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Chapter 1

Introduction

1.1 Historic overview

Throughout this thesis, let p be a prime and Z, the ring of p-adic integers. In his
seminal papers [Iw 1] and [Iw 2] Kenkichi Iwasawa introduced the theory of Galois ex-
tensions Ko, of number fields K such that Gal(K /K) = Z,, — so called Z,-extensions.
In 1959, he intensively studied the structure of I'-modules, where I' = Z,, [Iw 1]. The
main focus lay on discrete abelian modules. As discrete abelian modules are in Pon-
tryagin’s sense dual to compact abelian modules, he was able to derive results on
compact abelian groups. In particular, he used his module theoretic results to derive
an asymptotic formula for the size of the p-class group of the intermediate fields K,
of degree p™ of a Zy-extension K /K.

Theorem. [[w 1 Let p° be the order of the p-class group of K,,. There are invariants
w, A and v such that
en=An+p'u+v (1.1)

for all n large enough.

In the following years, Iwasawa developed his theory of Zj,-extensions further
[Iw 2]. One of the main results of his work is the description of the maximal p-
abelian p-ramified extension M, of a number field containing the p-th roots of unity
(the 4-th roots if p = 2) in terms of Kummer-radicals and as a module over the ring
of formal power series in one indeterminate and with coefficients in Z,,.

In general the main interest of Iwasawa theory is to understand arithmetic and
asymptotic properties along the different subfields of degree p™ in Zj-extensions
Ko /K for example class groups, certain Galois groups and units. More recent studies
involve objects like Selmer groups of abelian varieties along Z,-extensions.

As already Iwasawa pointed out it is relatively easy to see that each number field
has at least one Zj-extension. This so called cyclotomic Zy-extension is constructed
as follows: Let Loo = UnenK((pn). Then Gal(Loo/K) = Z; = W X Zp, where W
denotes a finite abelian group. If we define Ko, = LY, we obtain a Zy-extension of
K. It is an interesting question how many Zj-extensions a fixed number field has.
Leopoldt’s conjecture predicts:
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Conjecture (Leopoldt’s Conjecture). An arbitrary number field has 1 + ro linearly
independent Z,-extensions, where ro is the number of pairs of complex conjugate
embeddings of K.

It is well known that any number field admits at least r2 4+ 1 independent Z,-
extensions. So Leopoldt’s conjecture can be formulated as the statement that there
are not more than 7 + 1 independnet Zj-extensions. Leopoldt’s conjecture has been
proved for abelian extensions of Q and abelian extensions of imaginary quadratic
fields by works of Brumer [Br] and Ax [Ax] based on Baker’s results on linear forms
in logarithms. As a consequence, an imaginary quadratic field K has exactly two
independent Z,-extensions. If p splits in K/Q into two factors p and p then there exist
exactly two independent Z, extensions, one unramified outside p and one unramified
outside p, respectively. We will refer to the extension unramfied outside p as the split
prime Zy-extension. In the bigger part of this thesis we will mainly consider the two
Zy-extensions described above: The split prime Z,-extension and the cyclotomic one.

1.2 Notations and auxiliary results

We will always write 7 for a topological generator of Gal(K, /K) and define T'=7—1
as well as the ring of formal power series A = Z,[[T]]. Let S be the set of primes
that ramify in K, /K and let M, be the maximal p-abelian extension of K,, that is
unramified outside S. We define X,, = Gal(M,,/K,). We define M, as the maximal
p-abelian extension of K., that is unramified outside S. Clearly,
Xoo = Gal(My /Ky) = lim X,.

o0 n
Note that the fields Ml,, are Galois over K,, by maximality. Hence, there is a well
defined action of Gal(K/K) on X, inducing an action of A on X,,. Thus, X is
a A-module. Even though Iwasawa theory provides powerful tools to describe the
A-module structure of X, the most common context to use these tools is the one of
class groups: Let A, be the p-class group of K,, and H,, be the p-Hilbert class field
of K. By class field theory we obtain an isomorphism

Ay 2 Gal(H, /K,,)

as well as
Ay = li<r_n Ay, = Gal(Hy /Ky). (1.2)

As before we can deduce that H,, is Galois over K and Ay is a A-module. In the
Iwasawa theoretic description of A, frequent use is made of the isomorphism .
Apart from the class group, there are various other algebraic objects that have a Galois
theoretic interpretation via class field theory, for example the global and local units,
which we define as follows: Let s, be the number of prime ideals in K,, that ramify
in Ko /K,,. We denote these ramified primes by ‘B, ; for 1 < i < s,. Consider the
completions K,, ; of K,, at *B,, ;. Then there exists a uniformizer 7, ; in K,, ; generating
the maximal ideal of the ring of integers O(K,, ;). Let Uy, ; C K, ; be the units that
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are congruent to 1 modulo m,; and let V,,; C K,,; be the subgroup of roots of unity
whose order is coprime to p. Then we get a decomposition K, = WTZM» “Upn,i-Vni. We
define the local units U,, as the product U,, = Hf;l Un,- Let En be the group of units
in O(K,,) that are congruent to 1 modulo [[%, Bo;. We can embed E, diagonally
into U,. Let E,, = ﬁmeNEnUﬁm be the p-adic closure of F, in U,. By class field
theory we have an Artin homomorphism

¢n: Up — Gal(M,,/H,,)
inducing an isomorphism
én: Un/Ep — Gal(M,,/H,).

We define Uy = limooi—n Un, Usoi = limaoep, Up i and FEoo = limeoen, B, , where the
projective limit is taken with respect to the norms N, ,_1: K,, — K,_1. Then we
obtain an isomorphism
Us/Eso & lim U, /E,.
oo—n

As the norms Ny, ,—1: U, — U,—1 are compatible with the natural restrictions
Gal(M,,/H,,) — Gal(M,,—1/H,,—1)
this induces an Artin homomorphism
¢: Uso = Gal(My /Hyo)

and an isomorphism

¢: Uso/Eoo — Gal(My /Hy).
To underline how powerful Artin’s isomorphism is we will consider the following

Example 1.2.1. Let p > 2 and K be an abelian extension of Q containing ¢, such
that K and K((,2) are of class number 1 (e.gp =5 and K = Q((5)). Let K,, be the
intermediate layers of the cyclotomic Zy-extension Ko /K and assume that each K,
contains only one prime above p. It is easy to show that in this case the class number
of K,, is coprime to p for alln. Hence, U, /E, = GalM,/K,). Lete € USNE. Then
K, (e'/P)/K,, is an unramifed Galois extension. As |Ay| is coprime to p it follows that
e € E? and Uy NE = E. Therefore, (U,/E)" = Z, and ML, = K.

To study the structure of the groups X and A, as A-modules in more generality
we need the following

Definition 1.2.2. Let b; be primes of height one in A. We call a A-module X
elementary if there are indices e; such that

X=ACBA/DBT @D A/HE.

Let X and Y be two A-modules. We call a A-homomorphism f: X — Y a pseudo
isomorphism if the kernel and the cokernel are finite.
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It is well known that every noetherian A-module is pseudo isomorphic to an ele-
mentary A-module. To verify that our A-modules of interest are noetherian we can
use the following Lemma due to Nakayama [Wash, Lemma 13.16].

Lemma 1.2.3. Let X be a compact A-module. Then the following are equivalent:
i) X is a noetherian A-module.
i) X/(p, T)X is finite.

It is easy to verify that X and A satisfy ii). As Ay is A-torsion we see that
in this case eg = 0. In general the possible candidates for the b; are

2.) h=(f) is a distinguished polynomial.

If M is a noetherian A-torsion module and f; is one of the distinguished polynomials
occurring in the corresponding elementary A-module, then we denote by M (f;) the
fi rational part, i.e. the maximal submodule that is annihilated by a power of f;.

Let E be any elementary A-module then we define the Iwasawa invariants associ-
ated to E as follows:

Definition 1.2.4. Let V) = {i | h; = (f) for a distinguished polynomial f} and
Vie=A{i|bi=(p)}. Then we define

WE) =Y e

i€V,

AE) =) deg(by)e;.

i€V
We define the characteristic ideal of E as the product Hle bt

As the elementary A-module associated to a A-torsion module X is unique, we
define u(X) = p(E) and A(X) = A(F). Note that these invariants are precisely
the ones that appeared in . If X,, is finite for all n it is easy to show that a
formula similar to holds for the size of X,,. One intermediate step in proving
such identities is to write X, and A, as quotients of X, and A, respectively. To
do so we define the polynomials

wn(T) = (T +1)P" —1

forn>m > 0.

Recall that T = 7 — 1. Hence, we can rewrite w, as 77" — 1. The element 77" is a
topological generator for I'"" = Gal(K,/K,). So if we replace the base field K by
K,, and define the Iwasawa algebra A’ with respect to the Zp-extension K /K, then



1.3. STRUCTURE OF THE THESIS 11

we obtain A’ 2 Z,[[w,(T)]]. It is easy to see that w,(T) = (wm(T) + 1)P" " — 1.
Therefore,

n—m

P

(D) = 3 (77"
k=0
which is the norm N, ,,,: K,, = K;, for n > m.
Note that M,, is the maximal abelian extension of K,, contained in M,. Hence,

X, 2 Gal(M,, /Kao) = Xoo/wnXoo

for all n large enough. If we want to derive a similar relation for A,, and A, the
situation is slightly more complicated. There is a submodule Y C A, and an index
no such that A,, is isomorphic to As /v nY for all n large enough [Iw 2, Theorem
6]. We will use this result for example in Chapter @ So in both cases the elementary
A-module does not only determine the structure of the modules X, and A, but also
provides information about the (finite) abelian groups X, and A4,,.

1.3 Structure of the thesis

In Chapters 2] and [3] we will study the split prime Zpy-extension of an imaginary
quadratic field K and a rational prime p which splits in K into two distinct primes
p and p. Recall that the split prime Z,-extension, denoted by K, is unramified
outside p. Let L be an arbitrary finite abelian extension of K. Define L, = KL
and I' = Gal(L/L).

Let M, be the maximal p-abelian extension of L., that is unramified outside
the primes in Ly, lying above p. The module X (L) := Gal(My /L) becomes a
Zp|[I']]-module under conjugation. Hence, we can view it as a module over Zy[[T]
under a fixed isomorphism Z,[[I']] = Z,[[T]]. For every n > 0, we let LL,, denote the
unique extension of I of degree p™ with L, C L. Then L, is an abelian extension
of the imaginary quadratic field K, so, by the Baker-Brumer theorem [Ax| Br], the
p-adic Leopoldt conjecture holds for the intermediate fields IL,, — meaning that there
is exactly one Z,-extension unramified outside p above L,,. It follows that X (Ls) is
a Zp|[T]]-torsion module and hence it has a well-defined characteristic polynomial of
the form p# - f(T) for some non-negative integer p and some distinguished polynomial
f € 2,71

In Chapter [2| we shall generalize work of Leila Schneps [Sch] to prove a result
which is equivalent to the assertion that the p-invariant of X (L) is zero.

In Chapter [3| we specialize our focus to the case p = 2 and consider the Iwasawa
Main Conjecture in the above setting.

In both chapters we will frequently use an elliptic curve F defined over a certain
finite abelian extension of K. But elliptic curves and more generally abelian varieties
do not only play an important role in Iwasawa theory as a tool to prove results like
Theorem they are of their own independent interest. Greenberg and Vatsal
introduced the study of the Iwasawa invariants of elliptic curves defined over QQ with
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good ordinary reduction at p [Gre-Vat] . They considered the p-primary part of
the Selmer groups over Q4 (the unique Zy-extension of Q) and proved that the p-
invariants of isogenous curves vanish simultaneously. In Chapter 4] we will prove an
analogous result for general abelian varieties and their fine Selmer groups.

In the parts II and III of this thesis we will only consider the cyclotomic Z,-
extension. This is the Z,-extension studied the most by Iwasawa himself. One of the
main advantageous properties of this Z,-extension is the fact that it is — assuming
that Leopoldt’s conjecture holds — the only one that is a C'M field — as long as the
base field K is a C'M field. Similar as for the split prime Z,-extension one expects
the following behavior of the p-invariants.

Conjecture. The p-invariant of the projective limit of the p-class groups of the in-
termediate fields K,,, denoted by A, vanishes (i.e. that the characteristic ideal of
A is a distinguished polynomial).

As for the split prime Z,-extension this is known for abelian extensions of Q
([Fe-Wa] or [Si]). In fact, the proof we give for Theorem is a generalization
of Sinnott’s proof for the cyclotomic Z,-extension. Using cyclotomic units instead of
elliptic units, one can formulate an Iwasawa Main conjecture — analogously to the one
considered in Part I — relating characteristic ideals of class groups to the characteristic
ideal of the quotient of the units modulo the cyclotomic units anlong the cyclotomic
Zp-extension (see for example [Ru 3]).

In Chapter [l we describe some consequences of the failure of the Leopoldt conjec-
ture and the p = 0 conjecture for general C'M fields. The ideas presented in Chapter
[6] rely on analyzing certain Galois cohomology groups and radicals of finite Kummer
extensions.

For any CM field K we let j denote the complex conjugation of K. The homo-
morphism j acts naturally on the p-Sylow subgroup of the class group of K, denoted
by A, and if p > 2 it induces a decomposition A = (1+5)A® (1 —j)A. To abbreviate
notation we will also write AT = (1 + j)A and A~ = (1 — j)A. Let K,, be the in-
termediate fields of the cyclotomic Z,-extension of K and denote by A,, the p-Sylow
subgroup of the class group of K,,. Greenberg stated in his thesis the following

Conjecture. [Gre 1] Let K be a totally real field. Then the size of A} is uniformly
bounded.

Greenberg gave examples of infinite families of totally real quadratic fields satis-
fying this conjecture [Gre 3]. But the conjecture remains open in full generality.

In view of Greenberg’s conjecture — but also independent of it — it is of particular
interest to study the structure of A, (here A, denotes the p-Sylow subgroup of the
class group of K,,) and of A = limsy 4,,. In Chapter |5 we study the Gross
and the Gross-Kuz’min conjecture. The Gross conjecture predicts that the maximal
submodule of A annihilated by T is finite. The Gross-Kuz'min conjecture is a
generalization of the Gross Conjecture for number fields that are not C'M.

We will give equivalent formulations of both conjectures in terms of class field
theory and explain some applications of this equivalent formulation for C M fields.
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In the last part of the thesis we turn our attention back to the C'M number
fields. For p > 2 one major advantage of minus parts of class groups is that they
are complementable as A-modules and therefore induce a class field H such that
Gal(H,, /K,) = A, . So even without assuming Greenberg’s conjecture it is relatively
comfortable to work with the minus part of the class groups. Unfortunately, this
complementability does not hold for p = 2. In Chapter [7] we will give an alternative
definition for the minus part which allows us to define a corresponding class field
even in the case p = 2. Consequently, we are able to derive several results, which are
known for minus class groups for p > 2, for p = 2 as well. For example we show that
the minus class group is capitulation free.

This result is one of the main ingredients to compute the 2-class groups for the
cyclotmic Zjp-extension of certain biquadratic number fields as we will do in Chapter

B
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Chapter 2

The split prime p-conjecture

Acknowledgments

This Chapter is joint work with Vlad Crigsan and also part of his Ph.D. thesis. This
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John Coates for giving us this problem and for his support.

2.1 General setup and statement of the split prime pu-
conjecture

Let K be an imaginary quadratic field and p a rational prime which splits in K into
two distinct primes p and p, respectively. By global class field theory, there exists a
unique Zy,-extension K /K that is unramified outside p. Let L be a finite abelian
extension of K. We call L, := .- K, the split prime Z,-extension of L. corresponding
to p. It is an abelian extension of K. We shall fix the prime p once and for all and
omit explicit reference to it whenever it is clear from the context. We regard all our
number fields as subfields of an algebraic closure Q of Q; we also fix an embedding of
Q into C and an embedding of Q into C, which induces the prime p, respectively.

Let M, be the maximal p-abelian extension of Lo, that is unramified outside the
primes in Ly, lying above p. By a standard maximality argument, M, /K is a Galois
extension. Hence, if we denote I' := Gal(L /L), then X(Lo) := Gal(My /L)
becomes a Z,[[I']]-module in the natural way, and hence a module over Z,[[T]] (the
power series ring over Z, with indeterminate 7"), under an isomorphism Z,[[I']] =
Zp|[T]] obtained via a fixed topological generator for I'. For every n > 0, we let
LL,, denote the unique extension of I of degree p™ with L, C L. Then L, is
an abelian extension of the imaginary quadratic field K, so, by the Baker-Brumer
theorem, the p-adic Leopoldt conjecture holds for the intermediate fields L,, i.e.
L, admits exactly one Zp-extension unramified outside p. It follows that X (L)
is a Z,[[T]]-torsion module and hence it has a well-defined (up to units in Z,[[T7])
characteristic polynomial of the form p*- f(T") for some non-negative integer p (called
the p-invariant of X (L)) and some distinguished polynomial f € Z,[[T]]. Note that

17
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X (L) is finitely generated as a Z,-module if and only if © = 0. The aim of this
chapter is to prove the following

Theorem 2.1.1. The Zy[[T]]-module X (L) is a finitely generated Z,-module.

Theorem was previously proved by Schneps ([Schl, Theorem III]) for L = K,
K of class number 1, p > 5 and by Gillard (|Gil 2, Theorem 1.2]) for any L abelian
over K, p > 5. Recently, Choi, Kezuka, Li (J[C-K-L]) and Oukhaba, Viguié (JO-V])
have independently worked towards completing the proof of the theorem for the cases
p =2 and p = 3. In [C-K-I, the result is proved for p = 2, K = Q(y/—¢q) with ¢ =7
(mod 8) and L=Hilbert class field of K, while in [O-V] the result is proved for p = 2,3
and any L, extending the methods in [Gil 2]. The purpose of this chapter is to give
a comprehensive and rather elementary proof for all fields I abelian over K and all
primes p.

Before we discuss our approach for proving Theorem [2.1.1] we give a useful re-
duction step.

Lemma 2.1.2. Let J/L be a finite Galois extension of order p and let Joo/J and
Lo /L be the split prime Zy-extensions of J and L, respectively, so that Joo = Lood.
If X(L) is a finitely generated Z,-module, then X (Js) is also a finitely generated
Zp-module.

Proof. Let o denote a generator of the Galois group & := Gal(Jo/Loo). Then X (Joo)
is a Zp[®]-module under the natural action. Let F be the maximal abelian extension
of L contained in M(J) (the maximal p-abelian extension of J, unramified outside
p). Then

R:= Gal(F/Jo) = X(Joo)/(0 — 1) X (Joo)-

By Nakayama’s lemma, it suffices to prove that R is finitely generated. Define the
set

S = {primes in L, coprime to p and ramified in Joo/Loo}-

We know a priori that S is finite. If S = (), we obtain M(IL,) = F; in this case, R is
finitely generated over Z, since X (L) is.

If S is not empty, consider for every prime q € S its inertia group I in Gal(F/L).
Since F/J is unramified at each q € S it follows that [, N R = {0}. Thus, I is
cyclic of order p. Let I be the group generated by all the I’s and let F/ = F I, Then
[F: F] < plSl. The field ' is contained in M(Ly). It follows that Gal(F'/Ly) is
finitely generated and hence so is R.

0

Corollary 2.1.3. Let L be a finite abelian extension of K and J/LL a finite p-solvable
extension. Then X (J) is finitely generated as Z,-module.

Proof. This is a direct consequence of Theorem and Lemma [2.1.2] O
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For an integral ideal a of K, we let K(a) denote the ray class field modulo a and
we let w, be the number of roots of unity in K which are 1 modulo a. We claim
that it suffices to prove Theorem when L is of the form L = K(fp) (respectively
L = K(fp?) for p = 2), where f = (f) is a principal integral ideal of Ok coprime to
p with wj = 1 (the last condition holds for any f # (1) upon replacing § by " for a
sufficiently large m). Indeed, first note that if J/LL is an arbitrary abelian extension
and Joo = J - Loo, then M(Ly) - Joo € M(Joo). In particular, if X (Jo) is a finitely
generated Zy,-module, so is X (L« ). This allows us to assume that L = K(fp") where
f is as above and n is a positive integer. By class field theory and Chinese remainder
theorem, for every n > 1 one has

Gal (K(fp")/K()) = (Z/p"Z)" .

Combining Lemma [2.1.2] with our previous observations, it follows that for any
prime p, it suffices to consider fields L of the form L = K(fp) (resp. L = K(fp?) when
p =2), with f = (f) as above.

We let F := K(f), and for any n > 0, we define

Fr=K(p"), Foo= ] Fa.

n>0

Having reduced the problem to the case L = K(fp) (resp. L = K(fp?) when p = 2),
one then has Lo, = F, and we shall subsequently work with Fo,. We let H(K) be
the Hilbert class field of K and ¢t > 0 be such that

K; = H(K) N K.
We also define the groups
G = Gal(F/K), H = Gal(F/Ks), G = Gal(Fo/F)=7Z,;.

The diagram of fields and corresponding Galois groups is given below.

M(Loo )
X (Loo)
Koo 1 Loo = Foo
N
1—*/
K, H(K) F L
/
K
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We shall now summarize our strategy for proving Theorem [2.1.1] Firstly, notice
that M(F)/K is a Galois extension. Secondly, since Gal(K/K) = Z,, it follows
that there exists an isomorphism

Gal(Foo /K) = H x ', where I'2= Gal(Ky/K).

We fix once and for all such an isomorphism, which allows us to identify I with a
subgroup of Gal(F» /K). By abusing notation, we shall also call this subgroup I'". For
each character x of H one can consider the largest quotient of X (F,) on which H acts
through x. We denote this quotient by X (Fs),. The Main conjecture for X (Fo),
formulated by Coates and Wiles in [Co-Wi 3] predicts that for all characters x of H,
the characteristic ideal of X (F ), can be generated by the power series corresponding
to a p-adic L-function. We will discuss this formulation of the Main conjecture in
more detail in Chapter[3] In the present chapter we are only interested in establishing
a correspondence between the p-invariants of certain p-adic L-functions and the p-
invariant of X (F.,). More precisely, our method of proof will be to construct for every
x a p-adic L-function Ly (s, x) and show that the p-invariant of each Ly ;(s, x) is zero;
we will then show that the sum of all p-invariants p (Ly (s, x)) is the same as the
p-invariant of X (F ), which will establish Theorem While some of the results
that we prove have a correspondent (or even generalizations) in the aforementioned
articles, our approach for constructing the p-adic L-functions uses only properties
of certain rational functions on elliptic curves, which makes the exposition more
elementary.

The construction of the p-adic L-functions Ly (s, x) is the first main building
block in the proof of Theorem and is carried out in detail in Section In
[Co-Gol, building on techniques previously developed in [Co-Wi 2] and [Co-Wi 3],
Coates and Goldstein presented a recipe for constructing the p-adic L-functions, pro-
vided one has an elliptic curve defined over a number field F containing K, which has
complex multiplication by the ring of integers of K and for which F(E}ys)/K is an
abelian extension. We shall follow closely this approach for constructing the p-adic
L-functions, extending it to our general setting. The first step will thus be to prove
that when F = K(f) with f as above, one can construct a suitable elliptic curve E/F.

For the vanishing of p for the p-adic L-functions Ly (s, x), we will extend the
argument given by Schneps in [Sch], where she uses the elliptic analogue of Sinnott’s
beautiful proof of u = 0 for the cyclotomic Z,-extension of abelian number fields
(earlier proved by Ferrero and Washington in [Fe-Wal).

2.2 Construction of the p-adic L-function

2.2.1 Existence of a suitable elliptic curve

As before, we let f = (f) be an integral ideal of K coprime to p and for which w; = 1.
As above, we let F = K(f) and we let G = Gal(F/K). For a number field M, we let
Iy denote the group of ideles of Ml. We begin by proving the following.
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Lemma 2.2.1. There ezists an elliptic curve E/F which satisfies the following prop-
erties.

a) E has CM by the ring of integers Og of K;
b) F(Eiors) is an abelian extension of K;
¢) E has good reduction at primes in F lying above p.

Proof. Let H = K(1) be the Hilbert class field of K. Every elliptic curve A/H has
an associated j-invariant js and a Grossencharacter ¥4y : Iy — K*, where K*
denotes the multiplicative group of K. The invariant j4 lies in a finite set J of
possible candidates with |J| = h (the class number of K) and ¢4/ is a continuous
homomorphism whose restriction to H* C I is the norm map. Gross proved in
[Gro 02, Theorem 9.1.3] that given a pair (j,¢) with 7 € J and ¢ : Iy — K* a
continuous homomorphism whose restriction to H* is the norm, there exists an elliptic
curve Ey defined over H, having complex multiplication by Ok, with j(Ep) = j and
whose Grossencharacter ¢, /i is precisely ¢. Consider thus an element j € J and an
elliptic curve Ey defined over H with complex multiplication by Ok with j(Ep) = j.
Since H C F, we can regard our curve Fy as defined over F. We shall modify this
elliptic curve Ey/F to satisfy all the required conditions. We begin by constructing
an elliptic curve satisfying a) and b).

Let 1 g, /r be the associated Grossencharacter to Ep/IF. Shimura proved in [Shil,
Theorem 7.44] that the existence of an elliptic curve E/F satisfying b) is equivalent
to the existence of a Grossencharacter ¢ of K of infinity type (1,0), for which

YE/F = ¢ o Np/k.

Let ¢ be a Grossencharacter of K of infinity type (1,0) and conductor § (recall that
wj = 1). Let ¢y = ¢ o Ngg. Then x := ek Ir — K* has the property that
X(F*) = 1. Therefore, under the reciprocity map of class field theory, we can regard
X as a homomorphism x : Gal(F®/F) — K*. Since the Galois group Gal(Fe®/F) is
compact, it follows that the image of x must lie in the finite multiplicative group
O . In particular, x is a character of finite order. Furthermore, O C Isom(E)),
where Isom(Ep) denotes the group of Q-automorphisms of Ey. Thus, we can view
the character x as a map x : Gal(F®/F) — Isom(Ep). A moment’s thought shows
that x is a 1-cocycle, hence it defines an isomorphism class of elliptic curves defined
over F which has the same j-invariant as Ey (see [Gro 02, Section 3.3]). It follows
that the twist £ is an elliptic curve defined over F, with the same j-invariant as Ey
and by [Gro 02, Lemma 9.2.5]E| one has that

VExr = X YEyp = ¢ 0 Ny

It follows that if we set E = EJ, the curve E satisfies the properties a) and b).

! Gross only proves this when f = 1, but the result is true in general-see for example [Sil 2}, Exercise
11.2.25].
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Finally, once we have an elliptic curve satisfying conditions a) and b), part c)
follows from the fact that f is coprime to p and the primes of bad reduction are
precisely the primes dividing the conductor of ¥ /p.

O

We now fix a Grossencharacter ¢ of K of conductor § and infinity type (1,0) and
let E/F be an elliptic curve satisfying the conditions in Lemma for which its
Grossencharacter ¢g r satisfies

YE/r = ¢ o Np/k.

Since E has good reduction at the primes in F lying above p, there exists a generalized
Weierstrass model for £ with p-integral coefficients in F

v+ arzy + asy = 2 4 asx® + asx + ag, (2.1)

for which the discriminant A(FE') is coprime to any prime in F above p. Note that the
model ([2.1) is minimal at all primes lying above p. The Neron differential attached

to the above model is
dx

Ww=—"""".
2y+a1x+a3

We fix once and for all such a generalized model and differential w for E. We also let
L denote the period lattice determined by the pair (E,w).

For an element a € Ok, we identify a with the endomorphism of E whose differ-
ential is a and let F, denote the kernel of this endomorphism; for an ideal a of K, we

let E, denote
Eq= () Ea

aca

With these notations, it is proved in [Co-Go, Lemma 3] that for any n > 0, one
has F (Epn) = Fn

For any o € Gal(F/K), we will write E? (resp. w?) for the curve (resp. the dif-
ferential) obtained by applying o to the equation of E (resp. to w). Since
F(Eiors)/K is an abelian extension of K, it follows that for any o € Gal(F/K),
one has Ygo /g = Yp/r. Moreover, as the F-isogeny class of E /I is determined by
the Grossencharacter of E/F, it follows that all the Galois conjugates of E are F-
isogeneous. Let a be any ideal in Ok coprime to f and let o, denote its Artin symbol
in Gal(F/K). For an element o € Gal(F/K), we let £, be the lattice associated with
E?. The Weierstrass isomorphism M(z, L,,) : C/L,, — E?¢(C) is given by

1
z — (maa (2) = bows 5 (p’gaa (2) — a]® (9., (2) = bo,) — aé')) ,

Ja 2 Ja
. . : +4
where @, is the Weierstrass p-function of Lo, and b,, = (o) +1a5® )12 22
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By the main theorem of complex multiplication, for any such a and any o in
Gal(F/K) there exists a unique isogeny 7, (a) : E — E?7¢ defined over F, of degree
N (a), which satisfies

oa(u) = ng(a)(u),
for any u € E, where (g,a) = 1. The kernel of this isogeny is precisely £y (see
[Co-Go, proof of Lemma 4] ). From now on, we shall write n(b) and 7,(b) for the
isogenies 7.(b) : B — E% and 71,,(b) : E7* — E%% respectively. As explained in
[Co-Go, p. 341], there exists a unique A(a) € F* such that

w7 on(a) = Ala)w, (2.2)
which can also be written as
n(a) o M(z, L) = M (A(a)z, Ls,) - (2.3)
Note that A satisfies the cocycle condition
A(ab) = A(a)”®A(b). (2.4)

It follows that we can extend the definition of A to the set of all fractional ideals
coprime to f so that remains valid. Moreover, when a is integral with o, = 1,
we obtain further that A(a) = ¢(a) (see [dS, p. 42] for details). The choice of the
embedding of IF in C gives a non-zero complex number Q, € C (which is well-defined
up to multiplication by a root of unity in K) such that £ = Q. Ok (see the discussion
before relation (13) in [Co-Gol). Furthermore, it is proved in [Co-Gol, p. 342], that
for any integral ideal a coprime to f one has the relation

A@)Qoa™ = Ly, (2.5)

Let v be the prime in F lying above p which is induced by our fixed embedding of
Q into C, and let m, denote the maximal ideal of O(F,). Let Z, be the ring of integers
in the completion of the maximal unramified extension of F,. Let m be a generator
of the prime ideal of Z,. Then Z,/nZ, has characteristic p and is algebraically closed.
Lubin showed in [Lul Corollary 4.3.3] that if the reduction at = of a formal group has
height one, then it is isomorphic to the formal multiplicative group over Z,. We recall
that E has good reduction at every w above p. In particular, it has good reduction
at v. For each o € G, let E7% denote the formal group giving the kernel of reduction
modulo v on the elliptic curve E?/F (see [Sil 1, Proposition V.2.2]). Note that Eow
is a relative Lubin-Tate formal group in the sense of de Shalit ([dS, Chapter I] and
[dS, Lemma II.1.10]). Since we chose a p-minimal model for E, a parameter for the
formal group Eov is given by

te = Ty [Yo-

When o is the identity, we shall simply write Ev , t, etc. Since p splits in K and p
is a prime of good reduction, the reduction of £ modulo v is injective on the set Ej.
It follows that the reduction of £ modulo v has to contain p-torsion points, which
implies that the reduction of £ modulo v has height 1 (see [Sil 1, Theorem V.3.1].)
We obtain the following result.
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Lemma 2.2.2. There exists an isomorphism [ between the formal multiplicative
group Gm and the formal group E” which can be written as a power series t =

f°(w) € Zy[[w]] -

As noted in [Co-Gd], the isomorphism in Lemma is unique up to composition
with an automorphism of Gy, over Z, and the group of automorphism of G, over
Z, can be identified with Z;. We fix once and for all an isomorphism 3%(w) and
we let €2, denote the coefficient of w in f¥(w). In particular, it follows that €, is
a unit in Z,. For an integral ideal a of K coprime to §, the isogeny n(a) induces a
homomorphism

—

n(a) : BV — oo,
which is defined over O(F,). When a is coprime to fp, 1t becomes an 1somorphlsm

It follows that one can construct an isomorphism 37 = 77( ) o B¥ between G, and

Eoav. We also let Qq, be the coefficient of w in B¢ (w). As proven for example in
[Co-Go, Lemma 6], the relation between Q, and €, is given by

Qaw = A(@) . (2.6)

We also let éa denote the formal additive group. One has the following commuta-
tive diagram of formal groups, in which we denoted by Log the isomorphism between
G,, and Gg:

G, B B n(a) Fooe
Log Aﬂ Mq

)

2.2.2 The basic rational functions

We will now introduce the basic rational functions for the elliptic curve E/F, as given
in [Col. To motivate the choice of the rational functions that we introduce, we need
some additional notations.

For any 2-dimensional lattice L we define
1
_ 1 25 —
1m Z w7 |lw|” A(L) WArea((C/L),
wGL\{O}

and
n(z,L) = A(L) ™'z + s5(L)z.

With these notations, we define the 6-function for the lattice L by
0(z, L) = A(L) exp(—6n(z, L)z)o(z, L)"?

where o(z, L) is the Weierstrass o-function of L.
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For every non-trivial ideal m of K and any o € Gal(K(m)/K), Robert’s invariant
is defined by om (o) = 6(1, mc~1)™, where m is the least positive integer in mNZ and
o= (M). As proved for example in [dS, Chapter II Section 2.4], one has the

C

identity

K(m) /K N@\™
@mu)ma)(w:(m) | )

For an integral ideal m of K and a character y, we define the L-series of xy with

modulus m by
Lu(x,s) = > x(a)N(a)~*,

where the sum is over all integral ideals a coprime to m. The following theorem proved
in [Sie, Theorem 9] (see also [dS, Chapter II, Theorem 5.1]) gives a useful relation
between global L-functions and logarithms of Robert-invariants.

Theorem 2.2.3. Let m be an non-trivial integral ideal of K and let x be a character
of finite order of conductor m. Let Loom(x,s) = (27)7°T'(s)Lm(x,s). Then

-1
Loom(X,0) = > x(0)loglen(o),
12mwm
o€ Gal(K(m)/K)
where m is the smallest positive integer in mNZ and log denotes the standard logarithm
function on R.

In the same way in which in the class number formula the product [[ L(x, 1) can

X
be expressed in terms of the class number, the discriminant and the regulator of the
field, it turns out that the product

1
H o Z x(0)logom(c) (p-adic logarithm here)

X oeGal(K(m)/K)

can also be expressed in terms of the p-part of the class number, the p-adic regulator
and the p-adic discriminant of the field. On the other hand, Coates and Wiles proved
in [Co-Wi 1, Theorem 11] a relation between the p-invariant of the Galois group
Gal(M(F)/Fs) and these p-adic quantities (see Corollary in Section for
the precise statement). In view of these facts, our aim is to prove a p-adic analogue of
Theorem Since we construct our p-adic L-function using rational functions on
the elliptic curve, we will need these rational functions to have a form closely related
to the Robert’s invariant.

We recall that G = Gal(F/K). For o € G, we let P, denote a generic point on E?
and let z(P,) denote its z-coordinate in the model (2.1)). By abuse of notation, if u
denotes a rational function on E?, we shall write u(z) for uo M(z, L,).
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For any a € Ok that is non-zero, coprime to 6 and not a unit, we define the
rational function &, ,(P,) on E? by

a0 (FPo) = co() H (x(Po) —x(5)),

SEVa.o

where V,,  is any set of representatives of the non-zero a-division points on £ modulo
{£1} and ¢, () is a canonical 12th root in F of the quotient A(a ' Ly)/A(Ly)Nera(@)
(here A stands for the Ramanujan’s A-function)-see |Col Appendix, Proposition 1]
and [Col Appendix, Theorem 8§].

The following identity, which is proved for example in [Go-Sch, Theorem 1.9],
shows the connection between our rational function and the Theta function (compare

with (2.7])):

0 (z, oflﬁg)

ga,a z 12— .
(=) O(Z,CU)N(O‘)

(2.8)

An important result about the rational functions defined above is that their loga-
rithmic derivatives can be related to special values of Hecke L-functions attached to
#*. To state this result, we will need some additional definitions.

Let @ be the point on E given by the image of p := Q/f under the Weierstrass
isomorphism. Then @ becomes a primitive f-torsion point on E. Let o € Gal(F/K)
be arbitrary and let a be an integral ideal coprime to of such that o, = . We define

0,0.0(2) = Ea,o(z + Ala)p),

and denote the corresponding rational function on E? by &, »0(P,). Note that while
A(a) does depend on the choice of the ideal a, the definition of &, »o(2) depends only
on the Artin symbol o, and not on the choice of a. It is proved in [Col Theorem 4]
that for any integral ideal b coprime to af one has the identity

gayUUb (WU(b)(PG)) = H ga,U(Pa @ U), (29)

UeE?

where & denotes the usual addition operation on the elliptic curve.
It follows that

ba.000.0 M (0)(Po)) = [] Sav(Pr&U). (2.10)

UeE?

For every n > 0, we fix once and for all a primitive p"th root of unity (,» such
that CZZ)’ wi1 = Cpn. For a fixed n > 0, we can regard G, as defined over Z,[(,n]. Then
¢pn — 1 becomes a p"-torsion point on Gy, irﬁ for an integral ideal a coprime to afp,
By maps (pn — 1 to a p"-torsion point on E%«?. Let z, be a corresponding primitive
p"-torsion point for the lattice £, . We define wy, similarly by starting with the map
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BY instead. In particular, by (2.3, it follows that z, = A(a)w, (mod L,,). Since
wy, 18 a primitive p"™-torsion point for £ and p is primitive an f-torsion point for £, it
follows that w, + p is a p"f-torsion point for £. In particular, we can write

Q) (wn + p) = an/p",

for some integral ideal g, in Ok coprime to pf.

For an arbitrary abelian extension M/K, if ¢ : I[x — C is a Grossencharacter
whose conductor divides the conductor of M/K, we let ¢ also denote the associated
function on the group of ideals of K coprime to the conductor of M/K. Then for an
ideal ¢ of K, the partial Hecke L-function is defined by

Lo () ) = St

where (%) denotes the Artin symbol of ¢ in Gal(M/K) and the sum ranges over
all integral ideals a of K that are coprime to the conductor of M/K and satisfy
M/KY) _ (M/K
)=\ )
We can now prove the promised connection between our rational functions and
special values of L-functions. To simplify notations, for a character p defined on ideals

of K, we will simply write o(«) for o((c)), whenever a € K. From now on, we will
also view all Grossencharacters ¢ as functions on the ideals of K.

Proposition 2.2.4. Let ¢ denote the fized Gréossencharacter of K for which we have
Yp/p = ¢o Npx. Let n >0 be an integer and let qn and z, be constructed as above.
Let o be an arbitrary element in Gal(F,, /K) and let a be an integral ideal of K prime

to f such that (%) = o. Then for any a coprime to fp and any positive integer k
one has

( 4 )klog (Eama(2))]._. = (—m)’“ _—

(veon (& (o) 1)~ (& (i) #))

Remark 2.2.5. We note that the definition of & ,qQ(2) depends only on the re-
striction of o to Gal(F/K), but that the point z, does depend on the element o in
Gal(F,,/K) we choose. Also, the above relation implies directly that the right hand
side is independent of the choice of the ideal a, since the left hand side is.

Proof. When n = 0, this is [Co-Gol, Theorem 5]. For the general case, we will follow a
similar approach. Our main reference for the following definitions is [Go-Schl, Section
1]. For every positive integer k and every lattice L we define the function

z+w)"

|Z + OJ‘287

Hy(z,s,L) = Z

weL
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for any Re(s) > k/2 + 1. As noted in [Go-Sch], this function has an analytic con-
tinuation over the whole s-plane. We also let E}(z, L) be the value of Hy(z,s, L) at
s=k.
We define B
6(z, L) = exp(—s2(L)2?/2)o (2, L),

where o(z, L) is the Weierstrass o-function of L.
Using (2.8)), it follows that

g(z, oflﬁ(,)>2

2 = | ColO¥)=<
farl?) = ( o )a(z,zg)ma)

It is also proved in [Go-Schl, Corollary 1.7] that for any zgp € C\ L one has
ilog 0(z+ 20, L) = AL) ' + i VLB (20, L) 2! (2.11)
dz ’ P kA ) '

If we let z = Z + z,, then one has

k k ~
Combining (2.11f) and (2.12)), it follows that

d\"* .
(di) 1og &a,0 (2 + 2 + Aa)p)] s

_ (jé)“ i 2B (2 + Aa)p, 0™ o)

- z=0

k-1 [ oo
_ (;) (Z(z)le(a)E;(zn + Aa)p, L)

=t =0
= (k= D=1 (B (2 + Al@)p, £5) - N(@) = B (a0 + A@)p), £o) )
The final ingredient that we need is the relation between Hy/(z, s, L) and the partial

Hecke L-function. One can easily show (see for example [Go-Schl, Proposition 5.5] or
[dS| Chapter II, Proposition 3.5]) that

wp, + p)A(a n

and similarly

Bileh(@)un + 0).£) = (Gt >>kL (3" () )

Using (213) and (Z13), and noting that ¢*(q,)(w, + p)* = ¢*(p")(FQx)*, our

result follows. O
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We now define the following sets of integral ideals of K that we will use throughout
the rest of this chapter. For every n > 0, we let €, be a set of integral ideals a of Ok
coprime to fp with the property that as a ranges over &,, the set of Artin symbols

<L"a/ K) covers each element in Gal(F,, /K) exactly once.

For each o € GG, we let a € €y be such that (F/K) = ¢ and define

ga,a,Q(PU)p
§a7aap,Q(n0(p)(PU)) 7

Ya,a(Pa) -

and we let Y, 4(2) stand for the corresponding elliptic function for the lattice L,
Using ([2.9)), it follows that

[ YauPr @ R) =1. (2.15)
ReEg

By a slight abuse of notation, we will also write Y, q(t5,) for the ¢, -expansion of
Ya,a(2). The following lemma is the key step in constructing a measure on Gal(Fo, /K)
using our rational functions.

Lemma 2.2.6. For an integral ideal a of Ok coprime to f, let o4 denote the Artin
symbol of a in Gal(F/K). Then the series Yy o(ts,) lies in 14+my[[t,.]] and the series
haa(ts,) == %log(Yma(t%)) has coefficients in O(F,).

Proof. The following proof is a straightforward extension of similar results proved
in the literature (see for example [Co-Gol Lemma 9] or [Co-Wi 2| Lemma 23]). Let

—

Nog (P) - Eoav — Eoo be the formal power series induced by 74, (p). As p splits
completely in K, we have N(p) = p, hence

—

Noa(P) (to,) = . (mod m,).

Let mq,o,(ts,) be the development of the rational function &, 4, 0(Fs,) as a power

series in t,,. Given
n
maagu(to'u) = § :Cnto.u,

n>0

a

it follows that

Mauay (7 (P)(ter)) = D hth? = ml ; (t,)  (mod m,).

n>0

Since Ma,o,(to,) is a unit (see for example the proof of [Co-Wi 2, Lemma 23)), it
follows that Y, o(t;) =1 (mod m,), which completes our proof. O
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2.2.3 The p-adic L-function

We will now show how the results we obtained in the previous section can be used
for constructing a measure on Gal(F, /K) with respect to which we define our p-adic
L-function. We begin by recalling some basic definitions and properties of measures.

For any prime p, the group Z; has a decomposition
X _
Z, =V xU,

where V' is the group consisting of the (p —1)th roots of unity in Z,, (resp. {£1} when
p=2)and U = 1+ pZ, (vesp. 1+ 4Z3 when p = 2). For an element o € Z,;, we
denote by («) its projection onto the second factor. If we fix a topological generator
u of U, then the map x — «” gives an isomorphism of topological groups between 7Z,,

and U.

Let & be a profinite group and let A be the ring of integers of a complete subfield
of C,. We let A4(®) denote the ring of A-valued measures defined on &, where the
product is given by the usual convolution of measures. If & is finite, there is an

~

isomorphism A4(®) = A[B] given by

v— Z v({o})o,

ced

while for an infinite profinite group there is an isomorphism A4(®) = A[[&]] under
the usual inverse limits taken over the normal subgroups of finite index:

AA(®) = lim A4 (®/H) = lim A[6/H] = A[[®]].

For a general profinite abelian group &, following de Shalit, we define a pseudo-
measure on & to be any element in the localization of A4(®) with respect to the
set of non-zero divisors (see |[dS, Section I.3.1]). Given a measure v on ® and any
compact subset O of &, we can define the measure v|, on & by restricting v to O
and extending it by 0. Our main interests will be in the cases when & = Gal(Fo,/K)
and & = Z,, respectively.

When & = Z,, there is an isomorphism A4(Z,) = A[[w]] due to Mahler, given by
associating to a measure v the element

/(1 +w)*dv.

Zp

By our previous observation, for O C Z, compact open, there is a natural inclusion
A4(O) = Aa(Zyp). For the particular case when O = Z, if F'(w) is the power series
associated with v, we know by [Si, Lemma 1.1] that the power series associated with
I/’Z; is

Vs = F(w) =~ 3 F(C(1L+w) - 1). (2.16)
¢r=1
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Throughout this chapter, we shall use v* to denote the measure v/, x.
P

For a measure v € As(Z,) and a € Z,; we define the measure v oa by voa(0O) =
v(aO) for any O C Z, compact open. It then follows that

voalp = v|,poa. (2.17)

Moreover, if F'(w) is the power series associated with v, then the power series associ-
ated with v o a is

voa— F((14+w)™—1). (2.18)

We can now proceed to the construction of our measure. For every a € &, we
define By o(w) = haq (8L (w)). By Lemma the series By q(w) lies in Zy[[w]], so
it corresponds to a measure vo,q € Az,(Zp). The identity combined with the
aforementioned lemma from [Si] implies that the measure v, 4 is actually supported
on Zy.

Let Wy : Gal(F/F) — Z; be the isomorphism giving the action of Gal(Fe/F)
on the p-power division points of E. Under this isomorphism, the measure v, can
be regarded as an element of Az, (Gal(F/F')). Notice that for any k& > 0, one has

\Il];dya,a = DkBa,a(w) ‘w:O;
Gal(Foo /F)

where D = (1 + w)di If we let exp denote the isomorphism G, — Gy, the substi-

w "

tution w = exp(z) — 1 yields further

[ 0@ tvas = (3£) Buslexn(z) - Dlemo

Gal(F oo /F)
k d\Fk
= 0%, (2-) Baalexp(z/Qa0) = 1)l:o.
More generally, if we are interested in evaluating D¥ B, q(w)| wew,» W€ can make

the substitution w = exp(21/Q,) — 1, and noting that
Ba (exp(z/Qap) —1) = M (2, Lo, ),

it follows that under the substitution induced by multiplication by A(a)
k k e d\F1
D% Baa (W)l = SapA@) ™ { 72 ) 2108 Yaa (M(A(0)2, Lo, )=z, (2:19)

For every a € €y, we constructed a measure vq,q € Az, (G). For every such a, we
let vqq © 0 denote the pushforward measure on o, 1G induced by o4, and we extend
Va,a © 0q to a measure on Gal(Fs/K) by 0. Consider now

Vg i= g Va,a © Og.

acly
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Then v, becomes an Z,-valued measure on Gal(Fy, /K).

Weil showed in [We] that, under our fixed embedding Q — C,, the character ¢
can be extended continuously to a character

¢ : Gal(Foo /K) — CJ,

Foo /K
a

which satisfies the property that ¢ ((

to fp. Furthermore, for any o € G one has ¢(c) = W,(o) (see [Co-Gol, p. 352] for
details). By a slight abuse of notation, we will simply write ¢ for ¢, since it will
always be clear from the context what ¢ stands for.

)) = ¢(a), for any ideal a in K coprime

The rest of the work we do in this section follows closely the exposition in [dS,
Chapter 11, Section 4].

Lemma 2.2.7. a) Let x be a character of Gal(F/K). Then for every k > 0 one has

x9* (p ENEAY
/ xOF dve = (1 - p“) Z QF x¢F (o2 h) <dz> 10g £a,00,0(2)]—g -
Gal(Foo /K) acdo
b) Let n > 1 be a positive integer and assume x is a character of Gal(IF,,/K) with the

property that p™ is the exact power of p dividing its conductor. We define the Gauss
sum

1 v
== > xMe.
p ~E Gal(Fy, /F)
Then for every k > 0 one has
quk dve
Gal(Foo /K)
ko ok d\"

-1

=70 3 ohxotes’) C TR vE—"

Proof. This result is the analogue of [dS|, Chapter II, Theorem 4.7] and [dS, Chapter
II, Theorem 4.8]. For part a), using the fact that ¢ and ¥, coincide on Gal(Fu/F),
it follows that

Prdvg oot
Gal(Foo /F)
~ob (i) s (o () 1)
wwldz) 7\ PP\, o
d\*1
k -
— Qa’v <d§) ]; log Yaya(z)|2:0
k d F ~ 1 Oaz
= Qg PE 10g £0,00,Q(Z) — EIOg a,0a0p,Q (A(P)7°2) L
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It follows that

X¢k dv,
Gal(Foo /K)

d\* 1
= Z X¢k(0a_1)Q’§,fu (di) <log ga,au,Q(g) - 1; log ga,aaap,Q (A(p)0a2)>

aelp

z=0

Reordering the sum

d\"1
5= 3 Mt (1) 3 108bnruma (AE)™2)

acdy

z=0

according to a’ = ap and using the fact that Q’Cfpw = eriv (A(p)?*)* (see (2.6)), it
follows that

k d\"
5= 205 0k notor) () Togtamnalell g
acCp

This completes the proof of part a).

For part b), we use a similar strategy. For b € €,, we let o, denote the Artin
symbol of b in Gal(F,/K) and we define

Ba,b(w) = hoz,b (ﬁg(w)) :

We will perform similar computations as above. For a character x of Gal(IF,,/K) for
which n is the exact power of p dividing its conductor we have

x¢*dvy = Z X(ﬁk(ab_l) / P*dvy o O'b_l.
Gal(Foo /K) bedn Gal(Foo /Fr)

Again, using the fact that ¢ and ¥, act in the same way on Gal(Fy/IF), it follows
that

¢kd1/a ) Ub_l = / \I/]p“dya o Jb_l.
Gal(Foo /Fr) Gal(Foo /Fy)
Using the fact that the indicator function of 14-p"Zy is = Z it follows that
pr—1 ‘
Uhdvg ooy = Z D* Bap(w)], ot (i

Gal(Foo /Fn)

To simplify the writing, we define

Ra,h (U)) = 10g ga, ath,Q(/Bg (w)) .
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We recall that the measure associated with B, (w) is obtained by restricting the
measure associated with R, p(w) to Z). In particular, if we restrict the measure
associated with B, s(w) to the subgroup 1+ p"Z, of Z,;, we obtain the restriction to
1+p"Z,, of the measure associated with R, p(w). Hence the quantity we are interested
in computing is given by

p"—l
kR . —j
o 2 D sl G

which can be rewritten as

kR . —j
7ZD Ro ()]s 1+ G +p—ZD Rap(@)],gr, 1 -G

J:pti Jplj

A simple check using the definitions shows that

Dk Ra,b<w)’ = \I]P (7)7ka Ra,bj (w)‘

wzcgnq w=Cpn—1"

where v € Gal(F/FF) is such that y((pn) = an (i.e. ¥p(y) =J (mod p™)) and b, is
the unique ideal in K with the property that (%) = (]F""/ K) ~. It follows that

) 1 )

k _ —]<_ -k = k =7

7ZD 0‘[’ w C;nfl‘cp" ZD O‘b w gpnf1cp"'
Jply Jpti

Moreover, when we consider the expression

Z X(bk ZD Rab w an—l Cp_nja

bed, plj

notice that if ¢ € €, is such that o, fixes K(jp"~!) (i.e. o, defines an element in
Gal(Fo /K(fp™ 1)), then

D* Raae()] ooy = Wp(e)*DF Roa(w)yyoca -
P p

Furthermore, since n is the exact power of p dividing the conductor of y, it follows

that
Z x(o) =0.

o€Gal(Fp /Fr_1)

If we partition the elements in €, according to cosets modulo the group Gal(F, /K(fp" 1)),
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we get

> x¢ oy ZD’“ o0()]y_ii 1+ G

bee, plj
n 1 —1
— k k _
- Z qu (U Z D ab w an_1_1 'Cpna—l
bed,
1 pn—lil
Z Zx¢k o Ua p Z D* Ra,cb(w)|wzggn_1_1 : Cz;na;l
ceCp_1 a=0
O’ﬁEGal(lFoo/Fn 1)
=0.
Finally,
3 M) 3 D R ()] GO
bed, ity
—w
= > D" Raw(®)],eg 1o LS k(o (7))
b'ed, b/=b~y
—
= 3 D Raw()]g, Cxdfe) Y xg )
bee, ~EGal(F,, /F)
= 100 3 16 (0 )P Ra(w)lyc,_
bel,
with 7(x) defined as in the statement. Using (2.19)), part b) follows. O

Let » > 0 be an integer and let x be a character whose conductor divides fp™
and with the property that n is the exact power of p in its conductor. Consider the
character e = y¢* and the set

5= {1 € Gal T/ gy = (T2

We define the sum G(e) as

yES

We note that G(e) is well-defined, since (n € K(fp"p™). We also know (see for

example |Go-Sch, Lemma 4.9]) that G(e) lies in a CM field and that G(e)G(e) =
n(k—1)
p .

Theorem 2.2.8. Let x, ¢ and G(e) be defined as above. Then there exists a p-adic
unit u, depending on x such that for all k > 1 one has

k 13
/ edve = 87@ — D=1k fFu G(e) < _ “’”) (N (o) — e(a)) - Li(E, k).

p
Gal(Foo /K)
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Proof. When n = 0, by Proposition and Lemma a), it follows that

/ N L (k — 1)(—1)k f* (1 _ Wk(”) .

Qk p
Gal(Foo /K)

> X (026 (@) (N (@)L (6, 00, k) = 6 (@) L(3", 7, F) )

acy

The sum in the right hand side can be further rewritten as

>~ X os e (@) (N (@) = x6* (@)L (6", 00, k)

acelp

= (N(a) — e(a)) L @kx_l’ k) ’

When n > 1, using Proposition and Lemma b), it follows in a similar

manner that

XOFdv,
Gal(Fso /K)

— k )

Let g, be a prime in K with the property that

N =1 ) ana (FEVE) (RO

With this choice of q/,, it is proved in [dS, p. 75] that x(q/,)¢*(p™)7(x) = G(¢e). If we
set uy = x(qn)/x(q,), then u,, is clearly a p-adic unit and since G(¢) = 1 for n = 0,
the result follows. O

We now have all the ingredients for proving the main theorem in the construction
of the p-adic L-functions. We recall that H = Gal(Fs/Ks). Let m = |H| and let
Dy =TI, (itm), the ring obtained by adjoining the mth roots of unity to Z,.

Theorem 2.2.9. There exists a unique measure v on Gal(Foo/K) taking values in
D, such that for any ¢ = &Fx, with k > 1 and x a character of conductor dividing
fp™ for some n > 0, one has

Q. k / edv = QF(—1)"(k — D) fFu, G(e) (1 - 6?) Li(E, k),
Gal(Foo /K)

with uy as defined in the proof of Theorem [2.2.8]
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Proof. The following proof is exactly the same argument as the one given in [dS|
Chapter II, Theorem 4.12], but we redo it here for the convenience of the reader. We
first note that for a; and ay coprime to pf, it follows from Theorem that

Vay (N(@2) = 0(a3)) = Vay (N(01) — 0(ay))  (equality as measures), (2.20)

where for an integral ideal a of K coprime to fp, o4 stands for the Artin symbol of
a in Gal(Fs/K). Indeed, by Theorem we know that the integrals of the two
measures against any character of the form € = ¢y with x a character of finite order
are the same. Since the set of such characters ¢y separates measures, it follows that
the two measures are equal, as claimed.

We recall that we have a decomposition
Gal(Foo /K) = H x T,
with H = Gal(Fo /Koo ) and IV = Gal(K /K). One then has an isomorphism
D[[Gal(Fs/K)]] = DI[I"]][H] = DI[X]][H].
Moreover, there exists an isomorphism
Q @ D[[Gal(Foo/K)]] = Q @ D[],

given by sending element 1@ A € Q ® D[[Gal(Foo /K)]] to 1® (01(N), ... 0n(N)), where
01,...,0,, are the characters of H.

For any character 6 of H and o € Ok non-unit and coprime to 6fp, one has

0 (7(0) = N(@) =0 (0| ) - )

r — N(a).

Notice also that for any such «, the element oy,

o is non-trivial and that 0 <U(a) ‘ H)

is a root of unity. In particular, one has that 6 (a(a) - N (a)) is a non-zero divisor in
D[|Gal(F»/K)]].

In view of (2.20), in order to prove that vq /(N (@) — 0(4)) is an integral measure,
it suffices to prove that as we range over the elements a € Ok such that « is non-unit
and coprime to 6fp, one has that the ged of the polynomials 6(o,) — N(a)) € Dy[[X]]
is 1. To this end, we let m > 0 be the unique integer, such that (m € F, but
Gpm+1 & Foo. Then, for any element o' x g € IV x H fixing H((pm ), any v € 1+ p"Z,
and any n > m, one can find «, € Ok such that

U(Qn)th = (V' x9)lg,
N(an) =u  (mod p™).

It follows that the sequence 0(0(,,,) — N () approximate 6(g)(1+ X)® —u, for some
a € p"Z,. It is now easy to see that as we range a and u, the series §(g)(1+ X)* —u
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cannot have a common divisor, which shows that 6(c (o) —N(a)) | 6(va). In particular,
there exists vy € D,[[I'']] such that

0 (U(a) - N(a)) Uy = 9(1@),

for any a € Ok non-unit and coprime to fp.
Let eg = = > 60(g)g~" and consider

geH
V= E VgeEgp.

Then mv is a measure satisfying
v (0@) — N(a)) = va.

To finish, we argue that v is itself a measure as follows. Assume by contradiction
that this was not the case. Let Dy be the maximal ideal in Dy. Choose an element
p € Dy[[Gal(Foo /K)]] such that p ¢ Dyp[[Gal(F/K)]] and

u=cv, but M(N(a)—a(a)))el?;.

We decompose u as

=Y g g, g € D[]
geH

Since p ¢ D,[[Gal(F/K)]], we can assume without loss of generality that u; ¢
D, [[Gal(Foo /K)]]. Then

(0@~ N(@) - n=) (uhga<a) | — N (a)ug) g,
geH

-1
where h = (J(a)‘H) . It follows that

png = 1N (0) (010 F,)_l (mod DE[[Cal(Fo/K)])), for all g e H.

If d is the order of h, it follows that

i (1 - (N(a) (a(a)|r,>_1>d) =0 (mod DZ[[Gal(Fo/K)]]).

Since p1 ¢ D, [[Gal(Fo /K)]], it follows that

N(@)? = (o0 F,)d (mod DE[[Gal(Foo /K)]]),

which is a contradiction. The conclusion follows. O
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So far, we constructed a measure v on Gal(F /K) with values in Dy. There is an
implicit dependence of v on f, since Fo, = K(fp°°). For later purposes, we will need
to be able to define measures (or pseudo-measures) for integral ideals g | f. For such
an ideal g, we define the pseudo-measure v(g) on Gal(K(gp>)/K) by

18) = v Plccearmyio 1L (1 (o) ) (221)

)

Yo
where v(F)|Gaik gpey k) IS the measure on Gal(K(gp™>)/K) induced from v(f). We
note that whenever g is such that wy = 1, the v(g) we defined above is the same as
the measure we would have obtained by constructing v(g) directly, using the same
methods we used for constructing v(f) (compare also with the comments from [dS,
Theorem 11.4.12], the assumption that f should be principal was mainly imposed to
ease the computations). It follows that whenever g # (1), v(g) is a measure, while
for g = 1 we have that v(1) is a pseudo-measure, but for any topological generator 7
of TV, (1 —v)r(1) is also a measure.

Definition 2.2.10. For any integral ideal g | § and any character x of the group
Gal(K(gp>)/K), we define the p-adic L-function by

/ X tdv(g) ifg# (1) or x #1

Gal(K(gp>)/K)

Ld((1=yv(()  ifg= (1) and x =1,
Gal(K(gp>°) /K)

Lypg(x) =

where v is a topological generator of T”.

Theorem 2.2.11. Let m be a non-trivial integral ideal of K of the form m = hp™,

for some b | § and a positive integer n with the property that for any prime ideal |

K(p’;)/K

dividing f, the Artin symbol ( ) 1s non-trivial. Let x be a character of finite

order whose conductor divides m with the property that p™ is the exact power of n
dividing the conductor of x. We define

Lpm(x) = Ly (x),
with Ly p(x) as defined in Definition [2.2.10. Then one has

——u, G Y x(0)logpm(o),
o€ Gal(K(m)/K)

Lp,m(X) = -

where uy, and G(x) are as in Theorem m 1is the smallest positive integer in
mNZ, and wy denotes the number of roots of unity in K which are 1 modulo m.

Proof. The case when m = fp” is an easy computation using Lemma Theo-
rem and (2.7). For the general case, for an integral ideal g of K and a character
¥ of Gal(K(g)/K), we define

Ty(0) = ———

B 129wy

GW™) > 9(0)logpy(o).

ceGal(K(g)/K)
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It is proved in [Ku-La, Chapter 11, Theorem 2.1] that for two ideals g | g/, and 9 a
character of Gal(K(g)/K), one has

Ty (V) = H (1= x(D) Ty(9). (2:22)
1o’
g

The general case follows from our definition of Ly m, the relation (2.22) and the fact
that the character y acts non-trivially on each prime dividing f. O

We can now define the p-adic L-function associated with a character x of H.

Definition 2.2.12. We recall that we fized a decomposition
Gal(Foo /K) =T’ x H,

where TV =2 Gal(Ky/K) and H = Gal(Fs/Ks). We also fix a topological generator
~v of I and an isomorphism
k: T =1+ qZp,
where ¢ = p if p is odd and q = 4 otherwise. Let x be a character of H and let g, be
the prime to p-part of its conductor. We define the p-adic L-function of the character
X as
Lis= [ xwdnle) ifxAL
Gal(K(gxp>°)/K)

Lisx)= [ ' da-e) ifx-t

Gal(K(p>)/K)

2.3 The vanishing of the p-invariant of the p-adic L-
function

We recall that our strategy for proving that the Iwasawa’s p-invariant of X (Fy,) is
zero is to associate to each p-adic L-function Ly(s, x) a certain invariant (called the
p-invariant of Ly(s, X)), prove that this invariant is zero for each x, and then show
that the sum over all p(Ly(s, X)) coincides with p (X (Fo)).

We will now define the p-invariant of Ly (s, x). Let F'(w) be an element in Dy[[w]].
By Weierstrass preparation theorem, F'(w) can be written as F(w) = U(w)n'™g(w),
where 7' is a uniformizer of Dy, U(w) is a unit in Dy[[w]], g(w) is a distinguished
polynomial and m is a non-negative integer. Then one defines pu(F') = m.

Fix now a character x of H. It is well-known that Ly (s, x) is an Iwasawa function,
i.e. there exists G(w, x) € Dp[[w]] such that

G(us - 1)X) = LP(87X)7
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where u = k(7), with x and 7 as in Definition [2.2.12] We define
i (Ly(s,30)) = i (Glw, X))

The main theorem of this section is the following.

Theorem 2.3.1. For every prime p, and for every character x of H we have

p(Ly(s,x)) = 0.

For our approach, it will be more convenient to work with the u-invariant associ-
ated with the function

Lyi(s,x) := / X_l,%sdy.
Gal(Foo /K)

We first notice that if Gj(w,x) is the power series associated with Ly (s, x), then
p(Gs(w, x)) = 0 implies u(G(w,x)) = 0. To show that p (Gj(w, x)) = 0 it will be in
turn easier to use Theorem [2.2.8] To this end, we also fix some o € Ok non-unit and
coprime to 6pf and let G(w, x) € Dy[[w]] be defined as

Gu®—1,x) = / X RSy,
Gal(Foo /K)

We note that by Theorem there exists a power series h, (w) € Dy[[w]] such that

hy () Gi(w, x) = G(w, x).
Therefore, in order to prove Theorem it suffices to show that u (G(w,x)) = 0.
We recall that ¢ > 0 was chosen such that
H(K) N Ky = K,
where H(K) denotes the Hilbert p-class field of K. We define the following sets

R1 = {coset representatives of Gal(L/F) in Gal(Loo/K¢)};
Ra = {coset representatives of Gal(L/K¢) in Gal(Lo/K)}.

Notice that we can choose the elements in R; to lie in H and the elements in Ro
to lie in the subgroup I'" of Gal(L./K). We fix such a choice for both R; and Ra.
Then the set

R ={o109:01 € Ry, 02 € Ra}

is a complete set of coset representatives for Gal(L/F) in Gal(L./K). We also let
w denote the Teichmiiller character of Z, and let @ > 0 be such that x~! acts on
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Gal(L/F) like w®. Define o as the character that coincides with y = on I'. Note that
Xo is of finite order and only non-trivial if I'? ' # I'. Then one has

Gu®—1,x) = Z x k(o) /X_lﬁ;sdya oo

O'GR g
= Z x o) Z HS(UQ)/wiXORSdVaOG.
c1€ER1 02€R2 G

Since the quantities y~!(o1) are independent of s, we obtain further

G’ —1,x) = Z HS(UQ)/wiXOst Z X Ho)vaoo | . (2.23)
g

02€R2 01€ER1

We will now introduce the notion of a I'-transform. Let p be a prime and let u be
a measure on Z; taking values in Dy. For 0 <i < p—2 (i = 0,1 when p = 2), we
define the ith I'-transform of the measure u by

Fff)(s) = /wi(x)@:)sd,u.

Zy

Let G (w, ;1) € Dy[[w]] be the Twasawa function corresponding to F,(f). Note that
{K*(09) : 09 € Ra} corresponds to the set of power series {(1+w)? : 5 =0...,p'—1}.
Using the isomorphism G = Z and that Gal(Fs /L) = Gal(Ku/ K)?', it follows by
the above computations that one has

Z (1+wP GO (o)1 +w) =1, Y xHoraoo),  (2.24)
7=0

o1€ER1

where 7, is a topological generator of I" such that k() = u?'.

We will now explain how, in order to prove that u(G(w, x)) = 0, it suffices to show
that the p-invariant of any summand in the right hand side of is zero. For
this, we will use the following general lemma, which is also proved in [Gil 1, Lemma
2.10.2], but we redo the proof here for the convenience of the reader.

Lemma 2.3.2. For every j =0,...,p" —1, let fj(w) € Dy[[w]] be a power series and

consider the series

pt—

1
Flw) =" (1 +w) (1 +w) —1).
Jj=1

Then one has p(f(w)) < p(f;((1+ w)?' — 1)), for any j =0,...,p' — 1.

Proof. For every j = 0,...,p" — 1, we let 7; denote the measure associated with f;
and we also denote by © the measure associated with f. We first notice that

/(1 +w) () = (14 w) fi(1+w)? —1).

Zyp
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On the other hand, there exists a bijection between Z, and j + p'Z,, and under this
bijection, the measure v; corresponds to a measure 7; on j + p'Z,. One then has the
equality

[ @ = [ 0w

ZP j+Pth
In particular, this shows that for every 7, the series (1+w)’ fj((l—i—w)pt —1) corresponds
to a measure supported on j + pth.

Moreover, we note that if 7’ divides the power series associated to the measure
7, it must divide the power series associated to restriction of o to j + p'Z, for any 7,
which by above is exactly ;. This completes our proof. O

By taking

FOF+wP 1) =GO [ xo(rp) 1+ w)” =1, Y xHonvaoo |,
01€ER,

it follows from Lemma that if for o9 = 1 one has

p|G® Xo('yé)(1+w -1, Z X Ho1)vg 0 0y =0, (2.25)
01€ER,

then u (G(w, x)) = 0. In view of (2.25]), we note that

p | GO [ xo() @+ w) =1, > x Moo o
01€ER1

Z
=M E X 01 Va ©01
0'1ER1

To see this, note that xo(v4) is a p-power root of unity. Hence xo(v4)(1 + w)?" — 1
is a distinguished polynomial. Thus, if we let G(*) (w,ZU16721 X Yo1)vg o 01) =
7" P(w)U (w) for a distinguished polynomial P(w) and a unit U(w), it follows that
the polynomial P(xo(v4)(1+w)? —1) is again distinguished and U (xo(74)(1+w)? —1)
is again a unit. Hence the two p-invariants match. To be able to make further
progress, we will need some further properties of I'-transforms. For a Dy-valued
measure £ with corresponding power series F,(w) in Z,[[w]], we denote by Dy the
measure corresponding to DF),(w), where we recall that D = (1 + w) . Then one
has the following result.

Lemma 2.3.3. For any prime p and any i as above, one has
. -
L (s) = I, (s — 1),

where the quantity i — 1 should be read modulo p — 1 (resp. modulo p for p =2).
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Proof. The result is well-known for p odd. For p = 2, the proof is similar and we
provide it below. For integers s =1 (mod 2), one has

[@rin= [ stz

z3 29
= / x°dp — / x°dp
1+47Zo —14-47Z>
= / 25 (D) — / 25 1d(Dp)
1+4Zo —14472
= /:c51w(:v)d(Du)
z3

The cases when s = 0 (mod 2) and i # 0 are proved in a similar way. Since Z is
dense in Zs, the result follows by a simple continuity argument. O

In view of Lemma Lemma [2.3.3] we obtain

(4) -1 _ Gy [wAl 1
G w, Z X (01)vg 00 G " 1,D Z X (01)vq 001

01€ER1 01€ER1

The polynimial “’T“ — 1 is again distinguished, as v = 1 mod p. So we are left to
prove that

p| G Y | w,D Z X Ho1)vg 0 01 =0 (2.26)
o1€R1

To prove ([2.25)), we will need the following important result, which is essentially
[Schl, Theorem I]. We recall that 5¥(w) € Z,[[w]] is the isomorphism ¥ : G, — EY
defined in Lemma 2.2.2]

Theorem 2.3.4. Let \ : Z, — Dy be a measure whose associated power series is of
the form R(BY(w)), for some rational function R on E with coefficients in a finite

extension of O(F,). Let W be the group of roots of unity contained in K. Then

i (T90(s)) = (Z W)X o <v>> ,

veW

where \* denotes the measure \|,x.
D
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The work done by Schneps in [Sch| has a great degree of generality, which makes
the arguments easy to adapt to our situation. For convenience of the reader, we will
redo the main arguments from her proof (following the same notations as in [Schl as
much as possible) and also discuss the cases p = 2,3 that are left out from her work,
but can be easily included. As the proof is up to minor modification exactly the same
as in [Schl Theorem I], the author decided to give it in an extra section at the end of
this chapter and to proceed with the proof of Theorem here.

Using Theorem and the above observation, we are left to prove that
L (Z WD ()X o (v)) =0, where A=D Z X Ho1)vg 0 oy.
veW 01€ER1

Let ¢’ C €; be such that

{x(0q) :ae €} ={x(o1) : 01 € R1}.

Then, by the definition of v, one has

A= Z X(0q)Dvg q.

acd’

We now have all the ingredients required to prove Theorem [2.3.1

Proof of Theorem [2.3.1, By construction, DB, 4 corresponds to the rational function

on E given by
1.4 @mmme@@WJ
pﬁjl%<@m%mmmW@Q»‘

dz

Since

b M@(PDQ) = [] GacPOQaR),

ReEE,
it follows that

1y d o (an@PEQP N
S o (e e ) = A B
where
Z(P®Q@®R)
A(P) = —va ’
R;u Meg\{O} HPERER) =)
and

B(P Q (P®Q®R)
(P)= 2p R;E:ap Me%:\{o} 2(P®Q®R)—x(M)

We first study the term A(P). The possible poles are at points P satisfying

Pe{MORoQ: MEcE, ReE,},
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where for two points S, T on the elliptic curve, we denoted by S&T the point S&(ST),
where ©T denotes the inverse of T' with respect to @.

To compute the residues, we note that the t-expansions of x and y are

1 &1 -1 dl d2
for some constants ¢y, ca,d1, da, ds (see [Sil 1l p. 113]). It follows that the residue at
P =06Q S R is equal to
1
2% P (V(0) = 1) (=2) = ~0, (N(@) = 1),
When p | N(a) — 1, which for example always happens for p = 2 due to the condition
(a,6) = 1, this residue vanishes when reduced modulo 7’. However, when M # O,
the Laurent expansion of % around M & Q © R has leading coefficient
1. Using the symmetry of the z-function, it follows that the residue at a point of the

form M 6 Q & R with M # O is Q,, and €, is coprime to p, so this residue never
vanishes modulo 7’.

We now turn our attention to B(P). We claim that this term does not have poles.
To see this, note that B(P) is obtained from a Dy-valued measure supported on pZ,.
Since all its possible poles have integral residues and every point in Ej, reduces to O,
the restriction of these residues modulo 7/ vanishes, and the claim follows.

Let us now go back to the sum

Z w(ifl)(v) (Z X(Ua)DVa,a> o (v).

veW acc’

We established that the set of poles of Dy, q always contains the set
Po={MoQoR: MecFE,\{O}, Re E,}.

The key property that we will use is that the reduction modulo p is injective on P,
for every a, and thus also on the set

P = U Pa.
acd’

Since W consists of the roots of unity in K, a simple check shows that for any distinct
v1,v2 € W one has

{vn-P: PeP}n{ve-P: PeP}=0.

Indeed, if
v (M1 ©QO R) =v2(M20Q S Ry),

for some M, My € Ey, Ry € Ey,, Ry € E,,, then we can choose non-zero elements
B1 € a1 and By € ag such that

Bi1R1 = BaRy = O.
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It then follows that viafiP2Q = vaaf1P2Q). Since @ is a primitive f-torsion point
and (af1f52,f) = 1, it follows that v; = vp (mod f). But since w; = 1, we deduce that
V1 = V3.

We conclude that the expression Y. w1 (v) (Z X(O‘a)DVma) o (v) has poles

veW ace’
at every point of the form v-P forv € W, P € P. If P is of the foom P= M S QSR

with M # O and R # O, then the residue at v - P is w1 (v71)x(0q)8, for some
a € €. Since the expression w' 1 (v71)x(04)8, is non-zero modulo 7', it follows that

3 W) (z x(aa)DVw) o (v

veW aee’

has non-trivial poles when it is reduced modulo 7’ and thus its p-invariant must be
0. This completes the proof of the fact that

p (Lyps(s, x)) = 0,

and hence, of Theorem [2.3.1 OJ

2.4 Proof of the split prime py-conjecture

For every n > 2, we let M([F,,) denote the maximal p-abelian extension of F,, unram-
ified outside the primes in F,, lying above p and we denote by H(F,,) the p-Hilbert
class field of F,,. Since F,, is an abelian extension of an imaginary quadratic field,
Leopoldt’s conjecture holds for the field F,, and thus M(F,,) /F is a finite extension.
Since we fixed an isomorphism Gal(F/K) = H x IV, we can regard Gal(M(F)/F)
as a module over Zp[[I']]. We also recall that ¢t > 0 is defined by

H(K) N Koo = K,

where H(K) stands for the Hilbert class field of K. Then, if we denote I' := Gal(F /L),
it follows that the image of T' in I under restriction to K., is I, With these nota-
tions, one has the following formula of Iwasawa, valid for all sufficiently large n:

ord, ([M(F,,) : Foo]) = p" T Cu 4+ A(n — 1 —e) +c, (2.27)
where e = 0 if p is odd and e = 1 otherwise, y (resp. ) is the p-invariant (resp.

A-invariant) of X (Fo,) as a Zy[[I"]]-module, and ¢ is a constant independent of n.

For the purpose of the following result, we will work with some fixed n > 2. For a
prime P in [F), lying above p, we let U,, p denote the group of principal units in I, p,
the completion of F,, at P. We also let

Upn=[[Unp @u=]][Fnr
Plp Plp

There exists a canonical embedding ¥ : F,, — ®,,. Let E, denote group of units in
F,, which are 1 modulo every prime P lying above p. Notice that if e € O(F,)*, then
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eNeneP)=1 ¢ B so B, has finite index in O(F,) and this index is coprime to p.
Then ¥ (E,) C U, and we let E,, denote the closure of E,, in U,.

Since the prime p = 2 plays a special role, we will use the same notations as
before, letting ¢ = p when p is odd and ¢ = 4 when p = 2. With this notation,
we let D,, be the Z,-submodule of U,, generated by E, and (1 + ¢). To compute
ord, ([M(Fy) : Fs]), we will need several results from class field theory. Our main
reference for the following exposition is [Co-Wi 1].

Let C), denote the idéle class group of F,, and
Yn = ﬂ NIFm/]Fn(CM)'
m>n

By class field theory, there exists an isomorphism of Z,-modules
(Yo NUy) /B, = Gal (M(F,,) /H(F,) - Fo) -

Since the extension Fy, /F,, is totally ramified above p, it follows that the field H(IF,,)N
Fo =F,, and therefore, in view of the above isomorphism, one obtains that

ord, ([M(Fy,,) : Foo]) = ordy, (R(Fy) - [Yo N U, < Ey)),

where h(F,) denotes the class number of IF,,. It is proved in [Co-Wi 1l Lemma 5] that
one has Y,,NU,, = ker (N(pn/Kp |U ) It is also not difficult to show that Ng, /k,(Un) =
1+ gp" ' O(Ky) (see [Co-Will, Lemma 6]). It follows that N, /x, (En) = 1. Using

this, it follows that N, jx,(Dn) = 14 ¢p" T O(K,), where d := ord,, ([F : K]). It
follows that the diagram

_ N,
1 E, y D —% 1 4 gt lO(K,) —— 1
I !
1 —— Y, NU, y Un L1+ g lO(K,) —— 1

has exact rows and the vertical maps are injective. It follows that

Uy, : Dy]

[YnﬁUn:En]: Pt

Using the same methods as in the proof of [Co-Wi 1, Lemma 9], one can show that

n+d—1
qp Ry ( -1
ord, ([U, : Dy]) = ord, 14 | | Ng, o(P )

VAl ”/K Plp

where w(F),) denotes the number of roots of unity in F,,, R,(IF,,) is the p-adic regulator
of I, and Ay (F,/K) is the p-part of the relative discriminant of the extension F,, /K.

It will be convenient for further purposes to express the p-adic valuation of
(NFn/Q(P))_l in terms of the one of 1 — W. But this is straightforward, since

Fn/
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for any prime ideal P in IF,, lying above p one has that N, /o(P) — 1 is coprime to p,
so the two valuations we are interested in are equal.

Putting everything together, we obtain the following result, which is a simple
extension of [Co-Wi 1 Theorem 11].

Proposition 2.4.1. With the notations as above, one has

n 1h
ord, ([M(F,,) : Fs]) = ord, \/m H < Fn/Q(P)>

Combining Proposition with (2.27)), one immediately deduces the following
(see also [dS, Chapter III, Corollary 2.8]).

Corollary 2.4.2. If G € Z,[[I"]] is a characteristic power series for the Galois group
Gal(M(Foo)/Fo), then for all sufficiently large n one has

u(G)P T (p — 1) + A(G)

o [ h(Fy) Ry (F,,) h (Fo_1) Ry (Fp_1) ]
71w (Fn) /By Fn/K) @ (Fo1) /By (Fr1/K)

The rest of this section is dedicated to showing how this formula relates to special
values of our p-adic L-function. Consider the isomorphism D,[[I"]] = D,[[w]], and

for p any character of I of finite order, we write level(p) = m if p ((F P m) =1,

but p ((F’ )P m71> # 1. We will need the following simple result, which is proved for
example in [dS| Chapter III, Lemma 2.9].

Lemma 2.4.3. For any power series F' € Dy[[w]] and all sufficiently large n, one has
the following equalityﬂ

p(F)p" " (p—1) + A(F) = ord, I 7.
level(p)=t+n

where p(F) means that the action of p is extended to Dy[[I"]] by linearity and ord,, is
the valuation on C, normalized by taking ordy(p) = 1.

We will also need the following result, proved in [dS| Chapter III, Proposition
2.10].

Proposition 2.4.4. For any ramified character ¢ of Gal(Fs/K), we let g be the
conductor of € and g the least positive integer in g N Z. We define G(¢) as in Theo-

rem and we define Sp(e) by
1
129wy

Sple) = — e o) log pg(0).

o€ Gal(K(g)/K)

?Here the p-invariant is normalized with respect to the absolute ramification index ¢’ in Dj.
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Let A, be the collection of all € for which n is the exact power of p dividing their
conductor. Then for all sufficiently large n one has

ord,, < H G(@)Sp(£)>

e€Anp
— ord h (Fn) Ry (Fn) h (Fn—l) Ry (Fn—l) )
Yl (Fr) /Ay (Frn/K)" w (Frne1) /Ap (Fr—1/K)
Let now x be a character of H and recall that
Ly(s,x) = / X RS du(gy) if x # 1
Gal(K(gxp>°)/K)
Lisx)= [ -y iyt
Gal(K(p>)/K)

We define F'(w, x) € Dy[[w]] to be the corresponding Iwasawa function. Then, using
Theorem [2.2.11}, for a character p of I of sufficiently large finite order, one has

G(xp)Sp(xp) if x # 1;
(p(70) = 1) G(xp)Sp(xp) if x =1,
where u ~ v denotes the fact that u/v is a p-adic unit. Let

F = H F(w,x).

xed

p(E(w,x™ 1)) ~ {

It follows that for all sufficiently large n one has

H p(F) ~p H G(g)Sp(e), (2.28)
level(p)=t+n level(p)t-+n

since in the product on the right hand side we range over all x (including xy = 1) and

IT (o) =1 =p.

level(p)=t+n

Using , Corollary Lemmaand Proposition we have thus proved
Theorem 2.4.5. A\(F) = A(G) and u(F) = u(G)
From this we can deduce the main result of this chapter.
Proof of Theorem [2.1.1] From Theorem it follows that
u(F) = 1 (Gal(M(Fag) [Fac).
In Theorem we proved that i (Ly(s, x)) = 0. It follows that
p(Gal(M(Foo) /Foo)) = 0,

which completes the proof of the main theorem of this chapter. O
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2.5 Proof of Schneps’ theorem

For the proof of Theorem we will need two independence results (Theorem
IT and Theorem III in [Sch]). These two theorems are the ‘hard work’ in adapting
Sinnott’s independence result from the cyclotomic case (see Section 3 from [Si]). To
state what these results are, we need in turn some additional notations.

We begin by noting that if » = |W|, then r = 2 except for K = Q(i) and K =
Q(iv/3) when we have r = 4 and r = 6, respectively. Note that in the two exceptional
cases we cannot have p = 2 or p = 3 since these primes do not split in either field.

For the proof, we will distinguish between the cases p = 2 and p > 2. The
following notations are used for p > 2. Let m = (p — 1)/r and «q,...,a, be a basis
for the Ox-module generated by the (p — 1)th roots of unity in Z,. For 1 < j < m we
choose representatives €; for the (p — 1)th roots of unity modulo W. It follows that
there exist a;; € Ok such that

n
g5 = Zaz‘jai, I<j<m. (2.29)

i=1

Let E{’(w) € F, be the reduction of 4Y(w) modulo 7 (the maximal ideal of Z,)
and we let € be the formal group of E, the reduction of F modulo n. We fix an
indeterminate 7' and extend the field of definition of E to the field of fractions of
B := F,[[T]]. From now on, we will also view B as the underlying set for Gnm

in characteristic p. With this setup, it follows that 73\5 converges to a value on &
whenever the image of w lies in (7"), the maximal ideal of B.

For every a € Z, there exists a unique power series [(t) such that [a|(t) = ot
(mod deg?2) and [«](t) is an endomorphism of E (see Proposition I.1.5 in [dS]). We

will write [a](t) for the reduction of [a](¢) modulo 7.

With the positive integer n defined as above, we consider

EF" =ExEx---xFE

n times E

and let t1,...,t, be the copies of the parameter ¢ arising from the coordinate projec-
tions E™ — E. Let F(E™) be the field of rational functions on this abelian variety,
written as Laurent expansions at t1,...,t,, and define

D :=F(E") N Dyllt1, ..., tn]].

Analogously, we let E™ be the product of n copies of E, and we also define D =

We can now state the aforementioned independence results.

Proposition 2.5.1. For 1 < j <m, let ®; : E" = F be the map given by

(I)j(Pl, ey Pn) = ZCLZ‘]‘PZ',
=1
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and assume that r1,...,7ry are rational functions on E with the property that
m ~
er (®j(x)) =0, forall xeE".
j=1

Then each r; is a constant function on E.

Proposition 2.5.2. Let © : B[[t1,...,t,]] — BJ[t]] be the map given by

Then the restriction of © to D is injective, i.e. if r € D is such that

r (ladl®),.. . fan)®) = 0.
then r = 0.

We will also need the following auxiliary lemma, which is the content of the
Proposition proved on page 25 in [Sch].

Lemma 2.5.3. If C is any compact-open set in Zyp, then for X as in the statement
of Theorem one has that the power series associated with M|, has the form
Re (BY(w)), where R is also a rational function on E.

Armed with the above results, we can proceed to the proof of Theorem [2.3.4

Proof of Theorem [2.3.4] We treat first the case p > 3. For every 0 < ¢ < p — 2 we
define a measure

ri= ) W (N0 (Q)

cew

By Lemma A* is associated with a rational function R* (8Y(w)), hence \* o (¢)
is associated with R* ([(7'] (8Y(w))). It follows that k; is associated with a rational
function in 5Y(w) on E. Furthermore, one has

I@@:Zwm/mwww%@

cew Zx

=3 wi(C)/<Clm>swi (¢7la) dr
Cew Zx

= ) WO [ (@)W (z)dA
o]

= rl’g\i)(s)

Since we are in the case p > 3 and r € {2,4,6}, with r # 6 when p = 3, it follows

that ‘
p(19(9)) =1 (r(s)) -
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It therefore suffices to prove that
i) = 1 (T(s) ) -

First notice that if the power series associated with k; is divisible by 7/, then so is the

power series associated with > e'x; o g, (see (2.18)), hence I‘,(fi)(s) is also divisible
eeV
by =’.

Conversely, assume that 7’ divides the power series associated with the measure

3 etk o ely. By (2.17), it follows that 7" divides the power series associated with
%
the measure

TZgj—i ﬁi\(E;1U) o (5;1) .

j=1

Let F;(8”(w)) be the power series corresponding to the measure Ej_i f@i](sﬂU). It
J
follows that

m
D oF (B ((1+w) = 1)) =0 (mod «'Dy[fw]]).
j=1

If we let E be the reduction of F; modulo 7/, it follows that

SOF (] B (w) =o.

Jj=1

We now define the function ®; : E" > E by

i(tr,... tn) = Z [ais](t:),

where a;; € Ok are the quantities defined in (2.29)). Then

SoF (-5 w) = S F (2 (o)., o)) =0

j=1

m ~
By Proposition [2.5.2} it follows that ) F; o ®; is identically zero on E™, hence, by
j=1

Proposition [2.5.1} it follows that
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By definition, F;(P) is the rational function on E corresponding to the measure
;" Hi|(E;1U), o

Z Z lii|(sj—1U) ° (¢)
cWw
Z > el Fi(CP

ew \j=1
It follows that 7" divides ;.

We have thus established that the divisibility of x; by 7’ is equivalent to the
divisibility of ! )( ) by 7/, which completes the proof in the case p > 3.

Finally, when p = 2, we saw that we cannot have K = Q(i) or K = Q(iv/3),

hence r = 2. Following the trick from the proof of Theorem 1 in [Si], we note
that it suffices to prove Theorem when A = \* and w(—1)A o (—1) = A (for,
if A\ corresponds to a rational function, then so does 7 := A* + w!(—=1)A* o (—1)

and one has the identities v = v*, 7o (=1) = w(—1)7, F,(yz)(s) = 2F§f)(s) and
7 4+ wi(=1)7* o (=1) = 2(A\* + w'(=1)A* o (=1)). We can also assume that ) is
not divisible by #’, since replacing \ by %)\ (when 7" divides \) decreases both u-
invariants in the statement of Theorem by 1. We are then left to prove that

K <Fg\i)(3)> =1, i.e. that pu(Ly;(w)) = 1, where

Lyi(u’—1)= /wi(:z)(x)sd)\.

Zy

We use the same strategy as in the case p > 3. Let G(w) be the power series associated

with A|}, 47,- By abuse of notation we will also use G/(w) for the corresponding power
series on Z,. Using A = A* and w’(—1)Ao (—1) = ), it follows that

/wi(x)@c)sd)\ =2 / w'(z)x*d)\ = 2G (u® — 1).
Zy 14-4Z2

Assume by contradiction that pu(G(w)) > 0. But then (G o (—1)) > 0, and since
A= A", it follows that G o (—1) corresponds to A|_; 7 . Since

A=X= Nz, + M 144z,

it follows that u(\) > 0, contradicting our previous assumption that p(A) = 0. This
completes the proof. O



Chapter 3

The main conjecture for p =2

3.1 Statement of the Main conjecture and reduction steps

We mentioned already in the previous chapter the Main conjecture that predicts that
one can write the characteristic ideal of X (L) in terms of p-adic L-functions. We
will give a precise statement of the conjecture below in Theorem [3.1.T]and reformulate
it in terms of the L-functions we constructed in Chapter [2] in Theorem The
Main conjecture was stated by Coates and Wiles [Co-Wi 3] as on open question. In
the following years the conjecture was subsequently proved for p > 3 by work of
Rubin and Bley (see below for details). Therefore, we will restrict to the case p = 2
for the rest of this chapter.

As before K is an imaginary quadratic field in which p = 2 splits into two distinct
primes p and p and K, is the unique Zs-extension Ko, /K which is unramified outside
p. Let L = K(fp™) for some m and as before Lo, = K L. We define L,, as the unique
subextension such that [L, : L] = 2". We will denote the Euler system of elliptic
units in L, by C,.

Let f be coprime to p and K C ' C IL be an abelian extension such that L is the
smallest ray class field of the type K(fp"™) containing I/. Analogous to L, we let
L, = KL and L!, be the intermediate fields. Let U, be the local units congruent
to 1 in L), modulo the primes above p and Us, = limsoey, U,. We define the elliptic
units in L}, by Cp(L') = Ny, 1 (Cpn) (from a certain n on the conductor of L, will
grow in p-steps as n tends to infinity). Let E, be the units of L, congruent to 1
modulo p and define E = limsp, E,,. We define further Coy = limagep, C, where
the overline denotes in both cases the p-adic closure of the groups E, and C, N U,,
respectively (i.e. we embed the groups C' and FE in the local units and consider their
topological closure). We denote by A,, the 2-part of the class group of L}, and define
A = limgoen Ap. Recall that M, is the maximal 2-abelian p-ramified extension of
L. We will use the notation X := Gal(M/L.,).

We fix a decomposition Gal(L. /K) = H x IV, where H = Gal(L /Ky ) and
I'" = Gal(Ky /K). Let x be a character of H and M an arbitrary A := Zs[[I" x H]]-
moduleﬂ Let Zs(x) be the extension of Zg generated by the values of x and define

!Note that we defined A to be the ring of formal power series Z,[[T]] in all other chapters. The

95
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My = M ®z,(m) Z2(x)- So M, is the largest quotient on which H acts via x. The
modules M, are A, = Zs(x)[[T]]-modules, where T" = v—1 for a topological generator
v of IV, Tt is easy to verify that X, A, Es and Cy, are A-modules. The main aim of
this chapter is to understand their structure in more detail, i.e. to prove the following

Theorem 3.1.1 (Main conjecture). For any abelian extension I’ /K we have
Char(As,y) = Char((Foo/Coo)y) and Char(X,) = Char((Uss/Cso)y)-

Choose an ideal § coprime to p such that L. C K(p>f). Define the group I =
Gal(L. /L., NK(fp?)) = Z,. If we consider the field (L)', we obtain an abelian
extension of K contained in K(fp?). As the projective limit does not depend on the
finite level we start with, we can without loss of generality assume that L/ C K(fp?)
for a suitable ideal § being coprime to p. To prove the main result we will further
need the following useful reduction step: Let § be a principal ideal coprime to p in K
such that wy = 1, where wy denotes the number of roots of unity of K congruent to

1 mod §'.

Lemma 3.1.2. If Theorem holds for K(f'p>°) := UnenK(f'p™), then it holds for
every L. .

Note that Char((Us/Cs)y) can be seen as the Iwasawa-function F(w,x) asso-
ciated to the p-adic L-function Ly(s, x) defined as in the previous chapter (compare
with Corollary. So we could reformulate the second statement of Theorem
for L = K(jp?) as follows.

Theorem 3.1.3. We have
Char(X,) = F(w,x ).

Theorem was addressed before by Rubin in [Ru I] and [Ru 2] for p > 3
and [L' : K] coprime to p. Bley proved the conjecture in [Bl] for p > 3 and general
ray class fields ' under the assumption that the class number of K is coprime to
p. Furthermore, there are various papers on the A and p-invariants and on divisor
relations between (Foo/Co)y and Ao, under different assumptions (for example
[Ou] and [Vi-1]). Viguié actually proves the distribution relation we need in [Vi-2].The
proof presented here is selfcontained and reduces everything to ray class fields of
conductor fp?. This makes some of the arguments easier. We will underline along the
course of the present chapter where our proof differs from Viguié’s.

The most recent work on this problem is due to Kezuka [Ke 2] for K = Q(1/—¢),
where ¢ is a prime congruent to 7 modulo 8. She proves the full Main conjecture,
including the definition of the pseudo-measure necessary for the definition of the p-
adic L-function, in the case I/ is the Hilbert class field of K and for all primes p such
that p is split in K and coprime to the class number of K. Note that in Kezuka’s case
the definition of K ensures that K has odd class number - so her proof includes the

definition A := Zs[[I x H]] will only be used in this particular chapter.
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prime p = 2. In this chapter we drop the assumption that the class number has to be
odd and allow [L : K] to be even, i.e. we give a complete proof of the Main conjecture
as stated in Theorem for p = 2 and any finite abelian extension L /K.

Our proof will follow closely the methods developed by Rubin and generalized
by Bley and Kezuka. Using properties of the Euler system of elliptic units devel-
oped by Rubin and Tchebotarev’s Theorem we will prove that Char(As ) divides
Char((Es/Cs)y). We will finish the proof by showing that they are generated by
polynomials of the same degree and hence are equal.

An analoge of the relation between the Galois groups I'" and Gal(IL /K) explained
in Section [3.3.2 holds for p > 3 as well. Thus, all results of Section[3.3.2] can be proven
for general p and L as well. In fact most of them are in [Bl]. Combining the results
from Section with the analogous statements in Section for p > 3 one can
extend the proof given here to general ray class fields . and any prime p without
the assumption that the class number of K has to be coprime to p. It is not stated
here for the general case as it is given in [Bl] up to the slight modification in Section
and to avoid technical case distinctions for example in section where the
statements for p > 3 and p = 2 are actually different.

3.2 Proof of the reduction step

As a first step we will prove Lemma [3.1.2

Proof of Lemma[3.1.3 Let M € {Aco,Uso/Coo, Eo/Coo, X}. We use the notation
M(K(f'p*°)) to make the field we are working with clear. Let x be a character
of Gal(L /Ks). By inflation y is also a character of Gal(K(fp>)/Ks). In par-
ticular, it is trivial on Gal(K(f'p*°)/L.,). As f' is coprime to p and none of the
characteristic ideals is divisible by 2 (this follows from Theorem for K(fp>)
and the fact that Char(X) and Char(As) are not divisible by 2 as shown in The-
orem and Corollary 3.3.22) M (K(fp*)), is pseudo isomorphic to the norm
N (jrpoey /e, M (K(§p>))y, which is pseudo isomorphic to M(IL%,)y. Thus, we obtain
Char(M(L,),) = Char(M(K(Fp>)y). .

So for the rest of the chapter we will only consider the case L = K(fp?) for § being
coprime to p, principal and such that w; = 1. Define F,, = K(fp") and note that
L, = Fp42. We will use the notation Fy = F = K(J).

3.3 Elliptic units and Euler systems

Let E, 0 and £, » be the elliptic curve, the Galois elements and the rational functions
defined in chapter It is well known that for every m torsion point Pg on E?
the elements &, »(Pg) are contained in K(m) (see [dS, Proposition II 2.4] and the
appendix of [Col). The following proposition will be very useful in the course of our
proof.
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Proposition 3.3.1. Let m be an ideal coprime to o and P € EJ a primitive m-
division point. Let v be a prime coprime to § such that m = tm’ with wy = 1. Then

{fa,aar (na(t)P) T | m’

NK(m)/K(mwfa,a(P):g (o (O P) b g

Proof. This proof follows [Ke 1 Proposition 4.3.2]. The unit group O* = O(K)* has
exactly two elements. Hence, the map O* — (O/m’)* is injective. It follows that
the kernel of the projection

¢: (O/m)* /0" = (O/m')* /O™
is isomorphic to the kernel of
¢': (O/m)* — (O/m')".

Hence,
Nv—1 tfm/
Nt t|m'

[K(m) : K(m')] = {
The conjugates of P under Gal(K(m)/K(m')) are the set
{P+ Q| Q€ E? such that P+ Q ¢ E7/}

if tfm’ and
{P+Q|QeE]}

if v| m’. In the first case there is exactly one t-torsion point Qg such that P + Qo is
contained in E7,. We obtain

éa,U(P"i' QO)NK(m)/K(m/)foc,U(P) = H fa,o(P+Q) = §a,aa,(770(t)P)‘
QEE?

By the definition of 1 we obtain further that

5a,o(P + QO)FrObt = ga,aor(na(t)(P + Qo)) = §a,aor(770(t)P)a

which implies the claim in this case.

In the case t | m we obtain the claim directly from
Nicmy/mnbac(P) = [ &ow(P+Q) = aoo(ns(x)P).
QEE?

O

Before we can define our Euler system we still need one further concept. Let S,
be the set of square free ideals of O that are only divisible by prime ideals q satisfying
the following two conditions
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i) q is totally split in L,, = K(fp"*?)
ii) Ngq=1 mod 2+
With these notations we can prove the following lemma.

Lemma 3.3.2. Let H, = K(p""2). Given a prime q in S, there exists a cyclic
eatension H,(q)/H, of degree 2' inside H,K(q). Furthermore, H,(q)/H, is totally
ramified at the primes above q and unramified outside q. Let V be any subfield H,, C
V C L, andV(q) = H,(q)V then Gal(V(q)/V) = Gal(H,(q)/Hy) and the ramification
behavior is the same.

Note that from now on K(q) denotes a ray class field of conductor g, while we
denote for any V # K the field constructed in Lemma by V(q).

Proof. As q is unramified in H, /K it follows that K(q) N H, = K(1) N H,, = K(1).
Hence, Gal(H, K(q)/H,,) = Gal(K(q)/K(1)) = (O/q)*/O*. As |O*| =2and Nq=1
mod 2!7! we can extract a cyclic extension of degree 2! over H,. By definition q is
totally ramified in H,(q)/H,, and the extension is unramified outside g. The rest of
the claim is an immediate consequence of the fact that g is unramified in L,,. O

If v = [ [ q; with g; distinct primes in S,,; then we define V() as the compositum
of the V(q;,).
Having this in place we can define Euler systems.

Definition 3.3.3. Let o be a non-trivial principal ideal in K coprime to 6f and let
Sn.ia be the set of ideals in S, ; that are coprime to o. An Euler system is a set of
global elements

{a%(n,v) | n > 0,t € Sp1a,0 € Gal(K(fp?)/K)}
satisfying
i) a’(n,t) € Ly(v)* is a global unit in L, (t) for v # (1).

ii) If q is a prime such that qv € Sy, | o, then

NILn(tq)/]Ln(t) (a?(n,vq)) = a?(n, t)Frobqfl'

i11) a(n,tq) = a"(n,t)(Nq_l)/Ql mod A for every prime A\ above q.

Note that if we fix ¢ and n and let only t vary we obtain an Euler system in the
sense of [Ru 2] for the field L,,. So in Rubin’s language our Euler-System is a system
of Euler systems indexed by the pairs (o, n).

We now give a precise definition of the elliptic units.
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Definition 3.3.4. Let g | f be a non-trivial ideal. We define the elliptic units Cyy,
in L,, as the group of units (they are units by [dS, Chapter II Proposition 2.4 iii)])
generated by all the {u 5.0, (Pr.2), where Qq is a primitive g division point and P7 is
a p"-torsion point on E°. If g = (1), we define Ca)n as the group generated by all
the units of the form []7_; &a;,0(Po)™ with Y7y mi(Nay — 1) = 0 (they are units
by [dS, Chapter II Ezercise 2.4]) and by all elements &a,o(PJ,5)" ", where T lies in
Gal(L,,/K) (they are units due to [dS, Chapter II Exercise 2.4 and Proposition 2.4 i)].
We define further the group Cy oo = limaoin Cqr and the group Co(g) = thg Choo-
We will also use the notation C,, and Cw instead of Cp,(g) and C(g) if the conductor
1s clear form the context.

This allows us to prove the following Lemma.

Lemma 3.3.5. For every u € Cy,, there exists an Euler system such that a”(n,1) =
u.

Proof. As the properties defining an Euler-system are multiplicative it suffices to
consider the case of u being one of the generators, i.e. u = {q o (P75 + Qq). Assume
first that g # (1) and let V,, = K(gp"*2). Define

a’(n,t) = Ng(gpn+2e) /v, (1)a.0 (Pris + Qg + Z Q1),
It
where [ denotes primes in S;, . Then a?(n,1) = w. It remains to show that

a generates an Euler system. Using that o4 = 1 and that Gal(L,(tq)/Ly(r)) =
Gal(Vy,(tq)/Vy(x)) we obtain by Proposition [3.3.1}

Ny (e0) /L () (@7 (10, ¥0)) = Ny (0q) v, ) N (gon 200 Vi (eq) S Ptz + Qg + D Q1)
[[rq
= Ni(gpr+20) /v (6) VK (gpn-+2eq) /K (gpr+20) S (Prga + Qg + ) Q1)
[|tq
—Frob; !
= Ni(gpn20)/7, (0)€mooq (o (@) (Plyn + Qg + > Qp)' b
[[rq
1
= NK(gpn+2t)/Vn(t)£a7o'(Pg_"_z + Qg + Z Q[)Frobq(l—Frobq )
e

— (aa(n7 t))Frobqfl'

It remains to check property iii): The group Gal(K(gp"*2tq)/V,(tq)K(gp"2t)) acts
only on the g-torsion points. By definition we obtain that

|Gal(K(gp™ " vq) / Vi (vq) K(gp"™ 1)) = (Nq — 1)/2'

due to the fact that K(p"*2g) # K is non-trivial. Using the fact that g-torsion points
reduce to zero modulo A and that Gal(K(gp™*2vq)/V,(tq)) restricts surjectively to
Gal(K(gp™*2t)/V,,(t)) the claim is an easy consequence of the definitions.

If g = (1), let V,, = K(p"*?) and choose a” (n, t) = Ni(yn+2e) v, (o) T 1121 aio (Pyot
e Q0™ or a%(n,v) = Nggnt2e)v, () o (Plas + 2 @) ' and proceed as
above. O
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For every prime q € S,,; we fix a generator 74 of G4 = Gal(LL,(q)/L;,) and define
the following group ring elements

2l—1 2l—1
_ i _ .
Ny = E T4 Dy = g iTg.-
i=0 i=0

For v =[[;_, qi we define D, = >}, Dy, € Z[Gal(L,(r)/Ly)].
With these definitions we have the following

Lemma 3.3.6. [Ru 2, Proposition 2.2] For every Euler system a“(n,t) there exists
a canonical map
1
ki Snta = Loy /(Ly)?
such that r(t) = (% (n,t))P mod (L, (r))?.
For every prime ideal q € S,,; of K we define the free group of ideals in L,
I, = @Q|qZQ = Z|Gal(L,,/K)]Q.

For every y € LX denote by [y], the coset of the principal ideal (y) in I;/2'I;. Let Q
be a prime above £ in L,(q) and note that for every z € L,(q)* the element 2!~
lies in (O(Ly(q))/Q)*. As O(L,(q))/Q = O(L,)/Q there is a well defined image
z'=7a in (O(L,)/Q)*. Thus, we can define a map

Ln(a) = (O(Ln) /2)* /(O(La) /Q))* @ = (@1-79)1/4,

where d = (Nq — 1)/2!. This map is surjective and the kernel of this map consists
precisely of the elements whose Q valuation is divisible by 2!. Let now w be an
element in (O(L,)/Q)*/((O(L,)/9Q)*)? and let z be a preimage. Define

lg(w) = ordg(z) mod 2 € Z/2'Z.
Note that [ is a well defined isomorphism. Thus, we can define

g (O(Ln) /0)*/(O(Ln) /) )2 = L/IZ w =Y lg(w)Q,
Qlq

With these notations we have the following

Proposition 3.3.7. [Ru 2, Proposition 2.4] Let a°(n,t) be an Euler system and k
be the map defined in Lemma . Let v # (1) be an ideal in Sy, ;o and q be a prime
in K. Then

i) If ¢ { v, then [k(r)]q = 0.
ii) Assume that q |t and t/q # (1). Then [k(t)]q = @q(r(t/q))

iii) Assume that v = q and that the Q-valuation of (a(n, (1))) is divisible by 2" for
all Q above q in Ly,. Then [k(t)]q = @q(k(t/q)).
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Note that Rubin does not distinguish between the cases ii) and iii). But as Bley [BI,
Proposition 3.3] points out, the extra assumption in iii) is necessary.

Let y be any element in the kernel of [-];. Then y = B2'¢, where B is an ideal
only divisible by primes above q and € is coprime to q. Let () = B9 for some ideal
® coprime to q. Then y = B2lu and u is coprime to q. In particular, u is a unit at
all ideals above q. Thus, ¢q(u) is well defined and we can extend ¢q on ker([-]4).

3.3.1 An application of Tchebotarev’s theorem

This section follows ideas of Bley in [Bl] and of Greither in [Gr]. The main goal of
this section is to prove the following Theorem.

Theorem 3.3.8. Let M = L,, for some n and write G = Gal(M/K). Assume that p°
is the precise power of p dividing the conductor of the extension M/K. Let M = 2!
for some | and let W C M*/(M>X)M be a finite Z|G]-module. Assume that there is a
Z|G]- homomorphism 1p: W — Z/MZ|G|. Let C € A(M) be an arbitrary ideal class.
Then there are infinitely many primes 2 in M satisfying:

i) [Q] = 23HC.
it) If q = QNK, then Nq=1 mod 2M and q is totally split in M.

iii) For all w € W one has [w]q = 0 and there exists a unit u in Z/MZ such that
oq(w) = 23T u(w)Q.

A similar result was also proved by Viguié in [Vi-2] including the case p = 2. As
our result is slightly different from Viguié’s and to underline the technical differences
for the case p = 2 in more detail we give a complete proof here. The proof of
Theorem [3.3.8| relies on several lemmas which we will prove in the following. We fix
the following notation: Let H be the Hilbert class field of Ml and define M’ = M((ax/)
and M = M/(WY/M),

Lemma 3.3.9. [HNM' : M] < 2¢7! if ¢ > 1. The extension HNM'/M is trivial if
c=0.

Proof. As 2 is totally split in K/Q the ideal p is totally ramified in K({2ps)/K and
the ramification index is M. If ¢ = 0, then M/K is unramified at p and M'/M is
totally ramified at all primes above p. Hence, M' N H = M and the claim follows in
this case. Assume now that ¢ > 1, then the ramification index of p in M[/K is at most
|(O(K)/p)*|. Hence, the ramification index of every divisor of p in M'/M is at least
M /21, In particular, [M/ : M/ N H] > M/2¢~ . Using that [M’ : M] < M it follows
that [HHN M : M] < 2¢71, O

Lemma 3.3.10. If ¢ = 0, then the group Gal(M" NH/M) is annihilated by 4. If

c > 1, then Gal(M" NH/M) is annihilated by 2%¢. In both cases it is annihilated by
92c+2
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Proof. By definition we have [K(Caps) : M N K(Copr)] > min(M, M/2°71). Consider
first the case ¢ > 1. As Gal(K(Conr)/K) = Z/2Zx7Z/(M/2)Z we can choose an element
J in Gal(K(Caar)/MNK(C2nr)) of order M/2¢. Choose r € Z such that j(Canr) = (G-
It follows that M/2° = 1 mod 2M and 7* # 1 mod 2M for every 0 < b < M/2°.
The element j has a lift to Gal(M//M) of the same order. Let W' c M'*/(M"*)M
be the Kummer-radical of M” /M. Let o be an element in Gal(M"”/M’) and « in M
such that o™ = w for some representative w € M of a class w € W’. By Kummer-
theory there exists an even integer t,, such that o(a) = CgMa. We have a well defined
non-degenerate Kummer pairing

o_(wl/M)

(o) W x Gal(M" /M) = (Comr)y  (w,0) — /M

By definition h(W') = W' for every h € Gal(M'/M). For every element h in
Gal(M'/M) we have (h(w),hoh™!) = h{w,o) [Gu, Theorem 1.26]. Recall from the
definitions that C;’j(/[ = (w, o). Clearly, every class in W' has a representative in M.
In particular, Gal(M'/M) acts trivially on W’. We obtain

rtw

e = j(Chen) = jlw, o) = (jw,joj 1) = (w,joj ).

This implies that joj~!(a) = ;th «. As we can do this argument for every element

w € W', we obtain

jojt=o". (3.1)
The extension (M” N HM')/M is clearly abelian. Hence Gal(M'/M) acts trivially
on the group H = Gal(M” N HM'/M’). Together with this implies that H is
annihilated by r — 1. On the other hand it is a Kummer extension of exponent at
most M. Therefore, H is annihilated by 2¢ = ged(M,r — 1). Then » = 1 mod 2.
Assume now that 2 ¢ = 1 mod 2° for some v > d. Then 72" " =1 mod 2v+1.
This shows that r27~* =1 mod 2/+!. Recall that M = 2! and that 7 #%1 mod 2M
for all 0 < b < M/2¢. Tt follows that M/2¢ | 2M/2¢ and ¢ > d — 1. Therefore 2¢+1
annihilates H. There is a natural surjective projection

H — Gal(M" nH/M' N H).

Using Lemma this gives the claim in the case ¢ # 0.

In the case ¢ = 0 we choose j of order M /2. Then rM/2 =1 mod 2M and r* # 1
mod 2M for all 0 < b < M /2. Using the same arguments as above but this time for
¢ = 1 we obtain that the extension M” N HM'/M’ is annihilated by 4. This implies
the claim in the case ¢ = 0. O

Using the Kummer pairing we see that there is a homomorphism
F: Gal(M" /M) — Hom(W, ()
given by F(o)(w) = o(w'/M)/w'/M,

Lemma 3.3.11. 272 annihilates the cokernel of F.
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For every finite abelian group G’ and every G’-module Z we denote by H(G', Z)
the usual group cohomology, i.e. the quotient of cocycles by coboundaries. If G’ is
cyclic we will define the Tate cohomology groups H NG 7)) = A /ZZHGG’Q and
ﬁl(G/,Z) = ker(}_ e 9 |2)/Z9~1 where go is a generator of G’. Note that
H Y@, Z2) =2 HY (G, Z) for cyclic groups G'. To avoid using two different notations
for the same object we will always use the notation H'(G’,Z) as it can be used for
non-cyclic groups as well.

Proof. Let W’ be the image of W in M'/(M/)M. By Kummer duality we have
Hom (W', (Cur)) = Gal(M”/M). Let f: (M*)/(MX)M — (M) /(M")M be the nat-
ural map. Using the exact sequence

0= ker(f) =W =W =0
we obtain a second exact sequence
Hom(W’, {Car)) — Hom(W, (Car)) — Hom(ker(f), (Car))-

Hence, to prove the lemma it suffices to prove that the kernel of f is annihilated by
2¢+2. Let u € ker(f) and choose an element v € M’ such that u = v™. We define
0y : Gal(M' /M) — (Car) by 6u(g9) = g(v)/v. As

du(gh) = gh(v)/g(v) - g(v)/v = du(g) - gou(h),

it follows that 0, is a cocycle. Note that v is unique up to M-th roots of unity. If we
choose v/ = v(§;, we obtain d,/(g) = g(v)/v-g(¢§,;) /¢S, Hence, 0, is uniquely defined
up to coboundaries and 6, has a well defined image in H'(Gal(M//M), ((as)). Thus,
we have an injective map ker(f) < H'(Gal(M'/M), (Cps)). Therefore, it suffices to
bound H!(Gal(M’/M), (Car)). If the group Gal(M'/M) is cyclic, we see that (Cys) has

a trivial Herbrandt quotient. So it suffices to consider
[HO(Gal(M' /M), ()| < [{Gar) M| < 277

If Gal(M'/M) is not cyclic then it is isomorphic to A x C, where C, is cyclic and
A = Z/2Z. Consider the exact sequence

HY(A, (G )) = HN (Gal(M'/M), (Cr)) — H'(Cr, (Gr)).

The last term is annihilated by 2°T!, while the first one is annihilated by 2. Thus,
we obtain that the middle term is annihilated by 2¢*2 proving the lemma. O

Now we have all ingredients to prove Theorem [3.3.8

of Theorem [3.5.8. Consider the map ¢ : (Z/MZ)|G] — ((ar) defined by Y azo — (i}

Then ¢ o € Hom(W, {Cy)). Using Lemma [3.3.11] we see that 2°2(, o0 ¢)) has a

preimage v in Gal(M”/M'). Let v = 2¢12 (H/LM and choose 0 € Gal(M"H/M) such

that § |g= 2227, and § |yw= 22¢t2+. Note that this is possible as Gal(M" N H/M)
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is annihilated by 22¢*2 due to Lemma [3.3.10, Using Tchebotarev’s Theorem we can
find infinitely many primes £ € M of degree 1 such that

L = conjugacy class of §

As § = 22¢T2y |yy= id we see that 9 is totally split in M//M. Let q = Q N K.
Then q is totally split in M’/K and Nq = 1 mod 2M. Further § |g= 2%*2v; |g=
23¢t+4 (H/LMJ It follows that [Q] = 23¢*4C. It remains to prove point iii) of the
Theorem. To do so we note that

ordg (22T p(w)Q) =0 mod M & 23T, o ¢p(w) = 1.
Using that v is the preimage of 272, 0 ¢ we see that
23C+4L o w(w) -1 (226+27)w1/M/w1/M -1,

As one of the ideals above Q in M” has 222y € Gal(M”/M) as Frobenius homo-
morphism, we see that

ordg (23 ™h(w)Q) =0 mod M < w is an M-th power modulo Q.

w is an M-th power in M” and 9 is not ramified in M”/M. Therefore, [(w)]q = 0.
By definition ordg(yq(w)) = 0 < w is an M-th power modulo Q. It follows that
ordg (23T (w)Q) = u'ordg (pq(w)) for some unit «’. From this the claim follows as
in [Ru 3l page 403]. O

3.3.2 The y-components on the class group and on E/C

Recall that we fixed a decomposition Gal(Ls /K) 2 I” x H with H = Gal(Loo /Kx)-
Let 7/ be a topological generator of I'V. To simplify notation we will use the notation
7!, for the element /2", Let I' = Gal(ILo /I). There exists a power of 2 such that T'2™

is contained in Gal(Lo/L). In particular Lo,/ ]Ll;zm is totally ramified at all primes
2m+n _ F2m/+n

above p and I" for some m’ < m independent of n. Recall that A,

denotes the class group of L,, i. e. 7’2m+"7m/ acts trivial on A, and L,, for n > m/’.
We fixed the notations A = limao. p Zy[[Gal(LL,, /K)]] and As = limeoey Ay. Let x
be a character of H. Then A, and (Fo/Cuxo)y are Ay-modules. Let Ay, be the
quotient of Ay by 1 —~,,. In particular, there are polynomials g; in A, (powers of

irreducible polynomials) and a pseudo isomorphism

k
Acox ~ B M/ i, (3.2)
=1

with finite kernel and cokernel.

Lemma 3.3.12. The kernel of the multiplication of (1—7,,) on Ax is finite for every
n.
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Proof. This follows directly from the fact that all finite subextensions of L, /K are
abelian over K and that the p-adic Leopoldt conjecture holds for any abelian extension
of K. In particular, the p-adic Leopoldt conjecture holds for every field L,, (see [Ru 1,
page 705] for more details). O]

Lemma 3.3.13. Let x be a character of H and n > m/. Then there is a Ay,
homomorphism

k
AXJZ - @ Ax,ernfm’/(gz‘):
i=1

with uniformly bounded cokernel. Here, g; is the restriction of g; to level n.

Proof. This proof is very similar to |Grl Lemma 3.10]: By [Washl page 281] the
module A,, is isomorphic to Aso/Vm4n—m/mY for some submodule Y. Consider the
map

(bn: AOO/(]' - /Y;n—i-n—m’)AOO — An

By definition, the kernel is isomorphic t0 Vymin—m/mY/(1 = 7,40 pr)Aco, Which is
bounded by the size of Y/(1 —4),)Ac < As/(1 —7},)Asx. By Lemma this
quotient is finite and the kernel of ¢,, is uniformly bounded. Thus, the kernel of the
natural projections

Ao /(1 = ’Y;n-i—n—m')Aoo,x — Ay

is uniformly bounded and we can deduce the claim from (3.2)). O
Let I, =T"2"" /T"" for ny > ny. Recall that I'*" fixes the field Ly iy, for
n > m. Hence Gal(IL,, —rmim! /Ly —msmr) = Ty -

Lemma 3.3.14. Let E'

m/+ng—m
‘Hl(F;lz,nNE?/n’-i-nz—m)‘ is uniformly bounded for no > ny > m.

be the p-units in Lyyip,—m. Then we have that

Iwasawa [Iw 2, page 267] proves the same result for the group of the p-units instead
of the p-units.

Proof. Let A}, = A, /B, where B, is the group generated by the ideal classes of
the ideals above p for all n. Then the capitulation kernel C,, ,, of the natural
homomorphism

/ /
ni+m’—m — Ang +m/—m

is uniformly bounded for all ng > n; > m. This can be seen as in [Iw 2, Theorem 10]
using the corresponding definition of A/ . If we can show that

Corpy = H'(T, . E, )

ng,n1’ —~m/+ng—m

we are done. Let a € Uy, ,, and a = ¢By,, 4 n/—m- Let a be an ideal in c¢. Then there
is some v € L, _y4m such that () = AB, where B is only divisible by ideals above
p. Recall that 7 = v'*"" is a generator for [y ny- Thus, 771 € B —m- Note
that the image of " ~! in H' (T E’ ) is independent of the choice of ¢, 2A

n2,n1’ ~m/4+ng—m
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and . If 7"t e BT} then v = na with o € Ly 4/ and n € E),

na+m’—m>
We obtain that a is trivial. Hence, we have an injective homomorphism

Crpny — HY(T Bl iny—m)-

na,ni? m

2+m/—m’

It remains to show that it is surjective. Let e € E! , ny—m lie in the kernel of the norm
N:Lp,+m/—m — Lp,+m/—m. Then there is some element v € LL,,4p/—y, such that
e =177, Asideal we see that (v) = 2D for some ideal 2 that is a lift from Ly, 1/
and some ramified ideal B. Let ¢ = [U] and a = ¢By, +m/—m- Then a € Cp, ,, and a
is a preimage of the image of e in H(I"/ E' O

nz,mi’ m’-i—ng—m)'
As a consequence we obtain:

Lemma 3.3.15. There is a constant k such that

(1= ) H Ty 1, B )| < 25 and (1 — 7, ) HO(T

nz,ni’ nz,ni’

Em/+n27m)| < 2k
for any pair (ny,ng) with ng > ny > m.

Proof. The proof follows the ideas of [Ru 1, Lemma 1.2]. But it is restated here as
we use weaker assumptions. Let &,,/4n,—m be the units of L4y, and Ryygpy—m
be the Z-free group defined by the exact sequence

;n +no—m -
As Lo /L,y is totally ramified we see that I acts trivially on R,/ pn,—m. We know
from Lemma [3.3.14] that |H1(1";l27n1,E7’ﬂ,+n2_m)| is uniformly bounded. Further, we
have the exact sequence

HOT o Rovgng—m) — HY (T o Emring—m) — H (T ' ).

n2,m1? n2,m1? nz,n1’ ~m/4+n2—m

The first term is annihilated by 1 —~/, and the last term is uniformly bounded. It
follows that (1 —~/,)H (T Em’+ny—m) is uniformly bounded.

nz,ni’

It is an immediate consequence from [Ja, V Theorem 2.5] that q(E, . ) =

2(n2—n1)(1-5) " where s is the number of primes above p. Thus,
2(n2—n1)(s—1) |H1 (F/ / )’ _ |ﬁ0(rl B

na,n1’ ~m’/+ngs—m na,ny’ m’+n2—m)|'

Consider the surjective map HO (I‘;mn1 , E;n’—i-nz—m) — anymE;n’—‘rnl—m/N”vaE;n’—i—ng—m
induced by Ny, m = (v, — 1)/(7, — 1). Using that Ny, (1 —7,,) = (1 —;,,) and
that I"2"" is precisely the group fixing Ly, We see that the subgroup

/

((1 - ’Y;n)E;n’—&—nl—m + an,nlE;n’—i-nz—m)/Nnmnl m/+no—m

is certainly contained in the kernel. Note that Nm7mE;n'+n1—m/Nn2,mE;n'+n2—m is
the ksrnel of the natural map ﬁ[o(ﬂm,m, B ingm) = ﬁO(F;lhm, B in,—m)- Thus,
we obtain:
770 770
(1= A HOTY,, . B 1 < @i Bty )| (s s By =)
m na,n1’ —m’4+ng—m/l = =
’ ‘HO (F%Q,m7 E7/n/+n2—m)’

9(n2—n1)(s—1)+kg(n1—m)(s—1)+k

_ 02k
< 2(n2—m)(5—1) =2 ’
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where 2" is the uniform bound on H (T, ..., By 0

the natural map ﬁO(F;@%m,Emurm_m) — ﬁO(F;@%m?E{n%nrm) is an injection. As

[(O(L,)/B)*| is coprime to 2 for every prime ideal 3 above p, the claim follows. [

). It is easy to verify that

Lemma 3.3.16. Let n > m' and consider the projection
Tt Boo/(L = Yipin—m ) Eoo = En.

There exists an integer k such that 2¥(1 —+/) annihilates the kernel and the cokernel
of Ty for alln > m’.

Proof. We have an exact sequence

: 1/ ol
oigz’ H ( m-+n’—m/ m4+n—m/> En/) -
— , — — . 0 s —
_>EOO/(1 — 7m+n—m’)E00 — En — hm H ( m+n'—m/  m+n—m’> En)

oo+n/

/

Then the first and the last term of the above sequence are annihilated by 2¥(1—/,)
due to Lemma [3.3.75 O

Lemma 3.3.17. Let Uy, be defined as in the introduction. Then we have
i) Uso Xz, Q= A Xz, Qp and
i) Usox Xz, Qp = Ax Xz, Qp-

Proof. Claim i) follows as in [Bl, Lemma 3.5 Claim 2]. Bley gives two references for
this proof. Note that the second one is only stated for p > 2 but the proof works for
p =2 as well (we will actually give the details in Lemma .

Claim ii) can be proved as follows:

Uso ®z, Zp(X) ®z, Qp = A ®7, Zp(x) @z, Qp.

Let I, C Z(x)[H] be the module generated by o — x(o) for ¢ € H. It is an easy
verification that

Uso Rz, Zp(x) Rz, Qp/ I (Uso Xz, Zp(x) Xz, Q)
=A Xz, Zp(X) Xz, @p/Ix(A Xz, Zp(X) Xz, Qp)'

It is proved in [Ts, Lemma 2.1] that M, = (M ®z, Zy(x))/Iy(M ®z, Zy(x)). Further,
for any module M we see that

M ®z, Zp(x) ®z, Qp/ I (M Rz, Zy(X) ®z, Qp)
= (M @z, Zp(x)/I(X)(M ®z, Zy(X))) ®z, Qp = My @z, Qp.

Using this for Uy, and A the second claim follows. O
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Lemma 3.3.18. Let hy, be the characteristic ideal of (Ex/Coo)y and n > m. Then
there exist comstants ng, ¢ and co independent of n, a divisor h;( of hy and a
Gal(Lyy 4n—m/K)-homomorphism

19m’+n—m : Em’+n—m,x — An,x
such that

i) hi, is prime to 1 — 1y, for all v,
i) (Yng — 1)612‘32hg<Anﬁ C 19m/+n_m(im(€m/+n_m’x)), where im(Cysin—m.) de-
notes the image of Cpyyn—my M Enygpn_m -

Proof. From the second claim of Lemma and the fact that Ay ®z, Q) is a
principal ideal domain we obtain that the submodule E y ®z, Q, is free cyclic over
the ring Ay ®z, Q. We obtain a pseudo isomorphism f: E  — A\ & M, where M
is an elementary A,-module of finite exponent. Let p denote the natural projection
of Ay ® M — A,. Let a = po f. Consider the following diagram

It is immediate that the kernel of « is annihilated by some power of 2 and that the
cokernel of « is finite.
Consider the map

T Eeo/(1 =) = Envin—m-

Note that 7, = Tptm/—m- The rest of the proof is exactly the same as [Bl, Lemma
3.5]; we just have to substitute E,, by E,;/ 15— due to the index shift we defined at
the beginning of the present section. Further, we have to write (1 — /) instead of
(1 —4/) in all computations due to the fact that Lemma is weaker than the
corresponding claim in Bley’s case, meaning that m = 0 in his setting. We still give
a complete proof below for the convenience of the reader.

Let Wy n_m be the image of 7/, in E,,/4p_pm and define

T = TOTZP[H]( Coker (ﬂ-'/n)v ZP(X))

Then we obtain the following two exact sequences:

T —————— Wivin-myx — Emin-my — Coker (},)y, —— 0

]

ker(ﬂ';l)x — Ew,x/(l - %Q)Eooyx — Wi n—m.x > 0
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Let m, , be the compositum of 7}, and 8: Wi 1n—my — E\pytn—m.- Then we obtain
0— ker(']T;LX) — EOO,X/(l — fy,ll)Eoo,X — Em’«l»nfm,x — Coker (T‘—;L)X —0

It is immediate from Lemma that the cokernel of 7, | is annihilated by 2k (1 —
Ym)- In the next step we also want to bound the size of ker(r, ). Let therefore
e € ker(m, ). Then 7 (e) lies in the image of 7 and 7, ((1 — vl)2Fe) = 0. Hence,
(1—1/,)2ke lies in the image of ker(n/,)y in Foo /(1 —7})Eoo . Thus, Lemma
implies that (1 —4/,)?2%%e = 0. Therefore, (1 — ~/,)?2%¥ annihilates the kernel and
the cokernel of 7, , .

We are no able to construct the homomorphism 9,/ 4,—p,: Let e € Em’—i—n—m,x-
Then (1 — ~/,)?2%*¢ has a preimage z in Eoo, /(1 — 7,)Eco and therefore also in
E - By abuse of notation we denote both preimages by z. Define

Pmitn—m(e) = (1 — 7&)222'%((2) mod (1 — %’1)AX.

As the definition of 4,74, depends a priori on the choice of z, we first have to
check that 9,/ 1y, is well defined. Assume that 2’ is another preimage, then the
image of 2z — 2’ in Eo /(1 — ;) Eoo,y lies in the kernel of 7, | . In particular,

(1 —7m)?2%(z = 2') € (1= 1) Eoox

and Y,/ 4p—m is indeed well defined.
From the exact sequence 0 — Coo — Eoy = Foo/Co — 0 we obtain an embed-
ding
Eoox/im(Coo ) = (Eoo/Coo)x-
As hy(Ex/Cuo)y is finite the same holds for the quotients hy (Eooy/im(Coo y)) and

hy(a(Esoy)/a(im(Cxy))). Due to the definition of o we can find an integer s such
that 2° € a(Fu,) and such that 2°h,a(Fooy) C a(im(Cx,y)). Hence 22k, lies in

a(im(Coopy)). Choose z € im(Coo ) such that a(z) = 22°h,. Then we obtain

2241~ 51 )y = 25(1 = ],) a(2).

Let 2/ ynm = 7, , (2) € im(Crnsyn_m,y). Clearly, a preimage of 22k (1=~ V2 2 sm—m

is 228(1 — 4/ )2z, Then we obtain
Dot tn—m (Zms 4n—m) = 24k(1 - 7%)404('2) = 24k(1 - 77,71)228h><'

Note that (1 —1;,) | (1 —~,,) for all n’ > n. In particular, there is an n > m and an
c1 such that hy (1 —~;,)* | ki (1 —~,,)®". From this the claim is immediate. O

Lemma 3.3.19. Let M = L,, for some n and let A be a subgroup of G = Gal(M/K).
Let x be a character of A, M = 2! and A = [[;_,9i € Sny. Let Q be a divisor of g,
in M and let C = [Q)] the ideal class of Q. Let B C AM) be the subgroup generated
by ideals dividing q1,...,qs—1. Let x € M*/(M*)M be such that [z]. = 0 for all
(e, ) = 1. Let W C M*/(M*)M be the Z,|G]-submodule generated by x. Assume
that there are elements E,n, g € Zy[G] such that
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i) E-anng ¢1(Cy) C gZy|Gy, where Cy is the image of C in (A/B)y.
i) Zp|Gly/9(Zp|G))y is finite.
Then there exists a G-homomorphism

V: Wy — (Z/MZ)[G]y

such that gy (x)Q, = (En[xlq, )y n (Iq,/MIg,)y-
Proof. This is [Bl, Lemma 3.8]. The proof is the same as [G1, Lemma 3.12]. O

To prove the central theorem of this section we need the following lemma.

Lemma 3.3.20. [G7, Lemma 3.13] Let A be any finite group and N a Z,[A]-module.
Let x be a character of A and n : N — N, the natural projection. Then there exists
a Zyp|A)-homomorphism

ex : Ny = N

such that noe, = |A|.

Let q be an element in S,; and 2 in I;. Then there is an element vq(2) in
7,/2'Z|Gal(L,, /K)] such that 2 = vq(A)Q. We will use this notation in the follow-
ing theorem, which allows us to relate the characteristic ideal of A, to the one of
(Foo/Cx)y- The proof follows the ideas of [BI].

Theorem 3.3.21. Let M = L,, and G = Gal(M/K) for n large enough. Let x be
a character of H C Gal(M/K). For 1 < i <k let C; € A, (M) = A, be such that
t(C;) = (0,0,---,2% 0---,0) in @le Ay msn—m/(G;) where t is the map defined in
Lemma [3.3.19 and 2% annihilates the cokernel. Let Cyy1 in Ay be arbitrary. Let
d = 3¢+ 4, where ¢ is defined in Theorem[3.3.8, Then there are prime ideals ; in
M such that

i) [Qi]y = 2¢C;.
ii) i = 9;NK is in Sn’n.

i11) one has

(va, (K(a1)y = wi|H|(7p,, — D292 R) mod 2" (3.3)
(gi—1va; (F(9192 - .- 4i))x (3.4)
— w [ H|(y — 15 2273 (0g,  (5(d1 ... q5-1))y mod 2" for 2<i <k+1.

Proof. By Lemma 3.3.18: there exists an element &' in im(C,,,) with the property
In() = (1 — vp,)2°R} . By approximating ¢’ with a global elliptic unit we can
find £ € C, such that 9,(§) = (1 —7,,)2h}, mod MA, in—ns. We can apply
Lemma to find an Euler system a?(n,t) such that a”(n,(1)) = £ Let i =1
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and C be a preimage of C; under the map A, — A, ,. Choose M = 2" and W =
OM)* /(O(M)*)M. Consider

YW = Z/MZ[G] x+— (g4 0Up)(x"),

where v is such that 2V € E), for all x and ¢, is defined as in Lemma [3.3.20L Then
Theorem implies that we can find an ideal 9 satisfying i) and ii). We know

further from Theorem [3.3.8] that ¢, (w) = 2%uy(w)Q;. As a(n, (1)) is a unit we
;

can apply Proposition and obtain

v, (K(q1))Q1 = [K(91)]q; = @q: (5(1))
=g, (§) = 2du1/1(f)531 = 2duvex(('y;LO -1 ZCzhgc)Ql mod 2".

Projecting to the x component and using the definition of €, we get (3.3).
We will now define the ideals Q; inductively. Assume that we have already found
the ideals Q1,... Q;_1 and let a;_1 = H;;ll q;. Using point iii) recursively we see

o i-2
[T 9iwa  (rlai))y = |[H[ T ulm 2 dtes e (4 © pyertgmcp!
J<i—2
Let D; = |H|~1u20-2)@dtes)tdte: By enlarging ¢; we can assume that ¢ + 22;21 c{
is bounded by ¢/ ™! and set t; = i~ !. Tt follows that vq, , (k(ai—1))y | Di.hg(('yjlo.— 1)t
Define N = (v, — 1)"(Iq,_, /(M Iq,_, + Zp[G][K(ai-1)]q;_, )x)- As hi is coprime to
every 7, — 1 we see that Ay pyn—m//h} is finite and further

’N’ < ‘Ax,mﬂrfm’/Di"Ax,mﬂbfm’/h;("

Choose now 2! = M > max(| A (M)||Aymsn—m'/Dil [ Ay msn—ms /P ], 2"). We want
to apply Lemma with B = 274 p = (v — 1) g = g1, A = a;_1, and
x = k(a;—1). To do so we have to check the assumptions. It follows directly from
Proposition i) that [z], = 0 for all v coprime to a;_;. We now have to check the

conditions i)-iii) from Lemma [3.3.19
i) By definition Cy, = [Q;-1]y = 2%C;_1. The annihilator of ¢(C) is given by
gi—1/(2¢%4 g;_1). As property i) holds for all Q; with j < i — 2 we obtain that

E - anng ¢1(Cy) C gi-1Zp[Gly.
ii) It is immediate from Lemma that Z,[G)/9Zy|G]y is finite.

Iqi—l/(MIQi—l) ) ‘

iit) M > [Ay[IN| = [AxlIn(zZ e, 7 )x

Thus, we obtain a homomorphism

Pi: Wy — Z/MZ[G)y

%We have to ensure that q; lies in the domain of &, i.e. q1 has to satisfy a certain coprimality
condition. As Theorem [3.3.8| gives us infinitely many primes we can just assume that q; lies in the
domain of k.
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with gi—19i(k(ai—1)) = (227(y), — Dfivg,_, (k(ai—1)))y. Let II, be the projection
W — W, and define ¢ = ¢, o4; oIl,. Let M be as in the previous paragraph and C
a preimage of C;. Then Theorem m gives us a prime ideal Q; satisfying i) and ii)
(recall that 2" | M). Further, ¢, (r(a;—1)) = 2%u)(k(a;—1))Q;. Then we obtain

v, (k(q1 - 4:))Qi = [K(q1 - - di)]q; = P, (K(q1 -+ - qi-1))
= 2duw(n(ai,1))ﬂi.

Projecting to the y-component and using the definition of ; we obtain

ci_l 22d+03 (

(gi—1v9, (K(a1a2 ... 45))y = wilH| (7, — 1) v, (KA1 -+ 9i-1))y

which finishes the proof. O

To derive a relation between h, and [[;_; g; we need the following result:

Corollary 3.3.22. Let M be a finite abelian extension of K and consider H/K M
(the mazimal p-abelian unramified extension of KoM ). Then Ao = Gal(H/K M)
is finitely generated as a Zy-module

Proof. Gal(H/K. M) is a quotient of Gal(Ms, /KooM). The latter is finitely generated
due to Theorem R.1.11 O

Theorem 3.3.23. Char(A ) | Char((Ex/Coo)y)-

Proof. The main argument of this proof is analogous to [Wash, page 371]. From
(3.3) and (3.4) we obtain that Hle gizgkﬂ(n(ql o Grg1))x = nhy, mod 2", where
n = a|H|F1gk@dtes)tdber () - 1)eteia “ for some unit . It follows that Hle gi
divides nhg( in Ay msn—m'/2" Ay msn—ms. For every n we can find an element z,
such that Hle GiZn = nh;( in Ay mtn—m' /2" Ay min—ms. The z,’s have a convergent
subsequence and we obtain that Hle gi | nh’, in Ay. By Lemma|3.3.12{and Corollary
3.3.22| Char(Aw y) is coprime to 7 and the claim follows. O

Remark 3.3.24. Viguié proves in [Vi-2] as well that there is a power of 2 such
that Char(Asc,y) | 2VChar((Ee/Coo)y). Using Corollm"y this implies Theorem
15.3.25. He follows the proofs of Bley very closely as well but he uses a slightly different
version of Theorem[3.3.8 and does not use the relation between T' and I” in the same
manner as we did here in Section [3.53.3 to construct the homorphism O,,.

Corollary 3.3.25. Char(Ay) | Char(Ey/Coo)

Proof. As Theorem [3.3.23| holds for all characters and Char(A) is coprime to 2 this

is immediate. O
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3.4 Characteristic ideals and the Main conjecture
Consider the exact sequence
0= Foo/Coo = Us/Coso = X — Ay — 0,
where X = Gal(My/Loo). Then
Char(As)Char(Us/Cs) = Char(X)Char(Eoo /C o). (3.5)
From Corollary we deduce
Char(X) | Char(Use /C o). (3.6)

In the following we will establish a relation between p-adic L-functions and elliptic
units to show that Char(X) is in fact equal to Char(Us/Co)-

Let u € Uy and let g, (w) be the Coleman power series of u (see [dS, I Theorem
2.2]). Let g,(W) = log g,(W) — %zweﬁp log g, (W @ w). There exists a measure v,
on Z, having g, o 8V as characteristic series [dS} I 3.4]. Recall that Dy = Z,((mn) and
let A(Dy,I" x H) be the algebra of Dy-valued measures on IV x H. Define

U(f): Uso = AT, I x H) CAD,, T x H), urr Y vgo0.
o€Gal(F/K)

Note that this construction of measures coincides with the one from Chapter [2| for
elliptic units.

Lemma 3.4.1. «(f) induces a homomorphism (f): Uss®z,Z, — A(Zy,I" x H) that
s a pseudo isomorphism.

Proof. By [dS| T Theorem 3.7] it suffices to prove that the completion of L., at
all primes above p contains only finitely many 2-power roots of unity. But this
follows from [Ke 1l proof of Proposition 4.3.10] (see also [dS, Chapter III, Proposition
1.3]). O

For every g | f there is a map ¢(g): Uso (K(gp*>)) — A(Z,, Gal(K(gp>/K))). Note
that there are natural restriction and corestriction maps 74 and 7;4 such that 74 0
t(f) = u(g) o Njg and ¢(f) o inclusion = n;4 o ¢(g), where inclusion is the natural
map Ux(K(gp™)) — U (see [dS, page 100] for details). If we want to apply the
characters of H to the images of «(f) we have to extend the ring of definition for our
measure to Dy.

Proposition 3.4.2. Let x be a character of H of conductor dividing gp® such that
the prime to p-part of the conductor is g. Then Char(Us/Co)y = Xx(v(9)) if x is
non-trivial and Char(Uss/Coo)y = (v — 1)x(v(1)) if x is trivial.
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Proof. Analogous to [dS, III Lemma 1.10]. In view of Lemma and due to the
fact that characteristic ideals are well behaved under extensions of scalars, it suffices
to determine the image of yo1(Cy). As the conductor of y divides gp? and is divisible
by g it follows that x 01(f)(Coo(f)) = x 07,0 1(F)(Coa(f)) = x01(8)Nj 4Coo(f). Assume
first that g # (1). It is immediate that a1k (gpe))/K(spoe)) X(0) = 0 for any ideal
b | g different from g. Hence,

X 0 1(8)(Cy,00) = x © 1(8)(Co(9))- (3.7)

If wy = 1, we can construct the measure v(g) as in Chapter [2| and obtain that
t(g)(Cy) is the ideal generated by Jv(g), where J is the ideal generated by all the
pa = Na —04. If wy # 1 there exists an integer k such that wyr = 1 and then we
can define the measure v(g*). But by we have that v(g) is just the restriction
of v(gF) and Nk g is surjective on the elliptic units. So in both cases the image under
t(g) is precisely Jv(g).

If the norm Njg : Coo(f) — Cuo(g) is not surjective, it follows that the cokernel of

the module xot(g)oNjg(Coo(f)) in xoi(g)(Coo(g)) is annihilated by [K(fp>) : K(gp*°)]
and the product [[;; »,(1 — x(01)o; Y1), These elements are certainly coprime and

we see that x o ¢(f)(Cxo(f)) ~ x 0 ¢(9)(Cy,00) due to (3.7)), where A ~ B means that
A and B are pseudo isomorphic. But the (i) are coprime due to the proof of
Theorem and the claim follows for g # (1).

Assume now that g = (1). Let 7 € Gal(K(p™)/K) then the elements &, ,(PJ)™ !
are norms of elliptic units from K(hp™), where b is a prime having Artin symbol
771 in Gal(K(p")/K). It follows that a projective sequence of elements &, ,(P7)" !
(all with the same 7) corresponds to the measure jq(7 — 1)v(1) o 0=! under «(1).
Consider now a generator of the form [[7_, &n, o (P7)™ with Y m;(Na; — 1) = 0.
Let v, be the measure corresponding to a sequence of such products. Then we
obtain ((7 — 1)vz) o0 = > mipa, (T — 1)r(1). As (7 — 1)v(1) is not contained in
the augmentation of A(Dy, Gal(K(p>°)/K)) we obtain that the ideal generated by
the Y mipq, is contained in the augmentation ideal and that the ideal generated by
1((1))(C(1),00) is pseudo isomorphic to Av((1)), where A denotes the augmentation
of A(Dy, Gal(K(p>°)/K)). Analogously to the case g # (1) we can conclude that

x ©¢((1)) o Ny (1)(Cx(f)) is pseudo isomorphic to x o ¢((1))(C1),c0)- Hence, it suffices

to consider the image x o L((l))(C(l),oo)- If x is a non-trivial character, then y(.A)
contains x(7) — 1 as well as v/ — 1. Thus x o ¢((1))(C1),00) ~ x(¥(1)). If x is the
trivial character, then x o ¢((1))(C(1),o0) is generated by (7' — 1)x(v(1)). O

Corollary 3.4.3. Let F'(w, ) be the Twasawa function associated to Ly (s, x) defined
in Definition |2.2.19. Then Char((Us/Cso)y) = F(w,x 7).

Proof. Let g be such that the conductor of y is divisible by g and divides gp?. By
Propositionwe see that the characteristic ideal of (Uso/Cuo)y, is given by x(v(g))
if x is non-trivial and (1 — ~/)x(v(1)) if x is trivial. But these are precisely the
measures used to define Ly(s,x™!). Let Gy be Gal(K(gp>)/K). Then we have the
identity [, w*xd(1—7)v(g) = [ £°d(1 —7)°x(v(g)), where e = 1 if x is trivial and
e = 0 in all other cases, the claim follows. O
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3.4.1 Proof of the Main conjecture

In this section we use all the results proved before to prove the main conjecture.
Lemma 3.4.4. Char(X) = Char(Us/Cs) and Char(Ac y) = (Foo/Coo)y-

Proof. The first claim follows directly from (3.6]), Corollary and Theorem
From (3.5 we also obtain that Char(As) = Char(Fs/Cw). Further Theorem |3.3.23
establishes that Char(A« ) divides Char(Foo/Cs)y. Both together imply the second
claim. O

This has also the following consequence:
Theorem 3.4.5. Char(X,) = Char((Usx/Cw)y) for any x.

Proof. For any A-module we denote by MX the largest submodule in M ®z, Zy(x)
on which H acts via x. By [Ts, page 5] there exists a homomorphism between M,
and MX such that the kernel and the cokernel are annihilated by |H|. As none of
the characteristic ideals involved is divisible by 2 we can consider the characteristic
ideals of MX instead of M, for any M in {A,Us/Coo, X, Foo/Cx}. The sequence

0 = (Foo/Coo)X = (Uno/Coo)X — XX

is exact. Let e, in Q,(x)[H] be the idempotent induced by the character x. Then
ex|H| is an element in Z,(x)[H]. In particular, e,|H|M C MX. It follows that the
cokernel of the natural homomorphism ¢, : XX — AX is annihilated by |H|. As A
has bounded rank it follows that Coker (¢,) is finite. The module ker(¢,) equals
XXM im(Uso/Coo). Again the exponent of XX N im((Uso/Coo))/im((Uso/Coo)X) is
bounded by |H|. Hence, Char(AX%)Char(im((Us/Cu)X) = Char(XX). Using the
exactness of the sequence above we obtain

Char(AX,)Char((Uss/Cx0)X) = Char((Eoo/Coso)X)Char(XX).
The claim follows now from Lemma B.4.4] O
The second claim of Lemma[3.4.4)and Theorem prove Theorem for Loo.
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Iwasawa Theory of abelian
varieties

Acknowledgments

This chapter is joint work with Séren Kleine, Universitit der Bundeswehr Miinchen.

4.1 Iwasawa theory of elliptic curves

Let K be a number field, p a rational prime and A an abelian variety defined over
K. Let ¥ be a set of primes in K containing all places above p and all primes at
which A has bad reduction. If p = 2, we assume that ¥ contains the infinite primes
as well. We write Qy for the maximal Galois extension of Q unramified outside 2.
Recall that Q. denotes the unique Z,-extension of Q. To simplify notation we write
H'(Qx/Q, ) for H(Gal(Qx/Qx), ) and HY(K, ) for H' (G, -), where Gk denotes
the absolute Galois group of K. For any number field K and any finite prime v € K
we write K, for the completion of K at v.

Assume now that E is an elliptic curve defined over Q. Let T' = limqo(y, E[p"] be
the Tate-module of £ and V' =T ® Q,. Note that V' is a two dimensional QQ,-vector
space. Then we have that V/A = E[p™] as Gg-modules. Let E be the reduction of
FE modulo p. We define

C = ker(E[p®] - Elp™))

and D = A/C. We define further the local condition H,(Qoc,, E[p™]) as follows:

Hn\v Hl(QOOW?E[pOO]) v #p
HI(QOO,npaE[pOO])/an V=P
with Ly, = ker(H'(Qoo,, E[p™] — H'(I,,, D)), where I, denotes the inertia sub-

group of 7, the place above p in Q.. Then the p-primary Selmer group is defined
as

)

Hv(Qooma E[poo]) = {

Sel(Qoo) = ker(H' (Qs/Qoc, E[p™]) = [ [ Ho(Quows ™).

vEY

7
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These Selmer groups are A-modules and each element is annihilated by some wy,.
For any discrete Z,-module M, we define the Pontryagin dual of M as

MY = Homcont(M) QP/ZP)

(i.e. the set of continuous homomorphisms). In particular, we can plug in our Selmer
groups defined above for M and obtain that their Pontryagin duals are compact
noetherian torsion A-modules [Kat]. Recall from chapter |1| that M is pseduo isomor-
phic to a A-module of the form

k s
P PP/,
i=1 j=1

for irreducible distinguished polynomials f;(7"). To simplify notation we write p(E)
and A(F) for the u- and A-invariants of the Pontryagin dual of the Selmer group. As
one of their main results Greenberg and Vatsal obtain [Gre-Vatl, Theorem 1.4]:

Theorem 4.1.1. Let By and Ey be modular elliptic curves defined over Q. Assume
that Er[p] = Es[p] as Gg-modules. Then p(Eq) = 0 if and only if p(E2) = 0. If both
w-invariants vanish then A(Eq) = A\(FEs).

Remark 4.1.2. The above theorem is stated as in [Gre-Vat]. Due to the modularity
theorem we know that all elliptic curves defined over Q are modular. Therefore, the
above theorem is true for all elliptic curves defined over Q.

Theorems of this form have been generalized to various settings, i.e. for the su-
persingular reduction case and plus/minus Selmer groups by Kim [Kiml|, for general
modular forms in the supersingular setting by Hattley and Lei [Ha-Le] and by Ramdo-
rai and Ray for elliptic curves of semistable reduction over a number field F [Ra-Ral.
There are further generalizations due to Hattley, Lei and Vigni ([Ha-Le-Vi]) using the
anticyclotomic instead of the cyclotomic Z,-extension, but we will not go into details
here. Interested readers my consult [Ha-Le-Vi].

4.2 p and M-invariants of isogenous varieties

In contrast to the works mentioned above we will focus on fine Selmer groups. These
are much ”smaller” then the Selmer groups considered by Greenberg and Vatsal or
Ramdorai and Ray. On the one hand this allows us to work with arbitrary Z,-
extensions instead of the cyclotomic one. On the other hand it also forces us to
impose stronger assumptions on our abelian varieties, i.e. we require that A(K,)[p]
is trivial for all v € X.

Let K be a global field, A an abelian variety defined over K and a p a prime
number.

Definition 4.2.1. Let 3 be a set of places of K containing all the places above p and
all places where A has bad reduction (if p =2 then ¥ should also contain the infinite
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places). We define the (p-primary part of the) fine Selmer group of A over K as

Selp 4(K) = ker (Hl(K2 /K, Ap>) — ] H' (Ko, A[ﬁ])) ,
VEY

where Ky, denotes the maximal algebraic pro-p-extension of K which is unramified
outside of ¥ . Further, we define the p*-fine Selmer groups, i € N, as

Sely, appi (K) = ker (Hl(KE /K AP — [] H' (Ko, A[ﬂ])) .

vEY

Note that both definition depends a priori on the choice of the set X. If K, is
the cyclotomic Z,-extension of a number field or if ¥ contains all infinite primes then
the fine Selmer group is independent of the choice of ¥ and can be rewritten as

Sely,4(K) = ker (Hl(K, Ap™) — [ H' (Ko, A[p™] )) ,

where the product on the right hand side runs over all places of K [Ra-Wi| [Li-Mul.
From now an we assume that K is a number field and consider a Z,-extension Ko, /K
with intermediate fields K,,. The extension K, /K is unramified outside p. In partic-
ular, Ko, € Ky. By maximality (K,)s is Galois over K and (K,)s, = Kx. Therefore,
Sela(KK,) is a subgroup of H!(Ks /K, A[p>]). We denote the corresponding Pontrya-
gin duals by

Y, &) = Selg 4 (Kp)Y,

and define the projective limits

y{Ee) = fim v (En)
A oo—n n

with respect to the corestriction maps.
Our aim in this Chapter is to prove the following Theorem

Theorem 4.2.2. Let p > 3. Consider two abelian varieties, A1 and A, defined over
the number field K. Let 3 be a set of primes containing all primes above p and all
primes at which either Ay or Az has bad reduction. Assume that A;(K)[p] = {0}

and that moreover A;(K,)[p] = {0} for every v € ¥ and i € {1,2}. Let K/K be

a Zy-extension. We assume that the modules Yf(f"") are noetherian A-torsion for

1<¢ <2, Letl be an integer such that plYlgﬂf"o) has finite p-rank.
Then the following statements hold.
a) If A1[p'] = Asp'] as Gx-modules, then u(ngﬂf“)) < u(Yfgﬂjm)).
b) If Ay [p'] =2 As[p'] for some | such that both plegﬂf“) and plYf(le‘”) have finite p-rank,
Koo Koo
then M(Y,a(h )) = ,LL(Y/(‘Q )).

¢) If Aj[pH1] =2 Ay[p!tl] then H(Yfgﬂf‘”)) = M(Yfgﬂf‘”)). In particular, if Ai[p] = As[p),

then u(Y{*)) = 0 = p(v =) = 0.
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d) Letl be minimal such that pl,Yf(‘Hf‘”) is Lp-free. Assume that Ai[p"+1] = Ay[pf+1].
Then A(Y{<)) > Ay {5=)).

e) Let I be as in the previous point. Assume that Aj[p!'+1] =2 Aq[p!'+1]. If pllYngf‘”)
is Zy-free as well, we obtain )\(Ylgﬂf”)) = )\(Yf(lﬂjw)).
The second part of statment c) is proved in [Ra-Ral for elliptic curves of good

ordinary reduction at p and the p-primary Selmer group. Barman and Saikia proved

the analogous result for Theorem points a) and ¢) for Q and elliptic curves
with good ordinary reduction [Ba-Sal.

The assumption that Y(K‘”) is A-torsion is a non-trivial condition. If A is an
elliptic curve then it is equlvalent to H?(Ks /Ko, A[p™]) = 0 [Ma]. The condition
that H?(Ky /Ky, A[p™]) is trivial is often referred to as weak Leopoldt conjecture.

To prove our theorem we need the following auxiliary lemmas:

Lemma 4.2.3. Let X be a finitely generated torsion A-module. Then
ZIF J-rank(p' X /p* 1 X).

Proof. This statement is well-known (e.g. [Ve, Section 3.4]), but we reprove it here
for the convenience of the reader. Let E be the unique elementary A-module that is
pseudo isomorphic to X. Thus, we can write E = @;_; A/(p®) ® E\ for a A-module
Ey which is a finitely generated free Z,-module. Then

pX)=pE) =Y |{k|ex>i}| = ZF J-rank(p’ X /pi 1 X)
1=0

because
F,[[T])-vank(p' X /p'* ' X) = F, [[T]]-rank (5 B /p E) = |{k | ef > i +1}]
for every i € N. O

Lemma 4.2.4. Let A be an abelian variety defined over K and let 3 be as in Theorem
[4.2.3. Assume that A(K)[p] = {0} and that moreover A(Ky,)[p] = {0} for everyv € X.
Then we have for every n and every i € N, ¢ > 1

Selo,a(Kn)[p'] 22 Sely_appi (Kn).-
Furthermore, we obtain
Koo [ ©) ~ 12
y{Ee) jpiy (o) o Tim Sely 45 (Kn)"”.

Proof. We know by assumption that A(K)[p] = {0}. Note that K, /K is a pro-p-
extensions and we obtain that H°(K,, A[p>]) = {0} [Ne-Sc-Wi, Corollary (1.6.13)]
for all n. Since the extension Ko (A[p™])/K,, is unramified outside X (see for example
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[Gre 5l page 258]), we can easily see that HY(Ky /K, A[p>]) = 0. Now consider the
exact sequence

0 — Alp'] — APp™] 25 A)p™] — 0.
Taking the Ky, /K,,-cohomology we obtain a second exact sequence

0 — H'(Kg/Kn, A[p]) — H'(Kg/Kn, Ap™]) — H' (Ks/Kn, Ap™)),

where the last homomorphism is multiplication by p’. Hence, we obtain the isomor-
phism
H' (K /Kn, Alp']) = H' (Ks /Koo, A[p™])[p']-

Let w be a place in K,, above a prime v in 3. Using the same reasoning as above we
can show that

H (Kngw, Alp']) = H' (Knw, Ap™))[p'].

Hence, we obtain the following commutative diagram

H'(Ks/Kp, Alp']) ——————— H'(Ks/Kq, A[p>))[p']

! |

HUEE Hw\v Hl(KnﬂU? A[pz]) i> HUGE Hw\v Hl (me? A[poo])[pz]

Now the first claim is immediate for every finite level n. For the second claim note
that Yy /p'Y " 2 (Selg a(K,,)[p'])Y. Using the isomorphism proved in the first half
of the lemma and taking the projective limit finishes the proof. O

Lemma 4.2.5. Let A1 and As be two abelian varieties defined over K. Let Zy and
Zy be equal to A1[p’] and As[p’] for some i € N. We assume that Z1 and Zy are
isomorphic as Gx-modules. Then Sely 7, (K;,) = Sely z,(K,,) for all n.

Proof. Let ¢ : Zy — Z3 be a Gg-module homomorphism. As K(A4;[p*])/K is
unramfied outside X, we can interpret ¢ as a Gal(Kyg/K)-isomorphism. Then ¢
induces an isomorphism

¢ H'(Ks/Ky, Z,) — H (Ks /Ky, Zo)
of Gx-modules.
For any prime w of K,,, the inclusion Gk, — Gk of the local absolute Galois
group at the completion K, ,, of Ky at w, induces an isomorphism

HY (K, Z1) — H (K, Zo).

The claim follows now via a commutative diagram as in the proof of Lemma[@.2.4 [
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Proof of Theorem [{.2.3 Let Z; = Selp a(Kx)(A;). Let I be such that plYlﬁc"’ is of
finite p-rank. By Lemma we obtain that

Koo - iv-(Koo) /i Koo
u(YE) = 3 B [T rank(py ) fp Y 1))
i=0
-« v (Koo) /i1, (K
= > R ]rank(p' Y /pH VL), (4.1)
=0
By Lemma we have

j Koo 3 Keo) ~Av 7: .
szf(‘j )/pz-i-lYf(lj ) ogr—nn SelO,Aj [pi+1] (Kn)v/ ogr_nn SelO,Aj [pi] (Kn)\/

Using that A;[p'] & As[p'], Lemma implies that

Sel()’Al[pi] (Kn) = SelO’A2 [p?] (Kn)
for 1 <14 <[ and all n. Using (4.1), we may conclude that

p(y {E=) ZIE‘ J-rank (pY (<) /pi 1y {€))

1
_ZF Jl-rank(pY (<) /pitty (<)) (4.2)
< F B k Zy(KOO) i+1y(K0<>) — Y(]KOO)
Jrank(p'y (5) /ity (E2)) = (v ).

If plYf(f‘x’) is also of finite p-rank, then we can exchange the roles of A; and Ay and
obtain equality of u-invariants, which concludes the proof of points a) and b)
Now we prove assertion c). If A[p'T!] =2 A;[p'*!] then

Koo o A 1t .
plY}(‘1 )/pH_IYEé = oggln Selo7A1[pl+1](Kn)v/ ol)lgn SelO7A1[pl](Kn)v
= hHl Selo As[p l+1](Kn)v/o§En SelO7A2[pl](Koo)v

As the left hand side is a ﬁnltely generated Fp—module (i.e. it is finite), the same
holds for the right hand side. So the inequality in becomes an equality.

For assertions d) and e) note that under the assumption of these two points
p—rank(pl/Yf(‘Hf‘x’)) = )\(Yf(lﬂf"")). From this it is immediate that |pl/Y1§Hf°°)/pl/+1Yﬁ°°| =

A(Y i) (Koo)

) Let m > 0 be minimal such that plur””LYA2 is Zy,-free. Then we obtain

p

P pmy € (Koo) jpl' bt 1y (Kes)

<|pY /l—l-ly( |_p( )

If m = 0 this inequality becomes an equality which finishes the proof of the Theorem.
O
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Chapter 5

The Gross and the
Gross-Kuz’min conjecture

Let K be a number field and p > 2 a rational prime. Let K /K be the cyclotomic
Zp-extension of K and K,, the intermediate fields (i.e. [K, : K] = p"). Recall
that we denote the p-class group of K,, by A,. Let B, be the subgroup generated
by ideal classes containing a prime above p. We define A/, = A, /B,. The norms
Npn—1: K, = K,,—1 induce homomorphisms

Nn,n—1: Ap — Apy

and
/ /
Nn,n—l: An — Anfl‘

This allows us to define the projective limits Aoy = limeoerp, Ay and AL = limooep, A,
with respect to the norms N, ,—1. As p > 2, we obtain in the C'M case a decompo-
sition A’ = A'T @ A’__. For any A-module we denote the T-torsion by M[T] and
the maximal submodule annihilated by some power of 7' by M(T"). The aim of this
Chapter is to study the Gross conjecture for p > 2. Gross formulated the conjec-
ture originally in terms of a certain p-adic map [Gro I]. Later, in a joint paper with
Federer he proved that his conjecture is equivalent to the following statement.

Conjecture 5.0.1. IfK is a CM field then
A'_[T] is finite.

In the present chapter we will develop a Galois theoretic interpretation of this
conjecture for CM fields K, that contain ¢, and for which all primes above p are
totally ramified in K /K. To state this alternative formulation we first have to
introduce some more notation.

Let s,, be the number of primes above p in K,, and B, ; for 1 < ¢ < s, be the

primes above p in K,. Recall that we can decompose the complete field K* B, a5

W%’iUmVn,i, where 7, ; is a uniformizer for the maximal ideal of O(Knmn,i)? the group
Vi denotes the roots of unity of order coprime to p and U, ; describes the local units

85
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that are congruent to 1 modulo 7, ;. As in the introduction we define U,, = Hf;l Un,.
If K contains the p-th roots of unity, then K,, contains (,» and U, ; has a p"-torsion
subgroup. Let W, ; be the Z,-torsion of U,;. We define W,, = [[;*; W,,; and
W = limgern W, as well as W; = limgep Wy ;. We will denote the intersection
W N Es by W and thep-power roots of unity in the field K,, by R(K,).

Recall that M, denotes the maximal p-abelian p-ramified extension of K., and
that H, denotes the maximal p-abelian unramified extension of K.,. Different from
previous sections we will denote the whole group of units by £, here. From the
definition of the Artin homomorphism we obtain that

W/W = ¢(W) C Gal(Mao/Hao).

This subgroup will play a crucial role in our proof. We are in particular interested
in its action on certain subextensions of M, denoted by Qg and Qg. We define
Qg as the extension of K, generated by adjoining arbitrarily high p-power roots of
the elements E,, for all n. Let E! be the p-units of K,. Then we define Qg as the
extension obtained by adjoining arbitrarily high roots of E,.

The last bit of notation we introduce here is the Iwasawa involution: Let o be an
arbitrary element in Gal(K. /K). Then there is a unique p-adic integer x(o) forming
a p-adic character (the cyclotomic character) on Gal(Ku/K) with values in Z; (if
(p € K even in 1+ pZ,) such that

() = N7 for all n > 1.

The Iwasawa involution is defined via o* = y(o)o~!. Let M be a A-module. We will
denote the A-module on which 7 acts via 7" by M*® ( see also [Iw 2, page 278]). We
will say that two A-modules M; and My are dual to each other under the Iwasawa
involution if M} and My are pseudo isomorphic. Using all this notation we can state
our Galois theoretic formulation of the Gross conjecture

Theorem 5.0.2. Let K be a CM field containing the p-th roots of unity. Assume
that Koo /K is totally ramified at all primes above p. The Gross conjecture is true if
and only if (Uso/ExcW)T[T*] is finite. Further, if the Gross conjecture holds, then
Gal(Qg /Qp)T is naturally pseudo isomorphic to WT.

Kuz'min formulated in 1972 a hypothesis for arbitrary number fields whose validity
implies the Gross conjecture for CM fields [Ku 1]. We will refer to this generalized
conjecture as the Gross-Kuz'min conjecture.

Conjecture 5.0.3. Let K be an arbitrary number field. Then
AL_[T] is finite.
For the Gross-Kuz'min conjecture we will prove a result similar to Theorem [5.0.2

Theorem 5.0.4. Assume that K contains (, and that all primes above p are totally
ramified in Koo /K. If the Gross-Kuz’min conjecture holds for K then the quotient
(P(Uso)/d(W))NT™) is finite. If conversely (¢(Uso)/d(W))(T*) is finite and Leopoldt’s

conjecture holds for K then the Gross-Kuz’min conjecture holds for K.
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One main ingredient in the proofs of Theorem [5.0.2] and Theorem [5.0.4] is the
fact that the A-modules AT [T*] and A[T*] are finite. While one can prove the first
assertion without additional assumptions, the second one is an equivalent formulation
of Leopoldt’s conjecture. As far as the author knows the Gross-Kuz’min conjecture
is known in the following cases{]]

e Greenberg proved that the Gross-Kuz’'min conjecture holds for all abelian ex-
tensions K/Q [Gre 2].

e [f K contains exactly one prime above p, then the Gross-Kuz’'min conjecture
follows from Chevalley’s Theorem (c.f. [Lal Chapter 13 Lemma 4.1]).

e Let K/Q be a Galois extension such that the decomposition group D, of some
prime above p is normal in Gal(K/Q) = G. Assume that only terms of the
form M, (R) with n < 2 and division fields R occur in the Artin-Wedderburn
decomposition of the group ring Q,[G/D,]. Then Jaulent showed that the
Gross-Kuz'min conjecture holds for K [Jau 1J.

e Let K be a number field containing an imaginary quadratic field such that
Gal(K/Q) is isomorphic to Sy4. Assume that the decomposition group of some
prime above p is a 3-Sylow subgroup. Kuz'min showed that then the Gross-
Kuz’'min conjecture holds.|[Ku 2].

e Kleine proved that if K contains exactly two primes above p then the Gross-
Kuz’min conjecture holds [KI 2].

We will first give some preliminaries that are needed for both conjectures before we

can give the proofs of Theorems and

5.1 Preliminaries for both conjectures

Assume in the following that p is an odd rational prime and K is a number field
containing (, and that all primes above p are totally ramified in Ko, /K. In particular,
the number of primes s, above p in K,, is equal to a constant s independent of n.
Recall that we denote by ‘B; , the prime ideals in K,,. Without loss of generality we
can assume that Ny, p—1(Bni) = Pr—1.i-

5.1.1 Ideal classes as radicals

One main building block in our analysis of the Gross and the Gross-Kuz'min conjec-
ture is to use ideal classes as radicals over 2g. As a first step we need a more precise
description of Qp /K.

Lemma 5.1.1. Let Qg be the mazimal subextension of Qg /K of exponent p'. Then
l !

the Kummer-radical of Qg is KXP (U, ey En)/KEP . In particular, if « € KX and

al/P' e Qg, then there is a unit e € K and an element v € Koo such that o = 'yple.

We do not claim that this list is complete.
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Proof. Let 8 = KX ®z Qp/Zy, and let z = a @ p~* be an element in K. Let K, be
the maximal p-abelian extension of K, and G = Gal(Ky /K ). Iwasawa shows that
there is a natural Kummer pairing

(,): Rx G = R(Ky)

such that (o ® p~?,0) = o( /a)/ */a. Let Gal(Ky/Qg)* denote the annihilator of
Gal(Kgp/Q2g) with respect to this pairing. Iwasawa shows that Gal(K,,/Qg)* consist
of the elements e ® p~* with a > 0 and e € UpenE), [Iw 2, pages 271-274]. 1t is easy
to see that Gal(Ky,/Qpg)t[p!] consists of the elements e ® p~@ with 0 < a < [ and
e € Upen En- As the homomorphism

! 4 —a
fe@p™la<l} =KL (| Ea)/KLT, e@p @i e
neN

is an isomorphism the first claim is immediate.
Assume that « satisfys the assumptions of the second claim, then o/ 'eq e, and

a € Ky ﬂQ’}’; ;- By Kummer-theory [Ne I, Chapter IV Theorem 3.3] we obtain that o

has a trivial image in Kéopl(UnGN En)/KOXOpl. In particular, a € Kéopl(uneN E,). O

Theorem 5.1.2. Let M be the Z,-torsion submodule of Gal(Mo/2g). Let ¢ be such
that Ag; does not contain Zy-torsion. Then there is a map

f: AP — {Z,-subextensions of M /Qp}

that is compatible with the action of T (a topological generator of Gal(K/K)). The
map [ has the following properties:

a) The field f(a-b) is contained in the compositum of f(a) and f(b).

b) For each Zy-extension L contained in the compositum of f(a) and f(b) there is
an element c in a” - b%» such that f(c) = L.

¢) The map f is rank preserving: If C' C A% is a group of Zy-rank k, then the
compositum M of the fields f(x) for x € C is a Z’;—extension over Qg.

d) Let a = (an)nen be a sequence in Boo N AL. Then f(a) is a Ly-extension in
Qe /QF.

To prove the above theorem we will need the following results on finite p-groups.
Results of this form have been used by Preda Mihiilescu in various forms. We will
reprove them here for the convenience of the reader.

Lemma 5.1.3. Let A and B be finite abelian p-groups written additively, such that
p—rank(A) = p—rank(B) = p—rank(pA) = r. (5.1)

The groups are endowed with two Zy-linear maps N : B — A and v : A — B such that
Nov:A— A is the map corresponding to multiplication by p while N is surjective.
Then we have t(A) = pB and Blp] = (A)[p].
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Proof. Since A and B have the same p-rank, the modules A/pA and B/pB have
the same dimension as Fj,-vector spaces. Furthermore, the induced homomorphism
N : B /pB — A/pA is surjective. Hence, it has to be an isomorphism. Define
i:A/pA — B/pB to be the map induced by ¢. Thus, there is a well defined map
Noi: A/pA — A/pA induced by multiplication by p. The multiplication by p
on A/pA is the zero map. Since N is an isomorphism we obtain that 7 is the zero
map. Therefore t(A) C pB. To obtain equality, we need the following inequalities of
p-ranks.

r = p—rank(B) > p—rank(pB) > p—rank(N(pB)) = p—rank(pA) = r.

Hence, we see that p—rank(pB) = p—rank(B) = p—rank(A) = p—rank(pA). Again
we have that pA/p*A and pB/p? B have the same dimension as F,-vector spaces. N
induces a map N : pB /p?B — pA/p*A which is surjective and therefore an isomor-
phism. Let i : A/pA — pB/p?B be the map induced by ¢. Then

Noi:A/pA— pA/p*A

is the homorphism induced by multiplication by p. Since both groups have the same
p-rank, it is in fact an isomorphism. But N is an isomorphism and hence ¢ is an
isomorphism. That means, in particular, that ¢(A) contains a set of generators of pB.
Thus, ¢(A) = pB. We proved above that p—rank(pB) = p—rank(B). This implies

r = p—rank(B[p]) = p—rank(B) = p—rank(pB) = p—rank(:(A)) = p—rank((c(A))[p]).

Due to the equality (:(A))[p] = (pB)[p] C B[p], and since both are FF,-vector spaces
of equal dimension, it follows that B[p] = (pB)[p] = (+(A))[p]- O

In the case when there is a group G acting on B, we have the following stronger
form of the above lemma.

Corollary 5.1.4. Let A, B, N and v be like in the previous lemma. Assume that there
is a cyclic group G = (1) of order p acting on B, such thatv =10 N = Zf;ol 7' and
7 fizes L(A). Then v = -p is the multiplication by p map and (N (x)) = px for all
T € B.

Proof. Let T = 7 — 1. Then we obtain v = p + ()T + O(T?). From Lemma
we know that ((A) = pB. Since 7 fixes t(A), it follows that Tpy = 0 for all y € B. In
particular, we have Ty € B[p] C pB. We conclude that pTy = T2y = 0. We can now
compute vz for arbitrary x € B explicitly, according to the previous expansion of v.

p—1

ve =px+Tp z +zO(T?) = pa.

This completes the proof. O

We cannot apply these results directly to the modules A,, as we cannot guarantee
that the condition (b.1)) is satisfied for A4,, and A,41. In order to modify A, such
that we can apply Lemma [5.1.3] we need the following result.



90 CHAPTER 5. THE GROSS AND THE GROSS-KUZ’MIN CONJECTURE

Lemma 5.1.5. Let ¢ be a constant such that A’;S does not contain Zy,-torsion. Then
AZ projects onto AP and there is an ng such that the natural lifts v, n41 are injective
on AY for all n > ny.

Proof. This proof follows the ideas of [Gre 6, proposition 2.5.2], which shows that
the capitulation kernel is isomorphic to the maximal finite submodule of A,. For
the convenience of the reader we reprove this fact here. Let x,, € Aﬁc be a class that
capitulates in A,, for some m > n. As Ay = A /v oY for some submodule Y of
As, we can write the element x, € Aﬁc as the coclass y + v, oY for some element
Yy € Axo[Vmn]. But K/K is totally ramified at all primes above p. Hence, the
characteristic polynomial of A, is coprime to v, for all n and m. Therefore, y lies
in the maximal finite A-submodule of A,,. By the choice of ¢ we know that AR does
not contain Zy-torsion. Let Z be the maximal finite submodule of A,. Then, from a
certain n on the images of Z and of AZ in A, are disjoint and the claim follows. [

Let n{, and ¢ be as in Lemma choose ng > n(, large enough such that for all

n > ng the ranks of A2 and AZCH are both equal to the same constant independent of
n. The quotient Gal(K,/K,_1) = """ /T?" acts naturally on A,. Thus, we obtain
the following

Corollary 5.1.6. Let (an)nen be a norm coherent sequence in AL, Then

!
ln,n+l (an) = CLI;H_I

for allmn > ng and all I € Ny.

Proof. This is just a repetitive application of Corollary [5.1.4]in this concrete context.
O

Now we have all ingredients to prove Theorem

Proof of Theorem[5.1.3. Let ¢ be defined as before. Let n > ng, a, € A% and
A, € ap. Let (o) = A2rd@)  Then QE(a}/ Ord(a”)) /Qpg is unramified outside p and
non-trivial (see [Washl, Exercise 9.1 and pages 294-295]). As the lift ¢, ,: AL, — A},
C e . . 1/ord(an)y . _

is injective for all m > n, Lemma implies that [Qg (o ) : Q| = ord(ay).
Note that 2 E(a}/ Ord(a")) /g does not depend on the choice of «,, or 2, but on a,.
Let ant1 € AfLH such that Ny11(ant1) = an. Using Corollary we see that

tnnt1(an) = a . Hence, there is a principal ideal () such that 2, = (7).

It follows that Ql?zrd(a") = lelfga"“)(v)ord(a"). Therefore, the two elements oqul/ ord(an)

1/ord(an) generate the same extension over Qg and the sequence (ay,)nen defines

n+1
a Zp-extension over Qp. If we act with 7 on a,, we obtain T(QE(a}/‘)rd(a”))) =

Qp(7(ay)/ord@n)), This defines the map f from Theorem

Note that a and a® define the same Zj-extension for any ¢ € Z, \ {0} even if
they generate different extensions at finite levels. Let M, ; be the compositum of the
extensions f(a) and f(b). There are constants c,, ¢, and ¢, such that

and o

ord(an)c, = cpord(by,) = ¢4 pord(ay, - by)
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for all n large enough. Let (o) = ALY (8,) = B and () = (A, B,,)°rd(@nbn)

Ca,b

It follows that (v,"") = (o) (Bn). Hence, f(a-b) is contained in M, which proves

property a).

To prove property b) let L. C M, be a Z,-extension over Qg. If f(a) = f(b),
there is nothing to prove. Therefore we can assume that f(a) N f(b) = Mgy, f is a
finite extension of Qg. Let n > ng be minimal such that

ord(ay),ord(b,) > My : Qr] = p'.

Comparing radicals we obtain that (o) = (8%)(7)P for some ¢ coprime to p and
) . ! c (

lerd(a")/p /%%Ord(bn)/p is a principal ideal in Koo. As 1ym: AL — Ab, is injective

for m > n > ng, we see that it is already a principal ideal in K,. Assume that

ord(a,) > ord(b,) and define b = @°rd(@n)/ord(bn) /pc Then ¥/, is a class of order at

most ord(b,)/p!. Let p* = ord(b,,). Then gErd(en)/ord(bn)p” /BF" = (4'). This implies
(an)/(ﬂn)c — (,}/)ord(bn)/pv and

pl = [Map,r : Qg] > ord(by)/p".

It is immediate that p” > ord(b,)/ pl and we obtain indeed ord(?),) = ord(b,,)/ pl.
As Myp 5= QE(qulq/ord(a")) N QE(B}L/Ord(b")) it follows that

[QE(ai/ord(an)’ B}l/ord(bn)) . QE]

= [QE(Q%L/Ord(an);Bi/ord(bn)) : Ma,b,f][Ma.b,f : QE]
=p' - ord(a,)/p' - ord(b,) /p’

= ord(ay) - ord(b,) /p".

Let %', be an ideal in ¥/, and (3,) = 8/°"4*") . We obtain
QE(O{,}/Ord(an), ﬁ;l/ord(b/n)) _ QE(Oéyll/ord(an)7 le/ord(bn)).
As ord(bl,) = ord(b,)/p', we see that

[ (ak/ordlan) g 1/erdbn)y . 01 — ord(1)) - ord(an)

and )
QE(O(%L/ord(an)) N QE(/B;Ll/OTd(bn)) —Qp.
The fields QE(a}@/ Ord(a")) and QE(B’}/ Ord(b;)) contain the unique subextensions of

degree p of f(a)/Qp and f(V')/Qg, respectively. This implies that f(a)N f(b') = Qp.
As a?»b%r = a»b'™ we can assume that f(a) and f(b) intersect only in Qx and that
ord(ay,) > ord(by,).

Let Mgy, = QE(a,l/ Ord(b"), ,1/ 01Fd(b”)) be the maximal subextension of exponent
ord(b,) in Mgp/Qp. Let v, € oZBZ be the radical for the unique subextension
L N Mg,y of degree ord(by,) over Qp. As ideals we obtain the following equality

('Yn) = (/Bn)cl’n (an)c2’n- (5.2)
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The integers ¢y, and cp, are unique modulo ord(b,) and at least one of them is
not divisible by p. It follows that (,) = Qﬁrd(b”) with ¢,, = Qlff’"ord(a”)/ Ord(b")‘Ble’".
As the equation can be formulated for every level n we see that c;,, = ¢;nt1
mod ord(by,). Hence, in the limit we obtain p-adic integers ¢; and ¢y such that [€,] =
bl - a2, As f(a) # f(b), the class [€,] € AL is non-trivial. Let ¢ = (¢y)nen. Then
f(c) is the field L. This proves property b).

It remains to show properties ¢) and d). We will therefore first determine which
elements have the same image under f and then conclude the proof by a rank com-
putation. Assume that f(a) = f(b) and that ord(a,) > ord(b,) for all n large
enough. By comparing radicals at finite level we obtain (o) = (8,) (7)°"4(»). Note
that ¢, is a p-adic unit uniquely defined modulo ord(b,). As before we can con-
clude ¢, = ¢,4+1 mod ord(b,). Hence, we can assume that ¢, is 1. It follows that
B,, = ngrd(a")/ord(b”)(fy) and that b, = aord(@)/erdn) = g ord(ay,)/ord(by,) is a con-
stant k independent of n we see that a* = b, i.e. the group generated by a and b has
Zy-rank 1.

Let X be a subgroup of AE of Zy-rank t and My the compositum of all Z,-
extensions f(a) for a € X. Then the claim we just proved implies together with
properties a) and b) that My /Qp is a Z;—extension, i.e f preserves Z,-ranks of
subgroups. This proves property c). If we take f((an)nen) for a sequence (an)nen in
A% N B, we clearly obtain subextensions of Qg proving property d).

O

5.1.2 The structure of Gal(Qg /Qg)

In this section we will describe the structure of the extension Qg//Qp focusing on
the radicals of this extension. We start by recalling Iwasawa’s results: Iwasawa
investigated the structure of the group Gal(2g /K« ) and proved (cf. [Iw 2, Theorems
15, 17])

Gal(Qpr /Koo) ~ AKQ/2 g A_torsion (5.3)

as well as
Gal(Myo /Koo ) ~ AKQ/2 5 Atorsion. (5.4)

We denote the A-torsion submodule of Gal(Qg/Ky,) by Z. Iwasawa proved that
Z is a Zy-free group of rank s — 1. In the proof of [Iw 2, Theorem 15] Iwasawa
considered X = Gal(Qp/ /Ky )®. He showed that

X/wp X = ZLK:Q}/ >ts~1 @ (uniformly bounded group)

for all n > ngy. Here ng is the minimal index such that Ko, /K, is totally ramified at
all primes above p (see [Iw 2, Section 3.4]). In our case we have ng = 0. It follows
that X is pseudo isomorphic to AKQ/2 g (A /T)*~t. By the definition of X we see
that Z ~ (A/T*)*~!. Noting that W is annihilated by T* and that W/W has Z,-rank
s—1 (see Lemma it is a natural question whether W/ Wis pseudo isomorphic
to Z under Artin’s isomorphism. In fact our central theorem on the Gross-Kuz’min
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conjecture shows that the answer to this question is positive if the Gross-Kuz’'min
conjecture holds.
As a next step we want to describe Qg//Qp in terms of radicals.

Remark 5.1.7. Let b = (by)nen € Boo. If b generates an infinite Z,-module, then
there are constants k and ng such that ord(b,) = pk+” for all n > ny.

In the following lemma we construct a Z,-extension in Qg /Qp directly from a
sequence in Bo,. The difference to the construction in Theorem [5.1.2]is that this time
the Z,-extension is constructed for every element of infinite order in B, and not only
for elements in By, N Ag;, where c is the constant defined in Theorem Having
this Lemma at hand will ease our work later on when we want to prove Theorem

(.02 and Theorem [5.0.41

Lemma 5.1.8. Let (by)nen € Bs be a norm coherent sequence generating an infinite
Zyp-module. Let By, be an ideal in by, only divisible by primes above p and (3,) =

B4 - Let ng be minimal such that ord(b,) = pord(b,—1) for all n > ng + 1, then

Un>no e ( Tl/ord(b"))/QE is a Zy-extension.

Proof. Let ¢ be as in Theorem Then 0 # b*° € A%. As f(b) is a Zy-extension
1/pord(bn)

of Qp we see that there is an index nf, > ng such that Qg(S5, ) is a non-trivial
extension of Qp for all n > nj. By definition we have (8,41) = %;ﬁiibn“). By
definition B,(7) = Npt1,0(Bny1) = BL, 1. Then By = Bu(7)* e for some
unit e and some 7 in K,,11. It follows that Qpg( ,i/ord(b”)) = QE(ﬁrllflrd(b”“)). Thus,
Upsn, Q2E( A/ Ord(b")) defines a Zy-extension over Qp. O

We have already seen that f(b?°) C Qg for every element b € By,. The goal of
the rest of this section is to prove that the compositum of all such extensions f(b) is
not only a subfield of Qg but is already equal to Qpgr.

Remark 5.1.9. Consider n € Nyin(E,,
!

0T is a unit, we see that n = n'" e for a global unit e and a p-unit n’ € K, ;. Hence,

?71/ P € Qg.

). Let i’ be such that Ny (') =n. As

Using Remark and Theorem [5.1.2] we obtain the following result.

Lemma 5.1.10. Let By, = limyoern, B, and let r be the unique integer such that
By = Z;, x (finite group). Then Gal(Qg: /Qg) has Zp-rank r.

Proof. Clearly, Zy-rank(Bs N ALY = 7. From points ¢) and d) of Theorem we
obtain that the Z,-rank of Qg /Qp is at least r.

Let F,, be the free abelian group generated by the primes above p in K,,. Then
the norms induce isomorphisms:

Nn—i—l,n: Foyr — L(Fn)a
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where ¢ denotes the ideal lift from level n to level n + 1. Let p* be the exponent of
the Z,-torsion part of B.,. Then

k k
Nptin: FpJrl — o(FP")

n

is bijective as well. Further, there is a natural homomorphism R, : Fﬁk — B,,, whose
image has p-rank r for n large enough. Choose r generators f; for 1 < i < r of
Fﬁk such that their images under R,, generate Rn(Fka) as abelian group. There are
generators ey, ..., e, of Fffk and integers «; such that f; = e?i for 1 < i <. Then
we have R,(fi) = Rn(e;)*. Thus, the «; are coprime to p and R,(e;) and R, (fi)
generate the same group in Rn(Fﬁk). So without loss of generality we can assume
fi = e;. We can complete this set to a set of Z-generators of ng by choosing s — r
elements in the kernel of R,,. It follows that Fﬁk decomposes as abelian group into
FT(LI) <) F,(Lz), where Fél) is generated by r non-principal ideals generating the image of
Ff[k in B,, and FT(?) is contained in the kernel of R,,. F,(L2) has p-rank s—r and consists
only of principal ideals. Let [ be arbitrary. As we can find such a decomposition for
all levels n + [ we can choose Féz) such that Nn“"lvn(FT(Li-)l) = F,EQ). By Remark |5.1.9
it follows that nl/pl € Qg for all  such that (n) € Féz).

Let now (1) € F,, be arbitrary. Note that ()" € FY & F?. Assume that there
is a p-power pV such that (n)?" € FT(LQ). As FT(LI) does not contain p-torsion, we see that
v < k. There is a natural map ¢: E’flk — F¥". Clearly, gp(E’f'Lk)/(go(E’ka) NF?) has
p-rank at most 7. It follows that the group Gal(Qg(E.? kil) /Qg) has p-rank at most
r. As this holds for all [ and n we see that Gal(Qz//QE) has Zy-rank at most r.

O

Using Lemma we can prove the following property of the map f defined in
Theorem [5.1.2]

Lemma 5.1.11. The map f is surjective.

Proof. Note that by Lemma [5.1.10 the Zj)-rank of Qp//QFp is exactly r = A(Bx).
Hence, by property c¢) and d) the compositum T of all extensions f(b) for b in AL NBoo

generates a subextension of Qg of finite index. By [Iw 2, Theorem 15] Gal(Q g/ /Ko)
does not contain Zy-torsion and we have T = Q. Therefore, f induces a map
f (AL)P" — {Z,-subextensions of MA! /Qp}.
By [Iw 2, Theorem 16] A/ is pseudo isomorphic to Gal(Mu,/Qgr)®. Then
MAL) = MA) = A(Gal (Moo /Qp1)*) = M(Gal(Moo/Qp1)).

Since f preserves the Zy-rank of subgroups the same holds for f’, and the claim
follows from the fact that Gal(MZ!/K) does not contain Z,-torsion. O
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Remark 5.1.12. Consider a A-submodule C in A%, and the compositum of the cor-
responding Zy-extensions M C My,. Then M is Galois over K. Note that if C is
annihilated by f(T) then Gal(M/QE) is annihilated by f(T*) and vice versa. To
simplify notation we will also write f(C) for M.

5.1.3 Homomorphisms between A’ _[T] and p-units

A main building block in our results on the Gross and the Gross-Kuz’min conjecture
is that we can identify elements in A/, [T] with certain coclasses in the p-units E{) of K.
Note that our construction of these homomorphisms is very similiar to Greenberg’s
construction for the abelian case [Gre 2].

Lemma 5.1.13. There is a well defined homomorphism of abelian groups
Un : A, [T] — Eo/Nno(Ey),
whose kernel is the subgroup vo,(Ao)By/By. Furthermore, we have
Im(tpn) = Eo O Nuo(Ky) /Nno(Ey).

Proof. Let a € A[T], ¢ € A, be such that a = ¢B,, and let ,, € ¢ be an ideal. Then
we obtain AL = []_; ‘Bflfi(an) for some integers a; and some «,, in K;. The norm
Ny o(o,) lies in the group of p-units of K. Let ¢, (a) = Ny, o(an)Nno(E},). Note that
the image of N, o(ay,) in E{j/Nyo(E]) does neither depend on the representative 2,
in ¢ nor on the choice of the generator o. Thus, v, is a well defined homomorphism.

Assume that a,, lies in the kernel of v, then we can write N, o(ay) = Npo(n) for
some element 1 € E!. We obtain by Hilbert’s Theorem 90 that there is an element ~
in K,, such that a,, = ny?. Tt follows that 2L = (47)(n) [T:_, PB,;- Hence, there are

integers b; such that (A,/v) =[], 2]35’;',i. Taking the norm to K shows that all the
b; are equal to zero. Therefore, 2,,/(7) is a fractional ideal annihilated by 7". Hence,
it is the product of primes above p and a lift of an ideal from K. The class [2,]B,
lies in ¢ (Ao)Bpn/By. On the other hand vg,,(Ao)B, /By lies in the kernel of .
Let now y € N, o(KX) N Ej and let y = N, o(a’) for some o € K,. Then
Hilbert’s Theorem 90 for ideals implies (o/) = A7 [[;_, PB,,; for some integers a; and
an ideal 2 in K,,. It follows that the class [A|B,, lies in A/ [T]. Therefore, we see that
Im(d}n) = Eé mNn,O(Krf)/Nn,O(E;L)' O

Lemma 5.1.14. The maps Y, induce an injective homomorphism

Vv AT — og}jln Ejy N Npo(Ky)/Nuo(Ey,).

Proof. Let (an)nen be a sequence in A’ [T]. Let ap, = ¢, By and apt1 = ¢pt1Bnia-
Choose 2,, € ¢, and A, 11 € cpy1. Then there is an ideal 9B in K, only divisible
by ideals above p such that Nyi1,(An+1) = An(7)(B). Let (an) [T, B = AL

n,i

and (1) [Ti2) Byt = ALy be defined as above. Then there is a p-unit 7 in E},

such that N1 pn(ant1) = anny!. Tt follows that Ny+1,0(ant1) = Npolon)Npo(n).
Hence, Npt1,0(an+1) and Ny, o(ov,) define the same class in EjN Ny, o(KX) /Ny 0(E}).
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Note that E{ NNy o(K)) C EjNNp—1,0(K>_;) and that there is a natural restric-
tion homomorphism of quotients

By N Nio(K33) /Nao(E) = Eg N Np—1,0(K3) /No—1,0(Ey).-

As we showed above the elements (N o(oy,))nen define a coherent sequence with
respect to these restrictions. Hence, they give an element in

lim Ey O Noo(Kyy)/Nno(Ey).

As there are no non-trivial norm coherent sequences in limes y, L0 (Ao)Byn/Bn,
Lemma [5.1.13] implies that the map ¢ induced by the v, is injective. O

In the course of this chapter we will also need a second homomorphism constructed
below.

Lemma 5.1.15. There are well defined homomorphisms
T, : AL [T] —» B, foralln>0
and R
T: AT — Bs
Proof. Let a € A[T], then there is a class ¢ € A, such that a = cB,. Define

Tn(a) = Tc. As TB, = {0} the map T, is well defined. The same definition works
at level infinity. O

5.1.4 Consequences of the weak Leopoldt conjecture

It is well known that the weak Leopoldt conjecture holds for the cyclotomic Z,-
extension of number fields K. This fact has the following useful consequence for
us.

Lemma 5.1.16. Recall that W\ = limeon, Wi, is the projective limit of the p-power
roots of unity in U, and that W = W N E«. Then we have

Zp—rank(W/W) =s—1

In particular, we obtain W = limaon, R(K,,), where R(K,,) denotes the p-power roots
of unity of K,,.

Proof. As Zy-rank(lim. n, R(K};,)) = 1 we see that s — 1 is an upper bound for the
Zy-rank of W//W If Leopoldt’s conjecture holds for K, for all n there is nothing
to prove. Let {e;}i<i<pnr,—1 be a set of fundamental units of K,, and assume that
[ "l e;* =1 for some elements a; € Z, not all equal to zero, i.e. K,, has positive
Leopoldt defect The units e; are a Subset of a set of fundamental units for K,,; for
alll > 0. By choosing n large enough we can assume that K,, and K, ; have the same
Leopoldt defect. It follows that the only non-trivial elements in Wm—l /W (Kp41) are
represented by linear combinations of e ...epn—1. Consider a linear combination
z= f”? ! b € Wy Then we see that w,z =1 and z € W, [w,] = W,,. Hence,

Whi = W(Kn+l) (group of uniformly bounded order). Thus, in the projective limit
we obtain that the Zy-rank of W is 1 and W = limo.p, W(K,,). O
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5.1.5 Local extensions

To use the full power of the idelic class field theory later we first have to understand
local Kummer conditions in more detail.

Lemma 5.1.17. Let ]\Afm C Uy,i be a mazimal Zy-free subgroup of the universal norms
which are defined as (>, Nmn(K ;). Let m,; be a uniformizer of the mazimal
ideal of K, ; that is a universal norm 7f07" the tower Koo ; /Ky, ;. Then the group W, ;
acts trivially on the extension Kn,i((]\Afn,i)TrZJWm)l/pn). If a« € K,,; has a non-

trivial image in the quotient Km/(Kflni]\Afnjinm%’i) then W, ; acts non-trivially on
the extension Kn,i(al/pn) .

Proof. As the elements in ]mez”WnZ are universal norms their Artin symbols act
trivially on the cyclotomic Zy,-extension of K,, ;. By [Ne I, Chapter 5 Proposition
3.2 (iv)] the group W, ; acts trivially on Km((]/\\fn’m%’iwn,i)l/pn). If o is as in the
assumptions, then a has a non-trivial Artin symbol in the extension Ky, ; /Ky, ;. Again
by [Ne 1, Chapter 5 Proposition 3.2 (iv)] the group W, ; acts non-trivially on the
extension K, ;(a/P"). O

Remark 5.1.18. By definition mo; is a universal norm. Thus, my; lies in the sub-
group WTZW-Nn,iVn,in.

5.2 The Gross conjecture

In this section we will prove Theorem [5.0.2] Recall that we denoted the A-torsion
submodule of Gal(g/ /Ky ) by Z. With this notation one can reformulate Theorem

[(.0.2] as follows.

Theorem 5.2.1. The Gross conjecture holds for a CM field K if and only if (W) ~
Z% under Artin’s isomorphism.

This equivalent formulation (Theorem [5.0.2)) allows us to prove the Gross conjec-
ture in the following cases (cf. Section [5.2.3)):

Theorem 5.2.2. Assume that K is CM, contains (, and that Ko /K is totally ram-
ified at all primes above p. Let p1,...,p; be the primes above p in KT. Let s’ <t be
the number of primes above p that split in K/K™T.

1.) Assume that py splits in K/K* and that p; is unsplit in K/K* for 2 < i < t.
Then the Gross conjecture holds for K.

2.) a.) Assume that s’ = 2. Let the primes above p that are not fized by the complex
conjugation be P, ..., Py and assume that Por, = Por_1 for k € {1,2}.
Assume that there is an automorphism o: K — K such that (1) = Ps.
Assume that either o2(%B1) = PB1 or that p = 3 mod 4. Then the Gross
conjecture holds for K. In particular, the Gross conjecture holds for K if
there is a subfield M C K such that s'(M) =1 and [K: M] = 2.
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b.) Let q be an odd prime different from p and assume s’ = q. Let the primes
above p that are not fized by the complex conjugation be Py, ..., Poy and
assume that Pop = Pox_1 for k € {1,2...5'}. Assume that there is an
automorphism o: K — K acting transitively on the set of pairs of complex
conjugate primes above p. Assume that the cyclotomic polynomials ¢¢(x)
and ¢og(x) are irreducible in Qplx]. Then the Gross conjecture holds for

K.
The above theorem adds additional cases to the following known ones:

e Let K be a CM number field satisfying Leopoldt’s conjecture such that the
prime p is totally split in K/Q. Then the Gross conjecture holds for K. (cf.
[Ho-KI]).

e Let Kbea CM field such that there is a totally real subfield R with |Gal(K/R)| =
2Fm with k& > 1. Assume that K/R is abelian and that there is a prime 8 above
p such that Ry = Q, and such that 9 is totally split in K/R. Assume further
that all other primes above p in KT are unsplit in K/K*. Then the Gross
conjecture holds for K (cf.[Ho-KI|).

Remark 5.2.3. In fact one can deduce point 1.) of Theorem directly from
the work of Hofer and Kleine: In the setting of the theorem one can show that the
Gross order of vanishing conjecture holds for the unique non-trivial character x of
Gal(K/K*) [Ho-Ki, Remark 2.11 (3)]. As the Gross order of vanishing conjecture for
X s equivalent to the Gross conjecture [Ho-Kl, Theorem A], one can deduce the Gross
conjecturﬂ for K. Our proof will not use this equivalence and is purely algebraic. That
Gross’ conjecture holds under the premises of Theorempoint 1.) can also be seen
relatively easily from Gross’ original formulation of the conjecture. The second point
of the theorem cannot be deduced directly from these results and uses the equivalent

formulation of Theorem [5.0.3,

As a further direct consequence of Theorem [5.0.2] we obtain

Corollary 5.2.4. Assume that K satisfies the assumptions of Theorem [5.0.9. Let
L/K be a finite extension such that L,, and K,, have the same number of pairs of
complex conjugate primes above p for all n. Assume that L is a CM field as well. If
the Gross conjecture holds for K, then it holds for L.

In Corollary we allow that the primes above p that are fixed by the complex
conjugation split in L, /K,. Therefore, Theorem is a a generalization of the
following theorem which was proved implicitly by Greenberg [Gre 2] and reproved
by Jaulent [Jau 2]. Jaulent actually proves the statement for the Gross-Kuz'min
conjecture but one can easily specialize to the 1 — j-component in the C M-case. One
could also obtain Theorem relatively easily by using Gross’s original formulation
in terms of p-adic regulators of p-units.

Theorem 5.2.5. IfK is a CM field such that the Gross conjecture holds for K then it
also holds for any CM extension of K in which all primes above p are undecomposed.

%I thank Séren Kleine for pointing this out to me
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5.2.1 The failure of the Gross conjecture in terms of potentially
ramified extensions

In this section we will consider C'M number fields K containing ¢, with the property
that all primes above p are totally ramified in K, /K. We will describe the non-
validity of the Gross conjecture in terms of Qg and Qpr.

Theorem 5.2.6. If the restriction of p(WT) to Gal(Q},/Ks) generates a subgroup
of finite index in Gal(QE,/KOO), then the Gross conjecture holds for K.

Let e € E, for some n. Then e'™7 is a root of unity. It follows that the im-
age of e! ™7 in K/ KE.' is trivial for all m. As this holds for all units we see that
Gal(2g/Kso)!™7 is the trivial group. In particular, ¢(W+) acts trivially on Qp.
Hence, ¢(W ™) generates a priori a subgroup of Gal(M,/Qg)* and by restriction in
Gal(Qp /Qp)T = Gal(Q}, /K) ~ (A/T*)* for some integer k.

Recall that we defined the maps v, (Lemma , ¥ (Lemma and T
(Lemma [5.1.15)) in Section

Lemma 5.2.7. The map T: A_[T] — Bu is injective on A'L[T]. In particular,
AL[T] = By

o0

Proof. Let a = (an)nen € A'[T] be a non-trivial element. Note that for all
n > m > 0 the cohomology group fll(E{l, Gal(K,,/Kp,))' ™7 is trivial. Indeed,
ker(N, m) N E), C E, and Ejll_] N E, consists only of roots of unity in K,. But
HY(R(K,), Gal(K,/K,)) is trivial [Wash, Lemma 13.27] which implies the claim.
Then [Iw 2, Theorem 12] implies that the lift ¢, ,: A,” — A}~ is injective. As
Tay, = 0 for all n the homomorphism ¢, , 0 IV, ,, acts as multiplication by p"~"™ on
an. Together with the injectivity of ¢y, ,, we obtain that ord(a,) = p"~™ord(am). In
particular, ord(a,) diverges to infinity. Let b, = T\nan. We have to show that b, # 1
for all n. Assume by contradiction that b, = 1 and let as before a, = ¢, B, and 2,
in ¢,. Then we have 2l = (). Without loss of generality we can assume that o,
lies in Ky 7. There is a natural embedding

E()/Nn,o(En) — E(/J/Nn,O(E;L)

It follows that the class of Ny o(aw,) in Ej/Ny o(E),) lies in Ey/Nyo(E],) N Ep. As all
p-power roots of unity are norms of roots of unity of level n, we see that the group
(Eo/Nno(EL) N Ey)t=7 is trivial. Hence, a, lies in the kernel of ¢, for all n and by
Lemma we see that a, lies in ¢ ,(Ao)Bpn/By. Therefore, a, has uniformly
bounded order in contradiction with the choice of a. This proves the injectivity of T.

Clearly, By, € A[T]. Consider the composite map
A=

o

[T] = A’ [T] — By

induced by T. By construction A [T gets mapped to zero, i.e. the image of A [T
in A'__[T] lies in the kernel of T. Hence, we obtain A [T] = BZ. O

3Twasawa constructed an isomorphism H'(E.,, Gal(K, /K )) = ker(tmn: AL, — AL). One can
easily restrict this isomorphism to minus parts.
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As B, does not contain a finite submodule, Lemma has the following simple
consequence.

Corollary 5.2.8. If B is trivial then the Gross conjecture holds for K.

Ultimately we want to use ¢, (A’ [T]) as radicals over Qg and we will do so in
Lemma [5.2.12] As a first step we make the following observation.

Remark 5.2.9. Let a € A'[T] and b = Ta. Let, as in the proof of Lemma
an = cnBy, and A, € ¢,. Then AL = (a,)B, for an ideal B, in b, only divisible

ord(bn)

by primes above p. Let (B,) = . Then there are constants ¢ and ¢’ such that

(Bn) = ( nO(O‘n))C-

Note that there is a canonical decomposition By, = BY & B5. We denote the
Zyrank of By, by 7~ and the one of BY by r*. Then r = r~ 4+ r*. Let s be the
number of primes above p in KT that are split in K/K*. Let Y = Gal(M/Qg). As
T is injective on A’ [T], the number s’ is a natural upper bound on the rank of A’

Lemma 5.2.10. We have (Y1 N d)( Uso/Eco))[T*] ~ ¢(WT). Further, r~ = s and
Zyrank((YT N ¢(Uso/Exo))[T*]) = 5.

Proof. Let | be maximal such that (41 € K, for all n > 0. We fix n for a moment.
For each natural number k& we can find elements xj; € K, such that z;; = Qpn+z
mod &Bﬁyi and z;; = 1 mod ‘B]ﬁw for all v # i. If j(Pn,i) = Pn,i, we see that
Jlxig) = C_an mod ‘Bk ;and j(z;%) =1 mod ’Bﬁv for all v # i. We obtain that
21’ =1 mod Pk, for all v and W, ™ = {1}. If j(Pps) # Py, it follows that

Jj(zr;) =1 mod Y.B Let B irs = 7(Pns). In this case xkﬂ = (prtt mod &Bm

and xk+‘7 = CnH mod ‘Bn irs» While xk+] =1 mod P}, for v ¢ {i,i + s'}. Note
that the group Wi x Wipg has Zy-rank 2. By the above computation we obtain that
(Wi x Wiy ) has Z,-rank 1. Then the Z,-rank of W is s

Clearly, we have Z,-rank(B5) = r~ < s’. By Lemma we know that A_[T] =
Bg,. Let F = ML Y+Y" | By Proposition Lemmaand Remark the
extension M/ f(AL[T]P") is finite. As the Z,-rank of BL[T] is r~, we see that the
Zyrank of YT (T*)/T*Y T (T*) is also r~. It follows that Z,-rank(Y " [T*]) = r~. In
particular, the rank of (¢(Uso/Eoo) (Y 7)[T*] is bounded by 7.

As Gal(2g /K ) is annihilated by 1+ j, we see that ¢(W™) = ¢(W)1 7 fixes Qp.
Therefore, (W) is a subgroup of Y. As W'+ = {1} (compare with (.1.16))
we see W (W = {1}. We obtain an isomorphism ¢(W*) = W+ and both have
Zp-rank s’. We obtain the following inequality of Z,-ranks

r~ <& =Zyrank(WT) < Z,rank(¢p(Uso/E o ﬂY+ [T*]) <r~
It follows that s’ = r—. We conclude that

(Uso/Boo) (YY DT ~ ¢(WT).
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As an immediate consequence we obtain

Corollary 5.2.11. We have

1-5)/p"
QE/ — U Koo(EE)( 7)/p )
neN

Furthermore, we have Koo ((Ny o(E),) N E(’)l_j)l/p”) = Keo-

Proof. The extension |J,,cy KOO(E{)(l_j)/ P /Kso is a Zgl extension that is contained
in Qf,. As Zyrank(Gal(Qp /Qgp)") = s’ = r~ and as Gal(Qp/K) is annihilated
by 1+ j, we obtain that QF, /U,en Koo(Eé(l_j)/pn) is a finite extension. Since
Gal(Qp /Ko) does not contain Zy-torsion [Iw 2, Theorem 15], this implies that
QE' = Uppen Koo(Eé(l*j)/pn). |

Let now e € N, o(E],) N E’é_], i.e. Npo(n) =e. By Remark we have that
/P e Qp. As el = 1 we see that e!/?" € Qg, N Qrp = Ky, which implies the
claim. O

Lemma 5.2.12. Each non-trivial sequence ¥(a) = (Npo(on))nen i limeoen, ¥n (A’ [T1])
defines a Zy,-extension in QE,/KOO

Proof. Let a = (a/)!~7. Then we see that 1/1”( ) = Yn(a, 7)) = (n(al,))* 7. Hence
Yn(a) defines a well defined class in By /(Ny, o(EL) N E(’)l_] ). By Corollary
we see that Koo ((Npo(E,) N EYHYP) = Ky and Unen Koo(Nn0(an)/P") defines
indeed a Zy-cyclic extension over Koo. Let b= Ta, B, € b, and ‘Bord (bn) = (B,). Let

oy, be as in Remark and ( no(an)) = ()¢ (see Remark [5.2.9). Without
loss of generality we can assume that S3*/ = 1. Let I(n) = mz’n(p",ord(bn)). We

obtain that Qp(N,(a,)" /") = Q (Bﬁ/l( )). Note that there is an ng such that for
all n > ng we have p-I(n) =I(n+ 1) and ord(by,)/l(n) = ord(by,)/l(no). By Lemma
5.1.8| we get that

U Qe(Vanlan)?™) = | 2s(57"")

n>ng n>ng

defines a Z,-extension in Qp//Qp. As

U Qe o(an)"™) = 0p | K n) /1)
neN neN
and |,y Koo (Nno0(an )¢ /1) € MIZ, the claim follows. O

The Zy-extension we constructed in the above lemma is the extension f(b), where
b= f(a). The reason that we used b directly to construct a Z,-extension and not the
map f is that we want to spare us technical index shifts at finite level in the above
proof.

Using Lemma [5.1.17] we can now show that the extensions constructed in Lemma

5.2.12| are in fact fixed by ¢(W™).



102 CHAPTER 5. THE GROSS AND THE GROSS-KUZ’MIN CONJECTURE

Proof of Theorem [5.2.6, Assume that the Gross conjecture is false for K. Then we
can choose a non-trivial element (N, 0(ap))nen € (A’ [T]). Define the field

F= U KOO(NH,O(an)l/Z(n))
n>ng
as in Lemma [5.2.12) Note that for large n and every prime By ; above p in K and
P, in K, we have

X Z S " 7 = pn
Nn,O(Knﬂ') C 0.4 X NO,z' X WO,i X UO,i X %,i C Tm.i X Nm,i X Wmﬂ' X Vm,i X Um,i

for some uniformizer my; (see also Lemma for the definition of mp; and Re-
mark and all m > 0. Let 6, € Npo(K,) be a representative for 1, (an)
in (E})7/(N,o(E,) N Ey' ). By Corollary we have Koo (Np,o(ap) /™) =
Koo(éi/l(n)), by Lemma we obtain that for m > n and all 1 <7 < s, the group
d(Wini) acts trivially on the field Kn(éi/l(n)). Note that UnznOKoo(&l/pl(n)) = F.
Hence, the group ¢(W) acts by restriction trivially on F and it follows that the

restriction of (W) to Gal(2},/Ks) does not generate a subgroup of finite index
in Gal(Q}, /Kso) ™. O

5.2.2 Proof of Theorem [5.0.2

In this section we will prove Theorem As before we consider CM extensions
K/Q containing (, and with the property that all primes above p are totally ramified
in Ko /K. For these extensions we can use Theorem

Lemma 5.2.13. We have
AL (T*) s finite.

Proof. Assume that AT (T*) is infinite. Using Theorem Lemma [5.1.11] and
Remark [5.1.12) we obtain that Gal(Ms/Qg)~(T) is infinite. Let L = MZY Y7

Hence, Gal(L/QE) is as abelian group pseudo isomorphic to Z;(H“/ 25) Note that by

(5.3), (5.4) and the fact that T*Z = {0}, we have Gal(Qr /Ky ) ~ A" & (A/T*)? for
some v > 0 . As Gal(L/Qg) is annihilated by 7', we obtain

Gal(L/Kao) ~ A2 @ (A/T) @ (A/T*)*

for some v > 1. Further, (1+ ) annihilates Gal(L/K ). Consider MyNL (recall that
M is the maximal p-abelian, p-ramified extension of K). Then we have the following
short exact sequence

1 = Gal(L N My/Kso) — Gal(L N My/K) — Gal(Keo /K) — 1.

Note that Gal(L N My/Ks) = Gal(L/Ku)/TGal(L/Ky) has Zpy-rank 73 + v and is
annihilated by (14 7). As we have U(K)/Ey = Gal(My/H(K)), it follows that U(K)~
has Z,-rank at least 1o 4+ v. It is easy to see E| that U(K)™ has Z,-rank rp = [K : Q]/2
in contradiction with v > 1. O

*As U(K) is pseudo isomorphic to ZE“Y while U(K)* 2 U(K™) is pseudo isomorphic to ZI<®/?
we obtain that U(K)™ is pseudo-isomorphic to Zp2.
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Now we have all ingredients to prove the central theorem of this section.

Proof of Theorem[5.0.3 Assume first that (Us/E~W)T[T*] is finite. Then Lemma
5.2.10 implies that (Y N ¢(Uso/E o)) (T*) ~ ¢(WT). Assume in addition that the
Gross conjecture is false. Then Theorem implies that the restriction of (W) to
Gal(Q2}, /Ku) does not generate a subgroup of finite index in Gal(Q}, /Ko). Denote
Gal(Q}, /Ko) by Q. Define
FC ng,‘“wﬂ

as the maximal subfield such that Gal(F/Ky) is Zpy-free. By Theorem the
extension F/K., has positive Z,-rank.

Qp

ot
/ +
g™

Let X = Gal(F/Ky). Then we have X = XT. Recall that Y = Gal(M/Qg).
Note that Y =2 Gal(Muo /Koo) ™. As ¢(WT) fixes F and (Y N ¢(Uno /Eoo))(T*) ~
d(W™) we obtain that F/FNHe is finite. Since F/Kq is Zy-free, we obtain F C He.
Then there is a subgroup C' C AT(T*) surjecting to a subgroup of finite index in
Gal(F/Ko). Therefore, A*(T*) is infinite, yielding a contradiction to Lemma [5.2.13|
So if (Uso /EcocW)T[T*] is finite then the Gross conjecture holds for K.

It remains to show the second implication. Assume that the Gross conjecture is
true. The injectivity of T (Lemma and the fact that A does not contain a finite
submodule [Wash| Proposition 13.28] imply that AL (T) = B5,. It is easy to see that
the fixed field of 7Y + Y~ in (QpH. NQpr) is a finite extension of Q. Indeed, if it
was infinite, the group A% (T*) would also be infinite yielding a contradiction. Hence,
Gal(Qg /QE)T is pseudo isomorphic to a quotient of ¢(Us/E ). By Theorem
Lemmaand Remark it follows that ¢(Use/Ewo)T(T*) C YT is pseudo iso-
morphic to Gal(Qg /Qp)" under Artin’s isomorphism. As T*Gal(Qg/ /Qg) is trivial,
we conclude that (Uso/Eoo) ™ (T*) ~ (Uso/Eoo) T [T*] ~ WT ~ Gal(Qp /Qp)T. O

Having proved Theorem we can proceed with the proof of Corollary

proof of Corollary[5.2.4 Let N be the norm from L,, to K,, for all n. Assume that
the Gross conjecture is false for L. By Theorem the group (Uso/EsW)T[T*]
is infinite. By Lemma we have (Us/Foo)T[T*] ~ WT. Hence, there is an
element u = (upt)pen such that wT)” € Ey but uT” ¢ Eu. It follows that
N(u) is a local unit in Us(K) such that N(u)T)* € Eo. Let w € W+ be such
that v~ = w mod Eo. Then N(u”") = N(w) mod N(Ey). Let m; : Uy —
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Uoo,i' If ](‘*Bn,z) = ‘Bnﬂ‘ for all n then 7TZ‘(W+) = {1} Let mn,i #* j(mnﬂ) Then
Bpn,i is totally undecomposed in L, /K,, by assumption. Hence, N acts as raising to
the power [L : K] on m;(W™). Thus, there is a canonical isomorphism N(W*) =
WT. Further, we see that W N E(K) = {1} and that N(w) does not lie in
Eo(K). Therefore, N(u)?" is not an element in Foo(K). By [Iw 2, Theorem 18]
the group Gal(My (K )/Ks) does not contain a finite submodule. It follows that
(AN (u)Exo(K))/Ex(K) is pseudo isomorphic to A/(T*)2. As (Uso(K)/Ex(K))™ ~
A" @T*-torsion this yields a contradiction to the fact that the Gross conjecture holds
for K. O

5.2.3 Applications

Assume that K contains ¢, and is such that K /K is totally ramified at all primes
above p. Recall that we denote by my; a generator of the maximal ideal in Kg;
that is a universal norm for Ko ;/Ko;. Let ¢;: K — Ko; be the natural embed-
ding. Let v;: Ko; — Z be the mp -adic valuation map. For every e € Ej we define

wi(e) € Vp,; to be the element such that Li(e)/(ﬂgfi(e)wi(e)) € Up,i. Define ki(e) =
Li(e)/ﬂgfi(e)wi(e) and let k: E) — Uy be be defined via x(e) = (ki(e))1<i<s € Up. Let

E =N, ,en Nno(KX) be the universal norms in Ko. Then we know E C Ej) by [JTau 2,
page 546].

Lemma 5.2.14. The group
E'y'NE s finite

Proof. p is a universal norm and the Z-rank of E / ENEj is at most 1 [K1 2, Lemma
3.5]. Hence, E/(Eo N E)p” is finite and £ N E’(l)fj is finite as well. O

Let U, be the universal norms in U, and define 6;: Uoi — Ko, via 0;(w;) =
log,(Nk,,/q,(ui)). Let 6: Uy — []i_; Ko, be the Z-linear map obtained from the
0;, ie. if u = (up,...,us) then O(u) = (1(uy),...,0s(us)). The kernel of 6 is Uy
[Jau 2, page 548]. Note that the Hasse-Norm-principle implies that a p-unit e is

a universal norm if and only if it is a universal norm at every prime above p, i.e.
- - /1—j T
e € E < k(e) € Up. By Lemma [5.2.14] we see that the set {e € E'" | k(e) € Up} is

finite. Hence, (6 o k) |,/1-; has finite kernel and the Z-rank of 6 o /-;(E’éfj) is .
0

Remark 5.2.15. Note that 0 o k coincides with the homomorphism A\, that Gross
defined to state his original conjecture [Gro 1, Conjecture 1.15]. In his definition
Gross did not divide by w;(e) in each component. But as log,(¢) = 0 for every root
of unity, we obtain \p(u) = 0 o k(u).

Lemma 5.2.16. Let z € E;é_j \ R(Ko). Then ¢(WT) generates a subgroup of finite
indez in Gal(lJ,, ey Koo (21/7") /Koo).

Proof. Let Z be the Z-module generated by z. By Lemma [5.2.14] and the definition
of 0 we see that the Z,-rank of the p-adic closure 6 o k(Z) is equal to 1.
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By local class field theory Nj, o(U,, ;) are the elements with trivial Artin-symbol in
K,,i/Ko,i. These are exactly the elements in W07i00,iUg : From this we obtain that

Nyuo(Uy) = Ugn UoWoy. An element in the kernel Nnyo |v, has a trivial Artin-symbol
in Ko /K,, and is therefore a universal norm. We obtain that U, = UOUan.

For every k there exists an n such that x(z) has order p* in Un/Uﬁn U,W,. By
Lemma we obtain that for n large enough there exists an i such that ¢(W,, ;)
acts non-trivially on K, ;(x(2)"/?").

Recall from Lemma that the group ¢(W, ;) acts trivially on the field exten-
sion Ky i ((7n,iUn i Wi i Vi) YP"). As ki(2) = Li(z)/ﬁgfi(z)wi(z) we obtain that ¢(W, ;)
acts non-trivially on Knvi(zl/pn)/Kn,i.

Hence, Kooz = U en Koo (21/P") defines a Z,-extension over K., that is annihi-
lated by 1 — j and not fixed by ¢(W). As every non-trivial subgroup has finite index
in Z,, it follows that the restriction of ¢(IV) to Gal(Ku, /Ko ) generates a subgroup
of finite index. O

Theorem 5.2.17. If s’ =1 the Gross conjecture holds for K.

Proof. Let m; € K be a generator of ‘,B(I)fg 10) Tt follows from Corollary that [5.2.11

Uners Qe(mi'""") = 0.

Together with Lemma we obtain that ¢(W™) generates by restriction the
group Gal(Q},/Ks) up to finite index, ie. W = ¢(WT) ~ Gal(Q},/Ks) ~
Gal(Qp /Qg)t. Hence,

X: WT = (U /JEsUL )T

has a finite kernel. By Lemma and the fact that ¢(Us,/Foo)™ fixes Qp we see
that ¢(WT) ~ ¢(Uso/Eso)t (T*). Using that ¢ is an isomorphism and that the kernel
of x is finite, we obtain that (Us,/EooW)T[T*] is finite and the claim follows from
Theorem [(5.0.21

O

Outside of the s = 1 case we have to make sure that Z-independent elements in
Eélfj stay independent when we apply 6ok and take the p-adic closure in the image.
In the following we will use group ring theoretic results to ensure this condition holds
for certain extensions.

Theorem 5.2.18. 1.) Assume that s = 2. Let the primes above p that are not
fized by the complex conjugation be B1,..., B4 and assume that Por, = Por_1
for k € {1,2}. Assume that there is an automorphism o: K — K such that
o(B1) = P3 and such that either o?(P1) = Py or that p = 3 mod 4.Then the
Gross conjecture holds for K. In particular, the Gross conjecture holds for K if
there is a subfield M C K such that s'(M) =1 and [K: M] = 2.

2.) Let q be an odd prime different from p and assume s’ = q. Let the primes above
p that are not fized by the complexr conjugation be Pi,...,Poy and assume
that Por = Pog—1 for k € {1,2...5'}. Assume that there is an automorphism
o: K — K acting transitively on the set of pairs of complex conjugate primes
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above p in K. Assume that the cyclotomic polynomials ¢y (x) and ¢og(x) are
irreducible in Q,. Then the Gross conjecture holds for K.

Remark 5.2.19. By the definition of o we see that o® (B1) € {B1,BPa}. So the
minimal k such that o® fizes Py is either s or 2s'.

To prove the above theorem we need the following two auxiliary lemmata on group
rings.

Lemma 5.2.20. Let f(x) € Z[z] be a monic polynomial that is irreducible in Qplx].
Let R = Zylx]/(f(x)). Then each non-zero R-submodule of R has finite indez in R.

Proof. Let 0 # o € R and consider Ro. Then Ra = Zy[x]/I, where I is an ideal in
Zp|z]. Clearly f(x) € I. If I is generated by f(x) then Ra and R have the same
rank as Z,-modules and Ra has finite index in R. If I # (f(z)) we can find an
element g(z) € I that is coprime to f(x). Then there are polynomials u(z),v(x)
such that u(z)f(z) + v(z)g(xz) = a € Z,. Hence, a annihilates o and Ro contains
Z,-torsion. But the ring R is Zp-torsion free yielding a contradiction. Hence, I is
always generated by f(x) and the claim follows. O]

Lemma 5.2.21. Let s’ be an odd prime coprime to p and assume that the cyclotomic
polynomials ¢y (x) and ¢oy(x) are irreducible in Qplz]. Let R = Zy[x]/(x* — 1) and
R = Zy[x]/(x* +1). Then we have the following decompositions:

1.) R = R1 ® Ry, where Ry = ¢y ()R = Zp[z]/(x — 1) and Ry = (' — ¢ (x))R =
ZLplx]/(¢s(x)) and

2.) R = R\® RS, where R} = ¢og ()R = ZLp|z]/(z+1) and Ry = (s'— oy (x)) R =
Zplx]/($2s (x)).

In both cases every non-zero submodule of R (resp. of R') is of finite index in R, Ry
or Ry (resp. in R}, R, or R').

Proof. The elements éqﬁs/(x) and %(;523/ (x) are idempotents in R and R’, respectively.
As ¢’ is a unit in Z,, this gives the desired decompositions. Clearly, we have

b (1) (Zpla] /(2 1)) 2 Zp[a]/(w—1) and  Gog(2)(Zplz]/(x* +1)) = Zp[a]/(x+1).

The modules (s’ — ¢¢ (2))R and (s’ — ¢og(x)) R’ are annihilated by ¢y (z) and ¢oy (),
respectively. Then by the cyclicity of the modules Ry and R, and by the irre-
ducibility of ¢y (z) and ¢oy(x) we obtain the isomorphism Ry = Z,[z]/¢y(x) and
RY, = 7Z,[x]/¢9s () finishing the proof of points 1.) and 2.).

Let now A be a non-zero submodule of R. Then we can use the idempotents
Loy (z) and L (s — ¢y (z)) to decompose A = A; & Ay as R-modules with 41 C Ry
and Ay C Ry. Then by Lemmal[5.2.20| A; has finite index in Ry or A has finite index
in Ry. If Ay =0 or A3 =0, then A = Ay or A = Ay, respectively. If A; #£ 0 # Ao,
then A has finite index in R. We can prove the result for submodules A’ of R’
analogously. O
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Proof of Theorem [5.2.18, Let o’ be a lift of o to K. By Corollary [5.2.11] there are s’
elements 71,73 ..., may—1 € Egsuch that |J,,cy Koo(wgl_j)/pn, Wél_j)/pn, e ,Wéi,__ji/pn)
equals Qg,. Without loss of generality we can assume that o*(m;) = To(k+1)—1 for
1 <k <s —1. Let Qw be the restriction of ¢(WT) to Gal(Q2},/Ko) and consider
(QJLC/)QW. The group Qyw is invariant under the action of o’.

Define the Kummer-radical

R, = (a2 Uy (1m0 (=D G0 ey

and define the projective limit Ry, = limsoe , R,,. The automorphism ¢’ acts natu-
rally on R, and Ry. Let R), C R, be the radical of
1—4 n 1—4 n 1—4 n
Ko (I DI oo

Then R., = limeop R], defines a o’-invariant submodule of R, (meaning that o’
maps R, to itself but might have a non-trivial action element wise).

Assume first that ' = 2. If 02(;) = Py then o2(7} 7) = 7w for some root of
unity w. Hence, (0”)? acts trivially on Ry and every Zy[o’] submodule of Ru, of Z,-

rank one has finite index in Rél,“’)/ 2 or in R(()?—a)/ 2 As 2is a unit in Z,, the elements
7T§1_] J0£9) penerate these Zplo']-submodules. Hence, if (5,)9W is a Z,-extension of

Ko, then '
(QEI)QW — Koo(ﬂ.glfj)(liﬂ)/p )

which is impossible by Lemma It remains the case that R, has finite index
in Ro. But by Lemma #(W) does not act trivially on QF, (take for example
z = 7r% 7). 1t follows that Qy generates Gal(Q}, /Ks) up to finite index.

If 02(PB1) # P1, we obtain that o>P; = Py and 02(7r%7j) = W{;lw for some root
of unity w. It follows that (¢/)? acts on R., as —1. Hence we obtain an isomorphism
Roo & Zplx]/(2? +1). We assumed that p = 3 mod 4 in this case and obtain that
every Zp[o'] submodule of R, has finite index in R. As Qw does not act trivially
on QJEF, by Lemma we obtain again that Qw generates Gal(Qg, /Koo) up to
finite index in both cases and we can proceed as in the proof of Theorem

Assume now that s’ # 2 and that o PB1) = P1. Then we have an isomorphism
Roo = Zy[z]/(z* — 1). By Lemma R, N Ry = ¢y (x)RL, has finite index in
Ry or RL_N Ry = (s’ — ¢s(x))R., has finite index in Ry. The modules Ry and Ry
are generated by 77%1_] 102 @) and 7177 )(sl_¢s'), respectively. Let 7 be one of these
generators. Then by Lemma Qw acts non-trivially on Ko (7/?%) and we
obtain that Qu generates Gal(Q}, /Ku) up to finite index.

If 0% (P1) # P1, we see that Ry, = Zy[z]/(z* 4+ 1). Then R, N R} has finite
index in R} or R., N R/ has finite index in R). The generators of R| and R/ are
(1=4)(s"=bqar)

W%l_j)%s'(m) and , respectively. As in the case that o® (1) = P1 we
obtain that Q generates Gal(QJEC,/ Ko ) up to finite index and we can proceed as in
the proof of Theorem [5.2.17 O

Together Theorem [5.2.17 and Theorem imply Theorem



108  CHAPTER 5. THE GROSS AND THE GROSS-KUZ’MIN CONJECTURE

5.3 Gross-Kuz’min conjecture

The aim of this section is to prove an equivalent formulation of the Gross-Kuz 'min
conjecture for number fields as we did in the last section for the Gross conjecture.
So in this section we will no longer restrict ourselves to the CM case. It turns out
that if we assume Leopoldt’s conjecture, we get a condition very similar to the one
we proved for the Gross conjecture, i.e Theorem

Theorem. Assume that K contains (, and that all primes above p are totally ramified
in Koo /K. If the Gross-Kuz'min conjecture holds for K (i.e. AL[T] is finite), then
(¢(Uso)/p(W))(T™) is finite. If conversely (¢(Uso)/d(W))(T™) is finite and Leopoldt’s
conjecture holds for K, then the Gross-Kuz’min conjecture holds for K.

Proof of the first implication of the theorem. Assume that the Gross-Kuz'min conjec-
ture holds for K. Then by Theorem Lemma [5.1.11) and Remark [5.1.12 we see
that Gal(Muo/Qpr)(T™) is finite. In particular, ¢(Us)(T™) N Gal(Mao/Q2p) is finite.
Hence, the natural restriction homomorphism

O(Uso)(T*) — Gal(Qp /Ko

has a finite kernel. As the A-torsion submodule Z of Gal(2g /K ) is annihilated by
T* and of Zy,-rank s—1, we see that T*(¢(Uso ) (7)) is finite and Zy-rank(¢(Uss ) (T™)) =
s — 1. It follows that ¢(Uso)(T™) ~ ¢(W). O

Remark 5.3.1. If K is a CM field then (Uso/EocW)~™ = UL /W™ does not con-
tain T*-torsion. Hence, in this case (¢(Uso)/p(W))(T*) being finite is equivalent to
(Uso /W Ex)T(T*) being finite. (Uso/W Eoo)T(T*) being finite implies Gross’ con-
jecture by Theorem [5.0.3, Assuming Leopoldt’s conjecture in addition implies the
Gross-Kuz’min conjecture trivially.

Let us now prove some preliminary results to enable us to show the second implica-
tion of Theorem Recall that Z denotes the torsion submodule of Gal(Q g /K).

Lemma 5.3.2. Assume that (¢(Uso)/p(W))(T™) is finite and that Leopoldt’s conjec-
ture holds for K. Then d(W) generates by restriction a subgroup of finite index in
Gal(Qp /Q), where Q = MZ..

Proof. We will first show that A (7™) is finite. Assume that it is infinite, then by

Theorem Lemma [5.1.11] and Remark [5.1.12| Gal(My./Qp/)(T) is infinite. It
follows that the quotient Gal(My /Ky )/T'Gal(My /K ) has Z,-rank ro 4+ v, where

v= Zp—rank(AZo’; [T7*]) (c is the constant of Theorem . Using the exact sequence
0 — Gal(Muo /Koo ) /TGal(Moo /Koo) = Gal(Mp/K) — Gal(Ko /K) — 0

we obtain that Gal(My/K) has Z,-rank r + 1 + v yielding a contradiction to the
validity of Leopoldt’s conjecture. So A(T™) is finite.

Let T be the A-torsion submodule of ¢(Us,). It follows that Gal(Qzr/Q) is canon-
ically pseudo isomorphic to a quotient of 7/T7" of Z,-rank s — 1. Recall that ¢(WW)
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has Z,-rank s —1. As (¢(Us)/d(W))(T™) is finite, (W) generates a subgroup of the
same rank in the quotient 7 /77 . From this the claim follows.
O

Remark 5.3.3. IfK is in addition to the assumptions of Lemma[5.53.4 a CM field,
then ¢(W1) ~ Gal(Qp /Qp) and ¢(W™) ~ Gal(Qp/Q). To see this recall that
Qg /Qp is a i, -extension (see Lemmal5.1.1(). As BZY. is finite, it follows thatr = r~.
Thus,we have Gal(Qp Q) = Gal(Qp /Qr)tT. As Gal(Qr/Ky) = Gal(Qp/Ks) ™,

the claim follows.
For the rest of this section we will make the following assumption:

Assumption 5.3.4. K satisfies Leopoldt’s conjecture and (¢p(Uso)/P(W))(T*) is fi-
nite.

Lemma 5.3.5. Let K C L. C M be a tower of local abelian extensions such that M/K
is finite. Let ¢x and ¢r, denote the corresponding local Artin isomorphisms. Then
the following diagram commutes.

LX —% 5 Gal(M/L)

v e

KX~ Gal(M/K)®

where G denotes the abelianization of the group G, res is the natural restriction
and N is the norm from L to K.

Proof. This is a well known result. As the author did not find this particular formu-
lation in any textbook we will reprove it here. By [Iw 3, Theorem 6.9] the diagram
commutes when we replace M by L%, the maximal abelian extension of L. As

Gal(L% /L) —¢ Gal(M/L)

lres lres )

Gal(K®/K) -5 Gal(M/K)®
commutes, the claim is immediate. O

For the remainder of this section we will denote the group Gal(2g/Ks) by X and
Gal(Qp /Ks) by Y. By Lemma we have that Z,-rank(Y/T*Y) =ro+s—1
and that Y/X has Zy-rank r. We obtain that Z,-rank(X/T*X) = ry +s—1—r.
By Lemma the subgroup of X/T*X generated by the restriction of ¢(W) is
precisely of Z,-rank s—1—r. Let Q- be defined as the maximal Z,-free subextension

of QL X /K... Then Gal(Qr-/Q2"")) is annihilated by T* and of Zy-rank s — 1 — r.
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Let X = Gal(Q27-/K). Then X is annihilated by T™* and Z,-free.

For any field .. we denote by P(L) the group of principal ideals generated by
p-units. There is a natural map 9,,: Ej — P(K)/N,o(P(K,)). Let E, = ker(d,,).
Let 9: E) — P(K)/N,en Nno(P(Ky)) and E = ker(d). Note that there are con-
stant k& and ¢ (¢ coprime to p) such that (19(E6))pkc = Z". We have already seen in
the proof of Lemma that (ﬁ(Eé))Cpk defines the radical for Qg /Qg. Hence,
Qr+ /Koo (EYP7) is a finite extension. As Gal(Qp+/Ky) is Zy-torsion free we obtain
that Qp- = Koo (E'/P™). In particular,

the exponent of Gal(Q7+ N M, /Koo (E/P")) is uniformly bounded. (5.5)

We obtain the following diagram

bounded exponent

K@(El/p")

Qpr« N M,

KOO(El/P”)¢(W") bounded exponent (QT* N Mn)¢(Wn)

Remark 5.3.6. Note that
Gal(Koo (EYP") JKoo (EVP")9Wn)) & Gal(K,, (EV/P") /K, (EV/P")?Wn))y.
Indeed, the natural restriction homomorphism is surjective as
Koo (EYP")2WVo) O K, (EYP") = K, (EY/P")¢(Wn)
and it is injective as
Koo (EYP") = KooK (EVP") € K (EYP" )R oo (BY/P" )9 Wn),
Lemma 5.3.7. Under Assumption there are constants c; and an index ng such

that the quotient E/E N Npo(K)X) contains a subgroup of the form Hf:—{’—l Z)p" T
for all n > ny.
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Proof. Let e € E\ N, o(KX) and let ¢;(e) € Ko, be the corresponding embedding
for 1 < i < s. Then there exists an i such that ¢;(e) ¢ N,o(K),). Hence, the
Artin-symbol of ¢;(e) € Gal(K,;/Ko;) is non-trivial. If we see Li(ey) as element in
K,,; we obtain by Lemma that the Artin-symbol of ¢;(e) in Gal(Kay, /Ky, ;) is
non-trivial and by [Ne 1, Chapter 5 Proposition 3.2 (iv)] ¢(W,,,;) acts non-trivially
on K, ;(e!/P"). Thus, K, (e'/P") is not fixed by ¢(W,,). If conversely e € N, o(KX),
then the Artin-symbol of ¢;(e) seen as element in K, ; fixes Ko, ; (again by Lemma
. Hence, ¢(W,;) acts trivially on K, ;(e!/P") for all i and therefore ¢(W,,) acts
trivially on K, (e'/?"). Tt follows that E/(E N N, o(KX)) is canonically isomorphic to
the Kummer-radical for the extension K, (EV/?")/K, (E'/?")?(Wn)  As the extension
K (EYP") JK, (EY/P")¢(Wn) g finite, we will show that the corresponding Galois group
contains a subgroup of the desired form, then E/(E N N, o(K))) will contain such a
subgroup automatically.

To simplify notation we write G, = Gal((Qz- NM,,)/(Qp« N M,,)*W»)) and H,, =
Gal(K, (E'/?") /K, (EYP")?(Wn)) Consider the natural restriction homomorphism

NG — Hi

Note that Gal((Q7+«NM,,)/(Q+NM,,)?W=)) is an abelian group of uniformly bounded
rank. From equation (5.5) and Remark we obtain that the kernel of A, is
uniformly bounded. From the fact that

K, (EY"") N (Qp- N M, )2 V) = K, (EY/P")#(Wn)

we see that A, is surjective.
Let p* be an upper bound for the size of the groups ker(A,,). Then we obtain an
isomorphism

AL Gn/Gulp] = Hu/An(Galp"]).

Using that Gal(M,, NQp+ /K) = Gal(Q7+ /K ) /wnGal(Q7+ /Ko ), the structure the-
orem for noetherian A-torsion modules implies that for all n large enough we have
|Gal(M,, N Q7+ /Koo )| = pr2ts=1=m4¢ a5 well as |Gal(M,, N Q?SW)/KOO)] = prratd
for some constants ¢ and d. As Q?&W) NM, = (QrnN Mn)¢(W"), we see that
|G| = p"(s_l_r)“/ for some constant ¢’. As the p-rank of G, is s — 1 — r and
ord(gn+1) < pord(gy) for all g € Gal(Qr~ N M, /K,,) and all n large enough, there
are constants ¢; independent of n such that G,/G,[p"] contains a subgroup of the
form T[] -1 Z/p"~%Z. Hence, the finite abelian group H,, contains a subgroup of
the form [[5=] ' Z/p" ¢ Z. O

Let T',, = I'/T?" and 7 be a topological generator of I. Recall that we define for
every I',-module M the Tate-cohomology groups

_ Ker(Ng, /x |m)  ker(r — 1 |u)

HY(M,T,) = HO(M,T,,) = :
H(M,T,,) T 1M and H"(M,T},) N w (M)

In the next lemma we describe the cohomology group HO (En,Ty) in more detail.
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Lemma 5.3.8. There is a constant k independent of n such that for all n large
enough |HO(E,,T,)| = pts=1=r)Fk,

Proof. Consider the exact sequence
0—E,— E, — E//E,—D0.

As all primes above p are totally ramified in Koo /K, we see that H'(E/,/E,,T,) = 0.
We obtain an exact sequence

HY(E,,Tn) — HY(E',T,) — 0.

Using that H L(E!,T},) is uniformly bounded independent of n ([lw 2, page 267]) it
suffices to compute the size of the kernel of the first homomorphism. This kernel
is precisely B/, /E'Y. We obtain an isomorphism P(K,)/P(K) = E/*/ET given
by (w) + w. Indeed, if 77 = e’ then 7/e € K and (7) = (r/e) € P(K). Let
= E;T, then (7) is in fact a preimage. So the map constructed above is indeed an
isomorphism. Next we want to show that P(K,)/P(K) has size p*+™(*=") for some
constant k independent of n. Let Z(K,) be the free abelian group generated by the
ideals above p and let B,, be the subgroup of A,, generated by the ideals only divisible
by primes above p. Consider the following commutative diagram with exact rows.

By
|
n) B,

The lifts P(K) — P(K,) and Z(K) — Z(K,) are injective. From the snake lemma
we obtain

0 —— P(K) —— Z(K)

S

0 —— P(K,) — Z(

» 0

~
o

Z(K,)/Z(K)| _ |Bo
[Bu/u(Bo)|  |Bal

IP(K,)/P(K)| = | ker(By — B,)| 1Z(K,)/Z(K)].

As |Z(K,)/Z(K)| = p™ and |B,| = p""*¢ for n large enough and some constant c,

we obtain |P(K,)/P(K)| = p*+™5=")  As the Herbrand quotient ¢(E,) equals p",
the lemma follows. O

There is a natural map 0,: H(E,,T,) — E/EN Npo(K2): Let € be in E '\ Fp.
Then there is a an element m € K¢ such that (¢) = (Np0(m)). It follows that there is
a unit e € Ey such that ee € Ny, o(K}S). Hence, the homomorphism 6, is surjective.
This implies the following.

Lemma 5.3.9. Under Assumption[5.3.4) there is an index ng such that for all n > ng
the group HY(E,,T,,) contains a subgroup of the form Hf;lr_l Z]p" %7 and the index
of this subgroup in H°(E,,Ty,) is uniformly bounded. Further, |ker(8,)| is uniformly
bounded.
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Proof. By Lemma m the group E/EN Ny o(K)) contains a subgroup of the form
T2 2/p" 7. As 6, is surjective, the same follows for H %(E,,T,). By Lemma
it follows that the index of this subgroup in H(E,,T,) is uniformly bounded
and also that the kernel of é,, is uniformly bounded. O

Lemma 5.3.10. Under assumptionm the homomorphism T: Al _[T*] = By de-
fined as in Lemma has the following property.

ker(T) is finite.

Proof. Let a, = ¢, B, and assume that Tan =b, = 1. Let 2 € ¢,. Then AT = (a).
It follows that Ny, o(«) € Ep and hence Ny, o(c) Ny o(Ey) € ker(dy,). By Lemma-
we obtain that there is a constant ¢ independent of n such that N, o(a)?* € N, o(E,)

and therefore af, € ker(1b,) for all n (here 1, is defined as in Lemma [5.1.13)). Hence,
a?* = 0 by Lemma [5.1.14, As A’[T] has finite rank as Z,-module, this gives the
claim. O

As an immediate corollary we obtain

Corollary 5.3.11. If By, is finite and Assumption[5.3.4 holds for K, then the Gross-
Kuz’min conjecture holds.

Remark 5.3.12. Let a € A'[T] generate an infinite Z,-module and let b = Ta. Let

an = cp By and A, € ¢, as in the proof of Lemma . Then we can write ng =

(an)By, for an ideal By, in b, only divisible by primes above p. Let (3,) = ‘B%rd(b”).

/

Then there are constants ¢ and ¢ such that (3,)¢ = (Npo(an))® .

Note that this is Remark But this time we do not restrict to the minus part
but to a cyclic subgroup on which 7' is injective.
Now we have all ingredients to finish the proof of Theorem [5.0.4

Proof of Theorem — second implication. Let a € AL_T] be a class of infinite
order. Then by Lemma 0| T acts mJectlvely on Zpa. By Remark |5 we see

that Qp(Nyo(EL)/P") = QE. Let b = Ta, B, € b, and By ") = (ﬁn). Let an
be as in Remark m Then we have (N, o(an))¢ = (8n)¢ (see Remark .
Let [(n) = min(p", ord(b,)). We obtain that Qp(Ny.o(on) /1) = Qg(87"™). Note
that there is an ng such that for all n > ny we have p-i(n) = l[(n+1) and ord(b,)/l(n) =
ord(bp,)/l(np). By Lemma we get that

F = U QE‘(Nn, c/l(n) U QE‘ c/l

n>ng n>ng

defines a Zy-extension in Qg /Qp. As in the proof of Theorem we have
Nn’o(K;ii) C 7'['%71' X Noﬂ' X Woﬂ' X Ug,z X Vb,i C 7T7Zn7i X Nm,i X Wmﬂ' X Vm,i X va)z,z

for all m > 0. Let 6, € Ny o(K,) be a representative for iy, (an) € E{/Nno(EL).
Recall from Remark m that Qg(Npo(a,)i M) = QE(&I/Z(n)). By Lemma
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we obtain that ¢(W,, ;) acts trivially on the field Kn(é,ll/l(n)) forallm >nand1 <i <
s. Let Wg C W be the maximal subgroup such that ¢(Wg) fixes Qp. Let Wg ,, be the
maximal subgroup of W, such that ¢(Wg ) fixes Qg NM,,. It follows that ¢(Wg )
fixes (Qp ﬁMn)((Lll/l(n)) for all m > n. Using that Un>n0(QE ﬂMn)(&l/l(n)) = T we see
that ¢(Wg) fixes M. But by Lemma #(W) generates by restriction a subgroup
of finite index in Gal(Qg /Q). In particular, ¢(Wg) generates Gal(Qg//Qg) up to
finite index, yielding a contradiction to the existence of F. O

5.4 Outlook

If we want to apply our equivalent formulation of the Gross-Kuz'min conjecture to
construct fields in which the Gross-Kuz’'min conjecture holds, we have two major
obstacles:

e We do not have a canonical extension QE, /Koo such that Qp = Q EQE/- We
can still find a Zj, extension with this property but it depends on the choice of
the p-units we take as generators for the radical.

e If we want to verify that (Us,/EocW)(T*) is finite it is no longer sufficient to
consider Qp//Qp. In fact we have seen above that, if the Gross conjecture is
true, there is a non-trivial action of ¢(WW) on Qg and it is not clear how one
can describe the radical of Q5/Q% and how W acts on it.



Chapter 6

A conditional proof of
Leopoldt’s conjecture

The results in this chapter stem from joint work with Preda Mihailescu torwards
a proof of Leopoldt’s conjecture. Preda Mihailescu recently gave a much simpler
proof of Theorem [6.2.1] not using group cohomology but a simple counting argument
instead. We still provide a full proof here as the author is convinced that the analysis
of the cohomology groups gives additional insight.

Throughout this section we will assume that p > 2 and K is a CM number field.
Let Koo /K be a CM Zp-extension. Let A,, be the p-class group of the field K, and
define Ao = limooep Ay It is well known that A7 is a finitely generated A-torsion
module and pseudo isomorphic to a module of the form

k s
P a PP/
i=1 j=1

for irreducible distinguished polynomials f;(7"). As in Chapter |1| we define p(AZ) =
Zle e; and M\(AL) = ijl deg(f;(T))d;. We will refer to the following conjecture
as i = 0 conjecture:

Conjecture 6.0.1. For any CM Zy-extension of a number field K we have

n(As) = 0.

If Ky is the cyclotomic Z,-extension and if ¢, € K it is well known [Wash),
Proposition 13.24] that (A ) = 0if and only if u(A5 ) = 0. Note that the cyclotomic
Zy-extension is the only CM Zp-extension of K, if K satisfies Leopoldt’s conjecture
(we give the precise statement below). To abbreviate notation we will also write
and p~ for u(As) and p(AZ), respectively.

The second conjecture we want to consider in this chapter is the Leopoldt conjec-
ture:

Conjecture 6.0.2 (Leopoldt’s conjecture). Let E be the units of K and E their
p-adic closure in U. Then Zyrank(E) = Z-rank(E).

115
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This conjecture can be reformulated as follows.

Conjecture 6.0.3 (Leopoldt’s conjecture — second statement). K admits exactly
ro + 1 independent Zy-extensions, where ro denotes the number of pairs of complex
conjugate embeddings of K.

It is easy to show that each number fields has at least ro 4+ 1 independent Z,-
extensions. Thus, to prove Leopoldt’s conjecture it suffices to prove that ro 4+ 1 is an
upper bound.

Both conjectures, the Leopoldt conjecture and the 4 = 0 conjecture have the
property that they remain false under finite extensions of the base field. These results
are folklore and were already known by Iwasawa [Iw 2].

Lemma 6.0.4. Let L/K be a finite Galois extension of CM number fields. Assume
that the Leopoldt conjecture or the u = 0 conjecture does not hold for K. Then they
do not hold for L.

To analyze the Leopoldt conjecture more carefully we need the following reformu-
lation of the Leopoldt conjecture.

Lemma 6.0.5. Let K be a CM number field. Then the Leopoldt conjecture fails for
K if and only if K admits at least two CM Z,-extensions.

Proof. Let U be the local units of K as defined in the introduction and E the closure
of the image of the group of units of K in U. Let M be the maximal p-ramified, p-
abelian extension of K and H the p-Hilbert class field of K. Then by [Washl, Corollary
13.6] and the definition of U

Gal(M/H) = U/E.

U has Zyrank 2ry = [K : Q] and F has the rank 7o — 1 — §, where & denotes the
Leopoldt defect. § is a non-negative integer and vanishes if and only if the Leopoldt
conjecture is true for K. As usual, let j denote the complex conjugation then E'=7 is
a finite group and we see that Z,-rank(U'~7 /(U7 N E)) = Z,rank(U'77) = ro. As
p # 2 there is a decomposition U = U™ @ U'*J and we see that there are exactly
1 + 6 independent Z,-extensions that are fixed by U 1=7. Let M be the compositum
of these Zy-extensions then Gal(M/H) is annihilated by (1 — j). Let M™ C M be the
maximal subextension of M that is abelian over KT, the maximal real subfield of K.
Then Gal(M™/K™) has Z,-rank 1+ § and all Z,-extensions in MTK are indeed CM
extensions. O

Now we have all ingredients to prove Lemma

Proof of Lemma[6.0.4 Assume first that the Leopoldt conjecture is false for K. Then
K admits at least two CM Z,-extension (one of these extensions is the cyclotomic
Zp-extension). As L/K is finite the same holds for L.

Assume now that the y = 0 conjecture is false for K and recall that HZ = H‘O‘go.
We have a short exact sequence

0 — Gal(HZ (K)Loo/Leo) — Gal(HZ (K)Luo/Keo) — Gal(Leo/Keo) — 0
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As Gal(H (K)/Ks ) is a quotient of Gal(H (K)Ls /Ko ) and Gal(H (K)/Ky) has
infinite p-rank, the same holds for Gal(H_ (K)Ly /Ky ). The term Gal(Loo/Koo) is
finite by assumption. Therefore, Gal(H (K)Lo/Loo) has a positive p-invariant. As
Gal(H (K)Loo/Loo) is a quotient of Gal(H(L)/Ls) the same follows for the group
Gal(H (L)/Ls)- O

In view of Lemma we impose the following conditions on our base field K:
e Kis a CM field and Galois over Q.
o (, €K

e The cyclotomic Zy-extension of K is totally ramified at all ideals above p.

6.1 Radicals and their cohomologies

Vlad Crisan developed in his thesis the theory of projective radicals for Z,-free Galois
extensions F/Ks of finite rank [Cr]. In the following we will show that it is also
possible to construct projective radicals for extensions of p-type, i.e. for extensions
of finite exponent but infinite rank.

Assume that (x € K. Let L/K be a finite Kummer extension of exponent P
Let K’ C K be a subfield such that L/K' and K/K' are Galois. There is a natural
action of I' = Gal(K/K’) on X = Gal(L/K). Let B be the Kummer-radical of L/K.
Then I' acts naturally on B as well. We write X <> B to indicate that B is the
Kummer-radical for an extension with Galois group X and vice versa. There is a
canonical non-degenerate Kummer pairing

() BXX = i

/ k
such that (p,z) = %.
P

character

Consider the canonical restriction of the cyclotomic

XD = (Z/p'2)*, A(Gpr) =
Note that {(yp,z) = {p, x(7)y 'z) (this is a simple reformulation of the equivariance
of the Kummer pairing [Gu, Theorem 1.26]). To simplify notation we write v* =
x(7)y~t. Thus, * induces an involution on the group ring (Z/p*)[I']. With these
definitions, we have the following relations:

Lemma 6.1.1. Let f € (Z/p*)[[']. Then f: X — X induces a group homomorphism
and we obtain

[X| =7 X]-|X[f]l = [B] = [B[f*]| - [/ Bl (6.1)

B[f*] <X/ X
B/f*B < X|f].
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Proof. Since X = B as Z,-modules, we obviously have |X| = |B|. The other two
equalities in follow directly from the isomorphism theorem for finite modules.
Next we prove . Let L' = LfX be the field fixed by fX. Let By C B be the
Kummer radical of L’. For every fz € fX and every p € By we obtain

1= {p, fx) =(f"p,x)

As this holds for all x € X we see that X acts trivially on K((f*Bf)l/pk). The pairing
is non-degenerate and we obtain that f*B; = {0} as well as By C B[f*]. Let now
p € B[f*] then

(p, fr) = (f"p,x) = 1.

So fX acts trivially on K(B[f*]/?") which implies B[f*] C By. Hence, By = B|[f*]

and (6.2) follows.
For (6.3) define L = LXI/] and let B} C B be the radical of L//K. There is a

natural homomorphism

B L/,
whose kernel is B}. Therefore, X[f] <> B/B}. It remains to show that B} = f*B.
Let f*p € f*B and x € X|[f] then

(ffp,x) = (p, fx) = 1.

As this holds for all p € B we see that X|[f] acts trivially on K((f*B)l/pk). Hence,
f*B C B} Let L = K((f*B)Y?") c L' and let Y C X be the fixing group of L. Let
f*p € f*Band x € Y. Then

L= (f"p,z) = (p, fx)

As this holds for all p, the non-degeneracy of the pairing implies that fz = 0. Hence,
Y € X[f] and L' = LXU] ¢ L = LY. We showed already that L ¢ L/. Thus, we
obtain equality and indeed (/6.3)). O]

Assume for the remainder of this section that K/K' is cyclic. Let v be a generator.
Then we can write the algebraic norm as N = ZESK } v* and A = v — 1. The Tate

cohomologies of ﬁi(I‘, X),i=0,1 are defined as usual:

X[A]
NX '’

~ ~ X [ N ]
HOT, X) = HYT,X) = "—.
( Y ) ( ) ) AX
To use the correspondence we proved in Lemma [6.1.1]| we define the cohomologies for

B with respect to the twisted action:

H)T,B) = ———

With these definition, we deduce from Lemma
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Corollary 6.1.2. We have the following relations:
H'(T,B) + HYT,X) and H'(T,B) <« H(T,X).
Proof. Consider the fields L' = LXA] € I = LNX . We obtain
Gal(L"/L') = X[A]/NX = HO(T, X).

In view of (6.2]) we have,
Gal(L”/K) +» B[N*].

There is a natural homomorphism

B L/,

119

(6.6)

By (6.3) we know that X[A] <» B/A*B. Therefore, the kernel of the natural projec-

tion (6.6)) is A*B and we obtain
Gal(L'/K) > A*B.

Hence, R
Gal(” /L) <+ B[N*]/A*B = H\(T, B).

Together with (6.5) we obtain H* (T, B) ++ H(T, X).
For the second implication consider L' = LXINl C L” = LAY, Then

Gal(L"/L') = X[N]/AX = H'(T', X)
We know from that Gal(L”/K) 2 X/AX « B[A*]. From we have
X[N] <> B/N*B.
Hence, N*B is the kernel of the natural map B — 1"/ L'?". Therefore,
Gal(L'/K) < N*B.

We obtain R
Cal(L”/L') ++ B[A*]/N*B = H°(T, B).

O

We want to apply these general results to indicate that we can define norm co-
herent radicals for p-type subfields of Hu, /K. Let H,, be the maximal subextension
of H, such that X = Gal(H,/Ku) is of finite exponent and does not contain a
finite A-submodule. Let M be the maximal p-abelian p-ramified extension of Kj
and M the fixed field under the pluspart. We define Hy = H, N M~ for all £ and
X = Gal(H},/Ky). Note that X = X/wpX. The multiplication with Vk k4o induces

a homomorphism
Vhotv: Xk = Xt
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As X does not contain vy, j4,-torsion this homomorphism is injective. Let
Okt Xito — Xi
be the natural restriction homomorphism. Let
Vg ko' Xktv = Xkt

be the homomorphism on Xy, sending « to vy p1x. Clearly -vg g1y = Yk k40O Pk ktv-
As 9y, 4o is injective and ker(¢p p1v) = Wp X4y We see that ker(-vy piv) = Wk Xito-

The exponent of X}, is uniformly bounded by p!. Assume that there is an index ng
such that K,, contains Pt for all n > ng. Note that w, = —Tp"w;‘L mod p™, where T
is a topological generator of Gal(K.,/K). So we can choose ng large enough such that
Wy = —7P"w? mod p! for all n > ng. Let B, be the radical of H, /K,. As Ku/K,
is disjoint to H,/K,, we see that the natural homomorhism B,, — B, is injective for
all n’ > n > ny.

Lemma 6.1.3. Forn' > n > ny we have By[wy] = By, and By, = Ny »(By).

Proof. Let p € K,» be a representative of a class z in B,y. As by Kummer duality
Bi,_j = 1 and p # 2 we can assume that p'™7 = 1. Then N, ,(p) € K, and
W, = Kn(Nn/m(p)l/pl)/Kn is abelian over K,. As H, /K, is Galois we see that
W, C H,,. Hence, W, /K, is unramified outside p and W,K., C H,. Therefore,
W,, C H,. This shows that N, ,(Bj,) C B, for all possible choices of n and n’.

We have already seen that ker(vy, /| Xp/) = wn Xy As vy = deGal(Kn//Kn) g

it follows that HY(Gal(K, /K,),X,) = 0. By Lemma this implies that the
group H°(Gal(K,/K,), By) is trivial. Thus, By[w?] = N* (Bu). Asw, = —77"w;

n’'n n

mod p' and Vnn' = deGal(Kn//Kn) 9= deGal(Kn//Kn) x(g7")g = V:L,n/ we see that

By wpn] = By|wy] = Ny o (Bpy).

n

Therefore,
By, C By |wy] = Nn’,n(Bn’) C By

from which the claim is immediate. O

Remark 6.1.4. The condition that K;, contains p, for n large enough is trivially
satisfied for the cyclotomic Zy,-extension of a number field containing the p-th roots
of unity. If K is not the cyclotomic Z,-extension, i.e. a Leopoldt defect extension
then the extension Koo (Cy) /Koo is finite. So we can just replace K by K((,) and K

by Koo (G-

6.2 Thaine lifts

We know already that if the p-conjecture or the Leopoldt conjecture are false for a
certain number field then they remain false upon shifting the base field K by a finite
Galois extension. Nevertheless these shifts enable us to use group cohomological tools
on our obstruction fields. Using these shifts we will prove the following
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Theorem 6.2.1. If n(A3) = 0 for all CM Z,-extensions, then Leopoldt’s conjecture
holds for K.

6.2.1 The split Thaine lift

Assume that Leopoldt’s conjecture does not hold for K. Let K., be the cyclotomic
Zy-extensions of K with intermediate fields K,,. In the following we will show that we
can construct a finite shift of K and a CM Zp-extension Lo, such that p(AZ) > 0.
Let N > 1 and choose a principal prime @ in Ky that is totally split in Ky /Q and
inert in Koo /K. Let Q% be the compositum of all CM Z,-extensions of K containing
Kpy. Clearly, K., C QE

Lemma 6.2.2. We have
Zp-rank(Gal(2), /K)) > 1.

Proof. Let K, # Ky be a CM Z,-extension of K that is independent from the
cyclotomic one. Such an extension exists as the Leopoldt conjecture is false for K
(see lemma . Then G = Gal(Koo K., /K) = Z2. Clearly, Ky C (KooK )P"¢ for
all m > N. Define Ly, = Ky. We will inductively construct cyclic extensions L, of
K such that

LycLy,,Cc--CL],C...

and such that L/, N Ky = Ky. Assume that we have already defined the field L ,.
Let H C G/p™G be the subgroup fixing L] . According to [KI 1, page 42-43] there
are exactly p+1 cyclic subgroups H' in G /p™*'G that restrict to H under the natural
projection

G/pmHG — G/p"G.

If m = N choose H' such that the fixed field of H in (KooK. )P ¢ is not equal
to Ky41. If m > N choose one arbitrary group among the possible candidates for
H'. Define L], ., as the fixed field of H' in (Koo K. )P" "G Then the extension
L = Upnsn Ly, defines a Zj-extension of K such that L, N Ko = Ky. This proves
that there are at least two independent Z,-extensions that contain Ky. O

Clearly, QE /K is unramified outside p. Let D(Q) be the decomposition group of
Q in Gal(2},/Ky). Let g be the rational prime below Q. As any finite extension of
Qp admits only one unramified Z,-extension we see that D(Q) = Z,. In particular,
there is a Z,-extension K/, C Q; such that @ is totally split in K/ /Ky. Let 7 be a
topological generator of Gal(K/_/Ky) and define the Iwasawa algebra A with respect
to 7.

Let ¢ be a rational prime below Q. Then we see that ¢ =1 mod p~. So we can
extract a subfield F of degree p in Q(¢;)/Q. Define L,, = K/, F and Lo, = K _F. Let
¢ = Gal(LL,/K/,) and let o be a generator. Define, as usual, s = 0 — 1 and N =
Zf;ol o', In the following we want to analyze the cohomology groups H (@, A (L)).
To simplify notation we will write A, for A~ (L,). For each n we fix an ideal @,
above @ in K/, and an ideal Q» above Q,, in L,. Without loss of generality we can
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assume that the @, and the @, form a norm coherent sequence. We obtain the
following lower bound on the size of the cohomology groups.

Lemma 6.2.3. We have
|HO(®, A7) = |[H (@, A;)| > p”" " foralln > N.

Further, IfIO(<I>, A.) contains a A-cyclic submodule generated by the class of Q,ll_j
that is isomorphic to A/(p,wn—nN).

Proof. As a first step we will show that H%(®, A>) is generated by B, the submodule
of A, generated by the primes above ¢. Let a € A, (L,,) such that aj, = 1. Let 2 be
an ideal in a and 2° = (£). By definition N (¢177) = 4/ for some root of unity u’ in
K,,. Let { be maximal such that Ky contains the p'-th roots of unity. Then K;z,Qn =
Kn,g- As Q is inert in Koo /Ky it follows that (1 ¢ Ky g = K;%Qn. As L, /K, is
tamely ramified the Hasse norm principle implies that W (K,,) N M (L,) = W(K,,)P.
Then there is a root of unity u such that AV (677 /u) = 1. Hence, £17/u = w®
for some w € LL,,. As ideals we obtain (£!77) = w®. Therefore (A'~7/w)* = 1 and
2177 /w is a product of ramified primes and ideals of O(K,,). Hence, a'~7 = a? lies in
Bnix, L, (A7 (K,)) which proves that HO(®, A7) is indeed generated by the image
of B,, .

Let t € (A/wy—n)\p(A/wy—n) and assume that the ideal class [Q,&l‘j )t] has trivial
image in H°(®, A;;). Then there is an ideal 2 in K/, and an element w’ € L,, such
that

QLI =A(w).
As @, is ramified in L,, /K], we see that v’ s(1=7) = ( is a root of unity. Let w = w'* ™7
then we obtain w? = (Pw = w and we see that ¢ is a p-th root of unity. If ¢ = 1
then w € K/, which is impossible as Qi(l_j ) is not an ideal from K/,. It remains the
case that ( is a primitive p-th root of unity. Then w? € K/, is the Kummer-radical
of the extension L,,/K/ . Hence, as ideal, (w)? = QAP where 9 is divisible by all
primes above ¢ in K/, but is not divisible by any p-th power, while 2" is an arbitrary

ideal in K/. Taking p-th roots we obtain
Qi(lfj)t —l-igral/e,

Note that Q'/7 is well defined as ideal of L,,. The right hand side is divisible by all
ideals above ¢, while the left hand side is only divisible by the Gal(K/, /K/y)-conjugates
of Q,, yielding a contradiction. Hence, H O(®, A;,) contains a submodule isomorphic
to A/(p,wn—nN)A generated by the class of QL7 As A;, is finite the vanishing of the
Herbrand quotient completes the proof. O

Lemma 6.2.4. We have
(A% (L)) > 0.
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Proof. The idealsf?n'form a norm coherent sequence. Let b € A7 be the element
such that b, = [Q5’]. By definition sb = 0 and pb € (A (K., )). Consider the
natural homomorphism R

¢: AJpAb — HO(®, AT).
If we are able to show that this map is injective we are done. Assume by contrary

that T%b 4 Apb € ker(¢)) then T*b,, € (A~ (K/)) for all n. If p"~V > k this yields a
contradiction to Lemma [6.2.31 O

Now we are able to prove Theorem [6.2.1

Proof of Theorem [6.2.1] Recall that Lo /K is a CM Z,-extension. By Lemma
we know that it has positive u-invariant. But this contradicts our assumption that u
vanishes for every CM Z,-extension and any number field L.

O
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Part 111

2-class groups of C'M fields
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Chapter 7

Capitulation for the cyclotomic
extensions and p = 2

7.1 Introduction to the capitulation problem

Let K and L be number fields such that K C L. Let O(K) and O(L) denote the
rings of algebraic integers. Define I(K) and I(LL) as the groups of fractional ideals,
respectively. There is a natural homomorphism

¢: I(K) — I(L)

given by A — AO(L). Let CI(K) and Cl(L) denote the class groups of K and L, re-
spectively. The homomorphism defined above induces an homomorphism on the class
groups ¢': C1(K) — CI(L). It is an interesting question whether this homomorphism
is injective.

We say that an ideal 2 C K capitulates in L/K if 2 is non-principal in K and
becomes principal in L. Note that for a class a in the class group of K an ideal 2 € a
capitulates if and only if every ideal B € a capitulates. Let K be a CM field and,
as before, Q be the only Z,-extension of Q. Let Ko = KQ4 with intermediate
fields K,. Let A,, be the p-class group of K,,. Let j denote the complex conjugation
of K. For p # 2 one defines the idempotents (1 — j) and (1 + j) in Z,[G] where
G denotes the automorphisms acting on the C'M field K. The minus part is given
by %(1 — j)A,, and the plus part is given by %(1 + 7)Ay. In particular, we obtain an
isomorphism A, = A, /A}. For p = 2 we cannot work with this definition as % ¢ Zs.
In most textbooks the minus part for p = 2 is defined as A-={ac A, |ja=a"}
and the plus part as A = {a € A, | ja=a}.

It is a well known fact that for any prime p # 2 there is no capitulation on A\; .
The proof (as given for example in Washington [Washl, Proposition 13.26]) uses the
fact that a capitulated class should have order 2 which confirms the claim in the case
p # 2. In order to prove results for p = 2 which are known for p # 2 we introduce a
slightly different definition.

Definition 7.1.1. Let p be a prime, K be a CM number field and A be its p-class

127
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group. We call fractional ideal a real if j(a) = a. We define the group
AT ={a € A | a contains a real ideal}.

We define further A~ = AJ/AT. For the cyclotomic Z,-extension we denote by A}
the plus part of the p-class group of K,, and by A, the minus part. We denote the
projective limit by Aco = liMooen Ay and AL = limeoen A, .

For p # 2 one has AT = (1 + j)A = {a € A | ja = a}, since there is a decompo-
sition A = (1 — 7)A® (14 j)A. Hence, for p # 2 the definition by idempotents and
the one given above are equivalent.

The purpose of this chapter is to investigate the minus part for all primes including
p = 2. Most results in this chapter stem from the author’s Master’s thesis and are
published in [Mu]. Only Corollary Lemma and its corollary as well as
subsection are results which have not been published before. We also present a
new and less complicated proof of Proposition and reformulate the proofs in
Section for all primes and not only for p = 2 as the author did in [Mu]. Only in
Sections [7.3] and [7.4] we restrict ourselves to the case p = 2. In section[7.3] we motivate
our alternative definition of the minus part and in Section we prove a result that
is well known for p > 3 for the prime p = 2.

7.2 The capitulation question

The main purpose of this section is to prove that there is no finite submodule in A7
if K contains a primitive p-th roots of unity ¢, (i = v/—1 if p = 2). This is a well
known result for p # 2, but it is not a priori clear for p = 2.

We fix a rational prime p. Hence, all class groups occurring in this section denoted
by A are p-groups. Let L be a C'M field containing ¢, (i if p = 2) and let furthermore
Ly = L[¢’] where ¢’ is a p*-th root of unity such that ¢’” € L but ¢’ is not. Denote a
generator of Gal(Lg/L) by 7 and let A/ denote the algebraic norm from Ly to L.

For the proofs in this section we shall use the following auxiliary lemma whose
proof is inspired by [Wash, Lemma 13.27]. But Washington proves the statement
only for odd primes.

Lemma 7.2.1. Denote the roots of unity of . by W and the one of Ly by Wy. If v
is in Wo N ker(N), then there is an vy € Wa such that v = VQT_l.

Proof. Consider the sequence
1= Wenker(N) — Wy W — 1,

where the map from Wy — W is the norm A. The roots of unity of I have the
structure (¢'?) x ((;) with ¢ coprime to p. Then N(¢') = (=1)P71¢"? and N(¢;) = ¢
is a primitive t-th root of unity. As (¢') x ({;) C W5 we obtain that the norm is
surjective and the sequence is exact. Consider furthermore

LW =Wy =Wyt =1,
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where 7 is a generator of Gal(La/L). Then we get
(W3~ = [Wal /W] = [Wa N ker(N)]
and since W7 ! is contained in Wy Nker(N'), we get equality. O

Lemma 7.2.2. The map ¢ : A(L)™ — A(LLy)~ is injective, where ¢ is the map induced
by the ideal lift from L to La. If p > 3 and M/LL is an arbitrary Kummer-extension of
degree p, then the capitulation kernel v : A(L)™ — AM)~ is cyclic of order dividing
.

Proof. Assume that there is a class © € A(IL)~ such that «(z) = 1 in A(Lg)~. Let
a be an ideal class such that z = aA(L)". We obtain that t(a) € A(L2)*. Let now
2 be an ideal in a. Then we can find a real ideal € C Ly such that ()€ = («) is

principal. Then we have ¢(21)/.(2) = (a/@) and
v=(a/a) t=a""t/aT1

is a unit of absolute value 1 and norm 1, hence it is a root of unity of norm 1.
According to Lemma there is a root of unity v, such that v = v} ~!. Then

(afa-vy Tt =1.

Therefore, v = a/a@-v, ' isin L and 2/ = (7). Since |y| = 1, we have 14+ = (1+7)7.
Choose r € L such that v = r(1 + ) is integral. Then 21/ = (v/v) and (v) = AC
for a real ideal €. Therefore, a contains a real ideal. Hence, a is in A(L)" and z =1
in A(L)".

Assume now that p > 3 and let z € A(L)™ be such that ¢(x) =1 € A=(M). As
p > 3 we can write A~ (L) = (1 — j)A(L) and (1 — j) acts as multiplication by 2
on A, . Let 2 € x. Then we obtain that +(A/A) = (a/@). Let 3 € L be such that
(B8) = AP. Then there is a root of unity u such that al=9P = g1=7 . Without loss of
generality we can assume that p has p-power order. We can further assume that L
and M have the same p-power roots of unity. Otherwise, we have M = Ly and we see
immediately that there is no capitulation. We obtain that a(1=9P € L which implies
that (=97 is the Kummer radical for M/L. As the Kummer radical is unique up
to (L*)P we see that the the capitulation kernel is cyclic and that its size is bounded
by p. O

Note that the new definition of the minus class groups provides — compared to
standard textbooks — a shorter and less computational proof of the fact that ¢ is
injective.

Corollary 7.2.3. Let K be a CM field containing ¢, (i if p=2) and let K,, be the
intermediate fields of the cyclotomic Zy-extension of K. Let A, be the minus part of
the 2-class group of Ky. Then the lift v, ni1: A, — A, is injective.
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Proof. By renumbering our fields we can assume that K, = Q,K, where Q,, is the
n-th intermediate field in the unique cyclotomic Z,-extension of Q. If K contains ¢,
(i if p = 2) then K,, contains (,ntet+1, where e = 1 if p = 2 and e = 0 otherwise.
Since K is a C'M field, the fields K,, and K, satisfy the assumptions on . and Ly
as above. Hence, we can apply Lemma with L =K,, and Ly = K,, ;1. O

If p = 2 then there could be capitulation on E,; . To show that our new definition
of the minus part is necessary to obtain a capitulation free minus part we give the
following example [Mul, Example 2.4]

Example 7.2.4. Let K = Q(i,+/10). Then Ky = Q(i,/10,v/2) is the first step in
the cyclotomic Zs-extension of K. Consider the ideal A = (v/10,5) in K. Let a = [2].
Then A2 = (5) and ja = a. This implies a®> = 1 and ja = a~'. Then (v/10,5) = (v/5)
is principal in K. It follows by genus theory that (v/10,5) is not principal in K. Thus,
a s a capitulated class.

Note that in this example the first step in the cyclotomic Zs-extension is unram-
ified. But ramification is not a condition needed in the proof of Theorem [7.2.2]

Theorem 7.2.5. There is no finite submodule in A if K is a CM field containing
G (i ifp=2).

Proof. Analogously to [Wash|, Proposition 13.28]. Let 7 be a generator of Gal(Ky /K)
and assume that there is a finite submodule D. Then, there is an n € N such that "
acts as the identity on D. But then for all m > n we have ity m+1 0 Nyt 1m(Tme1) =
zh 41 for all z € D. In particular for every z € D we can choose m large enough such
that z,, # 0 and ord(zy,) = ord(zy,+1). But then ¢y, m41(zm) has the same order as
T, SINCE Ly m41 s injective on the minus part. This implies that x,,11 and 33];1 11
have the same order yielding a contradiction. Hence there is no finite module D. [

7.3 Capitulation in {a € A | ja=a"'}

Let L, Lo and A be defined as in the previous section. In this section we investigate
classes in {a € A, | ja = a~'} which lie in the kernel of the ideal lift. It turns out
that these classes lie in AT as we will prove in Theorem In the case p # 2 one
has the equality A~ = {a € A | ja = a~'}. Hence there are no such classes. But the
question remains for p = 2.

Theorem 7.3.1. [Mi, Theorem 3.7] Let p=2. If a class a in A~ = {a € A| ja =
a=1} is in the kernel of the lift u1,, then it belongs to AT. In particular, in the
2-cyclotomic tower of a CM field containing i every such class belongs to A;.

Clearly, if a class a satisfies the assumptions of the above theorem then it is of
order dividing 2. But that means that a = a~! = ja. Therefore, we get a € At =
{a € A, | ja = a} as well. Hence, the kernel of the lift lies in the intersection ATNA~.
In particular, the theorem shows that it lies in AT N A+ N A~ = AT[2] since AT is
contained in A*. Further, this theorem can serve a as a motivation for our definition
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of A and A;". In the definition of A, we take the quotient by a subgroup containing
all the possible capitulation.

Corollary 7.3.2. Let p = 2 and K /K be the cyclotomic Zz-extension of K with
intermediate fields K,,. Let A, be the 2-class group of K,,. There exists an index ng
such that we have the following property for all n > ng: If a class a in ﬁ; ={a €
A, | ja = a1} lies in the kernel of the lift ik, K, ., then it belongs to A} NAZ\ 24,
for n > ng. In particular, the mazimal finite submodule of 2; has exponent 2.

is

Proof. By [Fe, Theorem 8.8] there is a constant ng such that the lift ik, K.,

injective on A}L_] for n > ng. As 211; C A;L_j the claim follows from Theorem

731l O

7.4 Boundedness of the rank of A} and A

The purpose of this section is to show that the rank of A, is uniformly bounded if
and only if the rank of AL is uniformly bounded. This result is well known if we
replace AZ by A7 and assume that (p € K [Washl, Proposition 13.24]. As A = Az
for p > 3, we only consider p = 2 in this section. We fix a CM number field K and
let K,, be the intermediate fields of the cyclotomic Zs-extension thereof. Denote as
before the 2-class group of K, by A,. Note that in [Mu] we assumed that K contains
i. In the following we will show that this assumption is not necessary.

Remark 7.4.1. Let Q be the product of all primes in KT that ramify in K/K*. Then
every ramified ideal in K, /K divides Q. As the number of primes in K} dividing
Q is uniformly bounded, we see that the 2-rank of A;‘;/LK:’KR(A(K;'{)) is uniformly
bounded.

The goal of this section is to prove the following Proposition:

Proposition 7.4.2. The rank of A,, is uniformly bounded if and only if the rank of

A, is uniformly bounded.

Recall from Chapter [1| that the noetherian torsion A-module A (here we have
A = 7Z5][T])) is pseudo isomorphic to a module of the form

s k
D sz DB G
i=1 j=1

The A-modules A;, have uniformly bounded rank if and only if p =37 e, =0
The proof of Proposition [7.4.2] consists of the following two lemmas:

Lemma 7.4.3. A, has uniformly bounded rank if and only if A, and A}[2] have
uniformly bounded rank.
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Proof. Let /T; ={a € A, | ja = a~'} be the classical plus part. Clearly, if the rank of
A, is uniformly bounded, then the ranks of A;7[2] and of A, are uniformly bounded.
For the other direction one can use a result of Washington [Wash| Proposition 10.12]:

2-rank(A(K})) < 1+ 2-rank(A;). (7.1)

There is a natural map ¢ : A\g — A, and

z € Ker(¢) & x e A n{z|jz=2"1) = A2
This implies 2-rank(A;) < 2-rank(A;) + 2-rank(A;[2]).
Since we assumed that 2-rank(A, ) and 2-rank(A;'[2]) are uniformly bounded,
we can conclude that 2-rank(A;") is uniformly bounded, due to (7.1) and Remark
Then the rank of A, is uniformly bounded, due to 2-rank(A4,) < 2-rank(A, )+

2-rank(A}5). O
Ko /K7L is an extension of degree 2 ramified at all infinite primes. Hence, the natu-
ral norm Ao, — A (KZL) is surjective. Note that ALH) = et ik Nk /K (Aso (KT)).

Hence, by Remark we see that A% /Agfj ) is of finite rank.

Lemma 7.4.4. If 2-rank(A;") is unbounded then 2-rank(A;,) is unbounded.

n

Proof. Let a € AL be a class such that Aa has unbounded rank. We know that the
maximal submodule of finite exponent in A% is pseudo isomorphic to E = @le A/pci
[Washl, Theorem 13.12]. Without loss of generality we can assume that e; > e; for
all 7 and that the image of a in £ has order p*. By multiplying with a distinguished
polynomial f(T) we can assume that ord(a) = p® and that a € A7, Let ¢ be such
that ¢!t/ = a. Clearly, Ac generates a submodule of A, of infinite rank.

Let ¢ : Aoo — AL be the natural map. Assume that there is a distinguished
polynomial h(T) such that ¢(h(T)c) = 0. Then h(T)c = b for some b in AY. But
then h(T)a = b%. Clearly b generates a A-submodule of infinite rank and for every
distinguished polynomial g(7") we have ord(g(T)b) = 2ord(g(T)h(T)a) = 2ord(a),
yielding a contradiction to the choice of a and e; > e;. Therefore, there is no such
polynomial h(T") and the rank of Ac is infinite in A_. O

Now we can prove Proposition [7.4.2]

Proof. One implication is clear. For the other one we know from Lemma [7.4.4]
that 2-rank(A;,) being bounded implies that Z,-rank(A;) is bounded. In partic-
ular 2-rank(A;}[2]) is uniformly bounded. We can now use Lemma [7.4.3) and get that
2-rank(A,,) is uniformly bounded. O

In the following result we prove a relation between the p-invariant of A2 and A\;
Lemma 7.4.5. For every n we have

A-[2] = AF/AF
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Proof. Consider the following commutative diagram

0 y A » Ay A 0
] |
0 S 2;[ s A, AL=d 0

The middle vertical map is an isomorphism, the left vertical map is injective and the
right vertical map is the multiplication by 1 — j and is surjective. Its kernel is the
group A; [2]. Then the snake Lemma gives us the isomorphism A [2] = Af/AF. O

Corollary 7.4.6. We obtain
1(AZ) >0 < u(AL) > 0.

Proof. If u(AL) > 0 then z(As) > 0 and by Proposmlonnwe see that u(AL) > 0.
If conversely p(As) > 0, then we see by Lemma |7 that AT /AT has unbounded
rank. Hence, the 2-rank of A is unbounded and M(AJ“) O

7.5 Further applications and properties

Assume that K is a CM number field containing ¢, (i if p = 2). Let as before K be
the cyclotomic Z,-extension of K and K,, the intermediate fields. The results in this
section require our new definition of plus and minus parts to obtain class fields that
have A, as Galois group.

Theorem 7.5.1. Assume that Greenberg’s conjecture holds for K, i.e. that the class
number of K is uniformly bounded independent of n, then H, := HAOO s contained
mn Qg.

This is proved for p > 3 under the additional assumption that A, (K}) is trivial
for all n in [Lal, Chapter 6 Theorem 4.2]. As we are only assuming that A is finite
for all n we give a full proof here. In Theorem [8:3.5 we will provide a family of
triquadratic fields such that Greenberg’s conjecture holds for p = 2. Further families
of quadratic and quartic extensions in which Greenberg’s conjecture holds for p = 2
are given in [Miz] and [Kum).

Proof. Let o'/?" € H and a € Ks. As Gal(Hg /Ks) is annihilated by 1 + j we
see that for every o € Gal(H, /Ky ) we have joj = o~ L. Henc o(al/r') = (al/P
Thus, o fixes o/ = o'/?" Jal/P* and o/ € Koo As Nk /Kjo(a’) = 1 we see that there
is an element 3 € K such that o(1=9) = gP'(=9)_ If we substitute a by a/ﬁpt, we
can assume that o is real.

Assume that ol/?" ¢ Qp and choose n > t minimal such that a € K, and such that
K, (a'/?") /K, is unramified. Then (a) = AP" for some non-trivial ideal 2 that is fixed

!The overline stands for one fixed complex conjugation in Gal(Hu, /KL ). Note that this lift is not
unique.
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by j. Hence, a'/P" induces a well defined class in A;. Note that A /iy« K, (A(K}))
is generated by the classes of ramified primes. Since K contains ¢, (2 if p = 2) we
see that K, /K is unramified outside p. Hence, A} /ig+ o (A(K)) has uniformly
bounded rank. Let b € AF\ iyt i (A(KY)). We see that b* € st (A(K])). Hence,
our assumption that Greenberg’s conjecture holds for K,, implies that the size of A
is uniformly bounded. In particular, there is a k£ such that pkA;‘{ is trivial.

We want to show that H_ /H_ N Qg is an extension of finite exponent: If ¢t < k
for all possible «, there is nothing to prove. Assume now that there is an element
al/?" such that ¢+ > k. Then we have o = ﬂpt_ke for some unit e. We see that
Koo (a/P™") = Koo (e?' ™) C Qp. Hence, the extension Hy /HZ N Qg is indeed of
finite exponent bounded by p*.

Let HZ, , be the fixed field under the maximal A-submodule of AZ of finite p-
rank. Let H , be the intersection of HZ, , and H,. As this is an extension of
uniformly bounded exponent we can assume that it is a Kummer extension. Let
R C K} ®z Qp,/Z, such that for every a @ p~' in R the element a/?" lies in H, ,
Then we can conclude as before that a = (A)?" for a non-trivial ideal that is fixed
by j. We obtain a well defined homomorphism R — A}. If a ® p~* lies in the
kernel of this homorphism, then al/ P lies in Q. As the size of A is uniformly
bounded we see that H,, ,/H, , N Qg is a uniformly bounded extension. It follows
that H, ,/H, ,NQE is a finite extension. We obtain the following equality (we allow
the values in the following equation to be infinite. We will actually see in the next
paragraph that all the terms are finite)

[Hgo : Hgo ﬂQE] = [Hgo : (Hgo HQE)Hgo,u] . [(Hc:o mQE)Hgo,u : Hgo ﬁQE]

Recall that p*Gal(Hg, /Hy N Qg) is trivial and that by definition Gal(H /H, ,) is
of finite rank. So we obtain that [HZ, : (HZ, N Qg)H, ] is finite. Note that
[(Hy N Qp)Hy,, : Hy N Qp) < [Hy,, : Hy , N Q] < oo.

OO, 1

Hence, H /H N Qg is a finite extension and Gal(H_ /H N Qg) is a finite
A-submodule of AZ . But this is impossible by Theorem O

The next Theorem does not really require our alternative definition of the plus
and minus parts, but it is one of the rare cases where the results for p = 2 are actually
stronger then for p > 3.

Theorem 7.5.2. Assume that p = 2. Let M, be the mazimal 2-abelian 2-ramified
extension of Q((an) and X,, its Galois group over Q((an). Then X, is cyclic as

Zp| Gal(Q(Cpn ) /Q)]-module.

Proof. The proof follows closely the ideas of [Washl, Theorem 10.14] for odd p. By
[Washl Theorem 10.4 b)] we know that the class number of Q((2n) is coprime to 2 for
all n . Let L' be the maximal abelian 2-ramified extension of Q((sn) of exponent 2
and let A be the class group of Q((2n). Let B be the Kummer-radical of L'/Q((an).
Let b € Q(Can) be a representative of a class in B. Then (b) = B2(1 — (on)? for
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some ideal B coprime to 2. We obtain a well defined homomorphism ¢: B — A[2]
assigning bQ({an ) to the ideal class [B]. Since A[2] is trivial we see that ¢ is the zero
homomorphism. As h(Q(¢an)™) is coprime to 2 we obtain from [Washl Theorems 8.1
and 8.2] that (1 — (an) is a Zy[Gal(Q((2n)/Q)] generator of ker(¢) = B.

Let H = Gal(I'/Q((2n)). By definition we have a non degenerate pairing

H/XB—>W2.

Let b1 be a generator for B and let us complete it to a Fs-basis b1,...b, such
that there are elements ¢g; € Gal(Q((2n)/Q) such that g;b; = b;. Then we can choose
elements h; such that (h;,b;) = (—1)%3. Let H{ be the subgroup generated by
hi under Z,[Gal(Q(¢2n)/Q)] and assume that H] # H’. Then there is an element
b=[[b]" such that (h,b) =1 for all h € H{. Then we have

L= (BB = (b, 0% ) = (—1)™.

Hence, x; = 0 for all i and we see that H' is cyclic. As H' = X,,/2X,, the claim
follows. O

Remark 7.5.3. If p > 3 and if Vandiver’s conjecture holds for Q((p) (i.e. the class
number of Q(p)" is coprime to p) one can show that X,,/(1+ )Xy, is cyclic [Washl,
Theorem 10.14).
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Chapter 8

The Structure of the 2-class
group
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8.1 2-class groups along the cyclotomic Z,-extensions

Let Ly be a quadratic extension of QQ and LL,, the intermediate fields of the cyclotomic
Zs-extension of Lg(i). In this chapter we want to compute the 2-class group of L,
explicitly for certain classes of base fields Ly and corresponding fields IL,,. To simplify
notation and to avoid unnecessary index shifts we will write K,, for the field Q((n+2)
in this chapter (where (,, denotes a m-th primitive root of unity). Note that L, is
the compositum of K,, and Ly. A crucial step in this context is to determine the
Iwasawa invariants of A,, and the maximal finite submodule.

Let F be an arbitrary finite extension of @, and F, the cyclotomic Zs-extension
thereof. Let H, be the maximal 2-abelian unramified extension of Fo,. Let IF,, C Fo
be the unique subfield such that [F,, : F] = 2". By class field theory we have an
isomorphism

X = Gal(Hy/Foo) = lim A,
o0—"n
where A,, denotes the 2-class group of F,,. For a topological generator 7 of Gal(Fo, /F)
we define the Iwasawa algebra A = Zo[[T]] with respect to T = 7 — 1. The natural

action of 7 on A, turns X into a A-module. As explained in Chapter [I X is a
A-torsion module and pseudo isomorphic to a module of the form

s t
Dar PP a/fmY,
i=1 Jj=1

137
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for distinguished irreducible polynomials f;(7"). The Ferrero-Washington theorem
shows that all the e; = 0 if F/Q is abelian [Fe-Wa).

In this chapter we will concentrate on C'M fields of the following form: Let n > 0
be a natural number, d be an odd square-free integer and L, 4 := Q((an+2, Vd). We
will use results by Azizi, Chems-Eddin and Zekhnini on the rank of the 2-class group
of L, 4, the layers of the Zs-extension of some special Dirichlet fields of the form
Loa = Q(vVd,v—=1) (cf. [A-C-Z1},[C-A-Z,[C]). Combining them with the results form
the previous chapter we obtain our central theorem. Li, Ouyang, Xu and Zhang
computed the 2-class groups of L, 4 for d being a prime congruent to 3 (mod 8), 5
(mod 8) and 7 (mod 16) (cf. [L-Y-X-Z]) but the family of extensions we consider
here is disjoint to the one considered by Li, Ouyang, Xu and Zhang.

Throughout this chapter we denote by ha(d) the 2-class number of the quadratic
field Q(v/d). Further, we fix the following notation:

e Let p be an odd prime and @ an integer then we denote the quadratic Legendre
a
Symbol by (%)

o If p=1 (mod 4) is a prime and (;) = 1, then we define ()4 = +1 = a7
(mod p). This symbol is 1 if a is a 4-th power modulo p and —1 otherwise. Note
that this symbol is only defined on the set of quadratic residues. In contrast to
the quartic residue symbol taking values in the 4-th roots of unity the symbol

(%)4 —+1=4"T is multiplicative.

a—1

e If a =1 (mod 8) we define (§)s = (—1) 5 .

e Let K be a finite abelian extension of Q and p a prime in O(K). Let «, 8 € K.
Then we write (O‘Tﬁ) for the Hilbert symbol of « in the extension K,(8'/2)/K,,

ie.
(%2) =oals'2y82

where o, denotes the local Artin-symbol of a. Note that (
if o lies in the image of the norm N: K,(5'/2) — K.

a?ﬁ
p

) = 1 if and only

e [, are the units in the CM field k,

e (). denotes the Hasse’s unit index of k, i.e. the index [E} : E+ W], where W
denotes the roots of unity in k.

e q(L1q) := (EL,, : []; Ex,), where k; are the quadratic subfields of L 4.
o K, = Q((on+2) C Ly 4.
The main aim of this chapter is to prove the following
Theorem 8.1.1. Let d be a positive square-free integer and n > 1 be an integer.

a) Assume d has one of the following forms:
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e d=p, for a prime p=9 (mod 16) such that (%)4 =1,

e d = pq, for two distinct primes p=q =3 (mod 8).
Then the 2-class group of L, q is isomorphic to 7.)]2" 27, x 7./27. for a con-
stant r such that 2" = ho(—2d).

b) Let d = pq, for two primes p and q such that p = —q =5 (mod 8). Then the
2-class group of L, q is isomorphic to 7.)2"" =27, for a constant v such that
2" = 2 hy(—pq). Further, Greenberg’s conjecture holds for the field L:er, i.e.

the 2-class number of ]L:d is uniformly bounded.

In the last section of this chapter we apply Theorem to describe the 2-class
groups of the layers of the cyclotomic Zs-extension Ko, of some imaginary quadratic
field K. The cyclotomic Zs-extension of imaginary quadratic fields were already
investigated by Mizusawa [Miz]. In contrast to our results Mizusawa described the
Galois group of the maximal unramified pro 2 extension of K., while we describe the
class group at every finite level n.

Theorem 8.1.2. Let d be a positive square-free integer and n > 1. Let Koq =
Q(v—d) and define the field K, 4 as the n-th layer of the cyclotomic Zy-extension of
Ko,q-

a) Let d have one of the following forms:
e d=p for a prime p=9 (mod 16) such that (%)4 =1.
e d = pq for two different primes p=q =3 (mod 8),

Let 2" = hp(—2d). Then the 2-class group of K, q is isomorphic to Z./27. x
Z)27 7.

b) Assume that d = pq is the product of two primes p = —q =5 (mod 8) and let
2" =2 hy(—pq). Then the 2-class group of K, 4 is isomorphic to Z/2" " 1Z.

8.2 Some preliminary results on the minus part of the
2-class group

Denote, as before, by A,, the 2-Sylow subgroup of the class group of the intermediate
fields IL,,. The complex conjugation of Ly, denoted by j, acts on A, as well as on
the projective limit As = limeop An. As in the previous chapter we define A; as
the group of strongly ambiguous classes with respect to the extension L, /L and
A, = A, /A, As in Chapter [7| we denote the subgroup {a € A, | ja = —a} by A;.
Analogously to As we define AL = limy.p A4,, and 121\;0 = limgoepn An. We will
frequently need the following two lemmata on the Iwasawa invariants of A__.

Lemma 8.2.1. We have \(AL) > 2-rank(A,,) for alln > 0.
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Proof. By Theorem there is no finite submodule in A . As p(Ay) = 0 the
2-rank and A-invariant of A are equal. Since Lo,/Ly is totally ramified the claim is
immediate. O

Lemma 8.2.2. We have

—

AAS) = A(A).-

Proof. Note that 24, C (1 4 j)As + (1 — j)As C As. Clearly, all elements in
(1 + j)As are strongly ambiguous. Thus, if we consider the projection

T Ao = AL

we see that (14 7)Aq lies in the kernel of 7. On the other hand j(1—j)a = —(1—j)a.
So if a class in (1—j) A is strongly ambiguous with respect to the extension K, /KX
then it is of order dividing 2. As p(A«) = 0 we obtain that (1 — j) A intersects the
kernel of 7 only in a finite submodule. It follows that

AAs) = A1 = j) Aco)-

Note that 245 C (1 — j)A, C Ax. Hence, we see that

8.3 Preliminaries on the fields L, ; and ]L;:,d

To determine the structure of the 2-class groups along a cyclotomic tower the A-
invariants of A,, are of particular interest. In the sequel we will consider the modules
Ao defined for different base fields F. To simplify notation we will also write A(F)
for A(Aso(FF)) and A~ (F) for A(A (F)). We will use the same abbreviated notations
p~ (F) and p(F) for p(A (F)) and p(A(F)), respectively. The following theorem is
a useful tool to compute A~ for the family of fields we are interested in.

Theorem 8.3.1 (Kida’s formula). [Ki, Theorem 3] Let F' and F be CM fields and
F'/F a finite 2 extension. Assume that u= (F) = 0. Then

AT(F) = 8(F') = [Fly : Foc] (AT (F) = 6(F)) + Y (eg —1) = D (ep+ — 1),

where for any CM field K the variable 6(K) takes the values 1 or 0 according to
whether Ko, contains the 4-th roots of unity or not. The eg is the ramification index
of a prime B in F /Fo coprime to 2 and eg+ is the ramification index for a prime

coprime to 2 in % JFL .

Note that Kida proves Theorem for A(Ax). But due to Lemma this
A-invariant equals the A-invariant of A .
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Theorem 8.3.2. Assume that d is the product of r primes congruent to 7 or 9
(mod 16) and s primes congruent to 3 or 5 (mod 8). Then

AN =2r+s—1.

Proof. Let F' =14 = Q(Vd,v/—1) and Ky = F = Q(v/—1). Then §(F) = §(F') = 1
and A~ (F) = 0. The only primes that ramify in F._/Fy, and F'L /F are the primes
dividing d.

Every prime congruent to 7 or 9 modulo 16 splits into 4 primes in K,, for n large
enough, while it splits only into 2 primes in K} (see [C, Proposition 1]). Primes
congruent to 3 or 5 modulo 8 decompose into 2 primes in K,,, while K" contains only
one prime above p (see [C=A=Zl, Proposition 2]). As [F._ : Fs] = [F'L : Ff] = 2 either
eg = eg+ = 1 or eg = eg+ = 2. Plugging all of this into Kida’s formula we obtain

AT —=1=200-1)+4r+2s—2r—s=2r+s—2
and the claim follows. O

The above result determines A~ for a certain family of fields Lo 4. As we are
interested in the whole 2-class group and not only in its minus part we also need to
understand the plus part in the cases we consider in Theorem [8.1.1

Theorem 8.3.3. Let d be an odd square-free integer and n > 1. Then, the class
number of de is odd if and only if d takes one of the following forms

a) d = qiq2 where the g =3 (mod 4) and ¢; or g2 =3 (mod 8).
b) d is a prime congruent to 3 (mod 4).

¢) d is a prime congruent to 5 (mod 8).

d) d is a prime congruent to 1 (mod 8) and (%)4(%)4 =-1.

Proof. The extension L’ 1al L:’ 4 18 a quadratic extension that ramifies only at the
prime ideals above 2 of ]L:; g forall n > 1. Let H(IL:Lr 4) be the 2-Hilbert class field
of IL:’ 4 and X, its Galois group over IL:’ 4+ Let Y be the A-submodule of X, =
limoos—pn Xy, such that Xo = Xoo/Y. Then X, = X /vy, oY [Wash, Lemma 13.18]. In
particular, if X, is trivial then X, = v, 0 Xoo and X is indeed trivial by Nakayama’s
lemma. Hence, the class number of Lf 4 being odd implies that the class number of
IL:; 4 18 odd. The converse follows from Theorem 10.1 of [Wash| and the fact that the
extension ]L: 4, d/IL.:’ 4 is totally ramified. Hence, the class number of ]L;; 4 is odd if

and only if the class number of Lid = Q(v/2,Vd) is odd. See [Co-Hul, pp. 155-157]
and [Ex, p. 78] for the rest. O

Theorem 8.3.4. Let d > 2 be an odd square-free integer and n > 1 a positive integer.
Then the 2-class group of L, q is cyclic non-trivial if and only if d takes one of the
following forms:
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a) dis a prime congruent to 7 (mod 16).

b) d = pq, where p and q are two primes such that ¢ = 3 (mod 8) and p = 5
(mod 8).

Proof. If d is not a prime congruent to 7 (mod 8) then the 2-class group of L, 4 is
cyclic non-trivial if and only if d = pq, where p and ¢ satisfy the assumptions of point
b) [C-A-Zl Theorem 6]. For the rest of the proof we consider only the case d=p =7
(mod 8) and distinguish two cases:

e Suppose that p is congruent to 15 (mod 16) and let o denote its Frobenius
homomorphism in Gal(Q((16)/Q). Then o(¢16) = 0P(C16) by the definition
of the Frobenius homomorphism. Let H be the group generated by o. Then
p is totally split in Q((16)"/Q. Since p = 15 (mod 16), ¢ is the complex
conjugation. Hence, p is totally split in Q(¢16)"/Q and inert in Q(¢16)/Q(¢16) ™
In particular, there are 4 primes of Ky lying over p. Then, by the ambiguous
class number formula [Qi 2, Lemma 2.4], we obtain that 2-rank(Cl(Ls4)) =
4 —1— e, where e is defined by 2¢ = [Ek, : Ex, NN (L3 ;)]. The unit group of
Ky is given by Ex, = (Ci6,&3,&5,87), where § = Cfé_k)ﬂi%gg. Let N be the
norm from Ky to K; Since p is inert in Ky/ K; we obtain for k =3,50or 7

(&m) _(NG).p) _ (G
PK, Prr Pry
Hence, the units ¢ have a trivial Artin-symbol in Ko (y/P)p, /Kng2. In par-

ticular, these units are norms from Ka(y/p)pe, = Kopy (Vd). As Ly 4/Ks is
unramified outside p, the Hasse norm principle implies that &, € Ex, NN(L3 ;)
Then e is bounded by 1 and 2-rank(Cl(LLy 4)) > 4—1—1 = 2. Hence, the 2-class
group of IL,, 4 is not cyclic.

e Suppose now that p is congruent to 7 (mod 16), then by Theorem the
class number of ]L;: 15 0dd. Since the primes above 2 are unramified in Ly, , /Lt ,
for n large enough, all strongly ambiguous ideals in L,, 4 are actually ideals from
L 4 and the 2-rank of A, is bounded by A~. By [A-C-ZI, Theorem 4.4], the

2-class group of L 4 is cyclic non-trivial and by Theorem we have A~ =1
which completes the proof.

O

Theorem 8.3.5. Assume that d takes one of the forms of Theorem [8.3.] Then
A =1 and Greenberg’s conjecture holds for ]L:L“d.

Note that Greenberg’s conjecture follows immediately from Theorem if d is
a prime congruent to 7 (mod 16). If d = pg where p and ¢ are primes such that p =5
(mod 8) and ¢ = 3 (mod 8) we obtain that Greenberg’s conjecture holds but the 2
class group of L:;’ 4 is non-trivial. The case d = pq is also proved in [Oz-Tal.
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Proof. By Theorem [8.3.4] the 2-class group of Ly 4 is cyclic. By Theorem [8.3.2, we
have A= = 1. Thus, A = A~ =1 and the first claim follows

For the second claim recall from Lemma that M(Asx) = AM(AL). Note that
the groups A;, N A are of exponent 2. So if we know that the 2-class group of

L, 4 is cyclic and that A(As) = 1, then A contains at most 2 elements. As the
capitulation kernel A, (L ;) — A, (L, ) contains at most 2 elements due to [Wash,

Theorem 10.3], we see that the 2-class group of L: 4 is uniformly bounded. O

In order to prove our main result (Theorem [8.1.1) we will also need [C-A-Z,
Theorem 5] and |Cl, Theorem 1] which are summarized in the following Theorem.

Theorem 8.3.6. Let n > 1 and assume that d takes one of the following forms:
a) d = pq, for two distinct primes p and q congruent to 3 (mod 8).
b) d, is a prime congruent to 9 (mod 16).

Then the rank of the 2-class group of Ly, 4 is 2.

8.4 Proof of the Structure Theorem

We will first compute the cardinality of ho(L;j4) and then use this result to prove
Theorem [B.1.1]

Lemma 8.4.1. Let d be an odd positive square-free integer. We have:

a) ho(Lyq) = 2 - hao(—d), if d = pq, for two distinct primes p = 5 (mod 8) and
g =3 (mod 8).

b) ha(L1,4) = ha(—2d), if d = pq, for two distinct primes p = ¢ = 3 (mod 8) or
d = p for a prime p such that p=9 (mod 16) and (%)4 =1

Proof. The proof is basically a computation in units and class number formulas.

a) Denote by €9, the fundamental unit of the quadratic field Q(v/2pg). We have
E9pq = & + y+/2pq for some integers = and y. Since e3,, has a positive norm we
obtain 22 — 2pqy? = 1. Thus 22 — 1 = 2pqy?. Set y = y1ys for y; € Z. Assume
for a moment that

{ r+1 = 3
r¥F1l = 2pqys.

Then it follows that 1 = (%) = (%) = (%@) = (%) = (%) = —1,

which is impossible. So x +1 is not square in N. From the third and the fourth
item of [A-Z-T, Proposition 3.3], we deduce that ¢(IL; 4) = 4. By Kuroda’s class
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number formula (cf. [Wal, p. 201}), we have

hallag) = osa(La)ha(pa)ha(—pa)ha(2pa)ha(~2p)ha(2)ha(~2)ha(~1)

1

= ﬁq(ﬂq,d)hz(pq)hz(—pq)h2(2pq)hz(—2qp)
1

= 2—5-4-2-h2(—pq)-2-4

= 2-ha(—pq),

which proves the first claim.

b) Suppose now that d is the product of two primes p and ¢ that congruent to 3
mod 8 then we obtain the desired result by [A-C-Z2l, Corollary 2]. If d =pis a
prime congruent to 9 (mod 16) the result follows from the proof of Theorem 1
of [A-C-Z2, p. T7].

O
Now we have all ingredients to provide a partial proof of our first main Theorem:
Theorem 8.4.2. Let d be of one of the following forms:
e d =p be a prime congruent to 9 (mod 16) and assume that (%)4 =1.
e d = pq for two primes congruent to 3 (mod 8).

Let 2" = ho(—2d). Then for n > 1 the 2-class group of Ly, q is isomorphic to the group
727, x 7.2 " =27 In the projective limit we obtain Zy x Z./27.

Note that Theorem is point a) of Theorem

Proof. By Theorem [8.3.6] we know that the 2-rank of the 2-class group of Ly, 4 equals
2 for n > 1. Furthermore, we have A~ = 1 due to Theorem and ho(Li q) = 2"
by Lemma By Theorem the class number of ]L:; 4 1s odd for all n. As there
is no capitulation in A, according to Theorem and A\~ =1, we see that A, has
rank one for n large enough (see also Lemma . This implies that the second
generator of the 2-class group of LL,, 4 is a class of a ramified prime in L, 4 /]le' 4 As
the class number of IL:; 4 is odd, these ramified classes have order 2 and we obtain
that the 2-class group of L,, 4 is isomorphic to Z/27Z x Z /2.

Let E be the elementary A-module associated to As. Then according to [Wash,
page 282-283] vy, oE = 2vp,_1 oF for all n > 2. Indeed, vy 0 = Vpn—1Vn—1,0. As E has
Zo-rank 1, we know that T acts as 2v on E for some v € Zs. For n > 2 we have
Unmo1 = (T+ 1) —142. For n > 2 the term (T +1)2" ' —1=T2"" 4+ O(2T)
acts as 40" on E for some v’ € Zy. Hence, vy, ,—1 acts as 2(1 + 2v') = 2u on E for
some unit v € Zs and all n > 2.

Consequently,

|E/vaoE| = |E/2" Bl /v B| = 2"+
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for n > 1 and some constant ¢ > 1 independent of n. Note that we can rewrite
this as |E/vpoE| = 2"7¢. Since E has only one Zs-generator we can assume that
the pseudo-isomorphism ¢ : Ay, — E is surjective. The maximal finite submodule
of A is generated by the classes (¢p)nen of the ramified primes above 2. Let 7 be
a generator of Gal(LLjso/Lo,q). Then 7(¢;,) = ¢, as the primes above 2 are totally
ramified in Lo q/Lo4. It follows that T'c,, = 0. Using that 1, is coprime to the
characteristic ideal of A, for all n, we obtain for every n > 1 that the kernel of
¢ Aso/ Un0Aso = E/vy0E is isomorphic to the maximal finite submodule in A
and contains 2 elements. Let Y be such that A /Y = Ag. Then A, = Ax/vnoY
(see [Washl, page 281]). We obtain

|An| = Ao /Vn0Y | = |Aoc/Vn,0Acc| V040 /oY | = 2”“*1\1/7%01400/%0}/\ forn > 1.

As the maximal finite submodule in A is annihilated by v, ¢, we see that the size of
Un,0Aoso/VnoY is constant independent of n. Hence, we obtain that the 2-class group
of Ly, 4 is of size 2" for all n > 1. Using that ha(LLy 4) = 2", we obtain v = r — 1.
This yields 2 - 2ln — 9n+r=1 and we obtain l,, = n +r — 2. Noting that L, 4 is the
n-th step of the cyclotomic Zs-extension of LLg 4 finishes the proof of the first claim.
As the direct term Z /27 is norm coherent the second claim is immediate. O

Corollary 8.4.3. Let d be of one of the following two forms:

a) d=p a prime congruent to 9 (mod 16) and assume that (%)4 =1,

b) d = pq for two distinct primes congruent to 3 (mod 8).

If d takes the first form, set p = u®> — 202 where u and v are two positive integers such
that w =1 (mod ).

If d takes the second form set (%) =1 and let the integers X,Y, k,l and m be such that
2¢ = k2X2 +21XY 4+ 2mY? and p = I?> — 2k>m (see [Kd, p. 356] for their existence).
For all n > 1, we have:

a) If d is of the first form, then the 2-class group of Ly, 4 is isomorphic to Z./27 x
7./2" 17, if and only if (%)a=—1.
Outside of this particular case it is isomorphic to the group 7./27 x 7./]2" =27,
where 1 > 4 was defined in Theorem [8..2

b) If d is of the second form then the 2-class group of Ly 4 is isomorphic to the
group 7./27, x 7./]2" 7, if and only if (ﬁ) =—1.

Outside of this case it is isomorphic to 7./27 x 7./2" " =27, where r > 4 was
defined in Theorem[8.].3

Proof. By Lemma we know that ho(Lig) = ho(—2d). Since the 2-rank of
Cl(L1,4) equals 2 and |Cla(Ly, q)] # 4 (see [A-C-Z1, Theorem 5.7]) it follows that
ha(—2d) is divisible by 8. Thus if d is as in point a) [L-W 1, Theorem 2] shows that
ha(—2d) is not divisible by 16 and we obtain r = 3.

If d is in the second case then [Kal, pp. 356-357]) implies that ho(—2d) is not
divisible by 16 and again r = 3. Ul
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Let us give the following example for Corollary 1.

Example 8.4.4. e Setp =289, u=17 and v = 10. We have p = u®> — 2v° and
(%)4 = — (%)4 = 1. So the 2-class group of Ly, is isomorphic to 7,/27. x
Z.)2"YZ for alln > 1.

o Letp=11,¢q=19 k=1,1=3, m= -1, X =4 andY = 1. We have:
p =12 = 2k%m and 20 = kX2 + 20XY +2mY?. Since (2 ) = () = -1.
By Corollary 2-class group of Ly, is isomorphic to Z./27. x 7./]2" 7 for
alln > 1.

Now we finish the proof of Theorem [8.1.1

Theorem 8.4.5. Assume that d = pq is the product of two primes p = —q = 5
(mod 8) and 2" = 2-hao(—pq). Then for n > 1 the 2-class group of L, 4 is isomorphic
to 72717,

Note that this is point 2 of Theorem [8:1.1]

Proof. We know already from Theorem that the 2-class group of L, 4 is cyclic,
and by Theorem we know that A(Lg4) = 1. In particular, the module A, does
not contain a finite submodule and is hence isomorphic to its elementary module E.
Let Y be defined as in the proof of Theorem then there is no v, o-torsion and
we obtain that the size of vy, 0Ax/vp Y is constant independent of n. As before we

obtain |A,| = [Acc/Vn,0Acc||Vn,0Acc/VnoY | = 2n+d In particular, Iwasawa’s formula
holds for all n > 1. Hence, ha(Lj 4) = 2" = 2" and v = r — 1. From this the claim
follows. O

Corollary 8.4.6. Let d = pq be the product of two primes p and q such that p =
—q =5 (mod 8). Then for all n > 1, we have

a) If (g) = —1, the 2-class group of L, 4 is isomorphic to 7./2" 7.
b) If (2) =1 and (L)4 = 1, the 2-class group of Ly q is isomorphic to Z,/2"?7.

Outside of these two cases, the 2-class group of L, q is isomorphic to z/2"r 17,
where r > 4 was defined in Theorem [8.4.5

Proof. Assume that d is of the first form. By [Co-Hul 19.6 Corollary] we have
ho(—pq) = 2 (mod 4). Hence, r = 2. If d is of the second form we know that
Cly(Q(v/—d)) is cyclic and divisible by 4 [Qi 1, page 1427]. As p =5 mod 8 we see
that (%) = —1 and therefore (;%)4 = —1. Then (%) = —1 and [Qi 1, Theorem 3.9]
implies that hao(—pq) is not divisible by 8. Hence, ho(—pq) = 4 and r = 3. O

For the above corollary we provide the following

Example 8.4.7. o Letd=13-19. We have (%) = —1. So the 2-class group of
L, , is isomorphic to 7./2"1Z for alln > 1.
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o Letd=>5-11. We have (%) =1 and (%)4 = 1. So the 2-class group of Ly,
is isomorphic to Z./2"2Z for alln > 1.

Let now X', Y’ and Z be three positive integers satisfying the Legendre equation

pX? +qY? - 22 =0 (8.1)
such that
X' YN=W"'2)=Z,X"Y=0pY'2)=(¢,X'Z) =1, (8.2)
and
X" 0dd,Y" even and Z =1 (mod 4). (8.3)

(see [L-W2| for more details)

Corollary 8.4.8. Let d = pq be the product of two primes p and q satisfying p =
—q = 5 (mod 8), (2) =1 and (31)s = 1. Let X', Y’ and Z be three positive
integers satisfying equation 1) and the conditions 1} and |D If (%)4 # (2)2(/)’

the 2-class group of Ly, q is isomorphic to 7.)2" 37, Otherwise, it is isomorphic to
7)2" Y7, for v > 5 defined as in Theorem |8.4.5.

Proof. Tt is immediate that the assumptions of Corollary are not satisfied.
Hence, we have r > 4. By [L-W2, Theorem 2] ha(—pq) is divisible by 16 if and
only if (%)4 = (%{’) Hence if (%)4 # (27)(’) we get 4 < r < 5. Otherwise we obtain
that 2-16 | 2" and r > 5. O

Now we close this section with some numerical examples illustrating the above
corollary

Example 8.4.9. e Letp=5,q=19 andd = —pq. Then X' =1,Y' =2 and
Z =9 are solutions of equation (8.1)) satisfying the condition (8.2) and (8.3).

Furthermore, (%)4 = —(%) = —1. Thus, the 2-class group of Ly, 4 is isomorphic
to /2"

e Letp =237, q =11 and d = —pq = —407. Then X' = 1, Y’ = 56518 and
Z = 187449 are solutions of equation (8.1)) satisfying the condition (8.2) and
(18.3]). Furthermore, (18?7149)4 = (ﬁ) = 1. Thus, the 2-class group of L, 4 is
isomorphic to Z./2"t"=1Z for some r > 5. Indeed with these settings r =5 (see
[L-W2, p. 230)).

8.5 Applications

Note that Theorem and Theorem only hold for CM fields containing the
4-th root of unity i. Therefore, we cannot compute the 2-class groups of layers of the
cyclotomic Zs-extension of imaginary quadratic fields using the same techniques as
in the proof of Theorem But we can still use Theorem to deduce results
on the class field tower of imaginary quadratic fields.
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Figure 8.1: Subfields of L,, 4/K;.

Theorem 8.5.1. Let d be a positive square-free integer and r such that 2" = ha(—2d).
Let Ko g = Q(v/—d) and denote by K,, q the n-th step of the cyclotomic Zsa-extension
of Ko q. Suppose that d takes one of the following forms:

a) d = pq, for two distinct primes p and q congruent to 3 (mod 8).

b) d=p, for a prime p=9 (mod 16) such that that (%)4 =1.
Then for all n > 1 the 2-class group of K,, 4 is isomorphic to Z/27 x 72" 7. In
the projective limit we obtain Zo X 7./27..

Note that this is point 1 of Theorem [8.1.2
Proof. Let K, = Q(Can+2) and Ky, g = Q(Cont2 + (o, vV—d) = Kf (v/=d) (see Figure

8.1). By the class number formula (cf. [Le 1l Proposition 3 and equation (1)]) we
have:

Quia M. heKa)he(Kna)ha(L, o)
QKnQKn,d NKnMKmd hQ(Kr—;—)Q

It is known that hy(KK,) = 1 and by Theorems and w we have ho(L ) =1
and ha(Ly q) = 277771 respectively. Therefore

h2(]]-4n,d) =

n+r— QLn
2 N 2 + 1 = W . hQ(Kn7d>. (84)
n n,d

It is also known that Qg = 1. Let k = Q(i,V/d). As the natural norm
N]Ll,d/k : WLLd/Wde - Wk/ng

is surjective, we obtain that @, , divides @ (cf. [Le 1, Proposition 1]). Since
Qr =1 (cf. [AZ, p. 19] and the proof of [A-C-Z2, Lemma 4]), we have Qr, = 1.
Since NL,, 4/L, 1.4 Wi, ./WE, — Wi,,_,/W{ _ is onto, it follows that Qr, , divides
QL,_, 4- Thus, by induction Qr,, , = 1.

Note that the extensions K, 4 are essentially ramified (cf. [Le 1, p. 349]) for
all n > 1. Since ug,, = 2 we obtain Qg,, = 1 by [Le 1, Theorem 1] . Hence,
ho (K, q) = 2"*" for all n > 1. Since the rank of the 2-class group of Kj 4 equals 2 (cf.
[IM-C-R], Proposition 4]) and the 2-class group of K,, 4 is of type (2,2°) for n large
enough (cf [Miz, p. 119]), we achieve the result. O
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Now using Theorem [8:4.5] we can finish the proof of Theorem [8.1.2]

Theorem 8.5.2. Assume that d = pq is the product of two primes p = —q = 5
(mod 8) and 2" =2 - ha(—pq). Let Ko 4 = Q(v/—d) and denote for n >3 by K, 4 the
n-th step of the cyclotomic Za-extension of Ko 4. Then for n > 1 the 2-class group of
K,,.q is isomorphic to Z,/2" "1 7.

Note that this is point 2 of Theorem [8:1.2]

Proof. We keep similar notations and proceed as in the proof of Theorem Note
that by [A-C-Z2| Proposition 3], we have ho(L; ;) = 2. So as above we obtain

ho(Loa) = QLig Ml ‘h2(Kn)h2(Kn,d)h2(L;d).
" Qr,QK, s MK, [K, 4 ha(K3¥)?
Thus,
2n+7‘71 _ 1 2" 1'h2(Kn,d)'2.

1-1 2n.2° 1

It follows that ho(K, 4) = 2ntr=1 for all n. Since Ly.q/Ky, 4 is ramified, it is obvi-
ous that 2-rank(Cl(K,, 4)) < 2-rank(Cl(L,4)) = 1 (Theorem [8.4.5). In particular,
Cl(K,,q) is cyclic. O
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