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Abstract

The statistical mechanics of the first few hydration layers is vital for many biophysical pro-
cesses, such as protein folding and unfolding, protein function, lipid bilayer self-assembly, and
ligand binding. These processes are governed by a fine-tuned free energy balance of competing
enthalpy and entropy contributions. Despite extensive experimental and theoretical efforts,
the molecular mechanisms of solvent-related free energy contributions are often elusive, es-
pecially at topologically and chemically heterogeneous surfaces like proteins or lipid bilayers.
To better understand, e.g., the effects of individual amino acids on the solvent-related free
energy contributions, a spatial resolution of both solvent enthalpy and entropy is necessary.
Whereas the enthalpy component can be readily calculated from a molecular dynamics force

field, sampling the entropy contribution presents a significant challenge. In the first part of
this thesis, I therefore develop and present a new method, Per|Mut, to calculate spatially
resolved solvent entropies from atomistic simulations. The method uses a permutation reduc-
tion to increase sampling by the Gibbs factor N ! without changing the physics. In addition,
Per|Mut employs a third-order mutual information expansion to decompose the solvent en-
tropy into physically interpretable contributions from individual molecules as well as from
two- and three-body correlations. The method yielded accurate entropies for test systems
with argon and solvated alkanes. When applied to the solvation statistical mechanics of hy-
drated octanol and the protein crambin, the method revealed the local effects of individual
chemical groups or side chains on the solvent entropy. Comparing native-fold crambin and a
molten-globule-like conformation, I identified a strongly stabilizing solvent entropy contribu-
tion of almost 500 kJ·mol−1 to the total free energy difference of 53 kJ·mol−1. Remarkably,
more than half of the solvent entropy contribution arose from induced water correlations. In
addition to understanding protein stability, Per|Mut could prove useful to understand and
predict the solvent contributions to ligand binding, which is especially relevant in the realm
of computational drug design.
The energetics of lipid headgroup dehydration is furthermore expected to play a major role

in the free energy landscape of membrane fusion, a process vital for, e.g., exocytosis during
synaptic transmission or fusion of enveloped viruses into the host plasma membrane. As
revealed by collaborators, pre-fusion lipid membranes at < 1 nm distances experience a diva-
lent cation-independent, metastable, protein-free fusion intermediate, characterized by local
membrane thickening. In the second part of this thesis, I carry out molecular dynamics simu-
lations of double-membrane systems to identify the molecular causes of the structural changes.
Through non-equilibrium simulations and response-time analyses, I demonstrate that the lipid
bilayer thickening results from an electrostatically favorable lateral area shrinkage, attributed
to dehydration-driven lipid headgroup tilting.
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I | Introduction

Water is the universal solvent in all living things, and without it, life as we know it would
not be possible [1–4]. Virtually all cellular processes occur in an aqueous environment, and
essential building blocks of life like deoxyribonucleic acid (DNA), ribonucleic acid (RNA),
phospholipids, and proteins are typically dissolved in water. Proteins require water to perform
their functions, and if the water is replaced by another solvent, most proteins unfold [2, 5].
As such, even the most essential processes like the transcription of genetic information from
DNA to RNA and further translation to a protein sequence cannot take place without water,
as proteins are required in each step. Water is also vital for the self-assembly of lipid bilayers
[6] and, therefore, required for the formation of cellular membranes.

In spite of its importance, the central role of water is not always appreciated in research [2].
In the field of MD (molecular dynamics) simulations, water is often seen as an uninteresting
additional burden to simulate, and many times, the information about the water molecules is
discarded before analysis. However, the impact of water in MD simulations is underlined by
the fact that in vacuo simulations fail to accurately reproduce ensemble properties, such as
the radius of gyration, the root mean square deviation, and the root mean square fluctuation
of protein motion. Similarly, it is very hard to construct accurate implicit solvent models that
take all water-effects into account [7, 8], and also slight changes in the force field of explicit
water models can result in inaccurate ensemble properties, particularly for intrinsically disor-
dered proteins [9]. Although much work has been done already [10–18], the thermodynamics
of the hydration shell, i.e., the closest few water layers around a protein, lipid bilayer, or any
other solvent, still deserves a closer look.

Particularly, the effect of structurally and chemically heterogeneous surfaces, such as pro-
teins, on the solvent thermodynamics is often enigmatic. In the first part of this thesis, I will
therefore present a new method to calculate the spatially resolved free energy contributions of
a solvation shell from atomistic simulations, decomposed into individual enthalpy and entropy
terms. The spatial resolution and the decomposition allow the characterization of the solvent
contribution to free energy differences of processes like protein unfolding or ligand binding on
the molecular level. In the second albeit much smaller part of the thesis, the dehydration-
related thickening of close-contact pre-fusion lipid membranes will be examined using MD
simulations.
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Introduction 1 Solvent Thermodynamics

1 Solvent Thermodynamics

The folding thermodynamics of proteins is governed by its free energy landscape. From
calorimetric experiments, the free energy difference between folded and unfolded protein states
has been determined to be in the order of a few kJ·mol−1 to a few 10 kJ·mol−1, mainly
depending on the protein size [19–22]. This result is astonishing, as the free energy difference
is comparable to the interaction energies of just a handful of hydrogen bonds [23], of which
typically hundreds exist within a protein (many of which are broken upon unfolding) and even
more between the protein and the solvent water. The stark discrepancy between the expected
interaction energy differences and the measured free energy differences showcases the delicate
balance between large but almost completely compensating enthalpic (∆H) and entropic
(−T∆S) contributions to the overall folding free energy difference of a protein (G(unfolded) −
G(folded) = ∆G = ∆H − T∆S) [20]. Small perturbations like the mutation of an amino
acid or a change of temperature can shift this balance, causing the protein to unfold. One
particularly familiar example of such an effect is heat denaturation, where a protein unfolds
at elevated temperatures, e.g., during "cooking". Here, the balance is shifted towards the
more disordered unfolded state, as the entropy contribution −T∆S increases in magnitude
for large temperatures T and eventually overpowers the competing enthalpy term. Since heat
denaturation is entropy-driven, it is easy and intuitive to argue that cold temperatures should
stabilize the more ordered native fold due to a smaller entropic contribution.
Contrary to this argument, proteins also unfold at cold temperatures, in an effect known

as cold denaturation1 [20, 24, 25]. The contradiction arises, because the above argument only
considers the thermodynamics of the protein, whereas the solvent that makes up a substantial
part of the overall thermodynamic system has been ignored. To explain cold denaturation,
both free energy contributions of the entire system (including solvent) need to be considered.
The enthalpy and entropy differences can be expressed as

∆H(T ) = ∆H(Th) + ∆CP (T − Th)

and

∆S(T ) =
∆H(Th)

Th
+ ∆CP log

(
T

Tc

)
,

respectively [20]. Here, Th is the heat denaturation temperature and ∆H(Th) is the en-
thalpy difference at Th. The heat-capacity difference ∆CP = C

(unfolded)
P − C(folded)

P has been
assumed to be approximately constant within the relevant temperature range [20]. The result-
ing free energy difference (Fig. 1.1) shows two denaturation temperatures for protein-typical
parameters, indicated by the two roots of the function ∆G(T ). As discussed above, heat

1For most proteins, the cold-denaturation temperature is well below the freezing point of water, making the
effect a far less common experience compared to the well-known heat denaturation.
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Introduction 1 Solvent Thermodynamics

Figure 1.1: Folding free energy difference ∆G(T ), its enthalpy (∆H(T )) and entropy
(−T∆S(T )) contributions for typical protein values of Th = 60 ◦C, ∆H(Th) =
500 kJ·mol−1, and ∆CP = 10 kJ·mol−1·K−1, as determined from calorimetry ex-
periments [20, 26]. The shaded area in (A) denotes the weakened entropy-driven
stability relative to the opposing ∆H(T ) term. (B) is a zoomed-in version of (A).

denaturation at Th is entropy-driven. Contrarily, cold denaturation (here at Tc ≈ −30 ◦C)
occurs due to a strongly destabilizing (negative) enthalpic contribution at cold temperatures.
Here, the opposing entropy contribution stabilizes the native fold (−T∆S > 0), but its sta-
bilizing effect is weakened relative to the enthalpy term, as indicated by the shaded area in
Fig. 1.1A. Since the protein entropy is always larger in the unfolded state compared to the
native fold, the stabilizing but weakened effect of entropy at cold temperatures needs to be
solvent-related. Understanding hydration thermodynamics is therefore essential to better un-
derstand the physics of protein folding and protein stability. Indeed, cold denaturation has
been attributed to a temperature-induced weakening of the hydrophobic effect [20], which is
known to be a major driving force in protein stability and folding [27–30] and is mainly driven
by solvent entropy [29, 31–33].

The hydrophobic effect describes the propensity of non-polar solutes, such as some amino
acids of a protein, to form aggregates that minimize the overall interface with the aqueous
solution [28]. Its explanation on the molecular level has been the subject of long but contro-
versial discussions [34], and many of its molecular aspects are still elusive [20, 35].

Frank and Evans [36] coined the well-known iceberg model, according to which hydropho-
bicity results from a cage of highly structured ice-like water that forms around a non-polar
solute. The ice-like structure would have a low, unfavorable entropy, and thus the system
would minimize its free energy by minimizing the solvated surface due to aggregation. In-
deed, multiple studies found the hydration shell to be more ordered than bulk water [37, 38].

However, Yu and Karplus [39] and Ben-Naim [40] argued that the entropy loss from a more

3



Introduction 1 Solvent Thermodynamics

ordered hydration shell, should it exist, is exactly compensated by the corresponding change
of solvent-solvent interaction energies. They, therefore, concluded that solute-induced water
re-orientations have a net-zero effect on the free energy and, therefore, cannot explain the
hydrophobic effect. In particular, Yu and Karplus [39] showed analytically that the enthalpy
and entropy contributions from ensemble averages over the solvent-solvent interaction energy
〈Uss〉H compensate each other exactly. Hence, solvent-solvent interactions contribute to the
solvation free energy not directly but rather indirectly, as they are part of the Hamiltonian
H that defines the thermodynamic ensemble itself. The proof by Yu and Karplus [39] alone
is, therefore, not sufficient to disprove the iceberg hypothesis.

Ben-Naim [40] imagined the hydration as a two-step process. First, a water cavity is
formed to make room for the solute, while a water order parameter is held fixed. Only
then the order-constraint is released, and the water molecules are allowed to reorganize and
adapt to the solute. Using thermodynamic and statistical mechanical arguments, he then
showed that the solvation free energy is entirely determined by the cavity-creation sub-process,
which is entropically unfavorable, whereas the solvent reorganization has a net-zero effect.
He, therefore, inferred that the hydrophobic effect must be entirely explained by the cavity-
creation entropy and that solvent reorganization processes, like the formation of "icebergs",
are irrelevant for the solvation free energy.

This approach was criticized by Lee [41], who argued that a single arbitrary "order param-
eter" and even a finite set of such parameters are not sufficient to fully define the solvent
organization and that the solvent generally also reorganizes during the first cavity-creation
step. For instance, the probability density function of a solvent that contains a solute cannot
be identical to that of a pure solvent system. Nevertheless, the order parameter can be forced
to be identical in both cases. To rigorously identify solvation (sub-)processes with compensat-
ing free energy contributions, Lee [41] derived that exact enthalpy-entropy cancellation occurs
if and only if the free energy change ∆G is identical to the average interaction energy be-
tween solute and solvent 〈Ups〉. Since for cavity-creation, i.e., the solvation of a hard sphere,
∆G 6= 0, but 〈Ups〉 = 0, it is a non-compensating process. For the second step, however,
enthalpy and entropy contributions only approximately compensate each other for idealized
solvents with only weakly attractive van-der-Waals-like solvent interactions.

For heterogeneous and typically charged proteins, however, such a dissection into physically
meaningful compensating and non-compensating sub-processes is generally not possible. To
better understand the solvent thermodynamics involved in protein-specific processes like pro-
tein folding, protein stability or ligand binding on the molecular level and the effects of each
individual amino acid, a spatially resolved decomposition into physically meaningful enthalpy
and entropy contributions is necessary.

4



Introduction 2 Entropy Calculation

2 Entropy Calculation

Although solvent free energies, enthalpies and entropies are fundamentally defined as non-
local ensemble averages, spatially resolved maps can be obtained by exploiting the locality
of the involved interaction types, Lennard-Jones interactions [42] and Coulomb interactions.
The enthalpy can be straight-forwardly calculated on a three-dimensional grid as averages of
the interaction energies, obtained directly from an MD force field [10, 11, 43]. The challenge,
however, lies in the estimation of the entropy contribution, which is defined in terms of the
solvent probability density function %({qi}, {pi}) as

S = −kB
∫
dqNpN

N !h6N
%({qi}, {pi}) log %({qi}, {pi}), (2.1)

where the vectors {qi} describe the configurational (3 translational, 3 orientational) coordi-
nates of N water molecules, {pi} are the respective (linear and angular) momenta, and h

is the Planck constant. Whereas the kinetic contribution can be obtained analytically by
carrying out the momentum-integral in eq. (2.1), the remaining configurational contribution

Sconf ∝ −kB
∫
dqN

N !
%({qi}) log %({qi}) (2.2)

is notoriously difficult to sample. Here, the problem is twofold:

First, the configuration space for each, translational and rotational degrees of freedom is
3N -dimensional, which implies that even for just 1000 water molecules, a 3000-dimensional
space needs to be sampled to obtain translational or rotational entropies. Due to the "curse
of dimensionality", which implies that for increasing dimensions an exponentially increasing
number of data points (e.g., frames of an atomistic simulation) is needed to obtain a constant
sampling density (same mean distance between data points), sufficient sampling poses a sig-
nificant challenge. Albeit also large and high-dimensional, the configuration space of proteins
is largely inaccessible due to stereochemical constraints. However, the configuration space for
a diffusive solvent system is almost entirely accessible, resulting in even more severe sampling
problems in comparison.

Secondly, volume of the configuration space scales withNN , rather than with eN , as it would
be expected for an extensive thermodynamic quantity like entropy. The large volume renders
an attempt to numerically sample the configuration space impossible, even if the system was
small and the aforementioned curse of dimensionality would be overcome. The problem arises,
because the concept of configuration space inherently treats particles as distinguishable, e.g.,
by assigning labels "1" to "N" to each of them. Due to the permutation symmetry, each
microstate is counted redundantly N ! times, leading to a configuration space volume that is
N ! times larger than physically necessary.

In an analytical treatment, the overcounting problem is, of course, solved by the Gibbs

5



Introduction 2 Entropy Calculation

factor N ! [44]. For numerical sampling, however, the Gibbs factor cannot be straightforwardly
applied, as it requires sampling of the configuration space

∫
dxN ∝ NN before the result is

divided by N !.

In spite of these problems, several methods have been developed to calculate spatially
resolved solvent entropies, of which the most established ones are the Grid Inhomogeneous
Solvation Theory (GIST) [10, 43] (see section 12) and 3D 2-Phase Thermodynamics (2PT)
[11] (see section 13).

GIST estimates the local entropy for each voxel of a three-dimensional grid using an ex-
pansion into a single-body entropy, which accounts for the mobility of the individual water
molecules and multi-body water correlation terms. A particular advantage of this approach is,
therefore, the fact that each term allows for an intuitive physical interpretation of the entropy
change. As GIST is grid-based, it is agnostic towards the particle identity and, therefore, does
not suffer from the overcounting problem, however, the "curse of dimensionality" results in
severe sampling problems. Therefore, GIST is usually limited to the single-body term. Since
water reorganization and, in particular, water-water correlations are expected to play a major
role in hydrophobicity, this approach is not well-suited to study the solvation thermodynamics
of protein folding and stability.

3D 2PT estimates the local entropy by treating the density of states of each water molecule
as a superposition of a solid-like harmonic component and a hard-sphere gas, for each of which
the entropy is known. The method was shown to yield accurate entropies for bulk water [45],
but it is unclear how well surface water can be described as an interpolation between the two
components.

To overcome these shortcomings, I will here develop and apply a nonparametric method
("Per|Mut") based on a permutation reduction [46, 47], which solves the overcounting-
problem and therefore increases the sampling density by the Gibbs factor N !, and a mutual
information entropy expansion [4, 48–50] (see section 16.2.1), which alleviates the "curse of
dimensionality" and is akin to the expansion used in GIST but routinely captures up to
three-body correlations.

In Per|Mut, the configurational entropy

Sconf = Strans + Srot − Itrans-rot

is split between the entropy contributions that arise from translational and rotational degrees
of freedom and a mutual information (MI) term Itrans-rot that accounts for the correlation
between translational and rotational water motions. To calculate these entropy terms from
an MD trajectory, first a permutation reduction is applied, which increases the sampling
by the Gibbs factor N ! without changing the physics, as described in section 14. Here, the
permutation symmetry of the identical water molecules is exploited by mapping the trajectory
into a subregion of the configuration space, smaller by N !. Although the physics remains

6



Introduction 2 Entropy Calculation

Figure 2.1: Flow chart of the method Per|Mut, visualized for the example of hydrated octanol.
In the left image, water molecules are shown with red and white spheres. The
center image shows the permutation-localized water molecules in different colors.
The right image maps the per-molecule entropy on the water molecules. Note that
the largest entropy loss occurs at the red water molecule, which forms a hydrogen
bond to the octanol hydroxyl group.

unaltered, this results in a "localization" of the water molecules in real space, which then
only fluctuate within a small region, as shown in Fig. 2.1, rather than diffusing through the
simulation box.

In the next step, translational and rotational entropies are calculated from the permuta-
tionally reduced trajectory. Because the entropy integral in eq. (2.2) in 3N dimensions cannot
be computed directly due to the "curse of dimensionality", a third-order mutual information
expansion (MIE) [4, 48–50] (see section 16.2.1) is used to expand the full high-dimensional
integral into multiple low-dimensional integrals over marginal distributions, which can be
calculated numerically. The third-order expansion decomposes the entropy into the sum of
single-molecule entropies (first order), which ignores all correlations and, therefore, overesti-
mates the entropy, and second- and third-order terms, which account for the entropy loss due
to correlations between molecule pairs and triples, respectively. To obtain these MI terms, the
method uses a k-nearest-neighbor (kNN) estimator (see section 16.2.2), which estimates the
density at each sample point by finding the k closest neighboring sample points and dividing
by the volume of a ball that encloses the points.

Through the MI expansion, Per|Mut yields an entropy decomposition into contributions
from single molecules, as well as from pair- and triple-correlations of permutationally localized
water molecules. The method therefore allows for a spatial entropy representation, as shown
in Fig. 2.1. Furthermore, it provides a physical interpretation of spatially resolved entropy
changes on the molecular level by distinguishing between entropy losses due to reduced single-
molecule mobility (which usually occurs close to protein charges) and due to increased water-
water correlations (as is usually the case close to non-polar parts of a solute).

Per|Mut has been thoroughly tested on analytical test distributions and test systems, such
as an argon gas and solvated octanol. When compared with reference entropies for solvated

7



Introduction 3 Membrane Thickening

alkanes, the results were on average accurate within 0.2 J·mol−1·K−1 per water molecule for
a solvation shell of 100 water molecules. The entropy error is equivalent to a free energy
contribution of 0.06 kJ·mol−1 or 0.024 kBT per water molecule at 300K. When applied to the
hydration shells of the protein crambin, the solvent free energy effects of each amino acid as
well as the effects of the protein shape on the solvent enthalpy and entropy were identified.
Comparison of the solvent thermodynamics of the native crambin fold and that of an unfolded
conformation revealed a strongly stabilizing effect of the solvent entropy, largely caused by
induced water-correlations, which is consistent with the idea of solvent-driven protein stabi-
lization discussed in the context of cold denaturation.
The presented method is, furthermore, relevant for the assessment of ligand binding affini-

ties, as a ligand needs to displace surface water from a binding pocket in order to bind. In
this context, Per|Mut might also prove useful in the realm of computational protein design.
My implementation of Per|Mut is available for download as a python package2.

3 Membrane Thickening

The fusion of two lipid membranes is a universal process in living organisms and essential,
e.g., for exocytosis during synaptic transmission, for the merger of sperm and oocyte, or for
fusion of enveloped viruses into the host plasma membrane [51, 52]. The exact mechanism of
membrane fusion, specifically its energetics, is matter of an ongoing debate, however, some
intermediate states along the fusion pathway are universally agreed upon [51, 53–56].
First, both bilayers are brought into loose contact through the sequential assembly of

SNARE proteins (soluble N-ethylmaleimide-sensitive factor activating protein receptor),
which are anchored in the opposing leaflets and pull the bilayers together against repulsive
electrostatic, hydration, and undulation forces. Next, a tight-docking state is reached, in
which the proximal leaflets are potentially fully dehydrated, but still retain their integrity. In
the actual fusion step, the two inner leaflets merge, forming a fusion stalk, which eventually
extends into a merging of the full membranes.
As shown by Yavuz et al. [57], the tight-docking state is stable and SNARE-independent,

which indicates that the repulsive forces have already been overcome or are compensated by
an unknown attractive interaction. In a collaborative manuscript included below, Witkowska
and Jahn have furthermore shown experimentally that the tight-docking state is characterized
by an increased bilayer thickness. Although previous computational and experimental studies
also reported a thickening of close or partially dehydrated lipid bilayers [58–63], no molecular-
level explanation is available, to the best of my knowledge. In order to understand the
energetics of the pre-fusion membrane states, it might thus be necessary to understand the
associated bilayer thickening.
To reveal the underlying structural changes and molecular causes, I carried out all-atom

2https://gitlab.gwdg.de/lheinz/hydration_entropy
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Introduction 3 Membrane Thickening

MD simulations of double-membrane systems at decreasing mutual distances. Indeed, the
simulations reveal a thickening for distances below 1.5 nm. At close distances, dehydration
leads to an electrostatically favorable tilt of the dipolar lipid head groups, which I identified
as the main determinant for the observed thickening.

Structure of the Thesis

Chapter II summarizes fundamental concepts and methods that are relevant for the under-
standing of this thesis, but not explained in detail in a later chapter. To further provide an
overview of the field of solvent entropy calculation and to characterize the requirements for
a new approach, existing methods of entropy estimation are discussed in chapter III. The
following chapters IV and V introduce and test Per|Mut for the calculation of rotational and
translational entropies, respectively. To obtain spatially resolved solvent free energies, the cal-
culation of enthalpy contributions is discussed in chapter VI, and the method is applied to the
protein crambin. For the ease of the reader, some concepts and motivations are re-introduced
at the beginning of chapters IV, V, and VI, which are written as stand-alone research articles
that are either published or submitted for publication.
The dehydration-related thickening of close-contact pre-fusion lipid membranes is addressed

in chapter VII.
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II | Atomistic Simulations and Analysis

For a physically accurate description of the dynamics of individual atoms and their interac-
tions through chemical bonds and non-bonded interactions, the time-dependent Schrödinger
equation [64]

i~
d

dt
|ψ〉 = H|ψ〉

needed to be solved, where |ψ〉 is the quantum mechanical state vector and H is the Hamil-
tonian of the system. A number of methods to approximate solutions of the Schrödinger
equation for the electronic systems exist, of which the most important ones are the Hartree-
Fock method [65–67] and density functional theory [68].

Despite decades of growing computer performance [69], it is still impossible to reach simu-
lation timescales of nanoseconds to microseconds using quantum mechanical methods for even
a small protein like crambin in solvent water (see chapter VI), which combined consists of
≈ 30000 atoms. Therefore, atomistic molecular dynamics (MD) simulations are carried out
using several simplifications and approximations.

As shown by Born and Oppenheimer [70], the dynamics of nuclei and electrons can be
approximately treated separately. Due to their much smaller mass, electrons move on faster
timescales than nuclei, so that the electronic configuration of a molecule adapts within a
typical simulation time step of 1 or 2 fs to a given set of nuclei positions. The electrons are
therefore not explicitly simulated but instead give rise to an effective potential for the much
slower dynamics of the atom nuclei. In MD simulations, this potential is approximated by
a semi-empirical function, known as the force field (see section 4). Here, only the electronic
ground state needs to be considered, since the thermal energy at ≈ 300K is typically not
sufficient to raise electrons into excited states.

Lastly, atomic nuclei are described by narrow wave packets relative to the length scale on
which the effective interaction potential varies, because of their large masses and their short
mean free paths. Therefore, Ehrenfest’s theorem [71], which states that expectation values
for sufficiently narrow wave-packets approximately follow classical equations of motion, can
be used to switch from a quantum mechanical description to a purely classical picture.

Hence, the atoms are treated as point masses and Newton’s equations of motion

M
∂2r

∂t2
= F (r) = −∇V (r) (3.1)

are solved in MD simulations. Here, r = (x1, . . . x3N ) contains the positions of N atoms,
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V (r) is the effective potential energy, provided by a force field (see section 4), and M is a
3N × 3N matrix containing the particle masses on its diagonal.

All atom MD simulations therefore require an initial structure r0, which for protein sim-
ulations is often obtained from the Protein Data Bank3, and a force field that describes the
interactions between the atoms. Equation (3.1) is then numerically integrated to obtain both
positions and velocities in discrete time intervals using an integration algorithm, such as the
leapfrog integrator described in section 5.

Under the assumption of ergodicity [72], thermodynamic quantities like entropies and free
energies can be calculated from an MD simulation trajectory.

All MD simulations in this thesis were carried out using the software package GROMACS
[73–77].

4 Force Fields

Force fields describe the forces F (r) = −∇V (r) between the atoms of an MD system through
an effective interaction potential V (r) [78]. In the past, multiple force fields have been de-
veloped, of which to date, the most popular include the families of AMBER4 [78, 79] and
CHARMM5 [80–84] force fields.

All simulations in this thesis were carried out using the CHARMM36m force field, which
has the mathematical form

V (r) =
∑

bonds

1

2
kb(r − r0)2 +

∑
angles

1

2
ka(θ − θ0)2 +

∑
torsions

1

2
Vn[1 + cos(nφ− δ)]

+
∑

improper

1

2
ki(ω − ω0)2 +

∑
LJ

4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

+
∑

Coulomb

1

4πε0

qiqj
rij

, (4.1)

where the first four terms describe the interactions due to covalent bonds between the atoms,
and last two terms are the unbonded Lennard-Jones [42] and Coulomb interactions, respec-
tively. The individual terms are illustrated in table 4.1.

The bond stretching and angle bending, described by the first two terms, are typically
very "stiff" degrees of freedom, such that the deviations from their equilibrium positions
at ≈ 300K are small. Therefore, a second-order Taylor expansion is used to approximate
the true potential around r0 and θ0, respectively. Because computers evaluate polynomials
significantly faster than, e.g., the exponentials of the Morse potential [85], the approximation
results in more efficient force and energy computations. Whereas the physically more accurate
Morse potential is bound for large distances, the quadratic approximation grows to infinity

3https://www.rcsb.org
4https://ambermd.org/AmberModels.php
5https://www.charmm.org/charmm/resources/charmm-force-fields/
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Table 4.1: Illustration of the force field terms, following [4].

Bonded potential between two atoms

V (r) =
1

2
kb(r − r0)2

with a spring constant kb and an equilibrium bond length r0.

Angle potential between three bonded atoms

V (θ) =
1

2
ka(θ − θ0)2

with a spring constant ka and an equilibrium angle θ0.

Torsion potential across four bonded atoms

V (φ) =
1

2
Vn[1 + cos(nφ− δ)]

with strength Vn, multiplicity n, and offset δ.

Improper dihedral potential

V (ω) =
1

2
ki(ω − ω0)2

with a spring constant ω and equilibrium angle ω0.

Lennard-Jones potential [42]

V (r) = 4ε

[(σ
r

)12
−
(σ
r

)6
]

between unbonded atoms, with strength ε and radius σ.

Coulomb interaction

V (r) =
1

4πε0

q1q2

r

between unbonded atoms with partial charges q1 and q2.
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and therefore does not allow for bond ruptures or the formation of new bonds. This is a
limitation, albeit not a fundamental one, that CHARMM shares with most other force fields.

The torsional dihedral angle describes the intertwist of four atoms bonded in a row, as
sketched in table 4.1. Since, e.g., a methyl group typically rotates over the full range of 360◦

in less than a nanosecond, trigonometric functions rather than the quadratic approximation
are used, as shown in equation (4.1).

The purely empirical improper dihedral potentials are used to maintain the chirality of
molecules or the planarity of, e.g., aromatic rings [86]. As such, they merely need to restrain
the dihedral angle around its target value ω0 and hence a harmonic approximation can be
used, as shown in equation (4.1).

The Lennard-Jones potential [42] in the next term describes van-der-Waals interactions
and the Pauli repulsion [87] of atoms. The potential is therefore strongly repulsive for small
distances and, due to cooperative polarization, slightly attractive for larger distances. ε defines
the strength of the interaction, and σ describes the size of the atoms.

Whereas the attractive r−6-part can be derived from first principles, the repulsive r−12-part
has no particular theoretical justification. However, the fact that r−12 can be calculated as
the square of r−6, which needs to be computed anyway, makes the Lennard-Jones potential
computationally very efficient and therefore preferred over similar potentials [88].

The last term of equation (4.1) describes the electrostatic interactions between the atoms
using Coulomb’s law. Notably, all partial charges are fixed in classical force fields, and po-
larization effects are therefore neglected, which may create artifacts whenever strong electric
fields are present [89, 90].

All force field parameters, consisting of force constants, bond lengths, bond angles, dihe-
dral angles, Lennard-Jones parameters, partial charges and more can either be obtained from
quantum mechanical calculations, deducted from experiments like spectroscopy, x-ray or elec-
tron diffraction, NMR or infrared analysis [91], or be indirectly inferred from other measurable
quantities like diffusion constants or solvation free energies.

5 Integrator

The force field, described in section 4, yields the force F on any atom as a function of the
atom position x. To obtain a simulation trajectory through Newton’s law

mẍ(t) = ma(t) = F (x(t)),

an integration algorithm is needed.

Out of the available algorithms, the leapfrog integrator [92, 93] is the most popular choice
for MD simulations and was used in all simulations for this thesis.
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The integrator reads

x(t+ ∆t) = x(t) + v

(
t+

∆t

2

)
∆t+O(∆t3) (5.1)

v

(
t+

∆t

2

)
= v

(
t− ∆t

2

)
+
F (t)

m
∆t+O(∆t3), (5.2)

where the position x and velocity v are updated in an alternating manner every ∆t
2 (which

earned the algorithm its name). Although the leapfrog integrator is a second-order algorithm,
it only requires a single force evaluation per time step, which makes it comparably efficient
to, e.g., the Euler algorithm, but significantly more accurate.

6 Bond Constraints

To carry out the simulations as efficiently as possible, large time steps ∆t are desirable.
However, the leapfrog integrator is only numerically stable if the time step is significantly
smaller than the period of the fastest degree of freedom [86]. Due to their small mass, this
limit is given by the vibration frequency of covalent bonds to hydrogen atoms, which would
require sub-femtosecond time steps.
To be able to use longer time steps, bonds to hydrogen atoms are constrained.
Due to the bond constraints, water molecules are treated as rigid bodies and therefore their

bond-vibration entropy is neglected. The entropy of a quantum harmonic oscillator is

S = −kB log
[
1− e−β~ω

]
+

~ω
T

e−β~ω

1− e−β~ω
, ω =

√
k

µ
,

which yields an estimation of the neglected vibrational entropy of 2.27 · 10−5 J·mol−1·K−1

per O–H bond, using T = 300K, a reduced mass of µ ≈ 1 u, and a spring constant of k =

376560 kJ·mol−1·nm−2 [84]. The result is much smaller than the entropy from the remaining
6 degrees of freedom (≈ 70 J·mol−1·K−1) and well within the margin of error of any hydration
entropy estimator. Notably, a classical harmonic oscillator yields unphysical negative entropies
for the same parameters. It has therefore been argued that constrained bonds are a better
representation of their quantum mechanical nature than a classical harmonic potential [94].
In this thesis, 2 fs time steps were used. Bonds in water and bonds to hydrogen atoms in

proteins were constrained using the SETTLE [95] and LINCS [96] algorithms, respectively.

7 Steepest Descent Minimization

Due to measurement errors in the PDB structure, imperfect force fields, homology modeling,
or poorly placed water molecules, atomic clashes might be present in the starting structure
of an MD simulation. In this case, an attempt to carry out the simulation would most likely
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result in the system "blowing up", which could mean an immediate crash of the program or
overly fast and unphysical movements of parts of the system. The effect is caused when atoms
in the initial structure are too close, resulting in initial forces that are too large for the time
step ∆t. Such atoms are accelerated within the first time step according to equation (5.2) and
"jump" too far, which can result in another clash that is possibly even more severe, triggering
a chain reaction.

To avoid these problems, energy minimization needs to be carried out before the start
of the actual MD simulation. Here, the potential energy V (r) of the system is minimized
until a local minimum, characterized by F (r) = −∇V (r) = 0, is reached. In this thesis,
the steepest descent (also known as gradient descent) implementation in GROMACS was
used, which iteratively follows the direction of the steepest descent, i.e. the negative gradient
F (r) = −∇V (r) until the maximum scalar force on any atom max(Fn) is below a threshold
value [86].

The iterative algorithm is defined as

rn+1 = rn +
Fn

max(Fn)
hn,

where r0 is the initial structure and hn is a variable step size. In the GROMACS implemen-
tation [86], the new positions are accepted and the step size is updated to hn+1 = 1.2hn if
Vn+1 < Vn. If Vn+1 > Vn, the step size was too large. In this case, the new positions are re-
jected, and the step size is decreased to hn+1 = 0.2hn. The iterations stop, once max(Fn) < ε.

A rough estimate of a safe threshold value ε can be obtained by considering the distance
an accelerated atom with mass m travels during a time step according to equation (5.2) [97]

s =
F

m
∆t2 ⇒ F =

ms

∆t2
.

Using s = 0.1Å, which corresponds to the magnitude of inter-atom distances, m = 1 u, the
mass of a hydrogen atom, and the standard MD time step ∆t = 2 fs, a maximum force of
2.5 · 103 kJ·mol−1·nm−1 is obtained.

8 Temperature and Pressure Coupling

If the leapfrog integrator (section 5) and the force field (section 4) were to be directly applied,
a microcanonical NVE ensemble (constant number of particles, volume, and energy) would
be simulated. In reality, however, most biophysically relevant processes and phenomena take
place in the canonical NVT ensemble (constant number of particles, volume, and temperature)
or in the isothermal-isobaric NPT ensemble, where, instead of volume, pressure is maintained.
Hence, algorithms for temperature and pressure coupling are needed.
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Temperature Coupling

At the beginning of an MD simulation, initial atom velocities are drawn from a Maxwell
distribution

p(vi) =

√
mi

2πkBT0
exp

(
− miv

2
i

2kBT0

)
,

according to the desired temperature T0. However, in order to maintain this temperature
during the simulation, the system needs to be coupled to a simulated heat bath.
For all simulations in this thesis, the V-rescale thermostat [86, 98] was used. In this algo-

rithm, atom velocities are scaled at each simulation time step ∆t by

α =

√
Kt

K

to keep the desired temperature T0 on average. Here, K is the total kinetic energy. To produce
a canonic temperature distribution around T0, the target kinetic energy Kt is redrawn from
a stochastic process at every time step. Its distribution is

dK =
K0 −K

τ
dt+ 2

√
KK0

Nf

dW√
τ
,

where Nf is the number of degrees of freedom, K0 =
Nf
2 kBT0, and W is a Wiener process.

The first term is an exponential relaxation towards K0, so that the temperature is always
steered back to T0. The second term is stochastic and produces the canonic temperature
distribution. The time constant τ controls the coupling strength between a simulated system
and a heat bath. Whereas small values yield a quickly thermalizing system, large values mean
a slow temperature equilibration.
In this thesis, the standard value of 0.1 ps was used.

Pressure Coupling

In order to maintain a given pressure during an MD simulation, a pressure coupling algorithm,
also known as a barostat, is needed. Two different algorithms, the Berendsen barostat [99]
and the Parrinello-Rahman barostat [100, 101], were used in this thesis and are therefore
going to be discussed here.
During an MD simulation, the pressure is calculated using the virial theorem [86, 97]. The

pressure tensor reads

P =
2

V
(Ekin −Ξ),

where V is the current box volume,

Ekin =
1

2

N∑
i=1

mivi · vᵀi
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is the kinetic energy tensor, and

Ξ = −1

2

N∑
i=1

ri · F ᵀ
i

is the virial.

To maintain a target pressure of P0 on average, the barostat iteratively rescales the simu-
lation box dimensions, described by the box matrix h = (a, b, c) with the box vectors a, b,
c, which reads

h′ = h · µ.

Here, µ is a diagonal 3 × 3 scaling matrix. In case of isotropic pressure coupling, which
is normally used, the diagonal entries are identical. For membrane systems, however, it is
useful to scale the membrane-orthogonal direction independently, in which case only two of
the diagonal elements of µ are identical.

Berendsen Barostat

In the Berendsen pressure coupling scheme, the pressure fluctuations are exponentially
damped with a time constant τ . The scaling matrix update at every time step reads [86]

µii = 1− 1

3

∆t

τ
β(P0ii − P̃ii),

where β = 4.5 · 10−10 bar−1 is the isothermal compressibility of water. For isotropic scaling,
the pressure tensor is substituted by its isotropic average P̃ii = 1

3tr(P ). For semi-isotropic
scaling P̃ is defined as P̃xx = P̃yy = 1

2(Pxx + Pyy), P̃zz = Pzz.

The Berendsen barostat is very robust and stable. In particular, it is not prone to box oscil-
lations, due to its exponential dampening. Since it strongly suppresses pressure fluctuations,
it does not produce an exact thermodynamic NPT ensemble [86]. It has therefore only been
used for equilibration simulations.

Parrinello-Rahman Barostat

An exact NPT ensemble can be produced by the Parrinello-Rahman barostat [102–104]. Here,
the box size follows its own equation of motion [86]

d2hᵀ

dt2
= VW−1h−1(P − P0),

where the mass-like matrix W is defined as

W−1
ij =

4π2β

3τ2L
δij
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with the largest box matrix element L. A large coupling timescale τ therefore results in a
"heavy" box and a loose coupling.
To obtain the pressure fluctuations of a thermodynamic NPT ensemble, a friction term is

added to Newton’s equations of motion, which then reads

d2ri
dt2

=
Fi
mi
−M dxi

dt

M = (hᵀ)−1

[
hᵀdh

dt

dhᵀ

dt
h

]
h−1.

M therefore plays the role of a friction coefficient.
Because the barostat is prone to oscillations, particularly when the initial pressure and the

target pressure are very different, the algorithm is mainly suited for production runs after an
initial equilibration phase with the Berendsen barostat.

9 Nearest Neighbor Search

In order to calculate rotational entropies (described in chapter IV), translational entropies as
well as the translation-rotation correlation entropy (both described in chapter V), fast nearest
neighbor search algorithms in Euclidean space (described by Rd), the groups of rotations
SO(3)d, and the composite space R3 × SO(3) are required. Because entropy calculation
via a third-order mutual information expansion (MIE, see section 16.2.1) requires k-nearest
neighbor searches for each of the typically 105 data points for all molecules, all molecule pairs,
and all molecule triples, a brute-force search approach is orders of magnitudes too slow, even
when implemented on GPUs. Efficient nearest-neighbor search algorithms and their efficient
implementation are therefore essential.
I have chosen two tree-based search algorithms, the k-d tree and the VP tree, which will

be described in the following sections. Both algorithms aim to find the kth-nearest neighbor
with respect to a metric dS to each point from a set of points {x ∈ S}, where S is one of the
spaces mentioned above.

k-d Tree

Before the k-dimensional tree [105] (k-d tree, k here not to be confused with the k-nearest
neighbor) can be used to search for the nearest neighbor of a data point, the tree needs to be
built. This process is referred to as indexing.
As shown in Fig. 9.1 for a two-dimensional example-data set, the k-d tree is built by

recursively bisecting the data set through (hyper-)planes along the Cartesian axes.
First, the example data set is split along the x-axis. To this end, the center-most x-

coordinate (median) is computed and used for bisection. In Fig. 9.1, the data set is therefore
divided between points with x < 5, which form the left subtree, and points with x ≥ 5, which
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Figure 9.1: A two-dimensional k-d tree. The data set and the split-planes are shown on the
left, the corresponding tree is shown on the right.

form the right subtree. Next, both subtrees are bisected along the y-axis using their median
y-coordinates, which results in a split between y < 7 and y ≥ 7 for the left subtree and a split
between y < 4 and y ≥ 4 for the right subtree. This schema of alternating splits along the
axes is continued until each point in the data set is represented by a leaf node, as shown in
Fig. 9.1 on the right.

The k-d tree can be directly generalized to data sets in Rd, where instead of alternating
splits along the x- and y-axes, the data set is bisected along the d Cartesian axes in a cyclic
manner.

During nearest neighbor search, the tree is used to exclude entire subtrees from the search.

To find the nearest neighbor to (6|1) in the example from Fig. 9.2, the distances within
the closest subtree are computed and (5|4) is identified as the "current best", as shown in
Fig. 9.2A. Next, the search is continued one node-level higher. Because the sphere that
includes the "current best" (shown in green) intersects the bisection plane at x = 5, it is
possible that there is a closer point on the left of the plane. The next bisection-plane at
y = 7, however, is further away than the "current best", hence the subtree y ≥ 7 can be
excluded, as shown in Fig. 9.2B. This leaves the point (1|1) as the only remaining candidate.
Because it is further away from (6|1) than (5|4), the "current best" is not updated and (5|4)

is correctly identified as the nearest neighbor to (6|1).

By repeating this process, the second-nearest, third-nearest, ..., k-nearest neighbor can be
identified for all points of the data set.

If an O(n)-algorithm is used to determine the (approximate) median for each of the O(log n)

bisection layers, indexing a k-d tree has a combined complexity of O(n log n). In the best case,
each layer is visited only once to find a nearest neighbor, thus finding a k-nearest neighbor
is a O(k log n)-operation. Finding the k-nearest neighbor for each of n data points therefore
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Figure 9.2: Nearest neighbor search schema using a k-d tree. The k-d tree is applied to find
the nearest neighbor to (6|1). In (A), the closest sub-tree to (6|1) is searched and
(5|4) is stored as the "current best". In (B), the search is recursively continued to
the higher nodes.
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Figure 9.3: A two-dimensional VP tree. The data set and the balls are shown on the left, the
corresponding tree is shown on the right.

has a complexity of O(kn log n).
Because the algorithm uses axis-aligned splits, it can only be used with Cartesian co-

ordinates in Rd with the Euclidean metric. Therefore, a different nearest-neighbor search
algorithm needed to be used in SO(3)d and the composite space R3 × SO(3) for rotational
entropies and translation-rotation correlation entropies, respectively.

VP Tree

Similar to the k-d tree, the vantage point tree [106–108] (VP tree, also known as ball tree)
uses bisections to build a tree, which can then be used for nearest neighbor search. Most
importantly, the VP tree only uses the triangle inequality and makes no further assumptions
about the space or used coordinates. It can therefore be directly applied to SO(3)d or R3 ×
SO(3), as long as the used metrics fulfill the triangle inequality.
To build the tree, two pivot points ("vantage points") are randomly chosen6, as shown in

Fig. 9.3 in red and blue, respectively. The distances from the vantage points to all data points
are calculated and the data points are assigned to their closest vantage point. For each vantage
point, a radius, defined as the largest distance between the pivot point and its assigned data
points, is stored. In the example from Fig. 9.3, both radii are

√
10 (in the Euclidean metric).

This way, the data set is bisected into two "balls", which can, and generally will, overlap.
The bisection is recursively repeated until each data point can be represented as a leaf-node,

as shown on the right of Fig. 9.3.
To find the nearest neighbor to the data pointQ = (6|1), as exemplarily shown in Fig. 9.4A,

the distances within the smallest enclosing ball (purple in Fig. 9.4) are computed and (5|4) is
6The implementation in the NMSLib [109, 110], which was used in this thesis, makes multiple attempts to
choose the pivot points and accepts those with the largest variance of the data point distances.
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Figure 9.4: Nearest neighbor search schema using a VP tree. The VP tree is applied to find
the nearest neighbor to (6|1). In (A), the closest sub-tree to (6|1) is searched and
(5|4) is stored as the "current best". In (B), the search is recursively continued to
the higher nodes, of which some can be excluded due to the triangle inequality.
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stored as the "current best" with a distance of rbest =
√

10. Moving one tree-level upwards,
the next ball (red) intersects with the "current best"-sphere (green). The node can therefore
not be excluded, but since its leaf-node (1|1) is not closer than rbest, the "current best" is not
updated. Moving further to the blue node, the triangle inequality yields

rbest < |d(Q,Ppivot)− r|,

with the pivot point Ppivot = (4|8) and the radius r =
√

10 of the VP-ball. The entire left
subtree can therefore be excluded, as shown in Fig. 9.4B.
Following the same arguments as for the k-d tree, the complexity is O(n log n) to build the

tree and a k-nearest neighbor search for all n data points is a O(kn log n)-operation. The
scaling behavior is therefore identical to the k-d tree, however, in practice the latter is usually
faster. The k-d tree was therefore used to calculate translational entropies and the VP tree
was used for the rotational entropies and the translation-rotation correlation terms, where
the k-d tree cannot be applied.
For k-d trees, the implementation in the python module scikit-learn 0.20.3 [111] was used.

For VP trees, the Non-Metric Space Library 1.7.3.6 [109, 112] (NMSLib) was used, for which
I assessed and implemented metrics for the spaces of rotation SO(3)d (see chapter IV) and
the composite space R3 × SO(3) (see chapter V).
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mation

In this chapter, an overview of existing methods for entropy calculation from MD simulations
will be given. Methods that were used in this thesis, namely thermodynamic integration and
permutation reduction, will be explained in more detail. Other methods will be explained
briefly and their advantages and drawbacks, particularly with respect to calculating spatially
resolved hydration shell entropies, will be discussed. Whenever possible within the scope of
this work, I will sketch the basic idea and provide a short derivation.

10 Quasiharmonic Approximation

Introduced by Karplus and Kushick [113], the quasiharmonic (QH) method estimates entropies
of macromolecules, such as proteins, by approximating the configuration space density by a
multivariate Gaussian distribution, of which the entropy is known analytically [114].
The method is based on the observation that most folded globular proteins fluctuate around

a single, well defined native fold configuration r0. The extremely complex and rugged potential
energy landscape is then approximated by a quadratic function around r0, which reads

V (r) ≈ V (r0) +
1

2
(∆r)ᵀ(βC)−1∆r,

where r is a 3N -dimensional vector in configuration space, ∆r = r − r0, and (βC)−1 plays
the role of a multivariate elastic force tensor. The system is hence approximated by a 3N -
dimensional harmonic oscillator. The approximation of the interaction energy implies a Gaus-
sian configuration space density

%(r) ∝ e−βV (r) = e−
1
2

(∆r)ᵀC−1∆r

with a covariance matrix C, which is calculated from a long MD simulation trajectory. The
analytic configurational entropy

SQH ≈
kB
2

(
3N + log

[
(2π)3N detC

])
of the Gaussian is then used as an entropy estimate.
As shown in figure 10.1, many eigenvalues {σi} of the covariance matrix of a typical protein
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Figure 10.1: Eigenvalue spectrum of the covariance matrix of the crambin backbone. Obtained
from 0.5µs of unrestrained MD simulation of the protein in its native fold, as
described in chapter VI.

are very small. Therefore, detC =
∏
i σi takes on extremely small values, which may result

in unphysical negative entropies. To solve this problem, a quantum mechanical version has
been introduced by Schlitter [115], which uses the entropy of the quantum harmonic oscillator
instead of the classical oscillator and reads

S̃QH ≈
kB
2

3N∑
i=1

log

[
1 +

kBTe
2

~2
σ̃2
i

]
.

Here, e is Euler’s number, σ̃2
i are the eigenvalues of the mass-weighted coveriance matrix

C̃ = M
1
2CM

1
2 , and M has the atomic masses on its diagonal and is zero elsewhere.

Compared to other methods, the QH approximation is computationally efficient and yields
good results for folded, globular proteins, which fluctuate around a single, native fold config-
uration in configuration space, so that the probability density can be well approximated by a
Gaussian [114]. Since a Gaussian is the maximum-entropy distribution for a given variance,
(see appendix section 36), the QH approximation results in a strict upper entropy limit if
the configuration space is sufficiently sampled. The method therefore yields strongly overesti-
mated entropies when the configuration space distribution is not Gaussian-like [115]. The QH
approximation thus results in inaccurate entropy estimates for systems with multiple potential
minima or diffusive systems like solvent water [46].

11 Thermodynamic Integration

Thermodynamic integration (TI) [116] is mostly used as a method to calculate free energy
differences between an initial state, described by the Hamiltonian Ha, and a target state,
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Existing Methods for Entropy Estimation 11 Thermodynamic Integration

described by Hb [117–119]. A switching coordinate λ is used to interpolate between the two
states, such that H(λ = 0) = Ha and H(λ = 1) = Hb. The free energy difference ∆F is
then calculated by integration of the absolute differential dFdλ along the interpolation pathway.
Mathematically, this reads

∆F =

∫ λ=1

λ=0

dF

dλ
dλ

= −kBT
∫ λ=1

λ=0

∂ logZ(λ)

∂λ
dλ

= −kBT
∫ λ=1

λ=0

1

Z(λ)

∂Z(λ)

∂λ
dλ

= −kBT
∫ λ=1

λ=0

1

Z(λ)

∂

∂λ

{∫
e−βH(λ)dxNdpN

}
dλ

=

∫ λ=1

λ=0

1

Z(λ)

{∫
∂H(λ)

∂λ
e−βH(λ)dxNdpN

}
dλ

=

∫ λ=1

λ=0

〈
∂H(λ)

∂λ

〉
λ

dλ,

where Z is the partition function, and
∫
dxNdpN denotes an integration over phase space.

In practice, the derivative of the Hamiltonian H(λ) with respect to the switching coordinate
λ is sampled along the interpolation path at multiple intermediate states 0 = λ0 < λ1 < . . . <

λn = 1, e.g. by means of Monte Carlo or MD simulations. The integration is then carried out
numerically, e.g., using the trapezoidal rule.

The same idea can also be applied to calculate entropy differences by integrating over the
entropy differential dSdλ . The entropy can be written as

S = −
(
∂F

∂T

)
N,V

= kBT logZ(λ) +

∫
H(λ)e−βH(λ)dxNdpN

T
∫
e−βH(λ)dxNdpN

.

The differential with respect to λ reads [120](
dS

dλ

)
N,V,T

=
1

kBT 2

{〈
∂H(λ)

∂λ

〉
λ

〈H(λ)〉λ −
〈
∂H(λ)

∂λ
H(λ)

〉
λ

}
,

and therefore the entropy difference ∆S is

∆S =
1

kBT 2

∫ λ=1

λ=0

{〈
∂H(λ)

∂λ

〉
λ

〈H(λ)〉λ −
〈
∂H(λ)

∂λ
H(λ)

〉
λ

}
dλ.

Since both free energy and entropy are state functions, the interpolation pathway is theoret-
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Figure 11.1: (A) shows an example of soft-core potentials with σ = 1.0 for α between 0.0 and
1.0. (B) shows the speed of convergence of dFdλ and dS

dλ for 1728 argon atoms and
λ = 0.25.

ically irrelevant. Therefore, a simple linear interpolation of the formH(λ, r) = (λ−1)Ha(ra)+

λHb(rb) is commonly used. In practice, however, the singularities of the Lennard-Jones [42]
and Coulomb interactions cause large fluctuations of ∂H

∂λ and H, slow convergence or even
numerical problems, as particles in intermediate λ-states interact weakly enough to get ex-
tremely close [86]. To circumvent this problem, the simple linear interpolation is modified, and
the singularities are removed using smoothed "soft-core" potentials. In the chosen Gromacs
implementation, the soft-core potentials are shifted potentials such that their singularities at
a distance of r = 0 are never reached [86]:

ra = (ασ6
aλ+ r6)

1
6

rb = (ασ6
b (1− λ) + r6)

1
6 ,

where r is the actual distance between the atoms, σa and σb are the Lennard-Jones radii in
states a and b, respectively, and α is a free parameter that controls the "smoothness" of the
soft-core potential. Figure 11.1 (A) shows an example soft-core potential for α-values between
0 and 1 and λ = 0.5.

Contrary to other methods, TI does not rely on strong assumptions and therefore, given
enough sampling, has no fundamental limit of accuracy other than those implied by MD
simulations in general. However, as enthalpy and entropy fluctuations tend to compensate
each other, TI usually converges significantly faster for free energy differences than when
used for entropies. To demonstrate this,

〈
dF
dλ

〉
and

〈
dS
dλ

〉
were plotted in figure 11.1 (B) for

the intermediate λ = 0.25 of 1728 ideal gas particles that were switched to argon atoms.
Whereas the free energy derivative is converged within 1 ns, the entropy derivative takes 80 ns
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to reach a relative error below 1 %. Furthermore, because TI relies on integration over many
λ-intermediates, errors accumulate for long integration paths. For both reasons, entropy TI
is mainly suited for small systems and for small alterations to the system, i.e., when only few
atoms need to be morphed or "grown". In addition, the spatial distribution of the entropy
change cannot be calculated by TI, thus other methods need to be applied when a spatial
resolution is necessary.

12 Inhomogeneous Solvation Theory

In the Inhomogeneous Solvation Theory (IST) [12, 13, 121, 122], the solvation entropy is
approximated using a truncated series of multi-body correlation terms, akin to the mutual
information expansion (MIE) used in this thesis.

Introduced by Lazaridis [12], the IST expansion of entropy reads

S = S(1) + S(2) + . . . .

The one- and two-body contributions

S(1) =
5

2
NkB +NkB log

[
ρ

(
2πmkBT

h2

) 3
2

]
− kB

∫
g(1)(r) log g(1)(r)dr (12.1)

S(2) = −1

2
kBρ

2

∫∫
g(1)(r)g(1)(r′)[g(2)(r, r′) log g(2)(r, r′)− g(2)(r, r′) + 1]drdr′ (12.2)

are expressed in terms of the correlation functions

g(1)(r) =
ρ(1)(r)

ρ

g(2)(r, r′) =
ρ(2)(r, r′)

ρ(1)(r)ρ(1)(r′)
.

Here, ρ, ρ(1)(r), and ρ(2)(r, r′) are the number density, local number density, and local two-
point number density, respectively. Higher-order terms S(n), n > 2 are usually neglected.

The IST can be generalized to also include rotational degrees of freedom [10, 43] but does
not yield spatial resolution. Furthermore, since the correlation functions g(1)(r) and g(2)(r, r′)

of the full system are dominated by the more abundant bulk water molecules, the effect of
the crucial solvation shell is captured poorly.

To overcome these problems, Nguyen et al. [10, 43] developed the Grid Inhomogeneous
Solvation Theory (GIST). Here, the entropy estimate is limited to the single-body term S ≈
S(1), but the integral in eq. (12.1) is evaluated for every voxel of a three-dimensional grid.
The spatial resolution of the approach captures the solvation shell, however, truncating the
expansion after just the single-body term severely limits its accuracy.
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Later, the two-body term has been added to GIST [123]. Here, the water-water correlation
between each voxel and its neighboring voxels is evaluated as defined in eq. (12.2), which
results in sampling problems of the high-dimensional space.

13 2-Phase Thermodynamics

The 2-Phase Thermodynamics (2PT) approach calculates solvation entropies by treading
the density of states (DoS) g(ω) of the system as a superposition of solid-like and gas-like
components [45, 124].

In the QH approximation, the partition function Z can be expressed as

logZ =

∫ ∞
0

dωgs(ω) log zHO(ω),

where zHO(ω) is the partition function of a quantum harmonic oscillator with frequency ω
and gs(ω) is the DoS. As discussed above, the harmonic approximation describes diffusive
systems poorly but is well-suited for crystalline and glassy solids.

The solid entropy reads

Ss = kB logZ + β−1

(
∂ logZ

∂T

)
N,V

= kB

∫ ∞
0

dωgs(ω)Ws(ω),

with the weighting function

Ws(ω) =
βhω

eβhω − 1
− log[1− eβhω].

To obtain better entropy estimates for liquids, 2PT introduces a second phase by approxi-
mating the total DoS as

g(ω) = gs(ω) + gg(ω),

where gg(ω) is the DoS of a gas-like component, accounting for 3fN degrees of freedom, and
gs(ω) is the remaining DoS, accounting for 3N(1− f) degrees of freedom. Here, f ∈ [0, 1] is
a parameter that determines the proportion of solid-like and gas-like components.

The entropy reads

S = kB

∫ ∞
0

dωgs(ω)Ws(ω) + kB

∫ ∞
0

dωgg(ω)Wg(ω).

The gas-like component is modeled as a hard-sphere gas, for which the DoS and the weight-
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ing function read

gg(ω) =
g0

1 +
[
πg0ω
6fN

]2

Wg(ω) =
1

3kB
SHS,

respectively, where SHS is the entropy of a hard-sphere gas at identical temperature and
number density, and g0 = gg(0) = g(0), because gs(0) = 0 by definition.

In 2PT, the fit parameters g0 and f are determined from the total velocity autocorrelation
function

C(t) =
N∑
j=1

3∑
k=1

mjc
k
j (t),

with the atomic masses mj and atomic velocity autocorrelation functions ckj (t).

The DoS g(ω) can be obtained via the Wiener–Khintchine theorem [125, 126] as the Fourier
transform

g(ω) =
2

kT
lim
τ→∞

∫ τ

−τ
C(t)e−i2πωtdt.

Therefore,

g0 = g(0) =
2

kT

∫ ∞
−∞

C(t)dt.

The "fluidity" f is defined as

f =
D(T, ρ)

DHS(T, ρ, σHS)
,

with the solvent diffusivity

D =
1

6mN

∫ ∞
−∞

C(t)dt

and the corresponding hard-sphere diffusivity

DHS(T, ρ, σHS) =
3

8

1

ρσ2
HS

(
kBT

πm

) 1
2

.

The hard-sphere radius σHS is determined from the hard-sphere packing density, as described
by Lin et al. [124].

2PT can has been modified to also yield rotational entropies by substituting the hard-
sphere model with a hindered rotor [45]. More recently, the 2PT-approach has been adapted
to provide spatial resolution [11]. Here, the simulation box is divided into voxels, to which
the method is applied individually. When a molecule is in a voxel at time t, it is followed
until time t + τmax (with, e.g., τmax = 1.6 ps [11]) to compute the autocorrelation function.
A large value of τmax is preferable to sample the full autocorrelation function and to obtain
a good resolution in Fourier space, whereas small values yield a better spatial resolution, due
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to the movement of the molecules during τmax.
Although 2PT yields accurate absolute entropies for bulk water [45], it is unclear how well

surface water features are captured by the method. In addition, the bulk water number den-
sity, rather than the local density, is used to determine the parameter f for three-dimensional
voxels [11]. Overall, the authors report a solvation entropy contribution −T∆S accuracy of
4.9 kJ·mol−1 for monoatomic solutes or small molecules like benzene [11].
Fundamentally, 2PT is an interpolation between two idealized models — harmonic oscilla-

tors and a hard-sphere gas — which may not always allow for a good description of the local
effects. A nonparametric approach is therefore preferred.

14 Permutation Reduction

As explained earlier, applying the QH approximation to a diffusive solvent system yields poor
entropy estimates. The reason for this problem is twofold.
First, as discussed in the introduction, a huge amount of sampling is required to converge

the entropy estimate, due to the very high dimensional configuration space.
Secondly, the configuration space distribution of a solvent system is highly non-Gaussian.

As discussed in section 10, the QH approximation can thus not be safely applied. For an
ideal gas in a cubic simulation box, the configuration space distribution is a uniform density
in a 3N -dimensional hypercube. For interacting particles, the distribution becomes even less
Gaussian-like, because the excluded volumes of the particles cause "holes" in the configuration
space density wherever two particles would intersect. Permutation reduction [46, 47] aims to
solve both of these problems by mapping the full configuration space density into a subvol-
ume, smaller by the Gibbs factor N ! without changing the physics. Permutation reduction
thus improves sampling by N ! and makes the configuration space density more compact and
therefore more Gaussian-like.
The method exploits the permutation symmetry of the identical solvent molecules. For

each frame in a trajectory {xi(t)}, the particle permutation π is chosen so that minimizes the
squared distance

N∑
i=1

‖xπ(i)(t)− ri‖2 (14.1)

in configuration space, where {ri} is an arbitrary reference configuration. Because during the
simulation, each particle carries a unique label (an index), the permutation of particles can
also be interpreted as relabeling.
Figure 22.1A demonstrates the effect of relabeling on the two water molecules, where in

the right panel the molecule labels are swapped since this minimizes the distance to the
reference configuration. As shown in Fig. 22.1B for the simple example of two one-dimensional
particles, the configuration space density is mapped into one of the two regimes (x1 < x2 or
x1 > x2), depending on the chosen reference configuration. The volume to be sampled is

32



Existing Methods for Entropy Estimation 14 Permutation Reduction

Figure 14.1: The configuration space of three one-dimensional particles split into 3! = 6
"slices". For one-dimensional particles, the "slices" are simplices.

therefore reduced by N ! (2! = 2 in the given example), which increases the sampling density
accordingly.

In 3D space, permutation reduction has the effect that each molecule is localized to a small
region around its reference position, as shown in Fig. 22.1C.

Increased sampling

The definition of permutation reduction from eq. (14.1) can be reformulated as finding the
permutation π ∈ P(N) out of all possible permutations of N molecules that fulfills

N∑
i=1

(xπ(i) − ri)2 ≤
N∑
i=1

(xτ(i) − ri)2, ∀τ ∈ P(N).

The permutation π is therefore accepted if the squared distance to the reference configuration
{ri} is smaller than that for any other permutation τ .

Writing translational configurations Xπ = (xᵀ
π(1), . . . ,x

ᵀ
π(N))

ᵀ ∈ R3N as single vectors, the
definition can be further simplified to

Xπ ·R ≥Xτ ·R, ∀τ ∈ P(N).

By setting π = 1 without loss of generality and by permuting the reference R rather than the
configuration X, the definition can be further simplified to

0 ≤ (R−Rτ ) ·X, ∀τ ∈ P(N). (14.2)

If the reference structure R is not degenerate, i.e., if ri 6= rj , ∀i 6= j, this equation defines
N ! − 1 unique hyperplanes that divide the configuration space Γ into N ! "slices", as shown
in Fig. 14.1.

Since all "slices" S(R) only differ by a permutation of the identical solvent particles, the
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configuration space density

p(x1, . . . ,xN ) = p(xπ(1), . . . ,xπ(N)), ∀π ∈ P(N)

is invariant under particle permutation.

All configuration space integrals∫
Γ
f(p(X))dX = N ! ·

∫
S(R)

f(p(X))dX,

can therefore be expressed as in terms of an integral over just one of the N ! slices S(R), inde-
pendent of the reference R [127]. Here, f(p(X)) is any arbitrary function of the configuration
space density p(X).

Furthermore, the sampled density reads

pS(R)(X) = N ! · p(X),

as the permutation reduction maps the entire trajectory into one of the N ! "slices". Sampling
is therefore increased by N !.

Using the two identities above, the entropy reads [127]

SS(R) = −kB
∫
S(R)

dXpS(R)(X) log pS(R)(X)

= −kB
∫
S(R)

dXN ! · p(X) log[N ! · p(X)]

= −kB
∫

Γ
dXp(X)[log p(X) + logN !]

= S − kB logN !,

which is therefore identical to the entropy of indistinguishable particles after the Gibbs factor
has been applied.

Holes at the surface

The centers of the holes in the configuration space density are located where (at least) two
particles i, j have identical positions, which can be written as

Xhole = (xᵀ
1, . . . , x

ᵀ︸︷︷︸
i

, . . . , xᵀ︸︷︷︸
j

, . . . ,xᵀ
N )ᵀ.
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Figure 14.2: Configuration space density of two one-dimensional particles with excluded vol-
ume (left). After permutation reduction (right), the hole caused by the excluded
volume is at the surface of the remaining density.

For an arbitrary reference R and the permutation τ = (i, j) that swaps particles i and j, the
hyperplane normal vector in equation (14.2) reads

R−R(i,j) = (0, . . . , (ri − rj)ᵀ︸ ︷︷ ︸
i

, . . . , (rj − ri)ᵀ︸ ︷︷ ︸
j

, . . . , 0)ᵀ.

Since
(R−R(i,j)) ·Xhole = (ri − rj) · x+ (rj − ri) · x = 0,

every hole center lies on one of the split-planes. Therefore, the holes in the configuration
space density are located at the surface of the slice S(R), as sketched in Fig. 14.2.

Applying the quasiharmonic approximation

The subdivision of configuration space into N ! identical "slices" through permutation reduc-
tion alleviates the two main problems that arise when the QH approximation is applied to
a solvent system. The sampling is increased by N ! and the configuration space density is
mapped into a subspace that is more compact, without holes, and therefore presumably more
Gaussian-like.

To test whether these nice properties of permutation reduction actually improve the entropy
estimates, I applied the method to an argon test system, described in chapter V. Here, 1728
argon atoms were switched from an interaction-free ideal gas state to a fully interacting argon
gas along the switching coordinate λ, and entropies were computed for intermediate λ values.
Reference entropy values were obtained using TI, which is computationally significantly more
expensive and can only be applied to small systems.

As shown in Fig. 14.3, permutation reduction (purple) indeed resulted in a significant
improvement of the entropy estimates over the naive QH approximation (green), which fails
to capture the effects of the particle-interactions entirely [46]. However, even with permutation
reduction, the QH approximation still yields strongly overestimated entropies for interacting
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Figure 14.3: The QH approximation (green), permutation reduction + the QH approximation
(purple), and Per|Mut applied to an argon test system. TI (red) serves as an
entropy reference.

systems (larger λ).
This result demonstrates that even after permutation reduction, the configuration space

density is not sufficiently Gaussian-like to obtain accurate entropies from the QH approxima-
tion. Furthermore, the approach is limited to the translational entropies.
For these reasons, I developed the new method "Per|Mut" (blue in Fig. 14.3), which will

be presented in this thesis. The method still employs a permutation reduction to improve the
sampling but uses a mutual information expansion to calculate spatially resolved translational
and rotational entropies.
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The following text has been published7 as
L.P. Heinz and H. Grubmüller, "Computing spatially resolved rotational hydration
entropies from atomistic simulations", Journal of Chemical Theory and Computation,
vol. 16, no. 1, pp.108–118, 2019.
I carried out the research and wrote the manuscript. Helmut Grubmüller supervised the

research and revised the manuscript.

Computing spatially resolved rotational hydration entropies
from atomistic simulations

Leonard P. Heinz1, Helmut Grubmüller1

1 Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chem-
istry, Göttingen, Germany

Abstract

For a first-principles understanding of macromolecular processes, a quantitative understanding
of the underlying free energy landscape and in particular its entropy contribution is crucial.
The stability of biomolecules, such as proteins, is governed by the hydrophobic effect, which
arises from competing enthalpic and entropic contributions to the free energy of the solvent
shell. While the statistical mechanics of liquids, as well as molecular dynamics simulations,
have provided much insight, solvation-shell entropies remain notoriously difficult to calculate,
especially when spatial resolution is required. Here, we present a method that allows for

7licensed under CC-BY, reformatted
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the computation of spatially resolved rotational solvent entropies via a nonparametric k-
nearest-neighbor density estimator. We validated our method using analytic test distributions
and applied it to atomistic simulations of a water box. With an accuracy of better than
9.6%, the obtained spatial resolution should shed new light on the hydrophobic effect and the
thermodynamics of solvation in general.

15 Introduction

Competing enthalpic and entropic contributions to the solvation free energies give rise to the
hydrophobic effect [33], which is vital for protein function and folding [20, 28, 128]. Despite
extensive theoretical work [33, 129], a quantitative understanding of the hydrophobic effect
particularly at heterogeneous surfaces, such as of proteins and mixed bilayers, remains elusive.
Because surface water shows a significantly altered behavior compared to bulk [130, 131],

it is essential for our understanding of the thermodynamics and energetics of protein solva-
tion to better characterize, e.g., the relative contributions by different solvation shells or the
effect of individual protein side chains on the solvent. Molecular dynamics (MD) simulations
describe the hydrophobic effect at an atomic level [6, 132], but a deeper understanding of the
molecular driving forces requires a quantitative and spatially resolved picture of solvation-shell
thermodynamics, which poses considerable challenges.
Methods like thermodynamic integration (TI) [116, 120] allow for the calculation of solvation

entropies based on MD simulations, but the lack of a spatial resolution precludes detailed
analysis of how local features of the solvent-surface interface contribute and interact. Various
order parameters [14–18] assess both the local translational and the local rotational order of
water molecules but yield only a qualitative picture of the thermodynamic entropy.
Here, we limit our analysis to absolute rotational water entropies and present a method

to reach a spatial resolution from atomistic simulations or Monte Carlo ensembles. Our
method employs a mutual information expansion (MIE) to calculate the total entropy of N
water molecules based on the contributions of each molecule individually and the entropy
loss due to correlations between molecule pairs and triples. A similar approach was taken by,
e.g., the grid inhomogeneous solvation theory (GIST) [10, 12, 13, 43, 121, 122, 133]. Rather
than considering entropic contributions by correlations between individual molecules directly,
GIST calculates discretized correlation integrals within voxels, which causes severe sampling
problems for higher-order correlations. 3D-2-Phase-Thermodynamics (3D-2PT) [11, 134, 135]
also uses voxels and approximates the system as a superposition of gas-like and solid-like
components. Likewise, the Grid Cell Theory (GCT) [136] includes free energies and enthalpies,
but it approximates rotational water correlation terms using a generalized Pauling’s residual
ice entropy model [137, 138]. Here, we address these correlations directly, convergence of
which is challenging, as they require sampling and density estimates in high-dimensional
configuration spaces.
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In our approach, all MIE terms were calculated using a k-nearest-neighbor (kNN) density
estimator, typically used in Euclidean spaces [139–141], which we modified and optimized
for SO(3)n, the Cartesian products of the group of rotations. We considered different met-
rices for the k-nearest neighbors in SO(3)n, determined an optimal k-value, and provide a
computationally efficient framework for rotational entropy calculation.

For easier notation, we will develop our method for water molecules, although it is general
and applicable to any system with rotational degrees of freedom.

In the following sections, we will first provide the conceptual foundation and then describe
our rotation entropy approach. Subsequently, we will apply it to analytical test distributions,
as well as to MD water boxes.

16 Theory

16.1 Absolute entropy

Separating the entropy of water into rotational and translational contributions yields

Stotal = Srotation + Stranslation − Icorr,

where Srotation is the entropy of the phase space distribution after projection onto the rota-
tional degrees of freedom; Stranslation, respectively, is the entropy arising from translational
degrees of freedom; and the mutual information (MI) term Icorr quantifies the correlations
between translation and rotation. In this paper, we focus on the rotational contribution
Srotation.

Note that some authors [10, 133, 142] define the rotational entropy as a conditional entropy,
in which case it includes the MI term −Icorr.

Let the rotation of N water molecules of the simulation system be described by the Hamil-
tonianH({Li,ωi}) = T ({Li})+V({ωi}), with angular momenta Li, orientations ωi ∈ SO(3),
the kinetic energy T , and the potential energy V, typically described by a molecular mechanics
force field. The total entropy is

Srotation = −kB
∫
dLNdωN

h3N
% log %,

with the Boltzmann constant kB, Planck’s constant h, and the normalized and dimension-
less phase space density % = Z−1 exp

[
− H
kBT

]
= %T %V , with %T = Z−1

T exp
[
− T
kBT

]
, %V =

Z−1
V exp

[
− V
kBT

]
, and the partiton function Z = ZT ZV . Because % factorizes, the entropy can
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be split into a kinetic and a configurational term

Srotation = − kB
∫
dLN

h3N
T

%T log %T

− kB
∫
dωN

h3N
V

%V log %V

=
3NkB

2
log

[
2πekBT

h2
T

3∏
i=1

I
1
3
i

]
︸ ︷︷ ︸

Skin

−kB
∫
dωN

h3N
V

%V log %V︸ ︷︷ ︸
Sconf

,

where hT > 0 is arbitrary, hV = h/hT , and Ii are the eigenvalues of the moment-of-inertia
tensor of a water molecule.

Because Skin can be solved analytically, the challenge is to estimate Sconf.

16.2 Entropy estimation

Because the rotational entropy integral in 3N dimensions usually cannot be computed directly,
we used a truncated mutual information expansion [4, 48–50] (see Section 16.2.1) to expand
the full high-dimensional integral into multiple low-dimensional integrals over marginal dis-
tributions, which can be calculated numerically, similarly to the Inhomogeneous Solvation
Theory (IST) [12, 13, 143], underlying GIST. To obtain these marginal entropies, a kNN es-
timator (see Section 16.2.2), which estimates the density at each sample point by finding the
k closest neighboring sample points and dividing by the volume of a ball that encloses the
points, was used. Here, the orientations of N water molecules in nf different samples, e.g.,
frames of a computer simulation trajectory, were represented by a series of quaternions (see
Section 16.2.3) {qi,1, . . . , qi,nf } with i = 1, . . . , N . We then defined suitable distance metrics,
as required by the kNN algorithm, which are not trivial in curved spaces of rotations SO(3)n

(see Section 16.2.4), and then calculated the volumes of balls, as induced by the metrics (see
Section 16.2.5). We finally present a computationally efficient framework that allows finding
k neighbors to each sample point (see Section 17.1).

16.2.1 Mutual information expansion

Figure 16.1A shows an example of an entropy expansion into mutual information (MI) terms
of a system containing three subsystems, such as three water molecules, in a Venn diagram:
The full entropy (S) is expanded into MI terms (Im), of which the first term represents the
entropies of each molecule individually and the further terms are correlation terms of second
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Figure 16.1: (A) Mutual information expansion illustrated for the entropy breakdown of three
particles. (B) Sketch of density estimation on SO(3) (here represented as a 2-
sphere). Each dot on the sphere represents an orientation. For each point xi, the
kth neighbor according to a distance metric (e.g., dquat or dgeo) is found. The
density is estimated via the volume V (r) of a ball with radius r = d(·, ·). (C)
Visualization of the fill mode approach: A correlated data set is shown on the left-
hand side. The identical data is decorrelated by applying a random permutation
along one axis, as shown on the right. The entropy of the decorrelated data is
the sum of both "marginal entropies".

and third order, respectively,

I1(i) = S(i) (16.1a)

I2(j, k) = S(j) + S(k)− S(j, k) (16.1b)

I3(l,m, n) = S(l) + S(m) + S(n)

− S(l,m)− S(l, n)− S(m,n)

+ S(l,m, n).

(16.1c)

In this notation, S(γ1, . . . , γm) is the entropy of the marginal distribution with respect to
molecules with indices γ1, . . . , γm.

For N water molecules, the expansion consists of N MI orders, of which the mth term in-
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volves (3m)-dimensional integrals and takes all possible m-molecule correlations into account.
Approximating the full entropy by a truncated expansion thus leads to lower dimensional
integrals, which can be better sampled. Although there is no guarantee that truncated orders
are small and can be neglected, it has been shown that a truncated expansion provides accu-
rate entropy estimates if the correlations are short ranged [144], as for water in physiological
conditions.
Here, we took up to 3-molecule correlations into account by truncating after the third order,

hence,

S ≈
N∑
i=1

I1(i)

−
∑

(j,k)∈pairs

I2(j, k)

+
∑

(l,m,n)∈triples

I3(l,m, n),

(16.2)

where the first order includes the kinetic entropy contribution and a correction of −N log 2,
due to the 2-fold symmetry of the water molecule. The three terms are akin to the terms
in IST [133]. In fact, closer analysis shows that in the thermodynamic limit, the second and
third-order terms in the IST-expansion [12, 121, 122] of the molar entropy converge toward
the respective terms in eq 16.2.

16.2.2 kNN entropy estimation

To evaluate eq 16.2 from a given sample of orientations {q1, . . . , qnf }i with i = 1, . . . , N ,
the marginal entropies from eq 16.1 are calculated using a kNN entropy estimator [139–
141, 145, 146]. For SO(3)1, the kth nearest neighbor with respect to the sample point qi is
defined by a metric d(qi, qj) (see Figure 16.1B), and %(qi) is estimated as (nf−1)−1k/V (ri,k),
where k is a fixed integer, V (ri,k) is the volume of a ball with radius ri,k, the distance between
qi and its kth neighbor, and (nf − 1)−1 is a normalization constant. Results for SO(3)2

and SO(3)3 are obtained by generalizing the metric d and the volume V (ri,k) to higher
dimensions. The choice of metrices, on which the results may depend for finite sampling, and
their corresponding volumes in SO(3)n will be discussed in section 16.2.4 and section 16.2.5.
The entropy is

S = −〈log %〉

≈ − 1

nf

nf∑
i=1

log

(
k

(nf − 1)V (ri,k)

)
− γk,

where γk = ψ(k) − log k is a correction which accounts for the bias introduced by the kth
neighbors being, by definition, on the edges of the balls [141]. ψ is the digamma function.
Because eqs 16.1b and 16.1c are sums and differences of integrals of different dimensional-
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ities, biases are introduced: With increasing dimensionality and thus reduced sampling, the
kNN estimator yields increasingly smoothed versions of the underlying true distributions. The
estimator therefore overestimates entropies of distributions with higher-dimensional supports
more than of those defined in lower-dimensional spaces, resulting in biases if entropies of dif-
ferent dimensionality are added or subtracted. To overcome this problem, the sampling space
is expanded to equal dimensionality by using fill modes [4, 147]. I2, defined in eq 16.1b as the
sum of integrals in SO(3)1 and SO(3)2, can be rewritten as a sum of two SO(3)2 integrals

I2(j, k) = S(j, k̂)− S(j, k)

if the corresponding joint distribution %(j, k̂) factorizes to %(j)%(k̂) = %(j)%(k). To achieve sta-
tistical independence, the sample points corresponding to index k were subjected to a random
permutation {qk̂,1, . . . , qk̂,nf } = perm{qk,1, . . . , qk,nf }, which decorrelates {qj,1, . . . , qj,nf }
and {qk,1, . . . , qk,nf }, but leaves the marginal distributions unchanged, as sketched in Fig-
ure 16.1C. The joint entropy S(j, k̂) is thus the sum of the initial marginal entropies S(j) +

S(k).

Similarly, the third-order MI term reads

I3(l,m, n) = 2S(l̂, m̂, n̂)

− S(l,m, n̂)− S(l, m̂, n)− S(l̂, m, n)

+ S(l,m, n).

16.2.3 Parametrization of orientations

From different parametrizations of orientations in 3D-space, such as Euler angles, Tait-Bryan
angles, Hopf coordinates [148, 149], and spherical coordinates, we used quaternions [150],
which, contrary to most other charts of SO(3), do not suffer from Gimbal lock. They are
defined as q = (q1, q2, q3, q4)ᵀ = ±(cos θ2 ,u

ᵀ sin θ
2)ᵀ, where u and θ are a normalized rotation

axis and a rotation angle, respectively. q can thus be interpreted as an element of the 3-
sphere, i.e., ‖q‖2 = 1. Because there is a one-to-one mapping of the 3-sphere to the Special
Unitary group SU(2), which in turn provides a double-covering of SO(3), each orientation is
described by two equivalent quaternions, which differ only by a sign [151].

16.2.4 Choice of metrics in SO(3)n

We next considered the proper choice of metrics in SO(3)n. At first sight, one might think
that, of many possible metrics in SO(3) [151, 152], only one, e.g., the geodesic metric
dgeo(q1, q2) = arccos (|q1 · q2|) shown in Figure 16.1B, yields the correct entropy. However,
in the limit of infinite sampling, kNN entropy estimation with any metric is possible if used
with its induced ball-volumes (see Section 16.2.5) [153]. Our choice was therefore guided by
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the speed of convergence and computational efficiency.

We chose the quaternion metric [151, 154]

dquat(q1, q2) = min{‖q1 − q2‖2, ‖q1 + q2‖2},

sketched in Figure 16.1B, which defines a metric between two rotations as the minimum
Euclidean distance between unit quaternions, taking the sign ambiguity into account. In
SO(3), the quaternion metric and the more natural geodesic metric dquat yield identical
nearest neighbors. They are functionally equivalent because a positive continuous strictly
increasing function h, such that h ◦ dgeo = dquat (and vice versa), exists [151]. dquat does not
require evaluation of the inverse cosine function and thus is computationally more efficient; it
was therefore preferred over dgeo.

Metrices in SO(3)2 and SO(3)3 were obtained by combining dquat with the Euclidean norms
in R2 and R3, respectively,

dquatn((q1,1, . . . , q1,n), (q2,1, . . . , q2,n))

=

√√√√ n∑
i=1

dquat(q1,i, q2,i)2,

with (qi,1, . . . , qi,n) ∈ SO(3)n. When combined with the Euclidean norms, the quaternion
metric and the more natural geodesic metric are not functionally equivalent and hence yield,
in general, different nearest neighbors. For small distances, i.e., for high sampling, the metrices
are asymptotically identical.

To test whether this choice of metrics impacts the accuracy of the MI results, we compared
our choice to the composite metric using dquat and the maximum-norm in R2, which is func-
tionally equivalent to the geodesic composite metric but slightly less efficient to evaluate than
dquat2 . For 105 frames, no significant difference between the MI values was seen.

16.2.5 Volumes of balls in SO(3)n

The volumes V (r) =
∫
d(qi,y)<r dy (dark green in Figure 16.1B), enclosed by the kNN radius

r, read

V1(r) = 8π(r′ − sin r′),

r′ = 2 arccos

(
1− r2

2

)
,
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for dquat in SO(3). The respective volumes for dquat2 (in SO(3)2) and dquat3 (in SO(3)3)
reduce to

V2(r) = 210π2

∫∫
V2

sin2 φA sin2 φBdφAdφB,

V3(r) = 215π3∫∫∫
V3

sin2 φA sin2 φB sin2 φCdφAdφBdφC ,

respectively, with V2 = {2−cosφA−cosφB ≤ r2

2 }∩{0 ≤ φA, φB ≤
π
2 } and V3 = {3−cosφA−

cosφB − cosφC ≤ r2

2 } ∩ {0 ≤ φA, φB, φC ≤
π
2 }. The integrals were solved numerically for 104

equally spaced values of r using the software Mathematica 10.0 [155] and the multidimensional
rule; the results were stored in a lookup table. Cubic interpolation was used to obtain results
from the stored values.

17 Methods

17.1 Nearest-neighbor search

Nearest-neighbor searches were performed using the Non-Metric Space Library 1.7.3.6 [109]
(NMSLib)8 and the above metrics. Each data set was indexed in a vantage-point tree [156, 157]
(VP-tree) that rests on the triangle inequality. Our version of the NMSLib, modified to include
the orientational metrices, is available online9.

17.2 Accuracy assessment

17.2.1 Test distributions

To assess the accuracy of our method, we used analytical test-distributions p(µ) in SO(3)1,
SO(3)2, and SO(3)3, derived from

p
(µ)
1 (q) =

1

Z(µ)
cosµ φ1 =

1

Z(µ)
qµ1 ,

with a quaternion q ∈ SO(3)1, the first quaternion component q1, the first azimuthal an-
gle in spherical coordinates for the 3-sphere φ1 ∈ [0, π/2), and the appropriate normaliza-
tion constant Z(µ) (Figure 18.1A). The analytical expression for the configurational entropy

8https://github.com/nmslib/nmslib
9https://gitlab.gwdg.de/lheinz/nmslib_quaternion
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∫
dqp

(µ)
1 log p

(µ)
1 reads

S
(µ)
1 =

1

2

{
µψ

(
µ+ 4

2

)
− µψ

(
µ+ 1

2

)
+2 log

(
Γ(µ+1

2 )

Γ(µ+4
2 )

)
+ log(64π3)

}
,

using the gamma function Γ and kB = h = 1 for simpler notation. As illustrated in Fig-
ure 18.1A, the distribution depends on the localization parameter µ; a value of 0 yields a
uniform distribution; larger µ values yield increasingly narrower distributions.

For (q1, q2) ∈ SO(3)2 and (q1, q2, q3) ∈ SO(3)3, probability distributions p(µ)
2 ((q1, q2)) =

p(µ)(q1)p(µ)(q2) and p(µ)
3 ((q1, q2, q3)) = p(µ)(q1)p(µ)(q2)p(µ)(q3) were used to obtain uncorre-

lated distributions with entropies S(µ)
2 = 2S

(µ)
1 , and S(µ)

3 = 3S
(µ)
1 , respectively.

To also assess the accuracy for correlated distributions with (q1, q2) ∈ SO(3)2, the test-
distribution

p
(µ)
2,corr((q1, q2)) =

1

8π2Z(µ)
cosµ (dgeo(q1, q2))

=
1

8π2Z(µ)
|q1 · q2|µ

was used, which was designed such that the marginals with respect to q1 and q2 are p(µ)
1 (q2)

and p(µ)
1 (q1), respectively. The localization µ here controls the degree of correlation between

q1 and q2, ranging from an uncorrelated uniform distribution (µ = 0) on SO(3)2 to strongly
correlated distributions for larger values. The entropy of this distribution is

S
(µ)
2,corr = S

(µ)
1 + log(8π2),

where log(8π2) is the entropy of a free rotor.

Samples were obtained using a rejection method: First, a random point in Q =

(q1, . . . , qn) ∈ SO(3)n was drawn from a uniform distribution by drawing n quaternions
from the uniform distribution on the 3-sphere. Next, a random number a was drawn from
a uniform distribution between 0 and max(p

(µ)
n ). Q was accepted if a < p

(µ)
n (Q) and was

rejected otherwise. This process was repeated until the desired number of samples was
obtained.

The accuracy of our method was assessed for each test distribution for localization param-
eters between µ = 0 and 50, nearest-neighbor k-values of 1, 5, 9, and 13, and with 102 to 105

frames (nf ). The computed entropy and MI values were compared to the analytical results.
To obtain statistical error estimates, the calculations for each parameter set was repeated
1000 times.
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17.3 Molecular dynamics simulations

All MD simulations were carried out using a modified version10 of the software package Gro-
macs 2018 [73–77] with an additional center of mass motion (COM) removal [158] method,
used to individually constrain all oxygen atoms. We furthermore made small additional
changes to apply COM removal to individual atoms and to overcome the limit of 254 COM
removal groups11. The CHARMM36m force field [80–84] and the CHARMM-TIP3P water
model [159] were used. All water molecules were subjected to SETTLE [95] constraints (i.e.,
rigid), and the leapfrog integrator with a time step of 2 fs was used. Electrostatic forces were
calculated using the Particle-Mesh Ewald (PME) method [160] with a 1.2 nm real space cutoff;
the same cutoff was used for Lennard-Jones potentials [42]. In all simulations, the V-rescale
thermostat [98] with a time constant of 0.1 ps, and, if applicable, the Parrinello-Rahman
barostat [100, 101] with a time constant of 1.0 ps and 1 bar pressure were used.

A total of 1728 water molecules were placed within a cubic simulation box, and the system
was equilibrated for 1 ns at 300K as a NPT ensemble. From the equilibrated system, resulting
in a box size of approximately 3.7 nm, three 1µs production runs were started, as shown in
the first column of Figure 18.2. Run m ("mobile") was carried out as described above. To
benchmark our method against the established method of thermodynamic integration (TI),
a system with only rotational degrees of freedom was constructed. To this end, all oxygens
were position-constrained using COM removal as shown in the first column of Figure 18.2 in
run p ("pinned"), allowing only rotational movements around the oxygen atom under NVT
conditions. The temperature was increased to 600K, since the water molecules formed an
almost rigid, ice-like hydrogen bond network at 300K, showing only very little dynamics.
Run sp ("sliced & pinned") was simulated like p, but all water molecules within a slice of
0.5 nm width were removed to create a water-vacuum interface.

17.3.1 Entropy calculation

For all three test systems, the entropy of rotation was calculated as described in section 16,
each using a 1µs trajectory with 105 frames. For the MI terms, a cutoff depending on the
distance between average molecule positions was used. Whereas including the MIs of many
molecule pairs by using a large cutoff distance gave rise to a more accurate MIE, it also
introduced larger noise due to limited sampling. For pairwise MI terms, the cutoff was chosen
as 1.0 nm, because for larger distances, the MI terms vanished within statistical errors (see
Figure 18.2B, D). Similarly, triple MI contributions were cutoff at 0.45 nm.
Because the water molecules in system m were mobile, average positions across the obtained

trajectory were unusable to define a cutoff. Therefore, the water molecules were relabeled in
each frame, such that they remained as close as possible to a simple-cubic reference structure

10https://github.com/Tsjerk/gromacs/tree/rtc2018
11https://gitlab.gwdg.de/lheinz/gromacs-rtc2018_modif
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using permutation reduction [46, 47], which left the physics of the system unchanged. In
systems p and sp, the molecules were immobilized and the oxygen positions were used for
applying the cutoff.
To quantify the precision of the method, the MD simulations and the subsequent entropy

analyses were repeated in 10 independent calculations.

17.3.2 Thermodynamic integration reference

Reference entropy values for systems p and sp were obtained using thermodynamic integration
[46, 116, 120] (TI). Interactions between water molecules were gradually switched off in a
stepwise fashion to obtain the entropy difference between real water and noninteracting water.
The absolute rotational entropy was obtained as the sum of the excess entropy, obtained via
TI, and the ideal gas contribution,

3NkB
2

log

[
(4π2)

2
3 · ekBT

2π~2

3∏
i=1

I
1
3
i

]
,

where Ii are the eigenvalues of the moment of inertia tensor of a water molecule.
Both TI calculations were performed using the soft-core [161] parameters α = 0.5 and

σ = 0.3. Coulomb interactions were linearly switched off in 80 windows of 20 ns each, and a
further 10 windows were used to subsequently switch off the van-der-Waals interactions. The
first nanosecond of each window was discarded.

18 Results and Discussion

18.1 Test distributions

We first assessed the accuracy of our method for three uncorrelated analytical test distribu-
tions (defined in SO(3)1, SO(3)2, and SO(3)3) and one correlated analytical test distribution
(defined in SO(3)2), as described in Section 17.2.1. The distributions depend on the local-
ization parameter µ, which, for the uncorrelated distributions p(µ)

1 , p
(µ)
2 , and p(µ)

3 , determines
their width, as demonstrated in Figure 18.1A, and, for p(µ)

2,corr, controls the strength of the
correlation.
As can be seen in Figure 18.1B, the kNN estimator largely agrees with the analytic results

(dashed lines) for the uncorrelated distributions p(µ)
1 , p

(µ)
2 , and p(µ)

3 for µ between 0 (uniform
distribution) and 50 (strongly peaked) and the tested k-values between 1 and 13. The graphs
for the three distributions are scaled and offset as indicated in the figure. We find that, for
distributions p(µ)

1 and p(µ)
2 , our method accurately reproduces the true entropy for all tested

µ values within statistical errors, even for the small number of 100 frames. The statistical
errors amount to 0.25 nats (natural units of information) for p(µ)

2 , k = 1, µ = 50 or less.
Also for p(µ)

3 and k = 1, the analytical result is matched within statistical errors (0.28 nats
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Figure 18.1: Analytic test distribution compared to entropies and MI values obtained from
density estimates. Panel (A) shows the distribution p(µ)

1 for increasing localiza-
tions µ, illustrated by different colors. Here, we represent SO(3) as a 1-sphere and
the distribution is renormalized accordingly for this 1d representation. The north
pole (1, 0, 0, 0) and the quaternion (0, 1, 0, 0) are indicated with black crosses.
Panels (B), (C), and (D) show entropies and MI values obtained using the test
distributions p(µ)

1 , p
(µ)
2 , p

(µ)
2,corr, and p

(µ)
3 for varying coupling parameters µ. Panel

(E) shows the convergence of the results for increasing sample sizes. In panels
(B) to (E), the analytical result is shown by a dashed line; results for different k-
values are colored according to the legend at the bottom left of the figure. Values
that were fixed during the calculation, such as the choice of the test distribution,
the number of frames nf , or the coupling parameter µ, are stated in a corner of
the respective panel. The shown errors denote 1σ regions.

49



Per|Mut: Rotational Entropy 18 Results and Discussion

at µ = 50 at maximum), whereas larger values of k lead to overestimated entropies of up to
0.7 nats (k = 13, µ = 50), caused by the limited sampling of just 100 frames and the increased
dimensionality of SO(3)3 compared to the other tested distributions.

Next, we assessed the accuracy for the correlated test distribution. The panels of Fig-
ure 18.1C, D show the entropy (calculated via the MIE as defined in eq 16.1b) and the MI of
p

(µ)
2,corr for 1000 frames, respectively. For the uniform distribution (µ = 0), the algorithm yields

the analytic values of 2 log(8π2) and 0 for entropy and mutual information, respectively. With
increasing correlation µ, the entropy is increasingly overestimated as MI is underestimated.
Both effects are more pronounced for larger k-values: Whereas for k = 1, the algorithm yields
accurate values within statistical errors up to a correlation of µ ≈ 20, the results deviate
significantly for k = 13 even for very small µ-values. Overall, small k-values, such as k = 1,
yield high accuracy but with reduced precision (i.e., larger statistical errors) compared to
large k-values like 13, which gives rise to smaller statistical errors but reduced accuracy.

To further assess this trade-off and the convergence properties of our method, we calculated
the relative entropy errors for p(20)

2,corr for sampling between 102 and 105 frames, shown in
Figure 18.1E. For k = 1 and only 100 frames, the method overestimates the true entropy by
5 to 10%, which quickly drops to below 1% for more than 2 · 103 frames. For larger k-values,
the entropy errors increase and the convergence becomes slower, e.g., k = 13 requires 2 · 104

frames to achieve an entropy error of less than 1%. The statistical errors at 105 frames are
0.11% and 0.05% for k-values of 1 and 13, respectively. Overall, k = 1 yields somewhat lower
precision but significantly faster convergence compared to larger values, which becomes even
more pronounced in higher dimensions. We therefore consider this value the optimal choice
for the systems at hand and used it for all subsequent analyses.

The kNN entropy estimator rests on the assumption that the density is approximately con-
stant and isotropic within each k-nearest-neighbor ball (see Figure 16.1B). This assumption
implies that features of the true distribution that are smaller than the average distance be-
tween sample points are not resolved, which, in case of poor sampling, inevitably leads to
an overestimated entropy, as seen for p(µ)

3 with large k or as shown in Figure 18.1E. The
assumption of isotropy no longer holds for highly correlated data sets, such as p(µ)

2,corr for large
values of µ. In this case, also the k-nearest neighbors to each sample point are correlated and
thus not isotropically distributed, which is not reflected by an isotropic kernel, i.e., a ball.
For Euclidean spaces, this problem was addressed by using anisotropic kernels [162, 163].
Although this idea could also be applied in SO(3)n, the correlation of water molecules at
standard conditions is weak enough (Figure 18.2A) to allow for sufficiently accurate results
under the isotropy assumption.

The trade-off between accuracy and precision with respect to the k-value is a general prop-
erty of kNN entropy estimators, which has been characterized previously [163, 164], and is
intuitively accessible: Whereas averaging over an increasing number of neighbors reduces sta-
tistical uncertainties and thus improves precision, the assumptions of approximately constant
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isotropic densities are applied to increasingly larger balls, resulting in increasingly overesti-
mated entropies for distributions with small scale features or strong correlations.
Overall, the kNN method with k = 1 yields most accurate results while being only slightly

less precise than estimators with lager k. It retrieves the analytical entropies within statistical
errors for the uncorrelated distributions, as well as for the correlated distribution with µ < 20

using just 100 and 1000 frames, respectively.

18.2 Entropy calculated from MD simulations

Having assessed our rotational entropy method against analytic test distributions, we tested
its accuracy for more realistic systems of up to 1728 interacting water molecules. To this end,
we simulated three atomistic water MD systems (Figure 18.2, left column), as described in
Section 17.3. For all systems, 10 independent MD simulations were performed, and for each
system, entropies were calculated via a MIE as explained in Section 17.3.1.
System m ("mobile") comprises 1728 unconstrained water molecules. As shown

in Figure 18.2A, an absolute rotational entropy of (40.53 ± 0.04) J·mol−1·K−1 per
molecule is obtained, to which the first, second, and third MI orders contribute
(44.2349±0.0007) J·mol−1·K−1, (−4.550±0.015) J·mol−1·K−1, and (0.85±0.04) J·mol−1·K−1,
respectively. Note that the provided values are averages and standard deviations of the
10 independent calculations and that the uncertainties are too small to be shown as error
bars in Figure 18.2. The pair-mutual information terms I2, shown in Figure 18.2B, reach a
maximum of 0.8 J·mol−1·K−1 for very close water molecules and vanish monotonically for
molecules that are, after permutation reduction and on average, separated by more than
≈ 0.8 nm. Note that the discrete nature of distances in Figure 18.2B is due to the choice of a
simple cubic reference structure for permutation reduction.
To compare the obtained absolute entropies to TI [116, 120] (described in Section 17.3.2),

the water movement was restricted to the rotational degrees of freedom in system p ("pinned")
by pinning each molecule as described in Section 17.3. Here, the rotational entropy, shown
in panel C, is reduced to (29.53 ± 0.03) J·mol−1·K−1. The second- and third-order mutual
information terms contribute (−18.47 ± 0.01) J·mol−1·K−1 and (4.21 ± 0.02) J·mol−1·K−1,
respectively. Compared to the results from TI shown in gray, the entropy is underestimated
by 9.6% due to the limited sampling of the strongly correlated system. Similar to what we
observe for the analytical test case depicted in Figure 18.1D, the MI terms are underestimated
for strong correlations, of which the third order is most severely affected due to the high
dimensionality of the sampling space.
The I2 terms, illustrated in Figure 18.2D, show a maximum of 7 J·mol−1·K−1 and indicate

that water molecules decorrelate beyond ≈ 0.4 nm. The distribution shows secondary and
tertiary peaks around 0.55 and 0.80 nm that arise from indirect coupling via one or two medi-
ating water molecules, as indicated by the structures shown in Figure 18.2D. In this case, the
correlations between the molecule pairs are not due to direct interactions; instead, mediating
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Figure 18.2: Entropies and MI contributions for the systems m, p, and sp. The first column
shows the three considered MD systems. Panels (A), (C), and (E) show the
rotational entropy computed using the MIE in purple; its breakdown into contri-
butions by first to third order is visualized underneath. For systems p and sp,
the result is drawn in comparison to the TI values in gray. Panels (B) and (D)
show the mutual information I2 between all considered pairs of water molecules
depending on their distance. The blue lines correspond to running Gaussian
averages. Panel (F) displays I2 between pairs of molecules that are closer than
0.33 nm in relation to the their distance to the vacuum slice in system sp. The
inset in green shows the molecule pair density with respect to the center of mass
distance to the slice.
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water molecules (orange) enhance distant orientation correlations via short hydrogen-bonded
chains (shown in red). This finding demonstrates that the method is able to identify regions
of locally coupled water molecules and to quantify the resulting entropy losses, thus providing
a spatially resolved picture of entropy changes.

To further assess and demonstrate the accuracy of the method for systems with spatial
features, we included a 0.5 nm vacuum slice in system sp ("sliced & pinned", Figure 18.2),
such that the dynamics of water molecules at the surface differs from those molecules in the
bulk. For system sp, the accuracy of our entropy estimation relative to TI improves to 8.5%,
whereas the contributions by higher MI orders remain almost identical (see Figure 18.2E). We
assume that the improved accuracy is due to the smaller number of molecules (1728 vs 1493
with slice) and possibly because the vacuum slice limits the range of many-particle correlations
that would not be captured by a third-order approximation.

Figure 18.2F shows the I2 terms of molecule pairs that are closer than 0.33 nm, i.e., those
that are within their first hydration shells, relative to their distance to the slice. The cor-
relations of pairs that are close to the vacuum interface are increased to 5.6 J·mol−1·K−1 on
average compared to 4.1 J·mol−1·K−1 in bulk. Although the entropy per molecule increases
compared to system p, mainly due to the dominating first-order term (see Figure 18.2C, E),
the increased correlations at the surface and their associated entropy losses contribute to the
thermodynamic unfavorability of water at a (hydrophobic) vacuum interface.

The MIE approaches the TI values for systems p and sp to 9.6% and 8.5%, respectively,
and additionally yields information about individual correlations and their associated entropy
losses, thus providing spatial resolution. Remarkably, about 25-fold less computer time was
required for the MIE compared to TI for the shown examples.

The large second and third-order contributions, illustrated in Figure 18.2C, E, show that
both systems with pinned water exhibit strong correlations between water molecules. As for
the test distributions illustrated in Figure 18.1, strong correlations result in systematically
underestimated MI values. Due to their high dimensionality, and thus, low sampling density,
we expect the third-order MIE contributions for systems p and sp to be mostly affected,
contributing to their overall underestimated entropy. For the same reason, we expect entropies
calculated from more loosely coupled mobile water to yield markedly more accurate results.

Although a direct comparison to TI is impossible for system m, we expect that the errors
due to the truncation of higher-order MI terms, observed for the more tightly correlated
systems p and sp, are larger than for unconstrained water. Therefore, the approximation of
the truncated MIE yields more accurate results for realistic solute systems. These two effects
combined, the performances obtained for the more correlated pinned water systems provide
upper bounds for the expected errors.
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19 Conclusion

We developed an estimator for spatially resolved rotational solvent entropies based on a
truncated mutual information expansion and the k-nearest-neighbor algorithm on SO(3)n.
Accuracy and computational efficiency were assessed for both analytical test distributions
and for systems of up to 1728 water molecules, described by atomistic MD simulations.

For the uncorrelated test distributions in SO(3)1, SO(3)2, and SO(3)3, the estimator with
k = 1 yields accurate entropies for as little as 100 sample points. For the correlated test
distribution p

(µ)
2 , the entropies are overestimated for increasing coupling, caused by under-

estimating mutual information terms. The latter effect is especially pronounced for large
k-values. Precision increased only marginally for larger k at the cost of decreased accuracy,
which led us to conclude that k = 1 represents the best trade-off for the problem at hand.
We furthermore demonstrated convergence within 2 · 103 frames for a correlated distribu-
tion (µ = 20) and therefore expect our approach to accurately describe correlations of water
molecules already in relatively short MD trajectories of 100 ns to 1µs.

For the considered MD systems, we find agreement within 9.6% and 8.5% with TI
for pinned waters in systems p and sp, respectively, corresponding to energy deviations
(−T∆S) of 0.94 kJ·mol−1 and 0.84 kJ·mol−1 per water molecule at 300K. The obtained
rotational entropic contributions to the free energy are precise within ±0.008 kJ·mol−1 and
±0.018 kJ·mol−1, respectively. For the binding of a small ligand that displaces 10 water
molecules at the binding pocket, we therefore expect to obtain absolute rotational entropy
contributions corresponding to an accuracy of at least 10 kJ·mol−1 and to resolve rotational
entropy differences corresponding to at least 0.06 kJ·mol−1. As seen in the second column
of Figure 18.2, fully mobile water exhibits considerably smaller correlations than pinned
water, rendering the tests using pinned water a tough benchmark compared to realistic solute
systems. For a protein/water system, we would therefore expect markedly smaller error
margins.

The algorithm provides spatial resolution by assessing the mutual information contributions
on the level of individual molecules, distinguishing it from, e.g., GIST [10, 12, 13, 43, 121, 122].
For the hydrophobic vacuum interface, we calculated an entropy loss due to an increase in
mutual information close to the surface. The ability to resolve the origin of entropy changes
renders the method a promising tool to enhance our understanding of processes like the
hydrophobic effect and the thermodynamics of solvated complex heterogeneous biomolecules
in general.

Work on including the contributions by the translational entropy and the translation-
rotation correlation to the overall entropy is in progress and will be published elsewhere.
Also, our method can be extended to include intramolecular entropy contributions of flexible
solvents, e.g., simulated water without SETTLE [95] constraints. In this case, additional cor-
relation terms would arise from pairwise correlations between the internal degrees of freedom,
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translational, and rotational, as well as the respective triple-correlation terms, which might
be challenging to converge.

Although in this study we restricted the application and assessment of our approach to
water, generalization to other solvents is straightforward. An implementation is available for
download12 as a python module [165, 166] with a C++ backend for fast neighbor search.

20 Supplement

20.1 Derivation of the test-distribution entropies

We describe elements of SO(3) using quaternions that are, if treated as vectors, also elements
of the 3-sphere by design. To carry out the integrations, it is therefore convenient to use the
appropriate spherical coordinates:

q1 = cosφ1,

q2 = sinφ1 cosφ2,

q3 = sinφ1 sinφ2 cosφ3,

q4 = sinφ1 sinφ2 sinφ3,

with φ1 ∈ [0, π/2), φ2 ∈ [0, π), φ2 ∈ [0, 2π). Because, for quaternions, q and −q denote the
same rotation, integration over one hemisphere is sufficient. Therefore, φ1 ranges from 0 to
π/2 only. The surface element is given by d3S = 8 sin2 φ1 sinφ2dφ1dφ2dφ3, where the factor
8 = 23 provides the necessary isotropic scaling by the factor of 2 per dimension [151]. As
such, the total volume of SO(3) reads

V =

∫ π/2

φ1=0

∫ π

φ2=0

∫ 2π

φ3=0
8 sin2 φ1 sinφ2dφ1dφ2dφ3

= 32π

∫ π/2

φ1=0
sin2 φ1dφ1

= 8π2,

which is also intuitively accessible, as the rotation of a principal axis provides 4π, i.e., the
area of a 2-sphere, and a rotation around the principal axis contributes another factor of 2π.
Using this result, the entropy of a free rotor in three dimensions is log(8π2).

To obtain the entropy of p(µ)
1 (q) = 1

Z(µ) cosµ φ1 = 1
Z(µ) q

µ
1 , it is first necessary to calculate

12https://gitlab.gwdg.de/lheinz/hydration_entropy

55

https://gitlab.gwdg.de/lheinz/hydration_entropy


Per|Mut: Rotational Entropy 20 Supplement

the normalization Z(µ)

Z(µ) =

∫ π/2

φ1=0

∫ π

φ2=0

∫ 2π

φ3=0
8 cosµ φ1 sin2 φ1 sinφ2dφ1dφ2dφ3

= 32π

∫ π/2

φ1=0
cosµ φ1 sin2 φ1dφ1

= 32π

[∫ π/2

φ1=0
cosµ dφ1 −

∫ π/2

φ1=0
cosµ+2 φ1dφ1

]

= 32π

√πΓ
(
µ+1

2

)
2Γ
(
µ+2

2

) − √πΓ
(
µ+3

2

)
2Γ
(
µ+4

2

)


= 8π
3
2

Γ
(
µ+1

2

)
Γ
(
µ+4

2

) ,
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where Γ is the gamma function. The entropy of p(µ)
1 (q) is

S
(µ)
1 = −〈log p

(µ)
1 (q)〉

= logZ(µ) − 8

Z(µ)

∫ π/2

φ1=0

∫ π

φ2=0

∫ 2π

φ3=0
log(cosµ φ1) cosµ φ1 sin2 φ1 sinφ2dφ1dφ2dφ3

= logZ(µ) − 32πµ

Z(µ)

∫ π/2

φ1=0
log(cosφ1) cosµ φ1 sin2 φ1dφ1

= logZ(µ) − 32πµ

Z(µ)

∫ π/2

φ1=0

d

dµ
cosµ φ1 sin2 φ1dφ1

= logZ(µ) − 32πµ

Z(µ)

d

dµ

∫ π/2

φ1=0
cosµ φ1 sin2 φ1dφ1

= logZ(µ) − µ

Z(µ)

d

dµ
Z(µ)

= logZ(µ) − µ
Γ
(
µ+4

2

)
Γ
(
µ+1

2

) d

dµ

Γ
(
µ+1

2

)
Γ
(
µ+4

2

)
= logZ(µ) +

µ

2

Γ′
(
µ+4

2

)
Γ
(
µ+4

2

) − Γ′
(
µ+1

2

)
Γ
(
µ+1

2

)


= logZ(µ) +
µ

2

{
ψ

(
µ+ 4

2

)
− ψ

(
µ+ 1

2

)}

= log
(

8π
3
2

)
+ log

Γ
(
µ+1

2

)
Γ
(
µ+4

2

)
+

µ

2

{
ψ

(
µ+ 4

2

)
− ψ

(
µ+ 1

2

)}

=
1

2

µψ
(
µ+ 4

2

)
− µψ

(
µ+ 1

2

)
+ 2 log

Γ
(
µ+1

2

)
Γ
(
µ+4

2

)
+ log

(
64π3

) ,

with Γ as the gamma function and ψ as the digamma function.
The normalization of p(µ)

2,corr((q1, q2)) ∝ cosµ (|q1 · q2|) is obtained by using the translation-
invariance of q1 · q2 as 8π2Z(µ). In the same fashion, the entropy reads S(µ)

2,corr = S
(µ)
1 +

log(8π2).
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Abstract

The hydrophobic effect is essential for many biophysical phenomena and processes. It is gov-
erned by a fine-tuned balance between enthalpy and entropy contributions from the hydration
shell. Whereas enthalpies can in principle be calculated from an atomistic simulation trajec-
tory, calculating solvation entropies by sampling the extremely large configuration space is
challenging and often impossible. Furthermore, to qualitatively understand how the balance
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is affected by individual side chains, chemical groups, or the protein topology, a local de-
scription of the hydration entropy is required. In this study, we present and assess the new
method "Per|Mut", which uses a permutation reduction to alleviate the sampling problem
by a factor of N ! and employs a mutual information expansion to the third order to obtain
spatially resolved hydration entropies. We tested the method on an argon system, a series of
solvated n-alkanes, and solvated octanol.

21 Introduction

The thermodynamics of the hydration shell plays an important role in many biophyiscal
processes, such as phase separation, membrane and micelle formation [6, 167, 168], or the
function and folding of proteins [20, 28]. These processes are driven by the hydrophobic effect,
[27, 33, 128, 169, 170] which results from a delicate balance between entropic and enthalpic
contributions of the first few solvent layers but is quantitatively not yet fully understood
[35]. A better understanding of the behavior of water molecules at heterogeneous surfaces is
therefore necessary.
Atomistic molecular dynamics (MD) simulations have proven to reproduce the effects of

hydrophobic interaction quantitatively [6, 132]. However, the lack of a straightforward way
to quantify the hydration entropy contributions of specific side chains or functional groups
of atoms precludes a deeper understanding of the molecular driving forces and the energetics
of solvation. Further, the shallow energy landscape that governs the dynamics of the solvent
molecules requires sampling of an extremely large configuration space and thus poses a severe
challenge for entropy calculation.
The solvation entropy of a simple system can be calculated using thermodynamic integration

(TI) [116, 120], which, however, lacks spatial resolution and a vast amount of sampling is
needed for more complex systems.
3D-2-Phase-Thermodynamics (3D-2PT) [11, 134, 135] is a voxel-based approach and thus

yields spatially resolved hydration entropies, but relies on the assumption that the system
can be treated as a superposition of gas-like and solid-like components.
In the grid inhomogeneous solvation theory (GIST) [10, 12, 13, 43, 121, 122, 133], the en-

tropy is approximated by a truncated expansion of single-body and multi-body correlation
functions, which are calculated on a three-dimensional grid. Although the method also pro-
vides spatial resolution, the GIST expansion is usually truncated at the single-body, rarely at
the two-body correlation term and therefore does not capture most multibody effects, which,
as will be shown below, are important.
To address these issues, we developed an MD-based method to calculate the spatially re-

solved hydration entropy from atomistic simulations via permutation reduction and a mutual
information expansion ("Per|Mut").
In a first step, sampling of the configuration space is enhanced by a factor of N ! by taking
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advantage of the permutation symmetry of the identical solvent molecules. To calculate the
entropy from the permutationally reduced trajectory, we use a mutual information expansion
(MIE). The latter step is similar in spirit to GIST but here is based on particle positions
rather than voxels, and all correlations up to three-body correlations are routinely included.
The method yields spatially resolved entropy contributions from translational and rotational

degrees of freedom as well as from their correlation on a per-molecule level. The distinction
between first-order entropy and contributions from many-body correlations furthermore pro-
vides an interpretation of the physical origins of solvent-driven free energy changes.
We have addressed the rotational part of solvent entropies in a previous publication [112],

and will therefore focus the theory below on the translational part and the mutual informa-
tion (MI) term that describes the correlation between translational and rotational degrees of
freedom. Subsequently, we will assess the accuracy and convergence on 1728 argon atoms in
section 24.1. In sections 24.2 and 24.3, we will apply Per|Mut to hydrated systems, namely
to solvated alkanes and to octanol.

22 Theory

22.1 Absolute entropy

We separate the total entropy Stot into the sum of contributions from the translational degrees
of freedom Strans, the rotational degrees of freedom Srot, and a MI term −Itrans-rot, which
quantifies the correlation between translational and rotational motions. Note that rotational
entropy is also defined as a conditional entropy by some authors [10, 133, 142], in which case,
it includes the MI term −Itrans-rot.
The translational entropy is

Strans = −kB
∫
dpNdxN

h3N
% log %,

with the Boltzmann constant kB, Planck’s constant h, momenta {pi}, and positions {xi} forN
solvent molecules, the normalized and dimensionless phase space density % = Z−1 exp

[
− H
kBT

]
with the Hamiltonian H, and the partiton function Z. The translational entropy, in turn,
separates into a kinetic part, which can be calculated analytically, and the configurational
contribution is

Strans =
3NkB

2
log

[
2πemkBT

h2
T

]
︸ ︷︷ ︸

Skin

−kB
∫
dxN

h3N
V

%V log %V︸ ︷︷ ︸
Sconf

,
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where m is the mass of a water molecule, hV = h/hT with arbitrary hT > 0, and %V is the
probability density in 3N -dimensional configuration space. We will therefore focus on Sconf.
We calculate Sconf by first carrying out an atomistic molecular dynamics (MD) simulation

of solvent and solute. We then employ a permutation reduction of the identical solvent
molecules as described in section 22.2 to increase sampling by a factor of N !. Finally, we
calculate entropies from the permuted trajectory via a third-order MIE with a k-nearest
neighbor density estimator, as described in section 22.3.
A MIE is also used in the same manner to estimate the correlation term −Itrans-rot.

22.2 Permutation reduction

The sampling of Sconf, and thus the calculation of solvent entropy from computer simulations,
generally suffers from slow convergence. Contrary to the collective motion of macromolecules,
which is usually highly coupled, the diffusive motion of solvent molecules leaves almost the
entire configuration space accessible, thus rendering sufficient sampling practically impossible.
The volume of the full 3N -dimensional translational configuration space of N water

molecules with a constant density scales as NN , which renders it impossible to numerically
sample the configuration space even for a small system of ≈ 100 water molecules. This
problem arises because the concept of phase space (or configuration space) inherently assigns
unique labels to physically identical water molecules. Therefore, each microstate is counted
redundantly N ! times, where the physically identical microstates only differ by a permutation
of the indistinguishable water molecules, leading to a configuration space volume N !-times
larger than physically necessary.
In an analytical treatment, this problem is, of course, solved by the Gibbs factor N ! [44].

For a numerical approach, however, the Gibbs factor cannot be straightforwardly applied.
Permutation reduction [46, 47] solves this problem by relabeling (i.e., permuting) the solvent
molecules in each frame of an atomistic trajectory such that the trajectory is mapped into a
configurational subspace with a volume reduced by the Gibbs factor N !. Here, we summarize
the aspects of permutation reduction that are relevant for the entropy estimate; an in-depth
derivation is provided elsewhere [46, 47].
The alleviation of the sampling problem is achieved by choosing a permutation π for each

frame of the trajectory {xi(t)} that minimizes the distance

N∑
i=1

‖xπ(i)(t)− ri‖2

with respect to an arbitrary but fixed set of reference positions {ri}.
Figure 22.1A demonstrates this approach for the simplest case of two water molecules. In

the right panel, the water molecules have moved away from their reference positions (shown
on the left), such that the deviation from the reference is minimized if the labels are swapped.
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Figure 22.1: Concept of permutation reduction on (A) two water molecules, (B) two one-
dimensional molecules, and (C) a superimposed trajectory of 200 molecules. In
the last case, each color represents a single molecule.

Figure 22.1B visualizes the effect on the accessible configuration space for two one-dimensional
molecules. Before permutation reduction, the system is either in a regime of x1 < x2 or
x1 > x2, with the accessible configuration space marked in blue. After permutation reduction,
the molecules are relabeled such that, depending on the reference configuration, the system
remains in one of the two regimes. Thereby, the configuration space volume is reduced by a
factor of 2!. Although this factor seems small, note that it is N ! for N molecules and hence
represents an enormous alleviation of the sampling problem for larger N .

Figure 22.1C shows the effect of permutation reduction on 3D space for a box of 200

molecules. Now, each molecule is localized to a small region centered at the reference position.
Importantly, the physics of the system is unchanged.
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22.3 Entropy estimation

Even after permutation reduction, Sconf cannot be computed directly because it still requires
sampling of a 3N -dimensional space. Instead, we use a MIE [4, 48–50], and calculate its terms
with a k-nearest neighbor estimator (kNN) [139–141, 145, 146], as previously described for
rotational entropies [112].

The MIE

S ≈
N∑
i=1

S1(i)

−
∑

(j,k)∈pairs

I2(j, k)

+
∑

(l,m,n)∈triples

I3(l,m, n)

is truncated after the 3-molecule correlation term, where the indices 1 ≤ i, j, k, l,m, n ≤ N

label individual molecules. The first term is the sum of all single-molecule entropies, i.e., the
entropies of the marginal distributions of individual molecules, and therefore does not take
correlations between molecules into account. Pairwise and triplewise correlations are described
by the second and third terms, respectively, for which the mutual information terms read

I2(j, k) = S(j) + S(k)− S(j, k) (22.1a)

I3(l,m, n) = S(l) + S(m) + S(n)

− S(l,m)− S(l, n)− S(m,n)

+ S(l,m, n).

(22.1b)

Here, the entropy terms again denote the entropies of the marginal distributions, where all
degrees of freedom, except the ones of the molecules specified by the indices, are projected
out. Because for a third-order expansion, a 9-dimensional space needs to be sampled, the
expansion converges for ≈ 105 samples. Higher-order terms are increasingly harder to sample,
but typically have small contributions for short-ranged interactions and are therefore neglected
[144].

The individual entropies of eq 22.1 are calculated using a kNN estimator [112]. The entropy
of a given trajectory of nf configurational coordinates {x1, . . . ,xnf } with xi ∈ Rd, d = 3

(single-molecule term), d = 6 (pair term), or d = 9 (triple term) is given by

S

kB
= −〈log %〉

≈ 1

nf

nf∑
i=1

log
(

(nf − 1)V (d)(ri,k)
)
− ψ(k),

where k is a fixed positive integer, ψ is the digamma function, ri,k is the distance from xi to
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its kth neighbor using the Euclidean metric, and V (d)(ri,k) = π
d
2 rdi,kΓ(d2 + 1)−1 is the volume

of the (d− 1)-sphere with radius ri,k.

The correlation term Itrans-rot is calculated as

Itrans-rot ≈
∑

(j,k̃)∈pairs

I2(j, k̃),

where the index j denotes the translational degrees of freedom of molecule j, and k̃ denotes
the rotational degrees of freedom of molecule k.

To apply a kNN entropy estimator in the product space of R3 and the group of orientations
SO(3), we use the composite metric

d((x1, q1), (x2, q2))

=

√
[ξdeucl(x1,x2)]2 + dquat(q1, q2)2,

where the quaternions q1 and q2 describe molecular orientations, deucl is the Euclidean metric,
and dquat(q1, q2) = min{‖q1−q2‖2, ‖q1+q2‖2} is the quaternion metric [112, 151]. The scaling
factor ξ ensures equal units under the square root, where the distance in Euclidean space is
measured in nanometers, and the distance in quaternion space is unitless. Its numerical value
is chosen such that the typical distances in R3 and SO(3) are of the same magnitude. For
liquid water, a value of ξ = 10 nm−1 is used, but tests with 20 nm−1 and 30 nm−1 did not
yield significantly different results.

The volume of the ball, induced by the metric d in R3 × SO(3) reads

V (6)(r) = 128ξ3π2

∫
V
R2 sin2 φdRdφ

V = {R2 + 2(1− cosφ) ≤ r2}

∩ {0 ≤ φ ≤ π

2
} ∩ {0 ≤ R ≤ ∞}

and was calculated numerically using the software Mathematica 10.0 [112, 155].

23 Methods

MD simulations were carried out using the software package Gromacs 2018 [73–77] with a
leapfrog integrator (2 fs time step) and the CHARMM36m force field [81, 83, 84]. Bonds were
constrained using SETTLE [95] (water molecules) and LINCS [96] (other bonds to hydrogen
atoms). The V-rescale thermostat [98] with a time constant of 0.1 ps at 300K was used in all
simulations and NPT runs were performed using the Parrinello-Rahman barostat [100, 101]
with a time constant of 1.0 ps and 1 bar pressure. Lennard-Jones potentials [42] were cutoff
at 1.2 nm. The same value was used as the real-space cutoff of electrostatic interactions in
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the Particle-Mesh Ewald (PME) method [160].
All production trajectories used for the entropy estimates were 1µs long; configurations

were recorded every 10 ps.

23.1 Argon

To mimic the number density of liquid water, 1728 argon atoms were placed in a (4 nm)3 cubic
box (equivalent to ≈ 10000 bar pressure) and simulated under NVT conditions. Despite the
large pressure, no crystallization occurred and the system remained diffusive. Translational
entropies were calculated using permutation reduction and a mutual information expansion
(Per|Mut), and its accuracy was assessed using reference entropies obtained via the more
expensive thermodynamic integration (TI) [46, 112, 116, 120].
The TI was performed using 200 steps, during which the interactions were switched linearly

from an ideal gas state (λ = 0), for which the entropy is known analytically, to full argon-
argon interactions (λ = 1). The simulation runs for each step lasted 100 ns and were carried
out with soft-core [171] parameters α = 0.5 and p = 1. Errors were estimated as the difference
to a second TI with only 50 ns per step.
Per|Mut entropies were calculated as described in section 22. Permutation reduction of the

1µs trajectory was carried out using a 12× 12× 12 simple cubic reference configuration {ri}.
Pairwise MI terms were calculated for atoms with an average distance of less than 1.0 nm
after permutation reduction. Similarly, a 0.45 nm cutoff was used for third-order MI terms. A
kNN value of k = 1 was used for all MI terms. Error bars were estimated from the standard
deviation of the entropies of the individual atoms.
To compare the Per|Mut results for intermediate values of the TI switching-coordinate,

Per|Mut was also applied to 1µs trajectories with λ-values of 0.8, 0.6, 0.4, 0.2, and 0.0 (ideal
gas), as shown in Figure 24.1.

23.2 Alkanes and octanol

Per|Mut entropies were calculated for the n-alkanes between ethane and decane, as well as
for octanol. Each solute molecule was solvated by 1728 water molecules in a cubic box and
simulated under NPT conditions as described above. To prevent the solutes from deviating
from their initial linear configurations, the positions of all atoms were fixed, such that only the
water molecules remained mobile. Permutation reduction was carried out using a 12×12×12

simple cubic reference configuration and the MI terms were calculated using k = 1, as well as
1.0 nm and 0.33 nm cutoffs for second-order and third-order terms, respectively. Errors were
estimated from the standard deviation of entropies of bulk-phase water molecules, assuming
that molecules close to the solute are subject to the same spread.
For alkanes, reference entropies were again obtained using TI for ethane, propane, pentane,

octane, and decane, where the solutes were grown in a water box during 200 steps for the
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Lennard-Jones interactions and an additional 50 steps for the Coulomb interactions. Each
step lasted 50 ns and soft-core parameters identical to that of the argon TI were used.
For the spatially resolved entropy map of octanol (Figure 24.3), the entropy per

permutation-localized water molecule (see Figure 22.1C) was calculated by splitting the
contributions from pair (second MI order) and triple correlations (third MI order) equally
between the involved molecules. The simulation box was divided into 128× 128× 128 voxels,
and for each voxel, the local entropy was given by the average of the entropies per water
molecule, weighted according to the simulation trajectory.

23.3 Nearest-neighbor search

Nearest-neighbor searches for the kNN estimator in Euclidean space were performed using
a KD-tree and the Python module scikit-learn 0.20.3 [111]. Nearest-neighbor searches in
quaternion-space and the composite space were carried out using the Non-Metric Space Li-
brary 1.7.3.6 [109, 112].

24 Results and Discussion

24.1 Argon

To assess the accuracy of the translational entropies, we used a test system of 1728 argon
atoms and compared entropies calculated with Per|Mut to entropies from thermodynamic
integration (TI), as described in section 23.1. TI is computationally more expensive than
Per|Mut, does not yield spatial resolution, and is unsuitable for more complex systems but
can serve as a reference for the test system. During TI, we changed the interactions between
the argon atoms from a noninteracting ideal gas state (λ = 0) to their normal interatom
interactions at λ = 1 and calculated the entropy change along the switching coordinate λ. We
subsequently used Per|Mut to calculate translational entropies along the switching coordinate
for λ = 0 (ideal gas), 0.2, 0.4, 0.6, 0.8, and 1.0 (full argon gas) to compare with the respective
reference values. As shown in Figure 24.1, Per|Mut closely follows the reference TI values for
all λ-values with a maximum deviation of 5.7%.

For the ideal gas state, the third-order Per|Mut expansion yields a quite accurate entropy of
95.6 J·mol−1·K−1, and thus deviates by only 1% from the reference value 96.6 J·mol−1·K−1.
In this state, the first order of Per|Mut contributes 100.4 J·mol−1·K−1, the second-order
term reduces the entropy by 5.4 J·mol−1·K−1, and the third-order contributes a further
0.5 J·mol−1·K−1.

As the atomic interactions are switched on, the reference TI entropy decreases by
29.8 J·mol−1·K−1 to 66.7 J·mol−1·K−1 for λ = 1. The Per|Mut entropies follow the same
trend; for a full argon gas, the third-order Per|Mut yields an entropy of 63.0 J·mol−1·K−1,
which is within 5.7% from the reference value. The reduction of the first-order term (light
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Figure 24.1: Entropy per particle of the argon system from TI (red) and Per|Mut (blue) along
the switch from an ideal gas state (left) to a full argon gas (right). The MI
expansions up to the first-, second-, and third order are shown with increasing
opacity. The contribution by the second order, i.e., the difference between the
first- and second-order expansion, is shaded in green. The contribution by the
third order is shaded in magenta. Error bars are too small to be shown.

blue in Figure 24.1) reflects the effect of the decreased accessible volume due to the excluded
volumes of the interacting particles and amounts to just 6.9 J·mol−1·K−1, which is 21.1% of
the total entropy loss. Significantly more entropy is lost due to correlated particle movement,
as reflected by the second- and third-order contributions. Here, the pair correlations (second
order) dominate by accounting for 21.2 J·mol−1·K−1, 65.0% of the overall entropy loss,
whereas the three-particle correlations (third order) contribute 4.5 J·mol−1·K−1 (13.9%).

Since the particles in an ideal gas are by definition uncorrelated, it might seem surprising
that for λ = 0, the second- and third-order contributions of Per|Mut are nonzero, due to
the permutation reduction. As shown in Figure 22.1B, even an uncorrelated input distribu-
tion (left) may become correlated once the trajectory is mapped into a permutation subspace
(right). The argon test system demonstrates that an MI expansion to the third order is suffi-
cient to compensate the effect within 1% and that higher-order "pseudocorrelations" induced
by permutation reduction are small. Furthermore, the second- and third-order "pseudocorre-
lations" for the ideal gas (5.4 J·mol−1·K−1 and 0.5 J·mol−1·K−1, respectively) are small com-
pared to the second- and third-order contributions for the full argon gas (21.2 J·mol−1·K−1

and 4.5 J·mol−1·K−1, respectively). Interpreting the contributions by the second and third
order as measures of physical two- and three-body correlations is therefore still warranted for
sufficiently interacting systems.

The significant but small third-order contribution of 4.5 J·mol−1·K−1 to the overall en-
tropy loss shows that neglecting higher-order terms, which are expected to yield decreasing
contributions, is justified.
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As the interactions become stronger, the entropy is increasingly underestimated by up to
5.7%, likely because higher-order expansion terms become more important at high pressures.

Argon at ≈ 10000 bar of pressure loses approximately 30 J·mol−1·K−1 of entropy compared
to its ideal gas state, which is significantly more than the ≈ 18 J·mol−1·K−1 entropy loss of
water compared to interactionsless water. Since kNN MI estimators are known to increasingly
underestimate correlations the more correlated a system is [112, 163], argon at high pressure
poses a harder benchmark than water at 1 bar. We therefore expect a smaller translational
entropy error for water.
Overall, Per|Mut yields accurate solvation entropies for the argon test system. To test the

accuracy and the ability to provide spatially resolved entropies, we applied Per|Mut to more
complex systems, which will be discussed in sections 24.2 and 24.3.

24.2 Alkanes

Experimental and theoretical studies show that the solvation entropy of alkanes decreases
approximately linearly with increasing alkane length [172–174]. To see if Per|Mut captures
this linear relationship qualitatively and quantitatively, we calculated hydration entropies for
the n-alkanes from ethane to decane. Here, we defined the hydration shell as the 100 closest
water molecules to the solute after permutation reduction. The number was chosen such that
even for the largest solute (decane), all water molecules that were affected by its presence
were still included. Reference values were obtained by TI, as described in section 23.2.
As shown in Fig 24.2, Per|Mut indeed yields linear trends for the translational (blue sym-

bols) and rotational (green symbols) entropies as well as for the translation-rotation correla-
tion term −∆Itrans-rot (purple symbols), which reduce the entropy by (5.6±1.0) J·mol−1·K−1,
(5.8±0.9) J·mol−1·K−1, and (11.6±0.6) J·mol−1·K−1, respectively, for each additional carbon
atom. Combined, this results in a loss of (23.0± 1.1) J·mol−1·K−1 per C atom (orange sym-
bols). The result is in good agreement with the TI reference value of (21.0±0.7) J·mol−1·K−1

per C atom (red symbols) and more than the experimental [172] entropy loss of (13.3 ±
0.7) J·mol−1·K−1.
Since the difference between TI and experimental values is most likely due to force field

errors, which equally affect Per|Mut, we consider TI to be the proper benchmark.
Notably, increased correlations between translational and rotational water motions for

longer alkanes reduce the entropy by as much as the combination of translational and ro-
tational modes. The correlation of translational and rotational modes of motion increases
for molecules close to the solute. In this regime, the molecules likely experience an increased
orientational bias by predominately forming hydrogen bonds facing away from the solute. By
this reasoning, larger solutes result in a larger entropy loss from the correlation term.
Overall, Per|Mut accurately calculates the solvation entropy change for alkanes between

ethane and decane. Furthermore, the method precisely captures the entropy change, induced
by the addition of a chemical group as small as a methyl group to the solute for a hydration
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Figure 24.2: Hydration shell entropy loss relative to ethane with increasing alkane length.
Translational and rotational entropies are illustrated with blue and green sym-
bols, respectively. Entropy loss due to translation-rotation correlation is shown
in purple. The total entropy change is shown in orange, and the TI reference
entropies are shown in red. For easier visibility, the translational, rotational, and
translation-rotation correlation data is offset by 75, 50, and 25 units, respectively.
Dotted lines are from linear regression.

shell of 100 molecules.

24.3 Octanol

Our approach allows closer analysis of the molecular origin of entropy changes. To assess the
spatial resolution yielded by Per|Mut, we calculated the hydration shell entropy of octanol.
To this end, we simulated a fixed octanol molecule with 1728 water molecules in a similar
manner as described in section 23, carried out the Per|Mut analysis, and calculated local
entropies as described in section 23.2.
As shown in Figure 24.3, the spatial distribution of entropy differs significantly between the

apolar tail and in the vicinity of the OH group of octanol.
The translational entropy (Figure 24.3A) is reduced by 15.2 J·mol−1·K−1 per water molecule

where the hydroxyl group acts as a proton donor (white arrow) and by 3.7 J·mol−1·K−1 where
it acts as a proton acceptor (cyan arrow). Close to the hydrophobic tail, the entropy reduction
varies between 3.7 and 1.5 J·mol−1·K−1.
The MI expansion allows for the entropy decomposition into contributions from the indi-
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Figure 24.3: Spatially resolved octanol hydration shell entropy change per molecule relative to
bulk quantities. (A) shows translational entropy values, and (B) shows rotational
entropies. In both, (A) and (B), the three columns show total entropy change,
first-order MI change, and second-order MI change, respectively. (C) shows the
translation-rotation correlation, and (D) shows the total entropy change. Values
at selected regions are highlighted with arrows.

vidual water molecules (first order) and their entropy loss due to pair correlations (second
order). The first-order contribution (Figure 24.3A, center) shows that an entropy loss of
19.2 J·mol−1·K−1 at the donor side of the hydroxyl group is due to the reduced mobility of
a hydrogen-bonded water molecule. At the acceptor side, only 3.4 J·mol−1·K−1 is lost. The
entropy loss around the tail is mainly from the first-order contribution, where the presence
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of the apolar hydrocarbon chain causes an entropy loss up to 3.5 J·mol−1·K−1 due to the
restricted mobility of individual water molecules.

As seen for the second-order contribution (Figure 24.3A, right), the entropy loss due to
pair correlations of the water molecule that forms a hydrogen bond to the hydroxyl group is
less than in bulk phase. The molecule therefore gains 2.4 J·mol−1·K−1 relative to bulk (white
arrow). A likely explanation is that the hydroxyl group replaces another water molecule
as a hydrogen bond partner, which leaves the chemical environment almost unchanged but
reduces the number of possible water-water correlation pairs in the vicinity. Furthermore,
increased pairwise correlations decrease the entropy in a shell around the hydrophobic chain
by additional 1.9 J·mol−1·K−1 per molecule (black arrow). This result is unexpected, as water
molecules close to the octanol molecule have fewer neighbors, thus showing that correlations
with the remaining neighbors disproportionally increase at the hydrophobic tail.

The third-order correlation does not show significant spatial heterogeneity and, therefore,
is not included in Figure 24.3.

The rotational entropy (Figure 24.3B) behaves similarly, albeit its contributions are smaller.
5.6 J·mol−1·K−1 is lost by the water molecule for which the OH group of octanol acts as the
proton donor (white arrow), to which the first order contributes 5.0 J·mol−1·K−1. On the ac-
ceptor side, 2.0 J·mol−1·K−1 is lost, to which the first order contributes 1.2 J·mol−1·K−1 (cyan
arrows). Near the hydrocarbon chain, the rotational entropy is reduced by ≈ 1.6 J·mol−1·K−1

per molecule, of which ≈ 1.0 J·mol−1·K−1 is due to a hindered rotational motion of the indi-
vidual water molecules (first order). Again, there is a shell of more correlated water molecules
around the hydrophobic part of octanol (second order), which is less pronounced than that
for the translational entropy.

The mutual information of translational and rotational degrees of freedom (Figure 24.3C)
shows strong correlations, equivalent to an entropy loss of 7.7 J·mol−1·K−1 at the donor
site (white arrow) and 6.2 J·mol−1·K−1 at the acceptor site (cyan arrow). Furthermore, the
translation-rotation correlations reduce the entropy of each molecule close to the apolar chain
by 1.0 to 3.5 J·mol−1·K−1.

As shown in Figure 24.3D, the total hydration entropy of octanol is mainly affected by
the polar hydroxyl group, where entropy is reduced by 28.5 J·mol−1·K−1 (white arrow) and
11.9 J·mol−1·K−1 (cyan arrow) at the donor and acceptor sites, respectively.

The discrepancy between the two hydrogen binding sites is most likely caused by different
bond strengths. Whereas hydrogen atoms of the hydroxyl group and of a water molecule
carry almost identical partial charges, the oxygen atom of the hydroxyl group carries a partial
charge of −0.65 elementary charges, significantly less than a water oxygen atom (−0.834

elementary charges).

In addition, the entropy of each water molecule close to the hydrocarbon chain is reduced
by 9 J·mol−1·K−1, which results from both a loss of mobility of individual molecules (first
order) and increased correlations at the surface of the solute.
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A quantitative comparison between the hydrophilic hydroxyl group and the apolar tail
(or, equivalently, between octanol and octane) yields a solvent entropy difference of (36 ±
3) J·mol−1·K−1, which was determined using eight-molecule shells around the OH group and
its hydrophobic counterpart, following the same rationale as for the alkanes. The result is
significantly larger but comparable in magnitude to the TI reference estimate of (25.1 ±
0.1) J·mol−1·K−1 (see Supporting Information). Aside from possible sampling issues, the
deviation is likely the result of omitted higher-order correlations, which are affected differently
by the polar hydroxyl group and the apolar chain.

25 Conclusions

We developed Per|Mut, a new method to calculate hydration entropies of water, and assessed
its accuracy on argon, alkanes, and octanol test systems.
Our method rests on a permutation reduction [46, 47] (section 22.2), which alleviates the

sampling problem by N ! and localizes the water molecules (Figure 22.1C), leaving the physics
of the system unchanged. Due to the localization of the molecules, spatially resolved entropies
can be calculated at the level of single water molecules. Further, a MIE is employed, which
allows the absolute entropy to be decomposed into contributions from individual molecules,
pair correlations, and triple correlations. The MIE reduces the dimensionality of the spaces
that need to be sampled. By distinguishing between entropy contributions of individual
molecules as well as pairwise and triple correlations, additional insight into the physical origin
of entropy changes is provided.
We used the small argon test system to assess the accuracy of the translational entropy

algorithm by comparing the obtained values with TI. Per|Mut yielded accurate entropy values
for the full range of the switching coordinate within a maximum deviation of 5.7% from the
TI reference value.
To test the accuracy of Per|Mut as a whole, including the translation-rotation correlation

term, we calculated the hydration entropies of n-alkanes from ethane to decane.
Indeed, we identified a linear entropy loss [174] of (23.0± 1.1) J·mol−1·K−1 per additional

carbon atom, as shown in Figure 24.2, which is in quantitative agreement with the reference
entropy loss of (21.0 ± 0.7) J·mol−1·K−1 per C atom, calculated by TI. Here, the increased
correlation between the translational and rotational degrees of freedom for larger solutes was
identified as the largest contribution to the entropy loss.
Because of its hydrophobic tail and its hydrophilic headgroup, we chose octanol as a

test system to demonstrate how Per|Mut can characterize solvation entropies with a spa-
tial resolution. Hydrogen bonding strongly reduces the local entropy by 11.9 J·mol−1·K−1

and 28.5 J·mol−1·K−1 for the water molecules to which the hydroxyl group of octanol acts as
a proton acceptor or donor, respectively. The entropy loss at the donor site yields an entropic
free energy contribution of 8.55 kJ·mol−1 at a temperature of 300K, which is significantly less
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than the ≈ 20 kJ·mol−1 enthalpy loss due to the hydrogen bond [23]. The result shows that
the solvation free energy difference of octanol and octane is enthalpy-driven.
Near the hydrophobic tail of octanol, the entropy is reduced for both the first- and second-

order MI term. The losses of up to 1.9 J·mol−1·K−1 due to translational correlations, and
up to 3.5 J·mol−1·K−1 due to correlations between translation and rotation show that the
lack of strong interactions with the apolar octanol tail causes stronger interactions within
the remaining water, an effect that is similarly discussed in previous publications [37, 38].
The finding does not necessarily imply an increased structural order in the hydration shell,
as predicted by the controversial iceberg model [36], but identifies a reduced single-molecule
mobility (first order) and increased water correlations (second order) as main causes for the
entropy loss.
Our implementation of Per|Mut is available for download as a Python package13.

26 Supplement

26.1 The mutual information expansion of hydration entropy

We describe the configuration of N water molecules using N translational degrees of freedom
from R3, and N orientations from SO(3). The set of translational degrees of freedom is
T = {1, . . . , i, . . . , N}, where the index i denotes the translational coordinates of molecule i.
In the same fashion, the set of rotational degrees of freedom is R = {1, . . . , j, . . . , N}.
The third-order mutual information expansion of the total system entropy is defined as

[4, 48–50]

Stot ≈
∑

i∈(T ∪R)

I1(i)−
∑

(j,k)∈Pairs(T ∪R)

I2(j, k) +
∑

(l,m,n)∈Triples(T ∪R)

I3(l,m, n), (26.1)

where (j, k) ∈ Pairs(T ∪ R) is a pair with i 6= j, and (l,m, n) ∈ Triples(T ∪ R) is a triple of
degrees of freedom with unique l,m, n.
The entropy from equation 26.1 is split into rotational, translational, and mixed parts:

Stot ≈
∑
i∈T

I1(i) +
∑
ĩ∈R

I1(̃i)

−
∑

(j,k)∈Pairs(T )

I2(j, k)−
∑

(j̃,k̃)∈Pairs(R)

I2(j̃, k̃)−
∑

j∈T , k̃∈R

I2(j, k̃)

+
∑

(l,m,n)∈Triples(T )

I3(l,m, n) +
∑

(l̃,m̃,ñ)∈Triples(R)

I3(l̃, m̃, ñ)

+
∑

l∈T , (m̃,ñ)∈Pairs(R)

I3(l, m̃, ñ) +
∑

(l,m)∈Pairs(T ), ñ∈R

I3(l,m, ñ).

13https://gitlab.gwdg.de/lheinz/hydration_entropy
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The translational entropy reads

Strans ≈
∑
i∈T

I1(i)−
∑

(j,k)∈Pairs(T )

I2(j, k) +
∑

(l,m,n)∈Triples(T )

I3(l,m, n),

and the rotational entropy reads

Srot ≈
∑
ĩ∈R

I1(̃i)−
∑

(j̃,k̃)∈Pairs(R)

I2(j̃, k̃) +
∑

(l̃,m̃,ñ)∈Triples(R)

I3(l̃, m̃, ñ).

The translation-rotation correlation contribution is given by the remaining mixed terms
and reads

Itrans-rot ≈
∑

j∈T , k̃∈R

I2(j, k̃)−
∑

l∈T , (m̃,ñ)∈Pairs(R)

I3(l, m̃, ñ)−
∑

(l,m)∈Pairs(T ), ñ∈R

I3(l,m, ñ).

In this Per|Mut implementation, we neglect the mixed three-body correlation terms due to
their small contribution and slow convergence.
Using this separation, the full entropy is

Stot = Strans + Srot − Itrans-rot.
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Spatially resolved free energy contributions of native fold and
molten-globule-like crambin

Leonard P. Heinz1, Helmut Grubmüller1

1 Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chem-
istry, Göttingen, Germany

Abstract

The folding stability of a protein is governed by the free energy difference between its folded
and unfolded states, which results from a delicate balance of much larger but almost com-
pensating enthalpic and entropic contributions. The balance can therefore easily be shifted
by an external disturbance, such as a mutation of a single amino acid or a change of temper-
ature, in which case the protein unfolds. Effects like cold denaturation, in which a protein
unfolds due to cooling, provide evidence that proteins are strongly stabilized by the solvent
entropy contribution to the free energy balance. However, the molecular mechanisms behind
this solvent-driven stability, their quantitative contribution in relation to other free energy
contributions, and how the involved solvent thermodynamics is affected by individual amino
acids, is largely unclear. Therefore, we addressed these questions using atomistic molecular
dynamics simulations of the small protein crambin in its native fold and a molten-globule-like
conformation, which here served as a model for the unfolded state. The free energy differ-
ence between these conformations was decomposed into enthalpic and entropic contributions
from the protein and spatially resolved solvent contributions using the nonparametric method
Per|Mut. From the spatial resolution, we quantified the local effects on the solvent free energy
difference at each amino acid and identified dependencies of the local enthalpy and entropy
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on the protein curvature. We identified a strong stabilization of the native fold by almost
500 kJ·mol−1 due to the solvent entropy, revealing it as an essential contribution to the to-
tal free energy difference of 53 kJ·mol−1. Remarkably, more than half of the solvent entropy
contribution arose from induced water correlations.

Significance

The free energy difference between folded and unfolded states governs the thermodynamic
stability of a protein. Effects like cold denaturation provide evidence that solvent-related
contributions to the free energy difference strongly stabilize the native protein fold. Quanti-
fying the solvent contribution and its dependency on the individual amino acids is therefore
essential for a better understanding of the protein folding thermodynamics. The obtained spa-
tial resolution of solvent free energy contributions might furthermore be relevant for protein
design.

27 Introduction

Folding free energies of proteins at room temperature range typically in the order of a few
10 kJ·mol−1 [19–22], which approximately corresponds to the interaction energy of just a few
hydrogen bonds [23]. This small folding free energy results from a delicate balance between
competing enthalpy and entropy contributions, each of which are much larger in magnitude,
but compensate each other almost entirely [20]. Shifting the balance by external factors, e.g.,
due to a mutation of an amino acid or simply by changing the temperature, can lead to drastic
and sometimes counter-intuitive consequences. For example, proteins can unfold at low tem-
peratures [20, 24, 25], although the protein-internal interaction energies favor the folded state
and the entropic protein free energy contribution −T∆S, which favors the unfolded state,
should decrease in magnitude. This effect known as cold denaturation seems paradoxical only
if the protein but not the solvent contributions are considered for the free energy difference
estimation. Indeed, cold denaturation has been attributed to a temperature-induced weak-
ening of the hydrophobic effect [20], which arises from the thermodynamics of the solvation
shell. The hydrophobic effect is known to be a major driving force for protein folding and
stability [20, 27–29].
Cold denaturation exemplarily illustrates the importance of solvation thermodynamics for

protein stability. However, their quantitative role in relation to other free energy contri-
butions, the molecular mechanisms of solvent-driven protein stability, and how the solvent
thermodynamics is affected by individual amino acids are still largely unresolved. To study
the effect of solvation on protein stability, a decomposition of the individual solvent- and
protein-related free energy contributions of a protein native fold and the unfolded state is
required. To furthermore characterize the effect of individual amino acids on the solvent
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free energy contribution, a spatially resolved map of local solvent enthalpies and entropies is
needed.

Here, we address these questions using all-atom molecular dynamics (MD) simulations of the
small protein crambin. Because a representative ensemble of the extremely broad distribution
of unfolded protein configurations is not sufficiently sampled within the timescales of MD
simulations, we assessed the free energy difference between the native fold and a transiently
stable molten-globule-like conformation.

We decomposed the free energy difference between the two conformations into enthalpy con-
tributions from protein-protein, protein-solvent, and solvent-solvent interactions, and entropy
contributions from both solvent and protein. To accurately compare the spatially resolved sol-
vent entropy contributions to their respective enthalpic terms, we preferred a nonparametric
method that also captures the entropy effects of multi-body correlations. We therefore selected
Per|Mut [46, 47, 112, 175] to calculate the spatially resolved solvent entropy over alternative
methods, such as the grid inhomogeneous solvation theory [10, 12, 13, 43, 121, 122, 133], which
usually excludes multi-body correlations, the grid cell theory [136] or 3D two-phase thermo-
dynamics [11, 134, 135], which both rely on strong model assumptions. Per|Mut provides a
further solvent entropy decomposition into the entropy of the individual water molecules and
the entropy changes arising from multi-body water-water correlations from both translational
and rotational degrees of freedom. From the decomposition, we identified a substantial sta-
bilizing effect of the solvent free energy contributions of almost 500 kJ·mol−1. The further
breakdown into different interaction energies and entropic water correlation terms allowed for
an interpretation of the free energy changes on a molecular level. Here, a significant increase of
water-water correlations around the molten-globule like conformation compared to the native
fold was found, which corresponds to a stabilizing entropic free energy contribution. From
the spatial resolution of both solvation enthalpy and entropy, we obtain the local free energy
changes due to specific amino acid side chains and capture free energy effects of the protein
shape.

28 Methods

28.1 Molecular dynamics simulations

All molecular dynamics (MD) simulations were carried out using the software package Gro-
macs 2018 [73–77], the CHARMM36m force field [81, 83, 84], and the leap frog integrator
with a 2 fs time step. Unless stated otherwise, the temperature was kept at 300K using the
V-rescale thermostat [98] with a time constant of 0.1 ps. For equilibration simulations un-
der NPT conditions, the Berendsen barostat [99] at 1 bar pressure with a time constant of
0.5 ps was used. All production runs were carried out using the Parrinello-Rahman barostat
[100, 101] with a time constant of 1.0 ps and 1 bar pressure. During all simulations, Coulomb
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Figure 28.1: Ribbon-style visualization of crambin in its native fold (A) and in a molten-
globule-like conformation (B). Images rendered using VMD [177].

and Lennard-Jones [42] cut-offs of 1.2 nm were used. Long-ranged electrostatic interactions
were calculated using he Particle-Mesh Ewald (PME) method [160]. Bond-constraints were
imposed on all water molecules using the SETTLE algorithm [95] and on all other bonds to
hydrogen atoms using the LINCS algorithm [96]. During production runs, configurations were
stored every 10 ps for subsequent analysis.

28.2 System setup

A high resolution structure of the protein crambin (46 amino acids) was retrieved from the
Protein Data Bank (identifier 1CBN) [176]. The molecule was placed inside a cubic simulation
box of size (7 nm)3 and solvated with 10950 water molecules. The system was then subjected
to gradient descent energy minimization, which was terminated once the largest force on
any atom decreased below 100 kJ·mol−1nm−1. To equilibrate the solvent water, a 1 ns MD
simulation under NVT conditions was started, during which all heavy atoms of the protein
were restrained using a force constant of 1000 kJ·mol−1nm−2. To relax the box size to 1 bar,
the system was subsequently simulated for 10 ns under NPT conditions, during which the
restraints on the protein were maintained. Subsequently, the protein was equilibrated during
a further 10 ns simulation under NVT conditions.

To obtain a molten-globule like confirmation of an unfolded state, the equilibrated protein
was unfolded during 50 ns of heating and subsequent annealing. Here, the temperature was
linearly increased to 600K during the first 5 ns, the temperature was then kept at 600K for
the following 40 ns, and eventually decreased back to 300K during the last 5 ns. The unfolded
structure was simulated for 2µs under NPT conditions (Parrinello-Rahman barostat), during
which a partial refolding occurred, resulting in the formation of two anti-parallel β-sheets,
shown in Fig. 28.1B, whereas the rest of the molten-globule-like conformation remained un-
structured. To ensure a proper equilibration of the folded system, it was also simulated for
further 2µs.

Ensembles of four crambin structures were retrieved for both the native fold and the molten-
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globule-like conformation by extracting equidistant frames from the last 3 ns of each of the
equilibration runs. The ensembles therefore cover short-timescale processes like the sidechain
reorientation, but do not capture larger configurational motions, particularly of the molten-
globule-like conformation.
A production run of 1µs under NPT conditions was carried out for each of the eight

replicas. To restrict configurational changes of the protein, each atom was restrained using a
force constant of 1000 kJ·mol−1nm−2.

28.3 Entropy calculation

Hydration entropies were calculated from the production runs of the eight replicas using the
method Per|Mut [112, 175]. For each replica, a permutation reduction [46, 47] was carried
out, which enhances sampling of the high-dimensional water configuration space by the Gibbs
factor N ! and localizes the water molecules without changing their physical and statistical
properties. The first trajectory frame was used as the reference configuration.
Spatially resolved entropies were calculated for the 4000 water molecules closest to the

protein using a third-order mutual information (MI) expansion [4, 48–50]. Pairwise MI terms
of the translational and rotational entropy, as well as for the translation-rotation correlation
were calculated for water molecules with a maximum average distance of 1.0 nm. For third-
order terms, a 0.33 nm cut off was used. The individual entropy terms in the expansion
were calculated using a k-nearest-neighbor algorithm with a value of k = 1 for all expansion
orders. The entropy of the solvation shell consisting of the closest 1000 molecules was used
for analysis. From those results, the entropy of the inner solvation shell, consisting of the
closest 1000 molecules (equivalent to a thickness of ≈ 0.8 nm), was calculated as Sinternal − I.
Here, Sinternal is the sum of all expansion terms concerning molecules from the inner solvation
shell and I is the sum of all MI terms with a molecule inside and a molecule outside the inner
solvation shell. Error bars were obtained as standard deviations of the four replicas per state.
Protein entropies were estimated for both states using Schlitter’s method [115] on all

non-hydrogen protein atoms from additional unrestrained MD simulations. Here, the molten-
globule-like conformation partially re-folded after 1.5µs (see Supplemental Information
Fig. 31.1). To obtain values consistent with the restrained states, for which the remaining
free energy terms were calculated, the analysis was limited to the first 1µs of the trajectories.
Errors were estimated from a second analysis using only 0.5µs of the trajectories.

28.4 Enthalpy calculation

The solvation enthalpy was calculated as U+pV , where U is the sum of all interaction energies,
averaged over the MD trajectory. The work term pV is the product of pressure (1 bar) and
average box volume.
For each water molecule of the inner solvation shell, the interaction energies with the protein,
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the outer solvation shell, and all other molecules of the inner shell were calculated. Lennard-
Jones parameters and partial charges were taken from the CHARMM36m force field and a
2 nm cut off was used for Lennard-Jones interactions. The interaction energy of the protein
was calculated directly with the software package Gromacs.

28.5 Visualization of entropy and enthalpy

The entropy and interaction energy contributions of each molecule were calculated by splitting
the two-body MI terms, three-body MI terms, and the pairwise interaction energies equally
between the respective molecules. The simulation box was then divided by a 129× 129× 129

grid. The entropy and energy values of each voxel were calculated as an average, weighted by
the time each localized water molecule spent in the voxel.

28.6 Error estimation

Errors of solvent entropy and solvent enthalpy contributions of each water molecule were
estimated as standard deviation of bulk-phase water molecules, assuming that water molecules
close to the solvent is subject to the same spread [175]. The estimated errors are listed in
table 28.1.

Table 28.1: Estimated solvent enthalpy and solvent entropy errors per water molecule.
contribution error [kJ·mol−1]
USS 1.05

−TStrans 0.46
−TStrans

1 0.09
−TStrans

≥2 0.37

−TSrot 0.22
−TSrot

1 0.02
−TSrot

≥2 0.22

−TStrans-rot
≥2 0.18

Here, USS is the solvent-solvent interaction energy, −TStrans and −TSrot are the transla-
tional and rotational free energy contributions, respectively. Both are split into a single-body
term −TS1 and a multi-body term −TS≥2. −TStrans-rot

≥2 corresponds to the entropy contri-
bution from translation-rotation correlations.

28.7 Residue contributions and convexity

The local interaction energy and the local solvation entropy contribution around each amino
acid was calculated as the average contribution of all water molecules within 0.4 nm of the
amino acid. Here, the distance was measured as the minimum distance to any atom of the
residue. The contribution of the pV term was small compared to the other contributions
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(19.8 kJ·mol−1 for both the native fold and molten-globule-like conformations) and was there-
fore neglected. The local free energy was thus calculated as the sum of the interaction energy
and the entropy contribution.
As a measure of the local topology, the convexity of the protein-solvent surface was calcu-

lated for each residue as
c =

Nd(
4
3πd

3 − Vres
)
nW

,

where Nd is the number of water molecules within a radius of d = 1 nm around the amino
acid, Vres is the volume of the residue itself, and nW is the number density of water.

Accordingly, a convexity of c = 0 indicates that the entire volume within the radius d around
the residue is occupied by other protein atoms, i.e., that the residue is buried. Conversely, a
value of c = 1 shows that the residue is fully exposed to the solvent.

To quantify the hydrophobicity of a residue and for comparison with our calculations, the
empirical hydrophobicity scale by Zhao and London [178] was used: A small value indicates
a hydrophilic amino acid, whereas a large value denotes hydrophobicity.

29 Results and Discussion

29.1 Spatially resolved solvation free energy contributions

To quantify and characterize the solvent contribution to the stability of the protein crambin,
we carried out and compared MD simulations of the native fold and a molten-globule-like
protein conformation, as described in the Methods section. We will first address the contribu-
tion of individual amino acids and the protein shape to the solvent free energy contributions
for a number of exemplary residues and subsequently provide a more systematic assessment.
To this end, we calculated spatially resolved solvent interaction energies and corresponding
entropies for both the native fold and the molten-globule-like conformation, respectively.
Because any spatially resolved picture of the solvation-shell thermodynamics depends on

and changes with the particular conformation of the protein, we chose a representative confor-
mation for each, the folded and the molten-globule-like ensemble. To obtain better statistics,
we carried out simulations of four similar replicas for each conformation. As the molten-
globule-like conformation is structurally unstable, we restrained the structures as described
in the Methods section.
For each of the 2 × 4 replicas, spatially resolved solvent interaction energies ∆U were

calculated directly from the interaction energies between protein and solvent (∆UPS) and
between the solvent molecules (∆USS). Solvent entropy contributions were calculated using
the method Per|Mut [112, 175], which yields a spatially resolved entropy decomposition into
terms Strans

1 , Srot
1 , Strans

≥2 , Srot
≥2 , and S

trans-rot
≥2 . Here, Strans

1 and Srot
1 are the translational and

rotational entropies of the individual water molecules, ignoring any correlations. Strans
≥2 , Srot

≥2

capture the entropy loss due to two- and three-body correlations between water molecules for
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translational and rotational degrees of freedom, respectively. A positive value of −T∆S≥2

denotes an unfavorable free energy increase relative to bulk water due to increased water-
water correlations. Conversely, a negative value of −T∆S≥2 indicates a favorable free energy
contribution due to weakened correlations relative to bulk water. Similarly, ∆Strans-rot

≥2 is the
entropy change due to correlations between translational and rotational degrees of freedom of
water molecules.

Figure 29.1 compares these spatially resolved free energy contributions for the native fold
(A) and the molten-globule-type conformation (B), respectively. As shown in the upper left of
Fig. 29.1A, the interaction energy ∆U of water molecules near the protein is generally more
negative (stronger) than in bulk water, particularly close to charged residues such as R17
and D43, with interaction energy differences of −48 kJ·mol−1 and −27 kJ·mol−1, respectively.
Similarly, in the vicinity of the polar hydroxyl groups of the tyrosine residues Y29 and Y44,
the energy is lower than in bulk water (∆U = −22 kJ·mol−1), and close to residue C40, the
interaction energy difference is −27 kJ·mol−1. Residues T2, F13, and R10 form a "groove"
in the native-fold structure, with strong interaction energies below −30 kJ·mol−1 relative to
bulk water.

Figure 29.1A (top row, center and right) reveals the individual interaction energy contri-
butions from the interactions between protein and solvent ∆UPS, as well as from interactions
between solvent molecules ∆USS. The interaction energy of hydration is dominated by the
protein-solvent interactions, where charged and polar residues show particularly favorable
interactions. However, the solvent-solvent interactions (top row, right) partially counteract
this effect. Here, water molecules that bind to charged residues perturb the hydrogen bond
network of the surrounding water, thereby weakening the solvent-solvent interactions. Ac-
cordingly, around the charged residues R10, R17, and D43, the solvent-solvent interaction
energy becomes strongly unfavorable with values between +17 and +30 kJ·mol−1 relative to
bulk water. Similarly, but to a lesser extent, solvent-solvent interactions are weakened for wa-
ter molecules around the hydroxyl groups of residues Y29 and Y44, resulting in unfavorable
energy changes ranging between +10 and +15 kJ·mol−1.

Next, we quantified the impact of these strong interactions on the local entropy. For the
charged residues R10, R17, and D43, as well as for the polar residues Y29 and Y44, both the
translational and rotational solvent entropies are reduced (Fig. 29.1A, center rows). At these
sites, the free energy contributions −T∆S vary from +5.5 to +12 kJ·mol−1 (translational) and
from +3.5 to +8.2 kJ·mol−1 (rotational) and therefore weaken the otherwise strong solvation.
The entropy loss is dominated by the first-order terms ∆Strans

1 and ∆Srot
1 , revealing that the

reduced mobilities of the individual water molecules due to the protein (partial) charges, and
not water-water correlations, are the main cause of the entropy loss.

Translational entropy free energy contributions from multi-body correlations −T∆S≥2 very
close to the charged and polar protein parts are indeed relatively weak, but not negligibly so,
with values between −2.0 and −1.5 kJ·mol−1 relative to bulk water. Remarkably, for second-
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Figure 29.1: Spatially resolved hydration free energy decomposition of crambin in its native
fold (A) and the molten-globule-like conformation (B) relative to bulk water,
visualized on a representative two-dimensional slice through the center of the
molecules. The total interaction energy ∆U (top row, left) is split into protein-
solvent interactions ∆UPS (top row, center), and solvent-solvent interactions
∆USS (top row, right). In the same manner, the translational and rotational
entropy contributions −T∆S (center rows) are split into the single-molecule en-
tropy −T∆S1, and multi-body correlations −T∆S≥2. The entropy contribution
from the translation-rotation correlation is shown in the bottom left. The spa-
tially resolved free energy change (sum of the first column) is shown in the bot-
tom right. All numerical values are given in kJ·mol−1 and important residues
are highlighted by arrows.
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shell water molecules around charged residues, these correlations again change sign, e.g., for
residues R10 (+1.0 kJ·mol−1), D43 (+1.2 kJ·mol−1), and Y44 (+0.6 kJ·mol−1), thus being
less favorable compared to bulk water. A similar effect is seen for the rotational multi-body
correlations where the free energy contribution almost vanishes at the first hydration shell
(e.g., +0.2 kJ·mol−1 at R10, +0.4 kJ·mol−1 at Y29 and Y44, each with an estimated error
of 0.22 kJ·mol−1), but increases to values from +0.7 kJ·mol−1 to +1.0 kJ·mol−1 within the
second hydration shell.

A possible explanation for this effect is that the strong binding of the first-shell water
molecules (for rotational degrees of freedom the strong directionality due to the water dipole
moment [179]) results in reduced fluctuations, which limits the correlations with the remaining
water molecules (for a more detailed analysis, see Supplemental Information). As a result,
the multi-body correlation entropy contribution is more favorable for the bound molecules,
compared to bulk water. In contrast, the fluctuations of the second-shell water molecules are
larger due to the reduced electrostatic interactions with the charged and polar residues, as
shown by bulk-like single-body entropy terms. Therefore, the correlations with the adjacent
water molecules reduce the entropy by a larger amount.

As the last remaining entropy term, we also quantified the entropy reduction due to
translation-rotation correlations (Fig. 29.1A, lower left), which reveals increased correlations
close to the protein surface, particularly in the vicinity of charged residues and polar chemical
groups. Here, the respective solvent free energy contribution is increased by +3.2 kJ·mol−1

(R10), +5.9 kJ·mol−1 (R17), +2.7 kJ·mol−1 (Y29), +5.0 kJ·mol−1 (D43), and +4.0 kJ·mol−1

(Y44) compared to bulk water. The correlations and the corresponding unfavorable free en-
ergy changes arise because the strong directionality of the water molecules close to a protein
(partial) charge quickly decreases with distance. A water molecule close to a charged amino
acid is therefore on average more strongly oriented than a water molecule at a larger distance.

To characterize the local solvent free energy change relative to bulk water, we considered
the sum of all free energy contributions (Fig. 29.1A, bottom right). Close to hydrophilic
residues, enthalpic contributions dominate, such that the total free energy change is favor-
able, as expected. The water molecules that form hydrogen bonds to the hydroxyl groups
of Y29 and Y44 contribute −5.3 and −6.2 kJ·mol−1 to the hydration free energy difference
of the protein, respectively. Around the charged residues R17 and D43, the free energy per
water molecule is reduced by −17.5 and −32 kJ·mol−1, respectively. Close to the residue
C40, the free energy is reduced by −5.4 kJ·mol−1 and in the "groove", formed by residues T2,
R10, F13, the free energy contribution per water molecule is −6.6 kJ·mol−1 compared to bulk
water. Here, the average interaction energy of the closest water molecule to the three amino
acids is +4 , −57 , and 0 kJ·mol−1, respectively. Although the entropic contributions cannot
be assigned to specific residues, their total contribution to the free energy (≈ 30 kJ·mol−1)
is smaller than the enthalpic contribution of R10. In this sense, the favorable free energy is
enthalpically dominated due to the charged residue R10. Due to the water-water correlation
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effects discussed above, second-shell water molecules around protein charges contribute un-
favorably to the hydration free energies, with values ranging from +1.8 to 3.2 kJ·mol−1 per
molecule.

Next, we carried out the same analysis for a molten-globule-like conformation to identify
possible differences in the solvation thermodynamics between the two states. As shown in
Fig. 29.1B, the enthalpic and entropic changes for water molecules close to charged and polar
residues, e.g., for Y29, D43, and Y44, are similar to the native fold. However the spatial
distribution of the individual free energy contributions is different. Whereas in the folded
state, prominent differences of the local free energy contributions are isolated and can be well
attributed to individual (charged or polar) residues, a particularly large region of favorable
interaction energies and unfavorable entropies is seen around residues D43, Y44, and F13 of
the molten-globule-like fold. Here we considered two possibilities: First, the (coincidental)
co-localization of specific amino acids in the molten-globule-like state could give rise to the
spread-out distribution. Alternatively, the locally concave shape of the molten-globule-like
conformation could provide a possible explanation of the large volume of the affected region.
In the latter case, the semi-cavity exposes a markedly larger surface area to the solvent,
which strengthens the solvent-protein interactions (−50 kJ·mol−1 per molecule), but weakens
the solvent-solvent interactions (+20 kJ·mol−1) as the number of neighboring water molecules
is reduced due to the protein geometry. Correspondingly, the concave shape restricts the
mobility of the water molecules, resulting in an unfavorable entropy change compared to
bulk water (+5.8 kJ·mol−1 translational, +5.0 kJ·mol−1 rotational). Indeed, similar entropy
and enthalpy effects were also seen to a smaller extent at the concave "groove", formed by
residues T2, R10, and F13 in the native fold. To probe whether this observation is anecdotal,
we systematically compared the local curvature to the local free energy contributions of all
amino acids in the next subsection.

In addition to the single-body entropy reduction in the concavity, we also observed unfavor-
able entropy changes due to the multi-body correlation terms, which contribute +2.2 kJ·mol−1

(translational), +2.1 kJ·mol−1 (rotational), and +9.5 kJ·mol−1 (translation-rotation correla-
tion). In light of the geometry-induced weaker solvent-solvent interactions, such high correla-
tions are unexpected. To check whether this observation is anecdotal or, alternatively, more
general, we systematically compared the multi-body entropy terms to the local convexity for
each amino acid of the 2× 8 replicas. As shown in Supplemental Information Fig. 31.2, there
are indeed stronger correlations (i.e., unfavorable free energy contributions) between rotational
degrees of freedom (−T∆Srot

≥2) and between translational and rotational degrees of freedom
(−T∆Strans-rot

≥2 ). Translational correlations (−T∆Strans
≥2 ) show an inverted dependence on the

local convexity. So far, we are unable to provide an explanation for these effects.

For the native fold, as well as for the molten-globule-like conformation, the well known tug of
war between enthalpic and entropic free energy contributions results in a partial compensation
of the two contributions [41]. For the native fold, this compensation also applies to the
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multi-body correlation entropies and the solvent-solvent interaction energies. However, this
compensation of solvent-solvent terms is not seen for water molecules in the concavity of
the molten-globule-like conformation, which might be an effect of the concave shape of the
protein. Despite the partial enthalpy-entropy compensation, the solvent free energy is mainly
affected by the protein-solvent interaction energies.
The entropy contributions in the native-fold state mainly originate from water molecules

that are bound to protein charges and mostly affect the first hydration shell. To the contrary,
the entropy contributions in the molten-globule-like state are more spread out and also the
second hydration shell is significantly affected. This observation might be a direct consequence
of the hydrophobic driving forces of protein folding [28], where hydrophobic residues, which
result in increased multi-body correlation entropies [37, 38, 175], are predominately packed
into the protein interior of the native fold.
We furthermore note that the water entropy seems to become more unfavorable in concave

parts of the molecules, for example as seen in the "groove" at residues T2, R10, and F13 for the
native fold and around residues R13, D43, and Y44 for the molten-globule-like conformation.
The water interaction energy seems to show a compensating effect.

29.2 Residue contributions

So far, we focused on a few illustrative example residues. For a more comprehensive and
systematic assessment of the protein-shape effect on each of the local free energy contribu-
tions, we compared the free energies close to all residues to the local convexity, calculated
as described in methods section Residue contributions and convexity. To distinguish protein
topology-effects from those of the solvation properties of the individual amino acids, we fur-
thermore compared the local free energy changes around each residue to its hydrophobicity
index [178].
Figure 29.2, reveals a clear correlation between the local interaction energy differences

with respect to bulk water and the convexity for both the native fold (Fig. 29.2A) and the
molten-globule-like states (Fig. 29.2B), reflected in Pearson correlation coefficients of 0.50 and
0.42, respectively. Here, the interaction energy of the water molecules at a concave surface
(convexity ≈ 0.3) is reduced by up to 40 kJ·mol−1 for the native fold and by up to 33 kJ·mol−1

for the molten-globule-like fold, whereas the interaction energy of water molecules at convex
surfaces of the protein (convexity > 0.8) only differs by a small amount (∆U > −5 kJ·mol−1)
relative to bulk water. This effect is to be expected, as more solvent-exposed residues interact
with a larger number of water molecules.
An even stronger but inverse correlation (correlation coefficients of −0.76 and −0.71 for the

native-fold and the molten-globule-like states, respectively) is seen in Fig. 29.2 for the solvation
entropy contribution−T∆S: Here, the water entropy becomes strongly unfavorable at concave
surfaces with contributions of up to 28 kJ·mol−1 for the native-fold and of 24 kJ·mol−1 for
the molten-globule-like configurations. Correspondingly, the entropy contributions at convex
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Figure 29.2: Changes in interaction energy (∆U), entropy (−T∆S), and free energy (∆F ) of
the water molecules around each residue of the eight replicas, relative to bulk
water. The free energy change, and its energetic and entropic contributions, are
shown relative to the local convexity and relative to the amino acid hydrophobic-
ity. Results for the native fold are shown in (A), results for the molten-globule-like
conformation are shown in (B). Charged amino acids are depicted as orange cir-
cles, polar amino acids are shown in cyan. Apolar amino acids are colored grey.
Pearson correlation coefficients are stated in the corners of each plot.
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surfaces is small (−T∆S < 5 kJ·mol−1). This observation is in line with previous reports
about unfavorable water entropies and favorable water enthalpies in cavities [180, 181] and
altered water behavior at concave surfaces [182].
Interestingly, the convexity dependencies of enthalpy and entropy almost compensate each

other, such that the local free energy, shown on the top right of Fig. 29.2A and B, shows no
significant dependency on the surface convexity (r = 0.21 and −0.08 for the native fold and
the molten-globule-like state, respectively). Furthermore, the side chain polarity, as indicated
by the color code in Fig. 29.2, has no significant impact on the convexity effects of interaction
energy and entropy.
As shown in the bottom rows of Fig. 29.2A and B, there is only a modest correlation of

the local interaction energy and entropy contributions with the hydrophobicity index of each
amino acid (r = 0.32 and 0.20 for native fold and molten-globule-like state, respectively).
However, as expected, the local free energy correlates more strongly with the hydrophobic-
ity index (r = 0.39 and 0.42 for native fold and molten-globule-like state, respectively),
where the most hydrophilic residues show favorable local solvation free energies of −16 to
−5 kJ·mol−1, whereas local free energy changes of −11 to +3 kJ·mol−1 are attributed to hy-
drophobic residues. Unexpectedly, for the non-polar residues, no correlation between their
solvation free energies in the protein context and their hydrophobicity index is seen. As shown
in the bottom right of Fig. 29.2A and B, the most favorable free energy is observed around
charged residues (colored orange), with a free energy change of (−8.1±2.3) kJ·mol−1. Around
polar residues (colored cyan), the average free energy change is (−3.14 ± 3.72) kJ·mol−1;
around apolar residues (colored grey) an average contribution of (−1.53 ± 4.45) kJ·mol−1 is
seen.
Comparing the native fold with the molten-globule-like conformation, the most striking

difference is seen for the charged residues, for which the local free energy contribution is more
favorable for the native fold ((−9.64 ± 2.58) kJ·mol−1) compared to the molten-globule-like
conformation ((−6.53± 1.97) kJ·mol−1). This finding suggests that an important mechanism
to stabilize a folded state is an optimized geometry, which maximally exposes hydrophilic
charged residues.

29.3 Free energy decomposition

To obtain a quantitative understanding of the overall hydration contribution to protein stabil-
ity, we decomposed the total free energy differences ∆G = Gm−Gf of the molten-globule-like
conformation and the native fold into individual free energy contributions. In addition to
solvent contributions, we also calculated protein interaction energies UPP directly from the
ensemble of the eight restrained replicas, as well as protein entropies SP from unrestrained
MD simulations of the native fold and the molten-globule-like conformation, respectively. To
ensure that the unrestrained simulation of the molten-globule-type only system samples the
conformation of the four similar molten-globule-like ensemble members used for the calcula-
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Figure 29.3: Decomposition of the folding free energy (green) into enthalpy (red) and entropy
terms (blue). Positive values favor the native fold, negative values favor the
molten-globule-like conformation. Values in kJ·mol−1.

tion of the other free energy contributions, the simulation time was restricted to 1µs. During
this time, the conformation did not change markedly, with an RMSD below 0.7 nm. Accord-
ingly, our free energy budget includes only part of the conformational entropy of the whole
molten-globule-type ensemble.
Figure 29.3 summarizes the calculated differences between the native fold and the molten-

globule-like conformation for the various free energy contributions. Positive values indicate
a stabilization of the native fold, negative values favor the molten-globule-like conformation.
As expected, we obtained a total free energy difference that favors the folded state ((53 ±
84) kJ·mol−1). Although, to the best of our knowledge, a measured value is not available, this
result agrees with the expected range of a few 10 kJ·mol−1 [20, 21].
Likely because the molten-globule-like conformation has a larger solvent accessible sur-

face area ((36.9 ± 0.6) nm2 vs. (31.3 ± 0.3) nm2 for the native fold), the total interac-
tion energy between the protein and inner solvent shell UPS destabilizes the native fold by
(−706± 216) kJ·mol−1 with respect to the molten-globule-like conformation. In contrast, the
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interaction energies within the inner solvation shell (closet 1000 molecules) favor the native
fold (∆USS = 287± 86) kJ·mol−1). The work term p∆V = (−0.002± 0.002) kJ·mol−1 shows
no significant difference between the two conformations. As expected, the internal interaction
energies of the protein strongly stabilize the folded state (∆UPP = (648±59) kJ·mol−1). Over-
all, the enthalpy contributions strongly favor the folded state (∆H = (228± 106) kJ·mol−1),
in line with textbook thermodynamics of protein folding.
Next we quantified all entropic contributions to the free energy difference, which are ex-

pected to largely compensate the strongly stabilizing enthalpy difference. Indeed, the protein
entropy strongly favors the molten-globule-like state even without parts of the configura-
tional entropy (−T∆SP = (−673 ± 42) kJ·mol−1). Crucially, however, all solvation entropy
terms stabilize the native fold, adding up to 498 kJ·mol−1. One of the largest contributions
is the singe-particle translational entropy Strans

1 = (139 ± 22) kJ·mol−1. In contrast, the
respective rotational entropy contribution, where many studies focus on, yields only a dif-
ference of (68 ± 17) kJ·mol−1. Also intriguingly, the second and third order MI terms Strans

≥2

and Srot
≥2 , which denote the two- and three-body correlations, contribute large differences of

(39± 6) kJ·mol−1 and (63± 4) kJ·mol−1, respectively. Strikingly, the largest solvent entropy
contribution stems from the translation-rotation correlation entropy, which favors the native
fold by (189±12) kJ·mol−1. Obviously, these entropies, which arise from the correlated motion
of water molecules, contribute markedly to the folding thermodynamics of crambin.
In summary, the largest contribution to solvent-induced entropic stabilization (498 kJ·mol−1)

of the native fold is not due to the mobility of single water molecules but due to their corre-
lated motion (291 kJ·mol−1). Conversely, the protein-solvent interaction energies ∆UPS and
the protein entropy ∆SP are the only destabilizing terms.

30 Conclusion

To quantitatively assess the role of the protein structure and individual side chains in the
solvation thermodynamics and stability of the native fold, we compared spatially resolved
enthalpic and entropic solvation free energy contributions of the native fold and the molten-
globule-like state of the small globular protein crambin. A systematic analysis of the solvation
thermodynamics of all residues revealed that their local enthalpies and entropies are mainly
affected by the protein charges and the local curvature of the protein surface. Close to
charged or polar residues, a more favorable interaction energy and a less favorable entropy
contribution were observed. Interaction energies are here dominated by protein-solvent terms,
whereas solvent-solvent interactions are weakened and therefore become less favorable around
protein charges.
Single body entropy terms are strongly reduced close to protein charges, as the water

molecules bind to the protein and therefore lose translational and orientational mobility. For
solvent multi-body correlation contributions, a more complex picture emerged. Whereas cor-
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relations with the remaining water molecules are weakened for the bound water molecules,
the second hydration shell water molecules show an increased correlation and therefore an
unfavorable multi-body entropy contribution. The translation-rotation correlation entropy
becomes unfavorable close to the protein surface, particularly close to protein charges, indi-
cating that the correlation between translational and rotational degrees of freedom increases
close to the protein surface.

The local contributions from enthalpy and entropy largely compensate each other, as ex-
pected, so that the local free energy values are smaller in magnitude. The spatial distribution
of the local free energy changes is mainly dominated by favorable contributions close to polar
or charged residues. This result suggests that, at least for crambin, the solvation of hydrophilic
residues contributes to a larger extent to the stability of the folded protein than burying hy-
drophobic residues into the protein interior. We furthermore observed that concave protein
surfaces seem to cause more favorable hydration enthalpies and less favorable entropies.

To distinguish between a possible curvature effect and the influence of individual amino
acids, we compared the local convexity of the protein surface and the hydrophobicity index of
each protein residue to the local enthalpies, entropies, and free energies. Indeed, strong corre-
lations between surface convexity and solvation interaction energies and entropies are seen. A
more concave shape of the protein surface generally correlates with more favorable interaction
energies and less favorable solvation entropy contributions. Due to the opposing effects on the
two quantities, the local free energy of solvation remains almost unaffected by the protein cur-
vature. As expected, we found more favorable local solvent free energies close to hydrophilic
residues (i.e., those with a small hydrophobicity index) than close to hydrophobic residues.
The finding indicates that the physico-chemical properties of the respective amino acids have
a larger effect on the local free energy than the protein curvature, although curvature strongly
affects both entropy and enthalpy.

To see how much the solvation contributions weigh in the total free energy balance, we de-
composed the total folding free energy difference between the native fold and molten-globule-
like conformation of crambin into individual enthalpy and entropy contributions from both
protein and solvent. Although other computational methods, such as Replica Exchange Molec-
ular Dynamics (REMD) [132, 183–185], allow to calculate ∆G with better precision and higher
accuracy, our decomposition into individual energy and entropy terms provides additional in-
sights into the thermodynamics of protein stability, even on globular protein energy budget
level. Specifically, the protein-solvent interaction energies and the protein entropy turn out to
be the only destabilizing contributions to the free energy, whereas the solvent-related entropy
contributions favor the folded state of crambin by almost 500 kJ·mol−1. Furthermore, the
solvent entropy difference is not dominated by water mobilities, but by induced multi-body
water correlations.

As the full ensemble of all potential molten-globule-like conformations is not sampled by our
MD simulations, all differences of the free energy contributions were calculated with respect
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to four ensemble members of the same molten-globule-like conformation. Particularly the
calculated protein entropy is therefore underestimated. For a rough estimate of the entropy
error, we assume an effective number of 100 to 1000 metastable conformations [186, 187] with
similar conformational entropies. In this case, a configurational entropy contribution between
kBT log 100 = 11 kJ·mol−1 and kBT log 1000 = 17 kJ·mol−1 would be missed, thereby not
changing the budget qualitatively. As the first transition occurred after 1.5µs (see Supple-
mental Information Fig. 31.1), 1000 metastable states would correspond to an approximate
but reasonable equilibration time of 1.5ms.
With this caveat in mind, our calculations are in line with the known delicate balance be-

tween enthalpy and entropy, resulting a free energy difference of (53 ± 84) kJ·mol−1, which
corresponds to the enthalpy change due to just a few hydrogen bonds. The solvent entropy
(free energy contribution of ≈ 500 kJ·mol−1) was found to be one of the most important stabi-
lizing contributions to the free energy difference. Our study therefore also provides quantita-
tive mechanistic insights into cold denaturation, driven by temperature-induced weakening of
hydrophobic interactions [20]. Indeed, the obtained mean entropy and enthalpy contributions
would yield cold and heat denaturation temperatures of crambin within the range of −42 ◦C
to −22 ◦C, and 60 ◦C to 68 ◦C, respectively, assuming protein-typical heat capacity differ-
ences ∆CP between 5 and 15 kJ·mol−1·K−1 [20, 26] (see Supplemental Information). These
temperature ranges agree with typical unfolding temperatures observed for globular proteins
[20, 24, 25]. The spatial resolution of the solvent free energy terms identified favorable free
energy contributions due to solvated hydrophilic residues (charged or polar) as significantly
larger than unfavorable contributions of solvated hydrophobic amino acids. The methodology
might be relevant for computational in the context of computational protein design.
As the local free energy contributions around each residue also depend on the stereochemical

environment formed by adjacent residues, the results presented here are specific to crambin
in the assessed native fold and the molten-globule-like configuration. Nevertheless, because
crambin exhibits a number of stereochemical motifs also present in most other globular pro-
teins, it seems quite likely that the observed effects are - at least qualitatively - features of
most globular proteins in general.
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31 Supplemental Information

31.1 Unrestrained MD simulation for the protein entropy calculation

Figure 31.1: RMSD of the molten-globule-like conformation during an unrestrained MD simu-
lation for the protein entropy calculation or crambin. The 10 ns running average
is shown in blue.

31.2 Decrease of water-water correlations upon binding to a protein charge

To show that the mutual information between a bound water molecule and a second-shell water
molecule is smaller compared to bulk water, we considered two molecules with positions x
and y.

In bulk, the molecules have single-body entropies S(X), S(Y ) and the joint entropy
S(X,Y ). Their mutual information (correlation) is I(X,Y ) = S(X) + S(Y )− S(X,Y ).

Upon binding of the first molecule (X) to a protein charge, its entropy S̃(X) < S(X) is
reduced compared to bulk water (see main text Fig. 29.1A). As shown by the distribution of
−T∆S1 in the main text Fig. 29.1A, the second-shell molecule is almost unaffected by the
binding of X, i.e., its single-body entropy S̃(Y ) = S(Y ) remains unchanged. We furthermore
assume that the conditional entropy S̃(X|Y ) ≤ S(X|Y ) is also reduced compared to bulk
water, as the mobility of X is hindered upon binding.
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The mutual information

Ĩ(X,Y ) = S̃(X) + S̃(Y )− S̃(X,Y )

= S̃(X)− S̃(X|Y )

< S(X)− S(X|Y ) = I(X,Y )

is therefore smaller compared to bulk.
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31.3 Comparison of the local convexity with the entropic multi-body
contributions

Figure 31.2: Dependence of the multi-body correlation contributions −T∆S≥2 (relative to
bulk water) on the local convexity for the native fold (A) and the molten-globule-
like conformations (B). Charged amino acids are colored orange, polar amino
acids are shown in cyan. Apolar amino acids are colored grey. Pearson correlation
coefficients are stated in the corners of each plot.

31.4 Estimation of the denaturation temperatures from the simulation results

The temperature dependence of the enthalpy difference between folded and unfolded states
of a protein can be approximated as Dias et al. [20]

∆H(T ) = ∆H(Tc) + (T − Tc)∆CP ,

where Tc is the heat denaturation temperature and ∆CP is the heat capacity difference be-
tween folded and unfolded states, which here is assumed to be constant. In the same manner,
the entropy difference reads Dias et al. [20]

∆S(T ) =
∆H(Tc)

Tc
+ ∆CP log

(
T

Tc

)
.
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Using the simulation results ∆H300 = ∆H(300K) ≈ 228 kJ·mol−1 and −300K · ∆S300 =

−300K ·∆S(300K) ≈ −175 kJ·mol−1, the above expressions can be rewritten as

∆H(T ) = ∆H300 + (T − 300K)∆CP

∆S(T ) = ∆S300 + ∆CP log

(
T

300K

)
.

Assuming typical values of ∆CP between 5 and 15 kJ·mol−1·K−1 Dias et al. [20], Robertson
and Murphy [26], the free energy difference ∆G(T ) = ∆H(T )−T∆S(T ) has a concave shape,
as illustrated in Fig. 31.3.

Figure 31.3: Temperature dependence of ∆H(T ), ∆S(T ), and ∆G(T ) for ∆CP between 5
and 15 kJ·mol−1·K−1. The bottom panel is a zoomed-in version. Cold and heat
denaturation temperature ranges are marked in grey.

The roots of ∆G(T ), correspond to the cold (between −42 ◦C and −22 ◦C) and heat denat-
uration (between 60 ◦C and 68 ◦C) temperatures, respectively.
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31.5 Spatially resolved thermodynamic quantities on off-center slices

The following figures show the spatially resolved solvent enthalpies, entropies, and free energies
on slices across the three dimensional space, as visualized in Fig. 29.1 of the main text, but
offset by 1.0, 0.5, −0.5, and −1.0 nm in depth relative to the protein center.
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Figure 31.4: Spatially resolved solvent enthalpies, entropies, and free energies of crambin in
the native fold (A) and a molten-globule-like conformation (B), as shown in
Fig. 29.1 of the main text. Visualization-slice across the three-dimensional space
offset by ≈ 1.0 nm relative to the center of the protein.
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Figure 31.5: Spatially resolved solvent enthalpies, entropies, and free energies of crambin in
the native fold (A) and a molten-globule-like conformation (B), as shown in
Fig. 29.1 of the main text. Visualization-slice across the three-dimensional space
offset by ≈ 0.5 nm relative to the center of the protein.
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Figure 31.6: Spatially resolved solvent enthalpies, entropies, and free energies of crambin in
the native fold (A) and a molten-globule-like conformation (B), as shown in
Fig. 29.1 of the main text. Visualization-slice across the three-dimensional space
offset by ≈ −0.5 nm relative to the center of the protein.
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Figure 31.7: Spatially resolved solvent enthalpies, entropies, and free energies of crambin in
the native fold (A) and a molten-globule-like conformation (B), as shown in
Fig. 29.1 of the main text. Visualization-slice across the three-dimensional space
offset by ≈ −1.0 nm relative to the center of the protein.
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The following text resulted from a collaboration with the "Laboratory of Neurobiology", lead
by Prof. Dr. Reinhard Jahn, and is currently in preparation for submission as
A. Witkowska, L.P. Heinz, H. Grubmüller and R. Jahn "Tight docking of membranes
before fusion represents a novel, metastable state with unique properties".

The project was initiated and lead be Reinhard Jahn and Agata Witkowska, who also
carried out all experiments presented below. All MD-related research was supervised by
Helmut Grubmüller and the MD simulations were carried out by myself. The manuscript
was written by Agata Witkoswka, except for the MD-related sections, which were written by
myself and revised by Helmut Grubmüller. The entire manuscript was revised by Reinhard
Jahn.

Tight docking of membranes before fusion represents a novel,
metastable state with unique properties

Agata Witkowska1,†, Leonard P. Heinz2, Helmut Grubmüller2, Reinhard Jahn1,3

1 Laboratory of Neurobiology, Max-Planck-Institute for Biophysical Chemistry, Göttingen, Germany
2 Department of Theoretical and Computational Biophysics, Max-Planck-Institute for Biophysical Chem-

istry, Göttingen, Germany
3 University of Göttingen, Göttingen, Germany
† Current address: Department of Molecular Pharmacology & Cell Biology, Leibniz-Forschungsinstitut

für Molekulare Pharmakologie (FMP), Berlin, Germany

Abstract

Membrane fusion is a multi-step process leading to merger of two membranes that is essential
in various biological processes such as membrane trafficking or viral infection. Proteins that
catalyze membrane fusion need to overcome energy barriers to induce temporal loss of integrity
of single bilayers. Here, we investigate structural changes in membranes arrested in tight
docking intermediates that precede hemifusion. We use lipid vesicles docked with SNARE
proteins as well as atomistic molecular dynamics simulations to probe properties of such
docking interfaces. We demonstrate divalent cation-independent formation of a metastable,
protein-free intermediate characterized by local membrane thickening due to profound lipid
rearrangements induced by membrane surface dehydration.
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One Sentence Summary

Before fusion, membranes form a tight and protein-free connection and become thicker due
to dehydration and the resulting changed electrostatic interactions.

32 Main Text

Fusion of biological membranes is fundamental for the functioning of all living organisms
ranging from the cell entry of enveloped viruses to the exocytotic release of neurotransmitters.
While the proteins mediating fusion are evolutionarily unrelated and structurally diverse,
the merger of two bilayers appears to follow a common pathway involving a sequence of
structurally distinct intermediates. These begin by loose protein-mediated membrane contact
and is followed by tight apposition of the membranes while still maintaining bilayer integrity.
Then, membrane structure is disrupted by the merger of the proximal leaflets, resulting in
a fusion stalk or a hemifusion diaphragm. This is followed by the rupture of the diaphragm
(fusion pore) that then expands, thus completing membrane merger [55, 56].

While the pathway outlined above is supported by an increasing body of experimental ev-
idence and theoretical modeling [54–56, 188, 189], there are still crucial gaps in knowledge,
in particular with respect to the steps immediately before the first bilayer disruption. Impor-
tantly, these are also the steps on which proteins regulating final progression to fusion operate.
Thus, we need to clarify the structural and energetic details of these intermediates to precisely
understand the molecular mechanisms of such regulatory proteins (e.g. synaptotagmins) that
are controversially discussed since more than 20 years [189–191].

Here we focus on the tightly docked intermediate in which membranes are apposed to
each other with a distance of < 1 nm. While this state is well known from cryo-electron
microscopy (cryoEM) studies as an intermediate in events as diverse as fusion of trafficking
organelles [57, 192, 193], fusion of mitochondria [194], or cell entry of influenza virus [195],
its biophysical features have remained largely enigmatic. To reach such state, repulsive forces
between negatively charged lipid headgroups and the energy barrier involved in dehydration
need to be overcome. It is unclear, which forces are counteracting (headgroup chelation by
divalent cations, van der Waals and hydrophobic forces, protein “clamps”), if and how proteins
are cleared from these contact sites, and how the subsequent transition to stalk formation is
facilitated [55, 56, 196].

Here we have used an in vitro system in which fusion of artificial membranes is mediated by
SNARE (soluble N-ethylmaleimide-sensitive-factor attachment receptor) proteins involved in
neuronal exocytosis. These proteins are known to fuse membranes by a consecutive assembly
of complementary SNAREs between the membrane that is initiated at the N-terminal ends
and progresses towards the C-terminal membrane anchors, referred to as SNARE zippering
[189, 190]. The in vitro system was optimized for studying fusion intermediates by omitting
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Figure 32.1: Protein inclusion or depletion at the interface differentiates loose and tight dock-
ing. (A) Schematic illustration of loose and tight docking. (B) Schematic illus-
tration of a GUV-GUV docking as an experimental system to probe membrane
and protein interactions at loose and tight docking interfaces with one GUV set
containing membrane label (magenta) and Q-SNARE acceptor complex, and a
second set with labelled syb docking mutant, such as ∆84 syb (green). (C) In
experimental system presented in panel B, at loose docking interfaces trapping
and enrichment of assembled SNARE complexes occurs over time (accumulation
of green label at the interface). At tight docking interfaces due to interaction of
lipids from opposing membrane bilayers, exclusion of proteins occurs resulting in
depletion of protein (green label) signal from the docking interface. (D and E)
Example of a loosely (D) and tightly (E) docked GUV pair with syb signal (∆84
syb labeled with Oregon Green 488 (OG488)) accumulation (D) or depletion (E)
at the docking interface. Position of a line profile (graph below the images) is
marked with yellow line. Q-SNARE GUVs are labeled with a membrane dye
DiD. Scale bars 5µm.

all upstream steps regulating initial assembly [197] and consists of an activated Q-SNARE
complex in the acceptor membrane and the R-SNARE in the donor membrane. We have
shown previously that in this system the tightly docked state can be stably reproduced as a
fusion intermediate and furthermore, that it can be arrested in this state by a point mutation
in the R-SNARE synaptobrevin [57, 198]. As shown in Fig. 32.1A, membrane contact results
in N-terminal assembly of the SNARE proteins. In this state (referred to as loosely docked
state), membranes are still separated by a hydrated gap, and disruption of SNARE assembly
by the disassembly ATPase NSF or by competition with soluble synaptobrevin fragments
leads to vesicle dissociation [57]. The system then progresses to the tightly docked state that
cannot be reverted anymore by SNARE disassembly suggesting the involvement of attractive
forces of unknown nature that only operate at subnanometer distances.

To allow for using light microscopic techniques for the characterization of the intermediates,

107



Membrane Thickening 32 Main Text

we adapted this system by using GUVs (giant unilamellar vesicles) instead of large unilamellar
vesicles. Two sets of GUVs were reconstituted with complementary sets of SNARE proteins
— synaptobrevin 2 (syb) that in neurons resides on synaptic vesicles and a stabilized com-
plex containing syntaxin 1A and SNAP25a [197] that are naturally present on the plasma
membrane. In this system, syb contains a single residue deletion (∆84) that is known to trap
fusing membranes at the tightly docked state [57, 192, 198]. In one vesicle set, membrane of
a GUV was labelled allowing to control localization of lipids as well as making sure that no
hemifusion has occurred. In the other set of vesicles, syb was labelled to allow for monitoring
of protein behavior at the interface (Fig. 32.1B). When mixed together, these vesicles would
interact with each other, fuse, or get stalled at one of the fusion intermediates such as docking
or hemifusion. The low curvature of the GUV membrane leads to a higher energy barrier
for membrane merger [192], thereby increasing the probability of obtaining arrested docked
states.

If our previous assumptions that SNAREs are excluded from tight docking interfaces are
correct, we should be able to observe in such experimental setup decreased protein intensity
at docking interfaces (Fig. 32.1C left). Conversely, at arrested loose docking interfaces, fusion
complexes in trans will get trapped and thus accumulated over time, visible as increased
protein signal at the interface (Fig. 32.1C right). Indeed, with our experimental system we
were able to demonstrate that there are two distinct docking states different from hemifusion,
that are characterized by either protein accumulation at the docking interface (loose docking,
Fig. 32.1D) or protein depletion from the membrane-membrane contact site (tight docking,
Fig. 32.1E). Moreover, in some rare cases, we were also able to observe transition of these
trapped intermediates to full fusion as shown in Fig. 32.2A and B providing evidence that
tight docking can be productive fusion intermediate.

To better understand the forces that initiate and stabilize the tightly docked state we
probed the occurrence probability of loose and tight docking interfaces in various electrostatic
conditions by varying concentrations of divalent cations — Ca2+ or Mg2+ — and negatively
charged lipids PS and PI(4,5)P2 (Fig. 32.2C). We find that increasing concentration of di-
valent cations (both Ca2+ and Mg2+) increases the probability of tight docking interface
formation, also within the physiologically relevant range of ≈ 50µM. Moreover, addition of
negatively charged lipid (PI(4,5)P2) on one of the docking membranes (as present on the
plasma membrane) reduces the number of tight docking interfaces indicating a higher energy
barrier due to electrostatic repulsion (Fig. 32.2C right). Following this result, we also probed
localization of negatively charged lipids in docked vesicles with fluorescently labelled lipids
(PS-TMR or PI(4,5)P2-TMR, Fig. 32.2D and E). We did not observe depletion of these lipid
species from docking interfaces, however in case of loose docking, PI(4,5)P2 seemed to be
enriched (as visible on loose docking example in Fig. 32.2E), probably due to its interaction
with SNARE proteins (specifically syntaxin 1) that accumulate at the interface.

Previously [57] different membrane-membrane distances were observed by cryoEM. Specifi-
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Figure 32.2: Loose and tight docking are productive membrane fusion intermediates promoted
but not exclusively caused by lipid charge compensation from divalent cations
included in the surrounding buffer. (A and B) Time series of GUVs docked in
loose (A) or tight (B) way transiting to the fully fused state. Membrane and
protein labeling as in Fig. 32.1. (C) Occurrence frequency of loose and tight
docking in various concentrations of either Ca2+ or Mg2+ and in the presence of
membranes that contain various amounts of negatively charged lipids (PS and
PI(4,5)P2) (D and E) Example of a loosely and tightly docked GUV pairs with
∆84 syb labeled with OG488 and membranes containing TMR labelled PS (D)
or PI(4,5)P2 (E). PS distribution remains unaffected in both docking types while
there is an enrichment of PI(4,5)P2 at loose docking interfaces. Scale bars 5µm.
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Figure 32.3: Membrane thickening at tight docking interfaces. (A) Example liposome mem-
brane radial profiles (membrane outside docking interfaces) and line scans (mem-
branes at the interface) used for comparing membrane thickness. Scale bars
50 nm. (B) Comparison of membrane thicknesses at tight, loose, and docking-free
interfaces obtained by analyzing cryoEM images as shown in A. Boxes represent
interquartile range, and whiskers below and above indicate full data range. Line
in a box represents median and square point represents the mean. (C) Membrane
thickness variations within single membranes being involved in docking interfaces
(int) or free.

cally, in tightly docked membranes with extended, flat docking interfaces (up to 100 nm-long
for LUVs [57]) signals coming from lipid headgroups of proximal leaflets would blend to-
gether into one, thin line (see also Fig. 32.3A). We wanted to further characterize structural
rearrangements of the membranes trapped in the tightly docked state and analyzed mem-
brane thicknesses of at docking interfaces as well as membranes not involved interactions
(Fig. 32.3A–C). Strikingly, we observed profound membrane thickening localized directly at
the tight docking interfaces (Fig. 32.3). These structural changes were absent in membranes
not involved in the docking process and were not observed in vesicle pairs classified as loosely
docked.

To confirm that membrane thickening at close distances is due to membrane intrinsic prop-
erties, and to reveal the underlying molecular mechanism, we performed atomistic simula-
tions of two opposing membranes at varying distances (Fig. 33.1A), mimicking experimental
conditions but without proteins. Indeed, for distances below 1.5 nm, significant thickening
of the membranes was observed also in the simulations, independent of lipid composition
(Fig. 32.4A). We also observed shrinkage of the membrane area (Fig. 32.4B), which raises the
question which of the two changes is the primary cause. To answer this question, Fig. 32.4C
shows that the volume of the membrane decreases with the membrane distance. Because the
membrane behaves as a nearly incompressible fluid, this finding suggests that area shrinkage
drives membrane thickening, as otherwise the volume should increase. Indeed, inducing a
similar area shrinkage by increasing the lateral membrane pressure in additional simulations
(Fig. 32.4D, purple) quantitatively reproduces the thickening (green). Our simulations also
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Figure 32.4: Membrane thickening at close distances is caused by dehydration-driven
electrostatically-induced headgroup tilt and area compression. Atomistic molec-
ular dynamics simulations show changes in membrane thicknesses (A), area (B),
and volume (C) when two membranes with three different lipid compositions (see
plots) are apposed to each other at various distances. (D) Enforced membrane
area compression reproduces membrane thickening at close distances. (E) Lipid
headgroups within the inner membrane leaflet at the docking interface exhibit
higher tilt (cosφ) upon close approach. (F) Change of head-group tilt, area, and
thickness over time (average over all 500 simulation runs; for easier comparison,
all values were normalized to a range between 0 and 1). (G) Scheme proposing or-
der of events resulting in membrane thickening. (H) Redefined energy landscape
for membrane fusion.

111



Membrane Thickening 32 Main Text

showed that with decreasing distance, lipid chain order (Fig. 33.1B) as well as headgroup tilt
of the opposing membrane leaflets increase (Fig. 32.4E, blue), whereas the outwards facing
leaflets (Fig. 32.4E, red) are nearly unaffected. The strong electrostatic dipole moment of the
lipid head groups suggests [58] electrostatic interactions as the primary cause. In particular,
the larger tilt of the lipid head groups should allow for an electrostatically more favorable an-
tiparallel arrangement. Indeed, the electrostatic interaction energy between the inner leaflets
decrease upon approach, whereas the outer leaflets show only little change (Fig. 33.1C).

To confirm that lipid headgroup tilting is the actual cause of area shrinkage, in further
simulations we enforced them to tilt, which indeed reduced the membrane area (Fig. 33.1D).
We attribute these electrostatic effects to reduced shielding caused by dehydration, which
was also seen in our simulations (Fig. 33.1C). Independent support comes form the timing of
events, which follows the proposed causal chain (Fig. 32.4F and Fig. 33.1E-F). Indeed, lipid
headgroup tilting precedes area shrinkage, which precedes membrane thickening. Figure 32.4G
summarizes the causal chain of events revealed by our atomistic simulations: Due to reduced
electrostatic shielding, dehydration of the inner leaflet surfaces tilts the lipid headgroups,
which laterally contracts the membrane. This contraction causes increases lipid ordering and,
ultimately, drives thickening of the membrane.

Taken together, we now provide a coherent description of a metastable docking state that
constitutes a novel intermediate in the pathway leading to membrane fusion with unique
properties. Despite growing experimental evidence it has so far been difficult to reconcile such
a tightly docked intermediate with standard concepts in membrane biophysics. Current fusion
models agree on the notion that due to electrostatic repulsion membrane contact destabilizes
the membranes before the formation of a fusion stalk [56]. To minimize the energetic penalty of
close membrane contact, many models imply that the contact area is limited by the formation
of point-like membrane protrusions with fusion being facilitated by lipid packing defects at the
apex of a highly deformed membrane [188]. Accordingly, tightly docked membrane-membrane
interfaces reported in cryoEM studies [57, 192, 193] were considered to be stalled, off-pathway
states.

Our results significantly contribute to our understanding of the energy landscape govern-
ing the early steps of membrane fusion (Fig. 32.4H). After exergonic assembly of SNARE
proteins [199] a metastable state is reached where the membranes are still several nm apart
from each other. This is followed by an energy barrier: Water and ions must be removed
from the membrane contact zone, and the electrostatic repulsion between opposite lipid head-
groups needs to be overcome [55, 56]. We now demonstrate that a metastable state follows
that is characterized by a partially dehydrated and tight adhesion between membranes. The
contact zone is free of proteins, does not require, albeit being stabilized by, divalent cations,
and is associated with dehydration and a change in lipid organization, resulting in membrane
thickening. Progression towards stalk formation probably requires tail splaying of membrane
lipids [54] which may be facilitated by the increased hydrophobicity and the changed lipid
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head geometry at the contact site. Probably, stalks are initiated at the edge of the membrane
contact zone where increased curvature may cause lipid packing defects facilitating such tran-
sitions [192]. Furthermore, we propose that in fast secretory cells such as neurons fusion may
be arrested at this state. It is conceivable that the energy barrier separating this state from
stalk formation and subsequent fusion is moderate and can easily be overcome by accessory
proteins perturbing lipid packing at the membrane surface, such as synaptotagmins.

33 Supplementary Materials

33.1 Materials and methods

Materials

Lipids: DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), DOPE (1,2-dioleoyl-sn-glycero-3-
phosphoethanolamine), DOPS (1,2-dioleoyl-sn-glycero-3-phospho-L-serine), 18:1 biotinyl cap
PE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-(cap biotinyl)), DOPS (1,2-dioleoyl-sn-
glycero-3-phospho-L-serine), cholesterol (ovine wool), PI(4,5)P2 L-α-phosphatidylinositol-4,5-
bisphosphate (Brain, Porcine), TopFluor TMR (1-oleoyl-2-(6-((4,4-difluoro-1,3-dimethyl-5-(4-
methoxyphenyl)-4-bora-3a,4a-diaza-s-indacene-2-propionyl)amino)hexanoyl)-sn-glycero-3-)
PI(4,5)P2 and PS were purchased from Avanti Polar Lipids. Lipophilic tracer DiD,
NeutrAvidin, biotinylated bovine serum albumin, were from Thermo Fisher Scientific.

Protein expression, purification, and labelling

SNARE proteins (syntaxin-1A (183–288) [200], SNAP-25 (cysteine free) [201], synaptobrevin-
2 ∆84 C28 [202], and synaptobrevin-2 fragment (49—96) [197] were derived from Rattus
norvegicus. Proteins were expressed in Escherichia coli strain BL21 (DE3) and purified via
nickel-nitrilotriacetic acid affinity chromatography (Qiagen) followed by ion exchange chro-
matography on an Äkta system (GE Healthcare) as described before [57, 203]. The activated
Q-SNARE complex [203] consisting of syntaxin, SNAP-25, and synaptobrevin fragment 49-
–96 was obtained by overnight mixing at 4 ◦C in a buffer containing CHAPS, followed by
ion exchange chromatography (MonoQ) as described before [197, 203]. Fluorescence labeling
of synaptobrevin was carried out according to the manufacturer’s instructions using Oregon
Green 488 (OG488) iodoacetamide (Molecular Probes) [57].

Liposome and GUV preparation

For basic liposome mixtures lipids PC, PE, PS, and cholesterol were mixed in a ratio of 5:2:2:1,
respectively. In GUVs 1mol% of DOPE was replaced with biotinyl-cap-PE for immobilization
on neutravidin-functionalized coverslips [203], and for fluorescent labelling 1mol% of DOPC
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was replaced with a lipophilic tracer DiD. For localizing PS and PI(4,5)P2 1mol% was re-
placed with TMR-labelled versions of this lipids. Giant unilamellar vesicles were prepared by
electroformation from small proteoliposomes (diameter ≈ 40 nm) containing either activated
Q-SNARE complex (protein:lipid molar ratio 1:1000) or synaptobrevin (protein:lipid molar
1:500), as described before [203].

Microscopy imaging and analysis

Imaging was performed on scanning confocal microscopes Zeiss LSM 780 and 880. Classifi-
cation of docked vesicles was performed on docked GUV pairs (recognized based on labels in
each of the GUV type). Pair was classified as loosely docked if there was physical contact
between vesicles, and fluorescent signal from syb labelled with OG488 was detectable and not
reduced in comparison to protein signal on the free membrane of syb vesicle at the interface.
Pair was classified as tightly docked if syb signal was decreased or absent at the GUV-GUV
docking interface. Enrichment or decrease of syb signal at the interface was assessed by line
scans perpendicular to docking interface. Line scans and images for some visualizations were
rotated using bicubic extrapolation rotation from Fiji.

Cryo-EM image analysis

Docked liposome pairs identified in cryo-EM images with nominal magnification of 20,000–
40,000x were analyzed with a custom written script executed in Fiji [204] and GNU Octave
[205]. Briefly, membrane thickness was extracted from line (docking interfaces) or radial (free
membrane) profiles as distance between peaks denoting headgroups of both membrane leaflets.
Radial profiles were obtained with the “Radial Profile Extended” plugin for ImageJ.

Moleculad dynamics simulations

All molecular dynamics simulations were carried out using the software package Gromacs
2018 [73–77] with the CHARMM36m force field [81, 83, 84]. SETTLE [95] and LINCS [96]
constraints were applied to all water molecules and bonds to hydrogen atoms respectively,
and the system was time-propagated using the leap frog integrator with a time step of 2 fs.
Electrostatic forces were calculated using the Particle-Mesh Ewald (PME) method [160] with
a 1.2 nm real space cut-off; the same cut-off was used for Lennard-Jones potentials [42]. The
V-rescale thermostat [98] with a time constant of 0.1 ps was used. Unless stated otherwise,
all simulations were performed at 1 bar pressure, independently applied along the membrane
and the lateral directions (semi-isotropic pressure coupling). Equilibration simulations were
carried out using the Berendsen barostat with a time constant of 5.0 ps and production runs
were performed using the Parrinello-Rahman barostat [100, 101] with a time constant of 1.0 ps.
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Figure 33.1: (A) Double-membrane simulation setup. The two bilayers are shown in yellow
and orange; P-atoms are golden and pink, N-atoms are shown in blue and cyan
color. (B) Deuterium order parameters for membrane consisting of 100% DOPC
at selected distances. (C) Average leaflet-internal electrostatic potential for inner
(blue) and outer (red) leaflets depending on the bilayer distance. (D) Relation-
ship between headgroup tilt (cosφ) and area per lipid. The data of membrane
consisting of 100% DOPC at various distances is shown in green. Results from
in-plane biased simulations of separated bilayers and out-of-plane biased simula-
tions of bilayers at close distance are shown in red and blue, respectively. (E, F)
Histograms of the response times of area shrinkage, bilayer thickening, and head
group tilt, showing that the tilt precedes the area shrinkage, which precedes the
thickening.

115



Membrane Thickening 33 Supplementary Materials

Simulation setup

For each of the tested lipid compositions, a symmetric bilayer of 100 lipids per leaflet was
created using the MemBuilder II [206] webserver14. Subsequently the systems were solvated
using the Gromacs tool gmx solvate with approximately 18000 water molecules; if necessary,
charge-neutrality was achieved by adding K-ions, and further ions equivalent to 75mmol·L−1

KCl were added, mirroring the experimental conditions. Gradient descent energy minimiza-
tion was performed until a maximum force of 100 kJ·mol−1·nm−1 was reached, and the systems
were equilibrated for 50.5 ns.
The equilibrated bilayers were doubled to obtain double-membrane systems with inter-

membrane distances varying between 0.4 and 4.7 nm, as shown in Fig. 33.1A. Again, the
systems were solvated and KCl ions were added to each compartment separately, as described
above. All systems were again energy-minimized and equilibrated for a further 1 ns, before
data-acquisition runs, each lasting 200 ns, were started.
Mean distances and mean thicknesses were calculated from the last 190 ns of each simulation

run based on the distances between the average P-atom layers.

Response-time analysis

In order to determine the time sequence of headgroup tilt, area shrinkage and bilayer thick-
ening, we carried out 500 independent non-equilibrium simulations, of the transition of two
equilibrated single membranes in close contact to an equilibrated, i.e., thickened, double-
membrane.

500 start structures were obtained by taking snapshots every 1 ns from a seeding trajec-
tory of a single bilayer. The bilayers were then doubled as described above to obtain non-
equilibrated double-membranes at a distance of 0.5 nm, and each replica was simulated for
1 ns. To allow analysis of the equilibration process, trajectory coordinates were stored every
0.1 ps.
To determine the timescales of headgroup tilt, area, and thickness changes, exponential

relaxations of the form f(t) = x∞ + (x0 − x∞)e−t/τ were fitted to the data of each replica.
Here, x0 denotes the initial value of the observable (e.g. bilayer thickness at the beginning of
the simulation), x∞ is the mean in the double-membrane equilibrium, and τ is the relaxation
time. The values obtained for τtilt , τarea , and τthickn yield the time sequence of headgroup
tilt, area shrinkage, and bilayer thickening, as shown in Fig. 33.1E and F.

Enforced headgroup tilt

Headgroup tilts, measured using the angle φ between N and P atoms of each lipid and the
membrane normal (z-axis), were enforced by adding the angle-restraint term k(1−cos(φ−φ0))

to the force field. To bias separated bilayers towards more tilted headgroups, the minimum
14http://bioinf.modares.ac.ir/software/mb2/builder.php
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of the potential φ0 was placed at 90◦. Similarly, the potential minimum was placed at 0◦ to
bias double bilayers at close distance (0.5 nm) towards less tilted head groups. In both cases,
the force constant was varied between 0.5 and 30 kJ·mol−1, depending on the desired biasing
strength, and each simulation lasted 200 ns.
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34 Entropy Calculation

Obtaining sufficient sampling poses a significant challenge to any method for solvent entropy
calculation, as the 6N -dimensional configuration space of N water molecules requires an
exponentially growing number of sample points for the same sampling quality due to the
"curse of dimensionality". Furthermore, attempts to naively compute the configurational
solvent entropy as

Sconf ∝ −kB
∫
dqN

N !
%({qi}) log %({qi})

suffer from an additional — and substantial — decrease in sampling quality, as the Gibbs
factor N ! cannot be straightforwardly applied in numerical sampling schemes. In an analyt-
ical treatment, the Gibbs factor [44] fixes the overcounting problem, which arises, because
each (physically equivalent) permutation of the identical solvent molecules in a microstate
is counted separately, leading to an overcounting of microstates by N !. In a numerical ap-
proach, however, the full configuration space

∫
dqN needs to be sampled first, including all N !

physically identical molecule permutations, and only then, the result is multiplied by 1/N !.
Although the overcounting problem can be solved by switching from a molecule-based to a

grid-based entropy calculation scheme that is agnostic about the particle identity, the "curse
of dimensionality" has historically limited the accuracy of hydration shell entropy estimates.
For instance, the accuracy of the method GIST [10, 43] is limited, as it usually approximates
the full water entropy as the sum of single-body entropy terms, which are defined as integrals
in just three dimensions and are thus easy to sample. This approximation is particularly
critical when addressing the thermodynamics of the hydrophobic effect, where, as also this
work has shown, multi-body correlation effects are crucial. Conversely, the method 3D 2-Phase
Thermodynamics [11], in principle, captures the full high-dimensional configuration-entropy
integral but does so at the cost of depending on strong model assumptions, which also results
in limited accuracy.
To obtain solvation-shell entropies at a higher accuracy, I developed the new method

Per|Mut, which employs a permutation reduction to address the overcounting problem and
uses a third-order mutual information expansion to alleviate the "curse of dimensionality".
The permutation reduction maps all sample points into a smaller configuration space sub-

volume ("slice"), and thereby increases the sampling density by the Gibbs factor N ! without
changing the physics. In (three-dimensional) real space, permutation reduction localizes the
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water molecules. Instead of undergoing normal diffusive motion, each water molecule only
samples a small region around a reference position.

The mutual information expansion decomposes the high-dimensional entropy integral into
multiple low-dimensional integrals that can be sampled sufficiently. The MI terms denote
entropies due to the fluctuations of individual water molecules (first order) and the entropy
losses due to two- and three-body correlations (second and third order, respectively). The
decomposition into first-order entropies and higher-order correlations between localized water
molecules not only provides a local description of entropy and thereby a spatial resolution
but, crucially, also provides a physical interpretation of entropy changes.

All MI terms were numerically calculated using a k-nearest neighbor (kNN) density es-
timator, which calculates the local probability density at every sample point by finding its
kth neighbor and dividing by the volume of the ball that encloses the k neighbors. For Eu-
clidean space and translational entropies, nearest neighbor search algorithms are implemented
in popular machine learning libraries, such as scikit-learn [111] and the non-metric space li-
brary (NMSLib) [109, 110]. The algorithm has also been used to calculate rotational entropies
[152, 207], however, these attempts used the volume of an Euclidean n-sphere, rather than the
ball volume induced by the respective orientational metric, to calculate probability densities,
which results in an entropy bias. I, therefore, generalized the kNN algorithm for the group of
orientations SO(3)n by defining appropriate distance metrics for molecular orientations based
on quaternions and calculating their respective induced ball volumes. For fast orientational
nearest neighbor searches, I implemented the quaternion distances in the NMSLib. The rota-
tional entropy method was subsequently tested on analytical test distribution and "pinned"
water molecules, for which only rotational degrees of freedom remained. Here, I identified a
kNN value of k = 1 as the best trade-off between accuracy (expected to be better for smaller
k) and precision (expected to be better for larger k) within the realm of water entropy calcu-
lation. For the "pinned" water test systems, I furthermore obtained values within 9.6% from
reference entropies. As "pinned" water exhibits significantly stronger correlations than real
(mobile) water, I expect the entropy contributions from neglected higher-order correlations
to be larger, and therefore the test system to be a harder benchmark than unperturbed water
at ambient conditions.

To obtain a full picture of the solvent entropy, I subsequently included translational en-
tropies and the entropy loss due to correlations of translational and rotational degrees of
freedom, calculated by the same means, into Per|Mut. To assess the accuracy of the trans-
lational entropy algorithm, I used a small argon test system. Here, reference entropies were
obtained by performing a thermodynamic integration (TI) from an ideal gas, for which the
entropy is known analytically, to an interacting argon gas. Per|Mut yielded accurate entropy
values for all tested TI switching-coordinate intermediates within a maximum deviation of
5.7% from the reference values.

To furthermore test the accuracy of Per|Mut as a whole, including the translation-rotation
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correlation term, I selected hydrated n-alkanes as test systems. From both theory and ex-
periments, it is known that the hydration entropy of alkanes decreases approximately lin-
early with the alkane length [172–174]. Indeed, Per|Mut identified a linear entropy loss of
(23.0±1.1 )J·mol−1·K−1 per additional carbon atom for alkanes from ethane to decane, which
is in quantitative agreement with the reference entropy loss of (21.0±0.7) J·mol−1·K−1 per C-
atom from TI. Remarkably, the increased correlation between the translational and rotational
degrees of freedom was identified as the largest contribution to the entropy loss.

To demonstrate how Per|Mut can characterize solvation entropies with spatial resolution,
hydrated octanol was chosen as a further test system. As expected, Per|Mut identified an
entropy loss for the water molecules that form hydrogen bonds to the hydroxyl group of
octanol, equivalent to an unfavorable free energy difference of 8.55 kJ·mol−1 at 300K relative
to bulk water. Since the enthalpy change due to a hydrogen bond is ≈ 20 kJ·mol−1 [23], the
result indicates that the solvation free energy difference of octanol and octane is enthalpy-
dominated.

Close to the hydrophobic tail of octanol, the entropy losses originate from both first- and
second-order MI terms. Whereas the single-body entropy loss simply originates from the
reduced water mobility close to the solute, the entropy loss due to increased translational
and rotational correlations shows that the lack of strong interactions with the apolar octanol
tail causes stronger interactions within the remaining water. This effect has been similarly
discussed in previous publications [37, 38] and adds a new flavor to the controversial iceberg
hypothesis of hydrophobicity [36], as it attributes parts of the entropy loss not to the increased
order of "ice-like cathedrals" of solvation shell water but to increased water correlations.

To assess the role of the solvent on the stability of proteins as well as to study how the
solvent thermodynamics is affected by individual amino acids, I calculated spatially resolved
solvent enthalpies and entropies for the globular protein crambin in its native fold and in a
molten-globule-like conformation, which served as a model for the unfolded state.

For both conformations, the spatial distribution of the free energy contributions was mainly
affected by charged and polar residues. For these hydrophilic residues, the method identified
favorable interaction energies, which dominate the favorable free energy, and a less favorable
entropy that partially compensates the enthalpic contribution. Interestingly, the solvation
of charged amino acids was associated with favorable local solvent free energy differences
of up to 15 kJ·mol−1 relative to bulk water, whereas the solvation of the most hydrophobic
residues resulted in unfavorable free energy changes by maximally +5 kJ·mol−1. The result
provides evidence that the hydrophilic effect is stronger and arguably more impactful to
protein stability than the hydrophobic effect, which has also been argued previously [208–
210]. However, both effects work in concert to achieve protein stability, which typically
results from folding free energy differences of only a few 10 kJ·mol−1 [19–22]. As such, both
effects are vital for protein stability, and weakening of either of them would likely result in
protein unfolding.
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To quantify the role of the solvent in this tug of war, I calculated the remaining contributions
to the free energy difference between the native fold and the molten-globule-like conforma-
tion. The free energy balance revealed an overall difference of (53 ± 84) kJ·mol−1, which
falls within the expected range of folding free energy differences [19–22] and corresponds
to the enthalpy change due to just a few hydrogen bonds [23]. Protein-solvent interaction
energies ((−706±216) kJ·mol−1) and the protein entropy ((−673±42) kJ·mol−1) were identi-
fied as the only destabilizing contributions, whereas the protein-internal interaction energies
((648±59) kJ·mol−1) showed the largest stabilizing effect. In comparison, the solvent entropy
contributions were revealed to be strongly stabilizing and almost equally as large in magnitude
(≈ 500 kJ·mol−1), which is consistent with the picture of solvent-driven stability, discussed in
the context of cold denaturation.
Indeed, the simulation results are consistent with typical cold-denaturation temperatures

around −20 ◦C or lower [20, 24, 25]. Remarkably, more than half of the solvent entropy
contribution originated from strong induced water correlations for the molten-globule-like
conformation.
Taken together, Per|Mut reveals and quantifies a mechanistic picture of solvent entropy

contributions to protein stability. Although the discussed results are, of course, specific to the
protein crambin and the selected molten-globule-like conformation, I expect similar mecha-
nisms to also hold qualitatively for other proteins, as they are comprised of the same building
blocks, identical structural elements, and are subject to similar evolutionary pressures.
Whereas some protein free energy contributions, such as the protein-internal interaction

energies, can be straightforwardly calculated from atomistic simulations, the solvent contri-
butions, specifically the solvent entropy, has often remained elusive [20, 34, 35]. To this
end, the new method Per|Mut provides spatial resolution of the solvent entropy, as well as
a physically interpretable decomposition into single-body entropies and contributions from
multi-body correlations. To my knowledge, no other method currently allows for an entirely
nonparametric, spatially resolved entropy decomposition while capturing up to three-body
correlations. As, e.g., demonstrated by solvent-driven protein stability from induced water
correlations, the method provides new insight into the mechanics of solvent thermodynamics.
A further potentially important application of Per|Mut, which so far has not been ex-

plored, is ligand binding. Since ligands, e.g., drugs or neurotransmitters, need to displace
water molecules from the binding site before binding to a receptor, the water thermody-
namics is believed to profoundly affect the binding affinity [211–214]. Commercial programs,
such as WaterMap15, an implementation of the Inhomogeneous Solvation Theory [12, 13] that
also underlines the method GIST, are currently used to predict and optimize binding affini-
ties of ligands. However, higher accuracies in computational protein and drug design could
potentially be reached with Per|Mut.
A problem that, so far, remains unsolved is the optimal choice of the permutation reduc-

15https://www.schrodinger.com/watermap
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Figure 34.1: Sketch of the configuration space probability density at the boundary of a per-
mutation "slice". The "true" underlying density is shown in grey, the density
perceived by the kNN density estimator is shown in blue. Sample points are
drawn in red. The kNN ball of sample point xi is drawn for k = 1; its excess
volume, i.e., the volume that extends across the permutation "slice" boundary,
is shown in purple.

tion reference configuration. The reference configuration determines the shape of the permu-
tational configuration space subregion ("slice") but has no effect on entropy in the limit of
infinite sampling. At finite sampling, however, the Per|Mut entropies depend on the chosen
reference due to smoothing of the probability density at the boundaries of the permutation
"slice". Here, the "true" underlying configuration space probability density vanishes abruptly,
as sketched in Fig. 34.1. Close to this "hard edge", the kNN method yields a smoothed density,
as the kNN balls extend across the boundary of the permutation "slice" (Fig. 34.1, purple),
which results in entropy errors. Attempts to calculate the excess volumes of each kNN ball,
either using a Monte Carlo integration scheme or a second part of the MD trajectory, have
proven to solve the problem. However, these solutions are computationally inefficient and,
therefore, cannot be practically applied.

For small solutes like alkanes or octanol, the entropy error is alleviated by choosing a simple
cubic reference conformation, which minimizes the surface area of the permutation "slice" —
and therefore also the entropy error. For larger and irregularly shaped solutes like crambin,
which themselves exclude parts of the configuration space, a scheme to find the optimal
permutation reference configuration is still needed.

A further limitation of Per|Mut is that it neglects correlations between four or more
molecules from the entropy estimate. Although a third-order expansion is an advancement
compared to existing methods, higher-order correlations could potentially be significant under
certain conditions. For instance, "pinned" water molecules exhibit strong orientational corre-
lations (see chapter IV). Although normal water molecules are never strictly immobilized, it
seems plausible that higher-order correlations significantly contribute to the entropy of bound
first-hydration-shell water molecules. Indeed, data obtained after the defense of this thesis
indicates a significant effect of higher-order correlations, particularly close to solvated charges.

In the future, Per|Mut could hence be improved further by including, or at least approximat-
ing, contributions from four-body water correlations. In addition, further optimized nearest
neighbor search algorithms could significantly speed up MI calculation, which would allow for
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increased sampling to be processed within the same amount of time.
In spite of the mentioned limitations, Per|Mut is a significant step forward compared to

existing methods and will shed light onto the solvent thermodynamics of, e.g., hydropho-
bic interaction and ligand binding. My current implementation of Per|Mut is available for
download as a python package with a C++ backend for fast nearest neighbor search16.

35 Membrane Thickening

The solvent contributions to the energetics of membrane fusion constitute a further potentially
relevant application of Per|Mut. Here, two membranes are first brought into loose contact
through the assembly of SNARE proteins. Subsequently, dehydration of the proximal leaflets
occurs as the membranes transition into a tight-docking state, in which the bilayers are closely
aligned but retain their integrity.
It is thus expected that the displacement of hydration-shell water molecules upon dehydra-

tion contributes to the largely debated free energy landscape of membrane fusion [51, 53–56]
in a similar manner as the displacement of water molecules from binding pockets affects lig-
and binding affinities. A systematic analysis of the solvent’s role in membrane fusion is still
ongoing work, however, another hydration-related question arose in this context.
As shown by Witkowska and Jahn in chapter VII, the protein-free and calcium-

independent tight-docking regime of pre-fusion membranes in close contact represents a
productive metastable intermediate in a membrane fusion pathway. Tight docking thus
represents a new local minimum of the membrane fusion free energy landscape, a better
understanding of which is vital to unravel membrane fusion as a whole. Using cryo-electron
microscopy, they furthermore showed that the tight-docking state is characterized by an
increased membrane thickness.
To assess the mechanics of the observed membrane thickening, I carried out MD simulations

of double-membrane setups at decreasing mutual distances, defined by a given number of water
molecules between the bilayers. The simulations reproduced the experimentally observed
thickening of lipid bilayers at close distance for three different lipid compositions. In addition,
the area per lipid and the membrane volume decreased as the two bilayers were moved closer
together. To identify the cause of the thickening, I demonstrated that an enforced headgroup
tilt leads to an area-shrinkage, and an enforced area-shrinkage, in turn, leads to thickening.
However, this finding alone is not sufficient to conclude that the three events — headgroup
tilt, area shrinkage, and thickening — also naturally occur in this sequence. To determine the
correct sequence of events, I carried out non-equilibrium simulations. Here, two equilibrated
single membranes were instantaneously brought into close contact and simulated until the
new double-membrane equilibrium was reached. Following the rationale that the cause should
precede the effect, a response-time analysis resulted in the mechanism shown in Fig. 32.4G.
16https://gitlab.gwdg.de/lheinz/hydration_entropy

124

https://gitlab.gwdg.de/lheinz/hydration_entropy


Conclusion 35 Membrane Thickening

The lipid headgroups tilt in-plane upon dehydration, which is likely caused by their elec-
trostatic interactions, as the level of shielding by water molecules decreases (first arrow). A
more antiparallel arrangement of the headgroups is electrostatically favorable, which creates
a contraction force and therefore leads to a smaller area per lipid (second arrow). As a result,
the lipid tails are "squeezed" into a more upright position: the bilayer thickness and the lipid
tail order increase (third arrow).
It should, however, be noted that the thickening-effects at close distances strongly depend

on the way the mutual membrane distance is controlled. In fact, simulations in mimicked
grand canonical conditions (by adding a pore) with harmonic restraints between the two
inner layers of headgroups showed no thickness-effect. Harmonic restraints applied between
the two bilayer centers of mass even revealed a reversed distance-thickness relationship, as
also observed previously by Smirnova et al. [62]. It is therefore intriguing to speculate that
the isothermal-isobaric (NPT) ensemble better describes the experimental data than a grand
canonical ensemble, because the exchange of water molecules between the inter-membrane
water layer and bulk is (partially) blocked.
In summary, the collaboration has characterized a new metastable tight-docking state that is

associated with a change in lipid organization, resulting in membrane thickening. Remarkably,
neither divalent cations nor proteins are required. Although the role of lipid bilayer thickening
in membrane fusion is not yet clear, the heavily tilted headgroups could potentially facilitate
hemifusion stalk-formation, which is triggered by a lipid tail "flip" into the adjacent proximal
leaflet [54]. Understanding the molecular mechanism that underlie the thickening provides an
additional piece in the puzzle of close-contact, pre-fusion membrane physics.
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36 The Maximum Entropy Distribution for a Fixed Variance

Out of all distributions with given mean µ, variance σ2 on the support (−∞,∞), the Gaussian
distribution has the highest entropy. This statement can be easily proven using Lagrange
multipliers.
The objective function reads

F [p] = −
∫ ∞
−∞

p(x) log p(x)dx+ λ0

(∫ ∞
−∞

p(x)dx− 1

)
+ λ1

(∫ ∞
−∞

xp(x)dx− µ
)

+ λ2

(∫ ∞
−∞

x2p(x)dx− σ2

)
,

where the first term is the entropy of the distribution p(x) and the remaining terms con-
strain the unit-normalization, the mean µ, and the variance σ2, respectively, using Langrange
multipliers λ0, λ1, and λ2.
The derivative with respect to the distribution p reads

∂F
∂pdx

= − log p(x)− 1 + λ0 + λ1x+ λ2x
2.

Setting the derivative to zero yields

p(x) = eλ0−1+λ1x+λ2x2 .

From re-substituting the constraints follows the Gaussian distribution

p(x) =
1√
2πσ

e−
x2

2σ2 .

The second derivative
∂2F
∂p2dx

= − 1

p(x)
< 0

confirms that the Gaussian distribution p(x) is indeed an entropy maximum.
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