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Chapter 1: General introduction 

 

1.1 N2O emissions from arable lands 

The increasing atmospheric nitrous oxide (N2O) concentration is among the most serious 

consequences of anthropogenic alteration of the global nitrogen (N) cycle (Bakken and Frostegard, 

2017). N2O was beside carbon dioxide (CO2), methane (CH4) the most well-known greenhouse gas 

(GHG) which was induced by human activity (IPCC, 2013). The global warming potential of N2O 

could be 265 time higher than CO2 on a 100-year basis (Myhre et al., 2013). Moreover, N2O is 

considered as the most important ozone destroyer in latest decades (Ravishankara et al., 2009). The 

atmospheric N2O concentration in 2017 was 330 ppb and increased by about 21% than pre-

industrial level (WMO, 2018). Globally, the largest source of N2O emissions were soil ecosystems, 

which was estimated at 6.8 Tg N2O-N yr-1, comprising 65% of total atmospheric N2O emission 

(IPCC, 2006). Among them were 4.2 Tg N2O-N yr-1 were derived from synthetic nitrogen 

fertilization and its indirect emissions.  

The most important indictors of N2O emission above all is the input of N in the soil and its 

subsequent availability, therefore emission factors (EF) was commonly used to construct most 

national GHG inventories (Shcherbak et al., 2014). EF of N2O is defined as the percentage of 

fertilizer N that is transformed into N2O emissions. Intergovernmental Panel on Climate Change 

(IPCC) suggests that synthetic fertilizer-induced N2O was round to 1%. The fertilizer application 

on a global scale is probably to increase, to feed the increasing world population (IPCC, 2006; van 

Beek et al., 2010). N2O emissions therefore are likely continue to increase in the coming decades 

(Reay et al., 2012). 

The most widely used synthetic N fertilizers are urea and urea-containing N fertilizers. Urea 

accounts for about 56% of the global production (Bremner, 2007; International Fertilizer Industry 

Association, 2013; Suter et al., 2016). Urea is a solid fertilizer with a high N content (46%). It can 

easily be stored and applied to crops and it can be added to the soil in combination with other N 

fertilizers. Calcium ammonium nitrate (CAN) was beside urea another important fertilizers. 

Ammonium nitrate mixed with urea was named urea ammonium nitrate (UAN), which is a liquid 
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N fertilizer consisting of 50% urea and 50% ammonium nitrate and ranging from 28 to 32% N by 

weight.  

The other side of the coin is the low N use efficiency (NUE). NUE in agriculture was usually lower 

than 50% by crops (Drury et al., 2017; Galloway et al., 2003; Sun et al., 2015). About 25% of the 

urea applied to the soil surface is converted to ammonia (NH3) and volatilized to the atmosphere 

(FAOSTAT, 2015). NH3 have an indirect impact on climate change, because of its relation with 

N2O, It is thought that about 1–2% of gaseous NH3 is converted into N2O (Wulf et al., 2002). 

Besides, NH3 is known to cause acidification and eutrophication of both soils and surface 

(Jongebreur and Voorburg, 1992; Simpson et al., 2012). Therefore, agricultural managements to 

increase the NUE along with crop yield, is in other way reducing N2O emissions from agriculture.  

1.2 N2O productions pathways in soil 

 

 

 

 

 

 

 

  

 

Fig. 1: The most important pathways of nitrous oxide production in arable lands (after Wrage et 

al., 2001, modified) 

The most dominant biological process forming N2O from mineral N substrates in arable lands are 

nitrification, denitrification (Bremner, 1997) and nitrifier denitrification (Wrage-Mönnig et al., 
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2018). In arable lands, nitrification-related pathways was considered as the principal sources of 

N2O emission under water-limited conditions. At higher water contents, denitrification became the 

major source of soil N2O emissions (Mathieu et al., 2006). The widely accepted threshold of 

aerobic and anaerobic conditions was 60% (Menéndez et al., 2012; Volpi et al., 2017). However, 

the “threshold” may shift by soil types, because soil physical properties, such as soil porosity and 

pore size distribution, which can affect the diffusion of O2 into the soil were determined by soil 

types (Butterbach-Bahl et al., 2013). There are other microbial processes, such as anaerobic 

ammonium oxidation (annammox) and dissimilatory nitrate reduction to ammonium (DNRA, or 

nitrate ammonification) are only occasionally important in particular cases. 

Nitrification is an aerobic process, which needs the presence of O2 that performed as a terminal 

electron acceptor (Zaman et al., 2012). In this process, Ammonium (NH4
+) was stepwise oxidized 

to nitrate (NO3
-) (NH3  NH2OH  NO2

-NO3
-).  Different groups of prokaryotes was involved 

in each steps. The first step was ammonia oxidation, was catalyzed by the ammonia 

monooxygenase (AMO), which was encoded by amoA gene. Two distinctive microbial groups 

participates ammonia oxidation, namely ammonia-oxidizing bacteria (AOB) and ammonia-

oxidizing archaea (AOA). (Hu et al., 2015). Ammonia-oxidation was considered as rate-limiting 

step of the whole nitrification process (Kowalchuk and Stephen, 2001). N2O was normally 

considered as a byproduct of nitrification (Hu et al., 2015).  

Nitrifier denitrification (NH3NH2OHNO2
-NON2O) was also ordered to nitrification-

related pathways in Hu et al. (2015), as long as the first step of nitrifier denitrification was also 

ammonia oxidation. Nitrifier denitrification was also supposed to counteract the toxic effect of 

nitrite (NO2
-) accumulation during nitrification, and to decrease the competition of NO2

- removal 

by nitrite-oxidizing bacteria (NOB) (Beaumont et al., 2004, 2002). Nitrifier denitrification can 

dominate N2O production under O2 limitation or variable O2-concentrations, and a high NO2
- 

concentration might plays a key role of nitrifier denitrification (Wrage-Mönnig et al., 2018). Soil 

temperature and organic C availability can also affect nitrifier denitrification, however, the 

mechanisms are not yet fully understood (Wrage-Mönnig et al., 2018). 

Denitrification was the most explored biological process involved in N2O production, it is widely 

agreed that denitrification was a major source of N2O emission, especially with a higher soil 
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moisture. In the denitrification pathway, denitrifying microorganisms use NO3
- as an electron 

acceptor and stepwise reduce it to gaseous N2. N2O was also considered as intermediaries resulted 

by incomplete denitrification. Therefore, reduce the N2O/N2 ratio of soil denitrification was a 

possible approach to reduce N2O emissions (Schlesinger, 2009).  

Each step of soil denitrification is regulated by enzymes such as NO3
-, nitrite (NO2

-), and N2O 

reductase that are encoded by different functional genes carried by microorganisms (Philippot et 

al., 2007). For instance, the first step was regulated by NO3
- reductase, periplasmic nitrate reductase 

is encoded by nap and membrane-bound NO3
- reductase is encoded by nar (Bru et al., 2007). NO2 

reductase has two functionally equivalent type, a copper- and a cytochrome cd1-containing NO2 

reductase are encoded by the nirK and nirS gene, respectively  (Braker et al., 2000; Henry et al., 

2004). The final step of denitrification, is catalyzed by N2O reductase which is encoded by the nos 

gene, controls the reduction of N2O to N2. nos-mediated N2O to N2 reduction is the only known 

microbial process to reduce N2O in the biosphere (Jones et al., 2013; Philippot et al., 2007). Thus, 

increased nos abundances in soils may indicate a more complete denitrification and low N2O/N2 

ratio, and possibly reduced N2O emission (Jones et al., 2013). Recently findings of microorganisms 

equipped with nos but not the other genes involved in denitrification, can be a valuable contributors 

to the soil N2O sink capacity (Jones et al., 2014). Apart bacterial denitrification, fungal 

denitrification was also reported as a major source of soil N2O emissions in various of studies 

(Shoun Hirofumi et al., 2012; Thamdrup, 2012). It was believed to be an important source of N2O 

emission,  because fungal genomes usually lack the nos gene, therefore N2O was the final product 

of many fungal denitrifiers (Baggs, 2011; Philippot et al., 2011).  

1.3 Enhanced efficiency fertilizers to mitigate N2O emission 

Good agricultural practice is a possible way to maximize N use efficiency, e.g. the correct 

application techniques, good timing and soil testing to determine the amount of fertilizer required. 

But agricultural practices always constrained by physical conditions. In last several decades, 

several enhanced efficiency fertilizers were developed to increase soil N availability and to 

decrease N loss (Chen et al., 2008; Li et al., 2018). A number of chemical products have been 

developed to delay the transformation of N in the soil, to better synchronize fertilizer N release 

with crop uptake (Li et al., 2018) and these can be added to urea and UAN. Two main categories 

of these slow-release products are urease inhibitors and nitrification inhibitors. 
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Urease inhibitors are usually added to urea, the aim of urease inhibitors is to reduce the activity of 

the urease enzyme and slow the rate of urea hydrolysis (Sommer et al., 2004). When urea is applied 

to the soil, it rapidly hydrolyzes to ammonium carbonate ((NH4)2CO3). (NH4)2CO3 is unstable and 

breaks down to NH3 and CO2. The NH3 is either absorbed by the soil or volatilizes. The hydrolysis 

reaction is catalyzed by urease enzyme. However, urease enzyme can be blocked by urease 

inhibitors. The conversion of urea to NH3 was delayed for a period of 1–2 weeks, allowing time 

for the incorporation of NH3 into the soil and utilized by plant uptake. The most effective 

compounds to inhibit urease were phosphoryl amides (Bremner and Chai, 1989; McCarty et al., 

1989). from that N-(n-butyl) thiophosphoric triamide (NBPT) was the most widely used product, 

and it was proved by many studies that it can effectively prevent the loss of NH3 (Drury et al., 2017; 

Liu et al., 2017; Mira et al., 2017; Silva et al., 2017; Tian et al., 2015). 

Nitrification inhibitors was intended to decrease the enzymatic activity of NH3 oxidizing bacteria 

(Ruser and Schulz, 2015). With the addition of nitrification inhibitors to urea, the conversion of 

ammonium ions (NH4
+) to NO3

− is prevented. Hence, soil NO3
- leaching and the production of N2O 

emissions from denitrification was also prevented. The most extensively studied compounds are 

nitrapyrin (Belser and Schmidt, 1981; Habibullah et al., 2018; Wolt, 2004; Zacherl and Amberger, 

1990), Dicyandiamide (DCD) (Di et al., 2014; Guo et al., 2014; Liu et al., 2017; Zaman et al., 2013) 

and 3,4-dimethylpyrazol-phosphate (DMPP) (Liu et al., 2015; Pasda et al., 2001; Rose et al., 2018; 

Shi et al., 2017). In Germany, Piadin (1H-1, 2, 4-triazole and 3-methylpyrazole) and Vizura 

(containing DMPP) are more often used commercial products. Although only a few studies focused 

on Piadin, but it has also been shown to be effective in reducing N2O emissions (Pietzner et al., 

2017; Wolf et al., 2014; Wu et al., 2017). 

1.4 Impact of plant on N2O emissions 

The presence of plant and its rhizosphere modifies the major factors regulating nitrification and 

denitrification: carbon, NO3
- and oxygen. It was estimated that 5-21% of photosynthesis 

assimilated carbon (C) is released into the soil as root exudates (Derrien et al., 2004; Nguyen, 2003). 

The intensity of C turnover processes in rhizosphere are estimated to be at least one order of 

magnitude greater than in the bulk soil (Kuzyakov, 2010). As root-released C served as an electron 

donor (Philippot et al., 2007), root exudates was also supposed to increase denitrification activity 

(Bijay-singh et al., 1988). Most of the root exudates were easily available for soil microbes, and 
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can be metabolized within a few hours (Fischer and Kuzyakov, 2010; Jones et al., 2005; Jones and 

Kielland, 2002; Kuzyakov and Xu, 2013). Therefore, soil microbial community, for example 

denitrifying microbes, can be several times greater in rhizosphere, compared to bulk soil (Chèneby 

et al., 2004; Herman et al., 2006). However, until now, how the diversity of denitrifiers and the 

expression of denitrification genes are affected by root exudates was still little understood (Henry 

et al., 2008) 

There was an intense competition for mineral N between plant roots and soil microorganisms 

(Kuzyakov and Xu, 2013). The availability of mineral N in soils is considered as the major factor 

limiting nitrification and denitrification (Philippot et al., 2007; Saggar et al., 2013). The uptake of 

ammonium (NH4
+) by plants can lead to strong depletion zones of NH4

+ in the rhizosphere (Orcutt, 

2000). In contrast, depletion zones of NO3
- in the rhizosphere are less pronounced, due to its high 

mobility within most soils (Kuzyakov and Xu, 2013). However, the concentration of NO3
- in soil 

can rapidly be decreased by root uptake (Tinker and Nye, 2000). Likewise, regulatory functions of 

soil NO3
- on denitrifying soil communities were reported from different ecosystems (Correa-

Galeote et al., 2017; Deiglmayr et al., 2006; Enwall et al., 2005). The effect of different soil NO3
- 

concentrations on the abundance and diversity of denitrifiers in soils, however, still remains to be 

elucidated (Correa-Galeote et al., 2017).  

The effect of plants on oxygen is more complex (Philippot et al., 2007). On the one hand, oxygen 

depleting zone emerges in the rhizosphere by respiration of the roots and soil microbes (Bakken, 

1988; Hayashi et al., 2015). On the other hand, soil gas exchange and oxygen concentration was 

increased, due the consumption of water by plant roots (Philippot et al., 2007). How the changed 

O2 concentration in rhizosphere affect soil denitrification, still received contradictory conclusions 

(Chantigny et al., 1996; Klemedtsson et al., 1987; Morley et al., 2008; Prade and Trolldenier, 1988). 

1.5 Objectives 

The present study aimed mitigating N2O emission in arable lands. Enhanced efficiency fertilizers 

were an important approach to achieve this goal, but the effectiveness suffers high uncertainty. 

Both incubation and field experiment are important tools to evaluate the effectiveness of urease 

and nitrification inhibitors, but both have their advantages and drawbacks. Hence, our objective 

are: 



 

9 

 

1. To evaluate the effectiveness of NBPT, Piadin and a new inhibitor NZONE MAX, on 

reducing NH3 and N2O emissions, under laboratory conditions. 

2. To assess the effect of DMPP and NBPT on grain yield and reduction of N2O emission in 

a wheat- wheat- oilseed rape rotation system, with a two-year field experiment. 

3. With the comparison of unplanted and planted soils, we try to understand how the presence 

of Lolium perenne affect soil C and N dynamics, N2O emissions, and soil denitrifying 

communities. 

 

1.6 Experimental concept 

The study includes both incubation and field experiments. The two-year field experiment was 

conducted on Reinshof agricultural research station, University of Goettingen, Lower Saxony, 

Germany (51°29‘50.3‘‘N, 9°55‘59.9‘‘E). Soil for incubation experiment was also collected from 

Reinshof research station. Mean annual precipitation: 651 ± 24 mm, mean annual temperature: 9.2 

± 0.1 °C (1981 – 2010, meteorological station at Goettingen, station ID: 1691, Germany's National 

Meteorological Service). The soil is classified as a Luvisol (IUSS, 2015) and the texture of the 

topsoil (0–25 cm) was classified into 61% silt, 23% sand, and 16% clay, with a 2% of total C. The 

bulk density is 1.3 g cm-3, the soil pH was 7.1 ± 0.1 in all measured samples. Gas collection use 

closed chamber methods. The chamber volume varies in different experiments, but the basic idea 

is with a closed, air-tight chamber inserted on the soil, soil emitted spur gas for example CO2, N2O 

and CH4 accumulates in the chamber, we collect the gas samples at 0, 20 and 40 min after the 

enclosure, then we measure CO2, N2O and CH4 concentration on gas chromatograph (GC), later 

we use linear regression (Parkin et al., 2012) to calculate the gas flux rates. In all experiments, soil 

samples were taken with auger, and then stored at -20°C until further analysis. Following 

parameters were measured later: Water filled pore space (WFPS), soil ammonium (NH4
+) and 

nitrite (NO3
-), soil pH, total C and N, dissolved organic carbon (DOC) analyses and the copy 

number of bacterial 16S rRNA genes, fungal 18S rRNA genes, narG, napA, nirK, nirS, nosZ clade 

I and nosZ clade II. 
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a b s t r a c t

Nitrogen (N) fertilizers increase agricultural yields, but also lead to the release of the
greenhouse gases nitrous oxide (N2O) and ammonia (NH3). This not only reduces the ef-
ficiency of N use, but also results in climate change and loss of biodiversity. The use of
nitrification inhibitors may improve the efficiency of N use and reduce the emission of
greenhouse gases. We tested three inhibitors (NZONE MAX, Piadin and N-(n-butyl) thio-
phosphoric triamide (NBPT)) added to two common N fertilizers (urea and urea ammo-
nium nitrate (UAN)) and determined emissions of CO2, N2O and NH3 to evaluate the
effectiveness of these three inhibitors and to improve our understanding of the soil ni-
trogen cycle. NBPT effectively reduced NH3 volatilization by 50% (from 3.0 g NH3-N m�2 in
urea alone to 1.4 g NH3-N m�2 in urea þ NBPT). Piadin decreased N2O emissions (from
0.98 g N2O-N m�2 in urea alone to 0.15 g N2O-N m�2 in urea þ Piadin and from 0.81 g N2O-
N m�2 in UAN alone to 0.39 g N2O-N m�2 in UAN þ Piadin) by inhibiting the conversion of
NH4

þ to NO3
�. However, although Piadin was found to be an effective nitrification inhibitor,

the risk of higher NH3 emissions (from 3.0 g NH3-N m�2 in urea alone to 4.5 g NH3-N m�2

in urea þ Piadin) with the addition of Piadin cannot be neglected in environmental and
economical evaluations.
© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Large-scale inputs of nitrogen (N) fertilizers in agriculture have increased crop yields worldwide, allowing global agri-
cultural production to keep pace with the rapidly growing population (Burney et al., 2010). The global use of N fertilizers is
unlikely to decrease while the world’s population continues to increase (Bakken and Frostegard, 2017; van Beek et al., 2010).
The most widely used synthetic N fertilizers are urea and urea-containing N fertilizers. Urea accounts for about 56% of the
global production of N fertilizers (Bremner, 2007; International Fertilizer Industry Association, 2013; Suter et al., 2016). Urea is
a solid fertilizer with a high N content (46%). It can be stored and applied to crops easily and it can be added to the soil in
combinationwith other N fertilizers. A common urea-containing fertilizer is urea ammonium nitrate (UAN), which is a liquid
N fertilizer consisting of 50% urea and 50% ammonium nitrate and ranging from 28% to 32% N by weight.

* Corresponding author.
E-mail address: haitao.wang@agr.uni-goettingen.de (H. Wang).

Contents lists available at ScienceDirect

Global Ecology and Conservation

journal homepage: http: / /www.elsevier .com/locate/gecco

https://doi.org/10.1016/j.gecco.2020.e00933
2351-9894/© 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.
0/).

Global Ecology and Conservation 22 (2020) e00933



The efficiency of Nuse is often low (Sun et al., 2015), and typically<50% of the applied N fertilizer can be used bya corn crop
owning to environmental andmanagement constraints (Drury et al., 2017). About 25% of the urea applied to the soil surface is
converted to ammonia (NH3) andvolatilized to theatmosphere (FAOSTAT, 2015); also, the rateofNH3volatilizationmaybeeven
higher at warm temperatures and under moist soil conditions (Camberato, 2017; Tasca et al., 2011). Such large losses of N not
only constitute an economic loss for farmers, but are also an important source of greenhouse gases. NH3 is known to cause
acidification and eutrophication of both soils and surface waters, and may also have an indirect impact on Earth’s climate
owning to its short lifetime in the atmosphere and its relationships with other climate-relevant gases, such as N2O (Pietzner
et al., 2017). It is estimated that about 1%e2% of volatilized NH3 is later on converted into N2O (Wulf et al., 2002). The effect
of the emission of N2O on the atmosphere might be one of the most serious environmental consequences of N fertilizer losses
(Bakken and Frostegard, 2017), as it contributes to both global warming and the depletion of the ozone layer (Erisman et al.,
2007; Ravishankara et al., 2009). About 70% of N2O and 90% of NH3 emissions are caused by agricultural activities (Boyer
et al., 2002; Zaman and Blennerhassett, 2010). Therefore, improvement in the efficiency of N use is not only a question for
policymakers aiming to meet the demands of the United Nations Framework Convention on Climate Change (the Kyoto Pro-
tocol) to estimate anthropogenic greenhouse gas emissions (UNFCCC, 1997), but may also increase profits for farmers.

To increase the efficiency of N use, in addition to good agricultural practices (e.g. the correct application techniques, good
timing and soil testing to determine the amounts of fertilizer required, whichmay be constrained by physical conditions), the
use of N stabilizers and nitrification inhibitors may potentially delay detrimental processes such as the volatilization of NH3,
the leaching of nitrate (NO3

�) and the reduction of N2O emissions. A number of chemical products have been developed to
delay the transformation of N, and these can be added to urea and UAN. These slow-release products are classified as (1)
urease inhibitors or (2) nitrification inhibitors (Franzen, 2017):

(1) Urease inhibitors. When urea is applied to the soil, it rapidly hydrolyzes to ammonium carbonate. Ammonium car-
bonate is unstable and breaks down to NH3 and CO2. The NH3 is either absorbed by the soil or volatilizes. The hydrolysis
reaction is determined by the urease enzyme, and urease inhibitors block this enzyme to prevent the conversion of urea
to NH3 for a period of 1e2 weeks, allowing time for the incorporation of urea into the soil by rainfall or other means.
Many reports have shown that N-(n-butyl) thiophosphoric triamide (NBPT) can effectively prevent the loss of NH3

(Drury et al., 2017; Liu et al., 2017; Mira et al., 2017; Silva et al., 2017; Tian et al., 2015).
(2) Nitrification inhibitors. The enzymatic activity of NH3 oxidizing bacteria is strongly affected by nitrification inhibitors

(Ruser and Schulz, 2015). With the addition of nitrification inhibitors to urea, the conversion of ammonium ions (NH4
þ)

to NO3
� is delayed, possibly also limiting N2O emissions from soil denitrification. Dicyandiamide (DCD) (Di et al., 2014;

Guo et al., 2014; Liu et al., 2017; Zaman et al., 2013) and 3,4-dimethylpyrazol-phosphate (DMPP) (Liu et al., 2015; Rose
et al., 2018; Shi et al., 2017) are the most researched compounds and are effective in reducing N2O emissions. In
Germany, however, Vizura (containing DMPP) and Piadin (1H-1, 2, 4-triazole and 3-methylpyrazole) are more often
used as nitrification inhibitors, and Piadin has also been shown to be effective in reducing N2O emissions (Pietzner
et al., 2017; Wolf et al., 2014; Wu et al., 2017).

To find new, effective chemical ingredients, novel fertilizer additives should also testeddfor example, NZONE MAX (also
called a penetrant/nitrogen management aid), which has only been mentioned in a few informal reports. NZONE MAX
contains 27.5% alkylarylpolyoxyethylene glycol, 7.25% calcium aminoethylpiperazine and 6.5% calcium heteropolysaccharides.
NZONE MAX is an ammonium stabilizer intended to open the exchange sites on the soil colloid and improve the attachment
of NH4

þ to soil colloids. Therefore the loss of N by volatilization, leaching and denitrification can be reduced.
Although there has been a wealth of studies on urease (e.g. NBPT) and nitrification (e.g. DMPP and DCD) inhibitors, new

compounds still require research. The effectiveness of inhibitors in reducing NH3 and N2O emissions in different types of soil
and in different climates is variable. As a result of the complex interactions between N2O and NH3 emissions, themitigation of
one gas fluxmay enhance the emission of another; so, apart from losses by leaching and runoff, both N2O and NH3 fluxes need
to be considered in environmental evaluations (Ferm et al., 2006;Webb et al., 2010). Therefore, more experimental data about
the emissions of NH3 and N2Owhen using new inhibitors are needed. To improve our knowledge of the environmental impact
of different inhibitors, we conducted a pot experiment using urea and UAN as N fertilizers, and using NBPT, Piadin and NZONE
MAX as N additives, and measured their effects on greenhouse gas emissions. We used analyses of CO2, N2O and NH3

emissions to evaluate the effectiveness of these three chemical additives in improving the efficiency of N use and their
environmental impact. Our hypotheses were: (1) the urease inhibitor NBPT can effectively reduce NH3 emissions; (2) the
nitrification inhibitor Piadin can effectively reduce N2O emissions; and (3) NZONE MAX will decrease NH3 volatilization and
N2O emissions when used as an additive.

2. Materials and methods

2.1. Soil properties and sample preparation

A loamy loess soil was collected from Reinshof agricultural research station, University of Goettingen, Lower Saxony,
Germany (51�29050.300N 9�55059.900E, 155m asl). The annual mean temperature and mean annual precipitation were 8.5 �C
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and 650 mm, respectively. The soil was classified as Luvisol (IUSS, 2015) and the texture of the topsoil (0e25 cm) is described
in Table 1 (R€omer et al., 2015). It had previously been used for a three-year field rotation consisting of winter barley (Hordeum
vulgare) (2013e2014), winter oilseed rape (Brassica napus) (2014e2015) and winter wheat (Triticum aestivum) (2015e2016).
The soil was collected on 4th April 2016 and stored in a container for three months before incubation. Before use, the soil was
passed through a 2-mm sieve. The soil taken from the field had a moisture content of 30% water-filled pore space (WFPS),
which was adjusted to a WFPS of 55% (equivalent to a 60% water holding capacity) at the start of the experiment. White
rectangular polypropylene buckets with dimensions of 0.39 m (length)� 0.29 m (width) x 0.27 m (height) and an air-tight lid
were used as the incubation system. The soil column thereinwas 16.5 cm high and consisted of three layers of soil adjusted to
a soil bulk density of 1.30 g cm�3. There was a 10-cm headspace above the soil surface when the air-tight lid was closed. The
soil was pre-incubated in the buckets at 25 �C for 5 days before the addition of fertilizers. All experiments were conducted
under the same controlled environmental conditions.

2.2. Experimental treatments

The experiment consisted of eight treatments (including CK, U, U þ NZ, U þ P, U þ NBPT, UAN, UAN þ NZ, UAN þ P,
described in Table 2) and four replicates. The total amount of N applied to each pot, except the control treatment, was 12 g N
m�2 (corresponding to 120 kg N ha�1). The calculated amount of fertilizer added to each pot was only 2.066 g of urea or
2.64 ml of UAN and therefore the required amount of inhibitors was very small. The inhibitors were bought in liquid form and
diluted according to the manufacturer’s recommendations. The fertilizers and diluted inhibitors for each pot were dissolved
in 7.5 ml of water and the required volume of liquid was applied evenly to the soil surface using a pipette.

2.3. Gas flux measurements

2.3.1. Measurement of CO2 and N2O emissions

Trace gas concentrations of gas samples were analyzed after manual gas sampling from each closed chamber. Lids on the
top of the buckets were sealed and samples were taken via silicon stoppers therein. Samples were taken using 60-ml syringes
and then 30 mL of gas was transferred into evacuated 12-ml Exetainer vials (Labco, Lampeter, UK). Samples were taken at 0,
20 and 40 min after the chambers had been sealed and measurements were taken each day during the first week, then every
two or three days for a period of one month. Gas samples were analyzed on a BRUKER SCION™ 456 gas chromatograph
(BRUKER, Bremen, Germany) equippedwith electron capture detection for analysis of N2O, a flame ionization detector for CH4

and a thermal conductivity detector for CO2 analysis. Flux rates were calculated with linear or non-linear regression of the gas
concentrationwith time (Parkin et al., 2012; Wang et al., 2013). Cumulative emissions were calculated by linear interpolation.

2.3.2. Measurement of NH3 emissions

NH3 emissions were determined by the Dr€ager tube method (Pacholski et al., 2006) using an X-act 5000 automatic tube
pump (Dr€ager, Kiel, Germany). Four gas collection cylinders were inserted into the soil surface within each bucket and
emitted gases were extracted through the tube pump and flushed through NH3 color indicator-equipped NH3 absorber tubes
(Dr€ager Safety, Lübeck, Germany). The measured concentrations were converted from ppm into absolute values (kg N ha�1)
and the NH3 fluxes were calculated as reported by Pacholski et al. (2006). Measurements were taken each day during the first
week, then every two or three days for a period of one month.

2.4. Additional parameters

On the first day of the experiment, the soil moisture was adjusted to a WFPS of 55% and fertilizer was added. This cor-
responds to typical spring timemoisture conditions when soils toleratemanagement measures such as fertilizer spreading by

Table 1

Soil properties (0e25 cm depth) of the soil used in the pot experiments, cited from Roemer et al. (2015).

Clay (%) Silt (%) Sand (%) Organic matter (%) Bulk density (g cm�3) pH (CaCl2)

16 61 23 2.0 1.30 7e7.2

Table 2

Total mineral N (g N m�2) additions and added inhibitors in different treatments.

CK U U þ NZ U þ P U þ NBPT UAN UAN þ NZ UAN þ P

NO3
�-N 0 0 0 0 3 3 3 3

NH4
�-N 0 12 12 12 9 9 9 9

Added Inhibitors 0 0 NZONE MAX Piadin NBPT 0 NZONE MAX Piadin

CK: control without fertilization, U: urea, NZ: NZONE MAX, P: Piadin, NBPT: N-(n-butyl) thiophosphoric triamide, UAN: urea ammonium nitrate.
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agricultural machinery. Themoisture decreased to aWFPS of 51% on day 5. Then, simulating a rainfall event, it was adjusted to
a WFPS of 80% to stimulate high N2O emission rates under oxygen depleted soil conditions. By the end of the experiment
WFPS had decreased to 60%.

Soil samples were taken before application of fertilizers and at the end of the experiment (30 days later) to determine the
soil moisture content and the concentration of mineral N (NO3

�, NH4
þ). 50 g soil samples were dispersed in 250 ml of

0.0125 mol L�1 CaCl2 solution, shaken for 1 h and filtered for later analysis with a Sanþþ continuous flow analyzer (Skalar
Analytical, Breda, The Netherlands).

2.5. Calculations and statistical analysis

Emission rates are expressed as arithmetic means ± the standard error of the mean of four replicates. Least significance
difference tests were used to check significant pairwise differences among the treatments. Statistical analyses were per-
formed using Statistica 11 (Dell, Round Rock, TX, USA), with p < 0.05 as the criterion for a statistical significance.

3. Results

3.1. CO2 emissions

The time course of the CO2 emissions showed that all added fertilizers induced a significant increase in respiration before
the simulated rainfall/irrigation (Fig. 1A and B). Before irrigation (<55% WFPS), all fertilized treatments had almost the same
CO2 emission rates, and only on day 2 and 3 did they differed from the control treatment. After irrigation to aWFPS of 80%, the
CO2 emissions were much lower, suggesting that the simulated irrigation affected the microbial activity (Fig. 1A and B). The
soil respiration rate began to increase again after a few days, and the differences between treatments were more distinct. In
the urea series, a reduction in CO2 emissions only occurred after addition of the nitrification inhibitor Piadin. The addition of
NZONEMAX and NBPT did not decrease the emission of CO2. In the UAN series, neither the addition of Piadin nor NZONEMAX
reduced CO2 emissions. In fact, even slightly higher emission rates were observed (Fig. 1A and B).

The treatment with urea plus Piadin (U þ P) resulted in significantly lower cumulative CO2 emissions (Fig. 2). They were
38% lower than the treatment without Piadin. The other inhibitors did not lead to significant reductions in cumulative CO2

emissions compared with the N fertilizer treatments without an inhibitor.

3.2. N2O emissions

N2O emissions were low in all treatments from the onset of fertilizer treatment to day 5. Upon irrigation theWFPS reached
80% at day 5, N2O fluxes increased strongly and the emissions from treatments Uþ P and UANþ P rose to significantly higher
levels than those of the other treatments (Fig. 3A and B). Fig. 3 (A and B) shows a remarkable reduction in N2O emissions in
treatments Uþ P and UANþ P after day 5. Cumulative emissions of N2O from soil treated with urea alone amounted to 0.98 g
N2O-Nm�2, whereas N2O emission fromUþ Pwas only 0.15 g N2O-Nm�2; therefore, the use of Piadin reduced N2O emissions
by >80% (Fig. 4). In the UAN series, the emissions from the UANþ P (0.39 g N2O-Nm�2) treatment was about 48% of that from
UAN alone (0.81 g N2O-N m�2). The cumulative N2O emissions from U þ NBPT (0.67 g N2O-N m�2) was 31% lower than from
the treatment with urea alone (0.98 g N2O-N m�2) (Fig. 4), although it was not significant at p < 0.05. The addition of NZONE
MAX did not show any reduction in N2O emissions in either fertilizer series. The emission rate was higher with ureaþNZONE
MAX (U þ NZ) than with urea alone (Fig. 4).

Fig. 1. Time course of CO2 emissions of different fertilizer treatments. A, urea series; B, UAN series. Error bars correspond to ±1 SE (n ¼ 4). CK: control without
fertilization, U: urea, NZ: NZONE MAX, P: Piadin, NBPT: N-(n-butyl) thiophosphoric triamide, UAN: urea ammonium nitrate.
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Fig. 2. Cumulative CO2 emissions of different fertilizer treatments. Error bars correspond to ±1 SE (n ¼ 4). Treatments labeled with the same letters did not show
statistically differences at the 0.05 probability level. CK: control without fertilization, U: urea, NZ: NZONE MAX, P: Piadin, NBPT: N-(n-butyl) thiophosphoric
triamide, UAN: urea ammonium nitrate.

Fig. 3. Time course of N2O emissions of different fertilizer treatments. A, urea series; B, UAN series. Error bars correspond to ±1 SE (n ¼ 4). CK: control without
fertilization, U: urea, NZ: NZONE MAX, P: Piadin, NBPT: N-(n-butyl) thiophosphoric triamide, UAN: urea ammonium nitrate.

Fig. 4. Cumulative N2O emissions of different fertilizer treatments. Error bars correspond to ±1 SE (n ¼ 4). Treatments labeled with the same letters did not show
statistically significant differences at the 0.05 probability level. CK: control without fertilization, U: urea, NZ: NZONE MAX, P: Piadin, NBPT: N-(n-butyl) thio-
phosphoric triamide, UAN: urea ammonium nitrate.
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3.3. NH3 emissions

Fig. 5 shows that all treatments resulted in a sharp increase in NH3 emissions after addition of fertilizers. In the urea series,
the emissions after the urea alone, Uþ NZ and Uþ P treatments showed similar time courses and reached a peak on the third
day (Fig. 5A and B). By contrast, the emissions in treatment U þ NBPT were much lower, with the peak value on day four. The
increase persisted for three days longer than in the other treatments. The peak emission after the U þ NBPT treatment was
only 0.27 g NH3-N m�2 d�1 on day 4, compared with 0.84, 0.84 and 0.96 g NH3-N m�2 d�1 at day 3 for the urea alone, U þ NZ
and U þ P treatments (Fig. 5A and B). The time courses of the emissions were similar for the three treatments in the UAN
series, with peak values at day 3. The peak emissions in the UAN, UAN þ NZ and UAN þ P treatments were 0.58, 0.61 and
0.69 g NH3-Nm�2 d�1, respectively. In contrast to CO2 and N2O fluxes therewas no response to the simulated irrigation on day
5 in any treatment.

Cumulative emissions of NH3 from the soil surfaces of the experimental pots in the urea treatment amounted to 3.4 g NH3-
N m�2 in 30 days (Fig. 6), minus the emission of 0.4 g NH3-N m�2 from the control treatment, which was considered as the
background emission from the original soil N pool. The emission related to the application of urea alone was therefore about
3 g NH3-N m�2. In relation to 12 g NH3-N m�2 fertilization, the rate of ammonium volatilization was thus 25% of the applied
urea-N. With addition of the urease inhibitor (U þ NBPT), the emission was reduced to 1.7 g NH3-N m�2 (the cumulative
emissionminus the background emission). Therefore, after the treatment with UþNBPT, the cumulative NH3 emissions were
reduced by ca. 50% relative to urea alone.

NH3 emissions from the Piadin þ fertilizer treatment were higher than for urea and UAN alone (Fig. 6). In the urea series,
the cumulative emission from the Uþ P treatment was 4.95 g NH3-N m�2, i.e. 44% more than after treatment with urea alone
(3.42 g NH3-Nm�2). In the UAN series, the cumulative emission of NH3 after treatment with UANþ P (2.83 g NH3-Nm�2) was
12% higher than after treatment with UAN alone (2.53 g NH3-N m�2).

Fig. 5. Time course of NH3 emissions of different fertilizer treatments. A, urea series; B, UAN series. Error bars correspond to ±1 SE (n ¼ 4). CK: control without
fertilization, U: urea, NZ: NZONE MAX, P: Piadin, NBPT: N-(n-butyl) thiophosphoric triamide, UAN: urea ammonium nitrate.

Fig. 6. Cumulative NH3 emissions of different fertilizer treatments. Error bars correspond to ±1 SE (n ¼ 4). Treatments labeled with the same letters did not show
statistically significant differences at the 0.05 probability level. CK: control without fertilization, U: urea, NZ: NZONE MAX, P: Piadin, NBPT: N-(n-butyl) thio-
phosphoric triamide, UAN: urea ammonium nitrate.

H. Wang et al. / Global Ecology and Conservation 22 (2020) e009336



3.4. NO3
�-N and NH4

þ-N remaining in the soil after 30 days

The mineral N in the soil samples was determined before the addition of the fertilizers and the concentrations of NO3
�-N

and NH4
þ-N were 6.80 and 0.23 g N m�2, respectively (Fig. 7A and B). Thirty days after the addition of 12 g N m�2 to all

treatments, the remaining soil NO3
�-N ranged from 7.7 g Nm�2 (Uþ P) to 14.6 g Nm�2 (UþNZ) and 2.8 g Nm�2 in the control

treatment (Fig. 7A). The soils treated with U þ P showed a lower but not significant NO3
�-N content than those treated with

urea alone. The NH4
þ-N remaining after treatment with U þ P (1.6 g NH3-N m�2) was significantly higher than that remaining

after the other treatments (<0.5 g NH3-N m�2) (Fig. 7B).

4. Discussion

4.1. CO2 emissions

The additional emission of CO2 from the soils treated with urea fertilizer was a result of two processes: the hydrolysis of
urea and induced heterotrophic microbial activity. During hydrolysis of urea, urea is cleaved into NH3 (2 � NH3) and carbon
dioxide (CO2) and this goes along with a net increase in the soil pH. In this experiment, the treatment with UAN alone (13.1 g
CO2-C m�2, Fig. 1) resulted in CO2 emissions that were 25% lower than the treatment with urea alone (17.3 g CO2-C m�2)
(p < 0.05). As N in UAN consists of only 50% urea-N that can be hydrolyzed, this figure indicates that, in both treatments, the
hydrolysis of urea made a considerable contribution to the volume of CO2 emitted.

The other source of CO2 is respiration resulting from the activity of heterotrophic microorganisms, such as the NH3-
oxidizing bacteria population (Kowles, 2018). All treatments showed a surge in the emission of CO2 after 24e72 h. The soil
moisture content was low (55%WFPS) during this time period and the temperature remained constant at 25 �C. Irrigation to a
WFPS of 80% on day 5 caused a dramatic decrease in the emission of CO2, after which the emission of CO2 increased slowly,
with a simultaneous decrease in theWFPS. Therefore it seems that at 55%WFPS conditions weremore favorable for microbial
respiration than 80% WFPS conditions. The observed decrease in CO2 emissions after treatment with urea and a nitrification
inhibitor has been reported previously (Florio et al., 2016; Maienza et al., 2014; Weiske et al., 2001). The decreased CO2

emissions after irrigation were mainly from i) disturbed microbial activity and ii) the slower diffusion rate of CO2 out of the
soil with a higher water content.

4.2. N2O emissions

N2O emissions were relatively low in all treatments during the first four days of the experiment, before irrigation at day 5.
However, the emissions increased rapidly to a high level after irrigation, suggesting that the increase in the soil moisture
content (WFPS) from 50% to 55% between days 0 and 5e80% at day 6 was the key driver of N2O emissions (Cardenas et al.,

Fig. 7. Nitrate and ammonium present in the soil samples before the application of fertilizer and after 30 days of application for the different treatments. Error
bars correspond to ±1 SE (n ¼ 4). Treatments labeled with the same letters did not show statistically significant differences at the 0.05 probability level. CK:
control without fertilization, U: urea, NZ: NZONE MAX, P: Piadin, NBPT: N-(n-butyl) thiophosphoric triamide, UAN: urea ammonium nitrate.
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2017; Yu et al., 2018; Zaman et al., 2013). It is widely accepted that soil moisture has an important impact on N2O emissions
and that a WFPS of 60% is the threshold between aerobic and anaerobic soil conditions (Men�endez et al., 2012). Soil moisture
below aWFPS of 60% is unfavorable for the emission of N2O. LowN2O emission rates have been observed previously in similar
studies reported by Men�endez et al. (2012) and Volpi et al. (2017).

Only a few earlier studies (Pietzner et al., 2017; Wolf et al., 2014; Wu et al., 2017) have evaluated 1H-1,2,4-triazole and 3-
methylpyrazole (Piadin) as a nitrification inhibitor. However, the results of these studies were similar to our findings, con-
firming that Piadin can significantly reduce N2O emissions. Research has also been carried out on other nitrification inhibitors
(e.g. DMPP, DCD and Nitrapyrin), demonstrating their effectiveness in reducing N2O emissions. As nitrification inhibitors aim
to suppress, reduce or delay the oxidation of NH4

þ to NO3
� in soils, our observations of reduced N2O fluxes in the treatments

with nitrification inhibitors were probably related to variations in the availability of the substrate (NO3
�) for denitrification.

Theymay also have been influenced by different contributions from the twomajor N2O-forming processes of nitrification and
denitrification (Zaman and Nguyen, 2012). In a number of studies (Guo et al., 2014; Yu et al., 2018; Zaman et al., 2013; Zaman
and Nguyen, 2012) the time courses of soil NH4

þ and NO3
� concentrations after application of fertilizers have shown that

treatment with nitrification inhibitors (DMPP or DCD) result in higher NH4
þ and lower NO3

� concentrations.
Cumulative emissions of N2O were high in all treatments in this study, except for the U þ P and UAN þ P treatments. This

suggests that the chosen incubation environment did favor denitrification, probably as a result of the high soil moisture
content (80% WFPS), high incubation temperature (25 �C) and high soil NO3

� content. The N2O emissions in studies under
similar conditions were predominantly from denitrification (Grave et al., 2018; Men�endez et al., 2012; Senbayram et al., 2012;
Luo et al., 2008), most likely as a result of limited nitrification due to the low availability of oxygen (Tian et al., 2015). The
lowest N2O emissions in our study were observed in the treatments with the lowest NO3

� concentrations in the soil (with
Piadin treatment), which is seen as further evidence of this assumption.

4.3. NH3 emissions

The release of large amounts of NH3 after the application of urea is a serious agricultural problem (Engel et al., 2017; Li
et al., 2015; Pacholski et al., 2018; Schraml et al., 2016; Sun et al., 2015; Tian et al., 2015). In this study, the U þ NBPT
treatment reduced NH3 fluxes by about 50%, which is in agreement with previously published work (Connell et al., 2011;
Drury et al., 2017;Mira et al., 2017; Suter et al., 2013). Themeta-analysis of Silva et al. (2017) showed that ureaþNBPT reduced
52% losses of NH3. The trend of reductionwas observed in soils over all classes of soil pH, organic carbon content and rate of N
addition. Moreover, the addition of NBPT to urea has also been suggested to be effective in increasing crop yields (Drury et al.,
2017; Silva et al., 2017).

As UAN is composed of urea and ammonium nitrate in a ratio of 1:1, the volatilization losses of NH3 from the group of UAN
treatments should theoretically be lower than those from the soils treated with the different urea fertilizers. This was
confirmed by our results. Although we did not include a UAN þ NBPT solution in this study, a number of other studies (Goos,
2012; Grant, 2013; Rajkovich et al., 2017) have shown that the addition of NBPT to UAN can significantly reduce NH3 losses
relative to the application of UAN alone.

By contrast, nitrification inhibitors tend to induce increased NH3 emissions because NH4
þ is available for extended periods

of time. The addition of Piadin to both groups of N fertilizers increased the cumulative NH3 emissions by 44% and 12%,
respectively, relative to urea or UAN alone. This increase in NH3 emissions agrees with earlier reports showing that nitrifi-
cation inhibitor treatments increased NH3 emissions from 3% to 65% (Fan et al., 2018; Ferm et al., 2006; Lam et al., 2018, 2017;
Pan et al., 2016; Qiao et al., 2015; Webb et al., 2010). However, Piadin performed well in reducing N2O emissions owing to
lower NO3

�-N concentrations in the soil. Therefore, the benefit of nitrification inhibitors in reducing N2O emissions has to be
judged against the higher risk of NH3 volatilization, or additional strategies need to be implemented to reduce NH3

volatilization.

4.4. Soil NO3
�-N and NH4

þ-N

The remaining mineral N was determined at the end of experiment. It was expected that large amounts of total mineral N
(NO3

�-N þ NH4
þ-N) would remain in the soil due to the absence of plants utilizing N and the shallow depth of the experiment

in the soil layer (16 cm). In addition, N leaching was impeded as a result of the use of water-tight incubation vessels.
Consequently, all the treatments (urea alone, U þ NZ, U þ NBPT, UAN and UAN þ NZ) showed residual mineral N of >10 g N
m�2. As the total amount of mineral N at the start of the experiment was 19 g N m�2 (12 g N m�2 fertilizer N and 7 g N m�2

initial soil mineral N), more than half of the original amount of N remained in the treated soils. The range of N losses in our
experiment was similar to previously reported experiments carried out under similar conditions (Wu et al., 2017; Zaman and
Nguyen, 2012). Some of the applied N not recovered as inorganic N was probably taken up by soil microbes and would have
been part of the soil organic N pool.

Nitrification inhibitors such as Piadin inhibit the oxidation of NH4
þ to NO3

�. In our study, the residual soil NH4
þ-N in U þ P

treatment was 1.6 g N m�2, whereas in all other treatments it was <0.5 g N m�2. The soil NO3
� concentration was still low at

the end of the incubation period of 30 days, accounting for only 7.7 g NO3
�-N m�2, which was the lowest of all treatments. In

the pot experiments of Goos and Johnson (1999) and Sassman (2014), conducted at 25 �C for tests of application rates of 15 g
NH4

�-N m�2, the half-life of soil NH4
þ after the application of urea alone and UAN alonewas 2e3 weeks. This is consistent with
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our study, in which the conversion of NH4
þ to NO3

� was almost complete 30 days after the addition of fertilizer. This process is
always clearly delayed in the presence of a nitrification inhibitor (Wu et al., 2017; Yu et al., 2018; Zaman et al., 2013).

4.5. Evaluation of the novel fertilizer additive NZONE MAX

We included the product NZONE MAX because this novel compound has been reported to be a powerful additive,
improving the efficiency of N fertilizers by improving the attachment of NH4

þ to soil colloids and preventing their volatili-
zation. However, we found that NZONE MAX was ineffective in reducing both NH3 and N2O emissions with our soil. Goos
(2012) and Harrel (2012) reported similar results. Our study clearly confirms that the addition of NZONE MAX to major
types of N fertilizer had no effect on the reduction of N losses by volatilization and denitrification and, based on final soil N
concentration in our incubation experiment, there was no indication of potential effects on NO3

� leaching. The impact of that
mechanismwould likely be dependent on soil texture. A soil with moderate to high clay content and/or organic matter would
probably already have sufficient CEC and readily retain ammonium. We refer that product may be more likely to have an
impact on emissions in a low CEC soil. Future studies should test if NZONE MAX increases the ammonium sorption capacity
(Venterea et al., 2015).

5. Conclusion

This laboratory study shows that NBPT is an effective urease inhibitor and reduces NH3 volatilization and probably also
N2O emissions. The nitrification inhibitor Piadin was also found to be effective in reducing N2O emissions. However, the
potential of increasing NH3 volatilization with the use of Piadin or similar nitrification inhibitors should not be neglected. In
our study, the novel additive NZONE MAX was found to be unsuitable for reducing greenhouse gas emissions and improving
the efficiency of fertilizer use. However, future studies should test this novel additive on soils with a lower clay content or
organic matter that limits NH4

þ attachment on soil colloids. Future studies also need to focus on improving management
methods, or on new chemical or biochemical additives.
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Abstract 

Nitrogen fertilizers are the major source of nitrous oxide (N2O) emissions from arable land. The 

addition of nitrification inhibitors to fertilizers may improve the nitrogen (N) use efficiency and 

reduce N2O emissions. However, it is still unclear how crop rotations affect nitrification and urease 

inhibitors to reduce N2O emissions. We conducted a field experiment with two-year winter wheat 

and one-year oilseed rape cultivation in Germany from 2016 to 2017. We applied five different 

fertilizer treatments: (1) a control treatment without fertilization (N0); (2) calcium ammonium 

nitrate (CAN); (3) ammonium sulfate nitrate with the nitrification inhibitor 3,4-dimethylepyrazole 

phosphate (ENTEC); (4) urea; and (5) urea with the urease inhibitor N-(n-butyl) thiophosphoric 

triamide (UTEC). Crop yield, grain and straw N content, and N2O fluxes were measured to assess 

yield-scaled N2O emissions under different treatments. We found that in all fertilized treatments, 

the aboveground N uptake of wheat after wheat was 199–203 kg N ha−1, which was much lower 

than that of wheat after oilseed rape (252–271 kg N ha−1). The apparent N recovery of oilseed rape 

(13–23%) was much lower than in wheat after wheat (63–66%). The enhanced-efficiency fertilizers 

increased aboveground N uptake by 0–5% compared to fertilizers without inhibitors. The oilseed 

rape field had the highest yield-scaled N2O emissions (18.0, 15.1, 16.7 and 15.6 g N2O-N kg−1 

aboveground N uptake in CAN, ENTEC, urea and UTEC, respectively). These results indicate that 

urease and nitrification inhibitors hold the potential to increase crop yield and reduce N2O 

emissions. Oilseed rape straw should be carefully managed to avoid high N2O emissions. We also 
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suggest that an optimized N application strategy might be a possible way to increase the efficiency 

of urease and nitrification inhibitors; for instance, by increasing the N application rate in wheat 

after wheat, but reducing it in oilseed rape.  

 

Keywords: crop rotation, mineral N concentration, yield, nitrification inhibitors, N fertilization, 

N2O emissions 

 

Introduction 

Nitrous oxide (N2O) is a potent greenhouse gas that absorbs longwave radiation (Granli and 

Bockman, 1994) and has a global warming potential 298 times higher than that of CO2 on a 100-

year timescale (IPCC, 2013; Myhre et al., 2013). N2O also contributes to the depletion of 

stratospheric ozone (Ravishankara et al., 2009). The atmospheric concentration of N2O in 2015 

was 330 ppb, 21% higher than pre-industrial levels (WMO, 2018). The uptake efficiency of 

nitrogen (N) fertilizer is usually <50% (Galloway et al., 2003) and losses of N from fertilizers have 

both economic and environmental impacts (Fowler et al., 2013; Prather and Hsu, 2010), with 

agriculture accounting for 60% of global anthropogenic N2O emissions (Bhatia et al., 2010). 

Enhanced-efficiency fertilizers coated with urease or nitrification inhibitors may be used to reduce 

the losses of N from soils (Lam et al., 2018; Wang et al., 2020). Soil N2O production relies on 

nitrate (NO3
−) and ammonium (NH4

+) provided by mineral or organic N (N fertilizer) (Ruser et al., 

2017). The dominant biological processes that produce N2O using mineral N substrates in soils are 

nitrification and denitrification (Bremner, 1997). Urease inhibitors reduce the activity of the urease 

enzyme and therefore slows the hydrolysis of urea, leading to a decrease in the volatilization of 

ammonia (NH3) from soils (Drury et al., 2017; Liu et al., 2017; Mira et al., 2017; Silva et al., 2017). 

N-(n-Butyl) thiophosphoric triamide (NBPT) is a very widely used urease inhibitor in arable soils 

(Tian et al., 2015). Nitrification inhibitors prevent the conversion of NH4
+ to NO3

− by decreasing 

the enzymatic activity of ammonium-oxidizing bacteria, leading to a reduction in nitrification and 

the emission of N2O from soils (Hu et al., 2015; Ruser and Schulz, 2015). 3,4-Dimethylpyrazole 

phosphate (DMPP) (Liu et al., 2015; Rose et al., 2018; Shi et al., 2017) and dicyandiamide (Di et 

al., 2014; Guo et al., 2014; Liu et al., 2017; Zaman et al., 2013) are very widely used nitrification 
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inhibitors to reduce N2O emissions and have been shown to be effective in increasing crop yields 

and reducing N2O emissions (Akiyama et al., 2010). 

Many incubation studies have focused on the effect of nitrification or urease inhibitors on soil N2O 

emissions (Cantarella et al., 2018; Tian et al., 2015). However, short-term incubation studies may 

lead to a misinterpretation of the environmental effects of N2O emissions. Firstly, neglecting 

freeze–thaw emissions would underestimate agricultural N2O emissions by 17 to 28% (Wagner-

Riddle et al., 2017). Secondly, N fertilizers with inhibitors are usually applied in spring, but it is 

still not clear how long their effects might last. The addition of nitrification inhibitors is assumed 

to reduce NO3
− leaching rates and therefore lead to a lower C/N ratio in plant residues that are left 

after cropping (Pfab et al., 2012). This may accelerate the mineralization of plant residues and 

promote the release of N2O in the post-harvest season (Köbke et al., 2018; Walter et al., 2015). 

Therefore, measurements of N2O emissions on an annual basis will provide more reliable 

information to support the mitigation potential of these inhibitors (Pfab et al., 2012). Since N 

fertilizers coated with nitrification or urease inhibitor can reduce N losses and may have the 

potential to increase crop yields (Abalos et al., 2014), we suggest that the reduction in yield-scaled 

N2O emissions (the annual cumulative N2O emissions per unit grain yield) from enhanced-

efficiency fertilizers would be more significant than the reduction in area-scaled N2O emissions.  

Winter oilseed rape (Brassica napus L.) and winter wheat (Triticum aestivum L.) are important 

crops in Germany. The area of winter oilseed rape in Germany in 2018 was twice that in 1990 

(FAOSTAT, 2018), and makes up >75% of transport biofuels in Europe (Hamelinek et al., 2014). 

Winter wheat has the highest yield potential in all cereals, and the cultivated area has reached 26.6% 

of the total arable land in Germany, which represents an increase by one-third in the last 30 years 

(DESTATIS, 2015). Continuous cropping of winter wheat could decrease soil fertility, grain yield, 

and yield stability (de Cárcer et al., 2019; Macholdt et al., 2020). Therefore, winter oilseed rape is 

recommended as a break crop. The grain yield of oilseed rape preceding winter wheat is usually 

higher than that of continuous cropping with a cereal (Angus et al., 2015; Sieling and Christen, 

2015; Weiser et al., 2018). The N surplus of winter oilseed rape cultivation is higher as a result of 

its low harvest index and large amount of crop residue (Bouchet et al., 2016; Sieling and Kage, 

2010). This high-N surplus can reduce the need for N fertilizer in the following winter wheat season 

and increase the grain yield. This might be a positive environmental impact on decreasing the 
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potential yield-scaled N2O emissions during a winter oilseed rape–winter wheat rotation. However, 

Sieling and Kage (2010) reported that the large N surplus after the harvest of winter oilseed rape 

cannot be used by the succeeding winter wheat crop before the winter season, and this large N pool 

would increase the risk of post-harvest N2O emissions (Köbke et al., 2018). Therefore, the effect 

of the preceding crop should also be taken into consideration when assessing annual N2O emissions. 

In this study, we measured soil N2O fluxes from two adjacent fields that were both grown with a 

wheat–wheat–oilseed rape rotation. In the first field, the preceding crop was oilseed rape in 2015, 

and the standing crop during the experiment was winter wheat in 2016 and 2017 (WW2016 and 

WW2017). In the second field, the standing crop during the measurement period was oilseed rape 

in 2017 (WR2017), which was preceded by two years of winter wheat in 2015 and 2016. We 

applied two common fertilizers (calcium ammonium nitrate (CAN) and urea) and two enhanced-

efficiency fertilizers (NBPT and DMPP) at each site, and also measured grain and straw yields and 

their N contents. Our main aim was to verify how crop rotation—here, wheat–wheat–oilseed rape 

rotation—affects the performance of the two inhibitors in terms of N2O emissions, crop yield, and 

yield-scaled N2O emissions. We hypothesized that the enhanced-efficiency fertilizers would (1) 

increase the crop yield and (2) reduce N2O emissions, compared to fertilizers without inhibitors, 

and (3) oilseed rape fields would have higher N2O emissions than wheat fields. 

 

Materials and methods 

Study site and field treatments 

This experiment was conducted at Reinshof, an experimental agricultural station of the University 

of Goettingen, Lower Saxony, Germany (51° 29 50.3 N, 9° 55 59.9 E). The annual mean 

temperature and annual precipitation are 9.2 ± 0.1°C and 651 ± 24 mm, respectively (1981–2010, 

meteorological station at Goettingen, station ID 1691, German Meteorological Service). The soil 

is classified as a Luvisol (IUSS Working Group WRB, 2006) with a bulk density of 1.3 g cm−3 and 

a pH of 7.0 in the top 20 cm of the soil profile. The soil texture consists of 16% clay, 61% silt, and 

23% sand, with an organic C content of 2% (Römer et al., 2015).  
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The crop rotation of this study was wheat–wheat–oilseed rape in a three-year cycle. Our experiment 

was conducted in two adjacent fields. For the first field, we conducted our measurements from 3 

March 2016 to 2 March 2018, and the field was cultivated with winter wheat (Triticum aestivum 

L.) in both years (WW2016 and WW2017), which was preceded by oilseed rape in 2015. For the 

adjacent field, we conducted our measurements from 3 March 2017 to 2 March 2018, and the field 

was cultivated with oilseed rape (Brassica napus L.) in 2017 (WR2017), which was preceded by 

two years of winter wheat in 2015 and 2016. A detailed description of the field management during 

the experimental period is shown in Fig. 1. Granulated fertilizers were broadcast onto the fields. 

After harvest, straw and stubble were left in the fields and the soil was ploughed to a depth of 25 

cm before next sowing.  

Fig. 1. Timetable and main field management. Measurements began on 1 March and continued for a full 

year. The winter wheat measurements lasted for two years and the oilseed rape was measured for one year. 

The two fields were in adjacent locations and had similar management. WW2016 refers to the winter wheat 

after oilseed rape in 2016; WW2017 to winter wheat after winter wheat in 2017; and WR2017 to winter 

oilseed rape after two years of winter wheat cultivation in 2017. 
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Five fertilization treatments were tested: control without N fertilizer input (N0), 180 kg N of CAN 

(76% NH4NO3 and 24% CaCO3, 26% N), 180 kg N of ENTEC26 (18.5% NH4
+ N and 7.5% NO3

− 

N with 0.15% DMPP; BASF, Ludwigshafen, Germany), 180 kg N of urea (NH2CONH2, 46% N), 

and 180 kg of UTEC46 (urea with added NBPT; BASF, Ludwigshafen, Germany). In treatments 

with fertilizer input, 120 kg of N was applied as basal fertilizer in March (14 March 2016 and 10 

March 2017, respectively) and 60 kg of N as top-dressing in May (20 May 2016 and 5 May 2017, 

respectively). No fertilizer was applied in autumn, which is in accordance with local practice. The 

treatments were randomized with three replicates, resulting in a total of 15 plots (each with an area 

of 10 m × 8 m). Each plot was designed with two parts; one was used for the insertion of gas 

chambers and the collection of soil samples and the other for crop harvest to calculate the crop 

yield. 

Gas sampling and measurement 

Gas samples were collected from winter wheat fields using opaque closed chambers. A 0.275 m2 

basal ring frame was inserted into the soil. The chamber was dark inside and wheat plants were 

included during the growing season. The height of the chamber above ground was 0.35 m and this 

was increased to 0.75 m as the winter wheat grew taller. A rubber band was used at the joints of 

the chamber with the ring to avoid leakage. In winter oilseed rape fields, we used rectangular 

chambers of 0.72 m length, 0.28 m width and 0.15 m hight. The rows were 0.4 m apart, so plants 

were not included in the oilseed rape gas flux chambers. The gas samples were taken daily for one 

week after additions of fertilizers, then every two or three days and after one month once each 

week. The samples were also collected when the levels of emissions were expected to be high due 

to precipitation or tillage events. 

12-mL Labco Exetainers were evacuated the day before sampling. The chambers on the base 

frames were closed and sealed with the rubber band. Gas in the headspace of the chambers was 

sampled with 30-mL polypropylene syringes 0, 20 and 40 min after closure. The extracted gas was 

immediately transferred to the Exetainers before being transported to the laboratory for analysis on 

a Bruker SCION Model 456 gas chromatograph (Bremen, Germany). An electron capture detector 

was used to determine the concentration of N2O. The flux rates were calculated by linear regression 

of the gas concentration with time (Parkin et al., 2012; Wang et al., 2013). The cumulative 

emissions were estimated by linear interpolation. The emission factor (EF, N2O-N emitted as a 
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percentage of fertilizer applied) was calculated by the annual N2O emissions and the amount of N 

fertilizer: 

                                EF(%) = Annual N2O−Nfertilized−Annual N2O−Nunfertilized Amount of N applied  × 100                  (1) 

Auxiliary measurements 

Soil samples were taken once a week from a depth of 15 cm in each plot for the full measurement 

period and used to determine the soil moisture and mineral N (NO3
− and NH4

+) content. Briefly, 

50 g soil samples were dissolved in 200 mL of 0.0125 M CaCl2 solution, filtered and stored at 

−20°C. The samples were analyzed using a San++ continuous flow analyzer (Skalar Analytical, 

the Netherlands). The soil temperature at 5 cm depth was automatically recorded in the field at 30-

minute intervals using a temperature logger (LogTag temperature recorder, TRIX-16, Auckland, 

New Zealand). Winter wheat was harvested after physiological maturity on 7 August 2016 and 9 

August 2017, whereas winter oilseed rape was harvested on 4 August 2017. Grain and straw were 

dried to a constant weight in an oven at 60°C before milling. Total N content of grain and straw 

was analyzed to determine aboveground N uptake by the crop. Aboveground N uptake of grain and 

straw were calculated as: 

     Aboveground N uptake = Yield × N content                                        (2) 

The apparent N recovery (ARN) was calculated as 

   ARN (%) =  Nuptake(fertilized)−Nuptake(unfertilized)Amount of N applied × 100                          (3) 

Statistical analysis 

Statistical data analyses were performed using the IBM SPSS Statistics 21.0 software package. For 

soil N2O fluxes, we first checked for normal distribution with the Shapiro–Wilk test and Levene’s 

test, and found that the data were non-normally distributed and the variance was inhomogeneous. 

One-way ANOVA was used to test the significance of the differences in treatment on the 

cumulative N2O emissions, grain and straw yields, total N content and the yield-scale N2O 

emissions. The cumulative emissions were estimated by linear interpolation and the results were 

tested for variance homogeneity and normal distribution. The mean values were compared via a 

least-significant-difference test at the 5% level using Tukey’s ‘honest significant difference’ post-

hoc test. Spearman’s rank correlation tests were performed to determine the relationships between 
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soil N2O and WFPS, chamber air temperature, soil NH4
+ and NO3

− concentrations (0–15 cm) across 

WW2016, WW2017 and WR2017. 

Results 

Climate conditions 

The precipitation from 1 March 2016 to 28 February 2017 was 523 mm, whereas the precipitation 

from 1 March 2017 to 28 February 2018 was 806 mm (Fig. 2a). Heavy rainfall events (>60 mm) 

occurred three times in 2017 (on 23 June, 24 July and 25 July), whereas the heaviest rainfall in 

2016 was only 35 mm (on 24 June) (Fig. 2a). The local mean long-term air temperature is 8.7°C. 

However, the mean air temperature was 9.5°C in 2016 and 10°C in 2017 (Fig. 2a). The soil water 

content was regulated by precipitation events and evapotranspiration, ranging from 20 to 80% 

water-filled pore space (WFPS) during the study period, with no significant difference among the 

fertilizer treatments crops grown (Fig. 2b). Although in 2017 the spring (about 40% WFPS) was 

drier compared to 2016 (about 50% WFPS), higher WFPS in summer was observed in summer 

2017 than 2016 as a result of the heavy rainfall events (Fig. 2b). 
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Fig. 2. (a) Mean daily precipitation (mm day−1) (dark cyan bars) and mean daily soil temperature (°C) at 5 

cm depth (solid dark red lines) in the experimental field from March 2016 to March 2018. (b) Mean value 

of WFPS in unfertilized treatments in the winter wheat field from 1 March 2016 to 1 March 2018. The 

WFPS data showed no significant difference among the fertilizer treatments and crop fields. Downward 

vertical dotted arrows indicate harvest events and the red solid horizontal line marks 50% WFPS. 
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Fig. 3. Seasonal dynamics of (a, c) soil nitrate (NO3
−) and (b, d) ammonium (NH4

+) contents (0–15 cm depth) 

in different fertilizer treatments over two years of winter wheat (WW2016 and WW2017) and one year of 

winter oilseed rape (WR2017). The symbols show the means of three replicates and the vertical bars show 

the standard errors of the mean. The downward arrows indicate the addition of fertilizer; larger arrows 

indicate basal fertilization with 120 kg N ha−1; and smaller arrows indicate the addition of a 60 kg N ha−1 

dressing. Dotted vertical lines indicate harvest events. WW2016 refers to winter wheat after oilseed rape in 

2016; WW2017 to winter wheat after winter wheat in 2017; and WR2017 to winter oilseed rape after two 

years of winter wheat cultivation in 2017. 
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The peak soil NO3
− and NH4

+ concentrations occurred one week after application of fertilizer in all 

treatments (Fig. 3). The highest soil NO3
− and soil NH4

+ concentrations were 60 kg N ha−1 (CAN, 

WW2016) and 45 kg N ha−1 (urea, WW2016), respectively (Fig. 3a, 3b). Smaller soil NO3
− peaks 

were found post-harvest in both wheat and oilseed rape fields. Crop residues led to high soil NO3
− 

substrates in the post-harvest season and succeeding winter wheat rotations, especially in WR2017 

(Fig. 3a, 3c). The background soil NO3
− concentration (N0 treatment) across the year was >10 kg 

N ha−1 in treatment WW2016, which was clearly higher than in treatment WW2017 (near to zero) 

(Fig. 3a, 3c). 

In most cases, the ENTEC treatment showed lower soil NO3
− and higher NH4

+ concentrations than 

the CAN treatment. Compared to urea (Fig. 3a, 3b), the UTEC treatment showed slightly higher 

soil NO3
− concentrations than the urea treatment after each addition of fertilizer in both fields and 

measurement years (Fig. 3c), although there was no clear difference in soil NH4
+ concentrations 

between the urea and UTEC treatments (Fig. 3d). 

Nitrous oxide fluxes 

The peaks of N2O emissions were observed around one week after each fertilizer addition (Fig. 4). 

In addition to the two peak N2O emissions caused by N top dressing, small peaks were also detected 

in all treatments during the post-harvest season, especially in the WR2017 treatments (Fig. 4a, b, c 

and d). The ENTEC treatments all had smaller peak emissions across fields and years than the 

CAN treatments, especially after the top dressing, and the ENTEC treatment also resulted in lower 

post-harvest emissions than the CAN treatment, especially in WW2017. There was no recognizable 

difference between urea and UTEC treatments in all fields. 
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Fig. 4. Seasonal dynamics in nitrous oxide (N2O) emissions after application of different fertilizers over two 

years of winter wheat (WW2016 and WW2017) and one year of winter oilseed rape (WR2017). The symbols 

show the mean of three replicates and vertical bars indicate the standard errors of the mean. Downward 

arrows indicate the addition of fertilizer; larger arrows indicate basal fertilization with 120 kg N ha−1; and 

smaller arrows indicate the addition of a 60 kg N ha−1 dressing. Dotted vertical lines indicate harvest events. 

WW2016 refers to winter wheat after oilseed rape in 2016; WW2017 to winter wheat after winter wheat in 

2017; and WR2017 to winter oilseed rape after two years of winter wheat cultivation in 2017. (a) N0, (b) 

CAN, (c) ENTEC, (d) urea and (e) UTEC treatments. 
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Crop yields and N uptakes  

There was a large interannual variation in grain and straw yields of winter wheat fields (Table 1). 

The wheat after wheat (WW2017) had significantly lower grain and straw yields than the wheat 

after oilseed rape (WW2016) (Table 1). Grain and straw yields and the aboveground N uptake of 

winter wheat were higher in the fertilized fields than in unfertilized fields in WW2017. There was 

no difference in crop yield and aboveground N uptake among the different fertilizers (Table 1). 

Fertilization did not increase grain and straw yield in WR2017, but increased the N content 

compared to the unfertilized treatments. No significant differences in yield and N content were 

found between fertilized treatments (Table 1). ARN of fertilized treatments were in the range of 

41–52% and 63–66% in WW2016 and WW2017, respectively, among the fertilized treatments. 

However, it was only 13–23% in WR2017 (Table 1). 

Area-scaled, and yield-scaled emissions 

Cumulative N2O emissions ranged from 0.6 to 3.03 kg N ha−1 yr−1 and the mean EF ranged from 

0.01 to 1.14% in all fertilizer treatments (Table 2). The cumulative area-scaled N2O emissions of 

the unfertilized treatments were 0.60, 0.87 and 0.98 kg N ha−1 yr−1 in WW2016, WW2017 and 

WR2017, respectively (Table 2). ENTEC had the lowest cumulative N2O emissions in fertilized 

treatments in WW2016 and WW2017 (Table 2). UTEC reduced annual N2O emissions by 10–30% 

compared with urea. In all fertilized treatments, post-harvest N2O emissions ranged from 0.66 to 

1.03 in WW2016 and WW2017, yet they were 1.45–2.03 in WR2017 (Table 2). In all fertilized 

treatments, yield-scaled N2O emissions in WW2016 and WW2017 ranged between 6.1–9.3  and 

4.4–10.5 g N2O-N kg−1 aboveground N uptake, respectively, whereas they were 15.1–18.0 g N2O-

N kg−1 aboveground N uptake in WR2017 (Table 2).  

Relationships between N2O fluxes and environmental factors 

In all fertilized treatments except for ENTEC, N2O fluxes were well correlated with air temperature 

(Table 3). However, ENTEC showed high correlation between N2O and WFPS in WW2017 and 

WR2017 (R2 = 0.34, R2 = 0.26, respectively, p < 0.01) (Table 3). Significant correlation between 

NH4
+ and N2O were only apparent in UTEC in WW2016 and urea in WW2017 (R2 = 0.37 and 0.30, 

respectively). For NO3
− contents, WR2017 showed much higher correlations between N2O and 

NO3
− content (R2 = 0.31–0.43, p < 0.01) than WW2016 and WW2017 (Table 3). 
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Table 1. Grain and straw yield, grain and straw N content, grain, straw, aboveground N uptake and ARN (apparent recovery N) in winter 

wheat in 2016, winter wheat in 2017, and oilseed rape in 2017. See text for details of the treatments. 

Year Crop Fertilizer Yield (t ha−1)  N content (%)  Aboveground N uptake (kg N ha−1) ARN (%) 

  Grain Straw  Grain Straw  Grain Straw Total  

2016 Winter 

wheat 

N0 8.4±0.1a 6.3±0.2a  1.75±0.11a 0.49±0.04a  146±11a 31±8a 178±11a - 

 CAN 9.2±0.2a 7.3±0.1b  2.19±0.07b 0.75±0.03b  202±3b 55±1b 257±3b 44 

 ENTEC 9.4±0.4a 7.5±0.1b  2.28±0.05b 0.76±0.04b  215±11b 57±4b 271±6b 52 

 Urea 9.1±0.2a 8.0±0.7b  2.12±0.03b 0.73±0.02b  193±7b 59±6b 252±11b 41 

 UTEC 

 

9.2±0.4a 7.4±0.2b  2.17±0.05b 0.75±0.02b  199±8b 55±3b 254±8b 42 

2017 Winter 

wheat 

N0 4.7±0.2a 3.8±0.1a  1.44±0.01a 0.39±0.04a  68±2a 14±1a 83±2a - 

 CAN 7.7±0.2b 5.4±0.3b  2.12±0.05c 0.64±0.02c  164±6b 35±2b 199±6b 64 

 ENTEC 7.6±0.1b 5.6±0.6b  2.21±0.02c 0.53±0.02b  169±4b 30±4b 199±5b 64 

 Urea 8.2±0.2bc 6.3±0.4c  1.97±0.03b 0.53±0.02b  162±6b 34±1b 196±5b 63 

 UTEC 

 

8.3±0.1c 6.1±0.4c  2.03±0.03bc 0.54±0.03b  169±0b 34±4b 203±3b 66 

2017 Oilseed 

rape 

N0 3.1±0.2a 5.5±0.3a  3.22±0.07a 0.62±0.04a  101±5a 34±3a 134±6a - 

 CAN 3.1±0.1a 5.5±0.2a  3.75±0.05b 0.99±0.09b  115±1b 54±3b 168±2b 19 

 ENTEC 3.4±0.1a 5.9±0.4a  3.69±0.08b 0.84±0.03b  125±7b 50±5b 175±10b 23 

 Urea 3.2±0.2a 5.2±0.2a  3.58±0.03b 0.89±0.04b  116±4b 46±1b 161±3b 15 

 UTEC 3.2±0.1a 5.3±0.3a  3.62±0.11b 0.82±0.07b  115±2b 43±4ab 158±4b 13 

Within each column, different letters indicate significant differences based on LSD test at p < 0.05. 

Data presented are means ± standard errors; n=3. 
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Table 2. Cumulative N2O emissions on either an area-scaled (kg N ha−1 yr−1) or grain yield-scaled (g N2O-N kg−1 aboveground N uptake) 

basis and the direct annual emission factors (EF, %) for the winter wheat in 2016 and 2017 and winter oilseed rape in 2017.  

Year Crop Fertilizer Area-scaled N2O emissions (kg N2O-N ha−1 yr−1) Yield-scaled N2O 

emissions (g N2O-N kg−1 

aboveground N uptake) 

EF (%) 

Pre-harvest Post-harvest annual 

2016 Winter 

wheat 

N0 -0.03±0.02a 0.63±0.10a 0.60±0.12a 3.3±0.5a - 

CAN 0.97±0.23b 0.96±0.12a 1.94±0.28b 7.6±1.0ab 0.74±0.16a 

ENTEC 0.73±0.16b 0.91±0.29a 1.65±0.38ab 6,1±1.2ab 0.58±0.21a 

Urea 1.34±0.45b 1.01±0.12a 2.35±0.55b 9.3±1.7b 0.97±0.31a 

UTEC 

 

0.93±0.15b 0.80±0.07a 1.73±0.25b 6.8±0.8ab 0.67±0.14a 

2017 Winter 

wheat 

N0 0.32±0.11a 0.55±0.04a 0.87±0.15a 10.4±1.0b - 

CAN 1.34±0.05b 0.75±0.14a 2.09±0.19b 10.5±1.4b 0.68±0.11b 

ENTEC 0.54±0.06a 0.35±0.06a 0.89±0.10a 4.4±0.4a 0.01±0.06a 

Urea 0.77±0.27ab 1.03±0.09b 1.80±0.36b 9.2±1.1ab 0.52±0.20b 

UTEC 

 

0.80±0.30ab 0.66±0.11a 1.46±0.40ab 7.2±2.2ab 0.33±0.18ab 

2017 Oilseed 

rape 

N0 0.22±0.01a 0.75±0.11a 0.98±0.11a 7.3±0.7a - 

CAN 1.39±0.03c 1.64±0.19ab 3.03±0.22b 18.0±2.2b 1.14±0.12a 

ENTEC 0.61±0.03b 2.03±0.35b 2.65±0.39b 15.1±2.6b 0.93±0.21a 

Urea 1.09±0.23bc 1.60±0.50ab 2.70±0.72b 16.7±3.6b 0.96±0.40a 

UTEC 1.01±0.02c 1.45±0.36ab 2.46±0.36b 15.6±0.7b 0.82±0.20a 

Within each column, different letters indicate significant differences based on LSD test at p < 0.05. 

Data presented are means ± standard errors; n=3. 
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Table 3. Spearman correlation coefficients (R2) between soil N2O fluxes, chamber air 

temperature, water-filled pore space (WFPS) and soil NH4
+ and NO3

− concentrations (0–15cm) in 

WW2016, WW2017 and WR2017. 

Year Crop Fertilizer Air temp. WFPS NH4
+ NO3

- 

2016 Winter 

Wheat 

N0 0.04 (n=180) 0.35** (n=75) 0.10 (n=75) 0.05 (n=75) 

 CAN 0.19* 0.23* 0.03 0.08 

 ENTEC 0.18* 0.15 0.13 0.15 

 Urea 0.19* 0.22† 0.17 0,20† 
 UTEC 0.20** 0.14 0.37** 0.20† 

2017 Winter 

Wheat 

N0 0.01 (n=204) 0.11 (n=60) 0.25* 

(n=60) 

0.10 (n=60) 

 CAN 0.23** 0.11 0.20 0.13 

 ENTEC 0.08 0.34** 0.15 0.02 

 Urea 0.11† 0.10 0.30* 0.08 

 UTEC 0.12† 0.18 0.16 0.01 

2017 Oilseed 

rape 

N0 0.08 (n=204) 0.01 (n=60) 0.04 (n=60) 0.40** (n=60) 

 CAN 0.21** 0.13 0.10 0.35** 

 ENTEC 0.02 0.26* -0.14 0.43** 

 Urea 0.27** -0.01 0.24† 0.43** 

 UTEC 0.24** 0.06 0.27† 0.31** 

† p ≤ 0.1, * p ≤ 0.05, **p ≤ 0.01 

 

Discussion 

Crop yields and N uptake 

Crop yields showed no difference between fertilizer treatments, but there was a large interannual 

variability. The variability can mainly be explained by two factors: the climatic conditions and the 

crop rotation. 

The heavy rain events in July 2017 delayed the harvest of the winter oilseed rape and resulted in 

large yield losses. Winter wheat was also affected by the rainfall events, but the effect was smaller 

because wheat matured later than oilseed rape. Heavy rainfall often causes NO3
− leaching (Dai et 

al., 2016; Errebhi et al., 1998; Xu et al., 2020), and correspondingly the soil NO3
− content in 

WW2017 and WR2017 was lower than in WW2016 (Fig. 3). There are many reports for Germany 

that wheat grown after oilseed rape has higher yields than wheat grown after cereals (Angus et al., 

2015; Sieling and Christen, 2015). The ecological reasons for these so-called break-crop benefits 

include an improved soil structure, better weed control, the suppression of propagation of typical 

cereal pathogens, and the avoidance of phytotoxic exudates released by harvest residues (Weiser 
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et al., 2018). The nutritional reason for higher yields is the high surplus of N after oilseed rape 

crops (Bouchet et al., 2016; Henke et al., 2008), also because the N content of the residual straw 

was higher in WR2017 than in WW2016 and WW2017. Hence, the mineralization of plant residues 

provided more mineral N than required for the uptake by wheat of N before winter (Ruser et al., 

2017). This may also explain the high background levels of NO3
− in the succeeding crops of winter 

wheat. 

The enhanced-efficiency fertilizers ENTEC (added with the nitrification inhibitor DMPP) and 

UTEC (added with the urease inhibitor NBPT) increased aboveground N uptake by only 0–5% 

relative to the common fertilizers CAN and urea, with no statistical difference. Nauer et al. (2018) 

and Pfab et al. (2012) also reported only minor benefits to productivity from using urease and 

nitrification inhibitors. However, two meta-analyses revealed that these enhanced-efficiency 

fertilizers may increase grain yields by 5.7% (Linquist et al., 2013) or 7.5% (Abalos et al., 2014). 

Our results do not deny the potential of urease and nitrification inhibitors in increasing crop yields 

and N uptake, but the increase of grain yield would be minor, whereas climate conditions were also 

important factors affecting crop yield and aboveground N uptake.  

Effect of environmental factors on N2O emissions 

In our study, N2O fluxes were significantly (P < 0.05) correlated with air temperature on most 

fertilized soils, except for ENTEC (Table 3), which was in line with several other studies (Ding et 

al., 2019; Kroon et al., 2010; Ni et al., 2012; Shimizu et al., 2013). In 2017,  annual N2O emissions 

from N0 in both fields were higher than those in the wheat field in 2016, and one reason for this 

might be the higher annual mean temperature in 2017, which would probably increased the  

activities of temperature-dependent microbes (Butterbach-Bahl et al., 2013).  

In most cases, WFPS was also positively correlated with soil N2O emissions (Table 3). In summer 

2017, both wheat and oilseed rape fields showed higher N2O emission peaks than in 2016, and one 

likely reason for this is the higher precipitation in summer 2017. The WFPS in our study was < 60% 

in most cases and therefore nitrification may have been the dominant process (Baral et al., 2016; 

Davidson, 1993; Khalil et al., 2002; Scholefield et al., 1997), with water becoming the limiting 

factor for soil microbes, so the soil N2O emissions were positively correlated with WFPS (Jäger et 

al., 2011; Ni et al., 2012). 
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NH4
+ contents exhibited a slightly stronger associations with the N2O fluxes in urea-containing 

fertilizers than in CAN and ENTEC. The results indicate that nitrification played an important role 

in urea fertilizers in contributing to N2O emissions (Fu et al., 2012). It is widely accepted that soil 

NO3
− is the dominant factor causing N2O emissions (Ni et al., 2012; Ruser et al., 2017; Walter et 

al., 2015; Yan et al., 2018). In our study in WR2017, N2O fluxes were highly correlated with soil 

NO3
− content. The high correlation between N2O emissions and soil NO3

− concentrations in 

WR2017 was mainly attributed to straw mineralization. This was probably related to two factors: 

(1) compared to wheat residues, the large amount of oilseed rape residues in WR2017 supplied not 

only NO3
− to the soil, but also ample organic carbon substrate (Köbke et al., 2018; Mitchell et al., 

2013; Senbayram et al., 2012); and (2) the heavy rainfall events in summer 2017 may have 

accelerated straw decomposition. The high background soil NO3
− in WW2016 (about 10–15 kg N 

ha−1, 0–30 cm) and the post-harvest soil NO3
− in WR2017 (about 10–15 kg N ha−1) can both be 

explained by the large amount of oilseed rape residues post-harvest, which resulted in high-N 

surpluses (Köbke et al., 2018; Ruser et al., 2017; Sieling and Kage, 2010). 

Effect of urease and nitrification inhibitors on N2O emissions 

Both the area-scaled and yield-scaled N2O emissions of the enhanced-efficiency fertilizers 

(ENTEC and UTEC) were numerically lower than N fertilizer without inhibitors (CAN and urea) 

(Table 2). Such reduction is in agreement with other studies (Hu et al., 2015; Qiao et al., 2015; 

Silva et al., 2017). Only ENTEC in WW2017 showed impressively lower cumulative N2O 

emissions than the other fertilizers (p < 0.05). The low cumulative N2O emissions of ENTEC in 

WW2017 were mainly attributed to the reduction of N2O emissions in the pre-harvest season (Table 

2). Surprisingly, although ENTEC in WR2017 showed the lowest N2O emissions in the pre-harvest 

season, there was no reduction of N2O emissions in the post-harvest season (Table 2). In fact, N2O 

emissions in the post-harvest season of WR2017 were quite high in all fertilized treatments. As 

mentioned above, the most likely reason for this was the large amount of oilseed rape residues and 

high soil moisture, which provided N substrate, an energy source, and sufficient water for 

denitrification (Köbke et al., 2018; Senbayram et al., 2012; Wu et al., 2018). As a result, annual 

N2O emissions of the ENTEC treatment in WR2017 did not show a statistical difference with CAN 

and urea. Therefore, we are able to demonstrate that high post-harvest N2O emissions may have 

masked reductions in N2O emissions by the inhibitor over the full year. 
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However, in many studies, straw amendment was recommended as a method to reduce N2O 

emissions (Huang et al., 2017; Xu et al., 2019; Yao et al., 2017). A key factor of N2O emissions 

with straw incorporation is the C:N ratio, or NO3
− in the soil, in that a higher C:N ratio would lead 

to more complete denitrification (Hu et al., 2019; Köbke et al., 2018). In WR2017, the yield-scaled 

N2O emissions of the fertilized treatments were higher than 15 g N2O-N kg N aboveground N 

uptake, which is seen as an indicator of excessive N application (Groenigen et al., 2010). 

Considering that ARN in WR2017 was much lower than in WW2016 and WW2017, we therefore 

postulate that the N application rates in the oilseed rape field might have been more than optimal. 

Reducing the amount of N application in oilseed rape is therefore suggested as possible solution to 

avoid high post-harvest N2O emissions. Also, it is necessary to take the N application rate into 

consideration in straw management strategies (Hu et al., 2019; Yao et al., 2017). 

Implications for crop production 

Wheat–wheat–oilseed rape is a common crop rotation in Germany. Although this study did not 

cover a three-year cycle in the same field, it nonetheless provides valuable information for such 

rotation systems. Firstly, enhanced-efficiency fertilizers have the potential to reduce N2O emissions, 

but their effectiveness is influenced by various environmental factors. Therefore, inhibitors should 

be used with more advanced technology—for example, with more efficient broadcasting or soil 

injection. Secondly, the risk of N2O emissions from oilseed residues in the post-harvest season 

should be carefully assessed. And finally, N application rates should be optimized; our suggestion 

is to increase the amount of N application in wheat after the wheat and to reduce N fertilization in 

the oilseed rape.  

 

Conclusions 

In this study, we carried out N2O measurements during two years of winter wheat and one year of 

oilseed rape. Compared to fertilizers without inhibitors, enhanced-efficiency fertilizers increased 

the aboveground N uptake by only 0–5%. However, the high surplus of N in oilseed rape also 

carries a risk of high post-harvest N2O emissions. Therefore, assessing the benefits of oilseed rape 

as break crop should also consider the post-harvest management of crop residues. Overall, we 

conclude that, both ENTEC and UTEC have the potential to increase yield and reduce N2O 

emissions in wheat–wheat–oilseed rape rotations, although with the caveat that many 
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environmental factors (e.g., the accumulative temperature, soil moisture content and soil NO3
− 

substrate) contribute to a certain level of uncertainty in the degree to which enhanced-efficiency 

fertilizers can reduce N2O emissions. We also recommend an improved fertilization strategy 

towards gaining a better grain yield and reduced N2O emissions in the form of increasing the N 

application level in wheat after wheat and reducing it in the oilseed rape season.  

 

Acknowledgements 

This project was supported by China Scholarship Council. We also thank Marlies Niebuhr, Simone 

Urstadt, Susanne Koch, Ulrike Kierbaum, Kirsten Fladung, Oliver Caré, Reinhard Hilmer and 

Jürgen Kobbe for their diligent and skillful assistance. 

 

References 

Abalos, D., Jeffery, S., Sanz-Cobena, A., Guardia, G., Vallejo, A., 2014. Meta-analysis of the effect of 

urease and nitrification inhibitors on crop productivity and nitrogen use efficiency. Agric. Ecosyst. 

Environ. 189, 136–144. https://doi.org/10.1016/j.agee.2014.03.036 

Akiyama, H., Yan, X., Yagi, K., 2010. Evaluation of effectiveness of enhanced-efficiency fertilizers as 

mitigation options for N2O and NO emissions from agricultural soils: meta-analysis. Glob. 

Change Biol. 16, 1837–1846. https://doi.org/10.1111/j.1365-2486.2009.02031.x 

Angus, J.F., Kirkegaard, J.A., Hunt, J.R., Ryan, M.H., Ohlander, L., Peoples, M.B., 2015. Break crops and 

rotations for wheat. Crop Pasture Sci. 66, 523–552. https://doi.org/10.1071/CP14252 

Baral, K.R., Arthur, E., Olesen, J.E., Petersen, S.O., 2016. Predicting nitrous oxide emissions from 

manure properties and soil moisture: An incubation experiment. Soil Biol. Biochem. 97, 112–120. 

https://doi.org/10.1016/j.soilbio.2016.03.005 

Bhatia, A., Sasmal, S., Jain, N., Pathak, H., Kumar, R., Singh, A., 2010. Mitigating nitrous oxide emission 

from soil under conventional and no-tillage in wheat using nitrification inhibitors. Agric. Ecosyst. 

Environ., Estimation of nitrous oxide emission from ecosystems and its mitigation technologies 

136, 247–253. https://doi.org/10.1016/j.agee.2010.01.004 

Bouchet, A.-S., Laperche, A., Bissuel-Belaygue, C., Snowdon, R., Nesi, N., Stahl, A., 2016. Nitrogen use 

efficiency in rapeseed. A review. Agron. Sustain. Dev. 36, 38. https://doi.org/10.1007/s13593-

016-0371-0 

Bremner, 1997. Sources of nitrous oxide in soils. Nutr. Cycl. Agroecosystems 49, 7–16. 

https://doi.org/10.1023/A:1009798022569 

Butterbach-Bahl, Baggs Elizabeth M., Dannenmann Michael, Kiese Ralf, Zechmeister-Boltenstern 

Sophie, 2013. Nitrous oxide emissions from soils: how well do we understand the processes and 

their controls? Philos. Trans. R. Soc. B Biol. Sci. 368, 20130122. 

https://doi.org/10.1098/rstb.2013.0122 



 

47 

 

Cantarella, H., Otto, R., Soares, J.R., Silva, A.G. de B., 2018. Agronomic efficiency of NBPT as a urease 

inhibitor: A review. J. Adv. Res., Biotechnological and medical relevance of ureases 13, 19–27. 

https://doi.org/10.1016/j.jare.2018.05.008 

Dai, J., Wang, Z., Li, M., He, G., Li, Q., Cao, H., Wang, S., Gao, Y., Hui, X., 2016. Winter wheat grain 

yield and summer nitrate leaching: Long-term effects of nitrogen and phosphorus rates on the 

Loess Plateau of China. Field Crops Res. 196, 180–190. https://doi.org/10.1016/j.fcr.2016.06.020 

Davidson, E.A., 1993. Soil Water Content and the Ratio of Nitrous Oxide to Nitric Oxide Emitted from 

Soil, in: Oremland, R.S. (Ed.), Biogeochemistry of Global Change: Radiatively Active Trace 

Gases Selected Papers from the Tenth International Symposium on Environmental 

Biogeochemistry, San Francisco, August 19–24, 1991. Springer US, Boston, MA, pp. 369–386. 

https://doi.org/10.1007/978-1-4615-2812-8_20 

de Cárcer, P.S., Sinaj, S., Santonja, M., Fossati, D., Jeangros, B., 2019. Long-term effects of crop 

succession, soil tillage and climate on wheat yield and soil properties. Soil Tillage Res. 190, 209–
219. https://doi.org/10.1016/j.still.2019.01.012 

DESTATIS, 2015. Publikation - Land- & Forstwirtschaft - Wachstum und Ernte - Feldfrüchte - Fachserie 

3 Reihe 3.2.1 - 16/2015 - Statistisches Bundesamt (Destatis) [WWW Document]. URL 

https://www.destatis.de/DE/Publikationen/Thematisch/LandForstwirtschaft/ErnteFeldfruechte/Fel

dfruechteJahr2030321157164.html (accessed 11.14.18). 

Di, H.J., Cameron, K.C., Podolyan, A., Robinson, A., 2014. Effect of soil moisture status and a 

nitrification inhibitor, dicyandiamide, on ammonia oxidizer and denitrifier growth and nitrous 

oxide emissions in a grassland soil. Soil Biol. Biochem. 73, 59–68. 

https://doi.org/10.1016/j.soilbio.2014.02.011 

Ding, F., Sun, W., Huang, Y., 2019. Net N2O production from soil particle size fractions and its response 

to changing temperature. Sci. Total Environ. 650, 97–104. 

https://doi.org/10.1016/j.scitotenv.2018.08.428 

Drury, C.F., Yang, X., Reynolds, W.D., Calder, W., Oloya, T.O., Woodley, A.L., 2017. Combining urease 

and nitrification inhibitors with incorporation reduces ammonia and nitrous oxide emissions and 

increases corn yields. J. Environ. Qual. 46, 939–949. https://doi.org/10.2134/jeq2017.03.0106 

Errebhi, M., Rosen, C.J., Gupta, S.C., Birong, D.E., 1998. Potato Yield Response and Nitrate Leaching as 

Influenced by Nitrogen Management. Agron. J. 90, 10–15. 

https://doi.org/10.2134/agronj1998.00021962009000010003x 

FAOSTAT, 2018. FAOSTAT [WWW Document]. URL http://www.fao.org/faostat/en/#data/QC 

(accessed 11.14.18). 

Fowler, D., Pyle, J.A., Raven, J.A., Sutton, M.A., 2013. The global nitrogen cycle in the twenty-first 

century: introduction. Philos. Trans. R. Soc. B Biol. Sci. 368. 

https://doi.org/10.1098/rstb.2013.0165 

Fu, X.Q., Li, Y., Su, W.J., Shen, J.L., Xiao, R.L., Tong, C.L., Wu, J., 2012. Annual dynamics of N2O 

emissions from a tea field in southern subtropical China. Plant Soil Environ. 58 (2012), 373–378. 

https://doi.org/10.17221/719/2011-PSE 

Galloway, J.N., Aber, J.D., Erisman, J.W., Seitzinger, S.P., Howarth, R.W., Cowling, E.B., Cosby, B.J., 

2003. The Nitrogen Cascade. BioScience 53, 341–356. https://doi.org/10.1641/0006-

3568(2003)053[0341:TNC]2.0.CO;2 

Granli, T., Bockman, O.C., 1994. Nitrogen Oxide from Agriculture. Nor. J. Agric. Sci. 12, 7–127. 



 

48 

 

Groenigen, J.W.V., Velthof, G.L., Oenema, O., Groenigen, K.J.V., Kessel, C.V., 2010. Towards an 

agronomic assessment of N2O emissions: a case study for arable crops. Eur. J. Soil Sci. 61, 903–
913. https://doi.org/10.1111/j.1365-2389.2009.01217.x 

Guo, Y.J., Di, H.J., Cameron, K.C., Li, B., 2014. Effect of application rate of a nitrification inhibitor, 

dicyandiamide (DCD), on nitrification rate, and ammonia-oxidizing bacteria and archaea growth 

in a grazed pasture soil: An incubation study. J. Soils Sediments 14, 897–903. 

https://doi.org/10.1007/s11368-013-0843-7 

Hamelinek, C., De Loveinfosse, L., Koper, M., et al., 2014. renewable energy progress and biofuels 

sustainability. Ecofys Lond. 

Henke, J., Böttcher, U., Neukam, D., Sieling, K., Kage, H., 2008. Evaluation of different agronomic 

strategies to reduce nitrate leaching after winter oilseed rape (Brassica napus L.) using a 

simulation model. Nutr. Cycl. Agroecosystems 82, 299–314. https://doi.org/10.1007/s10705-008-

9192-0 

Hu, H.-W., Chen, D., He, J.-Z., 2015. Microbial regulation of terrestrial nitrous oxide formation: 

understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 

729–749. https://doi.org/10.1093/femsre/fuv021 

Hu, N., Chen, Q., Zhu, L., 2019. The Responses of Soil N2O Emissions to Residue Returning Systems: A 

Meta-Analysis. Sustainability 11, 748. https://doi.org/10.3390/su11030748 

Huang, T., Yang, H., Huang, C., Ju, X., 2017. Effect of fertilizer N rates and straw management on yield-

scaled nitrous oxide emissions in a maize-wheat double cropping system. Field Crops Res. 204, 

1–11. https://doi.org/10.1016/j.fcr.2017.01.004 

IPCC, 2013. Climate Change 2013: The physical Science Basis. IPCC Working Group I Contribution to 

AR5 pp 84. 

Jäger, N., Stange, C.F., Ludwig, B., Flessa, H., 2011. Emission rates of N2O and CO2 from soils with 

different organic matter content from three long-term fertilization experiments—a laboratory 

study. Biol. Fertil. Soils 47, 483. https://doi.org/10.1007/s00374-011-0553-5 

Khalil, M., Rosenani, A., Van Cleemput, O., Fauziah, C., Shamshuddin, J., 2002. Nitrous oxide emissions 

from an ultisol of the humid tropics under maize-groundnut rotation. J. Environ. Qual. 31. 

Köbke, S., Senbayram, M., Pfeiffer, B., Nacke, H., Dittert, K., 2018. Post-harvest N2O and CO2 emissions 

related to plant residue incorporation of oilseed rape and barley straw depend on soil NO3- 

content. Soil Tillage Res. 179, 105–113. https://doi.org/10.1016/j.still.2018.01.013 

Kroon, P.S., Schrier‐Uijl, A.P., Hensen, A., Veenendaal, E.M., Jonker, H.J.J., 2010. Annual balances of 

CH4 and N2O from a managed fen meadow using eddy covariance flux measurements. Eur. J. Soil 

Sci. 61, 773–784. https://doi.org/10.1111/j.1365-2389.2010.01273.x 

Lam, S.K., Suter, H., Bai, M., Walker, C., Davies, R., Mosier, A.R., Chen, D., 2018. Using urease and 

nitrification inhibitors to decrease ammonia and nitrous oxide emissions and improve productivity 

in a subtropical pasture. Sci. Total Environ. 644, 1531–1535. 

https://doi.org/10.1016/j.scitotenv.2018.07.092 

Linquist, B.A., Liu, L., Kessel, C. van, Groenigen, K.J. van, 2013. Enhanced efficiency nitrogen fertilizers 

for rice systems: Meta-analysis of yield and nitrogen uptake. Field Crops Res. 154, 246–254. 

https://doi.org/10.1016/j.fcr.2013.08.014 

Liu, R., Hayden, H., Suter, H., He, J., Chen, D., 2015. The effect of nitrification inhibitors in reducing 

nitrification and the ammonia oxidizer population in three contrasting soils. J. Soils Sediments 15, 

1113–1118. https://doi.org/10.1007/s11368-015-1086-6 



 

49 

 

Liu, S., Wang, J.J., Tian, Z., Wang, X., Harrison, S., 2017. Ammonia and greenhouse gas emissions from 

a subtropical wheat field under different nitrogen fertilization strategies. J. Environ. Sci. 57, 196–
210. https://doi.org/10.1016/j.jes.2017.02.014 

Macholdt, J., Piepho, H.-P., Honermeier, B., Perryman, S., Macdonald, A., Poulton, P., 2020. The effects 

of cropping sequence, fertilization and straw management on the yield stability of winter wheat 

(1986–2017) in the Broadbalk Wheat Experiment, Rothamsted, UK. J. Agric. Sci. 158, 65–79. 

https://doi.org/10.1017/S0021859620000301 

Mira, A.B., Cantarella, H., Souza-Netto, G.J.M., Moreira, L.A., Kamogawa, M.Y., Otto, R., 2017. 

Optimizing urease inhibitor usage to reduce ammonia emission following urea application over 

crop residues. Agric. Ecosyst. Environ. 248, 105–112. https://doi.org/10.1016/j.agee.2017.07.032 

Mitchell, D.C., Castellano, M.J., Sawyer, J.E., Pantoja, J., 2013. Cover Crop Effects on Nitrous Oxide 

Emissions: Role of Mineralizable Carbon. Soil Sci. Soc. Am. J. 77, 1765–1773. 

https://doi.org/10.2136/sssaj2013.02.0074 

Myhre, G.D., Shindell, F.M., Bréon, W., Collins, J., Fuglestvedt, J., Huang, D., Koch, J.F., Lamarque, D., 

Lee, B., Mendoza, T., Nakajima, A., Robock, G., Stephens, T., Takemura, H., Z., 2013. 

Anthropogenic and Natural Radiative Forcing. Clim. Change 2013 Phys. Sci. Basis Contrib. 

Work. Group Fifth Assess. Rep. Intergov. Panel Clim. Change. 

Ni, K., Ding, W., Zaman, M., Cai, Z., Wang, Y., Zhang, X., Zhou, B., 2012. Nitrous oxide emissions from 

a rainfed-cultivated black soil in Northeast China: effect of fertilization and maize crop. Biol. 

Fertil. Soils 48, 973–979. https://doi.org/10.1007/s00374-012-0709-y 

Parkin, T.B., Venterea, R.T., Hargreaves, S.K., 2012. Calculating the detection limits of chamber-based 

soil greenhouse gas flux measurements. J. Environ. Qual. 41, 705. 

Pfab, H., Palmer, I., Buegger, F., Fiedler, S., Müller, T., Ruser, R., 2012. Influence of a nitrification 

inhibitor and of placed N-fertilization on N2O fluxes from a vegetable cropped loamy soil. Agric. 

Ecosyst. Environ. 150, 91–101. https://doi.org/10.1016/j.agee.2012.01.001 

Prather, M.J., Hsu, J., 2010. Coupling of nitrous oxide and methane by global atmospheric chemistry. 

Science 330, 952–954. https://doi.org/10.1126/science.1196285 

Qiao, C., Liu, L., Hu, S., Compton, J.E., Greaver, T.L., Li, Q., 2015. How inhibiting nitrification affects 

nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input. Glob. Change 

Biol. 21, 1249–1257. https://doi.org/10.1111/gcb.12802 

Ravishankara, A.R., Daniel, J.S., Portmann, R.W., 2009. Nitrous oxide (N2O): the dominant ozone-

depleting substance emitted in the 21st century. Science 326, 123–125. 

https://doi.org/10.1126/science.1176985 

Römer, W., Hilmer, R., Claassen, N., Nöhren, N., Dittert, K., 2015. Einfluss einer langjährigen P-

Düngung auf Ertäge und Dynamik der CAL-P-Gehalte in einem Lösslehmboden. VDLUFA-

Schriftenreihe 71 71, 279–285. 

Rose, T.J., Wood, R.H., Rose, M.T., Van Zwieten, L., 2018. A re-evaluation of the agronomic 

effectiveness of the nitrification inhibitors DCD and DMPP and the urease inhibitor NBPT. Agric. 

Ecosyst. Environ. 252, 69–73. https://doi.org/10.1016/j.agee.2017.10.008 

Ruser, R., Fuß, R., Andres, M., Hegewald, H., Kesenheimer, K., Köbke, S., Räbiger, T., Quinones, T.S., 

Augustin, J., Christen, O., Dittert, K., Kage, H., Lewandowski, I., Prochnow, A., Stichnothe, H., 

Flessa, H., 2017. Nitrous oxide emissions from winter oilseed rape cultivation. Agric. Ecosyst. 

Environ. 249, 57–69. https://doi.org/10.1016/j.agee.2017.07.039 



 

50 

 

Ruser, R., Schulz, R., 2015. The effect of nitrification inhibitors on the nitrous oxide (N2O) release from 
agricultural soils—a review. J. Plant Nutr. Soil Sci. 178, 171–188. 

Scholefield, D., Hawkins, J.M.B., Jackson, S.M., 1997. Use of a flowing helium atmosphere incubation 
technique to measure the effects of denitrification controls applied to intact cores of a clay soil. 
Soil Biol. Biochem. 29, 1337–1344. https://doi.org/10.1016/S0038-0717(97)00059-X 

Senbayram, M., Chen, R., Budai, A., Bakken, L., Dittert, K., 2012. N2O emission and the N2O/(N2O+N2) 
product ratio of denitrification as controlled by available carbon substrates and nitrate 
concentrations. Agric. Ecosyst. Environ. 147, 4–12. 

Shi, X., Hu, H.-W., Kelly, K., Chen, D., He, J.-Z., Suter, H., 2017. Response of ammonia oxidizers and 
denitrifiers to repeated applications of a nitrification inhibitor and a urease inhibitor in two pasture 
soils. J. Soils Sediments 17, 974–984. https://doi.org/10.1007/s11368-016-1588-x 

Shimizu, M., Hatano, R., Arita, T., Kouda, Y., Mori, A., Matsuura, S., Niimi, M., Jin, T., Desyatkin, A.R., 
Kawamura, O., Hojito, M., Miyata, A., 2013. The effect of fertilizer and manure application on 
CH4 and N2O emissions from managed grasslands in Japan. Soil Sci. Plant Nutr. 59, 69–86. 
https://doi.org/10.1080/00380768.2012.733926 

Sieling, K., Christen, O., 2015. Crop rotation effects on yield of oilseed rape, wheat and barley and 
residual effects on the subsequent wheat. Arch. Agron. Soil Sci. 61, 1531–1549. 
https://doi.org/10.1080/03650340.2015.1017569 

Sieling, K., Kage, H., 2010. Efficient N management using winter oilseed rape. A review. Agron. Sustain. 
Dev. 30, 271–279. https://doi.org/10.1051/agro/2009036 

Silva, A.G.B., Sequeira, C.H., Sermarini, R.A., Otto, R., 2017. Urease Inhibitor NBPT on Ammonia 
Volatilization and Crop Productivity: A Meta-Analysis. Agron. J. 109, 1–13. 
https://doi.org/10.2134/agronj2016.04.0200 

Tian, Z., Wang, J.J., Liu, S., Zhang, Z., Dodla, S.K., Myers, G., 2015. Application effects of coated urea 
and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a 
subtropical cotton field of the Mississippi delta region. Sci. Total Environ. 533, 329–338. 
https://doi.org/10.1016/j.scitotenv.2015.06.147 

Wagner-Riddle, C., Congreves, K.A., Abalos, D., Berg, A.A., Brown, S.E., Ambadan, J.T., Gao, X., 
Tenuta, M., 2017. Globally important nitrous oxide emissions from croplands induced by freeze–
thaw cycles. Nat. Geosci. 10, 279–283. https://doi.org/10.1038/ngeo2907 

Walter, K., Don, A., Fuß, R., Kern, J., Drewer, J., Flessa, H., 2015. Direct nitrous oxide emissions from 
oilseed rape cropping – a meta-analysis. GCB Bioenergy 7, 1260–1271. 
https://doi.org/10.1111/gcbb.12223 

Wang, H., Köbke, S., Dittert, K., 2020. Use of urease and nitrification inhibitors to reduce gaseous 
nitrogen emissions from fertilizers containing ammonium nitrate and urea. Glob. Ecol. Conserv. 
22, e00933. https://doi.org/10.1016/j.gecco.2020.e00933 

Wang, K., Zheng, X., Pihlatie, M., Vesala, T., Liu, C., Haapanala, S., Mammarella, I., Rannik, Ü., Liu, H., 
2013. Comparison between static chamber and tunable diode laser-based eddy covariance 
techniques for measuring nitrous oxide fluxes from a cotton field. Agric. For. Meteorol. 171–172, 
9–19. 

Weiser, C., Fuss, R., Kage, H., Flessa, H., 2018. Do farmers in Germany exploit the potential yield and 
nitrogen benefits from preceding oilseed rape in winter wheat cultivation? Arch. Agron. Soil Sci. 
64, 25–37. https://doi.org/10.1080/03650340.2017.1326031 



 

51 

 

WMO, 2018. WMO Greenhouse Gas Bulletin (GHG Bulletin) - No. 14 : The State of Greenhouse Gases 
in the Atmosphere Based on Global Observations through 2017. WMO. 

Wu, D., Wei, Z., Well, R., Shan, J., Yan, X., Bol, R., Senbayram, M., 2018. Straw amendment with 

nitrate-N decreased N2O/(N2O+N2) ratio but increased soil N2O emission: A case study of direct 

soil-born N2 measurements. Soil Biol. Biochem. 127, 301–304. 

https://doi.org/10.1016/j.soilbio.2018.10.002 

Xu, C., Han, X., Ru, S., Cardenas, L., Rees, R.M., Wu, D., Wu, W., Meng, F., 2019. Crop straw 

incorporation interacts with N fertilizer on N2O emissions in an intensively cropped farmland. 

Geoderma 341, 129–137. https://doi.org/10.1016/j.geoderma.2019.01.014 

Xu, J., Cai, H., Wang, Xiaoyun, Ma, C., Lu, Y., Ding, Y., Wang, Xiaowen, Chen, H., Wang, Y., 

Saddique, Q., 2020. Exploring optimal irrigation and nitrogen fertilization in a winter wheat-

summer maize rotation system for improving crop yield and reducing water and nitrogen leaching. 

Agric. Water Manag. 228, 105904. https://doi.org/10.1016/j.agwat.2019.105904 

Yan, Y., Ganjurjav, H., Hu, G., Liang, Y., Li, Y., He, S., Danjiu, L., Yang, J., Gao, Q., 2018. Nitrogen 

deposition induced significant increase of N2O emissions in an dry alpine meadow on the central 

Qinghai–Tibetan Plateau. Agric. Ecosyst. Environ. 265, 45–53. 

https://doi.org/10.1016/j.agee.2018.05.031 

Yao, Z., Yan, G., Zheng, X., Wang, R., Liu, C., Butterbach-Bahl, K., 2017. Straw return reduces yield-

scaled N2O plus NO emissions from annual winter wheat-based cropping systems in the North 

China Plain. Sci. Total Environ. 590–591, 174–185. 

https://doi.org/10.1016/j.scitotenv.2017.02.194 

Zaman, M., Zaman, S., Nguyen, M.L., Smith, T.J., Nawaz, S., 2013. The effect of urease and nitrification 

inhibitors on ammonia and nitrous oxide emissions from simulated urine patches in pastoral 

system: A two-year study. Sci. Total Environ., Soil as a Source & Sink for Greenhouse Gases 465, 

97–106. https://doi.org/10.1016/j.scitotenv.2013.01.014 

 

  



 

52 

 

 

Chapter 4: The potential of ryegrass as cover crop to reduce soil N2O emissions and 

increase the population size of denitrifying bacteria 

 

Haitao Wanga, Lukas Beuleb, Birgit Pfeifferc, Shutan Mad, e*, Petr Karlovskyb, Klaus Ditterta, 

a Department of Crop Science, Section of Plant Nutrition and Crop Physiology, University of Goettingen, 

Carl-Sprengel-Weg 1, 37075 Göttingen, Germany 

b Molecular Phytopathology and Mycotoxin Research, Faculty of Agricultural Sciences, University of 

Goettingen, 37077 Göttingen, Germany 

c Institute of Microbiology and Genetics, Department of Genomic and Applied Microbiology, 

Grisebachstr. 8, 37077 Göttingen, Germany 

d State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of 

Science, Nanjing 210008, China 

e University of Chinese Academy of Sciences, Beijing 100049, China 

 

 

This manuscript was published in European Journal of Soil Science  

Wang, H., Beule, L., Zang, H., Pfeiffer, B., Ma, S., Karlovsky, P., Dittert, K., 2020. The potential 

of ryegrass as cover crop to reduce soil N2O emissions and increase the population size of 

denitrifying bacteria. European Journal of Soil Science. https://doi.org/10.1111/ejss.13047  

 

  

https://doi.org/10.1111/ejss.13047


OR I G I N A L AR T I C L E

The potential of ryegrass as cover crop to reduce soil N2O

emissions and increase the population size of denitrifying

bacteria

Haitao Wang1 | Lukas Beule2 | Huadong Zang3 | Birgit Pfeiffer4 |

Shutan Ma1,5 | Petr Karlovsky2 | Klaus Dittert1

1Department of Crop Science, Division of
Plant Nutrition and Crop Physiology,
University of Göttingen, Göttingen,
Germany
2Molecular Phytopathology and
Mycotoxin Research, Faculty of
Agricultural Sciences, University of
Göttingen, Göttingen, Germany
3College of Agronomy and Biotechnology,
China Agricultural University, Beijing,
China
4Institute of Microbiology and Genetics,
Department of Genomic and Applied
Microbiology, University of Göttingen,
Göttingen, Germany
5School of Ecology and Environment,
Anhui Normal University, Wuhu, China

Correspondence

Shutan Ma, Department of Crop Science,
Division of Plant Nutrition and Crop
Physiology, University of Göttingen,
Germany, School of Ecology and
Environment, Anhui Normal University,
Wuhu 241002, China.
Email: mast@ahnu.edu.cn

Funding information

China Scholarship Council; The National
Science Project for University of Anhui
Province, Grant/Award Number: (No.
KJ2019A0494)

Abstract

Nitrogen (N) fertilization is the major contributor to nitrous oxide (N2O)

emissions from agricultural soil, especially in post-harvest seasons. This study

was carried out to investigate whether ryegrass serving as cover crop affects

soil N2O emissions and denitrifier community size. A microcosm experiment

was conducted with soil planted with perennial ryegrass (Lolium perenne L.)

and bare soil, each with four levels of N fertilizer (0, 5, 10 and 20 g N m−2;

applied as calcium ammonium nitrate). The closed-chamber approach was

used to measure soil N2O fluxes. Real-time PCR was used to estimate the bio-

mass of bacteria and fungi and the abundance of genes involved in denitrifica-

tion in soil. The results showed that the presence of ryegrass decreased the

nitrate content in soil. Cumulative N2O emissions of soil with grass were lower

than in bare soil at 5 and 10 g N m−2. Fertilization levels did not affect the

abundance of soil bacteria and fungi. Soil with grass showed greater abun-

dances of bacteria and fungi, as well as microorganisms carrying narG, napA,

nirK, nirS and nosZ clade I genes. It is concluded that ryegrass serving as a

cover crop holds the potential to mitigate soil N2O emissions in soils with mod-

erate or high NO3
− concentrations. This highlights the importance of cover

crops for the reduction of N2O emissions from soil, particularly following N

fertilization. Future research should explore the full potential of ryegrass to

reduce soil N2O emissions under field conditions as well as in different soils.

Highlights

1. This study was to investigate whether ryegrass serving as cover crop affects

soil N2O emissions and denitrifier community size;

2. Plant reduced soil N substrates on one side, but their root exudates stimu-

lated denitrification on the other side;
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3. N2O emissions were lower in soil with grass than bare soil at medium fertil-

izer levels, and growing grass stimulated the proliferation of almost all the

denitrifying bacteria except nosZ clade II;

4. Ryegrass serving as a cover crop holds the potential to mitigate soil N2O

emissions.

KEYWORD S

denitrification, perennial ryegrass (Lolium perenne L.), soil bacteria, soil CO2 emissions, soil N2O

emissions

1 | INTRODUCTION

Increasing nitrous oxide (N2O) concentration in the
atmosphere is among the most serious consequences of
the anthropogenic alteration of the global nitrogen
(N) cycle (Bakken & Frostegard, 2017). In addition to its
high global warming potential and long atmospheric life-
time (IPCC, 2013), N2O has been shown to be the most
important emitted compound involved in stratospheric
ozone depletion (Ravishankara, Daniel, & Portmann,
2009). The intensive input of mineral N into agricultural
soils is one of the crucial factors contributing to soil N2O
emissions (Ju et al., 2009; Song et al., 2018). Denitrifica-
tion is the predominant N2O-producing biological process
in soils (Bremner, 1997; Hu, Chen, & He, 2015), which is
strongly affected by the soil nitrate (NO3

−) concentration
(Köbke, Senbayram, Pfeiffer, Nacke, & Dittert, 2018; Sag-
gar et al., 2013). In the denitrification pathway, den-
itrifying microorganisms use NO3

− as an electron
acceptor and reduce it to gaseous N2 in a stepwise man-
ner. Incomplete denitrification results in the emission of
gaseous intermediates such as N2O.

Soil denitrification is regulated by enzymes such as
NO3

−, nitrite (NO2
−) and N2O reductases that are pro-

duced by microorganisms. In arable soils, plant root
architecture and exudation alter soil structure, aeration
and biological activity (Bertin, Yang, & Weston, 2003;
Kuzyakov & Xu, 2013), as well as soil microbial commu-
nities (Berg & Smalla, 2009). The majority of laboratory
studies of soil N2O emissions, however, have not
included plants, although it is known that growing plants
may increase denitrification activities in soil (Guyonnet
et al., 2017; Klemedtsson, Svensson, & Rosswall, 1987).
Recent studies investigated how plant and rhizosphere
processes affect soil N2O emissions (Lenhart et al., 2019;
Senbayram et al., 2020). On the one hand, plants compete
with soil microorganisms for N (Moreau, Bardgett, Fin-
lay, Jones, & Philippot, 2019), on the other hand, plants
provide carbon (C) to the soil via root exudates that mod-
ulate microbial communities and denitrification activity
(Achouak et al., 2019). Apart from effects on the soil N

pool, plants consume O2 and increase soil CO2 concentra-
tions through root respiration as compared to unplanted
soil. It has been estimated that 5% to 21% of all photosyn-
thetically assimilated C is released into the soil in the
form of root exudates (Derrien, Marol, & Balesdent, 2004;
Nguyen, 2003). Consequently, the C turnover rate in the
soil rhizosphere is estimated to be at least one order of
magnitude greater than in the bulk soil
(Kuzyakov, 2010). It has been suggested that root exuda-
tion will increase denitrification (Bijay-singh &
Whitchead, 1988), as root-released C can serve as an elec-
tron donor (Philippot, Hallin, & Schloter, 2007). Indeed,
planted soils are several times greater in density of deni-
trifiers than unplanted soils (Chèneby et al., 2004; Her-
man, Johnson, Jaeger, Schwartz, & Firestone, 2006).
Growing perennial grasses, such as Festuca paniculata,
Bromus erectus and Dactylis glomerata (Guyonnet
et al., 2017), barley (Hordeum vulgare L.) (Klemedtsson
et al., 1987) and maize (Zea mays L.) (Mahmood, Ali,
Malik, & Shamsi, 1997) has been shown to increase deni-
trification activities in soil. The stimulation of soil denitri-
fication activity by plants depends on the plant species
and soil water content (Bakken, 1988). Furthermore, root
exudates have been shown to modulate soil microbial
communities (Haichar et al., 2008; Haichar, Santaella,
Heulin, & Achouak, 2014).

However, increased denitrification activity does not
necessarily mean higher N2O emissions from soil.
Ammonium (NH4

+) and NO3
− have different motilities

in soil due to the charge-dependent interaction with soil
colloids. As a consequence, a depletion zone of NH4

+ in
the rhizosphere can be created by plant root uptake of
NH4

+ as it shows low mobility in most temperate soils
(Orcutt, 2000). In contrast, no such depletion zones in
the rhizosphere can be expected for NO3

− due its high
mobility in most temperate soils (Kuzyakov & Xu, 2013).
The concentration of NO3

− in soil, however, can rapidly
decrease owing to uptake by plant roots (Tinker &
Nye, 2000). Therefore, the availability of mineral N in soil
is regarded as a major factor limiting denitrification
(Philippot et al., 2007; Saggar et al., 2013). The response
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of soil N2O emissions to the application of mineral N fer-
tilizer is exponential rather than linear (Shcherbak, Mil-
lar, & Robertson, 2014). Senbayram, Chen, Budai,
Bakken, & Dittert (2012) reported that increasing the soil
NO3

− concentration resulted in a higher N2O/N2 ratio.
The competition for NO3

− between plants and denitrifiers
can result in lower denitrification rates in planted soils
(Qian, Doran, & Walters, 1997). Similarly, regulation of
denitrifying soil communities by NO3

− has been reported
from different ecosystems (Correa-Galeote et al., 2017;
Deiglmayr, Philippot, & Kandeler, 2006; Enwall, Phi-
lippot, & Hallin, 2005); however, the effect of the soil
NO3

− concentration on the abundance and diversity of
denitrifiers remains to be determined.

Ryegrass is a common cover crop that is used to
reduce nitrate leaching (Bergström & Jokela, 2001;
Poeplau, Aronsson, Myrbeck, & Kätterer, 2015; Tho-
msen & Hansen, 2014) and increase soil organic C stocks
(Poeplau et al., 2015). The effect of ryegrass on soil N2O
emissions, however, is under-studied. A recent meta-
analysis revealed that cover crops have the potential to
mitigate N2O emissions in post-harvest seasons, yet few
studies focused on ryegrass (Muhammad et al., 2019).
The main aim of this study was therefore to investigate
N2O emissions from soil with ryegrass compared to bare
soil under varying fertilizer levels. To achieve this, we
used an incubation experiment with two experimental
factors: soil planted with grass and unplanted bare soil,
each with four levels of N fertilizer addition. Soil N2O
fluxes were determined using the closed-chamber
approach. Real-time PCR (qPCR) assays were performed
to estimate the abundance of soil bacteria and fungi, as
well as microorganisms harbouring genes involved in
denitrification. We hypothesized that the presence of
grass and the associated belowground modulations would
(i) lower soil N2O emissions at each fertilizer level and
(ii) promote the abundance of bacteria, fungi and denitri-
fiers, as compared to bare soil.

2 | MATERIAL AND METHODS

2.1 | Soil collection

Topsoil (0 to 25 cm) was collected from Reinshof agricul-
tural research station (51�29050.3”N, 9�55059.900E), Uni-
versity of Göttingen, Lower Saxony, Germany. Mean
annual precipitation was 651 ± 24 mm and mean annual
temperature was 9.2 ± 0.1�C (1981–2010, meteorological
station at Göttingen, station ID: 1691, Germany's Meteo-
rological Service). The site had been cropped with winter
oilseed rape (Brassica napus L.) (2015), winter wheat
(Triticum aestivum L.) (2016) and winter barley (2017)

prior to soil collection on March 23, 2018. The soil was
classified as Luvisol (IUSS, 2015) and the texture of the
topsoil (0 to 25 cm) was composed of 61% silt, 23% sand
and 16% clay. The bulk density was 1.3 g cm−3, the pH
was 7.1 ± 0.1, the soil total C concentration was 1.3% and
the total N concentration was 0.13%. Following collec-
tion, the soil was stored in a polyvinyl chloride (PVC)
container for 3 months at room temperature until incuba-
tion. Before incubation, the soil was air-dried to 2% gravi-
metric water content and sieved through a 2-mm mesh to
achieve higher homogeneity. PVC cylinders (diameter,
20 cm; height, 20 cm) were used for incubation and
sealed with removable lids (height, 5 cm) carrying butyl-
rubber septa for headspace gas sampling. Soil moisture
was first adjusted to 35% water-filled pore space (WFPS)
and soil (equivalent to 4.49 kg dry soil) was filled into the
experimental pots in three layers of approximately 3.7 cm
each (11 cm in total) for manual compaction to the origi-
nal bulk density of 1.3 g cm−3, resulting in 4,398 cm3 of
air space (9 cm headspace + 5 cm lid) for gas accumula-
tion when the chambers were closed. The following day,
the soil was carefully irrigated in a stepwise procedure to
avoid soil compaction and finally adjusted to 60% WFPS.

2.2 | Experimental setup

The experiment was conducted in a fully controlled cli-
mate chamber (Fitotron Walk in Plant Growth Room,
Type SGR221 LED, Weiss Technik, Leicester, UK). The
climate chamber was set to a light intensity of
520 μmol m−2 s−1 photosynthetically active photon flux
density at 25�C air temperature from 6.00 am to 10.00 pm
as “day mode” (16 hr), and from 10.30 pm to 6.00 am
(8 hr) as “night mode” with no light at 12�C air tempera-
ture. The relatively large temperature discrepancy was set
in order to mimic conditions close to those in the field.

The experiment consisted of two groups: soil with
perennial ryegrass (Lolium perenne L.) (DSV AG,
Salzkotten, Germany) and bare soil. Each group had four
different fertilizer levels (0, 5, 10 and 20 g N m−2, equiva-
lent to 0, 50, 100 and 200 kg N ha−1), resulting in a total of
eight treatments. Each treatment was performed in tripli-
cate, yielding a total of 24 pots. Before the first sampling
date, grass was sown at a density of approximately 5,000
seeds m−2 and pre-incubated for 4 weeks to allow grass
establishment in the pots. The treatments with bare soil
were treated equally but without plant cultivation. Cal-
cium ammonium nitrate N fertilizer (76% ammonium
nitrate (NH4NO3) and 24% calcium carbonate (CaCO3))
was applied after dissolution in distilled water. Half of the
total N fertilizer was applied after the first collection of soil
and gas samples on day 1 (August 3, 2018); the other half
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TABLE 1 Total N uptake and C assimilation of grass shoots and roots throughout the experimental period (56 days) at each fertilizer
level in soil with grass

Fertilizer level (g N m−2)

N uptake (g N m−2) C assimilation (g C m−2)

Shoot Root Total Shoot Root Total

0 2.6 ± 0.1c 1.5 ± 0.2b 4.1 ± 0.1d 58.3 ± 2.6b 58.7 ± 2.8b 117.0 ± 4.4b

5 4.7 ± 0.2c 1.8 ± 0.1a 6.5 ± 0.2c 98.4 ± 4.3a 74.3 ± 0.9a 172.6 ± 4.7a

10 7.4 ± 0.7b 2.0 ± 0.1a 9.3 ± 0.5b 115.8 ± 5.3a 74.8 ± 4.1a 190.5 ± 1.2a

20 11.8 ± 0.7a 2.1 ± 0.1a 13.9 ± 0.5a 123.6 ± 9.2a 68.1 ± 2.6a 191.8 ± 10.8a

Note: Means ± standard errors followed by different lowercase letters indicate significant differences among fertilizer levels within each parameter (one-way
ANOVA with Tukey's honestly significant difference (HSD) test or Kruskal-Wallis test with multiple comparison extension) at p < .05.

FIGURE 1 Time course of dissolved organic carbon (DOC) concentrations in (a) bare soil and (b) soil with grass, and soil NO3
−-N

content in (c) bare soil and (d) soil with grass, and soil NH4
+-N concentrations in (e) bare soil and (f) soil with grass during the 56 days

growing period. Solid lines with points of different grey intensities represent different fertilizer levels (0, 5, 10 and 20 g N m−2); dashed
vertical lines indicate fertilization dates (day 1 and 28). Error bars represent the standard error of the mean (n = 3)
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was applied after 28 days, with a full measuring period of
56 days. After fertilization, soil was irrigated daily, and up
to every 2 days in the later period by weighing the pots, to
keep the soil moisture at 60 ± 5% WFPS.

Two days before the first fertilization, the grass was
cut to a height of 4 cm. Following this, the grass was cut
every 2 weeks and the shoot dry matter was determined
from air-dried material. At the end of the experiment, the
roots were collected as well. Roots were carefully washed,
air-dried and weighed. The total C and N of finely ground
dry grass shoots and roots were determined on a NA-
1500 N elemental analyzer (Carlo Erba, Milano, Italy).
Grass N uptake and C assimilation were calculated as:

Nuptake = DMshoot × Nconcentrationshoot + DMroot

× N concentrationroot;
ð1Þ

and

Cassimilation = DMshoot × Cconcentrationshoot

+ DMroot × C concentrationroot;
ð2Þ

where DM refers to the dry matter of the harvested grass.
Apparent N recovery (ARN) was calculated as:

ARN %ð Þ=
Nuptake fertilizedð Þ-Nuptake unfertilizedð Þ

amount of N applied
× 100:

ð3Þ

Gas samples of 25 mL in volume were collected using
a syringe inserted in the headspace of sealed lids. Sam-
ples were directly transferred to a pre-evacuated 12-mL
Exetainer vial (Labco, Lampeter, UK). Gas samples were
collected at 0, 20 and 40 min after the pots were sealed.
In the first week after each fertilization, gas samples were
collected every day to capture the fertilization-induced
peaks. In the following 3 weeks, gas samples were taken
at larger intervals of 2 to 4 days.

In order to avoid the disturbance of soil structure by
soil sampling during the incubation period, we incubated
a spare set of pots in parallel to the gas sampling pots for
soil sample collection. The setup of these pots was identi-
cal to that for pots for gas sampling. Soil samples were
taken on day 0 (1 day before the first fertilization), day

FIGURE 2 CO2 emission dynamics and cumulative CO2 emission during the growing period (56 days) from bare soil (a) and soil with grass
(b). Error bars represent the standard error of the mean of each treatment (n = 3). Solid lines with points of different grey intensities represent
different fertilizer levels (0, 5, 10 and 20 g N m−2). Dashed vertical lines indicate fertilization dates (day 1 and day 28). Asterisks indicate significant
differences in cumulative CO2 emission between bare soil and soil with grass at the same fertilizer level (t-test or Mann–Whitney U-test);
lowercase letters indicate significant differences in cumulative CO2 emission among fertilizer levels within bare soil or within soil with grass (one-
way ANOVA with Tukey's honestly significant difference (HSD) test or Kruskal-Wallis test with multiple comparison extension) at p < .05
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7, day 14, day 28 (before the second fertilization), day
35 and day 56 (final collection of samples). On day 0, day
7 and day 14, soil samples were collected from the first
spare pot; on day 35 and day 56, they were collected from
the second spare pot. The last soil samples were taken
from the pots on which gas measurements were per-
formed. The soil samples (0–11 cm depth) were taken
using a 16-mm diameter auger. Remaining holes were
filled with reagent glasses (16 mm diameter) to avoid extra
water and nutrient losses. Approximately 60 g of fresh soil
was taken and sieved through a 2-mm mesh. Soil samples
were homogenized and divided for soil NH4

+ and NO3
−,

and dissolved organic carbon (DOC) analysis. Soil pH,
total C and N, and WFPS did not differ among treatments.
From the last set of soil samples, aliquots were used for
soil DNA extraction and subsequent qPCR analysis.

2.3 | Gas and soil sample analysis

Gas samples were analysed on an Agilent 7890A gas
chromatograph (Agilent Technologies, Santa Clara, CA,
USA) equipped with a thermal conductivity detector for

the determination of carbon dioxide (CO2) concentrations
and an electron capture detector for the determination of
N2O concentrations. The flux rates of CO2 and N2O were
calculated using linear regression of the gas concentra-
tion over time (Parkin, Venterea, & Hargreaves, 2012;
Wang et al., 2013). Cumulative emissions were calculated
by interpolating the values of CO2 and N2O emissions.

To determine soil NH4
+ and NO3

− concentrations,
subsamples (10 g) of sieved fresh soil were extracted
by adding 50 mL of 0.0125 M calcium chloride (CaCl2).
Mixtures were shaken for 1 hr, filtered (MN615 1/4;
pore size, 4–12 μm; Macherey-Nagel, Düren, Germany)
and subsequently stored at −20�C until analysis. NH4

+

and NO3
− concentrations in the extracts were deter-

mined using a San++ continuous flow analyzer (Skalar
Analytical, Breda, The Netherlands). Soil pH was mea-
sured from 10 g of air-dried soil suspended in 50 mL
of 0.01 M CaCl2 solution using a pH meter. Total C
and N measurements were performed with finely gro-
und air-dried soil using an NA-1500 elemental ana-
lyzer (Carlo Erba, Milano, Italy). Prior to the
measurement of total C and N, the air-dried soil was
fumigated in a hydrogen chloride (HCl) atmosphere

FIGURE 3 N2O emission dynamics and cumulative N2O emission during the growing period (56 days) from bare soil (a) and soil with grass
(b). Error bars represent the standard error of the mean of each treatment (n = 3). Solid lines with points of different grey intensities represent
different fertilizer levels (0, 5, 10 and 20 g N m−2). Dashed vertical lines indicate fertilization dates (day 1 and day 28). Asterisks indicate
significant differences in cumulative N2O emission between bare soil and soil with grass at the same fertilizer level (t-test or Mann–Whitney U-
test); lowercase letters indicate significant difference in cumulative N2O emissions among fertilizer levels within bare soil or within soil with grass
(one-way ANOVA with Tukey's honestly significant difference (HSD) test or Kruskal-Wallis test with multiple comparison extension) at p < .05
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using 3 M HCl for 1 week to remove carbonates
(Harris, Horwath, & Kessel, 2001). For DOC measure-
ments, 10 g of fresh soil was extracted using 40 mL of
0.5 M potassium sulphate (K2SO4). The solution was
shaken for 2 hr and filtered (MN615 1/4; pore size,
4–12 μm; Macherey-Nagel, Düren, Germany). Extracts
were stored at −20�C until determination of organic C
and total C concentrations using a Total organic car-
bon/Total inorganic carbon (TOC/TIC) analyser (Multi
C/N 2100, Analytik Jena, Jena, Germany).

2.4 | DNA extraction from soil and qPCR

For qPCR analysis, soil was freeze-dried for 72 hr. The
freeze-dried material was finely ground using a swing mill
(MM400, Retsch, Haan, Germany) for 60 s at 25 Hz. Total
DNA was extract from 50 mg ground soil using a modified
cetyltrimethylammonium bromide-based protocol
(Brandfass & Karlovsky, 2008) as described previously (Beule
et al., 2019). Following DNA extraction, the quality and
quantity of DNA were examined on 0.8% (w/v) agarose gels
stained with ethidium bromide. The extracts were tested for
PCR inhibitors as described previously (Guerra, Beule,
Lehtsaar, Liao, & Karlovsky, 2020) and diluted 1:50 (v/v) in
double-distilled water (ddH2O) prior to qPCR analysis. We
quantified bacterial 16S rRNA and fungal 18S rRNA genes,
as well as genes involved in denitrification, namely narG and
napA for NO3

− reduction, nirK and nirS for NO2
− reduction,

and nosZ clade I and II for N2O reduction. All reactions were
carried out in 4 μL reaction volume (3 μL mastermix +1 μL
template DNA or ddH2O for negative controls) on a CFX384
Thermocycler (Biorad, Rüdigheim, Germany). A detailed
description of the mastermix composition and thermocycling
conditions can be found in Beule et al. (2019).

2.5 | Statistical analysis

All data were tested for homogeneity of variance
(Levene's test) and normal distribution (Shapiro–Wilk
test). Differences among treatments of cumulative data
(N uptake and C assimilation by grass and cumulative
CO2 and N2O emissions) or data without repeated mea-
surements (soil bacteria, fungi and denitrifiers) were
assessed by performing a t-test or one-way ANOVA with
Tukey's honestly significant difference (HSD) post-hoc test
for parametric data, or the Mann–Whitney U-test or
Kruskal–Wallis test with multiple comparison extension for
non-parametric data. Differences among treatments of
repeatedly measured data (DOC, NO3

−, NH4
+, CO2 and

N2O fluxes) were analysed using linear mixed effect (LME)
models. In the models, either the fertilizer level or the

treatment of bare soil versus soil with grass were set as a
fixed effect, and sampling date and replicate pot set as ran-
dom effects. The data were partially log10- or square-root-
transformed to meet the criteria for an LME model. Statisti-
cal significance was considered as p < .05, with marginal
statistical significance at p < .1. All statistical analyses were
performed in R version 3.5.2 (R Core Team, 2018).

3 | RESULTS

3.1 | Grass N uptake and C assimilation

In soil with grass, total plant N uptake, which was calcu-
lated by the dry matter of grass shoots and roots, ranged
from 6.5 to 13.9 g N m−2 in fertilized pots, compared to
4.1 g N m−2 in the unfertilized treatment. The ARNs of
fertilized treatments were 50% ± 2%. Plant shoot N
uptake at the 10 g N m−2 fertilizer level was lower than

FIGURE 4 Bacterial 16 s rRNA (a) and fungal 18 s rRNA
(b) gene copy number per g dry soil in bare soil and soil with grass
under different fertilizer levels (0, 5, 10 and 20 g N m−2) at the end
of the growing period (day 56). Error bars represent standard error
of the mean of each treatment (n = 3); asterisks denote differences
between bare soil and soil with grass (* p < .05); daggers represent
marginal differences between bare soil and soil with grass († p < .1)
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that at 20 g N m−2 (p = 0.006) and greater than those at
0 and 5 g N m−2 (p < .01) (Table 1). Plant root N uptake
in unfertilized treatments was lower than in the treat-
ments in which 5, 10 and 20 g N m−2 were added
(p < .04) (Table 1). The total N uptake throughout the
incubation period (56 days) increased along with increas-
ing fertilizer application (p < .03) (Table 1). Shoot C, root
C and total C assimilation were greater in fertilized than
unfertilized pots (p < .04) (Table 1), but did not differ
among the 5, 10 and 20 g N m−2 fertilization treatments.

3.2 | Soil DOC, NO3
− and NH4

+ dynamics
during incubation

Dissolved organic carbon was slightly increased in the
first 2 weeks, and gradually decreased in the following
weeks in both bare soil and soil with grass (Figure 1a,
b). DOC concentrations did not differ among bare soil
and soil with grass, nor among fertilizer levels
(Figure 1a,b). Soil NO3

−-N content in bare soil was
always greater than in soil with grass at all fertilizer
levels (p ≤ .001) (Figure 1c,d). Fertilization led to
increased NO3

−-N concentrations in bare soil as com-
pared to unfertilized treatments (p ≤ .05) (Figure 1c).
Compared to the background NO3

− (approximately 2 g
of NO3

−-N m−2) in unfertilized bare soil, soil NO3
−-N

was close to zero in the unfertilized treatment of soil
with grass (Figure 1d). Furthermore, in soil with grass,
at the 20 g N m−2 fertilizer level, soil NO3

−-N was
greater than at all other fertilizer levels (p ≤ .05)
(Figure 1d). When N fertilizer was applied, NH4

+-N
was marginally greater in bare soil than in soil with
grass (p < .1) (Figure 1e,f).

3.3 | CO2 and N2O emissions

The presence of grass strongly enhanced CO2 emissions
compared to bare soil, especially in treatments with fertil-
izer (p ≤ .003) (Figure 2). Fertilization had no effect on
CO2 emissions (neither on short-term rates nor on cumu-
lative fluxes) in bare soil (Figure 2a). In soil with grass,
however, CO2 emission rates and cumulative fluxes were
increased by fertilizer application (p ≤ .001) (Figure 2b).

In contrast to CO2 fluxes, N2O emissions from bare
soil were greater than from soil with grass at each fertil-
izer level (p < .05) (Figure 3). At the 5 and 10 g N m−2

fertilizer levels, bare soil showed greater cumulative N2O
emissions than soil with grass (p < .05). Cumulative N2O
emissions from soil with grass at the 0, 5 and 10 g N m−2

fertilizer levels were lower than at 20 g N m−2 (p < .05)
(Figure 3b).

3.4 | Soil microbial gene abundances in
bare soil and soil with grass

At the end of the experiment (day 56), the abundances of
bacteria, fungi and denitrification genes in soil were
quantified. The fertilization rate did not affect the abun-
dances of bacteria, fungi and denitrification genes
(Figure 4, Figure 5). At the 0 and 20 g N m−2 fertilizer
levels, the soil with grass showed marginally greater bac-
terial 16S rRNA gene copy numbers than bare soil
(p < .08) (Figure 4a). Similarly, the number of fungal 18S
rRNA gene copies did not differ among fertilizer levels,
but were greater in soil with grass than bare soil at the
0, 10 and 20 g N m−2 fertilizer levels (p < .05)
(Figure 4b). The abundance of narG was greater in the
soil with grass than bare soil at the fertilizer level of
20 g N m−2 (p < .005) (Figure 5a). At the 0 and 5 g N m−2

fertilizer levels, gene copy numbers of napA in soil with
grass were greater than in bare soil (p < .06) (Figure 5b).
At each fertilizer level, nirK gene copy numbers were
greater in soil with grass than in bare soil (p < .09)
(Figure 5c). The abundance of nirS was increased in soil
with grass compared to bare soil when 5, 10 or
20 g N m−2 of fertilizer was applied (p < .1) (Figure 5d).
At the fertilization rate of 20 g N m−2, nosZ clade I gene
copies were marginally greater in soil with grass than in
bare soil (p < .07) (Figure 5e). No differences between
soil with grass and bare soil at any fertilizer level were
detected for nosZ clade II genes (Figure 5f).

4 | DISCUSSION

4.1 | Soil organic C turnover and CO2

emissions

The soil microbial community is the main driver of soil
respiration and organic C mineralization in bare soils
(Li et al., 2018; Liu et al., 2018). The slight increase in
DOC in the first 2 weeks may have been due to the
rewetting of the dry soil to 60% WFPS (Kalbitz, Solinger,
Park, Michalzik, & Matzner, 2000). For example, when
Lundquist, Jackson, & Scow (1999) exposed soil to wet–
dry cycles, soil aggregates were partly decomposed and
their C was found in the DOC fraction. In the first
3 weeks of the experiment, soil CO2 emissions increased
gradually in bare soils, indicating a recovery of the micro-
bial respiration from the rewetted air-dried soil
(Figure 2a). As the soil was already pre-incubated for
4 weeks before the application of fertilizer, this may be
seen as an indication that the recovery of the soil micro-
bial activity in the bare soil may take approximately
7 weeks under the given conditions. One reason for this
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long recovery period in bare soil may be the limitation of
available C. Three weeks after the first fertilization, the
stable CO2 emissions and slow DOC consumption rate
may point towards a stabilized soil microbial community.

Pausch & Kuzyakov (2018) reviewed the distribution
of C compounds in soil that were released by roots. They
concluded that 12% of the assimilated C is emitted from
the plant as root-derived CO2 and 5% is deposited in the
rhizosphere. Most plant root exudates have been reported
to be readily available to soil microorganisms because
they can be metabolized within a few hours (Jones
et al., 2005; Kuzyakov & Xu, 2013). Moreover, it is rea-
sonable to expect a greater DOC content in soils with
grass than in bare soil given the estimation that 5% of the
assimilated C is sequestrated in the rhizosphere
(Pausch & Kuzyakov, 2018). However, no such increase
was found in our study. Zhang, Li, Wang, & Huang (2018)

reported that heavy grazing lowered the C input and
decreased C accumulation and total soil organic C con-
tents, due to reduced aboveground tissue (Schönbach
et al., 2011), more exposure of the soil surface, and thus
increased loss of soil moisture (Y. Zhao et al., 2007) and
stimulated compensatory growth of new leaves (W. Zhao,
Chen, & Lin, 2008). Therefore, the intensive cutting
throughout our experiment is likely to have contributed
to the lack of increased soil DOC, and the limitation of
available C may restrict denitrification activity and there-
fore reduce soil N2O emissions in soil with grass.

4.2 | Soil mineral N and N2O emissions

The N2O emissions followed a pattern that was similar to
that for soil NO3

− concentrations. For example, in each of

FIGURE 5 narG (a), napA (b), nirK (c), nirS (d), nosZ clade I (e) and nosZ clade II (f) gene copy number per g dry soil in bare soil and
soil with grass under different fertilizer levels (0, 5, 10 and 20 g N m−2) at the end of the growing period (day 56). Error bars represent
standard error of the mean of each treatment (n = 3); asterisks denote differences between bare soil and soil with grass (* p < .05). Daggers
represent marginal differences between bare soil and soil with grass († p < .1)
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the eight treatments, the second N2O emissions peak,
which followed the second fertilizer application, was
greater than the first peak (Figure 3a,b). Additionally, in
contrast to soil with grass, bare soil treatments showed
considerably greater N2O emissions, which lasted over the
entire study period. In soil with grass, N2O emissions fell
to nearly zero 2 weeks after each fertilizer application,
which was associated with exploited soil NO3

−. The rela-
tionships between soil NO3

− and N2O emissions indicate
that, under these conditions, soil NO3

− is the predominant
factor controlling soil N2O emissions (Dong et al., 2018; Ji
et al., 2018; Zhou, Zhu, Wang, & Wang, 2017).

At 60% WFPS, both nitrification and denitrification
are expected to be important contributors to soil N2O
emissions, as this moisture level is seen as the threshold
between aerobic and anaerobic conditions (Köbke
et al., 2018; Menéndez, Barrena, Setien, González-
Murua, & Estavillo, 2012; Volpi, Laville, Bonari, o di
Nasso, & Bosco, 2017). One week post the first fertiliza-
tion, only 0.2 g N NH4

+ was found and 7.9 g N NO3
−

were detected in the fertilized bare soil treatment at
20 g N m−2 (Figure 1c,e). Because the fertilizer was cal-
cium ammonium nitrate at a ratio of NH4

+ and NO3
− N

of 1:1, we assume that the vast majority of NH4
+ was

converted to NO3
− through nitrification. Additionally, we

assume that a certain proportion of the added NH4
+ was

released as N2O during nitrification (Bremner, 1997).
After 1 week, nitrification was unlikely to happen
because the amount of NH4

+ (0.2 g N) was low. Although
nitrification was not investigated in this study, our obser-
vations agree with other incubation studies that more
than 50% of the NH4

+ is converted to NO3
− within the

first week after fertilizer application (Senbayram, Chen,
Mühling, & Dittert, 2009; Wu et al., 2017). We anticipate
that, in the first week after fertilization, both pathways
(nitrification and denitrification) contributed to the
observed N2O emissions. In the following weeks, denitri-
fication is likely to have become the predominant process
contributing to N2O emissions owing to NH4

+ removal
(Figure 1e,f) and lowered oxygen partial pressure induced
by root O2 consumption (Klemedtsson et al., 1987).

Due to root activity, two opposing effects on denitrifi-
cation are likely to have occurred: (i) O2 consumption by
aerobic root activity (root respiration consuming O2)
(Kuzyakov & Razavi, 2019); and (ii) plant transpiration,
leading to drainage of coarse soil pores and thus
increased air-filled pore space, which will result in
increased oxygen availability. In our study, although
water content was adjusted every 1–2 days, soil with
grass had about 5% lower WFPS than bare soil prior to
irrigation. The loss of water was due to plant transpira-
tion. Therefore, lower soil moisture due to plant transpi-
ration may increase oxygen diffusion into the soil and

thereby suppress denitrification (Menéndez et al., 2012;
Volpi et al., 2017). Several previous studies reported that
the presence of plants would increase denitrification
(Guyonnet et al., 2017; Klemedtsson et al., 1987;
Mahmood et al., 1997). However, our study was not a
perfect proof of the opposite, but at least it provides evi-
dence that the earlier reported promotion of denitrifica-
tion does not always happen; at least, plants do not
always induce higher N2O emissions.

4.3 | Influence of the presence of plants
on soil microbial abundances

The population size and diversity of microbial communi-
ties have repeatedly been shown to increase in the pres-
ence of plants (Guyonnet et al., 2018; Haichar
et al., 2008; Li et al., 2018). In line with this, our results
showed that population densities of both soil bacteria
and fungi increased with the presence of ryegrass. Con-
sidering C-limited conditions in unplanted soil, we
assume that root-derived input of easily available C pro-
moted these microbial populations.

Plant root exudates are known to modulate both
microbial biomass and community composition (Benizri,
Nguyen, Piutti, Slezack-Deschaumes, & Philippot, 2007;
Henry et al., 2008; Langarica-Fuentes, Manrubia, Giles,
Mitchell, & Daniell, 2018; Zhalnina et al., 2018). How-
ever, a limited number of studies have explored how
plants influence genes involved in denitrification (Henry
et al., 2008; Pivato et al., 2017). We found that, with the
exception of nosZ clade II, all denitrification genes were
promoted in the presence of ryegrass, which may be due
to the root exudation of easily available C. Graf (2015)
proposed a greater affinity of nosZ clade I-carrying micro-
organisms to root exudates than for those carrying nosZ

clade II. Our findings agree with the suggestions of
Graf (2015): there was a trend showing that nosZ clade I
genes were greater in soil with grass, whereas nosZ clade
II showed no preference for bare versus planted soil.

4.4 | Relationship of reduced N2O
emissions and increased denitrifying gene
abundances in soil with grass

In our study, N2O emissions were reduced even though
denitrification genes increased under grass. Recovery of
N by crops is usually somewhat less than 50% (Fageria &
Baligar, 2005). In our study, the high N recovery rate of
ryegrass (�50% ARN) indicates that the incubation con-
ditions (60% WFPS, 25�C day temperature and 12�C
night temperature) were favourable for plant growth. The
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ARN agrees well with the emission factors of bare soil
and soil with ryegrass, which were 1.4%–1.8% and 0.5%–
0.8%, respectively. Our results indicate that for soil N2O
production, the availability of mineral N was a more
important factor than the population size of denitrifiers.
It should be mentioned that, due to the limitation of the
experimental design, soil samples and gas samples were
not taken from the same pots, and N2O emissions were
highly variable. Therefore, it was not possible to correlate
N2O emissions and NO3

− concentrations in this study.
In soil with grass at the 20 g N m−2 fertilizer level, soil

NO3
− concentrations were not depleted by plant uptake

and, concurrently, cumulative N2O emissions at this level
were more than twice as high as those at the 10 g N m−2

fertilizer level, suggesting that an N input that exceeds
the plant's needs can exponentially increase soil N2O
emissions. Previous field studies have shown congruent
results (Groenigen, Velthof, Oenema, Groenigen, &
Kessel, 2010; Philibert, Loyce, & Makowski, 2012;
Shcherbak et al., 2014). The much lower cumulative N2O
emission levels in soil with grass, as compared to bare
soil, at the 5 and 10 g N m−2 fertilizer levels, were most
likely to be due to plant uptake of soil mineral N.

It was recently suggested that soil NO3
− availability

affects denitrifying communities (Deiglmayr et al., 2006;
Saggar et al., 2013; Tang et al., 2016). However, our data
revealed no link between fertilizer level and denitrifica-
tion genes. The reason may be the limitation of available
C in both bare soil and planted soil. In planted soil, inten-
sive cutting may have limited C input from root exudates
into the soil. It should be noted, however, that this obser-
vation requires further study, because denitrifiers were
only quantified at the end of our experiment. Therefore,
potential changes in microbial communities during the
course of our experiment may have remained undetected.
Our study aimed to explore the potential of ryegrass to
reduce soil N2O emissions under laboratory conditions.
We considered the homogenization of the soil as impor-
tant for a comparable starting point for the development
of the soil microbial community. Our incubation study
used sieved soil, which altered the soil structure and is
likely to have affected the microbial community as com-
pared to the field conditions. The incubation temperature
used in the present study was higher than that expected
under field conditions, which may have caused greater
ammonia (NH3) volatilization (Bremner, 2007; Forrestal
et al., 2016) and higher nitrification and denitrification
rates (Bremner, 1997; Saggar et al., 2013). Furthermore,
NO3

− loss by leaching was absent in our study because
the incubation pots were not drained. These methodolog-
ical drawbacks may have led to an overestimation of soil
N2O emissions in our study as compared to field

conditions. Follow-up field studies should be carried out
to explore the full potential of ryegrass under field condi-
tions and in different soils.

5 | CONCLUSION

Our incubation experiment compared N2O emissions and
population sizes of denitrifying bacteria in soil planted
with ryegrass and in bare soil under different N fertilizer
levels. We found that 50% of fertilized N was recovered in
plant tissues and emissions of N2O were lower in soil
with grass than in bare soil, although the proliferation of
denitrifying bacteria in soil with grass was stimulated.
We infer that soil mineral N is more related to N2O emis-
sions than soil denitrifying genes. However, because of
the higher potential of denitrification in soil with grass,
the risk of high N2O emissions should also be noted,
especially when N fertilizer exceeds the requirements of
plants. Altogether, we conclude that ryegrass serving as a
cover crop holds the potential to mitigate soil N2O emis-
sions in soils with moderate or high NO3

− concentra-
tions. Future studies should focus on how different plant
species and their root exudates affect soil N2O emissions
and related soil microorganisms under field conditions
and in different soils.
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Chapter 5: General Discussion 

 

5.1 Effect of urease and nitrification inhibitors on N2O emission 

We have introduced a popular urease inhibitor NBPT with both incubation and field experiment in 

our study (Paper I and II). NBPT-added urea was not only intended to decrease soil N2O emission, 

but also to reduce NH3 volatilization, which can account for 25% of urea applied to soil surface 

(FAOSTAT, 2015). The reduction of NH3 volatilization was more certain and effective in recently 

reviewed studies (Dawar et al., 2011; Drury et al., 2017; Liu et al., 2017; Mira et al., 2017; Tian et 

al., 2015). In our incubation experiment, adding NBPT on urea reduced 50% of cumulative NH3 

emission (Paper I). Considering 1-2% of NH3 converted to N2O (Wulf et al., 2002), it counts for 

10-20% extra reduction of N2O than urea alone. Moreover, in field conditions, the reduction of 

NH3 volatilization increases N use efficiency, which potentially increases crop yield (Linquist et 

al., 2013). The reduction of yield-scaled N2O emission should be more effective.  

Direct N2O emissions reduced by NBPT was also observed in many other studies (Abalos et al., 

2012; Dawar et al., 2011; Ding et al., 2011; Singh et al., 2013), though with a higher uncertainty 

(X. Fan et al., 2018). In our incubation experiment, NBPT reduced 31% of direct N2O emission, 

compared with urea alone (Paper I), but the reduction of N2O emission under field studies was 

inconsistent, 26%, 19% and 9% of N2O emission were reduced, under a wheat- wheat- oilseed rape 

rotation, respectively, and the results were not statistically significant (Paper II). Our postulation 

was that background NO3
- substrate in the soil plays an important role on the effectiveness of NBPT. 

When there was a high NO3
- content even in unfertilized soil, N2O emission (induced by soil-borne 

NO3
-) masks the effect of NBPT reduced N2O emission. 

Piadin (1H-1, 2, 4-triazole and 3-methylpyrazole) served as a nitrification inhibitor showed its 

effectiveness on N2O reduction in a few related studies (Barneze et al., 2015; Pietzner et al., 2017; 

Wolf et al., 2014; Wu et al., 2017). In our incubation experiment, cumulative N2O emission was 

reduced from 0.98 g N2O-N m−2 to 0.15 g N2O-N m−2 (Paper I). The effect of delaying the 

transformation of NH4
+ to NO3

- was also clearly observed. Such astonishing effectiveness was 

achieved, probably because our experiment condition was very in favor to denitrification (25°C 

and 80% WFPS). However, it was still worth mentioning that adding Piadin increased NH3 
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volatilization by 44%, compared with urea alone. Similar findings were also reported by others (C. 

Fan et al., 2018; Ferm et al., 2006; Lam et al., 2018, 2017; Pan et al., 2016; Qiao et al., 2015; Webb 

et al., 2010). 

DMPP was also tested in our field experiment using the commercial fertilizer ENTEC (7.5 % N of 

NO3
- and 18.5 % N of NH4

+ with 0.15% DMPP, BASF, Ludwigshafen, Germany) (Paper II). 

Similar with UTEC (urea + NBPT), no yield increase was found, the reduction of N2O emission in 

the wheat- wheat- oilseed rape rotation was 15%, 58% and 13%, respectively. Only in the wheat 

after wheat season, N2O was statistically lower in ENTEC. Our postulation that high soil NO3
- 

substrate caused by high N surplus of oilseed rape was also valid to explain the ineffectiveness of 

DMPP on reducing N2O emissions (in oilseed rape and following wheat fields). 

5.2 Effect of crop rotation on yield and yield-scaled N2O emissions 

Our field experiment shows a clear break crop effect (BCB), that wheat after oilseed rape had a 

higher crop yield than wheat after wheat (Paper II). Though wheat after wheat in 2017 suffers 

extreme heavy rainfalls during the harvest, which may cause some yield losses. But the obviously 

higher NO3
- content in wheat after oilseed rape field is a clear evidence of break crop effect and 

partly explains its high crop yield. The break crop effect was also well documented in other studies 

(Angus et al., 2015; Sieling and Christen, 2015; Weiser et al., 2018). 

From the plant nutritional aspect, higher crop yield of wheat after wheat was as a result of high N 

surplus after oilseed rape cultivation. Residues of oilseed rape in post-harvest season provides more 

mineral N than needed for N uptakes before winter (Ruser et al., 2017). Moreover, residues in post-

harvest season provide an impeccable environment for denitrification. It provides not only 

denitrification-needed NO3
- substrates, but also sufficient organic C as energy source (Köbke et al., 

2018; Ruser et al., 2017). In our study, the climate also additionally provides a high temperature 

and a high WFPS, which also favors denitrification. The huge amount of N2O emission at post-

harvest season in oilseed rape field in 2017 is consistent with our speculation.  

5.3 The presence of plant affect N2O emissions 

In Paper III, we explored how the presence of Lolium perenne affect soil C and N cycles and 

microbial community, by comparing Lolium Perenne planted soils and bare soils. Though it is 

widely agreed that 5-21% of photosynthesis-derived C is released into the soil in the form of root 
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exudates (Derrien et al., 2004; Nguyen, 2003), we did not find a difference of DOC-content 

between bare soil and planted soils. The reason could be possibly:  i) the majority of root exudates 

was directly consumed by root and microbes respiration in a few hours (Fischer and Kuzyakov, 

2010; Jones et al., 2005; Jones and Kielland, 2002; Kuzyakov and Xu, 2013); ii) intensive cutting 

decreased organic C accumulation (Zhang et al., 2018). 

N2O emission of soil with grass was presumed to be lower than bare soil, while a large amount of 

soil NO3
- can be absorbed by the growth of Lolium Perenne. In our study (Paper III), we found a 

ca. 50% apparent N recovery efficiency in fertilized soil with grass, accompanying with a lower 

NO3
- content in soil with grass than bare soil. Not surprisingly, N2O emission in soil with grass was 

lower than that in bare soil. Aside from lower NO3
- in soil with grass, a slightly lower WFPS (55%) 

during gas measurement, which was caused by plant respiration, might be another reason for lower 

N2O emission in soil with grass. However, our results also suggest that the potential of N2O 

emission could increase exponentially, when the soil NO3
- were excessive for plant uptake (Hayashi 

et al., 2015; Philippot et al., 2013; Uchida et al., 2011). In our study, a 20 g N m-2 fertilization level 

caused more than doubled N2O emission than a 10 g N m-2 fertilization level, and at 20 g N m-2 

fertilization level, the discrepancy of N2O emission in soil with grass and bare soil was narrowed, 

compared with lower fertilized levels.  

Root exudates increase soil microbial biomass and community diversity was well documented in 

various studies (Berg and Smalla, 2009; Guyonnet et al., 2018; Haichar et al., 2008; Li et al., 2019, 

2018; Qian et al., 2018). Our results showed that both bacterial 16S rRNA and fungal 18S rRNA 

gene abundances were increased by the presence of Lolium perenne, and soil bacteria may be more 

favored by plant roots than fungi (Paper III). We also found that rather than other denitrifying genes 

(narG, napA, nirK, nirS, nosZ clade I), nosZ clade II was not stimulated by the presence of Lolium 

Perenne. This is correspondent with Graf et al. (2015), that organisms carrying the nosZ clade I 

have an affinity to plant roots which are not shared by those with nosZ clade II. The fact that nitrate 

and nitrite reductase genes (narG, napA, nirK and nirS) increases more than nitrous oxide reductase 

genes (nosZ), also indicates that soil with grass has a higher potential of incomplete denitrification, 

when soil NO3
- content was not the limiting factor. The incomplete denitrification might lead to a 

higher N2O/N2O+N2 ratios. 
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5.4 Approaches for N2O mitigation in arable lands 

This study provide some information on the effectiveness of urease and nitrification inhibitors. But 

the complexity of soil microenvironment increases its uncertainty. How to improve the 

effectiveness of enhanced-efficiency fertilizers, still needs more research. From the view of our 

study, we suggest three possible directions for future research: 

1) Investigate on the environmental factors that affect the effectiveness of urease and nitrification 

inhibitors. In our field experiment, we found that post-harvest residues of oilseed rape leads to 

high N2O emission, which masks the effectiveness of urease and nitrification inhibitors (Paper 

II). For that, appropriate field management (straw removal) could be done, to reduce post-

harvest N2O emission. In other studies, they found urease inhibitors can be more effective to 

reduce NH3 volatilization, when the soil was exposed to high risk of NH3 volatilization, for 

example high soil temperature and low soil moisture (Grant et al., 1996). Or when the soil 

suffers high leaching risk, for example sandy soil texture, heavy rainfalls or irrigation after 

fertilization, nitrification inhibitor could be more effective (Ni et al., 2015). 

2) Combine current available inhibitors and additives to improve its effectiveness. The 

combination of both urea and nitrification is a possible attempt (Drury et al., 2017; Rajkovich 

et al., 2017; Zaman et al., 2013). Other additives, for example biochar (Cayuela et al., 2014; 

Palanivell et al., 2017; Roberts et al., 2010), urea coated with zinc sulfate (ZnSO4) (Adotey et 

al., 2017; Shivay et al., 2008), urea coated with humic acids and zeolites (de Sousa Gurgel et 

al., 2016), when combined with current available inhibitors, might show a different 

effectiveness.  

3) Research on new inhibitors. Although developing new inhibitors is more likely to face failure, 

for example NZONE MAX in our study was proved to be ineffective in reducing either NH3 or 

N2O emissions, new compounds is always worth to explore. Some literature shows that 

Limus® (A formulation containing NBPT and NPPT (N-(n-propyl) thiophosphoric triamide) 

was an new effective urease inhibitor (Cantarella et al., 2018; Li et al., 2015). A more 

fascinating inhibitor is 1,9‐decanediol (Sun et al., 2016), which is a newly observed biological 

nitrification inhibitors (BNI) and might receive more attention in the following years. 
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Chapter 6: Summary 

 

Nitrous oxide (N2O) is an important greenhouse gas which contributes to climate change and ozone 

depletion. Mineral N fertilizers are one of the most important sources of N2O emission in 

agricultural systems. Enhanced-efficiency fertilizers (e.g., N fertilizers with added urease and 

nitrification inhibitors) represent possible approaches to N2O emission reduction and improved 

efficiency of N use. However, their adoption has been limited by the uncertainty of their 

effectiveness across different ecosystems. The present study aims to evaluate the effectiveness of 

several inhibitors under various environmental conditions. We found some of them showed their 

ability to reduce N2O emissions, for example Piadin and NBPT under laboratory conditions, while 

some of them are inefficient (NZONE MAX), and some exhibit inconsistent mitigation in N2O 

emissions (for example DMPP and NBPT under the wheat- wheat- oilseed rape rotation system). 

Although the nitrification inhibitor Piadin reduced N2O emissions from soil, it also increased the 

risk of higher NH3 volatilization. Our results reveal the complexity of soil microbial activity in 

relation to nitrification and denitrification, and provide some references to improve the efficiency 

of urease and nitrification inhibitors.  

These inconsistencies in effectiveness highlights the gap between laboratory and field conditions. 

One of the most important differences is that incubation experiments do not usually include plants. 

Our third experiment included both unplanted and planted soils. The results confirm our hypothesis 

that the presence of Lolium perenne increases the activity of microorganisms (probably through 

the release of root exudates) and lowers N2O emission through intense competition for mineral N 

between plant and soil microorganisms. However, further scientific questions have arisen from the 

results which require investigation. For example: how do root exudates regulate denitrifying 

communities, are root exudates stimulating or inhibiting nitrification and denitrification; how do 

plant species (e. g. leguminous and non-leguminous) affect the microbial communities; and how 

does the application of urease and nitrification inhibitors root exudates? In recent projects, 

researchers have discovered several compounds released from plant root exudates which have 

significant nitrification inhibition capacity. These biological nitrification inhibitors may provide an 

effective method of increasing the efficiency of N use and reducing N2O emission in future 

agricultural systems. 
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