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Summary

RNA-binding proteins (RBPs) impact every aspect of RNA metabolism including RNA tran-
scription, maturation, export, localization, translation, and stability. Specific RNA-protein
interactions therefore play a central role in regulating many cellular processes. However, most
RBPs preferentially bind short, often degenerate sequence motifs (∼3-5 bases) that alone cannot
explain how they target only specific subsets of transcripts in the cell. In this thesis, I report
on the analysis and the thermodynamic modeling of RNA-protein interaction datasets, with the
aim of cracking the code behind RBP specificity.

In the first part of my dissertation, I examine RBPs involved in the general eukaryotic RNA
degradation pathway. We generated transcriptome-wide maps of RNA-protein interactions in
yeast for 30 yeast RNA decay factors using photoactivatable ribonucleoside-enhanced cross-
linking and immunoprecipitation (PAR-CLIP). In-depth bioinformatic analysis revealed that
the decay machineries responsible for degradation of the two RNA ends differ in their substrate
specificity. We identified TRAMP4 and exosome as the main complexes involved in Nrd1/Nab3
mediated RNA degradation. Moreover, modeling the dependence of mRNA half-life on degra-
dation factor binding suggested that the recruitment of decapping factors happens only upon
RNA degradation, while other decay factors may already associate with mRNAs earlier for their
surveillance. Furthermore, global comparison of RNA-binding profiles of decay factors with
those of other RNA processing proteins indicated many functional associations with the decay
factors.

In the second part of this thesis, I introduce Bipartite Motif Finder (BMF), a computational
tool that adopts thermodynamic modeling for the discovery of multivalent RNA-protein inter-
actions. Many RBPs have multiple domains that allow them to target multiple short RNA
sequences simultaneously in a cooperative manner, others may achieve cooperativity through
oligomerization. This results in specificities and affinities that can be many orders of magni-
tude higher than those possible by single-domain binding events. Yet, previously available motif
discovery approaches have not taken this cooperativity into account. BMF takes full account
of the cooperativity and calculates binding probabilities by the weighted sum of all binding
configurations determined through thermodynamic modeling. By applying BMF on a high-
throughput RNA SELEX (HTR-SELEX) dataset of 78 RBPs, we show that bipartite binding is
widespread and that the two motif cores are often similar and low in sequence complexity. We
also show that BMF can learn the spatial geometry between the binding sites and predict new
RBP binding sites in transcripts with an accuracy competitive with existing motif discovery
approaches. We made BMF easily accessible for computationally inexperienced users via the
web server (https://bmf.soedinglab.org). BMF source code is also available under a GPL license
(https://github.com/soedinglab/bipartite_motif_finder).
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1 Introduction

The genetic information that makes up the human body is encoded in about three billion base
pairs of deoxyribonucleic acid (DNA) (Dahm, 2005; Venter et al., 2001). Complex biologi-
cal processes read this genetic information in order to decode various features of our cells,
such as the concentrations of their inner molecules and consequently their growth, shape and
function (Levine and Tjian, 2003; Hager et al., 2009). The flow of genetic information is
described in the central dogma of molecular biology: double-stranded DNA is transcribed to
single-stranded ribonucleic acid (RNA) molecules which are subsequently translated into pro-
teins (Figure 1.1)(Crick, 1970). In transcription, the first step of the process, RNA polymerases
bind control regions at the beginning of genes (transcribed genomic regions) and copy the gene’s
information into single-stranded RNA molecules (Roeder, 2019; Cramer, 2019). These RNA
molecules (transcripts) provide the instructions to produce polypeptide sequences which fold
into functional proteins, in a process called translation (Crick, 1958; Ramakrishnan, 2002).
Apart from functioning as protein blueprints, RNAs can serve as enzymes, protein scaffolds,
or regulators in cellular processes (Mattick and Makunin, 2006; Eddy, 2001; Nam et al., 2016).
RNAs are therefore the central macromolecules that bridge the genomic information to cellular
function. Hence, it is essential for the cell to control the rate of RNA synthesis, degradation,
and RNA localization in response to environment stimuli or in the process of development (Li-
catalosi and Darnell, 2010; Shyu et al., 2008). In order to facilitate regulation of RNA functions,
these molecules are never naked in the cell. Their cellular level, location, and chemical modifi-
cations are tightly controlled by RNA-binding proteins (RBPs) that can target RNA molecules
specifically and thereby control their fate (Gerstberger et al., 2014; Mitchell and Parker, 2014;
Müller-McNicoll and Neugebauer, 2013).

Understanding the complex interplay between RNA molecules and their regulating proteins is
the topic of my doctoral research. In this thesis, I will discuss new insights into RNA-protein in-
teractions in the context of RNA degradation. Furthermore, I will introduce computational and
thermodynamic approaches for modeling the cooperative nature of RNA-protein interactions.
Finally, I will illustrate the contributions our model makes towards understanding specificity in
the context of RNA recognition by proteins. In order to provide the reader with the necessary in-
formation needed to understand this work, I first review the various stages of RNA metabolism,
highlighting RNA degradation in greater depth (section 1.1). Then I will explain mechanisms
that allow proteins to target RNA molecules with specificity (section 1.2), and summarize ex-
perimental and quantitative approaches for studying RNA-protein interactions (section 1.3).
Finally, I will outline the scope of this thesis and enumerate the scientific questions addressed
by this work (1.4).
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1.1 The complex life of eukaryotic RNAs 2

Figure 1.1: The central dogma of molecular biology. The central dogma describes the flow of
genetic information from DNA to proteins in the cell. The information is stored in the form of double-
stranded polynucleotide DNA molecules, encoded as a sequence of four nucleobases: cytosine (C), guanine
(G), adenine (A), and thymine (T). During transcription, RNA polymerases create single-stranded RNA
molecules using DNA as a template. In this process, the RNA polymerase matches RNA nucleotides to
the same base in the DNA sequence with the exception of thymine, which is substituted by uracil (U). A
phosphate group attached to the fifth carbon in the sugar-ring marks the beginning of the RNA chain (5′
end), while the end of the RNA molecule is marked with the hydroxyl group of the third carbon in the
sugar-ring (3′ end). Some RNA molecules provide the instructions for protein synthesis, a process called
translation. During this process a chain of amino acids (also called the polypeptide chain) is produced
by matching nucleotide triplets of RNA to their encoding amino acids. The polypeptide then folds into
its final structure and can perform its cellular function. (Figure is adapted from Wikipedia)

1.1 The complex life of eukaryotic RNAs

RNA molecules are polymers of four nucleotides, defined by specific nucleobases: cytosine (C),
guanine (G), adenine (A), and uracil (U) (Figure 1.1). RNA is not a symmetric polymer but
maintains directionality: its first nucleotide contains a phosphate group attached to the fifth
carbon in its ribose sugar-ring (hence called the 5′ end), and its last nucleotide is marked with
the hydroxyl group of the third carbon in its sugar-ring (hence called the 3′ end) (RajBhandary,
1968). RNA molecules are uniquely versatile as they not only have the ability to store genetic
information, but they can also fold into complex three-dimensional structures (Rich and Davies,
1956; Holley et al., 1965; Wan et al., 2011), receive various molecular modifications to modulate
their function (Cantara et al., 2010; Boo and Kim, 2020; Kiss, 2001), have enzymatic activity
(Lincoln and Joyce, 2009; Haseloff and Gerlach, 1988), and act as a scaffold to recruit molecules
needed to build a biological machinery (Zappulla and Cech, 2004; Tsai et al., 2010; Fox et al.,
2018a,b). This versatility has made RNA not only a prime candidate as the original essence of
life on earth in an “RNA world” but also makes it a suitable candidate for carrying out versatile
biological functions (Cech, 2012; Gilbert, 1986).
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1.1.1 Classes of eukaryotic RNA

As mentioned before, RNA molecules can provide instructions for protein synthesis. There are,
however, other classes of RNA that do not get translated into proteins. These non-coding RNAs
(ncRNAs) are mostly classified based on their function and play essential roles in many cellular
processes such as transcription regulation and protein synthesis (Mattick and Makunin, 2006;
Eddy, 2001; Kapranov et al., 2007). These are the prevalent RNA categories that are relevant
for this work:

• Messenger RNAs (mRNAs) provide the instructions for ribosomes in the process of
protein synthesis (Jackson et al., 2010). Eukaryotic mRNAs may contain untranslated
regions (introns) that are spliced out in their maturation process. Splicing is discussed in
more detail in section 1.1.2 (Green, 1986).

• Ribosomal RNAs (rRNAs) form the most abundant class of RNA molecules, compris-
ing 80% of cellular RNA mass. In eukaryotes four rRNAs – transcribed from two rRNA
genes and subsequently processed to form four mature rRNA fragments – bind 79 proteins
to form the two ribosomal subunits. The peptidyl-transferase reaction of the ribosome is
catalyzed by one of its rRNA molecules, highlighting the role of rRNAs both as enzymes
and as structural components of the ribosomes (Henras et al., 2015; Moss et al., 2007).
Ribosome production consumes the majority cellular energy and takes up vast nuclear
space (Warner, 1999; Pederson, 2011).

• Transfer RNAs (tRNAs) connect the mRNA template to the newly synthesizing poly-
peptide chain by mapping each nucleotide triplet (codon) to its respective amino acid.
tRNA-specific aminoacyl-tRNA-synthases “load” tRNAs with their corresponding amino
acids, preparing them to enter the translation machinery. 20 ancient well-conserved tRNA
aminoacyl-tRNA-synthases exist for each amino acid in the genetic code (Sprinzl et al.,
1998; Cusack, 1997; Lodish et al., 2000). The availability of tRNAs influences the speed of
protein synthesis. Since the concentration of tRNAs varies in the cell, codon frequencies
largely influence translation elongation speed and consequently the amount of cellular
proteins (Hanson and Coller, 2018; Bazzini et al., 2016).

• Small nuclear RNAs (snRNAs) are a class of short RNA molecules (around 150 nu-
cleotides) primarily involved in mRNA preprocessing (Matera et al., 2007). snRNAs act as
scaffolds to attract a specific set of RBPs and form larger complexes called small nuclear
ribonucleoproteins (snRNP). snRNP complexes primarily act in various stages of RNA
splicing. Therefore, snRNAs encompass both an enzymatic and a structural role, similar
to rRNAs discussed before (Kiss, 2004; Will and Lührmann, 2011; Madhani, 2013).

• Small nucleolar RNA (snoRNAs) are small RNA molecules that bind RNA modi-
fication enzymes and facilitate identification of target RNAs (primarily rRNAs, tRNAs
and snRNAs) (Bachellerie et al., 2002; Matera et al., 2007). Their association with their
protein partners is specific and the resulting RNA-protein complexes are called small nucle-
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olar ribonucleoprotein particles (snoRNPs). snoRNPs identify their target RNA molecules
based on their sequence complementarity with the snoRNA in the complex (Kiss-László
et al., 1998; Decatur and Fournier, 2003).

• Cryptic unstable transcripts (CUTs) were identified by studying newly synthesized
transcripts that resulted in the observation that many accessible intra- and intergenic
regions get transcribed to produce relatively short RNA molecules (200 to 800 nucleotides),
which are quickly removed from the cell (Wyers et al., 2005; Neil et al., 2009; Arigo et al.,
2006). These CUTs are often produced by RNA polymerase II (Pol II) that binds at the
promoter and transcribes in the opposite direction of the coding transcription unit (Neil
et al., 2009). While many CUTs are thought to be by-products of transcription, some
have been shown to play a role in gene regulation pathways (Berretta et al., 2008; Martens
et al., 2004; Uhler et al., 2007).

• Stable unannotated transcripts (SUTs) share many similarities with CUTs: they
originate from accessible intra- and intergenic regions and often emerge from protein-coding
genomic segments (Marquardt et al., 2011; Xu et al., 2009). However, they have a higher
half-life by escaping the immediate targeting by nuclear RNA degradation machinery (Xu
et al., 2009).

• Nrd1-unterminated transcripts (NUTs) are ncRNAs that describe pervasive tran-
scripts enriched upon depletion of RNA degradation factor, Nrd1. These transcripts have
significant overlaps with CUTs and SUTs as Nrd1 can be involved in their nuclear degra-
dation pathway (Schulz et al., 2013; Fox et al., 2015).

1.1.2 RNAs are rarely naked: dynamic RNA-protein interactions regulate the fate
of mRNAs

Since mRNAs transfer the genetic information from DNA to proteins, their location and abun-
dance in the cell is tightly controlled to adjust local protein concentrations that in turn determine
the cellular phenotype. Taking a closer look at various classes of ncRNAs in the previous section,
it becomes evident that most either contribute (directly or indirectly) to mRNA maturation, or
play a role in transcription regulation by controlling the speed of mRNAs production. In the
following and for the majority of this work, I will focus on the mRNA processing and RNA-
protein interactions that involve mRNAs. The major steps of RNA metabolism are described
below (Figure 1.2).

RNA transcription

Different cell types are formed in multi-cellular organisms by switching on and off certain genes at
developmental checkpoints (Cramer, 2019). Even unicellular eukaryotes such as Saccharomyces
cerevisiae (budding yeast) require intricate transcription regulation to respond to various envi-
ronmental stimuli as well as for their growth and development (Lackner et al., 2012; Broach,



1.1 The complex life of eukaryotic RNAs 5

2012). mRNA transcription is carried out by Pol II and is largely controlled by selective recruit-
ment of the polymerase to a control region at the beginning of the gene (promoter element) (He
et al., 2013). This recruitment can be facilitated by transcription factors (TFs) that bind en-
hancer elements (termed upstream activation sequences or UAS in yeast) in a sequence-specific
manner (Lambert et al., 2018). TFs can boost transcription by recruiting the transcription
machinery through cooperative low affinity interactions in their disordered regions (Hahn, 2018;
Boija et al., 2018; Ptashne and Gann, 1997). The way this transcription activation is encoded
in the disordered regions of TFs is the subject of a collaborative study that I will introduce in
chapter 4.3 (Erijman et al., 2020).

Upon assembly of the transcription initiation machinery at the promoter region, the double-
stranded DNA becomes unwinded and serves as a template to create the complementary RNA
molecule as Pol II marches forward (Cramer, 2019). The growing nascent mRNA chain is co-
transcriptionally modified by capping, splicing, cleavage, and polyadenylation complexes (Fig-
ure 1.2)(Bentley, 2014).

RNA capping

Capping is the first step in RNA maturation in which the capping enzyme adds a methylated
guanosine to the nascent RNA with an unprocessed 5′-triphosphate end (Ramanathan et al.,
2016). Capping occurs shortly after the start of transcription and as early as upon the synthesis
of the first 20 nucleotides (Martinez-Rucobo et al., 2015). 5′ capping ensures that the nascent
transcribing mRNA is protected from the degradation machinery (Jiao et al., 2010). Once
capped, the 5′ RNA end is bound by the cap-binding complex (Gonatopoulos-Pournatzis and
Cowling, 2014). This complex plays a crucial role in recruiting the necessary factors to the
precursor mRNA (pre-mRNA) for spliceosome assembly (Görnemann et al., 2005; Flaherty et al.,
1997), polyadenylation (Flaherty et al., 1997), and finally nuclear transport (Cheng et al., 2006;
Izaurralde et al., 1995). In the cytoplasm, the mRNA cap recruits initiation factors needed
for protein synthesis and helps form the 5′ to 3′ RNA loop during translation which facilitates
efficient reinitiaton to enable multiple translation rounds (Fortes et al., 2000; Choe et al., 2012;
Vicens et al., 2018).

RNA splicing

Most eukaryotic pre-mRNAs include both non-coding sequences (introns) and protein coding
fragments (exons). During splicing introns are removed and the exons are ligated together by
the spliceosome complex. The number of introns vastly varies in the eukaryotic kingdom with
just few hundred introns in the yeast genome to an average of eight introns per gene in human
(Neuvéglise et al., 2011; Sakharkar et al., 2005). The spliceosome is a ribonucleoprotein complex
that binds exon boundaries and brings them in close spatial proximity to perform the excision
reaction in a step-wise manner (Matera and Wang, 2014). The intron structure is evolutionary
conserved and consists of GU and AG dinucleotides that mark the 5′ and 3′ intron boundaries
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Figure 1.2: RBPs dynamically interact with mRNAs to guide various stages of RNA pro-
cessing. The life of a eukaryotic mRNA starts with transcription in the nucleus by RNA polymerase II.
A methylated guanoside is added to the RNA molecule co-transcriptionally by the capping complex.
Furthermore, introns are spliced out by the spliceosome complex that, guided by sequence elements in
introns, performs the cleavage and ligation reactions. As a last step of pre-mRNA maturation, a poly(A)
tail is appended to the RNA molecule. Mature mRNAs are transported to the cytoplasm through nuclear
pores by nuclear transport machinery. To control the rate and location of protein production, cytosolic
mRNAs dynamically interact with RBPs that transfer them to specific cellular locations, recruit degra-
dation enzymes, or the translation machinery. Adapted from an illustration by Julian König (Buchmann
Institute’s web page).

respectively, as well as the branch point sequence 18-40 nucleotide sequence upstream of the
3′ splice site. In higher eukaryotes a polypyrimidine tract between the branch point and 3′

intron boundary helps recruit the spliceosome to the 3′ splice site (Herzel et al., 2017; Will and
Lührmann, 2011). Various sequence elements in the RNA can act to recruit splicing factors
that activate or suppress different steps of the splicing reaction. These splicing enhancer and
silencing elements control the fate of introns and regulate alternative splicing, a process that
allows a single gene to generate multiple mRNAs by joining together different exon combinations
(Matlin et al., 2005; Matera and Wang, 2014).
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3′ end cleavage and polyadenylation

The 3′ end of the mRNA is defined by endonucleolytic cleavage. 3′ end cleavage is performed
by the termination complex, and is followed by the addition of a long stretch of untemplated
adenosines, termed the poly(A) tail, by poly(A) polymerase (Elkon et al., 2013). The recruitment
of the termination machinery is controlled by specific motifs (particularly a conserved AAUAAA
sequence called polyadenylation signal or PAS) that reside in the 3′ untranslated region of the
nascent RNA (Porrua and Libri, 2015; Proudfoot, 2011). Genes in higher eukaryotes often have
multiple PASs that can be recognized by the termination machinery, resulting in great variation
in the lengths of mRNA molecules produced from a single gene (Elkon et al., 2013; Gruber
and Zavolan, 2019). The resulting mRNAs can vary in coding sequences, as well as in their 3′

untranslated region (3′ UTR). Since the 3′ UTRs serve as docking points for many RBPs that
regulate RNA function, the variation in 3′ UTR length serves as a regulatory step to control
the function of the mRNA as well as its stability, cellular localization, and translation efficiency
(Hoque et al., 2013; Lianoglou et al., 2013; Gruber and Zavolan, 2019).

RNA modification

Recent studies have elucidated that mRNAs undergo sequence-specific chemical modifications
that can create a binding surface for RBPs or change the RNA structure and flexibility. The
bound RBPs can in turn regulate a variety of molecular processes, such as transcription, pre-
mRNA splicing, RNA export, mRNA translation, and RNA degradation (Boo and Kim, 2020;
Shi et al., 2019). RNA modifications can be dynamic and occur in various stages of the RNA
metabolism, both in the cytoplasm and the nucleus (Gilbert et al., 2016).

RNA export

In eukaryotes, RNA transcription and preprocessing takes place in the nucleus, while mRNA
translation happens in the cytoplasm. To reach the translation machinery, eukaryotic mRNAs
therefore have to pass through the nuclear pore complex (NPC), which tightly regulates the
flow of material between the two cellular compartments (Pemberton and Paschal, 2005). NPCs
achieve this selectivity by forming a hydrophobic liquid-like mesh, made of phenylalanine-glycine
repeats in their disordered regions. They are therefore permeable to particles coated in amino
acids that can dissolve in the pore, providing one of the first discovered instances of condensation
in cellular biology (Frey et al., 2006; Schmidt and Görlich, 2015). Consequently, nuclear mRNA
export is based on the formation of a messenger ribonucleoprotein (mRNP) export complex in the
nucleus that is able to diffuse back and forth through the nuclear pore (Stewart, 2010). Transport
directionality is imposed by an active process that remodels the mRNP in the cytoplasm and
therefore removes key NPC-soluble transport proteins, preventing mRNA return to the nucleus.
The RNA export complex is assembled in a step-by-step process that ensures only mature
mRNAs (that have undergone capping, splicing and polyadenylation) can exit the nucleus and



1.1 The complex life of eukaryotic RNAs 8

reach the translation machinery (Stewart, 2019).

RNA localization and transport

Controlling the location of mRNAs in the cell is an effective way to dictate protein localization
and in turn to control cellular function and morphology (Eliscovich and Singer, 2017). A well
studied example of RNA localization is the neural mRNA transport from the cell body (where
they are transcribed) and across axons to synapses that are sometimes meters away. This
synaptic RNA localization allows for rapid changes in protein concentration through on-demand
translation of proteins, and is more energy-efficient than transporting many translated proteins
from the same mRNA molecule across the axons (Van Driesche and Martin, 2018). The active
and directional transport of mRNA in the cytoplasm is facilitated by RBPs that target RNAs
in a sequence and structure dependent manner. These RBPs directly or indirectly interact
with motor proteins (i.e. kinesins, dyneins and myosins) which transport the mRNP across the
cytoskeleton (Gagnon and Mowry, 2011).

Liquid-liquid phase separation (LLPS or condensation) is a newly appreciated concept in biology
that explains how some mRNA molecules can get localized without the involvement of motor
proteins (Langdon and Gladfelter, 2018). LLPS describes the process in which upon reaching a
certain polymer concentration (DNA, RNA, or proteins), the homogeneous solution demixes into
a condensed phase (high polymer concentration) and a dilute phase (low polymer concentration).
Through demixing the overall number of favorable interactions in a mixture solution increases
(Brangwynne et al., 2015; Boeynaems et al., 2018; Banani et al., 2017; Flory, 1942). A well
studied example of LLPS-mediated RNA localization is the local assembly of germline RNA
granules, termed P granules, during the polarization of C. elegans. This process ensures that
germplasm components stay exclusively in the posterior side of the embryo and can develop the
germline upon cell division (Smith et al., 2016; Brangwynne et al., 2009). P granule localization
is thought to be established by the concentration gradients of MEX-5 and -6 that compete with
P granule proteins for binding RNA molecules and hence inhibit their RNA-dependent phase
separation in the anterior (Seydoux, 2018).

With our growing knowledge of biological pathways that are influenced by LLPS, more examples
of localized condensation have been discovered, such as the assembly of microtubules in centro-
somes (Conduit et al., 2014), the formation of signalling clusters at the membrane (Case et al.,
2019; Banjade and Rosen, 2014), cluster formation at presynaptic active zones (Milovanovic
et al., 2018; Zeng et al., 2018), and transciption condensates (Cho et al., 2018; Sabari et al.,
2018; Boehning et al., 2018). I will briefly discuss size and localization control of biological
condensates in chapter 4.2.
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Translation

Translation takes place in the cytoplasm and consists of three major steps: initiation, elongation,
and termination. It is a cyclic process, meaning terminated ribosomes are recycled to start a new
round of protein synthesis. To enhance the efficacy of this recycling, translating mRNAs often
form loops with the help of protein complexes that connect their 3′ and 5′ ends (Vicens et al.,
2018; Wells et al., 1998). Regulation of protein synthesis rates is mainly controlled through the
first translation step: initiation. The binding of RBPs to the 5′ UTR of the RNA molecule can
for example inhibit translation initiation by forming an RNA loop with the cap and blocking
the loading of the ribosome. Similarly, other RBPs or microRNAs (miRNAs) that target certain
sequences in the transcript can facilitate or hinder translation initiation (Babitzke et al., 2009;
Jackson et al., 2010; Muckenthaler et al., 1998).

RNA quality control and degradation

Throughout the previous steps, defective RNA molecules such as those that lack a cap or poly(A)
tail, have splicing defects, or carry transcriptional errors resulting in nonsense codons must get
recognized and removed from the cell. Degradation of these mRNAs relies on their identification
by surveillance RBPs and the subsequent recruitment of the RNA degradation machinery (Doma
and Parker, 2007). In addition to removing defective RNAs, functional RNA molecules also
undergo regulated degradation to control their concentration and to ensure their removal when
they are no longer needed by the cell (Ross, 1996; Miller et al., 2011). Deciphering the RNA-
protein interaction landscape in the context of RNA degradation is the topic of the first part of
this work. I will therefore introduce this pathway in more depth below.

1.1.3 RNA degradation pathway: An example of harmonious RNA-protein
interactions

RNA turnover controls the fate of all eukaryotic RNAs. In yeast, the RNA degradation path-
way has four main functions. (1) The maturation of many ncRNAs such as snRNAs, snoRNAs,
and 5.8S rRNA involves the degradation machinery (Allmang et al., 1999a; Lardelli and Lykke-
Andersen, 2020). (2) Many quality control pathways are in place to quickly degrade erroneous
tRNAs, rRNAs, or mRNAs that would otherwise produce non-functional proteins (He and Ja-
cobson, 2015; Houseley et al., 2006). (3) Non-productive Pol II transcripts such as CUTs and
NUTs, as well as by-products of RNA preprocessing such as intron fragments are degraded
(Wyers et al., 2005; Doma and Parker, 2007). (4) The rate at which RNAs get degraded con-
trols RNA abundance in the cell and thereby regulates their function (Ross, 1996; Miller et al.,
2011)(Figure 1.3).

In the following I will review the main steps of RNA degradation in yeast, focusing on the players
that are studied in the first part of this work.
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Figure 1.3: The many pathways of RNA quality control and degradation in yeast. RNA
metabolism is tightly controlled to identify and remove erroneous transcripts quickly. Failure in capping,
splicing and polyadenylation can lead to nuclear RNA degradation with the help of 5′ and 3′ exonucleases
Rat1 and the exosome complex (in blue). When needed to expose the RNA to exonucleases the cap and
poly(A) tail are removed by decapping (in green) and deadenylation complexes (in red) respectively.
Transcripts resulting from antisense transcription (a by-product of normal transcription) are targeted
by Nrd1/Nab3 and delivered to the degradation machinery. The RNA degradation machinery is also
involved in the degradation of spliced introns and preprocessing of many non-coding RNAs such as sn-
and sno-RNAs, some of which reside in intronic regions. mRNA degradation also occurs in the cytoplasm
in response to translation difficulties (often identified by the nonsense mediated decay machinery, in
yellow) or as a means to regulate RNA half-life. Degradation can be triggered by removing the cap or
poly(A) tail, causing the opening of the translation loop, and triggering 5′ degradation by the cytosolic
exonuclease Xrn1 and/or exosome degradation from the 3′ end.

Degradation initiation by deadenylation and decapping

As mentioned in section 1.1.2, mRNA capping and polyadenylation is a crucial step in RNA
maturation. These two end modifications mark the RNA as mature and recruit the cap binding
complex (CBC) and the poly(A) binding proteins (PABs) to the two transcript ends to shield
it against degradation enzymes. This provides the cell with many ways to control the fate of
mRNA through RBPs that stabilize or remove the CBC and PABs. Removing these protective
protein complexes would expose the naked ends of the RNA molecule to decapping (removal of
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the 5′ cap) and deadenylation (shortening of the 3′ poly-adenylated tail) enzymes, which leads
to the subsequent degradation of the mRNA molecule (Parker, 2012).

RNA deadenylation is mainly performed by two complexes: the Ccr4/Not complex consisting
of Ccr4, Pop1, Not1-5, and Caf40, and the Pan2/Pan3 complex. Ccr4, Pop1, and Pan3 are the
active exonucleases in these complexes and their action is regulated by other associated proteins.
The Pan2/Pan3 complex is recruited by Pab1 (a PAB) during mRNA maturation to trim down
the size of the poly(A) tail to 70–90 nucleotides (Dunn et al., 2005; Brown and Sachs, 1998).
Pab1’s presence on the poly(A) tail promotes its trimming by Pan2 while it inhibits the action
of Ccr4. This is consistent with a two step model for RNA deadenylation in which Pan2 initiates
the trimming to ∼65 residues and then Ccr4 further shortens the poly(A) tail (Parker, 2012;
Brown and Sachs, 1998; Tucker et al., 2002).

Decapping in yeast is carried out by the Dcp1/Dcp2/Dcs1 complex with Dcp2 as the catalytically
active subunit. (van Dijk et al., 2002; Steiger et al., 2003). Decapping is further regulated by a
number of decapping enhancers such as Edc2, Edc3, and Dhh1 that can recruit the decapping
complex to initiate the 5′ degradation of mRNA, upon various cellular triggers such as ribosome
stalling (Coller and Parker, 2005; Carroll et al., 2011; He et al., 2018).

5′ to 3′ mRNA degradation

Once the cap structure is removed, the mRNA’s 5′ monophosphate is prone to 5′ → 3′ degra-
dation by the exonuclease Xrn1 (Jinek et al., 2011; Stevens, 2001). Xrn1 couples its processing
with unwinding of local RNA structures, making it independent of helicases (Jinek et al., 2011;
Parker, 2012). Xrn1 has a paralog, Rat1, which is localized in the nucleus and is involved in
nuclear 5′ → 3′ RNA degradation and preprocessing (Park et al., 2015; Schmid and Jensen,
2018; Baejen et al., 2017).

3′ to 5′ mRNA degradation

Upon sufficient shortening of the Poly(A) tail, further 3′ → 5′ degradation of the RNA is carried
out by the exosome and its associated factors. The core exosome consists of 10 subunits: the
catalytically active exonuclease Rrp44 (can also perform endonucleation), together with three
small RBPs (Rrp4, Rrp40, and Csl4), as well as six members of the RNase PH protein family
(Rrp41, Rrp42, Rrp43, Rrp45, Rrp46, and Mtr3) (Allmang et al., 1999b; Park et al., 2015; Liu
et al., 2006). The first step of RNA degradation by the exosome is the passage (and identification)
of RNA through the TRAMP complex (in nucleus) or Ski complex (in cytoplasm) (Houseley
and Tollervey, 2009; Park et al., 2015). The TRAMP complex is involved in many nuclear
preprocessing and quality control mechanisms and exists in two isoforms: TRAMP4 (Trf4, Air2
and Mtr4) and TRAMP5 (Trf5, Air1 and Mtr4) (Anderson and Wang, 2009; Houseley and
Tollervey, 2008). It harbors a poly-(A) polymerase (Trf4 or Trf5) thought to make the RNA
substrate more attractive for exonucleation (Jia et al., 2011; Vaňáčová et al., 2005; LaCava
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et al., 2005), a zinc-knuckle putative RBP responsible for RNA recognition (Air1 or Air2),
and an RNA helicase (Mtr4) (Hamill et al., 2010; Falk et al., 2014). A more recent study
suggests a third isoform consisting of Trf4, Air1 and Mtr4 (Delan-Forino et al., 2020). Nuclear
exosome additionally associates with the 3′ exonuclease Rrp6 that takes part in antisense RNA
decay and aberrant mRNA degradation (Callahan and Butler, 2010; Davis and Ares, 2006;
Danin-Kreiselman et al., 2003). The Ski complex accompanies the exosome for cytosolic RNA
degradation. It consists of Ski2, an RNA helicase, as well as Ski3, and Ski8 (Brown et al.,
2000; Wang et al., 2005). Ski7 and Ski4 have been reported to bind cytosolic exosome directly
(van Hoof et al., 2002). Both TRAMP and Ski complexes contribute to substrate specificity by
reading out various degradation signals, such as Nrd1/Nab3 mediated recognition of aberrant
transcripts in the nucleus or ribosome mediated translation difficulties in the cytosol (Schmidt
and Butler, 2013a; Delan-Forino et al., 2020; Schmidt and Butler, 2013b).

Nuclear surveillance and preprocessing of ncRNAs

In addition to regulating the quality and stability of mRNAs, the nuclear degradation machinery
is involved in the maturation of pre-snRNAs, pre-snoRNAs, pre-tRNAs, and pre-rRNAs through
trimming and cleavage. Moreover, the spacer fragments produced during rRNA biogenesis as
well as non-functional introns are removed (Allmang et al., 1999a). Furthermore, the degrada-
tion machinery helps remove CUTs, NUTs, SUTs, and aberrant ncRNAs and mRNAs through
communication with the surveillance pathway (Sloan et al., 2012; Thiebaut et al., 2006).

1.2 How do proteins target specific RNA molecules?

A common thread between all processes described in the last sections is the dynamic involvement
of RBPs in each step of RNA biochemistry. These RNA-protein interactions control the fate of
mRNA molecules by regulating their transcription, stability, cellular location, and translation
rates (Singh et al., 2015; Dreyfuss et al., 2002). RNA molecules can also regulate RBP function
by altering their stability, interaction partners, and localization (Hentze et al., 2018). Recent
estimates suggest that the human genome may encode for more than 1500 RBPs (encompassing
7.5% of all protein-coding genes), highlighting the importance of RBPs (Gerstberger et al.,
2014). To ensure that the correct RNA molecules are targeted, RBPs must bind with high
specificity. I will briefly describe four major aspects of obtaining RBP specificity (Figure 1.4):
(1) selecting specific RNA sequences and structures, (2) cooperative multi-domain binding, (3)
cooperativity among various RBPs, and (4) co-localization through condensate formation.

1.2.1 Selecting specific RNA sequences and structures

RBPs often bind RNA using various structured RNA-binding domains (RBDs) (Castello et al.,
2016; Lunde et al., 2007) or sometimes also with disordered regions such as RGG/RG and RS
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Figure 1.4: RBPs find their target through a mixture of sequence and structural specificity
and cooperative binding. (Top) Many RBPs have RBDs or unstructured sequence elements with an
affinity towards specific RNA sequences and/or structures. Examples are from left to right: PTB, binding
domains 3 and 4, in complex with CUCUCU RNA [Protein Data Bank (PDB): 2ADC], Vts1p sterile-
α motif domain in complex with a 5′-CUGGC-3′ pentaloop embedded in a 19nt hairpin [PDB: 2ESE],
RBD1 of PTB in complex with CUCUCU RNA [PDB: 2AD9], and structure of the Pum1 PUM-homology
domain in complex with the single-stranded RNA 5′-AUUGUACAUA-3′. This structure demonstrates
an extreme case with high sequence specificity as the last 8 nucleotides are individually recognized by 8
Puf repeats in the PUM domain [PDB: 1M8Y]. Visualizations of RNA-protein structures are taken from
Li et al. (Bottom) Higher levels of specificity can be achieved by stacking several RBDs, or by favoring
interactions in the presence of multiple RBPs. This can be either due to protein complex formation
or a result of transient interactions between disordered regions of these proteins. Higher concentrations
of RNA and proteins resulting from condensate formation can further boost affinity and specificity of
RBP-RNA interactions. Illustrations are adapted from Pak et al.

motifs which are known to modulate RNA-binding activity (Ozdilek et al., 2017; Calabretta
and Richard, 2015). These RBDs can engage with specific RNA sequences and structures.
For instance many RNA-recognition motifs (RRMs) recognize single-stranded bases specifically
through the protein β-sheet and two loops that connect the secondary structure elements (Fig-
ure 1.4, top)(Oberstrass et al., 2005; Lunde et al., 2007). While RRMs in different proteins fold
into a similar structure, small variations in the amino acid residues in critical positions can give
rise to RBPs that recognize different RNA sequences.

Unlike TFs that target genomic sequences 6-12 nucleotides in length (Lambert et al., 2018),
RBDs often recognize very short sequences (∼3 nucleotides and rarely above 5)(Ray et al.,
2013; Dominguez et al., 2018). RBPs can partially compensate for this by adopting cooperative
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binding (described below) as well as spatial and temporal control of RNA and protein abundance.

1.2.2 Multi-domain binding

RBPs are often modular, consisting of multiple RBDs. A closer look at putative human RBPs
shows that more than half contain multiple RBDs of distinct types (Figure 1.5). Multiple
domains allow the protein to recognize longer stretches of RNAs or sequences that are separated
from each other on the RNA (Lunde et al., 2007). Higher affinities can be achieved by cooperative
binding due to an increased local concentration of the RNA molecule at an unbound domain
when another domain is already bound. We have shown that this effect results in dissociation
constants (Kd) for the multi-domain RBP that can be several orders of magnitude smaller than
that of each domain in the protein (Stitzinger et al., 2021). I will introduce this study in section
4.1.

A well-studied example of multi-domain binding is the mRNA-binding protein IMP3, which
contains six RBDs: four K-homology (KH) and two RNA-recognition motif (RRM) domains.
Studying RNA fragments that are bound by IMP3 has shown that all domains contribute to the
overall specificity. Consequently, IMP3 identifies appropriately spaced CA-rich and GGC-core
RNA elements, that can span over a hundred nucleotides (Schneider et al., 2019). Others have
also reported evidence for spaced sequence preferences in about one third of the studied RBPs,
highlighting the importance of multi-domain binding in modulating RBP specificity (Dominguez
et al., 2018; Jolma et al., 2020).

Figure 1.5: Many RBPs have multiple RBDs of various types. This graph shows the number
of RBDs annotated in each RBP gene in human. Proteins that harbor various types of RBDs (such as
RRMs, KH-domains, and ZFs) are marked in blue. RBPs with only one domain or repeats of the same
domain type are marked in green. The data used to generate this plot is taken from Gerstberger et al..
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1.2.3 Cooperative binding among multiple RBPs

Similarly to increasing affinity and specificity by stacking RBDs, proteins can bind target RNA
substrates cooperatively through protein-protein interactions either in interaction domains or
their disordered regions. As seen in previous chapters (1.1.2 and 1.1.3) many proteins interact
to form stable complexes such as those involved in splicing, decapping, deadenylation, and
exonucleation. A well-studied example is the Nrd1/Nab3 complex in yeast. Both Nrd1 and
Nab3 bind RNA molecules that target GUAG and CUUG RNA sequences respectively (Sohrabi-
Jahromi et al., 2019; Schulz et al., 2013). A small difference in density of these two motifs between
the sense (gene-coding) and antisense (opposite) strand are sufficient for Nrd1/Nab3 targeting
of aberrant transcripts and their subsequent RNA degradation (Schulz et al., 2013).

1.2.4 Co-localization in biological condensates

As explained in section 1.1.2, condensation can lead to higher local concentrations of RNA and
protein molecules, resulting in an increase in their interaction probabilities. Examples of well
characterized ribonucleoprotein granules are: nucleoli (Brangwynne et al., 2011), transcriptional
condensates (Cho et al., 2018), nuclear speckles (Galganski et al., 2017), Cajal bodies (Sawyer
et al., 2017), processing bodies (P-bodies) (Teixeira and Parker, 2007), stress granules (SGs)
(Molliex et al., 2015), and germ granules (Smith et al., 2016). For example highly cooperative
interactions among the C-terminal domain (CTD) of the transcribing Pol II, its nascent RNA
product and several other nuclear proteins can lead to condensate formation (Boehning et al.,
2018; Sabari et al., 2018; Cho et al., 2018). These transcription condensates can efficiently recruit
the RNA preprocessing machinery to facilitate pre-mRNA maturation (Guo et al., 2019; Cramer,
2019). Similarly rRNA transcription stabilizes nucleoli, a sub-nuclear compartment specialized
for ribosome biogenesis (Berry et al., 2015; Feric et al., 2016). Interestingly, rRNA transcription,
processing, and assembly into pre-ribosomes all occur within three distinct membraneless com-
partments within the nucleolus. This intricate organization ensures that the process is efficient
and the steps are followed in the desired order (Sabari et al., 2020; Pederson, 2011; Strom and
Brangwynne, 2019).

1.3 Experimental and computational approaches to uncovering RBP
specificity

While structural determination of RNA-protein complexes and biochemical assays for studying
the dynamics of these interactions have been instrumental for understanding the chemistry of
protein-RNA interactions, advances in high-throughput sequencing technologies set a milestone
by enabling the identification of global RBP binding sites inside living cells or in test tubes. The
availability and affordability of high-throughput sequencing has resulted in the development
of dozens of experimental protocols for studying RNA-protein interactions and petabytes of
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sequencing data to explore with computational methods. In the following sections, I will first
introduce commonly used high-throughput sequencing technologies, and then summarize current
computational approaches for modeling RNA-protein interactions.

1.3.1 Uncovering protein binding sites with high-throughput sequencing
technologies

Several experimental techniques have emerged to obtain systematic maps of RBP binding sites
in vivo (Hentze et al., 2018). These approaches are often based on RNA immunoprecipita-
tion and subsequent sequencing (RIP-seq)(Gilbert and Svejstrup, 2006). Here, RNA fragments
that are bound to an immunoprecipitated protein of interest are purified. The bound RNA
fragments are then sequenced and mapped to the genome. Binding regions are then identified
based on statistical evaluation of the read profiles (Uhl et al., 2017). A common additional step
to this approach is cross-linking the protein to its bound RNA fragment before purification,
termed cross-linking immunoprecipitation (CLIP-seq)(Licatalosi et al., 2008). Cross-linking re-
duces the experimental noise by allowing a more rigorous washing step and grants a higher
resolution in identification of the binding sites. Several variations of the CLIP-seq protocol have
been developed that can determine the binding footprints with single-nucleotide resolution:
photoactivatable-ribonucleoside-enhanced CLIP (PAR-CLIP)(Hafner et al., 2010), individual-
nucleotide-resolution CLIP (iCLIP)(König et al., 2010), and enhanced CLIP (eCLIP)(Van Nos-
trand et al., 2016).

Mapping RBP binding sites in vivo is a valuable approach for uncovering the cellular function of
the studied protein. However, deriving accurate motif models of RNA-protein interactions from
in vivo data is challenging due to complications arising from cooperativity and competition with
other RBPs (Dominguez et al., 2018), high levels of non-specific background binding (Frieder-
sdorf and Keene, 2014), and the influences of RNA localization, expression, and folding (Änkö
and Neugebauer, 2012). Therefore, additional techniques have been developed to study the
binding preferences of RBPs in vitro and in isolation from other RBPs. These technologies often
include the creation of a random pool of RNA sequences, selection of bound fragments by pro-
tein immunoprecipitation, and their subsequent identification by sequencing. RNA-compete, the
first high-throughput approach, identified bound RNA fragments with microarrays (Ray et al.,
2013). However, current approaches rely on high-throughput sequencing. These techniques in-
clude RNA-compete-seq (Cook et al., 2017), RNA bind-n-seq (RBNS)(Dominguez et al., 2018),
and high-throughput RNA systematic evolution of ligands by exponential enrichment (HTR-
SELEX)(Jolma et al., 2020).

The data presented in the first part of this work is generated by PAR-CLIP experiments. The
second part of my thesis, primarily focuses on the analysis of HTR-SELEX data. I will therefore
introduce these two techniques in more depth here (Figure 1.6).
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Figure 1.6: Experimental identification of RBP binding sites (A) PAR-CLIP protocol. Cells
are supplemented with 4SU that incorporates into nascent RNAs as a uridine replacement. They are
then exposed to UV radiation which creates 4SU-protein cross-links. After cell lysis, the protein-RNA
complexes are purified by immunoprecipitation of the target RBP. After partial digestion and size selection
by gel electrophoresis, the final RNA fragments are amplified sequenced, and mapped to the genome
resulting in T to C transitions at cross-link positions. Figure is adapted from Hentze et al.. (B) HTR-
SELEX protocol. A random RNA pool is incubated with the target RBP. Bound RNA fragments are
washed from the resin, reverse transcribed and amplified. The RNA fragments are then identified by
high-throughput sequencing. This process can be repeated several times to enrich RNA oligomers bound
with higher affinity.

PAR-CLIP protocol

PAR-CLIP is the first protocol developed to achieve single nucleotide resolution in determin-
ing protein binding sites. Cells are cultured on media that is supplemented with the modified
nucleotide 4-thiouridine (4SU). 4SU readily incorporates into nascent RNAs as a uridine re-
placement. This is followed by UV radiation that leads to the cross-linking of incorporated 4SU
nucleotides with interacting RBPs. The cells are then lysed and the RBP of interest is purified
through immunoprecipitation with a matching antibody. The RNA molecules are partially di-
gested afterwards with RNase T1 to produce smaller fragments, while bound RNA regions are
protected by the cross-linked protein. To ensure that only RNAs bound to the desired protein
are sequenced, the cross-linked RNA protein complexes are separated with gel electrophoresis
and size selected. The protein is removed after a proteinase K digestion step and the remain-
ing RNA sequences are amplified and then sequenced (Spitzer et al., 2014; Hafner et al., 2010;
Garzia et al., 2017).

The cross-linked 4SU will be recognized as cytidine analogs by the reverse transcriptase dur-
ing complementary DNA (cDNA) library preparation. This results in a thymidine to cytidine



1.3 Experimental and computational approaches to uncovering RBP specificity 18

(T→C) transition in PAR-CLIP sequences at the cross-link positions. Downstream processing of
the dataset therefore involves the use of statistical methods to identify high-confidence binding
sites based on the frequency of T→C transitions (Roth and Torkler, 2019; Corcoran et al., 2011;
Comoglio et al., 2015).

HTR-SELEX protocol

To identify RNA sequences that bind a selected protein, HTR-SELEX uses random DNA se-
quences of a defined length (typically 20 or 40 nucleotides), which contain 5′ and 3′ primer
sequences. These sequences are amplified and transcribed into RNA using the viral T7 RNA
polymerase. The transcribed random RNA sequences are incubated with the recombinant pro-
tein of interest and the protein-bound fragments are purified using chromatographic techniques.
After washing, the bound RNA fragments are amplified during the cDNA library preparation
and subsequently sequenced. The selection-amplification-sequencing cycle is then repeated to
further select for higher affinity binding partners (Jolma et al., 2020; Schneider et al., 2019).

1.3.2 Current approaches to de novo RNA motif discovery

Understanding the mRNP code, that is decoding the basis of specificity in cellular RNA-protein
interactions, is key to deciphering the RNA regulatory network and to understanding the rela-
tionship between the RNA sequence and its function (Gehring et al., 2017; Brannan and Yeo,
2016; Hennig and Sattler, 2015). To reach this goal, a wide range of motif discovery tools have
been developed to infer binding models based on the large amount of available in vivo and in
vitro datasets. In the next sections, I will first introduce commonly used models to represent
RNA motifs. Next, I will summarize current approaches to learning these motif models. Finally,
I will summarize the limitations of existing motif discovery tools.

Motif models

De novo RNA motif discovery entails the search for over-represented patterns in bound RNA
sequences that originate from the binding of the target RBP. There are several approaches to
modeling RNA motifs (Figure 1.7). The first and simplest approach is to represent the motif
with a linear RNA sequence, such as the GUAG motif used to describe the binding of Nrd1
(Schulz et al., 2013; Hashim et al., 2019). The second and most commonly used motif model is
the positional weight matrix (PWM). The PWM takes the degeneracy of the sequence model into
account by assigning weights for observing each nucleotide at each position. The PWM assumes
that the nucleotide probabilities between the positions are independent (Hartmann et al., 2013).
Bayesian Markov modeling (BaMM) is a third approach that overcomes this independence as-
sumption by representing the sequence preferences as conditional probabilities, including the
dependencies on preceding nucleotides (Siebert and Soeding, 2016; Kiesel et al., 2018). This is
an extension of hidden Markov models (HMMs) that only consider the dependencies between
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Figure 1.7: A variety of motif models are used to represent RBP sequence and structural
preferences. Sequence representations include: the linear consensus sequence, PWMs, BaMMs, and
k-mer energies (or probabilities). To represent secondary structure an extended alphabet can be used
to show preferences for or against common RNA structures, or alternatively base pair probabilities are
shown alongside the sequence motif. In the second part of this thesis I will introduce a new RNA
motif model learned by Bipartite Motif Finder (BMF) that models bivalent RNA-protein interactions
(Sohrabi-Jahromi and Söding, 2021).

adjacent nucleotides (Heller et al., 2017). However, none of these models are able to differenti-
ate between multi-modal (preferences for several distinct sequences), or variably gapped binding
specificities (Sasse et al., 2018). A forth type of RNA motifs assigns different binding energies
to all RNA oligomers up to a given length k (also known as k-mers). The advantage of this
approach is that it allows the learning of not only the inter-positional dependencies but also
multi-modal motifs. However, the number of parameters increases exponentially with k (4k),
making such models prone to overfitting when training longer motifs (Schneider et al., 2019;
Dominguez et al., 2018; Orenstein et al., 2016; Sasse et al., 2018).

It has been estimated that around a third of RBPs have a preference for binding a certain RNA
structure or structural context (Ray et al., 2013; Dominguez et al., 2018; Jolma et al., 2020).
The motif models mentioned above can be adapted to include this information. A common
approach is the use of an additional alphabet to represent structural preferences in the form of a
consensus sequence or PWM. In a simplified version, single-stranded and double-stranded bases
are differentiated (e.g. DDDDSSSDDD can represent an RNA stem loop). However, more often
this alphabet can be extended to include diverse RNA secondary structures, such as stems (S),
multiloops (M), hairpins (H), internal loops (I), bulge (B), and external regions (E) (Pan et al.,
2018; Zhang et al., 2016). Another approach for representing structural motifs is to include base
pairing probabilities for each nucleotide in the sequence motif model (Munteanu et al., 2018;
Jolma et al., 2020).
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Motif discovery tools

Many computational methods have been developed to fit the previously mentioned motif models
based on sets of motif-enriched (bound to RBP) and background (not bound to RBP) RNA
sequences. This is often achieved by fitting models that best distinguish bound and unbound
sequences. These approaches can be broadly categorized as explicit and implicit motif finders
(Sasse et al., 2018). Explicit motif discovery tools optimize a specific motif model (such as a
PWM) that is most enriched in bound sequences (Munteanu et al., 2018; Siebert and Soeding,
2016; Hiller et al., 2006; Bahrami-Samani et al., 2014). Implicit motif detection tools, however,
directly learn how to distinguish enriched and background sequences without learning an explicit
motif representation. The motifs are then inferred after the binding model is fit and only
represent an approximation to the RBP binding preference learned by the model. Examples
of this approach are non-linear machine learning methods such as support vector machines
(SVMs) (Maticzka et al., 2014) and deep learning approaches such as convolutional neural
networks (Alipanahi et al., 2015; Pan et al., 2019; Yan and Zhu, 2020). In fact, many recently
developed algorithms use deep neural networks to predict RBP binding sites. These networks
often have many parameters that allow them to implicitly learn complex patterns embedded
in the dataset, such as RNA structure, multi-modal motifs, co-occurrence of motifs from other
RBPs, and experimental biases (Sasse et al., 2018; Ghanbari and Ohler, 2020). Moreover,
additional information can be incorporated in the training step to increase the accuracy of
model predictions. This information includes: the secondary RNA structure (Pan et al., 2018;
Maticzka et al., 2014; Budach and Marsico, 2018; Zhang et al., 2016; Ben-Bassat et al., 2018;
Su et al., 2019; Deng et al., 2020), and when using in vivo data, the position of binding sites in
mRNA (i.e. 3′ and 5′ UTRs, coding sequence, or introns), gene annotation, and co-occurrence
with other RBPs (Stražar et al., 2016; Pan and Shen, 2017; Yu et al., 2018; Avsec et al., 2017).

Challenges and limitations of current motif discovery approaches

While deep-learning approaches have shown promising accuracy in predicting bound and un-
bound sequences, the logic behind their classification remains poorly understood (Ghanbari
and Ohler, 2020). There have been many efforts to make these “black box” neural networks
more interpretable. “Mutation maps” that show the effect of point mutations in the predicted
binding score can help highlight sequence regions that are more critical for protein binding (Ali-
panahi et al., 2015). In the case of convolutional neural networks, filters of the convolutional
layers resemble PWMs and can provide an insight on sequence features learned by the net-
work (Ghanbari and Ohler, 2020; Pan and Shen, 2017; Pan et al., 2018; Pan and Shen, 2018).
Other approaches rely on tracking the dependencies between input features and neural network
predictions through gradient calculations, highlighting features in the sequence that are most
important for identifying binding sites (Shrikumar et al., 2016; Sundararajan et al., 2017; Ghan-
bari and Ohler, 2020; Jha et al., 2020). Further postprocessing steps are needed to convert these
feature importance maps to binding motifs. Overall, while the trained network can be used to
estimate RBP motifs, the resulting motif model is an estimation and does not reflect the infor-
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mation learned by the network one-to-one. Moreover, with an increase in the number of model
parameters the risk grows that highly parametric models such as deep neural networks could
learn biases in experimental datasets. These experiment-dependent biases can be a result of
library preparation, amplification, or can depend on the type and concentration of RNase that
is used (Kishore et al., 2011; Orenstein and Shamir, 2014). For instance, the PAR-CLIP proto-
col detects binding sites based on T to C mutations and upon partial digestion by RNase T1,
which cleaves after guanines. This makes it prone to enrich cross-link sites in regions with high
thymine and guanine frequencies (Friedersdorf and Keene, 2014; Kishore et al., 2011). Complex
models can learn these subtle biases to better distinguish bound from unbound sequences. This
overfitting can be particularly problematic for RBPs, since they often bind short and repetitive
sequences in low complexity regions of UTRs (Dominguez et al., 2018).

Another challenge for studying specificities of RBPs is that they often bind their substrate highly
cooperatively through multi-domain binding or self-association (see Figure 1.5 that shows more
than half of RBPs have multiple RBDs)(Lunde et al., 2007; Ray et al., 2013). This results in
the enrichment of multiple short sequences in the bound RNA with flexible gap lengths between
each pair. The spacing, while partially flexible, is influenced by the structure of the RBP and
is specific to each RBP (Schneider et al., 2019; Dominguez et al., 2018; Jolma et al., 2020).
Learning the co-occurence of RNA motifs together with their spacing is therefore crucial for
understanding RBP targeting and could help explain part of the reported missing specificity for
RBPs (Jankowsky and Harris, 2015).

1.4 Motivation and aims of this thesis

RBPs control many aspects of RNA metabolism from synthesis to degradation. Understanding
how these proteins work and how they identify their target RNA molecules has been the central
focus of my doctoral research. My work revolves around two main topics: (1) characterization
of RBPs in the context of RNA degradation pathway, and (2) developing a thermodynamic
model to learn multivalent specificities of RBPs.

1.4.1 Genome-wide characterization of general eukaryotic RNA degradation factors

The last event in the life of RNA molecules is their targeted degradation via the complex RNA
degradation machineries. While transcriptome-wide interaction maps had been produced for
many RBPs involved in transcription initiation, elongation, termination, surveillance, RNA
preprocessing, and nuclear transport in yeast (Schulz et al., 2013; Baejen et al., 2017; Battaglia
et al., 2017; Baejen et al., 2014), global maps of many general RNA degradation factors were
missing when I started my PhD. In a collaboration with the laboratory of Prof. Patrick Cramer,
RBP-RNA interaction maps in vivo were generated using the PAR-CLIP protocol. In the
first part of this thesis, I report on the analysis of the first RBP interactome dataset of yeast
degradation factors to address the following points:
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1. What are the key differences between the 5′ and the 3′ degradation machineries? Do they
process different substrates?

2. Is there a variation in role and specificity inside each degradation complex?

3. Which degradation complexes are responsible for interacting with transcription and trans-
lation surveillance systems?

4. What is the rate limiting step of RNA degradation?

1.4.2 Thermodynamic modeling of multivalent RNA-protein interactions

Many cellular processes rely on the binding of RBPs with high affinity and specificity to a specific
subset of RNA molecules in the cell (section 1.1). However, studying RBP specificities has shown
that they bind short and degenerate RNA sequences (Dominguez et al., 2018). This so-called
“missing specificity” of RBPs is partially attributed to their modular nature, the fact that they
contain many RBDs that can target several small RNA fragments simultaneously (Jankowsky
and Harris, 2015; Lunde et al., 2007; Schneider et al., 2019; Nicastro et al., 2017). Since the gap
between the bound sequences is variable and dependent on the RBP structure, current motif
models (summarized in Figure 1.7) are not able to capture and represent multivalent binding.
Moreover, to estimate binding affinities to such repetitive and degenerate target sequences, it
is important to take the many binding configurations with a similar total binding energy into
account. This calls for a thermodynamic approach that can correctly sum up the contributions
from all these binding configurations. In the second part of my work, I have developed a com-
putational tool for learning bipartite RNA motifs in RNA-protein interaction datasets, termed
bipartite motif finder (BMF). BMF is the first tool that adopts a thermodynamic approach to
motif discovery. By developing BMF I aimed at addressing the following questions:

1. Would BMF’s bipartite motif models outperform other existing RNA motif discovery tools
in predicting new binding sites?

2. How prevalent is bipartite binding among RBPs?

3. How long and complex are sequence preferences of multivalent RNA binders?

4. Can BMF reliably learn the spatial geometry between the protein binding sites?
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Abstract RNA degradation pathways enable RNA processing, the regulation of RNA levels, and

the surveillance of aberrant or poorly functional RNAs in cells. Here we provide transcriptome-wide

RNA-binding profiles of 30 general RNA degradation factors in the yeast Saccharomyces cerevisiae.

The profiles reveal the distribution of degradation factors between different RNA classes. They are

consistent with the canonical degradation pathway for closed-loop forming mRNAs after

deadenylation. Modeling based on mRNA half-lives suggests that most degradation factors bind

intact mRNAs, whereas decapping factors are recruited only for mRNA degradation, consistent

with decapping being a rate-limiting step. Decapping factors preferentially bind mRNAs with non-

optimal codons, consistent with rapid degradation of inefficiently translated mRNAs. Global

analysis suggests that the nuclear surveillance machinery, including the complexes Nrd1/Nab3 and

TRAMP4, targets aberrant nuclear RNAs and processes snoRNAs.

DOI: https://doi.org/10.7554/eLife.47040.001

Introduction
The abundance of the different eukaryotic RNA species controls cell type and cell fate, and is deter-

mined by the balance between RNA synthesis and RNA degradation. Multiple mechanisms exist for

RNA degradation (Parker, 2012). RNAs are generally exported to the cytoplasm, where they are

degraded with an RNA-specific rate. Such canonical turnover is critical for RNA homeostasis. How-

ever, RNAs that are defective with respect to their processing, folding, assembly into RNA-protein

particles, or their ability to be translated, are identified and rapidly degraded by surveillance path-

ways. Surveillance occurs both in the nucleus (Schmid and Jensen, 2018) and in the cytoplasm

(Zinder and Lima, 2017). In the nucleus, aberrant RNAs resulting from upstream antisense transcrip-

tion are quickly degraded. Moreover, some non-coding RNAs (ncRNAs) require processing by the

degradation machinery (Houseley et al., 2006). Cytosolic RNAs also vary in their life-time, with

mRNAs encoding cell cycle regulators or transcription factors having reported life-times in the range

of minutes (Geisberg et al., 2014; Miller et al., 2011), whereas ribosomal RNAs live for days

(Turowski and Tollervey, 2015). Therefore, RNA degradation kinetics need to be actively regulated

to ensure the optimal life time for each transcript.

RNA degradation can occur from both ends of a transcript, and these processes are often cou-

pled. During canonical mRNA turnover, degradation is thought to be initiated by shortening of the

3´ poly-adenylated (polyA) tail through two major deadenylation complexes, the Pan2/Pan3 complex

and the multi-subunit Ccr4/Not complex (Ccr4, Not1, Pop2, Caf40) (Wolf and Passmore, 2014).

Specific mRNAs can recruit selected deadenylating factors after loss of the polyadenylate-binding

protein (Pab1) that protects the mRNA from degradation on the 30 end (Finoux and Séraphin,

2006; Goldstrohm et al., 2006; Semotok et al., 2005), but the choice of deadenylation pathway
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remains unclear. Studies have pointed out a direct link between translation termination and mRNA

degradation (reviewed in Huch and Nissan, 2014), in particular deadenylation, which is dependent

on Pab1 and Ccr4 (Webster et al., 2018). A proposed stepwise model for deadenylation suggests

that first the average yeast polyA tail length of 90 nucleotides (nt) is reduced to 50 nt by the Pan2/

Pan3 complex, before further shortening via the Ccr4/Not complex (Beilharz and Preiss, 2007;

Brown and Sachs, 1998; Tucker et al., 2001). When the polyA tail reaches a length of 10–12 nt, the

mRNA is decapped (Chowdhury et al., 2007; Tharun and Parker, 2001), or subjected to exosome

catalyzed degradation (Bonneau et al., 2009).

The second step in mRNA degradation is thought to be the removal of the 5´ cap by the decapp-

ing complex (Dcp1, Dcp2, Dcs1). The cap protects the mRNA from degradation by the 5´fi3´ exonu-

clease Xrn1, which requires a 5´ monophosphate at the terminal residue (Stevens and Poole, 1995).

Decapping is highly regulated by decapping enhancers such as the DEAD box helicase Dhh1, Edc2

and Edc3. Different potential mechanisms to trigger decapping include interference with translation

initiation factors, facilitated assembly of the decapping machinery, and stimulation of Dcp2 catalytic

function. Assembly of the decapping machinery occurs mainly after shortening of the polyA tail,

which triggers decapping complex formation on the deadenylated 3´ end of mRNA and opening of

the mRNA closed-loop structure (Caponigro and Parker, 1995; Morrissey et al., 1999). In this

closed-loop model, the 50 and 30 ends of the mRNA are thought to be in close proximity by forming

a complex between translation initiation factors binding to the 5´ cap and Pab1 associated with the

3´ end, thereby contributing to mRNA expression regulation (Vicens et al., 2018; Wells et al.,

1998).

An alternative pathway of mRNA degradation after deadenylation is 30fi50 degradation by the

exosome and its auxiliary factors (Anderson and Parker, 1998). The exosome is a multi-subunit

complex that consists of 10 core factors, comprising six members of the RNase PH protein family

(Rrp43, Rrp45, Rrp42, Mtr3, Rrp41, Rrp46), three small RNA-binding proteins (Csl4, Rrp40, Rrp4)

(Allmang et al., 1999), and the Rrp44/Dis3 protein, which harbors an exonuclease and an endonu-

clease domain (Lebreton and Séraphin, 2008; Schaeffer et al., 2009). In addition to its functions in

the cytoplasm, the exosome fulfills multiple roles in nuclear RNA processing and degradation

eLife digest Cells contain a large group of DNA-like molecules called RNAs. While DNA stores

and preserves information, RNA influences how cells use and regulate that information. As such,

regulating the quantities of different RNAs is a key part of how cells survive, grow, adapt and

respond to changes. For example, messenger RNAs (or mRNAs for short) carry genetic information

from DNA which the cell reads to produce proteins. RNAs that are not needed can be degraded

and removed from the cell by RNA degradation proteins.

Most RNA degradation proteins need to be able to bind to RNA in order to work. A technique

called “photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation”, often

shortened to PAR-CLIP, can detect these proteins on their targets. The PAR-CLIP technique

irreversibly links RNA-binding proteins to RNA and then collects those proteins and their bound

RNAs for analysis. As with DNA, the RNAs can be identified using genetic sequencing. Degradation

often starts at RNA ends, where specialized structures protect the RNA from accidental damage.

Using PAR-CLIP, Sohrabi-Jahromi, Hofmann et al performed a detailed study of 30 RNA

degradation proteins in the yeast Saccharomyces cerevisiae. The results highlight the specialization

of different proteins to different groups of RNAs. One group of proteins, for example, remove the

protective ‘cap’ structure at the start of RNAs. Those mRNAs that are not efficiently producing

proteins attracted a lot of these cap-removing proteins. The findings also identify proteins involved

in RNA degradation in the cell nucleus – the compartment that houses most of the cell’s DNA.

Together these findings provide an extensive data resource for cell biologists. It offers many links

between different RNAs and their degradation proteins. Understanding these key cellular processes

helps to reveal more about the mechanisms underlying all of biology. It can also shed light on what

happens when these processes fail and the diseases that may result.

DOI: https://doi.org/10.7554/eLife.47040.002
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(Lykke-Andersen et al., 2009; Ogami et al., 2018) for which it is additionally bound by Rrp6,

another 30fi50 exonuclease, Rrp47, and Mpp6 (Milligan et al., 2008; Mitchell et al., 2003;

Synowsky et al., 2009).

For RNA degradation by the exosome, RNA first passes through either the TRAMP or the Ski

complex. TRAMP is a nuclear poly-adenylation complex (Houseley and Tollervey, 2009) that is

involved in many of the RNA maturation and degradation processes and exists in two isoforms,

TRAMP4 (Trf4, Air2 and Mtr4) and TRAMP5 (Trf5, Air1 and Mtr4). These complexes harbor a pA

polymerase (Trf4 or Trf5), a zinc-knuckle putative RNA-binding protein (Air1 or Air2), and an RNA

helicase (Mtr4). Defective nuclear RNAs are tagged with a short polyA tail by TRAMP, making them

a more favorable substrate for the exosome core (Vanácová et al., 2005). The Ski complex is

required for cytoplasmic exosomal degradation. The Ski7 protein is stably bound to the cytoplasmic

exosome through the Ski4 subunit (van Hoof et al., 2002). The Ski2, Ski3, and Ski8 proteins form a

subcomplex interacting with Ski7, which is required for 30fi50 degradation of mRNAs (Araki et al.,

2001; Brown et al., 2000; Wang et al., 2005). The Ski2 protein is an ATPase of the RNA helicase

family that generates energy by ATP hydrolysis to unwind secondary structures and dissociate bound

proteins to deliver the RNA to the exosome.

To degrade eukaryotic mRNAs that are defective in translation, cytoplasmic quality control mech-

anisms exist (Doma and Parker, 2007). Normal and aberrant mRNAs can be discriminated by the

translation machinery, and translationally defective mRNAs are guided to a degradation pathway.

mRNAs with aberrant translation termination due to a premature translation termination codon are

subjected to nonsense-mediated decay (NMD) (Losson and Lacroute, 1979). Substrates for NMD

are identified by the Upf1 protein interacting with the translation termination complex followed by

binding of the Upf2 and Upf3 proteins, which enhances the helicase activity of Upf1 (Baker and

Parker, 2004; Chakrabarti et al., 2011). During NMD, the mRNA can be subjected to enhanced

deadenylation, deadenylation-independent decapping and rapid 30fi50 degradation (Cao and

Parker, 2003; Mitchell and Tollervey, 2003; Muhlrad and Parker, 1994).

The large variety of different RNA degradation factors poses the question how RNA degradation

pathways are selected and whether the RNA sequence can influence this selection. Answering this

question requires a systematic analysis of the RNA-binding profiles of the involved protein factors.

Although several transcriptome profiles of the RNA degradation factors Xrn1, Rrp44, Csl4, Rrp41,

Rrp6, Mtr4, Trf4, Air2 and Ski2 have been reported (Delan-Forino et al., 2017; Milligan et al.,

2016; Schneider et al., 2012; Tuck and Tollervey, 2013), we lack transcriptome-wide binding pro-

files for components of the deadenylation, decapping, and NMD machineries, as well as other subu-

nits of the exosome complex. Thus, the task of systematically analyzing the binding of subunits from

all known factors involved in RNA degradation to a eukaryotic transcriptome (‘transcriptome map-

ping’) has not been accomplished thus far.

Here we used photoactivatable ribonucleoside-enhanced crosslinking and immunoprecipitation

(PAR-CLIP) to systematically generate transcriptome-wide protein binding profiles for 30 general

RNA degradation factors in the yeast Saccharomyces cerevisiae (S. cerevisiae). In-depth bioinfor-

matic analysis and comparisons with previously reported PAR-CLIP data provide factor enrichment

on different RNA classes and the binding behavior for mRNAs and their associated antisense tran-

scripts. The results also give insights into how the various degradation complexes, and also different

subunits in these complexes, may be involved in the degradation of different RNA species. Several

conclusions can be drawn with respect to degradation pathway selection, new functions for known

factors can be proposed, and several hypotheses emerge that can be tested in the future. Finally,

our dataset provides a rich resource for future studies of eukaryotic RNA degradation pathways,

mechanisms, and the integration of mRNA metabolism.

Results

Transcriptome maps for 30 RNA degradation factors
In order to get a better understanding of RNA processing and degradation in a eukaryotic cell, we

measured transcriptome-wide binding locations of 30 RNA degradation factors involved in mRNA

deadenylation, decapping, exosome-mediated degradation, and in RNA surveillance pathways

including nuclear RNA surveillance and cytoplasmic nonsense-mediated decay (NMD) (Figure 1A,B).
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Figure 1. Overview of PAR-CLIP experiments performed in this study. (A) Overview of degradation pathways studied. (B) Number of high-confidence

PAR-CLIP cross-link sites obtained for each factor after merging data from replicates.

DOI: https://doi.org/10.7554/eLife.47040.003

The following figure supplements are available for figure 1:

Figure 1 continued on next page
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We performed PAR-CLIP in S. cerevisiae using our published protocol (Battaglia et al., 2017), with

minor modifications (Materials and methods). The high reproducibility of these PAR-CLIP experi-

ments is revealed by a comparison of two independent biological replicates that we collected for all

30 degradation factors (Figure 1—figure supplement 1), with Spearman correlations between 0.87

and 1.00 (mean: 0.94). We typically obtained tens of thousands of verified factor-RNA cross-link sites

with p-values�0.005 (Figure 1B). These transcriptome maps represent an extensive, high-confidence

dataset of in vivo RNA-binding sites for factors involved in RNA degradation.

Degradation factors exhibit transcript class specificity
We first compared degradation factor binding over different RNA classes. These included messen-

ger RNA (mRNA), where we distinguished the 5´ untranslated region (5´ UTR), the coding sequence

(CDS), introns, and the 3´ untranslated region (3´ UTR). We also included several classes of ncRNAs:

ribosomal (r), transfer (t), small nucleolar (sno), and small nuclear (sn) RNAs, as well as stable unanno-

tated transcripts (SUTs), cryptic unstable transcripts (CUTs), and Nrd1-unterminated transcripts

(NUTs) (Neil et al., 2009; Pelechano et al., 2013; Schulz et al., 2013) (Figure 2).

A first analysis revealed that most PAR-CLIP sequencing reads fall into the mRNA transcript class,

although many of the factors also show a considerable number of sequencing reads in ncRNAs, in

particular rRNAs (Figure 2A). To obtain a more quantitative comparison, we defined log enrichment

scores that reflect the preferences of factors in binding to a specific transcript class in comparison to

other factors and classes. To correct for the different sizes of classes and different numbers of mea-

sured factor binding sites, we normalized the log enrichment scores by subtracting class- and factor-

specific offsets, such that the mean for each class and each factor vanishes (Figure 2B, Materials and

methods). This analysis highlights differences between degradation factors with respect to binding

to various transcript classes, as will be discussed in detail below.

RNA end-processing complexes differ in their targets
The catalytic subunit Pop2 and the core subunits Not1 and Caf40 of the deadenylase complex Ccr4/

Not have similar binding preferences for the 5´ UTR, the CDS and 3´ UTR of mRNAs, for rRNAs,

tRNAs, snoRNAs, and snRNAs (Figure 2B, highlighted in red). Compared to other deadenylation

factors of the Ccr4/Not complex, the catalytically active subunit Ccr4 has different binding preferen-

ces, and is strongly enriched at mRNA introns. The second deadenylation complex, Pan2/Pan3,

shows a similar binding preference as the Ccr4/Not complex (except for the Ccr4 subunit), consistent

with its dominant role in yeast mRNA deadenylation (Boeck et al., 1996). Pan3 shows a strong bind-

ing preference for rRNAs and tRNAs.

For all decapping-related factors we observed similar binding preferences among each other

(Figure 2B, highlighted in green). They show the strongest enrichment at SUTs and at mRNAs com-

pared to the other transcript classes. Decapping factors bind preferentially to CDS and 3´ UTR as

well as SUTs. This is consistent with previous findings that SUTs are degraded via Dcp2-dependent

pathways in the cytoplasm (Marquardt et al., 2011; Smith et al., 2014; Thompson and Parker,

2007). Dcp2, which harbors the hydrolase activity that removes the 5´ cap, and the decapping acti-

vator Edc3, additionally bind to NUTs. The 5´ exonuclease Xrn1 shows a similar binding preference

as the decapping factors (Figure 2B, highlighted in orange). Taken together, complexes and

enzymes that are known to target mRNA ends for 3´ deadenylation and 5´ decapping and degrada-

tion show remarkably distinct binding specificities to different transcript classes.

The exosome and surveillance factors
For the exosome we also observed binding to different RNA classes (Figure 2B, highlighted in royal

blue). The core exosome subunits Csl4 and Rrp40 show similar cross-linking to rRNAs, tRNAs,

Figure 1 continued

Figure supplement 1. Biological replicate PAR-CLIP experiments have high correlation.

DOI: https://doi.org/10.7554/eLife.47040.004

Figure supplement 2. Western Blot analysis for all degradation factors analyzed in this study show IP efficiency.

DOI: https://doi.org/10.7554/eLife.47040.005
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Figure 2. Distribution of degradation factor cross-link sites over the yeast transcriptome. (A) Fractions of high

confidence PAR-CLIP sequencing reads of 30 yeast degradation factors fall into various transcript classes.

Depicted classes are the following: messenger RNA (mRNA) in turquoise (n = 4,928), ribosomal RNA (rRNA) in

antique pink (n = 24), transfer RNA (tRNA) in dark blue (n = 299), small nucleolar RNA (snoRNA) in yellow (n = 77),

Figure 2 continued on next page
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snoRNAs, and snRNAs. The catalytic exosome subunit Rrp44 and the core subunit Rrp4 binds to

introns of mRNAs, but preferentially to the short-lived, nuclear CUTs and NUTs. Rrp6, a subunit that

is exclusively present in the nuclear exosome complex, shows binding to rRNAs, snoRNAs, snRNAs,

CUTs and NUTs. This is consistent with the suggestion that the factor is needed for nuclear process-

ing of such non-coding transcripts and degradation of short-lived nuclear transcripts (Heo et al.,

2013; Vasiljeva and Buratowski, 2006). This complex distribution of cross-links for different exo-

some subunits to different RNA classes reflects the distinct functions of the exosome in nuclear RNA

surveillance, processing of stable ncRNAs, and cytoplasmic mRNA degradation (Zinder and Lima,

2017).

The two TRAMP complexes TRAMP4 and TRAMP5 show clearly distinct cross-linking patterns

(Figure 2B, highlighted in light blue). TRAMP4 subunits (Mtr4, Air2, Trf4) are enriched in introns,

consistent with a function on mRNAs, and on SUTs, CUTs, and NUTs. The TRAMP5 complex (Mtr4,

Air1, Trf5) shows binding enrichment for introns, rRNAs, tRNAs, snRNAs, and snoRNAs. This is in

agreement with previous data, which showed rRNA binding for Mtr4 and exosome subunits (Delan-

Forino et al., 2017; Schneider and Tollervey, 2013). Moreover, the TRAMP complex cooperates

with the Nrd1/Nab3 complex and the nuclear exosome complex during the maturation and 3´ pre-

processing of snoRNAs (Grzechnik and Kufel, 2008). To distinguish binding upon degradation and

binding in order to pre-process snoRNAs, we investigated metagene profiles of TRAMP subunits

along snoRNA genes (Figure 2—figure supplement 1). Air1/Trf5 bind almost exclusively to the

gene body whereas Air2/Trf4 bind downstream of the 3´ end. This suggests that TRAMP5 is mainly

involved in snoRNA degradation, whereas TRAMP4 may work together with the Nrd1/Nab3 machin-

ery to pre-process snoRNAs (Figure 2—figure supplement 1) and to target NUTs, SUTs, and CUTs

for degradation (Figure 2B, highlighted in light blue).

The cross-linking preferences of subunits of the Ski complex differ only slightly from each other

(Figure 2B, highlighted in cyan). All Ski complex subunits bind the 5´ UTR, CDS, and 3´ UTR of

mRNAs, rRNAs, tRNAs, snoRNAs, and snRNAs. The Ski2 subunit preferentially binds to the CDS of

mRNAs, consistent with its function as a helicase to detach bound proteins from the mRNAs

(Houseley and Tollervey, 2009; Lebreton and Séraphin, 2008). The exosome adaptor subunit Ski7

preferentially binds rRNAs and tRNAs. These patterns are consistent with the model that the exo-

some cooperates with distinct accessory complexes and factors to target different transcript classes.

Finally, we observed similar cross-linking patterns for all NMD factors with strong binding to SUTs

and NUTs (Figure 2B, highlighted in yellow). Upf2 shows an additional binding preference to introns

and CUTs. Upf3 also binds to the 5´ UTR, CDS, and 3´ UTR of mRNAs, and Nmd4 binds to introns

and 3´ UTRs of mRNAs.

Distinct factor distribution along mRNA
We next focused on degradation factor distribution on mRNAs. We prepared metagene profiles

showing the average occupancy of each factor around the mRNA transcription start sites (TSS) and

the poly-adenylation (pA) sites, respectively (Figure 3). The Pan2/Pan3 deadenylase complex and

Figure 2 continued

small nuclear RNA (snRNA) in green (n = 6), stable unannotated transcripts (SUTs) in red (n = 318), cryptic unstable

transcripts (CUTs) in light brown (n = 637), Nrd1-unterminated transcripts (NUTs) in dark brown (n = 298)(Materials

and methods). (B) Enrichment z-scores of high confidence PAR-CLIP cross-link sites of 30 yeast degradation factors

(rows) in various segments of mRNA transcripts (left columns; UTR: untranslated region; intron; CDS: coding

sequence), or other transcript classes as in A (other columns). The color-coded enrichment score shows the

column and row normalized enrichment values of binding preferences of each factor for each transcript class (color

encoded, depleted in blue and enriched in red). The coefficient of variation on top is the standard deviation

divided by the mean for each transcript class.

DOI: https://doi.org/10.7554/eLife.47040.006

The following figure supplements are available for figure 2:

Figure supplement 1. Metagene profiles for subunits of the TRAMP complexes on snoRNA genes.

DOI: https://doi.org/10.7554/eLife.47040.007

Figure supplement 2. Different transcript classes have comparable U-content.

DOI: https://doi.org/10.7554/eLife.47040.008
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Figure 3. Metagene analysis of degradation factor binding on mRNAs. Averaged occupancy profiles of

degradation factors over mRNAs aligned around their transcription start site (TSS) (n = 3,193, left) and around their

poly-adenylation (pA) site (n = 3,193, right) in a window of [±700 nt]. Regions that have neighboring transcripts on

the same strand were removed to avoid contaminating profiles (Materials and methods). Factors are grouped

according to their functional role; from top to bottom: deadenylation, decapping, Xrn1, exosome, TRAMP

complex, Ski complex, or NMD. The color code shows the average occupancy normalized between the minimum

(blue) and maximum (red) values per profile.

DOI: https://doi.org/10.7554/eLife.47040.009

The following figure supplements are available for figure 3:

Figure supplement 1. Metagene profiles of yeast RNA degradation factors centered on translation start and stop

sites in comparison to TIF-annotated TSS and pA sites.

DOI: https://doi.org/10.7554/eLife.47040.010

Figure supplement 2. Comparison of binding profiles on genes containing annotated upstream sense NUTs with

all mRNAs.

DOI: https://doi.org/10.7554/eLife.47040.011

Figure 3 continued on next page
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the Ccr4/Not subunits Pop2, Not1, and Caf40 all cross-link upstream of the 3´ end of mRNA with the

highest enrichment at the pA site, as expected from their function in shortening the polyA tail. The

catalytic subunit Ccr4 binds strongly in the 5´ region of mRNAs. All 5´ decapping factors bind

upstream of the pA site, and all but the catalytically active subunit Dcp2 show increasing occupancy

towards the 3´ end of mRNAs. These patterns can be explained if decapping factors are pre-bound

to mRNAs that form a closed loop that holds the RNA ends in proximity. In contrast, Dcp2 binds

almost exclusively at the pA site, suggesting that it might be recruited only upon active mRNA deg-

radation. The cytoplasmic 5´ exonuclease Xrn1 has the highest occupancy towards the 3´ end, similar

to the previously published crosslinking and cDNA analysis (CRAC) data (Tuck and Tollervey, 2013),

thereby resembling the binding profiles of the decapping factors. Comparison of the binding pro-

files aligned at the pA site or alternatively with profiles aligned at the translation stop codon shows

that the binding preference indeed lies at the end of the 3´ UTR independent of the stop codon

position (Figure 3—figure supplement 1B,C).

The exosome core subunits (Csl4, Rrp40, and Rrp4) and the catalytically active subunits (nuclear:

Rrp6, cytoplasmic: Rrp44) cross-link to the 5´ end of the transcript (Figure 3), possibly because the

exosome binds to the 5´ end while digesting the 3´ end, or more likely because the exosome slows

down towards the remaining 5´ end of mRNAs after rapid degradation from the 3´ end. Both TRAMP

complexes bind mainly in the 5´ region of mRNAs near the TSS, as previously observed for Mtr4 and

Trf4 (Tuck and Tollervey, 2013).

The Ski complex components Ski7 and Ski8 occupy the entire mRNA with increasing occupancy

towards the pA site, whereas Ski2 and Ski3 show more discrete binding towards the polyA tail (Fig-

ure 3). The NMD factors Upf1 and Upf3 show binding over the entire mRNA with highest occupancy

at the pA site, consistent with their role in scanning for premature stop codons in mRNAs and

remodeling of the 3´ end of protein-RNA complexes and completion of mRNA decay (Franks et al.,

2010). In addition, Upf2 and Nmd4 show strongest binding near the 3´ ends of mRNAs. Taken

together, the distribution of cross-links along mRNA transcripts differs between degradation com-

plexes and in some cases also between their subunits.

Surveillance of aberrant nuclear ncRNA
Pervasive transcription of the genome leads to many short-lived aberrant RNAs that must be rapidly

detected and degraded in the nucleus. We previously reported that the RNA surveillance factors

Nrd1 and Nab3 strongly cross-link to aberrant upstream antisense RNA that stems from bidirectional

transcription (Schulz et al., 2013). In order to find factors cross-linking to aberrant ncRNAs, we plot-

ted the occupancy of all 30 investigated factors on the antisense strand of known mRNAs (Figure 4).

For comparison, we plotted the published Nrd1 and Nab3 profiles in the first two lanes of Figure 4.

The factors are involved in processing and degradation of Nrd1-unterminated transcripts, or NUTs

(Schulz et al., 2013), and are expected to show similar binding to upstream antisense RNA as Nrd1

and Nab3. Indeed, we observed a similar binding pattern for all exosome subunits (Rrp6, Csl4,

Rrp40, Rrp4, Rrp44) and subunits of the TRAMP4 complex (Mtr4, Air2, Trf4). Consistent with this,

these factors also bind strongly to previously annotated NUTs and CUTs (Figure 2) and show strong

enrichment of Nrd1 and Nab3 motifs (GTAG, CTTG) around their cross-link sites (Figure 4—figure

supplement 1).

It has been shown that Nrd1 is involved in terminating transcripts upstream of the TSS. We also

observe a strong signal for binding upstream of TSS on the sense strand for Air2 and Mtr4 (Figure 3).

This suggests that the TRAMP4 complex is involved in degradation of those Nrd1-regulated

upstream sense transcripts. To investigate this hypothesis, we compared the binding profiles around

the TSS of 459 protein-coding genes, previously annotated as having upstream Nrd1-unterminated

transcripts, or NUTs (Schulz et al., 2013), with the profiles obtained for all mRNAs (Figure 3—figure

supplement 2A,B). TRAMP4 and the exosome subunits show a strong preference for binding to the

upstream promoter region of genes that are controlled by the Nrd1/Nab3 complex. To further

Figure 3 continued

Figure supplement 3. Metagene analysis of degradation factor binding on mRNAs after removing signals from

known NUTs and CUTs.

DOI: https://doi.org/10.7554/eLife.47040.012
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Figure 4. Surveillance of aberrant nuclear antisense RNAs by the exosome and the TRAMP4 complex. Averaged

occupancy profiles of degradation factors binding to transcripts antisense of mRNAs aligned around transcription

start site (TSS) (n = 3,076, left) and around their poly-adenylation (pA) site (n = 2,705, right) in a window of [±700

nt]. Regions with annotated genes on the antisense strand are removed to avoid contaminating the profiles

(Materials and methods). The color code shows the average occupancy normalized between the minimum (blue)

and maximum (yellow) values per profile. On top, previously published PAR-CLIP profiles for Nrd1 and Nab3 are

included for comparison (Schulz et al., 2013).

DOI: https://doi.org/10.7554/eLife.47040.013

The following figure supplements are available for figure 4:

Figure supplement 1. Motif enrichment analysis shows enrichment of Nrd1/Nab3 motifs for the TRAMP4 and the

exosome complex.

DOI: https://doi.org/10.7554/eLife.47040.014

Figure 4 continued on next page
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confirm that this upstream signal originates from NUTs and CUTs, we excluded cross-link sites that

fall within such previously annotated regions. We then compared the binding profiles generated

from the remaining binding sites on mRNAs (Figure 3—figure supplement 3). Upon filtering, the

signal upstream of the TSS for Air2 and Mtr4 decreases, showing that Nrd1-mediated regulation is

the primary cause for this upstream signal. Comparison of the observed antisense profiles (Figure 4)

with those obtained after excluding cross-link sites in previously annotated NUT and CUT regions

(Figure 4—figure supplement 2) confirms that most of the signal originates from transcripts that

are targeted by the Nrd1/Nab3 machinery.

These results are consistent with the idea that the nuclear RNA surveillance machinery involves, in

addition to Nrd1 and Nab3, the TRAMP4 complex and the nuclear exosome. Indeed, it was reported

that TRAMP4 can add a short polyA tail on aberrant RNAs (Wyers et al., 2005), which may trigger

degradation by the nuclear exosome. It was also recently shown that Nrd1 and Trf4 interact, provid-

ing a basis for coupling surveillance-mediated termination to RNA degradation (Tudek et al., 2014).

Interactions between RNA processing machineries
To find out which groups of factors can work together in degrading transcripts, we analyzed their

tendency to co-occupy the same transcripts by calculating the Pearson correlation of their occupancy

across all transcripts (Figure 5A). We also analyzed their co-localization, that is the tendency of a fac-

tor to bind near to another factor’s binding sites using a range of ±40 nt from each cross-link site

(Figure 5B). To relate these profiles to those of other factors, we included previously published

PAR-CLIP profiles from our lab (Supplementary file 1). Profiles were available for factors that func-

tion in nuclear RNA surveillance (Nrd1, Nab3), cap binding (Cbc2), mRNA transcript elongation

(Bur1, Bur2, Ctk1, Ctk2, Cdc73, Ctr9, Leo1, Paf1, Rtf1, Set1, Set2, Dot1, Spt5, Spt6, Rpb1), pre-

mRNA splicing (Ist3, Nam8, Mud1, Snp1, Luc7, Mud2, Msl5), pre-mRNA 3´ processing (Pab1, Pub1,

Rna15, Mpe1, Cft2; Yth1), transcription termination (Rat1, Rai1, Rtt103, Pcf11), and mRNA export

(Hrp1, Tho2, Gbp2, Hrb1, Mex67, Sub2, Yra1, Nab2, Npl3) (Baejen et al., 2017; Baejen et al.,

2014; Battaglia et al., 2017; Schulz et al., 2013).

Co-occupancy and co-localization plots for all factors can be found in Figure 5—figure supple-

ments 1 and 2, respectively. A two-dimensional embedding of co-occupancy profiles between all

these processing factors is shown in Figure 5C. It represents the degree of similarities between co-

occupancy of transcripts (Figure 5A) in terms of the distance in two dimensions. The two-dimen-

sional embedding of the co-localization matrix in Figure 5B shows a similar clustering (Figure 5—

figure supplement 3). This extensive global analysis suggests which factors reside in functional com-

plexes and which functional complexes may interact during RNA processing and degradation. The

analysis recovers several established interactions between subunits of known complexes and

between different complexes, providing a positive control. For example, all factors of the decapping

complex show very high co-occupancy and co-localization, as do Air2 and Mtr4, which reside in the

TRAMP4 complex.

The analysis contains a lot of new information, forcing us to focus here on a few interesting, novel

findings (Figure 5C). First, the largest cluster is formed by the previously analyzed factors involved in

transcription elongation by RNA polymerase II (cluster 1) and in co-transcriptional pre-mRNA proc-

essing, including cap-binding complex (Cbc2), 3´ processing, transcription termination, and RNA

export. The degradation factors Ccr4 and Air1 also reside in this cluster, maybe reflecting the role of

Ccr4 in transcription elongation (Kruk et al., 2011). A second cluster is formed by splicing factors

(cluster 2). Factors involved in nuclear and cytoplasmic exosomal degradation (Rrp6, Csl4, Rrp4,

Rrp40 and Rrp44) form a third cluster (cluster 3). Close to cluster 3, we find the TRAMP4 complex

subunit Trf4, the elongation factors Dot1, Paf1, Leo1, and the termination factors Pcf11 and Rai1.

Rai1 has been shown to detect and remove incomplete 5´ cap structures, to subject aberrant pre-

mRNAs to nuclear degradation (Jiao et al., 2010).

Figure 4 continued

Figure supplement 2. The aberrant nuclear ncRNAs bound by components of the exosome and the TRAMP4

complex are primarily NUTs and CUTs.

DOI: https://doi.org/10.7554/eLife.47040.015
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Figure 5. Global co-occupancy and co-localization analysis reveals unexpected cooperation between factors from different complexes and pathways.

(A) Matrix of pairwise correlation coefficients of factor occupancies evaluated over all transcripts. (B) Matrix of co-localization based on the enrichment

of factor x binding within 40 nt of the cross-link site of factor x´ (Materials and methods). (C) Two-dimensional embedding of the co-occupancies in (A)

Figure 5 continued on next page
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A fourth cluster is formed by mRNA deadenylation factors together with polyA tail binding pro-

teins (Pab1 and Pub1), Ski7, Ski8, Trf5, and the export factor Yra1 (cluster 4). This is consistent with

coupled mRNA deadenylation and subsequent degradation from its 3´ end by the exosome with the

Ski or TRAMP complex as adaptors. The fifth cluster is formed by mRNA decapping factors, which

cluster together with Xrn1, suggesting a coupling of mRNA decapping with degradation from the 5´

end by Xrn1 (cluster 5). The NMD-involved factors Upf1, Upf2, Upf3 and Nmd4, and Ski2 and Ski3

are also found in cluster 5. The high correlation between Xrn1 and Ski2 has been reported in a

CRAC experiment (Tuck and Tollervey, 2013). The elongation factor Ctr9, the 3´ processing factor

Mpe1 and the export factors Tho2, Mex67 and Nab2 are also found in cluster 5. A last cluster (clus-

ter 6) is formed by factors involved in nuclear RNA surveillance, including Air2, Mtr4 and the Nrd1/

Nab3 complex. Taken together, these findings are consistent with known functional associations and

physical interactions between factors and suggest intriguing new associations to be investigated in

future work.

5´ degradation machinery senses translation efficiency
To study the link between cytosolic mRNA translation and degradation, we compared the occupancy

of degradation factors on mRNAs to their average codon-optimality score (‘transcript optimality’)

(Figure 6A, Figure 6—figure supplements 2–8A). We found that the 5´ decapping machinery and

Xrn1 preferentially bind transcripts with low transcript optimality. In contrast, the 3´ deadenylation

machinery and the exosome bind more strongly to optimal transcripts. We asked whether this corre-

lation with codon optimality is introduced by only a few differentially bound codons or by global

enrichment/depletion of optimal codons. For this purpose, we introduced a ‘codon enrichment

score’, which measures a codon’s enrichment in the set of transcripts bound by the factor relative to

the yeast mRNA pool. For Dcp2 this enrichment score is high on non-optimal codons, and low on

optimal codons, whereas the opposite trend is observed for Ccr4 and most degradation factors

(Figure 6B, Figure 6—figure supplement 1–7) This is consistent with a model that ribosome stalling

on translationally inefficient codons can lead to recruitment of Dcp2 and Xrn1 and subsequent 5´

degradation of the transcript (Heck and Wilusz, 2018).

To investigate the significance of the correlation between transcript optimality and binding of the

5´ degradation machinery, we compared the contribution of several mRNA features in explaining the

occupancy patterns retrieved from PAR-CLIP experiments. Since mRNA expression, half-life, and

translation optimality are inter-correlated (Figure 6—figure supplement 8), a causative effect of

one of these features on binding strength may lead to correlations with all three features. To better

distinguish correlation from causation, we used linear regression analysis to explore whether correla-

tions between factor binding and optimality are better explained with other mRNA features (Fig-

ure 6—figure supplement 9). We assessed the significance of features via the likelihood ratio test

on the multi-variate linear regression model for occupancy. The likelihood ratio test calculates the

significance of a feature from the change of the likelihood (quantifying the prediction quality) upon

removal of that feature from the regression model. For decapping enhancers (Edc2, Edc3, and

Dhh1) and Xrn1, low codon optimality is the most determining feature for binding (Figure 6C). The

same is true for NMD factors Upf1 and Upf3, which are known to bind non-optimal transcripts

Figure 5 continued

analyzed for 74 RNA processing factors with tSNE, including 30 factors from this study (highlighted in bold), and 44 factors from previous studies

(Baejen et al., 2017; Baejen et al., 2014; Battaglia et al., 2017; Schulz et al., 2013) (Supplementary file 1). Factors that are plotted in close

proximity show a preference for binding to the same transcripts. Clusters present factors involved in RNA synthesis (1), splicing (2), 3´ processing (3),

deadenylation (4), decapping (5), nuclear ncRNA processing (6), and surveillance (7).

DOI: https://doi.org/10.7554/eLife.47040.016

The following figure supplements are available for figure 5:

Figure supplement 1. Co-occupancy for 74 RNA processing factors.

DOI: https://doi.org/10.7554/eLife.47040.017

Figure supplement 2. Co-localization coefficients for all 74 RNA processing factors.

DOI: https://doi.org/10.7554/eLife.47040.018

Figure supplement 3. Two-dimensional embedding of co-localization between 74 RNA processing factors.

DOI: https://doi.org/10.7554/eLife.47040.019
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Figure 6. Binding preferences reveal a link between decapping-mediated degradation and translation. (A) Total occupancy per mRNA (according to

TIF-seq annotation) for six factors as a function of the average mRNA codon optimality (transcript optimality). The occupancy of factors from the 5´fi3´

degradation machinery (decapping and Xrn1, left) decreases with increasing transcript optimality, whereas the occupancy of factors from the 3´fi5´

degradation machinery (Ccr4 and Caf40 deadenylation complex subunits and exosome subunit Rrp44, right) increases with increasing average codon

optimality. (Gray shading: 95% confidence intervals generated by bootstrapping mRNAs). (B) Codon enrichment in transcripts bound by Dcp2 and Ccr4

compared to the average frequency over all mRNAs. The bar colors represent codon optimality, with highly optimal codons shown in dark red. (Thin

gray lines: 90% confidence intervals generated by bootstrapping coding sequences.) (C) Significance of correlations between the binding strength of

degradation factors and transcript length, transcript optimality (Pechmann and Frydman, 2013), expression level (Baejen et al., 2017), and half-life

derived by multivariate linear regression analysis (Materials and methods). Bars are separated according to the direction of correlation with positive

correlation marked by a red background and negative correlation marked by a blue background.

DOI: https://doi.org/10.7554/eLife.47040.020

The following figure supplements are available for figure 6:

Figure supplement 1. Occupancies of deadenylation factors (Ccr4, Pop2, Not1, Caf40, Pan2, and Pan3) compared to transcript length, optimality,

expression level, and half-life.

DOI: https://doi.org/10.7554/eLife.47040.021

Figure supplement 2. Occupancies of decapping factors (Dcp2, Dcp1, Edc2, Edc3, and Dhh1) compared to transcript length, optimality, expression

level, and half-life.

DOI: https://doi.org/10.7554/eLife.47040.022

Figure supplement 3. Occupancy of Xrn1 compared to transcript length, optimality, expression level, and half-life.

DOI: https://doi.org/10.7554/eLife.47040.023

Figure 6 continued on next page
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(Celik et al., 2017). This result confirms the importance of the translation efficiency for the stability

of cytosolic mRNAs and strengthens our finding that transcripts with low average codon optimality

are preferentially targeted by the decapping machinery and degraded from the 5´ end.

Decapping factors are enriched upon RNA degradation
Although decapping occurs at the 5´ end of mRNAs, decapping factors show a strong occupancy

near the 3´ end (Figure 3). To investigate this further, we compared metagene profiles of decapping

factors between stable (top 25%) and unstable (bottom 25%) transcripts, using mRNA half-life esti-

mates (Figure 7A, Materials and methods). On both stable and unstable mRNAs, Dcp1, Edc2, Edc3,

and Dhh1 show increased binding near the 3´ end, but unstable RNAs show a higher occupancy in

the transcript body. The catalytically active subunit Dcp2 binds almost exclusively at the 3´ end and

has a higher occupancy on unstable transcripts. Moreover, A-rich 4-mers are abundant around the

proximity (eight nt) of Dcp2-cross-link sites (Figure 7C), indicating a binding preference of Dcp2 for

A-rich RNA sequences. Overall, these binding patterns suggest that decapping factors are bound in

transcript bodies and near the 3´ end of transcripts, and that through closed-loop formation of the

mRNA they are in close proximity to the 5´ end. Decapping factors might also travel with the 5´fi3´

exonuclease Xrn1 upon RNA degradation.

Decapping factors may bind to complete mRNAs or to transcripts that are in the process of being

degraded. To quantify these two behaviors, we combined our PAR-CLIP occupancy data with RNA

half-life estimates (Materials and methods). We modeled the occupancy of factors on mRNA as the

sum of binding to all transcripts (b) and surplus binding to transcripts that are in the process of deg-

radation ( a
t1=2

Þ. Therefore, we can model occupancy as a function of half-life with a linear equation

(occupancy ¼ a
t1=2

þ b). In cases where there is no surplus binding upon active degradation, that is

the occupancy is the same as in intact RNAs, ‘a’ will be zero. For 5´ decapping factors, this model

closely fits the occupancy patterns retrieved from our experiments (Figure 7B), other degradation

factors also follow this pattern to varying degrees (Figure 6—figure supplements 1–7). In particular,

Dcp2 shows a very high a/b ratio, revealing that it cross-links preferentially to transcripts that are

being degraded. This analysis strongly suggests that the 5´ decapping machinery, although present

to some extent on complete mRNAs, is enriched when mRNAs are degraded.

Discussion
Here we report transcriptome-wide binding maps for 30 RNA degradation factors in yeast. A

detailed bioinformatics analysis of these maps revealed how degradation factors vary in their binding

specificities for different classes of RNAs and with respect to their preferred locations on RNA tran-

scripts. Global comparisons of the profiles alongside previously published profiles of other RNA-

binding factors revealed clusters of factors that co-occupy RNAs or co-localize on RNAs. Our data

Figure 6 continued

Figure supplement 4. Occupancies of exosome components (Rrp6, Csl4, Rrp40, Rrp4, and Rrp44) compared to transcript length, optimality, expression

level, and half-life.

DOI: https://doi.org/10.7554/eLife.47040.024

Figure supplement 5. Occupancies for components of the TRAMP complex (Air1, Trf5, Mtr4, Air2, and Trf4) compared to transcript length, optimality,

expression level, and half-life.

DOI: https://doi.org/10.7554/eLife.47040.025

Figure supplement 6. Occupancies for components of the Ski complex (Ski2, Ski3, Ski7, and Ski8) compared to transcript length, optimality, expression

level, and half-life.

DOI: https://doi.org/10.7554/eLife.47040.026

Figure supplement 7. Occupancies for components of the NMD pathway (Upf1, Upf2, Upf3, and Nmd4) compared to transcript length, optimality,

expression level, and half-life.

DOI: https://doi.org/10.7554/eLife.47040.027

Figure supplement 8. Distributions of transcript length, half-life, expression level and transcript optimality for yeast mRNAs.

DOI: https://doi.org/10.7554/eLife.47040.028

Figure supplement 9. Correlation between binding to degradation factors and transcript length, codon-optimality, expression, and half-life.

DOI: https://doi.org/10.7554/eLife.47040.029
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Figure 7. Location and recruitment of the decapping complex Dcp1/Dcp2 and decapping enhancers Edc3, Dhh1,

and Edc2. (A) Smoothed, transcript-averaged PAR-CLIP occupancy profiles aligned at TSS and pA sites [±750 nt] of

unstable and stable transcripts (first and fourth quantile of half-life distribution, respectively). (B) Dependence of

total occupancy of factors on the transcripts half-life. The fitting function is plotted in red and the fitted value for b

Figure 7 continued on next page
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are consistent with a large body of published results and extend these to a global scale. In addition,

the results revealed several unexpected, novel findings, which we discuss below. Although our data

reflect factor cross-linking signal and measure occupancy on transcripts, and do not directly reveal

function, the correlations of occupancies between factors and with transcript properties indicate

functional aspects and suggest functional associations between factors that may guide future

studies.

With respect to canonical mRNA turnover in the cytoplasm, the Pan2/Pan3 deadenylation com-

plex and subunits of the Ccr4/Not complex bound preferentially to the pA site, reflecting a function

in polyA tail shortening at early stages of RNA degradation. In contrast, the Ccr4/Not complex sub-

unit Ccr4 bound also strongly in the 5´ region of transcripts. This pattern may reflect functional differ-

ences between Ccr4 and Pop2 during deadenylation (Webster et al., 2018) or an additional

function of Ccr4 in transcription elongation (Kruk et al., 2011). Ccr4/Not subunits also show varia-

tions in their RNA-binding specificities, suggesting several isoforms of the complex that vary in com-

position and function, or RNA-specific conformational rearrangements. Factors involved in

decapping show higher cross-linking near the RNA 3´ end, consistent with previously proposed bind-

ing near the pA site (Chowdhury et al., 2007). The profiles of decapping factors resemble those of

Xrn1, suggesting formation of a complex with this 5´fi3´ exonuclease or a fast mRNA decay by Xrn1

from 5´fi3´ and slowing down towards the 3´ end. Complex formation of Xrn1 and the decapping

factors is consistent with a function of Xrn1 in the buffering of mRNA levels in cells (Sun et al.,

2013), which may be explained if Xrn1 is a regulatory component of the decapping complex.

The preferred localization of 5´ decapping and 3´ deadenylation factors near the mRNA 3´ and 5´

end, respectively, seems counterintuitive, but may be explained by formation of an mRNA closed-

loop structure by messenger ribonucleoproteins (mRNPs), where 5´ and 3´ ends are in proximity (Gal-

lie, 1991). It is possible that mature mRNPs carry decapping factors near their 3´ end, and that upon

polyA tail shorting the decapping complex is activated, leading to decapping and rapid RNA degra-

dation from the 5´ end. In this model, decapping would open the RNA closed-loop structure, provid-

ing access for exonucleases and allowing for rapid RNA removal. Further, our result that decapping

factors are enriched on translationally non-optimal codons agrees with previous findings that sug-

gest a link between translation and RNA degradation from the 5´ end through the decapping

enhancer Dhh1 (Radhakrishnan et al., 2016). We note however that our approach does not detect

binding events within the polyA tail, limiting further insights.

Comparison of our data with previous profiles of the nuclear surveillance factors Nrd1 and Nab3

reveals many factors that show a similar binding to aberrant non-coding nuclear RNAs, in particular

antisense RNA upstream of known promoters, suggesting that these factors are part of the nuclear

surveillance machinery. These results are consistent with published data (Schmid and Jensen, 2018)

and with the following model for nuclear surveillance. First, the Nrd1/Nab3 complex recognizes

aberrant, antisense RNAs (Schulz et al., 2013). These RNAs then get adenylated by the TRAMP4

complex, consistent with an interaction of the Nrd1/Nab3 complex and the TRAMP subunit Trf4

(Tudek et al., 2014). The short polyA tail targets the RNA for degradation by the nuclear exosome.

We note that the degradation of introns and ncRNAs upstream of mRNAs on the same strand, which

were annotated as NUTs and CUTs, is likely to use the same degradation mechanism because these

are bound by the same factors (Figure 2, Figure 3—figure supplement 2). Thus, our results are con-

sistent with the idea that degradation of short-lived ncRNAs in the nucleus involves Nrd1/Nab3,

TRAMP4, and the exosome.

The exosome is involved in 3´fi5´ cytoplasmic mRNA degradation, and in the processing and

degradation of long-lived transcripts such as tRNAs, rRNAs and sn(o)RNAs. The differences in

Figure 7 continued

is marked with a dashed gray line. (Gray shade: 95% confidence intervals generated by bootstrapping transcripts).

(C) Sequence binding preference for the catalytically active subunit of decapping complex (Dcp2), illustrated with

the five most enriched and the 3 most depleted 4-mers. The color code shows the log2 enrichment factor of 4-

mers around PAR-CLIP cross-link sites [±8 nt]. Dark red represents strong enrichment and dark blue shows strong

depletion of a 4-mer. Infeasible combinations are shown with gray. The most highly enriched field is binding

AAAAU with the cross-link at the U, which is enriched over random expectation approximately 22.3 = 5-fold.

DOI: https://doi.org/10.7554/eLife.47040.030
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exosome co-factor binding to different RNA classes (Figure 2) support the hypothesis that these fac-

tors confer specificity for processing and degradation of various RNA species (Delan-Forino et al.,

2017). The exosome co-factor Ski2 shows cross-linking towards the 3´ end of mRNAs (Figure 3).

This indicates that the subunit is important for initial RNA degradation by using its helicase activity

to dissolve secondary structures and allowing the exosome to start degradation of the transcript

(Schneider and Tollervey, 2013). Like the exosome complex, the exosome co-factor TRAMP5 binds

mRNAs towards the 5´ end of transcripts, and thus some mRNAs may be targeted by TRAMP5 for

exosomal degradation. The catalytic exosome subunits Rrp44 and Rrp6 and the exosome core cross-

link near the mRNA 5´ end, probably because the exosome moves rapidly from 3´fi5´ and then slows

down, causing extensive cross-linking. In summary, our resource of transcriptome-binding profiles

for 30 RNA degradation factors reveals several hypotheses for the function of these factors that can

be tested case by case in the future.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(S. cerevisiae, BY4741)

Ccr4_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000000019

Strain, strain
background
(S. cerevisiae, BY4741)

Pop2_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000005335

Strain, strain
background
(S. cerevisiae, BY4741)

Not1_TAP C-terminally
tagged gene
(Open Biosystems,
Germany).

SGD: S000000689

Strain, strain
background
(S. cerevisiae, BY4741)

Caf40_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000005232

Strain, strain
background
(S. cerevisiae, BY4741)

Pan2_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000003062

Strain, strain
background
(S. cerevisiae, BY4741)

Pan3_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000001508

Strain, strain
background
(S. cerevisiae, BY4741)

Dcp1_TAP C-terminally
tagged gene
(Open Biosystems, Germany).

SGD: S000005509

Strain, strain
background
(S. cerevisiae, BY4741)

Dcp2_TAP C-terminally
tagged gene (Open
Biosystems, Germany).

SGD: S000005062

Strain, strain
background
(S. cerevisiae, BY4741)

Edc2_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000000837

Strain, strain
background
(S. cerevisiae, BY4741)

Edc3_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000000741

Strain, strain
background
(S. cerevisiae, BY4741)

Dhh1_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000002319

Strain, strain
background
(S. cerevisiae, BY4741)

Xrn1_TAP C-terminally
tagged gene
(Open Biosystems,
Germany).

SGD: S000003141

Strain, strain
background
(S. cerevisiae, BY4741)

Rrp6_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000005527

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Strain, strain
background
(S. cerevisiae, BY4741)

Csl4_TAP C-terminally
tagged gene
(Open Biosystems,
Germany).

SGD: S000005176

Strain, strain
background
(S. cerevisiae, BY4741)

Rrp40-TAP C-terminally tagged
gene (Open Biosystems,
Germany).

SGD: S000005502

Strain, strain
background
(S. cerevisiae, BY4741)

Rrp4_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000001111

Strain, strain
background
(S. cerevisiae, BY4741)

Rrp44_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000005381

Strain, strain
background
(S. cerevisiae, BY4741)

Air1_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000001341

Strain, strain
background
(S. cerevisiae, BY4741)

Trf5_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000005243

Strain, strain
background
(S. cerevisiae, BY4741)

Mtr4_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000003586

Strain, strain
background
(S. cerevisiae, BY4741)

Air2_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000002334

Strain, strain
background
(S. cerevisiae, BY4741)

Trf4_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000005475

Strain, strain
background
(S. cerevisiae, BY4741)

Ski2_TAP C-terminally
tagged gene
(Open Biosystems, Germany).

SGD: S000004390

Strain, strain
background
(S. cerevisiae, BY4741)

Ski3_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000006393

Strain, strain
background
(S. cerevisiae, BY4741)

Ski7_TAP C-terminally
tagged gene
(Open Biosystems,
Germany).

SGD: S000005602

Strain, strain
background
(S. cerevisiae, BY4741)

Ski8_TAP C-terminally
tagged gene
(Open Biosystems,
Germany).

SGD: S000003181

Strain, strain
background
(S. cerevisiae, BY4741)

Upf1_TAP C-terminally
tagged gene
(Open Biosystems,
Germany).

SGD: S000004685

Strain, strain
background
(S. cerevisiae, BY4741)

Upf2_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000001119

Strain, strain
background
(S. cerevisiae, BY4741)

Upf3_TAP C-terminally tagged
gene (Open
Biosystems, Germany).

SGD: S000003304

Strain, strain
background
(S. cerevisiae, BY4741)

Nmd4_TAP C-terminally
tagged gene
(Open Biosystems, Germany).

SGD: S000004355

Antibody IgG Sigma-Aldrich Cat#: I5006,
RRID:AB_1163659

IP: 0.1 mg per IP

Continued on next page

Sohrabi-Jahromi et al. eLife 2019;8:e47040. DOI: https://doi.org/10.7554/eLife.47040 19 of 29

Research article Chromosomes and Gene Expression Computational and Systems Biology



Continued

Reagent type
(species) or resource Designation Source or reference Identifiers Additional information

Antibody PAP anti-TAP Sigma Aldrich Cat#: P1291,
RRID:AB_1079562

WB (1:2000)

Commercial
assay or kit

Dynabeads
Protein G

Invitrogen Cat#: 10003D 330 ml per IP

Commercial
assay or kit

RNase T1 Thermo Fisher
Scientific

Cat#: EN0541

Commercial
assay or kit

Antarctic P
hosphatase

NEB Cat#: M0289S

Commercial
assay or kit

RNase OUT Invitrogen Cat#: 10777019

Commercial
assay or kit

T4 Polynucleotide
Kinase

Invitrogen Cat#: EK0032

Commercial
assay or kit

T4 RNA ligase 2,
truncated KQ

NEB Cat#: M0373S

Commercial
assay or kit

T4 RNA ligase 1 NEB Cat#: M0437M

Commercial
assay or kit

Proteinase K NEB Cat#: P8107S

Commercial
assay or kit

SuperScript III RT Thermo Fisher Scientific Cat#: 18080093

Commercial
assay or kit

Phusion High-Fidelity
PCR Master Mix

Thermo Fisher Scientific Cat#: F531S

Chemical
compound, drug

4-thiouracil Carbosynth Cat#:
591-28-6

1 mM final conc.

Software,
algorithm

mockinbird Roth and Torkler, 2018;
https://github.com/
soedinglab/
Degradation_scripts

Software,
algorithm

UMI-tools Smith et al., 2017;
DOI: 10.1101/gr.209601.116

Software,
algorithm

Skewer Jiang et al., 2014;
DOI: 10.1186/1471-2105-15-182

Software,
algorithm

Bowtie Langmead et al., 2009;
DOI: 10.1186/gb-2009-10-3-r25

Software,
algorithm

tSNE Van Der Maaten and Hinton, 2008;
DOI: 10.1007/s10479-011-0841-3

S. cerevisiae strain verification
Saccharomyces cerevisiae BY4741 strains harboring C-terminally tagged genes (Open Biosystems,

Germany) were tested for the correctly inserted tag by Western Blotting using the Peroxidase Anti-

Peroxidase (PAP; Sigma) antibody and Pierce ECL Western Blotting Substrate (Thermo Fisher Scien-

tific, USA) (data not shown).

PAR-CLIP experiments of S. cerevisiae proteins
PAR-CLIP was performed as described (Baejen et al., 2014; Battaglia et al., 2017). Briefly, TAP-

tagged protein expressing yeast cells were grown in minimal medium (CSM mixture, Formedium,

UK) supplemented with 89 mM uracil, 50–100 mM 4-thiouracil (4tU) and 2% glucose at 30˚C to

OD600 = 0.5. Cells were labeled in 1 mM 4tU final concentration for 4 hr. After labeling, cells were

harvested, resuspended in ice-cold PBS and UV irradiated with 10–12 J/cm2 at a wavelength of 365

nm on ice and continuous shaking. Lysis was performed in lysis buffer (50 mM Tris-HCl pH 7.5, 100

mM NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 0.5% NP-40) by bead beating (FastPrep�24 Instru-

ment, MP Biomedicals, LLC., France) using silica-zirconium beads (Roth, Germany). The cleared

lysate was used for immunoprecipitation with rabbit IgG-conjugated Protein G magnetic beads
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(Invitrogen, Germany) on a rotating wheel for 4 hr or overnight at 4˚C. Beads were washed in wash

buffer (50 mM Tris-HCl pH 7.5, 1 M NaCl, 0.5% sodium deoxycholate, 0.1% SDS, 0.5% NP-40). IP

efficiency was controlled with part of the sample by Western Blot as shown in Figure 1—figure sup-

plement 2. Partial digest of the cross-linked RNA was performed with 50 U RNase T1 per mL for

15–25 min at 25˚C. The dephosphorylation reaction was performed in antarctic phosphatase reaction

buffer (NEB, Germany) supplemented with 1 U/mL of antarctic phosphatase and 1 U/mL of RNase

OUT (Invitrogen) at 37˚C for 30 min. For rephosphyorylation, beads were incubated in T4 PNK reac-

tion buffer A (Invitrogen) with a final concentration of 1 U/mL T4 PNK, 1 U/mL RNase OUT and 1 mM

ATP for 1 hr at 37˚C. 3´ adapter ligation was performed in T4 RNA ligase buffer (NEB) with 10 U/mL

T4 RNA ligase 2 (KQ) (NEB), 10 mM 30 adapter (50 5rApp-TGGAATTCTCGGGTGCCAAGG-3ddC 30

(IDT), 1 U/mL RNase OUT, and 15% (w/v) PEG 8000 overnight at 16˚C. 5´ adapter was ligated to the

RNA using T4 RNA ligase buffer (NEB) with 6 U/mL T4 RNA ligase 1 (NEB), 10 mM 50 adapter (50 5I

nvddT-GUUCAGAGUUCUACAGUCCGACGAUCNNNNN 30, IDT), 1 mM ATP, 1 U/mL RNase OUT,

5% (v/v) DMSO, and 10% (w/v) PEG 8000 for 4 hr at 25˚C and 1 hr at 37˚C. Beads were boiled in pro-

teinase K buffer (50 mM Tris-HCl pH 7.5, 6.25 mM EDTA, 75 mM NaCl, 1% SDS) at 95˚C for 5 min.

Proteinase K digest was performed with 1.5 mg/mL proteinase K (NEB) for 2 hr at 55˚C. RNA was

recovered by acidic phenol/chloroform extraction followed by ethanol precipitation in presence of

0.5 mL GlycoBlue (Invitrogen) and 100 mM RT primer (50 CCTTGGCACCCGAGAATTCCA 30, IDT).

SuperScript III RTase was used for reverse transcription for 1 hr at 44˚C and 1 hr at 55˚C. NEXTflex

barcode primer and universal primer were added to cDNA by PCR amplification with Phusion HF

master mix (NEB). After PCR amplification, cDNA was purified and size-selected on a 4% E-Gel EX

Agarose Gel (Invitrogen). Quantification on an Agilent 2200 TapeStation instrument (Agilent Tech-

nologies, Germany) and 50–75 nt single-end sequencing was performed on Illumina sequencers

(HiSeq1500, HiSeq2500 and NextSeq550).

PAR-CLIP data pre-processing
Reads from PAR-CLIP experiments with replicates were merged after making sure that all samples

showed high Spearman correlation values comparing binding occupancies of replicates on different

genes (Figure 2—figure supplement 2). Mapping and statistical evaluation of PAR-CLIP experi-

ments was performed using our in-house software mockinbird (Roth and Torkler, 2018). In sum-

mary, the UMI is removed from the 5´ end with UMI-tools (Smith et al., 2017), and the 3´ adapter is

trimmed with Skewer (Jiang et al., 2014). Reads with traces of the 5´ adapter are discarded. The

preprocessed reads are then mapped to the S. cerevisiae genome (sacCer3, version 64.2.1). After

mapping PCR duplicates are removed with UMI-tools.

We used two alternative approaches for mapping reads using Bowtie (Langmead et al., 2009):

For all analyses except the ‘transcript class enrichment analysis’ in Figure 2, reads are uniquely

mapped with up to one mismatch. We discard alignments shorter than 20 nt. This stringent mapping

ensures that our high confidence PAR-CLIP cross-link sites are originating from correctly mapped

reads on the reference genome. For Figure 2, unique mapping would cause the loss of most reads

that fall into rRNAs and tRNAs because of duplicated rRNA genes and tRNA isodecoders. For Fig-

ure 2, we therefore allowed Bowtie multi-mapping in two regions with –best, –starra options and

discarded reads shorter than 30 nt.

TfiC transitions directly at the edge of the reads or with a Phred quality score lower than 20 are

not considered as signature of protein binding as they suffer from higher technical noise. To obtain

high confidence cross-link sites, we set a stringent cutoff of 0.005 for the p-value of cross-link sites

and require a minimum coverage of 2 per site. Moreover, if we see the same transition in at least

75% of reads in the input library control (SRA: SRX532381) (Baejen et al., 2014), we annotate it as a

single nucleotide polymorphism of our lab strain with respect to the genomic reference and remove

such sites from our analysis. Finally, the occupancy of a factor on a verified cross-link site is defined

as the number of transitions obtained from our PAR-CLIP experiments divided by the concentration

of RNAs covering the cross-link site according to the input library control. This control coverage is

measured under comparable conditions to PAR-CLIP experiments (Baejen et al., 2014). Occupancy

values are capped at the 95th percentile. Subsequent analyses were performed using in-house

python scripts. Mockinbird configuration files as well as the analysis scripts can be found at https://

github.com/soedinglab/Degradation_scripts (copy archived at https://github.com/elifesciences-pub-

lications/Degradation_scripts).
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Transcript class enrichment
We analyzed the distribution of reads from high confidence cross-link sites over the genome

(Figure 2A). We presented the sum of reads from 5´ and 3´ UTRs, coding sequences, and introns as

the value for mRNAs. Reads that fall within genomic regions not annotated as categories analyzed

here are shown with gray. These annotated transcript classes have comparable U-content, making

the comparison between fractions of cross-link sites in each category possible (Figure 2—figure

supplement 2).

For each factor studied here, we defined enrichment scores that represent their preferences for

binding to various transcript classes c, in comparison to all other factors. We use annotations for

rRNA, tRNA, snoRNA, snRNA, coding sequences (CDS), from S. cerevisiae genome sacCer3, version

64.2.1. Untranslated regions around coding boundaries (5´ and 3´ UTRs) were annotated based on

TIF-seq experiment (Pelechano et al., 2013). We selected the most strongly expressed isoform for

each gene. We then assigned boundaries to 3´ and 5´ UTRs based on annotated CDS of the same

gene. We furthermore used annotations for stable, unannotated transcripts (SUTs), cryptic unstable

transcripts (CUTs), and Nrd1-unterminated transcripts (NUTs) (Neil et al., 2009; Pelechano et al.,

2013; Schulz et al., 2013). We removed overlapping annotations with the following priority list:

rRNA, tRNA, snRNA, snoRNA, intron, CDS, UTR, SUT, CUT, NUT. For each factor, we counted the

number of high confidence reads falling in each transcript class. We then used the log2-transformed

matrix and normalized it in the following way for both rows and columns to get log enrichment val-

ues that sum to zero in both rows and columns. The row- and sum-normalized enrichment score is

defined as follows, where Xf ;c is the number of high confidence reads for factor f that fall into tran-

script class c, and X0
f ;c ¼ log2 Xf ;c (Figure 2B):

~X0
f ;c ¼ X0

f ;c �
X0
f ;�X

0
�;c

X0
�;�

We defined the row and sum averages of Xf ;c,

X0
f ;� ¼ 1C

X

C

c¼1

X0
f ;c;

X0
�;c ¼ 1F

X

F

f¼1

X0
f ;c;

X0
�;� ¼ 1FC

X

F

f¼1

X

C

c¼1

X0
f ;c;

F is the number of factors and C is the number of transcript classes (Figure 2B). The normalization

can be interpreted as subtracting from the log enrichment matrix X´ the first singular component of

its singular-value decomposition.

Metagene analysis
We used the most abundant TIF-annotated isoform for mRNAs (Pelechano et al., 2013) as a refer-

ence. Transcripts longer than 1500 bases are chosen and aligned at their TSS or pA sites. The aver-

age occupancy per nucleotide is then calculated based on high confidence cross-link sites of each

PAR-CLIP experiment. The profiles are smoothed by a moving average in a 41 nt window and the

95% confidence interval is estimated by 1500 bootstrap sampling iterations over the transcripts. To

further denoise the profiles, the cross-link sites falling in snRNAs, rRNAs, and tRNAs are removed.

Furthermore, to avoid ambiguous results, we made sure that the profile comes solely from the cen-

tral gene. To do so, we performed the metagene analysis around the TSS on the sense strand on

TIF-annotated mRNAs that have no other mRNA up to 700 bp upstream of their TSS (3193 tran-

scripts in total). Analogously, for sense-strand pA site profiles we used mRNAs that have no nearby

genes downstream of their pA site up to 700 bases on the same strand (3193 transcripts in total).

For the antisense strand profiles, we applied the same criteria on the opposite strand which left us
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with 3076 and 3193 transcripts filtered around TSS and pA site respectively. This ensures that the

observed antisense binding does not originate from neighboring or overlapping transcripts on the

antisense strand. In both cases we looked at the average occupancy in a window of [±700 nt] around

TSS and around pA sites. Occupancies were normalized to the maximum value, which is the back-

ground binding level for antisense profiles with no significant cross-linking to the antisense strand

(Figure 3, Figure 4, Figure 3—figure supplement 3, and Figure 4—figure supplement 2). The

same procedure was followed to plot metagene occupancies centered around protein-coding

regions and snoRNAs from S. cerevisiae genome sacCer3, version 64.2.1 (Figure 3—figure supple-

ment 1 and Figure 2—figure supplement 1). Similarly, CRAC coverage profiles of Xrn1, Mtr4, Trf4,

and Ski2 (pre-processed as described in Tuck and Tollervey, 2013) were aligned to TIF-annotated

transcripts in the same approach as described here (Figure 1—figure supplement 1).

Co-occupancy
Co-occupancy measures the tendency of two factors to bind to the same transcripts. Occupancy of a

factor on a transcript is defined as the sum of occupancies for all high confidence cross-link sites fall-

ing within this transcript. Co-occupancy of two factors is defined as the Pearson correlation over all

transcripts between the occupancies of these factors (Figure 5A). We used these correlation values

between all pairs of RNA processing factors to assign distances to each pair and used tSNE

(Van Der Maaten and Hinton, 2008) to visualize the two-dimensional nonlinear embedding of co-

occupancies for all RNA-binding proteins in our dataset (Figure 5C).

Co-localization
Co-localization measures how likely two factors are to bind near each other in the transcriptome.

More precisely, we first calculate the occupancy of a factor f 2{1,. . .,F} around the cross-link sites of

another factor f´ ([�40 nt,+40 nt] excluding the centered T). We then normalize according to the

total occupancy values,

zff 0 ¼
X

nf 0

i¼1

X

�1

j¼�40

Occff 0;i;jþ
X

40

j¼1

Occff 0;i;j

 !

co� localizationðf ; f 0Þ ¼
zff 0

P

f zff 0
P

f 0 zff 0

Where, nf is the number of cross-link sites for factor f, and Occff´,i,j is the occupancy of f at position

j around the ith cross-link site from factor f´ (Occff´,i,j = 0 if no verified cross-link sites exist). To

improve signal-to-noise, we compute from the resulting matrix of co-localizations between all RNA-

processing factors Cf,f´, the matrix of Pearson correlations between the rows of Cf,f´, (Figure 5B).

Codon-enrichment analysis
To search for possible links between translation efficiency and RNA degradation, we checked if

some degradation factors preferentially bind to translationally efficient/non-efficient transcripts. To

do so we adapted the proposed normalized translation efficiency scale (Pechmann and Frydman,

2013). The authors generate a normalized optimality score for codons that incorporates the compe-

tition between supply and demand of tRNAs. The coding region for each transcript was extracted

according to ORFs annotated by SGD. The codon optimality score was averaged over the whole

reading frame (Figure 6A, more detailed explanation in the next section).

We then checked whether mRNAs that bind to each factor are enriched or depleted in some

codons compared to all mRNAs. To achieve this, we defined the following score for codon enrich-

ment that represents deviations from average frequencies in all mRNAs,

codonenrichment¼

PT
t¼1

occðtÞ
PT

t0¼1
occðt0Þ

�Fc;t

� �

1

T

PT
t¼1

Fc;t

Here T is the number of mRNA transcripts, Fc;t is the fraction of the codon c in transcript t,

and occ tð Þ is the total occupancy of the factor on transcript t. 90% confidence intervals were
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generated by bootstrapping: we sampled with replacement 1000 times the same number of mRNAs

from the total set as in total, and for each set we recalculated the codon enrichment score. We col-

ored the bars based on the previously ranked optimality of codons (Pechmann and Frydman, 2013)

(Figure 6A, Figure 6—figure supplements 1–7).

Relating occupancies to various transcript features
We analyzed the correlation of the occupancy of all factors with transcript length, codon enrichment

of the transcript, expression level, transcript stability, and polyA tail length. For expression, we used

an RNA-seq experiment of wild-type yeast (SRA: SRX532381) (Baejen et al., 2017) and mapped the

reads to mRNAs. We present the average number of reads per base as an estimate for gene expres-

sion. For half-life calculations, we used published yeast 4tU-seq (GEO: GSM2199309) and RNA-seq

experiments (SRA: SRX532381) (Baejen et al., 2017). Transcript half-life is estimated with an opti-

mized method that will be published elsewhere (Hofmann et al., unpublished).

Since there are only few transcripts with very low or very high half-life, codon optimality, and

expression (Figure 6—figure supplement 8), we performed the analysis on a subset of mRNAs

where the transcript property lies between the 5% and 95% quantiles. We then compared the total

occupancy of degradation factors on each mRNA relative to such transcript features (Figures 6A

and 7B, and Figure 6—figure supplements 1–7). We show 95% confidence intervals generated by

bootstrapping mRNAs in gray shade.

We checked whether such correlations originate from the feature of interest or merely shows up

due to correlations between this feature and others (Figure 6—figure supplement 8). We used a

multivariate linear regression to model total occupancy as a linear function of these four features:

occupancy0ðtÞ ~ length þ optimality þ expression þ half life

In cases where the correlation is a direct effect from our feature of interest, we expect to lose sig-

nificantly on our prediction when this variable is taken out of the equation. Therefore, we use p-val-

ues representing the importance of each feature in this linear regression as a score representing the

significance of its contribution in explaining the final occupancies. Occupancy correlated strongly

with transcript length, which dominated as explanatory variable in this regression, trivially because

most factors bind along the entire transcript. To eliminate this trivial dependency, we used occu-

pancy per nucleotide, denoted occupancy0, as the target variable in our regression (Figure 6C).

Motif enrichment analysis
To find sequence preferences for binding events of degradation factors, we counted 4-mers in a win-

dow of [±5 nt] intervals around high confidence cross-link sites of PAR-CLIP experiments. Based on

this count table, the enrichment score for each 4-mer was calculated using the following formula,

enrichment ð4�mer; iÞ ¼
n4�mer;iþ 1

N�P4

j¼1
P4�mer½j�

Here N is the number of cross-link sites below the cut-off p-value (we used a maximum of 5000

cross link sites), n4mer; i is the number of observed 4-mers at position i in the set of binding sequences

aligned at their cross-link site i=0, 4-mer[j] is the base at the j’th position of the 4-mer, and Pb is the

probability of observing base b. We used the probabilities: PA = PT = 0.31 and PC = PG = 0.19 based

on frequencies in yeast genome and corrected for the T bias at the cross-link site (Figure 4—figure

supplement 1).
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Vanácová S, Wolf J, Martin G, Blank D, Dettwiler S, Friedlein A, Langen H, Keith G, Keller W. 2005. A new yeast
poly(A) polymerase complex involved in RNA quality control. PLOS Biology 3:e189. DOI: https://doi.org/10.
1371/journal.pbio.0030189, PMID: 15828860

Vasiljeva L, Buratowski S. 2006. Nrd1 interacts with the nuclear exosome for 3’ processing of RNA polymerase II
transcripts. Molecular Cell 21:239–248. DOI: https://doi.org/10.1016/j.molcel.2005.11.028, PMID: 16427013

Vicens Q, Kieft JS, Rissland OS. 2018. Revisiting the Closed-Loop model and the nature of mRNA 5’-3’
Communication. Molecular Cell 72:805–812. DOI: https://doi.org/10.1016/j.molcel.2018.10.047, PMID: 30526
871

Wang L, Lewis MS, Johnson AW. 2005. Domain interactions within the Ski2/3/8 complex and between the Ski
complex and Ski7p. RNA 11:1291–1302. DOI: https://doi.org/10.1261/rna.2060405, PMID: 16043509

Webster MW, Chen YH, Stowell JAW, Alhusaini N, Sweet T, Graveley BR, Coller J, Passmore LA. 2018. mRNA
deadenylation is coupled to translation rates by the differential activities of Ccr4-Not nucleases. Molecular Cell
70:1089–1100. DOI: https://doi.org/10.1016/j.molcel.2018.05.033, PMID: 29932902

Wells SE, Hillner PE, Vale RD, Sachs AB. 1998. Circularization of mRNA by eukaryotic translation initiation factors.
Molecular Cell 2:135–140. DOI: https://doi.org/10.1016/S1097-2765(00)80122-7, PMID: 9702200

Wolf J, Passmore LA. 2014. mRNA deadenylation by Pan2-Pan3. Biochemical Society Transactions 42:184–187.
DOI: https://doi.org/10.1042/BST20130211, PMID: 24450649

Wyers F, Rougemaille M, Badis G, Rousselle JC, Dufour ME, Boulay J, Régnault B, Devaux F, Namane A,
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Figure 1. Overview of PAR-CLIP experiments performed in this study. (A) Overview of degradation pathways studied. (B) Number of high-confidence

PAR-CLIP cross-link sites obtained for each factor after merging data from replicates.
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Figure 1—figure supplement 1. Biological replicate PAR-CLIP experiments have high correlation. (A) Total transcript occupancy of factors in replicate

experiments are plotted (in log2 space) and Spearman correlation values are shown for each pair. Each dot corresponds to a transcript. The color
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Figure 1—figure supplement 1 continued

indicates dot density. (B) Comparison of coverage profiles obtained from CRAC experiments of Xrn1, Mtr4, Trf4, and Ski2 in S. cerevisiae (Tuck and

Tollervey, 2013) with occupancy profiles from our PAR-CLIP experiments highlights reproducibility of transcriptome profiles across different methods.

These profiles show the averaged binding of degradation factors over mRNAs (sense strand: left and anti-sense strand: right) in a window of [±700 nt]

around their transcription start site (TSS) and their poly-adenylation (pA) site in a window of [±700 nt]. Regions that have neighboring transcripts on the

same strand were removed to avoid contaminating profiles (Materials and methods).
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Figure 1—figure supplement 2. Western Blot analysis for all degradation factors analyzed in this study show IP efficiency. IP using the TAP-tag is

detected by Western Blot analysis with tag specific antibody to show the IP quality of the different PAR-CLIP experiments representative for one

Figure 1—figure supplement 2 continued on next page
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Figure 1—figure supplement 2 continued

replicate per factor. The factors are sorted according to their complexes: deadenylation (Ccr4, Pop2, Not1, Caf40, Pan3, and Pan3), decapping (Dcp1,

Dcp2, Edc2, Edc3, and Dhh1), 5´fi3´ exonuclease (Xrn1), exosome (Rrp6, Csl4, Rrp40, Rrp4, and Rrp44), TRAMP (Air1, Trf5, Mtr4, Air2, and Trf4), Ski

(Ski2, Ski3, Ski7, and Ski8), and NMD (Upf1, Upf2, Upf3, and Nmd4). The molecular weight including the weight of the TAP tag (in kDa) is indicated for

each factor. The band at ~25 kDa is caused by cross-reactivity of the light chain of the used antibodies for IP and Western Blot. A shift to higher

molecular weight than indicated can be caused by UV-crosslinking of proteins to RNA.
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Figure 2. Distribution of degradation factor cross-link sites over the yeast transcriptome. (A) Fractions of high

confidence PAR-CLIP sequencing reads of 30 yeast degradation factors fall into various transcript classes.
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Figure 2 continued

Depicted classes are the following: messenger RNA (mRNA) in turquoise (n = 4,928), ribosomal RNA (rRNA) in

antique pink (n = 24), transfer RNA (tRNA) in dark blue (n = 299), small nucleolar RNA (snoRNA) in yellow (n = 77),

small nuclear RNA (snRNA) in green (n = 6), stable unannotated transcripts (SUTs) in red (n = 318), cryptic unstable

transcripts (CUTs) in light brown (n = 637), Nrd1-unterminated transcripts (NUTs) in dark brown (n = 298)(Materials

and methods). (B) Enrichment z-scores of high confidence PAR-CLIP cross-link sites of 30 yeast degradation factors

(rows) in various segments of mRNA transcripts (left columns; UTR: untranslated region; intron; CDS: coding

sequence), or other transcript classes as in A (other columns). The color-coded enrichment score shows the

column and row normalized enrichment values of binding preferences of each factor for each transcript class (color

encoded, depleted in blue and enriched in red). The coefficient of variation on top is the standard deviation

divided by the mean for each transcript class.
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Figure 2—figure supplement 1. Metagene profiles for subunits of the TRAMP complexes on snoRNA genes.

Transcript averaged PAR-CLIP occupancy profiles are shown for Air1, Trf5, Mtr4, Air2, and Trf4. snoRNA genes are

aligned either at their 5´ end or at their 3´ end (n = 77). Occupancy profiles are shown over the range of ±50 nt.
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Figure 2—figure supplement 2. Different transcript classes have comparable U-content. Fraction of U over all bases in transcript classes studied

in Figure 2 (untranslated region (UTR); intron; coding sequence (CDS), ribosomal RNA (rRNA), transfer RNA (tRNA), small nucleolar RNA (snoRNA),

small nuclear RNA (snRNA), stable unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs), Nrd1- unterminated transcripts (NUTs)).
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Figure 3. Metagene analysis of degradation factor binding on mRNAs. Averaged occupancy profiles of

degradation factors over mRNAs aligned around their transcription start site (TSS) (n = 3,193, left) and around their

poly-adenylation (pA) site (n = 3,193, right) in a window of [±700 nt]. Regions that have neighboring transcripts on

the same strand were removed to avoid contaminating profiles (Materials and methods). Factors are grouped

according to their functional role; from top to bottom: deadenylation, decapping, Xrn1, exosome, TRAMP

complex, Ski complex, or NMD. The color code shows the average occupancy normalized between the minimum

(blue) and maximum (red) values per profile.

DOI: https://doi.org/10.7554/eLife.47040.009
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Figure 3—figure supplement 1. Metagene profiles of yeast RNA degradation factors centered on translation start and stop sites in comparison to TIF-

annotated TSS and pA sites. Transcript-averaged PAR-CLIP occupancy profiles are shown for RNA degradation factors involved in (A) deadenylation, (B)
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Figure 3—figure supplement 1 continued

decapping, (C) 5´fi3´ exonuclease Xrn1, (D) exosome, (E) TRAMP, (F) Ski, and (G) NMD. Transcripts are aligned either at transcript start site (TSS) and

poly-adenylation (pA) site (marked with blue) or at their start and stop codons (marked with green). TIF-seq based annotation is shown in blue (n = 3193

for TSS and pA site profiles) (Pelechano et al., 2013). Open reading frames (ORF) annotated in the SGD (version 64.2.1) are shown in green (n = 4012

for TSS, and n = 3965 for pA site selected transcripts). To avoid contaminating signals from neighboring genes, we filtered out regions that had

annotations upstream and downstream of the centered gene (up to 700 nt) (Materials and methods). Shaded areas (in blue TIF-seq annotation, or in

green for ORF annotation) depict 95% confidence intervals derived from bootstrapping genes. Comparison between these two profiles highlights

preferences for end binding degradation factors in binding to untranslated regions at the two sides of the transcript.
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Figure 3—figure supplement 2. Comparison of binding profiles on genes containing annotated upstream sense NUTs with all mRNAs. (A) Binding

enrichment of degradation factors around the TSS of genes with an upstream sense NUT. Enrichment is defined as the ratio of the average occupancy

in the interval [±300 nt] of the TSS on these genes that contain an upstream NUT (n = 459) (Schulz et al., 2013) divided by the average occupancy on

all genes. (B) Transcript-averaged PAR-CLIP occupancy profiles for all mRNAs (black) is compared to patterns derived from genes with upstream sense

NUTs (blue). Transcripts were aligned at their TSS and averaged over the interval of [±600 nt]. We compared Nrd1 and Nab3 profiles, known to process

NUTs, with subunits of the TRAMP complex. 95% confidence intervals obtained from bootstrapping genes are shown with gray and blue shades.
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Figure 3—figure supplement 3. Metagene analysis of degradation factor binding on mRNAs after removing

signals from known NUTs and CUTs. Cross-link sites were filtered to exclude regions that were previously

annotated as NUTs and CUTs (Neil et al., 2009; Schulz et al., 2013). Averaged occupancy profiles of

degradation factors are then shown over mRNAs aligned around their transcription start site (TSS) (n = 3,193, left)

and around their poly-adenylation (pA) site (n = 3,193, right) in a window of [±700 nt]. Regions that have

neighboring transcripts on the same strand were removed to avoid contaminating profiles (Materials and

methods). Factors are grouped according to their functional role; from top to bottom: deadenylation, decapping,

Xrn1, exosome, TRAMP complex, Ski complex, or NMD. The color code shows the average occupancy normalized

between the minimum (blue) and maximum (red) values per profile.
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Figure 4. Surveillance of aberrant nuclear antisense RNAs by the exosome and the TRAMP4 complex. Averaged

occupancy profiles of degradation factors binding to transcripts antisense of mRNAs aligned around transcription

start site (TSS) (n = 3,076, left) and around their poly-adenylation (pA) site (n = 2,705, right) in a window of [±700

nt]. Regions with annotated genes on the antisense strand are removed to avoid contaminating the profiles

(Materials and methods). The color code shows the average occupancy normalized between the minimum (blue)

and maximum (yellow) values per profile. On top, previously published PAR-CLIP profiles for Nrd1 and Nab3 are

included for comparison (Schulz et al., 2013).
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Figure 4—figure supplement 1. Motif enrichment analysis shows enrichment of Nrd1/Nab3 motifs for the TRAMP4 and the exosome complex. Motif

analysis was performed for all degradation factors in this study. Nrd1 and Nab3 are included for comparison (Schulz et al., 2013). Occurrences of Nrd1

motif (GTAG) and Nab3 motif (CTTG) are highlighted with red. The color code shows the log2 enrichment factor of top five enriched and top 3
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Figure 4—figure supplement 1 continued

depleted 4-mers around PAR-CLIP cross-link sites [±8 nt]. Dark red represents strong enrichment and dark blue shows strong depletion of a 4-mer.

Infeasible combinations are shown with gray.
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Figure 4—figure supplement 2. The aberrant nuclear ncRNAs bound by components of the exosome and the

TRAMP4 complex are primarily NUTs and CUTs. Cross-link sites were filtered to exclude regions that were

previously annotated as NUTs and CUTs (Neil et al., 2009; Schulz et al., 2013). Averaged occupancy profiles of

degradation factors are shown on transcripts antisense of mRNAs aligned around the transcription start site (TSS)

(n = 3,076, left) and around their poly-adenylation (pA) site (n = 2,705, right) in a window of [±700 nt]. Regions with

annotated genes on the antisense strand are removed to avoid contaminating the profiles (Materials and

methods). The color code shows the average occupancy normalized between the minimum (blue) and maximum

(yellow) values per profile. On top, previously published PAR-CLIP profiles for Nrd1 and Nab3 are included for

comparison (Schulz et al., 2013).
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Figure 5. Global co-occupancy and co-localization analysis reveals unexpected cooperation between factors from different complexes and pathways.

(A) Matrix of pairwise correlation coefficients of factor occupancies evaluated over all transcripts. (B) Matrix of co-localization based on the enrichment

Figure 5 continued on next page
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Figure 5 continued

of factor x binding within 40 nt of the cross-link site of factor x´ (Materials and methods). (C) Two-dimensional embedding of the co-occupancies in (A)

analyzed for 74 RNA processing factors with tSNE, including 30 factors from this study (highlighted in bold), and 44 factors from previous studies

(Baejen et al., 2017; Baejen et al., 2014; Battaglia et al., 2017; Schulz et al., 2013) (Supplementary file 1). Factors that are plotted in close

proximity show a preference for binding to the same transcripts. Clusters present factors involved in RNA synthesis (1), splicing (2), 3´ processing (3),

deadenylation (4), decapping (5), nuclear ncRNA processing (6), and surveillance (7).
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Figure 5—figure supplement 1. Co-occupancy for 74 RNA processing factors. Matrix of pairwise correlation coefficients of factor occupancies

evaluated over all transcripts. Analysis for 74 RNA processing factors, including 30 factors from this study, and 44 factors from previous studies

(Baejen et al., 2017; Baejen et al., 2014; Battaglia et al., 2017; Schulz et al., 2013) (see Supplementary file 1). Dark blue represents high

correlation in binding across all transcripts. Factors are sorted and color coded (left and upper border) according to their general function.
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Figure 5—figure supplement 2. Co-localization coefficients for all 74 RNA processing factors. Pairwise correlation between normalized co-localization

profiles of factors in a window of 40 nt centered at PAR-CLIP cross-link sites. Analysis for 74 RNA processing factors, including 30 factors from this study,

and 44 factors from previous studies (Baejen et al., 2017; Baejen et al., 2014; Battaglia et al., 2017; Schulz et al., 2013) (see Supplementary file 1).

High co-localization represents binding to the same position on transcripts (marked with dark red). Factors are sorted and color coded (left and upper

border) according to their general function.
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Figure 5—figure supplement 3. Two-dimensional embedding of co-localization between 74 RNA processing factors. tSNE plot visualizes similarities in

co-localization profiles between RNA processing factors (factors are color-coded based on their function). Analysis for 74 RNA processing factors,

including 30 factors from this study (marked in bold), and 44 factors from previous studies (Baejen et al., 2017; Baejen et al., 2014; Battaglia et al.,

2017; Schulz et al., 2013) (see Supplementary file 1).
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Figure 6. Binding preferences reveal a link between decapping-mediated degradation and translation. (A) Total occupancy per mRNA (according to

TIF-seq annotation) for six factors as a function of the average mRNA codon optimality (transcript optimality). The occupancy of factors from the 5´fi3´

degradation machinery (decapping and Xrn1, left) decreases with increasing transcript optimality, whereas the occupancy of factors from the 3´fi5´

degradation machinery (Ccr4 and Caf40 deadenylation complex subunits and exosome subunit Rrp44, right) increases with increasing average codon

optimality. (Gray shading: 95% confidence intervals generated by bootstrapping mRNAs). (B) Codon enrichment in transcripts bound by Dcp2 and Ccr4

compared to the average frequency over all mRNAs. The bar colors represent codon optimality, with highly optimal codons shown in dark red. (Thin

gray lines: 90% confidence intervals generated by bootstrapping coding sequences.) (C) Significance of correlations between the binding strength of

degradation factors and transcript length, transcript optimality (Pechmann and Frydman, 2013), expression level (Baejen et al., 2017), and half-life

derived by multivariate linear regression analysis (Materials and methods). Bars are separated according to the direction of correlation with positive

correlation marked by a red background and negative correlation marked by a blue background.
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Figure 6—figure supplement 1. Occupancies of deadenylation factors (Ccr4, Pop2, Not1, Caf40, Pan2, and Pan3) compared to transcript length,

optimality, expression level, and half-life. (A) To understand binding specificity of deadenylation factors, the total occupancy of each factor on a

transcript is plotted against various transcript features (Gray shading: 95% confidence intervals generated by bootstrapping transcripts). (B) Same

analysis as in Figure 6B: Codon enrichment shows deviations in codon frequencies of transcripts bound by a degradation factor compared to each

codon’s frequency on all coding sequences. Each bar is colored according to its codon-optimality with highly optimal codons in dark red and highly

non-optimal codons in dark blue. (Gray lines: 90% confidence intervals generated by bootstrapping coding sequences).
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Figure 6—figure supplement 2. Occupancies of decapping factors (Dcp2, Dcp1, Edc2, Edc3, and Dhh1) compared to transcript length, optimality,

expression level, and half-life. (A) To understand binding specificity of decapping factors, the total occupancy of each factor on a transcript is plotted

against various transcript features (Gray shading: 95% confidence intervals generated by bootstrapping transcripts). (B) Same analysis as in

Figure 6B: Codon enrichment shows deviations in codon frequencies of transcripts bound by a degradation factor compared to each codon’s

frequency on all coding sequences. Each bar is colored according to its codon-optimality with highly optimal codons in dark red and highly non-

optimal codons in dark blue. (Gray lines: 90% confidence intervals generated by bootstrapping coding sequences).
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Figure 6—figure supplement 3. Occupancy of Xrn1 compared to transcript length, optimality, expression level, and half-life. (A) To understand

binding specificity of Xrn1 on various mRNAs, the total occupancy of Xrn1 on a transcript is plotted against various transcript features (Gray shading:

95% confidence intervals generated by bootstrapping transcripts). (B) Same analysis as in Figure 6B: Codon enrichment shows deviations in codon

frequencies of transcripts bound by a degradation factor compared to each codon’s frequency on all coding sequences. Each bar is colored according

to its codon-optimality with highly optimal codons in dark red and highly non-optimal codons in dark blue. (Gray lines: 90% confidence intervals

generated by bootstrapping coding sequences).
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Figure 6—figure supplement 4. Occupancies of exosome components (Rrp6, Csl4, Rrp40, Rrp4, and Rrp44) compared to transcript length, optimality,

expression level, and half-life. (A) To understand binding specificity of exosome components, the total occupancy of each factor on a transcript is

plotted against various transcript features (Gray shading: 95% confidence intervals generated by bootstrapping transcripts). (B) Same analysis as in

Figure 6B: Codon enrichment shows deviations in codon frequencies of transcripts bound by a degradation factor compared to each codon’s

frequency on all coding sequences. Each bar is colored according to its codon-optimality with highly optimal codons in dark red and highly non-

optimal codons in dark blue. (Gray lines: 90% confidence intervals generated by bootstrapping coding sequences).
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Figure 6—figure supplement 5. Occupancies for components of the TRAMP complex (Air1, Trf5, Mtr4, Air2, and Trf4) compared to transcript length,

optimality, expression level, and half-life. (A) To understand binding specificity of TRAMP components, the total occupancy of each factor on a

transcript is plotted against various transcript features (Gray shading: 95% confidence intervals generated by bootstrapping transcripts). (B) Same

analysis as in Figure 6B: Codon enrichment shows deviations in codon frequencies of transcripts bound by a degradation factor compared to each

codon’s frequency on all coding sequences. Each bar is colored according to its codon-optimality with highly optimal codons in dark red and highly

non-optimal codons in dark blue. (Gray lines: 90% confidence intervals generated by bootstrapping coding sequences).
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Figure 6—figure supplement 6. Occupancies for components of the Ski complex (Ski2, Ski3, Ski7, and Ski8) compared to transcript length, optimality,

expression level, and half-life. (A) To understand binding specificity of factors in the Ski complex, the total occupancy of each factor on a transcript is

plotted against various transcript features (Gray shading: 95% confidence intervals generated by bootstrapping transcripts). (B) Same analysis as in

Figure 6B: Codon enrichment shows deviations in codon frequencies of transcripts bound by a degradation factor compared to each codon’s

frequency on all coding sequences. Each bar is colored according to its codon-optimality with highly optimal codons in dark red and highly non-

optimal codons in dark blue. (Gray lines: 90% confidence intervals generated by bootstrapping coding sequences).
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Figure 6—figure supplement 7. Occupancies for components of the NMD pathway (Upf1, Upf2, Upf3, and Nmd4) compared to transcript length,

optimality, expression level, and half-life. (A) To understand binding specificity of factors in the NMD pathway, the total occupancy of each factor on a

transcript is plotted against various transcript features (Gray shading: 95% confidence intervals generated by bootstrapping transcripts). (B) Same

analysis as in Figure 6B: Codon enrichment shows deviations in codon frequencies of transcripts bound by a degradation factor compared to each

codon’s frequency on all coding sequences. Each bar is colored according to its codon-optimality with highly optimal codons in dark red and highly

non-optimal codons in dark blue. (Gray lines: 90% confidence intervals generated by bootstrapping coding sequences).
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Figure 6—figure supplement 8. Distributions of transcript length, half-life, expression level and transcript optimality for yeast mRNAs. Histograms on

the diagonal show distributions of length, half-life (Materials and methods), expression level (Baejen et al., 2017) and transcript optimality

(Pechmann and Frydman, 2013). Pairwise comparisons of features are shown as scatter plots (top right) and kernel density estimates (KDEs) of

bivariate densities are shown in the bottom with Pearson correlation values (r) (Materials and methods).
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Figure 6—figure supplement 9. Correlation between binding to degradation factors and transcript length, codon-optimality, expression, and half-life.

Pearson correlation values between the binding strength of degradation factors (total occupancy over each transcript) and transcript length, transcript

optimality (Pechmann and Frydman, 2013), expression level (Baejen et al., 2017), and half-life derived by multivariate linear regression analysis

(Materials and methods).
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Figure 7. Location and recruitment of the decapping complex Dcp1/Dcp2 and decapping enhancers Edc3, Dhh1,

and Edc2. (A) Smoothed, transcript-averaged PAR-CLIP occupancy profiles aligned at TSS and pA sites [±750 nt] of

Figure 7 continued on next page
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Figure 7 continued

unstable and stable transcripts (first and fourth quantile of half-life distribution, respectively). (B) Dependence of

total occupancy of factors on the transcripts half-life. The fitting function is plotted in red and the fitted value for b

is marked with a dashed gray line. (Gray shade: 95% confidence intervals generated by bootstrapping transcripts).

(C) Sequence binding preference for the catalytically active subunit of decapping complex (Dcp2), illustrated with

the five most enriched and the 3 most depleted 4-mers. The color code shows the log2 enrichment factor of 4-

mers around PAR-CLIP cross-link sites [±8 nt]. Dark red represents strong enrichment and dark blue shows strong

depletion of a 4-mer. Infeasible combinations are shown with gray. The most highly enriched field is binding

AAAAU with the cross-link at the U, which is enriched over random expectation approximately 22.3 = 5-fold.
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3.2 Code and software availability
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bipartite_motif_finder. BMF webserver is accessible at https://bmf.soedinglab.org/. Web server
code can be found at https://github.com/soedinglab/bmf-webserver.
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ample pipeline can be found in appendix (section A1).
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Abstract

Motivation: Understanding how proteins recognize their RNA targets is essential to elucidate regulatory processes in
the cell. Many RNA-binding proteins (RBPs) form complexes or have multiple domains that allow them to bind to
RNA in a multivalent, cooperative manner. They can thereby achieve higher specificity and affinity than proteins with
a single RNA-binding domain. However, current approaches to de-novo discovery of RNA binding motifs do not take
multivalent binding into account.
Results: We present Bipartite Motif Finder (BMF), which is based on a thermodynamic model of RBPs with two
cooperatively binding RNA-binding domains. We show that bivalent binding is a common strategy among RBPs,
yielding higher affinity and sequence specificity. We furthermore illustrate that the spatial geometry between the
binding sites can be learned from bound RNA sequences. These discovered bipartite motifs are consistent with
previously known motifs and binding behaviors. Our results demonstrate the importance of multivalent binding
for RNA-binding proteins and highlight the value of bipartite motif models in representing the multivalency of
protein-RNA interactions.
Availability: BMF source code is available at https://github.com/soedinglab/bipartite_motif_finder under a GPL
license. The BMF web server is accessible at https://bmf.soedinglab.org.

Introduction

RNA molecules in the cell are rarely naked but rather
covered with numerous RNA-binding proteins (RBPs)
(35). These RBPs play a crucial role in regulating the
various steps of RNA biochemistry, from RNA matura-
tion and transport, to cellular localization, translation,
and degradation (7). RNA molecules can in turn regu-
late RBP function by altering their stability, interaction
partners, and localization (12). These processes require
specific binding of RBPs to their target RNAs. RBPs
mostly achieve this specificity through RNA-binding do-
mains (RBDs) that engage with specific RNA sequences
and\or structures (20). Unraveling the target prefer-
ences of RBPs is therefore key to understanding cellular
regulation.

Many experimental techniques have emerged to gener-
ate systematic maps of protein-RNA interactions. To
find in-vivo binding sites, many variants of RNA im-
munoprecipitation (RIP-seq) (9) and cross-linking im-
munoprecipitation (CLIP-seq), such as PAR-CLIP (10),
iCLIP (18) and eCLIP (39), have been proposed. In both
approaches, RNAs bound to the immunoprecipitated
protein of interest are sequenced and mapped to the
genome. Deriving accurate models of binding affinities
from in-vivo data is problematic because RBP-RNA inter-
actions are influenced by cooperativity and competition

with other RBPs, and are additionally influenced by
RNA localization, expression, and folding (2). Therefore,
techniques have been developed to measure binding
affinities in-vitro, in isolation from other RBPs, using
random libraries of RNA substrates: RNA Bind-n-Seq
(RBNS) (19), RNA-compete (30, 5), and high-throughput
RNA-SELEX (HTR-SELEX) (13).

A wide range of motif discovery tools have been de-
veloped to learn models of sequence- and secondary
structure-dependent binding affinties of RBPs based on
datasets of sequences bound in-vitro or in-vivo by an
RBP of interest (15, 23, 38, 25). More recently, a new
wave of algorithms have been introduced that use deep
neural networks to predict RBP binding sites (1, 3, 28, 8).
While these deep learning methods have promising ac-
curacy in predicting RBP binding, interpreting what
these networks have learned remains challenging. More-
over, with the increasing number of model parameters
and network complexity, the risk grows that such mod-
els could also learn experimental biases in the datasets.
This is particularly problematic for RBPs, since many of
them show short and degenerate sequence preferences.
Moreover, RBPs often bind low-complexity untranslated
regions in the RNA (6), unlike transcription factors,
which usually bind to more complex sequence motifs
and have higher binding specificities. RBPs have further
been shown by spaced k-mer counting approaches to
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often bind with multiple RNA-binding domains two
separated cores with usually similar or identical motifs
(6, 13). A recent deep learning software is the only avail-
able one capable of learning distance dependent motif
pairs (29).

In this work, we present Bipartite Motif Finder (BMF), a
tool for learning bipartite RNA motifs in RNA-ptotein
interaction datasets. To accurately model the binding
affinity of RBPs possessing domains with similar core
motifs of low-information content that bind to RNAs
with a relatively high density of the core motifs, BMF
sums up the contribution of all alternative binding con-
formations, and not just the best binding configuration.
To the best of our knowledge, BMF is the first approach
that adopts a thermodynamic viewpoint to RBP de novo
binding motif discovery. We demonstrate that BMF is
able to detect short and degenerate motifs and to learn
the spatial relationship between them. We furthermore
show that around half of RBPs manifest multivalent
binding with a preferential linker distance between the
two binding sites.

Benchmarking the performance of learned binding site
models by cross-validation can be problematic when
testing methods that train highly parameterized models
such as deep neural networks, as these methods can
learn biologically irrelevant sequence biases inherent to
the experimental method. To compare BMF to existing
tools and assess their capacity for learning relevant motif
sequences that predict binding events in the cell, we built
a cross-platform validation benchmark, training models
on HTR-SELEX data and testing on in-vivo CLIP data.
Despite the many complicating effects in vivo, we find
that the motif and distance preferences learned by BMF
can predict RBP binding in the cellular context and that
high-quality motifs learned in vitro are often very similar
to the motifs learned on in-vivo data . Moreover, BMF
can predict binding sites on par with or even better than
existing tools.

Methods

Most RBPs can bind RNA using several structured RBDs
and often also using disordered regions, some of which
contain typical RGG/RG and RS motifs, which can mod-
ulate RNA-binding activity (21, 4, 27). Furthermore,
many RNA-binding proteins dimerize or homo- and
hetero-oligormerize. This effectively leads to two and
more RNA-binding domains binding cooperatively to
RNA molecules. Here, we present Bipartite Motif Finder
(BMF), a motif search tool and algorithm to describe the
sequence specificity of monovalently and multivalently
binding proteins or protein complexes.

Thermodynamic model for bivalent RNA binding

We consider the simple case in which the RBP consists
of two RBDs, A and B (Figure 1A). We describe the bind-
ing of proteins at concentration cAB to a single, specific
RNA sequence x = (x0 . . . xL−1) = x0:L−1 composed of
nucleotides xi. We consider not only the most likely
binding configuration but rather all possible binding
configurations, involving zero, one or more proteins
bound to the RNA (Figure 1B). According to Boltz-
mann’s law, each binding configuration c has a proba-
bility p(c) proportional to its so-called statistical weight
e(−E(c)−T∆S(c))/kBT , where F(c) = −E(c) − T∆S(c) is
the free energy composed of the binding enthalpy −E(c)
and a part related to the change in entropy ∆S(c) be-
tween the completely unbound and bound states. To
obtain probabilities, the statistical weights need to be
normalized at the end by dividing by their total sum,
the partition sum Z(x).

The change in entropy due to the binding of a single
protein that is present at concentration cAB is equal to
its chemical potential, which is ∆S = kB log cAB. In the
following, we compute all energies in units of kBT, so
we set kBT = 1. In our model, the concentration cB(d) of
the downstream domain B at the RNA depends on the
distance d to the binding site of the upstream domain A
(see next subsection).

We compute the statistical weights of all binding config-
urations iteratively using dynamic programming. We
split the configurations into two sets, A and B, and
define ZA(i) to be the sum of statistical weights of all
binding configurations on the RNA up to position i, x0:i,
for which domain A is bound at position i− k + 1 to i,
where k is the length of RNA bound by the domains.
Similarly, we define ZB(i) to be the sum of statistical
weights of all binding configurations on the RNA se-
quence x0:i for which no domain is bound or domain B
is bound with its right edge upstream of or at position i.
With the knowledge of ZA(i′) and ZB(i′) for 0 ≤ i′ < i,
we can compute ZA(i) and ZB(i) (Figure 1B):

ZA(i) =
(

ZB(i− l) +
i−l

∑
j=0

ZA(j)
)

cABe−EA(xi−k+1 : i), (1)

ZB(i) = ZB(i− 1) +
i−l

∑
j=0

ZA(j) cB(i− k− j) e−EB(xi−k+1 : i))

+ ZB(i− l) cAB e−EB(xi−k+1 : i) , (2)

where EA(xi−k+1 : i) and EB(xi−k+1 : i) represent the bind-
ing energies of domains A and B to the RNA sequence
xi−k+1 : i. The concentration of the single B domain, de-
fined as expected number of B per volume, is simply
its probability density. The dynamic programming is
initialized using

ZA(i) = 0 for all i ∈ {0, ..., k− 2}, (3)

ZB(i) = 1 for all i ∈ {0, ..., k− 2} . (4)
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Figure 1: BMF can learn multivalent binding preferences for RBPs. (A) RBP-RNA interaction model for a protein with two RNA-binding
domains. BMF optimizes the binding energies of each domain to all possible RNA k-mers (k = 3 here) and learns the distance distribution
between the motif cores. BMF models the high RNA local concentration at the second binding site, when the first domain is bound to the RNA.
(B) BMF calculates binding probabilities for all binding configurations of one or several proteins to the RNA sequence. ZA(i) is the sum of
statistical weights of all binding configurations on the RNA up to position i, for which domain A is bound at position i. Similarly, ZB(i) is the
sum of statistical weights of all binding configurations on the RNA subsequence for which no domain is bound or domain B is bound with its
right edge upstream of or at position i. ZA and ZB are calculated iteratively (right panel). The first term in the second equation accounts for
configurations for which position i is not bound by anything, the second term accounts for configurations for which domain A of the same
protein is bound at j (as seen in the example illustration) and the last term accounts for configurations for which domain B binds whose A
domain is not bound upstream of i. (C) BMF recovers the correct RNA motifs implanted in synthetic datasets for all tested cases. Here and in
the following figures, the two learned core motifs are visualized by plotting the energies of the top five k-mers, converted to k-mer probabilities
according to Boltzmann’s law and normalized to 1.

The first equation follows from requiring all k positions
in the binding motif to be part of sequence x0:L−1. The
second equation follows from the fact that ZB(i) for
i < k − 1 sums up only the statistical weight of the
unbound configuration.

The partition sum Z(x) for RNA sequence x is the sum
of statistical weights of all configurations,

Z(x) = ZB(L− 1) +
L−1

∑
i=0

ZA(i) . (5)

The probability for an RNA to not be bound by any
protein (neither A nor B domains) is just the statistical
weight of the unbound configuration, set to 1, times
the normalization factor 1

/
Z(x), so the probability for

a RNA x to be bound by a protein is p(bound|x) =

1− 1
/

Z(x).

By taking the partial derivatives of equations (1) and (2)
with respect to the model parameters (Supplementary
Methods), we obtain update equations for the partial
derivatives with which we can in turn compute the
partial derivatives of Z(x), p(bound|x), and the log like-
lihood in equation (8). These allow us to find optimum
model parameters by gradient-based maximization of
the log-likelihood.

Motif model of a single RNA-binding region

Position weight matrices (PWMs) and Bayesian Markov
models (BaMMs) have been used to represent RBP bind-
ing preferences through positional or conditional proba-
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bilities of observing each nucleotide at a given position
(11, 34). Since RBPs are known to bind shorter and more
repetitive sequences, we learn binding energies for all
4k k-mers at each motif core, EA(k-mer) and EB(k-mer).
The length k of the motif can be set by the user.

Model for the effective concentration cB(d)

Spaced k-mer analyses on high-throughput RNA-
binding datasets pointed to a length preference of the
RNA linker connecting two motif cores (13, 6, 32). The
concentration of domain B after domain A binds the
RNA molecule is equal to its probability distribution.
While according to the flexible chain model of the RNA
fragment the concentration should be a Gaussian dis-
tribution centered on domain A (31), for short RNA
linkers the concentration can peak some distance away
from domain A. To describe multivalent binding for
both short-range and long-range co-occurrence of mo-
tif sequences, we model the effective concentration at
the second binding site with a negative binomial (NB)
distribution,

cB(d) = cAB + S ·
(

d + r− 1
d

)
· pr(1− p)d, (6)

where d represents the the number of nucleotides be-
tween the binding sites of A and B on the RNA, and
r and p are parameters of the negative binomial dis-
tribution. The total concentration of B is the cellular
concentration (cAB) plus cB(d), the local concentration of
B linked to a bound A. We scale the negative binomial
with the factor S as a conversion to protein concentra-
tion values. Since only the ratio between S and cAB
determine the binding dynamics, we fix cAB to one and
optimize our bipartite model for S, r, and p.

Parameter initialization

The absolute values of the energy parameters in our
model do not reflect the physical binding energies, how-
ever their relative values determine the probability of
binding to a given sequence. We therefore draw initial
energy parameters randomly (in units of kBT) from a
normal distribution with the average of 12 and standard
deviation of one. The initial value of 12 kBT was chosen
based on experimentally determined binding energies
(43) and additionally ensures that the algorithm does not
overflow. The scaling factor S is initialized as 104, The
spacer parameter r is drawn from a uniform distribution
from one to five and p is randomly drawn between zero
and 0.5.

Likelihood estimation for HTR-SELEX measurements

In HTR-SELEX experiments (and similarly for bind-n-
Seq), we have input (background) library sequences

x ∈ X bg and sequences enriched after competitive bind-
ing, x ∈ X+. We denote with pb(x) the fraction of
sequence x in the input library. To find a sequence in
x ∈ X+, it must have first been present in the input
library (probability pb(x)) and then have been bound to
the RNA (probability p(bound|x)). The probability to
find a sequence x ∈ X+ after the selection is therefore,
according to Bayes’ theorem,

p(x|bound) =
p(bound|x) pbg(x)

∑x′∈X bg p(bound|x′) pbg(x′)
, (7)

and, using p(bound|x) = 1− 1
/

Z(x), the log-likelihood
is

LL = ln ∏
x∈X+

p(x| bound)

= ∑
x∈X+

(
ln pbg(x) + ln

(
1− 1

Z(x)

))
− N+ ln ∑

x′∈X bg

pbg(x
′)
(

1− 1
Z(x)

)
. (8)

Parameter optimization

We learn the model parameters by maximizing the like-
lihood function (eq. 8). For an efficient optimization
using stochastic gradient descent, we computed the par-
tial derivative of the likelihood function with respect to
all of the model parameters (Supplementary Methods).
For parameter optimization, we used ADAM (16) with
hyperparameters α = 0.01, β1 = 0.9, β2 = 0.999, and
ε = 10−8, and a minibatches size of 512. We parameter-
ized r = eρ and p = 1/(1 + e−π) to ensure that r and p
stay within bounds. Optimization was terminated when
1000 iterations were reached or when the variation vθ

for the best bound k-mer of each domain as well as for
p and r fall under a threshold of 0.03. The variation
for the parameter θ up to iteration t was defined as
vθ = (max{θt-4 : t} −min{θt-4 : t})

/
θt.

Evaluating the performance of BMF on synthetic data

In order to evaluate BMF’s ability to learn bipartite mo-
tifs, we generated two sets of 2000 RNA sequences, an
artificial input set and an enriched set. For the enriched
set, we inserted the first core of the simulated bipar-
tite motif at random positions. The second core was
inserted with a linker length drawn from a binomial
distribution with a specific p and r. We ran BMF 10
times with random parameter initializations to assess
its robustness.

HTR-SELEX datasets

We obtained 177 HTR-SELEX datasets of 86 distinct
factors from (13). We used sequences of the input library
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Figure 2: Many RBPs are multivalent, bind low-complexity sequences and often bind two similar motif cores. (A) Examples of motifs that
represent a wide range of binding modes, learned by BMF on HTR-SELEX data. When the RBP has a larger motif than allowed by the core
size (3 here), the distance between cores is learned to be zero to accommodate a longer binding sequence (e.g. CELF1, RBFOX3, and PUM2).
(B) Distribution of the probability of the spacer length between the two motif cores to be above 0 . As seen in the examples in A, most RBPs
either clearly bind adjacent cores (distance= 0, turquoise) or have a multivalent binding mode with two nonadjacent cores (dark blue). (C) and
(D) Similarities between binding preferences of the two cores for RBPs with adjacent cores (turquoise) or multivalent nonadjacent cores (dark
blue), according to panel B. (E) Cumulative distribution of the entropy of BMF models for all RBPs in the HTR-SELEX dataset. In general the
optimized bipartite motif models have much lower complexity than randomly generated bipartite models (dashed black line). (F) Cumulative
distribution of "sequence repetitiveness" of BMF models for all RBPs in the HTR-SELEX dataset. Overall, BMF models are more often repetitive
that those of randomly generated bipartite models (dashed black line).

and the last cycle to train BMF. Even though our model
describes one cycle of selection, the retrieved motifs were
more prominent in the later cycles. Moreover, the cross-
platform validation discussed below resulted in slightly
better performance for all the tools when choosing the
input and last cycles for motif detection in comparison to
second and third cycles. Whenever several experimental
or technical replicates were available, we built a separate
model for each replicate and averaged the corresponding
metric over all replicates of an RBP at the end. We
used BMF’s default hyper-parameters throughout the
manuscript.

Cross-platform validation of in-vitro motifs

Each experimental technique for measuring RNA bind-
ing has its own biases. When measuring the quality of

predictions of motif models by cross-validation, meth-
ods can learn these biases to distinguish bound from
background sequences. Highly parameterized models
could learn such subtle, complex biases. These platform-
dependent biases can be a result of library preparation,
amplification, or can depend on the type and concen-
tration of RNase that is used (17, 26). There have been
efforts to reduce the effect of such biases when training
motif models, e.g. by learning binding models for many
RBPs at the same time (8). In order to ensure that BMF
does not over-train on the in-vitro HTR-SELEX data, we
performed cross-platform validation: We trained BMF
on HTR-SELEX datasets and used the resulting models
to predict binding sites in in-vivo CLIP data.

We collected eCLIP datasets of 15 RBPs (40) and PAR-
CLIP datasets of 10 RBPs (24) for which we also have
HTR-SELEX data. We used the pre-processed CLIP
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peaks as enriched sequences. Since the PAR-CLIP
dataset contained larger numbers of peaks, we restricted
our analysis to the top 2000 reported binding sites per
RBP. For each eCLIP and PAR-CLIP dataset, we created
a background set of the same size by drawing random
PAR-CLIP or eCLIP peaks of other factors measured
with the same technique. We applied a sliding window
with length of 50 and a stride of 20 to generate same-size
fragments that fully cover each peak. The prediction
scores were averaged over these fragments when the
region was longer than 50 bases. We compared our
simple model with deep learning approaches, the popu-
lar RBP binding predictors iDeepE (28) and GraphProt
(23). iDeepE uses deep learning to predict RBP binding,
while GraphProt’s model is based on Support Vector
Machines (SVMs).

BMF software and web server

The BMF command-line tool offers three commands: (1)
Learning a BMF model given enriched and background
sequences. Output is a BMF model file. (2) Bipartite
motif visualization, given the BMF file learned in step 1.
(3) Predicting binding scores for new sequences with the
BMF model trained in the first step. The first two func-
tionalities (de novo motif discovery) are also available on
the BMF web server.

Results

We present BMF, a method for de-novo discovery of
RNA-binding motifs that uses a bipartite motif model
capable of learning multivalent binding specificities
among RBPs. BMF models the protein binding with up
to two domains to its RNA substrate. We assume that
due to the structure of the RBP (or RBP complex), the
distance between the two binding sites is spatially con-
strained. BMF therefore consists of two short sequence
motif models and a distance probability distribution
(Figure 1A). Binding with just one domain is modeled
using a distance distribution peaked at 0 base pairs. In
the following sections we demonstrate that this model
can reliably detect bipartite motifs in synthetic and real
sequences, and we evaluate its performance at identi-
fying binding sites compared to other models of RBP
binding in HTR-SELEX, PAR-CLIP and eCLIP datasets.

BMF accurately discovers implanted synthetic motifs

To test BMF’s ability to learn bipartite motifs, we gener-
ated 2000 artificial sequences containing first an AAA
and then a CCC with a distance distribution of around
3 to 5 bases between them (Figure 1B, top). BMF re-
trieved the implanted motifs and spacer distribution
accurately. The results were similarly accurate when

sequence degeneracy was introduced by flipping the
last base (Figure 1B, middle), or when implanting the
repeat sequence ACACAC (Figure 1B, bottom). This
demonstrates that BMF can not only reveal multivalent
specificities but can also recover longer sequence motifs
by placing the two cores adjacent to one another.

The log-likelihood increases during stochastic gradient
descent and the optimization terminates when the log-
likelihood has reached a plateau (Figure S1A). The dis-
tance parameters and the binding energies of k-mers
in the motif cores all reach a plateau before termina-
tion (Figure S1B,C). To test robustness to parameter
initialization, we ran BMF ten times with random initial
parameter values and verified that the k-mer energies
and distance parameters match across all runs. (Figure
S1D,E).

Most RBPs show multivalent binding, often to multi-
ple occurrences of the same motif

We applied BMF to 177 HTR-SELEX datasets consist-
ing of 86 distinct RBPs to investigate the importance
of multivalent binding in the formation of RBP target
specificity. BMF detected bipartite binding for many
RBPs including ELAVL1, KHDRBS3, and RBPMS (Fig-
ure 2A). Interestingly, BMF restricted the distance of the
motif cores strictly to zero when the RBP binds repeat
sequences (e.g. CELF1 binding GU repeats) or when
the RBP binds a longer RNA sequence that requires a
longer motif core (e.g. RBFOX3 binding UGCAUG, and
PUM2 binindg UGUANA). The sequence and spacing
preferences were also reproducible across experimental
replicates (Figure S2), and match for proteins that be-
long in the same family (Figure S3). All 177 BMF models
with core lengths of 3-5 can be found at BMF’s GitHub
repository. These results show that BMF can identify
bipartite motifs in HTR-SELEX data.

We then looked for the frequency of such multivalent,
bipartite motifs and calculated the probability of ob-
serving the two core motifs at distances beyond zero
for each motif model (Figure 2B). At two extremes, this
probability would be zero for RBPs like RBFOX3, which
consist of a larger binding sequence, and one for RBPs
like KHDRBS3, which prefer a larger spacer between the
motif cores. Interestingly, the majority of RBPs lie at the
two extremes, and about half of them show a bipartite
binding behavior. This ratio is higher than estimated in
previous studies, which were based on k-mer counting
approaches (13, 6). The number of bipartite motifs could
be furthermore underestimated as some RBPs show bi-
partite binding only when BMF’s core size is increased
to four or five nucleotides (Figure S4). Overall, these
results highlight the importance of multivalent binding
as a common strategy to achieve high specificity despite
having individually small and weak binding sites.
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We noted that many motif models (like ELAVL1 and
KHDRBS3) have similar sequence preferences on both
cores. We quantified their similarity by the Pearson cor-
relation between the probabilities of observing each of
the 4k k-mers. As expected from the individual exam-
ples, the core motifs are mostly similar for RBPs that
exhibit bipartite binding (Figure 2C) as opposed to ad-
jacent motif cores (Figure 2D). This demonstrates that
RBPs have often evolved to bind multiple occurrences
of the same or similar short sequence motifs, either us-
ing multiple same-chain RNA-binding domains or by
homodimerization and oligomerization.

RBPs often bind low-complexity and repetitive se-
quences

It has been shown that RBPs bind sequences of lower
complexity than DNA-binding transcription factors
(6, 36). This can be seen at its extreme for some of
our binding models, which are composed of only one to
two types of nucleotides (Figure 2A). Looking at all 78
RBP binding models, we observed that many proteins
bind repetitive sequences or have the same simple k-mer
affinities for each of their valencies. In order to quantify
this, we calculated the entropy of the motif sequences
as a measure of sequence complexity (Figure 2E, Sup-
plementary Methods)(6). For highly complex sequence
affinities (e.g. RBFOX3), the entropy gets close to two,
while this value is closer to zero for degenerate and
repetitive sequences (e.g. ELAVL1). A similar trend is
visible when quantifying the repetitiveness of BMF mod-
els, resulting in high scores when both cores consist of
mono- or di- nucleotide repeats (Figure 2F, Supplemen-
tary Methods). Overall, more than half of RBP motifs
show levels of degeneracy that are highly unlikely in ar-
tificially generated random motif models. This binding
preference towards low complexity sequences fits to the
previous observation that bipartite motifs tend to bind
multiple occurrences of the same sequence.

Including all binding configurations and cooperativ-
ity enhances the accuracy of RBP binding predictions

To assess the value of cooperativity and multivalency, we
compared BMF to a 6-mer motif model which scores the
sequences by finding the best binding site (Figure S5).
Interestingly, for all RBPs but particularly for those that
show bipartite binding, BMF’s performance is superior
to that of the 6-mer enrichment model. This highlights
the value of two distinct BMF features: considering all
binding configurations, and including the cooperative
effect of multi-domain binding.

In-vitro bipartite models learned by EMF can predict
in-vivo binding

Experimental techniques for measuring RNA binding
have individual biases that can be learned by motif dis-
covery tools. This is particularly problematic when eval-
uating computational methods with many model param-
eters that can capture complex structures in their input
datasets (8). Cross-platform validation, i.e. using bind-
ing models trained on an experimental dataset to pre-
dicting binding sites in another experimental platform
ensures a fair assessment of the quality of motif mod-
els. We therefore trained models on HTR-SELEX data
to predict binding sites on sequences derived from PAR-
CLIP and eCLIP experiments (40, 24). We compared
the performance of BMF to iDeepE (28) and Graphprot
(23) (Figure 3A-C). iDeepE is a deep learning tool and
Graphprot is based on support vector machines. Thanks
their more complex architecture and higher number of
parameters, both models are able to learn more complex
aspects of the training data, while Graphprot addition-
ally takes the RNA structure as an input. Interestingly,
despite these advantages, BMF showed a competitive
prediction quality as measured by the area under the
receiver operating characteristic curve (AUROC), with
a better median AUROC than iDeepE and GraphProt.
Simlar results are obtained when replacing AUROC
with the area under the precision recall curve (AURPC,
Figure S6).

Interestingly, generally performance of BMF is best for
k = 3, although it changes little between core size of
k = 3, 4 or 5 (Figure 3A, Figure S7). For some RBPs
increasing the core size reduced the predictive power for
the resulting models. This could be due to over-fitting
on biases of the HTR-SELEX data and might be a reason
for why the more highly parameterized RNA motif
models of GraphProt and iDeepE often do not perform
as well as the simpler ones of BMF. On the other hand,
longer BMF models, as well as iDeepE and GraphProt,
could better learn binding preferences for factors such
as CSTF2T that bind more complex RNA sequences.
To summarize, BMF can capture RBP specificities with
reduced risk of overfitting.

To see whether the core spacing of HTR-SELEX motif
models exist in in-vivo data, we trained BMF models on
the CLIP data and compared them to their in-vitro coun-
terparts. Interestingly for the models that were learned
well on the HTR-SELEX data (tool-averaged AUROC
≥ 0.8), both the motif core sequences and their distance
distribution match between the two experimental plat-
forms (Figure 4). The sequence and\or preferences do
vary for other factors with lower AUROC values (Figure
S8,S9).

A comparison of the AUROC values from the cross-
validated HTR-SELEX data (Figure S5) and those from
the cross-platform validation shows a correlation be-
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Figure 3: Cross-platform validation shows in-vitro BMF motifs can predict in-vivo binding sites in transcriptomes. We used BMF, iDeepE,
and GraphProt to identify eCLIP and PAR-CLIP RBP binding sites after training their motif models on HTR-SELEX datasets. (A) AUROC
distribution for iDeepE, GraphProt and BMF with motif sizes ranging from 3 to 5. The tools are sorted based on their median AUROC
performance. The values for each RBP dataset is shown with a black dot. (B) and (C) AUROC from BMF (core size 3) compared to iDeepE and
GraphProt. (D) BMF AUROC values from cross-validated HTR-SELEX analysis can predict cross-platform performance. Both BMF models are
built with core size 3. Linear regression line is marked with black. In all plots AUROC values are averaged over all replicate combinations
wherever replicates were available.

tween BMF motif quality and its performance in the
cross-platform benchmark (p-value=0.0018, Figure 3D).
It could help explain why some HTR-SELEX models
fail at predicting binding to new sequences, possibly
as they have little sequence preference for their target
RNA or due to the absence of this information in the
HTR-SELEX data. Overall, this shows that BMF can be
used to learn RNA motifs from in-vitro data to predict
binding sites of the protein in the cell despite numerous
factors counfounding binding in vivo.

Discussion

We present BMF, the first bipartite motif model to de-
scribe multivalent binding preferences in RBPs. The mo-
tif models learned on in-vivo and in-vitro datasets imply
the following multipartite binding strategy is common
– adapted by about half of RBPs in our datasets – to

bind their target RNA molecules: First, these RBPs bind
multiple short (3− 4 nt) RNA segments simultaneously
and cooperatively with their multiple RBDs, which can
be either on a single chain or part of dimer or oligomer
complexes (21, 42). Second, the recognition motifs of
their single RNA-binding domains are usually similar
(Figure 2). These two aspects make it simple to evolve
the sequence features in the target RNAs required for
highly specific cooperative binding: a sufficient density
of the simple core recognition motifs. We have recently
shown that the RBP binding affinity through cooperative
binding of multiple RNA-binding domains depends on
the motif density on the target RNA with a Hill-like co-
efficient that is similar in size to the number of binding
domains (37, Fig. 4D). Via di- and oligomerization of
RBPs the number of cooperatively binding domains and
thereby the Hill-like coefficient can be further increased,
by which it is possible to distinguish between targets
with, say, a core binding motif every 20 versus every
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HT-SELEX PAR-CLIP

eCLIP

TARDBP

HNRNPL

PCBP1

QKI

PUM2

KHDRBS1

RBPMS

QKI

ELAVL1

ELAVL3

Figure 4: Bipartite motif models learned on in-vitro data match their in-vivo counterparts Bipartite motifs are shown for those RBPs in Figure
3 whose best replicate has a tool-averaged AUROC of at least 0.8. The models learned in-vitro and in-vivo match not only in the sequence
preference but also the relative positioning of the two motif cores, with the exception of KHDRBS1, which shows a bipartite motif only in the
HTR-SELEX data.

30 nucleotides (e.g 33, Fig. 3EF). An encoding of bind-
ing affinity via the density of motifs makes sense for
the many RNA-binding proteins for which the precise
binding sites on their target RNAs is not important to
perform their function.

Mono- and dinucleotide repeats are particularly attrac-
tive as target motifs because they possess one binding
site per position and per two positions, respectively.
The high density of motifs gives rise to high affinities
through the combinatorially many possible binding con-
figurations of two or more RNA-binding domains. BMF
takes full account of this combinatorial complexity.

A limitation of the evolutionary strategy to bind low-
complexity sequences using multiple domains with near-
identical motifs is the much smaller number of motifs
than can be distinguished, only 64 for length-3 cores.
This low number might be sufficient, however, for target-
ing such RBPs to their RNA targets because specificity is
enhanced by compartmentalization – an RBP occurring

only in the nucleus cannot bind to cytosolic mRNAs,
for example. Furthermore, only a fraction of RBPs is ex-
pressed in any one cell type at any one time, in a similar
way as the many transcription factors having the same
binding affinities are usually expressed in different cells
or at different times.

Our results agree with previous studies that reported
bipartite motifs in HTR-SELEX and RBNS datasets by
counting spaced k-mers of various linker lengths (13, 6).
The motifs we report are congruent with those reported
before and additionally provide a distance distribution
to describe the best binding geometry. The observa-
tion that motifs are repetitive and degenerate is also
consistent with previous high-throughput studies (6).

Interestingly, BMF motifs were shorter and less com-
plex than those reported by 13. For RBPs for which
Jolma et al obtained long motifs (i.e. PCBP1, PUM1,
and TARDBP), longer motif cores than 3 nucleotides in
BMF could not improve prediction performance in the
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cross-platform benchmark. This indicates that 3-6 base
long motifs would suffice in explaining the sequence
specificities for the majority of RBPs.

BMF does not take RNA secondary structure into ac-
count. RNA molecules can fold onto themselves and
take various tertiary structures (41). It has been shown
that some RBPs at least partially identify their target
RNA molecules through binding specific structural el-
ements (14, 22). This could further narrow the search
space of proteins to fewer potential binding partners and
open new ways for cellular regulation. Despite ignoring
structure, BMF’s performance is comparable if not better
than GraphProt, a tool that includes detailed modelling
of secondary structure. We expect that expanding our
bipartite motif model to include RNA structure could
further improve its predictive power.

Overall, BMF’s performance is promising in the fol-
lowing regards: Owing to its multi-domain binding
model BMF can (1) find pairs of sequence motifs over-
represented in a sequence set, and can (2) learn the
distance between the motif pairs, reflecting the best
binding configurations. This information can be further
used to (3) asses whether or not an RBP displays bipar-
tite binding. We believe that looking at RNA motifs as
combinations of individual low affinity interactions can
improve our understanding of RNA regulation in the
cell and shed a new light on how some RBPs can find
their targets despite the weak sequence and structural
preferences of individual domains.

Code and data availability

The HTR-SELEX data of 13 were downloaded from
the European Nucleotide Archive under accession
PRJEB25907 (https://www.ebi.ac.uk/ena/browser).
The preprocssed eCLIP datasets were collected from
the ENCODE at https://www.encodeproject.org
(40). PAR-CLIP peaks were obtained from
https://github.com/BIMSBbioinfo/RCAS_meta-
analysis (24). BMF source code, documentation, and
motif models can be found at https://github.com/-
soedinglab/bipartite_motif_finder.
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Supplementary Methods

Parameter Optimization

We learn BMF model parameters by maximizing the likelihood function (equation 9 in manuscript).
For an efficient optimization using stochastic gradient descent, we need to be able to compute the
partial derivative of the likelihood with respect to model parameters (θ):

∂LL(Θ)

∂θ
= ∑

x∈X+

1
Z(x)(1− Z(x))

∂Z(x)
∂θ

− N+ ∑x′∈X bg pbg(x′)Z(x′)−2 × ∂Z(x′)
∂θ

∑x′∈X bg pbg(x′)(1− 1/Z(x′))
. (1)

We can compute the partial derivatives ∂Z(x)/∂θ from the partial derivatives ∂ZA(i)/∂θ and ∂ZA(L)/∂θ

according to equation 6 in the manuscript:

∂Z(x)
∂θ

=
∂ZB(x, L− 1)

∂θ
+

L−1

∑
i=0

∂ZA(x, i)
∂θ

. (2)

BMF parameters (θ) include binding energies of each domain to various k-mers as well as concentration
parameters (S, r and p).

In the following, We define θk,d as the binding energy of domain d at k-mer k. Log-likelihood derivatives
with respect to binding energies can be computed iteratively by applying the partial derivative operator
on the forward algorithm of the dynamic programming (equations 1 and 2 in the manuscript):

∂ZA(i)
∂θk,d

= cABe−EA(i)

[
∂ZB(i− k)

∂θk,d
+

i−k

∑
j=0

∂ZA(j)
∂θk,d

−
(

ZB(i− k) +
i−k

∑
j=0

ZA(j)

)
∂EA(i)
∂θk,d

]
, (3)

where
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∂EA(i)
∂θk,d

= δx(i),k δd,A , (4)

and δi,j is the Kronecker delta of i and j. Similarly we can get the derivatives with respect to ZB:

∂ZB(i)
∂θk,d

=
∂ZB(i− 1)

∂θk,d
+

i−k

∑
j=0

cB(i− k− j) e−EB(i)
(

∂ZA(j)
∂θk,d

− ZA(j)
∂EB(i)
∂θk,d

)
+ cAB e−EB(i)

(
∂ZB(i− k)

∂θk,d
− ZB(i− k)

∂EB(i)
∂θk,d

)
, (5)

where

∂EB(i)
∂θk,d

= δx(i),k δd,B . (6)

These derivatives are computed iteratively via dynamic programming similar to ZA and ZB. They are
initialized to zero for:

∂ZA(i)
∂θk,d

= 0 for all i ∈ {0, ..., k− 2} (7)

∂ZB(i)
∂θk,d

= 0 for all i ∈ {0, ..., k− 2} . (8)

Similarly, we can derive the partial derivative in respect to the concentration parameters (θc):

∂ZA(i)
∂θc

= cAB e−EA(i)

(
∂ZB(i− k)

∂θc
+

i−k

∑
j=0

∂ZA(j)
∂θc

)
, (9)

∂ZB(i)
∂θc

=
∂ZB(i− 1)

∂θc
+

i−k

∑
j=0

e−EB(i)
(

∂ZA(j)
∂θc

cB(i− k− j) + ZA(j)
∂cB(i− k− j)

∂θc

)
+

∂ZB(i− k)
∂θc

cAB + ZB(i− k)
∂cAB

∂θc
. (10)

The partial derivative ∂cB/∂θc with respect to concentration parameters S, r and p are (according to
equation 5 in the manuscript):

∂cB(d)
∂S

=
Γ(d + r)

Γ(d + 1)Γ(r)
pr(1− p)d, (11)

∂cB(d)
∂p

= S× (
r
p
− d

1− p
)× exp

(
log Γ(d + r)

− log Γ(d + 1)− log Γ(r) + d log(1− p) + r log p
)
, (12)

∂cB(d)
∂r

= S×
(
ψ(d + r) + log p− ψ(r)

)
× exp

(
log Γ(d + r)

− log Γ(d + 1)− log Γ(r) + d log(1− p) + r log p
)
, (13)
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where Γ is the gamma function and ψ is its logarithmic derivative, also known as the digamma function.
Note that for numerical accuracy, we have calculated the derivatives of the exp(log cB(d)) function,
with respect to p and r.

Overall, these equations allow us to iteratively compute for any sequence x the partial derivatives
∂ZA(i)/∂θ and ∂ZB(L)/∂θ with respect to all parameters and hence derivatives of the partition function
Z(x) and those of the likelihood.

The thermodynamic model contains a simplification. We assume that one of the domains (A) always
binds upstream of the other domain (B) and that the binding configurations A-B and B-A do not
both contribute appreciably to the binding probability. This seems like a very plausible assumption
considering that the linkers between structural domains are usually quite short, and changing the order
of binding would usually result in an impossible or much less favorable (tighter) configuration of the
RNA chain.

Calculation of motif entropy

To derive the entropy for each bipartite motif model, we calculate the weighted probability for each
base as

Pb =

∑
x∈k-mers

nb,x px + ∑
y∈k-mers

nb,y py

∑
b∈N

(
∑

x∈k-mersA

nb,x px + ∑
y∈k-mers

nb,y py
) , (14)

where N is the set of nucleotides ({A, C, G, U}). We calculate the entropy as

Entropy = − ∑
b∈N

Pb log2 Pb . (15)

To establish a baseline for the observed entropy values, we generated artificial bipartite motifs where
the k-mer probabilities are taken from the observed probabilities of an experimental set but the k-mers
were shuffled. We generated 10,000 such motifs and used the resulting entropy distribution as a
baseline for motif complexity.

Calculation of motif repetitiveness

To quantify the degree of sequence repetitiveness in BMF models, we calculate the highest average
probability of observing a repetitive 3-mer (i.e. ’AUA’, ’UUU’, or ’CGC’) as

R = max
a,b∈N

(√
pA(aba) + pA(bab))(pB(aba) + pB(bab)

)
, (16)

where N is the set of nucleotides ({A, C, G, U}), and pA and pB are BMF probabilities for the first
and second motif core respectively. To establish a baseline for the observed repetitiveness values, we
calculated this metric for 10,000 artificial bipartite motifs, generated as described above.

BMF comparison with single-occurrence motif model

To estimate the effect of considering all binding configurations and including cooperativity in BMF,
we compared its cross-validated classification performance with a 6-mer motif model. We created
training and test sets by splitting the HTR-SELEX data with an 80 to 20 ratio. For the 6-mer model,
we calculated enrichment factors for each 6-mer in training data and scored the test sequences by the

3
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most enriched 6-mer motif. Similarly, we trained BMF with core size 3 on the training data and used
the learned models to predict the binding scores for each sequence in the test set. To compare each
model’s classification power, we calculated the area under the receiver operating characteristic curve
(AUROC) for all RBPs in the dataset.
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Supplementary figures
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Figure S1: BMF can reliably learn planted motifs in synthetic data. We planted AA(A/U) followed
by CC(C/G) with a distance distribution around 4 in 2000 randomly generated sequences of length
40. (A) Log-likelihood function increases over the iterations until reaching a plateau at the end of
optimization. (B) The binding energies of all 3-mers are shown over BMF iterations for both binding
domains. The 3-mers representing the implanted motifs are shown with brighter blue (first domain)
and red (second domain)dash lines. The final values retrieved after optimization is notably lower for
the highlighted 3-mers. (C) The mean (in blue) and mode (in red) of the NB distribution is shown over
BMF’s optimization iterations. The correct distance distribution is found when the LL and the energy
parameters reach their plateaus. (D), and E The distribution of final BMF parameters upon 10 random
parameter initializations and subsequent optimization. Regardless of the choice of initial parameter
values, BMF ends in the same optimum point in the parameter landscape.
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Figure S2: Experimental HTR-SELEX replicates generate the same bipartite motif models. Biparite
binding models are shown for factors in Figure 2 for which an experimental replicate was available.
The models generated for all HTR-SELEX datasets can be found in BMF GitHub repository: https:
//github.com/soedinglab/bipartite_motif_finder/blob/main/data/HTRSELEX_motifs.pdf.
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p(distance)>0
1 (non-adjacent)0 (adjacent)

Figure S3: RBPs in the same family have similar BMF motifs. RBPs are clusters according to
their sequence identity measured as pairwise Pearson correlation between 3-mer probabilities. Two
dimensional embedding is generated via tSNE [1]. RBPs are color-coded based on the domain
positioning in the NB models, as in Figure 2B, with adjacent cores colored in blue and bipartite motifs
in red.
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core size = 3 core size = 4 core size = 5

HNRNPA1

HNRNPA1L2

MEX3B

RBFOX1

SNRPA

Figure S4: Bipartite binding behaviour can arise when biulding longer sequence models. Some
RBPs in the HT-SELEX dataset have adjacent cores when building BMF models with 3-mers, but show
bipartite binding for 4-mer and\or 5-mer models.

8



Supplemental Information • Bipartite Motif Finder

p(distance)>0
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Figure S5: Incorporating cooperativity and multivalency boosts performance of RBP binding mod-
els. AUROC values are calculated by predicting binding sites in held-out sequences of HTR-SELEX
datasets (80%-20% split for training and testing). BMF with core size 3 is compared to a single-occurence
per sequence 6-mer model. RBPs are color-coded based on the domain positioning in the NB models,
as in Figure 2B, with adjacent cores colored in blue and bipartite motifs in red.
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Figure S6: Average precision (AP) scores for iDeepE, GraphProt and BMF with motif sizes ranging
from 3 to 5. We used BMF, iDeepE, and GraphProt to identify eCLIP and PAR-CLIP RBP binding sites
based on the models trained on HTR-SELEX datasets. The tools are sorted based on their median AP
scores (red lines). The AP score for each RBP dataset is shown with a black dot.
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Figure S7: Comparison of cross-platform AUROC values for BMF models with core sizes 3 to 5. An
increase in AUROC with increasing motif length is marked with red and a decrease with blue.
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QKI
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PUM2
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ZRANB2
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HNRNPC
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HT-SELEX eCLIP
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CSTF2T
(0.67)

IGF2BP1
(0.59)

LARP7
(0.56)

PUM1
(0.45)

CSTF2
(0.45)

ZC3H8
(0.42)

Figure S8: Comparison of HTR-SELEX and eCLIP BMF logos. BMF logos are sorted according to
their cross-platform AUROC performance (shown in parenthesis), and is an average between BMF
(with core size 3), Graphprot, and iDeepE. BMF logos were generated for all available replicates of
each experimental technique.
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Figure S9: Comparison of HTR-SELEX and PAR-CLIP BMF logos. BMF logos are sorted according
to their cross-platform AUROC performance (shown in parenthesis), and is an average between BMF
(with core size 3), Graphprot, and iDeepE. BMF logos were generated for all available replicates of
each experimental technique.
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4 Further contributions

4.1 Cooperativity boosts affinity and specificity of proteins with
multiple RNA-binding domains.

Publication:

“Cooperativity boosts affinity and specificity of proteins with multiple RNA-binding domains.”

S.H. Stitzinger, S. Sohrabi-Jahromi, J. Söding †

(†) corresponding author

bioRxiv (2021).

4.1.1 Manuscript abstract

Numerous cellular processes rely on the binding of proteins with high affinity to specific sets of RNAs.
Yet most RNA binding domains display low specificity and affinity, to the extent that for most RNA-
binding domains, the enrichment of the best binding motif measured by high-throughput RNA SELEX
or RNA bind-n-seq is usually below 10-fold, dramatically lower than that of DNA-binding domains.
Here, we develop a thermodynamic model to predict the binding affinity for proteins with any number
of RNA-binding domains given the affinities of their isolated domains. For the four proteins in which
affinities for individual domains have been measured the model predictions are in good agreement with
experimental values. The model gives insight into how proteins with multiple RNA-binding domains can
reach affinities and specificities orders of magnitude higher than their individual domains. Our results
contribute towards resolving the conundrum of missing specificity and affinity of RNA binding proteins
and underscore the need for bioinformatic methods that can learn models for multi-domain RNA binding
proteins from high-throughput in-vitro and in-vivo experiments.

4.1.2 Author contributions

S.H. Stitzinger (SHS) implemented the algorithms and created all the visualizations. J. Söding (JS)
conceptualized the idea. S. Sohrabi-Jahromi (SSJ) and JS supervised research. SHS, SSJ, and JS
wrote the manuscript.
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4.2 Mechanisms for active regulation of biomolecular condensates

Publication:

“Mechanisms for active regulation of biomolecular condensates”

J. Söding†, D. Zwicker, S. Sohrabi-Jahromi, M. Boehning, J. Kirschbaum

(†) corresponding author

Trends in Cell Biology, 30 (2020): 4-14.

4.2.1 Manuscript abstract

Liquid-liquid phase separation is a key organizational principle in eukaryotic cells, on par with intracellular
membranes. It allows cells to concentrate specific proteins into condensates, increasing reaction rates
and achieving switch-like regulation. However, it is unclear how cells trigger condensate formation or
dissolution and regulate their sizes. We predict from first principles two mechanisms of active regulation
by post-translational modifications such as phosphorylation: In enrichment-inhibition, the regulating
modifying enzyme enriches in condensates and the modifications of proteins inhibit their interactions.
Stress granules, Cajal bodies, P granules, splicing speckles, and synapsin condensates obey this model. In
localization-induction, condensates form around an immobilized modifying enzyme, whose modifications
strengthen protein interactions. Spatially targeted condensates formed during transmembrane signaling,
microtubule assembly, and actin polymerization conform to this model. The two models make testable
predictions that can guide studies into the many emerging roles of biomolecular condensates.

4.2.2 Author contributions

J. Söding (JS) and D. Zwicker (DZ) initiated the study. JS designed and prepared main figures and wrote
the manuscript with input from all authors. S. Sohrabi-Jahromi drafted introduction and evidence
supporting localization-induction. M. Boehning drafted evidence supporting enrichment-inhibition. D.Z.
and J. Kirschbaum contributed to theoretical modelling.
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4.3 High-throughput screen and modeling of transcription activation
domains

Publication:

“A high-throughput screen for transcription activation domains reveals their sequence features
and permits prediction by deep learning.”

A. Erijman, L. Kozlowski, S. Sohrabi-Jahromi, J. Fishburn, L. Warfield, J. Schreiber, W.S.
Noble, J. Söding†, S. Hahn†

(†) corresponding author

Molecular Cell, 78 (2020): 890-902.e6.

4.3.1 Manuscript abstract

Acidic transcription activation domains (ADs) are encoded by a wide range of seemingly unrelated amino
acid sequences, making it difficult to recognize features that promote their dynamic behavior, “fuzzy”
interactions, and target specificity. We screened a large set of random 30-mer peptides for AD function in
yeast and trained a deep neural network (ADpred) on the AD-positive and -negative sequences. ADpred
identifies known acidic ADs within transcription factors and accurately predicts the consequences of
mutations. Our work reveals that strong acidic ADs contain multiple clusters of hydrophobic residues
near acidic side chains, explaining why ADs often have a biased amino acid composition. ADs likely
use a binding mechanism similar to avidity where a minimum number of weak dynamic interactions are
required between activator and target to generate biologically relevant affinity and in vivo function. This
mechanism explains the basis for fuzzy binding observed between acidic ADs and targets.

4.3.2 Author contributions

J. Söding (JS) and S. Hahn (SH) conceived the project. A. Erijman (AE), L. Warfield (LW), L. Kozlowski
(LK), JS, and SH designed the experiments. AE, LW, and J. Fishburn performed the wet lab work. AE,
LK, S. Sohrabi-Jahromi (SSJ), and J. Schreiber performed computational analysis. In particular,
SSJ performed exploratory analysis to understand what the deep network has learnt, exploring the
differences in amino acid composition and examining the effect of in silico mutations on well studied
activation domains (contributing to the underlying analyses in Figure 2A, 4A, and 6C). AE, SH, and JS.
wrote the manuscript. All authors edited and approved the manuscript.



5 Discussion and outlook

RBPs regulate various stages of RNA processing from RNA transcription to RNA maturation, local-
ization, translation, and finally degradation. Conversely, the interactions with RNA molecules can in
turn regulate the fate of RBPs. To ensure the availability of mature mRNAs at the right place, at the
right time, it is therefore crucial to tightly regulate RNA-protein interactions temporally and through
modulating their target specificity. While this coordination requires specific targeting of RNAs by their
regulators, RBPs display preferences in binding short and degenerate RNA sequences (∼3-5 bases), which
alone is not specific enough to limit the search space of RBPs. Therefore, we were lacking a quantitative
understanding of how RBPs achieve high affinity and specificity through their low-affinity RBDs when I
started my doctoral research.

In this work, we have addressed multiple aspects of specific RNA-protein interactions. (1) By studying
RBPs involved in the eukaryotic RNA degradation pathway, we have shown that degradation com-
plexes, and to some extent their RBP constituents, exhibit preferences for distinct classes of transcripts
and often bind preferentially to particular locations across mRNAs. We could highlight key differences
in substrate specificity between the 3′ and 5′ RNA degradation machinery and propose new functions
for RNA degradation proteins based on their co-binding behaviour with other RNA processing factors
(Sohrabi-Jahromi et al., 2019). (2) We introduced BMF, a computational tool based on thermodynamic
modelling of bivalent RNA-protein interactions. BMF can quantitatively model and learn bipartite bind-
ing preferences in bound sequences of an RBP. Applying BMF on a HTR-SELEX dataset of 86 RBPs
showed evidence of widespread bipartite binding with a preferential linker length between the two bind-
ing sites. BMF can predict RBP binding in the cellular context and its prediction power is competitive
compared with existing tools (Sohrabi-Jahromi and Söding, 2021). Furthermore, we took a quantitative
thermodynamic approach to predict the binding affinity for multi-domain RBPs, given the affinities of
each individual binding domain. We show that this thermodynamic model can predict dissociation con-
stants of multi-domain RBPs by comparing its estimations with experimental measurements. Finally,
quantitative simulations based on this model demonstrate how multi-domain or oligomerized RBPs can
reach affinities and specificities orders of magnitude higher than their individual domains (Stitzinger
et al., 2021).

In the next sections, I will discuss our contributions with regard to each of the mentioned aspects,
summarize their limitations, and propose new challenges that could advance our understanding of RBP-
RNA interactions.

5.1 Transcriptome maps of general eukaryotic RNA degradation
factors

In the first part of this thesis, I introduced transcriptome-wide maps of RBPs involved in the yeast RNA
degradation pathway (Sohrabi-Jahromi et al., 2019). In-depth bioinformatic analysis of this dataset and
its cross-correlation with previously published RBP interactomes highlighted key differences in function

123



5.1 Transcriptome maps of general eukaryotic RNA degradation factors 124

and specificity among the studied proteins. We also revealed groups of RBPs that show similar RNA
binding patterns and could therefore have functional associations. The occupancy patterns retrieved are
in line with previous studies and additionally display several unexpected observations that merit further
investigation.

Distinct binding to various RNA classes. The Pan2/Pan3 deadenylation complex and subunits of
the Ccr4/Not complex showed strong binding to major classes of ncRNAs: rRNAs, tRNAs, snRNAs,
and snoRNAs as well as mRNAs. This is consistent with the role of deadenylation complexes in ncRNA
maturation, as well as with binding spliced, mature mRNAs at their 3′ end to shorten the poly(A) end of
the transcripts (Azzouz et al., 2009; Miller and Reese, 2012; Laribee et al., 2015). However, the catalytic
subunit Ccr4 displayed a distinct binding profile, with its cross-link sites enriched in introns, NUTs, and
the 5′ end of mRNA molecules. This indicates that Ccr4 and Pop2 of the Ccr4/Not complex may be
playing distinct roles by processing poly(A) tails of different RNA classes. This is supported by the
observation that Ccr4 is also involved in transcription elongation and its regulation (Kruk et al., 2011;
Reese, 2013). In line with this, our co-occupancy maps of RBPs group Ccr4 together with transcription
elongation factors (Figure 5). The decapping complex on the other hand shows a stronger binding to
cryptic Pol II transcripts, particularly SUTs, as well as to the 3′ end of transcripts. The binding behavior
closely matches that of Xrn1, in line with its role in degrading decapped transcripts (Dendooven et al.,
2020; Braun et al., 2012).

Differences between 5′ and 3′ end decay pathways. Overall the 5′ (decapping and Xrn1) and
3′ (deadenylation and exosome) degradation machineries specifically target distinct transcript classes,
suggesting that RNA regulatory pathways invoke transcript decay via different routes (Figure 2 and 3).
However, their distinct binding patterns across mRNAs is counter intuitive: the 5′ machinery is enriched
at the poly(A) side while the 3′ degradation machinery is enriched around the cap region. We propose
two plausible explanations to this puzzling observation. (1) Since the cross-link sites reflect snap-shots
of RNA-protein interactions in the cell, a lower pace of exonucleation at the opposite side of the RNA
molecule can result in binding enrichment of the slowing exonuclease. (2) It is also possible that this
enrichment is due to the formation of closed mRNP loops and a cross-linkability bias in the opposite
unbound mRNA end.

Characterization of the general nuclear surveillance and preprocessing machinery. Compar-
ing the binding profiles with respect to cryptic Pol II transcripts indicated the involvement of TRAMP
and exosome (both Rrp44 and Rrp6 exonucleases) in the Nrd1/Nab3 mediated degradation of cryptic
Pol II transcripts and snoRNA processing (Figure 4, 5, and Figure 3—figure supplement 2). Numerous
studies have shown the involvement of TRAMP/exosome machineries in transcription termination and
provided mechanistic insights into how the Nrd1/Nab3 complex interacts with the degradation system
(Fox et al., 2015; Fasken et al., 2015; Porrua and Libri, 2015; Schmid and Jensen, 2019). We addition-
ally demonstrated that, out of the two TRAMP complexes, TRAMP4 (Mtr4, Air2, and Trf4) is the one
responsible for Nrd1-mediated RNA degradation. This is consistent with the observation that Nrd1’s
interaction domain (which binds Pol II CTD) can also recognize a CTD mimic region in Trf4 and sub-
sequently stimulate the polyadenylation activity of TRAMP (Tudek et al., 2014). Together these results
imply that the TRAMP complexes serve partially non-overlapping functions in the nucleus.

Degradation of translationally inefficient mRNAs. Previous studies have suggested that Dhh1
may be involved in the recruitment of the degradation machinery to translationally slow mRNAs (Rad-
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hakrishnan et al., 2016; Sweet et al., 2012). We show for the first time in a large scale mapping of
mRNAs that the decapping complex as well as Xrn1 are significantly enriched on mRNAs with a low
average codon optimality, in comparison to exosome and deadenylation complexes, which show the op-
posite trend (Figure 6). This implies that translation difficulties mostly result in the recruitment of the
5′ degradation RNA system, and is consistent with a later study that finds XRN1-dependent 5′ decay as
the main determinant of RNA half-life in mammalian cells (Tuck et al., 2020).

Possible limitations. It is important to note that the PAR-CLIP data capture RBP occupancy on
the transcripts and do not directly reveal protein function. Nonetheless, we hope that the associations
observed can guide future studies and inspire rigorous and detailed biochemical assays to further char-
acterize degradation factors. A limitation of PAR-CLIP for studying mRNAs is that poly(A)-binding
events cannot be captured as the recovered sequences would not be mapped to the genome. It is therefore
noteworthy to consider this when interpreting the binding profiles of the deadenylation complexes. An-
other challenge when working with PAR-CLIP data is that some transcriptomic sequences cross-link at a
higher rate, which can create biases in the data (Friedersdorf and Keene, 2014). We reduce these biases
in our analyses by taking transcriptome-wide approaches that characterizes proteins through comparing
their binding profile with those obtained from other RBPs.

Taken together, this study contributes to our understanding of eukaryotic RNA degradation in several
ways. (1) We characterize the differences in substrate specificity between the 5′ and 3′ degradation
machineries. (2) We identify a general nuclear surveillance machinery consisting of TRAMP4, exosome,
and Nrd1/Nab3 complexes, responsible for targeting aberrant nuclear RNAs as well as preprocessing
snoRNAs. (3) We find that the decapping complex is mostly recruited only upon RNA degradation,
while other decay factors apparently already associate with mRNAs earlier for their surveillance. (4)
Our extensive RBP interactome data can provide a resource for molecular biologists studying RNA
degradation, guiding future experiments.

5.2 Thermodynamic modeling of multivalent binding by RBPs

In the second part of this thesis, I introduced BMF for de novo discovery of bipartite motifs in RNA-
protein interaction data (Sohrabi-Jahromi and Söding, 2021). To the best of our knowledge BMF is
the first approach that adopts a full thermodynamic viewpoint for RNA motif identification. Instead of
considering only the best binding configuration, BMF aggregates contributions from all possible binding
configurations on the RNA sequence. This facilitates discovering motifs in repetitive and degenerate
RNA sequences such as mRNA UTRs. We applied BMF on a HTR-SELEX dataset of 86 human RBPs
(Jolma et al., 2020) and showed widespread bipartite binding with a factor-dependent preferred gap
length between the motif cores. These results demonstrate the importance of multivalent binding for
RBPs and contribute to our understanding of the mRNP code underlying mRNA regulation.

Differences between TF and RBP targeting and their implications. In silico RNA motif discov-
ery resembles TF motif discovery as both problems aim at the identification of over-represented sequence
features to explain the specific targeting by a certain protein of interest. This has resulted in the initial
repurposing of many genomic motif discovery tools for de novo RNA motif discovery (such as Frith et al.,
2008; Bailey et al., 2015; Alipanahi et al., 2015). However, RBP binding fundamentally differs from TF
targeting in a number of ways that merit a careful consideration when designing computational motif
detection tools. Transcription regulation relies on the binding of TFs to specific regulatory elements
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around gene promoters. To this end, TFs typically read out DNA stretches spanning 6-12 base pairs
(Lambert et al., 2018). RBPs on the other hand mostly regulate a large number of target RNA molecules
and their binding is dynamically regulated through other binding partners that facilitate or inhibit their
binding to RNA (Sternburg and Karginov, 2020). For many RBPs the precise binding locations on their
target RNA molecules are not important for performing their function. For instance, proteins that bind
sequence elements on mRNAs to transport them across the cytoskeleton could identify any part of the
RNA molecule.

Another feature of RBPs is their high modularity, with multiple domains binding adjacent or spaced
RNA fragments in a semi-flexible RNA chain (Lunde et al., 2007). RBPs therefore achieve their dynam-
ically regulated targeting by identifying short and often degenerate sequences with each of their domains
(Dominguez et al., 2018). This allows the binding of many RBPs to repetitive and degenerate RNA UTRs
through cooperative effects. Their specificity can be boosted through binding preferences for certain RNA
structures (Li et al., 2014), getting help from an associated small RNA (Djuranovic et al., 2011; Bartel,
2018), or interactions with other RBPs (Sternburg and Karginov, 2020; Müller-McNicoll and Neugebauer,
2013). The binding selectivity is further boosted through compartmentalization. Higher concentrations
of RBPs in P-bodies can for example enhance new RBP-RNA interactions. Similarly, sequestering one
of the interaction partners in the nucleus or a membraneless compartment can prevent their interaction
(Hubstenberger et al., 2017; Mittag and Parker, 2018). Out of these features, RNA secondary structure
has received the most attention as many recent RNA motif discovery tools utilize the RNA structure
as input data. (Pan et al., 2018; Maticzka et al., 2014; Budach and Marsico, 2018; Zhang et al., 2016;
Ben-Bassat et al., 2018; Su et al., 2019; Deng et al., 2020). BMF complements such approaches by incor-
porating multivalency, searching for pairs of short sequence patterns enriched in bound RNA fragments.

Previous reports on bivalent binding. Spaced k-mer approaches have previously suggested bipartite
binding modes for about one third of RBPs in HTR-SELEX and RBNS datasets (Dominguez et al., 2018;
Schneider et al., 2019; Jolma et al., 2020). BMF finds bipartite binding for half of the 78 studied RBPs.
In these cases, the motif cores match in their sequence preference and the motifs have low complexity
and high repetitiveness (Figure 2). The low complexity and repetitive nature of RNA motifs has been
described before (Dominguez et al., 2018). The identification of low complexity sequences produces
multiple binding surfaces on repetitive RNA sequences which allows RBPs to interact with higher affinity.
BMF’s motif model takes this combinatorial complexity into account. Overall, the models learned by
BMF match previously reported motifs while providing additional information on the distance preference
of the motif cores, capturing the optimal geometry of the protein binding sites.

The choice of the experimental dataset for bipartite motif discovery. In-vitro datasets are
advantageous for motif discovery purposes as they are free of cellular complications such as effects of
interactions with protein cofactors, non-specific background binding, and most protocol-induced sequence
biases (Friedersdorf and Keene, 2014; Kishore et al., 2011; Dominguez et al., 2018). Moreover, the
availability of a large pool of random RNA oligomers ensures a sufficiently large selection pool to discover
RBP binding preferences in comparison to in-vivo data that are limited by the non-random transcriptome
composition. In order to capture bipartite binding modes in such datasets, the RNA oligomers would
need to be sufficiently long to accommodate the two motif cores as well as their linker sequence. The
HTR-SELEX dataset by Jolma et al. is the only in-vitro large-scale dataset available that uses longer
oligomers (40 nucleotides) in its selection process, and hence was used here to discover bipartite motifs.
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Cross-platform validation. We introduce a cross-platform benchmark to evaluate the quality of BMF
predictions. As noted in section 1.3.2, highly parametric motif models can learn biases in experimental
datasets to distinguish bound from unbound RNA fragments (Ghanbari and Ohler, 2020; Kishore et al.,
2011; Orenstein and Shamir, 2014). We therefore evaluate the performance of BMF in predicting in vivo
binding sites based on models trained on in vitro data. To establish a baseline, we similarly gauged the
prediction accuracy of the frequently used and highly parametric motif models GraphProt and iDeepE.
GraphProt uses sequence and structural information and relies on support-vector machines, while iDeepE
is based on deep learning (Maticzka et al., 2014; Pan and Shen, 2018). Overall, BMF can predict
in vivo binding sites with competitive accuracy (Figure 3). This could be due to the over-fitting of
more complex models to experimental artifacts that prevent them from generalizing across platforms.
However, GraphProt and iDeepE excelled at predicting new binding sites for few proteins with long
sequence preferences such as CSTF2T. In such cases, longer BMF models are needed to best describe the
binding motifs (Figure S7).

Possible limitations. While BMF models show promising accuracy in predicting new binding sites,
they do not take the RNA structure into account. Numerous studies have shown preferential binding to
certain RNA structure elements or a mere binding preference towards single-stranded accessible parts of
the RNA molecule (Li et al., 2014; Dominguez et al., 2018; Jolma et al., 2020). Building hybrid models
of sequence and structure has therefore improved the performance of RNA motif models (Pan et al.,
2018; Maticzka et al., 2014; Budach and Marsico, 2018; Zhang et al., 2016; Ben-Bassat et al., 2018; Su
et al., 2019; Deng et al., 2020). We expect that incorporating the RNA structure can further improve
the accuracy of BMF models. Another assumption made by BMF is that the two domains always bind
in the same order to the RNA sequence and that their binding cannot be swapped. This allows us to
more easily enumerate all possible binding configurations in the learning phase. However, this simplifying
assumption will be justified for the vast majority of factors as one of the two orders of binding will usually
lead to a much less favorable configuration due to the spatial constraints and the need for a flexible and
long peptide linker between the two domains.

Thermodynamic modelling to estimate RBP dissociation constants. We further show the im-
pact of multi-domain binding by modeling the protein RNA binding kinetics for RBPs with any number
of binding sites (Stitzinger et al., 2021). We model protein and RNA linkers connecting the binding sites
as flexible chains and estimate total dissociation constants (Kds) based on Kds derived for individual
domains. This model proves promising based on its accuracy in predicting RBP Kds, and additionally
provides interesting insights on how cooperative binding can result in affinities and specificities that are
orders of magnitude higher than those achieved by single domains. The kinetic simulations show that
small changes in motif density can significantly boost the binding probability of multi-domain RBPs.
These results together with the motif models found by BMF indicate that binding affinities may be en-
coded in the low-complexity RNA sequences through small variations in the number of potential binding
sites.

Overall, we contribute to a better understanding of RNA-protein interactions in the following regards.
(1) We introduce the first tool to incorporate cooperativity in motif discovery enabling detection of
bipartite motifs as well as the distance preferences between the motif cores. (2) We perform in depth
analysis of binding motifs learned from 78 RBPs. This indicates that bipartite binding is widespread, the
two motif cores are often identical, and the bound sequences are low in complexity. (3) We made BMF
available both as a command-line tool with detailed documentation (see A1.4) and as a web server. The
server minimizes the technical skills required for analysing new interaction datasets for further discovery
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of bipartite binding behavior. (4) We introduce the first available method to predict the total Kd of
RBPs with any number of binding sites based on Kd values of its individual domains. Using this model
we show how cooperativity achieves highly specific and affine interactions, and how small changes in
motif density can regulate the affinity of RBPs.

5.3 Future challenges

Characterization of RNA degradation pathways

In recent years our understanding of how RNA degradation is regulated has considerably improved. How-
ever, central aspects of RNA recognition and targeting remains obscure. For instance, many RBPs can
associate with the degradation machineries to influence their function. An example is the yeast Mmi1
RBP that associates with the Ccr4/Not complex to suppress meiosis transcripts in the normal vegeta-
tive growth phase (Stowell et al., 2016). Similarly, other RBPs may be involved to facilitate/constrain
the recruitment of degradation factors to sub-classes of RNA molecules. It is crucial to identify and
characterize such binding proteins in order to understand the regulation principles of RNA homeostasis.

Another aspect of RNA recognition and targeting that remain poorly understood is their role of the
exonucleases in preprocessing of nuclear ncRNAs. It is not clear how the preprocessing stops at specific
nucelotides for some RNAs, whereas others can undergo full RNA degradation. While it has been
suggested that structural constraints imposed by the RNP could stop the exosome complex at specific
positions (Makino et al., 2015), the principles that regulate this process remain elusive.

In the first part of this thesis, we identified TRAMP4 and exosome as the main players of the Nrd1/Nab3
pathway for RNA surveillance in yeast. The TRAMP complex in yeast has many similarities with the
nuclear exosome targeting (NEXT) complex in humans (Lubas et al., 2015). Experimental depletion of
NEXT subunits was shown to stabilize promoter upstream transcripts and create unprocessed snRNAs
(Ntini et al., 2013; Shcherbik et al., 2010). However, how the NEXT complex targets the aberrant
human Pol II transcripts is not clear as no homologous complex to the yeast Nrd1/Nab3 system has been
identified in metazoans. Therefore, characterizing the players of the mammalian transcription surveillance
machinery is an ongoing challenge. New RNA-centric approaches for the discovery of RBPs (such as
Trendel et al., 2019; Castello et al., 2016) may pave the way for characterization of new mammalian
degradation pathways in the future.

Another interesting aspect of RNA degradation is the enrichment of many of its components in the phase
separated cytosolic Processing-bodies (P-bodies) upon stress (Zhang and Herman, 2020). P-bodies enrich
specific mRNAs and proteins, including Xrn1 and decapping proteins (Eulalio et al., 2007; Youn et al.,
2019). Although they are evolutionarily conserved, their biological function is not yet fully understood.
The early discovery of RNA processing enzymes in P-granules lead to the believe that these granules are
sites of active mRNA decay (Balagopal and Parker, 2009). However, evidence has accumulated in recent
years to indicate that mRNA decay may even be suppressed in these granules and some mRNAs can get
stored in P-bodies over long times (Standart and Weil, 2018; Hubstenberger et al., 2017; Arribere et al.,
2011; Huch and Nissan, 2017). It will be therefore crucial to characterize the activity of P-body proteins
and the cellular effect of their localization to shed light on the function of these RNP granules.
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Understanding the mRNP code

RBPs are crucial for most biological processes and the complexity of their regulation grows with with
organism complexity. Recently, 7.5% of the human proteome was estimated to constitute RBPs (Gerst-
berger et al., 2014), a similar fraction as DNA-binding factors. Considering that many of these RBPs are
as yet uncharacterized and that the regulatory pathways behind many RNA processing systems remain
elusive, it seems that our knowledge of RBP functions is only the tip of the iceberg. I will therefore
mention a few areas that may benefit from further developments.

Most current computational methods for RNA motif discovery take RNA sequence, secondary structure,
and sometimes the regional information of the binding sites as input parameters (Sasse et al., 2018; Yan
and Zhu, 2020; Pan et al., 2019). We show in this work that incorporating cooperativity into RNA motif
models would further enhance their prediction accuracy. Another improvement could come from the way
structure is incorporated into RBP models. The secondary structure is computationally predicted from
input sequences (Sasse et al., 2018; Maticzka et al., 2014; Pan et al., 2018). Computational estimation of
RNA structure often assumes that the molecule will fold into its minimum free energy state (Miao and
Westhof, 2017; Seetin and Mathews, 2012; Laing and Schlick, 2011). The crowded cellular environment,
however, challenges this assumption as RNAs are often bound by many RBPs that restrain their folding
dynamics (Gehring et al., 2017). The differential expression of bound RBPs in various cell types and
environments may consequently alter RNA structure and therefore further complicate the structural
prediction. I therefore expect that new structure prediction algorithms that take the RNA and protein
concentrations into account (by incorporating proteomic and transcriptomic data) could more accurately
reflect the RNA structure in a given cell. Furthermore, experimental approaches to global mapping of
RNA structures in living cells, such as SHAPE (Merino et al., 2005; Kertesz et al., 2010; Talkish et al.,
2014), could directly provide the data needed to train better RNA motif models, as well as contributing
valuable training data for advancing computational structure prediction algorithms. Another unexplored
property of RNAs for motif discovery are RNA modifications that could alter RBP binding. For instance
adenosine methylation was shown to influence whether or not RNA binding sites are available to hnRNPC
(Liu et al., 2015). With the availability of high-throughput techniques for mapping RNA modifications
(Helm and Motorin, 2017; Jonkhout et al., 2017), these datasets could contribute another rich resource
for training better RBP interaction models.

Biochemical studies could furthermore get deployed to validate and characterize the observations made by
our thermodynamic models. These assays could study the effect of RNA linker length, motif density on
RNA, and the number of RBDs on the overall Kd. A new method was recently developed for measuring
Kd values in cells using high-throughput sequencing (Sharma et al., 2021). This technique could pave
the road for large-scale measurements of RNA-binding dynamics for many RBPs inside living cells and
could answer some of the long standing questions in the field, such as how the binding dynamics of an
RBP differs between various target transcripts, how long RBPs reside on their targets, and how many
different proteins bind individual mRNAs at a given time.

Another exciting advancement for studying RBPs in the last decade is the development of many tech-
nologies for large-scale identification of RBPs in cells, many of which are non-canonical RBPs. (Schmidt
et al., 2012; Trendel et al., 2019; Castello et al., 2016; Hentze et al., 2018). Studying binding specificities
of these non-conventional RBPs and identifying their endogenous targets could expand our understand-
ing of RNA regulation or perhaps provide new insights on how RNAs can in turn regulate their target
proteins. Interestingly many of the RBPs identified tend to be enriched in intrinsically disordered re-
gions (Castello et al., 2016; Balcerak et al., 2019). Yet, most structural and biochemical studies limit
their scope to characterizing the ordered regions in these proteins. Further investigations are needed to
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understand the role of disordered regions in binding and specificity of RBPs.

Finally, most current computational and experimental methods for studying RNA-protein interactions
are strongly biased towards the protein-centric notion, in which proteins regulate the activity of tran-
scripts and not the other way around. However, recent characterization of many ncRNAs challenges this
viewpoint. For instance several functionally important long ncRNAs, such as Xist, have been shown to
scaffold the RNA-binding PRC2 complex that facilitates the assembly of histone modification enzymes
leading to epigenetically silence specific sets of genes (Davidovich and Cech, 2015; Balcerak et al., 2019).
We therefore have to acknowledge the role of RNA molecules in regulating the activity of their bound
protein partners. Characterization of many ncRNA transcripts with unknown functions may broaden
our understanding of how RNAs fine-tune transcription and regulate protein activity. For this purpose,
RNA-centric computational methods can be developed to predict potential interaction partners and shed
light on the function of uncharacteristic ncRNAs.

Decoding the molecular grammar of phase separation

The function of many RBPs is controlled through their enrichment and localization in ribonucleic-protein
condensates. Multivalent interactions between condensate components are known to promote their for-
mation (Wang et al., 2018; Burke et al., 2015; Dignon et al., 2020; Krainer et al., 2021). However, the
forces that uniquely characterize each condensate are unknown. A multitude of biomolecular condensate
types have been identified in the cytoplasm and in the nucleus, and many form simultaneously and/or
have sub-compartments that do not mix. This suggests the existence of distinct chemical features that
give each condensate its unique signature and leads to the “sorting” of each macromolecule to its correct
target condensate. Future experimental efforts to generate quantitative maps of condensate constituents
could go hand in hand with computational techniques to find the phase separation grammar encoded in
protein sequences. In line with this, many computational techniques have been developed to predict the
phase separation behavior of individual proteins (Vernon and Forman-Kay, 2019; Vernon et al., 2018; van
Mierlo et al., 2021; Hardenberg et al., 2020; Sun et al., 2019; Orlando et al., 2019). While these methods
can be valuable for predicting the potential for phase separation, cellular condensation relies on many
factors such as the availability of RNA molecules and the concentration of other proteins. Therefore
the validity of LLPS-negative datasets that are used by these methods is debatable. With the move
towards better characterization of condensate components (via mass spectroscopy of purified granules:
Jain et al., image-based screens: Berchtold et al., APEX-MS: Markmiller et al., and APEX-seq: Padron
et al.), new computational methods could be developed that take the concentration of RNAs and proteins
into account to better predict which macromolecules would get enriched in which biomolecular condensate
types.
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A1.2 Summary

Knowing the basis of protein-RNA recognition is essential to understanding regulatory processes in the
cell. Many RNA-binding proteins (RBPs) form complexes or have multiple domains that allow binding
to the RNA molecule in a multivalent manner. Through cooperative binding these proteins can reach
higher specificity and affinity than those of single RNA-binding domains. However, current approaches
to RNA de novo motif discovery do not take the modularity of binding events into account. Here we
present Bipartite Motif Finder (BMF), an RNA motif finder that is based on a thermodynamic model
of an RBP with two binding sites acting cooperatively in targeting an RNA molecule. We show that
bipartite binding is a common strategy among RBPs to achieve higher levels of sequence specificity. We
furthermore illustrate that the spacial geometry between the two binding sites can be learnt from bound
RNA sequences and that this information enhances the model’s accuracy in predicting new binding sites.
These bipartite motifs are consistent with previously known motifs and binding behaviors. Our results
demonstrate the importance of multivalent binding for RNA-binding proteins and highlight the value of
bipartite motif models in representing the multivalency of protein-RNA interactions.

BMF is also available as a webserver:

• Link: bmf.soedinglab.org
• Web server repository: soedinglab/bmf-webserver

A1.3 Installation

Requirements

• python>3.6

https://bmf.soedinglab.org
https://github.com/soedinglab/bmf-webserver
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• numpy
• cython

Installing requirements with Conda: Create a new conda environment with python, numpy, and
cython:

conda create -n bmf python=3.6 numpy cython
conda activate bmf

sudo apt-get update
sudo apt-get install python3.6 python3-pip
pip3 install numpy cython

Installing requirements on Ubuntu without Conda:

brew install python3
pip install numpy cython

Installing requirements on MacOS with brew:

BMF installation

1. Optional: BMF is also available as a faster version for running on AVX2 extension capable
processor. You can check if AVX2 is supported by executing cat /proc/cpuinfo | grep avx2 on
Linux and sysctl -a | grep machdep.cpu.leaf7_features | grep AVX2 on MacOS). If your
processor supports AVX2, run the following command to compile a faster version of BMF:

export USE_AVX=1

2. Install BMF with pip:

pip install https://github.com/soedinglab/bipartite_motif_finder/releases/download/
v1.0.0a/bmf_tool-1.0.0.tar.gz

See BMF help page:
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bmf --help

A1.4 BMF guide

BMF has three main functionalities: (1) learning de novo bipartite motifs from enriched and background
sequence sets, (2) plotting the motif and predicting if the RNA-binding protein has a bipartite motif or
not, and (3) using the trained BMF model to predict binding to new sequences.

In the following sections, we describe how to use BMF to perform each of these functionalities.

A1.5 Motif discovery

You can call the command-line tool bmf to perform de novo motif discovery. Here is a list of parameters
that you can pass to bmf for training:

positional arguments:

sequences path to positive sequences enriched with the
motif.

compulsory arguments:

--BGsequences BGSEQUENCES
path to background sequences.

optional arguments:

--input_type {fasta,fastq,seq}
format of input sequences. Can be "fasta", "fastq",
or "seq". [Default:"fasta"]

--motif_length MOTIF_LENGTH
the length of each core in the bipartite motif.
[Default:3]

--no_tries NO_TRIES the number of times the program is run with random
initializations.
[Default:5]

--output_prefix OUTPUT_PREFIX
output file prefix. You can specify a directory e.g.
"--output_prefix output_dir/my_prefix"
[Default:"bipartite"]
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--var_thr VAR_THR variability threshold condition to stop ADAM
[Default:0.03]

--batch_size BATCH_SIZE
the number of sequences processed in each batch of stochastic
gradient descent.
[Default:512]

--max_iterations MAX_ITERATIONS
max number of iterations before stopping ADAM.
[Default:1000]

--no_cores NO_CORES the numbers of CPU cores used
[Default:4]

Run BMF with multiple random initializations

You can run BMF with with n random parameter initializations by specifying --no_tries. Even though
BMF is robust to parameter initializations, this ensures that the best likelihood model would be found.
In our manuscript we run BMF with --no_tries. We develop the BMF workflow in a way that when
multiple initializations are performed, the best likelihood solution will be used to generate the sequence
logo and to predict binding.

Output file name

You can specify the output file name with --output_prefix path-to-file/file-name. BMF will
generate the following outputs for each round of parameter initialization i (i is between 1 and n for n
initializations):

• Plots of parameter changes over iterations and training set ROC curve: path-to-file/file-
name_cs{motif_length}_{i}.pdf & .png

• Model parameters path-to-file/file-name_cs{motif_length}_{i}.txt

Input file formats

You can run BMF with traditional “fasta” and “fastq” file formats. Additionally you can provide just
the sequences in the following format which we refer to as “seq”:

AGGCTCGGTTACGTGCAGGGCCTGATGTTCTTGATCTGTT
CTTCCAAGGAAGCTTTGACTCACAGAAATGGTAAAGTCCA
TCCCTTCGCTAAGTAGGGACGCCTCGGGCGAGACAATAGC
GAGGTGGGCTCGCGTACCTCACTTACACCATGCGCCTCAT
...

https://en.wikipedia.org/wiki/FASTA_format
https://en.wikipedia.org/wiki/FASTQ_format
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Note: The input sequences should be of equal lengths, and can only consist of the characters: A, C, G,
T, U, and N.

A1.6 Generate motif logo

You can generate bmf logo plots, using the parameter files generated via bmf in the previous step. To do
so you need to call bmf_logo with the following parameters:

positional arguments:
parameter_prefix path-to-bmf-param-file that specifies model parameters or

when multiple parameters exist, their common root.

optional arguments:
--motif_length MOTIF_LENGTH

the length of each core in the bipartite motif
[Default:3]

Please note that parameter_prefix corresponds to output_prefix in the previous step. When multiple
initializations were used, bmf_logo reads all and selects the best likelihood solution to generate the motif
logo.

The BMF logo plot is stored at {parameter_prefix}_seqLogo.pdf & .png.

A1.7 Predict binding

You can use the trained BMF model parameters to predict binding scores for new sequences. To do so
you should run bmf with --predict. Here is a list of parameters that you can pass to bmf for predicting:

positional arguments:

sequences path to test sequences.

compulsory arguments:

--test

--model_parameters MODEL_PARAMETERS
path to .txt file that specifies model parameters,
or the output_prefix used when training bmf.

optional arguments:

--input_type {fasta,fastq,seq}
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format of input sequences. Can be "fasta", "fastq",
or "seq".
[Default:"fasta"]

--motif_length MOTIF_LENGTH
the length of each core in the bipartite motif.
[Default:3]

The binding score for each sequence is saved in the file {model_parameters}.predictions. Note: these
values correspond to the summation of statistical weights over all possible configurations. Higher values
correspond to a higher binding probability. Based on our thermodynamic model, these values can be
converted to binding probabilities with the following formula:

A1.8 Example workflow

You can find the fasta files needed to run this example in data directory. Here we run BMF with one
random parameter initialization. You can change the --no_tries to increase the number of BMF runs
with new initial parameter values. The best likelihood solution would be used in this case to plot the
BMF logo, and to predict binding to new sequences.

Motif discovery

You can use bmf in training mode for de novo motif discovery. By default, BMF runs over a maximum
of 1000 iterations.

bmf positives_AAA_CCC.fasta --BGsequences negatives_AAA_CCC.fasta --input_type fasta
--output_prefix AAA_CCC --motif_length 3 --no_tries 1

Generate sequence logo

You can use bmf_logo to plot the best likelihood motif model generated by BMF. Specify the out
put_prefix from the previous step to allow bmf_logo to find all associated parameter files. Here we use
AAA_CCC to specify the outputs from the previous run:

bmf_logo AAA_CCC --motif_length 3

Predict binding to new sequences

You can use the trained BMF model parameters to predict binding scores for new sequences. To specify
--model_parameters, use the output_prefix from the first step (here AAA_CCC).
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bmf test_sequences.fasta --predict --input_type fasta --model_parameters AAA_CCC
--output_prefix predict_test_sequences

A1.9 License terms

The software is made available under the terms of the GNU General Public License v3.
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