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Abstract

In the natural sciences, theory and experiment are in permanent interaction with
each other. Experimental data provide impulses for new theories and theories
suggest new experimental set-ups. Earlier, these two areas had been fairly balanced.
However, the rapid increase in performance in semiconductor technology makes
modern measurement methods possible. This leads currently to the accumulation
of gigantic amounts of data that no human being can process by sight and thought
alone. Thus, at the moment, the question of how such floods of data can ever be
condensed into models, refined theories, and finally into knowledge is sometimes
pushed into the background.

The work presented in this thesis addresses this issue with a focus on data from
non-linear systems. This study can be classified as belonging to the field of data-
driven modelling with a methodological focus on hybrid artificial neural networks.

The hybrid models presented here are combinations of artificial neural networks,
stochastic graphical models and numerical solvers for ordinary differential equations
with two goals: The first one is to predict the spatial-temporal dynamics, of the
non-linear system, from which the data are coming, over a long time as accurately
as possible. While the second one is to find more explicit representations for the
data, which are easier to interpret.

With respect to the prediction of the spatial-temporal dynamics of non-linear
systems, the idea was to employ a well-known artificial neural network architecture
that can encode the data in such a way that it can be well predicted by a stochastic
graphical model. A specific advantage of this approach is that the artificial neural
network has processing properties that can be used for tasks like state reconstruction.

This artificial neural network+stochastic graphical model hybrid was evaluated
on different non-linear systems and was able to achieve prediction horizons that
exceeded the former state of the art, sometimes substantially, in all cases.

The second hybrid, is a demonstration how an artificial neural network can be
combined with with an numerical equation solver for ordinary differential equations.
The goal was to characterise the underlying dynamics of a system as a vector field
based on a predefined system of equations given by the user. This approach was
applied (under the assumption of Hamilton equations), to the case of a multi agent
system and was able to predict a vector field describing the motions of the agents.



Therefore this hybrid approach is not trained to make a spatial-temporal prediction
as accurately as possible, but to parameterize the derivative of the hidden states
from the assumed equations (e.g. Hamilton equations) so that the predicted vector
field represents the data with the smallest possible error. In particular, this approach
can be used to validate whether assumptions about the physics (here we assumed
that the data can be represented by the Hamilton equations) are applicable.

Finally, a demonstration is given how to apply these two hybrids methods to
real experimental data from a Rayleigh-Bénard convection cell and the motion of
Dictyostelium discoideum (a soil-dwelling amoeba) responding to electric fields of
continuous current. For this purpose, the measured raw data must be transferred
into a format that is suitable for training the hybrid system. This has been achieved
with a newly-developed particle tracking method that is able to reconstruct even
high particle densities and assemble them into two or three dimensional trajectories.
These trajectories then serve as input for the here-introduced approaches.

In both experimental cases, the two hybrid approaches were able to reproduce
the date and make predictions that are easier to interpret than the reconstructed
data, for example due to the fact that they are essentially noise free.

In summary this thesis quantifies how different novel combinations of artificial
neural networks with stochastic graphical models and numerical equation solvers
for ordinary differential equations perform in predicting and explaining data from

a variety of complex non-linear systems.
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The complexity for minimum component costs has
increased at a rate of roughly a factor of two per
year. Certainly over the short term this rate can
be expected to continue, if not to increase. Over
the longer term, the rate of increase is a bit more
uncertain, although there is no reason to believe it
will not remain nearly constant for at least 10 years

— Gordon Moore 1965, reprinted in (Feynman |1965))
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1.1 Introductory words

This dissertation consists of several parts with the intention to present the manuscripts
that were written during my studies as well as some unpublished results. The first
chapter deals with the introduction and general motivation, especially the interplay
between theory, experiment and simulation. This is followed by the second part, in
which problems of numerical simulations are motivated. Then data-driven modelling
will be addressed, which in this work is achieved through machine learning, more
specifically the use of artificial neural networks and hybrid forms of them, to deal

with some of the problems in the cross-section of experiments, simulations and theory.



2 1.2. Motivation

The following chapters [2] [3|and [4] represent

Experiment

the core of the work and address three
Simulation

specific problems, namely processing data N\ _|. ./ . .

*(Herzog et al. 2021c; Herzog et al. 2020a),

Problems

learning non-linear dynamics for spatial _ :
[ Data-driven modelling J

and temporal prediction *(Herzog et al.

2019; Herzog et al. [2018; Herzog et al.
2020b), and finding symbolic representa- -~ N ~C= T~/ -
tions from data *(Herzog et al. |2021a)).

Chapter [5| shows the application of my

methods to real experimental data. For Conclusions
this purpose, a particle tracking method
has been developed in order to obtain a

ground truth that is as accurate as possible Figure 1.1: Structure overview: Intro-
duction chapter (1

*(Herzog et al. [2021b)). The last chapter [f] P

deals with the conclusion and an outlook.

The structure of the work is illustrated in the diagram in figure [1.1}

1.2 Motivation

In the last centuries, science has been based on two components: experiment and
theory. Starting with the observation of phenomena, science is supposed to deduce
the underlying principles and finally the general theory behind them. Observation
began with simple means, e.g. with magnifying glasses and telescopes. These tools
then developed over time into more complex tools such as stimulated emission
depletion microscopy, magnetic resonance imaging, space telescopes or particle
accelerators (just to name a few). All these tools have in common that they are
used to search for laws and rules behind the processes in nature in order to describe
and ultimately understand them. Science that observes, counts, measures, registers
and classifies falls within the realm of empiricism. Empiricists strive to obtain

the most accurate information possible about how processes in nature take place.
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However, this is not the only form of science. Experimental observations with tools
are under some circumstances not even enough, to describe nature in a generally
valid way. The reverse process is at least as important and has a long tradition:
laws and formulas that determine our current view of the world often have their
origin in theory. Recognising regularities and formulating them is the task of
theoreticians, who often choose the language of mathematics to describe things as
precisely as possible. This should be done in such a way that these mathematical
descriptions do not only agree with existing observations but can also predict the
outcome of experiments that have not yet been carried out. Be it Schrodinger, Euler,
Maxwell or Einstein; their equations and systems of equations were not developed
in laboratories with the help of measuring tools, but with logical considerations and
symbolic descriptions. The validity of Einstein’s general relativity theory was proven
only years later by observations and experiments. The case of Johannes Kepler
shows that it also works the other way round. He used Tycho Brahe’s extensive
observation material to formulate his planetary laws, and thus measurement results
led to new insights through theory building. The subdivision of science into groups
of experimentalists and theoreticians is common, although this classification is not
to be understood as an absolute binary classification. However, it is important
to recognise that these two groups complement each other in an enormous way.
With the advancing knowledge of science, the still unknown areas of nature are
becoming more complex and harder to describe. Systems that are present in the
everyday life, such as the human brain or the weather, are beyond direct theorising
through first principles. Many of the hypotheses and theories in this two fields
are therefore difficult or impossible to prove experimentally on the object. This
requires an even more pronounced interplay between theorists and experimentalists
in order to advance science in these fields.

If experiment and theory are considered the two pillars of science, a third
pillar is becoming increasingly important and has been indispensable in many
fields: numerical simulation. Computer models and simulations create virtual

representations of nature by applying the effects of the known laws of nature to
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almost any type and number of observation data and parameters. These models
have the advantage of being fully observable, parameters and boundary conditions
can be changed at will, and one has a control that is not there in reality. With
enough computing power and time one could observe every eventuality. At the same
time, these results can be matched with observations from the real world, allowing
the model to be adjusted, extended and improved again and again. The extension of
scientific methodology to include simulation allows a form of experimentation that
cannot be done or one that should not be done in reality. This types of numerical
experiments bring the field of theory and experiment closer together.

For such simulations to work, numerical models are needed that can be calculated
by computers. These numerical models are intended to reproduce real processes or
systems in a simplified manner, which often represents an abstraction or idealisation,
in order to be able to describe, explain or even predict the dynamics of the system
under investigation. Due to the need for numerical models new questions arise
that are at the core of many simulation technologies. The use of simulations
and the technologies based on them provides new challenges. Unfortunately most
simulation technologies are technically rather complex, being almost always computer
simulations consisting of increasingly detailed models, powerful algorithms and
powerful computing and storage architectures. This complexity keeps increasing
and will increase further and in order to understand this I would like to start with

a brief outline concerning simulation technologies.

1.2.1 History of simulation technologies

The mathematical beginnings of modelling, i.e. the basis for simulation, can
already be found in the so-called Buffon’s needle problem by Buffon and Laplace
in the 18th century (Aigner et al. |[2004)). In the needle problem, the probability
is to be calculated with which a needle lands on the line of a pre-drawn grid. A
solution to Buffon’s needle problem can be found by many repetitions of a random
experiment: describe the position in which the needle falls by a random variable

and count how many times it falls on one of the grid lines. This idea led to a
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basic simulation method: the so-called Monte Carlo method (MCM). Defined by
John von Neumann and Stanislaw Ulam in 1946 (Eckhardt [1987) this is a method
for calculating the probability or uncertainty of results based on a large number
of independent random experiments. This method is still essential for numerical
modelling and simulation today. For example, MCMs can even be used for the
solution of partial differential equations (PDE) (Barth et al. 2011). A PDE is
a differential equation that contains partial derivatives, i.e. equations involving
processes with more than one independent variable. Such equations are used for
the mathematical modelling of many physical processes. The solution theory of
partial differential equations has been largely researched for linear equations, but
still contains many gaps for non-linear equations. Therefore, these are solved
numerically by approaches such as MCMs.

The spatial and temporal discretisation of PDEs quickly became a new field
of interest for many researchers. As a consequence, only a few years later in the
1960s (Argyris et al. [1969) a methodological scheme had been developed that still
has great relevance today. Again, the goal was to solve PDEs, but without the
stochastic character of MCMs and computationally more efficient and in a scalable
manner. The method developed was the so-called finite element method (FEM),
initially developed for the simulation of solids, but today also used in many other
physical problems, such as weather forecasting or medical simulations.

However, it were not only the mathematical methods that improved rapidly. In
addition to this, also the ground-breaking technical developments in semiconductor
technology boosted computer technology. The complexity of integrated circuits
doubled after regular intervals (Moore 2006)), which often also implied a doubling
of computing power, this growth was crucial for the rise of simulation methods,
allowing to run simulations at a speed and with a complexity that today makes
models possible of dynamical systems from the nanoscale to supernovae.

The technical basis for this was provided by Konrad Zuse in the 1940s with the
73 (Alex 2000). The Z3 was the first functioning computer. Electromagnetic relays

had been used to perform the arithmetic operations, which were rather slow and



6 1.2. Motivation

resulted in a correspondingly low computing power. However, only a few years later
the first fully electronic digital universal computer ENIAC (Electronical Numerical
Integrator and Computer) (Haigh et al. [2016), had been presented in 1947at the
University of Pennsylvania with a tremendously increased computational power. The
first simulations on ENTAC were stochastic simulations of nuclear fusion, which were
the basis for the hydrogen bomb. Even though this was military research, a general
advantage is already apparent here: experiments that would be too dangerous or
ethically questionable can be tested in a simulation. Virtual test runs make it
possible to selectively tweak individual parameters and check effects without risk.
This made simulations attractive not only for military purposes, but also in all those
areas where costly or risky experiments could be minimised or even avoided this way.

Up to this point, simulations served less to describe already existing systems but
more to specifically design individual material functions or to forecast (un-)desired
behaviour. With the increasing power of computers since the 1970s, it became
possible to simulate increasingly complex scenarios and models - the most prominent
areas of application here are weather forecasting (Shuman [1989), election predictions
or the development of high-risk technologies. Another advantage of the increasing
computing power was the possibility to visualise the results of the simulations.
Often only the essential components of a simulation can be visualised, but this
can be crucial to lead to new insights, for example, as in the case of the recently
presented and so far most precise simulation of the formation of our universe
(Pillepich et al. 2019).

The hopes and partial promises of simulation as a scientific methodology are
thus very high, but none of this "comes for free". There are still many challenges

that need to be addressed to allow for effective use of simulations.

1.2.2 Challenges in the field of numerical simulations

As already explained above, simulations need numerical models. Only with those
it is possible to use simulations in cases where theory and experiment fall short.

Sometimes with this it is even possible to arrive at ethically safe verification of
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certain assumptions and scenarios, for example in the development of new drugs.
On the other hand, lack of a good model makes simulation mostly useless. In
some simple cases where the theory is already very well understood it is possible to
derived numerical models from first principles. Models consider only sub-aspects of
reality and are, as already mentioned, always an abstraction or idealisation. They
never describe reality with absolute accuracy, but capture certain relevant aspects
"sufficiently well", neglecting other details irrelevant to the question at hand. Seen
in this light, "all models are wrong", as the statistician George Box (1976) from
the University of Wisconsin in Madison provocatively put it.

To take up this provocation, one can consider weather forecasts. These forecasts
allow the approximate calculation of effects for which measurements are not yet
available. However, they are based on many simplifications and are, while in general
useful, not always correct. Weather modelling is one of the oldest application
fields for simulations, where countless experts have invested an immense amount
of time to come up with different models.

To further complicate matters, the balance between experiment and theory has
shifted over the last 20 years to an extent that in some cases rises the fears of
decoupling. The main reason for this is in my opinion that considerably more funding
has gone into experimental facilities such as accelerators, telescopes, sequencers
or computers than into theory building. In conjunction with the rapid increase
in performance in semiconductor technology, this has led to the accumulation of
gigantic amounts of data that no human being can process by sight and thought
alone. The question of how such floods of data can ever be condensed into theories,
refined models, and finally into knowledge, was often pushed into the background.

The work presented in this thesis addresses this issue with a focus on data
coming from non-linear systems. It can be classified as belonging to the field of
data-driven modelling and has a methodological focus on hybrid artificial neural
networks. This is summarised by the title "Data-driven modelling of non-linear

systems by means of artificial neural network hybrids".
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1.3 Machine learning

From the first successful use of ENIAC, it was clear that the need for programmers
has been a bottleneck. In order to relieve programmers of routine work, the use of
machine learning was formulated as a goal. Alan Turing considered the learning
ability of a computer to be the most important achievement. His recommendation
was to "educate" a computer, so that it improves its performance, since it is impossi-
ble to program everything (Turing et al. [1997). In 1957, Alonzo Church defined the
task to synthesise a circuit from mathematical requirements (Friedman |1963). This
later became known as Church’s problem. It was one of the earliest descriptions of
program synthesis and this led to the concept of machine learning being narrowed

down to the automatic acquisition of rules or the improvement of rule sets.

1.3.1 Learning

When talking about machine learning, the question of what one defines as learning
arises quite quickly. As simple as this question sounds, problems became visible
immediately after the first attempts at a definition.

A well-known definition by Simon (1983)) is:

Definition 1.3.1 (Simons definition of learning (Simon |[1983))). Learning denotes
changes in the system that are adaptive in the sense that they enable the system
to do the same task or tasks drawn from the same population more efficiently and

more effectively the next time.

This has led to two points of criticism. It covers phenomena that are not
usually called learning while at the same time it does not cover all phenomena
attributed to learning. An example of how learning is not the only reason for
improved performance comes from Michalski (2002). If the task is to cut something,
performance is improved by taking a sharper knife, this could also happen for
coincidental reasons. Based on Simons definition, this would be a learning process.
On the other hand, the realisation that cutting is more efficient with a sharper knife

would indeed be a learning process. According to Simon’s definition, the ability of
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programmes to learn could be demonstrated by running the same programme on a
faster computer. The system, computer and programme, would then solve the same
task faster. But it is obvious that this is not learning. Learning as such is a more
complex process, Michalski gives a drastic example that performance reduction can
be a learning outcome (Michalski [2002)). One could learn how to do less and still
look equally busy. Michalski, thus, wants to raise awareness of the goal-dependency
of the concept of performance. Depending on how one defines the task, this may or
may not fall under Simon’s definition. Scott in 1983 argues against performance
measurements in the definition of learning (Shalin et al.|1988). He gives the example
of a walker in a city that is still unknown to him, who passes by the public library.
While he perceives it, he learns something about the city without having any task
for which he would have to know whether and where there is a library. Only when
someone else asks the walker for direction to the library than the walker uses what
he has learned. But even without the question of direction by someone else, the
walker has learned. The walker learns regardless of whether it is tested. Based on

this, Scott defines in 1983 learning without a given performance measure:

Definition 1.3.2 (Scotts definition of learning (Shalin et al. [1988])). Learning is a
process by which a system builds a retrievable representation of past interactions

with its environment.

Thus, performance is potentially observable, because the new representation is
retrievable. However, the learning itself is independent of whether its result is ever
needed. Nor is a reduction in performance through learning ruled out. For example,
someone who knows only one statement about something when asked about it might
be able to answer more quickly than someone who has to search for the right one

from a wealth of information. Later in 1986, Michalskis definition is similar:

Definition 1.3.3 (Michalski definition of learning (Michalski 2002)). Learning is

the construction or modification of representations of experience.
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Both definitions presuppose a process that uses representations. The extent to
which this is built up or changed through learning remains open. Even from this
brief discussion of the definition of learning, it is clear that learning is similarly
difficult to grasp as intelligence. We are left with our colloquial understanding of
what learning is for us as a suggestion and a guide.

Machine learning, like all other sub-fields of artificial intelligence, has three
different motivations: a cognitive-scientific, a theoretical-technical, and a practical,
application-oriented one. The work here focuses in particular on the last two points,

where inductive conclusions are particularly important.

1.3.2 Data-driven modelling as an application of machine
learning

For us humans (and for scientific work), the formation of concepts can be divided,
very crudely and naive, into two phenomena: aggregation and characterisation
(or definition). Aggregation groups objects, events and facts of the world into
classes or categories. A category is the extension of a concept. Characterisation
describes a category so that it can be decided for new objects in which category
they belong. The intentional description of the category thus serves to determine
the class membership. An object is recognised as an example of a concept if the
characterisation of the concept covers the object. A concept is a mental, cognitive
unit that refers to a category. Leading to the chain of aggregation, characterisation
and classification which is a kind of recognition, finally leading to theory building.

The extraction of this kind of knowledge from observable data with the intention
of modelling is called data-driven modelling.

Machine learning is predominantly used to extract a set of rules from data or to
improve a given set of rules. The rules are then either used directly by humans or
embedded in a system and thus made available to its users, making it possible to
inspect the data and get an overview (description). On the other hand, the rules can

be used to solve new cases (prediction). Both description and prediction with the
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application to dynamical systems are components of the investigations carried out

here. For this purpose, the concept of a dynamical system should also be discussed.

1.4 Dynamical systems

A dynamical system can be defined as a deterministic mathematical concept,
consisting of a state space, a set of times and a family of evolution functions, to
describe the evolution of system states through time. Time is either continuous or
discrete. If the time ¢ is continuous then a dynamical system typically consist of a

set of N first-order, autonomous, ordinary differential equations given by

dx(t)
— =F(x(t)),

= F(x(1)
where x € RY denotes the state vector. For the case that t is discrete a

dynamical system is given by a map
Xtt+1 = M(Xt>

In both cases F, M are the so-called evolution functions. A dynamical systems is
called non-linear if the evaluation functions F or M are non-linear. The evolution
of x over time ¢ results in a trajectory. In this thesis dynamical systems with
dissipative structures are considered. The asymptotic dynamics of this dissipative
systems is governed by attracting bounded subsets of the state space, like stable
fixed points, stable period orbits, attracting tori (quasi-periodic dynamics), and
chaotic (strange) attractors (characterized by aperiodic oscillations and sensitive

dependence on initial conditions).

1.5 Contribution

In order to support the process of theory and model building, algorithms that are
purely data-driven have been developed in this work. All these approaches are
based on artificial neural networks or are hybrid forms of them. The previous part
of this cumulative dissertation dealt with the introduction as well as the motivation

of the subject matter. These are the first two parts of figure [1.1]
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The following parts will now present several papers which form the core of this the-

sis:

1. Herzog, S., Zimmermann, R. S., Abele, J., and Parlitz, U. (2021c). “Recon-
structing Complex Cardiac Excitation Waves From Incomplete Data Using
Echo State Networks and Convolutional Autoencoders”. In: Frontiers in
Applied Mathematics and Statistics. accepted version 2020/12/07 - shown
in this work, published version 2021/03/18 - available online: https://www.
frontiersin.org/articles/10.3389/fams.2020.616584/full

2. Herzog, S., Tetzlaff, C., and Woérgoétter, F. (2020a). “Evolving artificial neural
networks with feedback”. In: Neural Networks : the official journal of the
International Neural Network Society 123, pp. 153-162

3. Herzog, S., Worgotter, F., and Parlitz, U. (2019). “Convolutional autoencoder
and conditional random fields hybrid for predicting spatial-temporal chaos”.

In: Chaos (Woodbury, N.Y.) 29.12

4. Herzog, S., Worgotter, F., and Parlitz, U. (2018). “Data-Driven Modeling
and Prediction of Complex Spatio-Temporal Dynamics in Excitable Media”.

In: Frontiers in Applied Mathematics and Statistics 4

5. Herzog, S. and Wagner, C. (2020b). “Development of Artificial Neural
Networks with Integrated Conditional Random Fields Capable of Predicting
Non-linear Dynamics of the Flow Around Cylinders”. In: New Results in Nu-

merical and Fxperimental Fluid Mechanics XII. Cham: Springer International

Publishing, pp. 71-79

6. Herzog, S., Schiepel, D., Guido, I., and Wagner, C. (2021b). “A probabilistic
particle tracking framework for guided and Brownian motion systems with

high particle densities”. submitted to Int J Comput Vis

7. Herzog, S. and Worgotter, F. (2021a). “Application of neural ordinary

differential equations to the prediction of multi-agent systems”. accepted


https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full
https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full
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for SWARM 2021 (to be considered for full publication in Artificial Life and
Robotics)

These works will be cited in my thesis marked with an "*" to point their specific

contribution out as required.
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My greatest concern was what to call it. I thought of
calling it information, but the word was overly used,
so I decided to call it uncertainty.

When I discussed it with John von Neumann, he had
a better idea. Von Neumann told me, "You should
call it entropy, for two reasons. In the first place
your uncertainty function has been used in statistical
mechanics under that name, so it already has a name.
In the second place, and more important, no one
really knows what entropy really is, so in a debate
you will always have the advantage.’

—Claude E. Shannon, reprinted in (Tribus et al.

1971a)
Data processing
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2.1 Introduction to artificial neural networks and

data processing

If no information about a system is available, model and theory building is not

possible, in which case data acquisition is necessary in the hope of obtaining

information about the system under study. However, collecting data does not mean

obtaining compelling information (more specific new knowledge). The process

of collecting data is exposed to many sources of interference, such that many

factors can play a role that ultimately determine whether it is possible to obtain

15
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information about the studied system, information that is necessary to form models,

models from which theories follow. One

Experiment

of these cases is that during the collection

of data, effects are also measured that

have nothing to do with the system under

observation and come from a different

source. In such a case, one often speaks of

noise. In addition to noise, there are also
other problems, for example the resolution - N~"""T "~/ -
(both spatially and temporally) may not

be sufficient to observe the system at a

Conclusions

level to obtain enough information to form
theories. Likewise, the system under obser-
vation may have characteristics that can
Figure 2.1: Structure overview: Data
only be partially observed. In the worst processing chapter
case, there may even be a combination
of all of these problems, which - alas -
happens often. The first publication in this thesis Herzog, S., Zimmermann, R. S.,
Abele, J., and Parlitz, U. (2021c). “Reconstructing Complex Cardiac Excitation
Waves From Incomplete Data Using Echo State Networks and Convolutional
Autoencoders”. In: Frontiers in Applied Mathematics and Statistics. accepted
version 2020/12/07 - shown in this work, published version 2021/03/18 - available
online: https://www.frontiersin.org/articles/10.3389/fams.2020.616584/
full deals with this question. In this paper, two artificial neuronal networks are
examined for their ability to reconstruct noisy, blurred, under-sampled data and
later on even to recover patterns from impaired observations.
Before the paper is presented, I would like to put it in relation to the introduction

and also the concept of learning should be more specified.


https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full
https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full
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2.1.1 Learning as function approximation

Many learning problems can be understood as function approximation. The goal is
to find a hypothesis that can be used to transfer one set of states to another set
of states. The first case presented in this chapter will be the case of predicting
a set of impalpable properties based on a set of observable ones. This can be
considered as state-space reconstruction. In chapter [3, the second case will be
discussed, where the goal will be to predict spatial-temporal dynamics. For both
cases pairs of examples of the function to be learned are needed. The hypothesis
that best approximates this function is sought. A hypothesis approximates the
objective function well if its predictions are fulfilled as often as possible. This

model can be formally written down as follows:

Definition 2.1.1. Assuming a generator G, that generates sample descriptions
x; € K, where K is some arbitrary space, based on a probability distribution
p(x;). An oracle O, that assigns a value y; = t (z;) to each example description z;
generated by G, in a hypothesis language LH. The goal is to find the hypothesis
h € LH, which minimises the following expression:
K|
R(h) = ;L (xi,h) - p(x;) .

p (x;) is the probability that the example x; is drawn from the example description
language. It is therefore important to make fewer errors on likely examples x; than
on unlikely examples. L (x;,h) is an error function (so-called loss function). It
describes the quality of the prediction of hypothesis h, for example z;. Based on
the form of L, one distinguishes between the following two tasks, among others:
Classification of examples into a fixed and given number of classes (e.g. classification
between cats and dogs). The following error function is normally used here, which
returns the value 1, if the prediction h (z;) is false (unequal to the true class of x;

denoted by t(z;).

L(zs,h) = {1 h(x;) # t(z;)
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The second task is the regression task, here O is supposed to approximate real-valued
function (e.g. prediction of stock prices). Often L here is the squared deviation of

the predicted value h(z) € R from the target value t(x) € R.
L (i, h) = (t () = h ()’

Direct minimisation of the expected error R(h) is not possible, because neither
p(x;) nor ¢t (x;) for all ¢ is known. However, examples drawn by the generator exist
using p (z;) for which we know ¢ (x;). These examples are used to approximate the
expected error R(h) with the observed error R,(h). The observed error for a set of
examples (z1,t(x1)),..., (z,,t(x,)) and a hypothesis h is calculated as:

Ro(h) =

1 n
ni4

Definition 2.1.2 (Empirical risk minimisation (ERM) learning). From this, the

following learning problem can be formulated. Given a set of examples

(x1,t(z1)) ..y (2, t (20))

and the hypothesis language LH. The objective is to find the hypothesis h € LH,

for which the observed error R,(h) is minimal.

These definitions, which are based on information theory, do not lose their

meaning for artificial neural networks.

2.2 Artificial neural networks

Learning often, but in artificial neural networks particularly, corresponds to empirical
risk minimisation. In the following, neural networks are treated from the point of
view of machine learning and no attempt is made to model biological processes in
the brain. In the field of machine learning an artificial neural network (ANN) is a
tuple of nodes, some given network structure, a set of weights, biases and activation

functions which process an input to an output, a more formal definition is given

in the appendix |A.1.1] Based on the network structure (as defined in|A.1.2)) and
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the weights, one gets the architecture of the ANN. Depending on the topological
network dynamics defined in ANNSs are often divided into recurrent and

feed-forward networks.

2.2.1 Convolutional neural networks

With the presentation of the AlexNet by Krizhevsky et al. (2012) ANNs gained
great attention. AlexNet is a variant of a feed-forward convolutional neural network
(CNN) design introduced by LeCun et al. (1989)) and further improved in (LeCun
et al. [1998). In many reports that appear in the media, CNNs are often mentioned
when talking about artificial neural networks. They are used in many areas like
in the field of radiology (Yamashita et al. 2018), epidemiological imaging for
image analysis (Ivanovska et al. 2019) but also speech recognition (Grefenstette
et al. 2014) and many more. As the name suggests, CNNs use convolutional

operations to process the input.

Definition 2.2.1 (Convolution). Let f, g : R? — R be two functions with [ | f|?dP <

oo and [ |g|*dP < oo. Then, the function

(9@ = [ )t —y)dy

is called convolution of f and g. For the discrete case, i.e. t € Z, the discrete
convolution is defined by
k
(f9)(t) == > FWg(t—y),
y=—k

where k& € N is the size of the convolution kernel used (k = £o0 is in theory also

possible).

These feed-forward networks were primarily developed to process static images,
like for image classification or labelling. As will be shown later, however, they
are also very useful for cases where fields or similar data can be displayed as
images. CNNs also have an architecture and this is decisive for which functions

the network can approximate and how.
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2.2.2 Autoencoder

For this and the next chapter, the feed-forward neural network has the architecture

of an autoencoder (AE) (Kramer 1991). AEs are structured in 3 parts:

1. The encoder part: This is the first part of the neural network and aims to

compress the input to a more compact representation.

2. The compact representation is the bottleneck of the AE and often called latent

space.

3. The third part of the network is the decoder part, it is the inverse function
of the encoder part and should transform the data back into the original

representation.

Bottleneck /
Latent space

Figure 2.2: Exemplary representation of a autoencoder neural network with convolutional
layers. This illustration was generated with software library of Igbal . The rectangles
in the light yellow are the convolutional-, the rectangles in orange are the pooling-layers.
These are simply layers that reduce the dimension, e.g. by always outputting only the
pixel with the largest intensity of the neighbouring pixels. The arrows in blue, which skip
over neighbouring layers are the so called residual connections.

The objective of these architectures is to learn an efficient encoding and other
useful properties (Goodfellow et al. 2016). This type of function approximation
(section , is very powerful and an elementary building block for the following
methods. A visualisation of this architecture is presented in figure However,

it only serves as an illustration. Connections that go beyond neighbouring layers

should also be noted, they are called residual connection (He et al. 2016). The
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hourglass-shaped structure of the autoencoder is characteristic for this architecture
and there are still some variations like stacked autoencoders (Vincent et al. 2010),
variational autoencoders (Kingma et al. 2019), transforming auto-encoders (Hinton

et al. |2011), just to name of few of them.

2.3 Publication: (Herzog et al. 2021c)

The first publication that is now presented is Herzog, S., Zimmermann, R. S., Abele,
J., and Parlitz, U. (2021c). “Reconstructing Complex Cardiac Excitation Waves
From Incomplete Data Using Echo State Networks and Convolutional Autoencoders”.
In: Frontiers in Applied Mathematics and Statistics. accepted version 2020/12/07
- shown in this work, published version 2021/03/18 - available online: https :
//www .frontiersin.org/articles/10.3389/fams.2020.616584/full. This
work had two intentions. The first was to see how well ANNs could be used to
represent data of non-linear systems. The second question was whether a feed-
forward network in the form of a convolutional autoencoder (CAE) or a recurrent
network in the form of an recurrent echo state network (ESN) is a better function
approximator to reconstruct noisy, blurred, under-sampled data and later on even
to recover patterns from impaired observation. For the synthetic data sets used to
evaluate both methods in *(Herzog et al. 2021¢) both networks generated satisfying
solutions clearly indicating that such data reconstruction tasks can be solved by

means of ANNs.


https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full
https://www.frontiersin.org/articles/10.3389/fams.2020.616584/full
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ABSTRACT

The mechanical contraction of the pumping heart is driven by electrical excitation waves running
across the heart muscle due to the excitable electrophysiology of heart cells. With cardiac
arrhythmias these waves turn into stable or chaotic spiral waves (also called rotors) whose
observation in the heart is very challenging. While mechanical motion can be measured in
3D using ultrasound, electrical activity can (so far) not be measured directly within the muscle
and with limited resolution on the heart surface, only. To bridge the gap between measurable
and not measurable quantities we use two approaches from machine learning, echo state
networks (ESNs) and convolutional autoencoders (CAEs), to solve two relevant data modelling
tasks in cardiac dynamics: Recovering excitation patterns from noisy, blurred or undersampled
observations and reconstructing complex electrical excitation waves from mechanical deformation.
For the synthetic data sets used to evaluate both methods we obtained satisfying solutions with
ESNs and good results with CAEs, both clearly indicating that the data reconstruction tasks can
in principle be solved by means of machine learning.

Keywords: reservoir computing, echo state networks, convolutional autoencoder, image enhancement, cross-prediction, cardiac

arrhythmias, excitable media, electro-mechanical coupling, cardiac imaging

1 INTRODUCTION

Cardiac arrhythmias, such as ventricular or atrial fibrillation, are electro-mechanical dysfunctions of the
heart that are associated with complex, chaotic spatio-temporal excitation waves within the heart muscle
resulting in incoherent mechanical contraction and a significant loss of pump function [1, 2, 3]. Ventricular
fibrillation (VF) is the most common deadly manifestation of a cardiac arrhythmia and requires immediate
defibrillation using high-energy electric shocks. Atrial fibrillation (AF) is the most common form of a
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cardiac arrhythmia, affecting 30 million patients worldwide. While not immediately life-threatening, AF is
considered to be responsible for 15% of strokes if left untreated. The structural substrate and functional
mechanisms that underlie the onset and perpetuation of VF and AF are not fully understood. It is generally
agreed that imaging of the cardiac electrical and mechanical function is key to an improved mechanistic
understanding of cardiac disease and the development of novel diagnosis and therapy. This has motivated
the development of non-invasive and invasive electrophysiological measurement and imaging modalities.
Electrical activity of the heart can (so far) be measured on its surface, only. Direct measurements can be
made in-vivo inside the heart using so-called basket catheters with typically 64 electrodes or in ex-vivo
experiments, where an extracted heart in a Langendorff perfusion set-up is kept beating and the cell
membrane voltage on the epicardial surface is made visible using fluorescent dyes (a method also known
as optical mapping) [4]. A method for indirect observation of electrical excitation waves is ECG imaging
where an array of EEG-electrodes is placed on the body surface and an (ill-posed) inverse problem is solved
to estimate the potential on the surface of the heart. Mechanical contraction and deformation of the heart
tissue can be studied in full 3D using ultrasound, in 2D using real-time MRT [5] or (on the surface only) by
motion tracking in Langendorff experiments.

The reconstruction of patterns of action potential wave propagation in cardiac tissue from ultrasound has
been introduced by Otani et al. in 2010 [6, 7]. They proposed to use ultrasound to visualise the patterns of
propagation of these waves through the mechanical deformations they induce and to reconstruct action
potential-induced active stress from the deformation. Provost et al. [8] introduced electromechanical wave
imaging to map the mechanical deformation of cardiac tissue at high temporal and spatial resolutions.
The observed deformations resulting from the electrical activation were found to be closely correlated
with electrical activation sequences. The cardiac excitation-contraction-coupling (ECC) [9] has also
been studied in optical mapping experiments in Langendorff-perfused isolated hearts [10, 11, 12]. Using
electromechanical optical mapping [12], it was shown that during ventricular tachyarrhythmias electrical
rotors introduce corresponding rotating mechanical waves. These co-existing electro-mechanical rotors
were observed on the epicardial surface of isolated Langendorff-perfused intact pig and rabbit using optical
mapping [13]. Using high-resolution ultrasound, these mechanical rotors were also observed inside the
ventricular wall during ventricular tachycardia and fibrillation [13].

All these measurement modalities are limited, in particular those suitable for in vivo applications.
Measurements with basket catheters are effectively undersampling the spatio-temporal wave pattern. Inverse
ECGs suffer from ill-posedness and required regularisation that may lead to loss of spatial resolution and
blurring. Limited spatial resolution is also an issue with ultrasound measurements, but they are currently
the only way to “look inside” the heart, albeit measuring only mechanical motion. Electrical excitation
waves inside the heart muscle are so far not accessible by any measurement modality available.

These limitations motivated the search for algorithms to reconstruct electro-mechanical wave dynamics
in cardiac tissue from measurable quantities. Berg et al. [14] devised synchronization-based system
identification of extended excitable media, in which model parameters are estimated by minimizing
the synchronization error. Using this approach, Lebert and Christoph [15] demonstrated that electro-
mechanic wave dynamics of excitable-deformable media can be recovered from a limited set of observables
using a synchronization-based data assimilation approach. Hoffman et al. reconstructed electrical wave
dynamics using ensemble Kalman filters [16, 17]. In an another approach, it was shown that echo state
networks [18] and deep convolutional neural networks [19, 20] provide excellent cross estimation results
for different variables of a mathematical model describing complex electrical excitation waves during
cardiac arrhythmias. Following this approach, Christoph and Lebert [21] demonstrated the reconstruction of
electrical excitation and active stress from deformation using a simulated deformable excitable medium. To
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continue this research and to address the general challenge of missing or impaired observations we consider
in this article two tasks: (i) recovering electrical excitation patterns from noisy, blurred or undersampled
observations and (ii) reconstructing electrical excitation waves from mechanical deformation. To solve the
corresponding data processing and cross-prediction tasks two machine learning methods are employed and
evaluated: echo state networks and convolutional autoencoders. Both algorithms are applied to synthetical
data generated by prototypical models for electrophysiology and electromechanical coupling.

2 METHODS

In this section we will first introduce in section 2.1 and section 2.2 the mathematical models describing
cardiac dynamics which were used to generate the example data for the two tasks to be solved: (i) recovering
electrical wave pattern from impaired observations and (ii) cross-predicting electrical excitation from
mechanical deformation. Then in section 2.3 both machine learning methods used for solving these
tasks, echo state networks (section 2.3.1) and convolutional autoencoders (section 2.3.2), will be briefly
introduced.

2.1 Recovering complex spatio-temporal wave patterns from impaired observations

For motivating, illustrating, and evaluating the employed methods for dealing with incomplete or distorted
observations we shall use spatio-temporal time series generated with the Bueno-Orovio-Cherry-Fenton
(BOCF) model [22] describing complex electrical excitation patterns in the heart during cardiac arrhythmias.
The BOCF model is a set of partial differential equations (PDEs) with four variables and will be introduced
in section 2.1.1. In section 2.1.2 a formal description of the data recovery tasks will be given.

2.1.1  Bueno-Orovio-Cherry-Fenton Model

Cardiac dynamics is controlled by electrical excitation waves triggering mechanical contractions of the
heart. In the case of cardiac arrhythmias like lethal ventricular fibrillation, wave break-up and complex
chaotic wave patterns occur resulting in significantly reduced pump performance of the heart. From the
broad range of mathematical models describing this spatio-temporal dynamics [23] we chose the Bueno-
Orovio-Cherry-Fenton (BOCF) model [22] to generated spatio-temporal time series that are used as a
benchmark to validate our approaches for reconstructing complex wave patterns in excitable media from
incomplete data. The BOCF model consists of four system variables whose evolution is given by four
(partial) differential equations

% =D -V*u— (Jsi+ Jpi + Jso)

B = L (1= Hlu=00) (v ) = e Hlu— 0 .
= = = 0)) (e —w) — H(u— 6,

% - 2%((1 + tanh (ks (u — uy))) — 29).

The variable u represents the continuum limit representation of the membrane voltage of cardiac cells
and the variables v, w, and s are gating variables controlling ionic transmembrane currents Jg;, J¢; and Js,
given by the equations
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1
Jsi = ——H(u — 0y)ws

Tsi
1
Jpi = —EUH(U —0y)(u — 0y)(uy — u) ()
1
Jso = T—O(u —uo)(1 — H(u—0y)) + aH(u — Ow)

Here H(-) denotes the Heaviside function and the currents depend on the following seven voltage
controlled variables

7= (1= H(u—0))7; + H(u—0;)7m,

— Uy)))

_ _ 1, _ _
Tw = 7_wl + 5(7_11)2 - Twl)(l + tanh(kw (u

_ 1
Tso = Tsol + 5(7-802 - Tsol)<1 + tanh(kso(u B u50>>>

Ts = (1 —H(u—0y))Ts1 + H(u — 0y)Ts2

o= (1= H(u—0,))701 + H(u — 0,) 702 3)
1, ifu<d,
Voo =
0, ifu>6;
Weo = (1 — H(u — 0))(1 — ——) + H(u — 0,)w..
Twoo

For simulating the dynamics we used the set of parameters given in Table 1 for which the BOCF model
was found [22] to exhibit excitation wave dynamics similar to the 7en Tusscher-Noble-Noble-Panfilov

(TNNP) model [24] describing human heart tissue.
Up 0 Ty 1150 | 7p 011 | 751 2.7342 | 74 3 Tol 6 | To2 6
U,  1.58 0 14506 | T, 70 | T 20 Tsol 43 Tsoz 0.2 | 74 2.8723
6y 03 | Two 007 |7, 60 |7 280 ks 2.0994 | wi, 0941 6, 0.015
us 09087 | 0,  0.015 w 65 | 0, 0006 | u, 0.03 | kg 2 |us 0.65

Table 1. TNNP model parameter values for the BOCF model [22].

Typical snapshots of the four variables during a chaotic evolution are shown in Figure 1. The spatio-
temporal chaotic dynamics of this system is actually transient chaos whose lifetime grows exponentially
with system size [25, 26]. To obtain chaotic dynamics with a sufficiently long lifetime the system has
been simulated on a domain of 512 x 512 grid points with a grid constant of Az = 1.0 space units and
a diffusion constant D = 0.2. Furthermore, an explicit Euler stepping in time with At = 0.1, a 5 point
approximation of the Laplace operator, and no-flux boundary conditions were used for solving the PDEs.

This is a provisional file, not the final typeset article
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Figure 1. Snapshots of the four fields u, v, w, s of the BOCF model Eq. (1) (from left to right).

112 2.1.2 Reconstruction tasks

113 Experimental measurements of the dynamics of a system of interest often allow only the observation of
114 some state variables (e.g., the membrane voltage) and may provide only incomplete or distorted information
115 about the measured observable. Typical limitations are (additive) measurement noise and low-spatial
116 resolution (due to the experimental conditions and/or the available hardware). Formally, measurements
117 impaired due to noise, blurring or undersampling can be described as follows: Let X,, € R"*¢ be the
118 measured data (here: snapshots of the field u) where r and c specify the two spatial dimensions. Each sample
119 X, withn =1,..., N corresponds to a true system output X/, € R”'*< that is assumed to be known only
120 during the training phase in terms of a training set D = {Z; = (X1,X/),...,Zy = (Xn,X/y)}. Note
121 that with coarse graining 7 < 7/ and ¢ < ¢/. The task is to predict the true system output X’ from impaired
122 observations X which belong to one of the following three cases:

123 1. Noisy data: To add noise each element of X' is replaced with probability p by 0 or 1 drawn from

124 a Bernoulli distribution B(0.5) (note that in our case X’ is given by the variable u of the BOCF
125 model which has a range of [0, 1]). To simulate different levels of noise different probabilities p =
126 0.1,0.2,...,0.9 are used to generate noisy data sets {X,, }. In the following p is called the noise level.
127 2. Blurred data: Date with reduced spatial resolution are obtained as Fourier low-pass filtered data
128 X = F~1(P™(F(X"))) where F and F~! denote the Fourier transform and its inverse, respectively,
129 and P is a projection where frequencies outside a radius m € [2,4,8, ..., 18] (Manhattan distance)
130 centered at frequency zero are set to zero.

131 3. Undersampled data: To generate undersampled date X’ is down-sampled R > 5 RT¥€ with r < ¢/
132 and ¢ < ¢ by accessing every 2'-th value of X', where i € [1, 7].

Figure 2 shows examples of the three types of impaired observations.

Figure 2. Snapshots of the three cases of impaired data based on v (from left to right: A: reference data u,
B: noisy data, C: blurred data, and D: undersampled data.)

Frontiers 5
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2.2 Predicting electrical excitation from mechanical contraction

To learn the relation between mechanical deformation and electrical excitation inverse modelling data
were generated by a conceptual electro-mechanical model consisting of an Aliev-Panfilov model describing
the electrical activity and a driven mass-spring-system [15].

2.2.1 Aliev-Panfilov Model

Specifically developed to mimic cardiac action potential in the myocardium, the Aliev-Panfilov model
is a modification of the FitzHugh-Nagumo model, which reproduces the characteristic shape of electric
pulses occurring in the heart [27]. It is given by a set of two differential equations,

ou

5 = V(D -Vu) — ku(u — a)(u — 1) — ww “4)

ov

i e(u,v) - (—v — ku(u —b—1)) (5)
€(u,v) = e + uffu

in which u and v are the normalised membrane voltage and the recovery variable, respectively, and a, b and
k are model parameters. The term V(D - Vu) accounts for the diffusion, in which the tensor D can be
used to model anisotropies in the myocardial tissue. In addition, the term €(u, v) is introduced to adjust
the shape of the restitution curve by modulating the parameters ; and 2. The computational advantage
of the Aliev-Panfilov model lies in its simplicity over other ion-flow-based models which allows shorter
runtimes and combined with the elastomechanical model, keeps computational costs fairly reasonable.
For this reason, the Aliev-Panfilov model was chosen for generating synthetic data from complex chaotic
electromechnical wave dynamics.

Within the heart muscle, the myocardium, cells contract upon electrical excitation through a passing action
potential. At this point it is important to note that muscle fibre contracts along its principal orientation
which has to be considered during the implementation of the mechanical part of the simulation. To couple
the mechanical contraction of the muscle fibre to electrical excitation of a cell, as an extension to the Aliev-
Panfilov model the active stress T, was introduced by Nash and Panfilov [28] which leads to contraction in
the principal orientation of the muscle fibre. The change of the active stress is described by

oTy,
S = erlu) - (kru—T) ©

where kr controls the strength of the build-up of active stress. The term €(u) regulates the influence of u on
T, for large u. In our simulations we use a smooth function introduced by Goktepe and Kuhl [29] given by

er(u) = erp + (€co — €r0) - exp (—exp (=&r - (u — o)) - (M

Here, {1 controls the steepness of the transition between €., and e7 o and u( denotes the potential threshold
for the activation of the active stress, with €5, < €7 to achieve a physiological time course [30].

2.2.2 Mass-Spring Damper System
The elasto-mechanical properties of the cardiac muscle fibre were implemented using a modified
two-dimensional mass-spring damper system [31]. For the current study the mass-spring system was
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implemented in two dimensions because this allows shorter runtimes and primarily serves as a proof-of-
principle for the evaluated reconstruction approach. In its two-dimensional form this mechanical model
might correspond best to a cut-out of the atrium’s wall, since there the muscle tissue is less than 4 mm
thick. However, this mass-spring system can easily be expanded to three dimensions (see [15]).

Placed on a regular lattice, one mechanical cell is made up of four particles x; at the corners connected by
structural springs and two sets of orthogonal springs connecting the centre of mass ', to each side of the
cell (see Figure 3). The springs in the middle of the cell are called axial springs, of which one is made to
be active (red). Here it is important to point out that one cell in the electrical model corresponds to one cell
in the mechanical mass-spring system. For setting the fibre orientation through the active axial spring, the
orientation parameter 1 € [0, 1] has been introduced, with which the four points of attachment ¢; can be
computed easily. This parameter can be set individually for each cell, so that various fibre orientations can
be modelled.

Figure 3. Two dimensional mass-
spring damper system with one
active spring modelling fibre
orientation (red) and one passive
spring (grey), the centre of mass
Zem, the four points of attachment
¢; to the structural springs and the
orientation parameter 7).

& i @ s @ 4 @

Using Zep, = i Z?:o Z; the forces from the passive spring j‘; and the active spring f; are obtained as

fi = =ki(ld; — Zemll = L0) - €5 , (8)
o . . l .
fa:_ka (HQa_CEcmH _Hz—:)‘Ta> *€q - (9)

Here [, k; and [, o, k, denote the resting lengths and spring constants of the passive and active spring,
respectively. From Equation (9) it can be seen that, upon a rise in active stress 7;, from Equation (6), the
active spring contracts and an inward force is generated. The parameter c, represents a scaling factor to
modulate the influence of the active stress. Through the orientation parameter the forces from the active
and passive spring can be redistributed to the corresponding partlcles at the corners. For example for ¢,
the force on xg would be fo =n fq1 and on z; it would amount to f1 (1—mn) fq1

In addition, the mechanical grid is held together by structural forces between the corner particles, which
can be computed using

fii = —kij (1Z — & — lij) - &5 | (10)
fi=—Fij (11)
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with [;; being the resting length between particle z; and z;.
Finally, with all the above forces acting on particle x; with mass m;, its motion is determined according to

dz; . dT;
migy = Y, fe-vg (12)
{aH{iHis}

with the sum > (a}j}Hij} fk of all relevant springs pulling or pushing the particle. The damping constant v
sets the strength of the damping to increase the stability of the mechanical system as a whole.

The area of each cell was calculated with a simple formula for a general quadrilateral using the positions of
its four corners. As a measure of contraction, the relative change of area

A(t)

AA(t) = —

-1 (13)
has been used. The numerical algorithm for solving the full set of electro-mechanical ODEs is summarized
in the appendix.

2.2.3 Reconstruction task

The inverse modelling data are generated by forward modelling M : u — AA using the output of
Equations (4) and (13). The task is to train an ESN or CAE to approximate M —1 . AA — w. To fulfill
this task we use the membrane voltages and the local deformations at all » x ¢ grid points sampled at
times ¢,,. The training data set D = {Z; = (X1,X/),...,Zy = (Xu, X/y)} thus consists of snapshots
X, € R™*¢and X/, € R"*¢ of the relative mechanical deformation A A(¢,,) and the membrane voltage
u(t,), respectively, and we aim at approximating M ! : X, — X/ with r, ¢ = 100.

2.3 Machine Learning Methods

In this section we will introduce the two machine learning approaches, echo state networks (ESN) [32]
and convolutional autoencoders (CAE) [33], that will be applied to solve the reconstruction tasks defined
in section 2.1.2 and section 2.1.2.

2.3.1 Echo State Network

Echo state networks have been introduced in 2001 by H. Jaeger [32] as a simplified type of recurrent
neural network, in which the weights describing the strength of the connections within the network are
fixed. In its general composition an ESN subdivides into three sections [32], as illustrated in Figure 4.
First of all, there is the input layer into which the input signal u,, € RN« and a constant bias b;,, are
fed. Secondly, the intermediate reservoir consists of N nonlinear units and its state is given by 5, € RY.

And lastly, the output layer provides the output signal 4, € R™v. Here, n denotes the discrete time steps
n=1..T.

left side (colored in blue) is the input layer where the
input signal ,, and a constant bias b;,, are fed in. The
reservoir is represented as the large circle in the middle,
- where the small circles are the nodes. The output layer
A Cﬁ on the right (colored in orange) provides the reservoir

=0 signals s, that are part of the vector Z), = [boyt; Sn; Un)
>0 used for computing the output 4, = W1 T,.
-

O~ »O Figure 4. Schematic representation of an ESN. On the
o E Py<o

O
O
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The concatenated bias-input vector [b;,; i) is fed into to the reservoir through the input matrix W, €
RN*(1+Nw) Inside the reservoir connections are given by the weight matrix W € RV*Y  where N is the
reservoir size. Together with the input matrix it is possible to determine the state of the reservoir at time n
through the update rule

Sy = (1 — Oé)g'nfl + Oéfm(Wm[bm; ﬁn] + W§n) ) (14)

in which [-; -] denotes a concatenated vector. The input bias b;,, as well as the later introduced output bias
bout Were both set to 1 in the following. The parameter o € (0, 1] in Equation (14) represents the leaking
rate which controls how much of a neuron’s activation is carried over to the next time step and can be used
as a parameter to enhance predictions. As for the transfer function f;y,(-) we use tanh(-) and the network
dynamics has no feedback loop. Only the weights W ,,;; providing the output signal

?jn = Woutfn with fn = [bout; gn; ﬁn} (15)
are adapted during the training process by minimizing the cost function [34]

C(Wour) = Z 17,7 = WouZn||* + ATr(Wou Wy, (16)
n

where \ controls the impact of the regularization term that prevents overfitting [35]. The final output matrix
is given by the minimum of the cost function at W,,; = YXT(XXT +\1)~! where X and Y are matrices
whose columns are given by the vectors 7, and ¢/,"%¢, respectively.

Both matrices W;,, and W, are initialised with random values from the interval [—0.5,0.5]. Since in
experiments it turned out that more diverse dynamics could be modelled using networks in which only a
small percentage e of weights inside the reservoir remained non-zero [32], the weight matrix W is made

sparse with only a portion € of its values remaining non-zero. Furthermore, it is scaled by a factor m £

max |

where |fi;q2| denotes here the largest eigenvalue of W and p is a hyperparameter for optimizing the
performance (by ensuring the so-called echo state property [36]). To reduce the probability of drawing an
dysfunctional set of matrix entries the randomly generated matrices W;,, and W were selected from four
different realisations. To optimize the performance of the ESN five hyperparameters (NN, €, p, & and \) are
tuned.

Reservoir computing using ESNs for predicting chaotic dynamics has already been demonstrated in 2004
by Jaeger and Haas [37]. Since then many studies appeared analyzing and optimizing this approach (see,
for example, [38, 39, 40, 41, 42, 43, 44] and references cited therein). In particular, it has been pointed
out how reservoir computing exploits generalized synchronization of uni-directionally coupled systems
[45, 46].

Recently, applications of ESNs to spatio-temporal time series have been presented [47, 18] employing
many networks operating in parallel at different spatial locations based on the concept of (reconstructed)
local states [48]. In particular, using this mode of reservoir computing it was possible to perform a cross-
prediction between the four different variables of the BOCF model [18]. Therefore, for the current task
of reconstructing data from impaired observations we build on the previous ESN design and modelling
procedure. For each pixel an ESN is trained receiving input from neighbouring pixels, only, representing
the local state at the location of the reference pixel as illustrated in Figure 5. This design introduces two
new hyperparameters ¢ and Ao to the default ESN, where ¢ is the size of the stencil to define the local
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state and Ao specifies the spatial distance of adjacent pixels included in the local state. Optimal values for
all hyperparameters are determined by a grid search.

Figure 5. Stencil for locally sampling data used as
input of the ESN operating at the location of the dark

blue pixel in the center. The stencil is characterized by ||
its width o and the spatial separation Ao of sampling Ao
points.

(o2

2.3.2 Convolutional autoencoder

A convolutional autoencoder [33] is a special architecture of a feed forward network (FFN) with
convolutional layers similar to convolutional neural networks (CNNs) [49]. Generally a CAE learns a
representation of the training set D with the purpose of dimensionality reduction. For each pair Z; =
(X, X;') € D the CAE is trained to perform a nonlinear transformation from the input representation of
X to the output representation of X/. Like CNNs a CAE is a partially locally connected feed forward
network, which is typically composed of the following layers:

e Convolutional layers: Convolution of the input by a kernel sliding over the input. The number of rows
and columns of the kernel are hyper-parameters, in this work they are set to be 3 x 3.

e Batch normalization layer: Normalization of the activations of the previous layer during training and
for each batch. Batch normalization allows the use of higher learning rates, being computationally
more efficient, and also acts as a regularizer [50].

e Leaky ReLU [51] layer: Leaky version of a rectified linear unit (ReLU) [52], such that:

ax forx < 0
v(z) =
x for x > 0.

e Max pooling layer: Sample-based operation for discretization based on a kernel that slides over the
input like the convolutional operator but only the maximum value of the kernel is passed to the next
layer. Width and height of the kernel are hyper-parameters (in this work 2 x 2). In contrast to the
convolutional layer a pooling layer is not trainable.

e Dropout layer: Regularization method to prevent overfitting where during training some weights are
set randomly to zero [53]. In this work the probability of setting the weights to zero is 0.05.

The eponymous part of the CAEs are the convolutional layers, a convolution of A = (a;;) € K™*" with a
kernel F' = (f;;) € K***, where k < n, is given by:

(k21 [k/2]

(Ax Flay = > > awyfi—a)(j—y), (a7)
i=—k/2] = /2]

withz,y € 1,...,n.If i — z— or j — y exceeds the range of A zero-padding is applied [54].
In this work two architectures are used. The first one employed to reconstruct the data from noisy, blurred
and inverse modelling data is illustrated in Figure 6. The architecture is the same for the tasks in section 2.1.2
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and section 2.2.3 but the sizes of X and X’ are different, with X, X’ € R512%%12 gpd X, X’ ¢ R100x100,
respectively. Due to the smaller input size, the data for the inverse modelling reconstruction is transformed
into a latent space with the size of 25 x 25. The second architecture is sketched in Figure 7 and deals with

the undersampled data reconstruction.
._’ 32 16 1
16 32

32

9G2X95¢2
CLSXZLS
CLSXCLS

'y
=]

CLSXCLS
a=
CLGXZLS
>
CLSXCLS
w
N
9G2X96¢7
w
N
8CLX8CL
79Xy9
o]
(=]
2EXTE
(2}
S
V9XV9
8ZLXBZL

48
64

o
'y

128

InputLayer Conv2D BatchNormalization LeakyReLU MaxPooling2D Dropout Conv2DTranspose Concatenate Split
Group1 Group 2 Group 3

Figure 6. Proposed autoencoder architecture for reconstruction of data from noisy or blurred input.
Each block is a set of layers. The values written vertically describe the dimension of the input for
each layer, e.g.: for noisy and blurred data » = 512, ¢ = 512 and for the inverse modelling data r =
100, ¢ = 100. The horizontally written values at the layers are the number of channels or number of filters.
Group 1 is an combination of layers, consisting of: Conv2D, BatchNormlization, LeakyReLLU, Conv2D,
BatchNormlization and LeakyReL U layers. Group 2 is an extension of Group 1 where a MaxPooling2D
and Dropout layer are placed before Group 1. Similar applies to Group 3, it consists of a Dropout layer
followed by the layers from Group 1 and finalized by a Conv2DTranspose layer follows. The architecture
was visualized with Net2Vis [55].

N (6)] (9] (&)} (6]

w w (.A) o)) [4)] —_ —_ ity ity
x x x x > x x x x
w w 0) (o)) N (6)] [6)} (8] (S}
N N N SN o —_ ity 'y —_
1 o N N N N

10
10 10 10 1
InputLayer Conv2D BatchNormalization LeakyRelLU MaxPooling2D Dropout Conv2DTranspose

Concatenate Split Group 1 Group 2 Group 3

Figure 7. Autoencoder architecture used for reconstruction from undersampled observations. Each block
is a set of layers. The layer labeling is the same as in Figure 6. Visualized with Net2Vis [55].

3 RESULTS

In the following both machine learning methods will be applied to two tasks: (i) Reconstructing electrical
excitation waves from noisy blurred and under sampled data (section 3.1) and (ii) Predicting electrical
excitation from mechanical contraction (section 3.2).
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3.1 Recovering complex spatio-temporal wave patterns from impaired observations

To benchmark both reconstruction methods, using ESNs and CAEs, we use time series generated by
the BOCF model introduced in section 2.1.1. The same data were used for both methods, consisting of
5002 samples in the training data set, 2501 samples in the validation data set, and 2497 samples in the
test data set. The sampling time of all time series equalled 10A¢ = 1. We considered nine cases of noisy
data (with different noise levels), ten cases of (differently) blurred data and seven examples of (spatially)
undersampled time series.
To determine the optimal ESN hyperparameters a grid search is performed as described in [18] using the
training and validation subsets of the data. This search consists of two stages: first, for each combination
of the local states’ hyperparameters ¢ and Ac as listed in Table 2 a grid search is performed to find the
optimal five hyperparameters of the ESN resulting in 37 sets of optimal hyperparameters. To make these
grid searches more feasible, they were performed just for a single input patch (area covered by the stencil,
see Fig. 5) in the spatial center of the training set and thus not use the full spatial data.

c Nolo Ao|loc Ac|loc ANAo|lo Aolo Ac|loc Ac| o Ac
25 2 |29 2 |33 2 [37 2 |41 2 |45 2 [49 4 [101 10
25 4 |29 7 |33 8 |37 4 |41 4 (45 4 |49 8 |101 20
25 8 |29 14 |33 16 |37 9 (41 8 |45 11 |49 16 | 101 25
25 24 |29 28 |33 32 |37 12 |41 20 (45 22 |49 24 | 101 50

37 18 |41 40 |45 44 |49 48
37 36

Table 2. The examined set of hyperparameters o and Ao for the local states.

In the second stage, for each of the 37 sets of optimal hyperparameters determined before (for each
combination of o and Ac), an ESN is trained on a larger subset of the training data and not just on a single
patch. Ideally, this step should be performed on the entire spatial domain of the training set, however, as we
did not notice significant differences in the results when the ESNs were trained on a spatial subset of size
250 x 250 to speed up the training process. Following the same methodology as in [18], for each pixel
from this spatial subset a single ESN is trained and then the obtained output matrices W+ of these ESNs
are averaged over all pixels. Compared to the procedure used in [18], the handling of boundary values has
been changed. As for boundary pixels fewer adjacent pixels exist than for those inside, the creation of local
states is obstructed, and boundary pixels require special treatment. In our previous work [18] individual
ESNs have been trained for the boundary pixels using local states of lower dimensionality. In the following
we use an alternative approach based on padding the boundary pixels by mirroring their values (motivated
by the no-flux boundary conditions used). In this way, local states can be formally defined for boundary
pixels in the same way as for inner pixels.

Next, the different optimal ESN's obtained for different stencils (o, Ac’) were evaluated by comparing their
performance on the validation subset. In this way optimal values for o and Ao were selected by choosing
the combination (o, Ac) with the lowest ¢, difference between the prediction and ground truth on the
validation set. This process yields an ESN whose hyperparameters and weights are optimized to yield
minimal {5 error. Finally, without training the network again on the entire training set, the optimal ESN
found before is used to perform the prediction on the entire test set. As a pre-processing step, both the input
and target data of the training, validation and test set are rescaled with min-max scaling, where the minimal
and maximal value are determined over all pixels of the training set.

The CAE was trained using the ADAM optimizer [56], implemented with TensorFlow [57] in version 2.3,
with early stopping when the validation loss has not improved at least by 1076 for 20 epochs. The learning
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rate was reduced by a factor of 0.2 when the loss metric stopped improving at least by 10~° for ten epochs.
Dropout was set to be 0.05 in all cases. As loss function the mean absolute error (MAE) was chosen:

N
1 ~
MAE = — § 1 ‘Xi ~ x|, (18)

1=

where NV is the number of elements in the data set, XZ- the network output, X; desired ground-truth and |.|
stands for the absolute values.

3.1.1 Noisy data

Figure 8 shows snapshots of the noisy input data, the corresponding ground truth, the outputs provided
by the CAE and the ESN, respectively, and the absolute values of their prediction errors with respect to
the ground truth. The evolution of the loss function during the training epochs is shown in Figure 9. In

Input Ground truth CAE Abs. diff. CAE Abs. diff. ESN

-1.5
128
256 -0.7
384

-0.0

-1.5
128
256 -0.7

384

-0.0

-1.5

-0.7

384

-0.0

S

128
256

<
o
m

1
25
512

Figure 8. Exemplary visualization of the input and output for both networks for data with different noise
levels p: A-F p = 0.1, G-L p = 0.5, and M-R p = 0.9. Comparing the absolute differences between the
prediction and the ground truth (D,J,P for the CAE and F,L,R for the ESN) one can see that the CAE is
less sensitive to noise. Note that the errors develop primarily on the fronts of the waves.

all cases the error decreases and the training converges, but the duration of the training depends on the
complexity of the case.

Figures 10 shows a comparison of the performance of the CAE and the ESN for noisy data with nine
different noise levels p = 0.1, ..., 0.9. While the mean absolute error of the CAE remains below 0.02, the
reconstruction error of the ESN increases from 0.06 for p = 0.1 to 0.18 for p = 0.9, the associated ESN
hyperparameter can be found in the appendix (Table 5).
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Figure 9. Evolution of the loss

function values over the epochs for
0.5 = noisy input data generated with noise
o — p = 0.1 train levels p = 0.1, p = 0.5, and p = 0.9
047 % === p=0.1val (compare Fig. 8). It can be seen that
' p = 0.5 train the training always ran up to the point
037 p=0.5val where early stopping, as defined in
02 | i —p = 0.9 train section 3.1, terminated it. The solid

" === p=0.9val lines are the values of the loss function
' during training on the training data,
while the dotted lines are the values
of the loss function obtained when
the trained model is applied to the
validation data. One epoch trained
approximately 110 seconds on a GTX
1080 Ti.

Mean absolute error

Figure 10. Comparison between CAE
and ESN performance with noisy
0.2 | FICAE input data showing boxplots of mean
IIESN % absolute errors (18) for different noise
0.15 .%. levels p € [0.1,0.2,...,0.9]. Each
_%_ .%. discrete value on the x- axis is assigned

+

0.1 _%_ to the boxes of the CAE and ESN,
+ + + where the ESN boxplots are coloured
in orange and the CNN boxplots are
. 04 & * coloured in blue. Note that for better
0ol *+ + 4 4 visibility the CAE boxes and the ESN
01 02 03 04 05 06 07 08 09 boxes a slightly shifted to the left and
Noise level p to the right, respectively. A tabular
overview of the values can be found

in the appendix (Table 4).

0.05 -

Mean absolute error

3.1.2 Blurred data

To evaluate the performance of CAE and ESN for recovering full resolution (ground truth) data from
blurred observations we consider nine cases where the radius m of Fourier low-pass filtering ranges from
m = 2 tom = 18 (in steps of 2). Figure 11 shows snapshots of reconstructions of the u-variable of the
BOCF model using CAE and ESN with filter parameters m = 20 (A-F), m = 14 (G-L), and m = 8 (M-R).
Similar to Figure 8 the errors are largest at fronts of the excitation waves, but in contrast to noisy images
the performances of CAE and ESN differ not much for blurred data. This observation is also confirmed by
a systematic comparison of the mean absolute errors of both methods for different manhatten distances m
given in Figure 12. The errors decrease with m because the larger m the less blurred are the input data of
the CAE or ESN (for hyperparameter see appendix (Table 6)). Figure 13 shows the evolution of the loss
function during training of the CAE.

3.1.3 Undersampled data

Figure 14 shows examples of data reconstructed from undersampled data. In total we considered seven
cases of undersampling by 2¢ pixels, where i ranges from s = 1 to i = 7. For i = 1 input images have a
resolution of X € R?°6%256 and for i = 7, X € R**%, In all cases the desired output (ground truth) X’
has a size of 512 x 512 pixels. The used hyperparameter for the ESN can be found in the appendix (Table 7).

This is a provisional file, not the final typeset article 14



Herzog et al. Reconstructing cardiac excitation waves

Input Ground tru<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>