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Abstract

Transcription factors control the essential step of gene expression via recognizing the over-
represented binding sites (or motifs) on the genome. One crucial task is to accurately predict
these binding sites on the genome, to understand the regulatory mechanisms.

This thesis approaches this task in three parts.
In the first part, I introduce a tool, BaMMmotif2, that I have developed to identify motifs

de novo from DNA sequencing data. Compared to the existing position weight matrix
(PWM)-based motif discovery tools, the higher-order Bayesian Markov models (BaMMs)
have the advantages of learning the interdependence of the nucleotides for transcription factor
binding while being fast and having high predictive accuracy. The core of the BaMMs is that
the higher-order probability is learned by combining the k-mer counts and the probability of
one order lowers with a pseudo-factor α tuning the weights between the two. I optimize a
position- and order-specific pseudo-factor α for higher-order BaMMs. I also introduce the
method to learn the positional preferences of the transcription factors. Besides, I apply a
masking step to the input sequences to train the model only with the most relevant positions,
and thus it helps distinguish weak motifs when multiple binding motifs are present in the
data.

In the second part, I introduced a new and better motif performance score, the average
recall (AvRec score), to give the users some guidance on evaluating the motif quality. Besides,
to validate the existing motif detection tools, I developed a full scheme including (I) N-fold
cross-validation, (II) cross-platform validation, and (III) cross-cell-line validation. In 5-fold
cross-validation, BaMMmotif2 outperforms the selected state-of-the-art tools in this field,
with at least 13.6% and 12.2% median increase in the AvRec score using in vivo and in
vitro data, respectively. In the cross-cell-line validations on 238 datasets, BaMMmotif2
gains >11% median increases in the AvRec score. BaMMs also perform the best in the
cross-platform validation on 16 data sets. By applying BaMMs for the CTCF motif to scan
the whole human genome, I discover 1.5 million CTCF binding sites with high accuracy.
This result could lead to a better understanding of the genome 3D structure and its biological
functions.
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In the third part, we offer the community an interactive web server with the tool and
database: bammmotif.soedinglab.org. It provides four main functionalities: (I) de novo
predicting motifs from DNA/RNA sequences, (II) finding motif occurrences given a sequence
and a motif model, (III) searching for similar known motifs in the database, given a novel
motif model, and (IV) offering databases with higher-order BaMMs for different organisms.

https://bammmotif.soedinglab.org/


Table of contents

1 Introduction 1
1.1 Transcriptional regulation and transcription factors . . . . . . . . . . . . . 2
1.2 Transcription factor binding motifs . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Experimental measurements for protein-DNA interactions in vivo and in vitro 5
1.4 Computational techniques for finding motifs . . . . . . . . . . . . . . . . . 7
1.5 Applications of predictive models . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Aims and contents of this thesis . . . . . . . . . . . . . . . . . . . . . . . 13

2 Algorithm and benchmark 15
2.1 How to model protein-DNA binding energies? . . . . . . . . . . . . . . . . 15

2.1.1 Position weight matrix (PWM) . . . . . . . . . . . . . . . . . . . . 17
2.1.2 Pattern-based motif discovery tool (PEnGmotif) . . . . . . . . . . . 18
2.1.3 Higher-order Bayesian Markov model (BaMM) . . . . . . . . . . . 21

2.2 How to train a Bayesian Markov model? . . . . . . . . . . . . . . . . . . . 22
2.2.1 Bayes rules and log likelihood . . . . . . . . . . . . . . . . . . . . 22
2.2.2 Likelihood in weak binding approximation . . . . . . . . . . . . . 23
2.2.3 The prior probability distributions . . . . . . . . . . . . . . . . . . 25

2.2.3.1 The prior on model parameters m . . . . . . . . . . . . . 25
2.2.3.2 The prior on hyperparameters αk j . . . . . . . . . . . . . 25
2.2.3.3 The positional prior p(zn) . . . . . . . . . . . . . . . . . 26

2.2.4 The posterior probability distribution . . . . . . . . . . . . . . . . 26
2.2.5 Maximum likelihood algorithm . . . . . . . . . . . . . . . . . . . 26
2.2.6 Collapsed Gibbs sampling . . . . . . . . . . . . . . . . . . . . . . 29

2.2.6.1 Collapsed Gibbs sampling of z . . . . . . . . . . . . . . 31
2.2.6.2 Sampling of hyperparameter q . . . . . . . . . . . . . . 32
2.2.6.3 Sampling α by Gibbs with Metropolis-Hastings . . . . . 33

2.2.7 Obtaining a motif model . . . . . . . . . . . . . . . . . . . . . . . 34
2.2.8 Learning positional preferences of transcription factors . . . . . . . 34



x Table of contents

2.2.8.1 Thermodynamic treatment of positional preference . . . . 34
2.2.8.2 Flat Bayesian prior on positional preference . . . . . . . 35
2.2.8.3 Prior penalising jumps in the positional preference profile 36
2.2.8.4 Prior penalising kinks in the positional preference profile 39

2.3 Training and testing data . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.4 Assessing motif models and benchmark . . . . . . . . . . . . . . . . . . . 42

3 Result and Discussion 43
3.1 BaMMmotif2 algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.1.2 Hyperparameter optimization . . . . . . . . . . . . . . . . . . . . 44

3.1.2.1 Gibbs sampling of pseudo-factor α . . . . . . . . . . . . 44
3.1.2.2 Optimization of positional prior z . . . . . . . . . . . . . 47
3.1.2.3 Masking input sequences . . . . . . . . . . . . . . . . . 50
3.1.2.4 Prediction on weak binding sites . . . . . . . . . . . . . 52

3.1.3 Article: Bayesian Markov models improve the prediction of binding
motifs beyond first-order without overfitting . . . . . . . . . . . . . 56

3.2 BaMM webserver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2.2 Article: The BaMM webserver for de novo motif discovery and

regulatory sequence analysis . . . . . . . . . . . . . . . . . . . . . 98

4 Conclusion 107

References 113

Appendix A Supplementary material 121
A.1 IUPAC letter nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . 121
A.2 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
A.3 Transcription factor classes . . . . . . . . . . . . . . . . . . . . . . . . . . 124
A.4 Experiments for detecting DNA-protein binding . . . . . . . . . . . . . . . 125
A.5 Selected tools for motif discovery . . . . . . . . . . . . . . . . . . . . . . 126
A.6 Motif web servers and databases . . . . . . . . . . . . . . . . . . . . . . . 126

List of figures 129

List of tables 131



Chapter 1

Introduction

To understand how life processes are happening at the cellular level, we need to learn
how to interpret the genomics dictionary, which consists of simple code letters (A,C,G,T).
Deciphering this book and translating it into meaningful sentences is a complex task for the
cell. The central dogma of biology (Figure 1.1) illustrates the flow of genetic information
from DNAs to functional proteins via RNAs. The DNA replicates itself and also transcripts
its sequence information into RNAs. For eukaryotes, the precursor RNA sequences contain
both exons (<10%) for being translated into proteins and introns (90%), which will be spliced
after being translocated from the nucleolus to cytoplasm. After splicing, some of the mature
RNAs, namely messenger RNAs (mRNAs), are translated into protein amino acid chains,
which later can be folded into 3D functional proteins.

Fig. 1.1 The central dogma of biology.

A full set of the human genome consists of approximately 3 billion base pairs of DNA
molecules, which are translated into about 20,000 functional proteins and small molecular
RNAs. The transcription regulation is thus a complicated task. It is mainly controlled by
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the regulatory factors, such as transcription factors (TFs) and non-coding RNAs, when they
recognize and bind to their target binding sites.

This thesis aims to understand the transcription regulation by deciphering the genomic
regulatory information with statistical models. I first introduce the transcription regulation
mechanism and the key players - transcription factors. Then I focus on the genomic reg-
ulatory patterns, or motifs, which can be recognized by transcription factors with specific
affinities. Next, I describe the experimental approaches for studying the interactions between
transcription factors and motifs, followed by the computational methods for interpreting the
sequencing results. Last but not least, I conclude this thesis with results and applications.

1.1 Transcriptional regulation and transcription factors

Transcription is the very first and essential step in gene expression (Figure 1.2). It is a
complex process that controls how genetic information will be converted from DNA to
RNA sequence. In eukaryotes, transcription starts when transcription activators recognize
accessible genome regions and bind to enhancer elements. For the transcription of protein-
coding genes, general transcription factors and RNA polymerase II (Pol II) are assembled
into the pre-initiation complex (PIC), at the core promoter region, with the assistance of the
mediator complex. RNA polymerase binds to the transcription start site (TSS) and starts
transcribing DNA into RNA. During this process, there is a CCCTC-binding factor (CTCF)
which is crucial for mediating the intra- and inter-chromosomal contacts [1].

Fig. 1.2 Transcriptional regulation in eukaryotic cells.
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In human cells, 1,600 out of approximately 2,000 total proteins with DNA binding
domains, might function as transcription factors. Transcription factors are often classified
according to either (1) their DNA binding domains, or (2) regulatory functions. The spa-
tiotemporal combination of transcription factors determines when to express specific sets of
genes and how much these genes will be expressed. Misregulations of transcription factor
activities can lead to diseases such as cancer [2] and diabetes [3, 4]. Therefore, transcription
factors can act as markers for cancer treatments [5].

1.2 Transcription factor binding motifs

The binding of transcription factors determines gene expression during cell development
to accessible DNA patterns in promoter-proximal and distal regions. These regions are
mostly GC-rich, nucleosome-depleted, and DNase I-accessible regions [6], and they are
highly conserved during evolution. These functional DNA patterns are called motifs. They
are typically 6-20 base pairs long and determines the binding sites for proteins such as
transcription factors and nucleases, as well as for RNA processing such as splicing and
modifications. The binding affinity of transcription factors to motifs depends primarily on
hydrogen bonding between specific amino acid residues in the protein and individual bases in
the DNA sequence [7]. It can also be influenced by the 3D structure of DNA and chromatin
modifications [8].

Transcription factor-DNA weak binding affinities

Previous studies on the phage λ operator and the yeast Gal1 promoter identified binding
sites with a range of affinities crucial for gene regulation [9, 10]. Another example is
the zinc finger (ZF) family, which is a major transcription factor family with the largest
portions (approximate 80%) of unknown motifs [11]. ZF proteins often have different
"fingers" for binding to different DNA residues with weak binding affinities and in various
combinations. The low-affinity binding sites are TF-bound DNA sites that are 103 fold
weaker than the optimal pattern yet still can be recognized by transcription factors, compared
to other sequences. It allows the modulation of the regulatory processes and makes cells
adaptive to different environments. Notably, the low-affinity binding sites are crucial for
precisely regulating specific gene expressions during cell development [12, 13]. To reach
particular specificity with low binding sites, the cell needs a local transcription factor boost
to a particularly high level, which might co-develop with the formation of transcriptional
hubs in the cells [13].
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Different transcription factor-motif binding modes

The same transcription factors do not always target the same motifs. One example is that
dimeric transcription factors commonly bind to motifs with variable spacing residues between
the two halves, such as the transcription factor family Maf [14]. Another example is the basic
leucine zipper (bZIP) transcription factor family member Hac1 [15].

The determinants for transcription factor-DNA binding specificity can be classified into
four groups: (I) base and shape readout, (II) effects of co-factors, (III) cooperativity between
different transcription factors, and (IV) chromatin accessibility status [16] (Figure 1.3).

Fig. 1.3 Multiple transcription factor-DNA binding modes.
(A) Transcription factors can have multiple binding modes with various binding specificities.
Thus the motifs can be different. (B) Transcription factors can interact with each other
and bind to close regions. Thus the shared motif is different from motifs that are bound
individually. One example is the Oct4-Sox2 complex. (C) The co-factor binds to the
transcription factor and thus changes its binding affinity to its motif. (D) Transcription factor
recognizes DNA shapes such as wide/narrow minor groove and DNA bending, thus alters its
binding affinity.

The base readout (or direct readout) mechanism involves specific hydrogen bond forma-
tion and hydrophobic contacts between amino acid side chains and bases. The shape readout
(or indirect readout) mechanism refers to protein binding that is influenced by the shape
of a DNA molecule, which can be determined by sequence-dependent DNA bending and
deformability (Figure 1.3 D). Most transcription factors bind to DNA via the interplay of the
base and shape readout. Noticeably, in narrow minor grooves, arginines are most enriched
and recognize enhanced electrostatic potentials [8].
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Co-factors

Transcription factors can either bind directly to the genome or act as co-factors to assist other
more specific transcription factor bindings [6]. These co-factors often bind to the secondary
motifs in vivo via indirect binding. For instance, Lu et al. [17] discovered 23 co-factor motifs
for 127 transcription factors in the human ENCODE project.

Pioneer factors

The binding of most transcription factors to the genome can be hurdled by nucleosomes
on chromatin. Therefore, most transcription factors tend to bind to nucleosome-free DNA,
instead of nucleosomal DNA. Pioneer factors are transcription factors that can directly bind to
condensed chromatin and actively open up the chromatin while consuming ATPs. This leads
to the rearrangement of nucleosomes and allows more space for other transcription factors to
bind, and thus initiates the transcription process. Zhu et al. [18] systematically investigated
the role of the nucleosome in DNA-TF binding, and found that some transcription factors
actually bind to nucleosomal DNA gyres with orientation preferences.

1.3 Experimental measurements for protein-DNA interac-
tions in vivo and in vitro

Early investigation of protein-DNA was carried out by cleavage DNA sequences with and
without protein binding via a cleavage agent [19]. The DNA fragments were amplified
using the polymerase chain reaction (PCR) and loaded on the polyacrylamide gel. The DNA
regions with the protein of interest bound were protected and thus distinguishable from the
randomly chopped DNA fragments. Large-scale detection of the DNA-protein interactions
was boosted by next-generation sequencing (NGS). Assays such as MITOMI [20], ChIP-seq
[21] and HT-SELEX [22], allow examining long DNA binding regions on the whole-genome
level (Figure 1.4).

Approaches such as ChIP-exo [23] and MNase-seq [24] improve the detection of protein-
DNA interactions to single-nucleotide resolution. CAP-SELEX [25] and NCAP-SELEX
[18] were developed to examine the cooperativity of transcription factors and the role
of nucleosomes in transcription factor-DNA binding. Methods such as ATAC-seq [26]
provide information on DNA accessibility, which leads to a more accurate measurement of
transcription factor binding. Supp. Table A.4 lists more techniques for detecting protein-DNA
interactions in the past decades.
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Fig. 1.4 Representative experiments for detecting transcription factor binding.
Adapted from [27]. (A) An overview of protein binding microarrays (PBM) procedure.
All possible sequences with the same length (e.g., ten bases long) are mounted on an
array. dsDNAs are then synthesized mediated by primers on the array. Proteins of interest
are added, and the nonspecific binding is washed away. The bound protein is detected
and quantified with an antibody tagged with fluoresce. (B) An overview of chromatin
immunoprecipitation followed by sequencing (ChIP-seq) design. Protein and DNA are cross-
linked. The DNA molecule is fragmented randomly either by endonuclease or sonication.
The bound regions are protected by proteins and separated via the immunoprecipitation
of proteins and antibodies. Then the DNA is purified, amplified, and sequenced. (C) An
overview of the high-throughput-SELEX (HT-SELEX) experiment. A random library of
DNA oligomers is prepared and exposed to the transcription factor of interest. Unbound
sequences flow through while the bound ones are amplified and redo the selection round for
a few times. The bound oligomers are sequenced after each selection round, to determine the
probability of being bound.



1.4 Computational techniques for finding motifs 7

1.4 Computational techniques for finding motifs

Given the TF-bound sequences without knowing where motifs are, an essential computational
task is to find the motifs enriched in the input set. There are three distinct approaches for
de novo motif discovery: (1) k-mer based enumeration, (2) deterministic optimization (e.g.,
expectation-maximization), and (3) probabilistic optimization (e.g., Gibbs sampling) (see
review [28]).

Figure 1.5 shows a simplified pipeline for de novo motif discovery workflow:

Fig. 1.5 De novo motif discovery using position weight matrices.
(A) TF-bound sequences are pre-aligned based on pattern similarities. (B) The frequencies of
bases at each position of the enrichment patterns are calculated. The probability of a binding
site X is calculated as the product of the probabilities of all its bases at their corresponding
positions. (C) Motif logo. The information content of each base at each position, compared
to a simplistic background model, which assumes that each base occurs with a probability of
0.25 at each position.

Position weight matrices (PWMs)

The specificity of DNA-protein binding was earlier represented by position weight matrices
(PWMs) in 1982 [29]. PWM is defined as a matrix M, which contains scores for each position
i in a motif of W base pair long, with each nucleotide xi ∈ {A,C,G,T}W (Figure 1.5 B). By
multiplying all the scores for each nucleotide within the motif sequence, it yields a motif
score S(x), which indicates the approximated TF-DNA binding specificity at position i:
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S(x) =
W−1

∑
j=0

M(x, i)Sj(x) :=−∆G(x)
kBT

+ const. (1.1)

This additive motif score S(x) reflects the ratio between Gibbs binding energy ∆G(x)
and the product of the Boltzmann constant kBT , for any potential binding site sequence
x = x1:W ∈ {A,C,G,T}W .

The PWM matrix M(x, i) can be determined by the following:

M(x, i) =−log
f (x, i)
pbg(x)

, (1.2)

where f (x, i) represents the frequency of nucleotide x at position i, and pbg(x) is the frequency
of nucleotide x in the background sequences.

PWM is widely applied to represent motif binding preferences. To cope with various
new types of approaches and data for protein-DNA binding detection (see the summary A.4),
numerous new algorithms have been developed to optimize parameters of PWM in order to
get better estimates (see review [30]).

However, PWM has its limitations and may not accurately capture the real binding
specificity of transcription factors. One major limit of PWM is that this model assumes
the independence of neighboring nucleotides for transcription factor binding. In reality, in
vitro approaches such as SELEX [31] and protein binding microarrays (PBMs) [32] show
that the dependency of nucleotides within the motif does contribute to the binding of some
transcription factors since single mutations at one position impact on the interactions at
other positions. Besides, the nucleotide dependencies can be partially supported by co-
crystal structures of TF-DNA complexes [33]. Therefore, accounting for the nucleotide
dependencies within the motif leads to better prediction of the TF binding events, and more
comprehensive models are in need to better describe the binding events of TFs and motifs.

Motif sequence logo

PWM can be graphically represented by a sequence logo [34], where all the four bases (A, C,
G, T) within the motif are illustrated (Figure 1.5 C). In a motif logo, the height (Hi) of every
base at each position i is determined by the product of the frequency of that base fi(x) and
the information content ICi, or log2 fi(x) at that position i [34]:

Hi = ∑
i

fi× ICi. (1.3)
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The information content is measured in bits (maximum log2 4 = 2) and reflects how
much a base diverges from a background distribution of mononucleotide frequencies of the
background sequences. However, this simplistic model does not capture the complexity of
real sequences such as the GC contents, poly-A, or poly-T repeats.

Till now, the mononucleotide sequence logo is the most popular representation of the
DNA/RNA motif. Higher-order logos have been designed to depict higher-order correlations
among neighboring bases [35–37].

Shape models

The DNA shape feature is one example of the nucleotide dependencies because the inter-
dependent DNA residues initially determine the properties of the DNA structure in the minor
groove [8]. Instead of studying the TF-DNA binding using the sequence-specific features
purely, some technologies utilize the distinct DNA shape features for motif discovery [38, 39].
The 3D shape features of DNA include minor groove width (MGW), propeller twist (ProT),
helix twist (HelT) and roll, etc. Comparing to k-mer features (k>3), DNA shape features
can assist motif prediction by lowering the dimensionality of feature space for optimization,
especially when k-mer gets larger (Figure 1.6).

Fig. 1.6 Design of the shape and sequence feature vector.
Taken from [39]. In this design, the monomer sequence feature and four shape features
(MGW, ProT, HelT and Roll) are combined to predict TF-DNA binding specificity.

Till now, some tools predict DNA shape features [40], while others adopt these predicted
shape features, together with PWMs or 1- to 3-mer sequence features, to predict DNA motifs
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[41, 42], or predicting motifs from de novo [43]. One bottleneck of shape-based models is
that they are limited by the pre-defined shape types.

Deep learning models

As more and more genomics data are available, the prediction of TF-DNA binding sites also
benefits from the deep neural networks, which can improve prediction accuracy by learning
the relevant and complicated features, such as nucleotide correlations in this case. Deep
learning was first applied to DNA sequencing data by DeepSea [44], DeepBind [45] and
Basset [46]. As an illustration, Figure 1.7 shows how a convolutional neural network (CNN)
can be applied for predicting the binding affinity of a motif pair complex and the spacing
between them. Since then, deep learning techniques have been applied to various tasks for
predictions on genomics data, such as predicting chromatin accessibility, DNA modifications,
and genetic variants (see review [47]).

Apart from its ability to learn complex information and to have good predictive accuracy,
another significant advantage of deep learning models is that the trained models can be used
for rapidly developed as new models on new data via transfer learning. To reuse the trained
models, a model repertoire Kipoi [49] has been established. However, two major challenges
are remaining for deep learning models: (1) the interpretability of the model parameters, and
(2) how to avoid biases in training sets.

Higher-order Markov models

Higher-order Markov models can be good candidates for learning the adjacent nucleotide
dependencies within the motif. Note that a zeroth-order Markov model (MM) is equivalent to
a PWM. For instance, in a Markov model of fixed-order K, the information of K prior bases
can be used to predict the probability of the base on K +1 position. Then a motif model of
length W can be represented by:

pMM
i (x1:W ) =

W

∏
i=1

pMM
i (xi|xi−K : i−1). (1.4)

Methods based on higher-order Markov models have been developed [50–53]. However,
the bottleneck of fixed higher-order Markov models is that the number of parameters increases
exponentially with the order K. For a model of order K, it requires 4K+1 parameters to
optimize. When the sequences are not sufficient for training, the model is prone to over-
fitting.
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Fig. 1.7 Training motif models using a convolutional neural network.
Taken from [48]. This shows an example for predicting the binding specificity of GATA1
and TAL1 complex. (a) Input DNA sequences are represented by one-hot encoding. (b) The
sequences are scanned with PWMs of GATA1 and TAL1 motifs. (c) Positions with negative
values are truncated to 0 using ReLU activation function. (d) Matrices are condensed by
taking the maximum value in each channel using max-pooling function. (e) The sequences
are scanned again for the GATA1/TAL1 pair and individual occurrences. (f) Similar to (c),
the ReLU activation function is used. (g) Similar to (d), positions with the maximum value
is chosen for each channel using max-pooling function. (h) Finally, a fully connected layer
can be applied to make predictions on genomics data.

For overcoming this problem, GLIMMER introduced an interpolated Markov models
(IMMs) [54, 55]. In contrast to fixed-order Markov models, IMMs are various-order Markov
models for which the nucleotide dependencies are not limited to adjacent bases, but can be
extended to bases that are a few bases away.
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pIMM
i (xi|xi−K : i−1) =λ0× p(xi)+

λ1× p(xi|xi−1)+

...+

λK× p(xi|xi−K,...,i−1). (1.5)

where∑
i

λi = 1.

For each k-mer (k ⩽ K), there is a weight parameter λk to control how much different
lower-order models contribute to it.

A significant advantage of using an IMM is that it allows counts of oligomers of mixed
lengths as lower-order information. For example, there is not enough K-mer information in
the data (i.e. K-mer counts are low), the probability pIMM(xi|xi−K : i−1) falls back to lower to
zeroth order models, whereas if there is sufficient K-mer information present, p(xi|xi−K,...,i−1)

will dominate and thus it will tend to be a fixed Kth-order model.
Our previous in-house tool BaMMmotif expanded the IMMs to the inhomogenous

interpolated Markov models (iIMMs) [35]. For a Kth-order iIMM, the conditional probability
of base x at the position i is calculated by combining the counts of K-mers with pseudo-counts
estimated from lower-order probabilities by

piIMM
i (xi|xi−K : i−1) =

ni(xi−K : i)+αK× piIMM
i (xi|xi−K+1: i−1)

ni−1(xi−K : i−1)+αK
, (1.6)

with the hyper-parameter αK determining how much weight to assign to the lower-order
piIMM(xi|xi−K+1: i−1).

The advantage of an iIMM is that by interpolating a hyper-parameter α between oligomer
counts and pseudo-counts, it does not require prior information about the nucleotide depen-
dencies. Moreover, this probabilistic model can be optimized by applying the expectation-
maximization (EM) algorithm. Higher-order BaMMs showed robust performance over
PWMs on in vivo data in the previous benchmark [35].

1.5 Applications of predictive models

There are four main scenarios where the motif models can be applied to improve our
understanding of gene regulation. First, given a set of sequences from DNA-protein binding
assays, the de novo motif discovery tools can be applied to capture the enriched patterns in
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the sequences. Second, given a motif model trained on sequences from one cell line or in
vitro data, it can be used as seed for initializing the motif discovery in other related data sets.
Third, given a set of known motif models and a sequence set, we can scan the sequences for
the occurrences of the motifs and identify potential functional transcription factor networks.
Forth, by comparing motif models learned from different cell lines, we can interpret the
different binding modes of the same transcription factors. There are several online tools and
databases developed for these purposes, including our BaMM web server (see Table A.6).

1.6 Aims and contents of this thesis

This project is a continuous work of the previous project [35] on developing higher-order
Markov models and optimizing its parameters using Bayesian approaches for predicting the
transcription factor binding motifs from high-throughput transcriptomics data. Its major
contributions to the further interpretation of the gene regulatory process are presented in
three sections:

1. Optimization of parameters and hyper-parameters of the higher-order models.

2. Benchmark state-of-art tools on large-scale in vivo and in vitro data sets.

3. Construct web server, databases, and develop visualizations for motif models.





Chapter 2

Algorithm and benchmark

Given a set of sequences that are measured by protein-DNA binding assay, e.g. in vivo by
a ChIP-seq experiment or in vitro using SELEX-seq, the goal is to find the binding sites to
which the protein of the interest (mostly a transcription factor) has bound. These binding
sites are usually enriched in the sequences, compared to those sequences without performing
any selection with the target protein binding. These binding sites have common bases
∈ {A,C,G,T} with certain degree of degeneracy (e.g. mismatches) and can be summarized
by a probabilistic model. Our task is to derive such a model that can accurately describe the
binding preferences of proteins. We also need a null model to describe the scenario where no
protein-DNA binding is present in the sequences. The challenge for de novo motif discovery
is that the positions where the motifs occur in the sequence set are not known beforehand.
Therefore, training a motif model involves searching for these positions as well as optimizing
the model parameters to accurately describe the binding preferences.

In this chapter, I first explain the theory how the TF-DNA binding affinity is approximated
by models from simple to complex structures (Section 2.1). Then I show how the Bayesian
Markov models are built and how the parameters and hyperparameters are optimized (Section
2.2). Finally, I summarize how the data are prepared (Section 2.3) and how the benchmark
are implemented (Section 2.4).

2.1 How to model protein-DNA binding energies?

To deduce motifs from the TF-bound sequences of much longer regions than the actual
binding sites without knowing where the bindings are located, we derive a probabilistic model
based on the Gibbs free energy ∆G(x) for any potential binding site x= x1:W ∈{A,C,G,T}W .
This model allows us to make predictions for any arbitrary DNA sequences about where and
how strong the TF binds.
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Let us assume the DNA sequences of length W , with all DNA bases x1:W ∈ {A,C,G,T}W .
According to Boltzmann’s law, the probability of a genomic site with sequence x to be bound
p(bound|x) by the transcription factor divided by the probability of x not to be bound
p(not bound|x) is

p(bound|x)
p(not bound|x) =

p(bound|x)
1− p(bound|x) = exp

(
−∆G(x)−µ

kBT

)
, (2.1)

where kB is the Boltzmann constant, T is the thermodynamic temperature, and µ is the
chemical potential which depends purely on the concentration of the transcription factor.

We denote by pbg(x) the probability distribution of sequences x ∈ {A,C,G,T}W in the
background set from where the binding sequences were selected. For instance, in ChIP-seq,
the background set can be the genomic input, a mock immunoprecipitation (without target
protein binding), or sampled from the training sequences by a higher-order Markov model,
and in HT-SELEX, it can be the input sequence library prior to the selection cycles.

We denote by pmotif(x) the probability distribution of the dependence of ∆G(x) on the
binding site sequence x. Then we have

pmotif(x)/pbg(x) ∝ exp(−∆G(x)/kBT ). (2.2)

The proportionality constant is determined by the normalization. Solving for pmotif(x)
and normalising yields

pmotif(x) :=
pbg(x)exp(−∆G(x)/kBT )

∑y pbg(y)exp(−∆G(y)/kBT )
, (2.3)

where the sum in the normalisation constant runs over all possible binding sites y ∈
{A,C,G,T}W . We define the motif score S(x) as

S(x) := log
pmotif(x)
pbg(x)

=−∆G(x)
kBT

+ const. (2.4)

The motif score S(x) gives us the binding strength of a site x as quantified by the negative
Gibbs energy of binding in units of kBT log2. Once knowing pmotif(x), we can compute the
motif score S(x).

By combining E.q. (2.1) and (2.61), we can have

p(bound|x) = eS(x)+µ ′

1+ eS(x)+µ ′
≈ eS(x)

1+ eS(x) , (2.5)

where µ ′ is the constant chemical potential and can be dropped for simplicity.
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For the motif discovery task, it is essential to find an approximation to the binding
probability pmotif(x), so that it can accurately describe the binding preference of the tran-
scription factors, and thus lead us to the appropriate interpretation about the functions of
transcription factor. Similarly important is the approximation of the background probability
distribution pbg(x). Many tools have been developed to solve this task by developing models
that balance the simplicity and accuracy. In the following subsections, I will introduce several
representative models that approximate the binding probability.

2.1.1 Position weight matrix (PWM)

Given the calculation of binding probability p(x) as

p(x) = p(x1...xW ) = p1(x1)× p2(x2|x1)× p3(x3|x1x2)× ...× pW (xW |x1x2...xW ). (2.6)

PWM assumes that every position is independent from its neighboring positions so that
p(x) can be simplifies as

p(x) = p(x1...xW )≈
W

∏
i=1

pi(xi). (2.7)

Given a set of N sequences, pi(xi) can be estimated as the frequency of the base xi at
position i, therefore

pi(xi)≈
ni(xi)

N
= fi(xi). (2.8)

When there are sufficient sequences, E.q. (2.8) can be a good estimate of the probability
pi(xi). For example, when the motif length W is 6, there are 46(= 4096) possible 6-mers.
The input sequences should observe all the 6-mers in sufficient amount, in order to give
a relatively good estimation of the frequencies. When there are limited sequences, ni(xi)

can be down to zero and thus cannot reflect pi(xi) well. To take that into consideration, it
is a common strategy to introduce pseudo-counts to balance the information and the noise.
In this case, the pseudo-counts are the product of the background frequency fbg(xi) and a
pseudo-factor (or a hyperparameter) α:

pi(xi) =
ni(xi)+α× fbg(xi)

N +α
. (2.9)

The pseudo-factor α can be a fixed positive number.
When there is sufficient data, ni(xi) will dominate over pseudo-counts, and thus pi(xi)

is approximated as the foreground frequency fi(xi). When ni(xi) is significantly small, the
pi(xi) is very close to the background frequency fbg(xi).
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For a typical PWM, there are (4−1)×W (= 3W ) parameters to learn. Despite its model
simplicity, a PWM does not learn the nucleotide dependency, which is found to be an
important feature for most of the TF-DNA bindings.

2.1.2 Pattern-based motif discovery tool (PEnGmotif)

We introduce PEnGmotif (Pattern-based discovery of enriched genomic or transcriptomic
sequence motifs), a tool which learns motifs in PWMs to represent the enriched patterns.

The key idea of PEnGmotif is to find the enriched DNA patterns in the sequences over
random expectations from a second-order background model. It first uses an enumerative
approach to exhaustively count all the possible non-degenerate W -mers with a fixed length.
One big advantage of such an enumerative approach is that it covers the motif space to a
large extend efficiently. To get the probability distribution of W -mers observed by chance
in the negative set, a background model is needed. The simplest model is built upon the
mononucleotide frequencies, similar to E.q. (2.7) and (2.8) (note: here a W -mer from the
background set is denoted as y to distinguish it from the positive set):

pbg(y)≈
W

∏
i=1

pi(yi)≈
W

∏
i=1

fi(yi). (2.10)

However, this model does not account for sequence features such as dinucleotide CG
repeats, or poly-A or poly-T sequences, which are commonly present in most non-coding
regions of the genome.

Model background distribution with interpolated homogeneous Markov models

To take into account the nucleotide dependencies in the background sequences where no
binding events occur, there are a few approaches used in this field. One approach is to
use the shuffled k-mers to construct negative sequence set. Another approach is to build
the background model using higher-order Markov models. For SELEX-like experiments,
there are library sequences which can be used as background sequences. Here I explain the
higher-order background models are built upon a kth-order homogeneous (that is, position-
nonspecific) Markov model for the pattern with a length of W :

pbg(y)≈ p(y1...yk+1)
W

∏
i=k+1

p(yi|yi−k...yi−1). (2.11)
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To reduce the amount of parameters for training, we use an interpolated Markov model (first
introduced by [54] ) as E.q. (2.9):

p(yk+1|y1...yk)≈
n(y1...yk)+αk× p(yk+1|y2...yk)

n(y1...yk)+αk
. (2.12)

with the order-specific pseudo-factor αk as follows:

αk =

{
1, if k = 0,

β × γ
k−1, if k > 0.

with β = 20 and γ = 3 as chosen by [35], which improve the performance of using solely
the k-mer frequencies and keep robust with increasing motif orders.

We choose the model order k to be 2 for the background models. Because if the order is
lower, it does not capture the genomic features such as the CpG islands; and for the higher
orders it is prone to over-fitting.

Calculate P-values for W -mers

To check whether a W -mer is enriched in the given sequences over the random expectation,
one method is to compute its P-value.

The number of occurrences of W -mer y should follow a Poisson distribution with expec-
tation value µ = Ltot pbg(y), where Ltot = ∑

N
n=1(Ln−W +1) is the total number of positions

in the input sequences, and pbg(y) is the probability of k-mer y according to the kth-order
background model as computed previously (E.q. (2.11) and (2.12)).

For n(y)≫ 1 and n(y)> µ , which is always fulfilled anyway when a motif is significantly
over-represented, the P-value can be approximated using Stirling’s approximation by:

P-value(y) =
∞

∑
k=n

µk

k!
e−µ

=
µn

n!
e−µ

∞

∑
k=0

µk

(n+1) · · ·(n+ k)

<≈ µn

n!
e−µ

∞

∑
k=0

µk

(n+1)k

≈ µn(y)

n(y)!
e−µ 1

1−µ/(n(y)+1)

logP-value(y)≈ n(y) log
µ

n(y)
+n(y)−µ− 1

2
log(2πn(y))− log

(
1− µ

n(y)+1

)
.

(2.13)
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Calculate Z-values for W -mers

We then compute squared Z-scores for all non-degenerate W -mers. The Z-scores are simply
the deviation from expectation divided by the expected standard deviation. The standard
deviation of a Poisson distribution is equal to the square root of its mean, therefore:

Z(y) =
n(y)−Ltot pbg(y)√

Ltot pbg(y)
. (2.14)

Z-scores are used later for comparing W -mers to find the optimal ones.

Find local optimal W -mers

To reduce the amount of non-degenerate patterns and select the representative ones around
their neighbours (i.e., those that are at most one substitution away), we apply a recursive
function which takes a W -mer y and checks for all its neighbouring W -mers. If it finds a
neighbour yneigh with a better Z-score, the function is called recursively with yneigh as an
argument. Otherwise, if no neighbour of y has better Z-score than y, y is appended to the list
of locally optimal W -mers. By doing this, the number of enriched W -mers are reduced for
further computation.

Transform W -mers to degenerate IUPAC patterns

From the local optimal non-degenerate W -mers, we allow some flexibility by replacing
the bases ∈ {A,C,G,T} with IUPAC letters ∈ {A,C,G,T,S,W,R,Y,M,K,N} (see Table
A.1). Similarly to the previous step, we apply an iterative greedy search for local optimal
IUPAC patterns by comparing them with their neighbouring substitutions with regard to their
P-values or Z-values.

Convert degenerate IUPAC patterns to PWMs

To derive a position weight matrix (PWM) from an IUPAC pattern y, the simplest way is to
count the occurrence of nucleotide a at position j within the motif in the matched sequences,
for all a ∈ {A,C,G,T} at all positions.

The probabilities of the PWM are then calculated as:

ppwm(y) =
W

∏
j=1

p ja =
W

∏
j=1

n ja

∑
A,C,G,T
b n jb

. (2.15)
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A drawback of this method is when the amino acid a is excluded at a certain position j
by an IUPAC letter y j, n ja can be zero and so does p ja equal to zero, which is not allowed in
the PWM.

To avoid this from happening, we could use pseudo-counts. But there is a smarter way. It
relies on the insight that if we allow any of the four nucleotides at position j, the vast majority
of motif matches will still be true positives due to the descriptive power of the other W −1
IUPAC letters. Therefore, we count the four nucleotides at motif position j for matches to
the pattern y0: j−1Ny j+1:W−1 in which we replace the j’th IUPAC letter by an N:

p ja =
n(y1: j ay j+2:W )

n(y1: j Ny j+2:W )
, (2.16)

where we denote by n(y) the number of occurrences of W -mer y in the input set. Note that
these PWM probabilities can be computed solely from the W -mer counts in a time O(W ×D)

that is independent of the size of the input data set Ltot and only depends on the degeneracy
D =

∣∣{x ∈ {A,C,G,T}W : x matches y}
∣∣ of the motif y, i.e., the number of different W -mers

it matches.
After efficiently getting PWMs, we refine the models using expectation maximization

(EM) algorithm, which will be explain in section 2.2.5. PWMs with overlaps are merged and
extended, and can serve as seeds to be refined to higher-order Markov models using Bayes’
rules (explained in the following section 2.2.1).

2.1.3 Higher-order Bayesian Markov model (BaMM)

As mentioned in the introduction section, higher-order Bayesian Markov model (BaMM)
adopts the interpolation approach that was first introduced by [54] to control the information
flows from variable bases prior to the current base. On top of the interpolated Markov model,
BaMM uses a pseudo-factor α to balance between the (K+1)-mer counts and pseudo-counts
from the lower K-mers as:

pBaMM
i (xi|xi−K : i−1) =

ni(xi−K : i)+αK× pBaMM
i (xi|xi−K+1: i−1)

ni−1(xi−K : i−1)+αK
. (2.17)

Same as for the homogeneous background model (E.q. (2.12)), the αK is chosen as 1
when K = 0, and β × γK−1 when K > 0. αK increases when the order K gets larger, which
indicates that the influence of prior bases generally decrease with longer distance. For the
previous version of BaMMmotif, Matthias et al. [35] tried different β and γ combinations and
found that β = 30 and γ = 3 lead to relatively good performance and robust to over-fitting.
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However, some transcription factors, especially those with multiple DNA-binding do-
mains, can recognize nucleotides that are a few bases away. Therefore, order- and position-
specific αk j (with j as the position within the motif with order k) shall capture such features
better and thus lead to better motif performance than using uniformly distributed αs. The
learning process of the position-specific αk j is described in Section 2.2.6.

2.2 How to train a Bayesian Markov model?

2.2.1 Bayes rules and log likelihood

We use the model likelihood to denote the probability that the observed data (in our case, it is
the sequence data x) could have been generated by the motif model (denoted as m). In the
process of model optimization, one tries to optimize the logarithm of this probability, or log
likelihood (LL) of a model, with respect to the model parameters:

LL≈ logP(x|m) = ∑
i

logP(xi|m), (2.18)

where xi ∈ x (namely, each sequence xi in the given sequence set x). The log likelihood is a
rough approximation of the binding affinity and it is proportional to the information content
that is represented by the motif logo.

Given some prior information about the motif, such as a few binding sites as the seed, we
can apply Bayes theorem to get an optimal motif model via:

P(m|x) = P(x|m)×P(m)

P(x)
. (2.19)

By transforming it to the logarithmic space gives:

logP(m|x) ∝ logP(x|m)+ logP(m). (2.20)

Here, P(m) is the prior knowledge of the motif model before we observe any data and is
often initialized by a few enriched DNA sites. P(x|m) is the model likelihood, same as it in
E.q. (2.26). P(m|x) is the posterior distribution is the probability distribution that is obtained
after we have observed x. P(m|x) is the estimated model maximizes the likelihood P(x|m)

using the method of maximum a posteriori (MAP) estimation. It can then be treated as a new
prior and applied to E.q. (2.19) and thus iteratively we can optimize the model parameters to
which give the optimal likelihood.
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2.2.2 Likelihood in weak binding approximation

Given sequences x1, . . . ,xN of lengths Ln, the task is to discover motifs of length W enriched
in them. However, the positions of the potential motifs on the sequences are unknown. To
learn the distribution pmotif(·), and therefore also the free binding energy ∆G(x), from the
measured binding sites, we need the likelihood:

p(x1 . . .xN |m) =
N

∏
n=1

p(xn|bound,m) (2.21)

of the binding sites given the model parameters m.
We can estimate the probability p(xn|bound,m) of obtaining a training sequence xn

through its binding to a transcription factor out of a library of possible sequences x1 . . .xN

described by pbg(y) by

p(xn|bound,m) =
p(bound|xn,m) pbg(xn)

pbg(y)∑y p(bound|y,m)

=
pbg(xn)∑

Ln−W+1
i=1 pi(bound|xn,m)

∑y pbg(y)∑
Ln−W+1
i=1 pi(bound|y,m)

(2.22)

Here, pi(bound|xn,m) is the probability that xn is bound by a factor whose binding site starts
at position i in the sequence. Because of steric hindrance two factors cannot bind nearer than
approximately W nucleotides from each other. Therefore the probability for the factor to
bind at i can depend on the probabilities of binding at other positions.

In a regime of unsaturated binding, we can assume that p(bound|x)≲ 0.1. We can then
approximate E.q. (2.5) as pi(bound|x,m)≈ exp(S(xi:i+W−1)+µ). Inserting this expression
into E.q. (2.22) yields

p(x|bound,m) =
pbg(x)∑

L−W+1
i=1 pi(bound|x,m)

∑y pbg(y)∑
L−W+1
i=1 pi(bound|y,m)

=
pbg(x)∑

L−W+1
i=1 eS(xi:i+W−1)+�µ

∑y pbg(y)∑
L−W+1
i=1 eS(yi:i+W−1)+�µ

=
L−W+1

∑
i=1

pbg(x1:i−1)
pbg(xi:i+W−1|x1:i−1)eS(xi:i+W−1)

∑y pbg(y)∑
L−W+1
i=1 eS(yi:i+W−1)

pbg(xi+W :L)

≈
L−W+1

∑
i=1

pbg(x1:i−1)
pbg(xi:i+W−1)eS(xi:i+W−1)

∑y pbg(y)∑
L−W+1
i=1 eS(yi:i+W−1)

pbg(xi+W :L). (2.23)



24 Algorithm and benchmark

The denominator in the sum can be simplified by realising that the sums over nucleotides:

∑
y

pbg(y)
L−W+1

∑
i=1

eS(yi:i+W−1)

=
L−W+1

∑
i=1

∑
y1:i−1

pbg(y1:i−1) ∑
yi:i+W−1

pbg(yi:i+W−1|y1:i−1)eS(yi:i+W−1)

(((((((((((((
∑

yi+W :L

pbg(yi+W :L|y1:i+W−1)

≈
L−W+1

∑
i=1

∑
yi:i+W−1

pbg(yi:i+W−1)eS(yi:i+W−1)

= (L−W ) ∑
y1:W

pbg(y1:W )eS(y1:W ) (2.24)

Inserting this into the previous equation and using E.q. (2.3) gives:

p(x|bound,m)≈ 1
L−W

L−W+1

∑
i=1

pbg(x1:i−1) pmotif(xi:i+W−1) pbg(xi+W :L)

= pbg(x)
1

L−W

L−W+1

∑
i=1

pmotif(xi:i+W−1)

pbg(xi:i+W−1)

= pbg(x)
1

L−W

L−W+1

∑
i=1

eS(xi:i+W−1). (2.25)

The sequence sets used for training might not all have been bound directly by the factor
of interest. One reason is that they can be bound other co-factors of the factor of our interest,
or they are transferred to the immunoprecipitated fraction bound non-specifically to some
tube or bead surfaces. To account for that unbound sequences are always present in the
training set, we assume that a fraction q of the sequences are specifically bound to the factor.

The likelihood thus can be calculated by:

p(X|m) =
N

∏
n=1

[
pbg(xn)

(
1−q+

q
L−W

L−W+1

∑
i=1

pmotif(xn,i:i+W−1)

pbg(xn,i:i+W−1)

)]
. (2.26)

This equation for the likelihood applies to any choice of models for the binding site
and background sequences in the regime of unsaturated, weak binding. It is remarkable
because it shows that the statistical physics approach to learning a binding energy model
that explains the observed binding data leads to the same likelihood as the purely statistical
approach using the "zero or one occurrence per sequence" (ZOOPS) model. However,
for the "multiple occurrences per sequence" (MOPS) model, there is no straightforward
thermodynamic justification yet.
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2.2.3 The prior probability distributions

2.2.3.1 The prior on model parameters m

As prior probability distribution p(m|m∗,α) we choose a Dirichlet (Beta) distribution with
pseudo-count parameters αs coming from the lower order,

p(m|m∗,α) =
W−1

∏
j=0

4

∏
y1:K

Dir
(
m(·|y1:K)|αK jm∗j(·|y2:K)

)
, (2.27)

where the Dirichlet distribution is:

Dir
(
m(·|y)|αK jm∗j(·|y′)

)

=
Γ(αK j)

∏
4
a=1 Γ(αK jm∗j(a|y′))

4

∏
a=1

m j(a|y)αK jm∗j(a|y′)−1
δ

(
1−

4

∑
a=1

m j(a|y)
)
, (2.28)

with y = y1:K , y′ = y2:K , a as the nucleotide base on position j, and Γ(αK j) is a Gamma
function defined in E.q. (2.29).

This choice of prior leads to a type of interpolated Markov model.

2.2.3.2 The prior on hyperparameters αk j

We choose as prior on the hyperparameters αk j (for 1≤ k≤K) an inverse Gamma distribution
with parameters 1 and (βγk),

p(αk j|β ,γ) =
β γk

α2
k j

e−β γk/αk j , (2.29)

where β ≈ 5 and γ = 3 corresponds roughly to Matthias’ choice αk j = β γk = 20×3k−1 that
worked for all of the data sets in the previous paper [35]. By this definition of the inverse
Gamma distribution, the reciprocal α

−1
k j is distributed according to a Gamma distribution

with parameters 1 and βγk, which is an exponential with mean (βγk)−1. The mean and
variance of the prior on αk j are infinite, but the mode is βγk/2. Hence this prior very softly
pushes the αk j towards βγk/2 and barely restrains them in assuming large positive values.
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2.2.3.3 The positional prior p(zn)

We choose a flat positional preference prior,

p(zn = 0) = 1−q (signifies "no motif present")

p(zn = i) =
q

Ln−W +1
, for1≤ i≤ Ln−W +1. (2.30)

The hyperparameter q specifies the probability for a sequence to contain a motif. In a
thermodynamic interpretation, logq corresponds to a global shift of ∆G in units of kBT
and log p(zn = i) corresponds to a position-dependent shift in binding energy ∆G. Hence
we assume here no positional dependence of binding energy. Alternatively, the positional
preference profile can be learned from the data, as we will show later (Section 2.2.6).

2.2.4 The posterior probability distribution

Given that the posterior is the product of the likelihood and the prior, normalized with a
normalization constant, according to Bayes’ rules (E.q. (2.19)), we can get the posterior
probability distribution as:

p(m,α|X,q,m∗) ∝ p(X|m,α,q) p(m|m∗α) p(α)

∝

(
N

∏
n=1

p(xn|m,α,q)

)
p(m|m∗α) p(α)

∝

(
N

∏
n=1

Ln−W+1

∑
i=1

p(xn|zn= i,m,α)p(zn = i|q)
)

p(m|m∗α) p(α)

(2.31)

with q as the fraction of sequences that are specifically bound with the transcription factor.

2.2.5 Maximum likelihood algorithm

To obtain the maximum likelihood (ML) solutions for the probabilistic model with latent
variables, the expectation maximization (EM) algorithm is a general solution for it [56]. The
EM algorithm was first introduced by [50] to the motif discovery field and has been widely
adopted for motif finding tools, including the popular MEME Suite [57].

The EM algorithm iterates between the estimation step (E-step) and the maximization
step (M-step), till the optimal (or convergence) is reached.
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Given a roughly estimated model mold, in the E-step, it calculates the probability of each
site based on the current motif model m, and in the M-step, it re-estimates a new motif model
mnew based on the probabilities pmotif(m). It is similar to a gradient descent procedure,
which converges to a maximum of the log likelihood of the resulting model (E.q. (2.26)).

The training data set from input sequences are denoted by x. z represents motif positions
on the sequences and α is the pseudo-factor as the latent variables. The model parameters are
denoted as m. The process of the EM algorithm can be visualized in the space of parameters
as Figure 2.1.

m

m m

mQ

Fig. 2.1 The EM algorithm in the parameter space.
Adapted from [58]. See the text below for a full description.

1. Initialization: Get an initial model mold with parameters and latent variables z,

2. E-step: Estimate the posterior distribution of the p(z|x,mold), which gives rise to a
lower bound Q(m,mold) whose value equals to the log likelihood at mold, as the blue
curve in Figure 2.1,

3. M-step: Get a new motif model mnew by maximizing the auxiliary function Q:

Q(m|mold) = ∑
z

P(z|x,mold) logP(x,z|m) (2.32)

to get a new set of model parameters mnew by

mnew = argmax
m

Q(m|mold) (2.33)

The subsequent E-step then constructs a bound that is tangential at mnew as shown by
the green curve.
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4. Check point: Check for convergence of the log likelihood (the red curve).

If the convergence criterion has not been met, then let

mold←mnew (2.34)

and return to step 2;

else exit with the model with optimal parameters moptimal.

To start with the EM for the Bayesian Markov model, I have described the prior dis-
tribution of the model m, given the latent (hidden) variables z for motif positions and α

as pseudo-factor (E.q. (2.27)). The likelihood function is described by E.q. (2.26). The
posterior probability distribution can thus be calculated using Bayes’ theorem (E.q. (2.19)).

Therefore, we can write down this to find the answer:
E-step: the approximation of posterior distribution:

rni = p(zn = i|xn,m,α) =
p(xn|zn = i,m) p(zn = i)

∑
Ln−W+1
i′=0 p(xn|zn = i′,m) p(zn = i′)

(2.35)

M-step: the auxiliary function Q:

Q(m,α,q|r,m∗) =
N

∑
n=1

[
Ln−W+1

∑
i=0

rni log(p(xn|zn = i,m) p(zn = i|q))
]
+ log p(m|m∗,α)

=
N

∑
n=1

Ln−W+1

∑
i=0

rni log p(xn|zn = i,m)

+
N

∑
n=1

(
rn,0 log(1−q)+(1− rn,0) log

q
Ln−W +1

)

+ log p(m|m∗,α)

+ log p(α)

+ log p(q). (2.36)

In the E-step, we estimate the responsibilities rni of the binding site xn occurring at
position i on each sequence n, given the priors on model parameters and hyperparameters.
In the M-step, we optimize the model parameters m and hyperparameters α,q and z to
maximize the auxiliary function Q.
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2.2.6 Collapsed Gibbs sampling

The model parameter m and motif position distribution z are coupled in the models above
(E.q. 2.31), which makes it difficult to optimize the probability of z. A standard practice in
conducting Bayesian inference is to integrate out the nuisance parameter. A similar strategy
was developed for learning the parameters of latent Dirichlet allocation models [59], where
it was also called collapsed Gibbs sampling. Therefore, here we integrate out analytically
the model parameters m and only sample z and q. As illustrated in Figure 2.2, by integrating
out the m (as like collapsing down the parameter space on to the z-axis), we get the complete
parameter space for z to sample using Gibbs sampling approach.

Fig. 2.2 The collapsed Gibbs sampling algorithm in the parameter space.

The likelihood of the sequences X given the motif positions z and the model parameters
m is proportional to

p(X|z,m) ∝

N

∏
n:zn>0

W−1

∏
j=0

m j(xn,zn+ j|xn,zn+ j−K : zn+ j−1)

mbg(xn,zn+ j|xn,zn+ j−K′ : zn+ j−1)
. (2.37)

To simplify this expression, we define the k-mer counts (for 1≤ k ≤ K +1),

nz
j(y1:k) :=

N

∑
n=1

I
(
xn,zn+ j−k+1:zn+ j=y1:k)

)
, (2.38)
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i.e., the number of times k-mer y1:k has been observed with its rightmost nucleotide at position
j of a motif. We obtain for the likelihood:

p(X|z,m) ∝ ∏
y1:K+1

W−1

∏
j=0

(
m j(yK+1|y1:K)

mbg(yK+1|y1:K)

)nz
j(y1:K+1)

. (2.39)

We will now integrate out the parameters m = (m(a|y)) in the likelihood in order to apply
Gibbs sampling to draw samples directly from the posterior distribution over (z, α , q). In the
second line we will use the Dirichlet prior on m from E.q. (2.27) and (2.28):

p(X|z,α,m∗) =
∫

p(X|z,m) p(m|m∗,α)dm

∝

∫ W−1

∏
j=0

∏
y

(
Γ(αk j)

∏a Γ(αk jm∗j(a|y′))
4

∏
a=1

(
m j(a|y)
mbg(a|y)

)nz
j(y,a)

m j(a|y)αk jm∗j(a|y′)−1
δ

(
1−

4

∑
a=1

m j(a|y)
))

dm

=
W−1

∏
j=0

∏
y

Γ(αk j)

∏a Γ(αk jm∗j(a|y′))
1

∏
4
a=1 mbg(a|y)nz

j(y,a)

∫

∑
4
a m j(a|y)=1

4

∏
a=1

m j(a|y)nz
j(y,a)+αk jm∗j(a|y′)−1 d4m j(·|y).

(2.40)

The integrals can be solved by noting that the second integrand is a Dirichlet distribution up
to a constant,

∫

∑
4
a=1 m j(a|y)=1

4

∏
a=1

m j(a|y)nz
j(y,a)+αk jm∗j(a|y′)−1 d4m j(·|y)

=
∏

4
a=1 Γ(nz

j(y,a)+αk jm∗j(a|y′))
Γ(nz

j−1(y)+αk j)
((((((((((((((((((((((((∫

Dir(m j(·|y)|nz
j(y,a)+αk jm∗j(a|y′))d4m j(·|y)

=
∏

4
a=1 Γ(nz

j(y,a)+αk jm∗j(a|y′))
Γ(nz

j−1(y)+αk j)
. (2.41)

Inserting this into the previous equation yields

p(X|z,α,m∗)

∝

W−1

∏
j=0

∏
y

Γ(αk j)

∏a Γ(αk jm∗j(a|y′))
∏

4
a=1 Γ(nz

j(y,a)+αk jm∗j(a|y′))
Γ(nz

j−1(y)+αk j) ����������4

∏
a=1

1

mbg(a|y)nz
j(y,a)

. (2.42)
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2.2.6.1 Collapsed Gibbs sampling of z

In Gibbs sampling, we draw each zn in turn from its conditional posterior probability dis-
tribution p(zn= i|z−n,X,α,q,m∗). Here, z−n denotes the vector z with its n’th coordinate
removed. By Bayes’ theorem, the posterior probability is

p(zn= i|z−n,X,α,q,m∗) =
p(X|zn= i,z−n,α,m∗) p(zn= i|q)

p(X|z−n,α,m∗)
(2.43)

∝
zn

p(X|zn= i,z−n,α,m∗)
p(X−n|z−n,α,m∗)

p(zn= i|q)

The zn below the ∝ indicates that the proportionality constant p(X−n|z−n,α,m∗)/p(X|z−n,α,m∗)
does not depend on the value of zn, but depends on z−n,X,α , and m∗.

The first factor on the right side of the proportionality can in fact be simplified a lot by
noting, first, that Γ(n+ 1) = nΓ(n) for any n ∈ N, and second, that the counts for z with
zn = i are the same as those for z−n except for the W k-mers xn,i+ j−K : i+ j occurring at the
motif at position i of the n’th sequence xn,

nz
j(y,a) = nz−n

j (y,a)+ I
(
(y,a)=xn,i+ j−K : i+ j

)
. (2.44)

Noting these two points, E.q. (2.43) simplifies to

p(zn= i|z−n,X,α,q,m∗) ∝zn p(zn= i)
W−1

∏
j=0

nz−n
j (xi+ j−K : i+ j)+αK jm∗(xi+ j|xi+ j−K−1: i+ j−1)

(nz−n
j−1(xi+ j−K : i+ j−1)+αK j)mbg(xi+ j|xi+ j−K : i+ j−1)

(2.45)

and, with the abbreviation:

mz−n
j (yK+1|y) :=

nz−n
j (y1:K+1)+αK j m∗j(yK+1|y2:K)

nz−n
j−1(y1:K)+αK j

(2.46)

we obtain our sampling equation:

p(zn= i|z−n,X,α,q,m∗) ∝ p(zn= i)
W−1

∏
j=0

mz−n
j (xi+ j|xi+ j−K : i+ j−1)

mbg(xi+ j|xi+ j−K : i+ j−1)
. (2.47)

We will see in the section on the optimisation of parameters using the EM algorithm (Section
2.2.5) that the conditional probabilities are just the responsibilities defined there, i.e., rni =

p(zn= i|z−n,X,α,q,m∗) with model parameters m given by E.q. (2.46). The pseudo-counts
from the lower order are simply updated according to m∗j(yK+1|y2:K) = mz−n

j (yK+1|y2:K),
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and hence for 1≤ k ≤ K:

mz−n
j (yk+1|y1:k) :=

nz−n
j (y1:k+1)+αk j mz−n

j (yk+1|y2:k)

nz−n
j−1(y1:k)+αk j

. (2.48)

A key feature of the collapsed Gibbs sampling E.q. (2.47) that ensures its efficient
exploration of the space of likely motif positions is that, in order to sample the new motif
position i in sequence n, the model parameters are computed based on the counts excluding
the previous position i′ of the motif in sequence n. This effectively prevents overtraining
and slow mixing, as the old motif position does not "attract" the new position to the same
position. In conventional Gibbs sampling, however, zn is sampled given the model parameters
m, which contain information from the previous motif counts of all sequences, including
sequence n itself. This leads to slower mixing and slower exploration of the parameters
space.

2.2.6.2 Sampling of hyperparameter q

Analogous to E.q. (2.43), by Bayes’ theorem the posterior probability for q can be written as

p(q|X,z,αk,m∗) ∝
q

p(X|�q,z,α,m∗) p(q|z,α,m∗)

∝
q

p(q|z,α,m∗) . (2.49)

We apply Bayes’ theorem, define N0 := |{n : zn = 0}| and assume a uniform prior for q,
p(q) = Beta(q|1,1) = 1:

p(q|z,α,m∗) ∝
q

p(z|q,α) p(q)

p(q|z) ∝
q

qN−N0(1−q)N0 (2.50)

which has the functional form of a Beta (or Dirichlet) distribution, and therefore

p(q|z) = Beta(q|N−N0 +1,N0 +1) . (2.51)

To sample from a Beta distribution, we draw two random numbers, Q∼ Gamma(N−N0 +

1,1) and P∼Gamma(N0+1,1), in which case q = Q/(Q+P) will be distributed according
to a Beta distribution q∼ Beta(N−N0 +1,N0 +1).
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2.2.6.3 Sampling α by Gibbs with Metropolis-Hastings

Analogous to E.q. (2.43), by Bayes’ theorem the conditional probability of α given z can be
written

p(αk|X,z,q,mk−1) ∝
αk

p(X|α,z,mk−1) p(α|q,z,mk−1)

∝
αk

p(X|α,z,mk−1) p(α) . (2.52)

Inserting (2.29) and (2.42) yields for the conditional probability

p(αk|X,z,q,mk−1) =
W−1

∑
j=0

(
∏

y

β γk

α2
k j

e
− β γk

αk j
Γ(αk j)

∏a Γ(αk jmk−1
j (a|y′))

∏
4
a=1 Γ(nz

j(y,a)+αk jmk−1
j (a|y′))

Γ(nz
j−1(y)+αk j)

)

=
W−1

∏
j=0

p(αk j|X,z,q,mk−1) , (2.53)

which factorizes over the αk j. We could therefore use Gibbs sampling to draw each new
value of αk j from its probability distribution independent of the others .

But for an efficient optimisation we need to reparameterise αk j as

αk j = eak j (2.54)

and sample ak j instead of αk j, because otherwise it would take too long to explore the entire
probability distribution by small steps in αk j. If we went in steps of 0.5, for example, it
would take almost 20000 directed steps to move from αk j = 1 to 10000. With steps of size
0.5, it would take only 2log20000 = 18.4 directed steps to reach 10000. The probability
density also needs to be transformed with the variable:

p(ak j|X,z,q,mk−1) =

∣∣∣∣
d αk j

d ak j

∣∣∣∣ p(αk j|X,z,q,mk−1) (2.55)

= αk j p(αk j|X,z,q,mk−1) (2.56)

The log conditional probability for akl is

log p(akl|X,z,q,mk−1) = const.− logαk j−β γ
k/αk j +4k logΓ(αk j) (2.57)

+ ∑
y=y1:k

(
4

∑
a=1

[
logΓ(nz

j(y,a)+αk jmk−1
j (a|y′))− logΓ(αk jmk−1

j (a|y′))
]
− logΓ(nz

j−1(y)+αk j)

)
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We can sample from this distribution using the Metropolis-Hastings algorithm. We draw
a new atry

kl ∼N (akl,1) and accept this trial sample with a probability

p(atry
kl |X,z,q,mk−1)

p(akl|X,z,q,mk−1)
if p(atry

kl |X,z,q,mk−1)< p(akl|X,z,q,mk−1)

1 if otherwise . (2.58)

Because it is fast to sample akl in this way, we draw 10 or times in a row and only take record
the last accepted sample of akl . This 10-fold repetition ensures that we can explore almost
the entire range of relevant values of akl within these 10 steps.

2.2.7 Obtaining a motif model

At the start of the sampling, the ak j will move in the direction of the medians of their
probability distribution in relatively directed steps until the changes to the ak j become non-
directional and begin to fluctuate. We can then fix the ak j to the average of the last 20 or
so samples and perform a few (e.g. 5) iterations of the EM algorithm (described in section
2.2.5) to find the optimum model parameters mK

j (a|y) given the fixed ak j.

2.2.8 Learning positional preferences of transcription factors

2.2.8.1 Thermodynamic treatment of positional preference

We proceed analogously to Section 2.1 but introduce a positional preference as an additive
term ∆Gi in the binding energy. The probability of a factor to bind a binding site consisting
of W nucleotides between i and i+W −1 in a sequence x = x1:L then becomes

pi(bound|x) =
(

1+ exp
(

∆G(xi:i+W−1)+∆Gi−µ

kBT

))−1

. (2.59)

We define pmotif(x0:W−1) as in E.q. (2.3) and we further define a positional distribution

p(z= i|x,bound) =
exp(−∆Gi/kBT )

∑
L
i′=1 exp(−∆Gi′/kBT )

. (2.60)

We abbreviate the denominator as const. gives

− ∆Gi

kBT
+ const.= log p(z= i|x,bound) =: si. (2.61)
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Once we know pmotif(·) and p(z= i|x,bound), we can compute S(xi:i+W−1) and si and the
relative binding strength (∆G(xi:i+W−1)+∆Gi)/kBT for any potential binding site position i
in any sequence x = (x1 . . .xL).

If we again assume to be in a regime of unsaturated binding, p(bound|x) ≲ 0.1 we
can approximate the probability p(xn|bound, pk

motif) for pulling out a sequence xn from an
underlying distribution of possible sequences pbg(x) as

p(xn|bound, pk
motif) ∝ p(bound|xn, pk

motif) pbg(xn)

= pbg(xn)
L−W+1

∑
i=1

pi(bound|xn, pk
motif)

= pbg(xn)
L−W+1

∑
i=1

(
1+ exp

(
∆G(xi:i+W−1)+∆Gi−µ

kBT

))−1

≈ pbg(xn)
L−W+1

∑
i=1

exp
(
−∆G(xi:i+W−1)+∆Gi−µ

kBT

)

∝ pbg(xn)
L−W+1

∑
i=1

exp(S(xi:i+W−1)+ si) . (2.62)

To find the model parameters m consisting of s = (s1, . . . . ,sL−W+1), we need to optimise the
log likelihood function of these parameters:

LL(m) =
N

∑
n=1

log p(xn|bound, pk
motif,s) (2.63)

2.2.8.2 Flat Bayesian prior on positional preference

Let us define parameters π with πi = p(z=i|zi ̸=0) = esi the probability of a motif to start at
position i of a sequence. The M-step will then be given again by E.q. (2.35) but this time
using the positional preferences πi instead of the flat positional distribution. We will use a
flat prior distribution

p(π|β ) = Dir(π|β1) , (2.64)

and we will choose a value around β = 2 . . .10.
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The auxiliary function becomes

Q(pk
motif,α,q|r, pk−1

motif)

=
N

∑
n=1

[
Ln−W+1

∑
i=0

rni log
(

p(xn|zn = i, pk
motif) p(zn = i|q)

)]
+ log p(pk

motif|pk−1
motif,α)+ log p(π|β )

=
N

∑
n=1

Ln−W+1

∑
i=0

rni log p(xn|zn = i, pk
motif)+ log p(pk

motif|pk−1
motif,α)

+
N

∑
n=1

(
rn,0 log(1−q)+

Ln−W+1

∑
i=1

rni log(qπi)

)
+ logDir(π|β1)

=
N

∑
n=1

Ln−W+1

∑
i=0

rni log p(xn|zn = i, pk
motif)+ log p(pk

motif|pk−1
motif,α) (2.65)

+
N

∑
n=1

(
rn,0 log(1−q)+(1− rn,0) logq+

Ln−W+1

∑
i=1

rni logπi

)
+

Ln−W+1

∑
i=1

(β −1) logπi.

We use the method or Lagrange multipliers again to find the optimum of Q(pk
motif,α,q|r, pk−1

motif)

under the constraint ∑
L−W+1
i=1 πi = 1:

∂

∂πi

(
Q(pk

motif,α,q|r, pk−1
motif)−λ

(
L−W+1

∑
i=1

πi−1

))
=

N

∑
n=1

rni

πi
+

β −1
πi
−λ = 0 (2.66)

Solving for πi, normalising the distribution and defining Ni := ∑
N
n=1 rni yields

πi =
Ni +β −1

N +(L−W +1)(β −1)
. (2.67)

2.2.8.3 Prior penalising jumps in the positional preference profile

For many applications it might be more appropriate to limit the complexity of the positional
preference profile by imposing a smoothness on the p(z = i). For example: (i) transcription
factor binding sites will be more frequent near the center of ChIP-seq peaks than farther away;
(ii) transcription factors bind more strongly to the outer parts of probes on protein binding
microarrays than to the parts near the glass slide; (iii) transcription factors in HT-SELEX
experiments might prefer the center of probes over the ends. In the following we assume that
all training and test sequences have the same length L.

Because the smoothness prior couples neighbouring positional probabilities with each
other, there is no closed-form solution for the parameters anymore. We have to use a gradient-
based optimisation such as conjugate gradients to minimise Q with respect to the positional
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parameters. We therefore parameterise the positional distribution in such a way that the
normalisation condition ∑i πi = 1 and the limits 0≤ πi ≤ 1 automatically hold true during
the numerical optimisation,

p(zn= i|zn ̸=0) =
esi

∑
L−W+1
i′=1 esi′

. (2.68)

We impose a smoothness prior on the πi, that encourages the point-wise estimated first
derivative to stay small,

p(π|β ) =
L−W+1

∏
i=2

N
(

si− si−1|0,β−1) , (2.69)

with precision (= inverse variance) β .
With this prior, the auxiliary function becomes

Q(pk
motif,α,q,π|r, pk−1

motif) =
N

∑
n=1

L−W+1

∑
i=0

rni log p(xn|zn = i, pk
motif)+ log p(pk

motif|pk−1
motif,α)

+
N

∑
n=1

(
rn,0 log(1−q)+(1−rn,0) logq+

L−W+1

∑
i=1

rni

(
si− log

(
∑
i′

esi′

)))

− β

2

L−W+1

∑
i=2

(si− si−1)
2 +

L−W
2

logβ + const. (2.70)

The partial derivatives of Q(pk
motif,α,q,π|r, pk−1

motif) are

∂

∂ si
Q(pk

motif,α,q,π|r, pk−1
motif) =

N

∑
n=1

rni−
N

∑
n=1

L−W+1

∑
i′=1

rni′
esi

∑i′′ esi′′

−β (si− si−1) I(2≤ i≤ L−W +1)

+β (si+1− si) I(1≤ i≤ L−W ) (2.71)

and

∂

∂ si
Q(pk

motif,α,q,π|r, pk−1
motif) = Ni− (N−N0) p(z= i|z ̸=0)− (βAs)i

with the abbreviations N0 := ∑
N
n=1 rn,0 and
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A :=




1 −1 0 0 · · · · · · · · · 0

−1 2 −1 0 . . . . . . . . . ...

0 −1 2 −1 . . . . . . . . . ...

0 0 −1 2 . . . . . . . . . ...
... . . . . . . . . . . . . . . . 0 0
... . . . . . . . . . . . . 2 −1 0
... . . . . . . . . . 0 −1 2 −1

0 . . . . . . . . . 0 0 −1 1




. (2.72)

The partial derivative will adjust si such that p(z= i|z ̸=0) = esi/∑i′ esi′ equals Ni/(N−N0)

plus a smoothness correction As that will pull si up or down in order to minimise the estimator
of the second derivative of the profile at position i. We run a few iterations of conjugate
gradients (e.g. 5 to 10) during each EM step to learn the positional preferences.

Learning the optimal smoothness parameter β from the data. We can regard Q also as
a function of β ,

Q(pk
motif,α,q,π,β |r, pk−1

motif) =−
β

2

L−W+1

∑
i=2

(πi−πi−1)
2 +

L−W
2

logβ + constβ , (2.73)

and optimise is with respect to β :

0 =
∂

∂β
Q(pk

motif,α,q,π,β |r, pk−1
motif) =−

1
2

L−W+1

∑
i=2

(si− si−1)
2 +

L−W
2β

(2.74)

and therefore

β =

(
1

L−W

L−W+1

∑
i=2

(si− si−1)
2

)−1

(2.75)

Instead of optimising β , we can again interpret Q as the likelihood of an ensemble of
fractional motif instances with weights rni and compute the expectation value of β . If we
assume a uniform prior on β , p(β ) = const, the posterior distribution of β is proportional
to the likelihood. We note that the functional form of Q(β ) is that of a Gamma distribution,
Q(β ) = logGa(β |a,b)+ const = (a− 1) logβ − bβ + const, with a− 1 = (L−W )/2 and
b = (1/2)∑i(si− si−1)

2. Since the expectation value of a Gamma distribution is a/b, we can
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conclude for β

E[β ] =

(
1

L−W +2

L−W+1

∑
i=2

(si− si−1)
2

)−1

. (2.76)

We can then update β by its expectation value instead of the mode of Q(β ). Alternatively,
we could sample β from the Gamma distribution Ga(β |(L−W +2)/2,(1/2)∑i(si− si−1)

2).

2.2.8.4 Prior penalising kinks in the positional preference profile

For various applications such as PBMs and HT-SELEX, we might be interested in more
smooth positional preferences. In these cases, it might be better to use a smoothness prior on
the πi that encourages the point wise estimated third derivative to stay small,

p(π|β ) =
L−W

∏
i=2

N

(
si−

si−1 + si+1

2

∣∣∣∣0,β−1
)
, (2.77)

with precision (= inverse variance) β . With this prior, the auxiliary function becomes

Q(pk
motif,α,q,π|r, pk−1
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N

∑
n=1
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∑
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N
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(
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)))

− β

2

L−W

∑
i=2

(
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si−1 + si+1

2
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logβ + const. (2.78)

The partial derivatives of Q(pk
motif,α,q,π|r, pk−1

motif) are

∂
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and

∂

∂ si
Q(pk

motif,α,q,π|r, pk−1
motif) = Ni− (N−N0) p(z= i|z ̸=0)− β

4
(Bs)i

with the abbreviations N0 := ∑
N
n=1 rn,0 and

B :=




1 −2 1 0 0 · · · · · · · · · 0

−2 5 −4 1 0 . . . . . . . . . ...

1 −4 6 −4 1 . . . . . . . . . ...

0 1 −4 6 −4 . . . . . . . . . ...

0 0 1 −4 6 . . . . . . . . . ...
... . . . . . . . . . . . . . . . . . . 1 0
... . . . . . . . . . . . . . . . 6 −4 1
... . . . . . . . . . . . . 1 −4 5 −2

0 . . . . . . . . . . . . 0 1 −2 1




. (2.80)

The partial derivative will adjust si such that p(z=i|z ̸=0)= esi/∑i′ esi′ equals Ni/(N−N0)

plus a smoothness correction Bs that will pull si up or down in order to minimise the estimator
of the third derivative of the profile at position i.

Learning the optimal smoothness parameter β from the data. Analogously to the pre-
vious smoothness prior, we can learn β from the data using the update

β =

(
1

L−W −1

L−W

∑
i=2

(
si−

si−1 + si+1

2

)2
)−1

(2.81)

or

β =

(
1

L−W +1

L−W

∑
i=2

(
si−

si−1 + si+1

2

)2
)−1

. (2.82)
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2.3 Training and testing data

in vivo data sets

ENCODE database

We evaluated the performance of the selected algorithms on human ChIP-seq data sets from
the ENCODE portal [60] until March 2012. In total, there are 435 data sets for 93 distinct
transcription factors. The top 5000 peak regions sorted by their signal value are selected for
each data set when peaks are more than 5000, and all peaks are chosen if the peaks are fewer
than 5000. Positive sequences are extracted ±104 bp around the peak summits. Background
sequences are sampled by the trimer frequencies from positive sequences, with the same
lengths as positive sequences and 10 times the amount of positive sequences. 8 data sets are
excluded from all the results because diChIPMunk fails to learn models within 3 hours.

GTRD database

For the GTRD database, we obtained 405 in vivo data sets for 405 non-redundant human
transcription factors from Yevshin et al. [61]. The top 5000 peak regions are selected after
sorting by q-values. Positive sequences are extracted ±100 bp around the peak summits.
Background sequences are sampled in the same way as described previously.

MITOMI data sets

MITOMI is a microfluidics-based approach for de novo discovery and quantitative biophysical
characterization of DNA target sequences [62]. We downloaded the MITOMI data for 28
Saccharomyces cerevisiae transcription factors under the accession GPL10817. The 3 bp and
15 bp long adapters on both ends are truncated. We then downloaded yeast GTRD data sets
that are available for 8 transcription factors [61] and use them for training the motif models.

in vitro data sets

HT-SELEX data sets

For HT-SELEX data, we downloaded 164 data sets with 200 bp-long oligomers from Zhu et
al. [18], which are deposited in the European Nucleotide Archive (ENA) under accession
PRJEB22684. Each data set represents one non-redundant human transcription factor. For
each data set, we selected the top 5000 sequences from the 4th cycle without any sorting.
Background sequences are sampled in the same way as described previously.

https://www.encodeproject.org/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GPL10817
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2.4 Assessing motif models and benchmark

As numerous motif discovery tools have become available, guiding the users to choose the
proper models for their research becomes important. Because of the incomplete understanding
of the regulatory mechanism and the lack of ground truth, it is challenging to determine
the correctness of tools (see review [63]). In this thesis, we address this challenge in two
aspects: (I) developing a novel motif assessment score, the Average Recall (AvRec), for
better describing the accuracy of the motif models; (II) providing a benchmark scheme of
data sets from different technique platforms for assessing further tools. This part is described
in detail in the manuscript and published paper.

To avoid unnecessary re-writing and self-plagiarism, part of the methods and results are
included in the published papers attached here, and contributions of this author are claimed
for each publication.



Chapter 3

Result and Discussion

3.1 BaMMmotif2 algorithm

3.1.1 Overview

For de novo discovering regulatory motifs from nucleotide sequences with high accuracy, I
have implemented BaMMmotif2, a tool using higher-order interpolated Markov models to
learn the dependencies of nucleotides with variable lengths for TF binding. I have optimized
the pseudo-factor that determines how much lower-order information flows to the higher-
order. I have introduced a masking strategy to optimize distinct motifs, if existing in the data.
I have trained the model to learn the positional preferences of TFs from the data.

Apart from developing the motif discovery approach, I have completed benchmark tests
using both in vivo (e.g., ChIP-seq) and in vitro (e.g., HT-SELEX) data, to validate different
motif finders. I have developed a better validation score to replace the Receiver operating
characteristic (ROC) curve and p-values when estimating how well a motif model performs
on experimental data, given the most relevant regime of true positives and false positives. I
have established a validation scheme to examine the model robustness regardless of the cell
conditions and experimental platforms.

It has shown that our approach outperforms other PWM-based and higher-order model-
based tools on both in vivo and in vitro data. I have also introduced a cross-platform scheme
for validating the models by training models on in vivo data and testing them on in vitro data
and vice versa, to capture the motif features that are conserved across various experimental
conditions. Although TFs are reported to bind to different motifs under different cell states, I
have shown with a cross-cell-line validation that BaMMs are robust to learn the TF-DNA
specificity regardless of the cell types, compared to other tools.
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Most of the results are included in the manuscript (Section 3.1.3) and the publication
(Section 3.2.2). I describe the remaining results in the first part of the following:

3.1.2 Hyperparameter optimization

I tried to improve the model by different approaches: optimization of hyper-parameter α

using Gibbs sampling (Section 3.1.2.1), learning TF positional preference via positional
priors (Section 3.1.2.2, and masking sequences for learning distinct motifs (Section 3.1.2.3).
I also applied higher-order BaMMs to predict weak binding events (Section 3.1.2.4).

3.1.2.1 Gibbs sampling of pseudo-factor α

In the BaMM model profile (E.q. (2.17)), there is a hyperparameter α , which tunes how much
pseudo-counts from the lower-order shall be accounted for the conditional probabilities of
the higher-order. It lies at the core of the BaMM model since it lowers the model complexity
by applying pseudo-counts to adopt the variant information from the lower-orders, instead of
learning all the parameters for all the orders. However, the choices of αs for each order at
each position of the motif can be further improved, since the nucleotide correlations do not
only occur within the adjacent positions but also positions a few bases away. The optimized
position-specific αs could help to optimize the motif length. Thus, according to E.q. (2.58),
I first implemented the Metropolis-Hastings algorithm for sampling the αs.

The core implementation is illustrated as the following code:

1 void GibbsSampling :: GibbsMH_sample_alphas( size_t iter ){
2 // sampling alphas in exponential space with MH algorithm
3 std:: uniform_real_distribution <float > uniform_dist( 0.0f, 1.0f );
4 for( size_t k = 0; k < K+1; k++ ){ // for all the orders
5 for( size_t j = 0; j < W; j++ ){ // for all motif positions
6 // convert Alpha to log space as 'a'
7 float a_prev = logf(Alpha[k][j]);
8 float lprob_a_prev = calc_logCondProb_a(iter ,a_prev ,k,j);
9 // draw a new 'a' from the distribution of N(a, 1)

10 std:: normal_distribution <float > norm_dist(a_prev ,
11 1.0f / (float)(k+1));
12 float a_new = norm_dist( Global ::rngx );
13 float lprob_a_new = calc_logCondProb_a( iter ,a_new ,k,j);
14 float accept_ratio;
15 float uni_random;
16 if( lprob_a_new < lprob_a_prev ){
17 // calculate the acceptance ratio
18 accept_ratio = expf(lprob_a_new - lprob_a_prev);
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19 // draw a random number uniformly between 0 and 1
20 uni_random = uniform_dist( Global ::rngx );
21 // accept the trial sample if the ratio is not
22 // smaller than a random number between (0,1)
23 if( accept_ratio >= uni_random ){
24 Alpha[k][j] = expf(a_new);
25 }
26 } else {
27 // accept the trial sample
28 Alpha[k][j] = expf(a_new);
29 }
30 }
31 }
32 }

Since it is a numerical sampling procedure, we can approximate the optimal alphas by
taking the average alpha values from the last 10 steps or so after sampling for 100 times (i.e.,
iter=100). Then I obtained a motif model by performing 5 iterations of the EM algorithm
(Section 2.2.5) with the average alphas to find the optimum model parameters mK

j (a|y).
For each iteration, the log posterior is updated after drawing the αs. After a few dozens

of iteration, the log posterior begins to fluctuate (e.g., Figure 3.1A). As for the example of
MafK motif, the optimized alphas are very close if not identical for lower-orders in the core
region, and become larger on the borders (Figure 3.1C).
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(A)

(B)

(C)

Fig. 3.1 Alpha optimization using gradient descent.
Panel (A) shows the posteriors in log scale versus the iterations after sampling αs in each
iteration, training on a MafK dataset from ChIP-seq. Panel (B) shows the motif logo of MafK.
Panel (C) shows the optimized alphas for the order 0, 1, 2 and 3 over all the motif positions.

Given that the sampled alphas look reasonable on the real dataset for MafK (Figure 3.1C),
I carried out benchmark tests on 552 in vivo datasets from the GTRD database. The input are
5000 sequences that are either ± 100 bp or ± 500 bp around the summit in each dataset. I
compared the model performance between optimizations using EM and Gibbs sampling by
applying 5-fold cross-validations. I found that there is no major difference between using
EM and Gibbs sampling with optimized alphas, when the input sequences are 200 bp long
(Figure 3.2A). However, when the sequences are extended to 1000 bp long, the median
motif scores are improved by 5.3% (Figure 3.2B and 3.2C). Given that the lengths of input
sequences for motif search are usually no longer than a few hundred base pairs, the sampling
of alphas does not gain us much. Also, Gibbs sampling has the drawback that it is not as
efficient as EM. Thus, I kept EM as the default optimizer for motif refinement procedure.
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Fig. 3.2 Performance of BaMMs with alpha learning on in vivo data.
BaMMs with zeroth- (grey), first- (orange), second- (green) and fifth-orders (blue) are trained
and tested on 552 GTRD datasets using 5-fold validations. Panel (A) shows the benchmark
of BaMMs with and without alpha optimization, trained and tested on GTRD datasets with
sequences of length 200 bp around the summits, as shown in box plots, with boxes indicating
25%/75% quantiles, whiskers 95%/5% quantiles. Panel (B) shows the same benchmark as
(A) but with sequences of length 500 bp. Panel (C) shows the same benchmark as (B) in a
scatter plot. Each dot represents one dataset. The median fold change increase of AvRec
scores is by 5.3%.

3.1.2.2 Optimization of positional prior z

For de-coupling the motif parameters mK and positional prior z, I first implemented collapsed
Gibbs sampling approach for integrating out the model parameters mK , according to E.q.
2.47. In each iteration, a sequence-specific positional prior zn is sampled from a cumulative
distribution of the rest z−n. If zn is larger than 0, then the counts of k-mers within the pattern
W (W as the motif length) at z position on the n-th sequence are subtracted from the total
counts. The motif profile is then updated without counting the n-th sequence, and a new
distribution of positional priors is calculated based on the new motif profile.

I have implemented this algorithm and compared the motif performance of the models
optimized with sampled positional priors z and those without. However, there is no significant
difference between these two approaches (Figure 3.3).
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Fig. 3.3 Performance of BaMMs with positional prior optimization by collapsed Gibbs
sampling on in vivo data.
BaMMs with zeroth- (grey), first- (orange), second- (green) and fifth-orders (blue) are
trained and tested on 473 GTRD datasets with input sequences of length 200 bp using 5-fold
validations. Panel (A) shows the benchmark of BaMMs with (darker colors) and without
(lighter colors) sampling positional prior z in box plots, with boxes indicating 25%/75%
quantiles, whiskers 95%/5% quantiles. Panel (B) shows the same results as (A) but in
cumulative plots.

Since sampling of the positional priors with collapsed Gibbs sampling does not improve
the model predictive power, and sampling approach is not as efficient as deterministic
approximations, I, therefore, tried to optimize the positional priors using a smooth kernel
function. It also reflects the biological properties of the transcription binding preferences.
The theoretical part is included in the manuscript (Section 3.1.3).

I tested the performance of optimized positional prior in a simulation. For the simulated
data, there are 5000 sequences with a length of 205 bp generated from a second-order Markov
model. There are three motifs implanted randomly in these sequences: motif 1 with 30%
occurrence at positions 50 ± 10 bp, motif 2 with 30 % the occurrence at positions 100 ±
10 bp, and motif 3 with 50 % occurrence at positions 150 ± 10 bp (Figure 3.4A). Without
optimizing the positional priors, the initial motif 1 was refined to a mixture of motif 2 and 3
(Figure 3.4B). In contrast, with optimizing the positional priors, the initial motif 1 was refined
to its local optimum (Figure 3.4C), and the distribution of positional priors is consistent with
the motif distribution over the sequences (Figure 3.4D).
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Fig. 3.4 Positional prior optimization on simulated data.
Panel (A) shows the overall distribution of the three motifs. Panel (B) shows the motif
distribution after scanning with the model seeded by motif 1 and optimized by EM without
positional prior. The EM algorithm tends to converge to a global optimum. Panel (C) shows
the motif distribution after scanning with the model seeded by motif 1 and optimized by EM
with positional prior. It converges to the optimum of motif 1 distribution. Panel (D) shows
the distribution of optimized positional prior for panel (C).

With promising results from the simulations, I did benchmark tests using the ENCODE
ChIP-seq datasets. Although the motif positional preferences are learned properly on the real
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dataset (e.g., Figure 3.5C), the median motif performance is however, not improved (Figure
3.5A and 3.5B).
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Fig. 3.5 Optimization of positional prior on in vivo data.
BaMMs with zeroth- (grey), first- (orange), second- (green) and fifth-orders (blue) are
trained and tested on 435 ENCODE datasets using 5-fold validations. Panel (A) shows the
comparison in box plots for different orders with- (dark colors) and without (light colors)
optimization of positional prior in the motif training. Panel (B) shows the cumulative number
of datasets with AvRec score ranging from 0 to 1. Panel (C) shows the optimized positional
prior on ChIP-seq dataset for GABPα motif (from the GTRD database).

3.1.2.3 Masking input sequences

Multiple motifs can occur in the same data sets, especially when they are co-binding events
of TF and co-factors, or if the experiments are explicitly designed for studying the TF
cooperativity (Figure 3.6). To distinguish the motifs and prevent EM from running into a
global optimum with only the primary or stronger motifs, I introduced a masking step prior
to the EM algorithm.

Given the sequences and initial motif models, I first applied one round of E-step (E.q.
(2.35)), and calculated the responsibilities of motif occurring at all the positions on all the
sequences. I then ranked the motif occurrences with regard to the responsibilities and chose
the top 5% for further optimizing the motifs.

In the benchmark on 427 ChIP-seq datasets, the masking step reduces the average
performance of fifth-order BaMMs by 4.4% and improves the speed by 10-fold (Figure 3.7B).
This result implies that optimizing higher-order models with EM on the full parameter space
might lead to the global optimum with multiple motifs. However, limiting the searching
space to the most relevant positions helps sustain the motif model’s local optimum.
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Fig. 3.6 Scheme of the masking step.
Mask the input sequences with each seeding motif and optimize motifs based on the top few
percent of motif occurrences.

(A) (B) (C)

Fig. 3.7 Performance of using EM on the full versus masked sequences on in vivo data.
(A) Using the full set of sequences for EM optimization (blue) improves the performance
of higher-order models while extending the core regions for searching the enriched patterns
(green) does not contribute to motif discovery, in comparison to that with 8 bp for seeding
and masking 95% sequences for EM optimization (yellow). All box-plot whiskers show
95th/5th percentile. Each cluster contains models with different orders (zeroth-, first-, second-
and fifth-order). (B) Fifth-order BaMMs with full set of sequences for optimization have a
4.4% AvRec fold increase compared to those with only 5% sequences for optimization. (C)
Using a masking step improves the speed by 10-fold, in comparison to using the full set for
learning motif model.
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3.1.2.4 Prediction on weak binding sites

Predicted binding affinities by BaMMs correlate with measured affinities by MITOMI

Fordyce et al. [62] developed a microfluidics-based approach for measuring the relative
binding affinities between 28 yeast TFs and their binding sites quantitatively. In their
experiment design, they generated a library of 1457 oligonucleotides of length 70 bp to cover
all possible 8-mers. The TFs and oligos were labelled with different fluorescent dyes and
incubated in isolated unit cells of the device. After unbound molecules were washed out, the
fluorescent intensities were detected. The ratio between the two fluorescent signals should
be linearly proportional to the fractional occupancy of protein and thus reflects the relative
TF-DNA binding affinity. The binding affinities can also be predicted by a predictive model,
as described in E.q. 2.5. Thus, we could validate the model performance by comparing the
correlations between the predicted binding affinities by different tools and the measured
binding affinities by MITOMIv2 experiments.

Here is one example: for the yeast transcription factor Reb1, I compared the correlations
of 8-mer binding affinity measured by MITOMIv2 experiment and predicted by either a
5th-order BaMM learned from a ChIP-seq dataset from GTRD database (Figure 3.8A) or a
PWM from the JASPAR database (Figure 3.8B).

(A) (B)

Fig. 3.8 Correlations between the measured and predicted binding affinity.
The 8-mer log-odds scores predicted by either a 5th-order BaMM learned from a ChIP-seq
dataset from GTRD (A) or a PWM from the JASPAR database (B), compared to the intensity
ratio measured by the MITOMITv2 experiment. Both Pearson and Spearman correlation
coefficients are shown on the upper right of each panel.
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Furthermore, I validated BaMMs of 1st- and 5th-order and PWMs from the JASPAR
database using MITOMIv2 datasets and GTRD datasets. There were eight GTRD datasets
for the same TFs as those measured in MITOMIv2, and seven out of the eight showed that
fifth-order BaMMs had a better prediction on the binding affinity, compared to PWMs from
JASPAR (Table 3.1). There was one exception for which the reported motif consensus was
not enriched in the GTRD dataset.

Table 3.1 Pearson correlations between predicted and measured yeast motifs.

Motif Consensus JASPAR PWM 1st-order BaMM 5th-order BaMM
BAS1 TGACTC 0.365 0.439 0.444
CBF1 RTCACGTG 0.487 0.553 0.523
REB1 CCGGGTAA 0.645 0.656 0.668
SKO1 TTACGTAA 0.544 0.578 0.592

DAL80 cGATAAG 0.356 0.384 0.389
GAT1 GATAAG 0.215 0.373 0.389
GCN4 TGASTCA 0.639 0.645 0.664
PHO4 CACGTG 0.5 0.108* 0.054*

* Here the motif learned from GTRD has a different consensus that is reported in
literature.

As for further validations, SMiLE-seq [64] can be a good candidate, which is also a
microfluidics-based technique and measures human TF-TF-DNA bindings on a large scale
with more flexible lengths.

Higher-order BaMM models predict more human CTCF sites

As good evidence for the higher-order BaMMs being more accurate than PWMs at predicting
the weak binding sites, I revisited the CTCF models learned by a fifth-order BaMM from
different cell lines in the ENCODE database. The CTCF factor is an essential player in
forming the topologically associating domains (TADs) of chromatins and thus bring closer
the enhancers and promoters for the open regions to start the transcription. To gain a deeper
understanding of its functions, it is crucial to train a more accurate model.

Siebert et al. [35] showed that a CTCF motif model optimized by BaMMmotif with
order 5 and length 67bp had a better AUPRC (area-under-the-precision-recall-curve) than a
PWM model. I re-checked this and trained fifth-order BaMM models on ChIP-seq sequences



54 Result and Discussion

from four cell lines (i.e., GM12878, K562, Hela and Mcf). I scanned both the whole human
genome hg19 and the reversed genome (as a negative set) with the optimized BaMMs and
a PWM model from the JASPAR database (ID: MA0139.1) for comparison. The log-odds
scores were calculated for all the positions on the genome and the negative sequences and the
distributions of the log-odds scores were plotted, as shown in Figure 3.9. The distributions
with scores predicted by BaMMs from the GM12878 and K562 cell lines showed a clear
hump which indicates the CTCF binding sites identified with high accuracy (Figure 3.9A
and 3.9B).
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Fig. 3.9 More CTCF binding sites are predicted by fifth-order BaMMs than PWM.
Panel (A-E) show the distribution of CTCF binding sites over motif scores on the whole
human genome (hg19) on reversed negative sequences with fifth-order models learned from
different cell lines and a PWM model. Panel (F) shows the motif logo of CTCF. Note that
each distribution is sampled as 1% of all the positions due to the limit of data size.
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The total number of CTCF binding sites predicted by a fifth-order BaMM from the
GM12878 cell line is 1.5 million, with log-odds scores larger than 15. This prediction is
10-fold larger than the current estimated number of CTCF binding sites [65]. These predicted
sites may consist of the weak binding sites which are recognized by the CTCF factors in
some cell lines. Further investigation of these weak binding CTCF sites may illustrate the
function characteristics of CTCF factors in more depth.

The major results are included in the following manuscript and paper:
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3.1.3 Article: Bayesian Markov models improve the prediction of bind-
ing motifs beyond first-order without overfitting

Wanwan Ge, Markus Meier, Christian Roth and Johannes Söding*

The manuscript is prepared for submission.

Code availability

The source code is available for command-line versions of PEnGmotif and BaMMmotif2
and supported on Linux and Mac OS X:

PEnGmotif

PEnGmotif repository: github.com/soedinglab/PEnG-motif. For this study, I used parameters
–optimization_score MUTUAL_INFO -w 8 –threads 4. The output is in MEME-like
format. The motifs are sorted by their AvRec scores, and the best one was taken for the
benchmark.

BaMMmotif2

BaMMmotif2 repository: github.com/soedinglab/BaMMmotif2. For this study, I seeded
with the PWMs discovered by PEnGmotif and used parameters –EM -k [k] –advanceEM
–extend 2 2 for further optimization. [k] was chosen as 0, 1, 2 or 5 for each benchmark
test. The output format is defined as BaMM format with extensions like .ihbcp and .hbcp.

Author contributions

Johannes Söding (JS) designed the algorithm. Wanwan Ge (WG) implemented the BaMM
approach. Markus Meier (MM), Christian Roth (CR) and JS developed the PEnG approach.
WG implemented the statistical approach and conducted all the benchmarks. WG and JS
wrote the paper.

https://github.com/soedinglab/PEnG-motif
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ABSTRACT

Transcription factors (TFs) regulate gene
expression by binding to specific DNA motifs.
Accurate models for predicting binding affinities
are crucial for quantitatively understanding
transcriptional regulation. Motifs are commonly
described by position weight matrices,
which assume that each position contributes
independently to the binding energy. Models that
can learn dependencies between positions, for
instance, induced by DNA structure preferences,
have yielded markedly improved predictions
for most TFs on in vivo data. However, they
are more prone to overfit the data and to learn
patterns merely correlated with rather than directly
involved in TF binding. We present an improved,
faster version of our Bayesian Markov model
software, BaMMmotif2. We tested it with state-of-
the-art motif discovery tools on a large collection
of ChIP-seq and HT-SELEX datasets. BaMMmotif2
models of fifth-order achieved a median false-
discovery-rate-averaged recall 13.6% and 12.2%
higher than the next best tool on 427 ChIP-seq
datasets and 164 HT-SELEX datasets, respectively,
while being 8 to 1000 times faster. BaMMmotif2
models showed no signs of overtraining in cross-
cell line and cross-platform tests, with similar
improvements on the next-best tool. These results
demonstrate that dependencies beyond first order
clearly improve binding models for most TFs.

∗To whom correspondence should be addressed. Email: soeding@mpibpc.mpg.de

INTRODUCTION
Gene expression is regulated through the binding
of transcription factors (TFs) to specific recognition
motifs within promoter and enhancer DNA sequences.
These binding motifs typically contain 6 to 12
only partially conserved bases (1, 2, 3). Learning
quantitative models from experimental data that
allow us to accurately predict the binding affinities
of TFs to any given sequence is important for
quantitatively predicting transcription rates from
regulatory sequences.

The task of de novo motif discovery is to infer
from experimental data a statistical or thermodynamic
model that can then predict the binding affinity of
a TF of interest for any sequence up to a constant
(see Suppl. Methods subsection 1.2). Motif models
can be inferred from numerous types of experiments
(4). Common in vivo techniques are ChIP-seq (5)
and bacterial-one-hybrid (6), while most modern in
vitro approaches are SELEX-based (7, 8, 9). These
measurements result in sets of hundreds to millions
of bound sequences from which the binding motif
model is deduced based on the statistical enrichment
of binding sites compared to a background set of
unbound sequences or a backgroundmodel for random
sequences.

The dominant model for describing the binding
affinity of transcription factors to DNA target
sequences has been the position weight matrix
(PWM). This model assumes that the binding energy
can be decomposed into a sum of contributions
from each of the nucleotides in the binding
site. By Boltzmann’s law, this is equivalent to
assuming statistical independence between nucleotides
at different positions of the binding site. The PWM

© 2021 The Author(s)
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model has been enormously successful, because for
the vast majority of transcription factors it achieves
quite high accuracy for predicting the binding affinity
of high-affinity binding sites with only 3, parameters
for a binding site of, nucleotides. However, modeling
the nucleotide inter-dependency often yields better
motif predictions than PWMs (10, 11, 12). One
reason is that the stacked, neighboring bases largely
determine the physical properties of DNA, such as
their equilibrium bending angle, minor groove width,
propeller twist, or helical twist. The information on
the geometric orientation of the bases propagates
within the DNA for several positions before fading out,
creating a dependence of the DNA physical properties
on nucleotide pairs, triplets and longer :-mers. Since
TFs recognize their target sites not only using hydrogen
bonds but also using their structural fit, TF binding
motifs show preferences depending on :-mer words
(13), particularly in the flanking regions outside the
hydrogen bonding core region (14). Furthermore,
alternative binding modes of TFs (15, 16) can lead
to poor performance of PWMs.

During the past decade, it has become increasingly
evident that weak binding sites in enhancers and
promoters play an important role in determining
transcriptional activity (17, 18, 19, 20, 21), and
PWMs have limitations to describe the affinities
for weak binding sites accurately. Therefore, various
more refined models have been developed that depart
from the simplifying assumption of independence of
motif positions (22, 23, 24). Prime among them are
inhomogeneous Markov models of order : , in which
the probability to observe a certain nucleotide at
position 8 depends on the previous : nucleotides at
8−: to 8−1. A zeroth-order Markov model is therefore
equivalent to a PWM. Dinucleotide weight matrices
(DWMs) are equivalent to first-order models, in which
the probability of a nucleotide depends on its direct
predecessor, and they have shown improved accuracy
over PWMs (25, 26, 27).

For Markov models of higher order : , the large
number of ,×(4:+1−1) parameters can lead to
overfitting on the training data and hence bad
predictive performance. To address this limitation, our
group had proposed a special type of Markov model,
the Bayesian Markov model (BaMM) (28), in which
the probability for a nucleotide at position 8 of the
motif, for example the last nucleotide in ACTCG, is
estimated by adding to the actual counts of ACTCG
pseudo counts based on how often the shorter (:−1)-
mer CTCG has been observed in the binding sites. The
probability for CTCG in turn is estimated by adding
its counts to pseudo counts based on how often the
word of length :−1, TCG, has been observed, and

so forth. This procedure can be derived formally
in a Bayesian framework with Dirichlet priors. Our
software BaMMmotif indeed improved on previous
PWM-based methods for de novo motif discovery and
binding site prediction on in vivo data (28).

Here we present BaMMmotif2, an open-source
software written entirely from scratch in C++. It
contains a novel algorithm for its seed finding stage,
which gives it greatly improved speed and slightly
improved sensitivity in comparison to BaMMmotif.
We improved the robustness of the BaMM-based
motif refinement stage using sequence masking.
BaMMmotif2 can also learn positional preference
profiles for binding site locations from the training
data.

Higher-order models have the ability to learn several
low-order motifs overlaid on top of each other (29).
It was therefore surmised that at least a part of
the improvements of higher-order models on cross-
validation benchmarks using ChIP-seq sequences
could stem from learning not only the main binding
motif of the ChIPped factor but also, overlaid, the
binding motifs of cooperating factors whose binding
sites tended to co-occur with it (18). This would of
course defeat the purpose of learning the binding
affinity of the ChIPped factor. In a different cell type,
for instance, in which different co-binding factors
are expressed, such a mixed motif might perform
badly. It has also been suggested that more complex
models could learn complex, nonspecific sequence
biases characteristic of the measurement technique,
which would allow them to be distinguished from
the background sequences. These platform-dependent
biases could result from the library preparation,
amplification, and ligation biases (30).

We therefore designed a set of benchmark
experiments with a focus on detecting such overfitting
(Fig. 1): (I) 5-fold cross-validation on ChIP-seq and
HT-SELEX data; (II) cross-cell-line validation on
ChIP-seq data for the same TFs; (III) model training
on ChIP-seq data and testing on HT-SELEX data for
the same TFs and (IV) vice versa. Scheme (I) examines
how the models generalize to unseen data, especially
when data is limited.

Our results demonstrate that BaMMmotif2 does
not show signs of overfitting but rather learns
the binding affinity of only the factor of interest,
and that BaMMmotif2 is the most sensitive and
fastest tool among the ones tested here. Furthermore,
BaMMmotif2 keeps improving the performance with
increasing model orders and scales better with larger
datasets.
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MATERIALS AND METHODS
The BaMMmotif2 algorithm
BaMMmotif2 consists of a seeding stage and a motif
refinement stage. The purpose of the seeding stage is
to exhaustively identify motifs enriched in the input
sequences in comparison to a second-order Markov
background model trained also on the input sequences.
Each of the motifs below a P-value cut-off is refined
by the BaMM-based refinement stage.
The fast seeding stage. This method is described
in detail in Supplementary Section 1.1. Briefly, we
first count the number of occurrences of each non-
degenerate ,-mer word in {A,C,G,T}, (, =8 in
this study) in the input sequences. From here on, we
only inspect the count array and not the sequences
anymore, making the runtime of the seeding stage
almost independent of the input set size. By default,
reverse complements are mapped to the alphabetically
lower of the two,-mers.
For each ,-mer, an enrichment I-value is

calculated, which is the number of standard deviations
with which the observed ,-mer count surpasses its
expected count. The expected count is calculated
using a second-order homogeneous Markov model as
a background sequence model, trained on the input
sequences. Following the idea of (31), we determine
all locally optimal F-mers. These are the ,-mers
with a better enrichment I-value than any of its direct
neighbors one substitution away. We use each of
the locally optimal F-mers to initialize a search for
locally optimal,-mer patterns in the 10-letter IUPAC
alphabet {A,C,G,T,S,W,R,Y,M,K,N}, where the last
six letters stand for C or G, A or T, A or G, C or
T, A or C, and G or T, respectively. For each such
locally optimal IUPAC pattern, a PWM is derived from
all matches in the input sequences to the degenerate
pattern. The PWMs are then refined by applying
the expectation-maximization (EM) algorithm in the
multiple-occurrences-per-sequence (MOPS) model.
Wemerge PWMs together that overlap by at least,−2
highly similar matrix columns. Finally, the PWMs
are reranked by their AvRec scores (explained in the
next section) and written into an output file in MEME
format (32), which is passed to the refinement stage.
The refinement stage. The refinement stage is
initialized with the motif occurrences found by the
PWMs passed to it from the seeding stage. The
length of the motif is extended by 2 bp on both
ends by default to ensure that we do not miss
information in the flanking regions. Each seed model
is refined into an inhomogeneous Bayesian Markov
model (BaMM) of order  using the EM algorithm
(Supplementary Section 1.5). Each such refinement is

independent of the refinements of the other seedmotifs.
Motifs can overlap with motifs already discovered
in a previous refinement stage. A BaMM is an
interpolated Markov model in which the conditional
probability of base G8 ∈ {A,C,G,T} at position 8 is
calculated by combining the counts =8 (G8−: : 8) of
:-mer G8−: : 8 with pseudo counts estimated from
lower-order probabilities ?BaMM8 (G8 |G8−:+1: 8−1):

?BaMM8 (G8 |G8−: : 8−1)

=
=8 (G8−: : 8)+U: ?BaMM8 (G8 |G8−:+1: 8−1)

=8−1 (G8−: : 8−1)+U: .

Here, the hyper-parameter U: determines how much
weight to give to the lower-order. The probabilities
of order :−1 are again obtained by adding to the
:-mer count the pseudo counts from order :−2,
and so on down to order 0. In this way, when
the number of occurrences observed for (:+1)-mer
G8−::8 is much smaller than the number of pseudo
counts U:× ?BaMM8 (G8 |G8−:+1: 8−1), the higher order
falls back to the lower order: ?BaMM8 (G8 |G8−: : 8−1) ≈
?BaMM8 (G8 |G8−:+1: 8−1). In this way, BaMMs adapt the
order that is learned in a data- and motif position-
specific fashion to the amount of data (:-mer counts)
available. We assume that the correlation between
nearby bases declines with their distance. This is
reflected in the pseudo-parameters U: increasing with
order : . For BaMMmotif2, we kept the same setting
as in BaMMmotif, U: =7×3: .

The motif model is optimized with the EM
algorithm by maximizing the likelihood of the input
sequences assuming zero or one motif occurrence per
sequence (the ZOOPS model). It models the bound
sequence using a  th-order inhomogeneous BaMM
? motif (x) (where x=G1:, is the binding site), and
models the other unbound sequence regions using a
 ′th-order homogeneous BaMM ? 

′
bg (x) ( ′ is 2 by

default). This background sequence model is trained
by default on the input sequences. Potential binding
site sequences x are ranked by their score ((x)=
log(? motif (x)/? 

′
bg (x)). In the weak binding limit, this

score is proportional to the Gibbs free energy Δ� of
binding (Supplementary Section 1.5).
The ZOOPS model is used for its computational

convenience. Since actually more than one protein can
bind to a sequence, the many-motif-occurrences-per-
sequence model would be more appropriate. If the
protein can bind in more than one conformation and
thereby with more than one distinct motif, ideally all
distinct motifs should be modeled and learned at once,
using dynamic programming to sum over all possible
binding configurations (33).
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Learning positional binding preferences.
BaMMmotif2 can learn the positional binding
preferences for enriched motifs with respect to
the center of the input sequences. By aligning the
sequences around some anchor feature, such as
a transcriptional start site, a 3’ splice site, or a
binding site of some other transcription factor, the
distance preference between enriched motifs and the
reference feature can be learned. We parameterize the
positional probability distribution with one parameter
per position and ensure smoothness by adding !2
penalties for the differences between successive
sequence positions (Supplementary Section 1.5).

Masking sequences during the motif refinement
stage. Sequences from in vivo experiments such as
ChIP-seq commonly contain several distinct motifs
from other TFs that together co-regulate their target
genes. This can create two types of problems during
the refinement stage. First, instead of refining the motif
from the seeding stage, the model in some cases tends
to learn two or even more motifs in the same higher-
order model, as this often improves the likelihood
on the training data. Second, if the seed motif is
less enriched or less informative than other motifs in
the positive sequence set, the model can switch from
the seed motif to these other motifs. In this way, the
weaker motif is not discovered at all. To avoid these
two problems, we introduced a masking step in the
EM optimization. We score all possible motif start
positions in the input sequences using the PWMpassed
from the seeding stage to the refinement stage. We
mask out all but the top -% of positions (- =5 in this
study) and ignore these positions in the EM iterations
of the refinement stage.

Motif assessment using average recall (AvRec)
To assess the performance of a classifier such as amotif
model, one often plots the true positive predictions
(TP) versus the false positive predictions (FP) over
all score thresholds. Normalizing FPs and TPs to
a maximum of 1 by plotting the true positive rate
TPR=TP/Positives versus the false positive rate FPR=
FP/Negatives yields the receiver operating curve
(ROC). The often-used area under the ROC curve
(AUC) is not a good quality measure for a motif model
because in many applications the fraction of positive
sequences (those carrying the motif) is much smaller
than the number of negative sequences.When scanning
the human genome for CTCF binding motifs in
windows of 100 bp, for example, the ratio is about 1:30.
At this ratio, a false discovery rate FDR=TP/(TP+FP)
below 50% requires a ratio FPR/TPR<1/30. So 29/30
= 97% of the ROC plot, the part with FDR>50%,

would be irrelevant. A predictor could have an AUC
of 95% and never reach an FDR below 50%.

We therefore previously developed the Average
Recall (AvRec) score (34), which averages the recall
(the same as true positive rate and sensitivity) over
a range of TP:FP ratios from 1:1, corresponding to
FDR=0.5, to 1:100, corresponding to FDR=1/101
(Fig. 2A). The AvRec score therefore considers the
range of FDR most relevant in practice and has the
additional benefit that a different positive-to-negative
ratio than 1 simply results in a vertical shift of the
AvRec curve on the logarithmic H axis.

To calculate the AvRec score, we first simulated
10-fold more negative than positive sequences using
a second-order Markov background model learned
on the positive set. We computed the motif scores
((G8:8+,−1)= log2

(
? motif (G8:8+,−1)/? 

′
bg (G8:8+,−1)

)
for all possible binding positions 8 (excluding the
masked positions) and took the best score for each
sequence. All sequences are sorted by descending
score. The false positive count FP is the cumulative
number of sequences from the negative set above the
score cut-off, and TP is the cumulative number of
positive sequences above the score cut-off.

Benchmark design
The performance of BaMMmotif2 was evaluated
together with five state-of-the-art motif discovery
tools, MEME (32) as the most cited tool, CisFinder
(35) for its speed and ability to run on large datasets,
ChIPMunk (36) and diChIPMunk (27), which are used
for generating the PWMs and dinucleotide PWMs in
the HOCOMOCO database (37), and InMoDe (24),
which can learn inhomogeneous Markov models of
order 2 and beyond.

The processing of the ChIP-seq and HT-SELEX
data is described in detail in Supplemental Material
II. The motif discovery tools were run on the input
sequence sets with default parameters, and four CPU
cores were used for tools that could be parallelized
(CisFinder, MEME, and BaMMmotif2). For tools that
learnmultiplemotifmodels fromone dataset, themotif
models ranked top by the tools were benchmarked.

To assess the model performance over the given
sequences, we first performed the benchmark on both
human ChIP-seq (38) and HT-SELEX datasets (39)
using 5-fold cross-validation (Fig. 1 I). The cross-cell-
line validation was applied to ChIP-seq data (Fig. 1 II)
and the cross-platform validations were applied to both
ChIP-seq data HT-SELEX data (Fig. 1 III and IV). A
more detailed description including tool settings can
be found in Supplementary Section II.
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Figure 1. Benchmark pipeline for de novo motif discovery. Five state-of-the-art motif discovery tools and BaMMmotif2 learned motif
models on in vivo and in vitro transcription factor binding datasets. The learned models were then assessed (I) by 5-fold cross-validation on
the same type of data, (II) by cross-cell-line validation, and (III, IV) by cross-platform validations.

RESULTS
Model performance on in vivo and in vitro data
We learned de novo motifs with each of the six tools
on 427 ChIP-seq datasets for 93 transcription factors
from the ENCODE project (38) and evaluated their
performance using 5-fold cross-validation (Fig. 1I).
As an example, we compare in Fig. 2A and 2B the

AvRec plot of a fifth-order BaMMwith a second-order
InMoDe model for the Elf2 motif, trained and tested
on 5000 sequences of length 208 bp via 5-fold cross-
validation.At a positives-to-negatives ratio of 1:1 (bold
blue line) and a TP:FP-ratio of 10:1 (see H axis,
corresponding to an FDR of 1/11), the BaMMmotif2
model achieves a recall of 0.81 and the InMoDe
model achieves 0.69. At a positives-to-negatives ratio
of 1:10 and a TP:FP-ratio of 10:1 (broken blue line),
or, equivalently, at a positives-to-negatives ratio of 1:1
and a TP:FP-ratio of 100:1, the models achieve recalls
of 0.12 and 0.13, respectively.When comparingAvRec
scores between fifth-order BaMMs with second-order
models from InMoDe across all 427ChIP-seq datasets,
BaMMs attain higher AvRec scores for 415 (97%)
of the datasets, and the median AvRec of BaMMs is
13.6% higher than the one of InMoDe models (Fig.
2C). This improvement is universal across TF domain
families (40) (Fig. 2C).

Overall, the PWM-based tools, CisFinder, MEME,
and ChIPMunk, are outperformed by the tools using
higher-order models. BaMMmotif2 with first-order

models performs on par with InMoDe and better than
the first-order tools such as diChIPMunk. Fifth-order
BaMMs achieve even better AvRec scores, as seen in
the box plots and AvRec cumulative distributions of
Fig. 2D and 2E, and in one-on-one comparisons in
Fig. S2A. We also compared BaMMmotif2 with our
previous tool BaMMmotif (28). BaMMmotif2 is 10
times faster while being slightly more sensitive (Fig.
S3).

Tools that learn higher-order Markov models can
learn several motifs in one model, profiting from
signals that are merely correlated with the real binding
sites (29, 41). To find out whether BaMMs are affected
or not, we introduced a masking step in the initial
iteration of the EM algorithm (see Materials and
Methods). We restrict the model refinement with
the higher order BaMM to the 5% potential motif
positions with the highest scores scanned by the
seeding PWM. In this way, we avoid overfitting and
also speed up the refinement by a factor of 10.
However, this robustness is paid by a loss in motif
model performance (Fig. S4 and S5). The performance
decrease could be caused in part by the limitation of
being unable to select better sites during the refinement
that were too different from the seeding motif, and in
part because sometimes the BaMMs would otherwise
have learned more than one distinct motif in a single
model. To be on the conservative and robust side,
we adopted the masking step in BaMMmotif2 for all
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Figure 2. Performance of de novo motif discovery tools on in vivo and in vitro datasets. (A) AvRec analysis for fifth-order BaMM on the
Elf1 ENCODE dataset. The AvRec is the recall averaged in log space over TP-to-FP ratios between 100 and 102. This ratio range corresponds
to a precision between 1/(1+1) and 100/(1+100) =0.99. Bold line: 1:1 ratio of positives to negatives. At 1:10 ratio (dashed) and 1:100
(dotted), the curves are shifted down by a factor of 10 and 100, respectively. Inset: motif logo of Elf1. (B) Same as (A) for the InMoDe
model of Elf1. (C) log2 of AvRec fold change between fifth-order BaMMmotif2 and InMoDe models versus the AvRec of InMoDe. Each
dot represents one dataset. Elf1 is highlighted in a brown triangle. Dot colors represent different TF superfamilies defined by (40). ZNF:
Zinc-finger DNA-binding domains, Basic: Basic domains, Ig: Immunoglobulin fold, HTH: Helix-turn-helix domains, UH+VS: alpha-helices
exposed by beta-structures, UH: Other all-alpha-helical DNA-binding domains. The median AvRec fold change and the number of motifs are
shown in the legend. The overall median log2 fold change is 13.5%. (D) AvRec distributions as box plot, with boxes indicating 25%/75%
quantiles and whiskers 95%/5% quantiles. Color code: see the legend in (F). (E) Cumulative distribution of AvRec scores on the 427 datasets.
(F) Average runtime per dataset on four cores versus the median AvRec score. InMoDe and (di)ChIPMunk are not parallelized and ran on a
single core. Whiskers: ±1 standard deviation. BaMM (5th, full): no masking step. (G-I) Analogous to (D-F) but for 164 HT-SELEX datasets
from the Taipale lab (39).
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our benchmarks in this study, unless explicitly stated
otherwise.
Next, we assessed the performances of selected

tools on 164 in vitro HT-SELEX datasets for 164
TFs (39). Each dataset contains long oligomers of 200
bp. We also sampled 10-fold background sequences
using the trimer frequencies from the same input set
for estimating true negatives.
For the in vitro benchmark we observed overall

similar trends as on the ChIP-seq data (Fig. 2G-I).
CisFinder tends to learn longer motifs than the other
tools, which probably helped it on the ChIP-seq data
but hurt its performance on the HT-SELEX data. The
BaMMs learned without masking (BaMM 5th, full;
red) gained only 5%on themasked version (BaMM5th;
orange), whereas the gain had been 12% on the ChIP-
seq data. This comparison shows that, on the ChIP-seq
data, the fifth-order BaMMs trained without masking
indeed tend to learn alsomotifs of co-occuring TFs that
help to distinguish positive from negative sequences.
If the goal is to learn the pure binding affinity of the
ChIPped TF, masking should therefore be turned on
for in vivo data.

Assessing consistency of motif models across cell
lines
ChIP-seq measurements have cell-type-specific biases
associated with difference in chromatin accessibility,
in particular of enhancers and promoters, and
differences in TF concentrations (42). A motif model
that predicts only the binding affinity of the ChIPped
TF should also performwell in predicting binding sites
of the factor in other cell lines, whereas a motif model
that has learned also motifs of co-occurring TFs and
other sequence features with no direct effect on the
binding affinity of themain TF should generalize badly
to other cell lines in which different TFs will often
co-occur with the ChIPped TF.
We therefore conducted a cross-cell line benchmark

on in vivo data.We assessed the performance ofmodels
learned on ChIP-seq data from one cell line and tested
on ChIP-seq data of the same TF from another cell
line. We found 119 pairs of ChIP-seq datasets in the
ENCODE database in which the same TF had been
ChIPped in two different cell lines. We trained the
model on one dataset and tested it on the other, and
vice versa, resulting in 238 AvRec scores (Fig. 3).

Remarkably, the AvRec scores are around 0.2 lower
for all tools than the AvRec scores in Fig. 2D obtained
when training and testing in the same cell lines, with
the PWM-based tools going from AvRec 0.5 to as
low as 0.3. This quite dramatic decrease indicates that
all models, even the simple PWMs, do not perform
well for predicting bound sequences in another cell

line. Remarkably, except for InMoDe, the predictive
power of the higher-order models does not suffer more
than that of the PWMs. This indicates that the higher-
order models (except InMoDe) do not tend to overfit
to sequence features that are specific to one cell line,
such as co-occurring TFs. It is surprising that the fifth-
order BaMMs trained without masking maintain or
even improve their edge on the other models, despite
our expectation that they would be the most prone to
overfit on cell type-specific features.

In vitro models predict in vivo binding and vice
versa
Each measurement for detecting TF-DNA interactions
has its own biases. ChIP-seq has biases from
sequence-dependent PCR amplification, cell-type-
specific sonication bias, and chromatin structure(43,
44, 45), while HT-SELEX has biased nucleotide
compositions and depleted palindromes as a result
of the library preparation, as well as sequence carry-
over bias in selection cycles (46, 47). These biases
can give optimistic results even in the cross-cell-line
benchmark because the model can be overtrained on
genomic features that are identical or similar in both
cell lines.

To assess how much models base their predictions
on technical biases that would improve their
performance when tested on the same platform
but decrease their performance when tested on a
different platform, we performed two cross-platform
benchmarks.

First, for each of the tools, we trained a motif model
on each of the 140 ChIP-seq datasets for which an HT-
SELEX dataset for the same TF, but not necessarily
from the same cell line, was available. We discovered
that several datasets were of too low quality to give
reliablemodels, and someHT-SELEXdatasets showed
signs of having had the identity of the TF switched.We
therefore selected the 92 ChIP-seq datasets for which
at least one of 8 tools achieved an AvRec score of ≥
0.1. The first- and fifth-order BaMMs achieve better
accuracies than the PWM-based models (Fig. 4A and
4B).

Second, for each of the tools we trained a motif
model on each of the 82 HT-SELEX datasets for which
a ChIP-seq dataset with the same TFwas available. We
selected the HT-SELEX datasets for which at least
one of the 8 tools achieved an AvRec score of ≥
0.1. Again, BaMMs achieved the best AvRec scores.
However, we observed no major improvements from
first to fifth order (Fig. 4C and 4D). This time, the
improvements over PWM-based models are minor.
ChIPMunk and diChIPMunk fared badly because they
only predict one motif per dataset, while other tools
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Figure 3. Cross-cell-line validation. 119 pairs of ENCODE datasets were used in this benchmark in which the same TF had been ChIPped
in different cell lines. (A) AvRec distributions for 2×119 models that were tested on a ChIP-seq dataset from a different cell line than they
were trained on. (B) Cumulative distributions of AvRec scores. (C) Log2 fold change in AvRec between fifth-order BaMMs and ChIPMunk
for each of the 238 datasets. The median improvement is 32.7%. Same legend as Fig 2C.

generate several motif candidates and the best one is
chosen for comparison.
BaMMs learned similar information content in the

first-order on ChIP-seq and on HT-SELEX data while
showing no tendency to learn systematic biases of
these platforms (Fig. S7). This demonstrates how the
information in the first-order can help to improve
cross-platform predictions.

Extended flanking regions increase motif
prediction accuracy
Various studies have shown that the flanking regions
outside of the core binding sites affect TF binding,
by affecting DNA shape preferences or by harboring
binding sites of co-cooperatively binding TFs at
variable spacings (14, 48, 49, 50). Therefore, we
investigated the impact of extending the core motifs,
by adding two or four nucleotides on each side in the
seeding motifs and refining the extended motifs with
BaMMmotif2.
We find that for BaMMs trained on ChIP-

seq datasets, extending the models by 2×2 or
2×4 positions indeed improves the motif model
performance across all orders, and more so with
increasing order (Fig. 5A). The improvement from
no added positions to 2×4 bp added is by 3% for
zeroth order BaMMs (PWMs) and by 11% for fifth-
order BaMMs (Fig. 5B and Fig. S8A). This indicates
that flanking regions carry information mostly in the
higher orders and not much in preferences for specific
nucleotides.

It is not clear, however, if these improvements are
due to DNA shape preferences that are reflected by
preferences for certain di- and tri-nucleotides or by

other sequence features of the genomic sequences such
as motifs of co-occurring TFs. We therefore repeated
the same analysis on HT-SELEX data. We restricted
ourselves to long oligonucleotides of 200 bp because
short oligonucleotides of 20 bp to 40 bp might not
reflect well enough the physical properties of genomic
DNA.

The results on the HT-SELEX data are very similar
to those on ChIP-seq data (Fig. 5B and 5D). Again,
PWMs gain much less AvRec score through 2×4bp
extensions than fifth-order BaMMs (1.3% versus 8%,
shown in Fig. S8B and Fig. 5D). This result confirms
that the features picked up by the higher orders are not
chiefly ones that are specific to genomic sequences but
are also learned on in vitro-selected sequences and are
therefore likely to be associated with DNA structural
preferences.

Learning positional binding preferences
Motifs often have certain positional preferences with
regard to other motifs or genomic landmarks such as
transcription start sites. Therefore, we introduced the
possibility to learn the probability distribution of motif
positions from the input data (Fig. S1A). Learning
the positional distribution of motifs around ChIP-
seq peak positions did not improve the median motif
performances (Fig. S1B and S1C), probably because
the information content of the positional distribution
is very low when the the distribution is not much
narrower than the window size. (The information
content can be calculated as the difference between
the entropies of the two positional distributions.) The
positional preference is likely to have a positive impact
when positioning effects are stronger, such as for
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Figure 4. Cross-platform validation. (A,B) AvRec distributions and cumulative distributions for 92 models trained on ChIP-seq datasets
and tested on HT-SELEX datasets for the same TFs using different tools. (C,D) Same as (A,B) for 82 motif models but trained on HT-SELEX
datasets and tested on ChIP-seq datasets.

splicing motifs around splice sites, core promoter
motifs around transcription start sites, or TF binding
sites of cooperatively binding TFs.

DISCUSSION
We presented BaMMmotif2, a fast and accurate
de novo motif discovery algorithm for large-
scale transcriptomic data. BaMMmotif2 builds on
our earlier theory of Bayesian Markov models
(BaMMs) implemented in BaMMmotif. BaMMs
employ pseudocounts from model order :−1 to
stabilize the estimation of the conditional probabilities
for order : , for all orders : from 1 to the maximum
order (five in this study). In this way, they can learn
higher orders if a sufficient number of :-mer counts
was observed to estimate them but otherwise fall back
to a lower order that can still be estimated safely.

BaMMmotif2 was written from scratch in C++
using explicit AVX2 vectorization and multi-core

parallelization. We developed a novel, fast seeding
method to find enriched patterns that scales almost
independently of the input set size. We also added a
masking step to force the refinement stage to only refine
the seed motifs and prevent it from learning in addition
other predictive features such as co-occurring motifs
of other TFs or experimental sequence biases. We
also developed a Bayesian approach to learn position
binding preferences from the input data.

By their sheer number, ChIP-seq datasets are
the dominant source of information for TF binding
affinities. Therefore, most benchmark comparisons of
de novo motif discovery tools have been performed
exclusively or predominantly on ChIP-seq data.
However, for assessing the quality of models more
complex and informative than PWMs, such as higher-
order Markov models and mixture models, ChIP-
seq data are problematic for several reasons. First,
they often have complex sequence biases (42),
which higher-order models can learn to distinguish
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Figure 5. Extending the core motif by flanking positions improves motif performance. AvRec of BaMMs with different numbers of
flanking positions added to the core motif, tested by 5-fold cross-validation. (A) AvRec distribution on 435 ChIP-seq datasets for models of
order 0, 1, 2, and 5, each for three sizes of flanking regions: 0 bp, ± 2 bp, and ± 4 bp. (B) Log2 of fold change between fifth-order BaMMmotif2
models with ± 4 bp flanking positions and no added flanking positions. The median AvRec increase is 11.4 %. (C,D) Same as (A,B) for 168
HT-SELEX datasets.

from negative sequences generated with random
background models. To alleviate this problem, second
order background models should be used, but even
this might be insufficient to eliminate learning generic
sequence biases of the ChIPped versus random
sequences. Second, sequences in ChIP-seq peaks
usually contain in addition to the motif of the
ChIPped TF the binding motifs of co-binding factors
(41). Complex models can improve their predictive
performance by scoring sequences highly that contain
any of these co-occuring motifs. This is possible
even within a short motif length by learning the
motifs superposed with each other, with the higher
orders preventing mixing and blurring of motifs (29).
Although improving the apparent model performance,
such models do not describe faithfully the binding
affinity of the ChIPped factor.

Our goal was to compare PWM-based motif
discovery tools with tools employing more complex
models: dinucleotide weight matrices, parsimonious
context trees, and BaMMs. We therefore set up a
cross-cell line benchmark to assess how well the motif
models learned in one cell line can predict binding in
another cell line. Furthermore, we conducted a cross-
platform benchmark, in which we trained the models
on ChIP-seq data and tested them on HT-SELEX
data, and vice versa. The results show that among
the tested tools, those with more complex models still
tend to perform better in these benchmarks, albeit with
smaller improvements over the PWM-based tools. The
improvements from higher orders were particularly
marked for the BaMMs. So, most of the information
in higher orders seems to be transferable between cell
lines and measurement platforms.
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Even though we did not see clear signs of overfitting
in our BaMMs, we introduced sequence masking as
a precaution against overfitting to other motifs and
technology- or cell line-dependent sequence biases.
We use the seed PWM to mask out all but the top-
scoring 5% of positions, and we train the higher-order
BaMM only on the remaining 5%. We thereby ensure
that only sequence regions that actually carry the seed
motif can be learned by the BaMM. The performance
drop between training fifth-order BaMMs with and
without masking was 8% on HT-SELEX data and 12%
on ChIP-seq data (Fig. 2D,G, Fig. S4). This indicates
that if higher-order BaMMs profit from learning co-
occurring motifs at all, the effect on their performance
is quite limited.
Still, if the goal is to learn binding affinities and

not just predict motifs from in vivo sequence data, we
recommend to run BaMMmotif2 with the masking,
because BaMMs can learn several similarmotifs in one
single model, such as bipartite motifs with a variable-
length spacer or motifs of mono- and dimeric binding
modes of a transcription factor. The masking option
controls how closely the refined motif has to stay to
the seed motif. For instance, masking helps to learn
the correct partially related motifs for FoxA2 factor,
when training 5th-order BaMMs on a ChIP-seq data
(Suppl. Fig. S11C). Whether these similar motifs are
learned in a single model or are split into two models
can vary from case to case. If users want to learnmotifs
separately, it is therefore recommended to use masking
and to experiment with even stricter masking than the
default 95%.
On in vitro data, masking is not necessary and

in order to make use of the 5% improvement we
recommend to run BaMMmotif2 without masking.
However, even with masking the fifth-order BaMMs
still perform competitively with the state-of-the-art
tools while being significantly faster.
Transcription factors combine base- with DNA

shape readout (13). Instead of studying the TF-
DNA binding using only the sequence features, some
models utilize DNA shape features predicted from
the sequence to enhance motif models (51, 52, 53).
The shape descriptors these tools use, like minor
groove width, helical tilt and bent, or propeller tilt,
are predicted from five-mer tables computed using
molecular dynamics calculations. Given enough data,
it is therefore evident that higher-order models such as
BaMMs can learn these DNA structural preferences
implicitly, yet are not limited to the pre-defined shape
descriptors.
In recent years, deep learning approaches have

become popular for learning motif models with very
good predictive performance (51, 54, 55). Suchmodels

usually take advantage of contextual information
such as co-occurring motifs, which increases their
predictive power but serves a different purpose than
the models we discuss here: learning a model for
the sequence dependence of the binding affinity of
a factor. In addition, BaMMs have the advantage or
being conceptionally simple and interpretable in terms
of :-mer dependent energy terms.

In conclusion, we have shown that higher order
models for binding motifs improved binding site
predictions on a large collection of ChIP-seq
and HT-SELEX datasets, both in cross-validated
setting and when training and testing on different
experimental platforms and cell lines. Importantly,
clear improvements in predictive performance are even
seen beyond first order models: BaMMs of fifth order
show a solidly improved performance across the bench
over the tested state of the art tools, while being
significantly faster.

AVAILABILITY
Data
ENCODE database. We evaluated the performance
of selected algorithms on human ChIP-seq datasets
from the ENCODE portal (38) until March 2020. In
total, there are 435 datasets for 93 distinct transcription
factors. The top 5000 peak regions sorted by their
signal value are selected for each dataset when peaks
are more than 5000, and all peaks are chosen if
there are fewer than 5000 peaks. Positive sequences
are extracted ±104 bp around the peak summits.
Background sequences are sampled by the trimer
frequencies from positive sequences, with the same
lengths as positive sequences and 10 times the amount
of positive sequences. 8 datasets are excluded from all
the results because diChIPMunk fails to learn models
within 3 hours.

HT-SELEX datasets. For HT-SELEX data, we
downloaded 164 datasets with 200 bp-long oligomers
from Zhu et al. (39), which are deposited in
the European Nucleotide Archive (ENA) under the
accession PRJEB22684. Each dataset represents one
non-redundant transcription factor. For each dataset,
we selected 5000 sequences from each selection round
without any sorting.

The HT-SELEX data contain reads from at least
four selection cycles, and themeasured binding affinity
iteratively increases with the cycles. Thus, we chose
the sequences from the fourth selection rounds with
detected high affinities for motif training and testing
in the main paper. Since ChIPMunk and diChIPMunk
took longer than 2 hours to run on the full datasets,
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we selected 5000 sequences out of the millions of
reads as training and test sequences. To examine the
power of BaMMs in learning the weak binding sites,
we also used sequences from the second and third
selection rounds. Background sequences are sampled
in the same way as described previously.

Software and parameters
The new version of BaMMmotif2 software is
implemented in C++ and Python3. The code
is licensed under GPLv3 and freely accessible
without registration at github.com/soedinglab/PEnG-
motif, and github.com/soedinglab/BaMMmotif2, and
supported on Linux and MacOS. They are also
integrated into our webserver (34).

Results and analysis scripts
The analysis scripts are available in Jupyter Notebook
format at github.com/soedinglab/bamm-benchmark.
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Part I

Supplemental Figures
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Figure S 1. Optimization of positional prior on in vivo data. BaMMs with zeroth- (grey),
first- (orange), second- (green) and fifth-orders (blue) are trained and tested on 435 ENCODE
datasets using 5-fold cross-validation. Panel (A) shows the distribution of optimized positional
priors over the positions on both sequence strands that are center around ChIP-seq summits for
GABPα motif. Panel (B) shows the AvRec distributions as box plot, with boxes indicating 25%/75%
quantiles and whiskers 5%/95% quantiles. The colors are for different orders with- (dark colors)
and without (light colors) optimization of positional prior in the motif training. Panel (C) shows
the cumulative distributions of AvRec scores on 435 datasets. There is no major difference before
and after the positional prior optimization. Panel (D) shows the motif for RFX5 factor learned
from a GTRD dataset [1] with (middle) and without (right) the optimized positional parameter,
compared to the reference motif reported in the JASPAR database [2] (left).

2

3.1 BaMMmotif2 algorithm 71



(A)

0.0 0.5 1.0

AvRec score, diChIPMunk

-1

0

1

2

3

Av
Re

c 
lo

g
(fc

), 
 B

aM
M

26.0%

ChIP models (n = 427)

(B)

0.0 0.5 1.0

AvRec score,  BaMM

-1

0

1

2

3

Av
Re

c 
lo

g
(fc

), 
 B

aM
M

12.3%

ChIP models (n = 427)

(C)

0.0 0.5 1.0

AvRec score, MEME

-1

0

1

2

3

Av
Re

c 
lo

g
(fc

), 
 B

aM
M

24.9%

ChIP models (n = 427)

(D)

0.0 0.5 1.0

AvRec score, InMoDe

-1

0

1

2

3

Av
Re

c 
lo

g
(fc

), 
 B

aM
M

12.2%

HT-SELEX models (n = 164)

(E)

0.0 0.5 1.0

AvRec score,  BaMM

-1

0

1

2

3

Av
Re

c 
lo

g
(fc

), 
 B

aM
M

9.3%

HT-SELEX models (n = 164)

(F)

0.0 0.5 1.0

AvRec score, CisFinder

-1

0

1

2

3

Av
Re

c 
lo

g
(fc

), 
 B

aM
M

47.3%

HT-SELEX models (n = 164)

Figure S 2. Performance comparison of motif discovery tools on in vivo and in vitro
data. log2 of fold change in AvRec between fifth-order BaMMmotif2 and diChIPMunk models
versus AvRec of diChIPMunk models (A), first-order BaMMmotif2 (B) and MEME PWMs (C)
on 427 ChIP-seq datasets. Each dot represents the test on one dataset from either ChIP-seq or
HT-SELEX. The grey dashed lines indicate the median log2 fold change is 26%, 12.4% and 24.9%
respectively. (D-F) Similar comparisons as (A-C) but on 164 HT-SELEX datasets.
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Figure S 3. Benchmark on in vivo data. Average runtime per dataset on a server with
4 cores versus the median AvRec score of several de novo motif discovery tools, including the
previous version of BaMMmotif, validated on 419 datasets with 5-fold cross-validation, with MEME,
CisFinder, BaMMmotif and BaMMmotif2 running on 4 CPU cores. Whiskers indicate the standard
deviation of AvRec score. 2nd-order models trained using BaMMmotif and BaMMmotif2 have
similar average AvRec scores, yet BaMMmotif2 is >1̃0 times faster than BaMMmotif.
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Figure S 4. EM optimization using the full set compared to masking 95% sequences
on ChIP-seq datasets. (A) Using the full set of sequences for the EM optimization (blue)
improves the performance of higher-order models, while extending the core regions for searching the
enriched patterns (green) does not contribute to motif discovery, in comparison to that with 8 bp
for seeding and masking 95% sequences for the EM optimization (yellow). All box-plot whiskers
show 95th/5th percentile. Each cluster contains models with different orders (zeroth-, first-, second-
and fifth-order). (B) Fifth-order BaMMs optimized on the full sequences set have a 4.4% AvRec
fold increase compared to those trained only 5% sequences. (C) Using a masking step improves the
speed by 10-fold, in comparison to using the full set for learning motif model.
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Figure S 5. EM optimization using the full set compared to masking 95% sequences
from HT-SELEX datasets. (A) Using the full set for motif refinement (green) improves the
performance of higher-order models over that using only 5% sequences (yellow). All box-plot
whiskers show 95th/5th percentile. Each cluster contains models with different orders (zeroth-,
first-, second- and fifth-order). (B) Fifth-order BaMMs with full set of sequences for optimization
has a 4.6% AvRec fold increase compared to it with only 5% sequences for optimization.
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Figure S 6. Cross-cell-line validation. log2 of fold change in AvRec between fifth-order
BaMMmotif2 and PWMs from MEME (A), second-order models from InMoDe (B), and first-order
models from diChIPMunk (C), when comparing to AvRec scores of the latter models in 238 paired
ENCODE datasets. Each dot represents one test. The range of AvRec scores is chosen from 0.5 to
8 and the outliers are not shown in these plots.
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TF data set CisFinder MEME ChIPMunk PenGBaMM  k=0 PenGBaMM  k=1 PenGBaMM  k=5

CEBPB

ENCODE

0.664 0.572 0.562 0.561 0.723 0.693

HTSELEXL

0.251 0.535 0.449 0.456 0.471 0.482

POU2F2

ENCODE

0.295 0.584 0.694 0.692 0.759 0.778

HTSELEXL

0.25 0.414 0.379 0.425 0.419 0.436

ELF1

ENCODE

0.695 0.751 0.706 0.768 0.773 0.774

HTSELEXL

0.102 0.452 0.392 0.49 0.509 0.513

FOXA2

ENCODE

0.247 0.271 0.299 0.284 0.309 0.312

HTSELEXL

0.141 0.178 0.373 0.364 0.412 0.446

Figure S 7. Sequence logos and AvRec scores of motifs models from cross-platform
validation. Motif models are trained by different models for four transcription factors: CEBPB,
POU2F2, ELF1, and FOXA2. For each transcription factor, the first row shows models learned
on ENCODE data by applying different tools. The number above each logo represents the AvRec
score when testing the model on the corresponding HT-SELEX data. The second row shows the
models learned on HT-SELEX data and AvRec scores when testing models on ENCODE data. For
BaMM models, both zeroth- and first-order logos are plotted.
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Figure S 8. Impact of extending core motif regions on PWMs. (A) Log2 of fold change
between PWM models with ± 4 bp flanking positions and no added flanking positions, using 435
datasets. Median AvRec change is 2.9 %. (B) Same as (A) but on 168 HT-SELEX datasets.

Figure S 9. Quantitative performance on in vivo GTRD datasets. The selected tools are
applied to 405 GTRD datasets [1] and their AvRec were calculated by 5-fold cross-validation, similar
to Figure 2. (A) AvRec distributions as box plot. All box-plot whiskers show 95th/5th percentile.
(B) The cumulative of AvRec scores on 405 datasets. (C) Average runtime per dataset on a server
with 4 cores versus the median AvRec score. Whiskers: standard deviation.
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Figure S 10. Performance comparison of BaMMmotif versus MEME on weak binding
prediction. log2 fold change between fifth-order BaMMmotif2 models and MEME models versus
AvRec of MEME, with AvRec analyzed by 5-fold cross-validation on sequences from the 2nd- (A),
3rd- (B) or 4th- (C) selection cycle of 164 HT-SELEX datasets. The median fold change increases
are 25.9%, 19.8% and 16%, respectively (grey dashed lines). Each dot represents one data set.
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Figure S 11. Show cases for higher-order BaMMs. (A) 0th-order models and higher-order
models were trained with and without sequence masking on a set of 5000 synthetic background
sequences from a second order null model implanted with monomeric and dimeric ETS motifs in
80% and 20% of the sequences, respectively. With all three settings, the implanted motifs were
learned separately as two distinct motifs. (B) 5000 synthetic sequences embedded with GATA3
and JunD motifs with very low occurrences, 10% and 1% respectively. With all three settings, the
implanted motifs were learned separately as two distinct motifs. (C) Motif discovery for FoxA1
from a ENCODE dataset (accession: ENCFF648VIL). The de novo motif discovery process found
two binding modes. But given that the consensus of the dimer motif is palindromic, its fifth-order
motif model mixes with the monomer motif when no masking was applied. When masking 99% of
the positions, 5th-order BaMM was able to separate these two closely related motifs.
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Part II

Supplemental Methods

The supplemental material provides further details of the theoretical basis, the implementation
of the BaMMmotif2 package, and the processing procedure of the datasets that are used for
this benchmark. It also documents the parameters used for testing the motif discovery tools
in the benchmark. It ensures the reproducibility of the results in this paper.

1 De novo motif discovery and refinement

1.1 The fast seeding phase: PEnGmotif

We describe PEnGmotif (Pattern-based discovery of enriched genomic or transcriptomic
sequence motifs), an efficient method for discovering sequence patterns enriched in a set
of nucleotide sequences over random expectation sampled from a second-order background
model. The enriched patterns found by PEnGmotif are optimized to PWMs and serve as
seeds to initialise the refinement stage by BaMMmotif2.

Figure S 12. Workflow of the fast seeding stage. Sequences from high-throughput assays,
such as ChIP-seq, SELEX and PBM, are provided as input data. (i) Occurrences of all K-mers of a
fixed specified length (default 10) are counted. (ii) An enrichment z-score is calculated for each K-
mer based on a Poisson model. (iii) High-scored K-mers are optimized from the nucleotide alphabet
(ACGT) to a degenerate IUPAC alphabet with 11 letters (ACGTRYSWSKN). (iv) The locally
optimal IUPAC patterns are converted to PWMs. (v) PWMs are refined using the Expectation
Maximisation algorithm. (vi) PWMs with similar overlapping regions are merged and extended.

Let K be the length of patterns that will be analysed (e.g. K = 8 used in the study). First,
the number of occurrences of each of the 4K non-degenerate seed patterns of length K are
counted in a 4K-dimensional array with x ∈ {A,C,G,T}K . pbg(x) denotes the probability of
observing K-mer x in absence of specific binding. pbg(x) can be directly counted from large
background sequence sets or modelled as a homogeneous Markov model on a background
data set or the dataset itself. For example, pbg(x) is learned from the genomic input, a mock
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immunoprecipitation or the input sequence library prior to the selection in HT-SELEX. We
model the background probability using a homogeneous Markov model of order K ′ (K ′ = 2
by default):

pbg(xi0 : i1) =

i1∏

i=i0

pbg(xi|xi−K′ : i−1). (1)

We assume the number of occurrences in absence of specific binding to follow a Poisson
distribution: µ = Ltotpbg(y), where Ltot =

∑N
n=1(Ln − K + 1) is the total number of all

counted patterns in the input sequences (N is the total sequence number and Ln is the length
of n′th sequence).

z-score We compute Z-scores for all non-degenerate K-mer patterns. The Z-score is the
deviation from expectation divided by the standard deviation. As for the Poisson distribution
the variance equals the mean, the Z-score is:

Z(y) =
n(y)− Ltotpbg(y)√

Ltotpbg(y)
. (2)

The z-score can be used to pre-filter what K-mers should enter the optimization routine.

p-value As we are also interested in highly enriched sequences (x) and (y) are fulfilled and
we can use the Stirling approximation to calculate the p-value:

p-value(y) =
∞∑

k=n

µk

k!
e−µ

=
µn

n!
e−µ

∞∑

k=0

µk

(n+ 1) · · · (n+ k)

<≈ µn

n!
e−µ

∞∑

k=0

µk

(n+ 1)k

≈ µn(y)

n(y)!
e−µ

1

1− µ/(n(y) + 1)

log p-value(y) ≈ n(y) log
µ

n(y)
+ n(y)− µ− 1

2
log(2πn(y))− log

(
1− µ

n(y) + 1

)
. (3)

Mutual information We optimize the mutual information (MI) between two random
variables,

MI(q) = −qH(pobs)− (1− q)H(pexp) +H(p), (4)

with H(x) := −xlogx− (1− x)log(1− x).

We then find locally optimal non-degenerate patterns with a recursive function which takes
a K-mer y and checks for all its neighbouring K-mers, i.e. those that are at most one
substitution away. If it finds a neighbouring yneigh with a better mutual information, the
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function is called recursively with yneigh as an argument. If no neighbour of y has better
mutual information than y, y is appended to the list of locally optimal K-mers. Similarly,
we optimized the high-scored K-mers from the nucleotide alphabet (ACGT) to a degenerate
IUPAC alphabet with 11 letters (ACGTRYSWSKN).

The IUPAC patterns can be transformed to PWMs based on the combined occurrences of all
non-degenerated K-mers that match the degenerate IUPAC pattern in the input sequences.
Alternatively, there is a faster approach based on the insight that if we allow any of the four
nucleotides a ∈ {A,C,G,T} at position j, the vast majority of motif matches will still be
true positives due to the descriptive power of the other K − 1 IUPAC letters. Therefore, we
count the four nucleotides at motif position j for matches to the pattern y0:j−1Nyj+1:K−1 in
which we replaced the jth IUPAC letter by an N:

pja =
n(y0:j−1 a yj+1:K−1)

n(y0:j−1 N yj+1:K−1)
, (5)

where we have called n(y) the number of occurrences of K-mer y in the input set. Note
that these PWM probabilities can be computed solely from the K-mer counts in a time
O(W ×D) that is independent of the size of the input dataset Ltot, and only depends on
the degeneracy D =

∣∣{x ∈ {A,C,G,T}W : x matches y}
∣∣ of the motif y, i.e., the number of

different K-mers it matches.

We then refine the obtained PWMs by learning a multiple-occurrence-per-sequence model
(MOPS) directly on the K-mer counts. The likelihood of a K-mer x ∈ {A,C,G,T}K given a
position weight matrix model with probabilities p = (pj(A) is

p(x|pmotif)

p(x|pbg)
=

K−1∏

j=0

pj(xj)

pbg(xj)
. (6)

Expectation step: Compute the responsibilities r(x), i.e., the probability that the factor
will bind to K-mer x.

r(x) =
p(x|pmotif)

/
p(x|pbg)∑

x′∈{A,C,G,T}K n(x′)p(x′|pmotif)
/
p(x′|pbg)

(7)

Maximization step: Update the probabilities of the position weight matrix model.

pj(A) =
∑

x∈{A,C,G,T}K
I(xj =a)n(x) r(x) (8)

By inserting the E-step equation into the M-step, we obtain

p
(t)
j (A) ∝

∑

x∈{A,C,G,T}K
I(xj =a)n(x)

p(x|p(t−1)
motif )

p(x|pbg)
(9)

12

3.1 BaMMmotif2 algorithm 81



and subsequent normalisation for each j over a ∈ {A,C,G,T} yields the updated motif
matrix probabilities.

To model saturation effects at the motifs with high affinities, we can use a saturation function
that will limit the weight of the odds ratios to a maximum value A, e.g. A = 1000:

p
(t)
j (A) ∝

∑

x∈{A,C,G,T}K
I(xj =a)n(x)

(
A−1 +

p(x|pbg)

p(x|p(t−1)
motif )

)−1
(10)

In a thermodynamic interpretation, A is the odds ratio of sites that have an occupancy of
50% at the assumed concentration of the transcription factor in the nucleus.

Merging and extending PWMs. We can reduce the redundancy of the PEnG!motif
output and more importantly, generate more specific and sensitive motifs by merging sub-
motifs that describe parts of the same underlying biological motif. For that, we first compute
a list of pairwise similarity scores between all PWMs {p(1), . . . , p(M)} with P -values above a

user-specified cutoff obtained in the last step. Here, p
(m)
ja is the probability of observing a

nucleotide a at the j′th position of that PWM. The similarity score S(p(m), p(m
′)) is defined

by the maximum similarity score s(·, ·) evaluated in the overlapping regions when the two
patterns of length l and l′ are shifted by d = −2,−1, . . . , l′ − l + 2 to each other:

S
(
p(m), p(m

′)
)

= max
−2≤d≤l′−l+2

{
s
(
p
(m)
j1 : j2

, p
(m′)
j′1 : j

′
2

)}
. (11)

The indices defining the overlap region in the two PWMs are j1 = max{0, d}, j2 = min{l −
1, l′ − 1 + d} and j′1 = max{0,−d}, j′2 = min{l′ − 1, l − 1− d}. The similarity score between
the PWMs in the overlap region is computed using

s(p, p′) =
1

2

(
d(p, p(bg)) + d(p′, p(bg))

)
− d(p, p′), (12)

The distance d(p, p′) between two PWMs p and p′ of length l is the sum over the PWM
columns of the relative entropies of each with their average distribution p̄ := (p+ p′)/2,

d(p, p′) =
l−1∑

j=0

(H(p||p̄) +H(p′||p̄)) =
l−1∑

j=0

∑

a∈A,C,G,T

(
pja log2 pja + p′ja log2 p

′
ja − 2p̄ja log2 p̄ja

)
.

(13)

The pair with the highest score will be merged using the positional offset d that yielded the
maximum similarity score. The pair of PWMs (p(m), p(m

′)) has a score above a user-specified
threshold (0.4×W bits by default) are merged together using the positional offset d that
yielded the maximum similarity score. In the overlapping regions, the nucleotide probabilities
of merged PWM will be the weighted sum of the nucleotide probabilities of the two merged
PWMs, where the weights are the numbers of matches of the associated IUPAC patterns.
The new weights of the columns of merged PWM will be the sum of these numbers of matches.
In the non-overlapping regions, the probabilities and weights are simply copied over from the
one PWM.
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1.2 Higher-order inhomogeneous Markov models

BaMMmotif [3] refines the pre-aligned short patterns or position-weight-matrices (PWMs) to
higher-order Bayesian Markov models for the enriched motifs.

According to Boltzmann’s law, the probability of a genomic site with sequence x to be bound
by the transcription factor divided by the probability of x not to be bound is

exp

(
−∆G(x)− µ

kBT

)
=

p(bound|x)

p(not bound|x)
=

p(bound|x)

1− p(bound|x)
, (14)

with the chemical potential µ that depends on the factor concentration but not on x. Solving
for p(bound|x) yields the well-known behaviour for saturated binding,

p(bound|x) =

(
1 + exp

(
∆G(x)− µ

kBT

))−1
. (15)

We parameterise the dependence of ∆G(x) on the binding site sequence x by a probability
distribution pmotif(x) which is defined by

pmotif(x)/pbg(x) ∝ exp(∆G(x)/kBT ). (16)

The proportionality constant is determined by the normalization. Solving for pmotif(x) and
normalising yields

pmotif(x) :=
pbg(x) exp(−∆G(x)/kBT )∑
y pbg(y) exp(−∆G(y)/kBT )

, (17)

where the sum in the normalisation constant runs over all possible binding site sequences
y ∈ {A,C,G,T}W . The motif score

S(x) := log
pmotif(x)

pbg(x)
= −∆G(x)

kBT
+ const. (18)

gives us, up to the constant log
∑

y pbg(y) exp(−∆G(y)/kBT ), the binding strength of a
site x as quantified by the negative Gibbs energy of binding in units of kBT log 2. Once
we know pmotif(·) we can compute the motif score S(x) which gives us the relative binding
strength. If we define µ′ = µ/kBT−log

∑
y pbg(y) exp(−∆G(y)/kBT ) we see that S(x)+µ′ =

(−∆G(x) + µ)/kBT . Hence up to the constant chemical potential µ′, pmotif(·) determines the
occupancy of any sequence (in the absence of competitive binding through steric hindrance)
for any potential binding site sequence x = (x1 . . . xW ),

p(bound|x) =
eS(x)+µ

′

1 + eS(x)+µ′
. (19)

In the following we drop the prime on µ′ for simplicity.

We derive a model for the Gibbs binding energy ∆G(x) for any potential binding site sequence
x = x1 :K ∈ {A,C,G,T}K by computing a motif score S(x):

S(x) = −∆G(x)

kBT
+ const. := log

pmotif(x)

pbg(x)
=

K−1∑

j=0

log
pKj (xj|xj−K : j−1)

pK
′

bg (xj|xj−K′ : j−1)
. (20)
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where we model the background probability using a homogeneous Markov model of order K ′:

pbg(xi0 : i1) =

i1∏

i=i0

pbg(xi|xi−K′ : i−1). (21)

We model the motif using an inhomogeneous Markov model of order K:

pmotif(x0 :K−1) =
K−1∏

j=0

pj(xj|xj−K : j−1). (22)

We learn the parameters of the inhomogeneous Markov model by maximising the posterior
probability. A natural prior is a product of Dirichlet distributions with pseudo-count
parameters proportional to the lower-order model probabilities, with proportionality constants
αkj for k = 1, . . . , K, whose size determines the strength of the prior. Maximizing the
posterior probability yields

pkj (xk+1|x1:k) =
nj(x1:k+1|r) + αkjp

k−1
j (xk+1|x2:k)

nj−1(x1:k|r) + αkj
. (23)

1.3 Masking in the motif refinement step

We train BaMMs using the expectation-maximization (EM) algorithm. In the E-step, we
(re-) estimate the responsibilities r for a motif to be present at position i of sequence n,

rni := p(zn = i|xn, pKmotif(x)) =
p(xn|zn = i, pKmotif(x)) p(zn = i)∑Ln−W+1

i′=0 p(xn|zn = i′, pKmotif(x)) p(zn = i′)
(24)

In the M-step, we use the new rni to update the model parameters pmotif(x)K for all orders
k = 0, ..., K. This update equation looks exactly the same as the previous equation for known
motifs locations, except that now the counts nj(x1:k+1) are interpreted as fractional counts
computed according to

nj(x, xk+1|r) :=
N∑

n=1

Ln−W+1∑

i=1

rniI (xn, i+j−k : i+j =(x, xk+1)) . (25)

The indicator function I returns 1 if the logical expression is true and 0 otherwise. The
parameter updates are done for all orders from 0 to K.

Here we introduce a masking step between the E- and M-step by masking out the first N%
of rni after re-ranking increasingly (N is 90 by default) in the first iteration of the EM. By
doing this, we learn the model only on the strong binding sites and thus eliminate the effect
of unrelated motifs. We then iterate the EM algorithm until convergence.
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1.4 Optimization of order- and position-specific hyperparameters
α

In the previous version of BaMMmotif [3], the hyperparameters αkj were empirically chosen.
Here in this project, we try to learn the position-specific αkj from the data.

We choose as prior on the hyperparameters αkj (for 1 ≤ k ≤ K) an inverse Gamma
distribution with parameters 1 and (βγk),

p(αkj|β, γ) =
β γk

α2
kj

e−β γ
k/αkj (26)

where β ≈ 5 and γ = 3 corresponds roughly to the previous choice αkj = β γk = 20× 3k−1

that worked for all of the datasets in the previous study [3].

According to Bayes’ theorem, the conditional probability of α given motif positions z can be
written as:

p(αk|X, z, pk−1motif) ∝αk p(X|α, z, p
k−1
motif) p(α|z, pk−1motif)

p(αk|X, z, pk−1motif) ∝αk p(X|α, z, p
k−1
motif) p(α) (27)

where

p(X|z,α, pk−1motif)

∝
W−1∏

j=0

∏

y

Γ(αkj)∏
a Γ(αkjv∗j (a|y′))

∏4
a=1 Γ(nz

j (y, a) + αkjv
∗
j (a|y′))

Γ(nz
j−1(y) + αkj)

����������
4∏

a=1

1

vbg(a|y)n
z
j (y,a)

. (28)

Inserting (26) and (28) yields for the conditional probability

p(αk|X, z, pk−1motif) =
W−1∑

j=0

(∏

y

β γk

α2
kj

e
−β γk
αkj

Γ(αkj)∏
a Γ(αkjv∗j (a|y′))

∏4
a=1 Γ(nz

j (y, a) + αkjv
∗
j (a|y′))

Γ(nz
j−1(y) + αkj)

)

=
W−1∏

j=0

p(αkj|X, z, pk−1motif) , (29)

which factorizes over the αkj. We could therefore use Gibbs sampling to draw each new value
of αkj from its probability distribution independent of the others.

But for an efficient optimisation we need to reparameterise αkj as

αkj = eakj (30)

and sample akj instead of αkj, because otherwise it would take too long to explore the entire
probability distribution by small steps in αkj. If we went in steps of 0.5, for example, it would
take almost 20000 directed steps to move from αkj = 1 to 10000. With steps of size 0.5, it

16

3.1 BaMMmotif2 algorithm 85



would take only 2log20000 = 18.4 directed steps to reach 10000. The probability density also
needs to be transformed with the variable:

p(akj|X, z, pk−1motif) =

∣∣∣∣
dαkj
d akj

∣∣∣∣ p(αkj|X, z, pk−1motif) (31)

= αkj p(αkj|X, z, pk−1motif) (32)

The log conditional probability for akl is

log p(akl|X, z, pk−1motif) = const.− logαkj − β γk/αkj + 4k log Γ(αkj) (33)

+
∑

y=y1:k

(
4∑

a=1

[
log Γ(nz

j (y, a)+αkjp
k−1
motif,j(a|y′))− log Γ(αkjv

k−1
j (a|y′))

]
− log Γ(nz

j−1(y)+αkj)

)

We can sample from this distribution using the Metropolis-Hastings algorithm. We draw a
new atrykl ∼ N (akl, 1) and accept this trial sample with a probability

p(atrykl |X, z, pk−1motif)

p(akl|X, z, pk−1motif)
if p(atrykl |X, z, pk−1motif) < p(akl|X, z, pk−1motif)

1 if otherwise . (34)

Because it is fast to sample akl in this way, we draw 10 or times in a row and only take record
the last accepted sample of akl. This 10-fold repetition ensures that we can explore almost
the entire range of relevant values of akl within these 10 steps.

At the start of the sampling, the akj will move in the direction of the medians of their
probability distribution in relatively directed steps until the changes to the akj become
non-directional and begin to fluctuate. We can then fix the akj to the average of the last 20
or so samples and perform a few (e.g. 5) iterations of the EM algorithm (described in section
1.2) to find the optimum model parameters vKj (a|y) given the fixed akj.

1.5 Learning positional preferences of motifs

Thermodynamic treatment of positional preference

We proceed analogously to section 1.2 but introduce a positional preference as an additive
term ∆Gi in the binding energy. The probability of a factor to bind a binding site consisting
of W nucleotides between i and i+W − 1 in a sequence x = x1:L then becomes

p(factor bound at position i|x) =

(
1 + exp

(
∆G(xi:i+W−1) + ∆Gi − µ

kBT

))−1
. (35)

We define pmotif(x0:W−1) as in eq. (17) and we further define a positional distribution

p(z= i|factor bound to x) =
exp(−∆Gi/kBT )∑L
i′=1 exp(−∆Gi′/kBT )

. (36)
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We abbreviate the denominator as const. gives

− ∆Gi

kBT
+ const. = log p(z= i|factor bound to x) =: si. (37)

Once we know pmotif(·) and p(z= i|factor bound to x), we can compute S(xi:i+W−1) and si
and the relative binding strength (∆G(xi:i+W−1) + ∆Gi)/kBT for any potential binding site
position i in any sequence x = (x1 . . . xL).

If we again assume to be in a regime of unsaturated binding, p(bound|x) . 0.1 we can approx-
imate the probability p(xn|bound, pkmotif) for pulling out a sequence xn from an underlying
distribution of possible sequences pbg(x) as

p(xn|bound, pkmotif) ∝ p(factor bound|xn, pkmotif) pbg(xn)

= pbg(xn)
L−W+1∑

i=1

p(factor bound at i|xn, pkmotif)

= pbg(xn)
L−W+1∑

i=1

(
1 + exp

(
∆G(xi:i+W−1) + ∆Gi − µ

kBT

))−1

≈ pbg(xn)
L−W+1∑

i=1

exp

(
−∆G(xi:i+W−1) + ∆Gi − µ

kBT

)

∝ pbg(xn)
L−W+1∑

i=1

exp (S(xi:i+W−1) + si) . (38)

To find the model parameters θ consisting of s = (s1, . . . . , sL−W+1) and of pkmotif specifying
pmotif(·), we need to optimise the log likelihood function of these parameters:

LL(θ) =
N∑

n=1

log p(xn|bound, pkmotif , s) (39)

Flat Bayesian prior on positional preference

Let us define parameters π with πi = p(z=i|zi6=0) = esi the probability of a motif to start at
position i of a sequence. The M-step will then be given again by equation (24) but this time
using the positional preferences πi instead of the flat positional distribution. We will use a
flat prior distribution,

p(π|β) = Dir(π|β1) , (40)

and we will choose a value around β = 2 . . . 10.
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The auxiliary function becomes

Q(pkmotif ,α, q|r, pk−1motif)

=
N∑

n=1

[
Ln−W+1∑

i=0

rni log
(
p(xn|zn = i, pkmotif) p(zn = i|q)

)
]

+ log p(pkmotif |pk−1motif ,α) + log p(π|β)

=
N∑

n=1

Ln−W+1∑

i=0

rni log p(xn|zn = i, pkmotif) + log p(pkmotif |pk−1motif ,α)

+
N∑

n=1

(
rn,0 log(1− q) +

Ln−W+1∑

i=1

rni log(qπi)

)
+ log Dir(π|β1)

=
N∑

n=1

Ln−W+1∑

i=0

rni log p(xn|zn = i, pkmotif) + log p(pkmotif |pk−1motif ,α) (41)

+
N∑

n=1

(
rn,0 log(1− q) + (1− rn,0) log q +

Ln−W+1∑

i=1

rni log πi

)
+

Ln−W+1∑

i=1

(β − 1) log πi.

We use the method or Lagrange multipliers again to find the optimum of Q(pkmotif ,α, q|r, pk−1motif)

under the constraint
∑L−W+1

i=1 πi = 1:

∂

∂πi

(
Q(pkmotif ,α, q|r, pk−1motif)− λ

(
L−W+1∑

i=1

πi − 1

))
=

N∑

n=1

rni
πi

+
β − 1

πi
− λ = 0 (42)

Solving for πi, normalising the distribution and defining Ni :=
∑N

n=1 rni yields

πi =
Ni + β − 1

N + (L−W + 1)(β − 1)
. (43)

Prior penalising jumps in the positional preference profile

For many applications it might be more appropriate to limit the complexity of the positional
preference profile by imposing a smoothness on the p(z = i). For example, transcription
factor binding sites will be more frequent near the center of ChIP-seq peaks than farther
away; factors bind more strongly to the outer parts of probes on protein binding microarrays
than to the parts near the glass slide; transcription factors in HT-SELEX experiments might
prefer the center of probes over the ends. In the following we assume that all training and
test sequences have the same length L.

Because the smoothness prior couples neighbouring positional probabilities with each other,
there is no closed-form solution for the parameters anymore. We have to use a gradient-
based optimisation such as conjugate gradients to minimise Q with respect to the positional
parameters. We therefore parameterise the positional distribution in such a way that the
normalisation condition

∑
i πi = 1 and the limits 0 ≤ πi ≤ 1 automatically hold true during

the numerical optimisation,

p(zn= i|zn 6=0) =
esi∑L−W+1

i′=1 esi′
. (44)
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We impose a smoothness prior on the πi, that encourages the point-wise estimated first
derivative to stay small,

p(π|β) =
L−W+1∏

i=2

N
(
si − si−1| 0, β−1

)
, (45)

with precision (= inverse variance) β.

With this prior, the auxiliary function becomes

Q(pkmotif ,α, q,π|r, pk−1motif) =
N∑

n=1

L−W+1∑

i=0

rni log p(xn|zn = i, pkmotif) + log p(pkmotif |pk−1motif ,α)

+
N∑

n=1

(
rn,0 log(1−q) + (1−rn,0) log q +

L−W+1∑

i=1

rni

(
si − log

(∑

i′

esi′

)))

− β

2

L−W+1∑

i=2

(si − si−1)2 +
L−W

2
log β + const. (46)

The partial derivatives of Q(pkmotif ,α, q,π|r, pk−1motif) are

∂

∂si
Q(pkmotif ,α, q,π|r, pk−1motif) =

N∑

n=1

rni −
N∑

n=1

L−W+1∑

i′=1

rni′
esi∑
i′′ e

si′′

− β (si − si−1) I(2 ≤ i ≤ L−W + 1)

+ β (si+1 − si) I(1 ≤ i ≤ L−W ) (47)

and
∂

∂si
Q(pkmotif ,α, q,π|r, pk−1motif) = Ni − (N −N0) p(z= i|z 6=0)− (βAs)i

with the abbreviations N0 :=
∑N

n=1 rn,0 and

A :=




1 −1 0 0 · · · · · · · · · 0

−1 2 −1 0
. . . . . . . . .

...

0 −1 2 −1
. . . . . . . . .

...

0 0 −1 2
. . . . . . . . .

...
...

. . . . . . . . . . . . . . . 0 0
...

. . . . . . . . . . . . 2 −1 0
...

. . . . . . . . . 0 −1 2 −1

0 . . . . . . . . . 0 0 −1 1




. (48)

The partial derivative will adjust si such that p(z= i|z 6=0) = esi/
∑

i′ e
si′ equals Ni/(N −N0)

plus a smoothness correction As that will pull si up or down in order to minimise the
estimator of the second derivative of the profile at position i. We run a few iterations of
conjugate gradients (e.g. 5 to 10) during each EM step to learn the positional preferences.
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Learning the optimal smoothness parameter β from the data. We can regard Q
also as a function of β,

Q(pkmotif ,α, q,π, β|r, pk−1motif) = −β
2

L−W+1∑

i=2

(πi − πi−1)2 +
L−W

2
log β + constβ , (49)

and optimise is with respect to β:

0 =
∂

∂β
Q(pkmotif ,α, q,π, β|r, pk−1motif) = −1

2

L−W+1∑

i=2

(si − si−1)2 +
L−W

2β
(50)

and therefore

β =

(
1

L−W
L−W+1∑

i=2

(si − si−1)2
)−1

(51)

Instead of optimising β, we can again interpret Q as the likelihood of an ensemble of fractional
motif instances with weights rni and compute the expectation value of β. If we assume
a uniform prior on β, p(β) = const, the posterior distribution of β is proportional to the
likelihood. We note that the functional form of Q(β) is that of a Gamma distribution,
Q(β) = log Ga(β|a, b) + const = (a − 1) log β − bβ + const, with a − 1 = (L −W )/2 and
b = (1/2)

∑
i(si − si−1)2. Since the expectation value of a Gamma distribution is a/b, we can

conclude for β

E[β] =

(
1

L−W + 2

L−W+1∑

i=2

(si − si−1)2
)−1

. (52)

We can then update β by its expectation value instead of the mode of Q(β). Alternatively,
we could sample β from the Gamma distribution Ga(β|(L−W + 2)/2, (1/2)

∑
i(si − si−1)2).

Prior penalising kinks in the positional preference profile

For various applications such as PBMs and HT-SELEC, we might be interested in more
smooth positional preferences. In these cases, it might be better to use a smoothness prior
on the πi that encourages the point wise estimated third derivative to stay small,

p(π|β) =
L−W∏

i=2

N
(
si −

si−1 + si+1

2

∣∣∣∣ 0, β−1
)
, (53)

with precision (= inverse variance) β. With this prior, the auxiliary function becomes

Q(pkmotif ,α, q,π|r, pk−1motif) =
N∑

n=1

L−W+1∑

i=0

rni log p(xn|zn = i, pkmotif) + log p(pkmotif |pk−1motif ,α)

+
N∑

n=1

(
rn,0 log(1−q) + (1−rn,0) log q +

L−W+1∑

i=1

rni

(
si − log

(∑

i′

esi′

)))

− β

2

L−W∑

i=2

(
si −

si−1 + si+1

2

)2

+
L−W−1

2
log β + const. (54)
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The partial derivatives of Q(pkmotif ,α, q,π|r, pk−1motif) are

∂

∂si
Q(pkmotif ,α, q,π|r, pk−1motif) =

N∑

n=1

rni −
N∑

n=1

L−W+1∑

i′=1

rni′
esi∑
i′′ e

si′′

+
β

2

(
si−1 −

si−2 + si
2

)
I(3 ≤ i ≤ L−W + 1)

− β
(
si −

si−1 + si+1

2

)
I(2 ≤ i ≤ L−W )

+
β

2

(
si+1 −

si + si+2

2

)
I(1 ≤ i ≤ L−W − 1) (55)

and
∂

∂si
Q(pkmotif ,α, q,π|r, pk−1motif) = Ni − (N −N0) p(z= i|z 6=0)− β

4
(Bs)i

with the abbreviations N0 :=
∑N

n=1 rn,0 and

B :=




1 −2 1 0 0 · · · · · · · · · 0

−2 5 −4 1 0
. . . . . . . . .

...

1 −4 6 −4 1
. . . . . . . . .

...

0 1 −4 6 −4
. . . . . . . . .

...

0 0 1 −4 6
. . . . . . . . .

...
...

. . . . . . . . . . . . . . . . . . 1 0
...

. . . . . . . . . . . . . . . 6 −4 1
...

. . . . . . . . . . . . 1 −4 5 −2

0 . . . . . . . . . . . . 0 1 −2 1




. (56)

The partial derivative will adjust si such that p(z= i|z 6=0) = esi/
∑

i′ e
si′ equals Ni/(N −N0)

plus a smoothness correction Bs that will pull si up or down in order to minimise the
estimator of the third derivative of the profile at position i.

Learning the optimal smoothness parameter β from the data. Analogously to the
previous smoothness prior, we can learn β from the data using the update

β =

(
1

L−W − 1

L−W∑

i=2

(
si −

si−1 + si+1

2

)2
)−1

(57)

or

β =

(
1

L−W + 1

L−W∑

i=2

(
si −

si−1 + si+1

2

)2
)−1

. (58)
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1.6 Scanning sequences for motif occurrences

To obtain the motif occurrences from the sequences, given a known or learned motif, we
developed a motif scanning tool BaMMScan to evaluate the possible motif occurrences on the
input sequences. The motif score si(x1:K) is calculated for each position i on every sequence x
for the order K. A background score distribution is created by generating M -fold background
sequences from a second-order homogeneous Markov model from input set (M can be 10).
We sort the list of N+ +N− positive- and negative-set scores jointly in descending order. We
denote the cumulative number of scores from the negative set up to rank l in this list by FPl

and then compute the P-value of entry l with score Sl in that list by

P -value(Sl) =
1

N−

(
FPl +

Shigher
l − Sl

Shigher
l − Slower

l + ε

)
. (59)

and the E-values are obtained simply as

E-value = N+ × P -value. (60)

The motif occurrences with a P -value smaller than certain cutoff (e.g. 1e−4) are reported.

1.7 Evaluation criteria using the average recall (AvRec) score

To assess the predictive performance of the motif finders, we first defined an average recall
(AvRec) score (details also described in [4]). The AvRec score represents the averaged recall
over the range of precision from 0 to 1. The advantage of AvRec score over commonly used
p-value is that it covers the most relevant range of False-discovery-rates (FDR) in practical
applications and allows the user to intuitively estimate the motif performance in her particular
application.

We obtain a p-value for each sequence by

p-valuel =
FPl + 0.5

N− + 1
(61)

After having a p-value for every motif occurrence (as described in eq.59), we obtain a list of
corresponding local FDR values and an estimate of the weight of the null component η0 by
applying fdrtool [5] on the p-value distribution (Figure S 13A). We then calculate FDR and
recall for each entry by

FDRl =
FPl

FPl + TPl

(62)

recalll = (1− FDRl)
l

(1− η0)N
(63)

The ratio between true positive (TP) and false positive (FP) is calculated by

Rl[TP/FP] =
1− FDRl

FDRl

×M (64)
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with M as the ratio between negative and positive sequences.

We visualize the characteristics by plotting the TP/FP ratio RTP/FP on the y-axis against
the recall on the x-axis, and define the calculated area-under-the-curve as the AvRec score
for motif evaluation (Figure S 13B).
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Figure S 13. Schemes of motif assessment on sequences. (A) We calculate p-values for the
most likely positions on both positive and background sequences, given the motif and a second-order
background model learned from the sequences. We plot the density of the p-values and choose a
cutoff at 0.1 (the solid red line). The background sequences are mapped in the grey shadow, given
the ratio between the background and positive sequences. The true positives (TP, in green), false
negatives (FN, in white), false positives (FP, in red) and true negatives (TN) are visualized on the
plot. (B) For each p-value for positive sequences, we calculate the recall and the ratio between TP
and FP, and then plot the recall against the ratio of TP/FP. The solid dark blue line represent for
the scenario when the ratio between positive and background sequences is 1:1, the dash lines under
it are for the cases when the ratio is 1:10 and 1:100, respectively. An average recall (AvRec) score is
calculated as the area under the curve for the 1:1 ratio scenario, and used as a measurement for
motif quality on the positive sequence.

2 Datasets used for the benchmark

2.1 ENCODE database

We evaluated the performance of the selected algorithms on human ChIP-seq datasets from
the ENCODE portal [6] till March 2012. In total, there are 435 datasets for 93 distinct
transcription factors. The top 5000 peak regions, sorted by their signal value, were selected
for each dataset. If fewer than 5000 peaks were contained in a dataset, all peaks were chosen.
Positive sequences were extracted ±104 bp around the peak summits. Background sequences
were sampled by trimer frequencies from positive sequences, with the same length as positive
sequences and 10 times the amount of positive sequences. 8 datasets were excluded from all
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the results because diChIPMunk failed to learn models within 3 hours.

2.2 HT-SELEX datasets

For HT-SELEX data, we downloaded 164 datasets with 200 bp-long oligomers from Zhu
et al. [7], which are deposited in the European Nucleotide Archive (ENA) under accession
PRJEB22684. Each dataset represents one non-redundant human transcription factor. For
each dataset, we selected the top 5000 sequences from the 4th cycle without any sorting.
Background sequences are sampled in the same way as described previously.

2.3 GTRD database

For the GTRD database, we obtained 405 in vivo datasets for 405 non-redundant human
transcription factors from Yevshin et al. [1]. The top 5000 peak regions are selected after
sorting by q-values. Positive sequences are extracted ±100 bp around the peak summits.
Background sequences are sampled in the same way as described previously.

2.4 MITOMI datasets

MITOMI is a microfluidics-based approach for de novo discovery and quantitative biophysical
characterization of DNA target sequences [8]. We downloaded the MITOMI data for 28
Saccharomyces cerevisiae transcription factors under the accession GPL10817. The 3 bp and
15 bp long adapters on both ends are truncated. We then downloaded yeast GTRD datasets
for 8 transcription factors [1] for the motif discovery.

2.5 Cross-platform datasets

Out of 435 ENCODE datasets for 93 TFs and 164 HT-SELEX datasets for 164 non-redundant
TFs, there are 66 TFs which have both in vivo and in vitro datasets. Out of 66 TFs, most
of them have very low AvRec scores when performing the cross-platform validations. We
investigated into details and found out that for most of them, the learned motifs were very
distinct from the two platforms. This result confirms that TFs can bind to different motifs
when experimenting either in vivo or in vitro. For the left 16 paired tests, they are motifs for
4 TFs, namely CEBPB, POU2F2, ELF1, and FOXA2, which were used in our benchmark.

3 Motif finders used in the benchmark

The source code is available for command-line versions of PEnGmotif and BaMMmotif2 and
supported on Linux and MacOS:
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3.1 PEnGmotif

PEnGmotif repository: github.com/soedinglab/PEnG-motif. For this study, we used parame-
ters --optimization score MUTUAL INFO -w 8 --threads 4. The output is in MEME-like
format. The motifs are sorted by their AvRec scores, and the best one was taken for the
benchmark.

3.2 BaMMmotif2

BaMMmotif2 repository: github.com/soedinglab/BaMMmotif2. For this study, we seeded
with the PWMs discovered by PEnGmotif and used parameters --EM -k [k] --advanceEM

--extend 2 2 for further optimization. [k] is chosen as 1 and 5 for the benchmark for this
study. The output format is defined as BaMM format with extensions like .ihbcp and .hbcp.

3.3 BaMMmotif

BaMMmotif repository: github.com/soedinglab/BaMMmotif. For this study, we seeded with
PWMs by triggering XXmotif internally and used parameters --reverseComp --XX-localization

--XX-localizationRanking --XX-K 2 --maxPValue 0.05 --maxPWMs 3 --extend 2 2 for
further optimization. The output format is defined as BaMM format with extensions like
.ihbcp and .hbcp.

3.4 CisFinder

CisFinder was installed from https://lgsun.grc.nia.nih.gov/CisFinder/download.html. We
ran patternFind for identifying motifs, patternCluster for clustering motifs, and patternTest
for improving motifs. Default parameters were applied. The discovered motifs were converted
to MEME-like output format and re-ranked by our motif sorting script, and only the best
motif was taken for the benchmarks.

3.5 MEME

MEME version 5.1.1 was installed and applied with parameters -dna -mod zoops -nmotifs

3 -revcomp -p 4 -V 2. Maximum 3 motifs were saved in the output, and the best one
according to the AvRec score was taken for the benchmarks.

3.6 ChIPMunk

ChIPMunk version v8 was downloaded and applied with parameters ru.autosome.ChIPMunk
8 12 yes 1.0 100 10 1 4. The discovered motifs were converted to MEME-like output
format.
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3.7 diChIPMunk

diChIPMunk was implemented in the same package as ChIPMunk. We ran it with param-
eters ru.autosome.di.ChIPMunk 8 12 yes 1.0 200 20 1 4. The discovered motifs were
converted to BaMM-like output format for further comparison.

3.8 InMoDe

InMoDe was downloaded from http://www.jstacs.de/index.php/InMoDe. We applied the
module flexible, which allows us to customize the learning task. The discovered motifs
were converted to BaMM-like output format for further comparison.
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3.2 BaMM webserver

3.2.1 Overview

We have developed BaMM webserver, a platform for

1. predicting motifs from DNA/RNA sequences

2. finding motif occurrences given a sequence and a motif model

3. searching for similar known motifs in the database, given a novel motif model

4. offering databases with higher-order BaMM models for different organisms

3.2.2 Article: The BaMM webserver for de novo motif discovery and
regulatory sequence analysis
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ABSTRACT

The BaMM web server offers four tools: (i) de-novo
discovery of enriched motifs in a set of nucleotide se-
quences, (ii) scanning a set of nucleotide sequences
with motifs to find motif occurrences, (iii) search-
ing with an input motif for similar motifs in our
BaMM database with motifs for >1000 transcription
factors, trained from the GTRD ChIP-seq database
and (iv) browsing and keyword searching the mo-
tif database. In contrast to most other servers, we
represent sequence motifs not by position weight
matrices (PWMs) but by Bayesian Markov Models
(BaMMs) of order 4, which we showed previously to
perform substantially better in ROC analyses than
PWMs or first order models. To address the inade-
quacy of P- and E-values as measures of motif qual-
ity, we introduce the AvRec score, the average re-
call over the TP-to-FP ratio between 1 and 100. The
BaMM server is freely accessible without registration
at https://bammmotif.mpibpc.mpg.de.

INTRODUCTION

Many methods such as ChIP-seq or high-throughput SE-
LEX (1) produce a set of nucleotide sequences that are pref-
erentially bound by a protein of interest in vitro or in vivo.
From such data, a motif model for the sequence dependence
of the binding affinity of the protein to the DNA or RNA
can be derived. This model can then be used to predict bind-
ing sites and their strengths in other sequences.

Position weight matrices (PWMs) are the standard model
to describe binding motifs. In the PWM every motif posi-
tion contributes additively and independently from other
positions to the total binding energy. Even though the ap-
proximation of independence of positions works well for
many transcription factors, dependencies do occur (2,3),
for example due to bendability or shape constraints during
binding (4), to multiple binding configurations of the pro-

tein (5), or to cooperative interactions between closely bind-
ing factors that can modulate each others’ binding affinities
(6).

PWMs can be generalized to Markov models of order k
that account for nucleotide dependencies by conditioning
the probability for the four nucleotides at each motif po-
sition on the previous k nucleotides. First-order Markov
models have been added to the popular motif databases
JASPAR and HOCOMOCO (7,8). Models of order 2 and
higher have not yet been adopted in the major databases,
probably due to the difficulties to robustly train the many
parameters of these models on limited data.

We recently developed Bayesian Markov Models
(BaMMs) (9), which efficiently prevent overfitting by auto-
matically learning conditional probabilities only up to an
order k at which they can still be estimated reliably. The key
idea is that the conditional probabilities of order k − 1 are
used as prior probabilities for the conditional probabilities
of order k. We have shown that BaMMs of order 4 and 5
systematically outperform PWMs and first-order models
in distinguishing bound sequences from negative sequences
generated by a second-order Markov model (9).

A very popular web server for regulatory sequence anal-
ysis based on PWMs offering a wide choice of tools is the
MEME server (10). The RSAT web server (11) provides a
general toolbox for the analysis of regulatory sequences in-
cluding motif-based analyses. Furthermore, other web re-
sources and databases are available for training first-order
models (12,13).

The BaMMmotif server brings the improved quality of
BaMM motif models within reach of users unfamiliar with
command-line tools, in a largely self-explanatory web in-
terface designed for ease of use. The user can discover
BaMM models enriched in a set of input sequences, scan se-
quence sets with BaMM models for motif occurrences, and
compare discovered or uploaded motifs with a database of
BaMM models learned from ChIP-seq datasets.

*To whom correspondence should be addressed. Tel: +49 551 201 2890; Fax: +49 551 201 2803; Email: soeding@mpibpc.mpg.de
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.
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Figure 1. Tools offered by the BaMM server: (i) de-novo discovery of
motifs enriched in a nucleotide sequence set. Motifs are represented by
higher order BaMMs, which capture correlations between nucleotides.
(ii) Searching with an input BaMM or PWM motif for similar motifs in
our database of over 1000 fourth-order BaMM motifs. (iii) Browsing and
keyword searching in our motif database. (iv) Scanning a set of nucleotide
sequences with BaMM or PWM motifs to find motif occurrences.

BAMM TOOLS

In the following we describe the four tools offered by the
BaMM server (Figure 1).

De-novo motif discovery using higher-order BaMMs

This tool discovers the motifs enriched in an input set of nu-
cleotide sequences in comparison to the expectation from
a background model. For example in sequences obtained
from a ChIP-seq or HT-SELEX experiment, the BaMM
motif models will approximately describe the sequence de-
pendence of the binding energy of the protein to DNA (see
page 2 of supplementary material in (9)). The motif model
can be used to scan other sequences for motif occurrences
(see next subsection).

Method. The motif discovery proceeds in two stages, seed
pattern discovery and motif refinement. For the pattern dis-
covery we developed a fast and sensitive algorithm (PEnG-
motif) that will be described in detail elsewhere. Briefly, it
finds all locally optimal W-mers (default W = 8) over an al-
phabet of 11 IUPAC letters (A, C, G, T, R = A or G, Y = C
or T, W = A or T, S = C or G, M= A or C, K = G or T, N =
A, C, G or T), where locally optimal patterns are those for
which changing any single one of its letters would result in
a decreased enrichment relative to the random expectation
from the background model. (Alternatively, the P-value or
the mutual information between presence/absence of motifs
and input versus background sequence can be optimized.)
With each locally optimal pattern, a PWM of length W is
initialized and optimized using an expectation maximiza-
tion (EM) algorithm. PWMs that have very similar over-
lapping regions are merged and ranked by our new AvRec
score (next section).

The seed motifs are then refined using BaMM!motif
(9). It learns the parameters of the BaMMs with an

EM algorithm that maximizes the log likelihood of the
motif model under a zero-or-one-occurrence-per-sequence
(ZOOPS) model (14). The BaMM server offers to train mo-
tifs of up to fourth order.

By default, BaMM learns a second order Markov model
from the input sequences as a background model. The back-
ground model is needed first in the motif discovery to model
the sequence stretches not modeled by the motif model and
second in the motif quality assessment step to generate neg-
ative sequences to estimate motif occurrence P-values. A
second order model is generally preferable to first or zeroth
order as it can better describe sequence biases observed in
open versus closed chromatin, ChIPped versus unChIPped
sequences etc. (15). A model of order 1 or 0 is recommended
for the discovery of very short motifs (e.g. four to five nu-
cleotides) such as to RNA-binding sites, as such short mo-
tifs could be learned to some extent even by a second order
background model, severely reducing the sensitivity to dis-
cover them.

Usage of de-novo motif discovery. After uploading a
FASTA file of up to 50 MB with the input sequences, the
motif discovery can be started. A drop-down menu offers
advanced options in four categories: general settings, seed-
ing stage, model refinement stage and settings for plots and
analyses.

In the general settings category the user can choose
whether the motif can be present on both strands, set the or-
der of the background model (default 2) and upload an op-
tional sequence set to train the background model on. Set-
tings of the seeding stage include the initial pattern length
W, the z-score significance threshold for refining a motif,
and the objective function to optimize in the search for lo-
cally optimal patterns. For the refinement stage the user can
choose the motif model order (default 2) and the number of
flanking positions on the left and right of the core model
found in the seed stage. Finally, the user can choose to skip
motif scanning, motif performance evaluation or motif an-
notation, and change the significance thresholds for scan-
ning and annotation.

By default up to four best-performing seed patterns are
refined to higher-order models. Seed patterns are ranked by
their average recall (AvRec) score (see below). Alternatively,
the user can choose to select seed patterns manually for re-
finement after the seeding stage.

The results page (Figure 2A) lists in a summary table
the discovered enriched motifs with their IUPAC patterns,
the sequence logos of the 0th-order model (forward and
reverse complement), the AvRec motif quality score and
the fraction of sequences with motifs (‘frac. occurrence’),
estimated using the fdrtool (16) (explained in subsection
‘Dataset AvRec and motif AvRec’). By clicking on the mo-
tifs or scrolling down, detailed results for the motifs are
shown: 0th-order (forward and reverse complement), first-
and second-order sequence logos (Figure 2B); four motif
quality assessment plots and a plot of the positional dis-
tribution of the motif occurrences relative to the center of
the sequences (Figure 2C). (Sequences do not have to be of
the same length.) Clicking on the download button in the
summary table above saves a zip file containing motif files
in BaMM format with the extension ihbcp and all analysis
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Figure 2. Selected results from a de-novo motif discovery run. (A) Summary table of discovered motifs. (B) Sequence logos of order 0, 1 and 2 for one
discovered motif. (C) Motif quality analysis and positional distribution. In the dataset-centered analysis (left) all input sequences are defined as positives. In
the motif-centered analysis (right), only input sequences carrying a motif occurrence are positives. Their fraction is estimated using fdrtool (orange broken
line on the upper right). The quality of motifs is quantified by average recall (AvRec), the blue area under the TP-to-FP-versus-recall curves. The curves
for positive-to-negative ratios in the dataset of 1:1, 1:10 and 1:100 are plotted. Recall = TP/(TP + FN), where TP = true positives, FP = false positives,
FN = false negatives. Positional distribution of the motif occurrences relative to the center of the sequences is shown on the bottom. (D) List of database
motifs similar to discovered motif.
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plots for the motif. Last, the database motifs found similar
to the discovered motif are listed (see ‘motif-motif compar-
ison’ below) with links to the database entry (‘Best matches
with our motif database’, Figure 2D). The results page can
later be retrieved by giving the job ID on the ‘Find my job’
page. Results are stored for up to 3 months.

SCAN SEQUENCES FOR MOTIF OCCURRENCES

A set of input sequences can be scanned with a motif or a set
of motifs for motif occurrences. The input motifs can be in
MEME (version 4 and above) or BaMM format and could
have been discovered de-novo by BaMM or they could
come from the BaMM database or some other database.

We developed a motif scanning tool that evaluates the
log odds score for BaMMs (and PWMs) of any order. A
table with the motif occurrences can be downloaded in a
zip file, together with the motif analysis on the supplied se-
quences. The table of motif occurrences contains in each
line the sequence length, motif position, binding sites, P-
value, and E-value of the occurrence. The P-values are com-
puted by maximum-likelihood fitting of the high-scoring
tail of the log-odds score distribution on sequences gener-
ated with the background model with an exponential func-
tion, which gave good fits (see PhD thesis at https://edoc.ub.
uni-muenchen.de/21504/). Each motif is also evaluated us-
ing the dataset and motif-based average recall (AvRec, see
below) and the positional distribution of the motif occur-
rences around the center of the sequences (Figure 2C).

BAMM MOTIF DATABASE

Our database contains 1021 fourth-order BaMMs trained
on ChIP-seq datasets of 620 human transcription factors
(TFs), 345 mouse TFs, 19 rat TFs, 16 zebrafish TFs and 21
yeast TFs from the GTRD database (17). For each motif, a
meta table, details with higher-order sequence logos, posi-
tional enrichment around the centers of training sequences,
and motif quality assessment plots, evaluated on the ChIP-
seq training sequences, are presented. The user can browse
the database or perform a text search through the list of
names of the transcription factor.

SEARCH WITH QUERY MOTIFS THROUGH THE MO-
TIF DATABASE

This tool searches for motifs in our BaMM motif database
that are similar to the query motifs (in MEME or BaMM
format). This motif-motif search is automatically run after
de-novo motif discovery using each of discovered motifs as
query. The query motifs can also be provided by the user.
The output of this tool is shown in Figure 2D.

Motif-motif similarities are computed between the zeroth
order contribution of the motifs. The distance between two
motifs is the minimum distance for any gapless alignment
of their columns that leaves at least four columns aligned.
The similarity between aligned motifs M1 and M2 is defined
as
∑

j

(−dJS(M1 j , M2 j ) + dJS(M1 j , Mbg) + dJS(M2 j , Mbg)
)
.

Here, the sum runs over all aligned columns j. dJS(M1j, M2j)
is the Jenssen-Shannon divergence between the four nu-
cleotide probabilities of model 1 and of model 2 at aligned
column j, and Mbg is the zeroth order background distribu-
tion in the set on which the query model was learned.

The E-values for the motif-motif matches are computed
from these similarity scores by fitting the density of scores
computed between 100 randomized query motifs and the
databases motifs and fitting the high-scoring tail with an
exponential distribution (see PhD thesis of Anja Kiesel at
https://edoc.ub.uni-muenchen.de/21504/). The randomiza-
tion of the query motif is achieved by exchanging A with T
probabilities of each position with probability 0.5, and anal-
ogously for C and G. In addition columns within 2 positions
of each other were randomly swapped. This motif random-
ization keeps the local GC vs. AT content conserved. In our
benchmarks, this score performed as well as the best of the
TOMTOM scores (Pearson correlation) (18). An example
of results of the motif search is shown in Figure 2D.

MOTIF QUALITY ASSESSMENT AND RANKING

P-values do not assess biological relevance of motifs

P-values and E-values have a severe drawback for ranking
motif models: They can be very significant and yet the mo-
tifs have no biological relevance at all. For a fixed x-fold en-
richment of motif occurrences on the input set in compari-
son to the background model, the P-value decreases expo-
nentially with the number of sequences in the zero-or-one-
occurrence-per-sequence (ZOOPS) model. For that reason,
even biologically irrelevant motifs with very slight enrich-
ment factors (e.g. 1.1) can obtain an extremely significant
E-value if the input set is large enough. Small enrichment
factors can occur frequently in practice simply due to an im-
perfect background model that slightly underestimates the
expected frequency of occurrence.

Precision, recall and false discovery rate

To get a more relevant measure of how well the motif model
can separate sequences with a motif (positives) from the
background sequences (negatives), we first generate for each
input sequence one random sequence of the same length
sampled with the second-order Markov background model
learned from the input sequences. The score for an input or
background sequence is the maximum of the log odds scores
of the BaMM over all possible motif positions (ZOOPS
model). Every sequence with a score above a cut-off is pre-
dicted to carry a motif. We rank all sequences by their score
and, for each cut-off score, we count the number of correct
predictions above that score, called true positives (TP), and
the number of incorrect predictions above the cut-off score,
called false positives (FP). The precision is the fraction of
predictions that are correct, TP/(TP + FP), and the recall
(=sensitivity) is the fraction of positive sequences that are
actually predicted, TP/(TP + FN). The false discovery rate
is FDR = 1 − precision = FP/(TP + FP).

If we did this analysis on the same sequences from which
we had trained the model, we could easily overestimate the
motif model performance by overtraining. We therefore use
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four-fold cross-validation to assess the motif model perfor-
mance: We split the input and background sequences into
four equal-sized parts, retrain the model on three. The re-
sults from the four hold-out sets are then combined.

The AUPRC assesses models partly in irrelevant regimes

The area under the recall-precision curve (AUPRC) (see
Supplementary Figure S2B) can be interpreted as mean
model recall (=sensitivity) averaged over the entire range of
precision from 0 to 1. Consider two models: one achieves a
maximum precision of 0.99 and the other achieves at any
recall a 1% higher precision, with a maximum at 0.9999.
Even though the two models have AUPRCs that only dif-
fer by 1%, their minimum false discovery rates differ by two
orders of magnitude (0.01 and 0.0001), which can make a
huge difference in practice.

Consider two application cases. In the first, the expected
ratio of sequences with and without true binding sites is
∼1:1, e.g. for a ChIP-seq experiment, and in the second
case it is 1:100, e.g. when scanning 104 promoter regions
in the human genome for motif occurrences, of which 100
are expected to carry the motif. In the first case, an FDR of
0.1, determined at ratio 1:1 between positive and negative
(background) sequences, is quite satisfactory to identify se-
quences with true binding sites. In the second case, an FDR
of 0.1 would result in 0.1 × 104 = 1000 false predictions,
which would swamp the expected 100 true binding occur-
rences. A model with an FDR of 0.001 determined at ratio
1:1 between positive and negative sequences would give us
0.001 × 104 = 10 false predictions, which would result in an
acceptable FDR of 10/110.

So the FDR (estimated for a ratio 1:1 of positives to neg-
atives) that is relevant to assess the quality of motif models
depends on the application, more precisely, on the expected
ratio of positives to negatives in the sequence data. In con-
trast, the AUPRC puts much weight on very high FDRs,
e.g. the range between 0.9 and 1 has as much weight as the
range between 0 and 0.1. Another popular measure, the area
under the receiver operator curve (AUROC), can be shown
to be even less relevant and difficult to interpret for motif
model assessment.

Average recall (AvRec)

We sought a motif quality analysis plot and associated qual-
ity measure (i) that covers the range of FDRs most relevant
in practical applications and (ii) that allows the user to eas-
ily estimate the performance of the motif in her particular
application, that is, given the ratio between positive and neg-
ative sequences expected for her application.

We replace the precision in the precision-recall plot
by log10 of the ratio R = TP/FP between true and
false positives, log10TP/FP (Figure 2C, middle). From
the ratio R one can immediately obtain the false
discovery rate, FDR = 1/(1 + R), and vice versa,
R = (1 − FDR)/FDR. R = 100 corresponds to
FDR = 1/101, R = 1 corresponds to FDR = 0.5. We
define the AvRec quality measure as the average recall
computed over a range of log10R-values from 0 to 2, which
corresponds to an FDR-range from 1/101 to 0.5. We argue

that this range of FDRs is most relevant in practice, as
illustrated by the two previous examples.

The new quality measure also satisfies the second require-
ment. The user can simply pick the curve in the AvRec
plot that corresponds to the ratio of positive to negative se-
quences that she expects in her application. Nicely, the curve
at ratio 1:10 is the curve at ratio 1:1 shifted down by one unit
(log1010), because R is proportional to the ratio of positive
to negative sequences in the dataset: When the number of
negative sequences is amplified by 10, the number of false
positive predictions will also be increased by a factor of 10.
On the web server, we show the curves with ratios of 1:1,
1:10 and 1:100 (if visible on the y-scale).

Dataset AvRec and motif AvRec

We used two definitions of positive and negative sequences.
In the dataset-centered analysis (Figure 2C, left), the true
positive sequences are all sequences from the input set above
the cut-off score and the false positive sequences are all
background sequences above the cut-off score. The upper
left plot in Figure 2C shows the distribution of the motif
occurrence P-values computed from their scores. The curve
below shows the log10TP/FP values over the recall for this
definition of true and false positives.

In the motif-centered analysis (Figure 2C, right), we con-
sider only those sequences as true positives that actually
contain a motif instance. In order to estimate the number of
TPs for a given score cut-off, we first estimate the fraction of
input sequences that contain motif instances using the fdr-
tool (16). This tool assumes that the negative sequences in
the positive set are uniformly distributed over all P-values
between 0 and 1 and fits a horizontal line giving the fraction
of negatives in the input set to the distribution (orange bro-
ken line in Figure 2C, top right). The definition of TPs and
FPs illustrated in the top right graph of Figure 2C results in
the motif-based AvRec analysis plot below.

When the fraction of motifs in the input sequences is near
100%, both approaches yield very similar results. But when
this fraction is small, the motif model may still be very ac-
curate. The motif-centered analysis takes account of that,
while the dataset-centered analysis severely underestimates
the model performance in these cases.

DOCUMENTATION, USABILITY AND SPEED

Each input parameter is briefly explained in a mouse-over
text. A detailed documentation is accessible via the ’Docu-
mentation’ tab on the top of each page. A motif discovery
run with 10k (100k) sequences of length 200nt takes around
3.0 (12.5) min. Scanning 100k sequences of length 200nt on
both strands for motif matches takes about 6 min per three
motifs. A motif-motif search through the largest subcollec-
tion of motifs in our database (620 models) takes around
3.5 min per three motifs.

IMPLEMENTATION

The BaMM web server is built on the Django Web frame-
work using Nginx as reverse proxy. Jobs are scheduled via
Celery’s asynchronous task queuing system, with the help of
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Redis as a message broker, and executed on a Linux com-
puter with 28 physical cores using 4 cores per job. MySQL
is used as back end database to store results and job param-
eters. The web front end, back end and the database run
in separate Docker containers, enabling easy deployment
(Supplementary Figure S1).

CONCLUSION

We hope the BaMM web server will enable many users to
exploit the greater descriptive power of BaMMs for motif
discovery and regulatory sequence analysis. In the future we
will work on extending the database of motifs, especially by
training on HT-SELEX datasets.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Figure 2. Comparison between different measures of motif model performance on the input dataset. (A) Recall vs. TP-to-FP ratio curve. (B) Precision-Recall
curve. (C) Recall-False discovery rate curve. (D) Partial Receiver operating characteristic (ROC) curve. Definitions of axes: recall = true positive rate = TP / (TP
+ FN); false discovery rate (FDR) = FP / (TP + FP); precision = 1 - FDR = TP / (TP + FP); false positive rate = FP / (FP + TN), where TP = true positives, FP =
false positives, FN = false negatives, TN = true negatives.
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Chapter 4

Conclusion

An essential step to understanding the gene regulation mechanism is the ability to identify
the regulatory factor binding sites. Thanks to the advances of high-throughput sequencing
technologies and the development of machine learning tools, it enables a quantitative view to
interpret these binding elements by constructing the predictive models. To accurately predict
the unseen TF-bound motifs from the DNA/RNA sequences, we have previously developed
BaMMmotif to learning the inter-dependencies of the nucleotides by training interpolated
inhomogeneous Markov models. Given the outstanding performance of BaMMmotif over
PWM-based models on in vivo data, I continued the work to improve the model further.

In the scheme of higher-order BaMMs (E.q. (2.17)), the higher-order model profile is
built upon the K-mer frequencies and the pseudo-counts from the lower-order profile with
hyper-parameter αs. The hyper-parameters αs tune how much low-order information is
passed onto the higher-orders. Thus, the model avoids overfitting by automatically adapting
the complexity to the available data. The α’s were set to fixed values with larger numbers
for higher orders, which means BaMMs learn the neighboring nucleotide dependency with
decreasing relevance as the distance gets larger. However, to learn more precise models
for motifs with varying spaces or non-neighboring nucleotide inter-dependency, it might
require to optimize the αs from the datasets. I thus tried to sample position-specific αs for
different orders using the Gibbs sampling algorithm. With the optimized αs, it improved
the performance of fifth-order BaMMs by 5.3 % median increase in AvRec on 552 GTRD
datasets with 500 bp-long sequences (Figure 3.2C).

Most transcription factors have particular positional preferences when recognizing the
regulatory elements on the genome. For instance, many TFs show notable preferences for
specific regions upstream of the transcription start sites of genes they regulate. Therefore, I
introduced a prior to learn this positional preference feature from the data. The optimized
positional priors helped to find the weak local motifs on the simulated dataset (Figure 3.4).
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However, it did not contribute to improving the overall performance on 435 ChIP-seq datasets,
compared to models with uniformly distributed positional priors, although the optimized
positional priors corresponded well to the real motif distributions on the ChIP-seq datasets
(Figure 3.5).

Some studies suggested that the full EM algorithm might lead to the overestimation of
intra-motif dependencies, particularly when there are multiple motifs in the sequences [66].
To figure out whether BaMMs were affected, I selected the 5% best ranked possible binding
sites in the first iteration of the EM algorithm for optimizing the models. Applying such
a masking step restricted the noise when learning the higher-order model for a motif, and
thus avoided overestimation (Section 3.1.2.3). It lowered the overall motif performance of
fifth-order BaMMs by 4.4% on ENCODE data (Figure 3.7B) but helped to learn distinct
motifs when more than one motif was present. Since it optimized models using fewer training
data, it was also fast for the EM algorithm to converge, thus sped up the optimization process
(Figure 3.7C).

I was also interested in comparing our approach with others, namely MEME [57] (most
commonly used in the field), CisFinder [67] (fast and scales well for large datasets), ChIP-
Munk [68] (used for generating PWMs in HOCOMOCO database), and higher-order model-
based tools including diChIPMunk [69] (used for generating di-PWMs in HOCOMOCO
database) and InMoDe [70] (learns intra-motif dependencies). Therefore, I developed a more
reliable measure score, the AvRec score, for evaluating the motif quality. It takes into account
the most relevant regions for true positives and false positives in real biological applications.
The benchmark tests of de novo motif discovery tools on large-scale data have only been done
in the DeepBind paper [45] to date. Thus, I performed the benchmark tests on both in vivo
and in vitro data and showed that fifth-order BaMMs achieved 13.6% median improvements
in AvRec score on 427 ChIP-seq datasets and 12.2% on 164 HT-SELEX datasets in 5-fold
cross-validations. Besides, I also carried out cross-cell-line and cross-platform validations
for eliminating the biases that were either cell type- or experiment-specific and demonstrated
the robustness of BaMMs on 237 cross-cell-line tests and 16 cross-platform tests.

Apart from learning the nucleotide inter-dependency, BaMM is also capable of detecting
the weak bindings. Studies show that weak bindings are essential for TFs to rapidly respond
to cellular changes to express different proteins with a sufficient amount. Hence I trained the
BaMMs learned on ChIP-seq data for eight Saccharomyces cerevisiae TFs, and tested on the
corresponding MITOMIv2 datasets. Predicted TF-DNA binding affinities with higher-order
BaMMs showed better correlations to the measured binding affinities by MITOMIv2 on 7
out of 8 datasets compared to PWMs from the JASPAR database (Table 3.1).



109

Besides, a fifth-order BaMM learned from the GM cell line predicted more CTCF
binding sites on the human genome than the current estimated number of CTCF sites (Figure
3.9). We hypothesize that the excess amount of CTCF binding sites could come from weak
binding sites that help to regulate the chromatin structures and mediate the enhancer-promoter
interactions under different cellular states.

With the demonstration of the robust and reliable performance of BaMMmotif2, I also
helped to develop the BaMM webserver to provide the community with the software and
pre-trained models for transfer learning purposes [71]. Different from the MEME suite
[57], BaMM webserver provides more sophisticated BaMMs for training models on various
types of data (e.g., ChIP-seq, PBM, HT-SELEX) and offers the databases with pre-trained
higher-order BaMMs for searching for motif occurrences in the given sequence set, compared
with the known motifs, and serving as seeds for further model optimization on the given
dataset.
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Outlook

Algorithm-related extensions

During the parameter tuning, I have observed that the hyperparameter q, which indicates
how many fractions of sequences contain a motif (E.q. (2.30)), is crucial for learning the
correct motif when multiple motifs are present in the data. In the current model, I introduced
a masking step for preventing it from falling to the global optimum when initialized by a
secondary motif that has a local optimum. However, the motif model may benefit from
learning a dataset-specific q value.

In this work, although the optimization of positional prior does not improve the motif
scores on the ChIP-seq data, the positional prior distribution is learned correctly from the
real datasets. The positional prior can be used for optimizing the motif length and replacing
the distribution of motif log-odds scores to illustrate the motif distribution on the sequences
better.

Currently, the fast-seeding stage of BaMMmotif2 is a standalone tool ("PEnGmotif"). For
better user experience, I plan to integrate it to our BaMMmotif2 toolkit, so that BaMMmotif2
can internally seed and then refine to higher-order models.

Weak binding affinities of TF and DNA

Given that weak bindings of TF-DNA are common in eukaryotic cells, especially it may help
to maintain the condensates in the phase-separated hubs during the transcription regulation,
it would be interesting to look more closely at the weak binding motifs. For example,
in the formation of enhancer-promoter loops, binding sites with low affinities allow TF
paralog-specific binding [13]. In this study, I have shown the robust performance of BaMMs
compared to PWMs on yeast binding-affinity measurements. With the rapid development of
techniques and more massive data, I hope our tool can be applied to more applications, thus
enhancing the understanding of DNA-TF weak binding affinities. For example, SMiLE-seq
[64] can be a good candidate, which is a microfluidics-based technique and measures human
TF-TF-DNA bindings on a large scale with more flexible lengths.

Effects of higher-order models on different TF classes

Different mammalian TFs can recognize similar binding sites due to their common evolution-
ary origin. Thus, the motif prediction could benefit from the classification of TFs according
to the structures of their DNA-binding domains (see Table A.3). It would be interesting to
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check how much higher-order BaMMs improve the motifs classified by their TF classes and
interpret which TF classes trend to bind motifs with longer distance or have more complicated
binding modes.

With our tool and ideas described in this thesis, I hope it will help the community to have
new and exciting discoveries.





References

[1] Jennifer E Phillips and Victor G Corces. Ctcf: master weaver of the genome. Cell,
137(7):1194–1211, 2009.

[2] Charles V Clevenger. Roles and regulation of stat family transcription factors in human
breast cancer. The American journal of pathology, 165(5):1449–1460, 2004.

[3] Faizeh Al-Quobaili and Mathias Montenarh. Pancreatic duodenal homeobox factor-1and
diabetes mellitus type 2. International journal of molecular medicine, 21(4):399–404,
2008.

[4] Miguel Angel Maestro, Carina Cardalda, Sylvia F Boj, Reini F Luco, Joan Marc
Servitja, and Jorge Ferrer. Distinct roles of hnf1 b, hnf1 α , and hnf4 α in regulating
pancreas development, b-cell function and growth. In Development of the Pancreas and
Neonatal Diabetes, volume 12, pages 33–45. Karger Publishers, 2007.

[5] Mélanie Lambert, Samy Jambon, Sabine Depauw, and Marie-Hélène David-Cordonnier.
Targeting transcription factors for cancer treatment. Molecules, 23(6):1479, 2018.

[6] Jie Wang, Jiali Zhuang, Sowmya Iyer, XinYing Lin, Troy W Whitfield, Melissa C
Greven, Brian G Pierce, Xianjun Dong, Anshul Kundaje, Yong Cheng, et al. Sequence
features and chromatin structure around the genomic regions bound by 119 human
transcription factors. Genome research, 22(9):1798–1812, 2012.

[7] Otto G Berg and Peter H von Hippel. Selection of dna binding sites by regulatory
proteins: Statistical-mechanical theory and application to operators and promoters.
Journal of molecular biology, 193(4):723–743, 1987.

[8] Remo Rohs, Sean M West, Alona Sosinsky, Peng Liu, Richard S Mann, and Barry
Honig. The role of dna shape in protein–dna recognition. Nature, 461(7268):1248–1253,
2009.

[9] Janice A Fischer, Edward Giniger, Tom Maniatis, and Mark Ptashne. Gal4 activates
transcription in drosophila. Nature, 332(6167):853, 1988.

[10] Ann Hochschild, John Douhan III, and Mark Ptashne. How λ repressor and λ cro
distinguish between or1 and or3. Cell, 47(5):807–816, 1986.

[11] Hamed S Najafabadi, Sanie Mnaimneh, Frank W Schmitges, Michael Garton, Kathy N
Lam, Ally Yang, Mihai Albu, Matthew T Weirauch, Ernest Radovani, Philip M Kim,
et al. C2h2 zinc finger proteins greatly expand the human regulatory lexicon. Nature
biotechnology, 33(5):555, 2015.



114 References

[12] Justin Crocker, Ella Preger-Ben Noon, and David L Stern. The soft touch: Low-affinity
transcription factor binding sites in development and evolution. In Current topics in
developmental biology, volume 117, pages 455–469. Elsevier, 2016.

[13] Judith F Kribelbauer, Chaitanya Rastogi, Harmen J Bussemaker, and Richard S Mann.
Low-affinity binding sites and the transcription factor specificity paradox in eukaryotes.
Annual review of cell and developmental biology, 35:357–379, 2019.

[14] Hirofumi Kurokawa, Hozumi Motohashi, Shinji Sueno, Momoko Kimura, Hiroaki
Takagawa, Yousuke Kanno, Masayuki Yamamoto, and Toshiyuki Tanaka. Structural
basis of alternative dna recognition by maf transcription factors. Molecular and cellular
biology, 29(23):6232–6244, 2009.

[15] Polly M Fordyce, David Pincus, Philipp Kimmig, Christopher S Nelson, Hana El-
Samad, Peter Walter, and Joseph L DeRisi. Basic leucine zipper transcription factor
hac1 binds dna in two distinct modes as revealed by microfluidic analyses. Proceedings
of the National Academy of Sciences, 109(45):E3084–E3093, 2012.

[16] Matthew Slattery, Tianyin Zhou, Lin Yang, Ana Carolina Dantas Machado, Raluca
Gordân, and Remo Rohs. Absence of a simple code: how transcription factors read the
genome. Trends in biochemical sciences, 39(9):381–399, 2014.

[17] Ruipeng Lu, Eliseos J Mucaki, and Peter K Rogan. Discovery and validation of
information theory-based transcription factor and cofactor binding site motifs. Nucleic
acids research, 45(5):e27–e27, 2017.

[18] Fangjie Zhu, Lucas Farnung, Eevi Kaasinen, Biswajyoti Sahu, Yimeng Yin, Bei Wei,
Svetlana O Dodonova, Kazuhiro R Nitta, Ekaterina Morgunova, Minna Taipale, et al.
The interaction landscape between transcription factors and the nucleosome. Nature,
562(7725):76–81, 2018.

[19] David J Galas and Albert Schmitz. Dnaase footprinting a simple method for the
detection of protein-dna binding specificity. Nucleic acids research, 5(9):3157–3170,
1978.

[20] Sebastian J Maerkl and Stephen R Quake. A systems approach to measuring the binding
energy landscapes of transcription factors. Science, 315(5809):233–237, 2007.

[21] Gordon Robertson, Martin Hirst, Matthew Bainbridge, Misha Bilenky, Yongjun Zhao,
Thomas Zeng, Ghia Euskirchen, Bridget Bernier, Richard Varhol, Allen Delaney, et al.
Genome-wide profiles of stat1 dna association using chromatin immunoprecipitation
and massively parallel sequencing. Nature methods, 4(8):651–657, 2007.

[22] Yue Zhao, David Granas, and Gary D Stormo. Inferring binding energies from selected
binding sites. PLoS computational biology, 5(12), 2009.

[23] Ho Sung Rhee and B Franklin Pugh. Comprehensive genome-wide protein-dna interac-
tions detected at single-nucleotide resolution. Cell, 147(6):1408–1419, 2011.

[24] Dustin E Schones, Kairong Cui, Suresh Cuddapah, Tae-Young Roh, Artem Barski,
Zhibin Wang, Gang Wei, and Keji Zhao. Dynamic regulation of nucleosome positioning
in the human genome. Cell, 132(5):887–898, 2008.



References 115

[25] Arttu Jolma, Yimeng Yin, Kazuhiro R Nitta, Kashyap Dave, Alexander Popov, Minna
Taipale, Martin Enge, Teemu Kivioja, Ekaterina Morgunova, and Jussi Taipale. Dna-
dependent formation of transcription factor pairs alters their binding specificity. Nature,
527(7578):384–388, 2015.

[26] Jason D Buenrostro, Paul G Giresi, Lisa C Zaba, Howard Y Chang, and William J
Greenleaf. Transposition of native chromatin for fast and sensitive epigenomic profiling
of open chromatin, dna-binding proteins and nucleosome position. Nature methods,
10(12):1213, 2013.

[27] Gary D Stormo and Yue Zhao. Determining the specificity of protein–dna interactions.
Nature Reviews Genetics, 11(11):751–760, 2010.

[28] Patrik D’haeseleer. How does dna sequence motif discovery work? Nature biotechnol-
ogy, 24(8):959–961, 2006.

[29] Gary D Stormo, Thomas D Schneider, Larry Gold, and Andrzej Ehrenfeucht. Use of
the ‘perceptron’algorithm to distinguish translational initiation sites in e. coli. Nucleic
acids research, 10(9):2997–3011, 1982.

[30] Gary D Stormo. Modeling the specificity of protein-dna interactions. Quantitative
biology, 1(2):115–130, 2013.

[31] Dana S Fields, Yi-yuan He, Ahmed Y Al-Uzri, and Gary D Stormo. Quantitative
specificity of the mnt repressor. Journal of molecular biology, 271(2):178–194, 1997.

[32] Martha L Bulyk, Philip LF Johnson, and George M Church. Nucleotides of transcription
factor binding sites exert interdependent effects on the binding affinities of transcription
factors. Nucleic acids research, 30(5):1255–1261, 2002.

[33] Andrija Tomovic and Edward J Oakeley. Position dependencies in transcription factor
binding sites. Bioinformatics, 23(8):933–941, 2007.

[34] Thomas D Schneider and R Michael Stephens. Sequence logos: a new way to display
consensus sequences. Nucleic acids research, 18(20):6097–6100, 1990.

[35] Matthias Siebert and Johannes Söding. Bayesian markov models consistently out-
perform pwms at predicting motifs in nucleotide sequences. Nucleic acids research,
44(13):6055–6069, 2016.

[36] Ralf Eggeling, André Gohr, Jens Keilwagen, Michaela Mohr, Stefan Posch, Andrew D
Smith, and Ivo Grosse. On the value of intra-motif dependencies of human insulator
protein ctcf. PLoS One, 9(1):e85629, 2014.

[37] Jens Keilwagen and Jan Grau. Varying levels of complexity in transcription factor
binding motifs. Nucleic acids research, 43(18):e119–e119, 2015.

[38] Lin Yang, Tianyin Zhou, Iris Dror, Anthony Mathelier, Wyeth W Wasserman, Raluca
Gordân, and Remo Rohs. Tfbsshape: a motif database for dna shape features of
transcription factor binding sites. Nucleic acids research, 42(D1):D148–D155, 2014.



116 References

[39] Tianyin Zhou, Ning Shen, Lin Yang, Namiko Abe, John Horton, Richard S Mann,
Harmen J Bussemaker, Raluca Gordân, and Remo Rohs. Quantitative modeling of
transcription factor binding specificities using dna shape. Proceedings of the National
Academy of Sciences, 112(15):4654–4659, 2015.

[40] Tsu-Pei Chiu, Federico Comoglio, Tianyin Zhou, Lin Yang, Renato Paro, and Remo
Rohs. Dnashaper: an r/bioconductor package for dna shape prediction and feature
encoding. Bioinformatics, 32(8):1211–1213, 2016.

[41] Anthony Mathelier, Beibei Xin, Tsu-Pei Chiu, Lin Yang, Remo Rohs, and Wyeth W
Wasserman. Dna shape features improve transcription factor binding site predictions in
vivo. Cell systems, 3(3):278–286, 2016.

[42] Pei-Chen Peng and Saurabh Sinha. Quantitative modeling of gene expression using
dna shape features of binding sites. Nucleic acids research, 44(13):e120–e120, 2016.

[43] Md Abul Hassan Samee, Benoit G Bruneau, and Katherine S Pollard. A de novo shape
motif discovery algorithm reveals preferences of transcription factors for dna shape
beyond sequence motifs. Cell systems, 8(1):27–42, 2019.

[44] Jian Zhou and Olga G Troyanskaya. Predicting effects of noncoding variants with deep
learning–based sequence model. Nature methods, 12(10):931–934, 2015.

[45] Babak Alipanahi, Andrew Delong, Matthew T Weirauch, and Brendan J Frey. Predicting
the sequence specificities of dna-and rna-binding proteins by deep learning. Nature
biotechnology, 33(8):831, 2015.

[46] David R Kelley, Jasper Snoek, and John L Rinn. Basset: learning the regulatory code
of the accessible genome with deep convolutional neural networks. Genome research,
26(7):990–999, 2016.

[47] James Zou, Mikael Huss, Abubakar Abid, Pejman Mohammadi, Ali Torkamani, and
Amalio Telenti. A primer on deep learning in genomics. Nature genetics, 51(1):12–18,
2019.

[48] Gökcen Eraslan, Žiga Avsec, Julien Gagneur, and Fabian J Theis. Deep learning:
new computational modelling techniques for genomics. Nature Reviews Genetics,
20(7):389–403, 2019.

[49] Ziga Avsec, Roman Kreuzhuber, Johnny Israeli, Nancy Xu, Jun Cheng, Avanti Shriku-
mar, Abhimanyu Banerjee, Daniel S Kim, Lara Urban, Anshul Kundaje, et al. Kipoi:
accelerating the community exchange and reuse of predictive models for genomics.
BioRxiv, page 375345, 2018.

[50] Charles E Lawrence and Andrew A Reilly. An expectation maximization (em) algorithm
for the identification and characterization of common sites in unaligned biopolymer
sequences. Proteins: Structure, Function, and Bioinformatics, 7(1):41–51, 1990.

[51] Tetsushi Yada, Yasushi Totoki, Masato Ishikawa, Kiyoshi Asai, and Kenta Nakai.
Automatic extraction of motifs represented in the hidden markov model from a number
of dna sequences. Bioinformatics (Oxford, England), 14(4):317–325, 1998.



References 117

[52] Eric P Xing, Michael I Jordan, Richard M Karp, and Stuart J Russell. A hierarchical
bayesian markovian model for motifs in biopolymer sequences. In Advances in Neural
Information Processing Systems, pages 1513–1520, 2003.

[53] Weichun Huang, David M Umbach, Uwe Ohler, and Leping Li. Optimized mixed
markov models for motif identification. BMC bioinformatics, 7(1):279, 2006.

[54] Steven L Salzberg, Arthur L Delcher, Simon Kasif, and Owen White. Microbial gene
identification using interpolated markov models. Nucleic acids research, 26(2):544–548,
1998.

[55] Arthur L Delcher, Douglas Harmon, Simon Kasif, Owen White, and Steven L
Salzberg. Improved microbial gene identification with glimmer. Nucleic acids re-
search, 27(23):4636–4641, 1999.

[56] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society: Series B
(Methodological), 39(1):1–22, 1977.

[57] Timothy L Bailey, Mikael Boden, Fabian A Buske, Martin Frith, Charles E Grant,
Luca Clementi, Jingyuan Ren, Wilfred W Li, and William S Noble. Meme suite: tools
for motif discovery and searching. Nucleic acids research, 37(suppl_2):W202–W208,
2009.

[58] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

[59] Thomas L Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of the
National academy of Sciences, 101(suppl 1):5228–5235, 2004.

[60] ENCODE Project Consortium et al. An integrated encyclopedia of dna elements in the
human genome. Nature, 489(7414):57–74, 2012.

[61] Ivan Yevshin, Ruslan Sharipov, Semyon Kolmykov, Yury Kondrakhin, and Fedor
Kolpakov. Gtrd: a database on gene transcription regulation—2019 update. Nucleic
acids research, 47(D1):D100–D105, 2019.

[62] Polly M Fordyce, Doron Gerber, Danh Tran, Jiashun Zheng, Hao Li, Joseph L DeRisi,
and Stephen R Quake. De novo identification and biophysical characterization of
transcription-factor binding sites with microfluidic affinity analysis. Nature biotechnol-
ogy, 28(9):970, 2010.

[63] Martin Tompa, Nan Li, Timothy L Bailey, George M Church, Bart De Moor, Eleazar
Eskin, Alexander V Favorov, Martin C Frith, Yutao Fu, W James Kent, et al. Assessing
computational tools for the discovery of transcription factor binding sites. Nature
biotechnology, 23(1):137–144, 2005.

[64] Alina Isakova, Romain Groux, Michael Imbeault, Pernille Rainer, Daniel Alpern, Ric-
cardo Dainese, Giovanna Ambrosini, Didier Trono, Philipp Bucher, and Bart Deplancke.
Smile-seq identifies binding motifs of single and dimeric transcription factors. Nature
methods, 14(3):316, 2017.



118 References

[65] Ruochi Zhang, Yuchuan Wang, Yang Yang, Yang Zhang, and Jian Ma. Predicting
ctcf-mediated chromatin loops using ctcf-mp. Bioinformatics, 34(13):i133–i141, 2018.

[66] Ralf Eggeling. Disentangling transcription factor binding site complexity. Nucleic
acids research, 46(20):e121–e121, 2018.

[67] Alexei A Sharov and Minoru SH Ko. Exhaustive search for over-represented dna
sequence motifs with cisfinder. DNA research, 16(5):261–273, 2009.

[68] Ivan V Kulakovskiy, VA Boeva, Alexander V Favorov, and Vsevolod J Makeev. Deep
and wide digging for binding motifs in chip-seq data. Bioinformatics, 26(20):2622–
2623, 2010.

[69] Ivan Kulakovskiy, Victor Levitsky, Dmitry Oshchepkov, Leonid Bryzgalov, Ilya
Vorontsov, and Vsevolod Makeev. From binding motifs in chip-seq data to improved
models of transcription factor binding sites. Journal of bioinformatics and computa-
tional biology, 11(01):1340004, 2013.

[70] Ralf Eggeling, Ivo Grosse, and Jan Grau. Inmode: tools for learning and visualizing
intra-motif dependencies of dna binding sites. Bioinformatics, 33(4):580–582, 2017.

[71] Anja Kiesel, Christian Roth, Wanwan Ge, Maximilian Wess, Markus Meier, and
Johannes Söding. The bamm web server for de-novo motif discovery and regulatory
sequence analysis. Nucleic acids research, 46(W1):W215–W220, 2018.

[72] Athel Cornish-Bowden. Nomenclature for incompletely specified bases in nucleic acid
sequences: recommendations 1984. Nucleic acids research, 13(9):3021, 1985.

[73] Edgar Wingender, Torsten Schoeps, and Jürgen Dönitz. Tfclass: an expandable
hierarchical classification of human transcription factors. Nucleic acids research,
41(D1):D165–D170, 2013.

[74] Mark M Garner and Arnold Revzin. A gel electrophoresis method for quantifying the
binding of proteins to specific dna regions: application to components of the escherichia
coli lactose operon regulatory system. Nucleic acids research, 9(13):3047–3060, 1981.

[75] Michael Fried and Donald M Crothers. Equilibria and kinetics of lac repressor-operator
interactions by polyacrylamide gel electrophoresis. Nucleic acids research, 9(23):6505–
6525, 1981.

[76] Jerker Porath and Birgit Olin. Immobilized metal affinity adsorption and immobi-
lized metal affinity chromatography of biomaterials. serum protein affinities for gel-
immobilized iron and nickel ions. Biochemistry, 22(7):1621–1630, 1983.

[77] David Scott Gilmour. Detection of DNA-protein Interactions by Protein-DNA Cross-
linking. Cornell University, Aug., 1984.

[78] Craig Tuerk and Larry Gold. Systematic evolution of ligands by exponential enrichment:
Rna ligands to bacteriophage t4 dna polymerase. science, 249(4968):505–510, 1990.

[79] Valerio Orlando. Mapping chromosomal proteins in vivo by formaldehyde-crosslinked-
chromatin immunoprecipitation. Trends in biochemical sciences, 25(3):99–104, 2000.



References 119

[80] Xiangdong Meng, Michael H Brodsky, and Scot A Wolfe. A bacterial one-hybrid
system for determining the dna-binding specificity of transcription factors. Nature
biotechnology, 23(8):988–994, 2005.

[81] Christopher L Warren, Natasha CS Kratochvil, Karl E Hauschild, Shane Foister, Mary L
Brezinski, Peter B Dervan, George N Phillips, and Aseem Z Ansari. Defining the
sequence-recognition profile of dna-binding molecules. Proceedings of the National
Academy of Sciences, 103(4):867–872, 2006.

[82] Paul G Giresi, Jonghwan Kim, Ryan M McDaniell, Vishwanath R Iyer, and Jason D
Lieb. Faire (formaldehyde-assisted isolation of regulatory elements) isolates active
regulatory elements from human chromatin. Genome research, 17(6):877–885, 2007.

[83] Melissa J Fullwood, Mei Hui Liu, You Fu Pan, Jun Liu, Han Xu, Yusoff Bin Mohamed,
Yuriy L Orlov, Stoyan Velkov, Andrea Ho, Poh Huay Mei, et al. An oestrogen-receptor-
α-bound human chromatin interactome. Nature, 462(7269):58–64, 2009.

[84] Erez Lieberman-Aiden, Nynke L Van Berkum, Louise Williams, Maxim Imakaev,
Tobias Ragoczy, Agnes Telling, Ido Amit, Bryan R Lajoie, Peter J Sabo, Michael O
Dorschner, et al. Comprehensive mapping of long-range interactions reveals folding
principles of the human genome. science, 326(5950):289–293, 2009.

[85] Fuchou Tang, Catalin Barbacioru, Yangzhou Wang, Ellen Nordman, Clarence Lee,
Nanlan Xu, Xiaohui Wang, John Bodeau, Brian B Tuch, Asim Siddiqui, et al. mrna-seq
whole-transcriptome analysis of a single cell. Nature methods, 6(5):377, 2009.

[86] Lingyun Song and Gregory E Crawford. Dnase-seq: a high-resolution technique for
mapping active gene regulatory elements across the genome from mammalian cells.
Cold Spring Harbor Protocols, 2010(2):pdb–prot5384, 2010.

[87] Razvan Nutiu, Robin C Friedman, Shujun Luo, Irina Khrebtukova, David Silva, Robin
Li, Lu Zhang, Gary P Schroth, and Christopher B Burge. Direct measurement of dna
affinity landscapes on a high-throughput sequencing instrument. Nature biotechnology,
29(7):659, 2011.

[88] Sivakanthan Kasinathan, Guillermo A Orsi, Gabriel E Zentner, Kami Ahmad, and
Steven Henikoff. High-resolution mapping of transcription factor binding sites on
native chromatin. Nature methods, 11(2):203, 2014.

[89] Qiye He, Jeff Johnston, and Julia Zeitlinger. Chip-nexus enables improved detection of
in vivo transcription factor binding footprints. Nature biotechnology, 33(4):395, 2015.

[90] Holger Hartmann, Eckhart W Guthöhrlein, Matthias Siebert, Sebastian Luehr, and
Johannes Söding. P-value-based regulatory motif discovery using positional weight
matrices. Genome research, 23(1):181–194, 2013.

[91] Ralf Eggeling, Ivo Grosse, and Jan Grau. Inmode: tools for learning and visualizing
intra-motif dependencies of dna binding sites. Bioinformatics, 33(4):580–582, 2016.

[92] Albin Sandelin, Wynand Alkema, Pär Engström, Wyeth W Wasserman, and Boris
Lenhard. Jaspar: an open-access database for eukaryotic transcription factor binding
profiles. Nucleic acids research, 32(suppl_1):D91–D94, 2004.



120 References

[93] Matthew T Weirauch, Ally Yang, Mihai Albu, Atina G Cote, Alejandro Montenegro-
Montero, Philipp Drewe, Hamed S Najafabadi, Samuel A Lambert, Ishminder Mann,
Kate Cook, et al. Determination and inference of eukaryotic transcription factor
sequence specificity. Cell, 158(6):1431–1443, 2014.

[94] Ivan V Kulakovskiy, Ilya E Vorontsov, Ivan S Yevshin, Ruslan N Sharipov, Alla D
Fedorova, Eugene I Rumynskiy, Yulia A Medvedeva, Arturo Magana-Mora, Vladimir B
Bajic, Dmitry A Papatsenko, et al. Hocomoco: towards a complete collection of
transcription factor binding models for human and mouse via large-scale chip-seq
analysis. Nucleic acids research, 46(D1):D252–D259, 2018.

[95] Maxwell A Hume, Luis A Barrera, Stephen S Gisselbrecht, and Martha L Bulyk.
Uniprobe, update 2015: new tools and content for the online database of protein-binding
microarray data on protein–dna interactions. Nucleic acids research, 43(D1):D117–
D122, 2015.

[96] Vea Matys, Ellen Fricke, Robert Geffers, Ellen Gößling, Martin Haubrock, Reinhard
Hehl, Klaus Hornischer, Dagmar Karas, Alexander E Kel, Olga V Kel-Margoulis, et al.
Transfac®: transcriptional regulation, from patterns to profiles. Nucleic acids research,
31(1):374–378, 2003.



Appendix A

Supplementary material

A.1 IUPAC letter nomenclature

Table A.1 The IUPAC letter nomenclature.

The IUPAC letter nomenclature represents unique alphabet to represent bases in the nucleotide
sequence. Each single-letter code encodes for either one single nucleobase or, or more than
one nucleobase to allow multiple bases in one particular position (adapted from [72]).

Symbol Representation Description Complement
A A Adenine T
C C Cytosine G
G G Guanine C
T T Thymine A
U U Uracil A
W A or T Weak interaction (2 hydrogen bonds) W
S C or G Strong interaction (3 hydrogen bonds) S
M A or C aMino K
K G or T Keto M
R A or G puRine Y
Y C or T pYrimidine R
B C, G or T not A (B comes after A) V
D A, G or T not C (D comes after C) H
H A, C or T not G (H comes after G) D
V A, C or G not T (V comes after T and U) B
N A, C, G or T any Nucleotide (not a gap) N
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A.2 Abbreviations

DNA deoxyribonucleic acid
RNA ribonucleic acid
IUPAC international union of pure and applied chemistry
TAD topologically associating domains
PIC pre-initiation complex
TSS transcription start site
TF transcription factor
HT-SELEX high-throughput systematic evolution of ligands by exponential enrichment
ChIP chromatin immunoprecipitation
CSI cognate site identifier
PBM protein binding microarray
B1H bacterial one-hybrid
EMSA Electrophoretic mobility shift assays
FAIRE-seq Formaldehyde-Assisted Isolation of Regulatory Elements sequencing
MITOMI Mechanically Induced Trapping of Molecular Interactions
ChIA-PET chromatin interaction analysis by paired-end tag sequencing
HiTS-FLIP high-throughput sequencing-fluorescent ligand interaction profiling
ATAC-seq Assay for Transposase-Accessible Chromatin using sequencing
ORGANIC occupied regions of genomes from affinity-purified naturally isolated chromatin
MNase-seq micrococcal nuclease sequencing
ChIP-nexus ChIP with nucleotide resolution through exonuclease, unique barcode and single ligation
CAP-SELEX consecutive affinity-purification SELEX
NCAP-SELEX nucleosome consecutive affinity-purification SELEX
SMiLE-seq selective microfluidics-based ligand enrichment followed by sequencing
PWM position weight matrix
BaMM Bayesian Markov model
IMM interpolated Markov model
iIMM inhomogenous interpolated Markov model
ZOOPS zero or one occurrence per sequence
MOPS more than one occurrence per sequence
EM expectation maximization
CGS collapsed Gibbs sampling
PCT parsimonious context trees
GMLA gapless multiple local alignment
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ReLU rectified-linear unit
CNN convolutional neural network
ROC Receiver operating characteristic
FDR false-discovery-rate
AvRec false-discovery-rate-averaged recall
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A.3 Transcription factor classes

Transcription factors can be classified based on their DNA-binding domains. Human TFs
can be classified into 9 superclasses (Table A.3) [73].

Table A.3 Human transcription factor superclasses.

The classification of human transcription factors. (Adapted from [73]*)

TF superclass Percentage Examples
Basic domain 11% bZIP, bHLH, bHSH

Zinc-coordinating domain 52% C2H2-XF
Helix-turn-helix domain 27% Fork head factors

Other all-α-helical DNA-binding domain 3% HMG factors
α-helices exposed by β -structures 1% MADS box factors

Immunoglobulin fold 4% p53, T-box
β -hairpin exposed by an α/β -scaffold 1% SMAD/NF-1 factors

β -sheet binding to DNA < 1% TATA-binding factors
β -barrel DNA-binding domain < 1% cold-shock factors

Yet undefined DNA-binding domain 1% leucine-rich repeats-biding factors

(* Also see URL: genexplain.com/tfclass/huTF_classification_Classes.html.)

http://genexplain.com/tfclass/huTF_classification_Classes.html
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A.4 Experiments for detecting DNA-protein binding

Table A.4 Development of DNA-protein interaction experiments.

•
1978 • DNA footprinting [19]
1981 • EMSA [74, 75]
1983 • PBM [76]
1984 • ChIP [77]

•
1990 • SELEX [78]

•
•

2000 • ChIP-ChIP [79]
•

2005 • B1H system [80]
2006 • CSI array [81]
2007 • ChIP-seq [21], FAIRE-seq [82], MITOMI [20]
2008 • MNase-seq [24]
2009 • ChIA-PET [83], HT-SELEX [22], Hi-C [84], single-cell

sequencing [85]
2010 • DNase-seq [86]
2011 • ChIP-exo [23], HiTS-FLIP [87]
2013 • ATAC-seq [26]
2014 • ORGANIC [88]
2015 • ChIP-nexus [89], CAP-SELEX [25]
2017 • SMiLE-seq [64]
2018 • NCAP-SELEX [18]

•
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A.5 Selected tools for motif discovery

Table A.5 List of representative motif discovery tools.

Tool Core Algorithm Feature Ref (Citation
by Jan. 2020)

MEME EM PWMs [57] (4367)
CisFinder word counts-based PWMs C++, fast on large-scale data [67] (122)
ChIPMunk greedy optimization + bootstrap-

ping
Java, uses coverage profiles as
motif positional preferences

[68] (142)

diChIPMunk GMLA, dinucleotide PWMs dinucleotide motif discovery [69] (54)
XXmotif p-value-based PWMs C++, fast [90] (60)
DeepBind deep neural networks PWMs, handles millions of se-

quences
[45] (1121)

ShapeMF shape structure-based, Gibbs
sampling

de novo discovery using only
structure features

[43] (9)

InMoDe parsimonious context trees
(PCTs)

learn intra-motif dependency
with higher-order models

[91] (7)

A.6 Motif web servers and databases

There are many web servers and databases developed over the last 30 years for DNA/RNA
motifs. This section is not intended to do the comprehensive analysis but list some commonly
used collections of motifs.
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http://meme-suite.org/
http://jaspar.genereg.net/
https://bammmotif.soedinglab.org/database/
http://gtrd.biouml.org/
http://cisbp.ccbr.utoronto.ca/
http://hocomoco.autosome.ru/
http://thebrain.bwh.harvard.edu/uniprobe/
http://genexplain.com/transfac/
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