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Abstract 

 Membrane proteins are an essential part of any living organism. They are cellular 

switches that trigger metabolic cascades regulating the cell metabolism, including cell 

division, gene expression and others functions as needed. Despite the tremendous efforts put 

in place to unveil the structural details of membrane proteins, there are a few techniques 

available to inform on the structure-function relationship in a physiological context. Proton-

detected solid-state nuclear magnetic resonance spectroscopy (ssNMR) provides unique 

abilities to address these challenging systems in near-native environments. However, there are 

still fundamental limitations such as the strong proton-proton dipolar couplings limiting high 

proton resolution. Although per-deuteration increases resolution, it comes with loss of 

structural information since only exchangeable amide protons are observed in the NMR 

spectra. Full protonation demands the fastest magic-angle spinning probes and the highest 

magnetic fields.  

 There are still many opportunities to improve solid-state NMR methods. We 

demonstrate that proton detected ssNMR under fast MAS can be used to map the 

membrane-surroundings in highly perdeuterated proteins in two independent systems. The 

membrane insertion of the alkane transporter, AlkL, from Pseudomonas putida and the human 

voltage dependent anionic channel, hVDAC, was investigated by proton detected solid-state 

NMR under 55 kHz MAS. This study showed that proton spin diffusion is sufficiently 

quenched using a perdeuterated protein with 100% back-exchange of amide protons at 55 kHz 

MAS. Having the dipolar network quenched allows for site specific information using proton-

proton z-mixing experiments. And, we additionally introduce alpha proton exchange by 

transamination (α-PET), a novel method which consists of re-introducing Hα backbone 

protons while maintaining other protein sites highly deuterated. By applying α-PET, to both a 

microcrystalline α-spectrin Src-homology 3 (SH3) and a lipid reconstituted hVDAC samples, 

we showed an improvement in the NMR proton line widths with respect to the fully 

protonated samples by almost a factor of two. This allows for facile Hα assignment as well 

as unambiguous Hα-Hα long-range distances adding restraints for structure calculation at 

55 kHz MAS. In addition, α-PET allows protein expression in protonated media which 

overcomes exchange limitations for the amide sites often seen in membrane systems.  
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 We applied proton detected ssNMR under fast and ultra-fast MAS to two distinct 

membrane proteins in membrane environments. To begin, we investigated Mic10, a double 

pass transmembrane helical protein that adopts a hairpin-like structure in the inner 

mitochondrial membrane (IMM) involved in the formation of the cristae junctions. Our data 

indicated that the second transmembrane domain of the protein undergoes a conformational 

transition, which we hypothesize to be, in part, involved in the modulation of the IMM. To 

terminate, we investigated matrix protein 2 (M2). M2 is a homo-tetrameric membrane proton 

channel from influenza A. Using a fully protonated M2 protein in combination with ultra-fast 

MAS (105 kHz), we for the first time obtain complete assignment of the important residue 

tryptophan 41 and histidine 37 (H37). The proton assignment allowed us to unambiguously 

assign the τ tautomer in DPhPC membranes at pH 7.8 and to identify the hydrogen bonded 

arrangement of the key residue H37 by detecting a 2JNN inter imidazole-imidazole J 

coupling. In addition, real-time NMR measurement at low temperature allows determination 

of a high energy barrier of ~130 kcal/mol for rimantadine (rmt) pore binding which is 

consistent with the structural rearrangement of M2 upon pore binding previously proposed. 

Furthermore, we found that rmt pore binding disturbs the imidazole-imidazole H-bond. 

Finally, the location of a structured pore water hydrogen bonded to Nδ1 of H37 was 

identified at high pH by combining low temperature NMR, DNP and DFT calculation. 

 Altogether, in this thesis, we first introduce two novel methods for studying 

membrane proteins by proton detected ssNMR under fast MAS (55 kHz). Secondly, on 

our more applied approaches, we unveil specific structural characteristics of both 

membrane proteins, Mic10 and M2, in the relevant context of lipid bilayers. These pieces 

of evidence further support the necessity of carrying out structural studies in close to near-

native conditions since the environment might play an important role in the structure and the 

function as well.   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Chapter 1 

General introduction and motivations 

1. PROTEINS 

This part of the thesis is based on different articles (cited during the text) and books: 

Molecular Biology of the Cell (1); Biochemistry (2); Spin Dynamics: Basics of Nuclear 

Magnetic Resonance (3), Solid-state NMR  Spectroscopy (4) and Understanding NMR 

Spectroscopy (5). 

1.1 PROTEINS IN BIOLOGY 

 Proteins are one of the most important pillars of biology. Proteins are long polypeptide 

chains made by the combination of the 20 different building blocks (amino acids). Over the 

years, the scientific interest in understanding the structure-function relationship of proteins 

has increased in view of their role as the "master regulators" of the cellular metabolic 

pathways. Their specificity and efficiency in carrying out cellular reactions such as protein 

folding, degradation and phosphorylation make the understanding of the structure-function 

relationship a key step in preventing, regulating and treating a wide range of cellular 

functions. It is now possible to obtain high expression yields of recombinant proteins at a 

relatively low-cost due to a better understanding of cell metabolism as well as the advances 

made in biochemistry and biotechnology concerning protein expression (6). These 

technological advances have allowed the use of recombinant proteins in many fields such as 

medicine (7) or industry in a wide range of applications such as diagnostics, food additives 

and others (8). To keep advancing in these areas, it is, therefore, essential to develop methods 

to study the structure-function relationship of proteins in order to optimize their applications 

in different fields. 

 Determination of the three-dimensional structure of a protein as well as the protein-

protein interactions are crucial to understand protein function(s), regulation(s) and to search 

for potent and specific drugs with important pharmacological targets (9). The protein amino 

acid sequence is encoded by the mRNA. After mRNA translation by the ribosome, the chain 

of amino acids is often taken over by the chaperones, which assist the protein folding 
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pathways by ensuring the correct fold that leads to biological function. Indeed, protein 

function is not completely described by the amino acid sequence but also by the 3D 

conformation in space (10). Incorrect protein folding known as “misfolding” has been related 

to a plethora of severe human diseases as well as distinct protein function (11). In order to 

improve the specificity and efficacy at the pharmacological level, it is essential to study 

protein folding in a relevant biological context to establish a “correct” relationship between 

structure and function. 

 Expression and purification of proteins in their physiologically relevant native forms 

is today the major bottleneck for structural studies. In a cellular context, proteins are often 

modified with post-translation modifications (PTMs) which regulates activity. In addition, 

about 2/3 of the pharmacological targets are membrane proteins, which often give low 

expression yields and require special treatments due to their hydrophobic nature. Although, 

enormous improvement has been made there is still more to be accomplished in this field.  

  

 The expression system must be carefully chosen according to the study requirements. 

Each system has its own advantages and disadvantages regarding yields, cost, and protein 

maturation including PTMs. Protein expression can be achieved using a variety of methods 

and/or organisms from the higher Eukaryotic cells including insects (SF9), yeast (Picha 

pastoris) or even mammalian cells lines (Chinese hamster ovary (CHO) and human 

embryonic kidney (HEK))(12), which give low yields but result in native or near native 

PTMs, to lesser complex systems such as prokaryotic organisms (bacterial), which often give 

higher expression yields but lack PTMs. Other methods have become available such as 

protein synthesis or cell-free approaches (13). 

  

 The characterization of PTMs are not the subject of this thesis, thus E. coli, which 

allows both perdeuteartion media and high protein yields at a reasonable cost, was used as an 

expression system for the whole set of proteins; The α-spectrin Src-homology 3 domain 

(SH3); Mic10 found in the mitochondrial membrane as part of the mitochondrial contact site 

and organization system (MICOS); and the Matrix 2 (M2) protein found in the influenza viral 

membrane; the human voltage dependent anionic channel (hVDAC) found in the outer 

mitochondria membrane; and ubiquitin (UBQ). 
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1.2 AVAILABLE METHODS FOR STRUCTURAL CHARACTERIZATION OF PROTEINS 

 There are a limited number of techniques that are currently available for solving the 

three dimensional structure of proteins at the atomic level. The vast majority of structures are 

solved by X-ray crystallography, where high resolution structural information is obtained via 

the electron density map derived from an X-ray diffraction pattern. Although today, X-ray 

crystallography is less dominant, it is still the technique adding the highest number of 

structures in the protein database (pdb) per year (Fig. 1.1, blue). Several requirements arise 

from X-ray crystallography, the most common are: (i) the need for crystals diffracting to high 

resolution (they are not trivial to obtain and can be far from the biological context); (ii) 

protein structure artifacts due to the formation of the crystals leading to “non-native” protein-

protein contacts. Many of the deposited structures have density corresponding to the additives 

used for crystallization such as, for example, detergents in the case of membrane proteins. 

More recently, X-ray crystallography has been applied to membrane proteins in lipid cubic 

phase, which to a certain extent mimics the membrane environmental conditions.  

  

 In the past decade, electron microscopy based techniques, mainly single particle cryo-

EM, have gained popularity. The recent hardware revolution has allowed this technique to 

reach a resolution below 3 Å. In 2020, Stark and co-workers achieved 1.25 Å resolution on an 

Apoferritin sample, the best resolution reported today by Cryo-EM (14). Despite the “native 

environment of the samples” and the high resolution obtained, cryo-EM applications are 

limited to system with a molecular size larger than 50 kDa (15, 16).  

  

 Unlike Cryo-EM and X-ray crystallography, nuclear magnetic resonance spectroscopy 

(NMR) has unique capabilities to determine three dimensional structure of proteins near-

native conditions regarding temperature and environment. The sample condition used for 

NMR allow dynamic and thermodynamic characterization of the protein and the protein-

ligand binding properties near physiological conditions. Currently (mid 2020), NMR has 

added more than 13 000 structures to the pdb (Fig. 1.1, red). The major bottleneck to carry out 

structural studies by NMR is obtaining the complete resonance assignment of the protein. 

While the majority of these structures are solution NMR, solid-state NMR (ssNMR) has 

begun to add structures. SsNMR has the advantage for membrane proteins in lipid bilayers. 
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Figure 1.1. Number of structures deposited to the protein data bank per year separated by technique. 
The X-ray (blue), NMR (red) and electron microscopy (black) structures deposited. 

1.3. STUDIES OF PROTEINS BY NMR 

 For the past decades, many methodological and hardware developments in NMR have 

been achieved leading to the structural elucidation of proteins in a wide range of 

environments. Two distinct approaches are nowadays widely used for structural purposes; (i) 

solution NMR and (ii) solid-state NMR. These will be introduced in sections 1.3.1 and 1.3.2, 

respectively. The low NMR sensitivity has led to the development of signal enhancement 

techniques such as dynamic nuclear polarization (DNP). Although DNP has increased in 

popularity since sensitivity enhancements of about 10 to 600 fold have been achieved, there is 

still a limited usage due to the need for expensive equipment, as well as poor resolution 

obtained for biological samples at the low temperature needed. The limited resolution 

obtained in DNP is mostly from sample heterogeneity. Unlike solution and ssNMR, DNP 

studies requires the use of polarizing agents with unpaired electrons (e.g. AMUPol) and 

cryogenic conditions (17). Under low temperature conditions the ensemble of the molecular 

orientations are retained leading to line broadening. In addition, the presence of electron spins 

in the sample from the polarizing agent decreases the T2 relaxation which also contributes to 

the line broadening. The relaxation parameters will be discussed in more detail in section 

2.1.1. 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 1.3.1 Solution NMR and spin-spin magnetization transfer mechanisms 

 In solution, small molecules or proteins experience fast tumbling with a correlation 

time on the order of nanoseconds. Under Brownian motion, anisotropic interactions such as  

the chemical shift anisotropy ( ) and dipolar couplings ( ) (discuss in section 2.1.2: 

“Quantum mechanics treatment of spin interactions”), which depend on the relative 

orientations of the molecules will be averaged out. The reduction of the spin interactions limit 

the spin relaxation leading to long coherence life time of the spin which results in narrow 

NMR lines below 1 Hz. 

 In proteins, although proton chemical shift dispersion gives information about the 

protein folding, and despite the narrow linewidths obtained, site specific assignment, based 

uniquely on proton spectra, is often not possible to obtain due to overlapping proton 

resonances (Fig. 1.2A). Site specific resonance assignment is accomplished by acquiring 

multidimensional NMR experiments, 2D (Fig. 1.2B) or 3D. To this end, proteins have to be 

doubly (13C,15N) or even triply (2H, 13C,15N) labeled in order to enhance sensitivity. In 

addition, the chemical shift assignment of the heteronuclei gives direct information about the 

protein secondary structure. 

 Using triple labeled (2H, 13C, 15N) samples for large molecular systems, with slow 

molecular tumbling, solution NMR application is limited to low molecular size systems of 

~25-40 kDa. The size limitation comes from the relaxation processes occurring through the 

sample as discussed in more detail in section 2.1.1. The relaxation mechanisms reduce the 

coherence life time of the spin limiting resolution and the magnetization transfer efficiency 

between the nuclei. To overcome this limitation, it is possible to combine novel pulse 

sequences together with advance labelling schemes. By applying these methods, studies of 

large molecular systems with sizes up to hundreds of kilodaltons have become accessible to 

NMR (18). 

ĤCSA ĤD
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Figure 1.2. 1D and 2D NMR spectra of a 7 kDa protein in solution.  
In A, the 1D 1H spectrum is shown. In B, a two-dimensional (2D) NMR spectrum (15N-HSQC) is shown. 
Although the 1D spectra inform on the protein secondary structure, higher dimensional spectra are needed in 
order to obtain reliable sequence specific resonance assignment.  

 Membrane proteins studies by solution NMR and X-ray crystallography often require 

the protein to be solubilized in detergents (Fig. 1.3A) that can result in important structural 

differences from the native protein fold, which sometimes are accompanied by alterations in 

protein function (19). Although preparation in nanodisc for NMR or lipid cubic phase in X-

ray has become available, they are still difficulties to overcome regarding sample preparation 

and resolution (20, 21). Solid-state NMR (ssNMR) under magic angle spinning (MAS) 

conditions offers the possibility to carry out membrane protein studies in lipid bilayers (Fig. 

1.3B). In chapter 4 and chapter 5 of this thesis, we applied ssNMR to characterize two 

membrane proteins in lipid environments, an inner mitochondrial membrane protein, Mic10, 

and a proton channel from influenza A, M2, respectively. 

  

 The importance of the environment while studying membrane proteins is shown for 

the case of the membrane protein M2 in figure 1.3. While small chemical shift changes are 

observed in the solution NMR spectra without rimanatdine (rmt) (Fig. 1.3A, blue) or in the 

presence of rmt (Fig. 1.3A, orange), in the lipid bilayer large chemical shift differences are 

observed between apo (blue) and rmt pore bound (red) (Fig. 1.3B). In that particular case, the 

use of lipids was crucial to identify the functional binding site of the antiviral compound 

amantadine (22). Contrary to the ssNMR results where two binding sites, a pore and an 

external site, were observed in the lipid environment (22), solution NMR data in DHPC 

detergents suggested only an external binding site (23). Although limited by resolution and 
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sensitivity, so far, ssNMR has shed light on a variety of structures and biological processes 

such as transport and enzymatic mechanisms of membrane proteins in a more relevant context 

(24-26). 
 

Figure 1.3. Binding study of the 
membrane protein M2 from 
Influenza A.  
A and B panels show the 2D 1H,15N-
HSQC solution NMR spectra in 300 
mM DHPC micelle solution (A) and 
2D 1H,15N-(H)NH solid-state NMR 
spectra in DPhPC lipids (B) both in 
the apo state (dark blue in A and sky 
blue in B) and in the presence of the 
drug rimantadine (rmt) added 
(orange in A and red in B). 

 To perform, multidimensional NMR experiments efficient spin - spin magnetization 

transfer methods are required. Spin magnetization transfer can be realized either through 

covalent bonds via scalar couplings, e.g Insensitive nuclei enhancement by polarization 

transfer “INEPT” (Fig. 1.4A and B), or through space via cross-polarization (CP) (Fig. 1.4D), 

and cross-relaxation experiments such as nuclear Overhauser effect (NOE) (Fig. 1.4C). All 

these experiments are routinely used for assignment as well as for structure determination of 

proteins. Contrary to ssNMR, the long  in solution samples allows efficient magnetization 

transfer via bonded spins (INEPT). These mechanisms will be encountered in the following 

chapters.  
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Figure 1.4. Different spin magnetization transfer mechanisms used in NMR. 
A, shows an example of a solution HSQC pulse sequence using INEPT as spin magnetization transfer 
mechanism (solid red line). In B, similar to the INEPT used in solution, the J based spin magnetization transfer 
mechanism pulse sequence used in solid-state NMR (H)XHj is shown. In the (H)XHj, the INEPT is extended 
(square dashed red line) to accomplish a full in-phase spin transfer from Ix to Sx. In C, a nuclear Overhauser 
(NOE) pulse sequence is shown. The 1H-1H dipolar NOE transfer (red square) is accomplished by z-z mixing. In 
D, the cross-polarization (CP) mechanism used in solid-state NMR ((H)XH) sequence is shown. The black and 
gray rectangles indicate the π and π/2, respectively. The phase cycle is indicated by “x" or “y" on top of the 
pulse. And, the time period τ is set to 1/4J, where J is the J-coupling between the two nuclei. The red square 
shows the CP mechanism which consists of applying a spin lock simultaneously to both nuclei to fullfill the 
Hartmann Hahn condition ( ) explained in section 1.3.2 “Solid-state NMR". 

 1.3.2 Solid-state NMR 

 Contrary to the case in solution, protein motion is restricted in the solid-state, hence 

the anisotropic interactions such as dipolar couplings won’t be averaged out leading to faster 

 relaxation. As introduced later in section 2.1.2, in Eq. 17 for dipolar couplings, in the high 

field approximation, the coupling strength of the anisotropic interactions is dependent on the 

orientation of the internuclear vector with respect to the magnetic field by the relation 

. Thus, there is a special angle where this term vanishes,  
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The 54.74º angle is known as the magic angle. The general idea of magic angle spinning 

(MAS) is to mechanically rotate the sample at the magic angle with respect to the applied 

field ( ) which results in a time averaged anisotropic interaction with zero strength. 

However, to fully remove the effects of the anisotropic interaction, the spinning frequency has 

to be faster than the coupling itself. As can be seen from Eq. 16 (section 2.1.2 “Quantum 

mechanics treatments of spin interactions”), the dipolar coupling strength depends on the 

product of the gyromagnetic ratios of the coupled spins and the distance with . Table 1.2 

summarizes the dipolar coupling strength for coupled single spins with the common distances 

found on a protein. In proteins, protons have both the strongest gyromagnetic ratio and the 

highest density. Hence, in solid samples such as membrane proteins, proton-proton dipolar 

coupling dominates  relaxation leading to broad NMR lines. 

 In earlier times, high resolution ssNMR spectrum was achieved by taking advantage 

of the low gyromagnetic ratio nuclei (13C or 15N), which have a small dipolar coupling, with 

MAS of 10 to 20 kHz (achieved using large rotors with 3.2 mm in diameter) in combination 

with high power proton decoupling. Although high resolution was achieved for low 

gyromagnetic ratio nuclei, other drawbacks were limiting the application of ssNMR to 

biological systems: (i) the low sensitivity due to 13C or 15N detection, which requires large 

sample quantities; (ii) the use of long recycle delays needed due to the long 13C and 15N  (

~ seconds); (iii) the sample heating caused by the high proton power decoupling used during 
13C and 15N acquisition.  

Table 1.1. Dipolar coupling strength. 

The calculation of the dipolar strength was preformed using: https://www.nmrglue.com/jhelmus/
dipole_dist_calc.html 

  

 As in solution NMR, sensitivity enhancement methods were introduced by using 

protons as starting nuclei and are now also used for detection (Fig. 1.5B). In contrast to 

B0

r−3

T2

T1 T1

Atom 1 Atom 2 Distance (Å) Dipolar coupling 
strength (kHz)

1H 1H 1.8 20.6

1H 13C 1.1 22.7

1H 15N 1 12.2

13C 13C 1.5 2.3

13C 15N 1.5 0.9
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solution NMR, in ssNMR the fast  relaxation does not allow INEPT transfer to be used 

efficiently, therefore the magnetization transfer is typically most efficient when based on the 

dipolar interaction and is performed using cross-polarization (CP) (Fig. 1.5B). CP utilizes the 

Hartmann-Hahn conditions to allow magnetization transfer through dipolar coupled spins.  

              (1) 

Under magic angle spinning: 

               (2) 

Where  is the MAS rotation frequency, and  and  are the nutation frequencies of the 

spin  and the spin , respectively.  

 Although in solid samples solution line widths won’t be obtained, sufficient proton 

resolution is achieved using 55 kHz MAS (Fig. 1.5) in perdeuterated, 100% back exchanged 

samples. Nonetheless, perdeuteration decreases the available information since only 

exchangeable sites are accessible by proton detected experiments. In Chapter 2, a novel 

labeling scheme is introduced to reintroduce backbone protons maintaining high resolution at 

55 kHz MAS. This method offers the possibility to overcome exchange problems often 

encountered in membrane proteins. In the past decade, the increase in spinning rates above 

100 kHz MAS has opened the door to address fully protonated samples. Nevertheless, often 

labeling methods are still required to achieve specific assignments for large proteins. (27). 

Proton detection in combination with 100 kHz MAS has been utilized in this thesis to 

investigate the proton channel M2 from influenza A in lipid bilayers. In particular, in chapter 

5, we characterize the important residues, histidine 37 and tryptophan 41, involved in the 

proton conduction mechanism as well as the pore water bound to histidine 37. 
 

T2
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Figure 1.5. Comparison of 1D and 2D solution and solid-state NMR spectra of SH3.  
In A, proton 1D spectra of a fully protonated SH3 sample in solution (black) and of a fully protonated 
microcrystalline SH3 sample in solids (red) are shown. In B, the 2D 15N-HSQC spectrum in solution (black) and 
the 2D (H)NH spectrum in solids (red) are shown for the same protein. This shows the limited resolution in 
solid-state NMR spectra compared to highly homogeneous solution samples. 

2. BRIEF THEORETICAL NMR INTRODUCTION 

2.1 BASICS OF NUCLEAR MAGNETIC RESONANCE 

 This part of the thesis is meant to give to the reader a brief introduction on  the nuclear 

magnetic resonance (NMR) phenomenon. NMR relies on the quantum mechanical properties 

of the nucleus. A nucleus is NMR active if it possess a non-zero spin angular momentum 

quantum number ( ). 

 Naturally, proteins are mainly composed of 1H, 12C, 14N and 16O isotopes (Table 1.2). 

Of these nuclei, only 1H and 14N have a non zero spin, with I1H = 1/2 and I14N = 1. Nuclei with 

 greater than 1/2 are quadroplolar nuclei. Such nuclei have a non zero electric quadrupole 

moment resulting in broad NMR lines. In general for NMR studies, nuclei with spin 1/2 are 

preferred since they have enhanced coherence life time leading to narrow NMR lines and high 

sensitivity. Hence, for NMR studies proteins are isotopically enriched with 13C and 15N to 

enhance sensitivity (Table 1.2). This is a process referred to as isotopic labeling, which will be 

discussed in detail in section 2.2: “Labeling strategies in NMR”. 
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Table 1.2. Isotopes, natural abundance and spin number. 

 The spin angular momentum quantum number,  defines the number of possible 

orientations of a spin in a magnetic field with  possible orientations. For most common 

spins in proteins, , in an external magnetic field ( ), there are only two possible states: 

 (α state) and  (β state) (for a positive gyromagnetic ratio, ). Here, the spins will align 

either parallel (α state) or antiparallel (β state) to . This phenomenon is called the Zeeman 

splitting (Fig. 1.6) and the energy of the states is given by: 

     (3) 

Where  defines the energy of the state,  is the reduced Planck constant,  is the 

gyromagnetic ratio of the spin and  the quantum number. The quantum number 

 . The transition energy between the two states is: 

      (4) 

 

For an ensemble of spins, which is the case for any NMR sample, after a certain time (t), the 

spins will be distributed between the two energy states. The population distribution of the 

spins in the α or β states is described by the Boltzmann distribution: 

      (5) 

Isotope Natural 
abundance (%)

Gyromagnetic ratio 
(rad.s-1T-1) 106

1H 99.9 1/2 267.5

12C 98.9 0 *

13C 1.1 1/2 67.3

14N 99.6 1 19.3

15N 0.4 1/2 -27.1

31P 99.9 1/2 108.4
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where  denotes the temperature,  is the Boltzmann constant and  the energy transition 

that is  according to Eq. 4. The sum of all the individual magnetic moments, produces a 

macroscopic magnetic moment aligned along  known as the bulk magnetization and noted 

. The small population difference is in part responsible for the low sensitivity in NMR 

experiments. The NMR sensitivity is measured by the signal to noise ratio (SNR): 

    (6) 

With N being the number of spins in the sample,  is the gyromagnetic ratio of the detected 

nucleus,  is the gyromagnetic ratio of the starting nucleus (before magnetization transfer), 

 is the magnetic field and  is the number of scans. 

 
Figure 1.6: Representation of the spin states in a sample upon applying an external magnetic field (B0) and 
a pulse (B1).  
The figure represents the degeneracy of the energy levels before the application of the magnetic field along the 
z-axis. With an applied B0 field, the degeneracy is broken and the spins populate the α and β energy levels 
according to the Boltzmann distribution. Upon applying a radio frequency pulse (B1) along the x-axis, the bulk 
magnetization is tilted from the z-axis to the xy-plane and start precessing along the z-axis once the pulse (B1) is 
turned off.  

In an NMR experiment, the bulk magnetization  is tilted to the xy-plane using a radio-

frequency pulse (rf) , which generates  magnetization.  is a short rf pulse with a 

limited duration. After the pulse the transverse magnetization will return to the initial state 
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(equilibrium) due to relaxation processes while precessing at the Larmor frequency ( ) about 

z.  

      (7) 

The  precession induces an electrical signal that is detected by the NMR coil as a free 

induction decay (FID). The Fourier transform of the FID gives the NMR spectrum. The 

external magnetic field , induces an additional electro-magnetic field, which affects the 

local field perceived by the nucleus. Thus each nucleus in the sample experiences a slightly 

different local magnetic field that can be expressed using a local field,  by 

. Giving:  

      (8) 

Where  is the chemical shift. A more detail explanation on the chemical shift will be given 

in a later section (2.1.2 “Quantum mechanics treatment of spin interactions”).    

 2.1.1 NMR relaxation processes 

 After manipulation of the spins by applying radio frequency pulses, the spins return to 

equilibrium due to relaxation processes. There are two mechanisms of relaxation observed in 

NMR, the spin-spin relaxation and the spin-lattice relaxation.  

 Firstly, the time for  magnetization to recover after tilting the magnetization to the 

xy-plane is known as spin-lattice relaxation or longitudinal relaxation given by . 

 Secondly, we have the time for the transverse magnetization  to decay. This 

phenomenon is know as spin-spin relaxation or transverse relaxation and is denoted as , 

with the corresponding relaxation rate .  can be extracted from the NMR peak,

. Where  is the full width at half maximum of the peak. Note that  is 
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different from . Whereas  accounts for the homogenous contributions,  contains both 

homogeneous and inhomogeneous contributions. There is inhomogeneity from the sample 

due to the spin orientation dependence with respect to the magnetic field. This phenomenon is 

very large in DNP experiments where by freezing the sample (100 K or lower) the wide 

conformational ensemble sampled by the protein is retained. The ensemble of orientations 

contributes to the inhomogeneous line width leading to broadening as we will see in chapter 

5.6. There is also the magnetic field inhomogeneity ( ) across the sample during the NMR 

experiment.  inhomogeneities contribute to the line width (FW), while the homogenous 

contribution ( ) is mainly coming from the properties of the sample occurring through the 

different spin-spin couplings mechanisms such as dipolar couplings or the presence of 

radicals in the sample commonly used in DNP (see section 2.1.2: “Quantum mechanics 

treatment of spin interactions” for more details on spin-spin interactions in NMR).  

 2.1.2 Quantum mechanics treatment of spin interactions 

 Spin in NMR can be treated either using classical or quantum mechanics. The classical 

mechanics model is limited to non coupled spins, but is easy to understand via a graphical 

picture using vectors. Although more abstract, the quantum approach is needed to explain 

coupled spin phenomena. In quantum mechanics a system is totally described by its wave 

function (ψ). By applying a special operator, the Hamiltonian operator , to the wave 

function, we can assess the energy of the system. The Hamiltonian is the operator which 

informs about the state of the system and is the solution of the Schrödinger equation regarding 

energy.  

        (9) 

Equation 9 is the time independent Schrödinger equation. However, in NMR during the 

manipulation of the spin by radio frequency pulses, the spin state is time dependent which 

implies the use of the time dependent Schrödinger equation, given by: 

           (10) 

T2 T2 T*2

B0

B0

T2

Ĥ

Ĥ |ψ > = E |ψ >

iℏ
∂ψ
∂t

= Ĥ(t)ψ (t)
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In NMR the total Hamiltonian is defined by: 

   (11) 

External Hamiltonian: 

  Zeeman interaction expressed as frequency:  

              (12) 

 is the Zeeman Hamiltonian for a spin in a magnetic field . It describes the precession of 

the spin along  at the Larmor frequency .  is the spin operator and  is the gyromagnetic 

ratio of the involved spin. 

 Radio frequency: 

 is the Hamiltonian corresponding to the  field applied for flipping the spins during 

NMR experiments. The frequency of the applied rf has to match the energy difference 

between the states (Eq. 4) in order to allow the transition between the different states: 

                (4) 

The  field determines the nutation frequency about the field direction : 

            (13) 

Internal Hamiltonian: 

 Chemical shift: 

 is the chemical shift Hamiltonian defined by: 

                     (14) 

Ĥtotal = Ĥext + Ĥint = Ĥz + Ĥrf + Ĥcs + ĤQ + ĤD + ĤJ

Ĥz

ℏ
=

− ̂μB0

ℏ
= − γB0

̂Iz = ω0
̂Iz

Ĥz B0

B0 ω0
̂Iz γ

Ĥrf B1

ΔE = ℏγB0

B1 B1

ω1 = − γB1

ĤCS

ĤCS

ℏ
=

− ̂μBlocal

ℏ
= − γBlocalIz = − γ (1 − σ)B0

̂Iz
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 informs on the local environment of a nucleus (Eq. 8). With  being the shielding tensor 

which is a rank two tensor informing about the orientation dependence of the spin with 

respect to the field . The  is typically separated into two parts, the  and , where 

the  is the isotropic chemical shift and the  is the chemical shift anisotropy.  

 Quadrupolar interaction: 

The quadrupolar Hamiltonian   is only present for spins with . 

     (15) 

Here  is the electric quadruple, I the spin quantum number,  is the spin vector and  is the 

electric field gradient. In this work only spins with I = 1/2 will be considered. 

 Dipolar interaction: 

Unlike these previous terms that are dependent on the intrinsic properties of a single spin, 

there are other terms involving spin - spin interactions. The dipolar Hamiltonian  is the 

interaction between two dipoles in the sample and depends on the inverse of the distance 

between the interacting spins (dipoles) ( ) and the nuclei involved ( , ), by: 

(16) 

In the presence of a high external magnetic field, only the spin operators along  z (direction of 

the magnetic field) are retained. This is known as the secular approximation. Under this 

condition the dipolar coupling Hamiltonian reduces to: 

σ =
σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

ĤCS σ

B0 ĤCS Ĥiso ĤCSA

Ĥiso ĤCSA

ĤQ I >
1
2

ĤQ =
eQ

2I(2I − 1)ℏ
̂I ⋅ V ⋅ ̂I

Q ̂I V

ĤD

r−3 γ1 γ2

ĤD
12 =

μ0γ1γ2ℏ
4π (

̂I1 ⋅ ̂I2

r3
−

3( ̂I1 ⋅ ⃗r )( ̂I2 ⋅ ⃗r )
r5 ) =

μ0γ1γ2ℏ
4πr3 ( ̂I1 ⋅ ̂I2 −

3( ̂I1 ⋅ ⃗r )( ̂I2 ⋅ ⃗r )
r2 )
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       (17) 

As seen in equation 17 the  has an angular dependence of  where θ is the 

angle between the two interacting dipoles and the external magnetic field ( ). Under 

isotropic conditions (fast molecular motion) as in liquids the term  averages to 

zero. Thus, under isotropic conditions . On the contrary, in anisotropic systems such 

as solid samples,  does not average to zero. This relation is essential for the concept of 

magic angle sample spinning used in ssNMR applications. As seen in section 1.3.2, in 

ssNMR, the sample is placed at the magic angle (MA) which corresponds to an angle of 

54.74º with respect to the  field and rotated mechanical. For all anisotropic interactions 

smaller than the rotation frequency, the anisotropic interactions will be reduced. Despite that 

proton detection is the standard goal for sensitivity due to its gyromagnetic ratio (γ) and 

structural information, proton - proton dipolar couplings are the major source of relaxation 

encountered in solids. Faster relaxation leads to broader NMR lines and, therefore, poor 

resolution. To overcome this limitation, in chapter .2, a novel labeling method is introduced to 

increase resolution maintaining almost full proton backbone information. 

 J-coupling: 

The last term of the total Hamiltonian, , is the spin-spin coupling named J-coupling. The J-

coupling is mediated by the electron coupling through the chemical bond between two nuclei. 

 is defined by: 

     (18) 

Where  and  are the spins I and S involved in the coupling and  is the J coupling tensor. 

The J-coupling gives direct information on important features of the molecular systems such 

as the torsion angles (3J couplings) and hydrogen bonds (1J or 2J). 

ĤD
12 ≈

μ0γ1γ2ℏ
4πr3 ( (3cos2θ − 1)

2 )(3 ̂I1z
̂I2z − ̂ ⃗I1 ⋅ ̂ ⃗I2 )

ĤD
12 (3cos2θ − 1)

B0

(3cos2θ − 1)

ĤD
12 ≈ 0

ĤD
12

B0

ĤJ

ĤJ

ĤJ
IS = 2π ̂II ⋅ JIS ⋅ ̂IS

̂II
̂IS JIS

18



2.2. LABELING STRATEGIES IN NMR 

 Isotopic labeling methods are routinely used to enhance NMR sensitivity. These 

approaches are also used to reduce anisotropic interactions by diluting the spin content (e.g. 
1H to 2H). Even in solution NMR, for large proteins with slow correlation time, typically 

encountered for membrane proteins, spin-spin interactions such as dipolar couplings and 

chemical shift anisotropy are reintroduced to a certain extent leading to faster  relaxation, 

thus broadening the NMR lines. The removal of some problematic interactions can be 

achieved by applying tailored labeling methods (28).  

  

 The most utilized method to drastically reduce 1H-1H dipolar interactions is 

perdeuteration (29). Introduced in the early 90s by LeMaster et al., the method uses minimal 

media containing D2O and deuterated 13C-glucose to carry out the protein expression. In these 

conditions, the protein is perdeuterated meaning that the protein is fully deuterated at the 

sidechains and backbone sites. In perdeuterated samples, only the amide protons will be 

exchanged in later steps using protonated buffers. Even using perdeuteration, at relatively low 

MAS < 30 kHz, the line broadening due to the proton density was such that it was common to 

vary the final buffer proton content to further reduce the proton dipolar network (30, 31). 

Nowadays, with the use of fast and ultra fast MAS (MAS > 55 kHz) 100% back-exchanged 

(100% protonated buffer) samples are routinely used (32). 

  

 Earlier work used different carbon sources such as 13C-Pyruvate, 13C-glucose and 13C-

glycerol containing different protonation patterns , diluting 13C and 1H content. This helps to 

obtain sparse carbon labeling removing strong one bond carbon-carbon and proton-carbon 

couplings as well as to reduce the protonation level at the protein backbone (28). 

  

 A remarkable advance in the labeling methods was achieved by using stereospecific 

labeling introduced by Kay and co-workers (33, 34). The authors used specifically labeled 

amino acid precursors in the amino acid metabolic pathway to selectively introduce labels at 

the desired positions maintaining high deuteration at other protein sites. Similarly, others 

introduced amino acid selective labeling (35) or amino acid reverse labeling methods, which 

consist in supplementing the media before induction with the amino acid containing the 

desired isotopically labeled atoms (28, 36). 

T2
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 The group of Bernd Reif introduced the Reduced Adjoining Protonation (RAP) 

labeling scheme. RAP reduces protein proton content in biological samples by varying the 

ratio of D2O/H2O used in the expression media (37). Since the labeling is random, several 

isotopomers (CD2, CHD) co-exist in the sample, which reduces sensitivity and resolution. Yet  

it is the only inexpensive method for Hα labeling while maintaining high deuteration (2H) 

levels.  In this thesis, in Chapter 2 alpha-proton exchange via transamination (α-PET), a novel 

labeling scheme is introduced which consists of re-introducing backbone Hα protons while 

maintaining high level of deuteration on the other proteins sites. This increases structural 

information while keeping high resolution and sensitivity at 55 kHz MAS.  
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3. AIMS AND THESIS STRUCTURE  

 Although a great deal of effort has been made to boost proton detected solid-state 

NMR to investigate fully protonated (1H) biological systems on the atomic level, there is still 

a need for improvement regarding sensitivity and resolution in a cost-efficient manner. With 

the recent methodological advances including the availability of high magnetic fields 

(1.2 GHz, the first delivered mid-2020), which increases sensitivity, and faster spinning rates 

(> 110 kHz MAS) we are now one step further to address challenging systems. One of the 

persisting drawbacks is that despite increased proton resolution obtained in fully protonated 

systems, it often comes with reduced sensitivity compared to 1.3 mm rotors (~60 kHz MAS). 

To address similar limitations, the thesis focuses on both methodological development and 

applications of proton detected solid-state NMR under fast (~55 kHz) and ultra-fast MAS 

(~100 kHz) to investigate membrane proteins. 

Chapter 2: In this chapter, we introduced a novel labeling strategy for protein NMR referred 

to as α-PET. α-PET involves using the inherent transamination activity of the expression 

system (E. coli) in order to selectively re-introduce protons at the Hα position in the protein 

backbone. This chapter was published in the Journal of Biomolecular NMR (JBNMR) and has 

been adapted from the original publication with permission of the journal. 

Chapter 3: Here, site-specific information regarding the environment of two membrane 

proteins in lipid bilayers was obtained using proton detected ssNMR. We have shown that the 

use of highly perdeuterated proteins in combination with 55 kHz MAS is sufficient to 

suppress spin-spin relaxation and thus achieve site-specific protein-lipid contacts by making 

use of NOE mixing. This chapter was published in the ChemPhysChem journal in 2019. This 

work was a collaboration between Eszter Éva Naubaujer, who measured and interpreted NMR 

data of hVDAC, while I handled AlkL protein. 

Chapter 4: This Chapter is part of a collaboration with Prof. Dr. Meinecke from the UMG 

Göttingen and Dr. Tavasenko from the group of Prof. Dr. Meinecke. The project consisted of 

carrying out a structural analysis of Mic10, a membrane protein of the MICOS complex. The 

MICOS complex is found in the inner mitochondrial membrane (IMM) and it is thought to be 
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the main protein responsible for the high degree of membrane curvature observed in the IMM 

leading to the formation of the cristae junctions. We, for the first time, assessed the secondary 

structure of this system in micelles by biophysical tools, namely CD, solution NMR and solid-

state NMR. In addition, by using synthetic peptides labelled on specific positions, we found 

that the second transmembrane domain (TM2) of Mic10 shows a beta to alpha transition 

which seems to be regulated by temperature. 

Chapter 5: In the last chapter, the work on M2 from influenza A is presented. M2 is a proton 

channel that arranges as a tetramer in membranes. We showed that M2 forms a dimer of 

dimers with a 2JNN inter imidazole hydrogen bond at residue H37. In addition, a de novo 

structure calculation of the protein was performed with a single 1H, 13C, 15N sample using 

ultra-fast MAS at 100 kHz with only 0.5 mg of sample. Furthermore, studies on the 

rimantidine binding were performed. We found that there is a thermodynamical limitation for 

pore binding in DHPC and that there is a high energy barrier of ~130 kcal/mol for pore 

binding to occur in DPhPC membranes consistent with the large structural rearrangement 

upon pore binding. Finally, a 1H chemical shift at ~11 ppm was identified and assigned to a 

pore water molecule hydrogen bonded to Nδ1 of the residue H37 by using a combination of 

ssNMR, DNP and DFT calculation.  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Chapter 2  

Alpha protons as NMR probes in deuterated proteins 
 

This chapter is a publication in the journal of Biomolecular NMR with the doi: 10.1007/

s10858-019-00230-y.  

Authors: Kumar Tekwani Movellan, Eszter E. Najbauer, Supriya Pratihar, Michele Salvi, 

Karin Giller, Stefan Becker, Loren B. Andreas*  

Contributions:  

Eszther E. Najbauer contributed with the assignments of the human voltage dependent anionic 

channel (hVDAC). Supriya Pratihar performed the relaxation studies presented here with both 

perdeuterated and α-PET ubiquitin samples. Karin Giller and Dr. Stefan Becker carried out 

the expression and purification of Ubiquitin and hVDAC samples. Ph.D. Michele Salvi 

helped recording and assigning the NMR spectra. I contributed to this paper by preparing and 

designing the protocol for the deuterated α-ketoacids preparation. I measured the L-amino 

acid oxidase (LAAO) activity and quantified the incorporation of Hα into the protein by 

NMR. I developed the protocol used for protein expression of hVDAC, Ubiquitin and SH3 

using the deuterated α-ketoacids. I carried out the expression, purification and crystallization 

of SH3 samples. I also performed and analyzed solid-state NMR data. 

1. Abstract 
We describe a new labeling method that allows for full protonation at the backbone Hα 

position, maintaining protein sidechains with a high level of deuteration. We refer to the 

method as alpha Proton Exchange by Transamination (α-PET) since it relies on transaminase 

activity demonstrated here using E. coli expression. We show that α-PET labeling is 

particularly useful in improving structural characterization of solid proteins by introduction of 

an additional proton reporter, while eliminating many strong dipolar couplings. The approach 

benefits from the high sensitivity associated with 1.3 mm samples, more abundant 

information including Hα resonances, and the narrow proton linewidths encountered for 

highly deuterated proteins. The labeling strategy solves amide proton exchange problems 
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commonly encountered for membrane proteins when using perdeuteration and back exchange 

protocols, allowing access to alpha and all amide protons including those in exchange-

protected regions. The incorporation of Hα protons provides new insights, as the close Hα - 

Hα and Hα - HN contacts present in β-sheets become accessible, improving the chance to 

determine the protein structure as compared with HN-HN contacts alone. Protonation of the Hα 

position higher than 90% is achieved for Ile, Leu, Phe, Tyr, Met, Val, Ala, Gln, Asn, Thr, Ser, 

Glu, Asp even though LAAO is only active at this degree for Ile, Leu, Phe, Tyr, Trp, Met. 

Additionally, the glycine methylene carbon is labeled preferentially with a single deuteron, 

allowing stereospecific assignment of glycine alpha protons. In solution, we show that the 

high deuteration level dramatically reduces R2 relaxation rates, which is beneficial for the 

study of large proteins and protein dynamics. We demonstrate the method using 2 model 

systems, as well as a 32kDa membrane protein, hVDAC1, showing the applicability of the 

method to study membrane proteins. 

2. Introduction 

 The study of proteins by Nuclear Magnetic Resonance (NMR) has been continuously 

evolving to improve sensitivity in order to resolve signals in multidimensional spectra, which 

serve as the basis for studies of structure and dynamics. For large proteins that tumble slowly 

in solution, as well as for proteins in the solid-state, a high level of deuteration with 

introduction of selective protons is used to improve proton relaxation, and therefore narrow 

lines, by elimination of strong proton-proton dipolar couplings. 

  

 Proton detected magic-angle spinning (MAS) NMR studies have employed different 

combinations of spinning frequency and deuteration to optimize sensitivity and resolution (30, 

31, 38-42). Currently, many applications of proton detected MAS NMR are applied at about 

60 kHz with 1.3 mm rotors, a spinning frequency that for fully protonated samples is not 

enough to average the strong network of 1H–1H dipolar couplings. This results in proton line 

broadening and about 200 to 300 Hz proton line widths (42). The advantage of this spinning 

frequency is that narrow lines are observed at high sensitivity when selected sites are labeled 

to 100 % incorporation of protons, while others are deuterated. 
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 In the most straightforward approach, E. coli expression in D2O is followed by 

exchange with H2O/D2O to produce a protein with a specific protonation level at amides, and 

perdeuteration at non-exchangeable sites (29, 31, 38). A protonation level of 100% at amide 

positions results in high resolution when using 40 - 60 kHz MAS in microcrystalline samples 

(39), enabling structure determination based on backbone resonances (30).  

 Accessing aliphatic protons is still an area of active development. Sidechain protons 

can be selectively introduced using metabolic precursors, which has the advantage that a 

single isotopomer is typically present and deuterium isotope shifts do not result in broadening, 

even at 100% protonation of the selected sites. In various ways, methyl groups of I,L,V,T,A 

can be incorporated (43-45). Exquisite control of labeling can be afforded using a synthetic 

approach known as SAIL labeling, with the only downside being the high cost, which has 

typically restricted applications to labeling only selected amino acid types in cell free 

expression systems (46). For fully protonated samples, high magnetic fields and very fast 

magic-angle spinning of ~100 kHz are required to sufficiently narrow proton resonances. At 

lower spinning frequencies, deuteration is still required, and approaches to resolve aliphatic 

protons involve using mixtures of H2O and D2O during protein expression, along with 

combinations of protonated or deuterated carbon sources such as glycerol or glucose (29, 47). 

While utilizing the residual protons in perdeuterated samples results in exquisite spectra (48), 

the low labeling level severely limits the ability to measure proton-proton distances. At higher 

proton concentrations, the carbon resonances are broadened due to deuterium isotope shifts 

(49). Although this is a small effect for Hα, since only one proton is directly attached, it 

would still be desirable to limit the protons introduced in the sidechains, since such protons 

broaden the alpha resonance, and are a magnetization sink during proton-proton transfer. 

  

 We therefore sought a strategy that would allow labeling of alpha protons in E. coli at 

a cost that allows widespread adoption of the approach for structure determination and 

dynamics investigations. Previously, an approach for Hα labeling was introduced, where the 

proton was chemically exchanged in a deuterated amino acid mixture, producing a D/L 

mixture of amino acids, the L portion of which can be utilized directly by bacteria  (50). 

Although this previous method was successful, the alpha proton incorporation level was a 

problem for several amino acids, and serine and threonine were lost during the acetylation and 

deacetylation reaction. D-amino acids may also inhibit bacterial growth at high concentrations 
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(51, 52). It was also noted that during growth on deuterated amino acid media (53, 54), 

exchange of amide moieties occurs, but results in only 10-50 percent incorporation of alpha 

protons for hydrophobic residues (55).  

 We show an alternative approach that results in up to 100 percent Hα incorporation by 

supplying keto acids. The keto acids are converted by E. coli transaminases to the respective 

amino acids, while adding a proton at the alpha position from the water pool. This avoids any 

problems due to racemic amino acid mixtures, since the correct L-amino acids are generated 

enzymatically. The major pathways of amino acid synthesis from glucose and glycerol carbon 

sources are depicted in figure 2.1A for E. coli. Keto acids are often the direct precursor to an 

amino acid, indicating that provided a source of keto acids, protons can be introduced via 

transaminase activity (Fig. 2.1B), a method hereafter referred to as ‘alpha proton exchange by 

transamination’ (α-PET). This method, as with any where the growth medium is based on 

H2O, results in protonation of the amide position during protein expression, such that both the 

alpha and amide positions of the protein are protonated. 

 

Figure 2.1. Amino acid metabolic pathways and the different enzymatic stages of the α-PET labeling 
method.  
The metabolic pathways of the TCA cycle are shown in A. In B, the transamination reaction is shown, which is 
the main route for Hα incorporation. In C, the generation of α-keto acids from amino acids by the enzyme 
LAAO is shown. D shows the main biosynthesis pathways of glycine with the observed stereospecific labeling. 
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 Some transaminases are amino acid-specific, like the glutamate-pyruvate 

aminotransferase that transfers the NH3 from glutamate to pyruvate forming alanine and α-

ketoglutarate (56). Others are less specific for their substrate, such as branched-chain-amino-

acid transaminase (BCAT) involved in leucine, isoleucine and valine anabolism (57). E. coli 

has a high diversity of such transaminase enzymes, resulting in effective labeling for the 

majority of residue types.  

  

 We generated keto acids by L-amino acid oxidase (LAAO) treatment of a commercial 

growth medium that is primarily comprised of 2H,13C,15N-amino acids. LAAO enzymes are 

found in many organisms (58), with different specificity for the substrate amino acids (59, 60). 

We chose as the enzyme source a crude snake venom containing LAAO as the enzyme 

source, which can be applied directly to the commercial growth medium (Fig. 2..1C). 

Additional metabolic pathways might also be important, for example, we observed 

stereospecific labeling of glycine, which can occur through transaminase, but might also be 

influenced by conversion of serine and threonine (Fig. 2.1D). 

  

 Here we show successful introduction of alpha protons for 13 amino acids, with a high 

deuteration level that improves transverse relaxation rates in both solid and liquid samples.  

3. Material and methods 

3.1 L-amino acid oxidase stock 
 10 mg of L-amino acid oxidase (LAAO) powder (crude extract from the snake venom 

of Cortalus admanteus, Sigma Aldrich) were dissolved in 1 ml of 100 mM sodium phosphate, 

100 mM KCl at pH = 7,4. The solution can be kept at 4 ºC for several weeks.  

3.2 Preparation of keto acid mix 

 The amino acid mix (SILEX rich growth media as powder) from Silantes was used as 

starting material. To obtain keto acids, one gram of powder was dissolved in 150 ml of H2O. 

To this mixture, 10 µl of bovine liver catalase solution was added at 0 and 12 hours (Sigma, 5-

fold water dilution from crystalline suspension, 10,000-40,000 units/mg). In total, 3 – 4 mg of 

L-Amino Acid Oxidase (LAAO, Sigma) was used per gram powder media, added in equal 
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amounts at 0, 3, 6, 9 and 12 hours. The solution was kept shaking at 37 ºC for 1 day, then 

lyophilized. 

3.3 Protein expression  

 All proteins were expressed in E. coli BL21(DE3). Two NMR model proteins were 

used, ubiquitin in solution, and microcrystalline chicken alpha-spectrin SH3 (SH3). In 

addition, the 32 kDa voltage dependent anion channel (VDAC), a beta barrel membrane 

protein was prepared in lipid bilayers.  

  

 For α-PET ubiquitin, a change of medium was used prior to expression. E. coli cells 

were grown in 1 liter of M9 using 1 g/L of 15N ammonium chloride and 4 g/L of 13C glucose 

until the OD600nm reached 0.6-0.8. Then cells were spun down at 7000 g at 4ºC for 20 minutes. 

The cells were re-suspended in 1L of M9 salts with 4 g of Silantes media either as received, or 

treated with L-amino acid oxidase (LAAO). The cells were adapted to the new media for 30 

minutes before induction at OD600nm = 0.8 with 1 mM of isopropyl β-D-1-

thiogalactopyranoside (IPTG). Ubiquitin samples, including a 13C,15N-ubiquitin reference 

sample were purified as previously described (61).  

  

 Using this media exchange protocol, 4 different samples of ubiquitin were produced, 

two using 2H Silantes powder treated with LAAO or as received and two others using 2H,13C,
15N Silantes powder again LAAO treated or as received. 

  

 Two samples of α-PET SH3 were produced, a media-exchanged sample (as for 

ubiquitin), and a second α-PET SH3 grown in the presence of glucose. Specifically, the 

growth was started with a low concentration of 1.25 g/L 12C-glucose in 800 ml of M9 media. 

Cells were grown until OD600nm reached 0.6-0.8. Then 4 g/L of treated Silantes media 

solubilized in 200 ml of H2O were added. The culture was switched to 30 ºC for about 30 min 

until OD600nm = 0.7-0.8, and protein expression was induced using 1 mM IPTG. A reference 

sample (13C,15N-SH3) was expressed and all samples purified as previously described (62). In 

brief, the protein was purified by anion exchange chromatography (Q-TRAP, GE Healthcare) 

followed by gel filtration on a Superdex-75 column (GE Healthcare). The purified protein 

sample was extensively dialyzed against H2O-HCl pH=3.5 for two days (exchanging the 

dialysis solution every 12h). The protein was then concentrated (Amicon, 3.5 kDa cut-off) to 
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20 mg/ml before lyophilization. The samples were resuspended in H2O-HCl pH=3.5 or D2O-

HCl pH=3.5 at 15-20 mg/ml. Microcrystals were obtained using a pH shift protocol as 

previously described (63). 

 α-PET VDAC was expressed at 37 °C in dilute glucose media (as for SH3) and 

purified and reconstituted in 2D crystalline arrays as previously described (64, 65). The E73V, 

C127A, C232S variant of human VDAC was used.  

3.4 NMR measurements 
 Solution NMR data were recorded in a 400 MHz Bruker spectrometer at 298 K. We 

recorded a set of spectra to characterize the labeling pattern: 15N-HSQC, 13C-HSQC in D2O, 
1H-15N TOCSY-HSQC, and 1D proton spectra. Quantification of Hα was done from a 13C-

HSQC spectrum at 950 MHz at 310 K. Transverse relaxation rates (R2) were measured at 277 

K using a 600 MHz Bruker spectrometer equipped with a 5 mm cryoprobe. 

  

 The black spectrum of figure 2.6A was recorded at 105 kHz MAS on a 950 MHz 

Bruker spectrometer using a 0.7 mm HCND probe. All other solid-state NMR data were 

recorded on an 800 MHz Bruker spectrometer using a 1.3 mm narrow bore HCN probe and 

spinning at 55 kHz MAS. We recorded cross-polarization based (H)NH, (H)CH, and 

(H)CANH, (H)NCAHA for resonance assignment of VDAC and SH3. We measured contacts 

in H(H)CH, H(H)NH spectra (SH3) and (H)C(HH)CH (VDAC) using RFDR for the proton-

proton mixing. The spectra were apodized with a squared cosine function (details in Table 

S2.3). The data analysis was performed using CcpNMR and Sparky. 
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4. Results and Discussion 

4.1 CHARACTERIZATION OF THE LABELING PATTERN 
 

Figure 2.2. Effective incorporation of 
Hα protons in a ubiquitin sample, 
while suppressing many side-chain 
signals.  
The solution 13C-HSQC of uniformly 
labelled ubiquitin (blue) is compared 
with α-PET ubiquitin (red). Selected 
slices show the intensity at backbone 
and sidechain sites. Intensities are not 
corrected for differences in T2. 

 To measure labeling patterns on an amino acid specific basis, we recorded a 13C 

HSQC spectrum and integrated isolated peaks in the alpha region (Fig 2.2). The level of Hα 

incorporation was determined assuming ideal incorporation of hydrophobic residues, based on 

complete reaction with LAAO. The uncorrected and T2 corrected determinations are shown in 

Tables S2.2 and S2.3, respectively. A 15N-TOCSY (Fig. 2.3) was recorded using a medium-

range mixing time (75 ms) to assess suppression of sidechain protons. This spectrum cannot 

be used in a quantitative manner due to the potential for several isotopomers, differential 

relaxation, and relayed transfer. However, since the beta protons are relatively isolated from 

these effects, we could show effective suppression for most amino acid types. Figure 2.2 

shows selected strips for each of the amino acid types of ubiquitin; the 1H-15N TOCSY-HSQC 

of α-PET Ubiquitin (red) is compared to the 15N,13C-labeled reference sample (black). The 

TOCSY was implemented with MLEV-17 mixing (66). The Hα proton was detectable for 13 

of the 16 (non-proline) amino acid types present in the ubiquitin sequence. Only lysine, 

arginine and histidine remained deuterated at Hα. This can be explained for lysine because 

Cortalus admanteus LAAO is not able to use it as substrate (Fig. S2.1), and the deuterated 

amino acids are taken up in E. coli, while endogenous synthesis is suppressed (67). Although 
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LAAO showed some activity for arginine and histidine, these two amino acids are clearly 

relatively poor substrates of LAAO as reported in previous studies (68) and also herein (Fig. 

S2.1 and S2.4), and therefore it appears that the resulting keto acid could not be utilized by E. 

coli, while the remaining amino acid was effectively incorporated in the protein. 

  
Figure 2.3. Residue specific characterization of labeling from 1H-15N TOCSY-HSQC spectra of 1 mM 
ubiquitin using 75 ms MLEV-17 mixing.  
α-PET ubiquitin (red) is compared with 15N,13C-ubiquitin (black). 

 Of the 13 successful amino acid types, tyrosine, phenylalanine, isoleucine, valine, 

alanine, threonine and aspartic acid residues show only Hα signals in the 1H-15N TOCSY-

HSQC spectrum. The anabolic pathway of these residues ends with an aminotransferase 

reaction, with the exception of threonine, which explains the labeling. Effective aspartic acid 

labeling was unexpected since it enters and exits the TCA cycle, but is explained by the very 

high starting concentration.  

  

 The amino acid mix from Silantes (Table S2.1) is obtained from bacterial proteins by 

an HCl proteolysis and consequently glutamine, asparagine, tryptophan, and cystein are not 

present in the media. Therefore, glutamine and asparagine require conversion from the 

respective acids, which explains protonation of beta and gamma protons for these residues 

(Fig. 2.1). Glutamic acid efficiently enters and exits the TCA cycle, which may explain the 

incomplete suppression of beta and gamma protons.  

  

 Leucine sidechain protons were not expected, but appear to some extent due to LAAO 

treatment (Fig. S2.2). If the LAAO treatment is not performed, this sidechain labeling is not 
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observed (Fig. S2.7), thus it is the crude snake venom extract that introduces leucine Hγ 

protons. Details of this side reaction were not investigated further, however we did follow the 

reaction of LAAO to test efficiency in different buffer conditions for a variety of amino acids 

(Fig. S2.1-S2.5).  

  

 For most amino acids, the reaction proceeded as expected, and the snake venom 

LAAO was particularly efficient for hydrophobic amino acids such as phenylalanine and 

isoleucine (68). The degree of conversion to keto acids was also tested for all 20 amino acids 

directly in the Silantes medium. To distinguish the signal from the individual amino acid 

without significantly changing the composition, we used deuterated Silantes media, and added 

only 100 µM of each protonated amino acid. In this way, we rule out potential issues such as 

competitive binding to the enzyme and determine the approximate starting concentration of 

all amino- and keto- acids in the medium (Table 2.1). 

 Quantification of the labeling for each residue type is tabulated in Tables S2.2 and 

S2.3 based on intensities extracted from 13C-HSQC spectra. The intensities were corrected for 

the measured proton transverse relaxation rates (Fig. S2.11) and normalized based on the 

assumption of complete incorporation of isoleucine, phenylalanine, and leucine residues, 

which were cleaved completely and are known to effectively incorporate in E. coli (43). 

Table 2.1. LAAO activity in deuterated Silantes media, as determined by solution NMR.  

Each amino acid was added in protonated form at a concentration of 100 µM and LAAO was added exactly as 
described in the methods section for expression. The remaining alpha signal intensity was used to determine the 
degree of conversion to keto acid. *of 16  amino acids that could be quantified (see SI).  

 We also found that efficient transamination occurs when E. coli is grown primarily on 

amino acids. Some exchange still occurs at amide positions even without LAAO treatment 

Keto acid 
conversion (%)

Residue Measured Hα 
incorporation (%)

Residue*

90-100 Ile, Leu, Phe, Tyr, Trp, Met 90-100 Ile, Leu, Phe, Tyr, Met, 
Val, Ala, Gln, Asn, Thr, 
Ser, Glu, Asp

10-50 Val, Arg, His 10-50

0-10 Gly, Pro, Cys, Asn, Gln, Asp, 
Glu, Ser, Thr, Ala, Lys

0-10 Lys, Arg, His
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(Fig. S2.6-S2.7), consistent with a previous report showing significant Hα labeling for TCA 

cycle amino acids, but only 10-50% Hα labeling for hydrophobic residues (55). 

4.2 GLYCINE IS LABELED STEREOSPECIFICALLY 

 The Hα labeling of glycine attracts particular attention, since one of the two Hα 

protons is labeled predominantly, resulting in stereospecific glycine labeling (Fig. 2.2 and Fig. 

2.4). For glycine 28, the intensity ratio between the two alpha protons for microcrystalline 
13C,15N SH3 (Fig. 2.4, black) is 1 to 0.93 while the ratio is 1 to 0.30 for α-PET SH3 (Fig. 2.4, 

red). This effect was observed for glycine in all the samples tested, based on signal intensity 

in HSQC and CP-HSQC spectra. We also observed a considerable reduction in line width, by 

more than a factor of three.  

  

 Glycine can be produced from serine by hydroxymethyltransferase, from threonine by 

L-allo-threonine aldolase, or through serine-glyoxylate or alanine-glyoxylate transaminases. 

Information in E. coli is limited, but analysis of other organisms using tritiated water indicates 

that the stereo specificity depends on the pathways involved (69-71). If serine 

transhydroxymethylase acts in tritiated water, the resulting glycine will predominantly be the 

S configuration, but if liver transaminase acts then R will be the predominant configuration. 

Note that in our case, each enzyme will produce the reverse stereoisomer because the starting 

amino acid is deuterated, and the enzymatic reaction occurs in protonated water. By 

examination of NOE spectra of ubiquitin we observed a cross peak between the glycine 47Hα 

and isoleucine 45HN, which according to the known structure, indicates that glycine was 

predominantly the R configuration. This is consistent with the stereospecific labelling 

approach reported previously using cell free extracts (72), but results in the opposite labeling, 

since we expressed in H2O rather than D2O. We can therefore rule out deuterated glycine from 

the medium as the main source of stereospecific glyine found in the expressed protein. 

4.3 RESOLUTION AND STRUCTURAL DATA UNDER MAS CONDITIONS 

 To demonstrate that the α-PET labeling scheme results in improved resolution, we 

prepared a microcrystalline sample of α-spectrin SH3 according to established crystallization 

protocols (62). The Hα line width is significantly reduced for α-PET SH3 and the effect is 
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particularly improved for certain residues, by a factor of 2 and above (Fig. 2.4). The proton 

resolution is also superior to labeling with deuterated glucose in otherwise protonated media 

(73)  (Fig. S2.8). To characterize the narrowing of the homogeneous part of the lines, the bulk 

T2´ relaxation times at 55 kHz was measured for Hα, Cα, and CO from 1D (HCAN)H, 

(HCON)H and (HCA)HA spectra by integrating the full signal. The Hα T2´ of 3 to 4 ms for α-

PET SH3 is a dramatic improvement compared to 1 ms for the fully protonated sample (Fig. 

S2.9).  

Figure 2.4. Cross-polarization based carbon-proton correlation spectra, (H)CH, of microcrystalline SH3 
either uniformly α-PET labeled (red) and 13C,15N-labled (black) crystalized from a protonated buffer. 
Spectra were recorded at a magnetic field of 800 MHz and 30 ºC, 55 kHz MAS. 1D slices from the spectrum 
indicate the improvement in linewidths for G28 (top left) and A55 (bottom right). The glycine peak intensities 
show stereospecific labeling with preference for R (α3 protonated) over S (α2) configuration. At the bottom 
right, the backbone and sidechain protons are indicated on the solution NMR structure (pdb: 1aey) for α-PET 
SH3 (red ribbon) and 13C,15N SH3 (black ribbon). 

 The Hα T2´ of α-PET SH3 crystallized in 100% D2O buffer ranged from 7 to 15 ms, an 

improvement over the amide protonated sample large enough that we can directly observe an 

increase in resolution in the 1D spectrum (Fig. S2.9). The HN signals were almost completely 

removed in the D2O buffer. 

  

 Sequential resonance assignment in Fig. 2.4 were made using a (H)NCAHA spectrum, 

and are consistent with those previously reported (74). SH3 has 62 residues, of which, two are 
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prolines and the N-terminal 7 residues and residues 46-48 are flexible and are therefore not 

observed using cross-polarization based transfer experiments. Thus 50 Hα peaks are expected 

for 13C,15N SH3. For α-PET SH3 lysine, arginine and histidine are not expected. Thus only 41 

Hα peaks are expected and indeed 41 peaks were readily identified in (H)NCAHA spectra. 

Figure 2.5. Long-range distance 
information is highlighted in a 3D 
H(H)CH spectrum of α-PET SH3 
(pdb: 1aey) in D2O (blue) and in H2O 
(red).  
A shows a contact between L33 Hα and 
V44 Hα. In B, the contact between T32 
Hα and L8 Hα is readily observed in 
D2O (in blue) while it is much weaker in 
the presence of additional protons in 
H2O (in red). Recorded in a 800 MHz 
Bruker spectrometer at 30ºC and 55 kHz 
MAS. 

 Figure 2.5 shows a comparison between α-PET SH3 in fully protonated buffer (red) 

and α-PET SH3 in fully deuterated buffer (blue) in which long-range structural restraints were 

measured. To characterize the benefit of the restraints present with α-PET labeling, we 

manually selected peaks in the H(H)CH and H(H)NH spectra, and used automated shift 

matching (0.05, 0.5 and 0.5 ppm tolerance, in 1H, 13C and 15N, respectively) to identify 

contacts. Of 114 automatically assigned peaks from the 3D H(H)NH of α-PET SH3 in 

protonated buffer, 2 unambiguous contacts were identified, of which 1 is a long-range HN – 

HN contact. For the 3D H(H)CH, 132 peaks were selected, and 7 unambiguous contacts were 

identified, 5 of which are long-range restraints. However, for the H(H)CH spectrum in 

deuterated buffer we found 150 contacts, of which 8 are unambiguous restraints, 7 of which 

were long-range corresponding to either HN – Hα or Hα - Hα. One of the additional contacts 
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identified in fully deuterated buffer is highlighted in fig. 2.5B. This method clearly improves 

the number of structural restraints available at 55 kHz MAS, and in particular, the 

unambiguous restraints, a metric that is crucial for the convergence of commonly used 

structure calculation methods. A concern with Hα detection is the presence of water and other 

solvent signals in this spectral region. Therefore good water suppression is needed, but as 

demonstrated here for samples in both H2O and D2O, control of the water is possible even 

without gradient methods.  

 For resonance assignment, the α-PET labeling approach benefits from the 

implementation of new proton detected NMR pulse sequences focused on Hα detection that 

were recently developed for >100 kHz MAS (75). So far, proton detected MAS NMR 

structures were mostly based on HN detected experiments or more recently on fully protonated 

samples that are best investigated using 100 kHz MAS (76). New possibilities are opened 

with the α-PET approach, allowing effective structural measurements with the inherently 

more sensitive equipment for ~60 kHz spinning.  

 The method was also successful for a more challenging system, the human voltage 

dependent anion channel (VDAC). The lipid bilayer structure of this protein has been 

investigated though MAS NMR spectra of VDAC in liposomes (77) and in 2D crystalline 

arrays (78), and narrow proton resonances were reported for a perdeuterated sample (78, 79). 

With α-PET labeling, we also observed narrow amide proton linewidths of 150 Hz in H2O, 

while ~100 Hz lines were observed using D2O buffer, which is slightly better than the 

~120 Hz linewidths observed for perdeuterated and HN back-exchanged protein. This 

indicates that the non-exchangeable protons are slightly narrower, and that Hα labeling does 

not significantly impact the spectral quality. In this D2O-exchanged buffer, less improvement 

in Hα T2´ (Fig. S2.9) was observed as compared with the SH3 domain, which is not 

unexpected, since approximately half the amide protons were protected from exchange (Fig. 

S2.9B).  
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Figure 2.6. Identification of a cross beta strand contact (F99Hα –I114Hα) in the beta barrel membrane 
protein VDAC in lipid bilayers. 
A shows, the comparison of the (H)CH spectrum at 105 kHz on a 950 MHz spectrometer (black) and at 55 kHz 
on an 800 MHz spectrometer (red). B shows a 13C-15N projection of a (H)NCAHA spectrum. F99 Hα is assigned 
from the strip comparing (H)NCAHA (green) and (H)N(CO)CAHA (brown). In C and E, the contact is shown on 
the X-ray structure of mouse VDAC (pdb: 2jk4). D shows the F99 – I114 cross-peak in the carbon-carbon 2D 
plane of the (H)C(HH)CH spectrum at the proton frequency of F99, 4.72 ppm. 

 To further characterize the potential spectral resolution, α−PET VDAC was measured 

at 105 kHz MAS at a 950 MHz spectrometer (black in Fig. 2.6A). Surprisingly, the same line 

width was obtained at 110 kHz MAS at 950 MHz (~110 Hz) and at 55 kHz MAS at 800 MHz 

(~95 Hz), showing that the inhomogeneous contributions are dominating the linewidth at 

55 kHz. This shows that even for a highly homogeneous preparation of a membrane protein, 

α-PET labeling efficiently reduces the proton dipolar broadening at 55 kHz. 

 The protection from solvent exchange observed for VDAC highlights an issue with 

perdeuteration for proteins that lack refolding protocols. Perdeuteration of membrane proteins 

(73, 80) and large complexes (81) in E. coli often results in deuterated amides that cannot be 

exchanged with protons from water. Such exchange protected regions of the protein become 

inaccessible in the perdeuteration and back-exchange approach, limiting the analysis to 

solvent accessible regions (38, 42, 82-84), although such limited exchange phenomena can 

also be used to obtain functional information (80, 85, 86). Using α-PET labeling, we are now 

able to detect both exchangeable as well as non-exchangeable amide protons in highly 

deuterated samples as shown previously for amino acid based media (55). 
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 Due to the size of the protein, unambiguous assignment of important cross-strand 

contacts was not possible in a 3D H(H)CH spectrum of VDAC. We therefore applied the 

better resolved 3D (H)C(HH)CH spectrum to measure cross-strand contacts (Fig. 2.6). VDAC 

assembles as a beta barrel, a topology that places cross-strand Hα pairs in close proximity 

(~2.3 Å), and much closer than sequential Hα spins, which are separated by about 4.5 Å. 28 

Hα – Hα contacts were detected from this spectrum, of which we show the cross strand 

contact between residue phenylalanine 99 and isoleucine 114, which was assigned based on 

the existing 13C and 15N assignments of this protein (78, 79) and (H)NCAHA and 

(H)N(CO)CAHA spectra. The current published assignments (32% of 283 residues) of VDAC 

do not allow a characterization of all 28 peaks. However, resolving 28 peaks is significant, 

considering that only ~4 amide-amide or alpha-alpha contacts are available in each 

transmembrane beta sheet interface, of which VDAC has 19. Further analysis of the expected 

contacts in VDAC is show in figure S2.10. This demonstrates a successful implementation of 

α-PET labelling for structure determination in a challenging 32 kDa membrane protein 

embedded in lipid bilayers, where structural restrains are particularly difficult to identify (78). 

4.4 Α-PET LABELING FOR SOLUTION NMR 

 The α-PET labeling approach is also beneficial for the study of proteins in solution, 

when deuteration is needed to reduce transverse relaxation rates (87, 88). Figure 2.7 shows the 

reduction in R2 relaxation rates due to the high level of deuteration in α-PET labeled 

Ubiquitin. Such improvement in relaxation rates is important for the study of protein 

dynamics. For example in detection of Hα relaxation dispersion, fractional deuteration was 

used to improve R2 (89, 90). The current labeling incorporates the alpha positions at 100 

percent for most residues, with a high overall deuteration level, which improves sensitivity as 

compared with random fractional deuteration. 
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Figure 2.7. Selected residues showing the reduction in proton (Hα) R2 relaxation rates with α-PET labeling 
(red) as compared with full protonation (black). The correlation plot (right) shows a reduction for all 
residues.  
The data is from ubiquitin samples exchanged in 100% D2O at 277 K and measured at a 600 MHz spectrometer. 

5. Conclusion 

 Here, we introduced a new method to label Hα protons in a protein without significant 

isotopic scrambling, and demonstrated how this new sensitive magnetic probe in the 

backbone of the protein adds new structural information even at below 60 kHz MAS. The α-

PET labeling approach has several advantages, i) adaptation of the cells to D2O is not 

required, ii) it gives similar yields as deuterated expression in M9 media iii) costs are similar 

to production of deuterated proteins. It is expected to be particularly useful for deuteration of 

proteins that lack refolding protocols, such as membrane proteins. 

 In this demonstration, we used a commercially available crude snake venom extract to 

generate keto acids. This approach results in the designed incorporation of alpha protons for 

Tyr, Phe, Leu, Ile, Gly, Gln, Asn, Asp, Glu and Met. In the future, further optimization of the 

method might entail other LAAOs with different substrate specificity, perhaps in combination 

with auxotrophic strains to limit unwanted reaction pathways. In addition, other amino acid 

mixtures or expression systems could be investigated. This might allow labeling of lysine, 

arginine, and histidine, which were currently left deuterated. 
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SUPPLEMENTARY 

Quantification of labeling patterns, LAAO activity, measurement of relaxation times under 55 

kHz MAS, Hα R2 in solution and spectral acquisition parameters. 

Table S2.1. Amino acid composition of Silantes media as supplied by the manufacturer, with negligible 
concentrations of carbohydrates (less than 30 mg per liter). 

Amino acid composition before treatment

Amino acid mole percent

Asp 20.6

Thr 3.7

Ser 4.1

Glu 11.1

Gly 11.1

Ala 14.8

Val 3.0

Met 1.8

Ile 2.1

Leu 5.3

Tyr 1.8

Phe 2.4

His 9.7

Lys 3.4

Arg 2.3

Pro 3.0
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Table S2.2. Incorporation level at the Hα position by amino acid type as estimated from 13C-HSQC 
spectra without correcting for differences in T2 relaxation.  
Spectra were recorded on a 950 MHz Bruker spectrometer using 30 ms indirect evolution for both α-PET and 
U-13C,15N-labeled samples in D2O.  Water suppression by saturation or selective pulsing was not used, since the 
alpha protons overlap with water. The data was processed using a sine squared function in both dimensions and 
using 8k indirect points. Peak intensities where used to estimate labelling efficiency. Amino acids that do not 
scramble, and for which LAAO was effective (Ile, Phe, Leu) were used to normalize the spectra. The largest 
source of error is not due to the signal to noise ratio, and we therefore expect that it comes from differences in 
relaxation between the deuterated and protonated samples. We therefore corrected for T2 in Table S3. 

Residue Number of 
residues

Reference 
sample

αPET 
sample

ratio stdv percentage

Tyr 1 2.18 3.16 1.451 * 145.1

Phe 2 2.24 2.34 1.046 0.04 104.6

Leu 8 3.57 3.63 1.015 0.11 101.5

Ile 7 2.79 2.64 0.944 0.08 94.4

Val 4 3.49 2.41 0.692 0.07 69.2

Ala 2 3.19 2.05 0.644 0.02 64.4

GlyHα3 3 2.53 3.24 1.280 0.07 128.0

GlyHα2 3 4.41 1.05 0.239 0.01 23.9

Gln 4 2.91 2.79 0.960 0.07 96.0

Asn 1 3.22 3.82 1.186 * 118.6

Thr 7 3.09 1.05 0.341 0.01 34.1

Ser 2 2.67 1.27 0.476 0.01 47.6

Glu 5 2.77 2.87 1.038 0.03 103.8

Asp 2 3.08 3.53 1.146 0.02 114.6

Lys 5 3.56 - 0.000 * 0.0

Arg 4 4.42 - 0.000 * 0.0

His 1 2.95 - 0.000 * 0.0

Met 1 4.76 4.52 0.950 * 95.0

 62      
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Table S2.3. Incorporation level at the Hα position by amino acid type as estimated from 13C-HSQC 
spectra corrected by the Hα T2.  
The intensities from Table S2 were corrected by the T2 measured at the Hα position of each individual amino 
acid. Peak intensities were used to estimate labelling efficiency. Amino acids that do not scramble, and for which 
LAAO was effective (Ile, Phe, Leu) were again used to normalize the spectra. With T2 correction, Val, Ala, Ser 
and Thr show higher incorporation, of about 100%. The correction of the T2 could only be made reliable for 
isolated peaks that do not overlap with other peaks or with water (only 47 peaks have been used in this case). 

Residue Number of 
residues

Reference 
sample

αPET 
sample

ratio stdv percentage

Tyr 1 1.20 1.25 1.040 * 104.0

Phe 2 1.32 1.29 0.984 0.03 98.4

Leu 8 1.23 1.25 1.017 0.02 101.7

Ile 6 1.28 1.28 1.001 0.03 100.1

Val 3 1.22 1.26 1.039 0.04 103.9

Ala 2 1.21 1.27 1.046 0.01 104.6

GlyHaa 0 * * * * *

GlyHab 0 * * * * *

Gln 4 1.25 1.31 1.048 0.01 104.8

Asn 1 1.22 1.31 1.075 * 107.5

Thr 3 1.35 1.36 1.007 0.09 100.7

Ser 1 1.24 1.29 1.038 * 103.8

Glu 4 1.27 1.31 1.027 0.03 102.7

Asp 1 1.19 1.29 1.078 * 107.8

Lys 5 1.24 * * * *

Arg 4 1.17 * * * *

His 1 1.24 * * * *

Met 1 1.20 1.26 1.044 * 104.4

 47      
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Figure S2.1. LAAO activity for different amino acids in solution.  
Conversion was effective for leucine (A), tyrosine (C), phenylalanine (D) and arginine (G), and not effective for 
valine (B), lysine (E) and histidine (F). Some activity was observed for histidine at lower concentration (see 
Figure S2.4). 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Figure S2.2. Side products from LAAO treatment on Leucine. 
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Figure S2.3. LAAO treatment efficiency on a deuterated amino acid powder for different amino acids. 
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Figure S2.4. LAAO treatment efficiency on a deuterated amino acid powder for polar/charged amino 
acids.  
50 µM of the respective amino acid were dissolved in deuterated powder. The Glycine spectrum was used to 
cancel the background by taking the difference (Glycine Hα appears as a negative peak). Arg* corresponds to the 
Arg spectrum scaled as a function of the triplet (CH2), since the arginine concentration was different in the 
reference and LAAO treated samples. The LAAO enzyme is active on His and Arg, but results in only partial 
production of the keto acid. For all the other polar and charged amino acids Lys, Glu, Asp, Asn, Gln, Ser and Thr 
LAAO has no effect. 
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Figure S2.5. LAAO treatment efficiency on a deuterated amino acid powder for hydrophobic amino acids. 
50 µM of the respective amino acid were dissolved in deuterated powder. The Glycine spectrum was used to 
remove the background signal by taking the difference spectrum (Hα of Glycine appears as a negative peak). 
LAAO treatment is 100% effective for Ile, Leu, Phe, Trp, Tyr and Met. The LAAO treatment has some activity 
on Val, however, is not active for Ala in the deuterated amino acid media. 
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Figure S2.6. Transaminase and other enzyme activity in E. coli is sufficient to exchange the amide position 
of many residues, with and without LAAO treatment.  
2H Silantes (without 15N labelling) was added to the culture after growth in 15N M9 medium. Peaks that remain 
are labelled through amino acid synthesis pathways or through transaminase. Suppression of sidechain protons 
(Fig. S2.8-S2.9) indicate that synthesis pathways are not a significant contribution. In A, 13C,15N-ubiquitin 
(black) and untreated ubiquitin (cyan) shows the inherent transaminase activity E. coli. In B, 15N-HSQCs of 
LAAO treated (purple) and untreated (cyan) ubiquitin (starting with 2H Silantes) shows that treatment helps to 
introduce a higher level of amide signal for many amino acids.  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Figure S2.7. Amino acid labelling pattern of α-PET Ubiquitin without LAAO treatment.  
The 15N-TOCSY of 15N,13C-Ubiquitin (black) is compared with untreated α-PET-Ubiquitin (cyan).  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Figure S2.8. Comparison of spectral quality when labeling with deuterated glucose in otherwise 
protonated media.  
Both spectra were recorded at a MAS spinning frequency of 55 kHz on a Bruker 800 MHz spectrometer. The 
improvement in resolution with α-PET labeling is compared for selected regions of the 2D spectrum. This 
labeling scheme has been dubbed inverse fractional deuteration (iFD) (Madeiros et al.). 
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Figure S2.9. Transverse relaxation (T2') is compared for α-PET samples in 100% deuterated buffer and 
100% protonated buffer.  
Data were recorded at 800 MHz, with 55 kHz MAS and filtered through cross polarization based (H)NH or 
(H)CH spectra for HN or HC relaxation times, respectively. In A, HN and HC relaxation times for the 
microcrystalline α-spectrin SH3 domain labelled with α-PET in protonated buffer (red), α-PET in deutereted 
buffer (blue), α-PET using the media exchange protocol in deutereted buffer (brown), and 13C,15N in protonated 
buffer (black). The first point of the decay curves are shown above the table in the corresponding colors. In B, 
the bulk T2' relaxation times of the α-PET labelled 32kDa membrane protein VDAC are tabulated. Again, the 
first point in the decay curves are shown in the corresponding colors 
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Figure S2.10. Predicted Hα− Hα contacts accordingly to α-PET labeling mapped into the VDAC NMR 
structure.  
The residues showing 100% Hα reincorporation are shown in red, green and yellow, 18 contacts could be 
predicted from those residues. Valine in pink add 6 more contacts. The predicted contacts are well distributed 
over the structure, showing the relevance of the Hα – Hα contribution for structure determination. 
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Figure S2.11. Transverse relaxation rates (R2) using CPMG for fully protonated (black) and α-PET 
labeled ubiquitin (red).  
The data is from isolated peaks in the Cα-Hα HSQC of ubiquitin samples exchanged in 100% D2O at 277 K and 
measured at a 600 MHz spectrometer. 

53



Table S2.4. Transverse relaxation rates (R2), obtained from CPMG measurements at 277 K for resolved 
residues in uniform 15N, 13C labeled and α-PET labeled ubiquitin measured at a 600 MHz spectrometer. 

Residue Transverse relaxation rate at 277 K (s-1)

15N, 13C ubiquitin α-PET ubiquitin

M1 59.7 ± 0.7 46.3 ± 0.4

I3 75.2 ± 0.8 56.5 ± 1.2

V5 69.4 ± 2.8 49.0 ± 1.9

G110 96.5 ± 1.1 40.9 ± 0.7

G210 99.1 ± 1.1 76.4 ± 2.7

I13 57.6 ± 1.1 40.1 ± 0.8

L15 68.0 ± 1.6 45.7 ± 2.0

V17 64.6 ± 1.1 46.3 ± 1.2

I23 85.1 ± 1.1 48.1 ± 1.0

E24 78.2 ± 0.8 60.8 ± 1.5

V26 83.3 ± 1.4 48.5 ± 1.1

A28 68.5 ± 1.8 54.7 ± 1.4

I30 53.6 ± 1.8 45.0 ± 1.1 

Q31 75.4 ± 1.3 64.8 ± 1.7

G135 112.6 ± 1.4 49.0 ± 1.7

G235 92.8 ± 0.9 67.3 ± 2.7

I36 86.8 ± 1.5 48.4 ± 0.8

L43 74.3 ± 2.7 52.7 ± 1.9

F45 74.6 ± 3.8 47.0 ± 2.5

L50 72.9 ± 1.7 47.8 ± 1.4

D52 75.7 ± 2.3 57.2 ± 1.1

L56 85.2 ± 2.1 49.2 ± 1.0

Y59 72.5 ± 2.5 44.0 ± 1.1

I61 65.7 ± 1.7 42.85 ± 0.7

Q62 54.2 ± 1.7 45.4 ± 1.7

E64 78.4 ± 1.0 64.6 ± 1.5

T66 73.0 ± 1.1 51.3 ± 5.0

L69 76.6 ± 2.6 51.8 ± 2.3

V70 56.5 ± 1.0 41.9 ± 0.6
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Table S2.5. Transverse relaxation rate (R2), obtained from CPMG measurements at 308 K for resolved 
residues in uniform 15N, 13C labeled and α-PET labeled ubiquitin measured at a 600 MHz spectrometer. 

Residue Transverse relaxation rate at 308 K (s-1)

15N, 13C ubiquitin α-PET ubiquitin

M1 21.1 ± 0.3 16.7 ± 0.5

Q2 27.3 ±0.2 24.6 ± 0.6

F4 36.5 ± 0.5 23.3 ± 0.5

V5 24.7 ± 0.8 17.3 ± 0.3

T7 25.8 ± 0.2 20.5 ± 1.9

T9 18.4 ± 0.9 17.7 ± 1.6

G110 35.7 ± 0.6 31.9 ± 1.4

G210 35.3 ± 0.3 34.0 ± 0.8

T12 32.6 ± 0.5 26.5 ± 1.1

I13 20.7 ± 0.3 15.5 ± 1.3

T14 34.0 ± 0.4 28.6 ± 1.1

L15 24.6 ± 0.9 16.8 ± 0.3

V17 24.0 ± 1.3 16.5 ± 5.0

E18 29.6 ± 0.6 18.7 ± 0.3

T22 34.1 ± 0.4 25.0 ± 1.2

I23 31.2 ± 0.6 19.5 ± 0.1

E24 28.2 ± 0.6 21.5 ± 0.3

V26 30.7 ± 0.4 19.4 ± 0.4

A28 25.4 ± 0.2 20.4 ± 0.8

I30 27.9 ± 0.2 18.9 ± 0.7

Q31 28.3 ± 0.5 23.9 ± 0.3

E34 19.9 ± 0.5 17.7 ± 0.1

G135 43.6 ± 0.4 35.0 ± 0.7

G235 43.1 ± 0.3 38.7 ± 1.5

I36 32.6 ± 0.2 18.5 ± 0.6

D39 20.2 ± 0.4 19.5 ± 0.8

Q41 27.5 ± 0.1 21.5 ± 0.7

L43 27.3 ± 0.2 19.5 ± 0.5

I44 26.2 ± 0.2 19.3 ± 0.3

F45 25.5 ± 0.2 16.8 ± 0.3

A46 18.2 ± 0.5 14.8 ± 0.9

G47 43.0 ± 0.8 39.1 ± 2.5

Q49 24.7 ± 0.3 21.1 ± 1.2
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L50 26.3 ± 0.3 18.1 ± 0.2

D52 28.0 ± 0.8 21.3 ± 0.5

T55 34.7 ± 0.2 25.5 ± 0.3

L56 27.7 ± 0.1 17.3 ± 0.6

S57 24.8 ± 0.4 19.7 ± 0.7

Y59 20.6 ± 2.0 15.8 ± 2.5

N60 22.6 ± 0.2 21.5 ± 0.4

I61 24.2 ± 0.4 18.0  ± 0.4

Q62 19.4  ± 0.5 16.5 ± 0.5

34.6 32.2 ± 0.4 27.2 ± 0.4

T66 34.6 ± 0.6 27.3 ± 1.4

L67 24.6 ± 0.2 17.1 ± 0.2

L69 27.1 ± 0.4 18.7 ± 0.4

V70 20.3 ± 1.6 16.2 ± 0.4

L71 21.6 ± 0.1 15.1 ± 0.2

L73 11.1 ± 0.1 87.7 ± 0.5

G75 9.2 ± 0.1 7.6 ± 0.5
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Table S2.6. Spectrum acquisition parameters recorded for the different samples.  
All were recorded at a magnetic field of 18.8 T (on an 800 MHz Bruker spectrometer) at 55kHz MAS using a 3 
channel narrow bore HCN probe. The temperature was set at 250K for VDAC and 260K for SH3. 10kHz of 
waltz16 decoupling was used for 13C and 15N. 12 kHz swept TPPM decoupling was used during indirect 
evolution periods. Water was suppressed by saturation with at 13.75 kHz for 200ms (protonated buffer) and 
50ms (deutereted buffer). The spectra were processed with a squared cosine function. The direct acquisition time 
was 10 ms and 7 ms for SH3 and VDAC, respectively. 

Sample Spectrum TD 
F3

TD  
F2

TD 
F1

AQ 
F2 (ms)

AQ 
F1 (ms)

NS Total 
time

SH3 ref (H)CH * 1024 402 * 9.9 4 1h30

α-PET 
SH3 in 
H2O

(H)CH * 1024 402 * 9.9 4 1h30

α-PET 
SH3 in 
D2O

(H)CH * 1024 402 * 9.9 4 1h30

α-PET 
SH3 in 
H2O

H(H)NH 1024 102 80 5.3 (1H) 14.9 (15N) 4 24h

α-PET 
SH3 in 
H2O

H(H)CH 1024 160 192 4.9 (1H) 10 (13C) 2 24h

α-PET 
SH3 in 
D2O

H(H)CH 1024 160 192 4.9 (1H) 10 (13C) 2 24h

α-PET 
VDAC D20

(H)C(HH)C
H

1024 294 170 4.6 (13C) 4.2 (13C) 2 8 d
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Figure S2.12. α-PET SH3 comparison using protonated buffer (red) or deuterated buffer (blue) for 
crystallization.  
Most of the residues show an improvement in the line width when amide protons are exchanged using deuterated 
buffer for crystallization. When line widths are reported, no apodization was applied for the reported dimension. 
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1. Abstract 

 Protein environment could play an important role on protein function, and can also be 

used to infer structural properties of the protein itself. Using proton-detected solid-state NMR, 

we show that reduced spin diffusion within the protein under conditions of fast magic-angle 

spinning, high magnetic field, and sample deuteration allows the efficient measurement of 

site-specific exposure to mobile water and lipids. We demonstrate this site specificity on two 

membrane proteins, the human voltage dependent anion channel, and the alkane transporter 

AlkL from Pseudomonas putida. Transfer from lipids is observed selectively in the membrane 
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spanning region, and an average lipid-protein transfer rate of 6 s-1 was determined for residues 

protected from exchange. Transfer within the protein, as tracked in the 15N-1H 2D plane, was 

estimated from initial rates and found to be in a similar range of about 8 to 15 s-1 for several 

resolved residues, explaining the site specificity. 

2. Introduction  

 Cellular membranes are essential for maintaining homeostasis in an organism by 

separating cellular processes and controlling transmembrane signaling and the flow of 

metabolites. These processes are regulated by various proteins, and invariably involve integral 

membrane proteins that span the lipid bilayer as beta barrels in mitochondria and prokaryotes, 

or as alpha helices in both eukaryotes and prokaryotes. Since the lipid bilayers  are necessary 

to maintain membrane protein structure and function, it is crucial to develop methods to 

investigate membrane proteins in such near-native environments (91-93). A key advantage of 

magic-angle spinning (MAS) NMR in this context, is the ability to study membrane proteins 

prepared in planar lipid bilayers at atomic resolution for investigation of structure and 

dynamics (79, 94, 95). In addition, the proximity of mobile species such as lipids and water, 

that are difficult if not impossible to capture via cryo electron microscopy or X-ray 

crystallography, can be probed with MAS NMR. In this way, it is possible to investigate 

solvent accessibility (96-98) or membrane association (99). 

 The environment of the protein surface can be probed by magnetization transfer 

between the protein and components of its environment, which is most commonly water, but 

in the case of membrane proteins is also lipids. While there is a choice of NMR active nucleus 

for the lipids, the more universal approach, and indeed the approach most commonly 

implemented in literature is to transfer magnetization by longitudinal proton-proton mixing. 

At physiological temperatures, water rapidly diffuses, which results in long proton T2 

relaxation times. In the case of lipids, anisotropic diffusion results in proton T2 times of tens 

of ms (100), which is still at least an order of magnitude longer than for the protein under 

moderate spinning of ~10 kHz. This allows the water or lipid signals to be selected based on 

differential relaxation times (101-103) or to distinguish multiple water pools with distinct 

relaxation properties within the same sample (98, 104).  

 Different primary mechanisms for water-protein magnetization transfer are possible 

under this scheme, including the nuclear Overhauser effect (NOE), chemical exchange, and 
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dipolar mediated spin diffusion. Since the NOE mechanism relies on cross relaxation of 

dipolar coupled spins, and requires correlated motion of the two coupled spins, it is not 

usually considered in solid-state NMR. However, Zilm and coworkers showed that water-

protein transfer was consistent with NOE relaxation in the solid-state for a deuterated protein 

using HN detection (105). The conclusion was drawn by comparison of magnetization transfer 

rates with and without recoupling, and in the rotating frame. Under different experimental 

conditions, Böckmann and coworkers found chemical exchange to be an important factor 

governing the buildup, which in their case was detected through cross polarization to carbon 

resonances in protein microcrystals and fibrils (97, 106). The fact that these carbon 

resonances are closer to exchangeable NH- and OH-protons in the sidechains may in part 

explain the differing contributions of NOE and chemical exchange in the two studies. In 

addition, details of the sample condition may also play a role, since the rate of chemical 

exchange can be reduced by decreasing the sample temperature and changing the pH. For site 

specificity, the possibility for dipolar mediated spin diffusion complicates the picture as 

compared with membrane protein studies in solution (107). Spin diffusion in solids is 

typically mediated by dipolar couplings, although diffusion of magnetization also occurs 

through relayed NOE transfers at long mixing times. In general, magnetization transfer within 

the protein can occur through spin diffusion and NOE, while transfer between the protein and 

the surrounding mobile water or lipids can take place through NOE. For water chemical 

exchange is also possible. For lipids, the exchange pathway is not possible, as the lipid 

molecules do not have exchangeable protons, and dipolar spin diffusion is reduced by 

considerable anisotropic motion. A summary of the magnetization transfer pathways is shown 

in figure 3.1. 
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Figure 3.1. Schematic representation of longitudinal 
magnetization transfer in a lipid bilayer sample.  
1-6 shows transfer between 1, protein and protein, 2, water 
and protein, 3, lipid and protein, 4, water and protein by 
chemical exchange, 5, lipid and water, and 6, bulk and 
associated water. 

 At low MAS rates and in fully protonated proteins, dipolar mediated spin diffusion is 

rapid, with efficient proton-proton transfer occurring in hundreds of microseconds (108). 

Typical NOE mixing times are orders of magnitude longer, since the NOE rates are lower. 

The result is that since the water-protein transfer is rate limiting, water magnetization is 

passed onto the protein primarily via fast exchanging groups and NOE, then spread quickly 

through the protein such that site specificity is obscured (101). Nevertheless, broader changes 

in the buildup of magnetization can be detected even at moderate MAS rates, for example, the 

reduction in exposed surface due to drug binding was evident in the influenza M2 protein 

(109). At high deuteration levels, high magnetic fields, and high spinning frequencies, the 

proton spectrum of the protein narrows as dipolar couplings are averaged at fast MAS (110), 

and the contribution of spin diffusion to magnetization transfer is reduced dramatically, 

allowing site resolved measurement of water proximity (97, 105, 106). We propose that this 

reduction in intra-protein transfer rates could be ideal for probing site specific lipid exposure, 

since the NOE transfer from the mobile lipid acyl chains could become similar to and 

potentially faster than the intra-protein transfer. Such site specificity would be consistent with 

previous measurement of specific water-protein transfer under similar conditions of 

deuteration and MAS rates, in which the mechanism was found to be mediated by chemical 

exchange (97, 106). In the case of transfer from the mobile aliphatic lipid chains, chemical 
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exchange is not possible, and we therefore are left with NOE as the dominant mechanism, 

although there may also be some residual transfer through spin diffusion. 

 Development of faster MAS frequencies, now applied in commercial probes at up to 

111 kHz, have opened up new possibilities due to improved sensitivity, improved coherence 

lifetimes, and access to protons as the detection nucleus (30, 81, 111-116). Using 1H 

detection, sensitivity is increased 8 and 32-fold on a per mole basis, with respect to 13C and 
15N-detection. This assumes no changes in linewidth, which is reasonable with deuteration 

(116) and fast spinning. While fractional deuteration or smaller rotors capable of faster 

spinning reduces this gain somewhat, there is still an overall benefit in sensitivity with proton 

detection at 60 kHz MAS (42). Furthermore, the accessibility of a well-resolved proton 

dimension decreases degeneracy of chemical shifts and makes unambiguous assignments 

possible even on large proteins. 

 Early implementations for determining water accessibility rely on establishing 

polarization selectively on water, then transferring this polarization to the protein. Water can 

be selected using a T2 filter (117, 118) or a selective excitation pulse (103). The T2 filter uses 

a Hahn echo to select mobile molecules, as they can have much longer coherence times than 

rigid species such as protein. Subsequently, during a longitudinal mixing period, 

magnetization is transferred to the protein, and is then detected on 13C or 15N. In a bilayer, 

lipids are sufficiently mobile that the above mentioned strategies used for selection of water 

can also be applied to them (101). Alternatively, a spectral dimension can be used to 

distinguish mobile components from resonances of the protein (97, 99, 105, 106). This 

approach is effective for faster MAS rates, where there is less difference in protein and water 

or lipid T2 relaxation times. 

 Here we apply fast MAS (55 kHz) in combination with perdeuteration and proton 

exchange for proton-detected measurement of water and lipids in contact with the protein. 

These conditions allow site-specificity within about 3 Å and determination of lipid insertion 

depth for membrane proteins, which is critical for evaluating the position of a membrane 

protein in its native environment, and thus for gaining a deeper understanding of its structural, 

functional, and evolutionary features. We demonstrate the applicability of the method on two 

integral membrane proteins, AlkL from Pseudomonas putida, and the human voltage-
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dependent anion channel (hVDAC). Both proteins fold as membrane spanning beta barrels, 

with both lipid and water exposed surfaces. 

3. Materials and methods 

 2H, 13C, 15N-labeled AlkL was prepared as previously described (119, 120). The 

bilayer sample was reconstituted by addition of lipids to a 0.5 lipid to protein weight ratio and 

removal of detergent by dialysis. 2D crystalline 2H, 13C, 15N-labeled hVDAC was prepared 

using established expression and refolding protocols (121-123). Preparation of 2D crystals 

was carried out using the protocol modified by Eddy et al. (65) from the original protocol 

published by Dolder et al. (64). 

 NMR experiments were performed on approximately 1 mg of sample packed into a 

1.3 mm Bruker MAS rotor. All experiments were acquired on an 800 MHz Bruker Avance III 

spectrometer at a magnetic field of 19 T, and spinning at 55 kHz. The temperature of cooling 

gas was set to 250 K, which results in an estimated sample temperature of 20 °C. The HhNH 

and hNHH spectra were recorded by averaging 2 scans per point. Acquisition time in the 

direct dimension was 10 ms, in the indirect dimensions 22 ms on 15N and 3.5 ms (HhNH) or 

4.0 ms (hNHH) on 1H. For 1H to15N CP a contact time of 600 µs was used, with a linear ramp 

from 78 to 98 kHz on 1H and constant irradiation of 15N at 36.8 kHz. 1H and 15N RF field 

levels were determined from hard pulse calibrations. Cross-relaxation rates were determined 

from 3D spectra recorded with mixing times of 0, 5, 10, 15, 25, 50, 75, 100, 150, and 300 ms. 

A mixing time of 50 ms was chosen for the 4D spectra. For the HhnCANH spectra, 16 scans 

per point were averaged together and non-uniform sampling (NUS) was applied, selecting 

1.98 % of the points. The sampling schedule was generated by Topspin 3.5, and the spectrum 

reconstructed using MDD in Topspin. The indirect acquisition times were 5.3 ms for 1H, 10 

ms for 13C and 22 ms for 15N. All experiments used waltz-16 heteronuclear decoupling at 10 

kHz on both 13C and 15N. Protons were decoupled using 7 kHz TPPM decoupling during 

indirect acquisition times. The NOE mixing time was 50 ms. The recycle delay was 0.8 

seconds. This resulted in a total experiment time of 6 to 7 hours for each mixing point of the 

HhNH, 7 to 8 hours for each mixing point of the hNHH, and 8 days for the 4D HhnCANH. 

Spectra were processed in Topspin 3.5 (Bruker) and analyzed in Sparky (124). 
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4. Results and discussion 

 Figure 3.2 shows the pulse sequences used to record 3- and 4-dimensional, z-mixing 

based proton detected spectra for determining site-resolved water and lipid proximities in 

integral membrane proteins. Figure 3.2A shows the 3-dimensional HhNH pulse sequence, 

which is only slightly modified from the hNHH sequence of Zilm and coworkers (105) by 

placing the z-mixing at the beginning rather than the end of the sequence. Proton excitation is 

followed by an indirect evolution period to encode the frequencies of water, lipids, and 

protein. Next, longitudinal mixing allows proton-proton transfer between mobile small 

molecules and the protein, via exchange and NOE. Magnetization is then transferred to 15N, 

evolved, and transferred back to proton, where it is then detected. The out-and-back transfer 

to 15N uses two short cross-polarization (CP) steps to ensure a selective transfer. The 3D 

experiment can be extended to 4 dimensions by including an additional transfer to CA. This 

HhnCANH sequence (Fig. 3.2B) proves useful when the HN spectrum is not sufficient to 

resolve signals from all residues. Similar in concept to the 3D, the out-and-back scheme in the 

4D also directs transfer within one residue. The more sensitive HhCANH transfer scheme 

would allow longer range transfer during the 1H-13C transfer step. Two different N-C-N out-

and-back transfer schemes were considered, based on either CP (Fig. 3.2B) or transferred 

echo double resonance (TEDOR, Fig. 3.2C) (125). Similar to recent observations, the 

TEDOR transfer was found to be more efficient (126). Omitting 1H-1H mixing, we found the 

CP based sequence to perform with 14% efficiency, as compared with 20% using TEDOR, 

both with respect to the hNH sequence. 
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Figure 3.2. Pulse sequences used to record site resolved water and lipid in close proximity to membrane 
proteins. 
In A, the 3D HhNH sequence. In B, the CP based HhnCANH sequence. In c, the TEDOR based HhnCANH 
sequence. Solid and empty rectangles represent 90 and 180 degree pulses, respectively. Empty half-ovals 
represent selective 180 degree pulses, Q3 pulses43 in our implementation. Tangent ramped pules were used on 
the 15N channel for 13C15N CP transfer. A selective pulse on the carbon channel during TEDOR prevents transfer 
to the carbonyl. 1.45 ms TEDOR transfer was used. Proton decoupling of 5 to 15 kHz WALTZ or swept TPPM 
decoupling was used during TEDOR, while 12 kHz swept TPPM was used during evolution periods. WALTZ 
decoupling on the carbon and nitrogen channels was set to 10 kHz. Rotor synchronization is indicated by vertical 
dashed lines. Phases were cycled, in A with φ1 = y -y, φ2 = x x -x -x, φrec = y -y -y y, in B, φ1 = x -x, φ2 = x x -x -
x, φ3 = y y -y -y  -y -y y y, φrec = y -y y -y -y y -y y, and in C, φ1 = x -x, φ2 = x x -x -x, φ3 = x x x x -x -x -x -x, 
φrec = x -x -x x -x x x -x. REDOR pulses on the carbon channel in C followed the xy-16 scheme. All other pulses 
were applied with phase x. 

In all three pulse sequences, the 1H-1H mixing takes place at the beginning, preceded by 

evolution in an indirect proton dimension. This carries the advantage that the indirect 

sampling can be limited to reduce the overall data acquisition time. This results in lower 

resolution in the indirect proton dimension, which is sufficient as this dimension serves only 

to distinguish between lipids, water and protein resonances. In a perdeuterated protein, the 
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aliphatic proton resonances of the protein are suppressed, and lipid peaks of DMPC appear 

isolated at about 0.9, 1.3, and 3.3 ppm for acyl chain CH3, acyl chain CH2 and choline CH3 

moieties, respectively. The directly detected proton dimension, used for distinguishing 

between protein residues, can be sampled out as far as needed without additional cost in 

measurement time. Secondly, placing the NOE mixing directly before acquisition instead 

would allow water and lipid magnetization to build up during the mixing time, which results 

in problems with water suppression.  

 Figure 3.3 shows selected strips of the 3D spectra on AlkL and hVDAC at resolved 

amide sites, as well as the corresponding buildup of magnetization transferred from either 

lipid or water. Magnetization buildup increases on water and lipids until about 100 ms, 

however at the longer mixing times, magnetization may also be transferred to nearby protein 

residues, resulting in the loss of the experiment’s specificity. Even without a detailed fitting of 

relaxation rates, it can be seen that the buildup of the inter-residue cross-peaks occurs with a 

similar rate as compared to lipid-protein and water-protein cross-peaks. This shows that spin 

diffusion within the protein is substantially suppressed by fast MAS and deuteration. Based 

on the relatively slow spin diffusion within the protein, a mixing time of 50 ms was chosen 

for both proteins and this value was used for the 4D spectra where more sites can be resolved. 

Site specificity is still imperfect under these conditions, since we do observe inter-residue 

transfer. However, as seen in figure 3.3A, we typically only observe transfer to the nearest 

proton, for example, in the cross-strand beta sheets of hVDAC. In this topology, the cross-

strand distance is usually below 3.0 Å, while the next closest proton is above 4.3 Å away. For 

proton spin diffusion under fast MAS, or for proton driven spin diffusion, rate constants can 

be calculated from second order terms using perturbation or Floquet theory, and the transfer 

rate also becomes strongly chemical shift dependent (127, 128). In this case, since spin 

diffusion and NOE are second order effects involving two couplings, their rates scale down 

with the sixth power of distance, and we would therefore expect about an order of magnitude 

reduction in the rate of transfer to other protons. This explains why we typically observe one 

inter-residue cross-peak in a beta sheet topology, and the specificity is expected to be within 

about 3 Å. 

67



Figure 3.3. Evolution of magnetization in 
the HhNH spectrum of AlkL and hVDAC 
for selected residues.  
In A, the proton-proton planes from isolated 
residues are shown for 25, 50, and 100 ms 
in red, green, and black, respectively. The 
evolution of cross-peak intensities in 
hVDAC in B shows the water-protein signal 
intensity for two residues shielded from 
lipids, D9 and F18, as well as the lipid-
protein signal intensity for two lipid 
exposed residues, A127 and S193. Curves 
were fit with the analytical function 
described in the text. In C, the evolution of 
isolated peaks in AlkL are shown. In D and 
E, the initial buildup of protein-protein 
peaks is used to estimate the rate of spin 
diffusion within the protein. The intensities 
are scaled to the protein amide signal at 
zero mixing time, an approximation of the 
initial source polarization, . The decay 
of these diagonal intensities are shown in 
figure S3.2. Error bars correspond to the 
root mean squared noise of the spectra. 

  

 An initial rate approximation shows transfer rates of 3-15 s-1 within the protein (green 

dashed lines in fig. 3.3). For hVDAC, these estimates are reasonably reliable, since the initial 

points are below the maximum in the curve. For AlkL, this is not the case, and the fits 

underestimate the true rates. Intra-protein rates of up to 15 s-1 represents a 2-3 orders of 

magnitude reduction in the deuterated sample at 55 kHz as compared with protonated samples 

at 4 - 5 kHz MAS (101, 109, 117). This comparison requires converting from the reported 

diffusion constants, D, to transfer rates, which can be done applying the relation Ω=D/a2, 

M0,m
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where D is the diffusion coefficient and a is the spacing between spins in a lattice model (101, 

117). A value of D of 0.8 nm2/ms was measured in rigid organic polymers (129). In biological 

polymers, a lower value of D of 0.3 to 0.4 nm2/ms has been applied under similar conditions 

of low spinning rates (101, 109, 117). At a lattice spacing of 2 to 2.4 Å, a spin diffusion rate 

constant of 0.3 nm2/ms, corresponds to a 5000-7500 s-1 transfer rate for this lower spinning 

frequency in fully protonated samples. In deuterated proteins, protons are spaced by at least 3 

Å. A very rough approximation for the expected proton-proton transfer rate at 5 kHz spinning 

can be calculated from a simple reduction by the 3rd power with distance, since the elementary 

transfer occurs via a first order process when the proton spectrum is broad and homogeneous 

due to ineffective averaging by MAS. This would result in an expected rate of about 

2600-3800 s-1. Clearly, both the fast spinning rate, as well as the deuteration, contribute to 

quenching of the intra-protein transfer. 

 While at the lower spinning frequencies, evolution of magnetization during 

longitudinal mixing can be modeled based on Fick’s laws of diffusion (130), the rates of spin 

diffusion with deuteration and fast MAS are reduced and highly inhomogeneous. Under such 

conditions, acquisition of 2D proton-proton spectra and a matrix approach can be used to 

measure rates (100, 131). When spin diffusion is fast within the protein, a simplification based 

on an overall scaling by a single global longitudinal relaxation time (T1) is sufficient to model 

the diffusive behavior and detect differences in overall exposure (103, 109). With fast MAS 

and deuteration, we found that a single T1 did not fit the data and a more sophisticated model 

is needed. While a full rate matrix approach is clearly the gold standard for determination of 

cross-relaxation rates, protein resonances are woefully unresolved in 2D proton-proton 

spectra and improvement in resolution is afforded by filtering through a heteronucleus. This 

improvement in resolution in 3D spectra comes with the loss of the diagonal signals of the 

water and lipid species. We therefore chose to model the evolution of polarization, M(t), with 

several assumptions about the relaxation matrix, starting from the assumption that the lipids 

and water may be treated separately. Then, 

    (3.1) 
∂Mp(t)

∂t
= (−R1,p − Rmp − Rpp))Mp + (Rmp)Mm + (Rpp)Mp
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                     (3.2) 

Where the subscript p is protein, and m is for the mobile species, either lipid or water. R1,p is 

the longitudinal relaxation rate of protein, and the cross relaxation between mobile species 

and protein is .  refers to cross relaxation to all nearby protons of the protein. For 

simplicity, these other nearby protons are assumed to be in contact only with protein 

resonances. Lipids and water are assumed to equilibrate quickly among themselves, and N 

water or lipid protons are in contact with the amide resonance of the protein in fast 

equilibrium. Based on observed exponential decay of lipid signals, we can simplify to a single 

effective decay rate for lipid polarization, . 

      (3.3) 

We observed biexponential decay of water signal, and assume the protein is in contact 

primarily with the faster relaxing water population. This is consistent with observation of 

cross signals with only the broader water component in microcrystalline Crh samples under 

similar conditions (98). Then we can simplify the decay of water signal with a single rate, in 

the same way as for lipids. 

We also chose to neglect magnetization transfer within the protein, since we observed 

moderate mixing of signals from , as indicated by the presence of relatively weak off-

diagonal peaks in the amide region of the HhNH spectrum. We then find the solution, 

  (3.4) 

∂Mm(t)
∂t

= (−R1,m −
1
N

Rmp) Mm +
1
N

(Rmp)Mp

Rmp Rpp

R1,mef f

∂Mm(t)
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= (−R1,mef f) Mm

Rpp

Mp(t) = M0,m
Rmp

R1,p + Rmp + R1,mef f
(e

−R1,mef f t − e−(R1,p+Rmp)t)
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We applied this analytical solution to extract approximate cross relaxation rates in hVDAC. 

The scaling factor  represents the initial polarization of the mobile species. The effective 

decay time for the lipids was set to the measured value of 5.3-5.5 s-1. The effective decay time 

for water was allowed to vary between the two decay times observed in the biexponential 

decay, about 6 s-1. The fit lipid- and water-protein transfer rates were found to be similar, with 

values that ranged from 3 to 12 s-1 for the isolated peaks of hVDAC and AlkL shown in 

figure 3.3.  

Since reliable fits require the correct scaling of the data, we took the initial protein amide 

peak intensity as an approximation for the initial lipid polarization. Due to differences in the 

recovery of lipids, water, and protein, this is estimated to introduce 10-20% error in the rates. 

To better focus on the lipids, we removed the influence of water by preparing a protein 

sample in D2O. Many amides in the membrane-spanning portion of the protein do not 

exchange with buffer, and their bulk T1 was found to be about 0.6 seconds, similar to the rate 

measured in H2O. Since this measurement includes decay due to cross-relaxation to lipids 

(T1~185 ms), we can safely assume that the protein T1 is longer than the apparent decay of 0.6 

seconds. Under this assumption, the long-time decay of magnetization tracks the decay of 

lipid polarization, which may further stabilize the fits.  

As further verification of these rates, we recorded hNHH spectra, placing the z-mixing at the 

end of the sequence. In such spectra, cross-relaxation rates can be determined by measuring 

both the decay of starting signal on the protein, as well as the buildup on lipids (105). 

Tracking the decay of starting polarization allows the determination of the total initial 

intensity and thereby provides a more direct measure of the rates, as in the short mixing 

approximation or the full matrix approach based on proton-proton spectra (100, 131). Since 

imperfect water suppression severely affects hNHH spectra, we used the sample of hVDAC in 

D2O and measured the cross-relaxation from protein to lipids. This has the further advantage 

that the measurement takes place in isolation from transfer to water, and from any chemical 

exchange process, for example from water or from exchangeable side-chain protons. The 

average protein-lipid cross-relaxation rate using this approach was 6 s-1 (Fig S3.3). This rate is 

about an order of magnitude slower than the value of 90 s-1 reported for the average water-

amide cross-relaxation in microcrystalline ubiquitin (105).  

M0,m
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 Tracking the source polarization for rate determination is clearly preferred. However, 

this results in our case in detecting the water or lipid signal in the direct dimension, where 

there is loss of sensitivity due to imperfect solvent suppression and the resultant t1 noise. 

There was still some t1 noise evident near the lipid resonances in hNHH spectra of hVDAC in 

D2O. We therefore still expect there will be utility in our approach using HhNH spectra, 

although one must be cautious about the assumptions made for the water, lipid, and amide 

proton T1 relaxation times, as well as scaling the data by the initial protein signal which may 

introduce additional error if the initial polarization was not fully equilibrated. A more detailed 

investigation of cross-relaxation rates at different sites across the protein is left for the future. 

 Interestingly, analysis of average rates shows that cross relaxation to lipids or water 

can have a large influence on the measured longitudinal decay of amide proton magnetization. 

This can be appreciated by comparing the bulk decay of magnetization either after saturation 

of other protons, or starting with full signal on all protons. In hVDAC, the bulk 1H T1 of the 

amides as measured in these two ways is either 130 ms or 410 ms, respectively. The faster 

decay is due to cross relaxation to lipids and water and implies an average cross-relaxation 

rate similar to the 6 s-1 determined for protein-lipid transfer. This observation has implications 

for the measurement of site-specific proton T1 for dynamics or accessibility studies suggesting 

that a detailed analysis of the intrinsic protein T1 must consider the effects of homonuclear 

magnetization transfer to water or lipids. On the other hand, solvent mediated PRE effects in 

samples with dissolved paramagnetic species still appear to highlight the exposed surface in 

accessibility studies; there was excellent agreement between the expected solvent exposed 

surface, and enhanced relaxation reported previously (132). The substantial cross-relaxation 

rates between protein and lipids or protein and water suggest that deuteration of water and 

lipids may be necessary to accurately measure site-specific proton T1 even with protein 

deuteration and very fast MAS.  
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Figure 3.4. Lipid and water signal detected at the protein amides for AlkL and hVDAC.  
The 2D planes of the 3D HhNH spectrum are shown corresponding to the lipids (yellow, 1.1 ppm) and water 
(blue, 4.7 ppm). Assignments of the N-terminal helix are indicated for hVDAC. Proton-proton mixing proceeded 
for 50 ms. 

 Figure 3.4 shows 2D planes from the HhNH spectrum at the chemical shifts of both 

water (blue) and at the strongest signals of the lipid acyl chains (yellow). In hVDAC, 

although the amides are not fully resolved in an HN 2D plane, the helical residues of the N-

terminus are well-separated from the more abundant beta sheet signals. Based on previously 

published assignments (79) these helical residues can be identified unambiguously, with the 

exception of D16. All of these show strong correlations with water, and no cross-peak with 

lipids. This is fully in accordance with the known 19-stranded beta barrel structure of the 

channel determined in detergent micelles (123), as well as the placement of the helix within 

the large water-filled pore in crystals and in micelles (122, 133, 134). In total, 53 correlations 

with water and 42 with lipids can be observed, however only approximately 19 water 

correlations and 17 lipid correlations can be assigned with certainty due to extensive signal 

overlap in the HN plane.  
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Figure 3.5. Selected strips from the 4D spectra of hVDAC and AlkL using 50 ms proton-proton mixing. 
The position of water and lipids are indicated by blue and yellow dashed lines, respectively. In most slices, only 
a single intense autocorrelation peak is observed in the amide region, indicating minimal magnetization transfer 
within the protein. 

 Site-resolved correlations between the protein and the surrounding small molecules 

can be obtained in the HhnCANH spectrum. Figure 3.5 displays strip plots from spectra 

acquired on both AlkL and hVDAC showing correlations between representative protein 

residues and lipids and/or water. In the case of lipid correlations, two separate shifts are 

observable, one at 1.3 ppm and one at 0.9 ppm, corresponding to the lipid CH2 and CH3 

groups, respectively. For hVDAC we see 24 lipid correlations and 53 water correlations in 

total. Protein-lipid cross peaks tend to be weaker and therefore more difficult to observe. The 

fact that water-protein cross-peaks are stronger may be due to differences in mobility and 

structure, but are unlikely to arise from exchange pathways, considering that no significant 

correlation with exchangeable side-chains could be found. (Fig. S3.1) Despite the reduced 

sensitivity, the clear advantage of the 4D spectrum is that assignments are almost completely 

unambiguous, due to the resolution afforded by 3 spectral dimensions, 13CA, 15N, and 1H. 
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Figure 3.6. Water and lipid contacts shown on the homology model of AlkL using OmpW (PDB 2F1T) as a 
template (A) and the solution NMR structure (PDB 5JDP) of hVDAC (B).  
All residues that show a lipid contact are colored yellow, while residues that show only water contact are colored 
blue, and residues for which no contact could be observed or assigned are colored in grey. The topology (by 
homology in a) and sequence are indicated above each structure. 

 Figure 3.6 shows water- and lipid-protein correlations mapped onto the OmpW 

homology model of AlkL, generated with swissmodel server (135) and the solution NMR 

structure of hVDAC (134). For the residue mapping we combined information obtained from 

the well-resolved HhnCANH and the high-sensitivity HhNH experiments and used contacts 

observed in both spectra. Homologs of AlkL (136-139) are composed of a transmembrane 

beta barrel, with long extracellular loops that are either flexible, or form a structured beta 

barrel extension, depending on the sample conditions, and the homolog. While the 

transmembrane beta barrel of homologous proteins is embedded in lipids, it is unclear from 

homology if the extracellular loops are in contact with lipids, are flexible, or are structured. At 

mixing times of 50 ms, we observed only water contacts from the extracellular loops, while 

the transmembrane beta barrel showed efficient contact with both the lipids and water. This is 

in agreement with the homology model based on OmpW, where the lower barrel is embedded 

in the membrane, but the extracellular loops form a barrel extension that is water-exposed. On 

the other hand, at longer mixing times of 100 ms, residues of the loops also show correlations 

with lipids. Further structural analysis of AlkL, as well as a more detailed investigation of 
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rates would be needed to understand the flexibility of loop residues, and their impact on lipid-

protein transfer.  

 For hVDAC, combination of both 3D and 4D data (Fig. 3.6) provides a more complete 

picture of water and lipid accessibility. As already seen in the 3D data, in hVDAC, the helical 

residues are clearly water-exposed and do not show any correlations to lipids. This is in 

accordance with the known structure of the protein, as the N-terminal α-helix is positioned 

horizontally in a large, water-filled pore. Correlations to water can also be observed in the β-

barrel, both in loop regions, and also with some residues in β-strands. Such loop residues with 

polar sidechains are energetically favored outside the membrane, but reside close to the lipids. 

That we do not observe lipid signal for some loop residues is therefore a testament to the high 

degree of selectivity possible under fast MAS, high magnetic field, and with deuteration. 

Protein-water proximities in β-strands are also not surprising, due to the barrel’s large, water-

filled pore. Lipid-protein contacts are only observed for residues in β-strands as well as in 

three loop residues, close to the end of β-strands (W64, Y146 and S240).  

 Insertion of membrane proteins in lipid bilayers has also been investigated with 

paramagnetic relaxation enhancement (PRE) measurements in solution (140). Whereas PRE 

has also been used for defining protein-protein (132) or water-protein (141) contacts in 

microcrystals, its potential for membrane insertion has not been exploited in solids. A 

drawback of the PRE technique is its indirect nature, as protein-lipid or protein-water contacts 

are not observed, but instead inferred due to an enhancement in relaxation where the solvent 

comes into contact with the protein. The method also may be less effective in larger, water 

accessible channels, such as hVDAC, since relaxation in the transmembrane part of the 

protein could be enhanced from the pore. 

5. Conclusion 

 In conclusion, we have found that the combination of fast MAS, high magnetic field, 

and protein perdeuteration allows site specific detection of mobile species at the protein 

surface. We used the exchangeable amide proton as the detection nucleus, however, we 

anticipate that this methodology will be implemented in the future with different labeling 

schemes, for example, with methyl, or alpha proton labeling. The site specificity, as well as 

discrimination of water and lipid signals in a single spectrum, was used to probe the insertion 

of membrane proteins in lipid bilayers. We anticipate that the method presented here will 
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strengthen the role of solid-state NMR in structural biology. It can be extended in a 

straightforward manner to test the influence of lipid compositions, membrane curvature and 

protein aggregation, thus allowing an in-depth characterization of membrane proteins that 

cannot easily be studied by other techniques. 
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SUPPLEMENTARY  

 

Figure S3.1. Proximity of exchanging residues has little or no effect on the observed buildup of the cross 
peak between a mobile species and an amide proton.  
A) displays the water-exposed N-terminal α-helix of VDAC (pdb: 3emn). B) shows the intensity of water-amide 
cross peaks for the α-helix at 50 ms mixing time, either as raw intensity (blue), or scaled with the amide peaks at 
0 ms mixing time to remove differences is HN CP efficiency (red). Residues marked with * are somewhat 
overlapped with another residue in the HN plane. Although T6 and Y7 have the exchangeable T6 sidechain in 
their close proximities (4.1 Å and 2.9 Å, respectively), the cross peak intensity to the water is low. G21 has no 
exchangeable OH- or NH- sidechains in its vicinity, however the residue shows a strong correlation to water.  
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Figure S3.2. Cross-peak intensities for backbone amides, lipids, and water.  
The starting polarization (black) decays as signal builds up on other nearby amides (green), lipids (blue) and 
water (red). The protein cross-peaks appear as a relatively small perturbation on the water-protein or lipid-
protein exchange, justifying our choice to neglect them in the fits. The rate of transfer within the protein results 
in equilibration of the spin pair within about 100 ms. The higher intensity of lipids and water at long times 
represents the fact that there are many protons of water or lipids, as compared to the single amide proton of the 
protein. 
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Figure S3.3. Measurement of the average protein-lipid cross-relaxation rate in hVDAC by tracking the 
initial protein signal decay (blue) and the buildup on lipid resonances (blue).  
We used the hNHH sequence to generate initial polarization on amide protons only. The sample was exchanged 
in D2O to eliminate the effects of water and exchangeable protons. The transfer is about 20 percent efficient on 
average at 50 ms.  

80



Chapter 4 
  
Structural and functional characterization of Mic10 
from the MICOS complex  

1. INTRODUCTION 

1.1 CELLULAR ORGANIZATION 

Evolution has led cells to evolve into a complex and optimized system. Like factories, 

cells have built a network system for inter- and intracellular communication and signal 

transfer. In this complex biological system, compartmentalization and signaling have become 

essential for performing and controlling complex biochemical processes in an optimal manner 

(142, 143). Cellular signaling, both inter- and intracellular, has become an indispensable 

property to fine-tune gene and protein expression in response to metabolic stresses (144).  

Cellular compartments are usually separated by lipid bilayers and tightly regulated by 

an active and dynamic intercommunication of proteins, lipids and other factors between 

different cellular compartments (Fig. 4.1). Among these membrane enclosed ultrastructures, 

referred to as organelles, is the lysosome, which is well characterized by its low internal pH 

(pH < 5) and its role in degradation of macromolecules among others (145) and the 

endoplasmic reticulum (ER) that is involved in many roles including molecular trafficking as 

well as lipid and protein synthesis (146). There are also organelles devoid of lipid membranes 

referred to as “membraneless organelles” (147). Membraneless organelles are mostly 

constituted by protein condensates and are formed via liquid-liquid phase-separation (147).  

Each cellular compartment has specialized cellular functions emphasizing the 

importance to unveil the biophysical properties of the proteins involved in their regulation. 

Cellular homeostasis, including spatiotemporal regulation of the different biochemical 

processes has to be maintained and fine-tuned to fit arising needs, which by consequence will 

demand a significant energetic consumption. In the cell aerobic respiration provides the 

energy that is mostly stored as ATP (148). The latter is generated by the F1F0-ATP synthase of 

the oxidative phosphorylation complex (OXPHOS) in a process commonly known as 

“cellular respiration”. OXPHOS is localized in the mitochondria (149), more precisely, at the 
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cristae membranes (CM), which are an elongated tube-like structure observed in the inner 

membranes (150). Over the years, mitochondria have attracted the researcher's interest 

because of their central function in supplying the cell with ATP, and more recently through the 

discovery of additional functions, as detailed below.  

Figure 4.1. Schematic representation of an eukaryotic 
cell.  
The numbers from 1 to 8 represent the different sub-
structures found in a eukaryotic cell. 1, nucleus; 2, 
endoplasmic reticulum (ER); 3, lysosomes and endosomes 
(single membrane organelles); 4, mitochondria; 5, golgi 
apparatus; 6, droplet (liquid-liquid phase separation); 7, 
cytoplasm; 8, membrane bilayer. 

 

1.2 MITOCHONDRIA  

Mitochondria are highly dynamic organelles, which actively endure fusion and fission 

processes in a cellular metabolism-dependent manner (151). This organelle is often referred to 

as the “powerhouse of the cell”, as was first reported by Albert von Kolliker in 1857. In 1898, 

Carl Benda named these organelles, mitochondria, for the first time by reference to the 

observed shape (µίτος (mitos), thread and χονδρίον (chondrion), small grain). Despite the fact 

that mitochondria do not have an autonomous life-cycle and are instead highly dependent on 

their cellular hosts for survival, they contain their own DNA referred as mitochondrial DNA 

(mtDNA). MtDNA only encodes for 13% of the mitochondrial proteome including the 

proteins involved in the respiratory pathway (152). Mitochondrial phenotype can be highly 

dynamic and has been related to the metabolic state of the cell (153). Earlier studies have 

shown the involvement of mitochondria in energy production (154), by the so-called cellular 

respiration. However, now it is well established that mitochondrial functions are far more 

extensive than just energy generation. It has taken more than a century to reveal the complex 

role of mitochondria in cellular metabolism (155). Besides ATP synthesis, mitochondria have 

been found to be involved in metabolic pathways, such as amino acid metabolism, lipid 

synthesis (156), differentiation and even programmed cell death, known as apoptosis (157). 

Due to their wide range of functions in cell metabolism, it is not surprising that aberrant 
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mitochondria function has been related to severe human diseases, such as neurodegenerative 

or myopathy disorders (158-162).  

Phenotypically, the mitochondrion is a unique organelle in the eukaryotic cell with a 

double lipid membrane: the outer mitochondrial membrane (OMM) and the inner 

mitochondrial membrane (IMM). Both membranes have their own structural characteristics, 

as well as functionally relevant differences (Fig. 4.2). The OMM provides the first barrier 

between the cytoplasm and the mitochondrial interior. Although it serves as a barrier, ions and 

small molecules can freely diffuse through the porins encountered. While, the IMM is a 

sealed membrane with a voltage across it, which has a particular architecture forming 

elongated protuberances called cristae. This gives to the IMM a larger membrane surface area 

and allows for the formation of sub-compartments that are used for specific functions.  

1.2.1 Mitochondrial membrane  

In order to understand the morphology and formation of cristae, a brief overview of 

mitochondrial membrane composition and function is needed. Both IMM and OMM have an 

asymmetric lipid composition. Lipids play important roles in protein activation, folding and 

signaling (163, 164). Both membranes are essentially composed of phosphatidylcholine and 

phosphatidylethanolamine lipids (>50%) (165). Interestingly, IMM is enriched in cardiolipin 

(CL), which has been recently shown to actively participate in the regulation of different 

metabolic pathways, such as lipid synthesis or in the mitochondrial cristae organization 

system (MICOS) by acting as a modulator of protein interactions (166, 167).  

Just like the lipid composition, the protein composition differs between the OMM and 

IMM as well. The OMM provides a “sealed“ environment for mitochondria, ensuring the 

protection for both the cell and the mitochondria concomitantly. While the OMM is largely 

populated by beta barrel proteins referred as outer membrane proteins (OMPs, figure 4.2) 

involved in transport and protein folding, the IMM presents a large majority of helical 

proteins. Among the beta barrel OMM proteins, there is the translocase of the outer membrane 

(TOM), which has a role in protein import from the cytosol (168), and the voltage dependent 

anionic channel (VDAC), which has been shown to have a variety of functions including ion 

conduction and apoptosis regulation (169). 

83



Proteins of the IMM, referred as inner membrane proteins (IMPs, figure 4.2), play 

important roles for a wide range of cellular functions, such as aerobic respiration, lipid 

metabolism or even programmed cell death by regulating the release of cytochrome c from 

the cristae lumen (170). Interestingly, many seminal works have shown striking evidence for 

the importance of the IMM shape in functional compartmentalization efficiency. Indeed, the 

OXPHOS is preferentially localized at the rims of the CM regions. OXPHOS makes use of an 

electrochemical and pH gradient across the IMM in order to activate the ATP synthase, which 

generates ATP from ADP (171-174). In the early 2000s, Strauss et al. showed that 

dimerization of the F1F0-ATP synthase promotes the curvature at the CM rims (ATPase, figure 

4.2), suggesting that the curvature is a key feature to generate the pH gradient across the CM 

(174). An electric gradient simulation indicated that the membrane curvature increases the 

charge density at the apex and that consequently increases the concentration of protons in this 

region. As a result, it promotes efficient ATPase activity at the CM rims (174). 

Historically, in addition to its peculiar phenotype, the presence of circular DNA and 

the membrane composition of mitochondria have led scientists to speculate on a potential 

earlier event of bacterial-cell endosymbiosis (175, 176). Recent in silico data suggest that the 

mitochondria might have evolved from alpha-proteobacteria, which were engulfed by a host 

cell through an earlier endosymbiosis event (177). The difference in membrane architecture, 

lipid and protein composition, between the two membranes, along with the specialized and 

localized functions of the IMM and OMM, reflects the high degree of regulation demanded to 

maintain a well-functioning mitochondria-cell symbiosis. 
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Figure 4.2. Mitochondrial membrane architecture and composition.  
The double membrane of mitochondria consists of two lipid bilayers. Within the membranes, different proteins 
can be found: Outer membrane proteins (OMP) in the outer membrane and inner membrane proteins (IMP) in 
the inner membrane. Specific sub-structure located in the inner membrane are inner boundary membrane (IBM), 
cristae and cristae junctions (CJ). At the CJ, we find the MICOS complex. The arrows represent the network of 
MICOS to protein contacts. The respective roles of this membrane sites are explained in the main text. 
 

 1.2.2 The inner mitochondrial membrane (IMM) and cristae membrane (CM)  

Cristae membranes (CMs) are part of a larger architectural arrangement of the IMM 

that has three distinct membrane sub-structures with specialized functions: the inner boundary 

membrane (IBM) is a mostly flat surface that lies parallel to the OMM (178, 179); the CM are 

tubular protuberances or invaginations and the cristae junctions (CJs) are tubule-shaped 

membranes forming the junction between IBM and CM (red circle, figure 4.2).  

Interestingly, mitochondrial membrane sub-structures are highly dependent on the 

metabolic state of the cell, which changes the protein distribution across the membranes. In 

vivo fluorescence data using immunoelectron-microscopy (180) and stimulated emission 

depletion microscopy have been applied to monitor the localization of mitochondrial proteins 

depending on the cellular activity and showed that the respiratory complex is found in the CM 

(181). Similarly, Korsmeyer S.J. and co-workers showed that there is a concomitant 

redistribution of cytochrome c with an opening of the CM and a re-structuring of IMM (182, 

183). Other proteins like the translocases of the inner mitochondrial membrane (TIM) and the 

sorting and assembly machinery (SAM) co-localized at the IBM, consistent with the close 
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contact observed between IMM and OMM at these regions. Further evidence of this close 

contact between IBM and OMM are provided by the complex formed by TIM and TOM 

involved in IMM protein import (184). Similarly, the interaction between SAM and Mic60, an 

IMM protein part of the MICOS complex, has been shown to be crucial in mitochondrial 

calcium and lipid uptake (185). Indeed, the spatial rearrangement of these proteins depending 

on the cellular metabolic state and their role provides strong evidence for the importance of 

compartmentalization in the regulation of biochemical processes. 

CMs have been proposed to play a role in compartmentalization and functional 

specialization. Fuhrmann et al. and others have shown that the phenotype of CMs depend on 

the cellular energetic demands and oxygen availability (186, 187). The CM is maintained by 

CJs, which are tight tubular structures of about 12 to 40 nm of diameter (173), regulating 

proteins and metabolites trafficking between the inter-membrane space and the cristae 

lumenal compartments. However, mitochondria are dynamic organelles that undergo many 

dynamical processes, such as fission and fusion in response to external factors sensed by the 

cell (186). These processes are regulated by a set of proteins of the dynamic GTPase family 

(151). The mitochondria restructuring has to occur concomitantly with a complete remodeling 

of the IMM. Since mitochondria have an essential role as the cellular energy generator, such 

mechanisms have to be highly regulated to maintain an optimal, efficient and functional 

structure. How do mitochondria regulate these processes? And how is the membrane shaping 

controlled and regulated? These are processes that are not completely understood yet.  

The formation of CM requires a high degree of membrane curvature, which can only 

occur under energetically favorable conditions. This has been attributed to certain membrane 

proteins found in the IMM like F1F0-ATP synthase and Opa1/Mgm1 (188). Membrane 

curvature by F1F0-ATP synthase is generated by the dimerization of the subunit e. Knockout 

(172) or mutation of  G to L in the GxxxG motif of subunit e lead to a large disruption of 

IMM morphology forming so called “onion-like” structures (189) suggesting that this motif is 

responsible for the dimerization of F1F0-ATP. More than a decade ago, several studies 

identified an important complex affecting the CJ formation. The complex was localized in the 

CJs and initially termed MITOS, then MINOS and finally, in 2014, it was termed, with a 

universal nomenclature, as mitochondrial contact site and cristae organizing system (MICOS) 

(178, 179, 190, 191) (Fig. 4.3). 
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1.3 MITOCHONDRIAL CONTACT SITE AND CRISTAE ORGANIZING SYSTEM (MICOS) 

MICOS is a multi protein complex where certain proteins have been evolutionarily 

conserved through different species and kingdoms, supporting the endosymbiotic origin of 

mitochondria (177). In yeast, two main sub-complexes of MICOS have been identify so far, 

Mic10 and Mic60. The Mic10 sub-complex has four sub-units namely Mic10, Mic12, Mic27 

and Mic26, where the number is an indication of the approximate molecular weight. The 

second sub-complex, Mic60, has only two subunits: Mic60 and Mic19 (Fig. 4.3) (192, 193). 

In order to understand the role of MICOS in CM formation many biochemical studies have 

been performed. In yeast, depletion of either of the core components, Mic10 or Mic60, 

strongly impacts other sub-units and showed severe effects on CM phenotype (193, 194). 

Figure 4.3. Schematic representation of the sub-complexes of the MICOS found at the cristae junction and 
Mic10 amino acid sequence. 
Panel A shows the MICOS complex, which is composed of two main sub-complexes, Mic10 and Mic60.  In 
yeast, the Mic10 sub-complex is subdivided in four sub-units Mic27, Mic26, Mic10 and Mic12. And, the Mic60 
sub-complex composed of two sub-units only: Mic60 and Mic19 (the only soluble proteins found in the MICOS 
complex). The number indicates the approximate molecular weight of the protein. The subunits shown in the 
graph are those found in yeast. Panel B shows the amino acid sequence of Mic10 from Saccharomyces 
cerevisiae.  

 1.3.1 Mic60 

 Mic60 homologs have been found in the membranes of oldest known organisms 

presenting a cristae-like membrane shape in α-proteobacteria (195). Knockdown of this 

protein leads to a disruption of CJ structures and detachments of the IMM from the OMM, 
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inducing sheet-like-structures or stacks of IMM within the mitochondria (192, 193, 196, 197). 

Mic60 is a 60 kDa protein containing a pre-sequence at the N-terminus which targets the 

protein to the IMM (198). Interestingly, recent biochemical data showed that the soluble 

domain of Mic60 retains the ability to induce membrane curvature (198). The IMM 

phenotype has partly been related to Mic19 as well, due to its role in linking Mic60 to SAM, 

which is in part responsible of the formation and stabilization of IBM (199). Thus, losing 

Mic60, which interacts with OMM proteins such as TOM and VDAC, is accompanied by a 

detachment of IMM from the OMM and leads to the formation of IMM stacks. In fact, all the 

subunits found in the MICOS complex have at least one helical transmembrane domain, with 

the one exception being Mic19, as it is found soluble in the inter mitochondrial space (200, 

201)(Fig 4.3). It has been recently shown that Mic19 interacts with an amphipathic helix of 

Mic60 and concomitantly interacts with the outer membrane protein Sam (199). In addition, 

Zhiyin Song and co-workers proposed Mic60 sub-complex as the hub and master regulator of 

MICOS location by showing that Sam-Mic19-Mic60 interaction can be regulated by OMA1, 

a mitochondrial protease (202). The cleavage of Mic19 by OMA1 results on a disruption of 

the Sam-Mic19-Mic60 complex leading to an abnormal mitochondrial architecture. Despite 

its key role on mitochondrial membrane architecture, there is no high resolution structural 

data available yet. 

 1.3.2 Mic10 

Similarly, Mic10 is the smallest subunit of MICOS with a molecular size of ~10 kDa 

that contains two transmembrane helices (194). Proteomic studies as well as in cell and in 

vitro studies have shown the presence of multiple copies of Mic10 in the MICOS complex. 

Independent studies showed that Mic10 has a high propensity to homo-oligomerize (194, 

203). Mic10 knockout studies in yeast showed an alteration of the inner mitochondrial 

membrane architecture (194, 203). Complementary studies on Mic10 sub-complexes have 

shown the interdependence of the different components on the maintenance and stability of 

MICOS. Furthermore, elegant studies using co-immunoprecipitation in depleted Mic27 or 

Mic26 yeast cells have shown that these proteins can either promote or inhibit Mic10 

oligomerization (204). Whereas Mic27 depletion results in Mic10 oligomer destabilization, 

Mic26 knockout has the opposite effect, enhancing the size of Mic10 oligomers. In the same 

study, Nikolaus and co-workers showed the stabilizing effects of cardiolipin on Mic10 
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oligomers and that mutations in Mic26 and Mic27 have a cooperative effect on Mic10 

oligomer destabilization (204). However, depletion of any other MICOS sub-unit, except for 

the two core components Mic10 or Mic60, have not been related to a severe impact on the 

IMM phenotype.  

A closer look into the amino acid sequence of Mic10 (Fig. 4.3B) shows the presence 

of several GxxxG motifs in both transmembrane domains. GxxxG motifs are well known to 

promote helix-helix interactions in transmembrane domains (205). A well-known example is 

the dimerization of F1Fo-ATPase, which is promoted by the GxxxG motif found in the 

transmembrane domains of sub-unit e in yeast (172, 206, 207). Martin van der Lann and co-

workers used point mutation studies to show that GxxxG motifs are indispensable for Mic10 

homo-oligomerization but do not participate in the interaction between Mic10 and the other 

MICOS subunits (203). Combining single and double mutation of glycine to alanine, 

Meinecke and co-workers were able to identify two glycine residues, which arepart of two 

independent GxxxG motifs, at position 50 and 52, responsible for Mic10 homo-

oligomerization (194). In the same work, they showed that Mic10 alone is able to induce 

membrane curvature in liposome preparations but that the double mutant looses the ability to 

induce membrane curvature (194). Interestingly, G50 and G52 are located in the same 

transmembrane helix 1 and face in opposite directions regarding the helix surfaces indicating 

a helix-helix interaction involving a more complex GxGxGxG domain which could explain 

the high degree of oligomerization observed for Mic10 in these studies.  

Despite all these pieces of evidence suggesting the role of MICOS in the IMM 

architecture and GxxxG motifs as a driving force for protein-protein interaction, little is 

known about the structure of the individual components and its interactome on an atomic 

scale. Insights on an atomic level are necessary to shed light on the regulation and function of 

this important biomolecular complex. In this chapter of the thesis, a combination of in silico 

and in vitro approaches have been applied to understand the structure-function relationship of 

Mic10. On the one hand, tools from the Swiss Institute of Bioinformatics (SIB) and other 

sources have been used for predicting Mic10 structure and TM-TM interactions. On the other 

hand, solution and solid-state NMR spectroscopy have been used to identify key structural 

features of Mic10 in detergent and lipid environments.  
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2. MATERIALS AND METHODS 

2.1 PROTEIN DESIGN 

 2.1.1 Constructs used for this work 

During the workflow of this thesis project, seven distinct constructs were used. 

Tables 4.1 includes the name, plasmid, purification/solubilization tag(s) and size of the 

different constructs of Mic10, Mic∂s, Mic12 and Mic13. The specification regarding DNA 

and protein sequences as well as the analysis of the protein sequence using ProtParam from 

Swiss Institute of Bioinformatics (SIB) server is provided in the appendix 4.I. The Mic10His 

construct was kindly provided by Professor Dr. Meinecke at the University of Göttingen. 

Mic10strep, MBPMic12 and MBPMic13 were purchased from Genscript (genomic sequences 

encoding for the different proteins can be found in appendix 4.I). The truncated versions of 

Mic10 (Mic10∂) were made in-house by PCR using Mic10strep as a template.  

Table 4.1. Mic10, Mic12, and Mic13 constructs used.  

Two distinct approaches were followed to gain structural insights of Mic10. On one 

hand, the full-length protein Mic10 was purified, but due to its aggregation propensity it was 

not suitable for the following NMR experiments. Thus, two shorter constructs containing only 

the transmembrane regions separately were designed and purified.   

 2.1.2 Constructs production 

Four N-terminally truncated versions of Mic10strep (Mic10∂10, Mic10∂20, Mic10∂30 

and Mic10∂40 constructs) were synthesized, using a standard PCR protocol (Table 4.2) (208). 

 

Name Plasmid Tag Selection Restriction enzyme Construct 
size (bp)

Mic10-His pPROEXHTc 6xHis Amp Dr. Meinecke lab

Mic10strep pET-28b(+) Strep Kan NcoI/NotI 344 This work

Mic10∂10 pET-28b(+) Strep Kan NcoI/NotI 314 This work

Mic10∂20 pET-28b(+) Strep Kan NcoI/NotI 284 This work

Mic10∂30 pET-28b(+) Strep Kan NcoI/NotI 254 This work 

Mic10∂40 pET-28b(+) Strep Kan NcoI/NotI 224 This work

MBPMi12 pMAL-c4x MBP and 6xHis Amp EcoRI/XbaI 375 This work

MBPMic13 pMAL-c4x MBP and 6xHis Amp EcoRI/XbaI 375 This work
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Table 4.2. PCR buffer composition used for Mic∂s preparation. 

Detailed information regarding the primers and the PCR run conditions is provided in 

appendix 4.III. Appendix 4.III, table S4.2 shows the specifics (sequence and melting 

temperature) of the primers. The PCR was evaluated by a 1% agarose gels. DNA fragments of 

interest were purified from the agarose gel using a Macherey Nagel purification kit Plasmid 

DNA. The PCR product (insert) and plasmid (pET28(+)) were treated with NotI-HF and 

NcoI-HF restriction enzymes (from NEB) for 15 min at 37°C, followed by heat shock 

deactivation at 65ºC for 20 min. The linearized plasmid was purified using an agarose gel 

purification kit from Macherey Nagel. 

Products Purchase 

Phusion Polymerase buffer 12.5 µl New England Biotechnologies

dNTPs (at 10 mM) 0.4 µl New England Biotechnologies

Forward primer (at 10 µM) 1.5 µl Sigma

Reverse primer (at 10 µM) 1.5 µl Sigma

DNA template x (~50 - 100 ng) Genscript

DMSO 0.6 µl

H2O miliQ x (up to 25 µl)

Phusion DNA Polymerase 0.2 µl New England Biotechnologies
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Scheme 4.1. Test expression 
for optimizing protein yields.

Transformation(s)
(Bl21/C43/C41/Lemo21)

Time points (3 - 4)
OD600nm = 0.4

SDS-PAGE
Western Blot

SDS-PAGE
Western Blot

Colony selection

37/30/22°C



 The ligation was performed following the protocol table 4.3. The ligation reactions 

were incubated over-night (16 hours) at 4°C. Following the ligation, 5 to 10 µl of the ligation 

reaction were used to transform DH5α cells and plated on agar plates containing 50 µg/ml of 

kanamycin and incubated over-night (~16 hours) at 37°C. To identify positive colonies 

(having the plasmid with the full insert) we performed a colony PCR (209). For this purpose, 

six colonies from each of the agar plates were selected (each construct) and used for the 

colony PCR following the protocol described in table 4.4. The results were checked by a 1% 

agarose gel (210). Positive colonies, meaning presenting the plasmid with the inserted 

fragment, were selected for sequencing. 

Table 4.3. Ligation protocol used. 

 
Table 4.4. PCR protocol used. 

 2.1.3 Test Expression of the different constructs in minimal media 

To carry out biophysical studies by nuclear magnetic resonance (NMR), proteins have 

to be isotopically enriched with 13C and 15N, to increase NMR sensitivity. 13C and 15N 

isotopically enriched protein was obtained by expression in Escherichia coli (E. coli) grown 

in M9 minimal media (Appendix 4.II) supplemented with 4 g 13C-glucose and 1 g 15NH4Cl. 

The M9 media was derived from the media used in Marley et al. (211) which allows full 

control on the carbon (13C-glucose) and nitrogen (15N-NH4Cl) sources metabolized by the 

expression system chosen. A systematic search for the optimal protein expression conditions 

(Scheme 4.1) of Mic10His, MBPMic12 and MBPMic13, was performed in small scale 

expression (5 to 20 ml culture) by varying temperature (room, 30 and 37°C), bacterial strains 

Volume for 25 µl reaction (µl) Purchase 

T4 DNA ligase 1 New England Biotechnologies

Insert:Vector (in mass) 1:1 / 1:3 / 1:5 Vector from genscript

T4 DNA ligase buffer x (up to 25 µl) New England Biotechnologies

Step Temperature (ºC) Time (min) Cycles

Denaturation 95 5

Denaturation 95 1 25

Annealing 55 1

Extension 72 5

- 4 -
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(BL21(DE3), Lemo21(DE3), C41(DE3)pLysS and C43(DE3)pLysS, induction time (2h, 4h, 

6h, 8h, and 16h) and Isopropyl β-D-1-thiogalactopyranoside (IPTG at 0.5 and 1 mM). 

Additionally, T7 lysozyme expression was tuned in Lemo21(DE3) by varying the rhamnose 

concentrations (0, 250, 500 and 1000 µM). Prior to carrying out large protein expressions a 

colony selection step was added to improve final protein yields. Protein yields during 

expression were followed by sodium dodecyl-sulfate gels (SDS-PAGE gels)(212) and 

Western blots (WB)(213) (Appendix 4.V). 

2.2 PEPTIDE SYNTHESIS 

 Two peptides (TM1 and TM2) each containing one of the transmembrane domains of 

Mic10 were synthesized for NMR studies. TMpred from SIB was used to predict the two 

transmembrane (TM) helices in Mic10 TM domain 1 (TM1) from 42 to 62  and TM domain 2 

(TM2) from 64 to 82 (Fig. 4.5). Both peptides, TM1 and TM2 were synthesized in-house 

using standard solid-phase peptide synthesis by Kerstin Overkamp from the NMR-based 

structural biology department at the Max Planck Institute for biophysical chemistry 

Göttingen. Four distinct peptides were synthesized, two non-labelled named TM1 and TM2 

and, two containing 13C and 15N labelled amino acids at specific positions named TM2-GA 

and TM2-IGG (Table 4.5). The peptide synthesis was evaluated by HPLC and mass 

spectrometry (Appendix 4.IX). 

Table 4.5. Transmembrane domain constructs. 

The 15N,13C labeling positions are indicated by “13/15”. The amino acids in bolded and italic represents the 
predicted transmembrane region of Mic10.  
Acyl =  HCO group at the N-ter of TM2 group. The group is used at the N-terminal of these peptides to 
mimic the N-terminus of a petite bond. In the same context, TM1 has the acyl group at the N-terminus 
and an amine group at the C-terminus. 

Name Amino acid sequence Construct length  
(aa)

TM1 Acyl-33KWDIVLSN MLVKTAMGFG VGVFTSVLF F61K-NH2 29

TM2 Acyl-61KRRAFPVWLG IGFGVGRGYA EGDAIFRSSA GLRSSKV97-OH 37

TM2-GA Acyl-61KRR AFPVWLG IGF13/15GVGRGY13/15A EGDAIFRSSA GLRSSKV97-OH 37

TM2-IGG Acyl-61KRR AFPVWLG 13/15I13/15GFGVGR13/15GYA EGDAIFRSSA GLRSSKV97-OH 37
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2.3  PROTEIN PURIFICATION, REFOLDING AND RECONSTITUTION 

 2.3.1 Protein purification  

Mic10His, MBPMic12 and MBPMic13 were expressed in inclusion bodies using 

Lemo21(DE3). The proteins were purified using a standard inclusion body purification 

protocol. Briefly, after induction the cells were harvested at 7 000 g at 4°C for 15 min. The 

pellet was resuspended and homogenized in 20 mM HEPES, 150 mM NaCl, 5% glycerol, 

2 mM ß-mercaptoethanol and 1 mM phenylmethylsulfonyl fluoride (PMSF) at pH 7.4. 1 mg 

Lysozyme and 1 mg DNase per 15 ml of resuspended solution were added in addition to 

1 mM of MgCl2. The sample was stirred for one hour at 4ºC. After, the cells were submitted to 

three cycles of sonication using 30 – 40% power in intervals of 20 seconds pulsing with one 

minute off (total time 1 min 20 sec per cycle) at 4ºC. Finally, the cells were ruptured with an 

EmulisFlex C3 (Avestin) using 1 000 psi at 4°C (3 to 4 times). Cell debris were pelleted by 

7 000 g centrifugation for 20 min at 4°C, the supernatant collected and recentrifuged at 

10 000 g for 15 min at 4°C. The inclusion body were pelleted from the supernatant by 

centrifugation at 20 000 g for 60 min at 4ºC. The pellet, inclusion body, was washed in three 

steps each including resuspension, homogenization, sonication and centrifugation before 

loading the sample on the affinity column (TALON). In the first wash, the sample was 

resuspended in 20 mM HEPES, 150 mM NaCl, 5-10% glycerol, 2 mM ß-mercaptoethanol and 

1 mM phenylmethylsulfonyl fluoride (PMSF) at pH 7.4 with 5 mM EDTA and 2% triton 

X100. The sample was sonicated using the same conditions as previously used. After 

sonication, the sample was centrifuged at 20 000 g for 45 min. For the second wash, the pellet 

was resuspended in 20 mM HEPES, 150 mM NaCl, 5-10% glycerol, 2 mM ß-

mercaptoethanol and 1 mM phenylmethylsulfonyl fluoride (PMSF) at pH 7.4 with only 1% 

triton X100 and the same procedure was performed. For the last wash, the pellet was 

resuspended in buffer A (20 mM HEPES, 150 mM NaCl, 5-10 % glycerol, 2 mM ß-

mercaptoethanol at pH 7.4 and 6 M guanidinium hydrochloride (GdHCl) containing one 

tablet for 100 ml of buffer of cOmplete EDTA-free protease inhibitor cocktail (Roche)). Then, 

the sample was centrifuged at room temperature at 20 000 g for 45 min. NaCl up to 300 mM 

and Imidazole up to 5 mM final concentrations were added to the supernatant that was 

incubated for 15 min at room temperature with half of the affinity column beads previously 

washed with water and equilibrated with binding buffer B (20 mM HEPES, 300 mM NaCl, 

5% glycerol, 6 M GdHCl, 5 mM imidazole at pH 7.4). After incubation, the sample was 
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loaded onto the column (the loading was repeated twice, meaning that the flow-through from 

the first loading was reloaded on the column). The protein was eluted stepwise with buffer B 

containing 10, 150 and 500 mM imidazole ph 7.4. The protein was further purified by gel 

filtration in buffer C (20 mM HEPES, 150 mM NaCl, 5-10% glycerol at pH 7.4 and 6 M 

GdHCl with one protein inhibitor EDTA-free tablet for 100 ml of buffer). The purification 

was followed by 15% SDS-PAGE gels using Coomasie staining (note: prior to SDS-PAGE, 

the samples were treated by an ethanol precipitation protocol to precipitate proteins and wash 

out the GdHCl that causes SDS precipitation)(214). 

For Mic10strep and Mic10∂s the protocol used was a slightly modified protocol from 

the IBA-life science protocol provided by the supplier (strep-XT data sheet). Briefly, the cells 

were resuspended in 100 mM Tris, 150 mM NaCl, 1 mM EDTA, 8 mM Urea at pH 8 solution. 

The solution was stirred at 4ºC for one hour, then sonicated as previously described (three 

runs of sonication using 30 - 40% power, with 20 sec on and 1 min and 20 sec off). The 

solution was centrifuged at 10 000 g for 20 min at room temperature. The supernatant was 

diluted with 6 M Urea in 100 mM Tris, 150 mM NaCl, 1 mM EDTA at pH 8 before starting 

loading the strep-XT column (note: no further optimization on the purification protocol was 

attempted to maximize protein yields). 
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Table 4.6. Optimal expression and purification obtained conditions for the different constructs. 
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2.3.2 Refolding and reconstitution protocol 

Different conditions were tested for Mic10His refolding in terms of detergents and 

refolding methods (step-wise, column or dilution). Briefly, the denatured protein in 6 M 

GdHCl was transferred to a dialysis cassette (3.5 kDa cut off) together with the desired 

detergent in a concentration of five times the critical micellar concentration (CMC). The 

GdHCl was dialyzed out stepwise by reducing the GdHCl concentration from 6 to 3 M, 1.5 M 

and 0 M. In each step the dialysis was allowed for at least three to four hours. After removal 

of GdHCl, two dialysis steps were performed for 16 hours each using 20 mM HEPES, 150 

mM NaCl and 5% glycerol at pH 7.4 with detergent concentration at the CMC. 

After refolding, a screening of different lipids was performed to obtain suitable sample 

conditions which enables high resolution solid-state NMR studies. Many reconstitutions 

conditions were tested by varying the initial protein conditions from a prior refolded protein 

in detergents to a single step refolding/reconstitution or even changing the reconstitution 

method using preformed large unilamellar vesicles (LUVs) or by a mix of detergent and lipid 

in solution. Excess detergent was removed with biobeads (215) or cyclodextrin (216). Table 

4.7 shows the different detergents and lipids used during this work. A more thorough 

explanation of the reconstitution is discussed and explicitly developed in the results section. 

Table 4.7. Detergents and Lipids used for Mic10 and TM studies. 
Detergent and lipids Molecular 

weight (g/mol)
CMC Purchase from

Sodium Dodecyl sulfate (SDS) 288.4 0.23% (6-8 mM)

n-Dodecyl β-D-maltoside (DDM) 510.6 0.0087% (0.17 mM) Antrace

n-Octyl β-D-glucopyranoside (OG) 292.4 0.53% (18-20 mM)

Dodecyldimethylaminoxid (LDAO) 229.4 0.023% (1-2 mM) Antrace

n-Dodecylphosphocholine (DPC) 351.5 0.047% (1.5 mM) Antrace/Avanti

1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) 846.7 / Avanti

1,2-dimyristoyl-sn-glycero-3-phosphochline (DMPC) 677.5 / Avanti

1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) 809.5 / Avanti

1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 785.5 / Avanti
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2.4 STRUCTURAL AND FUNCTIONAL DATA ACQUISITION 

 2.4.1 Circular dichroism (CD) 

Information regarding the secondary structure of proteins can be obtained by a variety 

of biophysical methods. We used circular dichroism (CD) as an indicator for the overall 

secondary structure of Mic10His when refolded in detergents. CD allows a rapid distinction 

between the different protein conformations using low protein concentrations. Whereas the 

CD spectrum of alpha-helical structures show two negative peaks at 209 nm and 222 nm and 

a positive peak at 190 nm, a beta-sheet conformation shows a negative peak at 218 nm and a 

positive peak at 195 nm. For random coil structures, they are characterized in CD by a 

negative peak at 195 nm (217).  

The influence of the buffer and detergents on the secondary structure of Mic10His, 

TM1 and TM2 were analyzed by CD (Table 4.8). All the CD spectra were recorded using a 

JASCO instrument. Spectra were recorded from 260 to 180 nm using a cuvette with 1 mm 

length. The scanning speed was 1 min / 20 nm at room temperature (~25ºC). Triplicates of 

each spectra were recorded and then the average was taken. All spectra were processed with 

the JASCO software provided; first the spectrum was cut after the conductivity HT raised 

more than 600 - 700 mV (the data lose reliability). Then, the data points were smoothed using 

the lowest smoothing function for two iterative times with means-movement function. For all 

spectra, the corresponding buffer spectrum was subtracted from the protein spectrum before 

processing.  
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Table 4.8. Constructs and conditions used for the acquisition of the circular dichroism data. 
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 2.4.2 Nuclear magnetic resonance (NMR) 

 Similar to the CD, a variety of conditions regarding detergents, pH, buffers and lipids 

were tested (Table 4.9, 4.10 and 4.11 for Mic10His solution NMR, TMs solution NMR and 

Mic10His solids-state NMR data respectively). Note that these tables indicate the major 

experiments recorded and acquisition parameters, however more specific details as to the 

processing parameters used will be described in the respective figure captions.  

Table 4.9. Mic10His sample conditions used for solution NMR. 

Three distinct buffer conditions for the TM2 NMR measurements were tested,  

HEPES, sodium phosphate and  sodium carbonate. Since, no major differences in the NMR 

spectrum were observed, the NMR studies were performed using 20 mM sodium phosphate 

buffer, 100 mM NaCl at pH 6.5 with 2% DPC. In addition, three distinct pH values (7.4, 7.0 

and 6.8) were tested in a 400 MHz Bruker spectrometer using the “zggpw5” 1D Bruker 

standard NMR pulse sequence. For assignment and distance restraints measurements a 

proton-proton mixing of 80 ms for DIPSI and 120 ms or 200 ms for NOESY spectra were 

used respectively. Prior to measurement, 10% D2O was added to the NMR buffer for the 

solution samples. 

 

BUFFER TEMPERATURE 
(K)

EXPERIMENT SCANS TD1 
H / ms 

(SPECTRAL 
WIDTH/PPM)

TD2 
N / ms 

(SPECTRAL 
WIDTH/PPM)

TD3 
C / ms 

(SPECTRAL 
WIDTH/PPM)

20 mM Phosphate 
150 mM NaCl at pH 

7.4 and 1% SDS

310 trosyetf3gpsi 8 14 35 x

20 mM Phosphate 
150 mM NaCl at pH 

7.4 and 1% SDS

310 trhncaetgp3d 20 121 
(12)

16.4 
(30)

10.2 
(40)
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Table 4.10. Sample conditions and NMR experiments used for the TMs constructs. 
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Table 4.11. Mic10His sample conditions used for solid-state NMR. 
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Solid-state NMR (ssNMR) data was acquired at both 600 and 800 MHz Bruker 

spectrometers using 1.3 mm rotors and 55 kHz magic angle spinning (MAS) in a HCN 

channel probe. (H)NH spectra were recorded using 1H-15N cross-polarization (CP) with a 

square pulse on nitrogen and ramped pulses in the proton of 100 to 80 percent (proton to 

nitrogen CP) and 80 to 100 percent (nitrogen to proton CP) with a proton RF power of 

~120 kHz for the proton channel and 60 kHz for the nitrogen channel (218). All NMR data 

was processed using Topspin 3.6 or 4.0. The spectra were analyzed in CcpNmr (219)  and/or 

Sparky (220).  

 2.4.3 Enzymatic treatment 

To asses the membrane embedded region of Mic10, the soluble domains of Mic10His 

were targeted by an endoproteases enzymatic treatment. For this purpose, Mic10His was 

treated with two different endoproteases, α-Chymotrypsin and trypsin. Two separated batches 

of Mic10His were used, one containing 10 mM of arginine and glutamic acid and another 

without any additive. Both samples were refolded using DPC at five times CMC in a stepwise 

manner (as previously described), from a buffer containing 20 mM HEPES, 15 mM NaCl at 

pH 7.2 and 6 M GdHCl, to a buffer containing 20 mM HEPES, 15 mM NaCl at pH 7.2. The 

denatured samples were dialyzed overnight against 50 mM Tris, 150 mM NaCl, 2 mM CaCl2 

at pH 7.2 with DPC at ~0.1%, buffer conditions were both enzymes are active, supplemented 

either with arginine and glutamine at 10 mM each or without both amino acids. Stocks of 

trypsin and α-chymotrypsin were prepared by resuspending 1 mg of the enzyme in 1 ml of 

H2O containing 1 mM HCl and 1 mM CaCl2. The cleavage was performed using 0.75 U/mg 

of protease and follow for 48 hours (h) with digestion samples taken at 1, 2, 3, 12, 24, 36 and 

48 h. 5 µl of the samples were directly mixed with the SDS loading buffer (62.5 mM Tris-

HCl, 2.5% SDS, 0.002% bromophenol blue, 0.7 M β-mercaptoethanol and 10% glycerol) and 

heated to 95ºC for 10 min before loading. A part of the cleaved sample was reconstituted in 

lipids by using a dialysis method as described in the previous section (2.3.2 Refolding and 

reconstitution protocol).  
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3. RESULTS  

3.1 INCREASING MIC10HIS YIELDS IN MINIMAL MEDIA FOR STRUCTURAL STUDIES 

Obtaining at least 1 mg of 13C and 15N enriched Mic10His per liter of minimal media 

is a prerequisite for NMR structural characterization studies. The full-length Mic10His 

construct from Sacharomyces cerevisiae as N-terminal hexahistidine fusion used in this work 

was kindly provided by Professor Dr. Meinecke at the University of Göttingen. The 

previously reported protocol from Barbot et al. was slightly modified (194) using the 

optimization protocol described in the materials and method section (see section 4.3.1 and 

4.3.2) to improve the expression yields in minimal media. A three to five times higher 

expression yields was achieved by changing the bacterial strain and induction times. The 

western blot and properties of the bacteria used for the small scale test expression are shown 

in appendix 4.V, The best expression conditions were found to be 6 to 7 hours of expression in 

Lemo21(DE3) and overnight (16 hours) expression in BL21(DE3) at 37°C using 1 M IPTG. 

Both conditions were taken and used for large scale expression.  

To fine tune the expression protocol the two best expression conditions were used in a 

large scale expression volume (500 ml). Figure 4.4 shows the amino acid sequence of the 

Mic10His construct used (Fig. 4.4A) and the western blot (Fig. 4.4C; see appendix 4.V). 

Figure 4.4B shows the bacterial growth over time during protein expression. Both bacterial 

strains seem to grow up to an expected OD600nm of three to four consistent with that reported 

using this minimal media protocol (4 grams of glucose, by shaking at 120 to 150 rpm). Here, 

protein concentration was determined by UV-vis at 280 nm after affinity column (Talon). The 

purification process was monitored by SDS-PAGE (Fig. 4.4C). The expression tested gave 

final yields of ~2 – 3 mg and ~1 – 2 mg of pure Mic10His per liter of M9 culture with 

Lemo21(DE3) and BL21(DE3), respectively. Since protein yields were 15% to 20% higher 

for Lemo21(DE3) than for BL21(DE3), the Lemo21(DE3) was selected as the optimal 

expression system.  
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Figure 4.4. Comparison of Mic10His expression and growth in both BL21(DE3) and Lemo21(DE3).  
The highest yields were obtained using the Lemo21(DE3) strain. In A, the amino acid sequence of Mic10His is 
shown with the bold purple residue indicating the starting residue of Mic10. B, shows the bacterial growth by 
following the OD600nm obtained in minimal media for Lemo21(DE3) (red) and BL21(DE3) (green) and C shows 
the SDS-PAGE of the first part of the purification including elution from the affinity column (Talon).   

 From the trials, expression in Lemo21(DE3) using 500 µM of rhamnose and inducing 

at OD600nm of ~ 0.5 with 1 mM IPTG at 37°C for about seven hours gave ~2 mg/L of 

Mic10His, sufficient to initiate ssNMR tests. 

3.2 BIOPHYSICAL EVIDENCE FOR MIC10 GXXXG MOTIFS ADOPTING A BETA SHEET 

AND/OR ALPHA-HELICAL CONFORMATION IN DETERGENT ENVIRONMENT 

 3.2.1 Bioinformatic studies of Mic10 - Predicted domains  

To quickly assess the expected secondary structure of the different Mic10 constructs 

used in here, we made use of available bioinformatic tools TMpred (221), SWISS-MODEL 

(135) and GalaxyTBM (222). These algorithms are based on statistical analysis of a 

transmembrane protein database and provide quick information regarding the propensity of 

certain protein regions to be either soluble or membrane associated, and predict the secondary 

structure of the different protein regions.  

Figure 4.5 shows the predicted membrane topologies with their corresponding scores 

obtained using TMpred (221). As expected, since the difference between the constructs (Mic 

wild type, Mic10His and Mic10Strep) is basically due to the tags, the score regarding the 

predicted transmembrane domains (TM) and their respective length is identical. Surprisingly, 

the highest score is obtained for a structure with an equal length for both TM1 and TM2 

domains of 19 residues, from residues L42 to F60 for TM1 domain and A64 to G82 for TM2 

domain (Fig. 4.5A, bold). This opposes to the previous studies suggesting that the unequal 

length of Mic10’s TM domains is the driving force for inducing membrane curvature (194). 

Mic10 sequence (~14 kDa)A
MSYYHHHHHH DYDIPTTENLYFQGAMGILM SEQAQTQQPA
KSTPSKDSNK NGSSVSTILD TKWDIVLSNM LVKTAMGFGV
GVFTSVLFFK RRAFPVWLGI GFGVGRGYAE GDAIFRSSAG
LRSSK
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IB
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centrifugation supernatant
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W = Wash (TALON)
FT = Flow through (TALON)
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Although, TMpred also predicts a less likely but possible situation where the TM1 domain is  

extended from 19 to 25 residues from residue 36I to 60F (Fig. 4.5A, red bold). This situation, 

with a longer TM1 domain, would be in agreement with the previously proposed mechanism 

of Mic10-induced membrane bending, where the asymmetric length in between TM1 and 

TM2 results in a larger surface area occupied by Mic10 towards the inter-mitochondrial 

space, which drives the IMM curvature (194). However, there is no direct biophysical 

evidence of the asymmetry or even of the helical conformation of both TM domains in lipid 

membranes. 

 

Figure 4.5. Predicted transmembrane domains of Mic10 by TMpred.  
In A, the amino acid sequence of Mic10 is shown with in bold the amino acids predicted to be in the TM 
domains and in red bold the extended TM1 from the alternative model propose by TMpred. B shows the 
prediction table from TMpred, showing the length of the TMs and the score for the two predicted models. 

 To build the potential structural model for the full-length Mic10, its primary amino 

acid sequence was submitted to two secondary structure modeling servers GalaxyTBM (222) 

and SWISS-MODEL (135). Both servers use homology-based algorithms. SWISS-MODEL 

predicted Mic10 secondary structure based preferentially on the Human membrane protein 

TMEM141 (pdb: 2lor); the model shows a hairpin-like structure with two TM domains (Fig. 

4.6 Mic10, gray). A first TM domain spans residues 35D to 58L (TM1 domain) and a second 

spans 64A to 80A (TM2 domain). GalaxyTBM predicts a more elongated structure with 

several helical and random-coiled regions based on the Human potassium channel protein, 

TRAAK (pdb: 4WFE_B) as the top hit. Interestingly, all five models proposed by galaxyTBM 

(Fig. 4.6, Mic10_1 to Mic10_5) predicted a long helical domain for the N-terminal residues 

31L - 32D to 60F that could be the entirety, leaving a relatively long TM1 domain with a 

length of 28 to 29 residues, or part of the TM1 domain and an unstructured C-terminal 

domain with stretches of helical regions. Nevertheless, in all five models, the helical TM1 

domain is broken between residues 40N to 43V producing a kink in the membrane segment. 
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This leads to a hypothetical TM1 domain length of ~16 residues, from 43V to 58L. A TM 

domain composed of 16 residues is atypically short for helical domains with ~21 residues 

being the average (223) or 24 residues proposed for Mic10 in previous studies (194). Overall, 

the predicted secondary structure of the different models and the location of TM region are 

consistent regarding the TM1 domain.  

 

Figure 4.6. Mic10 structural prediction based on homology models from two structure prediction servers: 
GalaxyTBM and SWISS-MODEL.  
In A, prediction from the Swiss-model software from SIB. B to F, the 5 predicted models from GalaxyTBM. The 
two servers found different hits in their databases for structure prediction. Both are able to predict the helical 
structure for TM1 domain and some helical contain in the TM2 domain region. All the models show a loop 
located in between the TM1 and TM2, the region FFRKK, which is consistent with biochemical data and found 
facing the mitochondrial matrix compartment. 

Additionally, all models showed that residues 59-60F to 63R form a small loop which 

is in perfect agreement with the findings of Mariam Barbot et al., where the FFKRR region 

(Fig. 4.6, blue box) is reported to be exposed towards the mitochondrial matrix (194). In fact, 

this positively charged region domain “FFKRR” is responsible for targeting Mic10 to the 

IMM (203). Despite the consistency between predictions and biochemical data regarding the 

TM1 domain, the TM2 domain is less well defined using the available bioinformatics tools. 
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As shown by the prediction, in figure 4.6B-F, TM2 does not show an entire single helical 

domain. Moreover, for both TM1 and TM2 domains, the structural data is still missing. 

However, structural modeling has to be taken with caution, since the algorithms used for this 

purpose only rely on sequence alignment of previously reported protein structures and could 

be unreliable since the protein may exhibit different structural features. Another source of 

error is that the database is not selective for membrane bound or soluble proteins. Thus the 

change in the chemical environment of the protein is also ignored in the structural modeling. 

Therefore, in more hydrophobic environments such as in lipid membranes, the fragmented 

helical/unstructured TM2 domain predicted by GalaxyTBM could be different.  

Overall, these results strongly support the necessity to carry out the de novo structural 

determination in a membrane environment to understand the relationship between structure 

and function of Mic10 in mitochondrial membranes. 

 3.2.2 Biophysical evidence for the secondary helical conformation adopted by 

Mic10 

Following the optimization of the expression protocol for Mic10His (see section 2.1 of 

the Materials and Method section for more information), a screening of detergents and 

refolding methods (step wise dialysis (SW), fast dilution and on-column) gave similar results, 

thus we opted for using the dialysis method since there is less loss of material (Fig. 4.7A, 

DPC lines). Figure 4.7A shows the SDS-PAGE gel of the detergent refolding screening in 

sodium dodecyl sulfate (SDS), n-dodecyl phosphocholine (DPC), n-octyl-ß-D-

glucopyranoside (OG) and n-dodecyl-β-D-maltopyranoside (DDM from Avanti). The SDS-

PAGE gel of figure 4.7A shows a major band at ~15 kDa corresponding to Mic10His, 

however, other higher molecular weight bands are present in the gel. Due to the well known 

propensity of Mic10 to homo-oligomerize, we wondered if the higher molecular weight bands 

observed might correspond to Mic10 homo-oligomers. Thus, with the help of our 

collaborators (Dr. Daryna Tavarsenko University of Göttingen) the presence of Mic10 homo-

oligomers was confirmed by western blot using a polyclonal anti Mic10 and anti-His antibody 

(Appendix 4.V). This finding is consistent with previously reported data, that support a strong 

Mic10 protein-protein interaction and a strong stability of the oligomeric state (194, 203). 
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Figure 4.7. Heterogeneous contribution from alpha and beta sheet secondary structure in refolded Mic10. 
In A, Mic10 refolding in different detergents using 15 % SDS-PAGE and coomassie staining. In B, predicted 
model of Mic10His by the SWISS protein severs and C shows the helix position in the amino acid sequence 
from the predicted structure F. D and E are the CD spectra recorded for Mic10-His in different detergents SDS 
and DPC, respectively. 

 

 The secondary structure of the refolded Mic10His was inspected by CD. The CD 

spectra recorded from refolded Mic10His in both SDS and DPC show a negative absorption 

from 240 to 200 nm (Fig. 4.7D and 4.7E). Contrary to what we expected, a helical secondary 

structure, the CD spectra measured show a large heterogeneity regarding the secondary 

structures present in the samples. The CD spectrum in DPC micelles shows a higher 

contribution of beta conformation with a single minimum at 217 nm (Fig. 4.7E), while in the 

CD spectrum in SDS micelles, shows two minima at about 213 nm and 222 nm are observed 

(Fig. 4.7D) indicating a larger helical contribution in this environment. In both cases, DPC 

and SDS, the helical content predicted by the JASCO software is below 50%. Thus, these data 

suggest that Mic10His in detergent environments adopts secondary structures with a different 

contribution of beta and alpha-helix secondary structure that depends on the detergent used. 

To obtain more detailed information of the secondary structure of Mic10His, the system was 

investigated using solution NMR spectroscopy. Table 4.12 summarizes the different 

detergents tested. 
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Table 4.12. Detergent properties.  

Figure 4.8 shows the 15N-HSQC spectrum recorded in the different detergent 

conditions. The sample temperature was increased from 30 to 37°C to decrease the correlation 

time (τc) of the particle in solution. Out of the four detergents tested, SDS gives the best 

sensitivity and spectral quality (Fig. 4.8A). DM (Fig. 4.8B) and DPC (Fig. 4.8D) have almost 

no detectable signal in the 15N-HSQC. The lack of sensitivity could be caused by the slow 

motion of the protein in the presence of detergent, fast exchange with the solvent, which will 

increase with temperature at 37ºC, and/or the coupling value of the covalent bond used during 

the magnetization transfer (1JHN ~95 Hz). 13C-HSQC spectra of SDS and DM show sufficient 

spectral quality (Appendix 4.VI) suggesting that the lack of sensitivity in the 15N-HSQC is 

most likely due to exchange with the solvent. Although, this does not totally exclude the 

change of the HN coupling (1JHN) which will considerably decrease the magnetization transfer 

efficiency.  

The 2D 15N-HSQC NMR spectra recorded for Mic10His refolded in SDS (Fig. 4.8A) 

and LDAO (Fig. 4.8C) showed narrow amide proton (HN ) chemical dispersion of about 

1 ppm, from 7.5 to 8.5 ppm, suggesting that Mic10His adopts a helical conformation. This is 

consistent with the bioinformatics predictions and the CD data. Detergents such as SDS have 

been characterized as being harsh and promoting helical formation (224). In order to test the 

effect of SDS itself on the protein secondary structure, 13C-HSQC spectra in DM and SDS 

were acquired (Appendix 4.VI). The chemical shift changes in the spectra are due to the 

difference in the sample temperatures of 37ºC and 30ºC for SDS and DM, respectively. No 

other significant chemical shift differences were observed. Thus, large structural influence of 

SDS in Mic10 can be ruled out. 

 
 

Detergent Critical micellar concentration 
(mM)

Molecular weight 
(Da)

Purchase

SDS 7 - 10 288 Merck

DPC 1.5 351 Avanti

OG 20 292 Sigma

DM 0.2 510 Avanti

LDAO 1.7 229 Sigma
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Figure 4.8. Detergent screening by NMR.  
Four different detergent conditions were tested for Mic10-His, SDS (A), DM (B), LDAO (C) and DPC (D). SDS 
turns out to be the optimal detergent in these conditions ~80 µM (note concentration before refolding) of Mic10 
refolded in 20 mM Sodium phosphate buffer 150 mM NaCl at pH 7.4 using 1%. 15N-HSQC spectra were 
recorded on a 400 mHz Bruker spectrometer with a 3 channel TCI probe using 106 ms in the direct dimension 
(1H) and 46 ms in the indirect dimension (15N) with spectral with of 12 and 24 ppm, respectively.  

SDS was used to further investigate Mic10 structure since it provides both the best CD 

and NMR spectral quality. A 13C,15N-Mic10His enriched sample was prepared and refolded in 

a 1% SDS solution. The sample was used for acquiring assignment data in a 700 MHz 

spectrometer equipped with a 5 mm cryoprobe (Fig. 4.9). TROSY based experiments that give 

higher sensitivity and resolution for the slowly tumbling membrane proteins were used (225). 

Using the automatic peak picking tools from CcpNmr (219), only about half of the expected 

HN peaks (65 HN peaks) were picked from the 15N-HSQC out of 120 HN peaks expected (125 

– 5 prolines – 1 N-terminus = 120 peaks). Two peaks at about 10 ppm in proton and 130 ppm 

in nitrogen are observed corresponding to 15HNε from the two tryptophan sidechains. The 

assignment of those peaks belonging to the tryptophan sidechain was confirmed by acquiring 

3D HNCA. The ΝεHε peaks are absent from the HNCA spectrum because there is no NCA 

correlation in the tryptophan sidechain. During the course of acquisition, 72 hours, several 

peaks on the spectrum cease to be visible (Fig. 4.9, red spectra, peaks represented by blue 

arrows), suggesting that over time the Mic10His protein aggregates or/and degrades. Spectral 
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changes over such a short period of time limit the NMR applicability for assignment purposes 

since the acquisition of the complete set of spectra required for the assignment and the 

structure calculation need several weeks.  

 

Figure 4.9. Poor stability of Mic10His in SDS detergent micelles conditions.  
TROSY based 15N-HSQC (trosyetf3gpsi) using ~300 µM of Mic10His refolded in 20 mM Sodium phosphate 
buffer 150 mM NaCl at pH 7.4 using 1% of SDS. spectra were recorded on a 700 MHz Bruker spectrometer with 
a three channel TXI probe using 121 ms (2048 points) in the direct dimension (1H) and 60 ms (256 points) in the 
indirect dimension (15N) with spectral with of 14 and 35 ppm, respectively. Processing was performed applying a 
square sine function in both dimensions with only 60 ms (1024) points in the direct dimension (1H). 

Although, we could not obtain all the data for this purpose, we attempted to obtain 

information on the conformation adopted by the glycine residues which might be involved in 

GxxxG motifs. NMR chemical shift provides qualitative information regarding the protein 

secondary structure in a residue-specific manner (226). For this purpose, a 3D HNCA TROSY 

spectrum was recorded to access Cα chemical shifts. Glycine residues have particular 15N and 
13C chemical shifts: a high field carbon alpha chemical shift between 40 and 50 ppm and a 

nitrogen chemical shift between 100 and 115 ppm. Figure 4.10A, shows the CN projection of 

the 3D HNCA spectrum recorded on a 700 MHz Bruker spectrometer. Nine out of the thirteen 

expected glycine peaks are observed in the HNCA spectra (Fig. 4.10D, bold). Based on the 

models and prediction, the number of glycine residues excluding the TM regions can be 

estimated to be four (Fig. 4.5 and 4.6). Therefore, at least five out of these nine Cα glycine 
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peaks identified are expected to be part of the transmembrane domains. Figure 4.10B 

indicates the chemical shift expected from a beta-sheet (red), random coil (white) or alpha-

helical (blue) structure for glycine. Three Cα glycine residues have their chemical shift around 

the values expected for a random coil region with an average chemical shift of ~45.4 ppm and 

the others show chemical shifts values above 46 ppm which suggest an alpha helical 

conformation. Furthermore, the HNCA spectrum shows Cα peaks shifted to lower field in the 

carbon dimension with chemical shifts above 60 ppm. These chemical shift values are a 

signature of Cα of Ile, Val, Phe, Pro, Ser and Tyr in a helical conformation which is consistent 

with the structural model of Mic10 adopting a helical conformation. 

 

Figure 4.10. Part of the glycine content in Mic10His adopts a helical conformation in SDS micelles.  
A, shows the 2D plane of a TROSY based HNCA spectrum acquired on a 700 MHz Burker spectrometer at 
37ºC. B, shows an expansion of the glycine region of the 2D plane, with a color code indicating the expected 
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glycine Cα chemical shift from helical (in blue), random coil (in white) or beta sheet (in red). In C, a table 
representing the chemical shift values of the nine glycine residues that have been observed (no assignment 
available so far). In D, the amino acid sequence of Mic10His with the glycine residues (in bold), the glycines 
that are expected to be outside the membrane region (orange) and the glycines that are expected to be in the TM 
regions (black and italic).  

Altogether, the biophysical data recorded are consistent and support the model that 

Mic10 adopts a random-coil/alpha helical structure in detergent environments. With the 

available data, we could not obtain residue-specific assignment of the glycine peaks observed 

in the 3D NMR spectra, which shows the mostly alpha helical conformation based on their 

chemical shift. However, it is worth noting that all the data were obtained in detergent 

micelles which differ from the native membrane environment. This could lead to a looser 

protein fold and therefore a different protein folding from that in in vivo conditions. Even 

though all detergents tested here have been successfully used in other NMR studies with 

alpha-helical membrane proteins, one should be particularly cautious with the potential 

artefacts due to the detergent used. Therefore, we further investigated Mic10’s structure in a 

more a native-like environment, lipid bilayers, using solid-state NMR. 

3.3 INHOMOGENEOUS NMR LINE SHAPE FROM MIC10 RECONSTITUTED IN NATIVE-LIKE 

LIPID ENVIRONMENT  

So far, our data indicate that Mic10 forms a helical structure in micelles, however, we 

wanted to obtain biophysical evidence of Mic10's secondary structure in membrane-like 

environments and additionally obtaining insights into the processes driving membrane 

curvature. We performed small-scale lipid screening in order to find the best lipid candidate 

for ssNMR studies. Figure 4.11 shows (H)NH spectra of the different lipids tested using 1 to 1 

lipid to protein ratio by weight. None of the tested lipids gave sufficient spectral quality to 

obtain sequence specific assignments in uniformly labeled 13C and 15N Mic10His in lipid 

bilayers by ssNMR. To overcome the spectral overlap, different reconstitution methods using 

DPhPC, which gives the most resolved spectrum (Fig. 4.12, black), were tested. The 

reconstitution protocols tested were i) direct reconstitution from denaturing conditions (6 M 

GdHCl solution) in a detergent/liposomes mix together with a buffer containing β-

cyclodextrin during dialysis to remove detergent and GdHCl (Fig. 4.12, green), ii) 

reconstitution in large unilamellar lipid (LUV) by performing the LUV using a standard 

extrusion protocol and mixing it with refolded protein in DPC, in the later the detergent was 
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removed by bio beads (Fig. 4.12, red), and iii) a reconstitution in cyclodextrin detergent 

removal (CDR): after mixing the lipids with DPC detergent, the mix was added to the protein 

previously refolded in DPC and finally the detergent was removed by adding β-cyclodextrin 

in the dialysis buffer (Fig. 4.12, black). Figure 4.12 shows the different (H)NH spectra 

recorded for the different reconstitution conditions. The LUV and CDR samples are the best 

methods to reconstitute Mic10His in lipids as shown by the better resolved glycine region of 

the (H)NH spectrum (105 to 110 ppm) obtained in comparison to the GdHCl sample 

Figure 4.11. (H)NH spectra of Mic10-His reconstituted in different lipids.  
The (H)NH spectra of Mic10His reconstituted in DPhPC (black), DOPC (red), DOPS (orange) and E. Coli 
(purple) lipids are shown. All the samples were reconstituted using a lipid protein ratio of 1 to 1 by weight. The 
(H)NH spectra were processed using a squared sine function with 10 ms in the direct dimension (1H) and 15 
ms on the indirect dimension (15N) in a 800 MHz Bruker spectrometer using a 1.3 mm HCN probe at 55 kHz at 
250 K. 
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Figure 4.12. (H)NH spectra of Mic10-His using different reconstituted protocols.  
The (H)NH spectra show the spectral quality obtained for Mic10His reconstituted in DPhPC using different 
reconstituted protocols: LUV (red), CDR (red), GdHCl (green). All the samples were reconstituted using a lipid 
protein ratio of 1 to 1 by weight. The (H)NH spectra were processed using a squared sine function with 10 ms in 
the direct dimension (1H) and 15 ms on the indirect dimension (15N) in a 800 MHz Bruker spectrometer using a 
1.3 mm HCN probe at 55 kHz at 250 K. 

	 After screening different lipids for spectral quality, the DPhPC containing membranes 

were chosen for further investigation. We decided to explore the influence of the lipid 

environment by mixing DPhPC with charged lipids. The choice of the lipid was made to take 

into account the composition of the mitochondrial membrane, which is composed of a variety 

of lipids including negatively charged lipids. The mitochondrial yeast membranes, from 

which Mic10His construct is derived (S. cerevisiae), contain mostly phosphatidylcholine 

(PC), phosphatidylethanolamine (PE), phosphatidylinositol (PI), cardiolipin (CL) and 

phosphatidylserine (PS) at 38.4, 24.0, 16.2, 16.1 and 3.8 mol%, respectively (227). PE and CL 

lipid were already included in our precedent tests since it is one of the components of the E. 

coli lipid extracts (PE is the major component found in the E. coli lipids extract from Avanti; 

Fig. 4.11, purple). Therefore, PS-containing lipids were our next choice (Fig. 4.13). Figure 

4.13 shows the comparison of the (H)NH spectrum of DPhPC/DMPS and DPhPC/DOPS 

using a LPR of 1.5 to 1 by weight, such as the additional lipid (DMPS or DOPS) is added 

extra to the DPhPC/Mic10His mixed at a LPR of 1 to 1 by weight. Neither DMPS (light 

green) nor DOPS (brown) give a substantial improvement in the spectral quality (Fig. 4.13). 
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Figure 4.13. Negatively charged lipids do not improve Mic10His spectral quality in ssNMR.  
The best previous reconstitution condition, DPhPC, in Black and two mixtures of lipid membranes to add 
negative charges on the membrane surface DMPS:DPhPC (light green) and DOPS:DPhPC (brown). The (H)NH 
spectra were process using a square sine function with 10 ms in the direct dimension (1H) and 15 ms on the 
indirect dimension (15N) in a 800 MHz Bruker spectrometer using a 1.3 mm HCN probe at 55 kHz at 250 K.  

The ssNMR data did not provide enough information to gain insights into either the 

conformation of Mic10 or the GxxxG motif functionality in lipid bilayers. The broad peaks 

obtained in the ssNMR spectra suggest that there is a large sample inhomogeneity, which 

suggests that the sample preparation requires further optimization or that inhomogeneity is 

characteristic of the protein in the absence of the others MICOS complex subunits. The 

inhomogeneity may also arise from multiple modes of homo-oligomerization that can be 

imagined for the overlapping GxxxG motifs of Mic10. Indeed, different homo-oligomeric 

states of Mic10 have been observed in the SDS-PAGE and native polyacrylamide gels (194, 

203). 

3.4 THE GLYCINE RICH MOTIFS IN MIC10’S MIGHT NOT BE THE ONLY SITE DRIVING 

THE OLIGOMERIZATION 

 3.4.1 TM2 domain homo-oligomerization is highly likely by bioinformatics 

predictions 

Since both Mic10’s TM domains have a high content of glycine rich motifs (GxxxG), 

we wonder about the propensity of these TM domain to interact individually. These motifs are 

well known to promote helix-helix interaction (228-230). Anderson et al. observed high 

propensity of the helix-helix interaction in peptides containing ZxxxZ motif (Z = small amino 

acid residues like G, S or A). Interestingly, including this definition into Mic10 an extended 

packing-packing region is observed in both TM domains (Fig. 4.14B). On the one hand, TM1 
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shows a AxGxGxGxxxS motif, thus three ZxxxZ motifs (Fig. 4.14B) or one GxxxGxxxZ 

motif (Fig. 4.14B, red). On the other hand, TM2 has a GxGxGxGxGxAxG motif depicted in 

four ZxxxZ motifs (Fig. 4.14B) or two ZxxxZxxxZ motifs (Fig. 4.14B, red for GxxxGxxxZ 

and black bold for GxxxGxxxG). To investigate the strength of the interaction between the 

TM domains, both TM domains were submitted to preddimer a bioinformatic tool, which 

predicts the probability of two transmembrane α-helical domains to dimerize (231). The three 

combinations TM1-TM1, TM2-TM2 and TM1-TM2 were submitted. Interestingly, different 

dimer structures were predicted by preddimer：whereas for TM1 a higher dimerization score 

is obtained for a parallel TM1-TM1 homo-dimer, referred to “parallel-dimer” (score of 4.8, 

fig. 4.14A, TM1); for TM2 the highest score is obtained for two helices interacting with each 

other at a specific location of the TM2 domain, the RGY region, referred to “cross-

dimer”(score of 6.8, fig. 4.14B, TM2).. In the cross-dimer situation, where the score obtained 

is the highest, the dimer seems to be stabilized by a cation-π interaction between the arginine 

and tyrosine side-chains. Interestingly, the score obtained for dimerization between the two 

TM domains (TM1-TM2) drops to 3.0 suggesting that Mic10 homo-oligomerization is more 

likely to occur between the interfaces of the “parallel-dimer” (TM1-TM1) and “cross-

dimer” (TM2-TM2) rather than the interface of the hetero-dimer (TM1 – TM2). Judging from 

the number of the ZxxxZ motifs, it is not surprising that the “cross-dimer” (TM2-TM2) 

interaction obtains the higher score since it contains more GxxxG motifs. Additionally, the 

presence of L, V and I residues neighboring the glycines of the GxxxG motifs in both 

domains, TM1 and TM2, could further stabilize the helix-helix interaction. Such residues 

have been reported to increase the stability for helix-helix packing (230).  

Overall, the bioinformatics predictions are consistent with the available biochemical 

studies, suggesting that oligomerization is in fact a prominent behavior for Mic10. However, 

the predictions that TM2 domain has a higher propensity to dimerize opposes to the 

biochemical data. Previous biochemical studies showed that TM1 domain is responsible for 

the oligomerization of Mic10. Mutations at residues G50 and G52, found facing in opposite 

direction of the TM1, to alanine induce the complete loss of Mic10 homo-oligomerization 

(194). However, so far no atomic data reported have determined the helix-helix packing 

interface or explained the relationship between the ZxxxZ motifs present in Mic10 regarding 

oligomerization and membrane curvature. Additional biochemical data targeting the RGY 
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region to disrupt the predicted cation-π interaction, which seems to be involved in stabilizing  

the “cross-dimer”, would be necessary to further shed light into the possible role of the TM2 

domain in the Mic10 oligomerization process. Considering that the predicted length of the 

TM domains are of 19/25 residues for the TM1 domain and 19 residues for the TM2 domain, 

and that the total number of residues is of 96, Mic10 has more than half of the protein 

exposed to the mitochondrial interspace. This suggests the possibility that the soluble domains 

are involved in the oligomer formation as well. 

Figure 4.14. Predicted helical-helical interaction from the different Mic10 transmembrane domains.  
A,  shows the TM1 helical structure prediction including the position of the two glycine (Gly50 and Gly52, in 
pink) responsible for homo-oligomerization. B, shows the amino acid sequence of Mic10 with the (Z)xxx(G) 
motifs in green, (G)xxx(G)xxx(Z) motifs in red and the (G)xxx(G)xxx(G) motifs in black bold. From C to D, the 
predicted parallel-dimer (TM1-TM1, in C), cross-dimer (TM2-TM2, in D) and the hetero-dimer (TM1-TM2, in 
E) by preddimer from SIB tools are shown. The TMs are color coded on the amino acid sequence with TM1 in 
purple and TM2 in cyan   

 3.4.2 Soluble domains might have a role in the stabilization of oligomers 

In order to disrupt the homo-oligomerization of Mic10 and thus decrease spectral 

complexity for solid-state NMR studies, a double mutant G50A and G52A which was kindly 

provided by our collaborators, Professor Dr. Meinecke at the University of Göttingen, was 

expressed. However, yield of the expression was too low to pursue NMR studies. Moreover, 

after the affinity chromatography column, the eluted double mutant Mic10 protein, when 

analyzed by SDS-PAGE exhibited high molecular bands as observed for Mic10His.  

To alleviate the NMR spectral complexity, we opted for reducing the length of the 

protein. Since our focus is in the TM domains (residue ~33 to 82) of Mic10, we wonder if by 
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removing the soluble domains one could increase spectral resolution. To evaluate this 

possibility, an enzymatic treatment was performed in the refolded Mic10His to cleave out the 

accessible regions of the protein. Using this approach, we expected to cleave out the 

extracellular domains of Mic10His while keeping the TM domains since they should be 

protected from the proteases by the membrane. We tested two distinct endoproteases, trypsin 

and chymotrypsin.  

 

Figure 4.15. ssNMR spectra 
of trypsin treated Mic10 
reconstituted in DMPC.  
A, shows the cross polarization 
(H)NH spectra obtained with 
M i c 1 0 H i s a f t e r t r y p s i n 
treatment reconstituted in 
DMPC (DMPC cleaved). Panel 
B, shows the (H)NHj spectra of 
the DMPC cleaved sample 
recorded using INEPT. The 
bright green is the negative 
phase of the spectrum due to 
baseline distortions, which in 
here it indicates truncation of 
the FID. 

Figure 4.15 shows the (H)NH and (H)NHj spectra of Mic10His recorded in DMPC  

lipids after trypsin treatment. The trypsin treatment does not improve spectral quality (Fig. 

4.15A, DMPC cleaved). The (H)NHj shows that there is still flexible regions on the sample 

(Fig. 4.15B). Although the TM domains where not accessible for assignment proposes, we 

wonder if there have been any changes on the flexible domains compare to the micelles prior 

to trypsin treatment. Slightly differences on the glycine region from LDAO to DMPC cleaved 

sample (above 110 ppm nitrogen peak) can be observed (Appendix 4.VII). Other peaks 

seemed to be affected as well, however it is still to be seen if the (H)NHj spectra of a non 

cleaved Mic10His in DMPC shows the same differences.  
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Figure 4.16. Enzymatic treatments disrupt 
Mic10His oligomers.  
White and red stars show the lines where 
Mic10His was found by mass spectrometry 
analysis (Appendix 4.VIII). From left to right 
of the gel is Chymotrypsin (1), Trypsin (2), 
leader marker (3), Mic10-His (4) as control for 
the next lines where we treated Mic10His with 
Trypsin for different times of 48 and 36 hours 
(5 and 6) at room temperature. The same 
treatment was performed with a buffer 
containing 10 mM arginine and 10 mM 
glutamic acid (9 and 10). The same treatment 
conditions were used for Chymotrypsin 
treatment without additives (lines 7 and 8) and 
with additives (lines 11 and 12). The cleavage 
sites are represented over Mic10His amino 
acid sequence. A total of 15 and 11 cleavage 
sites are found for Chymotrypsin and Trypsin 

over the full Mic10His sequence, respectively.  

The efficiency of the cleavage and the accessible regions of the enzyme tested was 

followed by SDS-PAGE (Fig. 4.16). Figure 4.16 shows the SDS-PAGE gels stained using 

silver nitrate (232). In both enzymatic treatments, enzyme was added at 0.75 U/mg and the 

reaction was followed by SDS-PAGE at different time points. Previous data reported the role 

of arginine as stabilizer for membrane proteins (233), thus Mic10 was refolded in two 

conditions: one with and one without the addition of 20 mM arginine in 0.5% DPC. The SDS-

PAGE gel shows that the oligomers of Mic10His were largely digested by the treatment of 

both enzymes (Fig. 4.16). Surprisingly, in contrast to the sample treated with chymotrypsin, 

the trypsin treated sample showed a major band above ~12 kDa. To confirm the presence of 

Mic10His in this band, the bands present on the gel were cut out and analyzed by mass 

spectrometry. Even though the sequence coverage was low (~30%, see appendix VIII), 

Mic10His sequence was identified from residue W34 to R87, which is comprised in the TM 

domains (residue 34 to 62) including residues G50 and G52 shown to be important for Mic10 

oligomerization (Barbot et al.). None of the mass spectrometry data showed the presence of 
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the N-terminal including the His tag or the C-terminal of Mic10His (Appendix 4.VIII). This 

indicates that the flexible regions are likely to be cleaved by the enzymatic treatment. 

Although further investigation is needed, these results suggest that Trypsin cleavage can be 

used in the presence of DPC to reduce the presence of oligomers and obtain a ~12 kDa 

domain.  

 

 To conclude, the combination of bioinformatics, ssNMR in more native environments 

and enzymatic treatments suggest a strong protein-protein interaction behind the stable non 

homogenous homo-oligomers formed by the full-length protein. The enzymatic treatment 

raises additional questions regarding the oligomerization of Mic10. Is the oligomerization in 

part modulated by the soluble domains of Mic10His as well? Our data suggest that it might be 

a more complex mechanism behind the formation of Mic10 homo-oligomers and that 

including other proteins of the MICOS complex may be important for the further progress in 

structurally defining the Mic10 protein.  

3.5 BOTH TRANSMEMBRANE DOMAINS OF MIC10 SHOW HELICAL PROPENSITY IN 
DETERGENT 

 3.5.1 The presence of detergent is required for driving the TM2 towards a helical 

conformation 

As previously discussed in section three of the "Results", the inhomogeneity of  the 

complex form by the oligomerization of Mic10His full-length protein hindered the structural 

studies in a lipid bilayer. Several studies (194, 203) including our own bioinformatic analyses 

showed that Mic10 contains two helical transmembrane domains. To further characterize 

Mic10’s oligomerization, we decided to assess the secondary structure of the transmembrane 

domains TM1 and TM2 of Mic10 individually. To this end, the two peptides TM1 of 29 

residues and TM2 of 37 residues both containing the transmembrane domain 1 and 2 regions 

of Mic10, respectively were synthesized. The synthesis was carried out by standard FMOC 

solid phase peptide synthesis (Appendix 4.IX for HPLC chromatogram and mass 

spectrometry analysis of the peptides).  
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Figure 4.17. TM1 and TM2 adopt a helical conformation in the presence of detergents.  
TM1 (top panels) and TM2 (bottom panels) in 20 mM sodium phosphate, 100 mM NaCl at pH 6.5 (left) and in 
20 mM HEPES, 100 mM NaCl at pH 6.8 (right). The CD spectra were acquired at room temperature ~25ºC in 
different conditions without detergents (blue), in 2% SDS (orange) and in 2% DPC (grey) using a JASCO CD 
spectrophotometer. The data shown was processed by subtracting the reference spectrum corresponding to the 
buffer without protein and then smooth function was applied. 

The peptides were analyzed both separately, as well as in equimolar mixtures by CD 

and NMR. Both CD (Fig 4.17) and 1D proton NMR spectrum (Appendix 4.X) of the TM2 

peptide in different conditions showed that TM2 domain adopts a helical structure in the 

presence of both SDS and DPC. Likewise TM2 peptide, the TM1 peptide is mainly in a 

secondary helical structure in the presence of detergent (Fig. 4.17). Furthermore, the influence 

of the buffer on the structure was tested for the two TM peptides. None of them, neither the 

TM1 nor the TM2 peptide, showed changes in their secondary structure regardless of the 

conditions of the buffer or the detergents tested (HEPES and phosphate) (Fig. 4.17). 

To conclude, both CD and NMR data showed that the presence of detergents is 

necessary for the TM domains to adopt a stable helical conformation. These results, underline 
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the importance of studying membrane proteins in the condition closest to the native 

environment as possible. 

 3.5.2 TM2 domain forms a helical domain of at least 19 residues  

By using the peptide synthesis which confers complete control of residue position 

specific labeling, we attempted to obtain the length of helical domain of the TM2 peptide as 

well as information regarding the GxxxG motifs. To these aims, three distinct TM2 peptides 

were synthesized: one completely unlabeled, and two others labeled at specific positions, one 
13C and 15N labeled at position Ile11, Gly12 and Gly18 (residues Ile71, Gly72 and Gly78 in 

Mic10) refereed as TM2-IGG. And, a second peptide with 13C and 15N at Gly14 and Ala20 

(Gly74 and Ala80 in Mic10) referred as TM2-GA, see table 4.5. Figure 4.18 and 4.19 show 

the assignment of TM2 peptide using HH-TOCSY and HH-NOESY proton spectra in 

deuterated DPC micelles, respectively. From the HH-TOCSY spectrum, we expected 36 alpha 

protons in the amide region (10 to 7 ppm), however only ~28 peaks have been identified. 

Missing peaks are expected from overlapping peaks due to the low dispersion of the amino 

region and other peaks from dynamic regions that prevents NMR detection. The labeling 

peptides was used for confirmation of the assignment, since the labeled residues, Gly18, 

Gly12, Ala20 and Ile11 showed the peak splitting from 1JHC coupling of ~140 Hz and the 1JHN 

coupling of ~95 Hz (Fig. 4.18). 

Figure 4.18. HH-TOCSY assignments of TM2.  
In red, HH-TOCSY from ~800 µM of TM2-IGG labeled at position I11, G12 and G18. In black, HH-TOCSY 
from ~500 µM TM2-GA peptide labeled in position G14 and A20. HH-TOCSY was recorded in a 950 MHz 
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Bruker spectrometer using a 5 mm cryo-probe at 310 K. A spectral width of 14 ppm was used and the acquisition 
time was set to 77 ms in the direct dimension and 38 ms on the indirect proton dimension. Water suppression 
was implemented with WATERGATE. Both samples were resuspended in 20 mM sodium phosphate, 150 mM 
NaCl at pH = 6.5 with 2% DPC. 

Figure 4.19. HH-NOESY assignments of the TM2-GA.  
Overlay of HH-TOCSY used for assignment purposes (black) and HH-NOESY for structure determination 
(green) using 80 and 120 ms proton mixing, respectively. A sample of ~500 µM of TM2-GA peptide labeled in 
position G14 and A20 in 20 mM sodium phosphate, 150 mM NaCl at pH = 6.5 with 2% DPC was used. NOESY 
and TOCSY spectra were recorded in a 950 MHz Bruker spectrometer using a 5 mm cryo-probe at 310 K. A 
spectral width of 14 ppm was used and the acquisition time was set to 77 ms in the direct dimension and 38 ms 
on the indirect proton dimension. 

	 Further spectra, 13C-HSQC and 15N-HSQC, were recorded for assignment 

confirmation and determination of 13C and 15N chemical shifts. The 1H, 13C and 15N backbone 

chemical shift are direct probes of the secondary structure in a site-specific manner. The 

chemical shift is directly related to the Psi, Phi and Chi torsion angles of the protein (226), 

which are related to the secondary conformation adopted by the protein. The most direct 

method is to calculate the chemical shift index (CSI) by comparing the measured chemical 

shifts to the random coil chemical shifts. We predicted the random coil chemical shift from 

the TM2 peptide amino acid sequence by using the Neighbour Corrected Intrinsically 

Disorder Protein Library software (NCIDP) (234). The assignment of the backbone available 

for most of the amino acids, including alpha protons, from residue Leu9 to Leu32 (Leu69 to 

Leu92 in Mic10), does not give a clear indication of TM2 peptide adopting a helical structure. 

All alpha proton CSI values are below the threshold of +/- 0.19 (Appendix 4.XI, left), except 

for Ala4 (residue Ala64 in Mic10) with a positive alpha proton CSI value, indicative of a beta 
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sheet. Similar behavior is observed for the amide protons CSI where the threshold is only 

reached by Gly10 (Appendix 4.XI, right). In contrast to Ala4, Gly10 (Gly70 in Mic10) shows 

a helical secondary structure. Interestingly, neighboring residues Ile11 and Gly12 (Ile71 and 

Gly72 in Mic10), follow the same CSI trend suggesting that TM2 peptide adopts a helical 

structure from at least residues Gly10 to Gly12 (residue Gly70 to Gly72 in Mic10). Since in 

our case proton chemical shifts are not sensitive enough to report precisely the secondary 

structure, we measured CSI from the 13C and 15N chemical shifts as well. Figure 20 shows 

positive values of the ∂Cα-∂Cß CSI for residues Ile11, Val15, Tyr19, Ala20, Ala24 and Ile25 

and negative values of the measured 15N CSI for residues Ile11, Gly12, Gly14, Gly18 and 

Ala20 indicating that these residues are in a helical structure. 

Figure 4.20. TM2 adopts an alpha helical conformation based on the chemical shift index (CSI).  
The amino acid sequence is shown with the amino acid number corresponding to the Mic10 sequence in black 
and the peptide sequence in red. A, shows the difference between the experimental Cα or Cβ chemical shift and 
that of the calculated random coil carbon chemical shift. B shows the difference between observed nitrogen 
chemical shift and random coil nitrogen chemical shift. The red dashed line indicates the threshold for clear 
determination of helical structure as suggested by CSIC (Consejo Superior de Investigaciones Científicas) web 
page (http://triton.iqfr.csic.es/guide/eNMR/proteins/chemshift.html). The random coil values where calculated 
using the program NCIDP. 

 

 Taken together, our data suggest that the helical domain of TM2 peptide is extended at 

least from residue Gly10 (Gly70 in Mic10) to Ile25 (Ile85 in Mic10). Surprisingly, amide 

proton CSI shows a negative tendency of residues Phe26 to Leu32 (Phe86 to Leu92 in Mic10) 

indicating a helical conformation, which suggests an extended TM2 domain of 24 residues. 

Although a more extended TM2 domain is shown by our NMR data, overall, the data is 

consistent with prediction (see section 2.1, "Results"). The helical domain of TM2 is predicted 

to have a length of 19 residues that correspond to residue Ala4 to Gly22 (Ala64 to Gly82 in 

Mic10). It is important to recall that the TM2 peptide was measured in DPC micelles by 

solution NMR. Therefore, the data does not provide specific information about the length of 
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the TM2 domain spanning the lipid bilayer. Alternatively, the extended helical structure of the 

TM2 peptide shown only indicates that this region adopts a helical structure in a DPC 

micelles solution. This is further supported by the predicted structures which showed helical 

structures all along the C-teminus of Mic10. A more accurate measurement including labeled 

positions towards the C-terminus of the TM2 peptide would be ideal to explore this more 

thoroughly in micelles and lipid environments in order to fully define the length of the helical 

domain of Mic10’s TM2 domain. 

 3.5.3 Structure of TM2 

Finally, the NMR data obtained from the isotopically labelled TM2 peptides was used 

as an attempt to calculate the structure of TM2 peptide using CYANA (235). Figure 4.21 

shows the ten best structures of the TM2 calculated using NOE data in combination with 

manual TOCSY assignments. The NOE data comprises mostly the automatically picked 

peaks, except for labeled residues showing splitting (these were then removed in the NOESY 

and TOCSY spectrum). 

The final average backbone RMSD is below 1 Å and the target function, which 

informs about the agreement between calculation and measured data, is below four for all the 

cycles of the CYANA calculation run showing a good convergence of the calculation. The 

structure show helical structures from Leu9 to Val15 of the TM2 (Leu69 to Val75 in Mic10) 

and from Asp23 to Phe26 of the TM2 (Asp83 to Phe86 in Mic10; Fig. 4.21, blue residues). 

The second helical domain can be extended up to residue Ala30 (Ala90 in Mic10). The helical 

structure form residue Asp23 to Ala30 (Asp83 to Ala90 in Mic10) does not form a rigid 

helical structure but it rather looks like a partially loose helical structure. These observations 

are in agreement with the CSI data showed in figure 4.20. However, a random coil structure is 

found in between the two helical domains from Val15 to Gly22 (Val75 to Gly82 in Mic10). 

Interestingly in this region the structure bends to allow close contacts between residues of the 

second helical domain Asp23 to Phe26 and residues Leu9 to Val15. Surprised by the bending 

helical structure obtained from the calculation, we seek for unambiguous NOE contacts using 

the automatic tools from CcpNmr. Unambiguous contacts between residues Ile11-Ile25, Ile11-

Ala24, Trp8-Ile25 and Trp8-Tyr19 are found (Appendix 4.XII, brown). This suggests that 

either the two extremities are in close proximity (“helical hinge”) or that the TM2 domain 

forms anti-parallel dimers in micelles.  

127



Figure 4.21. Ten best structures of the TM2 calculated by CYANA.  
The structure was calculated using CYANA (235), taking only the NOE contacts as input restraints for the 
structure calculation. Blue residues indicates the starting amino acids of the helical structures found by CYANA 
(A9 to V15, D23 to F26 and S28 to A30-G31). The residues in black indicates the amino acids which have 
unambiguous NOE contacts (tables in appendix 4.XII). The hinge of the helix is explained by the contact 
between W8 and I11 with I25 and W8 with Y19. All the data was recorded with a 950 MHz Bruker spectrometer 
at 310 K with ~500 µM of TM2 peptide suspended in 20 mM sodium phosphate, 150 mM NaCl and 2% DPC. 

Taking all together, our data suggest that TM2 domain adopts an unexpected extended 

helical domain in the presence of DPC detergent from reside Leu9 to Leu32 (Leu69 to Leu92 

in Mic10) which is inconsistent with the predicted in silico data by TMpred. However, 

TMpred predicts a shorter TM2 domain of 19 residues form Ala4 to Gly22 (Ala64 to Gly82 in 

Mic10), the experimental data is consistent with the structure prediction to a certain extent. 

Whereas GalaxyTBM predicts a broken but extended helical structure for the C-terminal 

domain of Mic10 including the TM2 domain, SIB shows a straight helical domain for the 

TM2 domain. A disruption of the helical structure is not expected to happen in the middle of 

the membranes as shown in our  structure calculations (Gly14 to Asp23). It is likely an artifact 

of overlapping resonances, and more data would be necessary to further refine the structure of 

the TM2 peptide.  

In order to gain insights into the length as well as the adopted conformation of the 

TM2 in the presence of lipids, the IGG labeled TM2 sample was reconstituted in lipid bilayers 

and used for solid-state NMR measurements. 
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 3.5.4 Studies of TM2 in lipid membranes by solid-state NMR 

To investigate the TM2 structure by solid-state NMR 13C and 15N labelled at IGG in 

DPhPC at 230 K and in DMPC/DMPS using a lipid protein ration (LPR) of 1 to 1 and 4 to 1 

by weight, respectively (Fig. 4.22 and 4.23). Interestingly, the reconstitution in different lipid 

bilayers resulted in different chemical shifts in the (H)NH spectrum suggesting different 

protein arrangement(s) depending on the lipids. In the presence of DPhPC (Fig. 4.22, red) the 

observed peaks are sharper than the those in DMPC/DMPS membranes. Furthermore, the 

(H)CH spectrum showed strong differences of peak positions both within and between the 

spectra of the two different lipid compositions. The major peaks corresponding to Ile11 (Ile71 

in Mic10) Cα and Cβ chemical shift could be identified in both cases by the predicted 

chemical shifts. However, in the presence of DMPC/DMPS, two sharp additional Cα peaks 

were identified, which suggests the presence of multiple TM2 peptide conformations in our 

preparation (Fig. 4.23A, black). Since DMPC and DMPS lipids have phase transition 

temperatures of about 20ºC, a (H)CH spectrum with a temperature above the phase transition 

was recorded. Interestingly, whereas at this higher temperature (~35ºC) in the sample 

reconstituted with the mixture lipids (DMPC/DMPS) the isoleucine with a carbon chemical 

shift of at ~60 ppm is missing, the peaks at ~65 and ~72 ppm are still detectable and are 

sharper (Fig. 4.23B, green).  

The CSI(∂Cα-∂Cβ) values were calculated for the different conformational states 

shown by the TM2 peptide. The peak at ~60 ppm, observed in both lipid compositions, 

indicates a beta conformation while the other two carbon shifts, at 65 and 72 ppm, visible 

only in DMPC/DMPS membranes indicate a helical conformation. In addition to the 

conformational plasticity observed, the peak narrowing at the (H)CH recorded at high 

temperature suggests that TM2 peptide experiences certain mobility. Nevertheless, the 

mobility must be restricted because of the nature of the magnetization transfer used based on 

cross polarization (CP) indicating a certain order or reduced degree of mobility in the 

samples, such as uniaxial rotation within the membrane. The data obtained in DMPC/DMPS 

lipid mixtures suggest that TM2 peptide is a helical transmembrane domain that undergoes 

rapid uniaxial rotation in the lipid bilayer, and is sensitive to reduction of temperature, as well 

as to lipid composition. 
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Figure 4.22. TM2 reconstituted in lipid bilayers 
displays inhomogeneous broadening indicative of 
conformational heterogeneity.  
(H)NH spectra of TM2-IGG reconstituted in DPhPC 
(red) and in mixed lipid bilayers DMPC/DMPS (black). 
TM2 was reconstituted using a 1 to 1 lipid protein ratio 
by weight (LPR) in DPhPC while a 4 to 1 LPR by weight 
was used for DMPC to avoid excessive protein protein 
interactions.  
 

Figure 4.23. TM2 adopts different conformations in lipid bilayers.  
In A, the (H)CH spectra of TM2-IGG in DPhPC (red) and DMPC/DMPS (black) are compared at 230 K (sample 
temperature ~15-20ºC). In B, the (H)CH spectra in DMPC/DMPS at 230 K (black) and at 260 K (green) (sample 
temperature ~35-40ºC) are shown. Panel C, shows the CSI extracted from the carbon chemical shift of the 13C 
isoleucine label at different temperatures and lipids, 230 K (red in DPhPC and black in DMPC/DMPS) and 
260 K (green in DMPC/DMPS).  

Based on our results obtained in lipid bilayers, we could hypothesize that the presence 

of charged lipid species are necessary for the proper insertion of TM2 domain into a lipid 

bilayer. Alternatively, it is possible that the TM2 domain accomplish a conformational 

transition depending on the local environment and temperature. This dependence, as well as 
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the high solubility of TM2 domain in water suggests that the TM2 domain is an ‘induced 

helix’ that forms only under specific environmental conditions. It may be stabilized by TM1 

domain (absent in these measurements) as well as other proteins of the complex. Additional  

measurement with different lipids varying thickness, head groups and LPR will be necessary 

to understand the influence of the lipids on the protein conformation. 

 3.5.5 No evidence of interaction between TM1 and TM2 peptides in detergent 

To investigate the interaction between the TM1 and TM2-IGG peptides were mixed in 

a molar ratio of one to one were studied by solution NMR in the presence of DPC micelles 

(Fig. 4.24, black). The overlay of the spectra of TM1, TM2-IGG and TM1/TM2-IGG mixture 

acquired at 950 MHz in a Bruker spectrometer at 310 K are shown in figure 24 in blue, red 

and black, respectively. The spectrum obtained for TM1 peptide shows broad and poor signal 

dispersion suggesting aggregation of the TM1 peptide in these conditions. Nevertheless, we 

could access Hα of glycine due to its particular position and the two symmetric Hα peaks in 

the spectra. Hα’s of glycine in an alpha helical conformation show a strong high field 

chemical shift (below 4 ppm). Here, Hα glycine of TM1 peptide shows a proton chemical 

shift of ~3.5 ppm which is consistent with an alpha helical conformation.  

When the mixture of both non labeled TM1 and TM2-IGG 13C,15N labeled at position 

Ile11, Gly12 and Gly18 (positions Ile71, Gly72 and Gly78 in Mic10) peptides was 

investigated, no chemical shift perturbations (CSPs) were observed on the HH-TOCSY 

spectrum. The absence of CSP indicates that TM1 and TM2 do not interact. However, the 

signal from the mixed sample showed a reduced intensity of the peaks from the TM1 peptide 

suggesting that there may be some modulation of the TM1 aggregation by the presence of 

TM2 (larger aggregates would be undetectable by solution NMR). This is also supported by 

the calculated glycine line width of TM1 peptide, which in the presence of TM2-IGG peptide 

are narrowed by ~15%. NMR line widths are related to the transverse relaxation (T2) by 

, which is directly related to the correlation time of the molecule. Thus, the narrowing 

of the lines suggests a smaller particle size. However, the disappearance of certain peaks of 

the TM1 peptide (Fig. 4.24, black vs blue) is mostly correlated to a longer correlation time 

thus a higher molecular size or a dynamic regime not observed in our NMR experiments. 

1/πT 2
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Figure 4.24. No chemical shift perturbations 
observed on a mixed TM1-TM2 sample.  
Overlay of HH-TOCSY of TM1 (blue), TM2-IGG  
(TM2IGG, red) and TM1-TM2IGG (black). The spectra 
were acquired on a 950 MHz Bruker spectrometer at 
310 K in 20 mM sodium phosphate, 100 mM NaCl at 
pH 6.5 with 2% DPC. The inset shows 1D slices of 
the TM1 (blue) and TM1-TM2IGG (black) with their 
respective line widths. 

It should be noted that our studies are performed in the presence of detergents that 

could strongly affect weak protein-protein interactions. Reconstituting the TM1/TM2-IGG 

mixture into lipid bilayers might improve the interaction between the TM helices and could 

help to decipher the structure occurring in membranes. 

4. DISCUSSION 

4.1 MIC10 FORMS AN INHOMOGENEOUS SAMPLE NOT SUITABLE FOR SSNMR STUDIES  

To this day, neither in vitro nor in vivo data have been able to directly support the 

helical conformation of both Mic10’s transmembrane domains. So far, only indirect evidence 

using bioinformatic approaches were provided to support this assumption (194, 203). As 

previously proposed by Barbot et al. and Bohnert et al. 2015, Mic10 from yeast adopts a 

hairpin like structure in the IMM with transmembrane domains of different length. This 

seminal work proposes a membrane bending mechanism based on the unequal length of the 

helical domains (194). However, no structural data was provided to back up this hypothesis. 

The in silico data obtained in this study using two different servers (SIB and GalaxyWEB) 

does not consistently predict neither the length and structure of the TM1 nor TM2 domains 
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(Fig. 4.6). This highlights the importance of carrying out structural studies on Mic10. This 

would allow us to determine the exact length of both transmembrane domains and understand 

the implication of homo-oligomerization in inducing membrane curvature.  

The solid-state NMR data showed that Mic10 reconstituted in lipid bilayers forms 

inhomogeneous protein arrangements. The sample heterogeneity can be attributed to the 

formation of homo-oligomers of various size as observed on the SDS-PAGE and Western Blot 

(Appendix 4.V and fig. 4.7). The inhomogeneity of the sample preparation gives rise to broad 

lines in the solid-state NMR spectra (Fig. 4.11, 4.12 and 4.13). 

4.2 MOST OF THE GLYCINES ARE FOUND IN A HELICAL CONFORMATION  

The CSI measured in micelles by solution NMR provides evidence of the glycines in 

both of the TM domains of Mic10 being of helical conformation. (Fig. 4.20) Previous work 

by Barbot et al., 2015; Bohnert et al., 2015 associated the GxxxG motifs to the intermolecular 

helix - helix interaction of Mic10 (194, 203). The promoting helix-helix interaction role of 

GxxxG motifs have been observed in other important membrane protein such as F1-F0 ATP 

synthase (189) and have been well characterized using small peptides containing glycine rich 

motifs (230). This later study by Anderson et al. showed that the helix - helix interaction is 

stabilized by a combination of Cα-H to CO hydrogen bonds and Van der Waals interactions 

(230). In Barbot et al. the double mutation G50A and G52A destabilized oligomeric states of 

Mic10 in vitro as well as in vivo (194). The loss of Mic10 oligomerization strongly affects 

membrane-bending property of the protein. Both mutations (G50A and G52A), located in the 

TM1, are necessary to disrupt the oligomerization. Interestingly, the locations of these two 

mutations face the opposite direction on the surface of the helix suggesting that 

oligomerization of Mic10 occurs in multiple faces of the TM1 helix domain. Pfannner and co-

workers introduced a series of mutations to replace most of the glycines and could show that 

the GxxxG motifs are responsible for the Mic10 - Mic10 oligomerization but they are not 

involved in the interactions between Mic10 with other MICOS components (203).  

The solution NMR data on the full-length Mic10 showed that out of fourteen glycines 

nine exhibit a Cα chemical shift above 46 ppm consistent with the expected values for a 

glycine in helical conformation (Fig. 4.10). This data, in combination with the solid-state 

NMR data of the TMs in mixed lipids (Fig. 23), strongly support the helical conformation of 
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Mic10 in membrane environments. Furthermore, a HH-TOCSY NMR spectrum of TM1 

peptide in DPC micelles shows glycine Hα protons with a chemical shift of 3.5 ppm which 

agrees with the expected chemical shifts of glycines normally observed in a helix 

conformation (Fig. 4.24). Moreover, the peak broadening together with the low chemical 

dispersion suggest that TM1 peptide has a strong degree of aggregation (Fig. 4.24). This 

observation further supports the previous observation that the aggregation is most likely 

promoted by the TM1 domain since the double mutation of glycine to alanine at residues 50 

and 52, both located in the TM1 of Mic10, abolishes Mic10’s oligomerization (194).  

4.3 EVIDENCE OF THE IMPLICATION OF THE SOLUBLE DOMAINS IN THE MEMBRANE 

BENDING MECHANISM    

Despite the fact that in silico data showed lower probability of oligomerization for the 

TM1 than for the TM2, the narrow lines on the NMR spectrum of TM2 in DPC micelles 

suggest that TM2 is less prone to aggregation (Fig. 4.18). Therefore, we could assign and 

identify helical regions of TM2 peptide with high confidence. Helical structure in TM2 is 

observed from residue Ile11 to Val15, from Gly18 to Ile25 and may be extended to Leu32. 

Interestingly, the length of the TM2 in detergents seems to be larger than the 19 residues 

predicted by the bioinformatic methods. This data supports the mechanism proposed by 

Meinecke and co-workers regarding membrane bending that the unequal length of the TM 

domains was responsible for membrane curvature (236). Although our data indicates a longer 

TM2 domain in micelles, it does not provide direct evidence on the length of the membrane 

spanning residues. Thus, membrane bending might also occur or be assisted by the extra 

helical region present on the C-terminus of Mic10. The extra helical domain (residue Ile25 to 

Leu32) could, instead of being part of the TM2 domain, be lying on the membrane surface 

thus interacting with the phospholipid head groups to induce or assist membrane curvature. 

An important limitation to note from our condition is the simplistic model used. We are 

working with short TM fragments individually. In nature, these two sequences are naturally in 

close proximity by a short positively charged linker (KRRK). This will constrain the distance 

between the TM helices in the membrane favoring the interaction between them. It will be 

interesting to ligate synthesized TM1 and TM2 peptides to conduct ssNMR studies with 

differently labelled positions in order to characterized any TM interaction that might occur. 

134



Additionally, our enzymatic treatment results in a SDS-PAGE gel pattern with missing 

high molecular size bands (Fig. 4.16). These results might suggest that the accessible regions 

to the proteases could have an important role for the in vitro stabilization of Mic10His 

oligomers. Or alternatively, that the two transmembrane domains (TM1-TM1, TM1-TM2 or 

TM2-TM2) or multiple of them are in a stable interaction forming a complex with a 

molecular weight of ~12 kDa. Only the first hypothesis seems plausible because if the TM 

oligomerizaton hypothesis would be valid, the same band would be expected in both 

treatments. The importance of the soluble domains of other MICOS sub-complexes have been 

shown in recent studies by Zhiyin Song et al. regrading Mic60 complex. In this study, the 

authors showed that Mic19 – Mic60 interaction is sustained by the extracellular domain of the 

membrane protein Mic60 (202). The later study and others have shown the implication of the 

soluble domains of MICOS sub-units in the architecture of the IMM (199, 202). This raises 

the question whether the extracellular domains of Mic10 also play a role in the 

oligomerization or interaction with other members of MICOS. 

4.4 THE SOLID-STATE NMR DATA SUGGESTS STRUCTURAL PLASTICITY OF TM2 IN 

MEMBRANE BILAYERS 

Our solid-state NMR data obtained in conditions closer to native environments (lipid 

bilayers composed of DPhPC and DMPC/DMPS) indicates that TM2 domain co-exists in 

different conformations in the presence of lipid membranes (Fig. 4.23). In our experiments the 

different species can be related to the lipid transition from Lß to Lα phase upon temperature 

increase and/or the mass of lipid to protein ratio (1:1 versus 1:4 by weight). The CSI of 

isoleucine shows that TM2 domain adopts alpha (TM2α) and beta (TM2β) conformations at 

temperature lower than the phase transition temperature of the lipids. Whereas at higher 

temperatures above the phase transition of the lipids (~35ºC), the beta sheet population 

disappears and only TM2α is observed (Fig. 4.23).  

Two scenarios may explain this phenomena happening in our sample at high 

temperature in the mixed membranes (DMPC/DMPS). Since the sample is packed into the 

rotor via a centrifugation step to pellet the sample no or little soluble protein can be expected. 

Additionally, the soluble protein fraction is filtered out from the ssNMR spectra by the 

mechanism of magnetization transfer, cross polarization, used here which is sensitive to 

protein motion. This suggest that either the temperature leads to a conformational transition 
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beta to alpha or that the beta population is interacting with the membrane surface. The 

interaction of TM2β with membrane surface is reduced at higher temperatures which 

increases its mobility thus reducing the magnetization transfer efficiency in ssNMR via cross-

polarization. An alternative situation is that the surface bound TM2β is incorporated to the 

membranes once the temperature transition of lipid is reached. Although, since the DPhPC 

does not show a phase transition in our working temperature range, it is hard to believe that in 

DPhPC only membrane bound TM2β exist and none of it spans trough the membrane. 

However, the structure calculation of TM2 in micelles shows that the peptide forms a hinge 

(Fig. 4.21). This particular structure could be used by the TM2 as an anchor to bind to the 

lipid membrane.  

Protein conformational transition occurs in different scenarios and are particularly 

important due to its incidence in prion like diseases or amyloid pathologies. For example, 

random coil, alpha or even beta structures turn into beta sheets which are then favorable for 

stacking together and form fibrillar structures (237). Another, more closely related, study 

regarding structural transitions of the SNARE proteins, Syntaxine 1 and VAMP1, has been 

reported (238). The authors reported an alpha to beta conformational transition of SNARE  

proteins modulated by the protein lipid ratio. Interestingly, SNAREs are well known proteins 

involved in membrane fusion processes (239). Although further studies of this process will be 

necessary, this modulation of the protein conformation by the lipids seems to be consistent 

with our data, where TM2 reconstituted in DPhPC membranes at a 1:1 lipid protein ratio by 

weight is only found in a beta conformation, whereas in the DMPC/DMPS with a LPR of four 

to one by weight both alpha and beta species co-exist. Similarly to SNARE proteins, Mic10 is 

also a remodeling membrane protein indispensable for the formation of CJs found in the IMM 

(194, 203). Other membrane proteins involved in membrane remodeling such as HIV g41 has 

shown the same transition phenomena from beta to an alpha helical conformation in the 

sample (240). This is consistent with our hypothesis regarding the conformational transition 

of the TM2 domain as Mic10 IMM modulator. 
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5. CONCLUSION  

The expression and purification of the Mic10 protein was successful, and initial NMR 

data have led to an improved understanding of the backbone structure and the implication of 

GxxxG motifs in this key protein involved in the CJ architecture. Consistent with predictions, 

the NMR chemical shift distribution of the amide protons suggests a helical or random coil 

structure. However, the full-length Mic10 protein construct in micelle solution showed a low 

helical propensity at the glycine region with only few glycine Cα chemical shifts slightly 

above the random-coil conformation indicating a likely helical conformation.  

Even though the NMR data has not led to a complete full-length Mic10 structure 

neither in detergent micelles nor lipid bilayers due to the sample stability and 

inhomogeneity,it was still possible to show for the first time on a residue specific basis that 

both transmembrane domains of Mic10 exhibit helical arrangement. Interestingly, only 

glycines of the TM1 domain showed Hα proton chemical shifts expected for a helical 

conformation in DPC micelles. Furthermore, the solid-state NMR spectra in lipid bilayers of 

the TM2 peptide showed that it adopts at least two different secondary structures as reported 

by the chemical shift index. These data suggest that the TM2 population can interconvert 

depending on temperature, as well as lipid composition. Only the alpha helical population 

remained visible in the NMR spectrum at high temperature, indicating an efficient protein 

incorporation into the membrane for this species, while it is unclear how the more extended 

conformation is arranged (either in, partly out of, or on the membrane).  

It would be interesting to see if addition of the components of the MICOS complex 

helps on the stabilization of Mic10 to conduct structural studies of the complex. Previous 

studies showed data depletion of Mic12 played a pivotal role in the complex integrity of 

Mic10 sub-complex or even the whole MICOS (241, 242). Thus, we think that co-

reconstituting Mic12 and Mic10 together might generate a stable and more homogeneous 

complex suitable for structural studies by ssNMR. 
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APPENDIX 
 Appendix 4.I. DNA and amino acid sequence of the proteins used in this thesis. 

 Mic10HIS:  
DNA sequence:  
5’atgtcgtactaccatcaccatcaccatcacgattacgatatcccaacgaccgaaaacctgtattttcagggcgccatggggatcctaat
gtccgaacaagcacaaacacaacaaccagcgaaaagcactccctccaaggattctaacaagaatggcagctccgtgtccacgatcct
cgacactaagtgggatattgtcctgtccaacatgctggtcaagactgccatgggttttggcgtgggtgtgttcacctcagtattattcttcaa
gcgccgtgcatttcctgtatggctaggcattggatttggtgttggaagaggctacgccgagggcgacgccatctttagatccagcgctg
gcctcagatcctcgaaggtttaggt-3’  
 
Protein sequence:  
MSYYHHHHHH DYDIPTTENL YFQGAMGILM SEQAQTQQPAKSTPSKDSNK 
NGSSVSTILD TKWDIVLSNM LVKTAMGFGV GVFTSVLFFK RRAFPVWLGI  
GFGVGRGYAE GDAIFRSSAG LRSSKV 

Theoretical molecular weight and isoelectric point (from ProtParam):  
 MM(Mic10His) = 13918.78 
 pI = 9.3 

- Mic10strep and Mic10∂’s:  
 Mic10strep:  
DNA sequence from genscript:  
5’atggcctctgaacaggctcagacccagcagccggctaaatctaccccgtctaaagactctaacaaaaacggttcttctgtttctaccat
cctggacaccaaatgggacatcgttctgtctaacatgctggttaaaaccgctatgggtttcggtgttggtgttttcacctctgttctgttcttca
aacgtcgtgctttcccggtttggctgggtatcggtttcggtgttggtcgtggttacgctgaaggtgacgctatcttccgttcttctgctggtct
gcgttcttctaaagttggttctggttcttggtctcacccgcagttcgaaaaataa-3’  
 
Protein sequence:  
MASEQAQTQQ PAKSTPSKDS NKNGSSVSTI LDTKWDIVLS NMLVKTAMGF 
GVGVFTSVLF FKRRAFPVWL GIGFGVGRGY AEGDAIFRSS AGLRSSKVAA 
AGSGSWSHPQ FEK 

Theoretical molecular weight and isoelectric point (from ProtParam):  
 MM(Mic10strep) = 12020.64 
 pI(Mic10strep) 10.09 
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 Mic10∂10:  
DNA sequence:  
5’atggccaaatctaccccgtctaaagactctaacaaaaacggttcttctgtttctaccatcctggacaccaaatgggacatcgttctgtct
aacatgctggttaaaaccgctatgggtttcggtgttggtgttttcacctctgttctgttcttcaaacgtcgtgctttcccggtttggctgggtat
cggtttcggtgttggtcgtggttacgctgaaggtgacgctatcttccgttcttctgctggtctgcgttcttctaaagttggttctggttcttggtc
tcacccgcagttcgaaaaataa-3’  
 
Protein sequence:  
MAKSTPSKDS NKNGSSVSTI LDTKWDIVLS NMLVKTAMGF GVGVFTSVLF 
FKRRAFPVWL GIGFGVGRGY AEGDAIFRSS AGLRSSKVGS GSWSHPQFEK 

Theoretical molecular weight and isoelectric point (from ProtParam):  
 MM(Mic10∂10) = 10738.30 
 pI(Mic10∂10) 10.28 

 
 Mic10∂20:  
DNA sequence:  
5’atggccaacggttcttctgtttctaccatcctggacaccaaatgggacatcgttctgtctaacatgctggttaaaaccgctatgggtttcg
gtgttggtgttttcacctctgttctgttcttcaaacgtcgtgctttcccggtttggctgggtatcggtttcggtgttggtcgtggttacgctgaa
ggtgacgctatcttccgttcttctgctggtctgcgttcttctaaagttggttctggttcttggtctcacccgcagttcgaaaaataa-3’  
 
Protein sequence:  
MANGSSVSTI LDTKWDIVLS NMLVKTAMGF GVGVFTSVLF FKRRAFPVWL 
GIGFGVGRGY AEGDAIFRSS AGLRSSKVGS GSWSHPQFEK 

Theoretical molecular weight and isoelectric point (from ProtParam):  
 MM(Mic10∂20) = 9665.13 
 pI(Mic10∂20) 10.27 
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Mic10∂30:  
DNA sequence:  
5’atggccaccaaatgggacatcgttctgtctaacatgctggttaaaaccgctatgggtttcggtgttggtgttttcacctctgttctgttcttc
aaacgtcgtgctttcccggtttggctgggtatcggtttcggtgttggtcgtggttacgctgaaggtgacgctatcttccgttcttctgctggtc
tgcgttcttctaaagttggttctggttcttggtctcacccgcagttcgaaaaataa-3’  
 
Protein sequence:  
MATKWDIVLS NMLVKTAMGF GVGVFTSVLF FKRRAFPVWL GIGFGVGRGY 
AEGDAIFRSS AGLRSSKVGS GSWSHPQFEK 

Theoretical molecular weight and isoelectric point (from ProtParam):  
 MM(Mic10∂30) = 8691.10 
 pI(Mic10∂30) 10.61 

Mic10∂40:  
DNA sequence:  
5’atggccctggttaaaaccgctatgggtttcggtgttggtgttttcacctctgttctgttcttcaaacgtcgtgctttcccggtttggctgggt
atcggtttcggtgttggtcgtggttacgctgaaggtgacgctatcttccgttcttctgctggtctgcgttcttctaaagttggttctggttcttgg
tctcacccgcagttcgaaaaataa-3’  
 
Protein sequence:  
MALVKTAMGF GVGVFTSVLF FKRRAFPVWL GIGFGVGRGY AEGDAIFRSS 
AGLRSSKVGS GSWSHPQFEK  

Theoretical molecular weight and isoelectric point:  
 MM(Mic10∂40) = 7502.69 
 pI(Mic10∂40) 11.00 
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Sequence alignment from CLUSTAL 2.1: 
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- MBPMicX:  
 MBPMic12:  
Mic12 DNA Sequence from genscript:  
5’atgagcaaactgggcccgctggcgcgtagcgtgaagtggaccctgagcgtgggtgtgattggtagcgtgttctacctgtatcgttac
agcaacaacggttatttttacgaccacgatgcgacctggctgaagcaggaccaccaggtgcaagacctggttgatcgtaaagaggtgg
ttccgggcgaaacccgtaaccgtaaactggtggttaccgacgatggtaccgcgtggagccgtaccatgggcgagagcatcaaagata
tttggaacgaacaaatccgtaacagcgtggattggatctatagctggggcaagaataagcttcatcatcatcatcatcactaa-3’  
 
MBPMic12 Protein sequence (pMALc4x plasmid):  
MKIEEGKLVI WINGDKGYNG LAEVGKKFEK DTGIKVTVEH PDKLEEKFPQ 
VAATGDGPDI IFWAHDRFGG YAQSGLLAEI TPDKAFQDKL YPFTWDAVRY 
NGKLIAYPIA VEALSLIYNK DLLPNPPKTW EEIPALDKEL KAKGKSALMF 
NLQEPYFTWP LIAADGGYAF KYENGKYDIK DVGVDNAGAK AGLTFLVDLI 
KNKHMNADTD YSIAEAAFNK GETAMTINGP WAWSNIDTSK VNYGVTVLPT 
F K G Q P S K P F V G V L S A G I N A A S P N K E L A K E F L E N Y L L T D E G 
LEAVNKDKPLGAVALKSYEE ELVKDPRIAA TMENAQKGEI MPNIPQMSAF 
WYAVRTAVIN AASGRQTVDE ALKDAQTNSS SNNNNNNNNN NLGIEGRISE 
FLVPRGSMSK LGPLARSVKW TLSVGVIGSV FYLYRYSNNG YFYDHDATWL 
KQDHQVQDLV DRKEVVPGET RNRKLVVTDD GTAWSRTMGE SIKDIWNEQI 
RNSVDWIYSW GKNKLHHHHH H 

Theoretical molecular weight and isoelectric point:  
 MM(MBPMic12) = 57030.36 
 pI(MBPMic12) 5.85 
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MBPMic13:  
Mic13 DNA sequence from genscript:  
5’atggtggcgcgtgtgtggagcctgatgcgtttcctgattaagggtagcgtggcgggtggtgcggtgtatctggtgtacgaccaggag
ctgctgggtccgagcgataagagccaggcggcgctgcaaaaagcgggcgaagtggttccgccggcgatgtaccagttcagccaata
tgtttgccagcaaaccggtctgcaaatcccgcaactgccggctccgccgaagatctactttccgattcgtgacagctggaacgcgggc
attatgaccgtgatgagcgcgctgagcgttgcgccgagcaaggcgcgtgagtatagcaaagagggttgggaatatgttaa-3'  
 
MBPMic13 Protein sequence (pMALc4x plasmid):  
MKIEEGKLVI WINGDKGYNG LAEVGKKFEK DTGIKVTVEH PDKLEEKFPQ 
VAATGDGPDI IFWAHDRFGG YAQSGLLAEI TPDKAFQDKL YPFTWDAVRY 
NGKLIAYPIA VEALSLIYNK DLLPNPPKTW EEIPALDKEL KAKGKSALMF 
NLQEPYFTWP LIAADGGYAF KYENGKYDIK DVGVDNAGAK AGLTFLVDLI 
KNKHMNADTD YSIAEAAFNK GETAMTINGP WAWSNIDTSK VNYGVTVLPT 
F K G Q P S K P F V G V L S A G I N A A S P N K E L A K E F L E N Y L L T D E G 
LEAVNKDKPLGAVALKSYEE ELVKDPRIAA TMENAQKGEI MPNIPQMSAF 
WYAVRTAVIN AASGRQTVDE ALKDAQTNSS SNNNNNNNNN NLGIEGRISE 
FLVPRGSMVA RVWSLMRFLI KGSVAGGAVY LVYDQELLGP SDKSQAALQK 
AGEVVPPAMY QFSQYVCQQT GLQIPQLPAP PKIYFPIRDS WNAGIMTVMS 
ALSVAPSKAR EYSKEGWEYV KARTKKLHHH HHH 
 
Theoretical molecular weight and isoelectric point:  
 MM(MBPMic13)  = 57729.71 
 pI(MBPMic13) 6.20  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Appendix 4.II.  
 
Table S4.1. Minimal media M9 composition (For 1 Litre of M9). 

Trace elements preparation: 

The chemicals were added from top to bottom up till (NH4)6Mo7O24 4H2O in 20 - 30 

ml of miliQ water. The solution was then kept stirring for 10 - 15 min before adding EDTA. 

After addition of EDTA the solution was filled up to 100 ml and keep stirring over night at 

room temperature. Before usage, the trace elements solution was filter sterile using a 0.35 µm 

filter and stored at room temperature. 

M9 salts (phosphate buffer): 

Autoclave H2O 756 ml

Trace elements 20 ml

Thiamine (20 mg/ml) 1 ml

Biotin (5 mg/ml) 3 ml

CaCl2 (2 M) 50 µl

MgSO42- (1 M) 2 ml

Glucose (non labelled or 13C) 
(20% stock)

4 g 
(20 ml)

NH4Cl or 15NH4Cl 
(250 mg/ml stock)

1 g 
(4 ml)

M9 salts (5X) 200 ml

Chemicals Mass in mg for 100 ml final solution 

FeSO4 7H2O 600

MnCl2 4H2O 115

CoCl2 6H2O 80

ZnSO4 7H2O 70

CuCl2 2H2O 30

H3BO3 2

(NH4)6Mo7O24 4H2O 25

EDTA 500

Chemicals Mass (g) for 1 litre

Na2HPO4 33.9

KH2PO4 15

NaCl 2.5
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M9 salts solution was prepared by adding the chemicals in 800 ml miliQ water. The pH was 
adjusted at 7.4, then the solution was fill up to 1 litter and autoclave.  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Appendix 4.III. 
 
Table S4.2. Mic10∂s PCR primers and the expected number fo amino acids colony PCR protocol tables. 
And,  
Table S4.3. PCR protocol used for insert amplification  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Appendix 4.IV.  
 
Table S4.4. Bacterial strains properties. 
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Appendix 4.V. Western blots obtained from the Mic10His test expressions.  
As explained in material and methods section (2.1.3 “Test Expression of the different constructs in minimal 
media"), four different strains of E. coli were tested: Lemo21(DE3) (A), C41, C43 (B) and BL21(DE3) (C), For 
all the strains a wide range of conditions varying induction time (time), temperature and concentrations of IPTG 
and rhamnose have been tested. The best conditions were found for BL21(DE3) and Lemo21(DE3) for an 
overnight (~16 hours) or six hours induction respectively. The WB were performed in Meinecke's laboratory 
with the assistance of Dr. Daryna Tarasenko.  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Appendix 4.VI. Mic10His 13C-HSQC spectra obtained for different detergents.  
Similar finger print 13C-HSQC spectra are obtained in the presence of DM (red) and SDS (bleu) indicating that 
the TM2 peptide adopts a similar conformation irrespectively of the detergent used. Both spectra were recorded 

at 400 MHz Bruker spectrometer at the 37ºC for SDS and 30ºC for DDM.  

149

6 4 2 0

60

10

50

40

30

20

1% SDS at 37°C
1% DM at 30°C

1H (ppm)

13
C
(p
pm
)



Appendix 4.VII. Comparison of (H)NH spectra of the non treated and trypsin treated Mic10His.  
Left panel compares (H)NH spectra using cross-polarization as magnetization mechanism transfer obtained for 
MicHis reconstituted in DPhPC (black), LDAO (brown) and trypsin treated Mic10His in DMPC (DMPC 
cleaved,  in green). The right panel shows the (H)NHj spectra of Mic10His in LDAO micelles (brown) and 
DMPC cleaved (green) recorded using INEPT based experiments. 
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Appendix 4.VIII. Identification of Mic10 after trypsin treatment by mass spectrometry.  
The band at ~12 kDa was cut and send for mass spectrometry analysis. The regions highlighted in yellow are the 
identified Mic10His regions from the mass spectrometry analysis. Only 29% of sequence coverage was found.  
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Appendix 4.IX. Purity and mass control of the TM2 peptide synthesis.  
A and B show the HPLC chromatogram of the TM2 domains (TM2GA) (A) and IGG (B) labeled. Panel C, 
shows the mass analysis of TM2GA labeled. The data was provided by Kerstin Overkamp. Based on the amino 
acid composition, label amino acids and caps added the theoretical molecular weight of the TM2GA is of 

~4019.6 g/mol. The obtained mass is of 4019.8 g/mol.  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Appendix 4.X. Helical secondary structure of TM2 domain is induced by the presence of detergents.  
The 1D NMR proton spectra were acquired for three TM2 samples, without detergents (A), in 2% SDS (B) and 
in 2% DPC (C) in 20 mM HEPES, 100 mM NaCl at pH 6.5. All spectra were recorded using a 400 MHz Bruker 
spectrometer with a three channel probe at 310 K using proton spectrum with watergate (zggpw5 pulse sequence 
from the Bruker catalogue). The spectra were recorded with 256 scans and with a recycle delay of 2 seconds. 

The insets show the CD spectrum of the TM2 in the same conditions as used for the NMR experiments.  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Appendix 4.XI. Alpha proton (left panel) and amide (right panel) chemical shift index of TM2 in DPC 
micelles.  
The red dashed lines indicate the threshold for establishing a conclusive interpretation regarding the adopted 
secondary structure. The threshold values were obtained from the CSIC web page (http://triton.iqfr.csic.es/guide/
eNMR/proteins/chempro2.html). The random coil chemical shifts where calculated using NCIP software. Our 
scale of Hα CSI does not reach values close to the threshold for Hα that is at -/+ 0.38 ppm. The threshold for 
amide protons (HN) is at - 0.19 ppm for the lower and + 0.29 ppm for the upper values with the lower CSI 

indicating an alpha structure and the upper a beta structure.  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Appendix 4.XII. Unambiguous NOE contacts extracted using CcpNmr. 
 
Table S4.5. Assignment table of TM2 13C,15N-GA labeled. 

Residue 
number

Amino acid Atom Residue 
number

Amino acid Atom

16 GLY  H      15 VAL  HA      

13 PHE  H      13 PHE  HA      

19 TYR  H      19 TYR  HA      

24 ALA  H      24 ALA  HA      

24 ALA  HA     25 ILE  H       

12 GLY  H      11 ILE  HA      

11 ILE  HA     11 ILE  H       

15 VAL  HA     15 VAL  H       

25 ILE  H      25 ILE  HA      

16 GLY  H      16 GLY  HA2     

16 GLY  HA2    17 ARG  H       

18 GLY  H      18 GLY  HA2     

19 TYR  H      18 GLY  HA2     

12 GLY  H      12 GLY  HA2     

12 GLY  H      12 GLY  HA3     

12 GLY  H      11 ILE  HB      

11 ILE  H      11 ILE  HB      

11 ILE  H      11 ILE  HG12    

11 ILE  H      11 ILE  HG13    

25 ILE  H      25 ILE  HG12    

12 GLY  H      11 ILE  HG2*    

11 ILE  H      11 ILE  HG2*    

25 ILE  H      25 ILE  HG2*    

25 ILE  H      25 ILE  HD1*    

18 GLY  H      17 ARG  HA      

23 ASP  H      23 ASP  HA      

12 GLY  H      15 VAL  HG1*    

13 PHE  HA     11 ILE  H       

16 GLY  H      15 VAL  HB      

11 ILE  H      11 ILE  HG13    

11 ILE  H      25 ILE  HG2*    

15 VAL  H      15 VAL  HG1*    

16 GLY  H      15 VAL  H       
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16 GLY  H      15 VAL  HG1*    

15 VAL  H      15 VAL  HB      
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Table S4.6. Assignment table of TM2 13C,15N- IGG labeled. 

Residue 
number

Amino acid Atom Residue 
number

Amino acid Atom

11 ILE  HN     24 ALA  QB      

11  ILE  HN    11  ILE  HG12   

13  PHE  HB2   13  PHE  QD     

19  TYR  HB2   13  PHE  QD     

19  TYR  QD    19  TYR  HA     

19  TYR  HB3   19  TYR  QD     

19  TYR  HB2   19  TYR  QD     

25  ILE  HG12  19  TYR  QD     

25  ILE  HG12  19  TYR  QD     

19  TYR  QD    25  ILE  QG2    

19  TYR  QD    15  VAL  QG1    

19  TYR  QD    15  VAL  QG1    

19  TYR  QD    15  VAL  QG1    

11  ILE  HG12  8  TRP  HE1    

8  TRP  HE3   8  TRP  HE1    

8  TRP  HE3   15  VAL  HB     

25  ILE  HG12  8  TRP  HE3    

8  TRP  HE3   15  VAL  QG1    

8  TRP  HE3   19  TYR  QD     

17  ARG  HB2   8  TRP  HE3    

8  TRP  HE3   17  ARG+  HG2    

24  ALA  QB    8  TRP  HE3    

13  PHE  HB2   13  PHE  QD     

19  TYR  HB2   13  PHE  QD     

11  ILE  HG12  13  PHE  QD     

13  PHE  QD    25  ILE  QD1    

19  TYR  QD    19  TYR  QE     
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Chapter 5 

Studies of M2 from influenza A in a membrane 
environment using proton detected solid-state NMR, 
DNP and DFT calculations 
 
1. Introduction 
1.1 Viruses - origin and socio-economic implications 

 Viruses are obligate parasites which, by definition, require a host for reproduction. For 

self-sufficient organisms, survival is ensured by a variety of proteins that play an essential 

role in maintenance of cell homeostasis and cellular division. On the other hand, intracellular 

parasitic entities, like viruses, do not have the necessary machinery to provide these 

mechanisms and therefore rely on host cell factors to perform essential processes such as 

transcription, translation or even cell division within a host (243).  

 Viruses have played an important role throughout human history in a wide range of 

aspects such as health, evolution and economy. The various viral epidemics encountered in 

the history of mankind have claimed millions of lives, putting viruses at the forefront of 

research. In modern times, the 1918 pandemic caused by Influenza virus was declared and 

caused an estimated 50 million deaths worldwide (244). This pandemic was followed by 

several others caused by the same virus but from a different strain (Influenza A) in 1957 and 

1968 in China and Hong Kong, respectively (245). In recent decades, other viruses such as 

HIV, measles, SARS, MERS and others have threatened human health (246, 247). Viral 

threats to humankind have continued until today, with SARS-CoV2, declared pandemic by the 

World Health Organization (WHO) in March 2020. So far, at the time of writing, SARS -

CoV2 has infected more than 50 million people and caused more than one million deaths 

worldwide.  

 Technological advancements of the last century in high-resolution techniques, allow 

us to study the relationship between structure and function. Despite progress in recent years, 

much remains to be learned to combat viruses effectively. Indeed, viruses are rapidly evolving 

entities, thus, serious viral infection is a near certainty in the future, unless resources are 
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devoted towards various strategies to control emerging strains. A clear example of the 

evolution of viruses and their constant threat is from the Influenza A virus, commonly known 

as "the flu". The flu has remained among us and is the cause of an annual seasonal epidemic 

which causes hundreds of thousands of deaths worldwide per year (245). The uncertainty of 

newly emerging strains with high lethality rates is difficult to predict accurately but will 

certainly occur. Thus, it is important to advance our understanding of these systems in the 

upcoming years to allow faster and more effective prediction, detection and treatment of viral 

diseases. 

 The scientific interest regarding virus - human symbiosis has been extended beyond 

the simplistic view of a pathogen - host interaction. In fact, the understanding and 

manipulation of the genetic material over the last century has provided a large set of tools 

which now enables using viruses as treatment in human diseases in so called gene editing 

(248). Viruses are used as vectors to transport the modified genetic material into the target cell 

(249). Many different types of viruses have been used to target different human diseases 

(250). 

1.2 Viral diseases and their treatments   
  

 Nowadays, there is a clear and established relationship between virus infection and a 

wide range of human diseases from a mild cold to cancer or even neuropathological diseases 

(251-253). One of the most common infections related to cancer development is the hepatitis 

virus that causes liver inflammation and in ~ 80% of cases leads to a hepatocellular carcinoma 

with an elevated mortality rate of more than 80% within 5 years after diagnosis (254). 

Similarly, in more than 90% of the diagnosed cervical cancer cases there is a direct link to 

papillomavirus infection (253). Others such as Alphaviruses, transmitted by a mosquito bite, 

can lead to lethal encephalitis (255, 256). These burdens caused by viruses in human health 

implies that there is a major challenge today to find new treatments to prevent and treat viral 

infections.  

 

 In the past, there have been many ways to treat viral infection, but an even more 

successful public health measure has been to prevent infection with vaccination. Despite the 

success of vaccination, it takes time to develop efficient vaccines. And, over time, mutations 

on the viral genome can lead vaccine resistant strains. 
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 Advanced methods have been successfully applied to treat and prevent viral infections 

such as potent specific small molecules for anti-viral treatment as well as more efficient 

vaccines including a wide range of epitope recognition (257, 258). High resolution molecular 

structure determination techniques have enabled the study of protein-drug interactions, 

opening new avenues for rational drug design (259). Molecular docking (259) is currently one 

of the methods used to develop small molecules targeting specific proteins involved in the 

viral life cycle. In the past decades, antiviral drugs such as adamantane derivates and 

oseltamivir against Influenza have been developed and are available on the market (260). 

1.3 Evolution and classification of viruses 
 

 Although there are efficient treatments for many viral infections, the threat from viral 

infection is not yet abolished (and may never be) due to the many viral strains circulating in 

humans and animals. Viruses evolve extremely fast by mostly two mechanisms; (i) the 

reassortment mechanism or antigenic drift (261) and (ii) mutations or antigenic shift (262). 

This leads to resistance towards established antiviral treatments. Antigenic drift happens by 

the concomitant infection by distinct viruses at the same organism (Fig. 5.1.1A). The two 

types of viruses can exchange genetic material and their genomic recombination leads to a 

new viral strain with new capacities for cross-species transmissibility, lethality and resistance 

to available drugs (261, 263). Another mechanism for evolution is frequent mutations 

occurring by error prone replication (Fig. 5.1.1B). Viral genetic material is replicated by DNA 

or RNA polymerases which have a variable fidelity depending on the virus (264). As shown 

by several studies, viruses cause a wide number of diseases not only in humans but in all 

living organisms. Therefore, there is an urgent need to understand and characterize non-

variable regions to develop efficient treatments, which will help control virus infections, and 

in some cases may even lead to eradication. 
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Figure 5.1.1. Mechanisms leading to antiviral resistance.  
A shows the antigenic drift or reassortment, which is the recombination of the genetic material between two 
distinct strains of the same virus when a co-viral infection occurs, ultimately leading to a new strain of the virus. 
B shows the antigenic shift or mutation occurring in the genetic material of viruses during transcription. 
 

 Currently, many different classes of viruses have been catalogued. A viral 

classification has been established as a function of the different viral properties, commonly, a 

classification based on the genetic material, replication and phenotype of the virus (265). 

There are two main classes of viruses regarding the genetic material. On the one hand, DNA 

viruses where the genetic information is carried by a DNA molecule, and on the other hand, 

RNA viruses in which the genetic material is an RNA molecule. Within these two categories, 

the two groups can be subdivided into several sub-categories, e.g. viruses with double or 

single-stranded DNA or RNA molecules (266). In addition, viruses do not have their own 

protein machinery to carry out autonomous metabolism, requiring the host-cell machinery for 

transcription and translation of viral genetic material for producing new virions to infect other 

cells. The genetic material of the virus will partly determine how viruses use the host cell 

machinery as well as where and how the genetic material of the virus will be replicated to 

finally form new virions. 
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1.4 Influenza virus  
 1.4.1 Influenza: Origin, genome and proteome 

 Influenza A is a fast evolving virus that leads to a yearly seasonal epidemic and anti-

viral resistance, incurring the need of a yearly vaccination against the flu. The flu is a well 

characterized viral infection that in some cases results in acute respiratory complications 

leading to pneumonia and causing thousands of deaths per year. Influenza is part of the 

Orthomyxoviridae family. Four distinct classes, A to D, of influenza viruses have been 

reported to date. Unlike other RNA viruses, influenza is a membrane coated virus whose 

genetic material is transported into the nucleus of the host cell for transcription (267). 

Influenza’s genome is a negative segmented single-stranded RNA that code for at least eleven 

viral proteins. Its genome is composed of eight fragments, in strains A and B, or seven 

fragments, in strain C and D (268).  

 From the eleven viral proteins encoded by the RNA viral genome, three are membrane 

proteins (Fig. 5.1.2B, viral membrane) and eight are soluble proteins (Fig. 5.1.2B, viral 

interior). Within the membrane proteins, two are glycoproteins, hemagglutinin (HA) (269) 

and neuraminidase (NA) involved in membrane viral-host interaction (270) and in virion 

release. The third is the matrix 2 (M2) protein which is the less abundant protein in the 

membrane. M2 is required in later steps of the viral life-cycle during endosome-viral 

membrane fusion as well as for viral RNA release (271). Although these three proteins are the 

only membrane proteins encoded by the viral genome, studies by mass spectrometry have 

found several host membrane bound proteins such as CD9 and CD59 from the Tetraspanins 

family in the viral membranes indicting that the viral membrane has indeed a more complex 

composition (272). The soluble proteins are M1, PA, PB1, PB2, PB2-F2, NP,  NS1 and NS2 

(Fig. 5.1.2B).  

 Among the different classes of influenza, different strains have been reported and 

classified according to the subtypes of the HA and NA present in the membrane. To date, 

eighteen variants of HA (H1 to H18) and eleven variants of NA (N1 to N11) have been 

observed for influenza A in circulation. The subtype of HA and NA gives the name to the viral 

strain like for example the H1N1 which is the name designated for the first pandemic in 1918, 

known as the "Spanish flu". 
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Figure 5.1.2. Schematic view of Influenza A virus 
structure and protein content.  
A, pictures the architecture of the influenza virus. 
The virus is coated by a lipid membrane bilayer with 
three viral membrane proteins (HA, NA and M2). 
The viral interior contains eight RNA molecules 
together with the proteins comprised in the RNA-
dependent RNA polymerase complex (PA, PB1 and 
PB2). In B, the different RNA strands with the 
transcription products are represented including the 
molecular size of the proteins encoded by the 
different genes. 

 

 1.4.2 Mechanism of Influenza infection and treatments 

 Mechanism of influenza A infection can be divided in five steps mainly i) attachment, 

ii) membrane fusion/genetic material release, which can happen concomitantly or at different 

times/location during the infection, iii) replication iv) assembly and v) detachment (Fig. 

5.1.3). The attachment to the host cell, is driven by the HA membrane protein. HA is a 

~ 63kDa protein that recognizes sialic acid moieties present on the surface of the host cell 

linked to glycan moieties (273, 274). The distinct forms of HA, from different influenza 

variants, will recognize specific sialic acid moieties which determines the species as well as 

the cells used by the virus for infection. In humans, the cells in the upper respiratory tract 

have predominantly sialic acid linked to a galactose by an α-2,6 linkage which are recognized 

by H1, H2 and H5. Whereas in birds sialic acid is linked to galactose via α-2,3 bond which is 

recognized with higher specificity by other HA variants, explaining the species specificity 

(275).  

 After attachment, the virus enters the cell via receptor mediated endocytosis 

mechanism (276). Later, during endosome maturation, a decrease in the endosomal pH below 

5 activates M2 (277). The activated M2 conducts protons from the endosome to the viral 

interior. This leads to conformational changes of HA resulting in viral - endosome membrane 

fusion (271). Concomitantly, the acidic interior triggers viral uncoating and viral RNA release 
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into the cytoplasm of the host cell (278). In the cytoplasmic compartments, the viral RNA is 

coated by the nucleocapsid protein (NP) which contains a nuclear localization signal. This is 

used to transport the viral RNA into the nucleus of the host cell (279).  

 Once viral RNA reaches the nucleus, the negative RNA strands have to be transcribed 

into double stranded RNA molecules to ensure replication. Both transcription and replication 

are performed by the RNA-dependent RNA polymerase complex formed by PA, PB1 and PB2 

proteins. For transcription to occur, a complementary sequence has to be available in order to 

start transcription of the RNA from 3’ to 5’. This is ensured by a specific mechanism known 

as cap-snatching where the pre-mRNA of the host cell is sequestered by the RNP complex 

which cleaves the 5’ and uses it as a primer for initiating the transcription of viral mRNA 

(280). Maturation of RNA molecules is indispensable for the export, stability and synthesis of 

RNAs. Like the host RNA, viral RNA is 5´ methylated and has a 3´polyA tail. Thus, the viral 

RNA follows the same pathways as the human mRNA for transcription. 

 The membrane proteins HA, NA and M2 are translated and folded in the endoplasmic 

reticulum and are exported to the membrane via the Golgi (281, 282). Interestingly, M2 

proton conduction plays a crucial role maintaining high pH values in the Golgi compartment 

avoiding premature maturation of HA (283). The soluble proteins M1, NEP, PBs and PA are 

translated in the cytoplasm and then re-localized into the nucleus where they form viral RNP 

complexes (vRNP) with the newly transcribed viral RNA (284). Once formed, the vRNPs are 

exported to the cytoplasm. Using the cytoskeleton of the host cells (microtubules), the vRNPs 

reach the membrane and form the new virions (275). 

 Finally, at the apical cell position the vRNP are assembled to the membrane proteins 

and budding formation is driven by matrix proteins 1 and 2 (275). Mutation studies have 

shown that M1 and the C-terminal domain of M2 are indispensable for the budding formation. 

After budding, virion release is permitted by the cleavage of sialic acid by NA (285). Even 

though the overall process of viral infection and replication is globally well understood there 

are still many open questions regarding the import and export of the viral RNA as well as the 

final assembly of competent virions. 
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Figure 5.1.3. Influenza A life-cycle.  
Influenza A infection occurs mainly in five steps: i) attachment, which depends on the host-virus recognition via 
specific receptor; ii) endocytosis and vRNA release, where the virus enters the host cell through a receptor 
mediated endosome pathway. During endosmal maturation, the activation of M2 triggers viral interior 
acidification followed by viral uncoating and vRNA release; iii) Replication, transcription and translation; iv) 
Assembly. In this step the vRNA and viral proteins are assembled to form the newl and competent virions. 
Finally, v) Detachment is the steps of virion release. 

 Specific treatment of viral diseases requires a complete understanding of the viral life 

cycle on a biological and molecular level basis. Understanding the role of each protein at each 

time point during viral infection will contribute to a more efficient viral treatment. As 

previously mentioned, membrane coated viruses such as influenza have a complex membrane 

that includes specific viral membrane proteins which might play important roles during the 

viral life cycle. During the last century, drugs targeting neuraminidases such as Oseltamivir 

and Zanamivir have been used, along with the M2 channel blockers amantadine and 

rimantadine. However, some of the drugs for the M2 protein are no longer in use due to 

resistant M2 variants (286). 

 1.4.3 The proton channel of influenza A: Matrix 2 (M2) protein 

 The matrix protein 2 (M2) from influenza is a 97 residue protein that forms 

homotetramers in the viral membrane (287). It comprises four domains, a soluble N-terminal 

domain from residue 1 to 21, a transmembrane domain from 22 to 46, an amphipathic helical 

domain from 47 to 60 and a non-structured C-terminal domain from residue 61 to 97. Earlier 
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electrophysiological studies in oocytes have shown that M2 is a proton channel that is 

activated under acidic conditions (271, 288, 289). The acidification of the viral interior is a 

key step in the viral life cycle responsible for inducing membrane fusion and viral RNA 

(vRNA) release (271). Deletion as well as mutagenesis studies targeting the amphipathic helix 

and the C-terminal domain (C-terminus of the protein from residue 46 to 97) have shown the 

implication of M2 in budding and in the packing of vRNA. (290, 291).  

 Earlier mutagenesis work, by Pinto and co-workers, mutating histidine 37 (H37) to 

glycine, showed that H37 controls the pH-proton conduction activity of M2 (292). Further 

mutation and rescue studies targeting the core residue H37 have shown that H37 is the key 

residue imparting proton selectivity to the M2 channel (293). Titration studies of H37 

sidechain have been performed and have reported distinct histidine pKa values depending on 

of the length of the constructs and the lipid environments used (294, 295). Although varied 

pKa values have been reported, all studies agreed that the +3 histidine charge state triggers 

channel activation (pKa ~5) (294, 296). There is also agreement in the literature that the 

protein arranges as a homotetramer in lipid bilayers, with a single pass TM helix. The protein 

arrangement is supported by a large amount of high resolution structural data obtained by X-

ray and NMR for the different constructs studied. Although there is a vast structural data 

available, there are still many controversies regarding H37 sidechain rearrangement at 

different pHs, drug binding and the proton conduction mechanism.  

 1.4.3.1 Role of the HxxxW motif in proton conduction 

 In M2, the HxxxW motif located at the C-teminus of the transmembrane domain is 

conserved among the different strains. Mutation of residue H37 causes both loss of proton 

conduction by pH-dependent activation and proton selectivity (292). Additionally, it has been 

observed that the mutation at H37 compromises the stability of the tetrameric structure (297). 

While WT M2 conducts protons primarily from outward to inward of the virus, W41F and 

W41A mutants exhibited bi-directional conduction, providing evidence that W41 is the 

primary proton gate (298). A great deal of effort has been invested in studies aimed at 

understanding the details of the proton conduction mechanism of the M2 protein.  

 The combination of molecular dynamics simulations (MD) with high resolution 

structure and dynamics data propose two main proton conduction mechanisms. The MAS-

NMR dynamics data showed a rapid reorientation of the H37 sidechain suggesting a shuttle 
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mechanism (294, 299). However, X-ray structures, in combination with MD simulations 

suggest a water wire mechanism where protons diffuse through the pool of pore water 

molecules process known as the Grothuss mechanism (300). It is now established that the 

proton conduction through the M2 protein occurs via two successive mechanisms. First, a 

water wire mechanism up until reaching the H37 residue and secondly a shuttling mechanism 

happening by the reorientation of the H37 (294, 301). 

 In addition to the HxxxW motif as regulator for proton selectivity, conduction and 

gating, residue V27 located at N-terminal of the transmembrane domain has been suggested to 

act as the secondary gate to enter the pore of M2. Molecular dynamics simulations have 

shown that the sidechain of residue V27 affects the hydrogen bonded water molecules 

disrupting the “water wire” which regulates the proton conduction (302). 

 1.4.3.2 Structural differences in the M2 tetrad 

 Based on atomic resolution structures deposited into the PDB, differences are 

observed with respect to helix tilt, the kink at G34, and the side-chain arrangement of His37.  

 Earlier studies using solid-state NMR in oriented samples reported different M2 

transmembrane helix tilt angles within the membrane ranging from 20 to 40º depending on 

the sample condition (303, 304). Oriented sample experiments provide direct access to the 

orientation of the 15N-1H bond with respect to the lipid bilayer and the magnetic field (305). 

Later, Timothy A. Cross and co-workers, use the same approach to show that in the presence 

of drug (amantadine) the transmembrane domain of M2 shows a kink near to residue G34 

(306) . 

 Although oriented samples gives valuable information regarding the protein secondary 

conformation and its relative orientation with respect to the membrane there is a lack of 

information regarding side-chains and tertiary or even quaternary structure that may occur. 

M2 is found with fourfold symmetry in solution and solid-state NMR as well as in X-ray and 

XFEL crystal structures at high and low pH values in the presence (Fig. 5.1.4A and B) or 

absence of drug (Fig. 5.1.4D and E). Interestingly, the smallest functional construct including 

only the transmembrane domain residues of M2 (mainly residue 22 to 46), is trapped at 

different states: “inwardclosed” and “inwardopen” (300, 307). For the inwardclosed state, the C-

terminus of the transmembrane helix is relatively closely packed with the opposite helices, 
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with a diagonal distance of ~17 Å  (R45-Cβ to R45Cβ) (Fig. 5.1.4B and F). In contrast, for 

the inwardopen, the C-terminus is widely open with a distance of ~27 Å to the opposite helices 

(Fig. 5.1.4A and F). Interestingly, structural data in lipid cubic phase at room temperature in 

the “inwardopen” state shows in both, high and low pH, an intermediate diagonal distance of 

~23 Å (Fig. 5.1.4D and E). In both states, the N-terminus show a similar opening of the 

transmembrane helix with an average distance of ~8 Å from opposite helices. The different 

states (“inwardclosed” and “inwardopen”) are in equilibrium and have been related to the sample 

preparation conditions including pH, which varies the protonation state of H37, drug binding 

and even lipid composition (304, 308). Indeed, at low pH (pH < 5), the histidine is positively 

charged (+3 to +4), thus electrostatic repulsion takes place leading to an opening of the C-

terminus of the transmembrane domain.  

 Until very recently, high resolution structural data from solid and solution NMR has 

only been reported at high pH leading to similar structures as the inwardclosed state with the 

transmembrane helices closely packed (~20Å form 45R-Cβ-A to 45R-Cβ-D, see figure 

5.1.4E) (22, 23, 309). Recently, a study combining solution NMR and X-ray crystallography 

has used different detergents to stabilize M2 in different states (310).  

 Interestingly, the crystallographic data in both high and low pH show that H37 

sidechains are facing the ring of the neighboring H37 forming the so-called “box 

conformation” (307, 311) (Fig. 5.1.4A, B, D and E, black boxes). In this conformation, water 

molecules have been proposed to bridge between the neighboring histidine sidechains. 

Similarly structure has been proposed by ssNMR data using a similar M2 construct 

reconstituted in viral membranes that shows a Hδ1Ν of H37 proton chemical shifts just above 

10 ppm (22).  

 On the other hand, using a longer construct referred to as the conductance domain (CD 

from residue 22 to 60), Cross and co-workers found an unexpected low field proton chemical 

shift in DOPC membranes for the Hδ1Ν above 15 ppm using 15N based solid-state NMR 

measurement. This extreme low field proton chemical shifts in proteins have been previously 

reported for protons involved in hydrogen bonds suggesting the presence of a low barrier 

hydrogen bond at the histidine sidechain protons (312) (Fig. 5.1.4C, black box). The inter 

imidazole-imidazole hydrogen bond opposes the C4 symmetry shown by the crystallographic 

data. Therefore, a dimer of dimer structure (C2 symmetry) with parallel histidine - histidine 
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arrangement was proposed (Fig. 5.1.4C) (312). Other solid-state NMR studies using the same 

construct but different lipid bilayers showed similar H37δ1 proton chemical shifts in wild 

type as well as in the S31N mutants (313). Further evidences were provided in 2015, with the 

first proton detected solid-state NMR structure of the resistant M2 S31N (309). In this work 

Andreas et al. assigned two sets of peaks to the M2 polypeptide chain indicating that M2 has 

a two fold symmetry rather than a four fold symmetry forming what is referred to as “dimer 

of dimers” in DPhPC membranes (309). 

Figure 5.1.4. Comparison of M2 structures and H37 sidechain arrangements.  
Both A and B show crystal structures in lipid cubic phase of M2 bound to rimantadine at low pH (gray, pdb: 
6BOC) and high pH (blue, pdb: 6BKL). In C, the solid-state NMR structure using the CD construct (pdb: 2L0J) 
is shown. D and E shows the XFEL structures at room temperature of the apo M2 at high (green, pdb: 5TTC) 
and low (red, pdf: 5JOO) pH, both in the “Inwardopen”. Black boxes in A, B, C, D and E show histidine 37 
sidechain arrangement in the different conditions. In F, both structures at high “Inwardclosed“ and low 
“Inwardopen” pH are compared showing the different states and the opening of the helices at the C-terminus at 
low pH. G shows the comparison between the X-ray and ssNMR structures showing the similar transmembrane 
arrangement for the ssNMR and the “Inwardclosed“ state. H, shows the comparison of the apo M2 structures from 
ssNMR (orange) and the room temperature XFEL structures at high (green) and low (red) pH. In the represented 
structures (A to E, F, G and H) the front helix of the tetramer has been removed using chimera to show the 
sidechain residues His37 and Trp41 that face the pore of M2 as well as the water molecules that are located in 

the pore of M2.  

 4.2.3 Insights regarding drug binding  

 In the past, amantadine drugs (289, 314) and derivates have been successfully used to 

block M2 proton conduction. However, the fast mutation of influenza A viruses as well as 
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natural variation in existing strains has led to resistance to the amantadine derivates (315, 

316). The binding site of amantadine was first reported by solution NMR data in the presence 

of 1,2-diheptanoyl-sn-glycero-3-phosphocholine detergent (DHPC). It showed the presence of 

four external binding sites for amantadine near R45 at the amphipathic helix (23). Based on 

the NMR chemical shifts, it was suggested that amantadine has an allosteric mechanism 

blocking proton conduction by prohibiting pore opening. However, the lack of drug resistance 

while mutating the residues at the amphipathic helix including R45 contradicted the proposed 

amantadine inhibitory mechanism.  

 Later, X-ray crystallography and solid-state NMR in lipid bilayers showed that 

amantadine and derivates are bound to the pore of M2 blocking proton conduction (22, 317). 

Nonetheless, the studies performed in membrane environments with ssNMR by Hong and co-

workers showed evidence of an external binding site in large excess of drug concentration (4 

to 1 excess of drug respect to the tetramer) (22). Similar to Hong’s group findings, the 

external binding site was observed in DPhPC membranes using DNP (318). The difference of 

binding between the solution and solids data performed in lipid bilayers suggests that there is 

a clear influence of the environments for drug binding in M2. Further studies showed that the 

presence of cholesterol as well as the length of the construct influence the binding properties 

of the protein (318, 319).  

 Nowadays, all available structural data has served as an input for docking studies that 

have led to potential new drugs via rational drug development (320, 321). Despite having vast 

data regarding the structural features of M2 (22, 300, 309, 317), many open questions remain 

concerning molecular details which could heavily influence the development of new drug 

candidates. Why does the pore binding not occur in the presence of DHPC detergent? What is 

the conformation of the histidine sidechain in lipid bilayers at different pHs for the 

conductance domain? Is lipid composition more important than the construct length in 

perturbing the M2 conformational arrangement? 
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Goals: 

This chapter is focused on revealing atomic details of the membrane protein M2, which is 

naturally found in influenza A. Herein, a combination of biophysical and computational 

methods were used to shed light on several remaining questions regarding the structure and 

drug interactions of M2 in a membrane lipid environment. To begin with we address the 

question regarding the conformational arrangement of the histidine sidechain using proton 

detected solid-state NMR at 100 kHz MAS (part 5.3) Using the same methodology, aim for 

solving the structure of the conductance domain of a fully protonated M2 construct (M2CD 

comprising residue 18 to 60) in lipid bilayers (DPhPC) (part 5.4). With the final goal to obtain 

full assignment of the residues H37 and W41. To continue, the de novo protein assignment of 

the fully protonated protein was used to investigate the binding kinetics of rmt to the M2 

conductance domain by temperature controlled NMR measurements (part 5.5). Finally, we 

investigate the pore water cluster using the combination of low temperature measurements in 

solid-state NMR and dynamic nuclear polarization as well as NMR  chemical shift calculation 

by density functional theory (DFT) (part 5.6). 

This chapter has been written as a cumulative thesis format. Hence, parts of this chapter have 

been adapted from manuscripts that are published, in preparation or submitted.  

The citations are as follows:  

Part 5.3. Imidazole–Imidazole Hydrogen Bonding in the pH-Sensing Histidine Sidechains of 

Influenza A M2 (Kumar Tekwani Movellan, Melanie Wegstroth, Kerstin Overkamp, Andrei 

Leonov, Stefan Becker, and Loren B. Andreas*)  

https://doi.org/10.1021/jacs.9b10984  

Part 5.4. De novo structure of a fully protonated M2 in DPhPC lipids bilayers  

Part 5.5. Characterization of the non specific rimantadine binding (to be submitted)  

Part 5.6. Identification of the pore water in M2 by ssNMR (to be submitted) 
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2. Materials and Methods 
  

 Here, we used the conductance domain (CD) of M2 Udorn from influenza A which is 

composed of 43 residues of the original sequence from residue 18 to 60. Cysteines 19 and 50 

from the original sequence have been replaced by serine, as in previous studies resulting in:  

RS20NDSSDPLVVAA30SIIGILHLI40LWILDRLFFKS50IYRFFEHGL60K. The M2CD contains 

two domains, the transmembrane domain (TM) of 19 residues from residue 25 to 43 and an 

amphipathic helix at the C-terminus from residue 44 to 60. The vector containing the wild 

type M2CD sequence used in this work was kindly provided by Prof. Dr. James Chou Harvard 

Medical School (23). The expression, purification and reconstitution protocols used were 

previously reported (322) and they are briefly detailed below.  

2.1 Expression and purification 

 M2CD sequence expression was carried in E. coli BL21(DE3) strain using a double 

tagged sequence with a His (9x) and TrpLE fusion tags at the N-terminal of the amino acid 

sequence. Protein expression was conducted in minimal media with 13C-glucose and 14N-

NH4Cl supplemented with centrum vitamins (309). The expression was induced once 

OD600nm reaches 0.75 with 150 µM of isopropyl-β-D-1-thiogalactopyranoside (IPTG) at 37ºC. 

After ~16 hours, the cells were harvested and resuspended in 50 mM Tris Buffer with 

150 mM NaCl at pH 7.8 before rupturing them with the the emulsiflex at 1000 psi 3 times. 

The protein was purified using denaturing conditions from from inclusion bodies. After 

washing 3 times the inclusion bodies, the pellet was solubilised in a 6 M guanidinium buffer 

solution. Solubilised inclusion bodies were loaded on a nickel affinity column (Ni-NTA) and 

eluted with 400 mM imidazole at pH 6.8. The elution fractions were collected and pooled 

together before inducing protein precipitation by dialysis against water. The precipitant was 

suspended in 70 percent formic acid and TrpLE was cleaved with an excess of cyanide 

bromide and lyophilised. Finally, the sample was resuspended in hexafluoro isopropanol: 

formic acid: water (2:1:1) and passed through a C4 reverse phase HPLC column using a linear 

gradient elution from 5% 2-propanol to acetonitrile/2-propanol/water (58:37:5).  

2.2 Refolding and reconstitution  
 The pure protein was then solubilized and refolded in 40 mM phosphate, 30 mM 

glutamate, 0.03% sodium azide at pH 7.8 containing 2% octyl-ß-glucoside (OG from Sigma). 
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The reconstitution was performed in either protonated or deuterated DPhPC (95% d78-

phytanoyl 50% d at the alpha position, methyl-d9-choline; from fbreagents). Deuterated 

DPhPC was dissolved in water/OG solution and mixed with the refolded protein in a 1 to 1 by 

weight. OG was removed by dialysis against a free detergent buffer (40 mM phosphate, 

30 mM glutamate, 0.02% sodium azide at pH 7.8). The dialysis was carried out for at least 

one week with successive changes of buffer until a white precipitated appeared. 

2.3 Drug binding assays  

 Two protocols for binding were tested: one where the content of a packed 1.3 mm 

rotor (containing ~1 mg of protein) was taken up in a 300 µl solution containing 40 mM 

rimantadine (rmt). The incubation was performed for several days to weeks at 4ºC. The 

second binding method tested was the addition of rmt powder into the rotor, as previously 

reported (313). For the direct powder addition, 0.2 mg of rmt were packed in a 1.3 mm rotor, 

and ~0.5 to 1 mg of M2 was added. The incubation temperature was kept  between ~4 to 

10ºC.  

2.4 Re-Solubilization of membrane inserted M2 in DHPC 
 Two distinct M2 samples were re-solubilized in 300 mM 1,2-diheptanoyl-sn-

glycero-3-phosphocholine (DHPC), an unbound M2 and a 40 mM rmt pore bound M2. Rmt 

binding was tracked by ssNMR to ensure pore binding before re-solubilization in 300 mM 

DHPC detergents in 40 mM phosphate, 30 mM glutamate and 0.04% sodium azide at pH 7.8. 

Insoluble material from both samples were pelleted using a top bench centrifuge at 4ºC for 15 

min, then the solution was filled into a 3 mm NMR tube with 10% D2O. 

2.5 Solution NMR, solid-state NMR and DNP  
 2.5.1 Solution NMR 

 15N-HSQC trosy based spectra were recorded for both re-solubilized M2 samples (apo 

and rmt bound) in a 600 MHz Bruker spectrometer equipped with a 5 mm four channel cryo-

probe. In both cases the temperature was set to 312 K. The indirect 15N dimension was 

recorded up to 61 ms (180 points) with a spectral width of 35 ppm and the direct 1H 

dimension was sampled up to 131 ms (2K points) using 13 ppm spectral width. 32 scans and 

128 scans were used for either drug free or bound sample, respectively. Both spectra were 

processed using apodization with a squared cosine bell function in both dimensions with 512 
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and 170 points on the proton and nitrogen dimensions, respectively. Both dimensions were 

zero filled with 4 k points in proton and 1 k points in nitrogen.  

 2.5.2 Solid-state NMR (ssNMR) 

 Solid-state NMR spectra were recorded in three different Bruker spectrometers, at 

800, 850 and 950 MHz. Both 800 an 850 MHz instruments were equipped with a 1.3 mm 

MAS probes either a narrow board 3 channel or a 4 channel wide bore probe, respectively. 

The 950 MHz spectrometer was equipped with a 4 channel 0.7 mm MAS Bruker probe. The 

table bellow lists detailed acquisition parameters for all the spectra recorded including 

temperature, spectral width, number of points, number of scans and sample.  

Table 5.2.1. Solid-state NMR experiments and parameters. 

Experiment (H)NH (H)NH (H)NH (H)CH hNH in hNH water

Transfer 1 HN-CP HN-CP HN-CP HC-CP HN-CP HN-CP

Max RF Field (kHz)
(Ramp in H)

149/20
(100 to  80)

149/20
(100 to  80)

149/20
(100 to  80)

139/29
(100 to  80)

149/20
(100 to  80)

142/30
(100 to  80)

Time (ms)* 1 3 6 1.2 1.25 4

Transfer 2 NH-CP NH-CP NH-CP CH-CP N - N inept NH-CP

Max RF Field (kHz)
(Ramp in H)

30/137
(80 to 100)

30/137
(80 to 100)

30/137
(80 to 100)

29/127
(80 to 100)

- 30/140
(80 to 100)

Time (ms)* 0.5 3 6 0.35 Different times 
used

4

Transfer 3 - - - - NH-CP HN-CP
HC -CP

Max RF Field (kHz)
(Ramp in H)

- - - - 30/140
(80 to 100)

140/30 (HN)
140/33 (HC)
(80 to 100)

Time (ms)* - - - - 0.5 0.5 (HN)
0.2 (HC)

sw (t1) (ppm) 52 300 300 30 500 500

Acq.time (t1) (ms) 40 18 18 36 5 5

sw (t2) (ppm) 52 52 52 30 52 52

Acq.time (t2) (ms) 40 41 41 36 41 41

1H decoupling sltppm sltppm sltppm sltppm sltppm sltppm

Field (kHz) 22 22 22 22 22 22

Interscan delay (s) 1.1 1.1 1.1 1.1 1.1 1.1

Number of scans 4 40 96 4 - -

Measurement time 
(h)

1.25 14 34 1.25 - -
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Experiment (H)CaNH (HCo)Ca(Co
)NH

(H)CoNH (H)Co(Ca)NH (HCa)Cb(CaCo
)NH

Transfer 1 HC-CP HC-CP HC-CP HC-CP HC-CP

Max RF Field (kHz)
(Ramp in H)

132/29
(100 to  80)

131/29
(100 to 80)

121/22 121/22
(85 to 100)

119/22
(85 to 100)

Time (ms)* 1.4 2.7 2.9 2.9 0.8

Transfer 2 CN-CP CO-CA-CO 
INEPT

CN-CP CO-CA INEPT CA-CB-CA INEPT

Max RF Field (kHz)
(Ramp in N)

61/42
(100 to 80)

- 69/42
(Tan)

- -

Time (ms)* 9.8 T2 Ca and Co 
optimised

14 4.2
(T2 optimised)

4.5
(T2 optimised)

Transfer 3 NH-CP CN-CP NH-CP CN-CP CN-CP

Max RF Field (kHz)
(Ramp)

31/126
(80 to 100 in H)

62/42
(Tan in N)

31/130
(80 to 100 in H)

69/42
(80 to 100 in N)

69/42
(80 to 100 in N)

Time (ms)* 0.3 11.2 0.5 14 14

Transfer 4 - NH-CP - NH-CP NH-CP

Max RF Field (kHz)
(Ramp in H)

- 31/133
(80 to 100)

- 31/122
(80 to 100)

31/122
(80 to 100)

Time (ms)* - 0.5 - 0.5 0.5

Transfer 5 - - - - -

Max RF Field (kHz)
(Ramp)

- - - - -

Time (ms)* - - - - -

sw (t1) (ppm) 30 35 30 30 30

Acq.time (t1) (ms) 17 7 16.6 16.6 16.6

sw (t2) (ppm) 30 35 20 20 60

Acq.time (t2) (ms) 9 7 16.7 16.7 8

sw (t3) (ppm) 52 100 52 52 52

Acq.time (t3) (ms) 40 20.5 20.4 20.5 20.5

1H decoupling sltppm sltppm sltppm sltppm sltppm

Field (kHz) 22 22 22 22 22

Interscan delay (s) 1.1 1.1 1.1 1.1 1.1

Number of scans 4 20 4 16 16

Measurement time (h) 13 60 23 92 138

Experiment (H)NCaHa (H)COCAHa (HCa)Cb(Ca
)NH

Transfer 1 HN-CP HC-CP HC-CP

Max RF Field (kHz)
(Ramp in H)

139/31
(80 to 100)

133/29
(100 to 80)

120/22
(85 to 100)

Time (ms)* 1.5 3.5 0.75

Transfer 2 NC-CP CO-CA INEPT CA-CB INEPT
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Max RF Field (kHz)
(Ramp)

71/42 - -

Time (ms)* 13 4.16
(T2 optimised)

4.3

Transfer 3 CH-CP CH-CP CN-CP

Max RF Field (kHz)
(Ramp)

30/125
(100 to 85 in H)

29/137
(80 to 100 in H)

69/42 
(tan in N)

Time (ms)* 0.35 0.25 13

Transfer 4 - - NH-CP

Max RF Field (kHz)
(Ramp in H)

- - 31/122
(100 to 85)

Time (ms)* - - 0.5

sw (t1) (ppm) 30 52 30

Acq.time (t1) (ms) 15.2 40 15

sw (t2) (ppm) 30 30 60

Acq.time (t2) (ms) 6.8 9 10

sw (t3) (ppm) 52 15 52

Acq.time (t3) (ms) 20.4 16 15

1H decoupling sltppm sltppm sltppm

Field (kHz) 23 22 23

Interscan delay (s) 1.1 1.1 1.1

Number of scans 4 4 12

Measurement time (h) 13 21 118

Experiment H(H)NH H(H)CH (H)C(HH)CH (H)X(HH)XH

Transfer 1 HN-CP HC-CP HC-CP HC-CP
HN-CP

Max RF Field (kHz)
(Ramp in H)

150/30
(100 to  80)

169/51
(100 to  85)

167/51
(85 to  100)

149(H)/33(C)/ 31(N)
(80 to  100)

Time (ms)* 1 1.2 0.35 1 (HC-CP)
1.5 (HN-CP) 

Transfer 2 NH-CP CH-CP CH-CP CH-CP
NH-CP

Max RF Field (kHz)
(Ramp in N)

30/137
(80 to 100)

51/158
(85 to 100)

51/156
(100 to 85)

138H)/32(C)/ 31(N)
(100 to 80)

Time (ms)* 0.4 0.35 0.2 1 (HC-CP)
1.5 (HN-CP) 

Transfer 3 - - - HC-CP
HN-CP
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All the spectra were processed using a squared cosine apodization function. The processing 
parameters are indicated in the captions or the main text for more specific explanation when 
needed. 

 2.5.3 Dynamic nuclear polarization (DNP) 

 M2 samples were transferred from 1.3 mm rotors (~1 mg of M2 protein) to 3.2 mm or 

2.5 mm rotors for DNP purposes. Prior to packing the samples were mixed with ‘DNP juice’ 

composed of a mixture of glycerol:D2O:water (60:30:10) and 4 - 10 mM of AMuPOL 

(polarization agent). Spectra were recorded in a 600 MHz Bruker spectrometer with 395 GHz 

gyrotron. Two different DNP probes were used, a 3.2 mm Bruker DNP probe and a 2.5 mm 

Phoenix probe. In the table below, all the spectra recorded with the respective set ups are 

presented. 

Max RF Field (kHz)
(Ramp in H)

- - - 149(H)/33(C)/ 31(N)
(80 to  100)

Time (ms)* - - - 1 (HC-CP)
1.5 (HN-CP) 

Transfer 4 - - - CH-CP
NH-CP

Max RF Field (kHz)
(Ramp in H)

- - - 138H)/32(C)/ 31(N)
(100 to 80)

Time (ms)* - - - 0.3 (HC-CP)
0.45 (HN-CP) 

Mixing (ms)* - - - 0.5

sw (t1) (ppm) 22 15 15 290

Acq.time (t1) (ms) 4 4 4 4.5

sw (t2) (ppm) 52 30 30 268

Acq.time (t2) (ms) 40 36 36 4.5

sw (t3) (ppm) - - - 30

Acq.time (t3) (ms) - - - 36

1H decoupling sltppm sltppm sltppm sltppm

Field (kHz) 22 22 22 22

Interscan delay (s) 1.1 1.1 1.1 1.1

Number of scans 4 2 4 2

Measurement time (h) 26 36 54 122

179



Table 5.2.2. DNP spectra performed with a 3.2 mm Bruker DNP probe. 
Experiment (H)NH (H)NHdep (H)NHde

p ref
(H)N (H)C

Transfer 1 HN-CP HN-CP HN-CP HN-CP HC-CP

Max RF Field (kHz) 
(Ramp in H)

149/20 
(100 to  80)

142/30 
(100 to  80)

142/30 
(100 to  80)

149/20 
(100 to  80)

139/29 
(100 to  80)

Time (ms)* 1 4 4 1.25 1.2

Transfer 2 NH-CP NH-CP NH-CP N - N inept CH-CP

Max RF Field (kHz) 
(Ramp in H)

30/137 
(80 to 100)

30/140 
(80 to 100)

30/140 
(80 to 100) - 29/127 

(80 to 100)

Time (ms)* 0.5 4 4 Different times 
used

0.35

Transfer 3 - HN-CP 
HC -CP

HN-CP 
HC -CP

NH-CP -

Max RF Field (kHz) 
(Ramp in H)

- 140/30 (HN) 
140/33 (HC) 
(80 to 100)

140/30 (HN) 
140/33 (HC) 
(80 to 100)

30/140 
(80 to 100)

-

Time (ms)* - 0.5 (HN) 
0.2 (HC)

0.5 (HN) 
0.2 (HC)

0.5 -

sw (t1) (ppm) 52 500 500 500 30

Acq.time (t1) (ms) 40 5 5 5 36

sw (t2) (ppm) 52 52 52 52 30

Acq.time (t2) (ms) 40 41 41 41 36

1H decoupling sltppm sltppm sltppm sltppm sltppm

Field (kHz) 22 22 22 22 22

Interscan delay (s) 1.1 1.1 1.1 1.1 1.1

Number of scans 4 - - - 4

Measurement time (h) 1.25 - - - 1.25
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Table 5.2.3 DNP spectra performed with a 2.5 mm Phoenix DNP probe. 

2.6 Structure calculations of fully protonated M2 

 Structure calculations were carried out using CYANA an automated software for 

assigning NMR spectra (323). All spectra used for structure calculation were recorded using a 

four channel 0.7 mm MAS probe on a 950 MHz spectrometer spinning at 100 kHz at 260 K 

(sample temperature 5-10ºC). To reduce bias on the assignment of structural data, the peak 

lists from (H)NH, (HH)NH, (HH)CH and (H)X(HH)XH spectra were used as input to 

CYANA without manual assignment. In addition to the peak list, manual restraints such as the 

imidazole - imidazole hydrogen bond between dimers, the contact between Nε2 from H37 to 

Nε W41 and the H-bonds for helical arrangement predicted by TALOS were added in order to 

initially form a helical structure and thus improving convergence of the tetramer. 

Experiment (H)NH (H)NHdep (H)NHde
p ref

(H)N (H)C

Transfer 1 HN-CP HN-CP HN-CP HN-CP HC-CP

Max RF Field (kHz) 
(Ramp in H)

149/20 
(100 to  80)

142/30 
(100 to  80)

142/30 
(100 to  80)

149/20 
(100 to  80)

139/29 
(100 to  80)

Time (ms)* 1 4 4 1.25 1.2

Transfer 2 NH-CP NH-CP NH-CP N - N inept CH-CP

Max RF Field (kHz) 
(Ramp in H)

30/137 
(80 to 100)

30/140 
(80 to 100)

30/140 
(80 to 100) - 29/127 

(80 to 100)

Time (ms)* 0.5 4 4 Different times 
used

0.35

Transfer 3 - HN-CP 
HC -CP

HN-CP 
HC -CP

NH-CP -

Max RF Field (kHz) 
(Ramp in H)

- 140/30 (HN) 
140/33 (HC) 
(80 to 100)

140/30 (HN) 
140/33 (HC) 
(80 to 100)

30/140 
(80 to 100)

-

Time (ms)* - 0.5 (HN) 
0.2 (HC)

0.5 (HN) 
0.2 (HC)

0.5 -

sw (t1) (ppm) 52 500 500 500 30

Acq.time (t1) (ms) 40 5 5 5 36

sw (t2) (ppm) 52 52 52 52 30

Acq.time (t2) (ms) 40 41 41 41 36

1H decoupling sltppm sltppm sltppm sltppm sltppm

Field (kHz) 22 22 22 22 22

Interscan delay (s) 1.1 1.1 1.1 1.1 1.1

Number of scans 4 - - - 4

Measurement time (h) 1.25 - - - 1.25
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Furthermore, constraints on the top and bottom of the transmembrane domain where manually 

added (Appendix 5.II) in order to drive the formation of the tetramer. Several (H)NH spectra 

were used changing the cross polarization time from 3 to 6 ms.  

2.7 DENSITY FUNCTIONAL THEORY CALCULATIONS 

 Density functional theory calculations were carried out using Gaussian 16 software 

(324). To reduce the calculation time, the M2 structure was truncated at its N and C-terminus. 

Only the residues between 34G to 41W were kept. Different truncated quaternary M2 

structures were submitted to DFT calculation. On the one hand, the dimer structure referred to 

as “dimer” (two M2 monomer units) keeping the imidazole-imidazole hydrogen bond. On the 

other hand, the C2 tetramer structure (four M2 monomers) is referred to as “tetramer”. The 

dimer and tetramer structures were designed from our own structure calculations. Structure 

optimizations were performed using a step wise approach increasing the accuracy of the 

method used at each step. Briefly, the accuracy was started from a semi-empirical method 

using PM6 to DFT using hybrid functionals Becke Three-Parameter Hybrid Functionals 

(B3LYP) (325) and a gradient corrected method mPW91 (326). In all cases all the atoms 

except histidine 37 sidechain were immobilized. Once the structure was fully optimized, a 

water molecule for the dimer (two for the tetramer) were explicitly placed in close proximity 

to the free Nδ1 at the histidine. The same systematic approach for optimization was used from 

PM6 to DFT using either B3LYP or mPW91 with 631G basis sets. For the NMR calculation, 

only half of the tetramer (a dimer) was used to reduce the computing power needed for NMR 

calculation. NMR calculations were performed using a variety of basis sets from 631G to 

6311G++2d,p. To terminate, polarizable continuum model (PCM) to include water solvation 

was used with the best basis set matching experimental data.  
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3. Identification and characterization of an imidazole – imidazole 
hydrogen bond in M2 from influenza A 

3.1 Abstract  
  

 The arrangement of histidine sidechains in influenza A M2 tetramer determines their 

pKa values, which define controlled proton conduction critical to the virus lifecycle. Both 

water associated and hydrogen bonded imidazole–imidazolium histidine quaternary structures 

have been proposed, based on crystal structures and NMR chemical shifts, respectively (311, 

312). Yet, no direct evidence of the imidazole - imidazole hydrogen bond has been reported. 

NMR has a particular strength regarding covalent or hydrogen bond characterization, due to 

the resulting J-coupling. Indeed, two bonded atoms have a physical propertied known as J-

coupling, and the coupling strength is directly related to the distance and the geometry 

between the two interacting spins. J-couplings have been extensively used in solution NMR to 

directly access hydrogen bond strength. Here we show, using the conduction domain construct 

of M2 in lipid bilayers, that the imidazole rings are hydrogen bonded even at a pH of 7.8 in 

the neutral charge state. An intermolecular 8.9 ± 0.3 Hz 2hJNN hydrogen bond is observed 

between H37B-Nε and H37A-Nδ recorded in a fully protonated sample with 100 kHz magic-

angle spinning. Interestingly, the hydrogen bond could not be detected in a sample with  

rimantadine bound to the pore. 

3.2 Results and discussion 
  

 We measured M218-60 in 1,2-diphytanoyl-sn-glycero-3-hosphatidylcholine (DPhPC) 

bilayers at pH 7.8, as in previous work (313). This construct has been dubbed the 

‘conductance domain’ since it has been shown to recapitulate the proton conduction rates and 

drug sensitivity properties of the full-length protein in liposome flux assays (327). In this 

construct, a C2 symmetric referred to as dimer of dimers arrangement (313) at high pH results 

in two H37 Hε2 chemical shifts, at 12 and 14.5 ppm (295),  herein indexed as ‘A’ and ‘B’, 

respectively. The question remains whether the fourfold symmetry is broken by hydrogen 

bonded dimers or whether only water is the hydrogen bonding partner. Although the H37 

proton chemical shifts are indicative of normal hydrogen bonds, a dimer arrangement in the 

neutral charge state would be expected to persist in the +2 state, since the dimer further 
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stabilizes a positive charge, according to ab initio quantum chemical calculations on 

imidazole dimers (328) and in the core of the M2 tetramer (329). Such calculations show that 

a positive charge strengthens the dimer interaction and might lead to a low barrier hydrogen 

bond. 

Figure 5.3.1. Measurement of 2hJNHN 
hydrogen bonding in H37 imidazole dimers 
within influenza M2. 
The pulse sequence is shown in a). Cross-
polarization (CP) is used to establish 15N 
polarization. A homonuclear out-and-back 
INEPT period follows to record the chemical 
shift of the J-coupled nitrogen. Following water 
suppression, CP returns signal to protons for 
detection. The spectrum in b) was recorded with 
τ of 15 ms, and clearly shows a negative peak 
indicative of an intermolecular J-coupling, and a 
C2 symmetric tetramer at H37, as shown 
schematically in c). 

 We observed an imidazole-imidazole 2hJNN-coupling using a homonuclear INEPT 

(330) period on the nitrogen channel, combined with cross polarization (CP) for detection of 

the attached proton (Fig. 5.3.1). When a homonuclear J-coupling is present, an additional 

peak occurs at the 15N frequency of the coupled spin, with a buildup of intensity following the 

well-known relation, . Since the original peak follows  (Fig. 

5.3.2B), normalization by the total signal results in a single parameter fit to . We 

measured a Nδ1-Nε2 J-coupling of 8.9 ± 0.3 Hz Hz (Fig. 5.3.2A), which was unambiguously 

assigned to an intermolecular interaction (Fig. 5.3.3). This intermolecular N-H- -N 2hJNN 

coupling occurs for the most strongly downfield shifted proton at 14.5 ppm. No homonuclear 

J-coupling could be detected for the other Nε2, indicating that its attached Hε2 at 12.1 ppm is 

likely hydrogen bonded to oxygen. 

sin2(2πJt)e
−τ
T2 cos2(2πJt)e

−τ
T2

sin2(2πJt)
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Figure 5.3.2. Quantification of the intermolecular 2hJNHN J-coupling.  
In the inset from A, slices of the 2D spectrum at the proton frequency of 14.5 ppm are shown for the indicated 
mixing times. In A, the experimental data (points) are shown with 2σ error bars accounting for random spectral 
noise. Relaxation was accounted for by dividing each intensity at 254 ppm by the total signal magnitude of the 
slice. The best fit (orange) resulted in a coupling strength of 8.9 ± 0.3 Hz. The curves in grey indicate the error at 
twice the standard deviation, σ, as estimated with a Monte Carlo approach and considering random spectral 
noise. The first point was acquired with 8 scans (1.5 hours) while the last point required 128 scans (26 hours) 
due to transverse relaxation. B shows the decay of the in-phase term from the Nε2 (blue curve) and the negative 
build up of the anti-phase term observed in Nδ1. 
  

 
Figure 5.3.3. Histidine-water contact and 
assignment of H37 tautomer state.  
In blue, an NH correlation spectrum shows 
magnetization transfer from a non-protonated 
imidazole nitrogen at ~250 ppm to water (4.85 
ppm) using 6 ms of CP. In red, the nitrogen and 
carbon resonances are assigned by out-and-back 
1-bond CP transfer (H)(C)N(C)H. The Hδ2 is 
correlated only with Ne2 in this magnetization 
transfer scheme, which resonates at ~170 ppm 
and establishes that all histidine residues in the 
channel are in the τ tautomer. Magnetization 
transfers are indicated by curved arrows. The d 
and e carbon assignments were confirmed in a 
RFDR-based (H)CCH spectrum (black). 

 To assess the tautomeric states of histidine, we recorded a CP based out-and-back (H)

(C)N(C)H spectrum. The use of 1-bond transfer times (1.6 ms) ensures that the δ2 proton is 

connected with only the ε2 nitrogen. Correlations are found at 165 and 172 ppm, 

corresponding to the two protonated imidazole nitrogen resonances observed in the (H)NH 
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spectrum and establishes de novo that both signals are from τ tautomers. The Cδ2 resonance of 

H37B is found midway between the shifts observed in crystals of τ and π tautomers of 

Histidine (Fig. 5.3.3, purple)(331), highlighting the need to independently establish the 

tautomeric states. 

 That both water-associated and hydrogen bonded dimer conformations of H37 exist 

under different conditions suggests that these conformations are both relatively stable. The 

main differences in sample preparation that result in these different structures are the nature of 

the membrane mimetic, and the length of the construct. The fact that the 2hJNN coupling is 

observed in the functional ‘conductance domain’ construct in lipid bilayers suggests that it is a 

relevant state, and that the proton affinities of the dimer control the interconversion to a 

conducting channel. This does not rule out the possibility that other quaternary structures may 

also lead to a proton current in virus particles, although a different pKa would be expected at 

H37. This is in line with the large range of pKa values reported for M2 (294-296, 332). 

Figure 5.3.4. Chemical shift changes in the 
histidine side-chain upon addition of the 
drug rimantadine (rmt).  
The pulse sequence of fig. 5.3.1 with τ of 6 ms 
(blue, red) and (H)NH spectra with 25 ms (grey) 
or 200 ms (black) of 15N exchange during the 
water suppression. A 3-5 ppm change is 
observed in the drug bound spectrum (red) and 
no 2hJNHN J-coupling was observed. Instead, the 
imidazole NH peaks are broadened, and the 
peaks at 9 ppm are in exchange. The (H)NH 
spectra were acquired at 250 K and 80 kHz 
MAS to reduce the temperature by ~10 °C to 
slow exchange. 

 Interestingly, with the inhibitor rimantadine bound to the pore, the exchangeable 

histidine protons shift upfield by about 3 ppm, and no 2hJNN coupling could be detected (Fig. 

5.3.4). This disruption of the hydrogen bonding interaction explains the difference in H37 

pKa in the drug bound state (333) and lends support to the hypothesis that imidazole dimers 

are functionally important. The simplest explanation for inhibitor efficacy is pore blockage 

preventing the passage of hydronium ions. And yet, significant chemical shift perturbations 

were detected widely over transmembrane residues (313, 334). This suggested that the 
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inhibitors have far reaching effects, modifying the conformational distribution of the protein. 

However, it has been difficult to connect a specific structural change to the chemical shift 

perturbations. It is now clear that in the conductance domain construct, rimantadine affects the 

structure of the channel by impacting the hydrogen bonding of the important functional 

residue H37. 

3.3 Conclusion 
  

 In conclusion, through the measurement of a 2hJNN coupling, we confirmed the 

existence of imidazole–imidazole dimers in the M2 protein from influenza. Such a 

configuration was proposed to stabilize positive charge in the tetrameric channel. However, 

direct evidence of the interaction was not previously reported, and crystal structures of M2 

showed an alternate structure, leading to controversy over whether the dimeric histidine 

arrangement exists at all in M2. We have solved this controversy through NMR measurements 

of M2 in lipid bilayers at high pH where we observe a neutral charge state at the functional 

H37 residue. The coupling strength is consistent with a normal hydrogen bonding interaction. 

Binding of the drug rimantadine resulted in breaking off this hydrogen bond. It remains to be 

seen whether evidence can be found that this geometry persists in the important +2 charge 

state, where imidazole–imidazolium dimers have been proposed, and whether such a state 

results in a normal hydrogen bond or a low barrier hydrogen bond. 
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4. Structure determination of M2 in membranes by proton 
detected NMR under ultra fast MAS 
4.1 Abstract  
  

 As of today, only a handful of structures have been solved by proton detected solid-

state NMR in 100% back change samples (335) or fully protonated samples (81). Solution 

NMR necessitates a detergent environment and high deuteration levels for accessing site 

specific information on large membrane proteins, rendering the technique limited to small 

molecular size. On the other hand, solid-state NMR, although applicable to larger proteins 

suffers from relaxation due to dipolar coupling and CSA that deteriorates both the spectral 

resolution and sensitivity. To ameliorate spectral resolution, ssNMR uses sample rotation at 

the “magic angle” of 54.74º from the B0 field.  

 Previous ssNMR measurements use carbon and nitrogen detection with high proton 

power decoupling. This limits structural information because protons are not accessible. In 

addition, these measurements are time consuming due to long coherence life time of the 

detected nuclei (336, 337). In the last decades, with an increase of the spinning speeds up to 

55 kHz, proton detection has become available for protonated samples with limited proton 

resolution (82) and for largely deuterated samples with exquisite resolution and improved 

sensitivity (30, 338). However, perdeuterated samples give limited structural information and 

often require several samples with specific labelling to gain sufficient information to perform 

high quality structure calculations.  

 Recent hardware developments have resulted in spinning speeds up to 110 kHz using 

rotor sizes 0.7 mm of diameter. Despite the small rotor diameter and the small sample 

quantity (half a milligram), there is limited loss in sensitivity that can be less than the 

variation in probe performance (339), making this approach suitable for investigating fully 

protonated samples in membrane environments. 

 Here, the structure of the conductance domain (residue 18 to 60) of the matrix 2 (M2) 

protein from Influenza A has been solved using a single fully protonated 1H, 13C, 15N sample 

using proton detected ssNMR at ultra fast MAS. M2 is a 97 residue transmembrane protein 

which has been found as a homo-tetramer in membranes (271). The protein has a largely 

unstructured N-terminus (residue 1 to 22), facing the outside of the virus particle, a single 
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helical transmembrane domain (TM from residue 22 to 43), an amphipathic helix (residue 44 

to 60) and an unstructured C-terminal domain that interacts with matrix protein 1 (M1).  

4.2 Results and discussion 

 1H,13C,15N M2 protein was packed in a 0.7 mm rotor and spun at 100 kHz at a 950 

MHz NMR spectrometer in order to elucidate a de novo structure. Since full protonation gives 

access to protons in the alpha position as well as in the sidechains, we recorded the full set of 

proton detected experiments recently reported by Pintacuda and co-workers (338). The 

experiments and parameters used for assignment spectra and distance measurements are listed 

in the materials and methods section (5.2.5 and 5.2.6). Shortly, (H)NH, (H)CANH, (H)

(CO)CA(CO)NH, (H)CONH, (H)CO(CA)NH, (H)(CA)CB(CA)NH, (H)(CO)CB(CO)NH 

were used for assignment proposes in combination with H(H)NH using 3 and 6 ms of proton - 

proton mixing and (H)X(HH)XH (X denotes 15N and 13C) as structural restraints. 

 Figure 5.4.1 shows the strips extracted from (H)CANH, (H)(CO)CA(CO)NH, 

(H)CONH and (H)CO(CA)NH using CcpNmr. The line widths obtained in our preparation 

are ~300 Hz for Hα, ~120 Hz for Cα, ~210 Hz HN and ~60 Hz NH. With these narrow lines, 

we were able to assign two sets of peaks for the backbone resonances of the M2 tetramer 

supporting the dimer of dimer structure previously reported (322, 328). 
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Figure 5.4.1. Backbone walking assignment spectra of a fully protonated 13C,15N M2 at 100 kHz MAS.  
Linking assignments spectra, (H)CANH (green), (H)CA(CO)NH (blue), (H)CONH (orange) and (H)CO(CA)NH 
(dark blue), with the assignments of the residues A30 to I35 are shown for both chains. Both sets of peaks for 
Chain A (top panel) and Chain B (bottom panel) were assigned. On the right hand, the assigned residues are 
represented in red (Chain A, top) and black (Chain B, bottom) on the M2 structure (pdb: 2L0J). 

 The sample allows the complete 1H,13C and 15N assignment of key functional residues 

H37 and W41 in the lipid bilayer (Fig. 5.4.2, A and D). Sequential assignment was improved 

by using both (H)COCAHA and (H)NCAHA spectra which allows linking through the Hα 

(Fig. 5.4.2 E to G). Figure 5.4.2 shows the full set of experiments measured on a 950 MHz 

Bruker spectrometer with a 0.7 mm probe at 100 kHz MAS. In A the (H)NH spectrum with 

the assignment of the HN of the imidazole histidine sidechains and the W41 sidechains is 

shown. Figure 5.4.2 E to H show the assignment of the Hα of Ala30A and His37B. The 
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assignment of the W41A, W41B, H37A and H37B sidechain is shown on the (H)NH (Fig. 

5.4.2A, inset) and (H)CH (Fig. 5.4.2D). 

 
Figure 5.4.2. Solid-state NMR assignments of a fully protonated M2.  
In A, the (H)NH spectrum with the assignment of 37His and 41Trp is shown. B and C show the 13C,15N 
assignment of M2 from the 2D projection of the (H)CANH and (H)CONH, respectively.. The aromatic region of 
the (H)CH with the assignment for the residue W41 and H37 are shown in D. F to I show the Hα assignment of 
residue A30A and  H37B from the (H)COCAHA (blue) and (H)NCAHA (brown) spectra. All the spectra were 
recorded at 100 kHz MAS with a 0.7 mm 4 channel Bruker probe in a 950 MHz Bruker spectrometer at 265 K. 

 To determine the sidechain assignments a 3D (H)CCH was recorded using 1.6 ms of 

carbon RFDR mixing. Due to repeated residues and the dimer of dimers architecture of the 

protein, the sidechain assignments are still ambiguous for certain residues (full assignment list 
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is provided in appendix 5.I). Figure 5.4.3 shows the structure of M2 from only proton 

detected data of the single sample at 100 kHz MAS.  

Table 5.4.1. Spectra used for the structure calculation. 

The time share (13C/15N) (H)X(HH)XH allows for recording 4 spectra in one ((H)C/N(HH)C/

NH) concomitantly (340, 341). Since M2 forms a tetrameric structure in the lipid bilayer and 

we did not have any unambiguous inter-helical contact, manual restraints had to be added at 

the N and C-teminus of the protein to ensure tetramer arrangement (Appendix 5.II, table 

S5.5). The distances entered were determined based on the previous high resolution M2 data 

available (pdb: 2l0j). The recently reported imidazole - imidazole hydrogen bond using the 

same sample conditions (342), was manually entered (Appendix 5.II, table S5.4), and TALOS 

(343) restraints were used based on Cα, Cb, HN and NH chemical shift information (Appendix 

5.II, table S5.2 and S5.3). The long HN CPs of 6 and 3 ms showed the existence of contacts 

between sidechains of H37Hε2Nε2 and W41Hε1Nε1. Those contacts were used to complement the 

N and C-terminal restraints.  

 
  

Spectrum Mixing Mixing time (ms)

(H)NH Cross polarization 3 and 6

(H)C(HH)CH RFDR 0.5

(H)N(HH)NH RFDR 0.5

(H)X(HH)XH RFDR 0.5

192



Figure 5.4.3. De novo structure calculation of M2 from influenza A.  
In all the panels the ten best structures calculated from CYANA are shown. A and B show the full tetramer 
rotated 180º with respect to each other. C shows the C-terminus of the tetramer and D shows the top view from 
residue 34 to 41 with the H37 and W41 sidechains included. 

 To evaluate our structure calculation, independently of the NMR data and the manual 

restraints used, we calculate the structure of M2 based uniquely on the amino acid sequence 

with CS-Rosetta. CS-Rosetta allows a structure model prediction based on sequence 

alignment and permit to exclude the existing homologue structures for calculation (344). 

Figure 5.4.4 shows the comparison between the two best structural models obtained with 

Rosetta (Fig. 5.4.4A to D, cyan = best hit; orange = second best hit) and our structure 

calculated from CYANA (Fig. 5.4.4E to G). Although the four helical bundles are found by 

the CS-Rosetta run, the structures still show some degree of freedom at the TM domain, as 

can be observed in the helix close to residue G34 (red circle) where the TM is disrupted. This 

is consistent with the previously reported kink at residue G34 by PISEMA data (303). In 

contrast to the crystal structures, the structure from CS-Rosetta shows a close packing at the 

C-termini of the tetramer, similar to the reported ssNMR structures (23, 309, 312).  

  

193



Figure 5.4.4. Comparison of the M2 structure built by homology or de novo calculation.  
In A to D, the two best structures from CS-Rosetta are represented in different views. The higher scored structure 
is represented in orange and the second best in sky blue. A shows the front view of both CS-Rosetta structures. In 
B, the C-terminal view of the tetramer in both structures is shown. In C and D the top view of both structures is 
shown and the sidechains of H37 and W41 residues are represented. From E to F, the 10 best solid-state NMR 
are shown. The front view and the view from the C-terminus of the tetramer are shown in E and F, respectively. 
G shows the top view from residue G34 to W41. The red circles in C point out the bizarre arrangement of the 
W41 sidechain predicted by CS-Rosetta. 

 Despite the similar arrangement between the different methods used for structure 

determination, Rosetta shows a distinct sidechain arrangement regarding the important 

residue H37. Interestingly, the H37 sidechain points towards the TM interface and lipid 

bilayer in the best model (Fig. 5.4.4C, red circle). The second best structure (in orange) shows 

a more extended amphipathic helix inconsistent with the amphipathic domain laying on the 

membrane surface (312). Additionally, contrary to the available structural data, the extended 

structure shows a W41 pointing towards the TM interface and lipids. Indeed, It is well 
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established that W41 and H37 sidechains are pointing towards the pore of M2 acting as gate 

and proton selectivity filter, respectively (300, 311, 345). 

 The solid-state NMR structure shows a widely opened C-terminal region and a 

disrupted N-terminal domain for one of the helices. Beside these discrepancies, the calculated 

structure is in agreement with the CS-Rosetta and the previous NMR structures reported. 

Although a refinement of the structure is necessary it is a good starting point with the 

recorded data and shows the possibilities of using ultra fast MAS in fully protonated proteins 

for structure determination.  

4.3 Conclusion 
  

 Here we reported a de novo structure calculation for the M2 proton channel from 

Influenza A. Full assignment of the important residues W41 and H37 are reported and the 

structure was calculated by using data exclusively from a 1H,13C,15N M2 sample at 100 kHz 

MAS. The distance restraints were recorded in about a month and with only ~0.5 mg of 

sample, hence showing the ample possibilities offered by this technique to assess atomic 

resolution for membrane proteins in terms of time and protein yields. 

5. Non-specific binding of rimantadine 
5.1 Abstract 
 

 The drug rimantadine (rmt) binds to two different sites in the M2 protein from 

influenza A, a peripheral site and a pore site, which is also the primary site of efficacy. It 

remains enigmatic that pore binding of rmt did not occur under certain sample conditions such 

as DHPC micelles, as well as in a mixture of lipids selected to match the viral membrane. 

Here by using controlled temperature binding experiments, at ~4 degrees, we were able to 

trap an intermediate state of M2 occurring before pore binding. These data explain how 

thermodynamic limitations are the origin of the lack of pore binding in the presence of DHPC. 

Two effects are responsible, namely the kinetics of binding and changes in the surface 

properties of the tetramer upon rmt pore binding. We tracked both specific and non-specific 

effects via chemical shift perturbation using ultra-fast magic-angle spinning of 55 to 100 kHz 

and fully protonated M2 reconstituted in DPhPC bilayers. Slow pharmacological binding 
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kinetics allowed us to characterize the non-specific binding in the absence of pore binding. 

Binding kinetic measurements showed non-Arrhenius behavior suggesting a cooperative 

effect in the binding kinetics. Pore binding requires high activation energies (~117 kJ/mol) 

consistent with rearrangement of the water pore, hydrogen bond disruption and structural 

rearrangement. Pore binding causes a change in the physicochemical properties on the M2 

surface such that solubilization in DHPC is hampered.  

5.2 Results and discussion 

Figure 5.5.1. Chemical shift changes in M2 
induced by non-specific binding with 40 mM 
rmt.  
In A, 2D (H)NH spectra of M2 show the small 
changes between apo (blue), and non-specific 
binding (black) and the larger changes that 
accompany pore binding in (red). In B, the 
13C15N projections of (H)CANH spectra show 
chemical shift perturbation of the Cα and NH 
backbone. A large excess of 16 molecules of 
rmt drug was used per tetramer. In C, the pore 
binding location (cyan) is shown on the 
conductance model, pdb 2L0J in grey and on 
the bound TM structure 6BKL in red. 

 The M218-60 protein was reconstituted in deuterated DPhPC and then the sample was 

incubated with 40 mM rmt at 4 °C. In contrast to previous reports, only small chemical shift 

changes (Fig. 5.5.1A, black) are observed in the presence of drug (Fig. 5.5.1A, cyan) in 

(H)NH magic-angle spinning (MAS) spectra. The previous studies in phosphocholine lipid 

bilayers showed large chemical shift perturbation (CSP > 2 ppm for 15N and > 1 ppm for 13C) 

throughout the TM region residues 27 to 42 upon pore binding (313, 319, 334). This apparent 

discrepancy is explained by slow kinetics of pore binding at 4°C, and is qualitatively 

consistent with the fact that glycerol was observed to kinetically prevent pore binding (318). 

Even after several weeks of incubation, pore binding was not observed, while both pore-

bound (specific) and pore-unbound (pore-apo) populations were present after a week of 

incubation at 20 °C. The two populations can be seen clearly for G34, with two distinct 15N 

chemical shifts at 106.5 ppm (Fig. 5.5.1B, G34ns black) and at 109.5 ppm (Fig. 5.5.1B, G34s 
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red), corresponding to pore-apo and pore-bound states, respectively (Fig. 5.5.1B). We refer to 

pore binding as specific since it is the primary site of inhibition (317), while the non-specific 

effects of the drug refer to any other changes observed in the spectrum. 

 Kinetic control allowed characterization of non-specific CSP. While apo assignments 

were carried out at 100 kHz (Appendix 5.I), for the non-specific bound we reduced the 

spinning to 80 kHz MAS with a 0.7 mm rotor to reach a sample temperature of ~5 °C to 

prevent pore binding during acquisition. Figure 5.5.2 shows the excellent resolution obtained 

under these conditions for a fully protonated sample, which allowed us to transfer apo 

assignments to the non-specific bound state using 3D triple resonance spectra. Consistent with 

previous reports (309, 313, 328), two sets of peaks in the TM region indicate a dimer of 

dimers structure. The CSP was calculated for each residue as  

. 

Figure 5.5.2. Non-specific CSP.  
The CN projections of (H)CANH spectra are shown in A with apo in blue and non-specific in black. In B, the 
CSP is shown per residue by combining HN, Cα, and N chemical shifts as described in the text for both A and B 
chains of the dimer. In C, residues with CSP greater than 2 sigma (~0.16 ppm) are represented on the structure of 
pdb 2L0J with the color corresponding to the chain were the residue is affected (chain A in orange and chain B in 
black). 

 In the TM region, chain A shows the largest perturbation toward the C-terminus, from 

G34 to W41 with a cluster of large CSP for residues I35, I39 and W41. Chain B shows the 

largest CSP for residues V28 and G34 located at the N-terminus of the TM. The non-specific 
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CSP is much smaller than observed for pore binding, which causes > 2 ppm CSP across the 

TM residues. This is indicative of conformational changes for the pore-bound state (306, 313, 

334). The non-specific CSP is likely due to a combination of changes in the lipid properties as 

the hydrophobic drug partitions to the membrane and to association at the peripheral binding 

site, nearby residue R45, identified previously (23). This is also consistent with DNP data at 

cryogenic temperature using TEDOR experiments showing contacts between rmt and D44 

and R45 (318). Consistently, for non-specific bound state, we observed elevated Cα CSP for 

residues F47, F48, and Y52 near this peripheral site. While the CSP for non-specific binding 

are small, they are distributed across the helices and include the pore facing residue G34, 

which is sensitive to membrane conditions and can form a kink upon pore binding (306). This 

emphasizes a degree of sensitivity of the channel to its environment, a topic explored before 

for the TM construct (308). A detailed plot of CSPs for each of HN, N, and Cα, is shown in 

figure 5.5.3. 
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Figure 5.5.3. Individual chemical shift perturbation observed for rmt non-specific binding in M2.  
In red are represented the carbon chemical shift perturbation (CSP). In blue are shown the nitrogen CSP and in 
gold the proton CSP. 
  

 Residues H37 and W41 are key functional residues controlling conduction in response 

to pH. We recently showed that there is an imidazole - imidazole hydrogen bond in the apo 

state at pH 7.8 and that the hydrogen bond is broken upon rmt pore binding (342). H37 N-H- -

N hydrogen bonding persists at a lower pH of 6.2 in a full-length construct (346). Non-

specific binding causes small CSP at the H37Nε, and the imidazole - imidazole hydrogen 

bond was still present (Fig. 5.5.4). This indicates that the non-specific effects and peripheral 

binding likely have at most a minor influence to the pore. Since our pore-bound preparations 

are also likely bound peripherally, however, we cannot exclude that the two binding locations 

act cooperatively. 

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.36

Chemical shift perturbation

0.7

0.5

0.4

0.3

0.2

0.1

0.0

0.8

0.58

0.25

0.15

0.05

0.3

0.2

0.1

0.0

0.17

Carbon

Nitrogen

Proton

26 27 28 32 33 3429 30 31 35 36 37 41 42 4338 39 40 44 45 46 50 51 5247 48 49 53 5427 28 32 33 3429 30 31 35 36 37 4138 39 40

M2 sequence: 18RS20NDSSDPLVVA30ASIIGILHLIW40ILDRLFFKS50IYRFFEHGLK60

BA

Tm AH

Chain:

199



Figure 5.5.4. Histidine side-chain 
CSP and hydrogen bonding.  
Non-specific changes (cyan) are 
small compared with specific pore 
binding (red). The left panel shows 
(H)NH spectra of the three sample 
conditions. The right panel shows via 
evolution of the homonuclear J 
coupling that imidazole-imidazole 
hydrogen bonding occurs. Data were 
recorded at a 950 MHz spectrometer. 

 To kinetically characterize the binding process, the rotor containing 40 mM rmt bound 

non-specifically, previously incubated at 4 degrees, was sealed and incubated at different 

temperatures 25ºC, 40 °C and 55ºC in a water bath. Binding was tracked by recording (H)NH 

spectra periodically and replacing the sample in the bath. Binding occurred over several hours 

or days depending on the incubation temperature, and was quantified with the intensities of 

three well-resolved residues, H37Nε2 (for both chains A and B) and G34s. Figure 5.5.5 shows 

the combined intensities of both H37Nε2 A and B. Surprisingly, at temperatures of 20 ºC (Fig. 

5.5.5, blue) and 40 ºC (Fig. 5.5.5, green) the curves do not follow an exponential decay, but 

rather proceed more slowly at first, indicating kinetic cooperativity. A possible explanation for 

this behavior is that neighboring tetramers may interact in the dense and highly concentrated 

NMR sample, such that binding is accelerated when a neighboring tetramer is already bound. 

Interestingly, it has been observed that M2 clusters in the membrane. The clustering of M2 

has been suggested to play a role in membrane curvature (347, 348) but might also explain the 

unusual binding kinetics observed. 

 To further characterize the kinetics, a first rate kinetics approximation was used for 

extrapolating the energy barrier using the Arrhenius equation,  with k the kinetic 

rate, Ea the energy activation, R the gas constant and T the temperature. Figure 5.5.5 shows 

the Arrhenius plot of ln(k) as a function of 1000/T were the slope gives direct access to the 

activation energy (slope = -Ea/R). Approximating the rates based on initial points until 50% 

decay of intensity, an activation energy of about ~113 to 119 kJ.mol-1 is estimated, depending 

on whether the H37Nε2 or G34 peaks are measured, respectively. This is a relatively high 

activation energy, similar to the barrier encountered in enzymatic processes, that will be 

consistent with the observation of substantial helical repacking. It suggests that the pore is not 
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easily accessible to the drug in the apo state, which is closed at the N-terminus by residue 

V27. That has been referred to as a secondary gate (302).  

Figure 5.5.5. Kinetics of rmt binding.  
A shows the disappearance of characteristic peaks (H37Nε2 and G34N) of the apo (H)NH spectrum at three 
temperatures. B shows fits of the initial rates to the Arrhenius equation and extraction of the activation energy 
(Ea). The samples were prepared with 40 mM rmt at 4ºC and then incubated by placing the rotor in a water bath 
at 25ºC, 40ºC, or 55ºC. Two samples were used for the measurements. WT M2 was used at 40 and 55ºC and 
H57Y M2 (a point mutation in the amphipathic domain) was used for the 25ºC measurements. Identical chemical 
shifts were observed for both samples.  

 Studies on similar systems, where a pore contains a cluster of organized water 

molecules, have shown that the reorganization of water molecules necessitates ~3-fold higher 

activation energies than bulk water (349), but this is still only ~30 kJ/mol (350). X-ray 

structures suggest that during pore binding, rmt displaces water molecules found at the N-

terminus of the pore (300, 351). In addition to the water displacement, rmt pore binding 

disrupts the imidazole - imidazole  hydrogen bonding (342) yet hydrogen bonding accounts 

for an energy of generally less than 10 kJ/mol (352). Therefore larger collective motions such 

as helix repacking and transient opening of the N-terminus are likely to be responsible for the 

bulk of the activation energy. 

 Since we observed slow kinetics in lipid bilayer samples, we thought that this might 

be a limiting factor for drug binding in DHPC micelles, and that pore-bound samples in 

micelles could be prepared by first binding rmt in lipids, and then solubilizing in detergent. A 

solution of 300 mM DHPC micelles was prepared and used to solubilized rmt-bound M2 from 

the DPhPC lipid preparation. While some protein was solubilized, a large precipitate 

remained (Fig. 5.5.6A). A second sample of M2 without rmt was fully solubilized in DHPC. 

Solution 15N-HSQC spectra were recorded for both supernatants (Fig. 5.5.6B), and both 
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matched the pore-apo M2 spectrum previously reported by Chou and co-workers (23). Much 

lower sensitivity was observed in the supernatant from the bound sample, suggesting that only 

the remaining pore-apo protein could be solubilized. This suggests that pore binding has a 

strong impact on the protein surface via repacking of the helices that affects the solubility in 

micellar conditions. The fact that a chimeric protein containing C-terminal residues from 

Influenza B M2 could be solubilized with drug in the pore suggests that these effects may 

depend on C-terminal residues. Indeed, the chimeric protein displayed large chemical shift 

changes upon binding for many residues, including those of the C-terminus, in particular at 

A40 (353). 

Figure 5.5.6. Pore binding results in channel restructuring.  
In A, a schematic shows how the M2 tetramer was either dissolved directly with DHPC detergent (top, blue 
spectrum in B or first bound with rmt and then extracted with DHPC leaving a supernatant (orange spectrum in 
B) and an insoluble pellet (green spectrum). In B, the 15N-HSQC spectrum is shown for the soluble fraction after 
DHPC addition for the apo (blue) and pore bound (orange) samples. In C) the MAS spectrum of the pellet is 
compared with the DPhPC lipid spectrum (red). Panel B) shows spectra recorded at a Bruker 600 MHz 
spectrometer using a cryoprobe. Panel C, shows projections of proton detected 3D (H)CANH spectra acquired at 
an 800 MHz spectrometer using 55 kHz MAS and a 1.3 mm rotor. 

 To our surprise, the pellet from the bound sample showed nearly the same spectrum as 

the drug bound sample in lipid bilayers (Fig. 5.5.6C), suggesting that lipids were not removed 

by detergent. This indicates that bound tetramers likely pack closely together in such a way 

that prevents removal of lipids. This is also consistent with the observation of non-exponential 
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kinetic behavior. Clearly there is a change in the physicochemical surface properties of the 

M2 tetramer upon drug binding.  

5.3 Conclusion 
  

 In summary, we showed using proton detection in combination with ultra-fast MAS, 

that at low temperature M2 can be kinetically trapped in a pore-apo state. This allowed 

measurement of non-specific CSP and determination of binding kinetics with real time NMR. 

The results suggested a change in tetramer packing upon rmt drug binding. The change in 

packing happening upon pore binding, impacts the aggregation propensity in DHPC micelles, 

which explains the lack of pore bound protein in solution NMR samples. The significant 

kinetic barrier to binding highlights the importance of kinetics when considering development 

of new inhibitors targeting the pore of M2. 

6. Pore bound water to histidine 37 sidechain in influenza 

A M2 
6.1 Abstract 

 Water plays an important role in many biological processes including enzymatic 

reaction, folding and even conduction mechanisms. Proton conductance through the M2 water 

channel is a crucial step for release of viral RNA into the host cell during Influenza A 

infection. Despite the high resolution structure available on the proton channel M2 from 

influenza A, only two water populations have been observed in reconstituted lipid bilayers 

samples. NMR studies reported these two populations of water as associated water with a 

chemical shift of ~4.8 ppm and bulk water at ~4.6 ppm. According to high structural 

resolution data in combination with molecular dynamics simulations, proton conductance in 

M2 from influenza A is driven by histidine 37 (H37). Using controlled temperature proton 

detected ssNMR measurements at ultra fast MAS and dynamic nuclear polarization at 

cryogenic temperature, we report bound water near residue H37 in the M2 conductance 

domain, comprising residue 18 to 60, in a lipid environment. This appears at a chemical shift 

of 11 ppm at proton and 249 ppm at nitrogen corresponding to the H37Bδ1 side-chain. DNP 

experiments show that bound water is not an intermediate exchange state and has slow 

exchange with bulk water. Combining NMR data with DFT calculations, we show that the 
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bound water forms a hydrogen bond to the Nδ1 of H37B. Additionally, the DFT calculation 

supports the recently reported imidazole-imidazole hydrogen bond, which is 1.9 Å in length. 

Furthermore, this work emphasizes the strength of proton detection under ultra fast MAS to 

address key features of channel membrane proteins. Atomic details on the pore water are 

indispensable to understand the proton conduction mechanism occurring throughout these 

channel proteins. 

6.2 Results and discussion 

 By measuring CP based (H)NH spectra at low temperature, set temperature of 260 K 

corresponding to a sample temperature of ~5 to 10ºC, ssNMR at 80 kHz MAS, we observed 

an HN peak with proton resonance at 11 ppm correlated to nitrogen 249 ppm. Previous work 

assigned the Nδ1 at 249 ppm to His37B (342). A down-field chemical shift of 11 ppm 1H is not 

commonly observed in proteins. Since no other correlation with the resonance at 11 ppm was 

found in (H)CH and (H)NH, We therefore strongly suspected a water molecule in close 

proximity to Nδ1B. Previous studies by Hong et al. and others have reported chemical shifts of 

water protons in membrane systems at ~4.6 ppm for bulk water and ~4.8 ppm or even 

5.2 ppm for membrane-associated water (H2Oa)(354, 355). 

 We therefore seek to identify the moiety to which the proton belongs using filtered 

cross-polarization (CP) experiments. Figure 5.6.1 shows the (H)NH spectra recorded either 

with an additional CP which acts as a filter before the acquisition of the signal referred as 

“back-filtered CP” ((H)NHdep, Fig. 5.6.1A) for proton covalently bound to either 13C or 15N, 

or without the back-filtered CP ((H)NHref, Fig. 5.6.1B). The intensity of transferred 

magnetization through CP is directly related to the distance between the interacting atoms by 

. The signal intensity for protons covalently bound to a 15N or 13C (a distance below 2Å) 

will undergo fast decay, strongly attenuating all backbone or sidechain protons, except 

hydroxyl groups. Water protons will be only weakly attenuated, since water protons are bound 

to oxygen. The intensity decay of the backbone protons (HN and HC) as well as the associated 

water (H2Oa) at 4.8 ppm was tracked with the filtered CP experiment (Fig. 5.6.1A) and 

compared to the decay observed for the proton at ~11 ppm (H- -N37Bδ1), assigned to pore 

bound water (H2Ob). Indeed, a faster signal decay was observed for HN37Aε2, HN37Bε2 and HC 

1/r3

204



resonances compared with that measured for H2Ob and the associated water (H2Oa) 

resonances (Fig. 5.6.1E).  

 Similar protein sites, the HN37Aε2 and HN37Bε2 peaks showed different signal decay 

with about 85% and 93%, respectively. The difference on the decay observed between the two 

HNε2 resonances might be explained by the difference in the local environment of these two 

sites. Whereas, the faster decayed signal site, HN37Bε2, forms a hydrogen bond with N37Aδ1 at 

the measured pH of 7.8 (342), the slowly decaying site, HN37Aε2, is “free”. In HN37Bε2 the 

proton is “shared“ by both Nε2 and Nδ1 within a 2-3 Å distance which could explain the extra 

signal loss. As expected for the H2Oa, since there is no sink for magnetization loss, the full 

signal is retained (Fig. 5.6.1E). While, only about 61% of the signal is retained for H- -N37Bδ1 

(Fig. 5.6.1E). This attenuated signal decay indicates that the proton of H- -N37Bδ1 at ~11 ppm 

could come from a water molecule in close proximity to the free Nδ1 of H37B. 

 Indeed, pore water clusters have been previously observed in high-resolution X-ray 

diffraction data (300). Unlike the crystallographic data where only at low pH the water 

molecules are close enough to interact with the Nδ1 to form a hydrogen bond (300), our data 

suggest an extended and structured  water network coming close to Nδ1 even at high pH. 
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Figure 5.6.1. Identification of water close to Nδ1B of His37.  
A and B show the pulse sequences used for identifying the chemical nature of the proton chemical shift observed 
using an inverse back CP for depolarization. In C, 2D (H)NH spectra obtained using sequence A (red) and B 
(blue) with 500 µs and 200 µs of depolarization CP contact time for 15N and 13C, respectively. In D, an 
expansion showing the histidine sidechain peaks is represented with 1D slices of the different peaks. In E, the 
intensities extracted from the 2D spectra are plotted, histidine HN sidechains (A and B), HC and HN peaks 
(identified as protons coming from water) with and without depolarization CP. In F, a schematic interpretation of 
the data obtained, with the bound water that have a proton chemical shift at ~4.8 and the more shifted water that 
shows a proton chemical shift at ~11 ppm. All the data were recorded on a 0.7 mm 4 channel Bruker probe with 
100 kHz MAS on a 950 MHz Burker spectrometer at ~10 ºC (260K). The depolarisation experiments were 
measure with 144 scans while the reference spectra used 44 scans. 
  
 In recent years direct detection of protons in membrane systems in a near-native 

physiological context has been possible by the ultra-fast MAS in ssNMR. To the best of our 

knowledge there is no previous report of water molecules presenting such downfield proton 

chemical shift in these conditions. Hans-Heinrich Limbach and co-workers report water proton 
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chemical shifts up to 19 ppm for the water bound to the catalytic centre in a synthetic system 

mimicking the catalytic center of carboanhydrase (356). In this case, the water molecule is 

doubly hydrogen bonded, on one side the oxygen with Zn and on the other with a nitrogen 

atom. This clearly shows the sensitivity of the water proton chemical shift regarding its local 

chemical environment. By analogy, this suggests that in M2 there is a pore water (H2Ob) that 

forms a stable hydrogen bond to Nδ1 of the imidazole H37B. The close proximity with the Nδ 

would lead to a strong deshielding effect on the proton which could explain the 11 ppm proton 

chemical shift observed. 

  

 Although we have observed a downfield shift of the proton, which indicates a 

hydrogen-bonded water molecule, this is in contrast to the crystallographic data at high pH (8) 

(300) and the long CP contact times required during the magnetization transfer from the 15N 

to the H2Ob. Different factors can account for the low transfer magnetization efficiency 

obtained in the ssNMR experiments such as the limited resident lifetime of the water 

molecules at this position, which will limit the NMR detection due to rapid exchange with 

other water moieties. Or a relatively long distance between the water molecule and the Nδ1, 

which will require a long spin-lock for an efficient magnetization transfer to occur. In any 

case, in both situations, low sensitivity is expected since the number of water molecules at 

this location is restricted by the C2 symmetry arrangement of the M2 tetramer which leaves 

only two Nδ1s free to accept the proton from the H2Ob molecule. In addition to the limited 

number of H2Ob, there is a limited number of possibilities to observed water clusters by 

NMR. Water can only be detected by either protons (1H) or isotope oxygen 17 (17O) which 

has low natural abundant of 0.037%.  

 In order to overcome these limitations, rapid exchange and lack of sensitivity imposed 

by the conventional room temperature solid-state NMR measurements, we took advantage of 

dynamic nuclear polarization (DNP). The new hardware and methodological development, in 

combination with the cryogenic temperature used in DNP quenching exchange processes, 

finally allows proton detection with sufficient resolution for certain studies (357, 358). So, 

overall, this makes DNP a suitable approach to study functional, low populated and in fast 

exchanging water clusters on proton channels such as M2. Here, we combine a relatively fast 
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DNP rotational speed of 24 kHz with a sample temperature of ~90 K which allows the 

freezing of dynamic sites revealing the ensemble of the water populations in the sample. 

 Earlier studies have reported that a substantial decrease of pH occurs in phosphate 

buffers upon liquid nitrogen freezing (359). This is a concern for M2 due to the pH 

dependence involving the charge state of H37. We, therefore, tested the buffer pH upon 

freezing using a color solution and we found that the pH shift ~7 pH (Appendix 5.III). Taking 

in consideration the previous reported pKa’s (295), this data suggests that H37 is a mixture of 

neutral and +2 charge state in our DNP conditions. At this pH, H2Ob studies are still relevant 

since the inter imidazole-imidazole H-bond is preserved (346). 

  

 The applied 24 kHz MAS DNP gives enough sensitivity and proton resolution to 

distinguish between the HNε2B, HNε2A and H2Ob protons (Appendix 5.IV). Figure 5.6.2A 

shows an expansion of the H37 sidechain region of the (H)NHref (blue) and (H)NHdep (red) 

spectra. Whereas the room temperature spectrum needed ~2 days of data collection, the DNP 

spectrum needed only ~0.5 days, despite an under packed rotor (~1 mg of protein). The inset 

in figure 5.6.2A shows the 1D proton slices of the (H)NH spectra. The pore bound water peak 

shows the exact same 1H chemical shift in both the DNP and the room temperature (H)NH 

spectra. This suggests that the H2Ob is not on an intermediate exchange regime with neither 

bulk water nor H2Oa. If this were the case, an average chemical shift between the bulk water 

or the H2Oa chemical shift will be observed for the H2Ob. At the cryogenic temperatures used 

in DNP water exchange is hampered. We therefore hypothesize that the exchange between 

bound water and the bulk water is slow at room temperature. This suggests that the resident 

time of bound water is at least on the ms time scale or longer since it is observed by ssNMR 

experiments. 

  

 Similar to the room temperature measurements, at 90 K, the retained signal of H2Ob is 

significantly higher than the signal from protons covalently bound to 15N atoms for the 

filtered CP experiment. Only ~25% of the signal is retained for both HNε2A and HNε2B in 

contrast to the ~50% signal retained for the H2Ob (Fig. 5.6.2B and appendix 5.IV). This data 

further supports the room temperature experiments where we assign the 11 ppm proton 

chemical shift to a “bound water” molecule located near the “free” H37 Nδ1B. Although the 
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fast MAS ssNMR and DNP data suggest that there is a water molecule in proximity to the free 

Nδ1 of H37, the data does not provide direct information regarding the pore bound water 

location. 

 

Figure 5.6.2. Water - imidazole cluster revealed under DNP conditions.  
In A, overlay of the 90 Kelvin (H)NH water edited DNP spectra using a 2.5 mm four channel Phoenix probe at 
24 kHZ MAS with back CP off (blue) and 200 ms back CP on (red) of M2 H57Y at pH 7.8 (~7 if the we take the 
value from the pH color indicator). Insets show the 1D proton slices of the sidechain H37Bδ1 and the water 
nitrogen cross polarization (H- -N37Bδ1). In B intensity plots of H37Bε2, H37Aε2 and H- -N37Bδ1 at pH 7.8 (~7). The 
signal to noise was used for statistical analysis which is here reported using two sigma deviation. The spectral 
noise and the intensities were extracted using CcpNmr. 

 

 To assess the pore water location, we performed DFT calculations to calculate the 

theoretical NMR isotropic chemical shift of a water molecule explicitly positioned near the 

N37Bδ1 sidechain. To accelerate the DFT and NMR calculations, only residues G34 to W41 

were used. Two starting structures were used, either a dimer or the tetramer structure 

(Appendix 5.V). The geometry optimization was carried out stepwise from low to high 

accuracy of calculation theory (PM6 to BLYP3). A single water molecule (two for the 

tetramer) was added on an explicit position near to the N37Bδ1 after geometry optimization. 

The system was then re-optimized following the same step wise approach. As expected, the 

water molecule approaches the Nδ1 of the imidazole ring, however, the water molecule is 

found in two different positions (Fig. 5.6.3A and B). The water is either in the middle of the 

pore (Fig. 5.6.3A) with the second water proton pointing up towards the N-terminus of the 
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protein (pore facing water) or bridging between imidazole N37Bδ1 and the backbone NH of 

glycine 34 with both hydrogen moieties from the water molecule forming a hydrogen bond 

(bridging water) (Fig. 5.6.3B). In both cases, one of the hydrogen atoms from the water 

moiety is at a distance of ~1.6 Å from the Nδ1 of H37B, consistent with a hydrogen bond 

distance. In nearly perfect agreement with the measured shift, ~11 ppm, the calculated proton 

NMR chemical shift for the bridging water molecule is 10.6 ppm (Fig. 5.6.3D), which 

strongly supports the assignment. For the other water position the δHcalc is 8.5 ppm which 

deviates about 2.5 ppm from the measured value (~11 ppm). Taking a closer look, both 

positions showed a hydrogen bond length of ~1.6 Å with respect to the H-Nδ1, which could 

not explain the 2 ppm difference observed in the calculation. However, major electronic 

differences regarding the two molecular orientations are perceptible. In fact, this situation can 

be explained by the dipole moment and shielding effects on the proton by the neighboring 

atoms.  

 Free water proton gives an unexpected δHcalc of 0.9 ppm in contrast to the hydrogen 

bonded proton that gives a δHcalc of 4.6 ppm close to the expected chemical shift for bulk 

water. This difference can be explain by the DFT conditions used for the calculation, the pore 

facing molecule will be interacting with other water molecules filling the pore and here the 

calculations are performed in a vacuum. To address whether the water is either in the 

“bridging” or in the "pore facing” situation we decided to use solvated DFT calculations by 

including water in the polarizable continuum model (PCM) (Appendix 5.VI). Interestingly, 

the pore facing proton calculated chemical shift is still far, 1.5 ppm, from the expected close 

bulk water chemical shift of ~4.6 ppm. Nevertheless, the PCM model adds a dielectric 

potential over the whole structure, but does not account for other water molecules being a 

continuum hydrogen bonded network (water wire). With our current data, none of the water 

positions could be excluded. Despite this we confirm that a water molecule is hydrogen 

bonded to the free nitrogen of the histidine sidechain even at high pH values (~7). Both either 

"bridging water” or "pore facing water" have been supported one previous studies. Similar to 

our data, a bridging water molecule from the N37Bδ1 with the carboxyl group of G34 has been 

observed (301, 360). Although, contrary to our data, at high pH (8), the XFEL shows that the 

distance of the nearest water cluster to the H37Nδ1 at high pH (pH 8) is inconsistent with the 

formation of a hydrogen bond (300). 
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Figure 5.6.3. Chemical shifts of the structured water in the core of M2 calculated by density functional 
theory.  
In A and B, the water location is shown after DFT geometry optimization for the full tetramer and a dimer, 
starting from an NMR structure. (Appendix Table S1 for the assignments and restraints used for CYANA 
calculation of the NMR structure). The unusual proton shifts of water, and the N-H—N involved proton are 
labeled, as H1 and Hε2, respectively. C shows an overlay of both tetramer (A) and dimer (B) to show the different 
location of the pore bound water. Panel D compares calculated and experimental chemical shifts. 

 In addition to the water location, the DFT NMR calculations further supports the 

recent published the NH37Bε2 and N37Aδ1 hydrogen bond (342, 346). In fact, the calculated 

proton chemical shifts for NH37Bε2 are 13.07 and 13.97 ppm for the dimer and the tetramer 

structure in the presence of the water molecule, respectively. This is consistent with the 

measured 1H chemical shift value of ~14.27 ppm. 

6.3 Conclusion 

 To conclude, the combination of theoretical DFT calculations and NMR measurements 

has allowed localization of a pore bound water molecule in close proximity to the key residue 

histidine 37 of M2. In addition, the close agreement between DFT calculated and 

experimental chemical shifts further support the imidazole-imidazole hydrogen bond with a 

length of ~1.9 Å. Since water can only be detected in NMR with 1H or 17O, it is difficult to 

identify water in complex biological molecules since the proton chemical shift cannot be 

easily dispersed with a heteronucleus; 17O is the only possibility but it comes with tradeoffs 

due to the quadrupolar nature of the isotope. The combination of fast MAS and dipolar 

filtering overcomes these challenges, resulting in efficient detection of narrow proton 

resonances, and the ability to identify three distinct water chemical shifts in a membrane 
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protein sample. In addition, MAS rates above 20 kHz with DNP enables high sensitivity at 

cryogenic temperature where exchange processes are quenched. We expect that further 

advances in the spinning rate will result in much narrower proton resonances in future DNP 

installations. The wide chemical shift range of bound water results in an ideal application for 

DFT calculations, which nearly perfectly matched the experimental chemical shifts for a 

converged tetrameric structure of M2. We hope that this work, which sheds light on the water 

arrangement in the pore the M2 proton channel at a high physiological pH will contribute in 

the design of small compounds targeting M2 as therapeutics.  
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7. Conclusion  

 In this chapter, a de novo structure of the Influenza A M2 protein is reported (Fig. 

5.4.3), including details of the inter imidazole-imidazole hydrogen bonded histidine 37 side-

chains (Fig. 5.3.2), and a bound water molecule (Fig. 5.6.1). In addition, we determined the 

kinetic properties of drug binding using real time NMR (Fig. 5.5.5). The data are from a 

single fully protonated sample using proton detected ultra-fast MAS (100 kHz), 

complemented by DNP data and DFT calculations. The employment of faster MAS, which 

sufficiently averages the proton dipolar couplings in the sample and allows efficient proton 

decoupling using low radio frequency irradiations, has enabled us to measure a 2JNN coupling 

strength by INEPT transfer experiments in ssNMR (Fig. 5.3.2). The 8.9 Hz 2JNN coupling 

measured in the M218-60 construct is consistent with a dimer of dimers arrangement of the 

tetramer previously suggested by Timothy A. Cross and co-workers (312). The fast 

acquisition and the strict control of the sample temperature provides access to direct kinetic 

measurements using proton detection ssNMR. Kinetic measurements showed a cooperative 

binding mechanism upon rmt pore binding with a high energy barrier of ~117 kJ/mol (Fig. 

5.5.5). The high activation barrier together with the insoluble pore bound M2 in DHPC 

micelles suggest a change in the physicochemical properties of the tetramer surface which 

seems to promote the tetramer - tetramer interactions (Fig. 5.5.6). This is consistent with the 

M2 clustering recently reported by Tim and co-workers (348). Low temperature 

measurements allow the identification of a water moiety with a proton chemical shift at ~11 

ppm bound to the free Nδ1 of histidine 37B by using depolarization CP experiments. Finally, 

DFT calculations made it possible to locate the water molecule and to determine the length of 

the imidazole - imidazole hydrogen bond (~2 Å) (Fig. 5.6.3). Overall, the combination of 

these techniques improved our atomic understanding regarding the arrangement of key 

residue His37 of the M2 protein and its partners. We could show the location of the water in 

the vicinity of the His37, the imidazole-imidazole hydrogen bond and the nonspecific binding 

of rimantadine. 

 This data provides further structural information on the M2 protein that will help to 

understand drug binding mechanisms for future strains of M2 that will arise due to mutation 

and reassortment. Further studies on the conductance domain or even the full-length M2 at 

low pH are necessary to understand the histidine arrangement and drug binding mechanism in 
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the high conduction state of M2. Additionally, DFT as well as low temperature NMR 

measurement will be crucial to reveal the function of the H2Ob in the conduction state. Is the 

bridging water assisting the histidine turn over? Does the bridging water get pushed out in 

order to allow the His37 to shuttle? How does the water cluster assist conformational changes 

upon drug binding? Many questions remain open to fully understand the drug binding 

mechanism, and answering them could help to further improve the development of new and 

efficient drugs.  

 Yet, a high resolution structure of the fully bound rmt-M2 complex has not been 

achieved by solid-state NMR in lipid bilayers. This achievement will definitely increase 

considerably our understanding regarding the changes on the physicochemical properties M2 

upon binding and could perhaps relate the binding to a clustering process of the protein in the 

membranes. 

  

Summary figure showing the solved and remaining questions of the proton channel M2 in lipid bilayers.  
Top panel shows a summary of the work performed at pH 7.8 during this thesis. Using the conductance domain 
of M2 (residue 18 to 60), we detected and characterized an imidazole-imidazole hydrogen-bonded between 
H37Nε2B and H37Nδ1A and h-bonded water at position H37Nδ1B. Additionally, we identify an intermediate state 
in the presence of rimantadine (rmt) for which the pore bonded water and the imidazole-imidazole hydrogen 
bond are retained. We tracked the rmt pore binding and determined that rmt pore binding has a high energy 
barrier (Ea ~117 kcal/mol). Upon pore binding, the imidazole-imidazole h-bond is broken and large chemical 
shifts are observed consistent with a large structural rearrangements. The structure of the pore drug bound M2 at 
high pH (7.8) is still to be solved. The bottom panel shows the low pH condition. So far the only available data 
with the conductance domain by ssNMR at low pH (< 5) is the absence of the imidazole-imidazole hydrogen 
bond. Many questions remain to be answered starting from the structure of the conductance domain construct at 
the activated state of the protein (low pH).  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Appendix 

Appendix 5.I. M2 assignments 

Table S5.1. 1H, 13C and 15N chemical shift assignment Helix A. 

Amino acid sequence Atom Chain A Chain B

25 N   * *

25 CD  51.124 *

25 CA  65.497 *

25 HA  4.078 *

25 CB  32.819 *

25 HB2 2.176 *

25 HB3 1.690 *

25 QB  * *

25 CG  27.608 *

25 HG2 1.952 *

25 HG3 2.010 *

25 QG  * *

25 HD2 3.937 *

25 HD3 3.785 *

25 QD  * *

25 C   177.164 *

26 N   118.649 *

26 H   7.710 *

26 CA  57.607 *

26 HA  3.907 *

26 CB  40.408 *

26 HB2 1.684 *

26 HB3 0,593 *

26 QB  * *

26 CG  26.331 *

26 HG  1.091 *

26 QD1 -0,83 *

26 QD2 * *

26 CD1 23.937 *

26 HD11 * *

26 HD12 * *

Amino acid sequence 
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26 HD13 * *

26 CD2 * *

26 HD21 * *

26 HD22 * *

26 HD23 * *

26 QQD * *

26 C   178.259 *

27 N   120.324 118.821

27 H   8.157 7.266

27 CA  67.245 66.470

27 HA  3.198 3.318

27 CB  31.536 31.630

27 HB  2.243 2.099

27 QG1 0,887 0,927

27 QG2 0,761 *

27 CG1 22.840 23.020

27 HG11 * *

27 HG12 * *

27 HG13 * *

27 CG2 21.623 21.523

27 HG21 * *

27 HG22 * *

27 HG23 * *

27 QQG * *

27 C   178.737 *

28 N   119.423 120.700

28 H   8.223 7.880

28 CA  67.127 66.913

28 HA  3.345 3.408

28 CB  31.495 31.578

28 HB  2.215 1.917

28 QG1 0,874 0,875

28 QG2 0,437 0,755

28 CG1 23.139 22.335

28 HG11 * *

28 HG12 * *

Atom Chain A Chain BAmino acid sequence 
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28 HG13 * *

28 CG2 21.636 *

28 HG21 * *

28 HG22 * *

28 HG23 * *

28 QQG * *

28 C   177.835 177.982

29 N   121.120 120.082

29 H   8.400 8.250

29 CA  55.910 55.776

29 HA  3.713 3.719

29 QB  1.415 1.303

29 CB  18.531 18.501

29 HB1 * *

29 HB2 * *

29 HB3 * *

29 C   178.411 178.325

30 N   117.916 117.391

30 H   8.601 8.057

30 CA  55.037 55.485

30 HA  3.649 3.683

30 QB  1.254 1.298

30 CB  18.581 18.386

30 HB1 * *

30 HB2 * *

30 HB3 * *

30 C   178.324 178.393

31 N   112.691 112.161

31 H   8.007 7.956

31 CA  63.024 62.378

31 HA  3.787 3.963

31 CB  63.433 62.063

31 HB2 3.788 3.923

31 HB3 4.146 3.683

31 QB  * *

31 OG  * *

Atom Chain A Chain BAmino acid sequence 
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31 HG  * *

31 C   175.346 175.502

32 N   120.139 119.837

32 H   7.910 7.983

32 CA  65.581 64.490

32 HA  3.461 3.487

32 CB  37.746 37.203

32 HB  1.777 1.872

32 QG2 0,631 0,652

32 CG2 17.387 17.579

32 HG21 * *

32 HG22 * *

32 HG23 * *

32 CG1 29.635 29.474

32 HG12 1.723 1.766

32 HG13 0,829 0,627

32 QG1 * *

32 QD1 0,584 0,621

32 CD1 13.765 13.763

32 HD11 * *

32 HD12 * *

32 HD13 * *

32 C   177.137 177.083

33 N   115.096 118.987

33 H   8.093 8.061

33 CA  66.055 65.422

33 HA  3.630 3.400

33 CB  37.319 37.555

33 HB  1.738 1.766

33 QG2 0,645 0,626

33 CG2 17.904 17.353

33 HG21 * *

33 HG22 * *

33 HG23 * *

33 CG1 29.753 29.507

33 HG12 1.734 1.618

Atom Chain A Chain BAmino acid sequence 
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33 HG13 0,741 0,808

33 QG1 * *

33 QD1 0,546 0,634

33 CD1 13.572 13.455

33 HD11 * *

33 HD12 * *

33 HD13 * *

33 C   177.205 176.911

34 N   106.614 105.172

34 H   8.193 8.310

34 CA  47.830 48.308

34 HA2 4.307 4.021

34 HA3 3.551 3.376

34 QA  * *

34 C   175.235 174.928

35 N   120.262 119.955

35 H   8.314 7.977

35 CA  63.882 65.245

35 HA  3.737 3.546

35 CB  37.420 37.553

35 HB  1.778 1.789

35 QG2 0,627 0,746

35 CG2 17.488 18.036

35 HG21 * *

35 HG22 * *

35 HG23 * *

35 CG1 29.966 29.719

35 HG12 0,641 0,877

35 HG13 1.799 1.655

35 QG1 * *

35 QD1 0,576 0,568

35 CD1 13.557 13.542

35 HD11 * *

35 HD12 * *

35 HD13 * *

35 C   176.846 176.684

Atom Chain A Chain BAmino acid sequence 
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36 N   119.375 119.797

36 H   8.207 8.545

36 CA  58.230 58.454

36 HA  3.806 3.792

36 CB  41.701 41.832

36 HB2 1.742 1.744

36 HB3 1.359 1.361

36 QB  * *

36 CG  30.191 30.247

36 HG  1.716 1.525

36 QD1 * 1.742

36 QD2 * 0,633

36 CD1 26.803 26.856

36 HD11 * *

36 HD12 * *

36 HD13 * *

36 CD2 * 23.110

36 HD21 * *

36 HD22 * *

36 HD23 * *

36 QQD * *

36 C   177.564 177.663

37 N   117.285 116.491

37 H   7.998 8.361

37 CA  62.343 59.558

37 HA  3.624 4.358

37 CB  32.203 31.203

37 HB2 2.964 2.923

37 HB3 2.682 *

37 QB  * *

37 CG  * *

37 ND1 252.639 *

37 CD2 116.227 118.742

37 HD1 * *

37 CE1 136.282 137.228

37 NE2 166.110 172.784

Atom Chain A Chain BAmino acid sequence 
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37 HD2 6.434 7.260

37 HE1 4.130 6.910

37 C   176.748 175.214

38 N   119.527 117.268

38 H   8.078 7.711

38 CA  58.171 59.024

38 HA  3.378 3.527

38 CB  40.642 42.469

38 HB2 1.557 2.119

38 HB3 0,565 1.396

38 QB  * *

38 CG  26.507 26.591

38 HG  * 1.385

38 QD1 1.179 0,645

38 QD2 * *

38 CD1 21.769 22.950

38 HD11 * *

38 HD12 * *

38 HD13 * *

38 CD2 * *

38 HD21 * *

38 HD22 * *

38 HD23 * *

38 QQD * *

38 C   178.370 177.485

39 N   117.393 114.446

39 H   8.261 8.026

39 CA  65.795 65.472

39 HA  3.311 3.391

39 CB  37.442 37.571

39 HB  1.820 1.831

39 QG2 0,644 0,653

39 CG2 17.327 17.384

39 HG21 * *

39 HG22 * *

39 HG23 * *

Atom Chain A Chain BAmino acid sequence 
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39 CG1 29.606 29.659

39 HG12 1.800 1.762

39 HG13 0,920 0,835

39 QG1 * *

39 QD1 0,564 0,575

39 CD1 13.610 13.698

39 HD11 * *

39 HD12 * *

39 HD13 * *

39 C   177.077 177.056

40 N   118.846 121.280

40 H   7.729 8.823

40 CA  58.214 58.491

40 HA  3.839 3.845

40 CB  40.725 41.359

40 HB2 1.693 2.164

40 HB3 0,637 *

40 QB  * *

40 CG  30.110 26.836

40 HG  1.686 *

40 QD1 1.639 1.665

40 QD2 * 0,628

40 CD1 26.699 25.618

40 HD11 * *

40 HD12 * *

40 HD13 * *

40 CD2 26.800 22.959

40 HD21 * *

40 HD22 * *

40 HD23 * *

40 QQD * *

40 C   178.352 178.703

41 N   123.000 120.805

41 H   8.508 9.460

41 CA  62.783 61.473

41 HA  3.750 3.654

Atom Chain A Chain BAmino acid sequence 
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41 CB  28.130 27.473

41 HB2 3.341 2.503

41 HB3 2.546 *

41 QB  * *

41 CG  * *

41 CD1 127.718 126.563

41 CD2 * *

41 CE3 120.720 119.417

41 CE2 * *

41 NE1 130.961 131.228

41 HD1 7.210 6.145

41 HE3 7.392 *

41 CZ3 120.717 121.646

41 CZ2 114.559 114.847

41 HE1 11.282 10.779

41 HZ3 6.673 6.075

41 CH2 123.168 123.900

41 HZ2 7.812 7.614

41 HH2 6.923 7.182

41 C   178.527 178.143

42 N   119.515 117.149

42 H   8.812 7.835

42 CA  65.605 66.579

42 HA  3.040 3.230

42 CB  37.620 37.638

42 HB  1.811 1.873

42 QG2 0,599 0,670

42 CG2 17.048 17.506

42 HG21 * *

42 HG22 * *

42 HG23 * *

42 CG1 29.388 29.610

42 HG12 0,820 1.831

42 HG13 0,448 0,632

42 QG1 * *

42 QD1 0,594 0,630

Atom Chain A Chain BAmino acid sequence 
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42 CD1 13.634 13.804

42 HD11 * *

42 HD12 * *

42 HD13 * *

42 C   177.924 177.743

43 N   119.131 117.246

43 H   8.476 8.441

43 CA  58.150 58.071

43 HA  * 3.835

43 CB  * 41.717

43 HB2 * 2.042

43 HB3 * 1.382

43 QB  * *

43 CG  * 26.654

43 HG  * 1.671

43 QD1 * *

43 QD2 * *

43 CD1 * 22.938

43 HD11 * *

43 HD12 * *

43 HD13 * *

43 CD2 * *

43 HD21 * *

43 HD22 * *

43 HD23 * *

43 QQD * *

43 C   * 179.626

44 N   * 120.827

44 H   * 9.066

44 CA  * 57.821

44 HA  * 4.761

44 CB  * 42.688

44 HB2 * 2.571

44 HB3 * 2.878

44 QB  * *

44 CG  * *

Atom Chain A Chain BAmino acid sequence 
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44 OD1 * *

44 OD2 * *

44 C   * 178.417

45 N   * 116.307

45 H   * 8.530

45 CA  * 57.082

45 HA  * 3.515

45 CB  * 30.472

45 HB2 * 1.656

45 HB3 * 1.535

45 QB  * *

45 CG  * 25.154

45 HG2 * 1.018

45 HG3 * 0,771

45 QG  * *

45 CD  * 43.206

45 HD2 * *

45 HD3 * *

45 QD  * *

45 NE  * *

45 HE  * *

45 CZ  * *

45 NH1 * *

45 HH11 * *

45 HH12 * *

45 NH2 * *

45 HH21 * *

45 HH22 * *

45 QH2 * *

45 C   * 178.289

46 N  113.321

46 H  7.795

46 CA 56.308

46 HA 3.796

46 CB 42.254

46 HB2 0,994

Atom Chain A Chain BAmino acid sequence 
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46 HB3 1.437

46 QB *

46 CG 26.683

46 HG *

46 QD1 *

46 QD2 *

46 CD1 *

46 HD1 *

46 HD1 *

46 HD1 *

46 CD2 *

46 HD2 *

46 HD2 *

46 HD2 *

46 QQD *

46 C  177.261

47 N  112.622

47 H  7.539

47 CA 58.771

47 HA 4.616

47 CB 41.510

47 HB2 2.496

47 HB3 *

47 QB *

47 QD *

47 QE *

47 QR *

47 CG *

47 CD1 *

47 HD1 *

47 CE1 *

47 HE1 *

47 CZ *

47 HZ *

47 CE2 *

47 HE2 *

Atom Chain A Chain BAmino acid sequence 
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47 CD2 *

47 HD2 *

47 C  175.323

48 N  116.440

48 H  7.374

48 CA 61.539

48 HA 4.216

48 CB 39.503

48 HB2 3.521

48 HB3 3.131

48 QB *

48 QD *

48 QE *

48 QR *

48 CG *

48 CD1 *

48 HD1 *

48 CE1 *

48 HE1 *

48 CZ *

48 HZ *

48 CE2 *

48 HE2 *

48 CD2 *

48 HD2 *

48 C  175.579

49 N  120.104

49 H  9.956

49 CA 57.147

49 HA 3.323

49 CB 30.366

49 HB2 1.675

49 HB3 1.025

49 QB *

49 CG 25.281

49 HG2 0,994

Atom Chain A Chain BAmino acid sequence 
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49 HG3 *

49 QG *

49 CD 29.297

49 HD2 *

49 HD3 *

49 QD *

49 CE *

49 HE2 *

49 HE3 *

49 QE *

49 NZ *

49 HZ1 *

49 HZ2 *

49 HZ3 *

49 QZ *

49 C  175.633

50 N  111.291

50 H  9.020

50 CA 60.519

50 HA 4.428

50 CB 66.293

50 HB2 3.512

50 HB3 3.632

50 QB *

50 OG *

50 HG *

50 C  174.659

51 N  126.449

51 H  9.927

51 CA 66.079

51 HA 3.164

51 CB 38.119

51 HB 1.164

51 QG2 -0,014

51 CG2 17.184

51 HG2 *

Atom Chain A Chain BAmino acid sequence 
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51 HG2 *

51 HG2 *

51 CG1 28.621

51 HG1 1.470

51 HG1 0,413

51 QG1 *

51 QD1 0,468

51 CD1 13.806

51 HD1 *

51 HD1 *

51 HD1 *

51 C  176.078

52 N  117.337

52 H  7.911

52 CA 62.800

52 HA 3.854

52 CB 36.611

52 HB2 2.575

52 HB3 1.885

52 QB *

52 QD *

52 QE *

52 QR *

52 CG *

52 CD1 *

52 HD1 *

52 CE1 *

52 HE1 *

52 CZ *

52 CE2 *

52 HE2 *

52 CD2 *

52 HD2 *

52 OH *

52 HH *

52 C  178.934

Atom Chain A Chain BAmino acid sequence 
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53 N  121.953

53 H  8.545

53 CA 58.909

53 HA 3.994

53 CB 29.381

53 HB2 1.335

53 HB3 *

53 QB *

53 CG 25.241

53 HG2 0,990

53 HG3 *

53 QG *

53 CD 42.646

53 HD2 2.713

53 HD3 *

53 QD *

53 NE *

53 HE *

53 CZ *

53 NH1 *

53 HH1 *

53 HH1 *

53 NH2 *

53 HH2 *

53 HH2 *

53 QH2 *

53 C  177.941

54 N  120.659

54 H  7.314

54 CA 61.023

54 HA *

54 CB *

54 HB2 *

54 HB3 *

54 QB *

54 QD *

Atom Chain A Chain BAmino acid sequence 
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* DENOTES NO ASSIGNMENT  

54 QE *

54 QR *

54 CG *

54 CD1 *

54 HD1 *

54 CE1 *

54 HE1 *

54 CZ *

54 HZ *

54 CE2 *

54 HE2 *

54 CD2 *

54 HD2 *

54 C  178.051

Atom Chain A Chain BAmino acid sequence 
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Appendix 5.II. Structure calculation  

Table S5.2. Upper and lower distance used in Cyana for Helix A 

Residue 
number

Amino 
acid

Atom Residue 
number

Amino 
acid

Atom Distance 
(lol)

Distance 
(upl)

27 VAL O 31 SER H 1.80 2.00

27 VAL O 31 SER N 2.70 3.00

28 VAL O 32 ILE H 1.80 2.00

28 VAL O 32 ILE N 2.70 3.00

29 ALA O 33 ILE H 1.80 2.00

29 ALA O 33 ILE N 2.70 3.00

30 ALA O 34 GLY H 1.80 2.00

30 ALA O 34 GLY N 2.70 3.00

31 SER O 35 ILE H 1.80 2.00

31 SER O 35 ILE N 2.70 3.00

32 ILE O 36 LEU H 1.80 2.00

32 ILE O 36 LEU N 2.70 3.00

33 ILE O 37 HIS H 1.80 2.00

33 ILE O 37 HIS N 2.70 3.00

34 GLY O 38 LEU H 1.80 2.00

34 GLY O 38 LEU N 2.70 3.00

35 ILE O 39 ILE H 1.80 2.00

35 ILE O 39 ILE N 2.70 3.00

36 LEU O 40 LEU H 1.80 2.00

36 LEU O 40 LEU N 2.70 3.00

37 HIS O 41 TRP H 1.80 2.00

37 HIS O 41 TRP N 2.70 3.00

38 LEU O 42 ILE H 1.80 2.00

38 LEU O 42 ILE N 2.70 3.00

39 ILE O 43 LEU H 1.80 2.00

39 ILE O 43 LEU N 2.70 3.00

40 LEU O 44 ASP H 1.80 2.00

40 LEU O 44 ASP N 2.70 3.00
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Table S5.3. Upper and lower distance used in Cyana for Helix B 

Residue 
number

Amino 
acid

Atom Residue 
number

Amino 
acid

Atom Distance 
(lol)

Distance 
(upl)

127 VAL  O     131 SER  H       1.80 2.00

127 VAL  O     131 SER  N       2.70 3.00

128 VAL  O     132 ILE  H       1.80 2.00

128 VAL  O     132 ILE  N       2.70 3.00

129 ALA  O     133 ILE  H       1.80 2.00

129 ALA  O     133 ILE  N       2.70 3.00

130 ALA  O     134 GLY  H       1.80 2.00

130 ALA  O     134 GLY  N       2.70 3.00

131 SER  O     135 ILE  H       1.80 2.00

131 SER  O     135 ILE  N       2.70 3.00

132 ILE  O     136 LEU  H       1.80 2.00

132 ILE  O     136 LEU  N       2.70 3.00

133 ILE  O     137 HIST H       1.80 2.00

133 ILE  O     137 HIST N       2.70 3.00

134 GLY  O     138 LEU  H       1.80 2.00

134 GLY  O     138 LEU  N       2.70 3.00

135 ILE  O     139 ILE  H       1.80 2.00

135 ILE  O     139 ILE  N       2.70 3.00

136 LEU  O     140 LEU  H       1.80 2.00

136 LEU  O     140 LEU  N       2.70 3.00

137 HIST O     141 TRP  H       1.80 2.00

137 HIST O     141 TRP  N       2.70 3.00

138 LEU  O     142 ILE  H       1.80 2.00

138 LEU  O     142 ILE  N       2.70 3.00

139 ILE  O     143 LEU  H       1.80 2.00

139 ILE  O     143 LEU  N       2.70 3.00

140 LEU  O     144 ASP  H       1.80 2.00

140 LEU  O     144 ASP  N       2.70 3.00

141 TRP  O     145 ARG  H       1.80 2.00

141 TRP  O     145 ARG  N       2.70 3.00

142 ILE  O     146 LEU  H       1.80 2.00

142 ILE  O     146 LEU  N       2.70 3.00

143 LEU  O     147 PHE  H       1.80 2.00

143 LEU  O     147 PHE  N       2.70 3.00

148 PHE  O     152 TYR  H       1.80 2.00

Residue 
number
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Helix B has been define as starting at residue 127 instead of 27 in Cyana.  

Table S5.4. Entry of the imidazole-imidazole hydrogen bond for Cyana. 

Table S5.5. Manual restraints for helping tetramer formation. 

148 PHE  O     152 TYR  N       2.70 3.00

149 LYS  O     153 ARG  H       1.80 2.00

149 LYS  O     153 ARG  N       2.70 3.00

150 SER  O     154 PHE  H       1.80 2.00

150 SER  O     154 PHE  N       2.70 3.00

151 ILE  O     155 PHE  H       1.80 2.00

151 ILE  O     155 PHE  N       2.70 3.00

152 TYR  O     156 GLU  H       1.80 2.00

152 TYR  O     156 GLU  N       2.70 3.00

Amino 
acid

Atom Residue 
number

Amino 
acid

Atom Distance 
(lol)

Distance 
(upl)

Residue 
number

Residue 
number

Amino 
acid

Atom Residue 
number

Amino 
acid

Atom Distance 
(lol)

Distance 
(upl)

137 HIST HE2    37 HIST ND1       1.50 2.00 

137 HIST NE2    37 HIST ND1       2.80 3.00 

337 HIST HE2    237  HIST  ND1       1.50 2.00 

337 HIST NE2    237  HIST  ND1       2.80 3.00 

Residue 
number

Amino acid Atom Residue 
number

Amino acid Atom Distance 
(lol)

27 VAL CA      127 VAL CA 10.00

27 VAL CA      327 VAL CA 10.00

27 VAL CA      227 VAL CA 14.00

327  VAL  CA     127 VAL CA 14.00

45 ARG CB      245 ARG CB 21.00

145 ARG CB      345 ARG CB 21.00

37 H IST HE2     341 TRP NE1 5.00

237 HIST  HE2    141 TRP NE1 5.00
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Appendix 5.IV. pH at the DNP conditions.  
Buffer pH control upon liquid nitrogen freezing for DNP. The 
pH shifts for DNP sample containing ~1 mg of reconstituted 
protein resuspended in 24 µl of DNP juice are shown for 
frozen sample (A) and solution (B). C and D show the pH of 
the DNP solution with 6 µl of buffer solution instead of 
protein containing solution of the frozen and liquid samples, 
respectively. 
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Appendix 5.III. 2D (H)NH DNP at 90 K using 24 kHz MAS.  
The spectra were recorded using a 600 MHz DNP Bruker spectrometer with a gyrotron of 369 GHz. The 
temperature was set at 90 K and sample spun at 24 kHz MAS. The data was measured with a four channel 
phoenix probe with a 2.5 mm rotor.  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Appendix 5.V. DFT structures after geometry optimization. 
Correlation between experimental and the calculated NMR chemical shift. A to C shows the correlation of the 
histidine 37 chemical shifts of chain A for protons (A), nitrogens (B) and carbons (C). Histidine 37 of chain B is 
shown in D, E and F for protons, nitrogens and carbons, respectively. Only two linear fitting have been plotted 
corresponding to the same level of theory for the different structures used for the NMR calculations (J coming 
from the tetramer and G the dimer). Green, yellow and grey are the NMR shifts calculated with B3LYP 
functional and 6311G**2d,p as basis set for two slightly different pathways during geometry optimization using 
the dimer structure leading to G and H structure call int1 and H2O, respectively. The grey named TetA is the 
NMR calculation from the dimer structure from the optimization of the tetramer structure (I). For NMR 
calculation only half of the tetramer was selected (black box I). J, shows the dimer from the tetramer used for the 
NMR calculation. Only this dimer structure (J) was used because the water position was different from the other 
two structures using the dimer structures (G and H) for the whole geometry optimization process. The pink 
arrows in G, H, I and J indicate the water position found after geometry optimization. The geometry optimization 
and NMR calculation were also carried out using a different functional mPW1PW91 with 6-311G**2d,p as basis 
set, here noted as W91 (red and purple).  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Appendix 5.VI. NMR calculations using solvatation (water with PCM).  
Correlation between experimental and the calculated NMR chemical shift from the dimer and the TetA. A to C 
shows the correlation of the histidine 37 chemical shifts of chain A for protons (A), nitrogens (B) and carbons 
(C). Histidine 37 of chain B is shown in D, E and F for protons, nitrogens and carbons, respectively.  
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