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Notation and convention

Notation

imϕ image of a map ϕ

kerϕ kernel of a homomorphism ϕ

At transpose of a matrix A

A−t inverse transposed matrix

charE characteristic function of a measurable set E

ess supE essential supremum of a measurable set,
ess supE = inf

{
b ∈ R

∣∣ {x ∈ E | x > b} is a null set
}

Cc(X) space of compactly supported continuous functions

C0(X) space of continuous functions vanishing at infinity

Cb(X) space of bounded continuous functions

‖ · ‖∞ uniform norm (supremum norm)

1 ∈ H identity operator on a Hilbert space H

B(V1;V2) space of bounded linear operators from a Banach space V1

to a Banach space V2

B(H) = B(H;H) space of bounded linear operators on a Hilbert space H

(defined via functional calculus)

B1(H) space of trace-class operators on a Hilbert space H

B2(H) space of Hilbert-Schmidt operators on a Hilbert space H

U(H) space of unitary operators on H

|T | = (T ∗T )1/2 absolute value of an operator T : H → H,
‖T‖1 trace norm of an operator T : H → H

‖T‖2 Hilbert-Schmidt norm of an operator T : H → H



vi Notation

∆G modular function of a locally compact group G

λG left regular representation of a locally compact group G

µG Plancherel measure of a locally compact group G

N0 = {0, 1, 2, · · · } natural numbers including 0

N = {1, 2, 3, · · · } natural numbers without 0

N = N ∪ {∞} countable cardinalities without 0

Convention∫
Rn e

2πi〈k,x〉f(x) dx Fourier transform of a function f ∈ L1(Rn),
Plancherel transform of a function f ∈ L1(Rn) ∩ L2(Rn)

〈·, ·〉 (complex) scalar product,
antilinear in the first argument, linear in the second argument∫

G f(a) da integration against the left Haar measure
of a locally compact group G

H ≤ G H is closed subgroup of a locally compact group G

Terminology

• neighborhood of a point: a subset of a topological space containing the point
in its interior (not necessarily open)

• action: left action

• representation: strongly continuous unitary representation



CHAPTER 1

Introduction

Wavelet transformation is a tool coming from data analysis. Roughly speaking, it has its
origin in analyzing seismic measurements in geophysics and goes back to Goupillaud,
Grossmann, and Morlet. In [38], they discussed the problem of reconstructing and
resolving underground structures in order to find reservoirs of oil and gas. The data used
for that purpose consists of a superposition of seismic waves, which are backscattered
by the different layers in the ground and are measured over time. Since information
about the thicknesses and impedances of different layers are encoded in frequencies
and timings, it is important to keep track of both. The straightforward approach
uses windowed or short-time Fourier analysis, which means that the measured signal is
decomposed into “elementary wavelets” of the form

ψb,a(t) = eit/a ψ(t− b), (1.1)

where ψ is a window function, which is typically chosen to be a Gaussian of width T ,

ψ(t) = 1√
2πT 2

e−
t2

2T2 . (1.2)

This method goes back to Gabor [36]. Goupillaud, Grossmann, and Morlet demonstrate
that because of the fixed width of the window, the timing resolution for high frequencies
drops and results in a loss of information. Instead, they propose to use a family of waves
which scale not only in frequency but also in timing. They decompose the signal into
wavelets of the form

φb,a(t) = |a|−
1
2 φ(a−1(t− b)), (1.3)

where φ can be chosen, for example, as

φ(t) =
√

2 e−
t2
T2 − e−

t2
2T2 . (1.4)

The different shapes are illustrated in Fig. 1.1. With this approach Goupillaud, Gross-
mann, and Morlet managed to improve the quality and resolution of the results.

To evaluate the measured signal f , one has to transform it into a function Vφf(b, a)
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low frequencies

Re(ψb,a(t))

medium frequencies

Re(ψb,a(t))
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Re(ψb,a(t))
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φb,a(t)
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Figure 1.1: Comparison of wavelets used for windowed Fourier transformation (WFT)
and continuous wavelet transformation (CWT) at low (a = 3), medium (a = 1), and
high frequencies (a = 1/3). ψb,a is defined in eq. (1.1) and eq. (1.2) with T = 2. φb,a is
defined in eq. (1.3) and eq. (1.4) with T = 1.

such that

f(t) =
∫
R6=0

∫
R
Vφf(b, a) · φb,a(t)

1
a2 dbda, (1.5)

stating that f is a superposition of the functions {φb,a}. In order to do that they noted
that for suitable φ the operator Vφ : L2(R)→ L2(R× R 6=0,

1
a2 dbda),

Vφf(b, a) =
∫
R
φb,a(t)f(t) dt, (1.6)

is an isometry. Hence, its adjoint operator V ∗φ : L2(R× R 6=0,
1
a2 dbda)→ L2(R),

V ∗φ F (t) =
∫
R6=0

∫
R
F (b, a) · φb,a(t)

1
a2 dbda,

has the desired property

f = V ∗φ Vφf

and Vφ defined in eq. (1.6) fulfills the relation in eq. (1.5). Goupillaud, Grossmann,
and Morlet called the operator Vφ the voice transformation. Today, it is known as
(classical) continuous wavelet transformation.
In [39], Grossmann, Morlet, and Paul showed that it is no coincidence that Vφ is
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an isometry. They stated that the map π(b, a) : φ 7→ φb,a is an irreducible unitary
representation of the affine group of the real line

Gaff(R) = Ro R 6=0 = {(b, a) | a ∈ R 6=0, b ∈ R}

with the group law (b, a) · (b′, a′) = (ab′+ b, aa′). Because of its action (b, a).x = ax+ b,
for x ∈ R, Gaff(R) is also known as the ax+ b-group. It turns out that the operator Vφ
is an intertwiner L2(R) → L2(Gaff(R)) between π and the left regular representation
of Gaff(R). The measure 1

a2 dbda is nothing but the Haar measure of Gaff(R).
This observation opened the field to pure mathematics including representation theory
of locally compact groups and abstract harmonic analysis. During the last decades the
idea developed and led to the following definition (cf. Führ [33, Chp. 2.3]).

Definition 1.1. Let G be a locally compact group and π a (strongly continuous) unitary
representation on a complex Hilbert space H. Let ψ ∈ H be a fixed, nonzero vector.

(i) Denote by Vψ the possibly unbounded (not even densely defined) operator H →
L2(G) given by Vψf(a) = 〈π(a)ψ, f〉.

(ii) If Vψ is an isometry, then it is called a (generalized) continuous wavelet transform.
In that case ψ is called an admissible vector.

Here, we use the physics convention for the scaler product. That is, 〈·, ·〉 is anti-linear
in the first and linear in the second argument. Questions which arise naturally from
the definition, are the following.

• Under which conditions does a given representation π have admissible vectors?

• How can admissible vectors be identified?

Among other things, those are the questions Führ discusses in [33]. As a first result the
author states that the continuous wavelet transformation is an intertwiner between π
and the left regular representation λG of a locally compact group G. As a consequence
of Def. 1.1, a representation π admits a continuous wavelet transformation only if it is
a subrepresentation of λG.

Proposition 1.2. Let G be a locally compact group and let π be unitary representation
of G. If π has an admissible vector then π is a subrepresentation of the left regular
representation of G (π ≤ λG).

Another useful observation is that admissible vectors of a representation can be used
to construct admissible vectors of subrepresentations.

Proposition 1.3. Let G be a locally compact group and let ρ and π be unitary represen-
tations of G on the Hilbert spaces Hπ and Hρ, respectively, such that there is a unitary
intertwiner T : Hρ → Hπ. In other words, ρ is assumed to be a subrepresentation of π.
If π has an admissible vector ψ ∈ Hπ then T ∗ψ ∈ Hρ is an admissible vector for ρ.
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Suppose for a moment that λG has an admissible vector, hence, admits a continuous
wavelet transformation. Then, Prop. 1.2 and Prop. 1.3 show that π has admissible
vectors if and only if π is a subrepresentation of λG. In one of his main results, Führ
proves that this is actually true for nonunimodular groups.

Theorem 1.4. Let G be a second countable locally compact group. Suppose that G is
nonunimodular and type I.
Then the left regular representation λG has an admissible vector. A unitary represen-
tation π of G has admissible vectors if and only if it is a subrepresentation of λG.

Using methods from abstract harmonic analysis (i.e., central decomposition of rep-
resentations) one can explicitly check whether a given representation is or is not a
subrepresentation of another one.
If G is unimodular the situation is more complicated.

Theorem 1.5. Let G be a locally compact group. Suppose that G is unimodular. Then,
λG has an admissible vector if and only if G is discrete.

Nevertheless, Führ gives an explicit necessary and sufficient criterion for the existence
of admissible vectors for representations of unimodular groups of type I in the general
case. (Details will be given in Chp. 3.2.) Again, this criterion is formulated in term of
abstract harmonic analysis.
Using the criterion found by Führ one can determine whether a given representation
admits a continuous wavelet transformation. Among those which do not admit a con-
tinuous wavelet transformation there are many representations which play an important
role, for instance in quantum mechanics, quantum optics, and particle physics. One of
the most prominent examples are the Schrödinger representations of the Heisenberg-
Weyl group together with the Wigner-Weyl transformation. During the last century,
physicists developed methods which look very similar to the continuous wavelet trans-
formation defined in Def. 1.1, which are known as coherent state transformations. The
notion “coherent state” goes back to Glauber [37] and comes from quantum optics.
Coherent state transformations can essentially be summarized as follows (cf. Führ [33,
Chp. 2.2]).

Definition 1.6. Let G be a locally compact group and π a unitary representation on a
Hilbert space H. Let (M,µ) be a measure space and let q : M → G be measurable. Let
ψ ∈ H be a fixed, nonzero vector.
The family Ψ = {π(q(m))ψ}m∈M is called a coherent state system if for all f ∈ H∫

M
| 〈π(q(m))ψ, f〉 |2 dµ(m) = ‖f‖2H.

In that case the operator WΨ : H → L2(M), WΨf(m) = 〈π(q(m))ψ, f〉, is called a
coherent state transformation.
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IfM = G, µ is the left Haar measure of G, and q is the identity map, then Def. 1.6 goes
over into Def. 1.1. In that sense, the continuous wavelet transformation is an instance of
coherent state transformations. Due to the additional degrees of freedom (i.e., a suitable
choice ofM , µ, and q), it is possible to construct coherent state transformations even if
a given representation does not admit a continuous wavelet transformation. However,
because of this degree of freedom a systematical examination is very challenging.
It turns out that the representations of interest are usually defined on homogeneous
spaces. Let X be a homogeneous G-space and suppose that there exists a nonzero,
locally finite, G-invariant measure µ on X. One can check that

[π(a)f ](x) = f(a−1.x) ∀f ∈ L2(X,µ), a ∈ G, x ∈ X,

defines a representation of G. Indeed, π is a example of so-called induced representa-
tions. Those representations often appear when constructing all irreducible representa-
tions of a group, for instance when using Mackey’s machine (see, for example, Folland
[31]) or Kirillov’s orbit method (see Kirillov [46]). Moreover, induced representations
frequently appear in physics, where X is a physical system (position space) and G is
the group of motions acting transitively on X.
The aim of this thesis is to extend the notion of continuous wavelet transformation given
in Def. 1.1 and develop generalizations. In order to do that, it is important to compile
the necessary conditions for the existence of admissible vectors from Führ [33]. After
identifying the reasons why a given representation does not admit a continuous wavelet
transformation we start to develop strategies to bypass those problems. The main focus
is on representations defined on homogeneous spaces or, in other words, on induced
representations. The motivation for this topic comes from physics, where the group G
is usually a Lie group. However, since we will make use of the differential structure only
in a few cases, G is often assumed to be a second countable locally compact group. In
fact, in representation theory most abstract statements which are true for Lie groups
also work for second countable locally compact groups and most problems occurring
for second countable locally compact groups also appear in representation theory of Lie
groups. The differential structure of Lie groups comes in handy when doing explicit
constructions like Kirillov’s orbit method.
The thesis is structured as follows. The theoretical basics which will be used later
are presented in Chp. 2. This includes the main results on locally compact spaces
and groups, their representation theory and the fundamentals of abstract harmonic
analysis. Moreover, the idea of Lie group contractions, which will be used in Chp. 3.1
and Chp. 4.4, is sketched in Chp. 2.4.
Chp. 3 gives an overview of the known facts on continuous wavelet transformations.
In Chp. 3.1 we will see the constructions and generalizations which will be relevant for
this thesis. The presented ideas are just a selected collection and Chp. 3.1 is far from
being a complete discourse. A more extensive picture can be found in the textbook [3]
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by Ali, Antoine, and Gazeau and the references therein. The knowledge on continuous
wavelet transformations developed by Führ is summarized in Chp. 3.2.
Chp. 4 contains the main part of this thesis. As explained above unimodular and
nonunimodular groups behave differently. In some sense, this discrepancy is resolved in
Chp. 4.2. In Chp. 4.3 we will see a generalized continuous wavelet transformation which
belongs to the class of coherent state transformations. The idea presented therein is
an extension and further development of de Bièvre [20]. In Chp. 4.4 the approach by
Antoine and Vandergheynst [5] and [6] is discussed. We will see that this approach has
some limitations one should be aware of when using it.
The results are summarized in Chp. 5.



CHAPTER 2
Basics

The aim of this chapter is to explain the notions and notations which will be used later.
The focus is on second countable locally compact groups, including their homogeneous
spaces, integration theory, and representation theory. The books [31] by Folland, [33]
by Führ, [44] by Kaniuth and Taylor, and [21] by Dixmier severed as an orientation for
this chapter. Many of these results can also be found in the Bourbaki series General
Topology [13], [14] and Integration [15], [16].

2.1 Locally compact groups

This section is dedicated to locally compact groups and their homogeneous spaces. To
work out why second countability is important we start with general locally compact
groups and indicate what can go wrong if they are not second countable. The results
and examples presented here are mostly taken from Folland [31, Chp. 2], and Kaniuth
and Taylor [44, Chp. 1]. In Chp. 2.1.3 some notions about measures on locally compact
spaces are clarified in order to avoid confusions. The results given in this section are
taken from Rudin [56, Chp. 2] and the textbook [27] by Elstrodt served as supplemental
material. In Chp. 2.1.7 we address standard Borel spaces which are briefly discussed in
Folland [31] and Führ [33]. Many of the results presented there seem to be well-known,
however, it is hard to find any direct references. Therefore, the statements which will
be used later are deduced from the original paper [51] by Mackey.

2.1.1 Topological groups

A topological group is a nonempty topological space G with a continuous group
structure. That means that the multiplication G × G → G, (a, b) 7→ ab and the
inversion G → G, a 7→ a−1, are continuous maps. The identity element of G will be
denoted by eG or simply by e. Every group (in the algebraic sense) can be considered
as a topological group endowed with the discrete topology. Those groups are called
discrete groups. Provided that the topology is Hausdorff, it basically describes when
infinite products of group elements are well-defined and converge. For instance, one
can easily verify that for discrete groups an infinite product is well-defined if and only
if all but finitely many factors are trivial. Some authors include the Hausdorff property
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in the definition of a topological group. However, as we will see in Cor. 2.3 below, it is
always possible to pass from a topological group to a Hausdorff topological group by
identifying elements which cannot be separated.
In this thesis, we follow the notions of Bourbaki [13]. A (subset of a) topological space
is called quasi-compact if every open cover has a finite subcover. It is called compact
if it is quasi-compact and Hausdorff. A topological space is called locally compact
if it is Hausdorff and every point has a compact neighborhood. A locally compact
topological group is called a locally compact group. As we will see in Chp. 2.1.3
and Chp. 2.1.4, locally compact spaces have a nice integration theory which comes in
handy when studying unitary representations of locally compact groups. This is the
key to abstract harmonic analysis.
Topological groups have the following properties which are well-known and often used
without mentioning them.

Proposition 2.1. Let G be a topological group.

(i) Inversion and left and right translations are homeomorphisms.

(ii) If H is a (normal) subgroup of G, then its closure H is a (normal) subgroup, as
well.

(iii) Every open subgroup of G is closed.

(iv) If G1 and G2 are topological groups, then G1 × G2 is a topological group. If G1

and G2 are locally compact, then so is G1 ×G2.

Let G be a topological group and H a subgroup. Then the quotient space G/H =
{aH | a ∈ G} is the space of left cosets endowed with the quotient topology induced
from the canonical quotient map p : G → G/H, a 7→ aH. The following proposi-
tion shows that forming quotients is a well-behaved process in the category of locally
compact groups as long as the subgroup is closed.

Proposition 2.2. Let G be a topological group and H a subgroup.

(i) The natural action G×G/H → G/H, (a, bH) 7→ (ab)H, is continuous.

(ii) The quotient map p : G→ G/H is an open map.

(iii) G/H is Hausdorff if and only if H is closed.

(iv) If H is closed and G is locally compact, then H and G/H are locally compact, as
well.

(v) If H is normal, then G/H is a topological group.

In the following we will write H ≤ G if H is a closed subgroup and H E G if H is
closed and normal.
A direct consequence of Prop. 2.1 and Prop. 2.2 is the following result.
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Corollary 2.3. Let G be a topological group.

(i) G is Hausdorff if and only if {e} is closed.

(ii) {e} is a normal subgroup and G/{e} is Hausdorff.

Hence, the Hausdorff property can be easily obtained whenever one can work with the
quotient group G/{e} instead.

2.1.2 Homogeneous spaces of locally compact groups

Let G be a locally compact group and X a topological space. An action of G on X is
a continuous map G×X → X, (a, x) 7→ ax, such that

(i) the map X → X, x 7→ ax, is a homeomorphism for all a ∈ G,

(ii) and a1(a2x) = (a1a2)x for all a1, a2 ∈ G and x ∈ X.

If for every x, y ∈ X there exists an element a ∈ G such that y = ax, then the action is
called transitive and X is called a homogeneous G-space (or shortly a homogeneous
space).

Remark 2.4. Here, the notion “action” means left action. In contrast to left actions
one can define right actions which have the property that

(ii’) a1(a2x) = (a2a1)x for all a1, a2 ∈ G and x ∈ X

instead of (ii). Right actions often appear as actions on spaces of right cosets. If H is
a closed subgroup of a locally compact group G, then

G×H\G→ H\G, (a,Hb) 7→ Hba,

defines a right action.
Both, left and right actions, are in one-to-one correspondence. If G×X → X, (a, x) 7→
ax, is a right action, then G×X → X, (a, x) 7→ a−1x is a left action.
Throughout this thesis only left actions will appear and are referred to as actions.

An important class of homogeneous spaces are quotient spaces, introduced in Chp. 2.1.1.
From the algebraic point of view any homogeneous space is (G-equivariant) isomorphic
to a quotient space. In the category of locally compact groups the situation is more
complicated.
Let G be a locally compact group and X a homogeneous space. For a fixed element
x ∈ X let

Gx := {a ∈ G | ax = x}

be the stabilizer of x. By the universal property of quotient spaces the map fx : G→
X, a 7→ ax, factors through the canonical quotient map px : G → G/Gx, i.e., there
exists a unique continuous map Fx : G/Gx → X such that the diagram
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G

G�Gx X

px fx

∃!Fx

commutes. Fx is bijective and G-equivariant. Since px is open, Fx is a homeomorphism
if and only if fx is open. However, fx is not necessarily open as the following example
shows.

Example 2.5. Let Rd be the set of real numbers endowed with the discrete topology
and let R be endowed with the standard topology (induced from its Euclidean norm).
The map

Rd × R→ R, (a, x) 7→ a+ x,

is an action, which is free and transitive. The map

Rd → R, a 7→ a+ 0,

is continuous and bijective. However, it is not open and therefore not a homeomor-
phism.

By specifying requirements on the topology of G we can get the following result.

Proposition 2.6. Let G be a σ-compact locally compact group and let X be a homo-
geneous G-space. Then X is homeomorphic to G/H, where H is the stabilizer of some
point in X.

2.1.3 Measures on locally compact spaces

Locally compact groups, or in general all locally compact spaces, have the pleasant
property that it is possible to define a nice integration theory. There are essentially
two ways to define integrals. On the one hand, an integral on a measurable space (for
instance a topological space endowed with the Borel σ-algebra) can be directly con-
structed from a measure on its σ-algebra. This procedure is standard and can be found
in any introductory textbook on analysis (see Rudin [56] for example). On the other
hand, every integral defines a (positive) linear functional from a vector space of func-
tions to the complex numbers. Therefore, it seems legit to interpret a (positive) linear
functional on a suitable vector space of functions (for example the space of compactly
supported functions) as an integral. For locally compact spaces both approaches are
closely related and enjoy several convenient properties.
Let X be a topological Hausdorff space. The σ-algebra generated by its open subsets
is called Borel σ-algebra. A subset of X is called a Borel set if it is contained in the
Borel σ-algebra. A Borel measure is a measure defined on the Borel σ-algebra.
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Definition 2.7. Let X be a topological space and let µ be a Borel measure on X.

(i) A Borel set E ⊆ X is called inner regular if

µ(E) = sup{µ(K) | K ⊆ E, K compact}.

(ii) A Borel set E ⊆ X is called outer regular if

µ(E) = inf{µ(U) | U ⊇ E, U open}.

(iii) µ is called inner (respectively outer) regular if every Borel set is inner (re-
spectively outer) regular. If µ is both, inner and outer regular, then µ is called
regular.

(iv) µ is called inner regular on open sets if every open set is inner regular.

(v) µ is called locally finite if every point of X has an open neighborhood U such
that µ(U) <∞.

(vi) µ is called a Radon measure if it is inner regular on open sets, outer regular,
and locally finite.

(vii) µ is called σ-finite if there exists a countable family (En)n∈N of Borel sets with
µ(En) <∞ for all n ∈ N and ⋃n∈NEn = X.

This terminology is not uniformly used in all textbooks. In particular, the definition
of Borel and Radon measure can differ. The notions used here are consistent with
Folland [31] and Kaniuth and Taylor [44]. Indeed, at least in Chp. 1 of Kaniuth and
Taylor [44] there seems to be some confusion. The authors use the Riesz-Markov-
Kakutani Representation Theorem (see Thm. 2.9 below) to construct a regular Borel
measure. However, the Riesz-Markov-Kakutani Theorem only guaranties the existence
of a Radon measure, which is not necessarily regular. Anyhow, this seems be some
inconsistency in notions rather than conceptional discrepancy. The aim of this section
is to avoid this kind of confusion.
The properties of Borel measures depend on the topology of the underlying space.
Among others they have the following features, which are direct consequences of the
respective definitions.

Proposition 2.8. Let µ be a Borel measure on a topological Hausdorff space X.

(i) If µ is locally finite, then µ is finite on compact sets.

(ii) If X is locally compact, then µ is locally finite if and only if µ is finite on compact
sets.

(iii) If X is σ-compact and µ is locally finite, then µ is σ-finite.
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Let Cc(X) = Cc(X;C) be the space of continuous, compactly supported complex-valued
functions on X. For any Radon measure µ on X the map λµ : Cc(X)→ C,

λµ(ϕ) :=
∫
X
ϕ dµ,

defines a linear functional. λµ is positive, i.e., if ϕ(x) ≥ 0 for all x ∈ X then λµ(ϕ) ≥ 0.
The Riesz-Markov-Kakutani Representation Theorem states that every positive linear
functional comes from a Radon measure.

Theorem 2.9 (Riesz-Markov-Kakutani Representation Theorem).
Let X be a locally compact space and let λ be a positive linear functional. Then there
exists a unique Radon measure µ on X such that

λ(f) =
∫
X
f(x) dµ(x) .

If X is σ-compact, then µ is regular.

The detailed proof can be found in Rudin [56, Chp. 2].
Regular Radon measures are preferable since they behave – from the topological point
of view – as one would expect. For example every Borel set E which is locally null is
a null set. (Locally null means that for every Borel set F ⊆ X of finite measure the
intersection E ∩ F is a null set.) If µ is a regular Borel measure and E is locally null
then, in particular, µ(K) = 0 for every compact K ⊆ E and hence by inner regularity
it follows that µ(E) = 0. For nonregular Radon measures this is, in general, not true
as the following example shows.

Example 2.10. Let Rd be the set of real numbers endowed with discrete topology and
let R be the real numbers endowed with standard topology. Denote the Lebesgue measure
of R by µ. Then the product space X = R × Rd is locally compact as R and Rd are.
A subset A ⊆ X is open, closed, or measurable if and only if A ∩ (R × {y}) is open,
closed, or measurable for all y ∈ Rd. K ⊆ X is compact if and only if K ∩ (R × {y})
is compact for all y ∈ Rd and there is a finite subset I ⊆ Rd such that K ⊆ R× I. Let
ν be the Radon measure on X corresponding to the linear functional λ : Cc(X)→ C

λ(f) =
∑
y∈Rd

∫
R
f(x, y) dµ(x) .

Note that the sum is well-defined since only finitely many summands are nonzero.
Consider the closed Borel set E = {0} × Rd. On the one hand, every open set U ⊆
X containing E has infinite measure as any open subset of R has positive Lebesgue
measure. Hence µ(E) is infinite by outer regularity. On the other hand, E is locally
null as every compact set K = {0} × I ⊂ E is a null set.

However, such problems do not occur if X is σ-compact or even second countable.
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Theorem 2.11. Let X be a locally compact space.

(i) Suppose that X is σ-compact. Then every Radon measure is regular.

(ii) Suppose that X is second countable. Then every locally finite Borel measure is
regular.

The first statement follows from Thm. 2.9. If µ is a Radon measure, then there exists
a unique Radon measure µ′ such that∫

X
f(x) dµ(x) =

∫
X
f(x) dµ′(x) ∀f ∈ Cc(X),

which is regular. By uniqueness it follows that µ = µ′ and hence µ is regular. The
proof for the second statement can be found in Elstrodt [27, Chp. VIII, Cor. 1.12].
Another useful result is the Fubini-Tonelli Theorem.

Theorem 2.12 (Fubini-Tonelli). Let µ and ν be two σ-finite measures on locally com-
pact spaces X and Y .

(i) For all nonnegative measurable functions f : X × Y → R≥0, we have∫
X

(∫
Y
f(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X
f(x, y) dµ(x)

)
dν(y) .

(ii) For all measurable functions f : X × Y → C satisfying∫
X

(∫
Y
|f(x, y)| dν(y)

)
dµ(x) =

∫
Y

(∫
X
|f(x, y)| dµ(x)

)
dν(y) <∞

we have ∫
X

(∫
Y
f(x, y) dν(y)

)
dµ(x) =

∫
Y

(∫
X
f(x, y) dµ(x)

)
dν(y) .

In the following we will frequently change the order of integration. Each time we do
so, Thm. 2.12 is applied without mentioning it.

2.1.4 Haar measure

Let G be a locally compact group. A measure µ is called left-invariant (respectively
right-invariant) if µ(aE) = µ(E) (respectively µ(Ea) = µ(E)) for all a ∈ G and all
Borel sets E. One of the most important results about locally compact groups is that
they admit a nontrivial left-invariant measure.

Theorem 2.13. Let G be a locally compact group. Then there exists a nontrivial left-
invariant Radon measure µ on G, called left Haar measure. It is unique up to scalar
multiples: If ν is another left Haar measure then µ = c · ν for some c ∈ R>0.
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Thm. 2.13 is proven by constructing a nonzero positive left-invariant functional on
Cc(G). Then Thm. 2.9 guaranties the existence of a Haar measure. Details on the
construction can be found in Folland [31, Chp. 2.2].
If µ is left-invariant then µr, defined by µr(E) = µ(E−1), is right-invariant and called a
right Haar measure. In that way it is always possible to obtain a right Haar measure
from a left Haar measure and vice versa. Therefore, left- and right-invariance play a
symmetric role and it does not matter which one is used to describe integration on G.
In this thesis the convention is to fix a left Haar measure µ and to write∫

G
f(a) da :=

∫
G
f(a) dµ(a) .

Integration against µr is denoted by∫
G
f(a) dµr(a) =

∫
G
f(a) da−1 .

For some b ∈ G the translated measure µb, defined by µb(E) = µ(Eb), is still left-
invariant. By uniqueness of the left Haar measure there exists a positive constant cb
such that µb = cbµ. The function ∆G : G → R>0, ∆G(b) = cb, is called the modular
function of G. It has the following properties.

Proposition 2.14. The modular function ∆G : G → R>0 is a continuous homomor-
phism. For f ∈ Cc(G) and b ∈ G it satisfies∫

G
f(ab) da = ∆G(b−1)

∫
G
f(a) da,∫

G
f(a) da−1 = ∆G(a−1)

∫
G
f(a) da .

If ∆G ≡ 1, then G is called unimodular.
If G is compact, then ∆G(G) is a compact subgroup of R>0. As {1} is the only compact
subgroup of R>0, it follows that G is unimodular.
As ∆G is a homomorphism and R>0 is commutative, it follows directly that [G,G] E G

lies in the kernel of ∆G. By the same argument as before G is unimodular if G/[G,G]
is compact. In particular, simple and semisimple groups are unimodular.

Proposition 2.15. Let G be a connected Lie group. Denote the adjoint action of G
on its Lie algebra g by Ad, the adjoint action of g on itself by ad, and the exponential
map g→ G by expg.
Then ∆G(a) = det[Ada−1 ] and ∆G(expg(X)) = exp(−Tr[adX ]).

From Prop. 2.15 it follows that connected nilpotent Lie groups are unimodular, as by
Engel’s Theorem adX is nilpotent for all X in its Lie algebra and, therefore, its trace
vanishes. Nevertheless, many solvable Lie groups are nonunimodular like the Lie group
of affine transformations x 7→ ax+ b on R, for example.
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2.1.5 Function spaces

Let X be a locally compact space. Let C(X) = C(X;C) be the space of complex-
valued continuous functions on X. C(X) is endowed with the topology of locally
uniform convergence. That is the topology induced by the semi-norms

pK(f) :=
∥∥f |K∥∥∞ := sup

x∈K
|f(x)|

for all compact subsets K ⊆ X.
Let Cb(X) = Cb(X;C) be the space of continuous bounded functions on X. Cb(X)
is a linear subspace of C(X) and it is endowed with topology of uniform convergence,
which is induced by the norm

‖f‖∞ := sup
x∈X
|f(x)|.

Cc(X) = Cc(X;C) is the space of continuous compactly supported functions on X.
For all compact subsets K ⊆ X let Cc(X,K) be the subset of Cc(X) consisting of
all functions f ∈ Cc(X) with supp(f) ⊆ K. Endowed with the topology of uniform
convergence, each Cc(X,K) is a closed subspace of C(X). The space Cc(X) is endowed
with the direct limit topology

Cc(X) = lim
−→

Cc(X,K)

over all compact subsets K ⊆ X.
The inclusion Cc(X) ↪→ Cb(X) ⊆ C(X) is continuous, however, Cc(X) is not closed in
C(X) unless X is compact. Its closure is denoted by C0(X) = C0(X;C) and can be
described as follows. A continuous function f is contained in C0(X) if and only if the
sets {x ∈ X | |f(x)| > ε} are compact for all ε > 0. Another description comes from
the one-point compactification X = X ∪ {∞} of X. C0(X) consists of all f ∈ C(X)
vanishing at ∞. The functions in C0(X) are said to vanish at infinity.
Let G be a locally compact group. The left and right translation Lb and Rb for
b ∈ G are defined by

Lbf(a) = f(b−1a), Rbf(a) = f(ab), ∀a ∈ G.

Both define actions of G as

Lbc = LbLc, Rbc = RbRc, ∀b, c ∈ G.

A function f : G→ C is called left or right uniformly continuous if

lim
b→e
‖Lbf − f‖∞ = 0 or lim

b→e
‖Rbf − f‖∞ = 0,
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respectively. Denote the spaces of left and right uniformly continuous functions by
Clu(G) and Cru(G), respectively.

Proposition 2.16. Every compactly supported continuous function is left (right) uni-
formly continuous. Every left (right) uniformly continuous function is continuous.

Cc(G) ⊆ Clu(G) ⊆ C(G)

Proof. The proof for the first inclusion can be found in Folland [31, Prop. 2.6].
For the second part let f ∈ Clu(G). Let a ∈ G and ε > 0. Since f is left uniformly
continuous, there exists an open neighborhood V ⊆ G of eG such that ‖Lbf − f‖∞ < ε

for all b ∈ V . Then for all b in the open neighborhood U = V −1a of a the function f
satisfies |f(b)− f(a)| < ε. Therefore f is continuous at any g ∈ G.
For Cru(G) the proof works analogously.

Prop. 2.16 can be used to show the following result.

Proposition 2.17. Let H ≤ G be a closed subgroup and denote the quotient space
G/H by X. For f ∈ Cc(G) let fH : G→ C be the function given by

fH(a) =
∫
H
f(ah) dh .

(i) For all compact subsets K ⊆ G with nonempty interior, there exists a constant
cK > 0 such that

‖fH‖∞ ≤ cK‖f‖∞, ∀f ∈ Cc(G,K).

(ii) fH is continuous for all f ∈ Cc(G).

(iii) There exists a unique function fX ∈ Cc(X) such that fX(aH) = fH(a).

Proof.

(i) The proof of the first part can be found in Kaniuth and Taylor [44, Prop. 1.10].

(ii) Let f ∈ Cc(G). By Prop. 2.16 it is sufficient to show that fH is left uniformly
continuous. Let ε > 0. Let K ⊆ G be a compact neighborhood of eG and denote
the compact subset K · supp(f) ⊆ G by L. Since f is uniformly continuous, there
exists an open neighborhood U ⊆ G of eG such that

‖Lbf − f‖∞ <
ε

cL

for all b ∈ U . W.l.o.g. assume that U ⊆ K. Then for all b ∈ U the function
Lbf − f lies in Cc(G,L) as

supp(Lbf − f) ⊆ b supp(f) ∪ supp(f) ⊆ L.
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Therefore, the function LbfH − fH = (Lbf − f)H satisfies

‖LbfH − fH‖∞ ≤ cL‖Lbf − f‖∞ < ε ∀b ∈ U.

(iii) Let f ∈ Cc(G). By the universal property of the quotient space there exists a
continuous map fX : X → C such that fX(aH) = fH(a) for all g ∈ G. Since
the canonical quotient map p : G → X is continuous, the subset p(supp(f)) is
compact. For supp(fX) ⊆ p(supp(f)) it follows that fX ∈ Cc(X).

Fix some left Haar measure on G. For 1 ≤ p < ∞ let Lp(G) = Lp(G;C) be the space
of equivalence classes of measurable functions f : G→ C satisfying

‖f‖pp :=
∫
G
|f(a)|p da <∞,

where two measurable functions on G are equivalent if they coincide on a conull subset.
For all 1 ≤ p <∞, Lp(G) is a Banach space. Moreover, L2(G) is a Hilbert space.
L∞(G;C) = L∞(G) is the space of measurable functions which are essentially bounded.
That is, there exists a bound B > 0 such that

{f > B} := {a ∈ G | |f(a)| > B}

is a locally null set. Again, two functions are identified if they coincide on s subset
which has a locally null complement. The norm ‖f‖∞ is defined as the infimum of all
bounds B for which {f > B} is locally null.
Let f ∈ L1(G) and let g ∈ Lp(G), for 1 ≤ p ≤ ∞. The convolution f ∗ g ∈ Lp(G) of
f and g is defined by

(f ∗ g)(a) =
∫
G
f(b)g(b−1a) db .

2.1.6 Quasi-invariant measures on the quotient space

In Chp. 2.1.4 we saw that every locally compact group G has a left Haar measure. Of
course every closed subgroup H ≤ G has a left Haar measure, as well, and for all a ∈ G
the positive linear functional

f 7→
∫
H
f(ah) dh

on Cc(aH) → C defines by the Riesz-Markov-Kakutani Representation Theorem (cf.
Thm. 2.9) a nonzero Radon measure µaH on aH. By left invariance of the Haar measure
on H, it only depends on the left coset aH and not specifically on a.
In this chapter we study the relationship between the Haar measure of G and the
measures µaH on its left cosets. In particular, we investigate the existence of a measure
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ν on G/H such that∫
G
f(a) da =

∫
G�H

∫
bH
f(a) dµbH(a) dν(bH) ∀f ∈ Cc(G). (2.1)

Here, we used that f |bH ∈ Cc(bH) for any f ∈ Cc(G), as bH ⊆ G is a closed subset.
The measure ν plays an important role. If such a measure exists, then it is necessarily
G-invariant. Conversely, if there exists a nontrivial G-invariant Radon measure one can
show that it satisfies eq. (2.1) up to a constant positive factor.

Let H be a closed subgroup of a locally compact group G. Let X = G/H be the
quotient space of left cosets and denote the canonical quotient map G → X by p. To
begin with let ν be a Radon measure on G/H and define the positive linear functional
λ : Cc(G)→ C by

λ(f) =
∫
X

∫
x
f(a) dµx(a) dν(x) .

Let µλ be the corresponding Radon measure on G and suppose that µλ has a continuous
density with respect to the Haar measure, i.e., there is a continuous map ρ : G→ R≥0

such that

λ(f) =
∫
G
f(a) dµλ(a) =

∫
G
f(a)ρ(a) da, ∀f ∈ Cc(G). (2.2)

For f ∈ Cc(G) and h ∈ H, define fh ∈ Cc(G) by fh(a) = ∆G(h−1)f(ah−1). When
computing λ(fh) we get on the one hand

λ(fh) =
∫
G
fh(a)ρ(a) da =

∫
G

∆G(h−1)f(ah−1)ρ(a) da =
∫
G
f(a)ρ(ah) da . (2.3)

On the other hand, since fh satisfies∫
bH
fh(a) dµbH(a) =

∫
H
fh(bh′) dh ′ =

∫
H

∆G(h−1)f(bh′h−1) dh ′

= ∆H(h)
∆G(h)

∫
H
f(bh′) dh ′ = ∆H(h)

∆G(h)

∫
bH
f(a) dµbH(a),

we obtain

λ(fh) = ∆H(h)
∆G(h)λ(f) =

∫
G
f(a)∆H(h)

∆G(h)ρ(a) da . (2.4)

As eq. (2.3) and eq. (2.4) hold for all f ∈ Cc(G), the function ρ has the property that

ρ(ah) = ∆H(h)
∆G(h)ρ(a), ∀a ∈ G, h ∈ H. (2.5)

From eq. (2.2) and eq. (2.5) it follows that the decomposition in eq. (2.1) only exist if
∆G|H = ∆H . In general, there does not exist a G-invariant measure on X and, thus,
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we have to work with a weaker class of measures, namely with quasi-invariant ones.

Definition 2.18. Let H ≤ G be locally compact groups and denote G/H by X. Let µ
be a Radon measure on X.

• Recall that for a ∈ G the translated measure µa is given by µa(E) = µ(aE) for
all Borel sets E ⊆ X.

• µ is called quasi-invariant if µ 6= 0 and µa is equivalent to µ for all a ∈ G.

To show that quasi-invariant measures exist we introduce the following auxiliary func-
tions.

Definition 2.19. Let H ≤ G be locally compact groups. Denote G/H by X and the
canonical quotient map G→ X by p.

(i) A Bruhat section for (G,H) is a continuous map β : G→ R≥0 with the property
that supp(β) ∩ p−1(K) is compact for all compact subsets K ⊆ X and∫

H
β(ah) dh = 1 ∀a ∈ G.

(ii) A rho-function for (G,H) is a measurable function ρ : G→ R≥0 which is locally
integrable, i.e., ∫

K
ρ(a) da <∞

for all compact subsets K ⊆ G, and with the property that

ρ(ah) = ∆H(h)
∆G(h)ρ(a)

for locally almost all a ∈ G and all h ∈ H.

Proposition 2.20. Let H ≤ G be locally compact groups. There exists a Bruhat section
and a continuous strictly positive rho-function for (G,H).

Proof.

(i) By Bourbaki [12, Chp. III.4.6 Prop. 13], quotient spaces of locally compact groups
are paracompact and, by Bourbaki [14, Chp. IX.4.4 Cor. 1], there exists a partition
of unity subordinate to any open cover. Since G and X are locally compact, there
exist partitions of unity {φi}i∈I ⊆ Cc(G) and {ψj}j∈J ⊆ Cc(X) of G and X,
respectively, by compactly supported functions. For every j ∈ J there exist
finitely many subsets Ij ⊂ I such that

supp(ψj) ⊆
⋃
i∈Ij

p({a ∈ G | φi(a) > 0}).
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The function Ψj : G→ [0, 1],

Ψj(a) = ψj(p(a)) ·
∑
i∈Ij

φ(a),

is continuous and compactly supported. Moreover, it satisfies

p(supp(Ψj)) = supp(ψj) ∩
⋃
i∈Ij

p({a ∈ G | φi(a) > 0}) = supp(ψj).

The function Ψ = ∑
j∈J Ψj is well-defined and continuous, since the sum is locally

finite, and supp(Ψ) ∩ p−1(K) is compact for all compact sets K ⊆ X. Moreover,
Ψ̃ : G→ R≥0 defined by

Ψ̃(a) =
∫
H

Ψ(ah) dh

is well-defined, continuous and strictly positive. Therefore, the function β : G →
R≥0,

β(a) = Ψ(a)
Ψ̃(a)

,

is a Bruhat section.

(ii) The function ρ : G→ R>0,

ρ(a) =
∫
H

∆G(h)
∆H(h)β(ah) dh

is a strictly positive rho-function. From the property that supp(β) ∩ p−1(K) is
compact for all compact subsets K ⊆ X and by Prop. 2.17, it follows that ρ is
continuous.

Proposition 2.21. If β is a Bruhat section, then βa : b 7→ β(ab) is a Bruhat section,
as well.

In the discussion at the beginning of this chapter we saw that there is close relation
between measures on X and rho-function. The following proposition makes this con-
nection more precise.

Proposition 2.22. Let H ≤ G be locally compact groups and denote G/H by X. For
every rho-function ρ there exists a Radon measure νρ on X such that∫

X

∫
x
f(b) dµx(b) dνρ(x) =

∫
G
f(a)ρ(a) da ∀f ∈ Cc(G), (2.6)
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where µaH is the measure on aH ⊆ G, defined by∫
aH

f(b) dµaH(b) =
∫
H
f(ah) dh .

Proof. Denote the canonical quotient map G → X by p and let β : G → R≥0 be a
Bruhat section. Then, for every ϕ ∈ Cc(X), the function β · (ϕ ◦ p) is in Cc(G) and is
a nonnegative function whenever ϕ is. Thus, the functional λρ : Cc(X)→ C,

λρ(ϕ) =
∫
G
β(a)ϕ(aH)ρ(a) da ∀ϕ ∈ Cc(X),

is well-defined and positive, and, therefore, it yields a Radon measure νρ such that∫
X
ϕ(x) dνρ(x) = λρ(ϕ) =

∫
G
β(a)ϕ(aH)ρ(a) da .

It remains to show eq. (2.6). Let f ∈ Cc(G) and fX ∈ Cc(X) as in Prop. 2.17, i.e.,
fX(aH) =

∫
H f(ah) dh. Then,∫

X

∫
x
f(a) dµx(a)︸ ︷︷ ︸

=fX(x)

dνρ(x) =
∫
G
β(a)

(∫
H
f(ah) dh

)
︸ ︷︷ ︸

=fX(aH)

ρ(a) da

=
∫
H

∫
G
β(a)f(ah)ρ(ah)∆G(h) da∆H(h−1) dh

=
∫
H

∫
G
β(ah−1)f(a)ρ(a) da∆H(h−1) dh

=
∫
H

∫
G
β(ah)f(a)ρ(a) da dh

=
∫
G
f(a)ρ(a) da .

In particular, νρ does not depend on the choice of the Bruhat section.

Theorem 2.23. Let G be a locally compact group and H ≤ G a closed subgroup and
denote G/H by X. Let ρ : G → R>0 be a continuous strictly positive rho-function
for (G,H) (guaranteed by Prop. 2.20) and let νρ be the corresponding Radon measure
corresponding to ρ (cf. Prop. 2.22).
Then νρ is quasi-invariant. In particular, there exists a continuous strictly positive
function σ : G×H → R>0 such that∫

X
f(x) dνρ(ax) =

∫
X
f(x)σ(a, x) dνρ(x) ∀f ∈ Cc(X). (2.7)

σ is given by

σ(a, bH) = ρ(ab)
ρ(b) ∀a, b ∈ G (2.8)
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and satisfies

σ(a, b, x) = σ(a, bx)σ(b, x) ∀a, b ∈ G, x ∈ X. (2.9)

Proof. Since ρ is strictly positive and continuous, the function G×G→ R>0, (a, b) 7→
ρ(ab)
ρ(b) is well-defined, continuous, and strictly positive. For all a, b ∈ G and h ∈ H it
satisfies

ρ(abh)
ρ(bh) = ρ(ab)

ρ(b)

and, therefore, there exists a continuous strictly positive function σ : G × H → R>0

such that

σ(a, bH) = ρ(ab)
ρ(b) ∀a, b ∈ G.

By construction σ satisfies eq. (2.8) and, therefore, eq. (2.9), which is a direct conse-
quence of eq. (2.8).
To show eq. (2.7) let β be a Bruhat section for (G,H) and let f ∈ Cc(X). Then for all
a ∈ G ∫

X
f(x) dνρ(ax) =

∫
X
f(a−1x) dνρ(x)

=
∫
G
β(b)f(g−1bH)ρ(b) db

=
∫
G
β(ab)f(bH)ρ(ab)

ρ(b) ρ(b) db

=
∫
X
f(x)σ(a, x) dνρ(x),

where we used that
∫
H β(abh) dh = 1 for all a, b ∈ G. In particular, it follows that νρ

is quasi-invariant.

Corollary 2.24. Let H ≤ G be locally compact groups and denote G/H by X. There
exists a G-invariant Radon measure on X if and only if ∆G|H = ∆H .

2.1.7 Standard Borel spaces

Given a locally compact group G and a closed subgroup H ≤ G it will turn out to
be very helpful to have a measurable function q : G/H → G such that p(q(x)) = x,
where p : G → G/H denotes the quotient map. If such a function q exists then every
element a ∈ G can be uniquely written as a = q(x)h where x = p(a) ∈ G/H and
h = q(p(a))−1a ∈ H. Moreover the map

G�H ×H → G, (x, h) 7→ q(x)h,
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is a measurable isomorphism and we will see that there exists a measure ν on G/H

such that∫
G
f(a) da =

∫
G�H

∫
H
f(q(x)h) ∆G(h)

∆H(h) dh dν(x) ∀f ∈ Cc(G).

More generally, let X and Y be measurable spaces and let p : X → Y be a measurable
surjective map. Ameasurable transversal for p is a measurable subset E ⊆ X which
meets each of the sets p−1(y) for y ∈ Y in exactly one point. A measurable cross-
section is a measurable map q : Y → X satisfying p◦q = idY . From the algebraic point
of view there is a one-to-one correspondence between transversals and cross-sections.
However, if one is measurable the other one need not be measurable.
The results presented in this section are mostly due to Mackey [51]. The notions of
measurable transversals and measurable cross-sections, however, are taken from Führ
[33] and they are inconsistent with the notions used in [51]. Note that Mackey as well
as Dixmier and other authors who published during that time use the word “separable”
to refer to second countable topological spaces. Indeed, in [21, B.31] Dixmier states
that a topological space is called “separable” if its topology has a countable base.
To investigate the existence of measurable transversals and cross-sections and their
relation we need the following definitions, which are due to Mackey [51].

Definition 2.25. Let X be a measurable space.

(i) X is called countably separated if there exists a countable family of measurable
subsets (En)n∈N separating points in X, i.e., every point x ∈ X satisfies

{x} =
⋂
x∈En

En.

(ii) X is called countably generated if there exists a countable family of measurable
subsets separating points in X and generating the measurable structure of X.

(iii) X is called a standard Borel space if it is measurably isomorphic to a complete
separable metric space endowed with its Borel structure.

Standard Borel spaces can be considered as the Borel spaces coming from a second
countable locally compact space. In fact, an even stronger characterization is true.

Theorem 2.26. Let X be a standard Borel space. Then X is either countable and
endowed with the discrete measurable structure or X is measurably isomorphic to the
interval [0, 1] ⊆ R endowed with the Borel structure generated by the standard topology
of R.

Thm. 2.26 is due to Kuratowski [47]. Conversely, there is the following result.

Theorem 2.27. Every second countable locally compact space endowed with its Borel
structure is a standard Borel space.
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Proof. Let X be a second countable locally compact space. By Bourbaki [14,
Chp. IX.2.9, Cor. of Prop. 16] X is metrizable and σ-compact. Then by Bourbaki [14,
Chp. IX.6.1, Cor. of Prop. 2] X is a separable and completely metrizable space.

Theorem 2.28. Let p : X → Y be a surjective measurable map from a standard Borel
space X to a countably separated measurable space Y . Then every countable separating
family of measurable subsets of Y generates the measurable structure of Y . In partic-
ular, the measurable structure of Y coincides with the quotient measurable structure
coming from p : X → Y . I.e., a subset E ⊆ Y is measurable if and only if p−1(E) ⊆ X
is measurable.

Proof. Standard Borel spaces are countably separated as their measurable structure
comes from a second countable Hausdorff topology. By [51, Thm. 3.3] every countable
separating family of measurable subsets of a standard Borel space X generates its
measurable structure. In particular, standard Borel spaces are countably generated.
From [51, Thm. 5.1] it follows that then Y is countably generated and by [51, Thm. 4.3]
every countable separating family of measurable subsets of Y generates the measurable
structure of Y .
If E is a countable separating family of measurable subsets of Y then for all E ∈ E the
subsets p−1(E) ⊆ X are measurable as p is a measurable map. In particular, the sets E
are measurable with respect to the quotient measurable structure. By the first part of
the theorem E generates the measurable structure as well as the quotient measurable
structure of Y . Therefore, both coincide.

Note that from Thm. 2.28 it follows in particular that standard Borel spaces are count-
ably generated.

Theorem 2.29. Let p : X → Y be a surjective measurable map from a standard Borel
space X to a countably separated measurable space Y .

(i) If there exists a measurable transversal E ⊆ X, then p|E : E → Y is a measurable
isomorphism and Y is standard. In particular q = (p|E)−1 is a measurable cross-
section.

(ii) If there exists a measurable cross-section q : Y → X and Y is standard, then
q(Y ) ⊆ X is measurable. In particular, q is a measurable isomorphism.

This theorem follows from [51, Thm. 3.2], which states the following.

Theorem 2.30. Let p : X → Y be an injective measurable map from a standard Borel
space to a countably generated space. Then p(X) ⊆ Y is a measurable subset and
p : X → p(X) is a measurable isomorphism. In particular, p(X) is a standard Borel
space.

Proof of Thm. 2.29.
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(i) We apply Thm. 2.30 to p|E . By [51, Cor. 1 of Thm. 3.2] a subset of a standard
Borel space is standard if and only if it is a measurable subset. SinceX is standard
and E is measurable it follows that E is a standard Borel space. As X is standard
and therefore countably generated, [51, Thm. 5.1] states that Y is countably
generated. It remains to show that p|E is measurable. Let F ⊆ Y be measurable.
By Thm. 2.28 p−1(F ) is measurable and, therefore, (p|E)−1(F ) = p−1(F ) ∩ E is
measurable.

(ii) We apply Thm. 2.30 to q. By assumption Y is standard and q is measurable. X
is countably generated as it is standard.

In [50, Lem. 1.1] Mackey shows that for second countable locally compact groupsH ≤ G
there exist measurable transversals for the quotient map G→ G/H.

Lemma 2.31. Let G be a second countable locally compact group and H ≤ G a closed
subgroup. Denote G/H by X and the canonical quotient map G→ X by p. Then there
exists a Borel set E ⊂ G such that E intersects each H-coset in exactly one point and
for each compact subset K ⊆ X the closure of E ∩ p−1(K) is compact.

The transversal E in Lem. 2.31 is called a regular transversal.

Corollary 2.32. Let G be a second countable locally compact group and H ≤ G a
closed subgroup. Denote G/H by X and the canonical quotient map G→ X by p. Then
there exist measurable transversals and cross-sections. Moreover, for every measurable
transversal E the map (p|E)−1 is a measurable cross-section and for every measurable
cross-section q : X → G the set q(X) is a measurable transversal.

The measurable cross-section q is called a regular cross-section if q(X) is a regular
transversal.

Lemma 2.33. Let G be a second countable locally compact group and H a closed
subgroup. Denote G/H by X and the quotient map G→ X by p.

(i) For every regular cross-section q : X → G there exists a quasi-invariant measure
νq on X such that

∫
G
f(a) da =

∫
X

∫
H
f(q(x)h) ∆G(h)

∆H(h) dhdνq(x) .

(ii) For every continuous strictly positive rho-function % there exists a regular cross-
section q : X → G such that∫

G
f(a) da =

∫
X

∫
H
f(q(x)h) ∆G(h)

∆H(h) dhdν%(x) .

Proof.
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(i) Given a regular Borel cross-section q, recall that any element a ∈ G can be
uniquely written as a product a = q(x)h, where x = p(a) is in X and h =
q(p(a))−1a is in H. Let % be a continuous strictly positive rho-function for (G,H).
Then for any f ∈ Cc(G) we obtain

∫
G
f(a) da =

∫
X

∫
x

f(a)
%(a) dµx(a) dν%(x)

=
∫
X

∫
H

f(q(x)h)
%(q(x)h) dhdν%(x)

=
∫
X

∫
H
f(q(x)h) ∆G(h)

∆H(h) dh %(q(x))−1 dν%(x) .

Let νq be the Radon measure corresponding to the functional

f 7→
∫
X
f(x)%(q(x))−1 dν%(x) ∀f ∈ Cc(X).

Then ∫
G
f(a) da =

∫
X

∫
H
f(q(x)h) ∆G(h)

∆H(h) dhdνq(x) .

(ii) Conversely, we can find a regular Borel cross-section q′ : X → G for p such that
% ◦ q′ ≡ 1 and ∫

G
f(a) da =

∫
X

∫
H
f(q′(x)h) ∆G(h)

∆H(h) dh dν%(x) .

To see that, let p0 = ∆G/∆H : H → R>0 and let H0 = ker p0. Then there exists
a regular cross-section q0 : im p0 → H for p0. Let q′ : X → G be defined by

q′(x) = q(x)q0(%(q(x))).

If K ⊆ X is compact then the closure q0(%(q(K))) ⊆ q0
(
%(q(K))

)
is compact

as q(K) is compact and % is continuous. Hence, q′(K) is compact for all com-
pact subsets K ⊆ X. This implies that q′ is a regular Borel cross-section for p.
Moreover, q′ satisfies

%(q′(x)) = %
(
q(x)q0(%(q(x)))

)
= %(q(x))
p0(q0(%(q(x)))) = %(q(x))

%(q(x)) = 1.

By using q′ instead of q we can rewrite the left Haar measure by∫
G
f(a) da =

∫
X

∫
H
f(q′(x)h) ∆G(h)

∆H(h) dh dν%(x) .
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2.2 Representation theory

This section gives an overview of the basic notions in representation theory with partic-
ular focus on induced representations and their properties. The first part, Chp. 2.2.1,
follows Folland [31, Chp. 2]. The second part follows Kaniuth and Taylor [44, Chp. 2].

2.2.1 Unitary representation

Let H be complex Hilbert space. The group of unitary operators on H is denoted
by U(H). Let G be a locally compact group. A strongly continuous unitary
representation π of G on H is a homomorphism (of groups) from G to U(H) which
is strongly continuous, meaning that the maps G→ H,

a 7→ π(a)v,

are continuous for all v ∈ H. The scalar product of H is denoted by 〈·, ·〉 and is
antilinear in the first and linear in the second argument (physics convention).
A strongly continuous unitary representation is not necessarily continuous in the norm
topology. However, as the strong operator topology coincides with the weak operator
topology on U(H), a unitary representation is strongly continuous if and only if it is
weakly continuous. That is, for all v, w ∈ H the maps G→ C,

a 7→ 〈v, π(a)w〉 ,

are continuous. All representations which occur in this thesis will be unitary and
strongly continuous. Therefore, we will often omit the adjectives and simply write
representations. If not otherwise stated, the representation space of π is denoted by
Hπ. To avoid confusions we will use the notation (π,H) when we want to refer to a
certain Hilbert space H.
Each locally compact group admits four important examples of representations.

Definition 2.34. Let G be a locally compact group.

(i) The representation mapping every element of G to 1H, the identity of a Hilbert
space H, is called the trivial representation.

(ii) The left regular representation λG of G on the Hilbert space L2(G) is given
by

[λG(b)f ](a) = f(b−1a) ∀f ∈ L2(G).

(iii) The right regular representation ρG of G on the Hilbert space L2(G) is given



28 Basics

by

[ρG(b)f ](a) = ∆(b)
1
2 f(ab) ∀f ∈ L2(G).

(iv) The two-sided regular representation τG of G×G on the Hilbert space L2(G)
is given by

[τG(b, c)f ](a) = ∆(c)
1
2 f(b−1ac) ∀f ∈ L2(G).

Among the linear mappings between Hilbert spaces, those which are compatible with
the group action play a special role in representation theory.

Definition 2.35. Let G be a locally compact group and let π, π1, π2 be unitary repre-
sentations of G on Hilbert spaces H, H1, H2, respectively.

(i) A bounded operator T ∈ B(H1,H2) is called an intertwiner for π1 and π2 if it
satisfies

Tπ1(a) = π2(a)T ∀a ∈ G.

(ii) The space of all intertwiners is denoted by C(π1, π2). It is a closed linear subspace
of B(H1,H2).

(iii) If there exists an isometry T ∈ C(π1, π2) then π1 is called a subrepresentation
of π2 and we write π1 ≤ π2.

(iv) If there exists a unitary operator U ∈ C(π1, π2) then π1 and π2 are called unitarily
equivalent or simply equivalent, and we write π1 ∼= π2.

(v) The space C(π) := C(π, π) is called the commutant of π. It consists of all
operators T ∈ B(H) := B(H,H) which commute with the operators π(a) for all
a ∈ G.

One of the main goals of representation theory is to analyze the structure of representa-
tions. In particular, the focus is on the decomposition into atoms, i.e., into irreducible
ones.

Definition 2.36. Let G be a locally compact group and π a unitary representation of
G on a Hilbert space H. Let H0 be closed subspace of H.

(i) H0 is called invariant under π if π(a)H0 ⊆ H0 for all a ∈ G.

(ii) If H0 6= {0} and H0 is an invariant subspace of H then the restriction of π to H0

is a subrepresentation of π and denoted by π|H0.

(iii) π is called irreducible if the only invariant subspaces of H are {0} and H. Other-
wise, π is called reducible.
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The following theorem is one of the most important results for checking if a given
representation is irreducible or not.

Theorem 2.37 (Schur’s Lemma).
Let G be a locally compact group.

(i) A unitary representation π of G is irreducible if and only if C(π) = C · 1.

(ii) If π1 and π2 are irreducible unitary representations of G, then π1 and π2 are equiv-
alent if and only if C(π1, π2) is one-dimensional. If π1 and π2 are not equivalent
then C(π1, π2) = {0}.

Definition 2.38. Let G be a locally compact group and π a unitary representation
of G on a Hilbert space H. Denote the dual space of H by H. The contragredient
representation π of π on H is given by

π(a)φ := φπ(a−1) = φπ(a)∗

for all a ∈ G and φ ∈ H.

π and π are not necessarily equivalent. By Schur’s Lemma, π is irreducible if and only
if π is.
Conversely, instead of passing to subrepresentations, one can also construct bigger
representations using direct sums or tensor products. If (H1, ‖ · ‖1) and (H2, ‖ · ‖2) are
two Hilbert spaces, then H1 ⊕H2 with the norm

‖v1 + v2‖2⊕ := ‖v1‖21 + ‖v2‖22, ∀v1 ∈ H1, v2 ∈ H2,

is a Hilbert space. The tensor product H1 ⊗H2 is the space of all bounded operators
T ∈ B(H2,H1) with finite norm

‖T‖2⊗ := Tr[T ∗T ] = Tr[TT ∗] <∞. (2.10)

Within this picture a decomposable tensor v1 ⊗ v2, with v1 ∈ H1, v2 ∈ H2 corresponds
to the map

(v1 ⊗ v2)(f) = v1 · f(v2), ∀f ∈ H2.

Remark 2.39. Note that this definition of tensor products of Hilbert spaces differs from
the one given in Folland [31, Chp. A.3]. Therein the tensor product of Hilbert spaces
H1, H2 is the set of all antilinear bounded operators T : H2 → H1 satisfying eq. (2.10).
Since there exists an antilinear isomorphism between H2 and H2, both definitions are
isomorphic.

Definition 2.40. Let G be a locally compact group and let π1, π2 be unitary represen-
tations of G on Hilbert spaces H1, H2, respectively.
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(i) The direct sum π = π1 ⊕ π2 of π1 and π2 is the unitary representation of G on
H1 ⊕H2 given by

π(a)(v1 + v2) = π1(a)v1 + π2(a)v2

for all a ∈ G and v1 ∈ H1, v2 ∈ H2.

(ii) The (inner) tensor product π = π1 ⊗ π2 of π1 and π2 is the unitary represen-
tation of G on H1 ⊗H2 given by

π(a)(v1 ⊗ v2) = π1(a)v1 ⊗ π2(a)v2

for all a ∈ G and v1 ∈ H1, v2 ∈ H2.

(iii) If (π1,H1) and (π2,H2) are representations of two locally compact groups G1 and
G2, then the (outer) tensor product π = π1 × π2 of π1 and π2 is the unitary
representation of G1 ×G2 on H1 ⊗H2 defined by

π(a1, a2)(v1 ⊗ v2) = π1(a1)v1 ⊗ π2(a2)v2

for all a1 ∈ G1, a2 ∈ G2 and v1 ∈ H1, v2 ∈ H2.

Hilbert spaces have the property that every closed subspace has an orthogonal comple-
ment. As a consequence, any proper subrepresentation of a unitary representation has
a complement, as well.

Proposition 2.41. Let G be a locally compact group and π a unitary representation
of G on a Hilbert space H. Let H0 be a nontrivial invariant subspace of H (meaning
{0} ( H0 ( H). Then the orthogonal complement H⊥0 is a nontrivial invariant subspace
of H and

π ∼= π|H0 ⊕ π|H⊥0 .

2.2.2 Induced representations

The aim of the inducing procedure is to construct a unitary representation (π,Hπ) of
G from a given unitary representation (χ,Hχ) of a closed subgroup H ≤ G. The idea
goes back to Frobenius [32] who developed the concept to obtain irreducible unitary
representations of finite groups from subgroups which are well studied. During the last
century the idea was developed much further and became one of the most important
techniques in representation theory and abstract harmonic analysis. In this section we
follow Kaniuth and Taylor [44].
There are different ways to describe induced representations. In the following let G be
a locally compact group and H be a closed subgroup of G. Denote the quotient space
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G/H by X and its quotient map G→ X by p. Let δ = δGH = ∆G|H
∆H

: H → R>0 and let
χ be a unitary representation of H.

Variant 1. The first variant of induced representations, we will use, is the abstract
version. The representation space is constructed as follows.
Let F(G,H, δ 1

2χ) be the set of all functions F : G→ Hχ satisfying

• F is continuous (with respect to the norm topology on Hχ),

• p(supp(F )) is compact in X,

• F (ah) = δ(h−1) 1
2χ(h−1)F (a), for all a ∈ G and h ∈ H.

For all F1, F2 ∈ F(G,H, δ 1
2χ) the function

a 7→ 〈F1(a), F2(a)〉χ

is a rho-function and, therefore, there exists a Radon measure νF1,F2 on X satisfying∫
X
ϕ(x) dνF1,F2(x) =

∫
G
β(a)ϕ(p(a)) 〈F1(a), F2(a)〉χ da

for all ϕ ∈ Cc(X) and some Bruhat section β : G → R≥0. The measure νF1,F2(x) is
finite as

νF1,F2(X) =
∫
G
β(a) 〈F1(a), F2(a)〉χ da

and a 7→ β(a) 〈F1(a), F2(a)〉χ is a compactly supported continuous function. It is
straightforward to check that the bilinear form

〈F1, F2〉 = νF1,F2(X) =
∫
G
β(a) 〈F1(a), F2(a)〉χ da

defines an inner product on F(G,H, δ 1
2χ), which is independent of the choice of the

Bruhat section. By completing F(G,H, δ 1
2χ) we obtain a Hilbert space, which we

denote by L2(G,H, δ 1
2χ). The space L2(G,H, δ 1

2χ) consists of all functions F : G→ Hχ
satisfying

• F is measurable and ρF : a 7→ ‖F (a)‖2χ is a rho-function,

• and the measure νρF on X corresponding to the rho-function ρF is finite.

The norm of F is given by

‖F‖2 = νρF (X) =
∫
G
β(a)‖F (a)‖2χ da

for any Bruhat section β.
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G acts on L2(G,H, δ 1
2χ) by

[π1(a)F ](b) = F (a−1b)

for all a ∈ G and almost all b ∈ G. π1 is a unitary as

‖π1(a)F‖2 =
∫
G
β(b)‖F (a−1b)‖2χ db =

∫
G
β(ab)‖F (b)‖2χ db = ‖F‖2.

Therefore, π1 is a unitary representation.

Variant 2. The second variant is more natural because it makes directly use of the
measure decomposition of the Haar measure of G over the Haar measure of H and a
quasi-invariant measure on X (see Prop. 2.22). However, an additional ingredient is
necessary, namely a fixed rho-function. Moreover, it is not obvious that the resulting
representation does not depend on the choice of this rho-function.
Let ρ be a continuous strictly positive rho-function for (G,H) and let µρ be the cor-
responding quasi-invariant measure on X. Let Fρ(G,H, χ) be the set of all functions
F : G→ Hχ satisfying

• F is continuous (with respect to the norm topology on Hχ),

• p(supp(F )) is compact in X,

• F (xh) = χ(h−1)F (x), for all x ∈ G and h ∈ H.

For all F1, F2 ∈ Fρ(G,H, χ) the function

a 7→ 〈F1(a), F2(a)〉χ

is constant on cosets aH ⊆ G and, therefore, there exists a compactly supported
continuous function ϕF1,F2 ∈ Cc(X) such that

ϕF1,F2(p(a)) = 〈F1(a), F2(a)〉χ ∀a ∈ G.

The inner product on Fρ(G,H, χ) is defined by

〈F1, F2〉ρ =
∫
X
ϕF1,F2(x) dνρ(x)

and depends on the choice of the rho-function. Let L2
ρ(G,H, χ) be the Hilbert space

obtained by completing Fρ(G,H, χ). G acts on L2
ρ(G,H, χ) by

[πρ(a)F (b)] =
(
ρ(a−1b)
ρ(b)

) 1
2

F (a−1b)
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which is unitary as

‖πρ(a)F‖2ρ =
∫
X
σ(a−1, x)ϕF,F (a−1x) dνρ(x) =

∫
X
ϕF,F (x) dνρ(x) = ‖F‖2ρ,

where we used that

dνρ(a−1bH) = σ(a−1, bH) dνρ(bH) = ρ(a−1b)
ρ(b) dνρ(bH)

(cf. Thm. 2.23).

Although, the Hilbert spaces L2
ρ(G,H, χ) and the representations πρ depend on the

choice of the rho-function ρ, the representations (πρ, L2
ρ(G,H, χ)) are unitarily equiva-

lent and, in particular, equivalent to π1 constructed in Variant 1. The unitary equiva-
lence L2(G,H, δ 1

2χ)→ L2
ρ(G,H, χ) is induced by the map F(G,H, δ 1

2χ)→ Fρ(G,H, χ),

F 7→ ρ
1
2F

for all F ∈ F(G,H, δ 1
2χ).

Variant 3. Suppose that G is second countable. By Cor. 2.32 there exists a regular
Borel cross-section q : X → G of p and by Lem. 2.33 there exists a quasi-invariant
measure νq such that ∫

G
f(a) da =

∫
X

∫
H
f(q(x)h)δ(h) dhdνq(x)

for all f ∈ Cc(G).

Let L2
q(X,χ) be the space of measurable functions f : X → Hχ such that

‖f‖2q :=
∫
X
‖f(x)‖2χ dνq(x) <∞.

G acts on L2
q(X,χ) by

[πq(a)f ](x) = δ(q(x)−1aq(a−1x))
1
2χ(q(x)−1aq(a−1x))f(a−1x)

which is unitary as

‖πq(a)f‖2q =
∫
X
δ(q(x)−1aq(a−1x))‖f(a−1x)‖2χ dνq(x)

=
∫
X

ρq(a−1q(x))
ρq(q(x)) ‖f(a−1x)‖2χ dνq(x)

=
∫
X
‖f(x)‖2χ dνq(x) = ‖f‖2q ,
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where we used that ρq(q(x)) = 1 for all x ∈ X and

δ(q(x)−1aq(a−1x)) = δ(q(x)−1aq(a−1x)) ρq(q(a
−1x))

ρq(q(x))︸ ︷︷ ︸
=1

= ∆H(q(a−1x)−1a−1q(x))
∆G(q(a−1x)−1a−1q(x))

ρq(q(a−1x))
ρq(q(x)) = ρq(a−1q(x))

ρq(q(x)) .

The representations πq depend on the choice of q or, to be more precisely, on ρq. Again,
they are unitarily equivalent and equivalent to π1 defined in Variant 1. The unitary
equivalence is given by, L2(G,H, δ 1

2χ)→ L2
q(X,χ),

f 7→ f ◦ q.

Since all of these representations are equivalent we define the induced representation
as follows.

Definition 2.42. Let H ≤ G be a closed subgroup of a locally compact group G and
let χ be a unitary representation of H.
The representation π1 constructed in Variant 1 is denoted by

indGH(χ).

In application, it will depend on the situation which variant of the induced representa-
tion will be used. Variant 1 is very useful for technical applications and proofs dealing
with groups which are not necessarily second countable. Variant 2 and Variant 3 are
quite handy for explicit computations, in particular when dealing with second count-
able groups. However, they depend on the choice of a quasi-invariant measure on X or
on the choice of a Borel section X → G.

2.2.3 Properties of induced representations

The reason why the inducing procedure is so powerful is that in many cases it behaves
as on would expect. Among others, it has the following properties, which will turn out
to be very helpful. Proofs and details can be found in Kaniuth and Taylor [44].
The first property is that the contragredient of an induced representation is the repre-
sentation induced from the contragredient one.

Lemma 2.43. Let χ be a representation of a closed subgroup H of G. Then

indGH(χ) ∼= indGH(χ).

The second property is that representations induced from direct sums are direct sums
of representations induced from the individual ones.
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Lemma 2.44. Let H be a closed subgroup of the locally compact group G, and let χi,
i ∈ I, be any family of unitary representations of H. Then

indGH
(⊕
i∈I

χi
)
∼=
⊕
i∈I

indGH(χi).

In particular, if indGH(χ) is an irreducible representation of G, then χ is an irreducible
one of H. The converse is not true.
The next property is called induction in stages. It states the following.

Theorem 2.45. Let H be a closed subgroup of G and let H0 be a closed subgroup of
H. Let χ0 be a representation of H0. Then

indGH0(χ0) ∼= indGH
(

indHH0(χ0)
)
.

The last property states that the inducing procedure is compatible with taking outer
tensor products of representations.

Theorem 2.46. Let G1 and G2 be locally compact groups and let H1 ≤ G1 and H2 ≤
G2 be closed subgroups. Let χ1 and χ2 be representations of H1 and H2, respectively.
Then

indG1×G2
H1×H2

(χ1 × χ2) ∼= indG1
H1

(χ1)× indG2
H2

(χ2).

2.3 The dual and the quasi-dual of a locally compact group

The aim of this section is to describe the decomposition of representations into (mul-
tiples of) irreducible ones. Unfortunately, such a decomposition is not always unique
and in those case it is not expedient to do that. However, we will see that it is always
possible to get a decomposition into so-called primary representations, which are close
to being (multiples of) irreducible ones. Indeed, this decomposition is unique and will
turn out to be more useful.
The results presented here are taken from Folland [31, Chp. 7] and Dixmier [21, Chp. 5,
Chp. 8]. The notation is mostly taken from Führ [33]. The main result of this section
is the Plancherel Theorem. The version for unimodular groups and its proof can be
found in Dixmier [21, Chp. 18]. The Plancherel Theorem for nonunimodular groups is
taken from Tatsuuma [58] and Duflo and Moore [25].

2.3.1 Von Neumann algebras

There are several types of algebras which play an important role in representation
theory. One of them are von Neumann algebras.
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Definition 2.47. A *-algebra is a C-algebra endowed with a involution. That is a
map a 7→ a∗ satisfying

(a+ b)∗ = a∗ + b∗, (λa)∗ = λa∗, (ab)∗ = b∗a∗, (a∗)∗ = a,

for all a, b ∈ A, λ ∈ C.
A von Neumann algebra is a *-subalgebra of the bounded linear operators B(H) on
some Hilbert space H which contains 1H and is closed in the weak operator topology.

Von Neumann algebras often appear as commutants or bicommutants. Let H be a
Hilbert space and let S ⊆ B(H) be a subset. The commutant of S is the set

S′ = {T ∈ B(H) | ST = TS}.

Correspondingly, the bicommutant S′′ of S is the commutant of the commutant of
S, i.e., S′′ = (S′)′. If S is closed under conjugation, i.e., S∗ = S, then it is an easy
exercise to prove that S′ and S′′ are von Neumann algebras.
Commutants or bicommutants not only give easy examples of von Neumann algebras.
Via the famous von Neumann Density Theorem they provide a tool to verify that a
given algebra is a von Neumann algebra.

Theorem 2.48 (Von Neumann Density Theorem). Let H be a Hilbert space and let A
be a *-subalgebra of B(H) containing 1H.
Then, the following are equivalent.

• A is a von Neumann algebra.

• A is closed in the strong operator topology.

• A satisfies A = A′′.

The center of a von Neumann algebra A is the commutative von Neumann algebra

Z(A) = A ∩A′ = A′ ∩A′′.

Commutative von Neumann algebras admit a spectral decomposition (cf. Dixmier [22,
I.7.3 Thm. 1]).

Theorem 2.49. Let H be a separable Hilbert space and let A ⊆ B(H) be a commutative
von Neumann algebra. Then there exists a standard Borel space M and a projection-
valued measure P such that the map

f 7→
∫
M
f(m) dP (m)

defines an isometric isomorphism from L∞(M,µ) to A.
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The connection between von Neumann algebras and representation theory can be illus-
trated as follows.

Proposition 2.50. Let (π,H) be a representation of a second countable locally compact
group G on a separable Hilbert space H. Then Z(π) = C(π)∩ C(π)′ = π(G)′ ∩ π(G)′′ is
a commutative von Neumann algebra.
Let P be the projection-valued measure on the standard Borel space M associated to
Z(π) as in Thm. 2.49. For any measurable subset E ⊆ M , PE = P (E) is an orthog-
onal projection onto a closed subspace of HE = PE(H) ⊆ H. In particular, if HE is
nontrivial, then (πE ,HE) defined by πE(a) = Pπ(a)P ∗ is a subrepresentation of π.

From Schur’s Lemma it follows that, for every irreducible representation (σ,H) of a
second countable locally compact group G, the algebra Z(σ) has the form

Z(σ) = C · 1H.

Therefore, M only consists of one point. In fact, this is what we would expect from
Prop. 2.50 as σ has no subrepresentations. The converse is not true. For d ∈ N =
N∪ {∞} let Hd be the separable Hilbert space of dimension d. To be more precise, we
say that

Hd = Cd for d ∈ N, (2.11)

H∞ = l2(N) =
{
(an)n∈N ∈ CN

∣∣ ∑
n∈N
|an|2 <∞

}
. (2.12)

For any representation (π,H) let

d · H = H⊗Hd, d · π = π ⊗ 1d

be the multiple of H and π.

Proposition 2.51. Let π be a representation of G and d ∈ N. Then Z(π) ∼= Z(d · π).

This is because

C(d · π) = {S ⊗ T | S ∈ C(π), T ∈ B(H)}′′ ,

C(d · π)′ =
{
S ⊗ 1d | S ∈ C(π)′

}
.

From Prop. 2.51 it follows that, if σ is irreducible, then Z(d ·σ) = C ·1d·H even though
d · σ is not irreducible. So in some sense Z has information about subrepresentations
of a representation π but it does not count multiplicity.

Definition 2.52. Let G be a locally compact group. A representation (π,H) of G is
called a factor representation (or primary representation) if

π(G)′ ∩ π(G)′′ = C · 1H.
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Factor representations are those for which the measure space M consists only of one
point.

Definition 2.53.

• Two representations π1 and π2 are disjoint if they have no nontrivial common
subrepresentation.

• Two representations π1 and π2 are quasi-equivalent if there exists no subrepre-
sentation ρ1 ≤ π1 such that C(ρ1, π2) = 0, and no subrepresentation ρ2 ≤ π2 such
that C(ρ2, π1) = 0.

In that case we write π1 ≈ π2.

Proposition 2.54. Two factor representations are either quasi-equivalent or disjoint.

One might expect or at least hope that a representation is a factor representation if
and only if it is a multiple of an irreducible representation. Unfortunately, this is not
always the case.

Definition 2.55. A factor representation which is quasi-equivalent to an irreducible
representation is called a factor representation of type I. If every factor represen-
tation is type I then G is called type I.

Example 2.56. Abelian locally compact groups and compact groups are type I. More-
over, connected nilpotent, exponential, and semisimple Lie groups are type I. (See Führ
[33, p. 72] for references.)
The Mautner group is a famous example of a solvable Lie group which is not type I.
(See Baggett [10] for details of its representation theory.)

The representation theory of groups of type I enjoys the pleasant features known from
abelian locally compact groups and compact groups. For instance, every representation
can be uniquely decomposed (in a generalized sense) into irreducible ones. For non-type
I groups this is, in general, not true. In that case, to get similar results, one has to
restrict attention to type I representations.

Definition 2.57. A representation π is called multiplicity-free if C(π) is commuta-
tive. π is called type I if it is quasi-equivalent to a multiplicity-free representation.

2.3.2 Direct integral of Hilbert spaces

Let M be a measurable space and let {Hm}m∈M be a family of nonzero separable
Hilbert spaces. Denote the scalar product and norm of Hm by 〈·, ·〉m and ‖ · ‖m,
respectively. The vector fields f ∈ ∏m∈M Hm are considered as functions mapping
m ∈M to f(m) ∈ Hm.



2.3. The dual and the quasi-dual of a locally compact group 39

Suppose there exists a countable set {vj}j∈N such that

• the functions m 7→ 〈vj(m), vk(m)〉a are measurable for all j, k,

• and {vj(m)}j∈N is total in Hm for all m ∈M .

Then ({Hm}m∈M , {vj}j∈N) is called a measurable field of Hilbert spaces. A vector
field f is called measurable if m 7→ 〈vj(m), f(m)〉m is measurable for all j ∈ N. The
set of measurable vector fields forms a vector space over the complex numbers.
Even if the family {vj}j∈N is chosen very complicated, there exists a family {ej}j∈N
which has a particularly easy form and defines the same measurable structure.

Proposition 2.58. Let ({Hm}m∈M , {vj}j∈N) be a measurable field of Hilbert spaces.

• There exist measurable vector fields {ej}j∈N such that

{ej(m)}j=1,...,dimHm

is a complete orthonormal system and ej(m) = 0 for j > dimHm.

• {vj}j∈N and {ej}j∈N define the same measurable structure on {Hm}m∈M in
the sense that a vector field f is measurable (with respect to {vj}j∈N) if and only
if m 7→ 〈ej(m), f(m)〉m is measurable for all j ∈ N.

• If f, g are measurable vector fields then m 7→ 〈f(m), g(m)〉m is measurable.

This result basically follows from the fact that pointwise orthogonalization by the Gram-
Schmidt process can be realized without affecting measurability. A detailed proof can
be found in Folland [31, Prop. 7.19].
Given a measurable field of Hilbert spaces ({Hm}m∈M , {vj}j∈N) and a σ-finite measure
µ on M the direct integral of the Hilbert spaces Hm, m ∈M , denoted by∫ ⊕

M
Hm dµ(m),

is the set of all measurable vector fields f satisfying

‖f‖2 =
∫
M
‖f(m)‖2m dµ(m) <∞, (2.13)

where two measurable vector fields f, g are identified if ‖f − g‖ = 0.

Proposition 2.59.
∫⊕
M Hm dµ(m) is a Hilbert space with respect to the scalar product

〈f, g〉 :=
∫
M
〈f(m), g(m)〉m dµ(m),

for all f, g ∈
∫⊕
M Hm dµ(m).
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For sure, the space
∫⊕
M Hm dµ(m) depends on the choice of {vj}j∈N and one can easily

find another family {wj}j∈N which defines a different measurable structure. For in-
stance, by changing {vj}j∈N on a subset of M which is not measurable. However, it
can be shown that there exists a unitary isomorphism between the two Hilbert spaces
obtained from {vj}j∈N and {wj}j∈N which respects the direct integral structure. (For
details see Folland [31, Chp. 7.4].) In that sense, it is not important which measurable
structure is used to construct the direct integral of Hilbert spaces. Hence, they are
often used without mentioning a measurable structure.
Next, we focus on operators on

∫⊕
M Hm dµ(m). A field of operators {T (m)}m∈M is

called measurable if {T (m)f(m)}m∈M is measurable for all measurable vector fields
f . Measurability can also be characterized as follows.

Proposition 2.60. A field of operators {T (m)}m∈M is measurable if and only if m 7→
〈vj(m), T (m)vk(m)〉m is measurable for all j, k ∈ N.

Let µ be a σ-finite measure on M and let T = {T (m)}m∈M be a measurable field of
operators. T is called essentially bounded (i.e., up to null sets) if

‖T‖∞ := ess sup
m∈M

‖T (m)‖op <∞,

where ‖ · ‖op is the operator norm.

Proposition 2.61. Let T = {T (m)}m∈M be an essentially bounded measurable field of
operators. The operator

∫⊕
M T (m) dµ(m) on

∫⊕
M Hm dµ(m) defined by

(∫ ⊕
M
T (m) dµ(m) f

)
(m) := T (m)f(m)

is bounded and
∥∥∥∫⊕M T (m) dµ(m)

∥∥∥
op

= ‖T‖∞.
If T1 = {T1(m)}m∈M and T2 = {T2(m)}m∈M are essentially bounded measurable fields
of operators such that

∫⊕
M T1(m) dµ(m) =

∫⊕
M T2(m) dµ(m) then T1(m) = T2(m) µ-

almost everywhere.

The operator
∫⊕
M T (m) dµ(m) is called the direct integral of the field of operators T .

The space of all integral operators is denoted by

B⊕(M,µ) =
∫ ⊕
M
B(Hm) dµ(m)

and forms a von Neumann algebra contained in B
(∫⊕
M Hm dµ(m)

)
. Its commutant

B⊕(M,µ)′ consists of all diagonal operators, i.e., the operators
∫ ⊕
M
T (m) dµ(m) ∈ B⊕(M,µ)
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of the form

T (m) = t(m) · 1Hm , almost everywhere,

for some essentially bounded measurable function t ∈ L∞(M,µ).
For a Hilbert space H, let B1(H) be the space of trace-class operators and let B2(H)
be the space of Hilbert-Schmidt operators on H. Denote by

B⊕1 (M,µ) ⊆ B⊕(M,µ)

the Banach space of all direct integrals T =
∫⊕
M T (m) dµ(m) ∈ B⊕(M,µ) with T (m) ∈

B1(Hm) almost everywhere and

‖T‖1 :=
∫
M
‖T (m)‖m,1 dµ(m) <∞,

where ‖ · ‖m,1 denotes the trace-norm of B1(Hm). Likewise, let

B⊕2 (M,µ) ⊆ B⊕(M,µ)

be the direct integral of the Hilbert spaces {B2(Hm)}m∈M . That is the Hilbert space of
all operators T =

∫⊕
M T (m) dµ(m) ∈ B⊕(M,µ) with T (m) ∈ B2(Hm) almost everywhere

satisfying

‖T‖22 :=
∫
M
‖T (m)‖2m,2 dµ(m) <∞,

where ‖ · ‖m,2 denotes the Hilbert-Schmidt-norm of B2(Hm).
Let G be a second countable locally compact group and let {(πm,Hm)}m∈M be a family
of representations. If for all a ∈ G the fields of operators {πm(a)}m∈M are measurable,
then {(πm,Hm)}m∈M is called a measurable field of representations. In that case,∫⊕
M πm dµ(m) given by

(∫ ⊕
M
πm dµ(m)

)
(a) =

∫ ⊕
M
πm(a) dµ(m)

defines a unitary representation of G on
∫⊕
M Hm dµ(m). The representation

∫ ⊕
M
πm dµ(m)

is called the direct integral of the representations {πm}m∈M .

2.3.3 Decomposition of representations

The results of Chp. 2.3.1 and Chp. 2.3.2 can be used to decompose a representation as
a direct integral.
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Theorem 2.62. Let G be a second countable locally compact group, π a unitary rep-
resentation of G on a separable Hilbert space H, and B a commutative von Neumann
subalgebra of C(π).
There exists a standard Borel space M , a measurable field {Hm}m∈M of Hilbert spaces,
a measurable field {πm}m∈M of representations of G, and a unitary map U : H →∫⊕
M Hm dµ(m), such that

• Uπ(a)U−1 =
∫⊕
M πm(a) dµ(m) for all a ∈ G

• and UBU−1 is the algebra of diagonal operators on
∫⊕
M Hm dµ(m).

With some extra work Thm. 2.62 can be refined to construct a decomposition into
factor representations.
For d ∈ N, let Hd be the Hilbert space of dimension d defined in eq. (2.11) and (2.12)
in Chp. 2.3.1. Furthermore, let Repd(G) be the space of all representations of G on the
Hilbert space Hd endowed with the coarsest σ-algebra making all functions

π 7→ 〈f, π(a)g〉 , for a ∈ G, f, g ∈ Hd,

measurable. Let
Rep(G) =

⋃
d∈N

Repd(G)

be the space of all representations of G. A subset E ⊆ Rep(G) is measurable if E ∩
Repd(G) is measurable for all d ∈ N. The set of all factor representations Fac(G) and
the set of all irreducible representations Irr(G) are measurable and the inclusions

Irr(G) ↪→ Fac(G) ↪→ Rep(G)

are measurable maps (see Dixmier [21, 16.6.1]). The dual Ĝ and the quasi-dual Ǧ of
G are the spaces

Ĝ = Irr(G)�≈ Ǧ = Fac(G)�≈

endowed with quotient measurable structure, which is called theMackey Borel struc-
ture. Clearly, the inclusion Ĝ ↪→ Ǧ is measurable. If G is type I, then all factor
representations are multiples of irreducible representations and Ǧ = Ĝ. The Mackey
Borel structure separates points, i.e., the sets {[σ]} are measurable for all [σ] ∈ Ǧ. In
general, Ĝ and Ǧ are not standard Borel spaces. However, the measures which appear
in this thesis will be of the following class.

Definition 2.63. Let M be a measurable space and µ a measure on M . Then µ is
called a standard measure if there exists a measurable subset X ⊆M such that X is
a standard Borel space and µ(M \X) = 0.

Now, we are prepared to formulate the following theorem.
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Theorem 2.64. Let G be a second countable locally compact group and π a represen-
tation of G on a separable Hilbert space.
There exists a standard measure µ on Ǧ, a measurable field of Hilbert spaces {Hp}p∈Ǧ,
a measurable field of representations {πp}p∈Ǧ on {Hp}p∈Ǧ with πp ∈ p for µ-almost
every p ∈ Ǧ, and a unitary map U : H →

∫⊕
Ǧ
Hp dµ(p), such that

• Uπ(a)U−1 =
∫⊕
Ǧ
πp(a) dµ(p) for all a ∈ G

• and the center UZ(π)U−1 = Z(UC(π)U−1) of UC(π)U−1 is the algebra of diag-
onal operators on

∫⊕
Ǧ
Hp dµ(p).

If µ′ and {π′p}p∈Ǧ also have these properties, then µ is equivalent to µ′ and πp is
equivalent to π′p for µ-almost every p.

The decomposition in Thm. 2.64 is called central decomposition of π. The measure
µ is referred to as the central measure of π.
If π is a representation of type I, then µ is supported on Ĝ, i.e., µ(Ǧ \ Ĝ) = 0. In that
case, almost all πp are of the form mπ(p) · Hσp , where σp ∈ p is irreducible, and

H ∼=
∫ ⊕
Ĝ
mπ(p) · Hσp dµ(p), π ∼=

∫ ⊕
Ĝ
mπ(p) · σp dµ(p) .

The map mπ : Ĝ → N is measurable and counts the multiplicity of an irreducible
representation in π. It is defined up to null sets.
The central decomposition provides a useful tool to characterize the relation of repre-
sentations.

Theorem 2.65. Let π1, π2 be two representations of G and let

π1 ∼=
∫ ⊕
Ĝ
π1,p dµ1(p),

π2 ∼=
∫ ⊕
Ĝ
π2,p dµ2(p)

be their central decomposition.

• π1 is quasi-equivalent to a subrepresentation of π2 if and only if µ1 is absolutely
continuous with respect to µ2.

• π1 and π2 are disjoint if and only if µ1 and µ2 are mutually singular.

If both representations are type I, then one can give an even more precise statement.

Theorem 2.66. Let π1, π2 be two type I representations of G and let

π1 ∼=
∫ ⊕
Ĝ
mπ1(p) · σp dµ1(p),

π2 ∼=
∫ ⊕
Ĝ
mπ2(p) · σp dµ2(p)
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be their central decomposition. Then, π1 is a subrepresentation of π2 if and only if µ1

is absolutely continuous with respect to µ2 and

mπ1(p) ≤ mπ2(p)

almost everywhere.

2.3.4 Plancherel decomposition

For the left regular representation Thm. 2.64 takes a particular form, which is known as
the Plancherel decomposition. Recall that the left regular representation (λG, L2(G))
and the right regular representation (ρG, L2(G)) of G, and the two-sided representation
(τG, L2(G)) of G×G are given by

[λG(b)f ](a) = f(b−1a),

[ρG(b)f ](a) = ∆(b)
1
2 f(ab),

[τG(b, c)f ](a) = [λG(b)ρG(c)]f(a) = ∆(c)
1
2 f(b−1ac),

for f ∈ L2(G).
Let f ∈ L1(G) and let (π,H) a representation of G. Then there exists a bounded
operator, denoted by π(f) which satisfies

〈v, π(f)w〉 =
∫
G
f(a) · 〈v, π(a)w〉 da ∀v, w ∈ H.

The integral

π(f) =
∫
G
f(a)π(a) da

is said to be weakly convergent.
If λG is type I, then ρG, τG are type I, as well. Moreover, τG is multiplicity-free. (See
Duflo and Moore [25, Chp. 5] for references.) If G is unimodular, then the central de-
composition of τG yields the following result, which is known as the Plancherel Theorem
for unimodular group.

Theorem 2.67 (Plancherel Theorem (unimodular case)). Let G be a unimodular,
second countable, locally compact group and suppose that λG is type I. Then there
exists a unique measure µG on Ĝ such that

• for µG-almost all σ ∈ Ĝ and for all ϕ ∈ Cc(G) the operator σ(ϕ) is a Hilbert-
Schmidt operator ϕ̂(σ) : Hσ → Hσ,

• the map ϕ 7→ ϕ̂ extends to a unitary isomorphism L2(G) → B⊕2 (Ĝ) that inter-
twines the two-sided regular representation τG and

∫⊕
Ĝ
σ ⊗ σ dµG(σ).
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Here, we use the convention that for any class p ∈ Ĝ we fixed an irreducible represen-
tative (σ,Hσ) ∈ p and use the shorthand notation

∫ ⊕
Ĝ
σ ⊗ σ dµG(σ)

instead of ∫ ⊕
Ĝ
σp ⊗ σp dµG(p)

with σp ∈ p. Recall that B⊕2 (Ĝ) is a direct integral of Hilbert spaces

B⊕2 (Ĝ) = B⊕2 (Ĝ, µG) =
∫ ⊕
Ĝ
B2(Hσ) dµG(σ) .

Since the tensor product Hσ⊗Hσ is nothing but B2(Hσ), the representation σ⊗σ acts
on B2(Hσ) by

[σ(b)⊗ σ(c)]T = σ(b)Tσ(c)∗, ∀b, c ∈ G, T ∈ B2(Hσ).

In the nonunimodular case, we have (τ(b, c)ϕ)(a) = ∆G(c)1/2ϕ(b−1ac) and, therefore
σ(τ(b, c)ϕ) = ∆(c)1/2σ(b)σ(ϕ)σ(c)∗. Due to the factor ∆G(c)1/2, the map ϕ 7→ (σ 7→
σ(ϕ)) has no chance to extend to an intertwiner between τ and σ⊗σ. (In fact, σ(ϕ) even
does not necessarily define a Hilbert-Schmidt operator.) To solve this problem one in-
troduces an operator Dσ : Hσ → Hσ with the property that σ(c)Dσ = ∆G(c)1/2Dσσ(c)
in order to obtain

σ(τ(b, c)ϕ)Dσ = ∆(c)1/2σ(b)σ(ϕ)σ(c)∗Dσ = σ(b)σ(ϕ)Dσσ(c)∗.

In [25] Duflo and Moore showed that these operators exist and they gave a precise
description.

Lemma 2.68. Let H ≤ ker(∆G) and assume that (π,H) is a unitary representation
of G induced from H (see Variant 1 in Chp. 2.2.2). Then,

(Dπf)(a) = ∆G(a)1/2f(a)

defines an operator H → H. It is a densely defined, selfadjoint, positive operator with
a densely defined inverse, and satisfies the relation

π(a)∗Dππ(a) = ∆G(a)1/2Dπ.

Together with Lem. 2.68, the Plancherel Theorem in the general case can be formulated
as follows.
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Theorem 2.69 (Plancherel Theorem (general case)). Let G be a second countable
locally compact group and suppose that λG is type I. Then, there exists a unique measure
µG on Ĝ such that

• µ-almost all σ ∈ Ĝ are induced from a representation of ker ∆G,

• for µ-almost all π and for all ϕ ∈ Cc(G) the operator σ(ϕ)Dσ extends to a
Hilbert-Schmidt operator ϕ̂(σ) : Hσ → Hσ,

• and the map ϕ 7→ ϕ̂ extends to a unitary isomorphism P : L2(G) → B⊕2 (Ĝ) that
intertwines the two-sided regular representation τ and

∫⊕
Ĝ
σ ⊗ σ dµ(σ).

The measure µG is called the Plancherel measure and the isometric isomorphism
P : L2(G)→ B⊕2 (Ĝ) is called Plancherel transformation. The Plancherel transform
of a functions f ∈ L2(G) is denoted by

P(f) = f̂ .

For f, g ∈ L2(G), the formula

〈f, g〉 =
∫
G
f(a)g(a) da =

∫
Ĝ

Trσ[f̂(σ)∗ĝ(σ)] dµG(σ) (2.14)

is called Plancherel formula.
If G is unimodular, then Dσ is (a multiple of) the identity operator. If G is nonuni-
modular, then Dσ is an unbounded operator as ∆G is unbounded. In particular, we
get the following result.

Corollary 2.70. If G is nonunimodular, then µG-almost all irreducible representa-
tions of G are infinite-dimensional. Moreover, the multiplicity mλG(σ) of almost all
irreducible representations σ in the left regular representation λG is ∞.

Let f ∈ L1(G) ∩ L2(G), g ∈ L2(G) and suppose that ĝ(σ)Dσ ∈ B1(Hσ) almost every-
where. Then, the Plancherel transformation P can be written as

P(f)(σ) = f̂(σ) =
[∫
G
f(a)σ(a) da

]
Dσ (2.15)

and Plancherel inversion P−1 can be written as

P−1(ĝ)(a) =
∫
Ĝ

Trσ[ĝ(σ)Dσσ(a)∗] dµG(σ) . (2.16)

Eq. (2.15) follows by definition and eq. (2.16) follows from the Plancherel formula
eq. (2.14).
Another consequence of Thm. 2.69 is that the von Neumann algebra C(λG) is isomorphic
to B⊕(Ĝ). In particular, it has the following form.
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Theorem 2.71. With the assumptions of Thm. 2.69, for all T ∈ C(λG) there exists a
direct integral operator

∫
Ĝ T̂ (σ) dµG(σ) ∈ B⊕(Ĝ) such that

T̂ f(σ) = f̂(σ)T̂ (σ).

The map C(λG)→ B⊕(Ĝ) is an isometric isomorphism.

2.3.5 Remarks on the Plancherel Theorem

On the one hand, in [33, Thm. 3.48] Führ requires that G and N = ker ∆G are type I
and N is regularly embedded in the following sense.

Definition 2.72. Let G be a locally compact group and suppose that G is second count-
able. Let N be closed normal subgroup of G.

• Let σ be an irreducible representation of N and let a ∈ G. Then a.σ, given by

a.σ(n) = σ(a−1na) ∀n ∈ N,

defines an irreducible representation of N . The map G× N̂ → N̂ , (a, σ) 7→ a.σ,
defines an action of G on N̂ .

• N̂/G is µN -standard if there exists a conull G-invariant subset X ⊆ N̂ such
that X/G endowed with quotient measurable structure is standard. (µN is the
Plancherel measure of N .)

• G acts regularly on N̂ if there exists a conull G-invariant subset X ⊆ N̂ and a
countable collection {En}n∈N of G-invariant measurable subsets of N̂ such that
every orbit O in N̂ satisfies

O =
⋂
{En | n ∈ N, O ⊆ En}.

In that case N is said to be regularly embedded.

On the other hand, Folland requires in [31] only that N = ker ∆G is type I and regularly
embedded in G.
In [25, Thm. 5] Duflo and Moore showed that it is sufficient that λG is type I. (To be
more precise, they showed the Plancherel Theorem for the type I part of λG.) The
relation to the statements given by Führ and Folland comes from the following results.

Theorem 2.73. Let G be a locally compact group and suppose that G is second count-
able and nonunimodular. Let N = ker ∆G. Then the following are equivalent.

(i) λN is type I and N̂/G is νN -standard.

(ii) λN is type I and G acts νN -regularly on N̂ .

(iii) λG is type I.
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Proof.

• The implication (i) ⇒ (ii) follows as standard Borel spaces are countably sepa-
rated.

• (ii)⇒ (iii) was shown by Tatsuuma in [58, Thm. 5.1].

• (iii)⇒ (i) is Cor. 1 of Thm. 6 [25] by Duflo and Moore.

Corollary 2.74. Let G be a locally compact group and suppose that G is second count-
able and nonunimodular. Let N = ker ∆G.
Each of the following conditions is sufficient for λG to be type I.

• G is type I.

• N is type I and N̂/G is standard.

• N is type I and G acts regularly on N̂ .

In particular, if one of those conditions is fulfilled then the Plancherel Theorem can be
applied.

However, Thm. 2.73 only applies to ker(∆G) and not to general normal closed sub-
groups. If G is type I then a closed normal subgroup of G need not necessarily be
regularly embedded as Auslander and Moore showed in a counterexample represented
in [9, Sec. III.5].

2.4 Contractions of Lie algebras, Lie groups, and repre-
sentation

The concept of contraction comes from physics and goes back to Segal [57] and In-
önü and Wigner [42]. The motivation is that it should be possible to recover classical
physics from advanced theories (quantum physics and general relativity) in the so-
called classical limit. In that sense physicists want to obtain the Galilei group, which
is the symmetry group of classical mechanics, as a limit of the Poincaré group, which is
the symmetry group of relativistic mechanics. Furthermore, the Schrödinger represen-
tations, describing quantum mechanics, should be the classical (nonrelativistic) limit
of representations of the Poincaré group, which describe relativistic quantum mechan-
ics. In [42] Inönü and Wigner give a suitable construction to understand this kind of
limit of groups and their representations. In [23] and [24] Dooley and Rice formulated
contraction in a rigorous way.
During the last decade the notion of group contractions developed and many authors
worked on that field. The following is an excerpt of the overview article [18] by Cahen.
Let G, G0 be two real Lie groups of the same dimension n and denote their Lie algebras
by (g, [·, ·]), (g0, [·, ·]0).
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Definition 2.75.

• A (Lie algebra) contraction of g to g0 is a family of linear isomorphisms (cr)r∈(0,1]

from g0 to g such that

lim
r→0

c−1
r ([cr(X), cr(Y )]) = [X,Y ]0, ∀X,Y ∈ g0.

• A (Lie group) contraction of G to G0 is a family of smooth maps (Cr)r∈(0,1] from
an open neighborhood V of the identity element e0 ∈ G0 to G such that

(i) Cr(e0) = e for every r ∈ (0, 1];
(ii) There exists an open neighborhood W ⊆ G of e such that Cr is a diffeomor-

phism from C−1
r (W 2) to W 2 for all r ∈ (0, 1];

(iii) for each x ∈ V there exists an rx ∈ (0, 1] such that Cr(x) ∈W for all r < rx;
(iv) and for all x, y ∈ V ,

lim
r→0

C−1
r (Cr(x)Cr(y)) = xy.

From the definition of the Lie group contraction it follows that the existence of a
contraction is a local property and it does not depend on the global structure of G and
G0. Hence, it is not very surprising that there is a close relation between Lie group
contractions and the contraction of their Lie algebras.

Lemma 2.76.

• If (Cr)r∈(0,1] is a contraction of G to G0 then (dCr)r∈(0,1] is contraction of g to
g0.

• If (cr)r∈(0,1] is contraction of g to g0 and the family (‖cr‖op)r∈(0,1] is bounded then
(Cr)r∈(0,1] defined by

Cr = expG ◦cr ◦ exp−1
G0

is a contraction of G to G0.

Given a contraction (Cr)r∈(0,1] of G to G0 one can study the relationship between
representations of G and G0.

Definition 2.77. Let (π,H) be a representation of G0. A family ((πn,Hn))n∈N of
representations of G contracts to π if there exists a sequence r(n) ∈ (0, 1] converging to
0, a family of unitary operators An : Hn → H, and a dense subspace D ⊆ H such that

(i) for each f ∈ D there exists nf ∈ N such that for all n ≥ nf , f ∈ An(Hn);

(ii) and for all f ∈ D and x ∈ V ,

lim
n→∞

‖Anπn(Cr(n)(x))A−1
n f − π(x)f‖H = 0.
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A special case of the contraction procedure defined in Def. 2.75 is the contraction along
a subalgebra or subgroup, respectively (cf. Antoine and Vandergheynst [6]). Let G be
a connected Lie group, H ≤ G a closed subgroup, and denote their Lie algebras by g

and h. Then h is a linear subspace of g and there exists a complementary vector space
v ⊆ g such that g = v⊕ h. For X ∈ g write X = Xv +Xh, where Xv ∈ v and Xh ∈ h.
The linear maps cr : g→ g, r ∈ (0, 1],

cr(Xv +Xh) = rXv +Xh (2.17)

define a contraction of g to g0, where g0 = v ⊕ h, defined as a vector space, with the
Lie bracket

[Xv +Xh, Yv + Yh]0 = ([Xh, Yv] + [Xv, Yh])v + [Xh, Yh], (2.18)

where Xv, Yv ∈ v, Xh, Yh ∈ h. As can be seen from eq. (2.18) v is an abelian subalgebra
of g0 and h acts on v. Hence, g0 is semidirect product of the form g0 = vo h.
The simply connected, connected Lie group corresponding to v is (V,+) = (v,+). The
action of h on v can be lifted to an action of H on v and by identifying v with V (via
the exponential map expV : v→ V ) the latter induces an action of H on V . Therefore,
it seems natural to set G0 = V oH and indeed the maps Cr : G0 → G, r ∈ (0, 1],

Cr(expV (Xv), h) = expG(rXv)h, expV (Xv) ∈ V, h ∈ H, (2.19)

define a contraction of G to G0.

Definition 2.78. Let G be a connected Lie group and H a closed subgroup. Denote
their Lie algebras by g and h. Let v be the linear complement of h in g and consider v

as an abelian Lie algebra with simply connected, connected abelian Lie group V .

• The contraction of g along h is the Lie algebra

g0 = vo h

with the Lie bracket given by eq. (2.18), together with the family of maps (cr : g0 →
g)r∈(0,1] defined by eq. (2.17).

• The contraction of G along H is the Lie group

G0 = V oH

together with the family of maps (Cr : G0 → G)r∈(0,1] defined by eq. (2.19).

Here, it becomes apparent why the construction is called contraction. When r goes to
0 the elements of v or, to be more precise, the corresponding structure constants of g,
are contracted and shrink to 0.



CHAPTER 3

Continuous wavelet transformations and admissibility conditions

The aim of this chapter is to give an overview over the different approaches to (gen-
eralized) continuous wavelet transformations. This includes a collection of different
constructions as well as a systematic analysis with group-theoretical methods. These
constructions will be used as a starting point for new approaches.

3.1 Continuous wavelet transformations and generaliza-
tions

Motivated by the wide field of applications, there is a large number of constructions
which were developed to extend the continuous wavelet transformation. In the fol-
lowing, we select the most important constructions. The approaches which will be
presented within this section are just a small compilation. A more complete list of
references can be found in the textbook [3] by Ali, Antoine, and Gazeau.

3.1.1 Classical continuous wavelet transformation

From Fourier analysis it is known that any function f ∈ L2(R) can be written in terms
of plane waves χk(x) = e−2πikx. Likewise, one can ask whether it is possible to express
f in terms of waves which are similar to a given localized wavelet ψ ∈ L2(R), i.e., by
functions ψb,a ∈ L2(R) of the form

ψb,a(x) = |a|−
1
2ψ(a−1(x− b))

for a, b ∈ R, a 6= 0. The parameter a describes the dilation of ψ whereas the parameter
b describes the translation. The factor |a|− 1

2 makes sure that ‖ψb,a‖2 = ‖ψ‖2.

The answer to that question is positive. For suitable functions ψ ∈ L2(R) one can show
that the map

Vψ : L2(R)→ L2(R× R 6=0, |a|−2 dbda), Vψf(b, a) = 〈ψb,a, f〉 ,
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is an isometry. Its adjoint V ∗ψ : L2(R× R 6=0, |a|−2 dbda)→ L2(R),

V ∗ψF =
∫
R×R6=0

ψb,a · F (b, a) |a|−2 dbda,

converging in the weak sense, is surjective and yields the decomposition

f =
∫
R×R 6=0

ψb,a · Vψf(b, a) |a|−2 dbda .

The transformation Vψ is known as the (classical) continuous wavelet transformation.

It is due to Grossmann, Morlet and Paul [39] who noticed (based on the survey by
Aslaksen and Klauder [7]) that the classical continuous wavelet transformation is deeply
connected to the affine group Gaff(R) of the real line, which is given by

Gaff(R) = Ro R 6=0 = {(b, a) | a ∈ R 6=0, b ∈ R} .

Its group law and inversion are given by

(b, a)(b′, a′) = (ab′ + b, aa′), (b, a)−1 = (−a−1b, a−1)

for (b, a), (b′, a′) ∈ Gaff(R). As the left and right Haar measure have the form

d(b, a) = |a|−2 dadb, d(b, a)−1 = |a|−1 da db,

where da, db denotes the Lebesgue measure on R 6=0 ⊆ R and R, it is a nonunimodular
group with modular function ∆(b, a) = |a|. Its action on R, given by

(b, a)x = ax+ b for (b, a) ∈ Gaff(R), x ∈ R,

induces a unitary representation π of Gaff(R) on the Hilbert space L2(R), which has
the form

[π(b, a)f ](x) = |a|−
1
2 f(a−1(x− b)) = fb,a(x).

The coefficient functions of π have the form

Cfg(b, a) := 〈π(b, a)f, g〉 =
∫
R
|a|−

1
2 f(a−1(x− b))g(x) dx = (f∗a ∗ g)(b),

where f∗a ∈ L2(R) is given by

f∗a (x) = |a|−
1
2 f(−a−1x)
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and the convolution f ∗ g is defined by

(f ∗ g)(x) =
∫
R
f(x− y)g(y) dy (3.1)

whenever the integral in eq. (3.1) is well-defined.

Recall that the Plancherel transform of function f ∈ L1(R) ∩ L2(R) has the form

f̂(k) =
∫
R
f(x) e2πikx dk ∀k ∈ R.

Using this convention the Plancherel formula and the Plancherel transform of a convo-
lution are given by

‖f‖22 = ‖f̂‖22 :=
∫
R
|f̂(k)|2 dk, and f̂ ∗ g = f̂ · ĝ.

Suppose that Cfg ∈ L2(Gaff(R)). Then the functions b 7→ Cfg(b, a) are in L2(R) for
almost all a 6= 0 and we can verify that their Plancherel transforms have the form

f̂∗a ∗ g(k) = f̂∗a (k)ĝ(k) = |a|
1
2 f̂(ak)ĝ(k),

where f̂ , f̂∗a , ĝ are the Plancherel transforms of f , f∗a , g. By applying the Plancherel
Theorem for R we get

‖Cfg‖22 =
∫
R6=0

∫
R
|a|−2|(f∗a ∗ g)(b)|2 da db

=
∫
R6=0

∫
R
|a|−2|f̂∗a ∗ g(k)|2 da dk

=
∫
R6=0

∫
R
|a|−1|f̂(ak)ĝ(k)|2 da dk

=
∫
R6=0

∫
R
|ak|−1|f̂(ak)ĝ(k)|2|k| da dk

=
∫
R6=0

∫
R
|l|−1|f̂(l)ĝ(k)|2 dl dk

= ‖g‖22 ·
∫
R6=0

|f̂(l)|2
|l|

dl . (3.2)

Since by assumption Cfg is in L2(Gaff(R)), it follows that the function f satisfies

∫
R6=0

|f̂(l)|2
|l|

dl <∞. (3.3)

On the other hand, if we assume that f satisfies ineq. (3.3) then we get

‖g‖22 ·
∫
R6=0

|f̂(l)|2
|l|

dl = ‖Cfg‖22.
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by a calculation analogous to eq. (3.2).

Remark 3.1. Note that the crucial part in either direction is that for f, g ∈ L2(R) the
convolution f ∗ g is in L2(R) if and only if the product f̂ ĝ is in L2(R), and in that case
we have

f̂ ∗ g = f̂ ĝ.

The proof is not very hard. Since f ∗ g can be considered as a tempered distribution
(f ∗ g ∈ S ′(R)) one can compute the Fourier transform FS′(f ∗ g) in the distributional
sense and show that

FS′(f ∗ g) = f̂ ĝ.

As the Fourier transform of a Schwartz function coincides with its Plancherel transform
and the Schwartz functions form a dense subspace of L2(R) it follows by duality that
the distributional Fourier transform FS′(u) of a function u ∈ L2(R) coincides with
its Plancherel transform û (see Lem. B.1). Therefore, f ∗ g ∈ L2(R) if and only if
f̂ ĝ ∈ L2(R) and

f̂ ∗ g = FS′(f ∗ g)

in that case.

In summary, it follows that the (possibly unbounded) operator Vf : L2(R)→ L2(Gaff(R)),
Vfg = Cfg is an isometry if and only if f satisfies

∫
R6=0

|f̂(l)|2
|l|

dl = 1 (3.4)

Eq. (3.4) is called Calderón condition and goes back to Calderón [19]. Surely, there
exist functions satisfying this condition.
Motivated by this construction, we say that a unitary representation (π,H) of a locally
group is square-integrable1 if there exists a nonzero vector f ∈ H such that the
coefficient functions Cfg are square-integrable for all g ∈ H, i.e.,

Cfg = 〈π(·)f, g〉 ∈ L2(G) ∀g ∈ H,

and the operator

Vf : H → L2(G), g 7→ Cfg,

is an isometry. In that case Vf is called a continuous wavelet transformation and
1There are different definitions of square-integrable representations. See rem. 3.3 for a discussion

on this notion.
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f is called an admissible vector (or an admissible function).

3.1.2 Shearlets and semidirect products

The classical continuous wavelet transformation comes from the affine group of the real
line Gaff(R) = R o R 6=0 which acts on R by translation and dilation. It generalizes in
a straightforward way to the n-dimensional similitude group

SIM(n) = Rn o
(
R>0 · SO(n)

)
= {(v, aA) | v ∈ Rn, a ∈ R>0, A ∈ SO(n)}

acting on Rn by translation, dilation, and rotation. (For details, see Murenzi [54].)

Another way to generalize the classical continuous wavelet transformation are the (gen-
eralized) shearlet transformations, which are related to groups of the form RnoH with
H = D · S, where D is a group of the form

D =

±

aδ1

. . .
aδn


∣∣∣∣∣∣∣∣∣ 0 < a


with 0 < δn ≤ · · · ≤ δ1 ≤ 1 and S is a closed abelian subgroup of


1 s1,2 . . . s1,n

1 . . . ...
. . . sn−1,n

1



∣∣∣∣∣∣∣∣∣∣∣∣
si,j ∈ R for 1 ≤ i < j ≤ n


.

D corresponds to (anisotropic) dilations whereas S corresponds to shearing. (For de-
tails, see Alberti et al. [1], Kutyniok and Labate [48]).

Both classes are examples of groups of the form

G = Rn oH = {(v,A) | v ∈ Rn, A ∈ H},

where H is a closed subgroup of Gl(n). G naturally acts on Rn ∼= G/H by

(v,A)x = v +Ax, for x ∈ Rn,

which induces a unitary representation π of G on L2(Rn) given by

π(v,A)f(x) := |det(A)|−
1
2 f(A−1(x− v)). (3.5)

When studying the square-integrability of π, the approach is similar for all groups of
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the form G = RnoH. By using the Fourier transformation L2(Rn)→ L2(Rn), f 7→ f̂ ,

f̂(k) :=
∫
Rn
f(x)e2πi〈k,x〉 dx, for f ∈ L1(Rn) ∩ L2(Rn),

the representation π can be rewritten as

π̂(v,A)f̂(k) := | det(A)|
1
2 e2πi〈k,v〉f̂(Atk)

and the coefficient functions take the form

Cfg(v,A) := 〈π(v,A)f, g〉 =
〈
π̂(v,A)f̂ , ĝ

〉
=
∫
Rn
|det(A)|

1
2 e−2πi〈k,v〉f̂(Atk)ĝ(k) dk .

By the Plancherel Theorem the coefficient functions satisfy

‖Cfg‖22 :=
∫
G

d(A, v) | 〈π(v,A)f, g〉 |2 =
∫
Rn

dv
∫
H

dA |det(A)|−1| 〈π(v,A)f, g〉 |2

=
∫
Rn

dk
∫
H

dA |f̂(Atk)|2|ĝ(k)|2,

in the extended sense that the left-hand side is finite if and only if the right-hand side
is and in that case they coincide. In order to get ‖Cfg‖2 = ‖g‖2 for all g ∈ L2(Rn), f
has to satisfy ∫

H
dA |f̂(Atk)|2 ≡ 1 (3.6)

almost everywhere. A direct consequence is that the stabilizers Hk = {A ∈ H | Atk =
k} have to be compact for almost every k ∈ Rn as the integrand in eq. (3.6) is constant
on the cosets modulo Hk.
For the similitude group and the shearlet groups constructed in [1] almost all stabilizers
are indeed compact. Furthermore, in each of the examples there exists a k0 ∈ Rn such
that the orbit Ok0 = {Atk0 | A ∈ H} ⊂ Rn is open and co-null with respect to
the Lebesgue measure on Rn. As a consequence, the respective representation π is
irreducible in both cases (cf. Führ [34, Cor. 21]). Moreover, one can substitute Ak0

with A ∈ H for l ∈ Rn and write

1 !=
∫
H

dA |f̂(Atk0)|2 =
∫
Rn

dl δ(l)|f̂(l)|2, (3.7)

where δ is the corresponding transformation density (Jacobi determinant) for the sub-
stitution Ak0 → l. The restriction δ|Ok0

is continuous (in fact, it is smooth). By
choosing f ∈ L2(Rn) such that supp f̂ is compact and contained in Ok0 we can make
sure that 0 <

∫
Rn dl δ(l)|f̂(l)|2 < ∞. Hence, by normalizing f in a suitable way we

find a function f ∈ L2(Rn) satisfying condition eq. (3.7). Therefore, the representa-
tions obtained from the similitude group and the shearlet groups constructed in [1] are
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square-integrable and admit a continuous wavelet transformation.
In the general case of a group of the form G = RnoH the situation is more challenging,
since the orbit space Rn/H = {Ok | k ∈ Rn} can be much more complicated. A rigorous
discussion can be found in Führ [34]. As mentioned above, for square-integrability it
is necessary that for almost all k ∈ Rn (with respect to the Lebesgue measure) the
stabilizers Hk = {A ∈ H | Atk = k} are compact. Führ shows that another necessary
condition is that the orbit space Rn/H is sufficiently regular (see [34] for details).
Then there exists a measure ν on Rn/H and a measurable cross-section Rn/H → Rn,
O 7→ kO, such that the Lebesgue measure can be decomposed as∫

Rn
ϕ(k) dk =

∫
Rn/H

∫
H
ϕ(AtkO) 1

δ(AtkO) dA dν(O), ∀ϕ ∈ L1(Rn),

for some measurable function δ : Rn → R≥0, which is positive almost everywhere and
depends on H, ν, and the cross-section O 7→ kO. In that case, a function f ∈ L2(Rn)
is admissible if and only if ∫

H
|f̂(AtkO)|2 dA = 1 (3.8)

for ν-almost all O ∈ Rn/H. Führ shows that for nonunimodular groups a function
satisfying eq. (3.8) always exists. For unimodular groups, admissible functions exist if
and only if ν(Rn/H) <∞.

3.1.3 Windowed Fourier transformation and coherent state transfor-
mation

Another type of generalized continuous wavelet transformations can be constructed
from the Heisenberg-Weyl group, which is given by

HW(n) = {(q, p, c) | q, p ∈ Rn, c ∈ R},

(q, p, c)(q′, p′, c′) = (q + q′, p+ p′, c+ c′ + 1
2(
〈
q, p′

〉
−
〈
q′, p

〉
)),

(q, p, c)−1 = (−q,−p,−c),

where 〈·, ·〉 is the standard scalar product on Rn. The Heisenberg-Weyl group is a
nilpotent Lie group with center

Z = {(0, 0, c) | c ∈ R}

and quotient group
HW(n)�Z ∼= (R2n,+).

HW(n) has two classes of irreducible unitary representations: The 1-dimensional rep-
resentations of HW(n)/Z and the infinite-dimensional Schrödinger representations πh
for h ∈ R 6=0, which are induced from nontrivial characters of Z. They are defined on
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L2(Rn) and have the form

πh(q, p, c)f(x) = e2πih
(
c+ 1

2 〈q,p〉−〈x,p〉
)
f(x− q).

Central elements (0, 0, c) act by multiplication with a scalar e2πihc and, in consequence,
the coefficient functions satisfy the relations

Cfg(q, p, c) := 〈πh(q, p, c)f, g〉 = e−2πihc 〈πh(q, p, 0)f, g〉 ,

|Cfg(q, p, c)|2 =| 〈πh(q, p, c)f, g〉 |2 = | 〈πh(q, p, 0)f, g〉 |2.

Since the modulus of coefficient functions is independent of c ∈ Z and Z is not compact,
the representations πh are not square-integrable. However, (q, p, c) 7→ |Cfg(q, p, c)|2 can
be considered as a function on HW(n)/Z. Then, using the Fourier transformation and
the Plancherel Theorem, it is straightforward to compute∫

Rn
dq
∫
Rn

dp |Cfg(q, p, c)|2 = ‖f‖22‖g‖22.

Hence, for all functions f ∈ L2(Rn) with ‖f‖22 = 1, the maps Af , Bf : L2(Rn) →
L2(R2n),

Afg(q, p) =
〈
πh
(
q, p,−1

2 〈q, p〉
)
f, g

〉
=
∫
Rn

dx e2πih〈x,p〉f(x− q)g(x),

Bfg(q, p) = 〈πh(q, p, 0)f, g〉 =
∫
Rn

dx e2πih〈x,p〉f(x− 1
2q)g(x+ 1

2q),

are isometries.

Af is called windowed or short-time Fourier transform. Its discrete version plays an
important role in signal and image processing (see for instance the book [11] by Blanchet
and Charbit). The idea is due to Gabor [36] who considered the case n = 1 and used

a Gaussian function f(x) =
(

2a
π

) 1
4 e2πi(kx+c)e−ax

2 .

The map Bf has applications in quantum mechanics. Here, f is usually chosen to be a
Gaussian function,

f(x) =
(2n detC

πn

) 1
4
e2πi〈x,k〉e−〈x,Cx〉,

as well. Those functions, which play an important role in quantum mechanics, are called
coherent states (cf. [3]) and the map Bf is also called coherent state transformation.

The construction presented for the Heisenberg-Weyl group can be generalized to other
locally compact groups G. By Schur’s Lemma it is clear that for any irreducible unitary
representation π central elements z ∈ Z(G) are mapped to multiplication operators
π(z) = e2πiα(z)

1π. Hence, the modulus of a coefficient function | 〈π(x)f, g〉 | is constant
on cosets modulo Z(G). In order for π to be square-integrable, it is necessary that
Z(G) is compact. However, as Z(G) is a normal subgroup of G it seems natural to
consider | 〈π(x)f, g〉 | as a function on G/Z(G), instead, and say that f is admissible
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(modulo Z(G)) if∫
G�Z(G)

| 〈π(σ(y))f, g〉 |2 dy = ‖g‖2π, ∀g ∈ Hπ,

for some Borel section σ : G/Z(G) → G. In that case, π is called square-integrable
modulo Z(G).
In [55], Perelomov goes even a step further. For a given f0 ∈ Hπ let

H = {x ∈ G | ∃α(x) ∈ R : π(x)f0 = e2πiα(x)f0}.

H is the maximal subgroup of G such that | 〈π(·)f, g〉 | is constant on cosets modulo H
for all g ∈ Hπ. If there exists a G-invariant measure ν on X = G/H then an irreducible
representation π is said to be square-integrable modulo H if∫

G�H
| 〈π(σ(y))f0, g〉 |2 dν(y) = ‖g‖2π, ∀g ∈ Hπ.

By the irreducibility of π it is sufficient to check that∫
G�H
| 〈π(σ(y))f0, f0〉 |2 dν(y) = ‖f0‖2π.

In [55], Perelomov studies the existence of admissible vectors in this generalized sense
for different classes of groups, like nilpotent Lie groups and semisimple Lie groups, and
gives sufficient and necessary conditions for many examples.

3.1.4 Coherent states over coadjoint orbits

The notation square-integrability modulo a subgroup led to more generalizations. Prin-
cipally, one could take any subgroup H < G and a suitable Borel section σ : G/H → G

and ask for the existence of an element f ∈ H such that∫
G�H
| 〈π(σ(y))f, g〉 |2 dνσ(y) = ‖g‖2H, ∀g ∈ H. (3.9)

Certainly, in many cases | 〈π(σ(y))f, g〉 | will not be constant on cosets modulo H and,
therefore, the existence of an f satisfying condition (3.9) depends on the choice of σ.
If such an f exists then π is called square-integrable modulo (H,σ) (cf. Ali, Antoine,
and Gazeau [3]).
It turns out that finding suitable H and σ for a given representation π is a hard task.
One approach comes from geometric quantization or, to be more precise, from Kirillov’s
orbit method. The basic idea of the orbit method is to associate irreducible unitary
representations of a Lie group with its coadjoint orbits (cf. Kirillov [45], [46], Auslander
and Kostant [8]). If for example G is a nilpotent, simply connected, connected Lie group
then there is a one-to-one correspondence between the coadjoint orbits O ∈ g∗/Ad∗(G)
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and the irreducible unitary representations π ∈ Ĝ of G. Suppose that the orbit O ∼=
G/H is an affine subspace of g∗. Then the representation (πO,HO) corresponding to
O is square-integrable modulo H (cf. Moscovici [53, Thm. 3.1]). Moreover, there exists
a continuous homomorphism α : H → R such that

πO(h)f = e2πiα(h)f

for all h ∈ H and f ∈ HO (cf. Perelomov [55, Chp. 10]). Indeed, the Heisenberg-Weyl
group HW(n) discussed in Chp. 3.1.3 is an example for this.

Unfortunately, in many cases there is no f ∈ H satisfying the assumptions of Perelo-
mov’s construction. Nevertheless, it is possible to find a cross-section σ : G/H ∼= O → G

such that πO is square-integrable modulo (H,σ). For example, in [20] de Bièvre studies
irreducible representations of semidirect products G = RnoH with H ≤ Gl(n). Given
an irreducible representation π, the author constructs such a cross-section and shows
that under certain conditions π is square-integrable modulo (H,σ). De Bièvre states
that the construction works for several groups, for example, for the Euclidean group
Rn o SO(n), the Galilei group and the Poincaré group in 1 + 1 dimensions.

3.1.5 Continuous wavelet transformations on manifolds

In [5] and [6], Antoine and Vandergheynst discuss the generalization of the usual con-
tinuous wavelet transformation coming from the similitude group (see Chp. 3.1.2) to
manifolds like the n-sphere or the two-sheet hyperboloid.

They consider a manifold M together with a group which acts transitively on M and
contains some kind of local dilations. Motivated by Holschneider [40] they want to
construct a continuous wavelet transformation which – in terms of group contractions
(cf. 2.4) – reduces locally to the usual continuous wavelet transformation on Rn.

In [6] Antoine and Vandergheynst, present an explicit construction for the 2-sphere.
As its symmetry group SO(3) does not contain any local dilations they extend it to
the conformal group and consider SO0(3, 1), the connected component of the identity
of SO(3, 1). The easiest way to describe the conformal transformations is to represent
the 2-sphere as a subset of the 3-dimensional projective space P(R4)

S2 =


R


x1

x2

x3

r

 ∈ P(R4)

∣∣∣∣∣∣∣∣∣∣∣
x2

1 + x2
2 + x2

3 = r2


.
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It is the image of the set S2 = {x ∈ R3 | ‖x‖2 = 1} under the embedding R3 → P(R4),


x1

x2

x3

 7→ R


x1

x2

x3

1

 . (3.10)

The group G = PSO(3, 1) ∼= SO0(3, 1) acts on S2 by matrix-vector multiplication.
Locally the group SO0(3, 1) ∼= PSO(3, 1) acts on S2 by translation, rotations and
dilation, which can be described as follows. There are two different geometric pictures
we want to use.

• One is stereographic projection. Let s = R
( 0

0
−1
1

)
and write the analogue of the

stereographic projection Φ: S2 \ {s} → R2 by

Φ: R


x1

x2

x3

r

 7→
2

x3 + r

(
x1

x2

)
, Φ−1 :

(
y1

y2

)
7→ R


4y1

4y2

4− (y2
1 + y2

2)
4 + (y2

1 + y2
2)

 .

Then it is straightforward to verify that elements Da ∈ PSO(3, 1) of the form
1

1
a+a−1

2 −a−a−1

2
−a−a−1

2
a+a−1

2

 , a ∈ R>0, (3.11)

act on R2 by

Φ ◦Da ◦ Φ−1 :
(
y1

y2

)
7→ a

(
y1

y2

)
.

The stereographic projection can be interpreted as a projection of a neighborhood
of s onto the tangent space of S2 at s. In that picture the Da ∈ PSO(3, 1) can
be interpreted as dilations on a small neighborhood of s.

• The other one is group contraction (see Chp. 2.4). The basic idea is to increase the
radius R of the sphere and watch how the group action in a small neighborhood
of some point p ∈ S2 changes as R goes to infinity. Speaking in terms of Def. 2.78
we are describing the contraction of G = PSO(3, 1) along the stabilizer H of p,
where the parameter r = 1

R goes to 0. The subgroup H is isomorphic to

H ∼= R2 o (R>0 · SO(2)) = N o (R>0 · SO(2))
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and the contracted group G0 is isomorphic to

G0 ∼= R2 o (R2 o (R>0 · SO(2))) = V o (N o (R>0 · SO(2))).

H acts on V = R2 by

(x, aA)v = aAv, x ∈ N, a ∈ R>0, A ∈ SO(2), v ∈ V.

Therefore, the elements (v, x, aA) of the groupG0 = V oH act on V by translation
by v, rotation by A, and dilation by a.

The representation Antoine and Vandergheynst study in [6] is the quasi-regular repre-
sentation π on L2(S2). It is given by

π(A)f(ω) = λ(A,ω)
1
2 f(A−1ω), for f ∈ L2(S2), A ∈ PSO(3, 1), ω ∈ S2,

where

λ(A,ω) := d(A−1ω)
dω

is the Radon-Nikodym derivative with respect to the SO(3)-invariant measure on S2.
π is an irreducible, unitary representation of PSO(3, 1), which is not square-integrable.

Antoine and Vandergheynst show that π contracts to the representation π0 of G0 on
L2(V ) given by

π0(v, x, aA)f(w) = a−1f(a−1A−1(w − v)), (v, x, aA) ∈ V o (N o (R>0 SO(2))).

The kernel of π0 is N E G0 and G0/N is isomorphic to SIM(2). As shown in Chp. 3.1.2
π0 is square-integrable with respect to the group SIM(2) and in that sense it is square-
integrable modulo N (with respect to G0). Therefore, it seems plausible to investigate
whether π is square-integrable modulo (N, σ) for some Borel section σ : G/N → G.
The image of the section σ chosen in [6] is X = SO(3) × {Da | a ∈ R>0}, which
contains the motions SO(3) on S2 (embedded in PSO(3, 1) via eq. (3.10)) and the
dilations Da defined by eq. (3.11). Antoine and Vandergheynst conjecture that there
is still no function which is admissible in the sense defined in Chp. 3.1.4 and say that
a function f ∈ L2(S2) is a continuous frame modulo (N, σ) if there exist constants
0 < m < M <∞ such that

m‖g‖22 ≤
∫

SO(3)
dA

∫
R>0

da
a3 | 〈π(ADa)f, g〉 |2 ≤M‖g‖22,

where dA da
a

1
a2 is the pushforward (with respect to σ) of the G-invariant measure on
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G/N . For a continuous frame f the map Vf : L2(S2)→ L2(X),

Vf (A, a) = 〈π(ADa)f, g〉 ,

is bounded and V ∗f Vf : L2(S2) → L2(S2) has a bounded inverse. However, it is an
isometry only if m and M can be chosen to be equal. In general, Tf := V ∗f Vf will not
be (a multiple of) the identity of L2(S2) and, therefore, the reconstruction formula has
to be corrected by T−1

f V ∗f : L2(X)→ L2(S2),

F 7→
∫

SO(3)
dA

∫
R>0

da
a3 F (A, a)T−1

f π(ADa)f.

In the construction of Antoine and Vandergheynst, the operator Tf turns out to be
SO(3)-invariant. Hence, the continuous wavelet transformation constructed in [6] re-
spects the SO(3)-symmetry of the sphere.

3.1.6 Continuous diffusion wavelet transformations

The definition of a suitable set of dilations is desirable for applications and seems
necessary for the existence of a generalized continuous wavelet transformation. In
contrast to the geometric construction discussed in Chp. 3.1.5 there is another approach
coming from physics or partial differential equations. In [26], Ebert andWirth construct
a wavelet transformation on (homogeneous spaces of) a compact group G by solving
the diffusion (or heat) equation

∆Gu(t, a) = ∂tu(t, a), t ∈ R>0, a ∈ G,

where ∆G is the Laplace-Beltrami operator. For a given initial condition u(0, a) = u0(a)
the solution of the diffusion equation is

u(t, a) = (u0 ∗ kt)(a), for t > 0,

where kt is the diffusion (or heat) kernel, which can be computed explicitly (cf. [26]).
Moreover, kt is an approximate convolution identity, meaning that for all ϕ ∈ Lp(G),
1 ≤ p <∞,

ϕ ∗ kt −−→
t→0

ϕ

in the topology of Lp(G). Ebert and Wirth construct a family Ψ = (ψt)t∈R>0 ⊆ L2(G)
such that

ψ∗t ∗ ψt = −∂tkt,
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where ψ∗t (a) = ψt(a−1). Thus, Ψ satisfies∫ ∞
t

ψ∗s ∗ ψs ds = kt − lim
s→∞

kt = kt − k∞.

k∞ is the (nonzero) constant function satisfying
∫
G k∞(a) da = 1. In conclusion for all

f ∈ L2(G) with zero-mean (〈k∞, f〉 = 0) one can verify that∫ ∞
0

∫
G
|Cψtf(a)|2 dadt =

∫ ∞
0
〈f ∗ ψ∗t ∗ ψt, f〉 dt = ‖f‖22.

Hence, the map WΨ : L2
0(G)→ L2(R>0 ×G),

WΨf(t, a) = Cψtf(a),

where L2
0(G) = {f ∈ L2(G)|

∫
G f(a) da = 0}, defines an isometry.

For small t the functions kt and ψt are localized at e ∈ G. When t goes to infinity kt
and ψt melt down and distribute uniformly on G. In that sense changing the parameter
t ∈ R>0 describes some kind of dilation.
The key element of the construction of Ebert and Wirth is that the solution of the
diffusion equation can be written in terms of a convolution kernel which is in L1(G). The
reason for this is among others that all irreducible representations are finite dimensional.
In [35], Führ discusses a similar construction for simply connected, connected nilpotent
Lie groups N . As nilpotent Lie groups, in general, have infinite dimensional irreducible
representations, the solution of the diffusion equation is given by convolution with a
distribution rather than a function. Therefore, Führ considers the equation ∂tu = Qu

with initial condition u(0, ·) = u0, where Q is a negative definite self-adjoint operator
Q on L2(N) which is left-invariant. Under suitable assumptions its solution is given
by convolution with a function kt which is contained in the domain of Q. Führ shows
that the family (ψt)t∈R>0 = (2t(Qkt)∗)t∈R>0 is admissible in the sense that

∫
R>0

dt
t
‖Cψtf‖2L2(N) = ‖f‖2L2(N),

where

Cktf(x) = 〈λN (x)ψt, f〉 = 2t(f ∗Qkt)(x)

and λN is the left regular representation of N .

3.2 Group-theoretical approach to continuous wavelet
transformations

In the following, we will see a summary of the most important results on continuous
wavelet transformations coming from a systematic, group-theoretical analysis. It is an
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excerpt from the textbook [33] by Führ and all facts presented here can be found therein
(if not otherwise stated). To get a better understanding, we will see not only the results
but also their proofs or, at least, a sketch of them. It this way, we can highlight the
technical problems and obstructions and how to solve them. For a rigorous survey and
detailed proofs see [33].
3.2.1 Introduction and definitions

Let G be a locally compact group and let (π,H) be a unitary representation. For
vectors f, g ∈ H, let Cfg ∈ Cb(G) be the coefficient function

Cfg : a 7→ 〈π(a)f, g〉 , a ∈ G.

To be more precise, Cfg is a coefficient function of the contragredient representation π
or the complex conjugate of a coefficient function of π. For a fixed ψ ∈ H, it defines
an operator Cψ : H → Cb(G) from H to the continuous bounded functions on G. We
are particularly interested in the case where Cψf ∈ L2(G).

Definition 3.2. Let G be a locally compact group and (π,H) a unitary representation.
Let ψ ∈ H be a fixed, nonzero vector.

(a) Denote by Vψ the possibly unbounded (not even densely defined) operator H →
L2(G) given by Vψf = Cψf on the domain

dom(Vψ) =
{
f ∈ H | Cψf ∈ L2(G)

}
.

(b) If Vψ is an isometry, then it is called a continuous wavelet transformation.
In that case ψ is called an admissible vector.

(c) If a given representation π possesses an admissible vector then π is called square-
integrable.

Remark 3.3. There are different definitions of square-integrable representations. Some
authors say that a unitary representation (π,H) is square-integrable if there exists a
nonzero vector f ∈ H such that Cff ∈ L2(G) (cf. Wong [59] for instance). In earlier
articles π is said to be square-integrable if π is irreducible and there exists f ∈ H \ {0}
such that Cff ∈ L2(G) (cf. Mackey [52]). The latter are nowadays referred to as
discrete series representations.
For irreducible representations all these definitions coincide. Indeed, if π is irreducible
and square-integrable (as in Def. 3.2) and f ∈ H is an admissible vector then

‖Cff‖2 = ‖Vff‖2 = ‖f‖H <∞.

The converse is less obvious and can be found in Wong [59, Thm. 6.1].
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Given an admissible vector ψ, the continuous wavelet transformation Vψ is an isometry.
Its adjoint V ∗ψ : L2(G)→ H can be written as

V ∗ψF =
∫
G
π(a)ψ · F (a) da,

which converges in the weak sense. The operator V ∗ψVψ is the identity on H and for all
f ∈ H we get the reconstruction formula

f =
∫
G
π(a)ψ · 〈π(a)ψ, f〉 da .

Conversely, the operator VψV ∗ψ is the orthogonal projection from L2(G) onto the image
of Vψ. It is an integral operator given by

[VψV ∗ψF ](a) =
∫
G
〈π(a)ψ, π(b)ψ〉F (b) db, ∀F ∈ L2(G).

A direct consequence of Def. 3.2 is the following proposition.

Proposition 3.4. Let (π,H) be a square-integrable representation of G. Then π is a
subrepresentation of the left regular representation λG.

Proof. Let ψ ∈ H be admissible. Then, for all f ∈ H and a, b ∈ G,

Vψ(π(a)f)(b) =
〈
π(a−1b)ψ, f

〉
= Vψf(a−1b) = [λG(a)Vψf ](b).

Hence, Vψ is an isometric intertwiner. This, π is a subrepresentation of λG.

The importance of Prop. 3.4 lies in the fact that we only have to study square-
integrability for subrepresentations of the left regular representation. In particular,
we can use the Plancherel decomposition for this purpose.
Another result which follows immediately is that subrepresentations of square-integrable
representations are square-integrable.

Proposition 3.5. Let (π,Hπ) be a square-integrable representation of G and let (ρ,Hρ)
be a subrepresentation of π. Then ρ is square-integrable.

Proof. Let S : Hρ → Hπ be an isometric intertwiner and let ψ ∈ Hπ be admissible for
π. Then S∗ψ is admissible for ρ, as

CρS∗ψf(a) = 〈ρ(a)S∗ψ, f〉ρ = 〈S∗π(a)ψ, f〉ρ = 〈π(a)ψ, Sf〉π = V π
ψ Sf(a),

‖CρS∗ψf‖
2
ρ = ‖V π

ψ Sf‖2π = ‖Sf‖2π = ‖f‖2ρ,

for all f ∈ Hρ.

One may ask whether all subrepresentations of the left regular representation are
square-integrable. By Prop. 3.5 it would be sufficient to show that the regular rep-
resentation is square-integrable. For type I nonunimodular groups this is actually the
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case as we will see in Thm. 3.15. For unimodular groups, however, the left regular
representation is not square-integrable in most cases.

Theorem 3.6. Suppose that G is unimodular. Then its left regular representation λG
is square-integrable if and only if G is discrete.

Proof (sketch). If G is discrete, then the Haar measure of {eG} is positive. One can
directly verify that ψ ∈ L2(G), defined by

ψ(a) =

|{eG}|
−1, a = eG

0, a 6= eG
,

is admissible. This is due to Vψ = idL2(G) in that case.
If λG is square-integrable and ψ ∈ L2(G) is admissible, then by the reconstruction
formula every f ∈ L2(G) can be written as

f =
∫
G
λG(a)ψ · Vψf(a) da = Vψf ∗ ψ.

As the convolution of two L2-functions is continuous, it follows that L2(G) ⊆ Cb(G).
Therefore, {eG} cannot be a null set. Thus, G is discrete.

A detailed proof, which provides more information on the last step, can be found in
Führ [33, Thm. 2.42].

3.2.2 Square-integrability condition

Similarly to the simple example of the group Gaff(R) discussed in Chp. 3.1.1, the
(generalized) Fourier transformation is the key to the admissibility condition. However,
since the general setup is more complicated, we have to work harder than in the simple
case. The first step is to carefully define the Fourier transform of a coefficient function
of the left regular representation. As before, it will turn out to take a particularly
easy form. Then, we can investigate under which conditions the Fourier transform is
square-integrable. In that case, the Plancherel Theorem makes sure that the coefficient
function is square-integrable, as well. Finally, we study under which assumptions a
given representation has admissible vectors.
From now on suppose that G is a second countable locally compact group and denote
its left regular representation by λG. If λG is type I then the Plancherel measure of G is
denoted by µG (cf. Thm. 2.67 and Thm. 2.69) and the operators defined in Lem. 2.68 are
denoted by {Dσ}σ∈Ĝ. As discussed in Chp. 2.3.5, Führ states the Plancherel Theorem
for groups G of type I having the property that the kernel of the modular function
N = ker ∆G is of type I and is regularly embedded in G. Hence, in Führ [33] those
conditions appear in the results which are based on the Plancherel decomposition.
However, since the Plancherel Theorem only requires that λG is type I, the requirements
of the results taken from [33] can be relaxed.
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Let f, g ∈ L2(G) and let Cfg ∈ C0(G), Cfg(a) = 〈f, λG(a)g〉, be a coefficient function.
In general, Cfg will neither be in L1(G) nor in L2(G). Let A(G) be the set of all
such coefficient functions. The space A(G) actually has more structure than one might
expect.

Theorem 3.7. Let G be a second countable locally compact group and let

A(G) = {Cfg | f, g ∈ L2(G)}

and endow A(G) with the norm

‖t‖A = inf{‖f‖2‖g‖2 | f, g ∈ L2(G), t = Cfg}.

A(G) is closed under pointwise addition, multiplication, and conjugation. Together with
the norm ‖ · ‖A, it is a Banach *-algebra.

The algebra A(G) is called the Fourier algebra of G. It was originally invented
to study abelian locally compact groups. In [28], Eymard generalized it to non-
abelian locally compact groups and studied their properties. Thm. 3.7 follows from
[28, Thm. p. 218].
The Fourier algebra can also be defined differently, namely, as the image of the in-
verse Fourier transform. Recall that B⊕1 (Ĝ) ⊆ B⊕(Ĝ) is the space of direct integral
operators

∫⊕
Ĝ
T (σ) dµG(σ) satisfying

‖T‖1 =
∫
Ĝ
‖T (σ)‖σ,1 dµG(σ) <∞,

where ‖ · ‖σ,1 is the trace-norm of B1(Hσ). Define F−1
A : B⊕1 (Ĝ)→ C0(G) by

F−1
A (T )(a) =

∫
Ĝ

Trσ[σ(a)∗T (σ)] dµG(σ) .

In [33], Führ shows that FA has the following properties.

Theorem 3.8. Let G be a second countable locally compact group and suppose that λG
is type I. Then F−1

A (T ) ∈ A(G) for all T ∈ B⊕1 (Ĝ). Moreover, F−1
A : B⊕1 (Ĝ) → A(G)

is an isometric isomorphism of Banach spaces.

Proof. Let T = {T (σ)}σ∈Ĝ ∈ B
⊕
1 (Ĝ) and denote t = F−1

A (T ). Let

T (σ) = U(σ)|T (σ)|

be the pointwise polar decomposition of T and let

U = {U(σ)}σ∈Ĝ ∈ B(Ĝ), |T | = {|T (σ)|}σ∈Ĝ ∈ B
⊕
1 (Ĝ)

S1 = {U(σ)|T (σ)|
1
2 }σ∈Ĝ ∈ B

⊕
2 (Ĝ), S2 = {|T (σ)|

1
2 }σ∈Ĝ ∈ B

⊕
2 (Ĝ).
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By Lem. A.1 the fields of operators U , |T |, S1, and S2 are measurable. If we denote
the inverse Plancherel transforms of S1 and S2 by s1 = P−1(S1), s2 = P−1(S2), then

t(a) =
∫
Ĝ

Trσ[T (σ)σ(a)∗] dµG(σ)

=
∫
Ĝ

Trσ[S1(σ)S2(σ)∗σ(a)∗] dµG(σ)

= 〈λG(a)s2, s1〉

= Cs2s1(a).

Hence, ‖t‖A ≤ ‖s1‖2‖s2‖2 = ‖T‖1. Therefore, F−1
A is bounded and ‖F−1

A (T )‖A ≤ ‖T‖1,
for all T ∈ B⊕1 (Ĝ).
Let t ∈ A(G). For a given ε > 0, let f, g ∈ L2(G) such that t = Cfg and

‖t‖A + ε ≥ ‖f‖2‖g‖2.

Let T = {ĝ(σ)f̂(σ)∗}σ∈Ĝ and note that t = F−1
A (T ) as

F−1
A (T ) =

∫
Ĝ

Trσ[ĝ(σ)f̂(σ)∗σ(a)∗] dµG(σ) = 〈λG(a)f, g〉 = t(a).

T satisfies the estimate

‖T‖1 =
∫
Ĝ

Trσ[|ĝ(σ)f̂(σ)∗|] dµG(σ)

≤
∫
Ĝ
‖ĝ(σ)‖2‖f̂(σ)∗‖2 dµG(σ)

≤ ‖g‖2‖f‖2
≤ ‖t‖A + ε.

The first inequality follows from

Tr [|AB|] = Tr [U∗AB] ≤ ‖U∗A‖2‖B‖2 = ‖A‖2‖B‖2,

where A, B are Hilbert-Schmidt operators and AB = U |AB| is the polar decomposition
of AB.
Hence, F−1

A is surjective and ‖F−1
A (T )‖A ≥ ‖T‖1, for all T ∈ B⊕1 (Ĝ).

Thm. 3.8 shows that any coefficient function Cfg can be Fourier transformed using FA.

Corollary 3.9. Let FA : A → B⊕1 (Ĝ) be the inverse of F−1
A . Then,

FA(Cfg) = ĝf̂∗ ∈ B⊕1 (Ĝ),

for all f, g ∈ L2(G).

The following theorem is one of the most important results in [33]. It provides a tool
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to check whether a coefficient function is square-integrable.

Theorem 3.10. Let T = {T (σ)}σ∈Ĝ ∈ B
⊕
1 (Ĝ) and define

t(a) =
∫
Ĝ

Trσ[T (σ)σ(a)∗] dµG(σ) .

Then t ∈ L2(G) if and only if {T (σ)D−1
σ }σ∈Ĝ ∈ B

⊕
2 (Ĝ). In that case, t̂(σ) = T (σ)D−1

σ

µG-almost everywhere.

Proof (sketch). The first direction is rather easy to prove. For simplicity, denote
{T (σ)D−1

σ }σ∈Ĝ by S = {S(σ)}σ∈Ĝ. If S ∈ B⊕2 (Ĝ) then P−1(S) = s ∈ L2(G). For
all ϕ ∈ Cc(G) we have

∫
G ϕ(a)(t(a)− s(a)) da = 0 because of∫

G
ϕ(a)t(a) da =

∫
Ĝ

Trσ[T (σ)σ(ϕ)∗] dµG(σ)

=
∫
Ĝ

Trσ[T (σ)D−1
σ Dσσ(ϕ)∗] dµG(σ)

=
∫
Ĝ

Trσ[S(σ)ϕ̂(σ)∗] dµG(σ)

=
∫
G
ϕ(a)s(a) da .

Hence, s = t almost everywhere. In particular, t ∈ L2(G) and t̂ = T (σ)D−1
σ µG-almost

everywhere.
The converse direction is much more involving and very technical. A complete proof of
the theorem can be found in Führ [33, Thm. 4.15].

Thm. 3.10 is the key to the following result.

Corollary 3.11. For f, g ∈ L2(G) we have Cfg ∈ L2(G) if and only if

{ĝ(σ)f̂(σ)∗D−1
σ }σ∈Ĝ ∈ B

⊕
2 (Ĝ).

In that case, its Plancherel transform has the form

Ĉfg(σ) = ĝ(σ)f̂(σ)∗D−1
σ

almost everywhere.

As described above, we defined the Fourier transform of a coefficient function and
showed that it has the easy form FA(Cfg) = ĝf̂∗ for f, g ∈ L2(G). Moreover, we know
that Cfg is square-integrable if and only if [σ 7→ ĝ(σ)f̂(σ)∗D−1

σ ] is. With this knowl-
edge, we can study whether a subrepresentation π of the left regular representation
λG has admissible vectors. The following proposition helps to understand how π is
embedded in λG.
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Proposition 3.12. If (π,H) is a subrepresentation of λG then there exists a measurable
field of orthogonal projections {P (σ)}σ∈Ĝ such that

P : L2(G)→ H

is the orthogonal projection onto H.

Proof. This result is a direct consequence of Thm. 2.71. Since the orthogonal pro-
jection P : L2(G) → H intertwines the left regular representation λG, P is contained
in C(λG). Therefore, there is a measurable field of operators {P (σ)}σ∈Ĝ such that
P =

∫⊕
Ĝ
P (σ) dµG(σ). Since P satisfies P = P 2 = P ∗, it follow that

P (σ) = P (σ)2 = P (σ)∗

almost everywhere.

With help of Prop. 3.12 we can characterize admissible functions as follows.

Theorem 3.13. Let (π,H) be a subrepresentation of λG and let P : L2(G) → H be
the orthogonal projection onto the closed subspace H ⊆ L2(G). Then the following are
equivalent.

(i) f ∈ H is admissible.

(ii) VfV ∗f = P .

(iii) f̂(σ)∗D−2
σ f̂(σ) = P (σ) almost everywhere.

Proof. The equivalence (i)⇔ (ii) follows from the definition of admissibility.
If f is admissible and VfV ∗f = P , then (iii) follows from Prop. 3.12. If (iii) is fulfilled
then Vf is bounded by Cor. 3.11 and, in particular,

‖Vfg‖22 =
∫
Ĝ
‖ĝ(σ)f̂(σ)∗D−1

σ ‖22 dµG(σ) =
∫
Ĝ
‖ĝ(σ)‖22 dµG(σ) = ‖g‖22,

implying that f is admissible. This shows that (i) ∧ (ii)⇒ (iii)⇒ (i).

In a straightforward way, Thm. 3.13 can be used to characterize square-integrability of
representations of unimodular groups.

Theorem 3.14. Suppose that G is unimodular. Then a subrepresentation π ≤ λG is
square-integrable if and only if

c =
∫
Ĝ
mπ(σ) dµG(σ) <∞, (3.12)

where mπ(σ) = rkP (σ). In that case any admissible vector f has norm ‖f‖2π = c.
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Proof. Suppose π is square-integrable and f is admissible. Then

‖f‖2π =
∫
Ĝ

Trσ[f̂(σ)∗f̂(σ)] dµG(σ)

=
∫
Ĝ

Trσ[P (σ)] dµG(σ)

=
∫
Ĝ
mπ(σ) dµG(σ) .

In particular
∫
Ĝmπ(σ) dµG(σ) <∞.

Now suppose that inequality (3.12) is fulfilled. Then∫
Ĝ
‖P (σ)‖22 dµG(σ) =

∫
Ĝ

Trσ[P (σ)] dµG(σ) =
∫
Ĝ
mπ(σ) dµG(σ) <∞.

Hence P ∈ B⊕2 (Ĝ) and p = P−1(P ) ∈ H as Pp = p. Moreover, Vp is an isometry as
Vpg = g for all g ∈ H. Therefore, p is admissible and π is square-integrable.

For nonunimodular groups the situation is more complicated. Because of the presence
of the operators {Dσ}σ∈Ĝ, we have to be more careful.

Theorem 3.15. Suppose that G is nonunimodular. Then λG is square-integrable.

Proof (sketch). By Thm. 3.13 (iii) we have to show that there is a measurable field
of operators f̂ ∈ B⊕2 (Ĝ) such that D−1

σ f̂(σ) is an isometry almost everywhere. Let
(en)n∈N be an orthonormal measurable structure for

∫⊕
Ĝ
Hσ dµĜ(σ) (cf. Chp. 2.3.2).

Suppose we can find a set of measurable vector fields (vn)n∈N such that (D−1
σ vn(σ)) are

orthonormal in Hσ for almost all σ ∈ Ĝ and ∑n∈N ‖vn‖2 <∞. Then f̂ given by

f̂(σ) =
∑
n∈N

vn(σ)⊗ en(σ)∗

has the desired properties as

f̂(σ)∗D−2
σ f̂(σ) =

∑
m∈N

∑
n∈N

〈
D−1
σ vm(σ), D−1

σ vn
〉
em(σ)⊗ en(σ)∗

=
∑
n∈N

en(σ)⊗ en(σ)∗

= idHσ

almost everywhere, and

‖f̂‖22 =
∫
Ĝ

∑
m∈N

∑
n∈N
〈vm(σ), vn(σ)〉 〈en(σ), em(σ)〉dµG(σ)

=
∫
Ĝ

∑
n∈N
〈vn(σ), vn(σ)〉 dµG(σ)

=
∑
n∈N
‖vn‖2.
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The construction of the family (vn)n∈N is quite technical and is based on an explicit
description of the operators (Dσ)σ∈Ĝ. The detailed proof can be found in Führ [33,
Thm. 4.23]. To get an idea, suppose that u = {u(σ)}σ∈Ĝ is a measurable field of vectors
with ‖u(σ)‖ = 1 and u(σ) ∈ dom(Dσ) almost everywhere. Furthermore, suppose that
σ 7→ ‖Dσu(σ)‖2 is locally integrable, i.e.,∫

Ĝ
charE(σ) · ‖Dσu(σ)‖2 dµG(σ) <∞,

for all measurable E ⊆ Ĝ of finite Plancherel measure, where charE is the characteristic
function of E. For example, u can be a field of vectors coming from the measurable
structure of

∫⊕
Ĝ
Hσ dµG(σ). In [33], u is chosen such that σ 7→ ‖Dσu(σ)‖2 is a bounded

function.
By using the following trick we can construct a measurable field of vectors v = {v(σ)}σ∈Ĝ
from u = {u(σ)}σ∈Ĝ satisfying∫

Ĝ
‖v(σ)‖2 dµG(σ) <∞ and ‖D−1

σ v(σ)‖2 = 1

almost everywhere. Since Ĝ is σ-finite, there exists a pairwise disjoint family {En}n∈N of
measurable subsets of Ĝ having finite Plancherel measure and satisfying Ĝ = ⋃

n∈NEn.
As im ∆G is a nontrivial subgroup of R>0 and gets arbitrarily close to zero, we can find
elements an ∈ G, n ∈ N such that∫

Ĝ
charEn(σ) · ‖Dσu(σ)‖2 dµG(σ) ≤ 1

2n∆G(an) .

Define v = {v(σ)}σ∈Ĝ by

v(σ) = Dσσ(an)u(σ) = ∆1/2
G (an)σ(an)Dσu(σ).

Then, ‖D−1
σ v(σ)‖ = ‖σ(an)u(σ)‖ = 1 and∫
Ĝ
‖v(σ)‖2 dµG(σ) =

∑
n∈N

∫
Ĝ

charEn(σ) ·∆G(an) · ‖Dσu(σ)‖2 dµG(σ)

≤
∑
n∈N

2−n ≤ 1.

With some more effort one can obtain a family (vn)n∈N having the properties described
above.

Note that the reason why unimodular and nonunimodular groups behave so differ-
ently comes from the fact that the subgroup im(∆G) ≤ R>0, and therefore almost all
of the operators Dσ, is unbounded for nonunimodular groups. That is why we can
find measurable fields of operators {f̂(σ)}σ∈Ĝ such that D−1

σ f̂(σ) is an isometry and
{f̂(σ)}σ∈Ĝ ∈ B

⊕
2 (Ĝ). For unimodular group, it is, in general, not possible to find
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{f̂(σ)}σ∈Ĝ such that f̂(σ) is an isometry and {f̂(σ)}σ∈Ĝ ∈ B
⊕
2 (Ĝ).

In summary we get the following final result.

Theorem 3.16. Let G be a second countable locally compact group and suppose that
its left regular representation λG is type I. Let (π,H) be a unitary representation of G
of type I and let

π ∼=
∫ ⊕
Ĝ
mπ(σ) · σ dµπ(σ)

be its central decomposition.
If G is unimodular, then π is square-integrable if and only if

(i) µπ is absolutely continuous with respect to the Plancherel measurable µG of G,

(ii) mπ(σ) ≤ dim(σ) for µG-almost all σ ∈ Ĝ,

(iii) and ∫
Ĝ
mπ(σ) dµG(σ) <∞.

If G is nonunimodular, then π is square-integrable if and only if

(i) µπ is absolutely continuous with respect to the Plancherel measurable µG of G.

Proof. By Thm. 2.66, condition (i) and (ii) are satisfied if and only if π is a subrepre-
sentation of λG. Since almost all irreducible representations of nonunimodular groups
are infinite-dimensional, condition (ii) is automatically fulfilled for those groups.
Then, the first part of the theorem is Thm. 3.14. The second part follows from
Thm. 3.15 and Prop. 3.5.



CHAPTER 4

New approaches to continuous wavelet transformations

This chapter is the main part of this thesis. Here, we develop new strategies to contin-
uous wavelet transformations. In Chp. 4.1, we will see that every representation can be
decomposed into a representation which is easy to handle and one which is hard to han-
dle. “Easy to handle” means that it is closely related to the left regular representation
and can be studied using the methods presented in Chp. 3.2. In Chp. 4.2, it is shown
that it is always possible to find a generalized continuous wavelet transformation for
those representations. For representations which turn out to be hard to handle, more
effort is needed to develop generalized continuous wavelet transformations. In Chp. 4.3,
we will see a construction for induced representations of semidirect products and group
extensions of a Lie group by the real vector space Rn. In the last section, in Chp. 4.4,
the approach by Antoine and Vandergheynst presented in [5] and [6] is reviewed. The
authors want to construct a generalized continuous wavelet transformation on mani-
folds which is closely related to the classical continuous wavelet transformation and its
multidimensional generalization (cf. Chp. 3.1.1 and Chp. 3.1.2). We will see that the
assumptions made in those articles are too restrictive. Antoine and Vandergheynst use
the quasi left regular representation of the n-sphere to describe their construction and
we will see that the n-sphere is in fact the only example satisfying their assumptions.
Hence, it is necessary to use strategies which are not related to the classical continuous
wavelet transformation and its multidimensional generalization.

Throughout, G will be a second countable locally compact group and its left regular
representation will be denoted as λG. If λG is type I, then its Plancherel transformation
is written as

P : L2(G)→ B⊕2 (Ĝ) =
∫ ⊕
Ĝ
B2(Hσ) dµG(σ), f 7→ f̂ .

The Plancherel measure is denoted by µG. The Fourier transformation has the form

F : L1(G)→ B⊕(Ĝ) =
∫ ⊕
Ĝ
B(Hσ) dµG(σ),

F(f)(σ) = σ(f) =
∫
G
f(a) · σ(a) da .
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On Rn, we use the convention

P(f)(k) = F(f)(k) =
∫
Rn
f(a) · e2πi〈k,a〉 da, ∀f ∈ L1(Rn) ∩ L2(Rn)

for the Plancherel and Fourier transformation.

4.1 Relation between representations

Let G be a second countable locally compact group and let (π,H) be a representation
of G. In Chp. 3.2 we saw that a necessary condition for being square-integrable is
that π is a subrepresentation of λG. In this section we will see that any representation
π can be split into a direct sum π = π1 ⊕ π2 such that π1 is quasi-equivalent to a
subrepresentation of λG and π2 is disjoint. If π is cyclic, then π1 is a subrepresentation
of λG.
Recall that the central decomposition of a representation (π,H) is a unitary equivalence
between (π,H) and (∫ ⊕

Ǧ
πp dµ(p),

∫ ⊕
Ǧ
Hp dµ(p)

)
,

where {(πp,Hp)}p∈Ǧ is a measurable field of representations and (πp,Hp) ∈ p for µ-
almost all p ∈ Ǧ. If π is type I, then the central decomposition can be written as(∫ ⊕

Ĝ
mπ(p) · σp dµ(p),

∫ ⊕
Ĝ
mπ(p) · Hσp dµ(p)

)
,

where (σp,Hσp) ∈ p is a fixed irreducible representation of all p ∈ Ĝ and mπ is the
multiplicity function.
The basic idea to prove the statement above is to use the Lebesgue decomposition theo-
rem. It states that, for any two σ-finite measures ν and ν ′, there exists a decomposition
ν = ν1 +ν2 such that ν1 is absolutely continuous with respect to ν ′, denoted by ν1 � ν ′,
and ν2 and ν ′ are mutually singular, denoted by ν2 ⊥ ν ′. (See, for instance, Elstrodt
[27, Thm. 2.6].) First, we have to show that the central measure µ and the Plancherel
measure µG are σ-finite.

Lemma 4.1. Let G be a second countable locally compact group and π a unitary rep-
resentation on a separable Hilbert space H. Let

π ∼=
∫ ⊕
Ǧ
πp dµ(p)

be a central decomposition of π. Then µ is σ-finite.

Proof. By Kallenberg [43, p. 21], it is sufficient to show that there exists a function
f ∈ L1(Ǧ, µ) which is positive almost everywhere.
W.l.o.g. we assume that π =

∫⊕
Ǧ
πp dµ(p) and H =

∫⊕
Ǧ
Hp dµ(p).
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As H is separable, there exists a countable complete orthonormal system (ψn | n ∈ N)
of H. Define f : Ǧ→ R≥0 by

f(p) =
∑
n∈N

2−n‖ψn(p)‖2p.

Then f is in L1(Ǧ, µ) as∫
Ǧ
f(p) dµ(p) =

∫
Ǧ

∑
n∈N

2−n‖ψn(p)‖2p dµ(p) =
∑
n∈N

2−n
∫
Ǧ
‖ψn(p)‖2p dµ(p)︸ ︷︷ ︸

=1

= 1.

We have to verify that f is positive µ-almost everywhere. Therefore, let B ⊂ Ǧ be a
measurable subset such that f |B = 0. Let PB be the orthogonal projection given by

PB =
∫ ⊕
Ǧ

charB(p)1p dµ(p),

where charB is the characteristic function of B. From the definition of f , it follows that

0 =
∫
Ǧ

charB(p)f(p) dµ(p) =
∫
Ǧ

charB(p)
∑
n∈N

2−n‖ψn(p)‖2p dµ(p)

=
∑
n∈N

2−n
∫
Ǧ

charB(p)‖ψn(p)‖2p dµ(p) =
∑
n∈N

2−n
∫
Ǧ
‖charB(p)ψn(p)‖2p dµ(p)

=
∑
n∈N

2−n‖PBψn‖2

and, therefore, PBψn = 0 for all n ∈ N. As {ψn | n ∈ N} is total in H it follows that
PB = 0 and, hence, B is a null set.

Now, the Lebesgue decomposition applied to µ and µG yields the following results.

Theorem 4.2. Let G be a second countable locally compact group. Let (π,H) be a
representation. Then,

• π is quasi-equivalent to a subrepresentation of λG,

• or π and λG are disjoint,

• or there exists a decomposition π = π1 ⊕ π2 such that π1 is quasi-equivalent to a
subrepresentation of λG and π2 and λG are disjoint.

Proof. Let

π ∼=
∫ ⊕
Ǧ
πp dµ(p)

be the central decomposition of π and let µG be the Plancherel measure of G. Let
µ = µ1 + µ2 be the Lebesgue decomposition of µ with respect to µG, i.e., µ1 � µG

and µ2 ⊥ µG. Since µ2 and µG are mutually singular, there exists a measurable subset
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E ⊆ Ǧ such that µ2(E) = 0 and µG(Ǧ \ E) = 0. Moreover, µ1(Ǧ \ E) = 0 as µ1 is
absolutely continuous with respect to µG.
If µ1 6= 0 and µ2 6= 0, let

π1 =
∫ ⊕
Ǧ
πp dµ1(p),

π2 =
∫ ⊕
Ǧ
πp dµ2(p) .

Then π is equivalent to π1 ⊕ π2. By Thm. 2.65, π1 is quasi-equivalent to a subrepre-
sentation of λG, and π2 and λG are disjoint.
If µ1 = 0 or µ2 = 0, then it follows analogously that π and λG are disjoint or π ≤ λG,
respectively.

Corollary 4.3. Let G be a second countable locally compact group and suppose that its
left regular representation λG is type I. Let (π,H) be a cyclic representation. Then,

• π is a subrepresentation of λG,

• or π and λG are disjoint,

• or there exists a decomposition π = π1 ⊕ π2 such that π1 is a subrepresentation
of λG and π2 and λG are disjoint.

Proof. It is sufficient to show that a cyclic representation π which is quasi-equivalent
to a subrepresentation of λG is a subrepresentation of λG.
Again, let

π ∼=
∫ ⊕
Ǧ
πp dµ(p)

be the central decomposition of π and let µG be the Plancherel measure of G.
Since λG is type I, Ǧ\Ĝ is µG-null and thus µ-null. In particular, π is type I. Therefore,
π is equivalent to

π ∼=
∫ ⊕
Ĝ
mπ(p) · σp dµ(p) .

Let ψ = {ψ(p)}p∈p̌ be a cyclic vector in
∫⊕
Ĝ
mπ(p)·Hσp dµ(σ). Then, almost everywhere,

the operator

ψ(p) ∈ mπ(p) · Hσp = Hσp ⊗Hmπ(p) ⊆ B(Hmπ(p),Hσp)

has full row rank, i.e., rk(ψ(p)) = mπ(p). Because of rk(ψ(p)) ≤ dim(Hσp) it follows
that mπ(p) ≤ dim(Hσp) almost everywhere. By Thm. 2.66, π is a subrepresentation of
λG.
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The subrepresentation π1 ≤ π is the “good” part of π as it is a subrepresentation of
λG. By Thm. 3.16, π1 is square-integrable if and only if

• G is nonunimodular,

• or G is unimodular and ∫
Ĝ
mπ1(σp) dµG(p) <∞.

The representation π2 ≤ π is the “bad” part of π as it is never square-integrable. By
Thm. 4.2 “good” representations, i.e., subrepresentations of λG, and “bad” representa-
tions, i.e., those which are disjoint to λG, can be studied separately.
In this thesis the main focus is on representations induced from an irreducible rep-
resentation of a subgroup. Let H ≤ G be a closed subgroup of G and let χ be a
representation of H. Let π = indGH(χ).

Theorem 4.4. If χ is a cyclic representation of H, then π = indGH(χ) is cyclic, as
well.

This theorem has been proven by Hulanicki and Pytlik in [41]. In fact, they showed it
for first countable locally compact groups.
Recall that irreducible representations are cyclic.

Corollary 4.5. Let χ ∈ Ĥ be an irreducible representation. Then, π = indGH(χ) can
be decomposed into a direct sum π = π1 ⊕ π2 such that π1 is a subrepresentation of the
left regular representation λG, and π2 and λG are disjoint.

It is well-known that if χ is a subrepresentation of λH , then indGH(χ) is a subrepresen-
tation of λG. This is due to

λG = indGH(λH) = indGH(χ⊕ χ′) = indGH(χ)⊕ indGH(χ′),

where χ′ is the orthogonal complement of χ. On the other hand, if χ and λH are
disjoint, then indGH(χ) are not necessarily disjoint as the following example shows.

Example 4.6. Let

Gaff(R) = Ro R 6=0 = {(b, a) | a ∈ R6=0, b ∈ R}

be the affine group of the real line and let

H = Ro R 6=0 = {(b, 1) | b ∈ R} .

Then for any nontrivial irreducible representation χ ∈ Ĥ, indGH(χ) is square-integrable
(cf. the classical continuous wavelet transformation, Chp. 3.1.1).
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4.2 Continuous wavelet transformations on unimodular
groups

Firstly, we target “good” representations. Let G be a second countable locally com-
pact group and suppose that its left regular representation λG is type I. Let π be a
representation of type I, let

π ∼=
∫ ⊕
Ĝ
mπ(σ)σ dµ(σ)

be its central decomposition, and suppose that µ is absolutely continuous with respect
to the Plancherel measure µG. If G is nonunimodular, then π is square-integrable by
Thm. 3.16. If G is unimodular, then there are a few things that can go wrong. On the
one hand, it is possible that

mπ(σ) > dim(σ)

for all σ in a subset of positive Plancherel measure. In that case, π is not cyclic and,
in particular, not a subrepresentation of λG. On the other hand, it is possible that∫

Ĝ
mπ(σ) dµG(σ) =∞.

In either case the representation π is “too large”. This is the situation we want to address
now. The basic idea is to split π into smaller pieces which are square-integrable. Then
for each of the subrepresentations we can find an admissible vector. Taken together
we get an admissible family of vectors, which defines a new approach to continuous
wavelet transformations and generalizes the concept discussed in Chp. 3.2.

Theorem 4.7. Let G be a unimodular second countable locally compact group and
suppose that λG is type I. Let π be a representation of type I, let

π ∼=
∫ ⊕
Ĝ
mπ(σ)σ dµ(σ)

be its central decomposition, and suppose that µ is absolutely continuous with respect to
the Plancherel measure µG.
Then there is a decomposition π = ⊕

n∈N πn into a direct sum of subrepresentations
such that πn admits an admissible vector for all n ∈ N.

Proof. By Dixmier [21, Prop. 5.4.9] π can be decomposed into a direct sum

π =
⊕
d∈I

d · ρd,

where I ⊆ N = N ∪ {∞} and ρd for d ∈ I are multiplicity-free subrepresentations of π
which are pairwise disjoint. Since I as well as the multiplicities d ∈ I are countable, it
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is sufficient to prove the statement for multiplicity-free representations.
So assume that π is multiplicity-free and let

π ∼=
∫ ⊕
Ĝ
σ dµ(σ)

be its central decomposition. Since µ is σ-finite (cf. Lem. 4.1), there exists a decompo-
sition

Ĝ =
∐
l∈N

El

into a disjoint union of measurable subsets of finite Plancherel measure. Then, π can
be decomposed into the direct sum

π ∼=
⊕
l∈N

∫ ⊕
El

σ dµ(σ) .

By Thm. 3.16, each of the representations πl :=
∫⊕
El
σ dµ(σ) is square-integrable as

∫
El

1 dµG(σ) = µG(El) <∞

and mπl(σ) ≤ 1 for µ-almost all σ.

With this decomposition we can generalize continuous wavelet transformations as fol-
lows.

Corollary 4.8. Let G and π be as in Thm. 4.7. Then there exists an admissible family
Ψ = {ψn}n∈N ⊆ Hπ for π. That is, the operator WΨ : Hπ → L2(G× N),

WΨf(a, n) = 〈π(a)ψn, f〉 ∀f ∈ Hπ,

is an isometry.

Proof. Let π = ⊕
n∈N πn be the decomposition given in Thm. 4.7 and let {Pn}n∈N

be the orthogonal projections onto the Hilbert spaces of {πn}n∈N. For all n ∈ N, let
ψn ∈ Pn(Hπ) be an admissible vector for πn and let Ψ = {ψn}n∈N. Then WΨ satisfies

∑
n∈N

∫
G
| 〈π(a)ψn, f〉 |2 da =

∑
n∈N
‖Pnf‖2 = ‖f‖2,

for all f ∈ Hπ.

4.3 Continuous wavelet transformations on homogeneous
spaces

We now deal with the question of continuous wavelet transformations (in a gener-
alized sense) on homogeneous spaces. As we saw before, having good knowledge of
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the Plancherel measure of the group and the central measure of the representation of
interest is crucial for generalizing continuous wavelet transformations.
As shown in Thm. 3.16, there are two reasons why a continuous wavelet transformation
in the sense of Chp. 3.2 does not exist. The first one is that the representation is “too
large” as discussed in Chp. 4.2. In that case, enlarging the domain of integration from
G to the larger spaces G×N (or G×R as in Chp. 3.1.6) seems to be the right way to
deal with this situation. The second reason is that the representation is disjoint to the
left regular representation. In that case, the central measure is singular with respect
to the Plancherel measure. Therefore, instead of using the Haar measure, it might be a
good strategy to choose a measure which is singular with respect to the Haar measure.
In fact, this is exactly what Perelomov as well as de Bièvre do in their approaches
presented in Chp. 3.1.3 and Chp. 3.1.4.
However, there is a problem with this approach. Suppose that (π,Hπ) is a unitary
representation of a locally compact group G and µ is a measure on G such that, for a
fixed vector ψ ∈ Hπ, all f ∈ Hπ satisfy

‖f‖2 =
∫
G
|Cψf(a)|2 dµ(a), (4.1)

where Cψf(a) = 〈π(a)ψ, f〉. Then, for b ∈ G, we get∫
G
|Cψf(a)|2 dµ(a) = ‖f‖2 = ‖π(b)f‖2 =

∫
G
|Cψf(b−1a)|2 dµ(a)

=
∫
G
|Cψf(a)|2 dµb(a),

where µb is the translated measure. In most cases µ will not be G-invariant, meaning
µb 6= µ. So, in that sense we lose G-invariance. Unfortunately, this is a trade-off which
is inevitable. At least the set of measures making eq. (4.1) valid is G-invariant.

4.3.1 Semidirect products

Representations defined on function spaces on homogeneous spaces often appear when
constructing irreducible representations of a group using the induction procedure. One
of the most important examples is Mackey’s machine, which is used to construct (al-
most) all irreducible representations of a given group and helps to understand the
structure of the dual of the group. In the following we want to use these results to con-
struct generalized continuous wavelet transformations for semidirect products of the
form Rn o H with H ≤ Gl(n), which play an important role in many applications.
Examples coming from physics are the Euclidean group, the Galilei group, and the
Poincaré group.
Let n ∈ N. Cartan’s Closed-subgroup Theorem states that every closed subgroup of
Gl(n) is a Lie group which acts smoothly on Rn. Those are the assumptions that we
will need in the following. So, more generally, let H be a Lie group which acts smoothly
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on the abelian Lie group Rn and let G = Rn oH be the semidirect product of Rn and
H. By representing G in the form

G = {(v, h) | v ∈ Rn, h ∈ H}

multiplication and inversion are given by

(v1, h1)(v2, h2) = (v1 + h1.v2, h1h2),

(v, h)−1 = (−h−1.v, h−1),

for (v1, h1), (v2, h2), (v, h) ∈ G. Every element a ∈ G can be uniquely written as a
product a = (0, h)(v, eH) = (h.v, h), where eH is the identity element in H. The left
Haar measure of G has the form∫

G
ϕ(a) da =

∫
H

∫
Rn
ϕ(h.v, h) dv dh, ∀ϕ ∈ Cc(G),

where dv is the Lebesgue measure on Rn and dh is the Haar measure on H. Of course,
one could use the decomposition a = (v, eH)(0, h) = (v, h), as well. Then the Haar
measure has the form∫

G
ϕ(a) da =

∫
H

∫
Rn
ϕ(v, h)|det(h)|−1 dv dh, ∀ϕ ∈ Cc(G),

with det(h) := det(v 7→ h.v). Both realizations are equivalent. The first one, however,
will turn out to be more comfortable.
The action of H on Rn induces an action on R̂n defined by

χ 7→ h.χ, h.χ(v) = χ(h−1.v), h ∈ H, χ ∈ R̂n, v ∈ Rn.

Since there exists the one-to-one correspondence between (Rn)∗ and R̂n, given by

k 7→ χk, χk(v) = e2πik(v), v ∈ Rn, (4.2)

the action of H on R̂n goes over into an action on (Rn)∗ given by

k 7→ h.k, h.k(v) = k(h−1.v), h ∈ H, k ∈ (Rn)∗, v ∈ Rn.

For k ∈ (Rn)∗, denote its orbit by Ok ⊆ (Rn)∗ and its stabilizer by Hk ≤ H. Let τ be
a representation of Hk and define the representation σ = χk × τ of Gk := Rn oHk by

σ(v, h) = χk(v)τ(h), ∀(v, h) ∈ Gk.
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σ is well-defined as

σ((v1, h1)(v2, h2)) = σ(v1 + h1(v2), h1h2) = χk(v1)τ(h1)χk(h1(v2))︸ ︷︷ ︸
=χk(v2)

τ(h2)

= σ(v1, h1)σ(v2, h2),

σ((v, h)−1) = σ(−h−1.v, h−1) = χk(−h−1.v)︸ ︷︷ ︸
=χk(−v)

τ(h−1) = χk(v)∗τ(h)∗

= σ(v, h)∗,

for (v1, h1), (v2, h2), (v, h) ∈ Gk.
Using these notions the irreducible representations of G can be characterized with the
help of the following result, which is known as Mackey’s machine for semidirect products
(cf. Folland [30, Thm. 6.43]).

Theorem 4.9 (Mackey’s machine for semidirect products).
Let G = Rn oH be a semidirect product of Rn and a Lie group H which acts smoothly
on Rn. Suppose that the H-orbits in (Rn)∗ are locally closed.

• For all k ∈ (Rn)∗ and τ ∈ Ĥk, indGGk(χk × τ) is an irreducible representation of
G.

• Every irreducible representation of G is of this form.

• Two representations indGGk(χk× τ) and indGGk′ (χk′× τ
′) are equivalent if and only

if k and k′ belong to the same orbit, say k′ = m.k for some m ∈ H, and h 7→ τ(h)
and h 7→ τ ′(mhm−1) are equivalent representations of Hk = m−1Hk′m.

In [4], Aniello et al. study under which conditions irreducible representations of semidi-
rect products are square-integrable. Their main theorem (cf. [4, Thm. 2]) applied to
the context we have here reads as follows.

Theorem 4.10. Let G = Rn o H be a semidirect product of Rn and a Lie group H
which acts smoothly on Rn. Let k ∈ (Rn)∗ and τ ∈ Ĥk.
Then, indGGk(χk×τ) is square-integrable if and only if Ok ⊆ (Rn)∗ has positive Lebesgue
measure and τ is square-integrable.

So when dealing with irreducible representations of semidirect products G there are
two reasons why a given representation indGGk(χk × τ) is not square-integrable. The
first one is that the orbit Ok ⊆ (Rn)∗ is a null set and the second one is that τ ∈ Ĥk

is not square-integrable. The latter situation is a very challenging problem as Ĥk still
can have a complicated structure. However, the former case seems to be much easier
since (Rn)∗ ∼= Rn has a well-known structure and can even be considered as a smooth
manifold.
From now on, let η ∈ (Rn)∗ be a fixed element and let τ be a fixed representation of
Hη. Before proceeding with the discussion of square-integrability, let us have a closer
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look at the representation indGGη(χη × τ). In contrast to Thm. 4.9, we do not assume
that the orbit Oη of η is locally closed in (Rn)∗. Oη is endowed with the quotient
topology, which does not necessarily coincide with the subspace topology. Moreover,
Oη is endowed with the quotient smooth structure (as a homogeneous H-manifold) but,
in general, it is not a submanifold of (Rn)∗.
Let

Oη → H, k 7→ hk,

be a regular Borel section, meaning that hk.η = k for all k ∈ Oη and there exists a
quasi-invariant Radon measure νη on Oη associated to the cross-section k 7→ hk (cf.
Lem. 2.33). Then every element h ∈ H can be uniquely written as a product h = hkm,
where k ∈ Oη and m ∈ Hη, and integration on H against the Haar measure can be
decomposed into∫

H
ϕ(h) dh =

∫
Oη

∫
Hη

∆H(m)
∆Hη(m)ϕ(hkm) dm dνη(k)

=
∫
Oη

∫
Hη
δHHη(m)2ϕ(hkm) dm dνη(k), ∀ϕ ∈ Cc(G)

for δHHη : Hη → R>0,

δHHη(m) =
√

∆H(m)
∆Hη(m) .

The representation

π ∼= indGGη(χη × τ) (4.3)

can be realized on the Hilbert space Hπ = L2(H,Hη, δ
H
Hη
τ) given by

f(hm) = δHHη(m−1)τ(m−1)f(h), ∀h ∈ H, m ∈ Hχ,

〈f, g〉 =
∫
Oη
〈f(hk), g(hk)〉τ dνη(k),

and has the form

[π(v, eH)f ](h′) = e2πi(h′.η)(v)f(h′),

[π(0, h)f ](h′) = f(h−1h′).

Recall that f ∈ L2(H,Hη, δ
H
Hη
τ) is uniquely determined by the values of

Θ(f) : k 7→ f(hk) ∈ L2(Oη,Hτ , νη) (4.4)

and the map Θ: L2(H,Hη, δ
H
Hη
τ)→ L2(Oη,Hτ , νη) is an isometric isomorphism.
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The coefficient functions of π are given by

Cfg(h(v), h) = 〈π(h(v), h)f, g〉 = 〈π(v, eH)f, π(0, h)∗g〉

=
∫
Oη
e−2πi(hk.η)(v) 〈f(hk), g(hhk)〉τ dνη(k)

=
∫
Oη
e−2πik(v) 〈f(hk), g(hhk)〉τ dνη(k) . (4.5)

Note that the left-hand side of eq. (4.5) is a bounded, continuous function in v ∈ Rn

and, therefore, it can be considered as a regular tempered distribution on Rn. The
right-hand side is an inverse Fourier transform of a finite signed measure on (Rn)∗,
which is bounded by∫

Oη
| 〈f(hk), g(hhk)〉τ | dνη(k) ≤ ‖f‖ · ‖π(0, h)∗g‖ = ‖f‖ · ‖g‖.

If Oη is a null set, then νη is not absolutely continuous with respect to the Lebesgue
measure. From the theory of tempered distributions (cf. Lem. B.1 and Lem. B.2) it
follows that, for all h ∈ H,

ϕ 7→
∫
Oη
ϕ(k) 〈f(hk), g(hhk)〉τ dνη(k)

is not a regular distribution, hence not in L2((Rn)∗), and, therefore, the map v 7→
Cfg(h(v), h) is not in L2(Rn) (unless it is constant zero). In particular, a nonzero
coefficient function Cfg cannot be in L2(G). It turns out that there are directions in
Rn in which v 7→ Cfg(h(v), h) is not decaying fast enough. Hence, it is important to
exclude those directions when integrating. The strategy we want to use is inspired by
the construction of de Bièvre [20] and is described in the following example.

Example 4.11. Let G = R2 o SO(2). The group H = SO(2) acts on (R2)∗ by

A.k = kA−1 = kAt, where k = (k1, k2), A =
(

cosα − sinα
sinα cosα

)
.

There are two different kinds of SO(2)-orbits in (R2)∗. For η = 0, Oη only consists of
one point and, for η 6= 0, Oη forms a circle.

• If η = 0 ∈ (R2)∗ then the stabilizer Hη is the whole group H and Gη := R2oHη =
G. Every irreducible representation τn of H,

τn

(
cosα − sinα
sinα cosα

)
= einα

yields an irreducible representation π0,n = χ0 × τn of G, given by

π0,n(v,A) = τn(A) ∈ U(1),
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for all (v,A) ∈ G. The coefficient functions of π0,n have the form

Cfg(Av,A) = τn(A)f · g ∀f, g ∈ C

and do not depend on v ∈ R2. In particular v 7→ Cfg(Av,A) does not decay as
‖v‖ → ∞. So instead of integrating over G we only integrate over H and get

∫
H
|Cfg(Av,A)|2 dA =

∫ 2π

0
|e−inαf · g|2 dα

2π = |f |2 · |g|2.

Therefore, π0,n is not square-integrable with respect to the Haar measure of G but
with respect to the measure

ϕ 7→
∫
H

∫
R2
ϕ(Av,A) dδv0(v) dA, ∀ϕ ∈ Cc(G),

where δv0 is the Dirac measure at some arbitrary point v0 ∈ R2. Then we get∫
H

∫
R2
|Cfg(Av,A)|2 dδv0(v) dA = |g|2

if f satisfies the admissibility condition |f |2 = 1.

• If η ∈ (R2)∗\{0} then the situation is more interesting. Now the orbits are circles
of the form

Oη = {(|η| cosκ, |η| sin κ) | κ ∈ R} ⊆ (R2)∗

and the stabilizers are trivial. The representations πη ∼= indGR2(e2πiη) are defined
on L2(Oη,Hτ , νη) and are given by

[πη(v,A)f ](k) = e2πik(v)f(kA) f ∈ L2(Oη,Hτ , νη), (v,A) ∈ G.

The coefficient functions of πη have the form

Cfg(Av,A) =
∫
Oη
e−2πik(v)f(k)g(kAt) dνη(k)

=
∫ 2π

0
e−2πi|η|(v1 cosκ+v2 sinκ)f(k)g(kAt) dκ, (4.6)

where k = (|η| cosκ, |η| sin κ) and v = (v1, v2)t.

Again πη is not square-integrable as Oη is not open. The modulus of the coefficient
functions is given by

|Cfg(Av,A)|2 =
∫ 2π

0
dκ
∫ 2π

0
dλ e2πi|η|(v1(cosλ−cosκ)+v2(sinλ−sinκ))

· f(k)f(l)g(kAt)g(lAt),
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where l = (|η| cosλ, |η| sinλ) ∈ Oη. Instead of integrating v over R2 one can try to
integrate over a one-dimensional subspace, say {(v1, 0)t | v1 ∈ R}. Then formally
one gets∫

R
e2πi|η|v1(cosλ−cosκ) dv1 = δ0(|η|(cosλ− cosκ))

= 1
|η|| sin(κ)|(δ2πZ(κ− λ) + δ2πZ(κ+ λ)), (4.7)

where δ2πZ = ∑
m∈Z δ2πm and δ2πm is the Dirac distribution. Assume that the

function f is supported on the half circle

{(|η| cosκ, |η| sin κ) | 0 < κ < π} ⊆ Oη.

Then κ + λ ∈ (0, 2π) for all κ, λ ∈ (0, π) and δ2πZ(κ + λ)f(k)f(l) will always be
zero. Consequently, for v =

(v1
0
)
we get

∫
R
|Cfg(Av,A)|2 dv1 =

∫ 2π

0
dκ
∫ 2π

0
dλ δ2πZ(κ− λ)

|η|| sin(κ)| f(k)f(l)g(kAt)g(lAt)

=
∫ 2π

0
dκ 1
|η|| sin(κ)| |f(k)|2|g(kAt)|2. (4.8)

Finally integrating over H yields∫
H

∫
R
|Cfg(Av,A)|2 dv1 dA =

∫
H

dA
∫ 2π

0
dκ 1
|η|| sin(κ)| |f(k)|2|g(kAt)|2

=
∫ 2π

0

dλ
2π

∫ 2π

0
dκ 1
|η|| sin(κ)| |f(k)|2|g(l)|2

=
∫ 2π

0
dκ 1

2π|η|| sin(κ)| |f(k)|2‖g‖2,

where we substituted kAt for l = (|η| cosλ, |η| sinλ).

It follows that πη is square-integrable with respect to the measure

ϕ 7→
∫
H

∫
R2
ϕ(Av,A) dv1 dδ0(v2) dA .

If f satisfies the admissibility condition
∫ 2π

0
dκ |f(k)|2

2π|η|| sin(κ)| = 1

then we get ∫
H

∫
R
|Cfg(Av,A)|2 dv1 dA = ‖g‖2.

The idea of Ex. 4.11 leads to the following definition and theorem.
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Definition 4.12. Let G be a second countable locally compact group and let (π,H)
be a representation of G. For a Radon measure µ on G the representation π is called
µ-square-integrable if there exists a vector ψ ∈ H such that∫

G
| 〈π(v)ψ, f〉 |2 dµ(v) = ‖f‖2 ∀f ∈ H.

In that case, the vector ψ is called µ-admissible.

Theorem 4.13. Let G = RnoH be a semidirect product of Rn and a Lie group H which
acts smoothly on Rn. Let η ∈ (Rn)∗ and let τ be a square-integrable representation of
Hη.

Then there exists a Radon measure µ on G such that π = indRnoHRnoHη(χη×τ) is µ-square-
integrable. µ has the form∫

G
ϕ(a) dµ(a) =

∫
H

∫
W
ϕ(h(w), h) dw dh, ∀ϕ ∈ Cc(G),

where W ⊆ Rn is a linear subspace of dimension dim(W ) = dim(H/Hη).

Before proving Thm. 4.13, let us go back to eq. (4.7) in Ex. 4.11, where we used that∫
R
e2πi|η|v1(cosλ−cosκ) dv1 = 1

|η|| sin(κ)|(δ2πZ(κ− λ) + δ2πZ(κ+ λ)).

To derive this equation, consider the integral
∫ π

−π
e−2πi|η|v1 cosκϕ(κ) dκ =

∫ |η|
−|η|

e−2πiv1yϕ(arccos(y/|η|)) 1√
|η|2 − y2 dy

+
∫ |η|
−|η|

e−2πiv1yϕ(− arccos(y/|η|)) 1√
|η|2 − y2 dy . (4.9)

The right-hand side has the form of an inverse Fourier or Plancherel transform. So if
we suppose that ϕ is supported on [0, π] (or [−π, 0] respectively) and that

y 7→ ϕ(arccos(y/|η|)) 1√
|η|2 − y2

is in L1(R)∩L2(R) then the left-hand side of eq. (4.9) is equal to the inverse Plancherel
transform∫ π

−π
e−2πi|η|v1 cosκϕ(κ) dκ =

∫ |η|
−|η|

e−2πiv1yϕ(arccos(y/|η|)) 1√
|η|2 − y2 dy .
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By applying the Plancherel Theorem we get∫
R

∫ π

−π

∫ π

−π
e2πi|η|v1(cosλ−cosκ)ϕ(κ)ϕ(λ) dλ dκdv1

=
∫
R

∣∣∣∣∫ π

−π
e−2πi|η|v1 cosκϕ(κ) dκ

∣∣∣∣2 dv1

=
∫ |η|
−|η|

∣∣∣∣∣ϕ(arccos(y/|η|)) 1√
|η|2 − y2

∣∣∣∣∣
2

dy

=
∫ π

−π
|ϕ(κ)|2 1

|η|2| sin κ|2 |η|| sin κ| dκ

=
∫ π

−π
|ϕ(κ)|2 1

|η|| sin κ| dκ,

which is exactly what we saw in eq. (4.8).
From the geometric point of view this result can be interpreted as follows. Define the
subspaces W ⊆ R2, W⊥, T ⊆ (R2)∗ by

W =
{(

v1

0

) ∣∣∣∣∣ v1 ∈ R
}
,

W⊥ = {(0, k2) | k2 ∈ R} ,

T = {(k1, 0) | k1 ∈ R} .

Let P : (R2)∗ → (R2)∗,

P : (k1, k2) 7→ (k1, 0),

be the projection with image T and kernelW⊥. Note that, for all w ∈W and k ∈ (Rn)∗,
we get k(w) = P (k)(w). The affine subspace

(0, |η|) + T

can be identified with the tangent space of Oη at (0, |η|) embedded in (R2)∗, as shown
in the sketch on the left-hand side in Fig. 4.1.
By the properties of the tangent space, the projection P induces a diffeomorphism
Φ = P |U : U → UT from the open neighborhood

U = {(k1, k2) ∈ Oη | k2 > 0} ⊆ Oη

of (0, |η|) to the open subset

UT = {(k1, 0) ∈ T | k1 ∈ (−|η|, |η|)} ⊆ T.

(See right sketch in Fig. 4.1.)
If the function f in eq. (4.6) is supported on U , then k 7→ f(k)g(kAt) is supported on
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Figure 4.1: Sketch of the orbit Oη under the projection P onto the space T .

U , as well, and we can use the diffeomorphism Φ: U → UT to parametrize k ∈ U in
terms of t ∈ UT . Hence, we get

Cfg(Aw,A) =
∫
Oη
e−2πik(w)f(k)g(kAt) dνη(k)

=
∫
U
e−2πiΦ(k)(w)f(k)g(kAt) dνη(k)

=
∫
UT

e−2πit(w)f(Φ−1(t))g(Φ−1(t)At) dνη(Φ−1(t))

=
∫
UT

e−2πit(w)f(Φ−1(t))g(Φ−1(t)At) · dνη(Φ−1(t))
dt dt,

where we used that supp(f) ⊆ U and

w ∈W, k(w) = P (k)(w) = Φ(k)(w) for k ∈ U.

If the function

t 7→ f(Φ−1(t))g(Φ−1(t)At) · dνη(Φ−1(t))
dt

is in L2(T ), then the Plancherel formula yields

∫
W
|Cfg(Aw,A)|2 dw =

∫
UT

∣∣∣∣∣f(Φ−1(t))g(Φ−1(t)At) · dνη(Φ−1(t))
dt

∣∣∣∣∣
2

dt

=
∫
U

∣∣∣f(k)g(kAt)
∣∣∣2 · dνη(k)

dΦ(k) dνη(k) .

Again, this is what we saw in eq. (4.8).
With this construction in mind we prove the following auxiliary lemmas.

Lemma 4.14. Let H be a Lie group which acts smoothly on Rn and let η ∈ (Rn)∗.

• There exists an open neighborhood U ⊆ H of eH such that U.η is a submanifold
of (Rn)∗.
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• Moreover there exists a projection P : (Rn)∗ → (Rn)∗ onto the linear subspace
T = im(P ) such that the restriction

Φ = P |U.η : U.η → UT

is a diffeomorphism, where UT := P (U.η) ⊆ T .

• The quasi-regular measure νη on Oη can be chosen such that it is smooth on U.η.
In particular, there exists a smooth density function φ : U.η → R≥0 such that

φ(k) = d(Φ∗νUT )(k)
dνU.η(k) ,

where νU.η is the restriction of νη to U.η, νUT is the restriction of the Lebesgue
measure of T to UT , and Φ∗νUT is the pullback of νUT with respect to Φ.

Proof. The map H → (Rn)∗, h 7→ h.η, is smooth and has constant rank. By the
Implicit Function Theorem there exists an open neighborhood Ũ of eH ∈ H such that
Ũ .η is a submanifold of (Rn)∗ and there exists a smooth local section h̃ : Ũ .η → H,
k 7→ h̃k.
Let h̄ : Oη → H, k 7→ h̄k, be a regular Borel section. Recall that h̄ is regular if h̄−1(C) is
a relatively compact subset of H for all compact subsets C ⊆ Oη. Let U be a relatively
compact, open subset of Ũ and define the cross-section Oη → H, k 7→ hk, by

hk =

h̃k, if k ∈ U.η

h̄k, if k /∈ U.η
.

By construction, k 7→ hk is a regular Borel section, which is smooth on U .
Let νη be the quasi-invariant measure on Oη associated to the cross-section h (cf.
Lem. 2.33). Since h is smooth on U.η it follows that νη is smooth on U.η. This is due
to the fact that we can use h to smoothly transport dνη(η) to dνη(k) for all k ∈ U.η,
meaning that (h−1

k )∗(dνη(η)) = dνη(k).
Let η+T be the tangent space of U.η at η embedded in (Rn)∗ and let P : (Rn)∗ → (Rn)∗

be a projection with image im(P ) = T . When restricting P to the U.η, the map
Φ := P |U.η → T has full rank at η as η + T is the tangent space at η. By shrinking
U if necessary we can assume that Φ is a diffeomorphism. Let νU.η = νη|U.η be the
restriction of νη to U.η and let νUT be the restriction of the Lebesgue measure on T to
UT := P (U.η). Then the pullback Φ∗νUT is a non-vanishing smooth measure on U.η

and, therefore, it is equivalent to νU.η. In particular, there is a smooth density function

φ : U.η → R≥0, φ(k) = dΦ∗νUT (k)
dνU.η(k) = dνUT (Φ(k))

dνU.η(k) .
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Using Lem. 4.14 we can show the following corollary.

Lemma 4.15. Let G = RnoH be a semidirect product of Rn and a Lie group H which
acts smoothly on Rn. Let η ∈ (Rn)∗ and let U ⊆ H, φ : U.η → R≥0, and Oη → H,
k 7→ hk, as in Lem. 4.14. Let τ be a representation of Hη and let π ∼= indGGη(χη × τ) be
the representation described in eq. (4.3).
There exists a linear subspace W ⊆ Rn with

dimW = dim(U.η) = dim(H/Hη)

such that for all f ∈ Hπ with Θ(f) ∈ Cc(U.η,Hτ )

• w 7→ 〈π(h(w), h)f, g〉 is in L2(W ) for almost all h ∈ H and all g ∈ Hπ

• and ∫
W
| 〈π(h(w), h)f, g〉 |2 dw =

∫
U.η

| 〈f(hk), g(hhk)〉 |2
φ(k) dνη(k) .

Proof. Let P : (Rn)∗ → (Rn)∗ (as in Lem. 4.14) be the projection onto the embedded
tangent space T . Let

W = {a ∈ Rn | k0(a) = 0 ∀k0 ∈ ker(P )} .

Then dim(W ) = n− dim(ker(P )) = dim(T ) = dim(U.η) = dim(H/Hη).
Recall from eq. (4.5) that the coefficient function of π is given by

Cfg(h(v), h) =
∫
Oη
e−2πik(v) 〈f(hk), g(hhk)〉τ dνη(k) .

By definition of P and W we have k(w) = P (k)(w) for all w ∈W and, thus

Cfg(h(w), h) =
∫
Oη
e−2πiP (k)(w) 〈f(hk), g(hhk)〉τ dνη(k) .

Let F ∈ Cc(U.η;Hτ ) and let f = Θ−1(F ). Using the map P |U.η = Φ: U.η → UT ,
defined in the proof of Lem. 4.14, the coefficient functions can be written as

Cfg(h(w), h) =
∫
U.η

e−2πiΦ(k)(w) 〈f(hk), g(hhk)〉τ dνη(k)

=
∫
UT

e−2πit(w)

〈
f(hΦ−1(t)), g(hhΦ−1(t))

〉
τ

φ(Φ−1(t)) dνUT (t), (4.10)

where νUT is the Lebesgue measure on T restricted to UT .
By choice of f , i.e., f = Θ−1(F ) for F ∈ Cc(U.η;Hτ ), and since φ is continuous, the
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function |Θ(f)|2
φ on U.η is bounded and, therefore,

∫
U.η

|〈f(hk), g(hhk)〉τ |
2

φ(k) dνη(k) =
∫
U.η

|〈f(hk), g(hhk)〉τ |
2

φ(k)2 φ(k) dνη(k)

=
∫
UT

∣∣∣〈f(hΦ−1(t)), g(hhΦ−1(t))
〉
τ

∣∣∣2
φ(Φ−1(t))2 dνUT (t) (4.11)

is finite. Hence, eq. (4.10) is not only a Fourier transform but also a Plancherel trans-
form. By applying the Plancherel Theorem on eq. (4.11) we get

∫
W
|Cfg(h(w), h)|2 dw =

∫
U.η

|〈f(hk), g(hhk)〉τ |
2

φ(k) dνη(k)

for all g ∈ Hπ.

Now, we are prepared to prove Thm. 4.13.

Proof of Thm. 4.13. Let U and φ be as in Lem. 4.14 and let W be as in Lem. 4.15.
Let ψτ be an admissible vector for τ . Let ϕ ∈ Cc(U.η) nonzero and let f = Θ−1(ψτ ·ϕ).
By Lem. 4.15 the function f satisfies

∫
W
|Cfg(h(w), h)|2 dw =

∫
U.η

|〈f(hk), g(hhk)〉τ |
2

φ(k) dνη(k)

=
∫
U.η
|〈ψτ , g(hhk)〉τ |

2 |ϕ(k)|2
φ(k) dνη(k)

for all g ∈ Hπ. By integrating over H we get
∫
H

∫
W
|Cfg(h(w), h)|2 dw dh =

∫
H

∫
U.η
|〈ψτ , g(hhk)〉τ |

2 |ϕ(k)|2
φ(k) dνη(k) dh

=
∫
H

∫
U.η
|〈ψτ , g(h)〉τ |

2 |ϕ(k)|2
φ(k)∆H(hk)

dνη(k) dh . (4.12)

Since ψτ is admissible, the H-integration yields∫
H
|〈ψτ , g(h)〉τ |

2 dh =
∫
Oη

∫
Hη
|〈ψτ , g(hkm)〉τ |

2 δHHη(m)2 dm dνη(k)

=
∫
Oη

∫
Hη
|〈τ(m)ψτ , g(hk)〉τ |

2 dmdνη(k)

=
∫
Oη
‖g(hk)‖2τ dνη(k)

= ‖g‖2. (4.13)

By inserting eq. (4.13) in eq. (4.12) we obtain

∫
H

∫
W
|Cfg(h(w), h)|2 dw dh =

∫
U.η

|ϕ(k)|2

φ(k)∆H(hk)
dνη(k) ·‖g‖2.
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Since ϕ ∈ Cc(U.η) and ϕ 6= 0, the integral
∫
U.η

|ϕ(k)|2
φ(k)∆H(hk) dνη(k) is finite and positive.

By normalizing ϕ in a suitable way, we get an admissible function f = Θ−1(ψτ ·ϕ).

4.3.2 Examples

To illustrate how Thm. 4.13 can be applied, let us have a look at two examples.

Example 4.16. Let G = R1+2 o SO(1, 2) and η ∈ (R1+2)∗, η(v) = η0v0, where v =
(v0, v1, v2)t and η0 6= 0. η corresponds to the one-dimensional representation χ, χ(v) =
e2πiη0v0. The orbit O of η is the two-sheet hyperboloid consisting of all k = (k0, k1, k2)
satisfying k2

0 − k2
1 − k2

2 = |η0|2 and the stabilizer Hη is given by

Hη =
{(

1 0
0 A0

) ∣∣∣∣∣ A0 ∈ SO(2)
}
.

Since Hη is compact, all of its irreducible representations are square-integrable. If we
choose the trivial representation for τ then π ∼= indR1+2oH

R1+2oHη(χ) defined on L2(O) has
the form

π(v,A)f(k) = e2πik(v)f(kA−t),

for v ∈ R1+2, A ∈ SO(1, 2), f ∈ L2(O), where A−t := (A−1)t = (At)−1. The tangent
space of O at η is given by

η + T = η + {(0, k1, k2) | k1, k2 ∈ R} .

Let P : (R1+2)∗ → (R1+2)∗ be the projection given by

P (k0, k1, k2) = (0, k1, k2) ∀k ∈ (R1+2)∗.

Every element in (0, k1, k2) has the two preimages (±
√
|η0|2 + k2

1 + k2
2, k1, k2) in O. By

restricting P to the upper sheet of the hyperboloid, i.e., to

UO = {(
√
|η0|2 + k2

1 + k2
2, k1, k2) | k1, k2 ∈ R},

we get a diffeomorphism Φ := P |UO . Since H and Hχ are unimodular, there exists a
H-invariant measure on O which restricts to the measure

dν(k) = 2θ(k0)δ0(k2
0 − k2

1 − k2
2 − |η0|2) dk1 dk2 dk3 = dk1 dk2√

|η0|2 + k2
1 + k2

2

,

which implies that

φ(k) = dk1 dk2
dν(k) =

√
|η0|2 + k2

1 + k2
2.
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The subspace W is given by

W =
{
v ∈ R1+2 | η(v) = 0

}
=
{

(0, v1, v2)t | v1, v2 ∈ R
}
.

A function f ∈ L2(UO) is admissible if

∫
UO

|f(k)|2
φ(k) dν(k) = 1.

In that case, we get ∫
W

dw
∫

SO(1,2)
dA |Cfg(Aw,A)|2 = ‖g‖2

for all g ∈ L2(O).
Note that for η = (η0, η1, η2) satisfying η2

0 − η2
1 − η2

2 ≤ 0 the stabilizer Hη is isomorphic
to R. Thus, no irreducible representation τ ∈ Ĥη is square-integrable. Therefore,
Thm. 4.13 cannot be applied.

Although Thm. 4.13 has been developed to study irreducible representations it is
not necessary that τ is irreducible. In particular, the induced representation π =
indGRnoHη(χ × τ) does not need to be irreducible. All we need is that τ is square-
integrable. Moreover, it is not necessary that the H-orbits in (Rn)∗ are locally closed.
Therefore, Thm. 4.13 even holds if G is not of type I as the following example shows.

Example 4.17. Let G = R4 oA H with H = R and

A(s) =


cos(γs) − sin(γs)
sin(γs) cos(γs)

cos(s) − sin(s)
sin(s) cos(s)


for a fixed irrational γ ∈ R \ Q. The group G is called the Mautner group and is a
classical example of a group which is not of type I. (Details of the Mautner group and
its representation theory can be found for example in Baggett [10].)
The orbit of η = (1, 0, 1, 0) ∈ (R4)∗ is dense in the 2-dimensional torus

{(cosα, sinα, cosβ, sin β) | α, β ∈ R} .

The stabilizer Hη is trivial.
The representation π ∼= indGR4(e2πiη) is defined on L2(H) and given by

[π(v, s)f ](t) = e2πiη(A(−t)v)f(t− s)

= e2πi(cos(γt)v1+sin(γt)v2+cos(t)v3+sin(t)v4)f(t− s)

for f ∈ L2(H) and v = (v1, v2, v3, v4)t.
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The tangent space η + T at η has the form

η + T = η + R · (0, γ, 0, 1).

We choose

P : (R4)∗ → (R4)∗, (k1, k2, k3, k4) 7→ (0, 0, 0, k4)

and

W =
{

(0, 0, 0, v4)t | v4 ∈ R
}
⊆ R4.

The restriction of π to W ×H has the form

[π(v, s)f ](t) = e2πi sin(t)v4f(t− s)

for v = (0, 0, 0, v4)t which is very similar to what we saw in Ex. 4.11. Indeed, for all
f ∈ L2(H) satisfying

• supp(f) ⊆ (−π
2 ,

π
2 )

• and ∫
R

|f(t)|2
| cos(t)| dt = 1

we get
∫
W

∫
H
|Cfg(A(s)v, s)|2 dsdv =

∫
H

∫
R

|f(t)|2
| cos(t)| |g(t+ s)|2 dtds = ‖g‖2.

4.3.3 Group extensions

With a few adjustments the results of Thm. 4.13 can be generalized to group extensions.
As before, let H be a Lie group which acts smoothly on Rn. Furthermore, let

1→ Rn ι−→ G
p−→ H → 1

be a short exact sequence of Lie groups and let q : H → G a fixed Borel cross-section
for p with q(eH) = eG = ι(0). For every a ∈ G there exist v ∈ Rn and h ∈ H such that
a = ι(v)q(h). To keep the notation simple, we write

a = ι(v)q(h) =: (v, h).
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Then, multiplication and inversion are given by

(v1, h1)(v2, h2) = (v1 + h1(v2) + ω(h1, h2)), h1h2), ∀(v1, h1), (v2, h2) ∈ G,

(v, h)−1 = (−h−1.(v − ω(h, h−1)), h−1)

= (−h−1.v − ω(h−1, h)), h−1), ∀(v, h) ∈ G,

where ω : H ×H → Rn is given by

ι(ω(h1, h2)) = q(h1)q(h2)q(h1h2)−1.

The left Haar measure on G still has the form∫
G
ϕ(a) da =

∫
H

∫
Rn
ϕ(h.v, h) dv dh, ∀ϕ ∈ Cc(G).

Again, the action of H on Rn induces actions on R̂n and (Rn)∗, which are given by

h.χk(v) = χk(h−1.v) = e2πik(h−1v) = e2πi(h.k)(v),

where we used the notation of eq. (4.2). For a k ∈ (Rn)∗, let Ok = H.k be its orbit and
Hk its stabilizer. Furthermore, we write Gk = p−1(Hk).
In contrast to semidirect products a unitary irreducible representation σ of Gk which
satisfies

σ(v, eH) = χk(v) · 1Hσ , ∀v ∈ Rn,

can, in general, not be decomposed into a product of χk and some irreducible represen-
tation ofHk. Therefore, Mackey’s machine for group extensions has a more complicated
form (cf. Folland [30], Thm. 6.39 and Thm. 6.40).

Theorem 4.18. Let G be a Lie group extension of a Lie group H by the Lie group Rn,
i.e.,

1→ Rn → G→ H → 1.

Suppose that the H-orbits in (Rn)∗ are locally closed.

• If k ∈ (Rn)∗ and σ ∈ Ĝk with σ(v, eH) = χk(v) · 1Hσ , for all v ∈ Rn, then
indGGk(σ) is an irreducible representation of G.

• Every irreducible representation of G is of this form.

• Two representations indGGk(σ) and indGGk′ (σ
′) are equivalent if and only if k and
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k′ belong to the same orbit, say k′ = m.k for some m ∈ H, and

(v, h) 7→ σ(v, h),

(v, h) 7→ σ′
(
(0,m)(v, h)(0,m)−1),

are equivalent representations of Gk = (0,m)−1Gk′(0,m).

Let η ∈ (Rn)∗ be fixed and let σ be a representation of Gη with σ(v, eH) = χη(v) ·1Hσ ,
for all v ∈ Rn. Let

τ : H → U(Hσ), τ(h) = σ(0, h).

As mentioned above, τ is, in general, not a representation. Indeed, it is a projective
representation of Hη. That means that, together with the function

χη ◦ ω : Hη ×Hη → U(1),

τ satisfies

τ(m1)τ(m2) = χη(ω(m1,m2)) · τ(m1m2), ∀m1,m2 ∈ Hη,

τ(m−1) = χη(ω(m−1,m)) · τ(m)∗, ∀m ∈ Hη.

Let v1, v2 ∈ Hσ be arbitrary vectors. The coefficient functions of σ are given by

(v,m) 7→ Cv1v2(v,m) = 〈σ(v,m)v1, v2〉 = χη(−v) 〈τ(m)v1, v2〉 ,

for all v ∈ Rn, m ∈ Hη. Since the modulus of Cv1v2,

|Cv1v2(v,m)|2 = | 〈τ(m)v1, v2〉 |2,

does not depend on v ∈ Rn, σ is said to be square-integrable modulo Rn (in the
sense of Perelomov as discussed in Chp. 3.1.3) if there exists a vector ψτ ∈ Hσ such
that ∫

Hη
|Cψτ v(m)|2 dm = ‖v‖2, ∀v ∈ Hσ.

Recall that Oη is endowed with the quotient topology, which does not necessarily
coincide with the subspace topology. For a given regular Borel section

Oη → H, k 7→ hk,

let νη be the associated quasi-invariant Radon measure on Oη (cf. Lem. 2.33). The
representation π ∼= indGGη(σ) can be realized on the Hilbert space Hπ = L2(G,Gη, δHHητ)
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given by

f(v, h) = e−2πih.η(v)f(0, h) ∀v ∈ Rn, h ∈ H,

f(0, hm) = δHHη(m−1)e2πih.η(ω(h,m))τ(m)∗f(0, h)

= δHHη(m−1)e2πih.η(ω(h,m)−ω(h,h−1))τ(m−1)f(0, h), ∀h ∈ H, m ∈ Hχ,

〈f, g〉 =
∫
Oη
〈f(0, hk), g(0, hk)〉τ dνη(k),

and has the form

[π(v, eH)f ](h′) = e2πi(h′.η)(v)f(h′),

[π(0, h)f ](h′) = e2πih′.η(ω(h,h−1h′))f(h−1h′).

The coefficient functions of π are given by

Cfg(h(v), h) = 〈π(h(v), h)f, g〉 = 〈π(v, eH)f, π(0, h)∗g〉

=
∫
Oη
e−2πik(v) 〈f(hk), [π(0, h)∗g](hk)〉τ dνη(k)

=
∫
Oη
e−2πik(v+h−1.ω(h,hk)) 〈f(hk), g(hhk)〉τ dνη(k) .

Theorem 4.19. Let G be a Lie group extension of a Lie group H by the Lie group Rn.
Let η ∈ (Rn)∗ and let σ be a representation of Gη which satisfies σ(v, eH) = χk(v) ·1Hσ ,
for all v ∈ Rn, and is square-integrable modulo Rn.

Then there exists a Radon measure µ on G such that π = indGGη(σ) is µ-square-
integrable. µ has the form∫

G
ϕ(a) dµ(a) =

∫
H

∫
W
ϕ(h(w), h) dw dh, ∀ϕ ∈ Cc(G),

where W ⊆ Rn is a linear subspace of dimension dim(W ) = dim(H/Hη).

The proof follows analogously to what we saw before. Lem. 4.14 applies unchanged. In
the proof of Lem. 4.15 one has to add the unitary factor e−2πik(h−1.ω(h,hk)) in terms for
the coefficient function. Using the same argument as above leads to the equation

∫
W
|Cfg(h(w), h)|2 dw =

∫
U.η

∣∣∣e−2πik(h−1.ω(h,hk)) · 〈f(hk), g(hhk)〉τ
∣∣∣2

φ(k) dνη(k)

=
∫
U.η

|〈f(hk), g(hhk)〉τ |
2

φ(k) dνη(k),

for all Θ(f) ∈ Cc(U.η;Hσ) and g ∈ Hπ. With the updated notation the proof of
Thm. 4.13 remains unchanged.
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4.4 Continuous wavelet transformations on manifolds

In [6], Antoine and Vandergheynst present a group-theoretical approach to define the
continuous wavelet transformation on the 2-sphere M = S2 as a homogeneous space of
SO(3). As described in Chp. 3.1.5, they construct a group G such that

(i) G acts transitively on S2,

(ii) G acts locally by translations, rotations, and dilations (cf. Def. 4.20 below),

(iii) and the corresponding unitary representation of G in L2(S2) is square-integrable
(in a generalized sense) and defines a continuous wavelet transformation on the
sphere.

The second assumption is motivated by the article [40] of Holschneider. The idea is
that continuous wavelet transformations on manifolds should be similar to the classic
continuous wavelet transformations and its generalization to Rn as a homogeneous space
of the similitude group SIM(n) as discussed in Chp. 3.1.1 and Chp. 3.1.2. We want
to address the question whether this procedure can be used to construct a continuous
wavelet transformation on manifolds other than Rn and Sn.
LetM be a connected manifold of dimension n endowed with a smooth transitive action

γ : G→ Diffeo(M)

of a connected Lie group G, where Diffeo(M) is the group of diffeomorphismsM →M .
For some point x ∈ M , the stabilizer Gx of x acts linearly on the tangent space TxM
by

Txγ(b) : TxM → TxM, for b ∈ Gx,

where Txγ(b) is the tangent map (pushforward) of γ(b) : M →M at x.

Definition 4.20. We say that the stabilizer Gx acts locally by rotations and di-
lations if there is an isomorphism ψ : TxM → Rn such that

{ψ ◦ Txγ(b) ◦ ψ−1 | b ∈ Gx} = SO(n) · R>0 ⊆ Gl(n). (4.14)

In that case, we say that G acts locally by translations, rotations, and dilations
on M .

In [5], Antoine and Vandergheynst pointed out that if M has a Riemannian metric η,
then (a closed subgroup of) the group of conformal transformations Conf(M,η) is the
right choice for G. In fact, in [6] they used the conformal group G = SO0(3, 1) of S2.
However, the assumption that G acts by translations, rotations, and dilations already
implies that there is a G-conformal metric η on M as the following lemma shows.
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Lemma 4.21. Let M be a connected manifold of dimension n ≥ 2. Suppose that there
is a Lie group G such that

(i) there is a smooth transitive action γ : G→ Diffeo(M)

(ii) and the stabilizer Gx of some x ∈M acts locally by rotations and dilations.

Then there is a metric η on M such that γ(G) ⊆ Conf(M,η).

Proof. In the following x is a fixed element of M and we write H := Gx. Furthermore,
the action of G on M is denoted by

a.y := γy(a) := γ(a)(y)

for a ∈ G, y ∈M .
With use of ψ of Def. 4.20, we can define a scalar product ν ∈ T 2(TxM) := (TxM)∗ ⊗
(TxM)∗ on the tangent space of x by

ν(X,Y ) = 〈ψ(X), ψ(Y )〉eucl , ∀X,Y ∈ TxM,

where 〈·, ·〉eucl is the Euclidean scalar product on Rn. For a ∈ G, let

a.ν := γ(a−1)∗ν ∈ T 2(Ta.xM)

be the pullback scalar product. The stabilizer H acts on ν by

b.ν = γ(b−1)∗ν = det(Txγ(b))−2/nν, ∀b ∈ H.

In particular, by eq. (4.14) we have

(aH).ν = R>0 · a.ν, ∀a ∈ G (4.15)

and ν does not extend to a G-invariant metric on M .
Since γx : G→M is a principal H-bundle, there exists an open covering of M by local
trivializations {ϕi : Ui×H → γ−1

x (Ui)}i∈I . Let {χi}i∈I a partition of unity subordinate
to {Ui}i∈I and define η ∈ T 2M := T ∗M ⊗ T ∗M by

ηy =
∑

i∈I : y∈Ui
χi(y) · (ϕi(y, e).ν) ∈ T 2(TyM), ∀y ∈M,

where e ∈ H ⊆ G is the identity element. By construction η is smooth and positive
definite. Hence, it defines a Riemannian metric on M .
It remains to show that G acts conformally on (M,η). Let a ∈ G. By eq. (4.15), for
every y ∈M there exists a positive constant ca(y) > 0 such that

a.ηy = ca(y) · ηa.y.
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Let X be a smooth vector field which is nonzero on a neighborhood U of y ∈M . Then,
the function ca : M → R>0 satisfies

ca(z) = (a.ηz)(Xa.z, Xa.z)
ηa.z(Xa.z, Xa.z)

, ∀z ∈ a.U. (4.16)

Thus, ca|a.U is smooth because the right hand side of eq. (4.16) is. It follows that ca is
smooth.

Note that η is unique up to conformal equivalence. This is because, (due to eq. (4.14))
ν ∈ T 2(TxM) is unique up to multiplication by a positive constant. Therefore, ηx and,
by transitivity of G, ηy for all y ∈ M is unique up to a positive factor. Moreover, by
eq. (4.15) the action of G on (M,η) is essential. That is, for every metric η′ which
is conformally equivalent to η, there are a ∈ G such that γ(a) is not an isometry of
(M,η′). This has deep consequences as the following theorem shows, which is is known
as Riemannian Lichnerowicz conjecture (cf. Alekseevskii and Baum [2]) and has been
proven by Ferrand [29] in 1996.

Theorem 4.22. Let (M,η) be a connected Riemannian manifold of dimension n ≥ 2.
If the conformal group Conf(M,η) is essential, then (M,η) is conformally diffeomorphic

• to (Sn, ηcan) if M is compact,

• or to (Rn, ηeucl) if M is not compact,

where ηcan is the canonical metric on Sn and ηeucl is the Euclidean metric on Rn.

As a consequences, we get the following result.

Corollary 4.23. Let M be a connected manifold of dimension n ≥ 2. Suppose that
there is a Lie group G such that

(i) G acts smoothly and transitively on M

(ii) and the stabilizer Gx of some x ∈M acts locally by rotations and dilations.

Then M is diffeomorphic to Sn or Rn.

Cor. 4.23 shows that (except for Rn) the n-sphere Sn is the only manifold for which the
construction of Antoine and Vandergheynst can be done. Hence, in order to construct
a continuous wavelet transformation for other homogeneous manifolds it is necessary
to go away from the classical continuous wavelet transformation and consider more
general concepts.
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CHAPTER 5
Outlook and discussion

As shown by Führ in [33] and seen in Chp. 3.2, the relationship between a given unitary
representation π of type I of a second countable locally compact group G and its the
left regular representation λG is crucial for square-integrability and the existence of
admissible vectors. π is square-integrable only if it is a subrepresentation of λG. To
decide whether the representation π is a subrepresentation of λG, it is essential to have
good knowledge of the Plancherel decomposition of λG and its Plancherel measure
µG as well as the central decomposition of π and its central measure µπ. As seen in
Chp. 3.2.2, π is a subrepresentation of λG if and only if

• µπ is µG-absolutely continuous;

• and the multiplicities mπ(σ) of µG-almost all irreducible representations σ ap-
pearing in the central decomposition of π satisfy mπ(σ) ≤ dim(σ).

If G is nonunimodular, then µG-almost all irreducible representations of G are infinite-
dimensional and it turns out that π is square-integrable if and only if µπ is µG-absolutely
continuous (cf. Thm. 3.16). If G is unimodular, then the situation is more complicated.
On the one hand, the set of finite-dimensional irreducible representations of G is not
necessarily µG-negligible. On the other hand, being a subrepresentation of λG is not
sufficient. Another condition is needed, namely, π has to satisfy∫

Ĝ
mπ(σ) dµG <∞. (5.1)

Hence, there are basically two reasons why the representation π is not square-integrable.
The first one is that it is “too small” in the sense that µπ and µG are mutually singular.
This problem occurs for both classes of groups. The second one is that π is “too large”
in the sense that µπ is µG-absolutely continuous, however, the multiplicities µπ(σ) (of
some) of the irreducible representations σ are “too large”. This situation only occurs
for unimodular groups.
In general, it is possible that µπ is neither µG-singular nor µG-absolutely continuous.
As shown in Chp. 4.1, the Lebesgue decomposition theorem yields a decomposition
µπ = ν� + ν⊥ into a measure ν� which is µG-absolutely continuous and a measure ν⊥
which is µG-singular. This decomposition gives rise to a decomposition π = π� ⊕ π⊥,
where π⊥ is a “small” (i.e., disjoint to λG) and π� is a “large” representation (i.e.,
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quasi-equivalent to a subrepresentation of λG) of G (cf. Thm. 4.2). Hence, we can
study both problems separately.
If π is a representation which is “too large”, then breaking it down into smaller rep-
resentations seems to be a successful strategy. In Chp. 4.2 it is shown that such a
representation can be decomposed into a countable direct sum π = ⊕

i∈I πi of square-
integrable subrepresentations πi. Then, by fixing an admissible vector ψi for each πi,
one can verify that every f ∈ Hπ satisfies

∑
i∈I

∫
G
| 〈πi(a)ψi, f〉 |2 da = ‖f‖2

and the operator W : Hπ → L2(G× I)

Wf(a, i) = 〈πi(a)ψi, f〉

defines a generalized continuous wavelet transformation (cf. Cor. 4.8). The decom-
position π = ⊕

i∈I πi is essentially arbitrary and can be chosen correspondingly. As
mentioned above, this procedure is only necessary for unimodular groups.
The strategy of enlarging the domain of integration from G to larger spaces is not new.
Ebert and Wirth [26], Führ [35] and Antoine and Vandergheynst [6] follow different
approaches to solve the same kind of problem and end up with different generalized
continuous wavelet transformations with values in L2(G × R>0) (cf. Chp. 3.1.5 and
Chp. 3.1.6). In fact, the strategy of Ebert and Wirth led to the idea presented in
Chp. 4.2.
By Thm. 2.65, “large” representations are quasi-equivalent to the left regular repre-
sentation. There exists a smallest cardinal number d ∈ N ∪ {∞} such that π is a
subrepresentation of d · λ. If d = 1 then π is cyclic. If d ≥ 1 then π can be decom-
posed into a direct sum of d cyclic representations. From Thm. 2.66, one can deduce
that every cyclic subrepresentation of a “large” representation is a subrepresentation
of λG. It follows that the cardinality of I is bounded from below by d. If ineq. (5.1) is
satisfied, then each of the d cyclic representations satisfies the corresponding analogue
of ineq. (5.1) and, therefore, they are square-integrable. Hence, there exists a decom-
position π = ⊕

i∈I πi into square-integrable subrepresentations with |I| = d. However,
if π = ⊕

j∈J πj is a finite decomposition into cyclic subrepresentations and π does
not satisfy ineq. (5.1), then at least one of the representations πj does not satisfy the
corresponding analogue of ineq. (5.1). Hence, we have |I| = ∞ if ineq. (5.1) is not
fulfilled.
For a moment, let us consider the problem from a different point of view. Let π be a
unitary representation and suppose that there exists an isometry V : Hπ → L2(G×M)
for some measure space (M,µM ) such that

[V π(b)f ](a,m) = V f(b−1a,m), ∀f ∈ Hπ.
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Then, for all ϕ ∈ L2(M), the operator V ϕ : Hπ → L2(G),

V ϕf(a) =
∫
M
V f(a,m) · ϕ(m) dµM (m),

defines an intertwiner between π and λG. Since V is injective, there exists at least one
ϕ ∈ L2(M) such that V ϕ is nonzero. Hence, π and λG are not disjoint. It follows
that the approach of enlarging the domain of integration does only work for “large”
representations.

In reverse, if π is a “small” representation, i.e., disjoint from λG, then the approach
of enlarging the domain of integration has no chance to work. It turns out that this
situation is more challenging. Instead of enlarging the domain of integration, one can
try to reduce it. In fact, this is exactly what Perelomov and de Bièvre do in the
approaches discussed in Chp. 3.1.3 and Chp. 3.1.4. However, in order to find a suitable
domain it is important to have good knowledge of the dual of G. Since the structure
of the dual can be very complicated, this is a very hard task. In Chp. 4.3, we study
semidirect products

G = Rn oH

and group extensions

1→ Rn → G→ H → 1

of the Lie groups Rn and H. Those groups have usually fairly easy duals, which is well-
known due to Mackey’s machine (cf. Thm. 4.9 and Thm. 4.18). Starting from these
results, one can show that for a certain class of representations π it is possible to find a
Radon measure µ onG such that π is µ-square-integrable (cf. Thm. 4.13 and Thm. 4.19).
That is, there exists a vector ψ ∈ Hπ such that the operator Wψ : Hπ → L2(G,µ),

Wψf(a) = 〈π(a)ψ, f〉 , ∀f ∈ Hπ,

is an isometry, i.e., ∫
G
|Wψf(a)|2 dµ(a) = ‖f‖2.

Similarly to the construction by de Bièvre in [20], this result is not covered by the
considerations of Perelomov in [55] and extends the theory. Indeed, the ideas presented
by de Bièvre were the starting point for the construction in Chp. 4.3. In [20] the
author studies irreducible representations of semidirect products G = Rn o H using
the connection between irreducible representations and coadjoint orbits as well as the
symplectic structure of coadjoint orbits. In the end, de Bièvre gives an admissibility
criterion which is not very explicit. In contrast, the construction presented in this thesis
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uses a different strategy. It turns out that this approach works not only for irreducible
representations of semidirect products but also for certain reducible representations of
group extensions. Moreover, an explicit sufficient criterion is given in Thm. 4.13 and
Thm. 4.19.
There is some hope that the results of Chp. 4.3 can be generalized to all irreducible
representations of nilpotent Lie groups. On the one hand, the structure of the dual of
nilpotent Lie groups is well-known (see for instance Brown [17], Kirillov [46], Lipsman
and Rosenberg [49]). On the other hand, there exists a series of subgroups

1 = Z0 ⊂ Z1 ⊂ · · ·Zn−1 ⊂ Zn = G

such that Zi E G and Zi/Zi−1 ∼= Rni . It might be possible to successively construct a
generalized continuous wavelet transformation on G/Zi−1 using the generalized contin-
uous wavelet transformation on G/Zi, since the latter is a Lie group extension of the
form

1→ Zi/Zi−1 → G/Zi−1 → (G/Zi−1)/(Zi/Zi−1)︸ ︷︷ ︸
∼=G/Zi

→ 1.

However, the generalization to nilpotent Lie groups is not straightforward and it is
necessary to put some effort in it.



APPENDIX A
Polar decomposition of direct integral operators

Lemma A.1. Let (A,µ) be a measure space and let {Ha}a∈A be a measurable field of
separable Hilbert spaces.

• Let {S(a)}a∈A be a measurable field of operators which is almost everywhere
bounded and positive. Then {S(a) 1

2 }a∈A is measurable.

• Let {T (a)}a∈A be a measurable field of operators which is almost everywhere
bounded and let T (a) = U(a)|T (a)| be the polar decomposition of T (a). Then
{U(a)}a∈A and {|T (a)|}a∈A are measurable.

Let H be a (complex) Hilbert space and denote the space of bounded operators on
H by B(H). It is well-known that any bounded operator A ∈ B(H) can be uniquely
written as a product

A = U |A|, (A.1)

where U ∈ B(H) is a partial isometry on im(A), i.e., U∗U is the orthogonal pro-
jection onto im(A), and |A| = (A∗A) 1

2 ∈ B(H) is defined via functional calculus. The
decomposition in eq. (A.1) is called the polar decomposition of A.
In this chapter, we give a concrete construction of the polar decomposition. To begin
with, recall that the square root of a non-negative number s can be iteratively computed
by the Babylonian method. Let f : R>0 → R>0 be the function

f(x) = 1
2(x+ x−1s).

and define the sequence (bn)n∈N0 by choosing some b0 > 0 and computing bk+1 = f(bk).
Note that bn ≥

√
s for all n ≥ 1 as

f(x)−
√
s = (x−

√
s)2

2x ≥ 0. (A.2)

W.l.o.g. we can assume that b0 ≥
√
s (by shifting the indices by 1) and restrict f to a

function f : [
√
s,∞)→ [

√
s,∞). Then f is a contraction as |f ′(x)| ≤ 1

2 for all x ≥
√
s

and therefore by the Banach Fixed-Point Theorem (bn)n∈N0 converges to the unique
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solution of x = f(x) in the domain of f , namely x =
√
s. In particular, for all x ≤ b0

0 ≤ f(· · · f(x) · · · )︸ ︷︷ ︸
n times

−
√
s ≤ 2−n(x−

√
s) ≤ 2−nb0 (A.3)

and the interval [
√
s, b0] is mapped to itself.

Instead of a positive real number s, we want to apply this method to a positive operator
S ∈ B(H). Let b ≥ ‖S‖ 1

2 , b > 0, and note that then the spectrum σ(S) of S is contained
in [0, b2]. Define F : R>0 × [0, b2]→ R>0 by

F (x, s) = 1
2(x+ x−1s).

and let (bn)n∈N0 be the sequence of functions [0, b2]→ R>0 defined by

b0(s) = b, bk+1(s) = F (bk(s), s). (A.4)

From eq. (A.2) and since F (·, s)|[√s,∞) is a contraction, it follows that

√
s ≤ F (x, s) ≤ b ∀x ∈ [

√
s, b].

Consequently, the functions bn satisfy

√
s ≤ bn(s) ≤ b ∀n ∈ N0.

Moreover, F (x, s) ≥ 1
2x and therefore

im(bn) ⊆ [2−nb, b] ∀n ∈ N0.

Hence, the operators Bn = bn(S) are bounded and invertible as σ(Bn) ⊆ [2−nb, b].
By ineq. (A.3) the sequence of functions (bn)n∈N0 converges uniformly to the function
[0, b] → R>0, s 7→

√
s. Thus, the sequence (Bn)n∈N0 converges to S

1
2 in the norm

topology.
Now, let T ∈ B(H). Let b ≥ ‖T‖, b > 0 and Bn = bn(T ∗T ) for n ∈ N0, where (bn)n∈N0

is the sequence functions defined in eq. (A.4). Recall that all Bn are invertible and
converge to |T |. Define the sequence (Un)n∈N0 in B(H) by

Un = TB−1
n .

Then

‖Un‖ =
∥∥|T |B−1

n

∥∥ ≤ 1

because 0 ≤
√
s

bn(s) ≤ 1 for all n ∈ N0. Since the unit ball in B(H) is ultraweakly compact
the sequence (Un)n∈N0 has a ultraweakly convergent subsequence. Denote its limit by
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U and note that ‖U‖ ≤ 1 as the norm is ultraweakly lower semi-continuous. Moreover,
Un|T | converges (in the norm topology) to T as

∥∥T − TB−1
n |T |

∥∥ =
∥∥|T | − |T |B−1

n |T |‖ ≤ 2−nb

because 0 ≤
√
s − s

bn(s) =
√
s

bn(s)(bn(s) −
√
s) ≤ 1 · 2−nb. On the one hand, for all

f ∈ im(|T |), say f = |T |g, we have

Uf = Tg

and in consequence U uniquely defined on im(|T |) and by continuity it is also uniquely
defined on im(|T |). On the other hand, let f ∈ im(|T |)⊥. Since |T | is self-adjoint it
follows that f ∈ ker(|T |) and therefore

‖Unf‖ = ‖TB−1
n f‖ = ‖|T |B−1

n f‖ = ‖B−1
n |T |f‖ = 0.

Hence, U is uniquely defined on im(|T |)⊥. By uniqueness of U it follows that (Un)n∈N0

converges ultraweakly to U (and not only a subsequence). In particular, (Un)n∈N0

converges weakly to U .

Proof of Lem. A.1. Let T = {T (a)}a∈A be a measurable field of operators which is
almost everywhere bounded and positive. Define

Bn(a) := bn(T (a)∗T (a)), Un(a) := T (a)Bn(a)−1,

Bn := {Bn(a)}a∈A, Un := {Un(a)}a∈A,

as before. Bn and Un are measurable fields of operators, as measurable fields of op-
erators remain measurable under inversion and addition. Let f = {f(a)}a∈A and
g = {g(a)}a∈A be two measurable fields of vectors. Since, for all a ∈ A, Bn(a) and
Un(a) converge weakly to |T (a)| and U(a), respectively, it follows that

a 7→ 〈f(a), Bn(a)g(a)〉a , a 7→ 〈f(a), Un(a)g(a)〉a

converges almost everywhere to

a 7→ 〈f(a), |T (a)|g(a)〉a , a 7→ 〈f(a), U(a)g(a)〉a ,

respectively, and, therefore, the latter are measurable for all measurable fields of op-
erators f, g. In consequence, |T | = {|T (a)|}a∈A and U = {U(a)}a∈A are measurable
fields of operators.
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APPENDIX B
Fourier transformation of tempered distributions

Lemma B.1. Let u ∈ S ′(Rn) be a tempered distribution.

• Suppose there exists a function f ∈ L2(Rn) such that

u(ϕ) =
∫
Rn
f(x)ϕ(x) dx ∀ϕ ∈ S(Rn).

Then f is uniquely defined by this relation. In particular, we can identify u with
f and write u ∈ L2(Rn).

• u ∈ L2(Rn) if and only if û ∈ L2(Rn). In that case, û is the Plancherel transform
of u.

Proof.

• If there exists a function f ∈ L2(Rn) such that

u(ϕ) =
∫
Rn
f(x)ϕ(x) dx ∀ϕ ∈ S(Rn)

then u satisfies

|u(ϕ)| ≤ ‖f‖2 · ‖ϕ‖2,

where ‖ · ‖2 denotes the L2-norm. Since S(Rn) is dense in L2(Rn) there exists
a unique continuous extension u of u to L2(Rn) which by Riesz Representation
theorem uniquely corresponds to a function g ∈ L2(Rn) such that

u(ϕ) = 〈g, ϕ〉2 ϕ ∈ L2(Rn).

By uniqueness g must be equal to the complex conjugate of f .

• Suppose that u = f ∈ L2(Rn). If f̂ is the Plancherel transform of f then we have

û(ϕ) = u(ϕ̂) =
∫
Rn
f(x)ϕ̂(x) dx =

∫
Rn
f̂(x)ϕ(x) dx,

where the first equality is the definition of the Fourier transform of a distribution
and the last equality follows from the Plancherel Theorem. It follows that û ∈
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L2(Rn) and û = f̂ .

Conversely, if û = f̂ ∈ L2(Rn) then it follows analogously by inverse Fourier or
Plancherel transformation that u ∈ L2(Rn) and u = f .

Lemma B.2. Let µ be a finite measure of Rn and let uµ be the tempered distribution
given by

uµ(ϕ) =
∫
Rn
ϕ(x) dµ(x), ∀ϕ ∈ S(Rn).

If uµ ∈ L2(Rn) then µ is absolutely continuous with respect to the Lebesgue measure of
Rn.

Proof. Let uµ = f ∈ L2(Rn) and let uf be the tempered distribution given by

uf (ϕ) =
∫
Rn
f(x)ϕ(x) dx,∀ϕ ∈ S(Rn).

Then, by definition uµ = uf and by Riesz-Markov-Kakutani Representation Theorem
(cf. Thm. 2.9)

dµ(x) = f(x) dx .

Hence, µ is absolutely continuous with respect to the Lebesgue measure.
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