid shrubland in the north, the transition from BCw horizon to the 

underlaying weathered rock is located around 50 cm soil depth, while under the Mediterranean 

coastal matorral, the transition lies at around 80 cm depth (Bernhard et al., 2018). Under humid-

temperate forest in the south, the transition from BCw horizon to saprolite occurs around 100 cm 

depth (Bernhard et al., 2018). Thickness of the A horizon varies as well, with 10-20 cm under 

shrubland, 10-40 cm under woodland, and 30-50 cm under forest (Oeser et al., 2018). For a detailed 

site description, please refer to Bernhard et al. (2018) and Oeser et al. (2018). 

Total precipitation (mm) and frequency (i.e. the number of days with precipitation) from March 

2016 till November 2016 (time of the conducted field experiments) are given in Figure 2.1-1 and 

were recorded by the EarthShape weather stations (Ehlers et al., 2017) for the arid and 

Mediterranean sites. As the project weather station in the National Park Nahuelbuta was only 

installed in November 2016, precipitation data were derived from the Center for Climate and 

Resilience Research (CR)² (2020) for the station Parque Nahuelbuta (37.8233 S, 72.9606 W). 

1.2.1.1 Predicted precipitation shifts 

In the past century precipitation patterns in Chile changed notably. In a meta-analysis of 

pre-published data from 271 stations between 26°00’S and 56°30’S, a trend of precipitation 

decrease from 1960 to 2000 was detected in the Coquimbo and Valparaiso regions (29°20’S to 

33°57’S) (Valdés-Pineda et al., 2014), where the arid shrublands and Mediterranean coastal 

 

Figure 1.2-2: 

Temperature and 

precipitation 

changes over Central 

and South America 

from MMD-A1B 

simulations (MMD: 

multi-model data set 

archived a the 

Program for Climate 

Model Diagnosis and 

Intercomparison 

PCMDI; SRES A1B: 

emission scenario 

with 850 ppm CO2 in 

atmosphere in 2100). 

From left to right: annual mean, DJF (austral summer), JJA (austral winter). Top row: Temperature (top row) and 

precipitation (bottom row) changes between 1980 to 1999 and 2080 to 2099, average over 21 models. Modified 

from Christensen et al. (2007) Figure 11.15. 
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matorral are located. In the fourth IPCC Assessment Report (IPCC, 2007) are pronounced 

temperature increases and precipitation decreases of up to 50% compared to the reference period  

1980-1999 predicted for 2080-2100 in the region from ~25°S to 45°S, encompassing also the 

southernmost study site of the humid-temperate forest (Figure 1.2-2; Christensen et al., 2007).  

Regional climate models (Figure 1.2-3) predicted as well that precipitation will decrease markedly 

(>50% compared to 1960-1990) in the region of BioBío and Araucanía, where the humid-

temperate forest studied here is located (Garreaud, 2011). The regional climate models project also 

a decrease of precipitation in the Mediterranean and arid northern part of Chile up to the Atacama 

Desert, but it is expected to be less pronounced than in the Chilean South (Garreaud, 2011). By 

2100, an aridification of the region where the Mediterranean coastal matorral site is located is 

expected to be uncertain to likely (Klausmeyer and Shaw, 2009).  

Not only is a general decrease of precipitation predicted for Central Chile, but also are precipitation 

patterns expected to become much more variable (IPCC, 2014, 2007; Young et al., 2010), resulting 

in a concentration of precipitation in few events with longer dry periods in between (Knapp et al., 

2008a). In the last decade, for example, was an unusual and unprecedented long period of 

precipitation reduction recorded from 2010 to 2015 between 30-38° S, which was framed as the 

‘megadrought’ (Garreaud et al., 2017). These variations can, for example, be caused by changes 

in the El Niño/La Niña-Southern oscillation (ENSO) (IPCC, 2012; Sala et al., 2015). 

During El Niño episodes, precipitation increases above average between 30°S and 35°S in winter 

(JJA), but increases in late spring (ON) between 35°S and 38°S (Montecinos and Aceituno, 2003). 

During La Niña, patterns are opposite. Changes in the El Niño/La Niña-Southern oscillation 

(ENSO) lead to increased climate variability and could increase the frequencies of extreme events. 

The occurrence of ENSO events, however, is naturally highly variable and no consistent 

 

Figure 1.2-3: Mean annual precipitation change 

[%] for the period 2070-2100 with 1960-1990 as 

reference. The change was normalized to the 

average of the current precipitation. Modelled with 

PRECIS-DGF (Providing REgional Climate Impact 

Studies) under the assumption of severe greenhouse 

gas emissions in the coming decades (SRES emission 

scenario A2 with 1250 ppm CO2 in atmosphere in 

2100). *The region of the Atacama Desert is shown 

in gray as the precipitation there is (almost) 0 mm. 

Taken from Garreaud, (2011) Figure 9. Black stars 

indicate the approximate study site locations. 
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projections of changes could be made so far (IPCC, 2012; Young et al., 2010). While some models 

predict an increase in ENSO variability and frequency, others predict a reduction (van Oldenborgh 

et al., 2005). It was reported , however, that the frequency and intensity of ENSO events have 

increased since the 1970, which in turn leads to a decrease in frequency but an increase in intensity 

of rain events (Carrasco et al., 2005; Young et al., 2010). Especially such prolonged drought 

periods can compromise the continuity of ecosystems that rely on deep water pools when topsoils 

are dehydrated, if those deep pools are not replenished sufficiently.  

1.2.2 Research approaches 

1.2.2.1 Tracer applications to assess nutrient uptake and C investment 

The application of naturally rare stable isotopes such as 13C or 15N, allows to trace element 

translocation/cycling in plant-microbial-soil systems. Likewise, the use of analogs, which are 

elements rare in natural ecosystems but behaving similar to major plant and microbial nutrients in 

soil and regarding plant uptake, allow to investigate plant nutrient acquisition and strategies (Fitter, 

1986; Hoekstra et al., 2014). In the scope of this thesis, two field experiments with tracer 

applications were conducted.  

The first field experiment (‘Acquisition Experiment’) focused on the evaluation of plant K and N 

acquisition from topsoil, subsoil, and saprolite. Therefore, rubidium (Rb) and cesium (Cs) as K 

analogs, and 15N were used as tracers. A common tracer solution with RbCl, CsCl, and Na15NO3 

(99 at%; Sigma; for concentrations see Table 2.1-1), was injected equally in three pre-cored auger 

holes around a plant specimen. The area around a specimen was either labeled in topsoil (A-Bw 

horizons), subsoil (Bw-BCw horizons), or saprolite (below BCw horizon), with 8 specimens per 

site and depth, distributed between south- and north-facing slopes. All specimens were chosen at 

a mid-slope position. Assuming quantitatively much lower tracer recovery from lowest soil depth 

compared to topsoil, we increased the amount of tracer from topsoil to the lowest depth (see Table 

2.1-1). The labeling was conducted at the end of the austral summer (March 2016) to avoid plant 

inactivity due to a potential summer dormancy, especially at the sites under arid and Mediterranean 

conditions (di Castri and Hajek, 1976). The exposure time was 8 months, after which plant material 

was collected in November 2016. 

The second field experiment (‘C Investment Experiment’) focused on the assessment of plant C 

investment into the fine root network as well as the extraradical mycelium of arbuscular 

mycorrhizal fungi. The 13CO2 pulse-labeling experiment was conducted in November 2016. At 

each site, 4 plants were labeled on south-facing slopes. In 60x60x60 cm polyethylene chambers, a 

13CO2-enriched atmosphere was created. Therefore, c. 3 g of Na2
13CO3 (13C enrichment 99%, 

Sigma Aldrich, Munich, Germany) were dissolved in 50 ml H2O and placed inside the chambers 
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before sealing them. To generate 13CO2, the CO2 moiety of Na2
13CO3 was transferred into gaseous 

phase by adding 5 M H2SO4, which was applied with a syringe through the polyethylene foil. The 

labeling time varied between sites according to weather conditions (see Table 2.2-1). 

1.2.2.2 Labeled plant species 

For both experiments the same plant species were labeled, except in the Mediterranean coastal 

matorral. All species were perennial woody species that are known to form a symbiosis with AMF, 

and all labeled specimen ranged between 40 and 60 cm in height. In the arid shrublands in the 

North, the perennial woody shrub Gutierrezia resinosa (Hooker & Arnott) Blake was labeled. The 

shrub prevails on sandy alkaline or neutral soils with low organic carbon and nitrogen contents 

(Solbrig, 1966). Of an overall plant cover of 30-40%, G. resinosa accounted for 15% (i.e. 6% of 

the total area). In the Mediterranean coastal matorral, the shrub Aristeguietia salvia (Colla) King 

& Rob (other names Eupatorium salvia (Colla), Salvia macha, or pega-pega) was labeled in the 

first experiment, which belongs to the Asteraceae family. It can be found in central Chile in low 

to mid altitudes (Chile Flora, 2020). Of an overall 100% plant coverage, A. salvia accounted for 

8% of the area (Bernhard et al., 2018). For the second field experiment, Erigeron fasciculatus 

(Colla) was labeled, which is a perennial subshrub with a maximum growth height of 70 cm 

(Andrus et al., 2009). It belongs to the Asteraceae family and can be found at low and mid 

elevations (Andrus et al., 2009; Solbrig, 1962; Valdebenito et al., 1986). Of an overall 100% by 

vegetation covered area, E. fasciculatus accounted for 10%. In the humid-temperate forest in the 

South, the coniferous tree species Araucaria araucana (Molina) K. Koch was labeled, which 

belongs to the family of Araucariaceae. Contrary to conifers in the Northern Hemisphere, native 

conifers in the Southern Hemisphere, such as A. araucana, form only mycorrhizal symbioses with 

arbuscular mycorrhizal fungi (Diehl and Fontenla, 2010; Godoy et al., 1994). A. araucana 

specimen made up 40% of the understory, which had a total coverage of 100%. 

1.2.2.3 Sampling 

In total three sample sets, including soil and plant samples, were collected:  

Set 1 – Acquisition-Experiment: The soil material that was excavated with a soil auger for the 

injection of the tracer solution was collected down to 60 cm (shrubland), 120 cm (coastal matorral), 

or 200 cm (forest) depth, depending on the start of the underlying weathered rock/saprolite. The 

cores were subdivided into 10 cm (shrubland and coastal matorral) or 25 cm (forest) depth 

increments. Additionally, shoots and roots of labeled and non-labeled plants were collected (Study 

1, Study 3).  
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Set 2 – C Investment-Experiment: For the plant C investment experiment, soil samples from 

0-10 cm and 20-30 cm were collected at four time points: before labeling (0 d), 1 day after labeling 

(1 d), 3 days after (3 d), and 14 days after (14 d). A root corer with 8 cm diameter was used for the 

sampling, the soil samples were sieved (2 mm) and roots were picked. The material was frozen 

at -20 °C (Study 2, Study 3). 

Set 3 – Rhizogradients: The third set was collected to investigate the importance of the rhizosphere 

as hotspot of OM input, microbial activity, OM decomposition, and mineral weathering. Soil 

samples were collected from four soil pits per site. Three pits were always located on a south-

exposed slope arranged as a catena (top-, mid-, and toe-slope), and one pit was located at the 

opposing north-exposed slope at mid-slope position. To be able to compare profiles and sites with 

each other, each pit was divided into three depth increments according to soil thickness. The profile 

from ground level till the transition from soil to saprolite was defined as 100%, and samples were 

collected from 0-50%, 50-100%, and >100%. In each depth, composite samples from channels of 

young living roots were collected in 0-2 mm, 2-4 mm, and 4-6 mm, to obtain a gradient from root 

to bulk soil (Study 3, Study 4, Study 5). Thereby a community specific, and not species specific, 

sampling was achieved. 

1.2.2.4 Analytical methods 

Soil and root analyses 

Gravimetric water content was determined of aliquots of Set 3 by drying the samples at 105 °C 

until constant weight. Organic C and total N contents as well as stable C isotope ratios (13C/12C) 

and stable N isotope ratios (15N/14N) were determined for all soil and root samples (Set 1-3) by an 

elemental analyzer coupled to an isotope ratio mass spectrometer (IRMS). Isotopic ratios are 

expressed in the delta notation (δ13C, δ15N) in parts per mill (‰). P content was measured in soil 

samples of all sets, and K, Rb, and Cs contents were determined for plant (shoots and roots) and 

soil samples of Set 1. Therefore, nutrients were extracted with nitric acid pressure digestion (König 

et al., 2005) and subsequently measured by inductively coupled plasma optical emission 

spectrometer (ICP-OES; Set 2, 3) or an inductively coupled plasma mass spectrometer (ICP-MS; 

Set 1). Additionally, plant available P data from Bernhard et al. (2018) were included in the 

analysis of Study 2. N and K tracer recoveries of the Acquisition-Experiment were calculated 

according to equations (2.1-1) and (2.1-2) in Study 1, respectively. Collected roots from Set 2 were 

washed and scanned with a flatbed scanner but were not separated in dead or living roots or by 

species and, thus, reflect the whole community root biomass. The images were analyzed with the 

image analyzing software WinRHIZO 2013e (Regent Instruments Inc., Québec, Canada). Root 

weight was determined by drying at 70 °C until constant weight, to calculate root length density 
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(RLD, cm cm-3), specific root length (SRL, m g-1), and root tissue density (RTD, g cm-3) of fine 

roots with ≤ 1.0 mm diameter.  

Estimating long-term K uplift 

Additional to the analyses for Set 1-3, exchangeable K and exchangeable sodium (Na) data from 

Bernhard et al. (2018) were included in the analyses of Study 1. The contrasts between 

exchangeable K and Na in soil profiles can be used to estimate the long-term K uplift by roots, 

based on the assumption of a preferential cycling of nutrients (Jobbágy and Jackson, 2004, 2001) 

and the absence of recycling for ballast elements (e.g., Na). Without plant uplift, the vertical 

distribution of K+ would follow the pattern of Na+, which is not actively acquired by plants 

(Jobbágy and Jackson, 2001). 

Arbuscular mycorrhizal fungi analysis 

To determine root colonization with arbuscular mycorrhizal fungi, roots from Set 2 were stained 

following a modified method of Vierheilig et al. (1998). Percentage of root colonization with AMF 

was determined following a modified version of Nicolson’s root segment ± method (Nicolson, 

1955) for which not AMF colonization per root length but per root area was determined. Five root 

segments with 1 cm length each were analyzed per sample with a light microscope. The whole 

segment was imaged and subsequently a grid was fitted onto the stitched image of each segment. 

Grid squares were then classified and counted as either containing only root tissue (–) or containing 

root tissue and fungal structures (+). The percentage of root colonized with fungi was calculated 

by the relation of squares containing root and fungi structures to the total number of squares 

containing fungi and/or root. Working at a higher resolution and determining colonization per area 

allowed to detect finer differences between sites. 

Phospholipid fatty acids analysis and 13C incorporation 

A modified version of (Frostegård et al., 1991) was followed to extract phospho- and neutral lipid 

fatty acids (PLFA, NLFA) (Dippold and Kuzyakov, 2016; Gunina et al., 2014) from soil samples 

of Set 2. Neutral and phospholipids were extracted, purified, and separated using a solid phase 

extraction (SPE). The purified extracts were hydrolyzed and methylated to fatty acid methyl esters 

(FAMEs). The samples were then measured on a gas chromatograph-mass spectrometry (GC-MS) 

for quantification as well as on an IRMS for isotope ratio determination. The calculations and drift 

corrections for obtaining µg FAME g-1 soil and at%13C of FAMEs can be found in Dippold and 

Kuzyakov (2016). PLFA 16:1ω5c is used as an AMF-specific marker (Balser et al., 2005; Nilsson 

et al., 2004; Olsson et al., 1998) and was used in Study 2 as proxy for the extent of the extraradical 

mycelium in soil. NLFA 16:1ω5c is a storage compound solely produced by AMF (Ngosong et 
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al., 2012; Olsson, 1999). The 13C incorporation in PLFA and NLFA (and root tissue) was 

calculated according to equations (2.2-1) – (2.2-4) in Study 2. 

Quantification of microbial abundance and diazotrophy 

Total genomic DNA was extracted with the FastDNA SPIN kit for soil (MP Biomedicals, LLC, 

Solon, OH, USA) following the manufacturer’s instructions. The extracted DNA was quantified 

with a NanoDrop 2000C (Thermo Fisher Scientific). The nifH gene encodes for a subunit of the 

nitrogenase enzyme involved in microbial N2-fixation and acts as a molecular marker for 

diazotrophs (Hsu and Buckley, 2009). Diazotrophs abundance and abundance of bacterial and 

fungal DNA were determined by quantitative polymerase chain reaction (qPCR) (for details see 

Study 3). qPCR reactions were performed in a total reaction volume of 10 µL using the iTaq 

Universal SYBR Green Supermix (BioRad, Hercules, CA, USA) following the manufacturer's 

instructions. Quantification reactions were carried out in the CFX96 Real-Time PCR Detection 

System (BioRad) and data analysis was carried out using the BioRad CFX ManagerTM 3.1 

(BioRad). 

Enzyme assays 

Kinetics of seven extracellular enzymes of the C, N, and P cycles were determined in the soil 

samples of Set 3 (rhizogradients) using synthetic fluorogenic substrates(see Table 2.4-1; Marx et 

al., 2001) Three analytical replicates were measured for each sample at 8 substrate concentrations 

(0, 2, 4, 6, 8, 10, 20, 40 µmol g-1 soil). Fluorescence was measured by a microplate reader (Victor³ 

1420-050 Multi label Counter; extinction: 355 nm, emission: 460 nm) immediately after substrate 

addition (t0) and 2 h after addition (t1). For calibration and accounting for quenching, standard 

plates were additionally prepared and measured enzyme activities were calculated (nmol substrate 

g-1 soil h-1) with the regression slopes of the standard measurements. The activities were fitted by 

the Michaelis-Menten Equation, which describes non-linear saturation curves (equation 2.4-1) and 

gives the maximal rate of enzymatic activity under optimum substrate conditions (Vmax) and the 

half-saturation constant Km that indicates substrate affinity (high Km = low affinity).  

Organic acid extraction 

Organic acids contents were extracted from soil samples of Set 3 (rhizogradients) based on a 

modified method described by Szmigielska et al. (1997). Analytes were purified by a liquid-liquid 

extraction using Chloroform (CHCl3) and were subsequently analyzed on a GC-MS. The standard 

for identification of acids in samples contained seven organic acids (oxalic-, malonic-, fumaric-, 

succinic-, maleic-, malic- and citric acid; Table S 2.5-1). 
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XANES – P speciation 

X-ray absorption near edge structure (XANES) spectra at the P K-edge were measured at the 

Beamline 8 of the electron storage ring (1.2 GeV; bending magnet; beam current: 80 – 150 mA; 

1.1 to 1.7 x 1011 photons s–1) at Synchrotron Light Research Institute (SLRI), Nakhon Ratchasima, 

Thailand (Klysubun et al., 2012). Air dried samples were milled, homogenized and applied to 

Kapton tape (Lanmar Inc., Northbrook, IL, USA) (area 2.0 cm x 0.5 cm). Samples were measured 

in fluorescence mode. Evaluation of the XANES spectra was done by using the software R Version 

3.4.3 (R Core Team, 2017) and the LCF package for linear combination fitting (LCF) (Werner, 

2017). Spectra of the samples were background corrected and edge-step normalized. For the fitting 

process a total of 13 standards (Table 2.5-2) were selected (Prietzel et al., 2016) but restricted to a 

maximum of 4 standards per sample. 
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1.3 Results and Discussion 

This chapter is divided into four sections: first the findings on nutrient availability in soils at the 

study sites are summarized (0). Then the plant nutrient acquisition strategies in each ecosystem 

are discussed separately (1.3.2, 1.3.3, 1.3.4). The main results and conclusions of the studies 

included in this thesis are given in Table 1.3-1 and are depicted in Figure 1.3-1. 

Table 1.3-1: Overview of studies included in this thesis with main objectives, results, and conclusions 

   

Study Objectives Main results and conclusions 

   

 

Study 1: Retention 

against losses: 

disentangling plant uplift 

and recycling in a 

continental transect of 

water and nutrient 

availability 

 

 

▪ Localize short-term (<1 year) 

plant N and K acquisition from 

topsoil to saprolite  

▪ Determine long-term (>decades) 

N recycling and K uplift 

▪ Comparing nutrient recycling 

and uplift at the three aridity 

levels as adaptation to water and 

nutrient availability 

 

▪ Similar short-term N and K acquisition from 

topsoil to saprolite under arid conditions 

▪ Intensive long-term N recycling under arid and 

humid conditions 

▪ Short-term N acquisition from top- and subsoil, 

but K acquisition from topsoil and saprolite under 

humid conditions 

▪ Intensive short-term N and K acquisition from 

topsoil under Mediterranean conditions: plants 

exploit upper soil fast to retain nutrients as 

adaptation to potentially high nutrient losses. 

Leached N is recaptured from subsoil, K is newly 

acquired from subsoil and saprolite  

 

 

Study 2: Mycorrhiza 

functions depend on water 

and nutrient limitation – a 

cross-biome study along a 

precipitation gradient 

 

 

▪ Determine root traits that are 

important for nutrient uptake 

capacity 

▪ Determine C investment into 

roots and AMF 

▪ Function of AMF in plant N and 

P acquisition 

 

 

▪ Fast nutrient acquisition at Mediterranean site 

(with high denudation), slow acquisition at humid 

and arid site.  

▪ Functional shift of AMF across the gradient: 

➢ The extraradical AMF mycelium is supplied 

with photosynthetic-fixed C to scavenge for P 

in all ecosystems.  

➢ AMF additionally support plant N acquisition 

under humid (fast N transfer) and 

Mediterranean (fast N transfer and scavenging 

for N) conditions  

➢ AMF exert a function in Mediterranean site not 

observed in the humid or arid sites: retaining 

nutrients and preventing losses from soil  
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Study Objectives Main results and conclusions 

 

Study 3: Nitrogen cycling 

depending on aridity and 

vegetation cover 

 

 

▪ Comparison of N fixation in 

bulk topsoil (litter C input) and 

rhizosphere soil (root C input) 

▪ Compare N fixation between 

ecosystem with contrasting 

aridity 

▪ Potential N mineralization and N 

losses across the precipitation 

gradient 

 

 

▪ Greatest N mineralization from the Mediterranean 

ecosystem 

▪ Decreasing N fixation with increasing aridity 

▪ Higher N fixation in rhizosphere than in bulk 

topsoil 

▪ Increasing aminopeptidase activity and bacterial 

abundance relative to SOC in the rhizosphere with 

increasing aridity: importance of rhizosphere as 

hotspot of microbial activity greater in dry soils 

then moist soils 

 

 

Study 4: Environmental 

drivers and stoichiometric 

constraints on enzyme 

activities in soils from 

rhizosphere to continental 

scale 

 

 

▪ Determine extracellular enzyme 

activities related to C, N, and P 

cycling across scales: continental 

transect (water availability 

gradient), depth profile (nutrient 

availability gradient), 

rhizosphere/bulk soil (C input 

gradient)  

▪ Effects of substrate availability 

and stoichiometric constraints on 

enzyme activities 

 

 

▪ Increasing extracellular enzyme activities with 

increasing precipitation 

▪ Decreasing activity with depth 

▪ Decreasing activity from root proximity to bulk 

soil 

▪ Activity of enzymes involved in N and P 

acquisition = substrate limited (substrate 

availability) 

▪ Activity of enzymes involved in (hemi)cellulose 

decomposition = demand driven decomposition 

(stoichiometric constraints) 

 

Study 5: From rock eating 

to vegetarian ecosystems 

— disentangling key 

processes of phosphorus 

acquisition along a 

precipitation gradient 

across biomes in the 

Chilean Coastal 

Cordillera 

 

 

▪ Determine P speciation in 

rhizosphere compared to bulk 

soil  

▪ Quantify low-molecular-weight 

organic acids (LMWOA) as 

biological weathering agents  

▪ Disentangle the impact and 

functions of roots and associated 

microorganisms on P-cycle 

driving agents (organic acids and 

phosphatases).  

 

▪ Organic P increase from arid to humid site 

▪ Plant P acquisition strategies depend on climate: 

biological weathering and uplift of inorganic P 

forms under arid conditions and in subsoil under 

Mediterranean conditions – intensive organic P 

recycling under forest and in topsoil under 

Mediterranean conditions 

▪ Functional shift of LMWOA across gradient: from 

mineral dissolution under arid conditions to 

facilitation of organic P recycling under humid 

conditions 
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Figure 1.3-1: Three study sites across a precipitation gradient from arid to humid-temperate ecosystems were investigated, with 

highest denudation rates (red, solid line) under Mediterranean conditions (coastal matorral). (Study 3) Results indicated fasted 

N mineralization in the Mediterranean ecosystem. (Study 1) Plant N and K acquisition strategies differ across the gradient. 

High nutrient losses by denudation under Mediterranean climate, reduce long-term N recycling but stimulate intensive short-

term recycling (red circling arrows). (Study 5) Plant P acquisition strategies shift along the gradient: biological weathering 

and uplift of inorganic P forms under arid conditions and in subsoil of the Mediterranean ecosystem – intensive organic P 

recycling (blue circling arrows) under forest and in topsoil under Mediterranean conditions. Functions of organic acids shift 

from mineral dissolution under arid to facilitation of organic P recycling under humid conditions. (Study 4) Nutrient recycling 

from organic matter increases with increasing precipitation, while the importance of the rhizosphere for N and P acquisition 

increases with increasing aridity. (Study 2) Root traits indicated fastest plant nutrient acquisition (green, dashed line) in the 

Mediterranean ecosystem. Plant C investment (solid black arrows) AMF was independent of precipitation. AMF functions shift 

from P mobilization under arid conditions to N and P acquisition under Mediterranean and humid conditions. Only in the 

Mediterranean ecosystem exert AMF the additional function to retain mobile nutrients (as N) and prevent losses from soil. In 

line with that, allocation of freshly assimilated C (13C) to AMF storage compounds was highest in soil under Mediterranean 

conditions  
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1.3.1 Plant nutrient availability 

Mobile nutrients such as NO3
- have a high potential of leaching at the humid site with MAP of 

over 1500 mm a-1. This was evident by the low N tracer uptake (injected as NaNO3
-) by A. 

araucana in the humid-temperate forest in the South, compared to the uptake by shrubs in the 

Mediterranean and arid sites (Figure 2.1-2). High losses by leaching or run-off and a large standing 

biomass (Bernhard et al., 2018) lead to high nutrient demands by plants in humid regions (Godoy 

et al., 2014; Inselsbacher and Näsholm, 2012). High soil and plant C:N ratios and low plant 

available P (Bernhard et al., 2018;  Figure 2.3-1) illustrated the low availability of N and P for 

plants and microbes in the humid-temperate forest (Cleveland and Liptzin, 2007; Xu et al., 2013; 

Zechmeister-Boltenstern et al., 2015). Due to the low N content of SOM, microbes likely 

immobilize N in their biomass rather than releasing inorganic N (Study 3; Bengtsson et al., 2003), 

which in turn increases the competition for N between plants and microbes (Hodge et al., 2000; 

Kuzyakov and Xu, 2013).  

Decreasing vegetation cover, root length density, microbial biomass, and extracellular enzyme 

activities with decreasing MAP (Figure 2.2-2, Figure 2.4-3, Figure 2.3-4, Bernhard et al., 2018) 

displayed the decline of plant productivity and belowground plant C allocation with increasing 

aridity (Leuschner et al., 2004; Nadelhoffer and Raich, 1992). P stocks and plant available P were 

higher at the sites under arid and Mediterranean than under humid conditions (Study 2; Study 5; 

Bernhard et al., 2018). But water shortage can strongly modulate the mobility of P; stronger than 

the mobility of N. The dominant P species in the arid shrubland soil were primary P minerals 

(Hydroxyapatite) and secondary P minerals (Variscite), similar as in the subsoil and saprolite in 

the Mediterranean coastal matorral (Study 5). Combined with the low water availability that 

restricts abiotic mineral dissolution as well as P mobility in soil, a large portion of P sources are 

only slowly accessible to plants (He and Dijkstra, 2014; Marschner and Rengel, 2012). 

The N source for microbial decomposition shifted with increasing aridity from a peptide- and 

chitin-based nutrition in the humid-temperate forest to a primarily peptide-based nutrition in the 

coastal matorral and arid shrubland (Study 4). At the arid and Mediterranean sites, the extent to 

which microbes immobilize N in their biomass is likely lower than at the site under humid 

conditions. Thus, microbes rather release inorganic N (Study 3), which can reduce the competition 

for N between plants and microbes (Hodge et al., 2000; Kuzyakov and Xu, 2013). High N contents 

with low C:N ratios in soil as well as the strongest 15N enrichment with decreasing N content with 

depth ( Figure 2.3-1; Figure 2.3-2), pointed to the greatest N mineralization in soil of the 

Mediterranean coastal matorral across the precipitation gradient (Study 3), for which a coupling 

of processes might be responsible. Microbes respond to rewetting much faster than plants (Austin 
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et al., 2004; Schwinning and Sala, 2004). In semiarid ecosystems, precipitation pulses during dry 

season, or brief and shallow pulses during wet season, can therefore lead to a decoupling of 

microbial and plant activity, and thereby to an accumulation of mineralized N in topsoil (McCulley 

et al., 2009; Reichmann et al., 2013; Schwinning and Sala, 2004). The accumulated N is then 

highly susceptible to leaching and run-off during more intensive rainfall events (McCulley et al., 

2009). Additionally, denudation rates were the highest at the Mediterranean site across the gradient 

(Oeser et al., 2018; Schaller et al., 2018; van Dongen et al., 2019), increasing the potential for 

nutrient losses by surface processes. But high losses do not only lead to a loss of mobile nitrate 

but can also lead to losses of rock-born nutrients such as K and P (Hou et al., 2018). 

1.3.2 Nutrient mobilization and acquisition under intensive precipitation  

The humid temperate forest in the South of the precipitation gradient is representative for an 

ecosystem under the influence of high and intensive precipitation throughout the year and is 

characterized by high primary productivity, proceeded weathering, and high nutrient demands 

(Study 5; Bernhard et al., 2018; Godoy et al., 2014; Inselsbacher and Näsholm, 2012). 

High nutrient demands (Study 2), but low relative nutrient availability require a strong nutrient 

reutilization via plant litter recycling and recapturing of released OM- and rock-derived nutrients 

(Godoy et al., 2014), which was evident from short-term (<1 year) N and K tracer recovery (Figure 

2.1-2). Long-term (> decades) reutilization of N from the forest floor was indicated by a high 15N 

depletion of above- and belowground plant biomass relative to bulk topsoil δ15N (Study 1; Figure 

2.1-6). Intensive nutrient recycling in forest ecosystems, and especially in humid temperate 

rainforests, is an important strategy of plants to cover their nutrient demands (Godoy et al., 2014; 

Huygens et al., 2008, 2007). Low specific root lengths, and high root tissue densities (Figure 

2.2-2), however, result in a slow nutrient uptake of plant roots in the humid-temperate forest. Plants 

invest into long-living roots to save resources, but the traits resulting in longevity reduce the 

nutrient uptake capacity (Brunner et al., 2015; Reich, 2014; Volaire, 2018).  

Thick roots, however, have a greater potential of being colonized by AMF (Eissenstat et al., 2015; 

McCormack and Iversen, 2019), and plant species with thick absorptive roots were shown to invest 

more N into foraging by mycorrhizal fungi hyphae than species with thin roots (Eissenstat et al., 

2015). Highest abundance of AMF in soil and roots across the gradient (Figure 2.2-3, Table 2.2-4) 

indicated that plants invest into an extensive AMF hyphal network to increase their nutrient gain 

(Study 2), as it provides the possibility of maintaining a close contact to resources while reducing 

C and nutrient costs (Fitter, 1991; Ryan et al., 2012; Taylor et al., 2009). In the humid-temperate 

forest, root colonization with AMF increased with reduced N availability (Figure 2.2-5), indicating 

that the symbiosis between plant and fungi is strengthened under low N availability to assure the 
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transfer of N from fungi to plant (Bücking and Kafle, 2015; Johnson et al., 2003; Leigh et al., 

2009). While an intensive root colonization by AMF seems decisive under N limitation, nourishing 

the extraradical AMF mycelium seemed to be an important strategy for plant P acquisition in the 

humid-temperate forest (Study 2). Here, the extraradical mycelium is supplied with 

photosynthetic-fixed C likely to scavenge for P, which was illustrated by the allocation of plant C 

to AMF where P stocks are high, and where the well C supplied AMF most likely contributed to 

the increase of plant available P in soil (Study 2; Figure 2.2-5; Li et al., 2006; Treseder, 2004; 

Wright et al., 1998). This difference in plant-AMF-interactions under N and P scarcity might imply 

a difference in the functionality of the symbiosis: the contact to immobile P sources must be close, 

while for mobile N a fast transfer from fungi to plant is more critical. Deciphering functions from 

AMF abundance measurements, however, is difficult and needs to be treated carefully as 

abundance and community composition in roots and soil can be highly variable, both, spatially 

and temporally (van der Heijden and Scheublin, 2007).  

The largest P pool in the topsoil of the humid-temperate forest is of organic nature and accounted 

in saprolite still for 17% of total P (Study 5). The exudation of extracellular enzymes that release 

P from organic matter (phosphatases) is, therefore, likely of much higher importance in the humid-

temperate forest compared to the drier sites of the precipitation gradient (Study 4, Study 5). 

Additionally, plant-exuded organic acids support the P acquisition from organic sources by 

facilitating organic P uptake, illustrated by strong correlations of organic acids and organic P 

(Study 5; Drever and Stillings, 1997; Giles et al., 2014). 

By the reutilization of nutrients released from organic matter, plants retain nutrients in soil against 

leaching (Taylor et al., 2009). Even with a strong reutilization, however, intensive precipitation 

leads to leaching and surface discharge. Plant retention strategies in the humid-temperate forest 

entailed, therefore, further the recapture and uplift of already leached nutrients from subsoil. In the 

subsoil N can be partially retained from further leaching by abiotic immobilization by the reaction 

with Fe(III) (Study 1; Davidson et al., 2003; Matus et al., 2019). Losses of rock-born nutrients 

such as K and P from topsoil via surface run-off and erosion can be replenished by the uplift of 

leached or weathering-released nutrients from subsoil and saprolite (Brantley et al., 2017; Jobbágy 

and Jackson, 2004; Uhlig and von Blanckenburg, 2019). This was underlined by a high K tracer 

uptake from saprolite and a higher efficiency to acquire K of saprolite roots than topsoil roots 

(Study 1). Additionally, increasing LMWOA:MBC ratios with increasing soil depth (Table 2.5-

S8) illustrated an intended exudation of organic acids for the acquisition of mineral-bound P via 

biological mineral weathering (Study 5). High water availability, however, likely results in 
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intensive abiotic dissolution of minerals and, thus, might reduce the overall need for plants to 

invest in weathering agents (Study 5; Maher, 2010). 

Roots traits and indications for strong recycling and uplift showed that A.araucana in the studied 

humid-temperate forest is nutrient conservative, which can reduce relative nutrient leaching losses 

in A. araucana dominated stands. Despite an intensive recycling and uplift from subsoil, plant N 

retention is likely not sufficient to cover demands of the standing biomass (Godoy et al., 2009). 

To increase the N input, plants invest C in diazotrophic bacteria (Study 3). The importance of this 

association for plants in the humid-temperate forest was highlighted by the highest abundance of 

diazotrophs (absolute and relative to the total prokaryotic community) in forest bulk soil and 

rhizosphere across the gradient (Study 3; Figure 2.3-5). The relative abundance of diazotrophs was 

16 times higher in rhizosphere than bulk soil, highlighting that litter C input is not sufficient to 

cover diazotrophs’ energy demand and underlines the importance of labile root-derive C to supply 

diazotrophs with the needed energy (Study 3). The difference between rhizosphere and bulk soil 

was observed at all sites but was most pronounced in the humid-temperate forest, which illustrates 

that high primary productivity allows plants here to invest a much larger amount of photosynthetic-

fixed C into the C-costly symbiotic N fixation (Study 3).  

1.3.3 Nutrient mobilization and acquisition under aridity 

Contrary to high leaching losses that plants have to cope with in the humid-temperate forest, plants 

in the arid shrublands have to deal with low water availability. Water shortage restricts primary 

productivity (Gherardi and Sala, 2019; Hsu et al., 2012; Huxman et al., 2004), reduces 

mineralization of OM-derived nutrients (Austin et al., 2004; Dijkstra et al., 2010), hampers abiotic 

dissolution of minerals (Belnap, 2011; Maher, 2010), and lowers nutrient mobility in soil 

(Marschner and Rengel, 2012). Therefore, plants need to optimize their acquisition strategy to 

increase their nutrient gain without wasting water or nutrients. Under arid conditions, low plant N 

demand (Figure 2.1-6) and sandy, well aerated soils (Bernhard et al., 2018) likely reduce the need 

but also the potential for N2 fixation from atmosphere by diazotroph bacteria (Aranibar et al., 2004; 

Gallon, 2006; Vance and Heichel, 1991). Therefore, it is not surprising that the abundance of 

diazotrophic bacteria was markedly lower in the arid shrubland than in the humid-temperate forest 

(Study 3; Figure 2.3-5). Higher abundance of diazotrophs in rhizosphere than in bulk soil 

(~10 times) underlined that the C requirements of diazotrophs can hardly be met by litter input but 

highlights the importance of the rhizosphere as hotspot for initial N acquisition by N fixation 

(Study 3). The importance of root-derived C for the supply of N fixing bacteria was also shown 

by an increasing proportion of diazotrophs of the total prokaryotic community with increasing 

depth (Figure 2.3-5).  
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The generally low OM input drives plants to efficiently reutilize nutrients, as shown by the strong 

15N depletion of shoots (Δ ~3‰) and roots (Δ ~11‰) in comparison to bulk topsoil as well as N 

and K tracer recovery from topsoil (Study 1; Figure 2.1-2, Figure 2.1-6). The ability of nutrient 

uptake by plants in the arid shrubland, however, is low as plants invest into conservative root traits 

to cope with low nutrient and water availability (Study 2; Figure 2.2-2; Reich, 2014). A short 

expansion and a low surface to volume ratio increase the longevity of roots and saves resources 

but reduces the ability to take up water and nutrients (Reich, 2014). Lowest enzyme activities 

under arid conditions across the precipitation gradient (Figure 2.4-3) illustrated that water shortage 

restricts plant C and nutrient investment into extracellular enzyme production. This contributes to 

a slow acquisition of OM-bound nutrients. Opposite to plants under humid conditions, plants in 

the arid shrubland have no need to retain nutrients against leaching. Losses that occur are mainly 

attributed to erosion caused by extreme rainfall events (Turnbull et al., 2011). Therefore, a slow 

acquisition is not disadvantageous in terms of nutrient retention. 

Nutrient uptake by roots is slow, but the relative importance of the rhizosphere as hotspot of OM 

input (Figure 2.4-2), microbial abundance (Figure 2.3-4), and enzymatic breakdown (Figure 2.3-3; 

Figure 1.3-2) in the remaining water film around roots increased strongly with increasing aridity 

(Ahmed et al., 2018, 2014; Holz et al., 2018). Especially in the studied dry soils with low 

aboveground litter input, OM-input from roots can equal or surpass the input from aboveground 

biomass (Freschet et al., 2013; Wang et al., 2018; Zechmeister-Boltenstern et al., 2015), and serve 

microbial decomposers and diazotrophs as highly needed C and nutrient resource (Jones et al., 

2009; Kuzyakov and Domanski, 2000; Pausch and Kuzyakov, 2018).  

Aridity restricts the potential of plants to build up long, thin fine roots for scavenging, but forces 

them to invest into short, thick roots that sustain under prolonged water-shortage in topsoil (Adams 

et al., 2013; Comas et al., 2013; Padilla et al., 2013), As drought is not a periodical event but a 

permanent condition in the arid shrubland, plants need not only to be adapted to survive dry periods 

but to continue growth under permanent water shortage. By increasing the specific root length with 

depth (i.e. increasing the fine root proportion or expanding the fine root system; Figure 2.2-2) they 

 

Figure 1.3-2: Activities 

(Vmax) of chitinases, 

aminopeptidases, and 

phosphatases per nmol 

of SOC in absolute soil 

depth, corresponding to 

0-50%, 50-100% and 

>100% solumn depth 

(sampling set 3). Data 

are presented as means 

with standard errors. 
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can scavenge for deep water resources and avoid drought (Comas et al., 2013; Muñoz et al., 2008; 

Sala et al., 2012b).  

Scavenging with and maintenance of an (extensive) root system, however, is C costly despite 

following a conservative resource management, and restricted in such an ecosystem with low plant 

primary productivity (Brunner et al., 2015; Poorter et al., 2012). Thick roots explore less soil 

volume and absorb less nutrients, but they have a greater potential of being colonized by AMF 

(Eissenstat et al., 2015; McCormack and Iversen, 2019). The investment in AMF is an important 

strategy to scavenge for nutrients when environmental conditions restrict root proliferation. This 

was indicated by an increase of the AMF extraradical mycelium when the extent of the fine root 

network decreased (Figure 2.2-5), which highlighted the trade-off of plant C investment between 

either network (Study 2). Especially the direct connection with organic matter and mineral surfaces 

that hyphae form, and microbes’ ability to respond to and utilize brief precipitation fast, is likely 

of particular importance in water limited systems with low nutrient mobility (Austin et al., 2004; 

Schwinning and Sala, 2004; Taylor et al., 2009).  

Plants provide the extraradical mycelium of AMF with photosynthetic C to scavenge for and 

transfer P to their host plant (Study 2; Ryan et al., 2012). But contrary to AMF in the humid-

temperate forest, AMF seemed not to be involved in plant N acquisition in the arid shrubland 

(Study 2). Instead, plants at the arid site invested into their fine root system to exploit N-rich 

patches (Figure 2.2-5; Hodge, 2009; Lynch and Ho, 2005), indicating a functional shift in the role 

of AMF with increasing aridity (Antunes et al., 2011; Bennett and Classen, 2020; Johnson et al., 

2003). The main function of AMF seemed to be the acquisition of P, which was present mainly in 

inorganic form (Study 5). AMF abundance relative to SOC was as high in the arid shrubland 

compared to the humid-temperate forest (Study 2; Figure 2.2-3; Table 2.2-2), which might indicate 

that AMF are involved in the biological weathering of minerals. Since the abiotic dissolution of 

minerals in the arid shrubland is low (Study 5:), biological weathering can be an important strategy 

for plants and microbes to cover their demands of rock-born nutrients (Drever and Stillings, 1997; 

Maher, 2010; Taylor et al., 2009).  

The acquisition of mineral-bound P from subsoil and saprolite by biological weathering was 

indicated by more plant-released organic acids in the presence of inorganic P species (Figure 2.5-4) 

and by higher LMWOA:MBC ratios with increasing depth (Table S 2.5-8). Those ratios pointed 

to an intended excretion of organic acids by plant roots to utilize inorganic P (Study 5). Indications 

for an ongoing biological weathering by fungi and plants were also given by the high K tracer 

recovery from subsoil and saprolite (Figure 2.1-2), demonstrating that plants scavenge in subsoil 

and saprolite to acquire weathering-released K next to the reutilization of K from topsoil (Study 
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1). The reutilization of OM-derived nutrients is also not restricted to the recycling of litter, but 

extends to the recycling of belowground biomass, displayed by the equal 15N recovery from 

topsoil, subsoil, and saprolite (Study 1; Figure 2.1-2). Plants in the arid shrubland reutilize the 

organic matter associated with their rhizosphere and explore deeper soil for additional N sources 

such as microbial necromass. Microbial DNA abundance in saprolite was highest in the arid 

shrubland compared to the other sites along the gradient (Oeser et al., 2018), which can serve as a 

valuable resource in this strongly limited ecosystem.  

1.3.4 Adaptations to high nutrient losses under Mediterranean conditions  

How will plants that are adapted to arid conditions, under which nutrients are hardly mobile and 

the main challenge is to ‘extract’ nutrients from soil, deal with increasing precipitation variability 

and a higher intensity of rainfall? Plants growing under humid conditions are adapted to retain 

nutrients against processes of nutrient losses such as run-off, erosion, and denudation, but plants 

growing under arid conditions are not. On the other hand, how will plants that are adapted to high 

water availability and only short dry periods deal with prolonged and frequent drought episodes? 

In the Mediterranean coastal matorral in the Chilean Cordillera, plants have to deal with both: hot 

and long summer droughts on the one, and concentrated, high winter precipitation on the other 

hand (Armesto, 2007).  

High denudation rates and the possible decoupling of microbial and plant activity can lead to high 

N losses that reduce the potential for N reutilization by plants (Study 1). Plants in the 

Mediterranean coastal matorral exploit available nutrients fast and efficiently from the upper 

nutrient-rich soil, by a high proportion of fine roots in the upper 10 cm (Study 2; Figure 2.2-2, 

Figure 2.2-4). They developed ‘acquisitive’ root traits that have a fast nutrient uptake ability (Study 

2). Higher N (7-times) and K (9-times) acquisition from topsoil than subsoil (Study 1; Figure 

2.1-2) underlined that plants build up an efficient root system that can retain nutrients against 

leaching and run-off effectively (Study 1; Dunbabin et al., 2003; Ellsworth and Sternberg, 2019; 

McCulley et al., 2009). Additionally, such a root system allows to utilize already brief water pulses 

that would not percolate to deeper soil but quickly evaporate (Fernández, 2007; Hodge, 2010). 

Strong correlations of phosphatase activities, MBC, and oxalic acids with organic P, indicated as 

well, that P recycling from organic matter is likely the dominant plant strategy for P acquisition 

from topsoil in the Mediterranean coastal matorral (Study 5; Figure 2.5-4).  

A root system with a high proportion of fine roots, however, is C costly due to reduced root 

lifespans (Study 2; Pregitzer et al., 1997). Plants can invest into AMF as they can support plant 

acquisition largely but are comparable C inexpensive (Fitter, 1991; McCormack and Iversen, 

2019). Shorter lifespans of AMF hyphae than fine roots, however, could reduce the benefit of such 
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an investment (Lynch and Ho, 2005). Compared to losses from root dieback, however, the losses 

should be lower as (1) less C is needed to produce thin hyphae than fine roots (Fitter, 1991) and 

(2) the decomposition of hyphae is faster than of fine roots, allowing a faster reutilization of 

released nutrients and C (Freschet et al., 2013; Guo et al., 2007; Rousk and Bååth, 2007), likely 

further simulating the microbial community and nutrient acquisition. 

Despite AMF are commonly associated with plant P acquisition (Parniske, 2008; Ryan et al., 

2012), AMF abundance in soil and roots in the Mediterranean coastal matorral increased strongly 

with reduced N availability (Study 2; Figure 2.2-5). Thus, plants seemed to invest not only in 

strengthening the symbiosis between plant and fungi by increasing the AMF root colonization, but 

also in expansive extraradical mycelium to scavenge for N (Bücking and Kafle, 2015; Fellbaum 

et al., 2012; Leigh et al., 2009). AMF can respond faster to water pulses and resource availability 

than plant roots, making them an efficient partner in the fast utilization of (mobile) N from topsoil 

and, thus, its retention in soil against losses (Cavagnaro et al., 2015; Schwinning and Sala, 2004). 

By this, AMF exert a function not observed at the sites under humid or arid conditions: retaining 

nutrients from ecosystem losses instead of ‘only’ acquiring and transferring them to their host 

plants (Bowles et al., 2018; Cavagnaro et al., 2015; Hodge and Fitter, 2010; Köhl and van der 

Heijden, 2016).  

Despite the retention strategies of plants and fungi at this site under Mediterranean conditions, 

nutrients will be lost by leaching and denudation. To compensate for losses, plants recapture and 

uplift nutrients from depth (Jobbágy and Jackson, 2001; Uhlig and von Blanckenburg, 2019), 

which was demonstrated by the K and N tracer recovery from subsoil and saprolite (Figure 2.1-2). 

Additionally, roots in subsoil and saprolite showed a higher ability of K uptake than topsoil roots 

(Study 1; Figure 2.1-4), which points to the importance of the uplift of rock-born nutrients for the 

plant supply. Correlations of organic acids with secondary P minerals in subsoil (Figure 2.5-4) 

further indicated that plants likely invest in biological weathering and uplift from depth for their P 

acquisition (Study 5). But organic acids were not only released for mineral weathering in subsoil 

and saprolite, but also to support recycling of organic P in the topsoil (Study 5). 

1.4 Conclusion – Implications for ecosystem responses to precipitation shifts 

Aim of this research project was to identify plant nutrient acquisition strategies under three levels 

of aridity: arid, Mediterranean, and humid. With the predicted precipitation changes in Chile, it is 

likely that abiotic conditions and biotic interactions in one ecosystem along the precipitation 

gradient shift towards the current conditions of another. Based on the results about plant nutrient 

acquisition strategies, an assessment is made in the following on potential shifts and responses of 

the arid and humid ecosystems. 
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1.4.1 Humid-temperate forest 

The focus on nutrient reutilization from topsoil in the humid-temperate forest ecosystem (Study 1, 

Study 5) is an efficient strategy to recycle and reutilize nutrients and to reduce losses by leaching 

but might be a disadvantage under decreasing water availability. Decreasing precipitation and 

prolonged dry periods (as predicted by climate change scenarios for that region) will result in 

higher evaporation and more intensive dehydration of topsoil. Reduced water availability will not 

only impose water stress on forest plants but also restrictions on their nutrient supply. Low 

microbial activity and reduced nutrient mobility in dry soils will be a challenge for plants that are 

adapted to a fast recycling of nutrients in moist soils. Under these conditions deep rooting 

strategies will be favored over shallow rooting strategies (Knapp et al., 2008b; Wang et al., 2020). 

Deep roots of the woody plants in the humid-temperate forest have the potential to access deep 

water sources, allowing them to avoid dehydrated topsoil, to recapture and uplift leached nutrients, 

and to maintain nutrient acquisition even under extensive dry periods (Nardini et al., 2016; Zhang 

et al., 2019). This is only possible if deep water pools are available and replenished during wet 

seasons or years. Previous-years precipitation was shown to strongly determine aboveground 

primary production of the subsequent year (Sala et al., 2012a). If multiple dry years occur 

consecutively, deep water pools might be eventually exhausted and deep rooting species will no 

longer survive the prolonged drought conditions (Kannenberg et al., 2019; Sala et al., 2012a).  

The decrease of water availability will reduce the abiotic mineral dissolution (Belnap, 2011), and 

thus increase the need for plants to invest into biological weathering agents such as organic acids, 

to cover their demand of rock-derived nutrients. Thus, plants in the humid-temperate forest would 

have to intensify their investment into biological weathering agents under water shortage. 

Microbial SOM decomposition and nutrient mineralization in dehydrated topsoils, however, are 

likely more strongly hampered by drought than mineral weathering in potentially moist depths. 

The focus of woody plants in the humid-temperate forest on nutrient recycling from topsoil, 

therefore, would be a disadvantage. Additionally, under prolonged drought periods, where plant 

activity is suppressed stronger than microbial activity (Dijkstra et al., 2015; Knapp et al., 2008a; 

Yahdjian et al., 2006), the decoupling between nutrient mineralization and plant nutrient uptake 

can lead to an accumulation of inorganic N in topsoils (McCulley et al., 2009; Reichmann et al., 

2013), as observed at the site under Mediterranean conditions (Study 1). In subsequent wet 

periods, plant species that can (1) recover fast from drought (Knapp et al., 2008a) and (2) can 

exploit available resources fast in competition against other plants but also retain mobile inorganic 

N against leaching (Austin et al., 2004; Reich, 2014) are in an advantage. Conservative root traits, 

as expressed by A. araucana in humid-temperate forest ecosystem (Study 2), might be 
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advantageous or disadvantageous under these conditions, depending on the dominating factor. 

Roots with conservative traits can sustain dehydration longer than acquisitive roots, reducing 

tissue damage and root dieback, and allowing a faster recovery from dry conditions than for plants 

with acquisitive root traits. The slow acquisition that is possible with ‘conservative’ roots, 

however, reduces the potential to retain a large pool of highly mobile N against leaching in topsoil, 

especially with increasing frequencies of concentrated rainfall events (Knapp et al., 2006; 

Yahdjian and Sala, 2010). Increased leaching of inorganic N from topsoil even though total 

precipitation decreases would, therefore, favors deep rooting species that are able to recapture 

leached nutrients (Yahdjian and Sala, 2010). 

AMF support plant nutrient and water acquisition and can, thereby, alleviate environmental stress 

for plants. The current AMF community, however, is not adapted to prolonged drought or to 

largely retain mobile nutrients against leaching losses as observed under Mediterranean conditions 

(Study 2). Therefore, they might not be able to provide these functions for their host plants 

(Hawkes et al., 2011; Millar and Bennett, 2016).  

1.4.2 Arid shrubland ecosystem 

The effects of precipitation variability on fine root biomass were shown to be higher in dry 

ecosystems and decreased with increasing mean annual precipitation (Wang et al., 2020). Heavy 

rainfall events were proposed to compensate for a reduction of total precipitation in arid regions 

(Knapp et al., 2015, 2008a; Kulmatiski and Beard, 2013). Greater water availability despite a 

decrease of total precipitation allows plants with a deeper root system to increase their 

photosynthetic activity (Hsu et al., 2012; Huxman et al., 2004) and to invest more C in 

belowground processes for nutrient acquisition. This could accelerate SOM decomposition and 

nutrient mineralization under greater water availability (Dijkstra et al., 2015), and might increase 

OM-derived nutrient availability for plants with deeper root systems as G. resinosa in the arid 

shrubland, which was shown to acquire nutrients uniformly from the whole soil profile (Study 1). 

Yahdjian and Sala (2010), however, described that larger water pulses increase N losses by nitrate 

leaching and gaseous losses by denitrification. With greater mineralization and thus mobility of 

inorganic N in soil, N leaching could increase depending on the magnitudes of rainfall events 

(Knapp et al., 2015). Plants in the arid shrubland are not adapted to exploit available resources fast 

and are likely not able to retain nutrients against leaching (contrary to plants in the Mediterranean 

coastal matorral), because they express neither acquisitive root traits nor have an extensive (fine) 

root system (Study 2).  

AMF in the arid shrubland did not show a connection to plant N nutrition, whereas in the 

Mediterranean coastal matorral, characterized by high denudation rates, AMF seemed to support 
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plants in retaining N against losses from soil (Study 2). Whether AMF in the arid shrubland are 

also able to provide this ecosystem function is unclear, as AMF in arid regions are not adapted to 

a high nutrient mobility in soil and to retain nutrients against losses.  

If the magnitude of large precipitation events does not lead to run-off and nutrient loss from 

surfaces, shrub plants have good prerequisites to cope with changing precipitation variability 

(Knapp et al., 2008b; Kulmatiski and Beard, 2013), since they have deep roots and are adapted to 

acquire nutrients not only from topsoil, but also from subsoil and saprolite (Study 1). Increased 

run-off and erosion, and thus nutrient losses from topsoil, however, would likely favor fast 

growing, acquisitive plant species that concentrate their nutrient acquisition in the upper, nutrient-

richer soil and are more efficient in retaining nutrients within the soil. The overall precipitation 

decrease, however, will eventually favor slow growing, conservative plant species.  

 

The required shifts of nutrient acquisition traits in both ecosystems evaluated here will have to go 

along with at least a partial shift of species compositions and functional groups (regarding not only 

plants but also their symbionts such as AMF). Many of the traits beneficial under the predicted 

climate change scenarios exist in the Mediterranean ecosystem and, thus, are in principle available 

along the Chilean Coastal Cordillera. The magnitude and temporal dynamic of the climate change 

and further factors such as plant-plant interactions and plant community stability (Hallett et al., 

2014; Lloret et al., 2012; Ploughe et al., 2019), however, will be decisive for whether and to which 

extent species with the required traits can migrate from the Mediterranean area and immigrate into 

the adjacent regions. This study showed that the investigation of ecosystems along a climate 

sequence with similar parent material allows to evaluate the "toolbox" of available nutrient 

acquisition properties under different climatic conditions in a region. The knowledge of available 

traits allows to estimate possible and necessary shifts to maintain the functionality of ecosystems. 

This knowledge can improve and refine the predictions of ecosystem responses to climatic change.  
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1.5 Contribution to studies 

Study 1: Retention against losses: disentangling plant uplift and recycling in a continental transect 

of water and nutrient availability 

Status: Ready for submission 

Authors Contribution 

Svenja C. Stock  Field work; Laboratory work; Data analysis; Writing 

Moritz Köster  Field work; Data contribution; Commenting 

Francisco Nájera  Field work; Commenting 

Jens Boy  Supporting data analysis; Commenting 

Francisco Matus  Field work; Commenting 

Carolina Merino  Field work; Commenting 

Khaled Abdallah  Data Contribution; Commenting 

Sandra Spielvogel  Study design; Field work; Commenting 

Anna A. Gorbushina  Study design; Commenting  

Michaela A. Dippold  Study design; Field work; Supporting data analysis; Commenting 

Yakov Kuzyakov  Study design; Commenting 

 

Study 2: Plant investment in arbuscular mycorrhizal fungi for N and P acquisition – a cross-biome 

study along a precipitation gradient 

Status: Submitted to Science of the Total environment, under review since 22.10.2020 

Authors Contribution 

Svenja C. Stock  Field work; Laboratory work; Data analysis; Writing 

Moritz Köster  Field work; Supporting Data Analysis; Commenting 

Jens Boy  Field work; Commenting 

Roberto Godoy  Commenting 

Francisco Nájera  Field work; Commenting 

Francisco Matus  Field work; Commenting 

Carolina Merino  Field work; Commenting 

Khaled Abdallah  Commenting 

Christoph Leuschner  Commenting 

Sandra Spielvogel  Study Design; Commenting 

Anna A. Gorbushina  Commenting 

Yakov Kuzyakov  Study design; Field work; Supporting data analysis; Commenting 

Michaela A. Dippold  Study design; Field work; Supporting data analysis; Commenting 
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Study 3: Nitrogen cycling depending on aridity and vegetation cover 

Status: Manuscript in preparation 

Authors Contribution 

Khaled Abdallah*  Laboratory work; Data analysis; Writing 

Svenja C. Stock*  Field work; Laboratory work; Data analysis; Writing 

Felix Heeger  Supporting data analysis; Commenting 

Moritz Köster  Field work; Commenting 

Francisco Nájera  Field work; Commenting 

Francisco Matus  Field work; Commenting 

Carolina Merino  Field work; Commenting 

Sandra Spielvogel  Study design; Field work; Commenting 

Anna A. Gorbushina  Study design; Commenting 

Yakov Kuzyakov  Study design; Commenting 

Michaela A. Dippold  Study design; Field work; Supporting data analysis; Commenting 

* equal contribution 

 

Study 4: Environmental drivers and stoichiometric constraints on enzyme activities in soils from 

rhizosphere to continental scale 

Status: Published in Geoderma (2019), 337, 973-982, doi:10.1016/j.geoderma.2018.10.030 

Authors Contribution 

Svenja C. Stock  Field work; Laboratory work; Data analysis; Writing 

Moritz Köster  Field work; Commenting 

Michaela A. Dippold  Study design; Field work; Supporting data analysis; Commenting 

Francisco Nájera  Field work; Commenting 

Francisco Matus  Field work; Commenting 

Carolina Merino  Field work; Commenting 

Jens Boy  Study design; Commenting 

Sandra Spielvogel  Study design; Field work; Commenting 

Anna A. Gorbushina  Study design; Commenting 

Yakov Kuzyakov  Study design; Supporting data analysis; Commenting 

 

Study 5: From rock eating to vegetarian ecosystems — disentangling key processes of phosphorus 

acquisition along a precipitation gradient across biomes in the Chilean Coastal Cordillera 

Status: Published in Geoderma (2021), 388, 10.1016/j.geoderma.2020.114827 

Authors Contribution 

Moritz Köster  Field work; Laboratory work; Data analysis; Writing 

Svenja C. Stock  Field work; Data contribution; Commenting 

Francisco Nájera  Field work; Commenting 

Khaled Abdallah  Data contribution; Commenting 

Anna A. Gorbushina  Commenting 

Jörg Prietzel  Supporting data analysis; Commenting 

Francisco Matus  Field work, Commenting 

Wantana Klysubun  Supporting data analysis; Commenting 

Jens Boy  Commenting 

Yakov Kuzyakov  Commenting 

Michaela A. Dippold  Study design; Field Work; supporting data analysis; Commenting 

Sandra Spielvogel  Study design; Field Work; supporting data analysis; Commenting 
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Abstract 

Proceeding climate change increases frequency and duration of droughts. Plants’ ability to adapt 

to water shortage defines the response of natural ecosystems to such changes. Nutrient acquisition 

strategies affect plants’ ability to cope with droughts, of which nutrient uplift and recycling are 

two important processes. Along a precipitation gradient from arid to humid climate in the Chilean 

Coastal Cordillera, we localize short-term (<1 year) plant nitrogen (N) and potassium (K) uplift 

from topsoil, subsoil, and saprolite by a tracer experiment with 15N, rubidium (Rb) and cesium 

(Cs). Long-term (>decades) processes were investigated by the vertical distribution of 

exchangeable K and the natural 15N abundance in plants and topsoil. Natural 15N depletion in 

shoots and roots of unlabeled reference plants vs. topsoil under arid (Δ3‰ for shoots and 11‰ for 

roots) and humid conditions (Δ10‰ and 9‰) indicated very efficient N recycling from topsoil 

over decades. Shrubs growing under arid conditions intensively recycle N in topsoil as well as 

from subsoil and saprolite over short terms. Under humid conditions, 15N recovery confirmed 

likewise the short-term N recycling from topsoil. Contrary to shrubs under arid conditions, 

however, plants in the humid ecosystem reacquired leached N from subsoil and less from saprolite. 

Nutrient losses due to denudation are highest under Mediterranean climate compared to the other 

ecosystems, which reduced long-term N recycling by plants. Nine times higher 15N and seven 

times higher K tracer recoveries from top- than subsoil in the Mediterranean site, however, display 

plants’ efficient short-term nutrient reutilization from topsoil. K tracer recovery under humid 

conditions highlighted that K uplift from saprolite complements the nutrient budget, additional to 

short-term K reutilization from topsoil. Larger nutrient losses from soil under Mediterranean 

compared to arid or humid conditions strongly decrease the long-term recycling efficiency and 

consequently accelerate saprolite weathering under semiarid climate.  
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2.1.1 Introduction 

Precipitation patterns are predicted to shift in response to climate change (IPCC, 2014, 2007). A 

decrease of precipitation is projected for Central Chile (Christensen et al., 2007; Garreaud, 2011; 

IPCC, 2007), with most pronounced changes in the humid-temperate south (Garreaud, 2011). 

Additionally, the frequency and duration of extreme events are projected to increase (IPCC, 2007; 

Knapp et al., 2008). Higher precipitation variability can result in concentrated but less frequent 

precipitation and can cause increased run-off and nutrient leaching (Boy et al., 2008), but not 

necessarily. Depending on the magnitude of water pulses, a concentration of precipitation in fewer 

but larger rain events could compensate for a reduction in total precipitation in (semi)arid 

ecosystems by deeper infiltration (Knapp et al., 2015, 2008).  

The ability to maintain water uptake and avoid physiological failure, is often regarded as the main 

factor for plant survival under drought (Gessler et al., 2017). Nutrient availability, however, can 

have a critical role on plant drought sensitivity (Gessler et al., 2017; Royo and Knight, 2012). 

Increasing their nutrient supply and maintaining nutrient uptake should, therefore, be part of plant 

drought survival strategies. Nutrient recycling and uplift are two important processes to retain 

nutrients in and reduce losses from soil (Porder and Chadwick, 2009; Rennenberg et al., 2009; 

Sala et al., 2012). 

Fast nutrient recycling from plant litter and microbial necromass decomposition ensures plant 

nutrition on shorter time scales (Gao et al., 2019; Perakis and Hedin, 2001; Uhlig and von 

Blanckenburg, 2019). The extent of nutrient recycling depends on the spatial and temporal 

availability (Dunbabin et al., 2004; Uhlig and von Blanckenburg, 2019) as well as the plant 

demand of a certain nutrient (Sardans and Peñuelas, 2015; Vergutz et al., 2012). Erosion, leaching, 

gaseous losses, deep weathering, and high plant and microbial nutrient demand lead to a depletion 

of nutrient pools in topsoil over time (Chen et al., 2019; Uhlig and von Blanckenburg, 2019). The 

acquisition from deep soil and saprolite is an important mechanism to replenish nutrient pools over 

long-term scales (>decades) (Bedel et al., 2016; Dawson et al., 2020; Jobbágy and Jackson, 2004; 

Uhlig and von Blanckenburg, 2019). Especially in systems with high precipitation and, thus, high 

erosion and leaching, plant nutrient uplift from subsoil or saprolite is an important mechanism to 

counterbalance nutrient losses (Brantley et al., 2017; Jobbágy and Jackson, 2001). Thus, a better 

understanding of the function of deep roots in nutrient acquisition is needed (Newman et al., 2020). 

The extent and intensity of recycling and plant uplift can differ markedly between dry and wet 

ecosystems (Porder and Chadwick, 2009). Nutrient losses from soil were reported to be reduced 

by plants at dry (≤750 mm yr-1) and mesic sites (750-1400 mm yr-1) with negative water balances 

(i.e. potential evapotranspiration > precipitation), whereas leaching losses overwhelmed nutrient 
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uplift and retention by plants at precipitation >1500 mm yr-1 (Porder and Chadwick, 2009).  High 

nutrient demands, however, can lead to strong nutrients recycling and recapturing from depth in 

humid ecosystems (i.e., closed cycling), whereas semiarid ecosystems might be less nutrient 

conservative and relatively more prone to nutrient losses from topsoils (McCulley et al., 2009; 

Reichmann et al., 2013). N loss via leaching can be high in semiarid ecosystems, when microbial 

mineralization activity and plant demand are decoupled due to the seasonal distribution or low 

intensity of water pulses (Austin et al., 2004; Kuzyakov and Xu, 2013; Schwinning and Sala, 

2004). Because the microbial response to rewetting is much faster than that of plants, precipitation 

pulses during the dry season or brief and shallow pulses during the wet season can lead to an 

accumulation of mineralized N in topsoils (McCulley et al., 2009; Reichmann et al., 2013; 

Schwinning and Sala, 2004). The accumulated mobile N is then highly susceptible to leaching 

during more intensive rainfall events (McCulley et al., 2009). 

Uplift and reutilization of nutrients depend further on their original source (rock-born vs. 

biological fixation), retention by minerals and soil organic matter (SOM) (i.e. sorption and 

leaching potential), and microbial demand. Nitrogen in soil is primarily bound in organic matter 

(OM), and thus we will refer to it as OM-derived from hereon. OM needs to be decomposed and 

mineralized to release N available for plant uptake (Blume et al., 2010). The dominant mineral N 

form in most soils (especially when well aerated) is nitrate (NO3
-), which is highly mobile, does 

not bind to clay minerals, and is easily leached down the soil profile (Blume et al., 2010). 

Potassium (K), on the contrary, is rock-derived, and the main pool of available K in soil is weakly 

adsorbed to clay minerals, whereas only a small portion remains in soil solution (Sardans and 

Peñuelas, 2015). K in plant and microbial cells is only present in soluble form, which makes it 

prone to leaching from litter (Sardans and Peñuelas, 2015). Upon leaching, K easily binds to clay 

minerals in soil, which reduces its reutilization compared to N. For both elements, water and 

nutrient availability strongly modulate plant acquisition strategies (Kautz et al., 2013).  

Objective of this study was to evaluate two main nutrient retention processes in ecosystems: 

nutrient recycling and uplift. Within this aim, we localized short-term (< 1 year) plant N and K 

acquisition from topsoil, subsoil, saprolite and determined the long-term (> decades) importance 

of nutrient recycling and uplift under arid, Mediterranean, and humid conditions across a 

continental transect. We will use the term plant nutrient ‘acquisition’ as we integrated the 

immediate process of uptake (i.e., nutrients entering roots) over eight months. This short-term 

acquisition was traced with the application of 15N and the trace elements rubidium (Rb) and cesium 

(Cs) that act as K analogs in plant uptake (Fitter, 1986; Hoekstra et al., 2015, 2014; Schleuss et 
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al., 2015). The tracer application allows to conclude about the function of roots in topsoil, subsoil, 

and saprolite in nutrient acquisition.  

We hypothesize that (1) uplift of K as rock-derived nutrient increases with increasing precipitation 

and that (2) recycling intensity, especially of N as OM-derived nutrient, increases with increasing 

precipitation due to a greater nutrient demand. The nutrient labeling experiment of woody 

vegetation was conducted in three sites across a continental precipitation gradient in the Chilean 

Coastal Cordillera with the same granitoid parent materials, ranging from 80 mm yr-1 to 

1500 mm yr-1 (Fick and Hijmans, 2017). Thereby, we can compare nutrients derived from the same 

parent material. 

2.1.2 Material and Methods 

2.1.2.1 Study sites  

The three study sites are located within the Chilean Coastal Cordillera between 30° and 38° 

southern latitude on granitoid parent material. The northernmost site, with an aridity index (AI) of 

0.05 (Trabucco and Zomer, 2018), is an arid ecosystem (an arid shrubland) in the Reserva Santa 

Gracia (29.76 S, 71.14 W). The vegetation is dominated by cacti and drought-deciduous shrubs, 

growing on Cambisols with pH values of 5.5 to 7.0 (Bernhard et al., 2018). The second, 

intermediate site is a Mediterranean ecosystem (a coastal matorral) located within the National 

Park La Campana (32.96 S, 71.06 W; AI=0.24). A vegetation dominated by evergreen-

sclerophyllous trees, deciduous shrubs, and a dense herb layer developed on Cambisols with pH 

values between 4.5 and 6.1 (Bernhard et al., 2018). The third and southernmost humid ecosystem 

(a humid-temperate forest) is located within the National Park Nahuelbuta (37.81 S, 73.01 W; 

AI=1.4). On Umbrisols and Podzols (pH 3.7-5.1) developed a dense rainforest dominated by 

evergreen and winter-deciduous broadleaved trees (Bernhard et al., 2018). The mean annual 

precipitation (MAP) increases from 80 mm a-1 in the north to >1500 mm a-1 in the south (Fick and 

Hijmans, 2017). For a more detailed site description, please refer to Bernhard et al. (2018) and 

Oeser et al. (2018). 

2.1.2.2 Experiment setup, conditions, and sampling 

Rubidium and Cs as K analogs (Fitter, 1986; Göransson et al., 2006; Mamolos et al., 1995) and 

15N were used to evaluate short-term plant K and N acquisition, respectively. Distributed between 

north and south facing slopes, eight specimens per site and depth were labeled with a common 

tracer solution, containing RbCl, CsCl, and Na15NO3 (99 at%; Sigma Aldrich, Munich, Germany; 

for concentrations see Table 2.1-1). The area around a specimen was either labeled in topsoil (arid 

shrubland= 15 cm, Mediterranean and humid ecosystems = 30 cm depth), subsoil (arid shrubland 
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= 40 cm, Mediterranean and humid ecosystems = 70 cm depth), or saprolite (arid shrubland = 55 

cm, coastal matorral = 120 cm, humid-temperate forest= 200 cm depth). Therefore, three holes 

were pre-cored per specimen with a soil auger, and the tracer solution was divided equally between 

holes. All specimens were chosen at a mid-slope position. Assuming quantitatively much lower 

tracer recovery from the lowest depth compared to topsoil, we increased the amount of tracer from 

topsoil to saprolite (see Table 2.1-1).  

Table 2.1-1: Amounts and concentrations of applied compounds and tracer elements (Rb, Cs, 15N). 

 
 

Injection of the tracer solution was conducted with a tube-in-a-pipe concept. A pipe was used to 

guide a flexible Teflon tube down the auger hole to the respective depth. The tube was closed off 

at the end but perforated in the last 10 cm to avoid a single point application. The tracer solution 

was injected with a 30 ml syringe attached to the tube and water was added afterwards to rinse the 

tube and remove tracer residues. The labeling was conducted at the end of the austral summer 

(March 2016) to avoid plant inactivity due to a potential summer dormancy especially in the arid 

and Mediterranean ecosystems (di Castri and Hajek, 1976). After eight months, plant materials of 

labeled and non-labeled specimens were collected in November 2016. The soil excavated for the 

injection holes was collected to determine the reference nutrient contents. Total precipitation and 

frequency (i.e. number of days with precipitation) from March 2016 till November 2016 are given 

in Figure 2.1-1 and were recorded by the on-site weather stations (Ehlers et al., 2017) for the arid 

and Mediterranean sites. As the project’s weather station in the National Park Nahuelbuta was only 

installed in November 2016, precipitation data were derived from the Center for Climate and 

Resilience Research (CR)² (2020) for the station Parque Nahuelbuta (37.8233 S, 72.9606 W).  

 Amounts of compounds 
[g] 

 Concentration of 
compounds  

[g l-1] 

 Concentration of tracer 
element (Rb, Cs, 15N, 

respectively) 
[g l-1] 

Depth topsoil subsoil saprolite  topsoil subsoil saprolite  topsoil subsoil saprolite 

CsCl 1.3 2 2.6  26 40 52  20.5 31.6 41.1 

RbCl 1.5 2.2 3  30 44 60  21.2 31.1 42.4 

Na15NO3 0.15 0.3 0.45  3 6 9  0.52 1.05 1.57 
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2.1.2.3 Labeled plant species 

Plant nutrient acquisition strategies can vary strongly between growth forms such as trees, shrubs, 

or herbaceous plants (Sala et al., 2012). It was not possible to label the same species at each site. 

Therefore, we elected woody species that accounted for at least 10% of the vegetation cover. To 

reduce differences between the chosen tree, shrub, and subshrub species, only specimens between 

40 and 60 cm in height were included in the study. In the arid shrubland, we labeled the perennial 

woody shrub Gutierrezia resinosa (Hooker & Arnott) Blake. The shrub prevails on sandy alkaline 

or neutral soils with low organic carbon and nitrogen contents (Solbrig, 1966). Of an overall plant 

cover of 30-40%, G. resinosa accounted for 15% of the area. In the Mediterranean coastal matorral, 

we labeled the shrub Aristeguietia salvia (Colla) King & Rob (other names Eupatorium salvia 

(Colla), Salvia macha, or pega-pega), which belongs to the Asteraceae family. It can be found in 

central Chile in low to mid altitudes (Chile Flora, 2020). Of an overall 100% plant coverage, A. 

salvia accounted for 8% of the area (Bernhard et al., 2018). In the humid-temperate forest, we 

labeled Araucaria araucana (Molina) K. Koch, a coniferous tree species that belongs to the 

Araucariaceae family. Of an overall coverage of 100% in the understory, A. araucana made up 

for 40% of the area.  

Figure 2.1-1: Monthly mean temperature (red line) and monthly mean precipitation (blue line) in the three study 

sites as well as total monthly precipitation (gray bars) and number of days with precipitation (numbers on top of 

bars) during the experiment from March till November 2016. n.a. = no data available. Monthly means are derived 

from Fick and Hijmans (2017) and precipitation data for 2016 are derived from Ehlers et al. (2017) and (CR)² (for 

details see method section). Green shading indicates favorable (dark) and semi-favorable (light) months for 

vegetation according to di Castri and Hajek (1976). Note that vegetation months for the humid-temperate forest 

are derived from the station ‘Angol’ which lies 50 km landwards from the National Park Nahuelbuta at ca. 80 m 

a. s. l., whereas the study site within the National Park lies at ca. 1200 m a. s. l. 



Publications and Manuscripts  53 

 

2.1.2.4 Sample analyses and calculations 

Plant and soil materials were dried at 60 °C and ground. The 15N:14N ratio and the total N content 

of samples was determined by an isotope ratio mass spectrometer (IRMS; Delta C, Finnigan MAT, 

Bremen, Germany) with a Conflo III interface (Thermo Electron Cooperation, Bremen, Germany) 

coupled to a NA1108 element analyzer (Fisons-Instruments, Milano, Italy). K, Rb, and Cs were 

extracted with nitric acid pressure digestion (König et al., 2005). Their concentrations were 

measured with an inductively coupled plasma mass spectrometer (ICP-MS; iCAPQ, Thermo 

Fisher Scientific, Bremen, Germany) and their stocks calculated subsequently. C:N and N:K ratios 

of plants and soil were calculated as molar ratios. The 15N recovery was calculated with the 

following equation:  

[ 𝑁15 ]
𝑎𝑐𝑞𝑢𝑖

=  [𝑁]𝑙𝑎𝑏 ∗  
𝑎𝑡% 𝑁𝑙𝑎𝑏

15 − 𝑎𝑡% 𝑁𝑛𝑎𝑡
15

𝑎𝑡% 𝑁𝑡𝑟𝑎𝑐𝑒𝑟
15 − 𝑎𝑡% 𝑁𝑛𝑎𝑡

15  (2.1-1) 

 

With [15N]acqui as the 15N amount taken up (15N in total plant dry biomass [mg g-1]), [N]lab as the N 

amount of the labeled plant material (N in total plant dry biomass [mg g-1]), at%15Nlab/nat/tracer as the 

at% 15N of the labeled and non-labeled plant material as well as the injected tracer (99 at%), 

respectively. [15N]acqui was then related to the amount of the injected 15N to calculate the percentage 

of recovered tracer. 

Similarly, Rb+Cs recovery was calculated as follows:  

[𝑅𝑏 + 𝐶𝑠]𝑎𝑐𝑞𝑢𝑖 = [𝐾 + 𝑅𝑏 + 𝐶𝑠]𝑙𝑎𝑏 ∗  
(
𝑅𝑏 + 𝐶𝑠

𝐾 𝑙𝑎𝑏
−  

𝑅𝑏 + 𝐶𝑠
𝐾 𝑛𝑎𝑡

) ∗ 100

100% − (
𝑅𝑏 + 𝐶𝑠

𝐾 𝑛𝑎𝑡
∗ 100)

 (2.1-2) 

With [Rb+Cs]acqui as the Rb+Cs amount taken up in total plant dry biomass [mg g-1], (Rb+Cs/K)lab/nat 

as element ratios of labeled and natural abundance plant material, [K+Rb+Cs]lab as the sum of the 

element amount in the total plant dry biomass of labeled plants, and 100% as the proportion of Rb 

and Cs relative to the proportion of K (0%) in the added tracer. [Rb+Cs]acqui was then related to 

the amount of injected Rb and Cs to calculate the obtained percentage of applied tracer.  

2.1.2.5 Statistical analyses 

R 3.6.1 (R Core Team, 2019) was used for all statistical tests. To evaluate element ratios (C:N and 

N:K) of plant material, linear mixed effect models (LME) (‘lme4’; (Bates et al., 2015) with site as 

fixed effect were calculated. Plant compartments (shoot, root) and field replicate nested in slope 

and site were set as random effects. LMEs for soil stocks (of N, K, Rb, and Cs) and tracer recovery 

(K analogs and 15N) were calculated site separated. For soil stocks, label depth was set as fixed 

effect, and field replicates nested in slope as random effect. For tracer recovery and relative K to 
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N recovery, depth was set as fixed effect and field replicates and plant compartments as random 

effects. Variables were pretested for normal distribution (Shapiro-Wilk test) and log transformed 

if the assumption was not met. With the multiple comparison function of the ‘multcomp’ package 

(Hothorn et al., 2008), p values were extracted with a significance level of α ≤ 0.05.  

Further, natural 15N abundance of plant biomass and bulk topsoil (unpublished data) as well as the 

vertical distribution of exchangeable K and sodium (Na) (from Bernhard et al., 2018), were used 

to evaluate the long-term plant N recycling and K uplift. The contrasts between exchangeable K 

and Na along soil profiles can be used to estimate the long-term K uplift by roots, based on the 

assumption of preferential cycling of nutrients (Jobbágy and Jackson, 2004, 2001; Porder and 

Chadwick, 2009) and the absence of recycling for ballast elements such as Na. Without plant uplift, 

the vertical distribution of K+ would follow the pattern of Na+ that is not actively acquired by 

plants (Jobbágy and Jackson, 2001). 

A redundancy analysis (RDA) was performed to evaluate the effects of abiotic and biotic 

parameters on K and N acquisition (= response variables) with the ‘vegan’ package (Oksanen et 

al., 2017). Precipitation (mm) and frequency (i.e. number of days with precipitation) during the 

experiment, clay content, C:Nsoil, C:Nplant, and N:Kplant were set as explanatory variables. As plant 

nutrient uptake also depends on the microbial activity at the place of acquisition, bacterial and 

fungal (DNA) abundances (unpublished data) and activities of extracellular proteases and 

chitinases per soil organic carbon (SOC) (from Stock et al., 2019) were included as explanatory 

variables. Missing values were imputed with n-components = 2 (‘missMDA’; Josse and Husson, 

2016). The RDA was calculated on scaled data and are presented as type II scaling (correlation) 

plots.  

2.1.3 Results 

2.1.3.1 Nitrogen and potassium tracer recovery 

Nitrogen and K acquisitions from topsoil (A-Bw horizons), subsoil (Bw-BCw horizons), and 

saprolite (below BCw horizon) were determined by recovery of 15N for nitrogen and Cs + Rb for 

potassium. K analogs and 15N recovery were similar from all depths under arid conditions (Figure 

2.1-2). Under Mediterranean conditions, on the contrary, tracers for both nutrients were 

dominantly retrieved from the topsoil (in shoots: 190 times and 37 times higher than from saprolite 

for N and K, respectively). Under humid conditions, 15N recovery was similar from topsoil and 

subsoil but was lowest from saprolite (~50% lower than top- and subsoil) (Figure 2.1-2).  
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While almost no K analogs were retrieved from subsoil under humid conditions, recovery from 

topsoil and saprolite were similar. Those preferential uptake depths showed no relation to N and 

K stocks (Figure 2.1-3). Under Mediterranean and humid conditions, recoveries of K analogs 

relative to 15N recovery was highest from saprolite (Figure 2.1-4), with 10 (Mediterranean) and 5 

(humid) times more regained from saprolite than from topsoil. Under arid conditions, on the 

contrary, relative K analogs recovery was similar from all depths. (Figure 2.1-4).  

 

Figure 2.1-3: Depth profiles of 

total potassium (K) and nitrogen 

(N) stocks in 10 cm depth 

increments in the arid shrubland 

and Mediterranean coastal 

matorral, and in 25 cm depth 

increments in the 

humid-temperate forest. Data are 

presented as means (n = 3) with 

standard errors. Dashed and 

dotted lines indicate preferential 

acquisition depths of the 

respective nutrient (blue dotted= 

K; red dashed= N) derived from 

the tracer recoveries (see Fig. 1). 

Note the different soil depth scales 

for the three sites. 

 

 

Figure 2.1-2: Tracer recovery of N (15N, left) and K (Rb+Cs as K analogs, right) from topsoil, subsoil, and saprolite 

in shoots (top) and roots (bottom) in the three study sites: arid shrubland, Mediterranean coastal matorral, 

humid-temperate forest. 15N recovery under forest is additionally presented on a smaller y-axis (inset box). Data 

are presented as means (n = 8) with standard errors. Significant differences (p<0.05) between depths are indicated 

with lowercase letters for shoots and with capital letters for roots within sites. Asterisks indicate significant 

differences between plants within sites. 
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2.1.3.2 Nutrient distributions 

Potassium and N stocks in soil increase with increasing precipitation (Figure 2.1-3). In the 

Mediterranean and humid ecosystems, N stocks were high in the topsoil and decreased with depth 

(Figure 2.1-3). The only exception was in the humid-temperate forest in 100-125 cm soil depth, at 

the interface of subsoil to saprolite (Oeser et al., 2018), where N (and C) stocks were exceptionally 

high. The N stocks decrease only minimal with depth under arid conditions (Figure 2.1-3). 

Contrary to total K stocks, exchangeable K decreased markedly with increasing depth in all 

ecosystems (Figure 2.1-5). Exchangeable Na, on the contrary, was close to 0 throughout the depth 

profiles under humid and Mediterranean conditions but increased strongly with depth under arid 

conditions (Figure 2.1-5). In comparison, the percentage of K saturation of the total cation 

exchange capacity (CEC) (%K) was 8, 78, and 6 times higher than %Na in the upper 10 cm in the 

arid, Mediterranean, and humid ecosystems, respectively (Figure 2.1-5).  

 

Figure 2.1-4: Relative K analog recovery per unit N 

recovery from topsoil, subsoil, and saprolite in the 

three study sites: arid shrubland, Mediterranean 

coastal matorral, humid-temperate forest. Relative K 

analog recovery under shrubland is additionally 

presented on a smaller y-axis (insert box). Data are 

presented as means with standard errors. Differences 

between depths within sites were not significant 

(p>0.05). 

 
Figure 2.1-5: Vertical 

distribution of exchangeable K 

and Na (K, Na) [µmolc g-1], 

percentage of K and Na to total 

cation exchange capacity (%K, 

%Na) as well as pH in the three 

study sites: arid shrubland, 

Mediterranean coastal 

matorral, humid-temperate 

forest. Data were taken from 

Bernhard et al. (2018) and are 

presented as means of top, mid, 

and bottom slope positioned soil 

pits with standard errors. Error 

bars for pH are omitted for 

clarity. Note the different soil 

depth scales for the three sites. 
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2.1.3.3 Natural 15N abundance 

Shoot natural 15N abundance decreased with increasing precipitation, from 3‰ ± 0.6 in 

G. resinosa in the arid shrubland to -5‰ ± 0.5 in A. araucana in the humid-temperate forest 

(Figure 2.1-6). In each site, shoots were 15N-depleted compared to topsoil δ15N. The strongest 

depletion of shoots (Δ >10‰) was observed in the humid ecosystem. Root δ15N were similar 

between ecosystems and strongly 15N-depleted compared to topsoil δ15N in all ecosystems (Δ 11‰ 

in the arid shrubland, Δ 4‰ in the Mediterranean coastal matorral, and Δ 9‰ in the humid-

temperate forest (Figure 2.1-6)).  

Plant C:N ratios of Araucaria araucana in the humid-temperate forest were 2 and 1.7 times higher 

than for shrubs in the Mediterranean and arid ecosystems, respectively (Figure 2.1-6). Plant N:K 

ratios were highest in G. resinosa in the arid ecosystem, with 1.7- and 1.5-times higher ratios than 

of Aristeguietia salvia and Araucaria araucana, respectively (Figure 2.1-6). 

 

Figure 2.1-6: 15N natural 

abundance (δ15N signatures) of 

shoots (above the 0-line), roots, 

and topsoil (left), and plant 

C:N and N:K ratios (right) in 

the three study sites: arid 

shrubland, Mediterranean 

coastal matorral, humid-

temperate forest. Data are 

presented as means with 

standard errors. Significant 

differences (p<0.05) between 

sites are indicated with capital 

letters for C:Nplant and with 

lowercase letters for N:Kplant. 

2.1.3.4 Cross-biome analysis 

In the cross-biome redundancy analysis (Figure 2.1-7), 15N recovery (Nacq) in plants was strongly 

related to the relative abundance of bacteria and activity of proteases. Greater bacterial abundance 

and activity of N cycling related enzymes intensify N mineralization and so, support plant N 

nutrition. However, 15N recovery in plants did not relate to the relative activity of chitinase (NAG). 

Higher precipitation and frequency reduced plant 15N recovery (Figure 2.1-7) because of leaching. 

The 15N recovery was higher at lower C:Nsoil (i.e. greater N availability in soil). Higher C:Nplant 

(i.e. greater plant N demand) did not increase N uptake (Figure 2.1-7). Similar as for 15N recovery, 

increasing plant K demand (i.e. higher N:Kplant) did not increase recovery of K analogs. K analog 

recoveries were higher with greater exchangeable K availability in soil but clay content and 

precipitation, on the contrary, did not affect K uptake (Figure 2.1-7). Tracer recovery for K and N 
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did not relate to each other, suggesting that specific factors and processes determine the uptake of 

both nutrients. 

 

Figure 2.1-7: Cross-biome redundancy analysis 

(RDA) for 15N and K tracer recovery (Nacq, Kacq), 

presented as type II scaling (correlation) plot. 

Explanatory variables: sum of precipitation 

(precip) and days with precipitation (frequ) during 

the 8 month of the experiment, C:Nplant/soil, N:Kplant, 

exchangeable K (Kexchange), and clay content as well 

as fungal and bacterial DNA abundance (fungi, 

bacteria) and protease and chitinase (NAG) 

activities relative to soil organic carbon. The 

overall RDA was significant with 999 permutations. 

2.1.4 Discussion 

2.1.4.1 Plant nutrient acquisition under aridity 

Water availability in deep soil is often seen as the dominant factors driving plants to extend their 

root system to deeper horizons in arid ecosystems (Bleby et al., 2010; Canadell et al., 1996; Lee 

et al., 2018; Muñoz et al., 2008). Low nutrient availability in topsoil (e.g. due to limited diffusion 

in dry soils) can further drive plants to expand their root system downwards to cover their nutrient 

demand (Canadell et al., 1996; Hodge, 2004; McCulley et al., 2004). Deep soil horizons are 

nutrient-poorer (esp. in the case of N) but nutrients may be easier accessible than in dry topsoils 

(McCulley et al., 2004). The comparison of the vertical distributions of exchangeable K and Na as 

well as K and Na saturation of CEC, displayed that K is acquired and uplifted by plants from deep 

soil horizons and accumulated within the topsoil in the arid shrubland ecosystem over long terms 

(>decades) (Figure 2.1-5; Jobbágy and Jackson, 2004, 2001). Similar K analog recoveries 

throughout the soil profile demonstrated that short-term (<1 year) acquisition is vertically uniform 

(Figure 2.1-2). The acquisition from saprolite and the K uplift under arid conditions might indicate 

ongoing biological weathering in depth. This process can be an important strategy for plants under 

arid conditions to acquire rock-derived nutrients in soils that are extremely water-limited most of 

the year (Smits et al., 2012). In line with this, Köster et al. (under review) identified biological 

weathering by plant-released organic acids as an important process that drives plant phosphorus 

acquisition in soils of the same arid shrubland.  
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Contrary to K, constant 15N natural abundance with depth (unpublished data) suggested the 

absence of notable vertical movement of N in the arid shrubland integrated over long terms. A 

similar 15N recovery from topsoil, subsoil, and saprolite (Figure 2.1-2), however, highlighted that 

plants at the arid site do explore deeper soil for N sources such as dead roots or microbial 

necromass. 15N depletion of shoots (Δ ~3‰) and roots (Δ ~11‰) in comparison to bulk topsoil 

(Figure 2.1-6) implied the reutilization (and retention) of mineralized (and 15N-depleted) N under 

aridity (McCulley et al., 2009). Low litter input and low water availability, however, likely prevent 

plants in the arid site to rely solely on N recycling from litterfall. 

2.1.4.2 Plant nutrient acquisition under Mediterranean conditions 

A temporal decoupling of microbial and plant activities due to brief and small water pulses under 

semiarid conditions can result in the accumulation of highly mobile NO3
- in topsoil (McCulley et 

al., 2009; Reichmann et al., 2013; Schwinning and Sala, 2004). The regression of the soil δ15N to 

the negative logarithm of N content (-ln(%N)) was analyzed as an integration of the 15N enrichment 

with increasing depth (i.e. soil age) (data not shown). The 15N enrichment with depth was strongest 

(i.e. had the largest regression slope) in the Mediterranean coastal matorral across the precipitation 

gradient, indicating the fastest N mineralization (Billings and Richter, 2006; Nadelhoffer and Fry, 

1988). The great potential for nutrient losses likely results from the highest denudation rates at this 

site under Mediterranean conditions compared to the other sites of the precipitation gradient 

(Schaller et al., 2018; van Dongen et al., 2019).  

In such an ecosystem with high losses, plants need to adapt to fast and efficiently exploit available 

nutrients from topsoil. A low 15N depletion of aboveground plant biomass (Δ ~1‰) compared to 

bulk topsoil as well as a lower 15N depletion of A. salvia roots in the Mediterranean ecosystem 

(Δ ~4‰) than of plants in the arid or humid ecosystems (Figure 2.1-6), however, indicated that 

long-term reutilization of 15N-depleted mineral N by plants is low (McCulley et al., 2009). Low 

long-term retention of N by plants is likely related to the high N losses via erosion and denudation 

in the Mediterranean site (Schaller et al., 2018).  

High N tracer recovery from topsoil (Figure 2.1-2), however, indicated a strong short-term 

reutilization of mobile and available N. High short-term N acquisition from topsoil as well as a 

high proportion of fine roots in the upper 10 cm (Stock et al., under review), suggest that plants in 

the Mediterranean ecosystem have adapted to acquire accumulated mineral N fast from the upper 

nutrient-rich soil. An extensive root system in the topsoil can already utilize light rainfalls that do 

not percolate to deeper soil but quickly evaporate (Fernández, 2007; Hodge, 2010). Thereby, these 

fine roots can acquire available N fast and efficiently (Dunbabin et al., 2003; Reich, 2014). Short-

term recycling and fast utilization of available N is an important strategy to retain N within the 
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ecosystem and ensure plant nutrition.15N recovery from subsoil (Figure 2.1-2), displayed that 

plants further recapture and uplift N as an additional strategy to reduce N losses.  

Similarly, the highest K tracer recovery from topsoil (Figure 2.1-2) pointed to an adaptation of 

plants to recapture K released from litter. Greater relative K acquisition (per acquired N) by roots 

in depth than roots in topsoil (Figure 2.1-4), suggested further that subsoil and especially saprolite 

roots have a higher ability to take up K than topsoil roots. A higher efficiency could result, for 

example, from the expression of active high-affinity K+ transporters in response to low 

concentrations of available K in depth (Ragel et al., 2019). These findings highlight that plants do 

not only reutilize K from topsoil, but also uplift the nutrient from depth. Especially in such a system 

with high denudation rates (Schaller et al., 2018; van Dongen et al., 2019), the uplift can be an 

important strategy to replenish topsoil K pools over long terms (Uhlig and von Blanckenburg, 

2019). This is supported by comparing the vertical distributions of exchangeable K and Na, which 

indicated the long-term K uplifted by plants and its accumulation in topsoil (Figure 2.1-5; Jobbágy 

and Jackson, 2004, 2001). 

2.1.4.3 Plant nutrient acquisition under humid conditions 

In ecosystems with high precipitation and primary productivity, nutrient recycling is intensive as 

resource demands of a large standing biomass are high. A strong long-term N recycling in the 

humid-temperate forest is indicated by a high 15N depletion of aboveground and belowground 

plant biomass compared to topsoil δ15N (Δ ~9-10‰; Figure 2.1-6). N tracer recovery, however, 

reveals that N is not only reutilized from topsoil, but also recaptured from subsoil (Figure 2.1-2, 

Figure 2.1-3). Mobile nutrients such as nitrate (NO3
-) are highly susceptible to leaching at the 

humid site with MAP of >1500 mm a-1. But despite the high annual precipitation and the resulting 

high leaching, retention of mineral N in soils under humid temperate rainforests in southern Chile 

is high (Huygens et al., 2008; Perakis and Hedin, 2002, 2001). Davidson et al. (2003) described 

the abiotic NO3
- immobilization in dissolved organic matter (DOM) by the reduction with Fe(II) 

in the ‘Ferrous Wheel’. Fe(III) in anoxic microsites will be reduced to Fe(II), which can in turn 

reduce NO3
- to nitrite (NO2

-). NO2
- can then react with DOM. This mechanism was recently 

confirmed under controlled conditions for an Andosol from the southern Chilean Andes (Matus et 

al., 2019). High primary productivity of the humid-temperate forest, large SOC in top- and subsoil 

as well as high precipitation, lead to intensive O2 consumption and possibly to many anaerobic 

microsites. Bernhard et al. (2018) determined dithionite-citrate (Fed) and ammonium-oxalate 

(Feox) extracted iron in the humid site (see Figure S 2.1-2). Higher pedogenic and active iron oxides 

above than below 100 cm soil depth coincide with the N acquisition (15N recovery) from the upper 

and intermediate depth (Figure S 2.1-2). This alignment may indicate that mobile N is retained 
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from further leaching by the abiotic immobilization with iron and is subsequently stored in long-

term plant available forms for plant uplift.  

High K tracer recovery by A. araucana from topsoil indicated that K released from litter is 

reutilized and retained by plants in the humid-temperate forest (Figure 2.1-2). Similar tracer 

recovery from saprolite, however, highlights further that K is not only reutilized within the topsoil, 

but also uplifted by plants from saprolite (here from 2 m depth). Losses of K from topsoil (via 

surface run-off and erosion) are likely replenished by uplift of leached K or of K released by 

saprolite weathering (Brantley et al., 2017; Jobbágy and Jackson, 2004; Uhlig and von 

Blanckenburg, 2019). The vertical distribution of exchangeable K and Na saturation of CEC 

(Figure 2.1-5) indicates further that plant uplift of K serves to replenish topsoil pools over long 

terms (Jobbágy and Jackson, 2001). This is supported by a higher relative K acquisition from 

saprolite than subsoil or topsoil (Figure 2.1-4). It might indicate that roots in saprolite are more 

efficient in K uptake than roots in top- or subsoil and underlines the importance of deep roots for 

plant K acquisition under humid conditions. 

2.1.4.4 N and K acquisition on cross-biome scale 

An RDA was conducted to decipher driving factors of short-term (<1 year) plant N and K 

acquisition along the precipitation gradient. The extent to which conclusions from such a 

comparison can be drawn are restricted as life strategies of the included shrubs (G. resinosa, A. 

salvia) and the tree species (A. araucana) – and thus their resource economics – differ. As plant 

life strategies are adaptations to the prevailing environmental conditions, and we only chose woody 

perennial species of similar height (40-60 cm), we do, however, see the potential that especially 

those differences in strategies can provide insight into drivers of plant nutrient acquisition on a 

cross-biome scale.  

A missing relation between N and K tracer recovery (Figure 2.1-7) suggested that different drivers 

and processes control the plant acquisition of either nutrient. Variables that changed along the 

precipitation gradient determined N acquisition such as relative bacterial abundance and activity 

(i.e. protease activity) and soil N availability (i.e. C:Nsoil). With higher N availability, plant N 

acquisition increases and reduces plant demand for N (i.e. lower C:Nplant). That higher plant N 

demand did not increase N acquisition likely suggests that short-term plant uptake is stronger 

restricted by the availability in soil (as a result of microbial organic matter decomposition and N 

mineralization) than driven by the plant’s need for N. Bacteria can temporary immobilize great 

portions of N in their biomass (Bengtsson et al., 2003), thereby preventing ecosystems from 

mineral N losses by leaching but often leading to strong competition between microorganisms and 

plants (Kuzyakov and Xu, 2013). The high correspondence of bacteria and proteases with N 
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acquisition displayed that plants take up more N when bacteria are abundant and active (i.e. high 

protease activity). Under such conditions, N release via N mineralization exceeds N 

immobilization by bacteria under (semi)arid conditions, which increases N acquisition. 

Contrary to N, K acquisition did not relate to precipitation (Figure 2.1-7). K is a key regulator in 

plants’ water balance (Cakmak, 2005; Sardans and Peñuelas, 2015) and was acquired by plants to 

a greater extent under aridity than under humid conditions (Rivas-Ubach et al., 2012; Sardans et 

al., 2012). Therefore, a stronger relation of K acquisition to precipitation was expected. The 

dominant factor driving the acquisition, however, was the availability of exchangeable K in soil 

and not K demand (i.e. high N:Kplant). Similar as for N, this likely indicates that the short-term K 

acquisition is dominantly driven by K availability in soil and not by plant requirements. 

These findings on N and K acquisition may indicate that the short-term plant acquisition (<1 year) 

of OM-derived (N) and rock-born (K) nutrients is strongest restricted by environmental factors 

and that climate change impacts on biogeochemical cycling are most likely dominating the effect 

on whole ecosystem cycling and vegetation nutrient supply. 

2.1.5 Conclusions 

Objective of this study was to evaluate two main processes of nutrient retention in ecosystems – 

nutrient recycling and uplift – for the elements N and K as an adaptation to arid, Mediterranean, 

or humid-temperate conditions. Understanding nutrient retention processes is important to 

anticipate plant community responses to climatic changes and, therefore, to evaluate the impact of 

such changes on ecosystem stability. Within this aim we localized plant N and K acquisition from 

topsoil to saprolite (up to 2 m depth) and determined the importance of nutrient recycling and 

uplift by 15N natural abundance and the vertical distribution of exchangeable K. The focus on 

nutrient recycling from topsoil in the Mediterranean and humid ecosystem is an efficient strategy 

to retain nutrients and reduce losses against leaching. This strategy, however, might be a 

disadvantage under prolonged dry periods and decreasing water availability, as predicted for the 

Mediterranean and humid ecosystem. Prolonged drought (1) will result in intensive drying of 

topsoil, reducing nutrient mineralization, mobility and uptake, and (2) can lead to substantial root 

dieback in topsoil. This will have especially severe consequences for plant in the Mediterranean 

ecosystem with high proportions of fine roots in the upper 10 cm. Deep roots (as in the humid and 

partially the Mediterranean ecosystem), however, will allow plants to (a) recapture previously 

leached nutrients and uplift newly weathering-released nutrients, and to (b) access deep water 

resources to maintain nutrient acquisition even under extensive dry periods. Thus, especially deep-

rooting plants will profit from the predicted climate change scenarios in the humid-temperate and 

Mediterranean ecosystem.  
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If fewer but larger rain events result in deeper infiltration, lower evaporation and, thus, greater 

water availability for plants and microbes in depth under arid conditions, deep rooting species in 

the arid shrubland such as G. resinosa, are at an advantage and further shrub encroachment is 

promoted. Additionally, plants profit from an accelerated SOM decomposition and N 

mineralization under greater water availability. Depending on the intensity of rain events, 

however, fewer but larger rain events will lead to larger run-off, which would result in great soil 

erosion from these shallow soils, and massive losses of topsoil nutrient stocks. Plants in this system 

are not adapted to high losses or to exploit available resources fast and could not retain nutrients 

against increased leaching and erosion. Greater nutrient losses would decrease long-term 

(>decades) recycling efficiency from topsoil and require a reconstruction of the vegetation 

composition and adaptive traits similar to that of Mediterranean species, i.e. intensifying short-

term (<1year) recycling and accelerating saprolite weathering.  
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Figure S 2.1-1: Depth profiles of total rubidium (Rb) and cesium (Cs) stocks in 10 cm depth increments in the 

arid shrubland and Mediterranean coastal matorral, and in 25 cm depth increments in the humid temperate 

forest. Data are presented as means (n = 3) with standard errors. 

Figure S 2.1-2: Depth profiles of dithionite-citrate extracted (Fed) and ammonium-oxalate extracted iron 

(Feox) in the humid temperate forest. Data were taken from Bernhard et al. (2018) and are presented as means 

(n = 4) with standard errors. Red dashed lines indicate preferential acquisition depths of nitrogen under humid 

forest. 
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Abstract 

Arbuscular mycorrhizal fungi (AMF) are important partners in plant nutrition and fulfill multiple 

ecological functions. It remains unknown, however, which functions mycorrhiza play for which 

ecosystems in carbon (C) and nutrient cycling with decreasing water availability.  

At three study sites from arid (80 mm a-1; arid shrubland) to Mediterranean (390 mm a-1; coastal 

matorral), and humid conditions (>1500 mm a-1; humid-temperate forest), the role of plant-AMF 

associations for plant nutrient acquisition was investigated. A 13CO2 pulse labeling of natural, 

woody vegetation was conducted and plant C allocation to AMF and roots assessed. Further, 

nitrogen (N) and phosphorus (P) availability, root traits, AMF root colonization and extraradical 

AMF mycelium (by phospho- and neutral lipid fatty acids 16:15c)) were determined.  

Traits of fine roots indicated a fast nutrient acquisition in the coastal matorral under Mediterranean 

conditions (experiencing high denudation rates) but indicated a slow nutrient acquisition in the 

humid-temperate forest (with low N and P availability) and arid shrubland (with water shortage). 

AMF abundance decreased from 45% to 20% root surface with increasing aridity. The extraradical 

AMF mycelium was supplied with C similarly, independent of precipitation (max. 0.2-0.5‰ of 

assimilated 13C), to scavenge for P in all sites. In addition, the symbiosis between plant and fungi 

seemed to be strengthened for N transfer in the coastal matorral and humid-temperate forest by 

increasing root colonization. Further, the extraradical AMF mycelium seemed to be supplied with 

C to acquire N in the coastal matorral. Thereby, AMF exert a function that was not observed at the 

humid or arid site: retaining mobile nutrients and preventing losses from soil. Our study provides 

indications for the role of AMF not only in P but also in N nutrition of plants and underlines that 

ecosystem functions fulfilled by AMF are specific, depending on the existing environmental 

conditions. 
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2.2.1 Introduction 

Mycorrhizal symbiosis is one of the most common forms of mutualistic relationships, with crucial 

ecological and evolutionary roles in the terrestrial colonization of vascular plants (Brundrett and 

Tedersoo, 2018, Parniske, 2008). In exchange for photosynthetic carbon (C), arbuscular 

mycorrhizal fungi (AMF) transfer resources to their host plants (Allen, 2007; Fellbaum et al., 

2012; Ryan et al., 2012). An extensive hyphal network enlarges the soil volume from which 

nutrients can be absorbed and expands the range far beyond the rhizosphere. Especially in dry 

soils, with low nutrient mobility, AMF can be crucial to ensure plant survival (Marulanda et al., 

2003). Besides the nutritional benefits the symbiosis, AMF can provide various other ecosystem 

functions such as alleviating osmotic stress for plants (Aroca et al., 2013; Delavaux et al., 2017; 

Khalvati et al., 2005), stabilizing soil by increasing soil aggregation (Rillig and Mummey, 2006), 

and intermediately store and retain nutrients against leaching and gaseous losses (Bowles et al., 

2018; Cavagnaro et al., 2015; Köhl and van der Heijden, 2016). The services AMF provide depend 

strongly on the environmental conditions the AMF community is adapted to (Antunes et al., 2011; 

Bennett and Classen, 2020; Johnson et al., 2003).  

An expansion of the extraradical mycelium as well as the fine root system is essential for plants to 

assure a sufficient nutrient supply. Plants exhibit a plasticity of root traits in response to nutrient 

availability (Reich, 2014). ‘Fast’ or ‘acquisitive’ root traits (high specific root lengths (SRL), small 

diameter, low tissue density (RTD), high root N content) are advantageous under high nutrient 

availability – allowing plants to exploit resources fast and outcompete neighbors – but come at the 

cost of a reduced root lifespan due to increased sensitivity to dehydration and decomposition (de 

Vries et al., 2016; McCormack and Iversen, 2019; Reich, 2014). Roots with ‘slow’ or 

‘conservative’ traits, on the contrary, have longer lifespans but a lower ability for nutrient uptake 

(McCormack and Iversen, 2019; Reich, 2014).  

Water shortage strongly modulates root architecture and might overrule plants’ reaction to nutrient 

availability. Under prolonged water shortage, plants can avoid dehydration while maintaining 

growth by extending their (fine) root system into deep soil layers, where they can scavenge for 

deep water sources (Muñoz et al., 2008; Nicotra et al., 2002; Sala et al., 2012). Under moderate or 

short droughts, on the contrary, plants mainly need to tolerate the dry period and prevent tissue 

damage, but do not invest to scavenge for deep water sources (Bristiel et al., 2019; Pérez-Ramos 

et al., 2013).  

Precipitation regimes (i.e. frequency and duration of droughts) as well as the availability of 

nutrients (e.g. N and P) strongly determine plant productivity and shape the symbiosis between 

plants and AMF. The objective of this study was to assess the nutrient acquisition strategies of 
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woody species along a precipitation gradient. We hypothesized that (1) plants express 

‘fast’/‘acquisitive’ root traits under high precipitation but ‘slow’/‘conservative’ root traits under 

aridity, but that (2) increasing aridity leads to a higher relative fine root proportion with depth. We 

expected (3) that AMF are important for P acquisition in dry soils (due to low mobility of P), but 

that AMF are important for P and N acquisition under higher precipitation (due to high demands 

of both nutrients). Further we expected that (4) plant C investment in AMF (absolute and relative 

to SOC) decreases with increasing aridity.  

2.2.2 Material and Methods 

2.2.2.1 Study Area 

The study sites are located in the Chilean Coastal Cordillera, along a precipitation gradient from 

from 80 mm a-1 mean annual precipitation (MAP) in the North to >1500 mm a-1 in the South (Fick 

and Hijmans, 2017). The northernmost site is classified as an arid ecosystem (arid shrubland) with 

an aridity index of 0.06 (Trabucco and Zomer, 2018). The site is located in a grazing exclusion 

area in Quebrada de Talca (30.05 S, 71.09 W), at an altitude of 645 m a.s.l. and in 23 km distance 

from the Pacific Ocean. The monthly mean precipitation (MMP) and monthly mean temperature 

(MMT) for November, the month of the experiment, are 1 mm and 15.7 °C (Fick and Hijmans, 

2017). The dominant soil type at this site are Cambisols, which are covered 30-40% with 

vegetation dominated by drought-deciduous shrubs and cacti. The intermediate site is classified as 

a Mediterranean ecosystem (Mediterranean coastal matorral) with an aridity index of 0.24 

(Armesto, 2007; Trabucco and Zomer, 2018). The site is located in the National Park La Campana 

(32.96 S, 71.06 W) at approximately 70 km northwest of Santiago and 43 km landwards, at an 

altitude of 730 m a.s.l. MMP and MMT for November are 10 mm and 15.5 °C (Fick and Hijmans, 

2017). The vegetation covered 100% of the Cambisols, dominated by evergreen-sclerophyllous 

trees, deciduous shrubs, and a dense herb layer (Bernhard et al., 2018). The southernmost site is 

classified as a humid ecosystem (humid-temperate forest) with an aridity index of 1.4 (Trabucco 

and Zomer, 2018). The site is located in the National Park Nahuelbuta (37.81 S, 73.01 W) at 1240 

m a.s.l. elevation and in 55 km distance to the Pacific Ocean. MMP and MMT for November are 

59 mm and 7.0 °C (Fick and Hijmans, 2017). The vegetation covered 100% of the Umbrisols and 

Podzols, dominated by evergreen conifers Araucaria araucana (Mol.) K. Koch and winter 

deciduous broadleaved Nothofagus spp. trees, with a rich understory. From North to South, soils 

developed on similar granitoid parent material. For a more detailed site description, please refer to 

Bernhard et al. (2018) and Oeser et al. (2018). 
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2.2.2.2 13CO2 pulse labeling and sampling 

To quantify belowground C investment of plants, 13C tracer applications are widely used (Gavito 

and Olsson, 2003; Kuzyakov and Domanski, 2000; Sommer et al., 2017). A 13CO2 pulse-labeling 

experiment was conducted in November 2016. We used 60x60x60 cm chambers with polyethylene 

foil, letting through photosynthetic relevant radiation, to provide a 13CO2-enriched atmosphere. 3 

g of Na2
13CO3 (

13C enrichment 99%, Sigma Aldrich, Munich, Germany) were dissolved in 50 ml 

H2O and placed inside the chambers before sealing them with moist soil. To generate 13CO2, the 

CO2 moiety of Na2
13CO3 was transferred into the gaseous phase by adding 5 M H2SO4, which was 

applied with a syringe through the polyethylene foil. The puncture holes were sealed to prevent 

13CO2 loss. The labeling time varied between sites according to weather conditions (see Table 

2.2-1). Temperature within the chambers was checked and reduced with ice packs and ventilation 

to keep it below a maximum of +10°C above ambient temperature. At each site, 4 plants were 

labeled on south-facing slopes in 2 to 3 m distance from each other. Soil and root samples were 

taken at 4 time points: before labeling (0 d), 1 day after labeling (1 d), 3 days after (3 d), and 14 

days after (14 d) from 0-10 cm and 20-30 cm soil depth. The samples were taken with a root corer 

(8 cm in diameter) directly next to the labeled specimen. The soil and plant samples were frozen 

at -20 °C. 

2.2.2.3 Labeled plant species 

Above and belowground plant C investment as well as plant nutrient acquisition strategies can 

vary strongly between growth forms such as trees, shrubs, or herbaceous plants (Sala et al., 2012). 

It was not possible to label the same species at each site. Therefore, we elected woody species that 

accounted for at least 10% of the vegetation cover. To reduce differences between the chosen tree, 

shrub, and subshrub species, only specimens between 40 and 60 cm in height were included in the 

Table 2.2-1: Weather conditions during days of labeling and labeling durations. 

 

Solar 

radiation 

[W m
-2

]*
date

duration 

[min]
Tair [°C]*

Air pressure 

[hPa]*

Precipitation 

[mm]*

0 540-770

Mediterranean  

coastal 

matorral

17./18.11.16 60 22-33 965 0 890-915

arid shrubland 12./13.11.16 90 17-18.5 950

280-400

* data from EarthShape weather stations (Ehlers et al., 2017) 

humid 

temperate 

forest

25./26.11.16 180 8-9.5°C 875 0-0.2
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study. At the arid shrubland site, the species Gutierrezia resinosa (Hooker & Arnott) Blake was 

labeled, which is a perennial woody shrub from the Asteraceae family that can reach growth 

heights of up to 1.5 m (Solbrig, 1966). G. resinosa can be found mainly at low altitudes (Solbrig, 

1966). The shrub prevails on sandy alkaline or neutral soils with low organic C and N contents 

(Solbrig, 1966). Overall, 40% of the study area was covered with vegetation, of which G. resinosa 

accounted for 15% (i.e., 6% of the total area).  

At the Mediterranean coastal matorral, the species Erigeron fasciculatus (Colla) was labeled, 

which is a perennial subshrub with a maximum growth height of 70 cm (Andrus et al., 2009). It 

belongs to the Asteraceae family and is endemic to the Coquimbo-Valparaiso region and can be 

found at low and mid elevations (Andrus et al., 2009; Solbrig, 1962; Valdebenito et al., 1986). Of 

an overall 100% covered area, E. fasciculatus accounted for 10%.  

At the humid-temperate forest, the coniferous tree species Araucaria araucana (Molina) K. Koch 

was labeled, which belongs to the family of Araucariaceae. They are distributed in areas of mid 

and high elevations (from 600 m a.s.l. up to the timberline) with an annual precipitation between 

1100 and 4000 mm (Diehl and Fontenla, 2010; Veblen, 1982). A. araucana are adapted to nutrient 

poor soils and can live up to 1000 years and reach growth heights of up to 45 m (Aguilera-Betti et 

al., 2017; Veblen, 1982). A. araucana accounted for 40% of the understory, which had a total 

coverage of 100%. Contrary to conifers in the Northern Hemisphere, native conifers in the 

Southern Hemisphere, such as A. araucana, form only mycorrhizal symbioses with arbuscular 

mycorrhizal fungi (Diehl and Fontenla, 2010; Godoy et al., 1994).  

2.2.2.4 Analyses 

2.2.2.4.1 Soil and plant analyses 

Soil samples were sieved (2 mm) and roots (Ø <2 mm) were picked out and collected. Organic C 

and total N contents of dried and ground soil and root material were determined with an elemental 

analyzer (Flash 2000, Thermo Fisher Scientific, Cambridge, UK). The stable C isotope ratios 

(13C/12C) of freeze-dried and ground roots were measured by an isotope ratio mass spectrometer 

(IRMS) (Delta V Advantage with Conflo III interface, Thermo Electron, Bremen, Germany). Total 

P content was extracted with nitric acid pressure digestion (König et al., 2005) and subsequently 

measured by an ICP-OES (Thermo Scientific iCap 6000 Series). C, N, and P stocks were 

calculated as the product of content, bulk density, and layer thickness. Further, plant available P 

(Pavail) that was determined by Bernhard et al. (2018) from soil samples of the same areas, was 

included in the analyses. The collected roots were washed and scanned with a flatbed scanner to 

determine root traits. The roots were not separated in dead or living roots or by species. The images 

were taken in 10.7 Mpx resolution and subsequently analyzed with the image analyzing software 
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WinRHIZO 2013e (Regent Instruments Inc., Québec, Canada). Roots were then dried at 70 °C 

until constant weight. Afterwards, root length density (RLD, cm cm-3), specific root length (SRL, 

m g-1), and root tissue density (RTD, g cm-3) were calculated of fine roots with ≤ 1.0 mm diameter. 

SRL is calculated as the length:mass ratio, where mass can be replaced by the product of RTD and 

root volume (Ostonen et al., 2007). 

2.2.2.4.2 Root colonization with AMF 

Roots were stained following a modified method of Vierheilig et al. (1998), for which they were 

first heated with 10% KOH in a water bath at 95 °C for 5 to 10 minutes. Strongly pigmented roots 

from the humid-temperate forest were additionally treated with 6% H2O2 for 5 minutes. All roots 

were stained with a 5%-ink-vinegar solution for 5 min at 95 °C and subsequently destained in 

acidified water for 30 minutes. Stained roots were then stored in glycerol at 4 °C until hyphae were 

counted. Percentage of root colonization with AMF was determined following a modified version 

of Nicolson’s root segment ± method (Nicolson, 1955) for which not AMF colonization per root 

length but per root area was determined. Therefore, images of stained roots were acquired using a 

light microscope (Olympus BX40 with Olympus CMOS-camera SC50M) with a magnification of 

150x (Olympus Ach 10x/0.25 ph ∞ 0.17, ocular 15x, Olympus Europe SE & Co. KG, Hamburg, 

Germany) in 4.9 Mpx resolution. For each sample, five root segments with 1 cm length each were 

analyzed. The whole segment was imaged and subsequently a grid was fitted onto the stitched 

image of each segment. Grid squares were then classified and counted as either containing only 

root tissue (–) or containing root tissue and fungal structures (+). A differentiation between hyphae, 

vesicles, and arbuscules was not done. To facilitate the classification and counting process, a 

software tool called ‘Fungi Tagger’ was developed, written in the programing language Python 

(see https://gitlab.gwdg.de/sstock1/fungi_tagger). The percentage of root colonized with fungi was 

then calculated by the relation of squares containing root and fungi structures to the total sum of 

squares containing fungi and/or root expressed as % root area colonization. Working at a higher 

resolution and determining colonization per grid cell allowed to detect finer differences between 

sites, as the roots from all sites were highly colonized. 

2.2.2.4.3 Phospholipid and neutral lipid fatty acids 

Phospho- and neutral lipid fatty acids (PLFA, NLFA) can be used as specific biomarkers for 

microbial functional groups (Gavito and Olsson, 2003; Olsson et al., 1995). They were extracted 

by following a modified version of Frostegård et al. (1991) (see Dippold and Kuzyakov, 2016; 

Gunina et al., 2014): Neutral and phospholipids were extracted from 6 g of soil with a Bligh and 

Dyer solution (Bligh and Dyer, 1959). Subsequently, neutral and phospholipids were purified and 

separated using a solid phase extraction (SPE). The purified extracts were then hydrolyzed and 
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methylated to fatty acid methyl esters (FAMEs). The samples were then measured on a gas 

chromatograph-mass spectrometry (GC-MS) system (GC 7820A, MS 5977B, Agilent 

Technologies, Waldbronn, Germany) for quantification as well as on an IRMS (Delta plus Thermo 

Fisher Scientific, Bremen, Germany) for isotope ratio determination. The calculations and drift 

corrections for obtaining µg FAME g-1 soil and at%13C of FAMES can be found in Dippold and 

Kuzyakov (2016). 

PLFA 16:1ω5c is used as an AMF-specific marker (Balser et al., 2005; Nilsson et al., 2004; Olsson 

et al., 1998) and will be used as proxy for the extent of the extraradical mycelium in soil. However, 

PLFA 16:1ω5c cannot only be produced by AMF but also by Gram-negative bacteria (Frostegård 

and Bååth, 1996). A more specific marker is NLFA 16:1ω5c, which is a storage compound solely 

produced by AMF (Ngosong et al., 2012; Olsson, 1999). To determine whether the PLFA 16:1ω5c 

is specific for AMF or originating from a background signal of bacteria, the ratio of 16:1ω5c 

NLFA:PLFA was calculated (Table 2.2-4) (Olsson, 1999). A ratio above 1 indicates that PLFA 

16:1ω5c originate from AMF. For all sites and depths, the NLFA:PLFA ratio lay above 1, except 

in the upper 10 cm of soils at the arid site (Table 4). In the arid ecosystem the topsoil signal is 

likely influenced by soil biocrusts, which contain large numbers of potential PLFA 16:1ω5c 

producing bacteria. A low C availability at the arid site further limits the potential of AMF to build 

up storage compounds. Results of PLFA amounts and tracer incorporation into PLFA 16:1ω5c, 

thus, must be interpreted carefully here. To be able to compare results between sites, PLFA and 

NLFA amounts were standardized to the soil organic carbon (SOC) content (µg PLFA g-1 SOC). 

2.2.2.4.4 13C incorporation calculations 

The 13C incorporation of applied tracer (parts per mill, ‰) into the pools shoot, root, soil, PLFA 

16:1ω5c, and NLFA 16:1ω5c was calculated by the following equation (Gearing et al., 1991): 

𝐶13
𝑖𝑛𝑐 =

𝑎𝑡%𝑙𝑎𝑏 −  𝑎𝑡%𝑟𝑒𝑓 

𝑎𝑡%𝑡𝑟𝑎𝑐𝑒𝑟 −  𝑎𝑡%𝑟𝑒𝑓 
∗ 1000 [‰] 

(2.2-1) 

 

with at%ref of the unlabeled samples, at%lab of the labeled samples, and at%tracer of the tracer that 

was applied. The at%tracer was calculated by the following equations: 

 

𝑎𝑡%𝑡𝑟𝑎𝑐𝑒𝑟 = 𝑎𝑡%𝐶𝑂2𝑎𝑖𝑟

[𝐶𝑂2]𝑎𝑖𝑟

[𝐶𝑂2]𝑎𝑖𝑟 +  [ 𝐶𝑂
13

2
]

𝑖𝑛𝑝𝑢𝑡

+  𝑎𝑡%𝐶𝑂2𝑖𝑛𝑝𝑢𝑡

[ 𝐶𝑂
13

2
]

𝑖𝑛𝑝𝑢𝑡

[𝐶𝑂2]𝑎𝑖𝑟 +  [ 𝐶𝑂
13

2
]

𝑖𝑛𝑝𝑢𝑡

 

 

(2.2-2) 

with: 
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[𝐶𝑂2]𝑎𝑖𝑟 =
𝑃𝑎

𝑅 ∗ 𝑇
∗ [𝐶𝑂2] ∗ 10−6 ∗  𝑉𝑐ℎ𝑎𝑚𝑏𝑒𝑟 

 

(2.2-3) 

and: 

[𝐶𝑂2]𝑖𝑛𝑝𝑢𝑡 =
𝑚𝑖𝑛𝑝𝑢𝑡

𝑀( 𝐶𝑂2)13 ∗ 𝑉𝑐ℎ𝑎𝑚𝑏𝑒𝑟 

 

(2.2-4) 

where [CO2]air is the CO2 concentration in the chamber (mol m-3), [13CO2]input the 13CO2 

concentration in the chamber originating from the applied Na2
13CO3 (mol m-3), at%CO2 air of the 

reference gas measurements, and at%CO2 input with 99 at%. Pa is the air pressure [Pa], T the air 

temperature [K], R the gas constant (J mol-1 K-1), [CO2] the concentration of CO2 of the reference 

gas measurements (ppm), Vchamber the volume of the chamber (m-3), and minput the 13CO3 mass of 

the added Na2
13CO3 [g]. 

2.2.2.5 Statistical analyses 

All tests were conducted using R 3.6.1 (R Core Team, 2019). Variables (C, N and P contents and 

stocks, C:N, Pavail, SRL, RLD, RTD, PLFA and NLFA 16:1ω5c content, PLFA and NLFA 16:1ω5c 

per SOC, % root area colonization) were tested for normal distribution by the Shapiro-Wilk test. 

When assumptions where not met, variables were log transformed. To evaluate site and depth 

specific variations, we conducted linear mixed effect models (‘lme4’; (Bates et al., 2015), for 

which site and depth were determined as fixed effects, and field replicates as random effect nested 

in the fixed effect site. Adjusted p values were obtained by multiple comparisons with a general 

linear hypothesis test of the R package ‘multcomp’ (Hothorn et al., 2008) with α ≤ 0.05. 13C 

incorporation in root, PLFA 16:1ω5c, and NLFA 16:1ω5c was evaluated with linear mixed effect 

models with depth and time as fixed effects and field replicates as random effects. Principal 

components analyses (PCA) were conducted on scaled and log-transformed data (where 

assumption were not met) separated by sites, using the ‘FactoMineR’ package (Lê et al., 2008) 

and with the following variables: soil C:N, P stock, Pavail, SRL, RTD, PLFA 16:1ω5c, NLFA 

16:1ω5c, percentage of root area colonization, as well as the maximum 13C incorporation in PLFA 

and NLFA 16:1ω5c and root tissue. The results are presented as variable factor maps using the 

package ‘factoextra’ (Kassambara and Mundt, 2017). 

2.2.3 Results 

2.2.3.1 Soil and root parameters 

Organic C as well as total N and P contents in soil increased with increasing precipitation (Table 

2.2-2). C and N stocks in 0-10 cm, however, were highest in soils of the Mediterranean site (the 
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coastal matorral), while P stocks were highest in soils of the arid site (the arid shrubland) (Table 

2.2-3). Plant available P decreased markedly with increasing precipitation (Figure 2.2-1, Table 

2.2-2).Soil C:N ratios were similar in soil at the arid and Mediterranean sites (9.4 – 11.7) but were 

1.9 to 2.4 times higher in soil of the southern humid site (the humid-temperate forest) than in soil 

of the northern sites (Figure 2.2-1).  

 

Figure 2.2-1: Ternary plot of molar soil C, N, and plant available P contents. The molar C:N, C:P, and N:P ratios 

increase markedly from the arid shrubland and Mediterranean coastal matorral to the humid-temperate forest. 

 

Table 2.2-2: Carbon (C), nitrogen (N), total phosphorus (P), and plant available P (Pavail) contents. Data are 

presented as means (n = 8) with standard errors. Asterisks indicate significance between depths, capital letters 

between sites in 0-10 cm depth, and lowercase letters between sites in 20-30 cm depth. 

 
 

 

 depth 

[cm] 
C [g kg-1] 

 
N [g kg-1]  

 
P [g kg-1]  Pavail [mg kg-1]† 

 

  
             

arid  

shrubland 

0-10 
* 

11.3 ± 0.74 (C)   1.04 ± 0.06 (C)   0.49 ± 0.01 (B)  40.3 ± 5.1 (A) 

20-30 6.50 ± 0.98 (c)  0.78 ± 0.14 (c)  0.47 ± 0.02 (b)  26.1 ± 10.1 (a) 

 

  

   
 

   
 

  

   

Mediterranean 

coastal 

matorral 

0-10 
* 

23.1 ± 3.47 (B)  
* 

2.23 ± 0.26 (B)   
0.46 ± 0.02 (B)  15.2 ± 4.4 (B) 

20-30 11.6 ± 1.65 (b)  1.59 ± 0.27 (b)  0.43 ± 0.02 (b) 
 11.7 ± 3.6 (a) 

 

  

   
 

   
 

  

   

humid 

temperate 

forest 

0-10  107 ± 8.48 (A)   5.03 ± 0.38 (A)  
* 

0.85 ± 0.01 (A)  1.9 ± 0.3 (C) 

20-30 80.1 ± 7.08 (a)  3.51 ± 0.26 (a)  0.70 ± 0.01 (a)  1.2 ± 0.4 (b) 

  
             

† Bernhard et al. (2018) 
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Table 2.2-3: Carbon (C), nitrogen (N), and phosphorus (P) stocks. Data are presented as means (n = 8) with 

standard errors. Asterisks indicate significance between depths, capital letters between sites in 0-10 cm depth, 

and lowercase letters between sites in 20-30 cm depth. 

 
Root length density in the upper 10 cm was highest in the humid-temperate forest and decreased 

with increasing aridity (Figure 2.2-2). With increasing depth, RLD decreased of plants at the sites 

under Mediterranean and humid conditions but remained constant with depth in the arid shrubland. 

While SRL of plants growing in arid conditions increased from 0-10 cm to 20-30 cm, it decreased 

with depth at the sites under Mediterranean and humid conditions (Figure 2.2-2). Tissue density 

was highest of roots in the arid shrubland and remained constant with depth (Figure 2.2-2). On the 

contrary RTD increased with increasing depth at the Mediterranean (1.9 times) and humid sites 

(1.7 times) (Figure 2.2-2). 

Figure 2.2-2: Root Length Density (RLD), 

Specific Root Length (SRL), Root Tissue 

Density (RTD), and Root Nitrogen Content 

(RNC) of fine roots (≤ 1.0 mm diameter). 

Data are presented as means (n = 4) with 

standard errors. Asterisks indicate 

significant differences between depths, 

capital letters between sites in 0-10 cm 

depth, and lowercase letters between sites in 

20-30 cm depth.  

 

 

 

 

 

  
depth 

[cm]  
   C [Mg ha-1]   N [Mg ha-1]   P [Mg ha-1]  

arid  

shrubland 

0-10  17.4 ± 1.15 (B)    1.61 ± 0.10 (B)    0.75 ± 0.02 (A) 

20-30 10.6 ± 1.59 (c)   1.27 ± 0.22 (b)   0.77 ± 0.04 (a) 

                

Mediterranean 

coastal matorral  

0-10 
* 

29.9 ± 4.49 (A)    2.89 ± 0.34 (A)    0.59 ± 0.03 (B) 

20-30 17.4 ± 2.46 (b)   2.38 ± 0.40 (a)   0.65 ± 0.02 (b) 

                 

humid  

temperate forest  

0-10 
* 

22.1 ± 1.74 (B)   
* 

1.03 ± 0.08 (C)   
* 

0.18 ± 0.00 (C) 

20-30 38.8 ± 3.43 (a)   1.70 ± 0.13 (ab)   0.34 ± 0.00 (c) 
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2.2.3.2 Arbuscular mycorrhizal fungi abundance 

The percentage of root area colonized by AMF hyphae in the upper 10 cm soil was about 2.0 times 

higher of plants at the humid site than of plants at the arid and Mediterranean sites (Figure 2.2-3). 

In 20-30 cm depth, the percentage of colonized root area was 2.7 times higher of plants at the 

humid-temperate forest than of plants at the Mediterranean coastal matorral, but only 1.5 times 

higher than of plants at the arid shrubland. PLFA and NLFA 16:15c contents were markedly 

higher in soils of the humid-temperate forest than in the arid shrubland or Mediterranean coastal 

matorral (Table 2.2-4). Relative content of PLFA 16:15c per SOC, however, were similar in soils 

of all sites (Figure 2.2-3). Relative content of NLFA 16:15c per SOC in the upper 10 cm 

increased with increasing precipitation (Figure 2.2-3).  

 

Figure 2.2-3: Percent of root area colonized by AMF, relative PLFA 16:1ω5c content per SOC, and relative NLFA 

content 16:1ω5c per SOC. Data are presented as means (n = 8) with standard errors. Asterisks indicate significant 

differences between depths, capital letters between sites in 0 10 cm depth, and lowercase letters between sites in 20-

30 cm depth.  

 

Table 2.2-4: PLFA 16:1ω5c and NLFA 16:1ω5c contents as well as NLFA:PLFA 16:1ω5c ratios. Data are 

presented as means (n = 8) with standard errors. Asterisks indicate significance between depths, capital letters 

between sites in 0-10 cm depth, and lowercase letters between sites in 20-30 cm depth. 

 
 

  depth 

[cm] 

  16:1ω5c                

[µg PLFA g-1 soil] 
 

16:1ω5c                  

[µg NLFA g-1 soil] 
 

16:1ω5c 

NLFA:PLFA 

  
 

            

arid  

shrubland 

 
0-10  

* 
3.67 ± 0.47 (B)  

* 
1.47 ±0.35 (C)   0.45 ± 0.13 (B) 

 
20-30  0.74 ± 0.29 (b)  0.60 ±0.12 (b)  3.03 ± 1.55 (a) 

  
 

            

Mediterranean 

coastal 

matorral 

 
0-10  

* 

3.89 ± 0.45 (B)  
* 

7.32 ±2.68 (B)   1.91 ± 0.60 (A) 

 
20-30 

 1.26 ± 0.33 (b)  1.48 ±0.30 (b)   2.16 ± 0.61 (a) 

               

humid 

temperate 

forest 

 
0-10   

33.7 ± 14.2 (A)  
* 

63.0 ±26.2 (A)   1.77 ± 0.22 (A) 

 
20-30 

 10.2 ± 1.19 (a)  13.8 ±1.47 (a)   1.49 ± 0.26 (a) 
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2.2.3.3 Belowground plant-C allocation  

Incorporation of recently assimilated C (13Cinc) of the applied tracer in root tissue was highest of 

plants at the coastal matorral under Mediterranean conditions (Figure 2.2-4). In 0-10 cm depth, 

13Cinc in root tissue peaked at 1 and 3 days after labeling at the Mediterranean site but remained 

constant over time at the arid and humid sites. Under Mediterranean conditions, 13C incorporation 

in PLFA 16:15c was similar to 13Cinc in root tissue in 0-10 cm, but higher in 20-30 cm (Figure 

2.2-4). 13Cinc in PLFA 16:15c decreased from day 1 to day 14 at the sites under Mediterranean 

and arid conditions. The incorporation in PLFA 16:15c, however, was >3 times higher than in 

root tissue at the arid shrubland during the first days of the experiment. Incorporation of C in 

NLFA 16:15c was even up to 127 times higher than in root tissue (humid, 20-30 cm, 3 days after 

labeling) and up to 8.5 times higher than the 13Cinc in PLFA 16:15c (Figure 2.2-4). Freshly 

assimilated C is quickly allocated to AMF belowground to feed the present hyphal network and is 

used by AMF to build up storage compounds. Only subsequently roots use parts of the assimilated 

C to form new root tissue. 

 

Figure 2.2-4: 13C incorporation of applied tracer in root tissue, PLFA 16:15c, and NLFA 16:15c. Data are 

presented as means (Root n = 8; PLFA and NLFA n = 4) with standard errors. Incorporation of 13C was highest in 

the NLFA pool in all sites. Incorporated 13C in the PLFA pool is subsequently assimilated (decreasing 13C 

incorporation over the duration of the experiment). 13C incorporation in root tissue was lower than in PLFA and 

NLFA pools and increases with proceeding time (except in 0-10 cm in the Mediterranean ecosystem). 

2.2.3.4 Relation of biotic and abiotic parameters 

At the arid shrubland, PLFA and NLFA 16:15c contents in soil were high when plant available 

P was high but showed no relation to P stocks (Figure 2.2-5). On the contrary, root parameters 

were stronger related to soil C:N than to P availability. RTD increased while SRL decreased with 
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lower N availability (i.e., higher C:N). 13C incorporation in root tissue increased with greater N 

availability.  

At the coastal matorral under Mediterranean conditions, PLFA and NLFA 16:15c contents in 

soil as well as AMF root colonization were related stronger to N than P availability, while RTD 

and SRL related strongest to P availability (Figure 2.2-5). P stocks, however, had a negative effect 

on 13C incorporation in root tissue and NLFA 16:15c as well as AMF root colonization. 

At the humid-temperate forest, SRL and PLFA and NLFA 16:15c contents in soil related 

positively to plant available P (Figure 2.2-5). Plant 13C incorporation in PLFA, however, was 

negatively affected by plant available P and positively by P stocks. Higher N availability at the 

humid site decreased mainly AMF root colonization and increased 13C incorporation in root tissue. 

 

Figure 2.2-5: Principal component analyses conducted for separate sites: arid ecosystem: shrubland (left), 

Mediterranean ecosystem: coastal matorral (mid), and humid ecosystem: humid-temperate forest (right). N = N stock, 

P = P stock, Pavail = plant available P, SRL = specific root length, RTD = root tissue density, AMF% = % root area 

colonization, PLFA = µg PLFA 16:15 g-1 dry soil, NLFA = µg NLFA 16:15 g-1 dry soil, ActAMF = maximum 13C 

incorporation in PLFA16:15, InvNLFA = maximum 13C investment in NLFA16:15, InvRoot = maximum 13C investment 

in root tissue. Color of variables indicates a stronger correlation to N (red) or P (blue). The explanation power 

increases from the arid to the humid ecosystem in 1st dimension. 

2.2.4 Discussion 

2.2.4.1 Fine root traits 

In the upper 10 cm of soil, plants growing in the arid shrubland produced dense roots with low 

specific root length, which are ‘conservative’ root traits. These traits point to a slow nutrient 

acquisition (Reich, 2014; McCormack and Iversen, 2019). Under arid conditions, plants not only 

need to avoid dehydration to survive but also to continue to grow. An increase of the specific root 

length with depth (Figure 2.2-2; i.e. an increase of the fine root proportion or an expansion of the 

fine root system), might indicate that plants extent their fine root network into the subsoil to 

scavenge for possible water resources (Comas et al., 2013; Muñoz et al., 2008; Sala et al., 2012). 

In this context, similar tissue densities of roots in top- and subsoil are important to point out (Figure 
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2.2-2). It indicates that even fine roots produced in depth are built to sustain (Figure 2.2-2) (de 

Vries et al., 2016; Nicotra et al., 2002), as an adaptation to the prevailing water shortage. 

Plants growing in the Mediterranean coastal matorral, on the contrary, produce fine roots with high 

specific root length and low tissue densities in the upper 10 cm of soil, pointing to a fast nutrient 

acquisition (Reich, 2014; McCormack and Iversen, 2019). Denudation rates at this site are the 

highest across the precipitation gradient (Oeser et al., 2018; Schaller et al., 2018; van Dongen et 

al., 2019), likely resulting in high nutrient losses. Plants at this site would have to exploit and retain 

available resources fast and efficiently to reduce nutrient losses.  

Contrary to what was expected (hypothesis 1), the fine root proportion did not increase with 

increasing precipitation throughout the precipitation gradient. Roots collected form the humid-

temperate forest site, had lower specific root length but higher root tissue densities than roots 

collected from the Mediterranean site in the upper 10 cm. This pointed to a slow nutrient 

acquisition by plants in the humid-temperate forest.  

Plants in the coastal matorral as well as the humid-temperate forest decreased their proportion of 

fine roots with increasing soil depth, contrary to plants in the arid shrubland, which supports 

hypothesis 2 that increasing aridity leads to a higher relative fine root proportion with depth (Figure 

2.2-2). These patterns may indicate that these plants at the Mediterranean and humid sites reduce 

their needs under water shortage rather than forage for remaining water resources in deeper soil 

horizons. This strategy allows plants to tolerate summer droughts (di Castri and Hajek, 1976; 

Pérez-Ramos et al., 2013), and withstand until the next rainfall.  

2.2.4.2 Arbuscular mycorrhizal fungi in N and P acquisition 

N content in soil increased, with increasing precipitation (Table 2.2-2). Highest C:N ratios in soil 

at the humid site, however, indicated that N availability decreased with increasing precipitation 

(Figure 2.2-1, Table 2.2-2). Plant available P decreased with increasing precipitation, showing a 

reduction of P availability along the gradient. Low soil moisture as well as high Ca2+ contents in 

soil solution at the site under arid conditions, however, likely reduce P mobility strongly and limit 

plant P access even if P stocks were sufficient to provide for the standing biomass (Cole et al., 

1953; He and Dijkstra, 2014; Marschner and Rengel, 2012).  

In the arid shrubland, plants supply the extraradical AMF mycelium with C to scavenge for P 

(Figure 2.2-5). An extensive hyphal network provides the advantage to access and maintain a close 

contact to immobile P sources (Ryan et al., 2012; Smith and Smith, 2011). But AMF seemed not 

to be involved in plant N acquisition, as no relation to N availability in soil was observed (Figure 

2.2-5). 
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Root traits indicated that the plants in the Mediterranean coastal matorral exploit available 

resources fast from topsoil. The fast utilization was underlined by an increased fine root proportion 

and AMF abundance in soil with higher P plant availability (Figure 2.2-5). Higher AMF abundance 

in roots and soil with lower N availability (Figure 2.2-5) highlighted, further, that AMF contribute 

as well to a fast N acquisition. Plants in the coastal matorral seemed not only to invest in the 

colonization of root with AMF (i.e. strengthening the symbiosis between plant and fungi), but also 

in an active extraradical mycelium to scavenge for N (Figure 2.2-5; Bücking and Kafle, 2015; 

Fellbaum et al., 2012; Leigh et al., 2009). AMF can respond faster to water pulses and resource 

availability than plant roots, making them an efficient partner for the fast utilization of (mobile) 

nutrients from topsoil and their retention in soil against losses (Köhl and van der Heijden, 2016; 

Cavagnaro et al., 2015; van der Heijden, 2010; Schwinning and Sala, 2004).  

Under humid conditions, root colonization of with AMF but not AMF abundance in soil increased 

with reduced N availability (Figure 2.2-5), indicating that a strong root colonization with AMF is 

important to ensure sufficient N transfer from fungi to plant under low N availability (Bücking 

and Kafle, 2015; Leigh et al., 2009). Nourishing the extraradical AMF mycelium, on the contrary, 

is more important for plant P acquisition in the humid-temperate forest, illustrated by the allocation 

of plant C to AMF where P stocks are high, and where the well C supplied AMF most likely 

contributed to the increase of plant available P in soil (Figure 2.2-5; Li et al., 2006; Treseder, 2004; 

Wright et al., 1998). These finding support hypothesis 3 and indicate further that AMF fulfill 

different function in the N acquisition in the Mediterranean coastal matorral and humid-temperate 

forest. 

2.2.4.3 Plant C investment in AMF and roots 

A decrease of root length density with decreasing MAP (Figure 2.2-2) displays the decline of plant 

productivity with increasing aridity (Leuschner et al., 2004; Nadelhoffer and Raich, 1992). Plant 

investment in AMF, however, was similar across the precipitation gradient, which was illustrated 

by max. 0.2-0.5‰ of assimilated 13C allocated to PLFA 16:1ω5c, and similar PLFA 16:1ω5c 

contents per SOC at all sites (Figure 2.2-3, Figure 2.2-4). This underlines the common importance 

of the fungal partner for plants and disproves hypothesis 4 that not only absolute but also relative 

plant C investment in AMF decreases with increasing aridity. Higher 13C allocation to AMF than 

roots plants in the humid-temperate forest further pointed to the importance of AMF for the 

nutrient acquisition. 

For plants in the arid shrubland, indications were found that AMF support plant P acquisition but 

not N acquisition. Instead, plants seemed to invest into their fine root system to exploit N-rich 

patches, as displayed by higher SRL and 13C allocation to roots at higher N availability (Figure 



Publications and Manuscripts  84 

 

2.2-5). Plant economics seem to provoke a coupling of C investments to a sufficient N return 

(Hodge, 2009, 2004). The extent of the fine root network decreased where the extent of the 

extraradical AMF mycelium increased (Figure 2.2-5), indicating a trade-off of plant C investment 

in either network under aridity.  

Similar 13C allocation to roots and AMF extraradical mycelium in the upper 10 cm by plants in the 

Mediterranean coastal matorral (Figure 2.2-4) indicated that AMF and roots are equally supplied 

with freshly assimilated C and, thus, might be equally important for the nutrient acquisition. 

Further, high allocation of 13C to the AMF storage compound – even higher than to membrane 

lipids – might indicate that AMF not only fulfill a function of direct nutrient acquisition, but also 

of nutrient storage to retain them against ecosystem losses (Gavito and Olsson, 2003; Hodge and 

Fitter, 2010; Köhl and van der Heijden, 2016). A greater allocation of freshly assimilated C to 

AMF in the subsoil indicated that AMF are important for the plant resource acquisition from depth.  

2.2.5 Conclusions 

The objective of this study was to assess the nutrient acquisition strategies of woody species along 

a precipitation gradient. Water shortage in the arid shrubland and likely nutrient limitations in the 

humid-temperate forest lead to an expression of conservative root traits, likely indicating a slow 

plant nutrient uptake. In the Mediterranean coastal matorral, with high denudation rates, 

acquisitive root traits indicated a fast nutrient uptake. Similar plant investment in AMF across the 

precipitation gradient (max. 0.2-0.5‰ of assimilated 13C) underlined the common importance of 

the fungal partner for nutrient uptake by roots. The extraradical AMF mycelium was supplied with 

C to scavenge for P in all ecosystems, but further functions differed across the precipitation 

gradient. In the arid shrubland, AMF did not seem to support plant N acquisition, while in the 

humid-temperate forest the symbiosis between plant and fungi seemed to be strengthened for the 

transfer of N by increasing root colonization. In the Mediterranean coastal matorral was not only 

a close symbiosis maintained, but also the extraradical AMF mycelium supplied with C to 

scavenge for N. Thereby, AMF likely exert a function not observed in the arid shrubland or humid-

temperate forest: retaining mobile nutrients to prevent ecosystem losses.  
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Abstract 

Plants and microorganisms have an important role in the acquisition and cycling of nutrients in the 

ecosystems. To better understand how microbial communities contribute to nitrogen (N) recycling 

in soil, we measured the abundance of bacteria and fungi as well as the abundance of diazotrophs 

by quantifying nifH gene copy numbers using qPCR along three sites in Chile with a unique 

precipitation gradient ranging from 80 mm a-1 to >1500 mm a-1. The sites differ by their vegetation 

cover which ranges from arid semidesert to humid temperate rainforest, but all soils are derived 

from the granitoid parent material. Abundance of diazotrophs was measured using qPCR and 

expressed as nifH gene copy number. Carbon (C) and N contents, and δ15N signatures were 

combined with activities of N acquiring extracellular enzymes to determine N mineralization and 

immobilization processes in bulk topsoil samples as well as rhizosphere samples. The abundance 

of bacterial and fungal DNA, as well as nifH gene copy number decreased from humid temperate 

to arid sites along climate gradient. δ15N values increased with depth in Mediterranean and humid 

temperate soils, probably due to N leaching. High soil C:N ratios in all horizons under humid 

temperate forests show that N is limited, and microbial N immobilization is high. In contrast, the 

soil C:N ratios in arid shrubland and Mediterranean woodland is low and suggests N mineralization 

over microbial N immobilization. Activity of N acquiring enzymes was high under humid forest 

and Mediterranean woodland because of high N demand and losses. The extracellular enzyme 

activity (Vmax) of β-1,4-N-acetylglucosaminidase (NAG) increased with increasing precipitation 

from ~20 nM g-1 h-1 (arid) to ~100 nM g-1 h-1 (humid temperate), whereas aminopeptidase activities 

remained stable. These data indicate a shift in the organic nitrogen sources from a peptide-based 

N nutrition in arid conditions to a peptide- and chitin- based N nutrition in humid forest. In bulk 

soil, relative fungal abundance per soil organic carbon (SOC) was similar at all sites, which 

indicate equal importance of fungi for nutrient acquisition irrespective of aridity. On the contrary, 

higher relative fungal abundance per SOC in the rhizosphere of woodland and humid forests 

indicate that plants invest more into fungi than plants under arid conditions. The abundance of the 

diazotrophic community was higher in the rhizosphere in comparison to bulk soil. In bulk soil, the 

percentage of diazotrophs in prokaryotic parts of community varied between 0.18% and 0.64%, 

while diazotrophs percentage in the rhizosphere increased for more than 10 times suggesting the 

key role of easily available C as prerequisite for N fixation. These results, in addition to the high 

aminopeptidase activity and relative bacterial abundance per SOC in rhizosphere of shrubland and 

woodland, highlights the importance of N-fixation and protein-based nutrition as a N acquiring 

hotspot under dry conditions.  
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2.3.1 Introduction 

Soils are characterized by their extreme microbial and structural heterogeneity (Kuzyakov and 

Blagodatskaya, 2015; Regan et al., 2017) making them very complex parts of ecosystems (Jacoby 

et al, 2017). Soil microorganisms compete with plants for nitrogen (N) (Kuzyakov & Xu, 2013), 

one of the essential nutrients limiting the net primary production in terrestrial ecosystems 

(Vitousek and Howarth, 1991). Biological fixation by free-living and symbiotic diazotrophic 

microorganisms is the major natural source of N fixation in most terrestrial ecosystems (Bradley 

et al, 2014; Galloway et al., 2004). Several bacterial groups possess the nifH gene (Hirsch and 

Mauchline, 2015), a key structural gene for the nitrogenase enzyme which catalyzes the N2 

reduction to ammonium (Burk, 1934; Duc et al., 2009). While N fixation provides diazotrophs 

with an ecological advantage in N limited environments (Inomura et al., 2018), the growth 

efficiency of diazotrophs is negatively affected due to the high energy costs of N2 fixation (Heijnen 

and Roels, 1981) as well as additional costs of managing an oxygen-free environment as 

prerequisite for the dinitrogenase activity (Gallon, 1981). In fact, nitrogen fixation is 

downregulated with increasing N availability in soil (Menge and Hedin, 2009). However, during 

initial soil development, this is nearly the only N source providing a rate-limiting element for the 

progress of soil formation (Schulz et al., 2013). In addition, aerobic conditions can significantly 

reduce the rate of biological N fixation as the presence of oxygen inhibits the activity of 

nitrogenase enzymes (Gallon, 1981; Oelze, 2000). Therefore, rates of biological N fixation can be 

directly affected by soil moisture content (Hicks et al., 2003). 

Depth profiles of stable nitrogen isotope ratios (given as delta notation δ15N) can provide 

indications for processes of N input – such as N2-fixation – and N losses (Robinson, 2001). Low 

δ15N values of surface layers and an increasing 15N enrichment with soil depth are common 

(Amundson et al., 2003; Billings and Richter, 2006). The 15N enrichment with depth is often 

attributed to isotopic discrimination against 15N during biochemical reactions – mainly microbial 

utilization, resulting in a 15N depleted product pool in comparison to a 15N enrichment in the source 

material. If one of these product pools is subsequently removed from the soil (e.g. by plant 

assimilation, leaching, or volatilization), a 15N enrichment in the isotopic signature occurs (Hobbie 

and Ouimette, 2009; Robinson 2001). 

Since more than 90% of soil N is present in soil organic matter (SOM), the availability of N in 

most of the terrestrial ecosystems is controlled by mineralization. However, the availability of 

mineral N depends on whether the ecosystem’s N is in excess or limited (Turpin-jelfs et al., 2018), 

because heterotrophic soil microbial communities immobilize or liberate the mineralized N 

depending on their own demand, i.e. when N is limiting or in excess, respectively (Hassink, 1994).  
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In addition to bacteria, saprotrophic and mycorrhizal fungi also play an important role in degrading 

organic compounds (Hobbie and Hobbie, 2008). Ectomycorrhizal and ericoid mycorrhizal fungi 

harbor a set of enzymes capable of accessing recalcitrant N forms (Chalot and Brun, 1998). This 

ability of these mycorrhizal fungi to efficiently mine for N in the SOM, in combination with their 

large surface area for absorption of the released N compound, is an effective strategy to access 

organic N from complex polymers such as proteins and chitin (Read and Perez-Moreno, 2003). 

Therefore, plants effectively use that strategy to access resources beyond mineral N forms, and in 

return supply the mycorrhizal symbionts with carbohydrates as energy and carbon source (Hobbie 

and Wallander, 2006). This process is essential in N-limited ecosystems, where mineralization is 

insufficient to sustain plants’ N requirements. During decomposition, energy available to 

saprophytic microorganisms declines as compounds are degraded by secreted enzymes (Ågren and 

Bosatta, 1998). But since mycorrhizal fungi do not rely on C and energy supply from the SOM 

they decompose, but their energy sources are supplied by the plants, they can effectively compete 

for organic N compounds against free-living microbes (Lindahl et al., 2007). 

In this study, we investigated the effect of climate (abiotic factor), vegetation and microorganisms 

(biotic factors) on nitrogen cycling in soil. We hypothesize that (1) increasing precipitation along 

the climatic gradient leads to higher total N losses (mainly by leaching). (2) Microorganisms 

compensate for N losses differently depending on aridity. (3) Activity of primary N2 fixation is 

negatively coupled to the N content. To test the previously mentioned hypothesis, soil samples 

were collected along the depth profile of four sites along a climatic gradient ranging from arid to 

humid temperate. Abundance of bacterial and fungal populations, as well as activities of N 

acquiring extracellular enzymes, and δ15N signatures were measured in soil samples. We also 

investigated the abundance of diazotrophs by measuring nifH gene copy numbers in bulk and 

rhizosphere soil of all sites. 

2.3.2 Materials and Methods 

2.3.2.1 Study sites 

The four study areas are located in the Coastal Cordillera of Chile (from 29° to 38° southern 

latitude). They cover a climate gradient ranging from arid (Santa Gracia Natural Reserve 

(shrubland-SG) and Quebrada de Talca (shrubland-QdT) to Mediterranean (La Campana National 

Park (woodland -LC) and humid temperate (Nahuelbuta National Park (humid-termperate forest-

NA)). The mean annual precipitation and temperature changed from 80 mm a-1 and 18.8 °C in the 

arid site, to about 400 mm a-1 and 13.1 °C in the Mediterranean site, and to >1500 mm a-1 and 

7.4 °C in the humid-temperate site (Fick and Hijmans, 2017). From similar granitoid parent 

material developed Cambisols under arid (pH 5.5-7.0) and Mediterranean (pH 4.5-6.1) conditions, 



Publications and Manuscripts  93 

 

and Umbrizols and Podzols (pH 3.7 5.1) under humid conditions (Bernhard et al., 2018). A more 

detailed descriptions regarding the study sites, vegetation, and climate can be found in the studies 

by Oeser et al. (2018), Bernhard et al. (2018) and Stock et al. (2019). 

2.3.2.2 Soil sampling 

To evaluate long-term N cycling, bulk samples to a depth of max. 60 cm (shrubland-SG), 120 cm 

(woodland -LC), and 200 cm (humid-temperate forest-NA) were collected with a soil auger. The 

samples were divided into 10 cm (shrubland-SG, woodland -LC) and 25 cm (humid-temperate 

forest-NA) depth increments, respectively. Bulk topsoil samples were additionally collected from 

0 10 cm, 10-20 cm, and 20-30 cm depth to evaluate the effect of litter C input on N cycling. 

Rhizodeposits are a further important C input source. Therefore, rhizosphere soil (0-6 mm distance 

from root) was collected from soil profiles (4 in each site) in 3 depth increments. The soil profile 

from ground level till the transition from soil to saprolite was defined as 100%, and samples were 

collected from 0-50%, 50-100%, and >100%. In each site and for each sample set, sampling was 

done on both a north- and a south-facing slope.  

2.3.2.3 Stable nitrogen isotopic ratios, N and C contents 

Stable isotope ratios of nitrogen (δ15N) were simultaneously determined with N and C contents of 

dried and grounded soil from each samples set, using an elemental analyzer (Flash Elemental 

Analyzer, Thermo Fisher Scientific, Bremen, Germany) coupled to an isotope ratio mass 

spectrometer (Delta Plus with Confo III, Thermo Fisher Scientific, Bremen, Germany). 

As an integration of the soil 15N enrichment with depth (i.e., with soil age), the slope of the 

regression between soil δ15N and -ln(%N) was calculated, called ‘discrimination factor (β) 

(Billings and Richter, 2006; Natelhoffer and Fry, 1988). Therefore, the δ15N signature of the first 

sample set taken by an auger were used down to a maximum of 100 cm. δ15N signatures below 

100 cm were excluded as N (and C) contents were exceptionally high in 100-125 cm soil depth 

under the humid-temperate forest (see  Figure 2.3-1). 

2.3.2.4 Extracellular chitinase and protease activities 

Extracellular activities of chitinases (β-1,4-N-acetylglucosaminidase) and proteases were 

determined in a previous study (Stock et al., 2019) in aliquots of the rhizosphere soils (third sample 

set). Protease activity was calculated as the sum of individually determined tyrosine-

aminopeptidase and leucine-aminopeptidase activities.  
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2.3.2.5 Bacterial and fungal cultures 

Four fungal and four bacterial strains, isolated in pure cultures from bulk topsoil samples of the 

humid-temperate forest-NA, were used in this study as reference strains in qPCR analysis (Table 

S1). Genomic DNA extraction was performed as described earlier by Martin-Sanchez et al. (2018). 

Molecular identification of isolated strains was performed by PCR and sequencing of ribosomal 

markers, rDNA internal transcribed spacers (ITS) for fungi, and 16S rRNA gene (16S) for bacteria. 

All primers used are listed in Table S2. The following molecular markers were analyzed by 

conventional PCR, a fragment of 16S using the primers Bac27F (Jiang et al., 2006) and Bac 1492R 

(Turner et al., 1999) for bacteria, and the ITS region using the primers ITS4a (Hannula et al., 2012) 

and ITS5 (White, Bruns, Lee, & Taylor, 1990) for fungi. PCR reactions were performed in a 

BioRad C1000 Thermal Cycler (BioRad, Hercules, CA, USA). Cycling parameters for 16S were 

95 °C for 5 min, followed by 35 cycles of 95 °C for 20 s, 55 °C for 30 s, and 72 °C for 2 min, with 

a final step at 72 °C for 10 min. For ITS, cycling parameters were 95 °C for 5 min, followed by 35 

cycles of 95 °C for 30 s, 50 °C for 30 s, and 72 °C for 1 min (ITS), with a final extension at 72 °C 

for 10 min. Each PCR trial included a negative control (containing no DNA). All PCR products 

were checked by electrophoresis on 1% (w/v) agarose gels stained with GelRed dye (Genaxxon 

Bioscience GmbH, Ulm, Germany) and visualized under UV light. PCR products were purified 

using the Monarch PCR and DNA Cleanup kit (New England BioLabs) in accordance with the 

manufacturer’s instructions. Nucleotide sequencing was carried out commercially (Eurofins 

MWG Operon, Ebersberg, Germany) and strains were identified by comparing their rDNA 

sequences with GenBank using the BLAST algorithm from NCBI. 

2.3.2.6 Development of standard curves 

A mix of bacterial genomic DNA from four species isolated from soil samples, Pseudomonas sp., 

Pseudarthrobacter defluvii strain, Bacillus sp., and Streptomyces sp., was used as a template to 

generate bacterial standard curve.  Target template was subjected to serial dilutions, ranging from 

100 ng to 10 pg, and run in triplicates. Mixed genomic DNA of four fungal species isolated from 

soil samples, Penicillium sp., Cordyceps sp., Penicillium canescens, and Aspergillus lentulus 

strain, was used as a template for creating fungal standard curve. Target template was subjected to 

serial dilutions, ranging from 10 ng to 1 pg, and run in triplicates. The DNA of Vibrio ruber Gal42 

(Ullrich and Alfaro-Espinosa Master’s thesis) was used as a template for PolF/PolR primers and 

Bac27F/338R. To generate a standard curve for the nifH and 16S gene copy number, the purified 

PCR product was subjected to serial dilutions, ranging from 107 to 103 and 106 to 103 gene copy 

numbers respectively, and run in triplicates. 
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2.3.2.7 Quantification of microbial abundance by qPCR 

qPCR reactions were performed in a total reaction volume of 10 µL using the iTaq Universal 

SYBR Green Supermix (BioRad, Hercules, CA, USA) following the manufacturer's instructions. 

Quantification reactions were carried out in the CFX96 Real-Time PCR Detection System 

(BioRad) with the following cycling parameters for all primer sets: initial denaturation at 95 °C 

for 5 min, followed by 40 cycles of denaturation at 95 °C for 5 s and annealing-extension at 60 °C 

for 1 min. For real-time data collections during the annealing-extension step, fluorescence at 520 

nm was monitored. The melting curve was constructed by increasing temperature by 0.5 °C (from 

65 °C to 95 °C) and measuring fluorescence at 520 nm after each step. Every qPCR run included 

calibration standards previously used to construct standard curves and negative controls. At least 

one dilution of each soil sample was included to avoid inhibitory effects of co-extracted substrates. 

All samples were run in triplicates. Data analysis was carried out using the BioRad CFX 

ManagerTM 3.1 (BioRad). 

2.3.2.8 Quantification of nifH gene abundance by qPCR 

The nifH gene, which encodes for a subunit of the nitrogenase enzyme involved in microbial N2-

fixation, acts as a molecular marker for diazotrophs (Hsu and Buckley, 2009). Abundance of 

bacterial and fungal DNA in addition to diazotrophs were determined by quantitative polymerase 

chain reaction (qPCR). Bacterial abundance and gene copy number of 16S gene were quantified 

using the primer pair Bac27F (Nakatsu and Marsh, 2007; Wilson et al., 1990) and Bac338R 

(Stevenson et al., 2011) targeted on 16S marker. Fungal abundance was quantified using the primer 

pair NL1F (O'Donnell, 1992) and LS2r (Cocolin et al., 2001) targeted on 28S rDNA. Gene copy 

number of the nifH gene was determined using the primer pair PolF and PolR (Poly et al., 2001). 

2.3.2.9 Statistics 

Statistical analyses were conducted with R 3.5.2 (R Core Team, 2018). To test for significance of 

differences between sites and between soil depths, mixed linear models were calculated, using the 

R package ‘lme4’ (Bates et al., 2015). The interaction of site and depth was set as fixed effect, 

while slope, slope position, and field replicate were set as random effects. The R package 

‘multcomp’ (Hothorn et al., 2008) and multiple comparisons with a general linear hypothesis test 

function were used to obtain p values with a significance level of p≤0.05. Regression coefficients 

of δ15N ~-ln(N%) were tested with a Z test (Clogg et al., 1995). Principal component analyses 

(PCA) were performed after variables were scaled and centered using R 3.6.3 (R Core Team, 

2018). The variables included: N and C contents, δ15N, abundance of bacterial and fungal DNA, 
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and gene copy number of nifH and 16S genes. A biplot (scaled for correlation) of the PCA was 

generated using the package ‘ggbilpot’ (Vu, 2011). 

2.3.3 Results 

2.3.3.1 Nitrogen contents and δ15N signatures 

Nitrogen contents in soil were up to 2.7-fold and 6.8-fold higher under humid temperate forest 

than under Mediterranean woodland and arid shrubland, respectively ( Figure 2.3-1). Soil C:N 

ratios were highest under humid-temperate conditions. In Mediterranean woodland and arid 

shrubland, soil C:N ratios decreased in the upper 30 cm but were similar below 30 cm ( Figure 

2.3-1). Soil δ15N under humid temperate forest and Mediterranean woodland increased with 

increasing depth, while no change was observed under arid conditions ( Figure 2.3-1). In the first 

20 cm, δ15N values were lowest under Mediterranean conditions – between 1 and 2‰ – compared 

to the other two sites, where δ15N ranged between 3 and 10‰. The 15N discrimination factor was 

1.7-fold and 5.9-folds higher under Mediterranean woodland than under humid temperate forest 

and arid shrubland, respectively (Figure 2.3-2).  

 

Figure 2.3-1: Nitrogen content, soil C:N ratio, and δ15N signatures in soil depth profiles. Data are presented as 

means (n = 8) with standard errors. Arrows indicate direction of increasing aridity. Nitrogen contents and C:N 

ratios decrease markedly with increasing aridity. δ15N values were lowest in soil under Mediterranean conditions. 
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Figure 2.3-2: Regressions of δ15N 

vs. -ln(%N) for the arid shrubland 

(red), Mediterranean coastal 

matorral (blue), and humid 

temperate forest (black) as well as 

the regression slopes (β) presented 

with the regression standard errors. 

 

2.3.3.2 Activities of proteases and chitinases 

Activities of proteases and chitinases decreased with increasing soil depths in all sites, except for 

chitinase activities under arid shrubland (Figure 2.3-3). Chitinase activities in the topsoil decreased 

with decreasing precipitation and were 6.5 times higher under humid temperate than under arid 

conditions. Protease activities were also lowest under arid shrubland (1.8 times lower than under 

humid temperate forest) but were similar between humid temperate forest and Mediterranean 

woodland (Figure 2.3-3). In the mineral soil, chitinases and proteases activities were similar 

between all sites. Chitinase activities per SOC, on the contrary, were similar across biomes, while 

protease activities per SOC were highest in soil under arid conditions (Figure 2.3-3). 

 Figure 2.3-3: Extracellular enzyme 

activities (Vmax) of chitinases (left) and 

aminopeptidases (right) per g of soil 

(top row) and per nmol of SOC (bottom 

row). Data are presented as means with 

standard errors.  
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2.3.3.3 Bacterial and fungal abundance along the soil depths 

 

Figure 2.3-4: Quantification of microbial abundance along the depth in (A, B) bulk soil and (C, D) rhizosphere by 

qPCR using bacterial (Bac27f/338r) and fungal (NL1f/LS2R) primers in humid temperate forest, Mediterranean 

woodland, and arid shrubland. Data in A and C are expressed as ng of DNA per g soil, while in B and D they are 

expressed as ng of DNA per g organic carbon as sampled from the soil profile wall. Error bars represent standard 

errors of the means. Note the different Y scaling of depth for bulk and rhizosphere soil. 

DNA quantification by qPCR showed a decrease in the abundance of bacterial and fungal DNA in 

soil along the decreased precipitation (Figure 2.3-4). If solely topsoils are considered, bulk soil 

samples from humid temperate forest had the highest abundance in bacterial and fungal DNA with 

a maximum amount of 4.58x105 and 9.03x103 ng of DNA g-1 soil at depth 20-30 cm, respectively. 

Amounts are considerably lower with decreasing ecosystem precipitation and reach a minimum at 

the arid shrublands with 1.08x105 and 1.98x102 ng of DNA g-1 soil, respectively (Figure 2.3-4). 

Differences between sites were always lowest in the top 10 cm of the profile and increased already 

in the topsoil significantly with depth. Very pronounced site-specific differences in DNA content 

could be found when rhizosphere soil over up to two-meter-deep profiles were compared. 

Similarly, the abundance of bacteria and fungi in the rhizosphere was highest in soil under humid-

temperate forest in comparison to the Mediterranean woodland and arid shrubland. At depth of 0-

50 cm, forest rhizosphere soil had a maximum abundance of bacterial and fungal DNA of 3.04x105 

and 3.48x103 ng g-1 soil, respectively. Then they decreased at the arid shrublands to a minimum of 

4.71x104 and 6.64x101 ng of DNA g-1 of soil, respectively (Figure 2.3-4). 

Whereas the depth effect was present in nearly all datasets when considering absolute amounts of 

DNA, it largely disappeared when normalizing the DNA amounts per g of soil C (Figure 2.3-4). 

This suggests SOC as microbial growth resource largely determining microbial distribution along 

soil profiles with, with exception of the most arid site where a pronounced decrease in microbial 
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DNA per SOC was visible in rhizosphere as well as bulk topsoil. Regardless of the sampling site 

or soil depth, bacterial DNA was ~36 to ~710 folds more abundant in comparison to fungal DNA. 

2.3.3.4 Abundance of the diazotrophic community in soil 

 

Figure 2.3-5: Quantification of nitrogenase reductase (nifH) gene by qPCR depending on depths in humid temperate, 

Mediterranean, and arid soils. (A) (B) Data are collected from bulk soil, while in (C) (D) data are collected from the 

rhizosphere of the complete profile down to the saprolith. Abundance of nifH gene is expressed in gene copy number 

(A and C) and percentage of diazotrophy in prokaryotic parts of community (B and D). Data are expressed as gene 

copy number per gram soil. Error bars represent standard error of the mean. Note different Y scaling of depths for 

bulk and rhizosphere soils. 

In bulk topsoil, nifH gene copy number varied from 2.89x108 to 2.77x107 copies g-1 of soil (Figure 

2.3-5). While in the rhizosphere, it varied from 1.44x109 to 3.50x107 copies g-1 of soil (Figure 

2.3-5). In bulk topsoil as well as in rhizosphere soil, the nifH gene copy numbers decreased along 

the climatic gradient with decreased precipitation. At depth 0-10 cm, bulk soil from humid 

temperate forest had a maximum amount of 2.84x108 nifH copy numbers g-1 of soil, whereas soil 

from Mediterranean and arid sites contained 1.38x108 and 1.05 x108 gene copy numbers g-1 of 

soil, respectively (Figure 2.3-5). Similarly, rhizosphere soil of humid temperate forest at depth 0-

40 cm had maximum nifH gene copy number g-1 of soil of 1.44x109 and decreased to a minimum 

of 3.50x107 in arid shrublands (Figure 2.3-5). In bulk topsoils the site effect was weakest in the 

top 10 cm and increased – at least for the comparioson of humid-temperate forests to the more arid 

sites – in the deeper depth increment. However, when comparing rhizosphere soil along the 

complete profile down to the saprolith, nifH gene number was not different at the lowest depth 

(i.e. in the saprolith) but pronounced site effects in the nifH abundance could be found in the topsoil 

rhizopheres. 
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The percentage of diazotrophs in prokaryotic community was determined by comparing the total 

copy number of the nifH gene to that of 16S rRNA. Quantification of nifH genes indicate cells that 

can fix nitrogen, while 16S rRNA genes reflect total cell number. Rhizosphere had a frequently 

more than factor 10 higher percentage of diazotrophs compared to bulk soil at all sites. The 

percentage of diazotrophs in the rhizosphere varied between 2.09% and 8.20%, while those from 

bulk soil varied between 0.18% and 0.64% diazotrophs. Soil under humid temperate forest had the 

highest percentage of diazotrophs regardless of depth (Figure 2.3-5). 

2.3.3.5 Relation between microbial abundance and soil biochemical properties 

 

Figure 2.3-6: Principle component analyses generated from N and C contents, δ15N, abundance of bacterial and 

fungal DNA, and gene copy number of nifH and 16S genes in A) bulk and B) rhizosphere soil. Colors indicate study 

site and symbol shapes indicate north- or south-facing slope. Ellipses show two standard deviations of an assumed 

two-dimensional normal distribution for each study site. 

PCA of biotic and abiotic soil properties showed separation of sites to a different degree for bulk 

soil and rhizosphere soil, but not between north and south-facing slopes. For bulk topsoil, all sites 

were clearly separated (Figure 2.3-6). The humid forest was separated from the arid shrubland and 

the Mediterranean woodland by all variables (except δ15N) along principal component 1 (PC1, 

72.4% of variance). δ15N on the other hand separated the Mediterranean woodland from the two 

other sites and was correlated with principal component 2 (PC2, 13.9% of variance). In the 

rhizosphere, the humid temperate forest was also largely separated from the other two sites by all 

variables except δ15N along PC1 (80.9% of variance) but showed some overlap with the arid 

shrubland (Figure 2.3-6). δ15N, which was correlated with PC2 (12.4% of variance) separated the 

forest form the Mediterranean woodland, while the arid shrubland overlapped with both sites along 

this axis. 
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2.3.4 Discussion 

2.3.4.1 Precipitation and vegetation shape N losses 

During biochemical processes N bearing compounds will be isotopically fractionated by 

discrimination against the heavier 15N isotope (Hogberg, 1997). Whenever one or more N pools 

are translocated (even if the respective translocation process is not fractionating itself, like 

leaching), the re-allocation of a depleted or enriched fraction within the profile leads to distinct 

depth profiles in δ15N (Hobbie and Ouimette, 2009). The δ15N increased with depth in soil under 

humid-temperate and Mediterranean conditions, indicating a loss of nitrogen from soil. High C:N 

ratios in soil under humid-temperate forest indicate greater microbial N immobilization than N 

mineralization ( Figure 2.3-1; Bengtsson et al., 2003; Janssen, 1996), which reduces the leaching 

potential of N. On the contrary, high N contents but low C:N ratios indicated that microbial N 

mineralization is high in the soil at the Mediterranean site ( Figure 2.3-1; Bengtsson et al., 2003; 

Janssen, 1996). A fast N mineralization in soil under Mediterranean woodland, was also indicated 

by the highest discrimination factor across the gradient (i.e., the strongest 15N enrichment with 

decreasing N content with depth) (Figure 2.3-2; Natelhoffer and Fry, 1988). By a decoupling of 

microbial activity and plant activity during dry seasons (Kuzyakov and Xu, 2013), inorganic N 

can accumulate in arid and semiarid systems (McCulley et al., 2009; Reichmann et al., 2013). 

Accumulated mineral N is highly susceptible to leaching during the wet season (Chen et al., 2019; 

McCulley et al., 2009; Reichmann et al., 2013). While soil C:N ratios at the arid shrubland are also 

low and indicate greater N mineralization than microbial N immobilization ( Figure 2.3-1; 

Bengtsson et al., 2003; Janssen, 1996), the annual precipitation is insufficient to translocate mobile 

N pools downwards, as indicated by constant δ15N with soil depth ( Figure 2.3-1).  

Thus, it is like that the greatest N losses from soil occur from the woodland under Mediterranean 

conditions, which would be in line with highest denudation rates observed in the Mediterranean 

woodland across the precipitation gradient (Schaller et al., 2018; van Dongen et al., 2019). This 

was also supported by the PCA (Figure 2.3-6), which showed a clear separation of the 

Mediterranean woodland from the other two sites by δ15N.  

2.3.4.2 Microbial N fixation contributes to ecosystem N gain 

High N losses under Mediterranean woodland and high N demand in humid temperate forest call 

for an efficient N recycling. This became evident with high N acquiring enzyme activities under 

Mediterranean woodland and humid forest (Figure 2.3-3). While protease activities did not differ 

between the two sites, activities of NAG, a chitinase important for mineralizing N from chitin 
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(Olander and Vitousek, 2000), increased with precipitation (Figure 2.3-3). Increasing NAG 

activities reflect a source shift of organic N, from a peptide-based dominated nutrition under arid 

and semiarid conditions to a peptide- and chitin-based N nutrition for microorganisms under humid 

forest (Stock et al., 2019). The nutritional shift was also reflected in the bacterial and fungal 

abundance relative to SOC (Figure 2.3-4).  

Greater relative bacterial abundance under arid shrubland and semiarid woodland in comparison 

to humid forest underlines the greater importance of bacteria (as peptide-rich biomass) as N source 

under dry than under humid conditions. Higher bacterial abundance as well as protease activity 

per SOC in the rhizosphere under shrubland and woodland than under forest (Figure 2.3-3, Figure 

2.3-4) highlighted, further, the increasing importance of the rhizosphere as hotspot of plant nutrient 

acquisition with decreasing water availability (Ahmed et al., 2014; Carminati et al., 2010; Holz et 

al., 2018). This was supported by markedly higher diazotrophs percentages in the rhizosphere than 

in bulk soil in all sites (~10, ~8, and ~16 folds under shrubland, woodland, and forest, respectively) 

(Figure 2.3-5) which is consistent with the rhizosphere effect (Burgmann et al., 2005; Kuzyakov 

and Razavi, 2019). High abundance of diazotrophs in the rhizosphere showed that N-fixation is 

greater in root proximity than in bulk soil (Figure 2.3-5), which underlines the importance of 

rhizosphere as N acquisition hotspot. Symbiotic N-fixing microorganisms, such as Rhizobia, and 

free-living N-fixing bacteria, such as Azotobacter, are both profiting from the benefits a root 

association provides (Poole et al., 2018; Smercin et al., 2019).  

Generally, importance of N-fixation decreased from humid forest to arid shrubland (Figure 2.3-5). 

Biological N-fixation is an immensely C costly process, which can only be supported if 

environmental conditions (such as nutrient, water, or light availability) allow sufficient plant 

primary production and, thus, plant C investment in diazotrophs (Burgmann et al., 2005; Klucas, 

1991). Under arid and semiarid conditions, however, water shortage likely hampers the investment 

in N-fixing microorganisms. In addition, mean annual precipitation increases from arid shrubland 

to humid forest which increases the soil moisture content (Bernhard et al., 2018). As this occurs, 

formation of anaerobic conditions favorable for diazotrophs also increases since biological N-

fixation requires anaerobic conditions (Hicks et al., 2003). 

Soil fungal biomass positively correlate to enzyme activity of NAGs (Parham and Deng, 2000) 

because their cell walls contain N-acetylglucosamine, a main substrate of NAGs (Rietl and 

Jackson, 2012). On the other hand, several publications showed a negative correlation between 

fungal biomass and N availability (Boyle et al., 2008; M. N. Hogberg et al., 2007; Myers et al., 

2001). This is consistent with our results in which abundance of fungi per SOC was found highest 

in the humid temperate rhizosphere characterized by highest NAG activity (Figure 2.3-4). Lower 
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fungal abundance in the rhizosphere per SOC under arid shrubland than in the rhizosphere of the 

other sites (Figure 2.3-4) indicated that plants under arid conditions invest not only less into N 

fixation but also into fungi than plants under Mediterranean or humid conditions. The similar 

relative fungal abundance in bulk soil between all sites (Figure 2.3-4), however, shows that fungi 

are of similar importance for nutrient acquisition regardless of aridity intensity. 

2.3.5 Conclusions 

Microbes played an important role in recycling of organically bound N. Major factors causing N 

losses in soil were annual precipitation and vegetation cover. As precipitation increased from arid 

shrubland to humid forest, more N losses were observed. However, high dense vegetation cover 

in humid forests reduced the impact of high precipitation on NO3- leaching and soil loss by 

erosion. Thus, highest N losses were found in Mediterranean woodland because of the high annual 

precipitation compared to arid shrubland, but low vegetation cover compared to humid forests. 

NAG activities and relative bacterial and fungal abundance indicate a N source shift from a 

protein-based nutrition recycling under arid and semiarid conditions to a protein- and chitin-based 

N nutrition under humid forest. The percentage of diazotrophy in prokaryotic parts of bulk soil 

community was found between 0.18% and 0.64% diazotrophs and increased to 2.09% and 8.20% 

in the rhizosphere. Higher abundance of diazotrophs in the rhizosphere than in bulk soil highlights 

the importance of the rhizosphere as hotspot for initial N acquisition – N fixation from atmosphere. 

Greater relative bacterial abundance and aminopeptidase activities with increasing aridity 

underline, additionally, the rhizosphere importance as hotspot for N acquisition with intensifying 

aridity.  
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Abstract 

Microbial activity and functioning in soils are strongly limited by the availability of C, of which a 

great proportion is released by roots. Root exudates stimulate microbial activity and growth, or 

shift the stoichiometric balance between C, N, and P. Thereby, exudates heighten microbial 

nutrient demand and acquisition of N and P, leading to an increase in enzyme production. Aim of 

this study was to determine environmental controls of extracellular enzyme production, and hence 

on potential enzyme activities (Vmax) and substrate affinities (Km). To determine the controlling 

factors, we worked on four scales from the microscale (i.e. rhizosphere) through the mesoscale 

(i.e. soil depth) and landscape scale (relief positions), and finally to the continental scale (1200 km 

transect within the Coastal Cordillera of Chile). Kinetics of seven hydrolyzing enzymes of the C, 

N, and P cycles (cellobiohydrolase, β-glucosidase, β-xylosidase, β-N-acetylglucosaminidase, 

leucine-aminopeptidase, tyrosine-aminopeptidase, and acid phosphatase) were related to soil 

texture, C and N contents, pH, and soil moisture via redundancy analysis (RDA). Potential 

activities of C, N, and P acquiring enzymes increased up to 7-times on the continental scale with 

rising humidity of sites and C and N contents, while substrate affinities simultaneously declined. 

On the landscape scale, neither Vmax nor Km of any enzyme differed considerably between north 

and south slopes. From top- to subsoil (down to 120 cm depth) potential activities decreased 

(strongest of aminopeptidases under humid temperate conditions with up to 90%). Substrate 

affinities, however, increased with greater soil depth only for N and P acquiring enzymes. 

Affinities of cellobiohydrolase and β-xylosidase, on the contrary, were 1.5- to 3-times higher in 

top- than in subsoil. A rise of potential activities from bulk soil to root was observed for N and P 

acquiring enzymes and β-glucosidase. Simultaneously, substrate affinities of N and P acquiring 

enzymes declined, whereas affinities of β-glucosidase increased. These trends of activities and 

affinities in the rhizosphere were significant only for acid phosphatase. The RDA displayed a 

strong relation of potential activities of C and P acquiring enzymes and β-N-acetylglucosaminidase 

to C and N contents as well as to the silt and clay contents. Aminopeptidase activity was mainly 

dependent on soil moisture and pH. We conclude that substrate availability for microorganisms 

mainly determined enzyme activity patterns on the continental scale (i.e. the humidity gradient). 

Patterns on the meso- and microscale are primarily controlled by nutrient limitation, which is 

induced by a shift of the stoichiometric balance due to input of easily available C by roots in the 

rhizosphere. 
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2.4.1 Introduction 

Extracellular enzymes, originating largely from plant roots and soil microorganisms (Burns et al., 

2013), catalyze soil organic matter decomposition (SOM). Enzymes split organic polymers into 

soluble molecules and ions, which can be assimilated by microorganisms and taken up by plant 

roots (Allison and Vitousek, 2005; Sinsabaugh et al., 2008). Microbial activity in soil is mainly 

limited by available carbon (C) (Blagodatsky and Richter, 1998; Hodge et al., 2000; Schimel and 

Weintraub, 2003), of which root exudates and decaying litter are the largest source (Bertin et al., 

2003; Kuzyakov, 2002a; Pausch and Kuzyakov, 2018). Exudates are easily degradable and are 

thus highly available substrate for microorganisms (Bertin et al., 2003; Schimel and Weintraub, 

2003; Meier et al., 2017), which can stimulate microbial activity and growth (Blagodatskaya et al., 

2014; de Graaff et al., 2010; 2014, de Nobili et al., 2001), and in turn increase C demand and 

investment into C and nutrient acquisition (i.e. enzyme synthesis) (Hernández and Hobbie, 2010).  

Labile C stimulates not only microbial activity as readily available energy source, but also shifts 

the stoichiometric balance between C, nitrogen (N), and phosphorus (P) (Cheng and Kuzyakov, 

2005; Phillips et al., 2011; Sinsabaugh and Moorhead, 1994). Thereby, labile C heightens 

microbial nutrient demand, which can be compensated by an upregulation of enzyme synthesis 

and a degradation of nutrient-rich compounds to maintain stoichiometric homeostasis (Chen et al., 

2014; Cheng and Kuzyakov, 2005; Phillips et al., 2011; Sinsabaugh and Follstad Shah, 2012; 

Sinsabaugh et al., 2014). The upregulation of enzyme synthesis does not necessarily aim to boost 

enzyme activities, but also to produce enzymatic systems with higher substrate affinities to 

strengthen the competitiveness of microorganisms by a more efficient SOM and litter 

decomposition (Klipp and Heinrich, 1994; Kuzyakov and Xu, 2013; Stone and Plante, 2014). 

Whether enzyme production is upregulated depends on the cost efficiency of resource allocation 

into enzyme production in relation to microbial growth (Moorhead et al., 2012; Sinsabaugh and 

Follstad Shah, 2012).  

Biochemical reaction products or a high availability of the target element (e.g. C, N, or P) can 

suppress enzyme activity. If sufficient easily available compounds are present to cover the cells’ 

energy demands, the synthesis of new extracellular enzymes can be inhibited, (Sinsabaugh et al., 

1993), as reported for N and P acquiring enzymes (DeForest et al., 2012; Olander and Vitousek, 

2000; Turner and Wright, 2014). Alternatively, enzyme activity can be stimulated by the presence 

of their target substrate (Allison and Vitousek, 2005; Kielak et al., 2013). Microbial nutrient 

acquisition strategies (i.e. the allocation of resources into the synthesis of specific enzymes), 

therefore, likely change according to substrate and nutrient availability. 
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Extracellular enzyme activities are affected further by abiotic factors such as soil moisture, pH, 

and soil particle size distribution (Acosta-Martínez and Tabatabai, 2000; Sanaullah et al., 2011; 

Stemmer et al. 1998). They either directly modify enzyme activities, e.g. via conformation 

changes, binding onto soil particles, or the dependence on diffusion rates (Davidson and Janssens, 

2006; Quiquampoix et al., 1992; Turner, 2010), or indirectly such as via altering substrate 

solubility, substrate concentration and accessibility, or grazing pressure on microorganisms (Burns 

et al., 2013; Kuzyakov and Mason-Jones, 2018 (in press); Ruamps et al., 2011). Responses of 

enzyme activities to moisture and pH changes are complex and vary depending on the ecosystem 

settings, scales, and ambient conditions to which enzymes are adapted (Allison and Jastrow, 2006; 

Dick and Tabatabai. 1987; Burns et al., 2013; German et al., 2012; Turner, 2010), rising a 

challenge for studies on enzyme driven SOM decomposition and nutrient release across and within 

ecosystems. Former and recent studies well covered the response of extracellular enzymes to 

moisture shifts (e.g. Burns et al., 2013; Sanaullah et al., 2011; Steinweg et al., 2012) as well as 

rhizosphere effects (e.g. Dakora and Phillips, 2002; Phillips et al., 2011; Tarafdar and Jungk, 1987; 

Weintraub et al., 2007). Studies on enzyme kinetics were conducted on several scales, ranging 

from a continental scale (as the global distribution of activities (e.g. Sinsabaugh et al., 2008)) to 

focusing on microscales (as activity distribution in the rhizosphere (e.g. Razavi et al., 2016)). 

Directions and responses, however, are not consistent and simultaneous measurements of enzyme 

activities on multiple scales are scares.  

By working on four spatial scales, we aimed to gain deeper insights on the regulatory effects of 

substrate availability and stoichiometric constraints on extracellular enzyme activities. Therefore, 

we analyzed kinetics of seven hydrolyzing enzymes of the C, N, and P cycles, responsible for 

cellulose and hemicellulose degradation, chitin and protein decomposition, and P acquisition via 

dissociation of phosphoric acid, and which are representative for decomposers of easily and 

complex substrates, on four scales: continental, landscape, meso-, and microscale. 

We hypothesize that (1) on the continental scale, i.e. across ecosystems with a strong gradient in 

mean annual precipitation (MAP) and vegetation cover, enzyme activities are stimulated while 

substrate affinities decrease in response to increasing precipitation and plant biomass (litter) input 

(i.e. substrate availability). (2) On the landscape scale, represented by opposite slopes with 

different vegetation cover induced by deviating moisture regime, we also expect enzyme activities 

to rise with higher soil moisture. (3) On the medium scale of the soil profile (characterized by 

decreasing C and N contents with depth), we hypothesize enzyme activities to decrease from top- 

to subsoil, while substrate affinities enhance, in response to substrate scarcity in the subsoil. (4) 

On the microscale, i.e. from bulk soil to rhizosphere characterized by a C, N, and C:N increase, 
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we hypothesize enzyme activities are stimulated, while substrate affinities decline in response to 

higher substrate availability.  

2.4.2 Material and Methods 

2.4.2.1 Study area 

Study areas are located within the Coastal Cordillera of Chile between 29 ° and 38 ° southern 

latitude (Figure 2.4-1). The study sites cover a climate gradient from humid temperate (Parque 

National Nahuebluta (NA)) to Mediterranean (Parque National La Campana (LC)) and semiarid 

(Reserva Santa Gracia (SG)), with soils developed on granitoid parent material in all sites. 

Altitude and distance to the Pacific Ocean of the sites increase from north to south. In Nahuelbuta, 

Umbrisols and Podzols are present (pH 3.7-5.1), covered with a dense coniferous forest (Table S 

2.4-1; Bernhard et al., 2018). In La Campana, a patchy deciduous forest and evergreen 

sclerophyllous shurbs cover primarily Cambisols (pH 4.5-6.1) (Table S 2.4-1; Bernhard et al., 

2018). In Santa Gracia, the developed Cambisols (pH 5.48-7.0) are covered mainly with 

sclerophyllous shrubs and cacti (Table S 2.4-1; Bernhard et al., 2018). For a more detailed 

description of the study sites see Table S 2.4-1 as well as Bernhard et al. (2018) and Oeser et al. 

(2018). 

Figure 2.4-1: Study site overview. Showing mean 

annual precipitation (MAP) and mean annual 

temperature (MAT) along the continental gradient 

(WorldClima data Version 2, Fick and Hijmans et 

al., 2017). Study sites from north to south: Santa 

Gracia, La Campana, Nahuelbuta. 

 

 

 

2.4.2.2 Soil sampling and analyses 

Soil samples were collected in summer 2016 from four soil pits in each study site; three on a south-

exposed slope, arranged as a catena encompassing a soil pit at top-, mid-, and toe-slope positions, 

and one on a north-exposed slope at mid-slope position. Soil was sampled in three distances from 

channels of young living roots (0-2 mm, 2-4 mm, 4-6 mm), in three soil increments. Depth 

increments were chosen as percentage of depth until saprolite. The upper 30 % of the soil profile 

encompassed the topsoil, the increment between 30 % and 70 % the subsoil. The third increment 
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encompassed the lower part of the soil profile down to the start of the saprolite. In total, 97 samples 

were collected. After sampling, the material was directly cooled and stored at 4 °C until analyses.  

Gravimetric water content was determined by drying aliquots of the samples at 105 °C until 

constant weight. For determining C and N contents, aliquots of the samples were dried (50 °C) and 

subsequently ground milled. The measurement of C and N was conducted simultaneously by an 

elemental analyzer (NA1500, Fisons instruments, Milano, Italy). Soil particle size fraction and pH 

data were acquired by Bernhard et al. (2018) from samples taken in the same soil pits and during 

the same time as our samples. These samples, however, were collected in different soil depth 

increments and not in rhizosphere gradients. 

2.4.2.2.1 Enzyme assays 

Activities of the extracellular enzymes were determined using synthetic fluorogenic substrates 

(Marx et al., 2001) (see Table 2.4-1). Subsamples (0.5 g) of the cooled (4 °C) soil samples were 

pre-incubated 24 h in sterile 100 ml jars. After pre-incubation, 50 ml of sterile water was added to 

the jars and shaken for 30 min. Subsequently, the soil solution was sonicated (40 J s-1; 2 min) 

before aliquots of 50 µl were pipetted into black polystyrene 96-well microplates (Brand, 

Germany). Afterwards, 50 µl of buffer (0.1 M MES (pH 6.1) for 4-methylumbelliferone (MUF) 

linked substrates; 0.05 M TRIZMA (pH 7.8) for 7-amino-4-methylcoumarin (AMC) associated 

substrates) and 100 µl of substrate solution (0, 10, 20, 30, 40, 50, 100, and 200 µmol g-1) were 

added. Three analytical replicates were measured for each sample at each substrate concentration. 

Fluorescence was measured by a microplate reader (Victor³ 1420-050 Multi label Counter; 

extinction: 355 nm, emission: 460 nm) immediately after substrate addition (t0) and 2 h after 

addition (t1). For calibration and accounting for quenching, standard plates were prepared with 

50 µl of a composite soil solution (for each site and depth), with 150, 145, 140, 130, 100, 70, and 

30 µl of buffer (MES or TRIZMA) and 0, 5, 10, 20, 50, 80, and 120 µl standard (MUF or AMC), 

respectively. Plates were measured at t0 and t1. With the regression slopes of the standard 

measurements, enzyme activities of the samples were calculated [nmol substrate g-1 soil h-1]. 

Activities were fitted by the Michaelis-Menten Equation, which describes non-linear saturation 

curves: 

v = (Vmax x [S]) / (Km + [S]) (2.4-1) 

with S as the added substrate concentrations, Vmax as the maximal rate of enzymatic activity under 

optimum substrate conditions, and Km as the half-saturation constant as indicator for substrate 

affinity. The residual standard errors (RSE) of the fitted non-linear saturation curves are given in 

Table S 2.4-2. 
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Table 2.4-1: Overview of extracellular enzymes with respective fluorogenic substrates (Marx et al., 2001) and 

ecological functions. 

 
 

2.4.2.3 Statistical analysis 

All statistical analyses were conducted using R 3.4.3 (R Core Team, 2017). To evaluate the 

differences of soil parameters (C, N, C:N, soil moisture) and enzyme kinetics (Vmax and Km) 

between sites, slope aspects, soil depths, and root proximity, generalized linear mixed effect 

models (GLMM) were calculated using the R package ‘lme4’ (Bates et al., 2015). To determine 

the fixed effect ‘site’, we specified slope aspect as further fixed effect, and soil profile and soil 

depth as nested random effects. To determine the fixed effect of ‘slope aspect’, ‘soil depth’ and 

‘root proximity’ (without interaction terms), we specified soil profile as nested random effect. p 

values were obtained by multiple comparisons with a general linear hypotheses test function using 

the R package ‘multcomp’ (Hothorn et al., 2008).  

Redundancy analyses (RDA) were calculated to determine the effects of the soil variables C, N, 

C:N, moisture, pH, and particle size fractions on enzyme activities, as well as to test for the effects 

of these factors on C and N contents in soil. RDAs were conducted with the ‘vegan’ package 

(Oksanen et al., 2017) on scaled and log-transformed data. Type II scaling (correlation) plots are 

shown in the results including only significant constraining variables.  

Enzyme Fluorogenic substrate Function

acid phosphatase

(EC 3.1.3.2)

β-N-acetylglucosaminidase

(EC 3.2.1.14)

β-xylosidase

(EC 3.2.2.37)

β-glucosidase

(EC 3.2.1.21)

β-cellobiohydrolase 

(EC 3.2.1.91)

leucine-aminopeptidase

(EC 3.4.11.1) 

tyrosine-aminopeptidase

(EC 3.4.11)

L-tyrosine-7-amino-4-

methylcoumarin

cleaving of peptide bonds in 

proteins

4-methylumbelliferone-

phosphate

P-acquisition via dissociation 

of phosphoric acid

4-methylumbelliferone-acetyl-

β-D-glucosaminide

hydrolysis of 

chitooligosaccharides into N-

acetylglucosamine

L-leucine-7-amino-4-

methylcoumarin

cleaving of peptide bonds in 

proteins

hydrolysis of simple sugars

4-methylumbelliferone-β-D-

xylopyranoside
hydrolysis of hemicellulose

4-methylumbelliferone-β-D-

cellobioside
hydrolysis of cellulose

4-methylumbelliferone-β-D-

glucoside
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2.4.3 Results 

2.4.3.1 Soil properties 

C content in soil increased stronger on the continental and landscape scale than N content (3- to 4-

times compared to 2- to 3-times) (Figure 2.4-2). On the mesoscale, C content decreased between 

20% (in Santa Gracia) and 85% (in Nahuelbuta) from top- to subsoil, while N content declined 

between 25% (SG) and 80% (NA). On the microscale, C content was1.5- to 2-times higher in root 

proximity than bulk soil, while N content was similar, resulting in 1.1- to 1.2-times higher C:N 

ratios in root proximity (0-2 mm) than in bulk soil 

(4-6 mm) (Figure 2.4-2). 

 

Figure 2.4-2: Depth profiles of carbon content, nitrogen 

content, C:N ratio, and soil moisture in Nahuelbuta (black 

triangles), La Campana (blue circles), and Santa Gracia 

(red diamonds), separated by root proximities – 0-2 mm 

(darkest shade), 2-4 mm, and 4-6 mm (lightest shade). Data 

points represent meansSE of south-exposed slopes (n = 3). 

C and N content, as well as C:N show clear increase 

(p<0.05) from bulk soil to roots in the sites under humid 

temperate (Nahuelbuta) and under Mediterranean (La 

Campana) climate conditions; especially in the topsoil. 

 

2.4.3.2 Enzyme activities 

Potential activities (Vmax) of C, N, and P acquiring enzymes increased on the continental scale with 

higher soil moisture (Figure 2.4-3). The strongest rise (up to 7-times) was observed for -

xylosidase, -N-acetylglucosaminidase, and acid phosphatase. On the landscape scale, activities 

of C, N, and P acquiring enzymes (except tyrosine-aminopeptidase) showed trends (p>0.05) of 

higher activities on the south than north slope at the sites under humid temperate (Nahuelbuta) and 

Mediterranean (La Campana) climate. Activities for most enzymes decreased from top- to subsoil 

(Figure 2.4-4). The strongest decrease was detected at the site under humid temperate climate 

conditions (up to 90 % for both aminopeptidases). Under semiarid climate conditions (Santa 

Gracia), only the protein degrading leucine-aminopeptidases decreased with soil depth. Root 

effects on enzyme activities (i.e. higher activities in root proximity than in bulk soil) were similar 

at sites under humid temperate and Mediterranean climate conditions, for C, N, and P acquiring 

enzymes (p>0.05) (Figure 2.4-5). Root effects on enzyme activities were mostly absent at the site 

under semiarid conditions (except for tyrosine-aminopeptidase). 
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Figure 2.4-3: Continental gradients of potential activities (Vmax) and substrate affinities (Km) of the extracellular 

enzymes (from left to right): CBH = β-cellobiohydrolase, BGL = β-glucosidase, BXY = β-xylosidase, NAG = β-N-

acetylglucosaminidase, LEA = leucine-aminopeptidase, TYA = tyrosine-aminopeptidase, ACP = acid phosphatase. 

Sites: Santa Gracia (SG), La Campana (LC), and Nahuelbuta (NA). Data present meansSE of north and south 

slopes and all soil depths and root distances (SG, LC: n = 36; NA: n = 24. Letters indicate significant (p<0.05) 

differences of activities and affinities between the study sites identified by GLMM. Activities of C-, N-, and P-

acquiring enzymes increase with humidity, while substrate affinities decrease (i.e. increasing Km). Blue arrows 

show effects of the continental moisture gradient on the enzyme activities and affinities. 

 

Figure 2.4-4: Potential activities (Vmax) and substrate affinities (Km) separated by soil depth (1 = topsoil, 2-3 = 

subsoil) of (from left to right): CBH = β-cellobiohydrolase, BGL = β-glucosidase, BXY = β-xylosidase, NAG = β-N-

acetylglucosaminidase, LEA = leucine-aminopeptidase, TYA = tyrosine-aminopeptidase, ACP = acid phosphatase. 

Sites: Santa Gracia (SG), La Campana (LC), and Nahuelbuta (NA). Soil depths: 1 = triangle, 2 = square, 3 = inverted 

triangle – Santa Gracia: 0-40 cm, 40-80 cm, 80-200 cm; La Campana: 0-60 cm, 60-120 cm, 120-200 cm; Nahuelbuta: 



Publications and Manuscripts  117 

 
0-80 cm, 80-160 cm. Data present meansSE of both slopes and all root distances separated by soil depths (n = 12). 

Letters indicate significant differences (p<0.05) between soil depths. Activities of C-, N-, and P-acquiring enzymes 

are higher in the topsoil (depth 1) than subsoil (depth 2 and 3) at the sites under humid temperate (NA) and 

Mediterranean (LC) climate conditions. Substrate affinities of C-acquiring enzymes are tendential (p>0.05) higher in 

the topsoil than subsoil, while substrate affinities of N- and P-acquiring enzymes are tendential (p>0.05) lower in the 

topsoil and higher in the subsoil. 

 

Figure 2.4-5: Enzyme 

activities (Vmax) from bulk soil 

(6-4 mm) to root proximity (2-

0 mm). Nahuelbuta = top 

row; La Campana = middle 

row; Santa Gracia = bottom 

row. Data present meansSE 

from both slopes and all soil 

depths (SG, LC: n = 12; NA: 

n = 8). From left to right: 

CBH = β-cellobiohydrolase, 

BGL = β-glucosidase, BXY = 

β-xylosidase, NAG = β-N-

acetylglucosaminidase, LEA 

= leucine-aminopeptidase, 

TYA = tyrosine-

aminopeptidase, ACP = acid phosphatase. GLMM only identified activity differences of acid phosphatases in La 

Campana (Mediterranean climate conditions) as significant (p<0.05; indicated by letters). Blue arrows show effects 

of the rhizosphere gradient on enzyme activities. Trends (p>0.05) of increasing activities from bulk soil to roots of C-

, N-, and P-acquiring enzymes were detected at the sites under humid temperate (Nahuelbuta) and Mediterranean (La 

Campana) climate conditions. At the site under semiarid conditions (Santa Gracia) only tyrosine-aminopeptidase 

activities showed an increasing trend (p>0.05) from bulk soil to roots. 

2.4.3.3 Enzyme substrate affinities 

Substrate affinities of C, N, and P acquiring enzymes declined (i.e. increasing Km) on the 

continental scale from semiarid to humid climate conditions, while potential enzyme activities 

(Vmax) grew (Figure 2.4-3). On the landscape scale, the only clear trend (p>0.05) was observed for 

-cellobiohydrolase, which had lower substrate affinities on the south than north slope at the sites 

under humid temperate and Mediterranean conditions. N and P acquiring enzymes had generally 

higher substrate affinities in the subsoil, while substrate affinities of C acquiring enzymes were 

higher in the topsoil (up to 1.5- to 3-times) (Figure 2.4-4). Higher affinities of C acquiring enzymes 
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in the subsoil than in the topsoil were common only under semiarid climate conditions. From root 

to bulk soil, affinities of C acquiring enzymes generally decreased (p>0.05), while affinities of N 

and P acquiring enzymes increased (p>0.05) (Figure 2.4-6).  

 

Figure 2.4-6: Substrate affinities (Km) 

from bulk soil (0-6 mm) to root 

proximity (2-0 mm). Nahuelbuta = top 

row; La Campana = middle row; 

Santa Gracia = bottom row. Data 

present meansSE from both slopes 

and all soil depths (SG, LC: n = 12; 

NA: n = 8). From left to right: CBH = 

β-cellobiohydrolase, BGL = β-

glucosidase, BXY = β-xylosidase, 

NAG = β-N-acetylglucosaminidase, 

LEA = leucine-aminopeptidase, TYA 

= tyrosine-aminopeptidase, ACP = 

acid phosphatase. GLMM only 

identified affinity differences of acid 

phosphatases in La Campana (Mediterranean climate conditions) as significant (p<0.05; indicated by letters). Blue 

arrows show effects of the rhizosphere gradient on substrate affinities. The strongest trends of substrate affinities were 

detected at the site under humid temperate conditions (Nahuelbuta): Affinities of C-acquiring enzymes increased from 

bulk soil to root, while affinities of N- and P-acquiring enzymes decreased. 

2.4.3.4 Effects of abiotic and biotic factors on enzyme activities 

Constrained axes of the RDA on potential enzyme activities were able to explain 57.1 % of their 

variation. The first and second axis of the RDA accounted for 41.4 % and 8.6 %, respectively 

(Figure 2.4-7). C and N contents strongly determine potential activities of all enzymes except of 

aminopeptidases (Figure 2.4-7). All these enzymes were primarily associated with the medium silt 

(6.3 – 20 µm), fine silt (2 – 6.3 µm), and clay (< 2µm) fraction of soil particles, whereas 

aminopeptidases were rather associated to the coarse silt fraction (20-63 µm) (Figure 2.4-7). 

Variance of aminopeptidases, and especially tyrosine-aminopeptidases, activities were primarily 

explained by soil moisture and pH (Figure 2.4-7). While soil moisture exerted a negative and pH 

a positive effect on aminopeptidase activities, these relations were reversed for the other enzymes. 

Only potential activities of β-glucosidase seemed less affected by pH (Figure 2.4-7).  
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Figure 2.4-7: Redundancy analysis 

on potential activities of 

cellobiohydrolase (CBH), b-

glucosidase (BGL), b-xylosidase 

(BXY), b-N-acetylglucosaminidase 

(NAG), leucine-aminopeptidase 

(LEA), tyrosine-aminopeptidase 

(TYA), and acid phosphatase (ACP) 

with C and N contents, soil moisture, 

pH, and particle size fractions as 

constraints. The overall RDA was 

significant with 999 permutations. A 

type II scaling (correlation) plot is 

shown, including only significant 

constraining variables. The 

constraining variables explained 57.1 % of the total variance. 

Constrained axes of the RDA on C and N contents were able to explain 87.8 % of the variation. 

The first and second axis of the RDA accounted for 87.4 % and 0.4 % of the variation of C and N 

contents (Figure 2.4-8). C and N contents were strongest determined by small size soil particles 

(silt and clay fraction), whereas soil moisture and pH determined contents to a much lower extend 

(Figure 2.4-8). Soil particle size fractions strongest correlated with soil depth, while soil moisture 

and pH were stronger related to the factor site (Figure 2.4-8). 

 

Figure 2.4-8: Redundancy analysis on C 

and N contents with soil moisture, pH, and 

particle size fractions as constraints. The 

overall RDA was significant with 999 

permutations. A type II scaling 

(correlation) plot is shown, including only 

significant constraining variables. The 

constraining variables explained 87.8 % of 

the total variance. 
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2.4.4 Discussion  

2.4.4.1 Activation of microbial activity in response to labile carbon 

Microbial activity in soil is strongly limited by the availability of C (Blagodatsky and Richter, 

1998; Hodge et al., 2000). On the continental scale, vegetation cover and plant species composition 

change fundamentally (Bernhard et al., 2018). Denser vegetation cover and higher productivity 

result in greater above- and belowground biomass input, which was apparent by higher C and N 

contents in the southern than in the northern sites (Figure 2.4-2). With greater amounts of biomass 

entering the soil, greater amounts of substrate and easily accessible C are available, enabling 

microorganisms to invest into nutrient acquisition (i.e. extracellular enzyme synthesis), as costs 

will be balanced off by energy and nutrients gained by soil organic matter decomposition (Allison 

et al., 2014; Hernández and Hobbie, 2010). In response, enzyme activities are stimulated, as was 

observed for C, N, and P acquiring enzymes on the continental scale from north to south (Figure 

2.4-3). This was also displayed by the RDA as C and N contents explained a high degree of 

variances in enzyme activities (Figure 2.4-7) (Allison and Vistousek, 2005; Cheng et al., 2003; 

Hernández and Hobbie, 2010). Growing enzyme activities along with declining substrate affinities 

(i.e. high Km) from north to south, suggest that especially on the continental scale the substrate 

availability is driving enzyme activities.  

On the mesoscale – the soil depth profile – substrate availability, likewise, seemed to be a driving 

force for N and P acquiring enzymes in the subsoil. Enzymes with high substrate affinities in the 

subsoil, as seen for N and P acquiring enzymes (Figure 2.4-4), increase the competitiveness of 

microbes for nutrients under substrate limitation (Blagodatskaya et al., 2009; Hernández and 

Hobbie, 2010; Klipp and Heinrich, 1994). 

Root exudates are one of the largest sources of labile C input (Bertin et al., 2003; Kuzyakov, 2002a; 

Pausch and Kuzyakov, 2018). Coinciding, measured C and N contents increased from bulk soil to 

root proximity (Figure 2.4-2). This rise of C content concurs with trends of ascending -

glucosidase and N and P acquiring enzyme activities from bulk soil to roots (Figure 2.4-5), 

indicating a stimulation of microbial activity by root-derived C (Blagodatskaya et al., 2010; 

Kuzyakov, 2002b; Meier et al., 2017). Root effects on enzyme activities were only significant for 

acid phosphatases under Mediterranean conditions, which is likely related to the sampling strategy. 

Razavi et al. (2016) and Ma et al. (2018) demonstrated that rhizosphere extension significantly 

differs for enzymes and plant species. Activity radii extended mostly less than 2 mm from roots, 

with the greatest extension detected for acid phosphatases (Razavi et al., 2016). The successful 

determination of phosphatase activities from rhizosphere to bulk soil, however, suggests that 
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activities for C and N cycling enzymes would be fully captured with a finer resolution of sampling 

distances. 

2.4.4.2 Nutrient mining for stoichiometric homeostasis 

Labile C does not only stimulate microbial activity as easily available energy source but can also 

induce a relative increase of microbial nutrient limitation by stoichiometric imbalance, which 

stimulates nutrient acquisition from other sources, e.g. from SOM (Cheng and Kuzyakov, 2005; 

Hernández and Hobbie, 2010; Phillips et al., 2011; Sinsabaugh and Moorhead, 1994). Activities 

of C acquiring enzymes did not only increase with higher C content (as shown in section 2.4.4.1) 

but also with greater N content, indicated by the strong relation observed in the RDA (Figure 

2.4-7). In fact, the strong effect of N on C acquiring enzymes supports the conclusion that an 

upregulation of C acquisition in response to greater N availability is dominantly driving activities 

of these respective enzymes. Greater N availability (1) allows microorganisms to invest N into 

enzyme synthesis and (2) heightens the demand for C for microbial growth (Allison and Vitousek, 

2005; Saiya-Cork et al., 2002; Sinsabaugh and Follstad Shah, 2012). C acquiring enzymes seemed 

to be driven by stoichiometric constraints on the meso- and microscale, which was supported by 

higher substrate affinities of -cellobiohydrolase and -xylosidase in topsoil and root proximity 

than in bulk soil (Figure 2.4-4, Figure 2.4-6). Increase of microbial activity and growth by labile 

carbon input surges microbial C demand (Hernández and Hobbie, 2010) and, thus, promotes the 

investment into C mining via enzyme production.  

A similar dependence on stoichiometric constraints was also seen for N and P acquiring enzymes. 

Activities of N acquiring enzymes (Figure 2.4-3 - 2.4-5) increased towards places with great N 

limitation (i.e. site under humid temperate conditions, topsoil, root proximity) indicated by high 

C:N ratios (Figure 2.4-2). This elevation of activities in response to N limitation indicates an 

upregulation of N acquisition in response to stoichiometric imbalance, initiated by available C 

input and microbial activity stimulation (Loeppmann et al., 2016a; Sinsabaugh et al., 2009; 

Treseder and Vitousek, 2001). RDA results supported this response for activities of β-N-

acetylglucosaminidases, as they C and N explained most of their variance (Figure 2.4-7). Patterns 

of activities of aminopeptidases, however, were better explained by pH and soil moisture 

(Figure 2.4-7).  

Substrate affinities of N acquiring enzymes , which were lower in the topsoil than subsoil (Figure 

2.4-4), and in root proximity than in bulk soil (Figure 2.4-6), indicate further that enzyme activities 

are not substrate limited but N demand driven (Loeppmann et al., 2016a; Stone and Plante, 2014). 

The same relations of affinities and activities as for N acquiring enzymes in the topsoil and in root 
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proximity were also seen for acid phosphatases. High activities but low substrate affinities indicate 

P demand to be driving the investment into enzymatic P acquisition. 

2.4.4.3 Switch of N acquisition strategy on the continental scale 

Higher activities of aminopeptidases, and especially of tyrosine-aminopeptidases, than of β-N-

acetylglucosaminidases (Figure 2.4-3) in the northern (dry) site than in the southern sites, suggest 

that cleaving of amino acids is the dominant pathway of microorganisms to acquire N from organic 

sources at the moisture limited site. Peptides are the most important organic N source and easier 

to decompose than chitin (Derenne and Largeau, 2001; Kögel-Knabner, 2006; Sinsabaugh and 

Follstad Shah, 2012). In the site under semiarid (and also Mediterranean) conditions, peptides are 

more abundant than chitin due to less fungal biomass (seen as decrease of bacterial and fungal 

DNA from south to north; data not shown). Therefore, microorganisms need to primarily 

synthesize aminopeptidases to cover their basic N demand at the site under semiarid and 

Mediterranean conditions (Sinsabaugh and Follstad Shah, 2012). Ascending activities of β-N-

acetylglucosaminidases with increasing humidity on the continental scale indicate a growing 

importance of chitin hydrolysis as N acquiring strategy as organic biomass input rises as well. 

2.4.4.4 Soil moisture, pH, and soil particle size effect 

Water availability affects plant productivity and, thus, organic matter input as litter and root-

derived C into soil (Knapp et al., 2006) – this is on the continental scale. On the microscale, water 

limitation reduces water film thickness, reduces the substrate dissolution, and decreases its 

diffusion rates (Allison and Treseder, 2008; Davidson and Janssens, 2006; Schimel et al., 2007). 

Nutrient resources can, therefore, be accessed by roots and microorganisms only with sufficient 

water content in soil. Rising water availability stimulated potential activities of all enzymes except 

aminopeptidases (Figure 2.4-7). A positive effect of water availability on C content, but a negative 

effect on N content indicate that substrate availability (as C content) and the accessibility of N are 

modulated by water availability, which in turn can considerably affect enzyme activities 

(Figire 2.4-8). 

Soil pH is an important factor regulating enzyme activities (Sinsabaugh et al., 2008). Acidity 

affects enzyme conformation (and thus its affinity to the substrate), binding of enzymes onto soil 

particles, breakdown of molecules, and nutrient availability (Carrino-Kyker et al., 2016; 

Quiquampoix et al., 1992; Turner, 2010). The RDA shows that pH had an especially marked effect 

on the activities of aminopeptidases (Figure 2.4-7), which coincided with the positive effect on N 

content (Figure 2.4-8). 
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Distribution of pores and particle size fractions are important for microbial habitats in soil 

(Kirchmann and Gerzabek 1999; Ruamps et al., 2011; Kravchenko and Guber, 2017). Depending 

on the size, microhabitats within pores can markedly differ in water supply, availability of 

substrates, or grazing pressure on microorganisms (Kuzyakov and Mason-Jones, 2019; Ruamps et 

al., 2011). Smaller particles are associated with greater C and N contents (Kandeler et al., 1999; 

Stemmer et al., 1998) and microbial biomass (Seesitsch et al., 2001; vanGestel et al., 1996). 

Smaller soil particles can form stable complexes with organic compounds, such as extracellular 

enzymes. Enzyme immobilization reduces their efficiency but protects them from decomposition 

and stabilizes their activity for a longer period (Demkina et al. 2017; Dick and Tabatabai 1987; 

Tietjen and Wetzel 2003). Greater proportions of silt and clay increased enzyme activities: 20 – 

63 µm fraction for aminopeptidases, and <2 – 20 µm for the other enzymes (Figure 2.4-7).  

2.4.5 Conclusions 

Substrate availability and nutrient limitation (initiated by microbial activity stimulation and a shift 

in the stoichiometric balance) are two strong drivers of enzyme activities in soil. The results 

suggest that activities on the continental scale are mainly driven by substrate availability (i.e. 

belowground C input by plants). Additionally, from the arid north to the humid south, the chitin-

based N acquisition got more relevant. Low potential activities and high substrate affinities of N 

and P acquiring enzymes in the subsoil and in the root free soil, suggested that substrate limitation 

is driving the investment into N and P acquisition on these scales. In the topsoil and in the 

rhizosphere, however, high potential activities and low substrate affinities of N and P acquiring 

enzymes, together with high C:N ratios, suggested that the C input increased microbial nutrient 

limitation, which primarily controlled activities of N and P acquiring enzymes at these sites. 

Likewise, stoichiometric constraints (i.e. C demand and N limitation) seemed to primarily control 

investment into cellulose and hemicellulose degrading enzymes on the meso- and microscale. A 

high degree of C and N contents being explained by clay and silt contents, and by soil moisture 

and pH to a smaller extent, indicated that the effects of substrate availability and nutrient limitation 

on the resource allocation for enzyme production indirectly depend on texture and are altered by 

water availability and acidity. A greater correlation of particle size fractions with soil depth than 

with study sites indicated further that texture becomes especially important when comparing 

enzyme activity patterns on the mesoscale, while the impact of soil moisture and pH dominates 

activity patterns stronger on the continental scale.  
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2.4.8 Supplementary material  

Table S 2.4-1: Study site description 

 

 

  

    
Parque National Nahuebluta 

  
Parque National La Campana 

  
Reserva Santa Gracia 

  
References 

          

                  

Abbreviation   NA   LC   SG     

Location   37.81°S, 73.01°W    32.96°S, 71.06°W    29.76°S, 71.14°W     

Altitude [m a.s.l.]   1240   730   680     

Distance to     Pacific Ocean [km] 
                

  55   43   23     

Climate   humid   mediterranean   semiarid   Muñoz et al. 2007; Bernhard et al., 2018 

MAT [°C]   6.1   13.6   13.9   WorldClim data, Hijmans et al., 2005 

MAP [mm]   1600   358   81   WorldClim data, Hijmans et al., 2005 

Parent material   granitoid   granitoid   granitoid   Bernhard et al., 2018; Oeser et al., 2018 

Soil type   Umbrisol     Cambisol   Cambisol   Bernhard et al., 2018 

Vegetation cover   coniferous forest  decidous forest  sclerophyllous  shrubs   Bernhard et al., 2018 

        sclerophyllous shrubs   cacti     

Dominant species                

         south slopes   Araucaria araucana   Colliguaja oderifera   Proustia cuneifolia   Bernhard et al., 2018 

    Nothofagus antarctica   Lithrea caustic   Balbisia peduncularis     

    Chusquea coleu   Aristeguietia salvia   Senna cumingii     

        Podanthus mitiqui         

          north slopes   Nothofagus obliqua   Lithrea caustic   Cordia decandra     

    Araucaria araucana   Jubaea chilensis   Adesmia spp.     

    Gaultheria mucronata   Retamilla trinervia   Baccharis paniculatum     

            Eulychnia acida     

            Cumulopuntia sphaerica      
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Table S 2.4-2: Residual standard errors of the fitted non-linear saturation curves calculated by the Michaelis 

Menten equation. From left to right: CBH = β-cellobiohydrolase, BGL = β-glucosidase, BXY = β-xylosidase, NAG 

= β-N-acetylglucosaminidase, LEA = leucine-aminopeptidase, TYA = tyrosine-aminopeptidase, ACP = acid 

phosphatase 

  

site
slope 

aspect

slope 

position

soil 

depth 

[cm]

root 

proximity 

[mm]

CBH BGL BXY NAG LEA TYA ACP

NA S top 0-80 0-2 1.61 10.44 4.17 7.15 5.80 1.30 36.36

NA S top 0-80 2-4 3.23 14.65 6.65 6.89 4.49 1.41 58.61

NA S top 0-80 4-6 na 13.85 7.27 7.66 5.00 11.49 60.11

NA S mid 0-80 0-2 1.77 9.70 5.96 14.42 4.85 12.40 39.67

NA S mid 0-80 2-4 4.91 na 5.43 7.32 15.62 3.30 61.42

NA S mid 0-80 4-6 0.87 1.52 0.74 9.85 2.43 0.57 19.26

NA S bottom 0-80 0-2 4.50 11.48 7.37 9.09 8.52 7.22 106.56

NA S bottom 0-80 2-4 0.54 6.78 3.26 4.34 3.21 na 37.07

NA S bottom 0-80 4-6 1.57 14.80 6.57 8.40 5.39 1.83 61.79

NA S top 80-160 0-2 0.84 2.35 1.14 4.51 2.35 4.03 22.92

NA S top 80-160 4-6 0.76 1.28 1.14 1.09 3.53 2.28 14.54

NA S mid 80-160 0-2 1.76 1.82 0.93 3.80 8.32 0.68 12.24

NA S mid 80-160 2-4 1.35 1.51 1.10 10.76 1.79 1.58 19.25

NA S mid 80-160 4-6 0.88 0.99 0.77 0.74 na na 3.60

NA S bottom 80-160 0-2 0.75 1.71 1.20 1.24 na 0.65 76.44

NA S bottom 80-160 2-4 1.22 1.63 1.62 1.82 1.96 0.45 43.96

NA S bottom 80-160 4-6 1.04 1.48 1.06 1.48 na 0.94 31.73

NA N mid 0-80 0-2 na 1.60 1.65 2.71 2.52 13.54 21.80

NA N mid 0-80 2-4 0.82 2.55 1.44 1.20 3.93 1.49 15.20

NA N mid 0-80 4-6 1.03 1.04 1.44 0.84 1.71 na 6.48

NA N mid 80-160 0-2 na 2.18 1.10 1.42 3.47 1.39 16.22

NA N mid 80-160 2-4 0.59 0.62 0.49 0.83 1.87 na 10.45

NA N mid 80-160 4-6 0.38 1.39 0.77 0.82 0.40 na 9.56

LC S top 0-60 0-2 4.30 35.92 2.05 6.03 7.14 2.79 38.46

LC S top 0-60 2-4 2.23 9.66 1.50 3.94 5.50 1.95 25.01

LC S top 0-60 4-6 1.95 8.05 2.10 10.04 12.67 9.66 19.69

LC S mid 0-60 0-2 0.79 1.55 2.31 4.88 4.00 3.01 26.96

LC S mid 0-60 2-4 1.45 4.34 1.68 2.95 8.60 18.71 18.37

LC S mid 0-60 4-6 1.12 6.34 2.72 5.67 3.27 1.38 16.72

LC S bottom 0-60 0-2 1.15 8.34 3.23 7.23 9.89 18.73 21.13

LC S bottom 0-60 2-4 1.41 5.19 2.34 5.46 8.06 3.62 24.50

LC S bottom 0-60 4-6 0.93 3.44 1.47 9.96 9.68 2.42 12.47

LC S top 60-120 0-2 0.51 1.72 1.10 2.94 2.51 2.37 12.58

LC S top 60-120 2-4 0.81 2.20 0.70 2.07 na 1.15 8.31

LC S top 60-120 4-6 0.58 1.54 0.97 1.57 1.36 0.73 7.35

LC S mid 60-120 0-2 na 1.12 0.88 0.76 na 5.00 9.77

LC S mid 60-120 2-4 0.48 1.37 2.45 1.77 na 4.61 8.10

LC S mid 60-120 4-6 0.74 1.57 0.79 2.35 na 14.51 4.27

LC S bottom 60-120 0-2 1.77 4.43 1.05 1.59 1.24 11.41 8.84

LC S bottom 60-120 2-4 0.92 4.55 0.86 1.53 2.28 0.92 5.32

LC S bottom 60-120 4-6 1.55 3.99 0.98 1.05 3.86 5.84 2.99

LC S mid >120 0-2 0.51 1.45 1.22 3.09 2.11 na 4.99

LC S mid >120 2-4 na 1.66 0.46 na na 2.60 na

LC S mid >120 4-6 na 0.66 0.45 1.07 na na 4.05

LC S bottom >120 0-2 na 0.69 0.74 na na 1.50 3.34

LC S bottom >120 2-4 na 1.01 6.93 na 0.42 2.63 3.06

LC S bottom >120 4-6 na 0.54 2.18 na 0.19 0.42 na

LC N mid 0-60 0-2 0.76 2.82 1.13 1.13 1.93 1.17 6.20

LC N mid 0-60 2-4 0.60 2.71 0.82 1.49 3.49 3.81 13.59

LC N mid 0-60 4-6 1.35 1.40 1.22 1.27 1.37 2.44 11.57

LC N mid 60-120 0-2 0.56 1.57 0.50 1.34 na 2.21 10.53

LC N mid 60-120 2-4 0.96 2.25 0.65 1.35 1.44 0.94 9.50

LC N mid 60-120 4-6 na 2.23 0.31 na 1.01 0.65 14.74

LC N mid >120 0-2 0.68 1.40 1.04 4.95 0.71 1.73 14.19

LC N mid >120 2-4 0.89 1.64 0.99 4.65 1.63 1.91 8.28

LC N mid >120 4-6 0.61 1.24 0.82 3.64 0.79 1.18 5.17

SG S top 0-40 0-2 1.38 3.07 0.76 1.25 8.00 14.14 6.96

SG S top 0-40 2-4 0.78 2.24 0.83 1.51 3.55 12.92 4.96

SG S top 0-40 4-6 na 2.30 1.21 1.99 3.40 5.60 6.72

SG S mid 0-40 0-2 0.70 5.86 1.07 2.63 4.76 1.24 7.74

SG S mid 0-40 2-4 0.49 2.30 0.77 na na 1.45 4.85

SG S mid 0-40 4-6 1.04 1.57 0.92 1.20 na 6.90 10.63

SG S lower 0-40 0-2 na 0.94 0.75 na 2.58 1.50 5.10

SG S lower 0-40 2-4 na 1.19 0.67 na 1.91 5.94 3.59

SG S lower 0-40 4-6 0.88 0.76 1.08 na na 1.00 3.00

SG S bottom 0-40 0-2 0.28 0.96 na na 1.11 2.64 4.22

SG S bottom 0-40 2-4 0.44 1.84 0.57 0.99 1.05 3.53 2.25

SG S bottom 0-40 4-6 0.33 2.19 0.61 1.14 1.49 4.70 4.77

SG S top 40-80 0-2 2.03 1.57 1.19 0.86 6.00 5.49 4.24

SG S top 40-80 2-4 1.05 0.84 0.82 na 2.51 4.94 5.05

SG S top 40-80 4-6 0.55 1.25 11.20 na 2.15 5.78 2.09

SG S mid 40-80 0-2 na 2.58 0.60 0.67 5.24 1.85 7.89

SG S mid 40-80 2-4 na 9.47 0.47 na 1.41 5.37 2.60

SG S mid 40-80 4-6 na 1.52 0.39 na 1.02 0.75 3.73

SG S lower 40-80 0-2 0.43 1.66 0.70 0.83 2.78 4.59 8.90

SG S lower 40-80 2-4 na 1.51 0.88 2.01 0.88 3.61 5.63

SG S lower 40-80 4-6 0.71 2.49 0.95 1.29 1.45 3.71 7.05

SG S bottom 40-80 0-2 0.29 1.45 na 0.43 1.72 4.37 8.70

SG S bottom 40-80 2-4 0.72 1.77 14.12 1.45 3.59 4.04 6.05

SG S bottom 40-80 4-6 1.22 1.02 1.09 0.80 4.36 5.98 5.16

SG S top >80 0-2 2.39 2.74 1.32 6.56 0.39 4.02 10.60

SG S mid >80 0-2 0.71 2.23 1.09 6.87 na 1.43 16.66

SG S lower >80 0-2 na 1.72 0.79 0.89 0.39 2.03 2.06

SG S bottom >80 0-2 na 0.97 0.91 na 0.85 4.59 7.43

SG N mid 0-40 0-2 1.31 2.02 1.61 1.57 1.53 2.18 10.20

SG N mid 0-40 2-4 0.53 2.46 0.88 2.58 0.67 3.26 6.24

SG N mid 0-40 4-6 0.71 2.50 1.44 1.10 4.14 10.73 12.20

SG N mid 40-80 0-2 na 0.97 0.96 2.48 1.78 6.21 4.72

SG N mid 40-80 2-4 na 0.82 0.81 na 0.72 0.73 4.27

SG N mid 40-80 4-6 0.71 3.30 1.58 2.15 4.58 15.99 8.48

SG N mid >80 0-2 0.26 1.64 0.69 3.77 1.67 4.76 3.40
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2.5 Study 5: From rock eating to vegetarian ecosystems — disentangling processes 

of phosphorus acquisition across biomes 
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Abstract 

Low-molecular-weight organic acids (LMWOAs) are crucial for the mobilization and acquisition 

of mineral phosphorus forms by plants. However, the role of LMWOAs in mobilising organic 

phosphorus, which is the predominant phosphorus form in at least half of the world's ecosystems, 

especially in humid climates, is unclear. The mechanisms of phosphorus mobilization by 

LMWOAs depend on climate, mainly precipitation, and shape the phosphorus nutrition strategies 

of plants. 

We disentangled the impact and mechanisms of roots and associated microorganisms on 

phosphorus cycling mediated by LMWOAs by studying soils along an ecosystem-sequence 

(ecosequence): from arid shrubland (~70 mm yr-1 precipitation), and Mediterranean woodland 

(~370 mm yr-1 precipitation) to humid-temperate forest (~1470 mm yr-1 precipitation). 

Phosphorus speciation in soil was examined by X-ray absorption near edge structure analysis 

(XANES). LMWOAs were quantified as biological rock-weathering and organic phosphorus 

mobilization agents and compared with kinetics of acid phosphatase as a proxy for organic 

phosphorus mineralization. 

Calcium-bound phosphorus in topsoils decreased from 126 mg kg-1 in the arid shrubland, to 19 

mg kg- 1 in the Mediterranean woodland and was undetectable in the humid-temperate forest. In 

contrast, organic phosphorus in topsoils in close root proximity (0-2 mm distance to roots) was 

absent in the arid shrubland but raised to 220 mg kg-1 in the Mediterranean woodland and to 

291 mg kg- 1 in the humid-temperate forest. The organic phosphorus content in topsoils was 1.6 to 

2.4 times higher in close root proximity (0-2 mm distance to roots) compared to bulk soil (4-6 mm 

distance to roots) in the Mediterranean woodland and humid-temperate forest, showing intensive 

bioaccumulation of P in the rhizosphere. Redundancy analysis (RDA) revealed that LMWOAs 

were explained by the content of hydroxyapatite and variscite phosphorus-species in the arid 

shrubland, indicating that LMWOAs contribute to mineral weathering in this soil. LMWOA 

contents, phosphatase activity, and microbial biomass carbon correlated strongly with organic 

phosphorus in the humid-temperate forest soil, which implies a high relevance of LMWOAs for 

organic phosphorus recycling. In the Mediterranean woodland soil, however, oxalic acid correlated 

with organic phosphorus in the topsoil (suggesting phosphorus recycling), whereas in the subsoil 

malic and citric acid were correlated with primary and secondary phosphorus minerals (implying 

mineral weathering). We conclude that phosphorus acquisition and cycling depend strongly on 

climate and that the functions of LMWOAs in the rhizosphere change fundamentally along the 

ecosequence. In the arid shrubland LMWOAs facilitate biochemical weathering (rock eating), 
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while in the humid-temperate forest their functions change towards supporting organic P recycling 

(vegetarian). 

 

2.5.1 Introduction 

Chemical and physical weathering depend on climate and have a strong control over plant’s 

phosphorus (P) accessibility. In general, apatite weathering is strongly driven by water availability 

(Maher, 2010). Phosphate (𝐻2𝑃𝑂4
−, 𝐻𝑃𝑂4

2−and 𝑃𝑂4
3−) concentrations in soil solution are low and 

constantly have to be replenished from undissolved pools to sustain plants’ P demands (Kirkby 

and Johnston, 2008). Beyond abiotic dissolution by water, plants and associated microorganisms 

modify biochemical conditions in the rhizosphere (Kuzyakov and Razavi, 2019), e.g. by the 

exudation of low-molecular-weight organic acids (LMWOAs) and simultaneous release of 

protons. Thereby, plants and microorganisms enhance mineral weathering (biochemical 

weathering) in root proximity and the mobilization of scarce nutrients, but also facilitate the uptake 

of organic P. 

There are three mechanisms by which LMWOAs enhance the dissolution of P minerals. (1) The 

exudation of organic anions, associated with the exudation of a proton as counterion, lowers 

rhizosphere pH (Ma et al., 2019) and, subsequently, leads to the dissolution of calcium-phosphates. 

(2) Organic anions chelate bi- and trivalent cations and decrease the concentration of iron (Fe3+), 

aluminum (Al2+), and Ca2+ in soil solution (Jones, 1998). This process forces the dissolution of 

Ca-, Fe- and Al-P and hampers phosphate precipitation. (3) Organic anions block sorption sites, 

especially at sesquioxides (Hinsinger, 2001 ⁠; Jones, 1998 ⁠; Jones and Darrah, 1994). Several authors 

have reported that LMWOAs are also capable of organic P mobilization (Giles et al., 2014 ⁠; Lan et 

al., 1995), especially citric acid was demonstrated to be highly effective in liberating organic P 

species in tropical natural and plantation soils (Wei et al., 2010). Because sorption of organic P 

species to metal ions occurs analogously to that of free phosphates, it was suggested that the 

liberating mechanisms are similar (Wei et al., 2010). LMWOAs could on the one hand serve to 

desorb organic P, exposing it to enzymatic attack, and on the other hand hamper the precipitation 

of liberated phosphates by keeping Fe and Al concentrations in the soil solution low. Different 

LMWOAs are differently effective in dissolving the various P forms in soils. Johnson and 

Loeppert (2006) showed that citrate is the most effective LMWOA in desorbing P from Fe 

surfaces. This is likely due to its tricarboxylic structure and the ability to complex trivalent metal 

cations. On the other hand, oxalate is most effective in releasing P from Ca-phosphates (Jones, 

1998). The effect of malate was only tested in mixtures with other organic acids and never for this 

acid alone (e.g. Fox et al., 1990). 
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To date, it is unclear how crucial LMWOAs are for biochemical weathering (Jones, 1998 ⁠; López-

Arredondo et al., 2014⁠; Ryan et al., 2001). Furthermore, there are only few data on the 

concentrations of LMWOAs in soil under field conditions. It was demonstrated that oxalate at 

concentrations of about 1 mM effectively dissolves feldspars in a batch experiment (Hinsinger, 

2001). However, LMWOAs’ concentrations in bulk soil in most cases are lower than the 

concentrations used in batch experiments to dissolve pure minerals (Neaman et al., 2006). 

Nevertheless, concentrations in some microenvironments such as the rhizosphere, can exceed by 

far those in bulk soil (Drever, 1994 ⁠; Neaman et al., 2006). 

It has repeatedly been shown that P starvation enhances the exudation of LMWOA by roots 

(Hedley et al., 1982 ⁠; Kirk et al., 1999 ⁠; Lipton et al., 1987). More specifically, citric acid exudation 

was high under P deficiency in rhizosphere soil under cabbage, but not in rhizosphere soil under 

carrot and potato (Dechassa and Schenk, 2004). A study by Gaume et al. (2001) comparing a low-

P resistant maize (Zea mays L.) cultivar with a non-low-P resistant breed showed that the ability 

to exude organic acids in response to P deficiency can vary even among genotypes of the same 

species. 

Several studies that investigated the change in P speciation along climosequences conclude that 

climate, mediated by vegetation, is the main driver of apatite transformation to secondary Fe- and 

Al-phosphates, phosphates adsorbed to sesquioxides, and organic P (Feng et al., 2016 ⁠; Ippolito et 

al., 2010 ⁠; Pinheiro Junior et al., 2019). Precipitation is particularly important because the addition 

of water with low ion concentrations (P, Fe, Al, Ca) to the soil solution promotes the abiotic 

dissolution of P minerals and desorption of P due to concentration gradients. Ippolito et al. (2010) 

found that the loss of Ca-P from soil was related to mean annual precipitation (MAP) and explained 

this by the loss of Ca. On the other hand, Walker and Syers (1976) postulate highest P leaching 

rates at the beginning of pedogenesis. This implies that MAP needs to exceed a certain threshold 

for P leaching to occur, but weathering and soil mineral composition has to be in a state where P 

retention by sesquioxides is still low. 

It is widely understood that different ecosystems have contrasting strategies to acquire nutrients. 

Moreover, it has been demonstrated that during ecosystem development a change from acquisition 

to recycling of nutrients within an ecosystem often occurs via a transition of the plant community 

from short living individuals to a more complex, interacting community (Lambers et al., 2008 ⁠; 

Odum, 1969). Under arid conditions P must largely be acquired from the parent material, because 

low primary productivity transforms only a small amount of mineral P to organic P. Moreover, 

physical and chemical weathering, but also enzymatic processes, are restricted by water limitation 

under arid and semiarid climate for most of the time. In periods when water is available, it is 
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mandatory for plants to accelerate mineral weathering by the production of weathering agents 

(Banfield et al., 1999; Lenton and Watson, 2004). Recycling of organic P becomes increasingly 

important with increasing humidity of the climate, as it can help to prevent leaching and associated 

P-losses caused by precipitation (Feng et al., 2016; Hou et al., 2018). Moreover, humid climates 

are correlated with high primary productivity and thus a higher proportion of P is bound in the 

organic pool as compared to arid ecosystems (Feng et al., 2016). The amount of total P decreases 

with proceeding soil development (Turner et al., 2018⁠; Yang and Post, 2011; Walker and Syers, 

1976) with proceeding soil development (Turner et al., 2018 ⁠; Yang and Post, 2011). At the same 

time the proportion of P occluded in organomineral complexes was highest in the most weathered 

soils (Yang and Post, 2011). Lang et al. (2017) indicate that deeply weathered humid ecosystems 

intensively recycle P within the organic pool, rather than acquiring it from the parent material. 

We address the concept of acquiring versus recycling ecosystems (Lang et al., 2017) and propose 

that the P-source preferred by the ecosystems depends on mean annual precipitation, as driver of 

the biotas’ productivity and, thus, P demand. We hypothesize that (1) under arid climate, 

LMWOAs facilitate the dissolution of primary P species (weathering), with partial re-precipitation 

of the P as secondary inorganic P minerals. (2) In soils under humid conditions, we expect 

LMWOAs to support recycling of organic P species, induced by a high risk for P losses by 

precipitation. This would indicate a high importance of nutrient recycling under humid conditions 

because suggested weathering rates are too low to provide sufficient P to the ecosystems’ biota. 

This is supported by a study of Oeser and Blanckenburg (2020), who examined the same study 

sites, and found no increase in weathering depths with increasing precipitation. At the same time, 

net primary productivity, and thus, P demand along the same ecosequence increased strongly from 

arid to humid ecosystems (Werner et al., 2018). 

We tested our hypotheses at three sites of similar parent material located along the Coastal 

Cordillera of Chile, comprising a gradient (north to south) in MAP from about 70 mm yr-1 to more 

than 1400 mm yr-1 and mean annual temperature (MAT) from 13.7 °C to 6.6 °C  (Fick and 

Hijmans, 2017) (Table 2.5-1). 

2.5.2 Material and Methods 

2.5.2.1 Experimental sites 

We focused on three study sites that represent a gradient across biomes (ecosequence) and extend 

from 29 ° to 38 ° of southern latitude. They are located along the Coastal Cordillera of Chile, and 

all soils have developed from granodioritic parent material. Mean annual precipitation (MAP) 

increases from 66 mm yr-1 to 1469 mm yr-1 and mean annual temperature (MAT) decreases from 

13.7 °C to 6.6 °C, from north to south (Fick and Hijmans, 2017) (Table 2.5-1). The study sites 
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comprise an ecosequence from arid shrubland (Reserva Nacional Santa Gracia) in the north to 

Mediterranean woodland (Parque Nacional La Campana) and humid-temperate forest (Parque 

Nacional Nahuelbuta) in the most southern site. Important site specifics are shown in Table 2.5-1. 

For a comprehensive description of vegetation, soils and geology see Bernhard et al. (2018b) and 

Oeser et al. (2018).  

 

2.5.2.2 Soil sampling and sample preparation 

Soil sampling was done in austral summer 2016. At each site samples were taken from three soil 

pits on the south-facing slope, arranged as a catena (top-, mid-, and toe-slope), and one soil pit at 

the opposing north-facing slope (mid-slope) (Bernhard et al., 2018b). Soil pits were sampled at 

three depths. To compare sites and profiles among each other, depth increments were determined 

in percent of the total soil depth; with 100% defined as the boundary of soil to saprolite. Samples 

were taken from 0-50% (‘topsoil’), 50-100% of soil depth (‘subsoil’), and >100% (‘saprolite’). 

For absolute sampling depths in each soil pit see Table 1. To obtain a gradient from rhizosphere 

to bulk soil, samples were taken at three distances (0 - 2 mm, 2 - 4 mm, 4 - 6 mm) from root 

channels of young living roots. The 0-2 mm and 2-4 mm distance increments were defined as 

rhizosphere soil, the distance 4-6 mm was considered as bulk soil. Due to the coarse texture of the 

parent material in the arid shrubland saprolite, it was not possible to accurately sample increments 

of two millimeters. 

Therefore, only distance increments 0-2 mm and 4-6 mm were sampled. Roots were found in all 

sampled horizons, but in different abundances. Rooting density decreased with increasing soil 

Table 2.5-1: Characteristics of the three study sites. Mean annual precipitation (MAP) and mean annual temperature (MAT) 

are derived from Fick and Hijmans (2017). Climate classifications from (Trabucco and Zomer, 2019). Vegetation type, soil 

type, pH, and grain size distribution (sand-, silt-, and clay shares) are taken from Bernhard et al. (2018b). Grain size classes 

and pH were calculated as mean over the respective soil depths. Soil types refer to soil pits from midslope position at north- 

and south-facing soil pits. The sampling depth (by soil region) is given in percent classes as they were used for result 

presentation throughout the present work and in absolute values. Absolute sampling depth is given for the soil pit at the north 

facing slope in midslope position and for the south facing slope for the soil pits at top- mid- and toeslope position. 

 

Site Soil 
region 
 

Percentage 
soil depth 
(%) 

Absolute depth [cm] MAPa 

[mm yr-1] 
MATa 

[°C] 
Climateb Vegetationc Soil-typec pHc Sandc 

(%) 
Siltc 

(%) 
Clay 
(%) North South 

Mid Top Mid Toe 

Arid shrubland topsoil 0-50 15 15 22.5 25 66 13.7 Arid Sclerophyllous 
shrubs 
cacti 

Cambisol/ 
Leptosol 

6.4 77.4 14.6 8.0 
subsoil 50-100 30 30 45 50 6.3 73.4 14.3 11.4 
saprolite >100 >30 >30 >45 >50 6.4 78.5 13.0 8.6 

Mediterranean 
woodland 

topsoil 0-50 30 15 24 35 367 14.1 Semiarid Deciduous 
forest 
sclerophyllous 
shrubs 

Cambisol 5.5 73.0 17.6 9.5 
subsoil 50-100 70 30 48 70 5.0 78.0 13.4 8.6 
saprolite >100 >70 >30 >48 >70 5.4 88.3 7.6 4.1 

Humid-
temperate 
forest 

topsoil 0-50 57.5 45 80 65 1469 6.6 Humid Coniferous 
forest 

Orthodystric 
Umbrisol/ 
Umbric 
Podzol 

4.3 56.4 21.1 22.5 
subsoil 50-100 115 90 160 130 4.6 81.7 11.1 7.3 
saprolite >100 >115 >90 >160 >130 4.6 84.6 10.1 5.3 

a) (Fick, 2017)                
b) (Trabucco and Zomer, 2019)              
c) (Bernhard et al., 2018b)              
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depth and increased with increasing MAP. For more details about the rooting density and pictures 

of the soil pits the reader is referred to Oeser et al. (2018). 

We did not distinguish roots on species level but sampled an average of all roots occurring in the 

respective soil pit and depth. Roots with a diameter of ≤ 2 mm were considered as young roots. To 

confirm that the sampled roots were still active, we removed the root bark to observe if the 

underlying tissues was moist, hence transporting water. 

All analyses were run in all three depth increments for south-facing slopes (with mentioned 

exception for the arid shrubland ecosystem) and depth increments 0-50% (e.g. topsoil) and >100% 

(e.g. saprolite) for north facing slopes. We aliquoted the samples and immediately froze and stored 

the samples meant for DNA analyses and LMWOA measurement at -20 °C. Samples for X-ray 

absorption near edge structure (XANES) analysis were dried and ball milled at 200 rpm for 2 min. 

Gravimetric water content was measured by drying the samples at 105 °C until weight constancy. 

Total P content was determined by pressure digestion with HNO3 (König et al., 2014). Samples 

(100 mg) were placed into Teflon beakers and 2 ml of 65 % HNO3 were added. Beakers were 

tightly closed and heated to 190 °C for 12 h. Subsequently, the extract was diluted with double 

distilled water (ultrapure) and analyzed on an inductively coupled plasma-optical emission 

spectrometer (ICP-OES) (Thermo Scientific iCap 6000 Series, Bremen, Germany). 

2.5.2.3 DNA content and phosphatase kinetics 

Total genomic DNA extraction for soil samples was performed using the FastDNA SPIN Kit for 

Soil (MP Biomedicals, Solon, USA) following the manufacturer's instructions. Samples of 

maximally 0.25 g were homogenized in three processing cycles with 2 min ice incubations 

between cycles. The extracted DNA was eluted in 80 µL sterile ultrapure water and quantified 

with a NanoDrop 2000C (Thermo Fisher Scientific, Bremen, Germany). Diluted DNA extracts 

were stored at -80°C until qPCR analyses. Bacterial and fungal DNA content was used to calculate 

microbial biomass carbon (MBC) in the samples by using a conversion factor of 5 (Anderson and 

Martens, 2013). Besides DNA contents, kinetics of acid phosphatase, determined by Stock et al. 

(2019) from the same sample set, were included in the multivariate statistical approaches (see 

section “Statistical analysis”). To describe phosphatase kinetics from a Michaelis-Menten fit, the 

maximum phosphatase reaction rate Vmax and the half-saturation constant Km, were reported. Vmax 

represents the maximum enzyme activity at substrate saturation and Km the substrate concentration 

required for half-maximal activity.  
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2.5.2.4 LMWOA extraction 

LMWOAs were extracted based on a method after Szmigielska et al. (1997), with modifications. 

LMWOAs were extracted with 0.5 M HCl in methanol (MeOH) with a soil to solution ratio of 1:1 

(v/v) by shaking for one hour. After centrifugation at 950 g for 15 min the supernatant was 

transferred to a reaction vessel and dried under a gentle stream of N2. For derivatization, 3 ml of 

MeOH and 300 µl of H2SO4 (50%) were added to the samples which then were placed in a heating 

block at 60 °C for 30 min. Analytes were purified by liquid-liquid extraction using chloroform 

(CHCl3) as final solvent. Samples were analyzed on a GC-MS (GC 7890A, MS 7000A Series 

Triple Quad, Agilent Technologies, Waldbronn, Germany) with a capillary column (DB-FFAP, 

30 m length, 1 µm film thickness, 0.25 mm diameter; Agilent Technologies, Waldbronn, 

Germany). Standard solutions contained the following organic acids: oxalic-, malonic-, fumaric-, 

succinic-, maleic-, malic- and citric acid (Table S 2.5-1). Contents of LMWOAs were determined 

for three south-facing and one north-facing soil pit in each ecosystem, respectively. As organic 

acids as well as their anions are co-extracted by the presented approach, the abbreviation for 

LMWOAs refers to acids and their respective anions. 

2.5.2.5 P speciation by XANES P K-edge spectroscopy 

Spectra at the P K-edge were measured at the Beamline 8 of the electron storage ring (1.2 GeV; 

bending magnet; beam current: 80 – 150 mA; 1.1 to 1.7 x 1011 photons s–1) at the Synchrotron 

Light Research Institute (SLRI), Nakhon Ratchasima, Thailand (Klysubun et al., 2012). Air dried, 

milled samples were homogenized and applied to P free ‘Kapton tape’ (Lanmar Inc., Northbrook, 

IL, USA) (area 2.0 cm x 0.5 cm). Samples were measured in fluorescence mode. The chamber was 

flushed with He 2 min before, and during measurement. The energy of the X-ray beam was 

modulated by an InSb (111) double crystal monochromator, with an energy resolution (ΔE/E) of 

3 x 10–4 (i.e. about 0.6 eV at the P K-edge). Energy calibration was done with elemental P powder 

(E0 = 2145.5 eV; precision 0.11 eV). Depending on the P content of the sample, 3 to 5 scans were 

recorded. 

Evaluation of the XANES spectra was done using the software R Version 3.4.3 (R Core Team, 

2017) and the LCF package for linear combination fitting (LCF) (Werner, 2017). Spectra of the 

samples were background corrected and edge-step normalized by allowing energy levels to float 

in a defined range. For the lower pre-edge point this was between -48 eV to -28 eV and for the 

upper pre-edge point between -18 eV to -8 eV, relative to E0, with energy steps of 1 eV. The post-

edge energy was allowed to vary between 29 eV to 39 eV, energy steps of 0.5 eV, for the lower 

point and 60 eV to 70 eV, energy steps of 1 eV, for the upper point, relative to E0. All fits which 

deviated from 1 by less than 0.0005 were chosen and those with the lowest R values selected as to 
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best fit the data. In a second step the optimized background correction and normalization 

parameters were used in the fit_athena environment of the LCF package (which uses the same 

algorithm as the Athena Software (Ravel and Newville, 2005)). The number of total standards 

allowed in the final fit was constrained to 4, the sum of weights of the standards was forced to one. 

If the second-best fit diverged from the best fit in at least one P species by more than five percent, 

out of these two fits, we selected the one that was most similar to the third-best fit. For the fitting 

process a total of 13 standards (Table 2.5-2) was selected (Gustafsson et al., 2020 ⁠; Prietzel et al.,  

 2016). 

The 13 P species used for the fitting procedure were summarized in six soil P classes: Ca-bound P 

(Ca-P), Fe- and Al-phosphates (Fe-P, Al-P), P adsorbed to Fe- and Al-oxyhydroxides (sorbFe-P, 

sorbAl-P), and organic P (Po). The Ca-P class contained the P species hydroxyapatite (HydAp), 

octacalciumphosphate (OCP) and brushite (BRU) as they represent the most important primary P 

mineral (HydAp) and secondary calcium-phosphates in these granodiorite-derived neutral to acidic 

soils. The Fe-P class consists only of a standard for short-range order Fe-phosphates (sroFe-P) 

(which was the only P standard available in the fitting that accounts for Fe-phosphates) while the 

Al-P class was composed of short-range order Al-phosphates (sroAl-P), and variscite (VAR). Both 

classes were included to account for secondary P minerals. The sorbFe-P compound class entailed 

P sorbed to ferrihydrite (adsP-FER), and P sorbed to goethite (adsP-GOE), whereas the sorbAl-P 

compound class consisted of P sorbed to Al saturated clay (adsP-Al_clay), P sorbed to Al-

Table 2.5-2: Standards included in the Linear combination fitting (LCF) for P species characterization of 

phosphorus K-edge X-ray absorption near edge structure (XANES) spectra are given in the first column. 

Characterization of each standard in the second column. Abbreviations as used in the redundancy analysis (RDA) 

are written in the third column. Standards were grouped to P classes which are presented in column four. 

 

Standarda Description  Abbreviation P class 

Hydroxyapatitea Primary P mineral in the soils of this study. HydAp calcium 
phosphates 
(Ca-P) 

Brushiteb Secondary Ca-phosphate. BRU 
Octa-Ca-phosphateb Secondary Ca-phosphate OCP 

AlPO4-amorphousa Secondary Al phosphates with short range ordered 
crystal lattice. 

sroAl-P Al phosphates 
(Al-P) 

Varisciteb Secondary Al phosphate. VAR 
Boehmite-PO4a Phosphate adsorbed to Boehmite. adsP-BOE orthophosphate 

sorbed to Al-
(oxy)hydroxides 
(sorbAl-P) 

adsP-AlOH3
b Phosphate adsorbed to Al-hydroxide. adsP-AlOH 

adsP-Al-Montmorillonitea Phosphate adsorbed to Al saturated clay. adsP-Al_clay 
adsP-Al-SOMa Phosphate adsorbed to soil organic matter. adsP-SOM 
FePO4-amorphousa Secondary Fe phosphates with short range ordered 

crystal lattice. 
sroFe-P Fe-phosphates 

(Fe-P) 
adsP-Ferrihydritea Phosphate adsorbed to Ferrihydrite. adsP-FER orthophosphate 

sorbed to Fe-
(oxy)hydroxides 
(sorbFe-P) 

adsP-Goethiteb Phosphate adsorbed to Goethite. adsP-GOE 

Inositolhexakisphosphatea Organic P: the spectrum was obtained from 
inositolhexakisphosphate. Due to missing characteristics 
of organic P species in XANES spectra it was used in this 
study to represents organic P in general. 

Po organically bound 
P 
(Po) 

a) (Prietzel et al., 2016)    
b) (Gustafsson et al., 2020)    
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hydroxides (adsP-AlOH), P sorbed to boehmite (adsP-BOE), and P sorbed to Al saturated soil 

organic matter (SOM) (adsP-SOM). Po is represented by a standard of pure 

Inositolhexakisphosphate. An overview over P standards and how they were classified is given in 

Table 2.5-2. 

A total of 43 samples were specifically chosen to cover gradients in three dimensions (climate, 

soil depth and rhizosphere to bulk soil), and to be most representative for the respective site. 

Therefore, always the north- and south-facing mid-slope profiles from each site were analyzed. 

To be able to combine the P contents in the different distances to roots the ‘rhizosphere P per root 

length segment’ was calculated as total P content in a cylindrical shaped volume around roots with 

a length of 1 cm and an outer diameter of 8 mm. We assumed an average root thickness of 2 mm 

to calculate the volume of the cylinder, sheathing the roots, e.g the cylinder volume in 0-2 mm 

root distance was calculated as the difference of a cylinder with a radius of 4 mm minus a cylinder 

with a radius of 2 mm, and so forth. The total P content (in mg P per kg soil) and the content in 

the P compound classes, respectively, were multiplied by the bulk density (derived from Bernhard 

et al. (2018a)) and multiplied by the volume of the cylinder in the respective root distance (0-

2 mm = 0.38 cm³, 2-4 mm = 0.63cm³, 4-6 mm = 0.88 cm³). 

2.5.2.6 Statistical analyses 

All statistical analyses were conducted using R Version 3.4.3 (R Core Team, 2017). Principal 

component analysis (PCA) was carried out by using the function prcomp() of the ‘stats’ package 

of R. Data from all soil pits were included and were normalized to a mean of zero and a standard 

deviation of one. Linear models for LMWOAs and P speciation, respectively, at each depth, and 

with root distance as explaining variable, where calculated using the lm() function, as well of the 

package ‘stats’. The linear model was fitted separately for north- and south-facing slopes. 

Differences in all three LMWOAs, MBC, Vmax, Km, and P speciation with depth and between 

sites at one depth were also tested by a linear model. Pairwise comparison between the sites or 

depths was done by the function lsmeans() of the ‘lsmeans’ package (Lenth, 2016) with Tukey 

adjustment. The Redundancy analysis (RDA) was calculated by the rda() function of the package 

‘vegan’ (Oksanen et al., 2018). The RDA was calculated separately for each site and included 

samples from all soil pits and depths at each site. Explaining and explained variables were 

normalized to a mean of zero and standard deviation of one. For the RDA, any sample with a 

missing value in one of the explanatory variables was excluded from the analysis in the respective 

site. Data are presented in type II scaling, hence, angles between arrows can directly be interpreted 

in terms of correlation. The correlation between variables is expressed as the cosine (cos(α)) of the 

angle between the arrows of two variables. Except for the RDA plots (done by the plot() function 
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of R) the package ‘ggplot2’ was used to produce all graphical outputs of data (Wickham, 2016). 

Considering an ongoing debate about the meaning of p values and their interpretation, and our 

study design with highly variable parameters of natural ecosystems, the threshold for significance 

was set to p < 0.1 (Amrhein et al., 2019). 

2.5.3 Results 

Two PCAs were calculated to identify the influence of P speciation alone and the influence of P 

speciation together with LMWOA contents on the variability within the dataset. The PCA for P 

speciation alone (Figure 2.5-1A) explained on the first principal component axis 49.5% and on the 

second axis 17.2% of the total variance within P species. The humid-temperate forest and the arid 

shrubland samples were clearly separated along PC 1. In the Mediterranean woodland some topsoil 

samples forced the woodland polygon to overlap with the polygon comprising samples from the 

humid-temperate forest soil, whereas all subsoil and saprolite and some topsoil samples of the 

Mediterranean woodland ecosystem overlapped with the arid shrubland. When LMWOAs (oxalic, 

malic, citric) were included in the PCA (Figure 2.5-1B) the clear separation of ecosystems along 

PC 1 was less expressed, but more variance was explained by PC 2, resulting in a more equally 

distributed explained variance among the two axes. PC 2 ordinated the samples from the humid-

temperate forest and Mediterranean woodland by sampling depth, which was not discerned when 

only P species were used for the PCA. The latter PCA clearly indicated a systematic, presumably 

process-based, interaction between P-speciation and LMWOAs, since the separation was kept, and 

the explained variance was more evenly distributed between the first two principal components. 

 

 

 

Figure 2.5-1: PCA calculated for all soil samples with (A) P species from phosphorus K-edge X-ray absorption 

near edge structure (XANES) analysis as variables and (B) P species and low-molecular-weight organic acids 

(LMWOA) (oxalic-, malic-, and citric acid) as variables. Sampling sites are indicated by color, arid shrubland in 

purple, Mediterranean woodland in orange and humid-temperate forest in turquoise. Marker type denotes the 

sampling depth: circles = topsoil, diamonds = subsoil, and saprolite = triangles. 
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2.5.3.1 Microbial biomass carbon and enzyme kinetics 

MBC content (in µg MBC per g soil) in the topsoil increased with increasing precipitation along 

the ecosequence (Table S 2.5-8). Within the soil profile, MBC content decreased in all three sites 

with greater soil depth (Table S 2.5-8). Furthermore, in all sites the MBC content was always 

significantly different when comparing the topsoil with the saprolite (p<0.01). In the humid-

temperate forest, the content of MBC was higher in root proximity compared to bulk soil (Table S 

2.5-8). Along the ecosequence, the maximum reaction rate of acid phosphatase (Vmax, in mmol 

substrate g-1 soil h-1) increased with increasing humidity (Table S 2.5-8, after Stock et al. (2019)). 

The Vmax was lower in the topsoil and saprolite of the Mediterranean woodland and the topsoil of 

the arid shrubland, compared to the humid-temperate forest. 

2.5.3.2 LMWOA contents 

Contents of oxalic, malic, and citric acid together accounted for more than 97% of all extracted 

LMWOAs. These acids also represent the most-efficient P dissolving di- and tricarboxylic acids 

in soils (Gerke et al., 2000). Therefore, we only present the results for these three acids (Figure 

2.5-2 and Table S 2.5-8). When comparing between sites, only malic acid contents in the topsoil 

were always higher in the humid-temperate forest compared to the arid shrubland (Figure 2.5-2). 

No difference in terms of acid contents in the topsoil were found between the humid temperate 

forest and the Mediterranean woodland. Next, when assessing the differences with soil depth, the 

contents of malic and citric acid increased significantly from the topsoil to the saprolite in the arid 

shrubland soil. LMWOA contents in the Mediterranean woodland ecosystem were more uniformly 

distributed with soil profile depth (only malic acid increased significantly from the topsoil to the 

subsoil). Malic acid contents under humid-temperate forest strongly decreased from the topsoil to 

the saprolite. Finally, when comparing by root proximity we found higher citric acid content in 

root proximity compared to bulk soil in the topsoil at the south-facing slope of the Mediterranean 

woodland, and in the saprolite at the north-facing slope of the humid-temperate forest (Figure 

2.5-2, red and blue arrows). Contents of malic acid were higher in root proximity (0-2 mm) than 

bulk soil in the subsoil of the south-facing slope under humid-temperate forest. Oxalic acid 

contents were higher in root proximity than bulk soil in the arid shrubland in the subsoil of the 

south-facing profile. The same was true in all three depths at the south-facing slope in the 

Mediterranean woodland, and in the saprolite at the south-facing slope of the humid-temperate 

forest. 
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2.5.3.3 P XANES K edge measurements 

When comparing between sites, Ca-P generally declined with increased precipitation, except for 

the saprolite of the Mediterranean woodland and the arid shrubland (Figure 2.5-3; Table 2.5-3). 

When focusing on the differences by soil depth, the Ca-P content increased from topsoil to subsoil 

and saprolite in the Mediterranean woodland. There was no difference in Ca-P content between 

the subsoil and the saprolite in the Mediterranean woodland and no effect of soil depth in the arid 

shrubland. In the humid-temperate forest Ca-P was only found in two samples in the saprolite. 

When assessing the differences within root proximity, the Ca-P content in the topsoil declined 

with increasing distance from the root at the north-facing slope of the arid shrubland (Figure 2.5-3, 

Table S 2.5-7). 

 

Figure 2.5-2: Content of low-molecular-weight organic acids (LMWOA) (citric-, malic- and oxalic acid) for north 

(blue circles) and south (red diamonds) facing slopes for all three sites (arid shrubland (‘shrubland’), 

Mediterranean woodland (‘woodland’) and humid-temperate forest (‘forest’)) and three sampling depths (topsoil, 

subsoil and and saprolite) separated by the three horizontal panels. Whiskers indicate the magnitude of the 

standard error from the mean. The x-axis shows root proximity (intervals of 2 mm from 0-2 mm, 2-4 mm, and 4-

6 mm), y-axis plots the content of organic acids per gram soil dry weight. Sample size on the south facing slope is 

n=3, on the north facing slope single replicates are shown (n=1). Arrows indicate significant changes with distance 

to the roots, the color of the arrow was chosen according to the respective data row. Level of significance is 

indicated by asterisk (p < 0.05) and cross (p < 0.1). 
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Figure 2.5-3: Contents of P compound classes from phosphorus K-edge X-ray absorption near edge structure 

(XANES) analysis: calcium phosphates(Ca-P), Al- and Fe phosphates (Al-P and Fe-P), orthophosphate sorbed to 

Al- and Fe-(oxy)hydroxides (sorbAl-P and sorbFe-P) and organic P, split by slope facing (circles = north facing; 

diamonds = south facing) and by site (arid shrubland (‘shrubland’) in purple, Mediterranean woodland 

(‘woodland’) in orange and humid-temperate forest (‘forest’) in turquoise. Samples from different depths are 

separated by the three horizontal panels (topsoil, subsoil and saprolite). The x-axis shows root proximity (0-2 mm, 

2-4 mm, and 4-6 mm), the y-axis plots the fractions of the respective P class on total P. Red arrows indicate 

significant changes with root proximity (p < 0.1). The markers present individual replicates (n=1). 

Fe-P and Al-P in the topsoil were higher in the arid shrubland than in the humid-temperate forest. 

In the saprolite Al-P was higher in both, the arid shrubland and Mediterranean woodland, 

compared to the humid-temperate forest (Figure 2.5-3, Table S 2.5-7). P sorbed to Al-

(oxy)hydroxides (sorbAl-P) was significantly higher in the humid-temperate forest than in the two 

other sites. In the topsoil at the south-facing slope of the humid-temperate forest the sorbAl-P 

contents increased with increasing distance from the root. 

The Po content in the topsoil was lower under arid shrubland than under Mediterranean woodland 

and humid-temperate forest. Po decreased from topsoil to saprolite in the humid-temperate forest. 

In the topsoil at the south-facing slope of the Mediterranean woodland Po was higher in the 

rhizosphere than bulk soil. 

Rhizosphere P per root segment in soils decreased with increasing precipitation. Average values 

were: 440 µg cm-1, 238 µg cm-1, and 216 µg cm-1 in the topsoil, for the arid shrubland, 

Mediterranean woodland and humid-temperate forest, respectively. In the saprolite, the 

                                     

   

   

   

   

   

   

   

   

   

   

   

   

   

   

   

                   

                                             

     



Publications and Manuscripts  143 

 

rhizosphere P per root segment was 418 µg cm-1 in the arid shrubland, 296 µg cm-1 in the 

Mediterranean woodland and 497 µg cm-1 in the humid-temperate forest. 

2.5.3.4 Relating P speciation to P mobilizing processes 

Based on the outcomes of the PCA (Figure 2.5-1) and the expected site-specific relations between 

P speciation and LMWOAs, phosphatase kinetics (Vmax, Km), and MBC (Figure 2.5-2, Figure 2.5-3 

and Table S 2.5-8), a RDA was calculated for each of the sites separately (Figure 2.5-4). P species 

were taken as explanatory variables and LMWOAs, MBC, acid phosphatase activity (Vmax), and 

acid phosphatase half saturation constant (Km) as explained variables. The explanatory variables 

constrain 75%, 67%, and 80% of the variance for the arid shrubland, the Mediterranean woodland, 

and the humid-temperate forest, respectively. 

In the arid shrubland, variscite and hydroxyapatite were highly correlated with LMWOA contents. 

Hydroxyapatite shows values of cos(α)=0.99, 0.98, 0.92 for oxalic, malic, and citric acid, 

respectively. Variscite shows values of cos(α)=0.99, 1.00, 1.00, for oxalic, malic, and citric acid, 

respectively (Table S 2.5-6). Variscite and hydroxyapatite together accounted for 61%, 66%, and 

82% of total P content in the arid shrubland’s topsoil, subsoil and saprolite, respectively. Biotic 

parameters Vmax, Km, and MBC were mainly independent of P speciation under arid shrubland. 

In the Mediterranean woodland soils Vmax, Km, MBC, and oxalic acid showed the strongest 

positive correlation with Po and P sorbed to goethite. The correlation parameter cos(α) was 0.92, 

1.0, 0.96, 0.96, for Po and 0.59, 0.88, 0.97, 0.97 for P sorbed to goethite, each for MBC, Vmax, Km, 

and oxalic acid, respectively, (Table S 2.5-6). Po was mostly found in the topsoil and was absent 

in the subsoil at this site (Table S 2.5-7). In the Mediterranean woodland subsoil and saprolite 

hydroxyapatite, variscite and short-range order Fe-P together made up at least 70% of total P in 

each root distance (Table S 2.5-7). Malic and citric acid were highly to moderately correlated with 

variscite and short-range order Fe-P (cos(α)= 0.93, and 0.62 for variscite and 0.98, and 0.75 for 

short-range order Fe-P, each for malic- and citric acid, respectively; Figure 2.5-4 and Table S 

2.5-6). 
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Figure 2.5-4: Triplots of the redundancy analysis (RDA) for the arid shrubland, Mediterranean woodland, and 

humid-temperate forest ecosystems. With P species as explanatory variables and microbial biomass carbon, low-

molecular-weight organic acids, phosphatase activity and -affinity as explained variables. Green arrows indicate 

direction of the respective explaining variables, orange arrows of explained variables. The name of the respective 

variable is plotted at each arrowhead. Samples from all three sampling depths (topsoil = light yellow; 

subsoil = orange; saprolite = red) and root proximities (intervals of 2 mm: 0-2 mm = circles, 2-4 mm = diamonds 

and 4-6 mm = triangles) were included in the RDA. Red dotted ellipsoids were included to guide the reader to the 

main messages of the respective figure, which are discussed in the text. The bold arrows in the subfigure of the arid 

shrubland and the Mediterranean woodland ecosystem point out the effect of soil depth on the outcome of the RDA. 

The RDA for the humid-temperate forest soils revealed a strong (except for Km) positive 

correlation of all dependent variables with Po (cos(α)= 0.96, 0.98, 0.96, 1.00, 0.98, 0.39, for oxalic-

, malic-, citric acid, MBC, Vmax, and Km, respectively; Figure 2.5-4, Table S 2.5-6). Po represents 

on average 51% of the total P in the topsoil and 17% in the saprolite. LMWOAs, MBC, and Vmax 

were strongly positively correlated with Po. All explained variables showed moderate to strong 

negative correlations with all other P species in the humid-temperate forest ecosystem (Figure 

2.5-4 and Table S 2.5-6, Table S 2.5-7, and Table S 2.5-8).  

2.5.4 Discussion 

Mature ecosystems are characterized by well-established nutrient cycles, i.e. each atom of a certain 

nutrient is used by the vegetation multiple times, thereby passing through various nutrient pools 

(Chadwick et al., 1999 ⁠; Lang et al., 2017). As the focus of this study was on plant P acquisition 

and recycling strategies along an ecosequence, we first explored specifics and common features 
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of P speciation and LMWOAs in the soils of the study sites, i.e. the arid shrubland, the 

Mediterranean woodland, and the humid-temperate forest ecosystem, by performing a PCA 

(Figure 2.5-1). The PCA confirmed a clear separation of the soils from the most arid and most 

humid ecosystems in terms of P speciation. If LMWOA contents were included, the separation of 

the humid-temperate forest and the Mediterranean woodland ecosystems improved. The samples 

were ordered by soil depth along PC 2. The overall variance accounted for by the PCA remained 

constant but was more evenly distributed between the two axes. Thus, we conclude that LMWOAs 

represent an ecosystem specific variable interaction with P speciation, which points toward a 

systematic dependency of LMWOAs on P minerals in the respective ecosystems. Along the 

ecosequence (arid to humid), the vegetation-community changes from shrub to tree dominated, at 

the same time the belowground carbon allocation and leaf area index incease (Bernhard et al., 

2018). The PCA (including both P speciation and LMWOAs) clearly separated top- from subsoils 

in the humid-temperate forest and the Mediterranean woodland, indicating that P mobilization 

mechanisms are different the various soil layers. Although it is likely that all plants possess the 

ability to exudate LMWOAs, it can be speculated that soil regions with low P availability provide 

an ecological niche for species with an exceptionally high ability to exudate LMWOAs. 

2.5.4.1 The arid shrubland ecosystem 

The most important finding for the arid ecosystem is the strong dependence of LMWOA contents 

on hydroxyapatite and variscite in the subsoil and saprolite. This clearly suggests a mechanistic 

relation between primary P (hydroxyapatite), which is still available in high amounts, secondary 

Al-P, and LMWOAs of biotic origin (Figure 2.5-4). Therefore, the arid shrubland is considered to 

be a rock eating ecosystem. Contents of LMWOAs always increased in root proximity, except for 

citric acid in the topsoils of the arid shrubland (Figure 2.5-2). This results from the fact that the 

roots exude these acids, which is in accordance with many other studies (e.g. Cieśliński et al., 

1998⁠; Hinsinger, 2001 ⁠; Szmigielska et al., 1996). However, biotic activity in these soils is rather 

low, which can be explained by the low vegetation cover (30–40%) (Table 2.5-1) (Bernhard et al., 

2018b) leading to low microbial biomass in the soils of the arid ecosystem (Table S 2.5-8). 

Ecosystems with low and seasonally variable water availability are characterized by vegetation 

that produces nutrient-poor litter which is resistant to decomposition (Becker and Kuzyakov, 2018 ⁠; 

Makkonen et al., 2012). As expected, the pool of organically bound P in these soils was small 

(Figure 2.5-3). Abiotic processes involved in the dissolution of P minerals are strongly influenced 

by the availability of water and, thus, limited under arid shrubland (Maher, 2010). However, the 

high hydroxyapatite (Table S 2.5-7) contents in the arid shrubland ecosystem compared to the two 

other sites indicates that not only the net primary productivity and vegetation cover, but also the 
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overall weathering is generally low. Additionally, enzymatic activity (Stock et al., 2019) and MBC 

are also low, suggesting that all biotic processes occur at a low rate. Biota-driven mineral 

dissolution processes include the exudation of organic anions and the release of protons (Banfield 

et al., 1999 ⁠; Drever and Stillings, 1997⁠; Neaman et al., 2006 ⁠; Plassard et al., 2011), but only occur 

in root proximity, where plants can partially control the microenvironmental conditions, e.g. by 

maintaining a moist soil via mucilage exudation (Carminati and Vetterlein, 2013 ⁠; Kroener et al., 

2018). Therefore, it is likely that plants growing under such conditions have to acquire most of 

their mineral nutrients, through biochemical weathering, from the subsoil and saprolite where P 

minerals are still abundant. 

In contrast to the subsoil and saprolite, the RDA does not resolve which processes are involved in 

the topsoil at this site. Despite of low enzymatic activities it cannot be excluded that organic P 

plays a certain role in the topsoil. Low contents of organic P could also be an indication for strong 

utilization, i.e. rapid turnover, or mineralization of these compounds. 

2.5.4.2 Humid-temperate forest ecosystem 

In this site, the weathering of granodioritic parent material is most advanced compared to the two 

northern ecosystems. This is reflected by the absence of hydroxyapatite and other Ca-phosphates 

(Figure 2.5-3 and Table S 2.5-7). Brucker and Spohn (2019), who investigated the same 

ecosequence, reported lowest apatite contents, and highest contents of secondary P minerals in the 

soils of the humid-temperate forest. Rhizosphere P per root segment was lowest in the top- and 

subsoils of this ecosystem (Table S 2.5-5) compared to the two northern ecosystems. This 

demonstrates the general pattern of decreasing P contents with increasing precipitation and, thus, 

soil development (Hou et al., 2018⁠; Turner et al., 2018⁠; Walker and Syers, 1976). This 

interpretation is supported by the fact that the rhizosphere P per root segment in the saprolite of 

the humid-temperate forest is highest among the three ecosystems, suggesting that this depletion 

is not due to a lower P content in the parent material, but indeed results from the processes that 

take place during ecosystem and soil development. 

As shown by Stock et al. (2019), phosphatase kinetics indicate the highest relevance of breakdown 

of organic compounds (recycling) for P nutrition in the humid-temperate forest compared to the 

two other ecosystems. The RDA supports these previous results and, most importantly, implies 

that LMWOAs in the humid-temperate forest serve to support plant Po mobilization, so we refer 

to the humid temperate forest as a vegetarian ecosystem. Thus, ther function of LMWOA is, in 

contrast to the arid shrubland, neither the weathering nor the mobilization of hydroxyapatite or 

variscite (Figure 2.5-4). Alternatively, increased Po in root proximity of this ecosystem’s topsoil 

reflects the accumulation of Po around roots, likely from a thriving microbial community (Figure 
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2.5-2 for Po and Table S 2.5-8 for MBC contents) induced by high root exudation rates. Therefore, 

it is reasonable to assume that more frequent recycling occurs within the topsoil of the humid-

temperate forests. However, even if a tight P cycle is established, there will still be leaching and 

erosional losses that have to be replenished by P acquisition from mineral sources (Uhlig et al., 

2017).  

P losses due to leaching affect, not only inorganic P in the soil solution, but also dissolved 

inorganic and organic P species. This results from the increase in the breaking up of organic P and 

the leaching of dissolved inorganic P and particulate organic or inorganic P species transported in 

the soil pore system after heavy rainfall (Bol et al., 2016). Finer grain sizes in the humid-temperate 

forest compared to the two other sites (Bernhard et al., 2018b) are a factor that may contribute to 

reduced P losses e.g. by leaching or particulate transport (Hou et al., 2018⁠; Sims et al., 1998). This 

is because they have a higher specific surface area, which provides sorption sites for P in the soil. 

Moreover, from P adsorption experiments (data not shown) it is clear the P availability in this site 

is lowest along the ecosequence. On the other hand, MAP is more than three times higher 

compared to the Mediterranean woodland. MAP is a strong driver of abiotic P weathering and is 

negatively correlated with primary P and plant available P. This is also shown for primary P in this 

study and for plant available P in Bernhard et al. (2018a). On the contrary, increased MAP 

enhances primary production and thus the C availability in soils, which is positively correlated 

with organic P accumulation.  

Higher C availability results in microbial growth and P uptake and consequently organic P 

accumulation in soils and enhanced P flux through the soil solution. In general soil pH is negatively 

correlated with the solubility of Ca-phosphates and the degradation of organic P, whereas it is 

positively correlated with the formation of secondary P minerals (Hou et al., 2018). The positive 

effect on secondary P minerals originates from decreasing solubility of Fe and Al with decreasing 

pH. In this study, the pH in topsoils dropped from 6.4 in the arid shrubland to 5.5 in the 

Mediterranean woodland and 4.3 in the humid-temperate forest (Table 2.5-1). P sorbed to Al-

(oxy)hydroxides was in all three sampling depths lower in the arid shrubland or the Mediterranean 

woodland compared to the humid-temperate forest (Figure 2.5-3, Table 2.5-3 (for absolute values), 

Table S 2.5-14 for p values). Consequently, it seems that a high flux of P through the soil solution, 

due to elevated C availability and related biological activity, in concert with stabilizing conditions 

for Al and Fe-(oxy)hydoxides, caused by a low pH, enhances P sorption to Al-(oxy)hydroxides. 

Because rhizosphere P per root segment in the topsoil of the humid-temperate forest is low, it 

seems likely that the elevated P flux in combination with high water availability in soil also causes 

high P leaching losses despite a high sorption capacity.  
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As indicated by lower plant available P in the humid-temperate forest compared to the two other 

sites (Bernhard et al., 2018a) the sorption seems to be rather strong and only a small proportion of 

the sorbed P can be expected to contribute to plant nutrition under these circumstances. A strategy 

to overcome P limitation due to leaching losses is biological uplift (Gao et al., 2019). As shown 

by the RDA (Figure 2.5-4) in the humid-temperate forest, primary P acquisition happens in the 

deep subsoil and saprolite. This interpretation is supported by the fact that LMWOA contents per 

MBC ratios (Table S 2.5-8) increased with soil depth (this was true in all ecosystems), indicating 

an intended higher exudation of acids deeper in the soil profile to gain access to this P source 

(Table S 2.5-8). 

Table 2.5-3: Six P pools as a sum of 

single standards from linear 

combination fitting (LCF) are shown. 

Values from the LCF are given in 

percent of total P (Ca-P = calcium 

phosphates, Al-P = Al-phosphates, 

sorb Al-P = orthophosphate sorbed to 

Al-(oxy)hydroxides, Fe-P = Fe-

phosphates, sorb Fe-P = 

orthophosphates sorbed to Fe-

(oxy)hydroxides, Po = organically 

bound P ). The LCF was restricted to a 

maximum of four standards per 

sample. If a P pools was not detected 

in a sample this is indicated by ‘n.d.’ 

(not determined). Absolute values of P 

species were calculated by multiplying 

the share of a P pool with total P (Ptot) 

(Ca-Ptot = calcium phosphates, Al-

Ptot = Al- phosphates, sorb Al-

Ptot = orthophosphate sorbed to Al-

(oxy)hydroxides, Fe-Ptot = Fe-

phosphates, sorb Fe-

Ptot = orthophosphates sorbed to Fe-

(oxy)hydroxides, Potot = organically 

bound P). Rhizosphere P per root 

segment was calculated as total P 

content in a cylinder around root with 

a length of 1 cm and a radius of 6 mm, 

the inner diameter was set to 2 mm 

(average root thickness (Ca-

PRP = calcium phosphates, Al-

PRP = Al-phosphates, sorb Al-

PRP = orthophosphate sorbed to AL-

(oxy)hydroxides, Fe-PRP = Fe-

phosphates, sorb Fe-

PRP = orthophosphates sorbed to Fe-

(oxy)hydroxides, PoRP = organically 

bound phosphor). 
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2.5.4.3 Mediterranean woodland ecosystem 

The vegetation in the Mediterranean woodland ecosystems is generally adapted to seasonal rainfall 

and longer droughts (Amigo Vázquez and Flores Toro, 2013 ⁠; Nardini et al., 2014). Plants reduce 

water loss through transpiration during these dry and mostly hot periods by producing 

sclerophylloud leaves (Nardini et al., 2014). Litterfall is higher than in the arid shrubland, leaving 

a bigger pool of organically bound nutrients to be cycled within the Mediterranean woodland 

ecosystem (Figure 2.5-2). The PCA results support the theoretical assumption that this ecosystem 

is in an intermediate state between the two endmembers of the studied ecosequence (Figure 2.5-1), 

which were discussed in the previous paragraphs. This theory is verified by the RDA, which 

identifies recycling of P in the topsoil and biochemical weathering of secondary P minerals in the 

subsoil (Figure 2.5-4). The RDA also provides indications about several underlying processes. 

Phosphatase kinetics (Vmax, Km), MBC, oxalic acid (explained variables), and Po (explaining 

variable) have high values in samples from topsoil and root proximity. The clear correlation 

between Po and the explained variables Vmax, Km, MBC, and oxalic acids verifies that P recycling 

is the main process in the topsoil, and it is driven by roots. Surprisingly, in contradiction to Wei et 

al. (2010), it also implies that oxalic acid in the topsoil of this ecosystem is involved in the 

recycling of organic P. In contrast, biochemical weathering of short-range order Fe-P (sroFe-P) 

and variscite (VAR) in the subsoil and saprolite is mediated by malic and citric acid as biotic 

drivers (Figure 2.5-4, inferred from the strong correlation between these variables). We found a 

weak correlation, however, of malic and citric acid with hydroxyapatite, which all showed high 

contents in samples from the subsoil and saprolite in the Mediterranean woodland. It is, therefore, 

reasonable to assume that chemical weathering also contributes to mineral dissolution in this 

ecosystem. Hence, P dynamics in this ecosystem might be controlled by biological uplift of P 

(Bullen and Chadwick, 2015 ⁠; Gao et al., 2019) from subsoil horizons and recycling of these 

nutrients once they entered the biological cycle. It has been shown that deep-rooting plants can act 

as nutrient pumps, that lift up nutrients from the subsoil, subsequently accumulating in the topsoil 

as organically bound nutrients, once undergone transformation within plants (Bullen and 

Chadwick, 2015⁠; Gao et al., 2019⁠; Wu et al., 2019). Nutrient uplift is driven by plants demand and 

mediated via roots. 

Soil erosion rates in the Mediterranean woodland were highest among all sites (Schaller et al., 

2018⁠; van Dongen et al., 2019), which leads to a rapid removal of the upper soil layer. This may 

explain why intense recycling only occurs in the upper soil layer. This is because with high erosion 

only a shallow soil horizon with organic P accumulation remains. However, it is unclear to what 

extend P is lost from the system by erosion and runoff, but they are most likely not identical 
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between the two investigated slopes (north- and south-facing). At the north-facing slope, total 

rhizosphere P per root segment decreased with depth (819 µg cm-1 in the topsoil and 556 µg cm-1 

in the saprolite), whereas at the south-facing slope it increased from 320 µg cm-1 in the topsoil to 

822 µg cm-1 in the saprolite (Table 2.5-3). The higher content of sand at the south-facing soil 

(>70%), combined with a MAP of about 370 mm yr-1 (Table 2.5-1) likely facilitates the leaching 

and erosion of plant available P from the soil on the south-facing slope. Hou et al. (2018) have 

shown that coarse grain sizes and high MAP are key factors determining P losses. 

2.5.5 Conclusion 

This study shows that P acquisition and cycling along the investigated ecosequence strongly 

depend on climate. It contributes to resolve plant strategies of P nutrition under natural conditions.  

Low-molecular-weight organic acids (LMWOAs) exuded by roots induce not only biochemical 

weathering of phosphate minerals, but also support organic phosphorus mobilization under field 

conditions. The functions of LMWOAs change along the ecosequence – with increasing 

precipitation. Under arid shrubland oxalic, malic, and citric acid support the dissolution of 

phosphorus minerals, whereas under Mediterranean woodland malic and citric acid support 

biochemical weathering in the subsoil and oxalic acid mobilizes organic phosphorus in the topsoil. 

Under humid-temperate forest, all LMWOAs support the mobilization of organic phosphorus in 

the topsoil. As a result, phosphorus dynamics across biomes vary strongly and show a shift of the 

phosphorus acquisition strategy along the ecosequence with increasing precipitation from 

70 mm yr-1 to 1470 mm yr-1. 

In the soils under arid shrubland, phosphorus cycling is actively driven by biochemical weathering 

of parent material (rock eating ecosystem). In the soils under humid-temperate forest, however, 

there was no direct evidence for biochemical weathering but intensive phosphorus recycling 

(vegetarian ecosystem). Phosphorus losses in the Mediterranean woodland are likely to be very 

high and the need for phosphorus creates an incentive for a strong phosphorus supply from 

(biological) weathering in the subsoil, while at the same time organic phosphorus is recycled in 

the topsoil. 
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2.5.10 Supplementary 

Table S 2.5-1: External standards included in the low-

molecular-weight organic acids method. Retention time 

with a capillary column DB-FFAP, 30 m, 0.25 mm diameter 

and a film thickness of 1 µm. For settings of the gas 

chromatograph contact the authors. The limit of detection 

was calculated as the amount of analyte in the smallest 

standard before derivatization. 

 

 

Table S 2.5-2: Total and constrained variance by 

the redundancy analysis (RDA). For the semiarid 

shrubland, Mediterranean woodland and humid-

temperate forest. 

 

 

Analyte Retention time Limit of detection 

 [min] [µg] 

Oxalic acid 6.6 5.5 

Malonic acid 8.8 5.5 

Fumaric acid 9.5 5.5 

Succinic acid 10.6 5.5 

Maleic acid 12.5 5.5 

Malic acid 19.1 5.5 

Citric acid 26.3 5.5 

 

Site 
 

Inertia Proportion 

Arid shrubland Total 5.96 1.00 

Constrained 4.49 0.75 

Unconstrained 1.47 0.25 

Mediterranean 
woodland 

Total 6.20 1.00 

Constrained 4.16 0.67 

Unconstrained 2.04 0.33 

Humid-
temperate 
forest 

Total 6.67 1.00 

Constrained 5.34 0.80 

Unconstrained 1.33 0.20 
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Table S 2.5-3: Scores of predictor 

variables (loadings) on redundancy 

analysis (RDA) axes. The values are a 

measure for how much variance of the 

variable is represented by the respective 

axis. Results are shown for the arid 

shrubland, Mediterranean woodland and 

humid-temperate forest. 

 

 

Table S 2.5-4: Scores of 

explained variables 

(loadings) on redundancy 

analysis (RDA) axes. The 

values are a measure for 

how much variance of the 

variable is represented by 

the respective axis. Results 

are shown for the arid 

shrubland, Mediterranean 

woodland and humid-

temperate forest. Please 

note that the values are 

represented in type I 

scaling, therefore, they do 

not allow to infer 

correlation with 

explaining variables. For 

the correlation between 

explaining end explained 

variables see Table S 2.5-

6. 

 

Site Variable RDA1 RDA2 RDA3 RDA4 RDA5 RDA6 

Semiarid 
shrubland 

HypAp -0.11 -0.03 0.17 -0.07 -0.51 -0.13 

BRU 0.23 0.17 0.43 -0.12 0.18 0.16 

OCP 0.19 0.20 -0.26 0.24 0.23 0.02 

VAR -0.76 -0.19 -0.10 -0.07 -0.41 -0.34 

sroFeP 0.58 -0.02 -0.04 0.51 0.55 0.21 

adsP-BOE 0.20 0.18 -0.16 0.16 -0.42 0.79 

Po 0.21 0.08 0.00 -0.82 0.49 0.15 

Mediterranean 
woodland 

HypAp 0.65 -0.09 -0.43 0.33 -0.17 0.24 

BRU -0.17 -0.64 0.09 -0.19 -0.24 -0.25 

OCP 0.14 0.11 0.14 -0.28 -0.20 -0.67 

VAR 0.64 0.41 -0.61 0.05 0.11 -0.09 

sroFeP 0.51 0.47 0.19 -0.37 0.57 -0.08 

adsP-BOE -0.16 -0.30 -0.03 0.23 0.34 -0.05 

adsP-GOE -0.51 0.33 0.43 0.24 -0.56 0.29 

Po -0.80 0.03 0.35 0.05 -0.03 0.32 

Humid-
temperate 
forest 

sroAlP 0.41 -0.03 0.06 0.24 -0.24 0.06 

VAR -0.11 0.55 0.22 -0.27 -0.38 -0.58 

sroFeP -0.34 -0.48 0.16 0.38 0.43 -0.33 

adsP-Al_clay -0.15 0.00 -0.68 0.14 0.12 -0.30 

adsP-BOE -0.43 -0.01 0.09 0.15 0.02 -0.08 

adsP-SOM -0.41 -0.08 0.35 -0.18 0.20 0.70 

adsP-FER -0.22 0.19 -0.31 -0.03 -0.32 0.60 

adsP-GOE -0.19 0.04 -0.28 0.00 -0.04 -0.09 

Po 0.94 -0.09 0.01 -0.12 -0.05 -0.11 

 

Site Variable RDA1 RDA2 RDA3 RDA4 RDA5 RDA6 

Arid shrubland Oxalic -0.51 -0.12 0.03 -0.80 0.19 0.22 

Malic -0.53 -0.15 -0.22 0.06 -0.59 -0.54 

Citric -0.56 -0.25 -0.14 0.56 0.51 0.19 

MBC 0.05 -0.26 -0.35 0.07 -0.52 0.73 

Vmax 0.03 -0.62 0.77 0.08 -0.16 0.02 

Km 0.38 -0.67 -0.47 -0.17 0.26 -0.29 

Mediterranean 
woodland 

Oxalic -0.43 0.26 -0.56 0.08 0.65 0.06 

Malic 0.18 0.48 0.03 0.83 -0.12 -0.20 

Citric 0.04 0.68 0.54 -0.41 0.28 -0.10 

MBC -0.51 -0.38 0.46 0.22 0.23 -0.53 

Vmax -0.50 0.07 0.34 0.21 -0.17 0.74 

Km -0.51 0.31 -0.27 -0.23 -0.64 -0.33 

Humid-
temperate 
forest 

Oxalic 0.45 0.19 -0.29 0.01 0.67 -0.48 

Malic 0.49 0.15 0.19 0.28 -0.63 -0.47 

Citric 0.47 0.22 0.06 0.48 0.14 0.69 

MBC 0.45 -0.15 0.55 -0.67 0.09 0.14 

Vmax 0.34 -0.26 -0.75 -0.33 -0.32 0.21 

Km 0.12 -0.90 0.11 0.37 0.15 -0.10 
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Table S 2.5-5: Standard deviation, explained variance per axis and cummulative explained variance from the 

redundancy analysis (RDA) for the arid shrubland, Mediterranean woodland and humid-temperate forest. 

 

Table S 2.5-6: Correlations between explaining and explained variables from the redundancy analysis expressed as 

the cosine of the angle between the arrows resulting from the loadings in Table S 2.5-3 and type II scaled loadings of 

explained variables (90 ° = independent, 0 ° = collinearity). Note that for the P species adsP-AlOH no values are 

reported. This is due to missing dependent variables for the two samples for which this P species was found. 

 

  

Site 
 

RDA1 RDA2 RDA3 RDA4 RDA5 RDA6 

Arid shrubland SD 1.74 1.01 0.50 0.40 0.16 0.10 

Proportion 0.67 0.23 0.06 0.04 0.01 0.00 

Cumulative 0.67 0.90 0.96 0.99 1.00 1.00 

Mediterranean 
woodland 

SD 1.64 0.86 0.66 0.46 0.27 0.16 

Proportion 0.64 0.18 0.10 0.05 0.02 0.01 

Cumulative 0.64 0.82 0.93 0.98 0.99 1.00 

Humid-
temperate 
forest 

SD 1.96 0.82 0.65 0.58 0.22 0.10 

Proportion 0.72 0.13 0.08 0.06 0.01 0.00 

Cumulative 0.72 0.85 0.93 0.99 1.00 1.00 

 

Site Variable HydAp OCP BRU sroAl-P VAR sroFe-P
adsP-

Al_clay
adsP-AlOH adsP-BOE adsP-SOM adsP-FER adsP-GOE Po

Oxalic 0.99 -0.8 -0.9 n.d. 0.99 -0.98 n.d. n.d. -0.83 n.d. n.d. n.d. -1

Malic 1 -0.8 -0.9 n.d. 1 -0.98 n.d. n.d. -0.84 n.d. n.d. n.d. -1

Citric 1 -0.9 -0.9 n.d. 1 -0.96 n.d. n.d. -0.88 n.d. n.d. n.d. -1

MBC -0.09 -0.5 -0.3 n.d. -0.1 0.36 n.d. n.d. -0.4 n.d. n.d. n.d. -0

Vmax 0.17 -0.7 -0.5 n.d. 0.18 0.11 n.d. n.d. -0.62 n.d. n.d. n.d. -0.3

Km -0.51 -0 0.14 n.d. -0.5 0.73 n.d. n.d. 0.04 n.d. n.d. n.d. 0.4

Oxalic -0.99 -0.6 -0.1 n.d. -0.6 -0.5 n.d. n.d. 0.18 n.d. n.d. 0.97 0.96

Malic 0.46 0.96 -0.9 n.d. 0.93 0.98 n.d. n.d. -0.99 n.d. n.d. -0.05 -0.6

Citric -0.03 0.71 -1 n.d. 0.62 0.75 n.d. n.d. -0.93 n.d. n.d. 0.45 -0.1

MBC -0.87 -1 0.59 n.d. -1 -0.93 n.d. n.d. 0.76 n.d. n.d. 0.59 0.92

Vmax -1 -0.7 0.18 n.d. -0.8 -0.69 n.d. n.d. 0.4 n.d. n.d. 0.88 1

Km -0.99 -0.6 -0.1 n.d. -0.6 -0.5 n.d. n.d. 0.18 n.d. n.d. 0.97 0.96

Oxalic n.d. n.d. n.d. 0.97 -0 -0.71 -0.98 n.d. -0.99 -1 -0.64 -0.92 0.96

Malic n.d. n.d. n.d. 0.98 -0.1 -0.68 -0.99 n.d. -1 -1 -0.68 -0.94 0.98

Citric n.d. n.d. n.d. 0.96 0 -0.72 -0.98 n.d. -0.99 -1 -0.63 -0.92 0.96

MBC n.d. n.d. n.d. 1 -0.3 -0.46 -0.99 n.d. -0.99 -0.95 -0.84 -1 1

Vmax n.d. n.d. n.d. 0.97 -0.5 -0.31 -0.96 n.d. -0.95 -0.89 -0.92 -1 0.98

Km n.d. n.d. n.d. 0.37 -1 0.6 -0.31 n.d. -0.27 -0.13 -0.85 -0.5 0.39

Arid 

shrubland

Mediterrane

an 

woodland

Humid-

temperate 

forest
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Table S 2.5-7: P species results from the linear combination fitting (LCF) of phosphorus K-edge X-ray absorption 

near edge structure spectroscopy (XANES). The upper part shows the percentage of each species in total P. In the 

lower part of the table this is multiplied by the total P content in each sample and given as content per kg of soil 

[mg kg-1]. Data are subdivided by sampling sites (arid shrubland, Mediterranean woodland and humid-temperate 

forest), therein by sampling depth (topsoil, subsoil and saprolite) and in each depth by three distances to the root (0-

2 mm, 2-4 mm, and 4-6 mm). The LCF was restricted to a maximum of four standards per sample. If a P pool was not 

detected in a sample this is indicated by n.d. (not determined). 

 

  

Site Facing Depth
Root 

proximity
HydAp OCP BRU sroAl-P VAR sroFe-P

adsP-

Al_clay
adsP-AlOH adsP-BOE adsP-SOM adsP-FER adsP-GOE Po

[mm]

0-2 n.d. 30 7 n.d. 30 33 n.d. n.d. n.d. n.d. n.d. n.d. n.d.

2-4 27 n.d. n.d. n.d. 31 13 n.d. n.d. n.d. n.d. n.d. n.d. 29

4-6 43 n.d. n.d. n.d. 26 21 n.d. n.d. 10 n.d. n.d. n.d. n.d.

0-2 46 n.d. n.d. n.d. 54 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

2-4 46 n.d. n.d. n.d. 54 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

4-6 n.d. 23 22 n.d. n.d. 38 n.d. n.d. n.d. n.d. n.d. n.d. 17

0-2 n.d. 7 n.d. n.d. 26 35 n.d. n.d. n.d. n.d. n.d. n.d. 32

4-6 42 n.d. n.d. n.d. 58 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

0-2 34 n.d. 10 n.d. 45 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 10

2-4 38 n.d. n.d. n.d. 25 36 n.d. n.d. n.d. n.d. n.d. n.d. n.d.

4-6 31 n.d. n.d. n.d. 36 33 n.d. n.d. n.d. n.d. n.d. n.d. n.d.

0-2 31 n.d. n.d. n.d. 69 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

4-6 57 n.d. n.d. n.d. 43 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d.

0-2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 8 n.d. 18 74

2-4 8 n.d. n.d. n.d. 24 22 n.d. n.d. n.d. n.d. n.d. n.d. 45

4-6 24 n.d. n.d. n.d. 27 16 n.d. n.d. 33 n.d. n.d. n.d. n.d.

0-2 11 26 n.d. n.d. 42 20 n.d. n.d. n.d. n.d. n.d. n.d. n.d.

2-4 34 n.d. n.d. n.d. 56 11 n.d. n.d. n.d. n.d. n.d. n.d. n.d.

4-6 34 n.d. n.d. n.d. 39 17 n.d. n.d. 10 n.d. n.d. n.d. n.d.

0-2 27 n.d. n.d. n.d. 25 24 n.d. n.d. 24 n.d. n.d. n.d. n.d.

2-4 31 n.d. n.d. n.d. 43 12 n.d. n.d. n.d. n.d. n.d. n.d. 14

4-6 29 n.d. n.d. n.d. 42 22 n.d. n.d. n.d. n.d. n.d. n.d. 7

0-2 n.d. n.d. n.d. n.d. 22 10 n.d. n.d. 19 n.d. n.d. n.d. 49

2-4 n.d. 14 n.d. n.d. 28 37 n.d. n.d. n.d. n.d. n.d. n.d. 21

4-6 n.d. n.d. 10 n.d. n.d. n.d. n.d. n.d. n.d. 18 42 n.d. 30

0-2 7 n.d. n.d. n.d. 38 36 n.d. n.d. n.d. n.d. n.d. n.d. 19

2-4 n.d. 6 n.d. n.d. 28 42 n.d. n.d. n.d. n.d. n.d. n.d. 24

4-6 18 n.d. n.d. n.d. 51 31 n.d. n.d. n.d. n.d. n.d. n.d. n.d.

0-2 n.d. n.d. n.d. 17 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 83

2-4 n.d. n.d. n.d. n.d. n.d. n.d. 33 n.d. n.d. n.d. n.d. n.d. 67

4-6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 51 15 n.d. n.d. 34

0-2 n.d. n.d. n.d. n.d. 10 n.d. 25 n.d. 34 n.d. n.d. n.d. 30

2-4 n.d. n.d. n.d. 21 n.d. n.d. 36 n.d. n.d. n.d. n.d. 9 34

4-6 n.d. n.d. n.d. n.d. n.d. n.d. 14 n.d. 36 39 n.d. n.d. 10

0-2 n.d. n.d. n.d. n.d. n.d. n.d. 31 n.d. n.d. 21 26 n.d. 21

2-4 n.d. n.d. n.d. n.d. n.d. n.d. 28 12 n.d. 47 n.d. n.d. 14

4-6 n.d. n.d. n.d. n.d. n.d. n.d. 54 19 n.d. 7 n.d. n.d. 20

0-2 n.d. n.d. n.d. 11 n.d. n.d. n.d. n.d. n.d. 23 n.d. n.d. 65

2-4 n.d. n.d. n.d. n.d. n.d. 9 n.d. n.d. n.d. 54 n.d. n.d. 37

4-6 n.d. n.d. n.d. n.d. 44 n.d. n.d. n.d. 27 n.d. n.d. n.d. 29

0-2 n.d. n.d. n.d. n.d. n.d. n.d. 12 n.d. n.d. 57 22 n.d. 9

2-4 n.d. n.d. n.d. n.d. n.d. 24 n.d. n.d. 45 31 n.d. n.d. n.d.

4-6 n.d. n.d. n.d. n.d. n.d. 16 47 n.d. n.d. n.d. n.d. n.d. 37
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HydAp OCP BRU sroAl-P VAR sroFe-P

adsP-

Al_clay
adsP-AlOH adsP-BOE adsP-SOM adsP-FER adsP-GOE Po Ptot

[mm]

0-2 n.d. 91.4 21.3 n.d. 91.4 100.5 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 304.5

2-4 79.9 n.d. n.d. n.d. 91.7 38.5 n.d. n.d. n.d. n.d. n.d. n.d. 85.8 295.8

4-6 144.3 n.d. n.d. n.d. 87.3 70.5 n.d. n.d. 33.6 n.d. n.d. n.d. n.d. 335.7

0-2 165.3 n.d. n.d. n.d. 194 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 359.3

2-4 167.2 n.d. n.d. n.d. 196.2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 363.4

4-6 n.d. 62.8 60.1 n.d. n.d. 103.8 n.d. n.d. n.d. n.d. n.d. n.d. 46.4 273.2

0-2 n.d. 21.6 n.d. n.d. 80.2 108 n.d. n.d. n.d. n.d. n.d. n.d. 98.8 308.6

4-6 123.1 n.d. n.d. n.d. 170 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 293.1

0-2 99.9 n.d. 29.4 n.d. 132.3 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 29.4 293.9

2-4 159.5 n.d. n.d. n.d. 104.9 151.1 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 419.7

4-6 125.4 n.d. n.d. n.d. 145.7 133.5 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 404.6

0-2 136.3 n.d. n.d. n.d. 303.3 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 439.6

4-6 191.7 n.d. n.d. n.d. 144.6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 336.3

0-2 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 23.8 n.d. 53.6 220.3 297.7

2-4 12.8 n.d. n.d. n.d. 38.5 35.3 n.d. n.d. n.d. n.d. n.d. n.d. 72.3 160.6

4-6 31.8 n.d. n.d. n.d. 35.7 21.2 n.d. n.d. 43.7 n.d. n.d. n.d. n.d. 132.4

0-2 37.4 88.4 n.d. n.d. 142.7 68 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 339.9

2-4 89.1 n.d. n.d. n.d. 146.7 28.8 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 262

4-6 95.8 n.d. n.d. n.d. 109.8 47.9 n.d. n.d. 28.2 n.d. n.d. n.d. n.d. 281.6

0-2 53.3 n.d. n.d. n.d. 49.3 47.4 n.d. n.d. 47.4 n.d. n.d. n.d. n.d. 197.3

2-4 67.9 n.d. n.d. n.d. 94.1 26.3 n.d. n.d. n.d. n.d. n.d. n.d. 30.6 218.9

4-6 111.3 n.d. n.d. n.d. 161.3 84.5 n.d. n.d. n.d. n.d. n.d. n.d. 26.9 383.9

0-2 n.d. n.d. n.d. n.d. 62.1 28.2 n.d. n.d. 53.6 n.d. n.d. n.d. 138.3 282.3

2-4 n.d. 40.4 n.d. n.d. 80.8 106.7 n.d. n.d. n.d. n.d. n.d. n.d. 60.6 288.5

4-6 n.d. n.d. 30.1 n.d. n.d. n.d. n.d. n.d. n.d. 54.2 126.4 n.d. 90.3 301.1

0-2 16.9 n.d. n.d. n.d. 91.7 86.9 n.d. n.d. n.d. n.d. n.d. n.d. 45.9 241.4

2-4 n.d. 11.5 n.d. n.d. 53.5 80.3 n.d. n.d. n.d. n.d. n.d. n.d. 45.9 191.2

4-6 37 n.d. n.d. n.d. 104.9 63.8 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 205.7

0-2 n.d. n.d. n.d. 59.6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 290.9 350.5

2-4 n.d. n.d. n.d. n.d. n.d. n.d. 82.4 n.d. n.d. n.d. n.d. n.d. 167.2 249.6

4-6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. 74.3 21.9 n.d. n.d. 49.6 145.8

0-2 n.d. n.d. n.d. n.d. 50.6 n.d. 126.4 n.d. 171.9 n.d. n.d. n.d. 151.7 505.7

2-4 n.d. n.d. n.d. 74.3 n.d. n.d. 127.3 n.d. n.d. n.d. n.d. 31.8 120.3 353.7

4-6 n.d. n.d. n.d. n.d. n.d. n.d. 30.8 n.d. 79.1 85.7 n.d. n.d. 22 219.9

0-2 n.d. n.d. n.d. n.d. n.d. n.d. 87.4 n.d. n.d. 59.2 73.3 n.d. 59.2 281.9

2-4 n.d. n.d. n.d. n.d. n.d. n.d. 81.4 34.9 n.d. 136.6 n.d. n.d. 40.7 290.6

4-6 n.d. n.d. n.d. n.d. n.d. n.d. 159.2 56 n.d. 20.6 n.d. n.d. 59 294.8

0-2 n.d. n.d. n.d. 68.2 n.d. n.d. n.d. n.d. n.d. 142.7 n.d. n.d. 403.3 620.4

2-4 n.d. n.d. n.d. n.d. n.d. 34.7 n.d. n.d. n.d. 208.3 n.d. n.d. 142.7 385.7

4-6 n.d. n.d. n.d. n.d. 139.8 n.d. n.d. n.d. 85.8 n.d. n.d. n.d. 92.1 317.7

0-2 n.d. n.d. n.d. n.d. n.d. n.d. 42 n.d. n.d. 199.5 77 n.d. 31.5 349.9

2-4 n.d. n.d. n.d. n.d. n.d. 199.1 n.d. n.d. 373.2 257.1 n.d. n.d. n.d. 829.4

4-6 n.d. n.d. n.d. n.d. n.d. 148.2 435.4 n.d. n.d. n.d. n.d. n.d. 342.8 926.4
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Table S 2.5-8: Absolute contents of low-molecular-weight organic acids (LMWOA; oxalic-, malic-, citric-acid), MBC, 

Vmax and Km values of acid phosphatase, and LMWOA contents normalized by MBC are shown in the table. Values 

are averaged over four soil pits in each site ±the standard error. At North facing soil pits only topsoil and the saprolite 

were sampled. At South facing all three depths (topsoil, subsoil, saprolite) were sampled. In the saprolite of the arid 

shrubland only root distances 0-2 mm and 4-6 mm were sampled, in all other sites sampled root distances were 0-

2 mm, 2-4 mm, and 4-6 mm. If a value is missing this is indicated by ‘n.d.’ (not detected). 

 

 

 

 

  

Site Depth Distance Oxalic Malic Citric MBC Oxalic/MBC Malic/MBC Citric/MBC Vmax Km

[mm] [µg g-1] [ng µg-1]

0-2 5.6±1.8 4.6±4.2 1.1±0.8 275.2±34.4 22.9±8.8 19.4±18 4.4±3.3 153.5±79.1 4.3±1

2-4 3.9±0.9 1.4±1.1 0.4±0.3 207.6±32 18.5±2.6 6.2±4.4 1.9±1.2 94.2±31.2 4.6±1.3

4-6 4.2±0.7 1.9±1.2 1.2±0.5 261.3±37.9 16.8±3.2 7.4±5 5±1.7 143.1±43.2 4.4±0.3

0-2 7.7±1.4 5.8±2.3 2.9±0.8 278±36.2 27.4±1.8 19.6±7 10.1±2 104.8±14.1 2.9±0.3

2-4 5.8±0.4 2.8±1.2 0.8±0.4 142±25.1 42.8±5.5 22.4±9.4 6.8±4 103.9±26.9 3.1±0.4

4-6 3.8±0.3 1.9±1.2 1.2±0.9 168.7±40.1 25.3±6.6 12.8±6.4 7.5±4.3 98.5±18 2.7±0.4

0-2 8.5±2.1 12.2±5.4 5.9±2 164.5±40.7 64.5±25 105.2±64.1 45.2±16.7 93.4±3.6 2.3±0.4

4-6 3.3±1.1 1.9±0.8 0.8±0.3 4.5±0.8 818.4±277.3 487.3±242.9 178.2±70.6 n.d. n.d.

0-2 24.7±2.5 8.1±3 8.5±3.4
1163.4±321.

4
31.3±13.4 7.3±2.6 7.2±2.4 348.4±43.8 7.1±0.6

2-4 11.8±4.2 6.1±3.8 4.7±0.8 817.4±207.1 15.5±7.6 10.1±7.2 6.4±1.5 233.9±41.8 3.4±0.5

4-6 11.4±1.3 2.9±0.8 3±1
1092.2±205.

1
11.5±2.1 2.4±0.6 2.5±0.7 254.3±39.9 4.1±0.3

0-2 18.4±2.3 6.6±2.2 6.8±2.3 250.3±91.8 93±32.7 38.1±20.5 31±13.5 164.8±20.1 5.9±0.4

2-4 10.5±3 6.3±2.6 3.5±1.6 180.2±19.7 63.7±25.2 38.7±19.8 21.3±11.1 150.8±9.7 5.3±0.9

4-6 5.2±1.7 3.8±1.2 3.9±1.8 143.9±22.2 37.6±11.1 29.3±12.1 31.9±17.9 121.2±16.9 4.7±1.5

0-2 15.5±5.6 4.7±1.2 8.1±4 177.4±68.2 96.4±25.9 30.8±8.8 39.6±17.2 111±38.5 10.4±5.6

2-4 6.3±1.5 7.4±1.3 8.4±6.9 427.9±355.7 71.4±36.3 97.6±56.7 65.1±63.7 100.2±74.1 2.4±0.9

4-6 6.1±2.3 2.3±0.9 2.8±2.3 70.3±43.6 167.8±107.1 67.6±47.6 26.9±11.9 55.8±38.9 3.6±1.5

0-2 42.4±15.1 10.8±2.9 19.5±8.2
2187.5±440.

8
20.4±6.6 5.1±1.1 9.7±4.1 1277±506.4 9.7±0.7

2-4 39.3±11.8 7.8±3 12.5±5.7
1734.1±320.

6
21.8±4.9 4±1.1 6±2.2 898.4±391.1 3.6±0.8

4-6 32.6±12.9 9.3±4.6 16.4±11.3
1073.9±484.

7
71.5±46.5 20.3±14.4 20.6±10.9

1030.3±489.

9
3.2±1.4

0-2 11.4±2.8 3.3±0.2 3±1.5 393.1±100.3 30.1±3.7 9.8±2.9 8.9±4 526.1±189.2 2.4±0.1

2-4 10±1.7 0.9±0.7 1.2±1 251.1±68.9 46.5±13 2.6±1.8 3.2±2.5 627±291.1 5.3±1.7

4-6 6.7±1.6 1.2±0.6 1.4±1.1 212.5±41.1 40.5±14.4 8.2±0.4 1.7±0 512.1±307.4 3.5±0.2

0-2 7.6±2 3±2.5 2.8±2.5 161.5±51.1 71.7±43.4 49.8±45.8 46.6±46.3 n.d. n.d.

2-4 3.9±0.9 0.7±0.5 1.1±0.8 97.9±86.3 266.8±243.6 90.3±86.2 148.3±147 n.d. n.d.

4-6 2.9±0.7 1.3±0.8 1.6±0.9 437.5±431.4 226.6±220.8 146.1±142.4 333.1±332.1 n.d. n.d.
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Table S 2.5-9: Parameters from a linear model examining the effect of distance from the roots on microbial biomass 

carbon (MBC), low-molecular-weight organic acids (oxalic, malic, citric), and phosphatase kinetics (Vmax, Km). 

 
  

Site Depth Variable Slope Intercept r² p n

Topsoil MBC -7.18 257.53 0.25 0.175 6

Subsoil MBC -23.21 235.71 0.15 0.451 3

Saprolite MBC -44.05 222.83 1 0 4

Topsoil Oxalic -0.21 4.32 -0.18 0.66 6

Subsoil Oxalic -0.14 5.52 -0.78 0.783 3

Saprolite Oxalic -1.96 11.48 0.43 0.211 4

Topsoil Malic -0.07 0.37 0.07 0.304 6

Subsoil Malic -0.43 2.08 0.97 0.082 3

Saprolite Malic -0.71 4.18 0.35 0.248 4

Topsoil Citric 0.04 0.2 -0.22 0.762 6

Subsoil Citric -0.33 1.43 0.47 0.342 3

Saprolite Citric -0.53 3.44 0.21 0.313 4

Topsoil Vmax -13.84 246.13 -0.19 0.688 6

Subsoil Vmax -4.73 97.01 0.33 0.394 3

Saprolite Vmax n.d. n.d. n.d. n.d. n<3

Topsoil Km -0.38 7.06 0.28 0.163 6

Subsoil Km 0.06 3.17 0.96 0.095 3

Saprolite Km n.d. n.d. n.d. n.d. n<3

Topsoil MBC -17.71 1078.3 -0.2 0.713 6

Subsoil MBC -26.24 274.37 0.51 0.33 3

Saprolite MBC -27.08 305.6 -0.14 0.57 6

Topsoil Oxalic -2.94 23.22 0.15 0.244 6

Subsoil Oxalic -2.82 19.56 0.2 0.435 3

Saprolite Oxalic -2.82 18.75 0.19 0.213 6

Topsoil Malic -0.44 3.81 0 0.379 6

Subsoil Malic -0.04 7.12 -1 0.986 3

Saprolite Malic -0.91 8.05 0.09 0.286 6

Topsoil Citric -1.16 7.72 0.1 0.282 6

Subsoil Citric -1.38 11.23 0.83 0.187 3

Saprolite Citric -1.91 15.28 -0.01 0.381 6

Topsoil Vmax -19.23 279.56 0.12 0.261 6

Subsoil Vmax 4.52 120.93 0.85 0.174 3

Saprolite Vmax -19.74 170.3 0.09 0.324 5

Topsoil Km -0.9 8.07 0.36 0.121 6

Subsoil Km -0.64 6.29 0.47 0.345 3

Saprolite Km -0.32 5.01 -0.2 0.598 5

Topsoil MBC -279.08 2501.08 0.99 0 6

Subsoil MBC -46.95 337.59 0.99 0.049 3

Saprolite MBC 34.5 12.75 0.48 0.077 6

Topsoil Oxalic -6.68 49.16 -0.07 0.463 6

Subsoil Oxalic -0.66 8.39 -0.38 0.624 3

Saprolite Oxalic -0.98 6.45 0.31 0.145 6

Topsoil Malic -2.31 13.24 0.25 0.177 6

Subsoil Malic -0.74 3.33 0.62 0.287 3

Saprolite Malic -0.05 0.28 0.12 0.262 6

Topsoil Citric -5.07 26.83 0.15 0.24 6

Subsoil Citric 0.22 1.46 -0.89 0.848 3

Saprolite Citric 0.06 0.34 -0.21 0.746 6

Topsoil Vmax -60.37 689.36 -0.13 0.546 6

Subsoil Vmax -68.4 478.54 0.22 0.428 3

Saprolite Vmax -43.95 434.12 0.88 0.155 3

Topsoil Km -1.08 7.76 0.31 0.146 6

Subsoil Km 0.3 2.19 0.37 0.38 3

Saprolite Km 0.43 3.84 -0.86 0.832 3
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Table S 2.5-10: Parameters from a linear model examining the effect of distance from the roots on P species (Ca-P 

= calcium phosphates, Al-P = Al-phosphates, sorb Al-P = orthophosphate sorbed to Al-(oxy)hydroxides, Fe-P = 

Fe-phosphates, sorb Fe-P = orthophosphates sorbed to Fe-(oxy)hydroxides, Po = organically bound P ). 

 
  

Site Depth Facing Variable Slope Intercept r p n

Topsoil North Ca-P -0.04 0.49 1 0 3

Topsoil South Ca-P 0.02 0.31 -0.72 0.758 3

Subsoil South Ca-P 0 0.46 0.5 0.333 3

Saprolite North Ca-P n.d. n.d. n.d. n.d. n<3

Saprolite South Ca-P n.d. n.d. n.d. n.d. n<3

Topsoil North Fe-P 0.08 -0.02 0.36 0.381 3

Topsoil South Fe-P -0.03 0.31 -0.29 0.593 3

Subsoil South Fe-P 0.1 -0.16 0.5 0.333 3

Saprolite North Fe-P n.d. n.d. n.d. n.d. n<3

Saprolite South Fe-P n.d. n.d. n.d. n.d. n<3

Topsoil North Al-P -0.02 0.42 -0.6 0.703 3

Topsoil South Al-P -0.01 0.32 0.14 0.454 3

Subsoil South Al-P -0.14 0.77 0.5 0.333 3

Saprolite North Al-P n.d. n.d. n.d. n.d. n<3

Saprolite South Al-P n.d. n.d. n.d. n.d. n<3

Topsoil North sorbFe-P n.d. n.d. n.d. n.d. n.d.

Topsoil South sorbFe-P n.d. n.d. n.d. n.d. n.d.

Subsoil South sorbFe-P n.d. n.d. n.d. n.d. n.d.

Saprolite North sorbFe-P n.d. n.d. n.d. n.d. n<3

Saprolite South sorbFe-P n.d. n.d. n.d. n.d. n<3

Topsoil North sorbAl-P n.d. n.d. n.d. n.d. n.d.

Topsoil South sorbAl-P 0.03 -0.04 0.5 0.333 3

Subsoil South sorbAl-P n.d. n.d. n.d. n.d. n.d.

Saprolite North sorbAl-P n.d. n.d. n.d. n.d. n<3

Saprolite South sorbAl-P n.d. n.d. n.d. n.d. n<3

Topsoil North Po -0.03 0.11 0.5 0.333 3

Topsoil South Po 0 0.1 -1 1 3

Subsoil South Po 0.04 -0.07 0.5 0.333 3

Saprolite North Po n.d. n.d. n.d. n.d. n<3

Saprolite South Po n.d. n.d. n.d. n.d. n<3

Topsoil North Ca-P 0.03 0 -0.04 0.512 3

Topsoil South Ca-P 0.06 -0.07 0.93 0.121 3

Subsoil South Ca-P -0.01 0.38 0.5 0.333 3

Saprolite North Ca-P 0.03 0.02 0.36 0.381 3

Saprolite South Ca-P 0 0.28 -0.5 0.667 3

Topsoil North Fe-P -0.03 0.23 -0.86 0.832 3

Topsoil South Fe-P 0.04 0.01 -0.01 0.503 3

Subsoil South Fe-P -0.01 0.18 -0.79 0.788 3

Saprolite North Fe-P -0.01 0.4 -0.59 0.7 3

Saprolite South Fe-P -0.01 0.21 -0.95 0.901 3

Topsoil North Al-P -0.06 0.33 0.11 0.464 3

Topsoil South Al-P 0.07 -0.03 0.66 0.269 3

Subsoil South Al-P -0.01 0.48 -0.95 0.894 3

Saprolite North Al-P 0.03 0.29 -0.36 0.619 3

Saprolite South Al-P 0.04 0.24 0.41 0.365 3

Topsoil North sorbFe-P 0.11 -0.18 0.5 0.333 3

Topsoil South sorbFe-P -0.05 0.2 0.5 0.333 3

Subsoil South sorbFe-P n.d. n.d. n.d. n.d. n.d.

Saprolite North sorbFe-P n.d. n.d. n.d. n.d. n.d.

Saprolite South sorbFe-P n.d. n.d. n.d. n.d. n.d.

Topsoil North sorbAl-P 0 0.13 -1 0.97 3

Topsoil South sorbAl-P 0.06 -0.05 0.05 0.483 3

Subsoil South sorbAl-P 0.03 -0.04 0.5 0.333 3

Saprolite North sorbAl-P n.d. n.d. n.d. n.d. n.d.

Saprolite South sorbAl-P -0.06 0.26 0.5 0.333 3

Topsoil North Po -0.05 0.48 -0.12 0.537 3

Topsoil South Po -0.19 0.95 0.97 0.079 3

Subsoil South Po n.d. n.d. n.d. n.d. n.d.

Saprolite North Po -0.05 0.29 0.13 0.46 3

Saprolite South Po 0.02 0.02 -0.5 0.667 3

Topsoil North Ca-P n.d. n.d. n.d. n.d. n.d.

Topsoil South Ca-P n.d. n.d. n.d. n.d. n.d.

Subsoil South Ca-P n.d. n.d. n.d. n.d. n.d.

Saprolite North Ca-P n.d. n.d. n.d. n.d. n.d.

Saprolite South Ca-P n.d. n.d. n.d. n.d. n.d.

Topsoil North Fe-P 0 0.03 -1 1 3

Topsoil South Fe-P n.d. n.d. n.d. n.d. n.d.

Subsoil South Fe-P n.d. n.d. n.d. n.d. n.d.

Saprolite North Fe-P 0.04 0.01 -0.14 0.546 3

Saprolite South Fe-P n.d. n.d. n.d. n.d. n.d.

Topsoil North Al-P 0.08 -0.06 0.04 0.488 3

Topsoil South Al-P -0.04 0.18 0.5 0.333 3

Subsoil South Al-P -0.03 0.18 -0.55 0.684 3

Saprolite North Al-P n.d. n.d. n.d. n.d. n.d.

Saprolite South Al-P n.d. n.d. n.d. n.d. n.d.

Topsoil North sorbFe-P n.d. n.d. n.d. n.d. n.d.

Topsoil South sorbFe-P n.d. n.d. n.d. n.d. n.d.

Subsoil South sorbFe-P 0 0.03 -1 1 3

Saprolite North sorbFe-P -0.06 0.24 0.5 0.333 3

Saprolite South sorbFe-P -0.07 0.28 0.5 0.333 3

Topsoil North sorbAl-P 0.01 0.32 -0.97 0.924 3

Topsoil South sorbAl-P 0.17 -0.17 1 0 3

Subsoil South sorbAl-P 0.08 0.38 -0.35 0.612 3

Saprolite North sorbAl-P -0.06 0.81 0.06 0.482 3

Saprolite South sorbAl-P 0.07 0.52 0.19 0.439 3

Topsoil North Po -0.09 0.71 0.81 0.198 3

Topsoil South Po -0.12 0.98 0.92 0.126 3

Subsoil South Po -0.05 0.4 0.21 0.433 3

Saprolite North Po 0.07 -0.06 0.05 0.483 3

Saprolite South Po 0 0.19 -0.97 0.916 3
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Table S 2.5-11: A generalized linear model (GLM) to examine the effect of soil depth on the parameters microbial 

biomass carbon (MBC), oxalic-, malic-, and citric acid content, maximum reaction rate of acid phosphatase (Vmax), 

and half saturation constant of acid phosphatase (Km) was calculated per study site. Distance from the roots was 

set as a fixed effect, with random slopes and random intercept. The table shows the results of the post-hoc least 

square means (with “Tukey” correction) pairwise comparison (p values). 

 

  

Table S 2.5-12: A generalized linear model (GLM) to examine the effect of study site in each soil depth on the 

parameters microbial biomass carbon (MBC), oxalic-, malic-, and citric acid content, maximum reaction rate of 

acid phosphatase (Vmax), and half saturation constant of acid phosphatase (Km) was calculated. Distance from the 

roots was set as a fixed effect, with random slopes and random intercept. The table shows the results of the post-

hoc least square means (with “Tukey” correction) pairwise comparison (p values). 

 

 

Site Variable Topsoil - 

Subsoil 

Topsoil - 

Saprolite 

Subsoil - 

Saprolite 

Arid shrubland MBC 0.266 0.001 0.268 

Oxalic  0.821 0.651 0.980 

Malic  0.768 0.059 0.404 

Citric  0.984 0.074 0.209 

Vmax 0.192 0.585 0.989 

Km 0.000 0.006 0.918 

Mediterranean 

woodland 

MBC 0.000 0.000 0.961 

Oxalic  0.854 0.691 0.990 

Malic  0.057 0.184 0.669 

Citric  0.764 0.242 0.812 

Vmax 0.099 0.007 0.855 

Km 0.773 0.546 0.977 

Humid-temperate 

forest 

MBC 0.000 0.000 0.937 

Oxalic  0.265 0.081 0.979 

Malic  0.196 0.033 0.945 

Citric  0.396 0.151 0.974 

Vmax 0.445 0.536 0.991 

Km 0.726 0.946 0.617 

 

Variable Depth 

Humid-

temperate forest 

- 

Mediterranean 

woodland 

Mediterranean 

woodland - 

Arid shrubland 

Humid-temperate 

forest -  

Arid shrubland 

MBC Topsoil 0.001 0.000 0.000 

MBC Subsoil 1.000 0.875 0.866 

MBC Saprolite 0.283 0.214 0.945 

Oxalic  Topsoil 0.379 0.598 0.056 

Oxalic  Subsoil 0.397 0.223 0.932 

Oxalic  Saprolite 0.137 0.465 0.859 

Malic  Topsoil 0.210 0.558 0.018 

Malic  Subsoil 0.009 0.005 0.988 

Malic  Saprolite 0.000 0.055 0.367 

Citric  Topsoil 0.372 0.753 0.098 

Citric  Subsoil 0.008 0.000 0.574 

Citric  Saprolite 0.004 0.038 0.907 

Vmax 
Topsoil 0.053 0.989 0.037 

Vmax 
Subsoil 0.213 0.807 0.055 

Vmax 
Saprolite 0.002 0.989 0.060 

Km 
Topsoil 0.787 0.905 0.523 

Km 
Subsoil 0.224 0.396 0.933 

Km 
Saprolite 0.828 0.912 0.728 

 



Publications and Manuscripts  162 

 
Table S 2.5-13: A generalized linear model (GLM) to examine the effect of soil depth on P compound classes (Ca-P 

= calcium phosphates, Al-P = Al-phosphates, sorb Al-P = orthophosphate sorbed to Al-(oxy)hydroxides, Fe-P = Fe-

phosphates, sorb Fe-P = orthophosphates sorbed to Fe-(oxy)hydroxides, Po = organically bound P ) was calculated 

per study site. Distance from the roots was set as a fixed effect, with random slopes and random intercept. The table 

shows the results of the post-hoc least square means (with “Tukey” correction) pairwise comparison (p values). 

 

Table S 2.5-14: A generalized linear model (GLM) to examine the effect of study site in each soil depth on P compound 

classes (Ca-P = calcium phosphates, Al-P = Al-phosphates, sorb Al-P = orthophosphate sorbed to Al-

(oxy)hydroxides, Fe-P = Fe-phosphates, sorb Fe-P = orthophosphates sorbed to Fe-(oxy)hydroxides, Po = 

organically bound P ) was calculated. Distance from the roots was set as a fixed effect, with random slopes and 

random intercept. The table shows the results of the post-hoc least square means (with “Tukey” correction) pairwise 

comparison (p values). 

 

 

 

 

Site Variable 

Topsoil - 

Subsoil 

Topsoil – 

Saprolite 

Subsoil - 

Saprolite 

Arid shrubland Ca-P 0.574   0.575   0.138   

Fe-P 0.805   0.957   0.957   

Al-P 0.921   0.798   0.953   

sorbFe-P n.d. n.d. n.d. 

sorbAl-P 0.503   0.577   1.000   

Po 0.949   0.900   0.757   

Mediterranean 

woodland 

Ca-P 0.000   0.006   0.535   

Fe-P 0.866   0.563   0.866   

Al-P 0.007   0.095   0.608   

sorbFe-P 0.438   0.438   1.000   

sorbAl-P 0.602   0.858   0.902   

Po 0.068 0.161   0.919   

Humid-

temperate forest 

Ca-P n.d. n.d. n.d. 

Fe-P n.d. n.d. n.d. 

Al-P 0.770   0.681   0.279   

sorbFe-P 0.915   0.479   0.730 

sorbAl-P 0.389   0.165   0.870   

Po 0.017   0.004   0.884 

 

Variable Depth 

Humid-

temperate 

forest - 

Mediterranean 

woodland 

Mediterranean 

woodland - 

Arid shrubland 

Humid-

temperate 

forest -  

Arid 

shrubland 

Ca-P Topsoil 0.037 0.000 0.000 

Ca-P Subsoil 0.000 0.000 0.000 

Ca-P Saprolite 0.015 0.155 0.000 

Fe-P Topsoil 0.149 0.422 0.005 

Fe-P Subsoil 0.284 0.947 0.454 

Fe-P Saprolite 0.010 0.049 0.964 

Al-P Topsoil 0.802 0.111 0.023 

Al-P Subsoil 0.072 0.820 0.248 

Al-P Saprolite 0.000 0.247 0.000 

sorbFe-P Topsoil 0.191 0.191 1.000 

sorbFe-P Subsoil 0.438 1.000 0.438 

sorbFe-P Saprolite 0.172 1.000 0.244 

sorbAl-P Topsoil 0.054 0.420 0.001 

sorbAl-P Subsoil 0.000 0.965 0.000 

sorbAl-P Saprolite 0.000 0.851 0.000 

Po Topsoil 0.370 0.031 0.000 

Po Subsoil 0.003 0.738 0.034 

Po Saprolite 0.672 0.942 0.521 
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Figure S 2.5-1: Exemplary 

phosphorus K-edge X-ray absorption 

near edge structure spectroscopy 

(XANES) spectra along the 

ecosequence (A) from all three soil 

depths (distance 0-2 mm from roots) 

and (B) from the Mediterranean 

woodland in topsoil, and saprolite 

for all three distances from roots (0-

2 mm, 2-4 mm, and 4-6 mm). Black 

dots represent the measured data, the 

red curve is the best fit chosen by the 

lowest R factor. Green dots show the 

residual from the data to the fit (R-

factor). 

 

Figure S 2.5-2: Pools of rhizosphere 

P per root segment (total P, calcium-

phosphates (Ca-P), Fe- and Al-

phosphates (Fe-P, Al-P), 

orthophosphates sorbed to Fe- and 

Al-(oxy)hydroxides (sorbFe-P, 

sorbAl-P), and organic P (Po) were 

calculated for a cylinder around 

roots. Contents in each distance to 

the root were converted to 

rhizosphere P per root length by 

multiplying with bulk density and the 

respective volume of the cylinder 

sheathing the root. Average root 

thickness was set to 2 mm. For the 

arid shrubland (‘shrubland’), 

Mediterranean woodland 

(‘woodland’), and humid-temperate 

forest (‘forest’). In each site for the 

topsoil, subsoil, and saprolite. 
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2.6 Abstracts of related studies 

 

2.6.1 Chemistry and microbiology of the Critical Zone along a steep climate and 

vegetation gradient in the Chilean Coastal Cordillera 

 

Published in Catena (2018), 170, 183-203, doi: 10.1016/j.catena.2018.06.002 
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q Pontificia Universidad Católica de Chile, Instituto de Geografía, Vicuña Mackenna 4860, Macul, Santiago, Chile 
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Abstract 

The Chilean Coastal Cordillera features a spectacular climate and vegetation gradient, ranging 

from arid and unvegetated areas in the north to humid and forested areas in the south. The 

EarthShape project (“Earth Surface Shaping by Biota”) uses this natural gradient to investigate 

how climate and biological processes shape the Earth's surface. We explored the Critical Zone, the 

Earth's uppermost layer, in four key sites located in desert, semidesert, Mediterranean, and 

temperate climate zones of the Coastal Cordillera, with the focus on weathering of granitic rock. 

Here, we present first results from 16 approximately 2 m-deep regolith profiles to document: (1) 

architecture of weathering zone; (2) degree and rate of rock weathering, thus the release of mineral-

derived nutrients to the terrestrial ecosystems; (3) denudation rates; and (4) microbial abundances 

of bacteria and archaea in the saprolite. From north to south, denudation rates from cosmogenic 

nuclides are ~10 t km−2 yr−1 at the arid Pan de Azúcar site, ~20 t km−2 yr−1 at the semi-arid site 

of Santa Gracia, ~60 t km−2 yr−1 at the Mediterranean climate site of La Campana, and ~30 t 

km−2 yr−1 at the humid site of Nahuelbuta. A and B horizons increase in thickness and elemental 

depletion or enrichment increases from north (~26°S) to south (~38°S) in these horizons. 

Differences in the degree of chemical weathering, quantified by the chemical depletion fraction 

(CDF), are significant only between the arid and sparsely vegetated site and the other three sites. 

Differences in the CDF between the sites, and elemental depletion within the sites are sometimes 

smaller than the variations induced by the bedrock heterogeneity. Microbial abundances (bacteria 

and archaea) in saprolite substantially increase from the arid to the semi-arid sites. With this study, 

we provide a comprehensive dataset characterizing the Critical Zone geochemistry in the Chilean 

Coastal Cordillera. This dataset confirms climatic controls on weathering and denudation rates and 

provides prerequisites to quantify the role of biota in future studies. 
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2.6.2 Pedogenic and microbial interrelations to regional climate and local topography: 

New insights from a climate gradient (arid to humid) along the Coastal Cordillera 

of Chile 
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Abstract 

The effects of climate and topography on soil physico-chemical and microbial parameters were 

studied along an extensive latitudinal climate gradient in the Coastal Cordillera of Chile (26°–

38°S). The study sites encompass arid (Pan de Azúcar), semiarid (Santa Gracia), mediterranean 

(La Campana) and humid (Nahuelbuta) climates and vegetation, ranging from arid desert, 

dominated by biological soil crusts (biocrusts), semiarid shrubland and mediterranean 

sclerophyllous forest, where biocrusts are present but do have a seasonal pattern to temperate-

mixed forest, where biocrusts only occur as an early pioneering development stage after 

disturbance. All soils originate from granitic parent materials and show very strong differences in 

pedogenesis intensity and soil depth. 

Most of the investigated physical, chemical and microbiological soil properties showed distinct 

trends along the climate gradient. Further, abrupt changes between the arid northernmost study 

site and the other semi-arid to humid sites can be shown, which indicate non-linearity and 

thresholds along the climate gradient. Clay and total organic carbon contents (TOC) as well as Ah 

horizons and solum depths increased from arid to humid climates, whereas bulk density (BD), pH 

values and base saturation (BS) decreased. These properties demonstrate the accumulation of 

organic matter, clay formation and element leaching as key-pedogenic processes with increasing 

humidity. However, the soils in the northern arid climate do not follow this overall latitudinal 

trend, because texture and BD are largely controlled by aeolian input of dust and sea salts spray 

followed by the formation of secondary evaporate minerals. Total soil DNA concentrations and 

TOC increased from arid to humid sites, while areal coverage by biocrusts exhibited an opposite 

trend. Relative bacterial and archaeal abundances were lower in the arid site, but for the other sites 

the local variability exceeds the variability along the climate gradient. Differences in soil 

properties between topographic positions were most pronounced at the study sites with the 

mediterranean and humid climate, whereas microbial abundances were independent on topography 

across all study sites. In general, the regional climate is the strongest controlling factor for 

pedogenesis and microbial parameters in soils developed from the same parent material. 

Topographic position along individual slopes of limited length augmented this effect only under 

humid conditions, where water erosion likely relocated particles and elements downward. The 

change from alkaline to neutral soil pH between the arid and the semi-arid site coincided with 

qualitative differences in soil formation as well as microbial habitats. This also reflects non-linear 

relationships of pedogenic and microbial processes in soils depending on climate with a sharp 

threshold between arid and semi-arid conditions. Therefore, the soils on the transition between 

arid and semi-arid conditions are especially sensitive and may be well used as indicators of long 
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and medium-term climate changes. Concluding, the unique latitudinal precipitation gradient in the 

Coastal Cordillera of Chile is predestined to investigate the effects of the main soil forming factor 

– climate – on pedogenic processes. 
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2.6.3 Ferrous Wheel Hypothesis: Abiotic nitrate incorporation into dissolved organic 

matter 

 

Published in Geochimica et Cosmochimica Acta (2019), 245, 514-524, doi: 

10.1016/j.gca.2018.11.020 
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Abstract 

We evaluated the abiotic formation of dissolved organic nitrogen (DON) by the fast reaction of 

iron (Fe) with nitrate (NO3
−) in the dissolved organic matter (DOM) of volcanic soils in a 

temperate rainforest (>5000 mm precipitation per year). During five days, the educts and products 

of abiotic reactions under anoxic conditions were measured in a microcosm experiment depending 

on the Fe and NO3
− concentrations. A control zero-Fe was not used because there was no chemical 

reaction with nitrate addition. Using a novel technique of automated sample preparation for 

inorganic N (SPIN) attached to a membrane inlet quadrupole mass spectrometry (MIMS), the 15N 

abundances and inorganic N concentrations were determined directly in aqueous solutions. The 

results were explained in the context of the Ferrous Wheel Hypothesis which states that Fe(II) is 

utilized to reduce NO3
− to nitrite (NO2

−) that is incorporated into DOM. Fe(II) is regenerated from 

Fe(III) in anaerobic soil microsites. Here we tested one part of this hypothesis, the processes 

occurring in DOM (instead of soil organic matter). Using the SPIN-MIMS technique, we could 

overcome Ferrous Wheel Hypothesis criticism regarding possible Fe interference during NO3
− 

analysis. The total recovery of 15N added as NO3
− fluctuated between 63 and 101%, and the 

remaining 15N was measured as gaseous N2O. The 15N-labelled NO3
− added decreased 

immediately after 15 min of incubation. After five days of incubation, approximately 25% of the 

labelled NO3
− (e− acceptors) added was transformed to DON in the presence of a high amount of 

Fe(II) (e− donors). Small amounts of N2O and CO2 provided further evidence of NO3
− reduction 
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and DOM oxidation, respectively. From these results, we propose a new theoretical model that 

includes the Ferrous Wheel Hypothesis, where only the transformation of NO3
− to DON was 

proven. The present results explain the high retention of NO3
− in DOM from volcanic soils in 

ecosystems with high precipitation.  
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2.6.4 Microbial uptake and utilization of inorganic phosphorus in soils of granidioritic 

origin formed under varying climatic conditions 

 

Manuscript in preparation 
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Abstract 

Phosphor (P) sorption in soil is a multivariate process strongly dependent on soil mineralogy, 

organic carbon (C) content, reactive surface area, and pH, all of which are influenced by climate. 

P availability to plants is often limited by strong and fast sorption within soils. Microorganisms 

can actively desorb P at which they become more effective the more they are limited by this 

nutrient. The goal of this study was to gain insight in inorganic P sorption to the soil solid phase 

and, subsequently, microbial P uptake along an aridity gradient across biomes (ecosequence) in 

the Coastal Cordillera of Chile. To investigate these differences that arose from the different 

climates under which the soils developed, a combined approach of an ion-exchange kinetics 

experiment, with subsequent laboratory incubation of the soils was conducted. Rhizosphere 

conditions for P sorption and microbial uptake are very different from bulk soil and characterized 

by increased availability of easily degradable C. Therefore, the experimental setup included a 

subset of mesocosms in the incubation experiment, which received a defined amount of glucose. 

P sorption followed a unimodal distribution along the ecosequence. The hyperarid desert soil 

adsorbed 64.1% and 38.5% of added P in the top- and subsoil, respectively. The forest soils showed 

strongest sorption capacity of all soils, 98.2% and 99.6% of added P sorbed for in top- and subsoil, 

respectively. At the two transitional sites, only 31.6% in the topsoil and 26.6% in the subsoil of 

the arid shrubland, and 35.7% and 33.1% in topsoil and subsoil of/ the Coastal Matorral, of added 
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P were sorbed to the soil. Microbial P uptake differed significantly among the ecosystems. It was 

below the detection limit in the hyperarid desert and highest in the in the Coastal Matorral with up 

to 39.1 µg g-1dry soil. However, a comparison of P in the soil solution of the incubated soils to 

sterile soils suggested a strong effect of microbes on P in soil solution in the desert soil. 

2.7 Additional studies 

Nájera, F., Dippold, M.A., Boy, J., Sequel, O., Koester, M., Stock, S., Merino, C., Kuzakov, Y., 

Matus, F. (2020). Effects of drying/rewetting on soil aggregate dynamics and implications 

for organic matter turnover. Biology and Fertility of Soils, doi: 10.1007/s00374-020-

01469-6 

Merino, C., Matus, F., Kuzyakov, Y., Dyckmans, J., Stock, S., Dippold, M.A. Contribution of 

Fenton reaction and ligninolytic enzymes to soil organic matter mineralization under 

anoxic conditions. Accepted for publication in Science of the Total Environment. 
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