
Graph-based Object Understanding

Dissertation

in order to obtain the doctoral degree
”Doctor rerum naturalium”

of the Georg-August-Universität Göttingen

in the Doctoral program
PhD Programme in Computer Science (PCS) of

the Georg-August University School of Science (GAUSS)

submitted by
Florian Teich

of Göttingen, Germany

Georg-August-Universität Göttingen
Göttingen, Germany

April 2021

Thesis committee

Prof. Dr. Florentin Wörgötter,
Georg-August-Universität Göttingen
Prof. Dr. Wolfgang May,
Georg-August-Universität Göttingen

Other members of the examination board:

Prof. Dr. Carsten Damm,
Georg-August-Universität Göttingen
Prof. Dr. Winfried Kurth,
Georg-August-Universität Göttingen
Prof. Dr. Stephan Waack,
Georg-August-Universität Göttingen
Prof. Dr. Ramin Yahyapour,
Georg-August-Universität Göttingen

Date of the oral examination: 1st of June, 2021

Graph-based Object Understanding
Abstract

Computer Vision algorithms become increasingly prevalent in our everyday
lives. Especially recognition systems are often employed to automatize certain
tasks (i.e. quality control). In State-of-the-Art approaches global shape char-
acteristics are leveraged, discarding nuanced shape varieties in the individual
parts of the object. Thus, these systems fall short on both learning and uti-
lizing the inherent underlying part structures of objects. By recognizing com-
mon substructures between known and queried objects, part-based systems
may identify objects more robustly in lieu of occlusion or redundant parts. As
we observe these traits, there are theories that such part-based approaches are
indeed present in humans. Leveraging abstracted representations of decom-
posed objects may additionally offer better generalization on less training data.
Enabling computer systems to reason about objects on the basis of their parts
is the focus of this dissertation.
Any part-based method first requires a segmentation approach to assign ob-
ject regions to individual parts. Therefore, a 2D multi-view segmentation ap-
proach for 3D mesh segmentation is extended. The approach uses the normal
and depth information of the objects to reliably extract part boundary contours.
This method significantly reduces training time of the segmentation model
compared to other segmentation approaches while still providing good seg-
mentation results on the test data.
To explore the benefits of part-based systems, a symbolic object classification
dataset is created that inherently adheres to underlying rules made of spatial
relations between part entities. This abstract data is also transformed into 3D
point clouds. This enables us to benchmark conventional 3D point cloud classi-
fication models against the newly developed model that utilizes ground truth
symbol segmentations for the classification task. With the new model, im-
proved classification performance can be observed. This offers empirical evi-
dence that part segmentation may boost classification accuracy if the data obey
part-based rules. Additionally, prediction results of the model on segmented
3Ddata are compared against amodified variant of themodel that directly uses
the underlying symbols. The perception gap, representing issues with extract-
ing the symbols from the segmented point clouds, is quantified.
Furthermore, a framework for 3D object classification on real world objects is
developed. The designed pipeline automatically segments an object into its
parts, creates the according part graph and predicts the object class based on
the similarity to graphs in the training dataset. The advantage of subgraph sim-
ilarity is utilized in a second experiment, where out-of-distribution samples of

objects are created, which contain redundant parts. Whereas traditional classifi-
cationmethodsworking on the global shapemaymisinterpret extracted feature
vectors, the model creates robust predictions.
Lastly, the task of object repairment is considered, in which a single part of the
given object is compromised by a certain manipulation. As human-made ob-
jects follow an underlying part structure, a system to exploit this part structure
in order to mend the object is developed. Given the global 3D point cloud of a
compromised object, the object is automatically segmented, the shape features
are extracted from the individual part clouds and are fed into a Graph Neural
Network that predicts a manipulation action for each part.
In conclusion, the opportunities of part-graph based methods for object under-
standing to improve 3D classification and regression tasks are explored. These
approaches may enhance robotic computer vision pipelines in the future.

Acknowledgements

First, I would like to thank my supervisor Prof. Dr. Florentin Wörgötter for his
guidance on the topics of my dissertation. His constructive suggestions and
valuable experiences enriched the research process immensely. Advice given
by Prof. Dr. May has been a great help in facilitating this work and steering it
into the right direction.

I am particularly grateful for the contribution given by my co-authors Dr. Tat-
yana Ivanovska, Dr. Shishan Yang, Dr. Simon Reich and Dr. Timo Lüddecke. I
would like to offer my special thanks to my colleagues, who always provided
constructive feedback. Namely, Carlo Michaelis, Dr. Christian Tetzlaff, Dr.
David Kappel, Jannik Luboeinski, Dr. Micheal Fauth, Moritz Becker, Minghao
Cheng, Dr. Minija Tamosiunaite, Osman Kaya, Dr. Tomas Kulvicius, Aisha
Aamir, Erenus Yildiz, Dr. Fatemeh Ziaeetabar, Sebastian Ruiz, Dr. Sebastian
Herzog, Shijia Li. Assistance provided by Ursula Hahn-Wörgötter, Thomas
Geiling and Dr. Yvonne Lips was greatly appreciated.

Furthermore, I wish to thank my parents, Tanja and Christian, and my siblings
Emma, Laurin, Leander, Lovis and Marlene for their support and encourage-
ment throughout this journey. Finally, I want to thank Laura Mainitz without
whom this work would not have been possible.

Contents

1 Introduction 1

2 Foundations 7
2.1 Machine Learning . 7
2.2 Graphs . 10
2.3 Neural Networks & Graph Neural Networks 12
2.4 3D Surface Meshes . 15
2.5 Metrics . 16

3 3D Object Segmentation 21
3.1 Introduction . 21
3.2 Related Works . 24
3.3 Methods . 27
3.4 Results . 35
3.5 Conclusion . 40

4 Concept Learning in 3D 43
4.1 Introduction . 43
4.2 Related Works . 46
4.3 Methods . 48
4.4 Experiments . 55
4.5 Results . 57
4.6 Conclusion . 60

5 Part-graph-based Object Classification 63
5.1 Introduction . 63
5.2 Related Works . 64
5.3 Methods . 66
5.4 Experiment: Ordinary Object Classification 77

5.5 Experiment: Out-of-Distribution Object Classification 80
5.6 Conclusion . 83

6 Assembly Repairment 85
6.1 Introduction . 85
6.2 Related Works . 86
6.3 Methods . 88
6.4 Experiments . 98
6.5 Results . 99
6.6 Conclusion . 101

7 Conclusion 103

Acronyms

CAD Computer-aided design
CD Chamfer distance
CNN Convolutional Neural Network
CUDA Compute Unified Device Architecture
DNN Deep Neural Networks
DPM Deformable Parts Model
EMD Earth mover’s distance
ESF Ensemble of Shape Functions
GCN Graph Convolutional Network
GH Graph Hopper
GNN Graph Neural Network
GPU Graphics Processing Unit
HED Holistically-nested edge detection
IoU Intersection-over-Union
kNN k Nearest Neighbour
LiDAR Light Detection and Ranging
LSTM Long short-term memory
mIoU mean Intersection-over-Union
MVCNN Multiview Convolutional Neural Network
MVRNN Multiview Recurrent Neural Network
MLP Multi layer perceptron
NN Neural Network
PN PointNet
RbC Recognition-by-Components
RGB-D Red-Green-Blue-Depth
RI RandIndex
SDF Shape-Diameter-Function
SotA State-of-the-Art
SP Shortest-Path
SVM Support Vector Machine
VFH Viewpoint Feature Histogram
WL Weisfeiler-Lehman
WWL Wasserstein Weisfeiler-Lehman

1
Introduction

Applications of Computer Vision can be found almost everywhere in our every-
day life: fromquality control in automatedmanufacturing systems [3], through
autonomous driving [50] to Just Walk Out Shopping [78]. With an increasing
amount of perception devices, there is a growing need for algorithms that are
able to process, interpret and make use of raw visual data. 3D sensors such as
Light Detection And Ranging (LiDAR) scanners or RGB-Depth (RGB-D) cam-
eras became cheaper over the past years [99]. More and more datasets are of-
fering raw 3D data in addition to 2D data, enabling to leverage depth and ge-
ometry information in their benchmarks [68, 104, 125]. Especially in robotics,
spatial awareness with respect to real world positions is crucial for tasks such
as navigation and motion planning.

Conventional 3D classification systems [73, 85, 97, 108] aim to extract global
shape information from the object. Several of these approaches first extract low-
level features per point [85], tuple [97] or pixels [108]. Subsequently, this low-
level information is aggregated in order to obtain a single global shape feature

1

Chapter 1

vector. This feature vector is then used to classify the overall object. However,
this process may discard specific shape information. As a single object shape
may vary across its surface, the aggregation may lead to a less pronounced
shape descriptor. This behaviour, in turn, may result in unreliable pipelines,
as objects may be misclassified. This poses the question whether a fundamen-
tally different approach may improve object understanding.

One alternative way to object understanding are part-based methods. Instead
of working directly with the global shape, part-based methods address the
problem in a bottom-upmanner. First, the object is decomposed into its individ-
ual parts by using a segmentation algorithm or by employing a part-detection
system. Relations between parts can be extracted and a part graph of the overall
object can be obtained. For tasks like classification, the extracted and attributed
part graph is ultimately used to reason about the object class [33]. A theoretical
underpinning of part-based approaches can be found in the “Recognition-by-
Components” (RbC) theory by Biederman [10]. In his RbC theory, Biederman
suggests that humans might use an internal representation of compositions of
primitives (“geons”) to perceive objects. For a given object, several different
instances of various of these geons would make up the final object, i.e. a mug
could be composed of an arc and a cylinder, to represent the handle and the
cup respectively. Of course, the (spatial) relations between components and
their poses play a critical role in such compositions: If the arc is connected to
the side of the cylinder, the resulting object closely resembles a mug, if the arc
is connected to the upper flat side of the cylinder, the object will rather resem-
ble a bucket.

The Deformable Parts Model (DPM) [28] is an example of such a part-based
system. The DPM was introduced in 2008 by Felszenwalb et al. and uses a
part-based model to identify pedestrians in images. Due to high variations
across the pedestrians’ appearance and poses, detection has often been difficult.
In the DPM, object parts (bodies, legs, arms, and heads) were first identified
inside the image. Afterwards, the spatial constellation of these components
was checked for validity (i.e. “Are the legs below the arms?”). Conventional

2

Introduction

State-of-the-Art (SotA) methods of the time had difficulties in dealing with
high variation of the global appearance of the pedestrians due to thementioned
variance in appearance and poses, thus frequently failing to detect pedestrians.
Through its part-based approach, theDPM successfully recognizedmanymore
pedestrian instances than these global approaches. More part-basedmodels for
highly structured objects followed, as e.g. for cars [47], animals, furniture [106],
and entire rooms [34].

There are at least two important advantages that can be identified when work-
ing with part-based models. The first major advantage of part-based systems
is that this allows for abstracting the objects in order to learn their underlying
structure, similar to what the DPM method accomplished for pedestrian detec-
tion. Arguably, instances of a single object class have a high variance in shape.
For example, there are many different cars “in the wild”, all shaped differently,
i.e. SUVs, cabriolets or station wagons. However, all these cars usually have
fourwheels in a specific spatial relation to each other and a bodypart on top. As
a consequence, the entire spectrum of differently shaped instances of an object
classmay be abstracted by using a part graph description (containing parts and
their relations). Learning - andworking internally - with such graphs might re-
duce the amount of data needed for robust learning of object classes andmight
allow for easier generalization of classification systems. The second major ad-
vantage is that through the use of the part graph representation of the overall
object, problematic cases such as occlusion or objects with additional redun-
dant parts become easily classifiable by graph comparison methods between
training graphs and query part graphs. Whereas global shape classifiers may
be confused by missing or additional parts, part graph-based methods may re-
cover from abundance or scarcity of shape information by identifying common
subgraphs between the part graph of the queried object and part graphs from
training objects.

An overview on the individual chapters of this work is visualized in Fig. 1.1.
Chapter 2 offers explanations of methods and concepts that are referenced in
multiple of the following chapters.

3

Chapter 1

Figure 1.1: Overview on the individual Chapters. As decomposition is essen-
tial to part-based classification methods, the issue of 3D mesh segmentation
on various objects is tackled in Chapter 3. In Chapter 4, an artificial dataset
consisting of symbolic part structures is created and 3D classification meth-
ods on this data are tested. In Chapter 5, classification performance of global
and part-graphmethods on real world 3D object data is compared. Chapter 6
deals with object repairment via part-graphs.

For part-based systems to work, objects need to be segmented first into their
individual components. In Chapter 3, a method for fast segmentation on 3D
meshes is extended. The results are compared to State-of-the-Art approaches
quantitatively, and qualitative segmentation results of the proposed model are
shown.

In Chapter 4, a synthetic symbolic 3D dataset is developed that obeys to spa-

4

Introduction

tial rules between symbols. Various classification systems on this dataset are
benchmarked in order to quantify howwell symbols (abstract object parts) are
learned in the designedmodel. Furthermore, it is measuredwhether providing
symbol-level segmentation boosts performance on the employed 3D classifiers.

In Chapter 5, parts obtained by segmentation methods as presented in Chap-
ter 3 are used for the task of 3D classification. The resulting segmentations
are used to create part-graphs from 3D objects. By utilizing graph similarity
measures, a novel part-graph-based object classification pipeline is developed
which is compared to classical global shape approaches.

Object classification is not the only domain in which part-based object under-
standingmight be useful to the system. Especially human-made objects adhere
to an underlying structure of parts. For instance, conventional tables are com-
posed of four legs and a tabletop. Whereas humans might be able to intuitively
fix a table where one leg is lying on the ground, computer systemsmay face var-
ious difficulties in doing so. Chapter 6 considers the problem of object repair-
ment. An automatic segmentation approach is utilized to obtain part-graphs
of the object and densely predict manipulations for each part in order to repair
the given object.

To summarize, in this work several possibilities for part-based methods are ex-
amined in the context of object understanding. Employing part-graphmethods
enriches the outcome of classification and regression tasks. This may lead to
improved vision pipelines in the future.

5

Chapter 1

Major sections ofChapter 5 contain figures and tables that are adapted or copied
from the publication:
3D Object Classification via Part Graphs
Florian Teich (75% contribution), Timo Lüddecke, and Florentin Wörgötter.
VISAPP 2021.

6

2
Foundations

2.1 Machine Learning
The generic term “machine learning” covers many algorithms and methods
but in general describes models that automatically provide a prediction as out-
put to a given input data sample [11]. The prediction is usually affected by
data seen during the training phase. Although there are different techniques
to train these models, such as reinforcement learning, supervised learning, or
unsupervised learning, only techniques from the field of supervised learning
are considered in the following chapters. In contrast to other types of machine
learning techniques, supervised learning relies on a labeled training dataset
[11].

2.1.1 K-Nearest Neighbour

The nearest neighbour method is a widely applied classification strategy. It
aims to offer accurate predictions of the target class of a given evaluation sam-

7

Chapter 2

Figure 2.1: k-nearest neighbour visualization of training samples from two
classes (orange and blue) and a query sample during evaluation (dark gray),
embedded inside the 2D feature space. For k = 5, three neighbours are cor-
responding to class 1 (orange) and two neighbours correspond to class -1
(blue). Thus, the sample is predicted to be from class 1.

ple based on on its proximity to reference samples. The technique is popular
for its simplicity and low requirements and computational effort as it avoids
any training phase.

Based on n training samples X = {x0, x1, ...xn} and their according labels Y =

{y0, y1, ...yn}, a query sample x̂i is evaluated by determiningwhich label is most
prominent in the training samples in the vicinity of the feature vector x̂. Only
the closest k neighbours are considered (cf. Fig. 2.1). For the distance, various
metrics can be used. This method is especially accurate if the samples of the
individual classes form separate segments in the feature space which are non-
overlapping. Considering multiple neighbours instead of the trivial variant of
the closest neighbour usually adds robustness to the method especially in case
of samples that lie in between segments [11].

2.1.2 Support-Vector Machine

Support-vector machines (SVM) are models that aim to learn decision bound-
aries between samples of two classes.
The two classes are labeled as −1 and 1. The training samples are denoted as
x1, ..., xn with their corresponding targets y1, ...yn and yi ∈ {−1, 1}. For classifi-

8

Foundations

Figure 2.2: Visualization of the
decision function, samples and
margins of an SVM in feature
space. Orange dots represent
samples from class 1, whereas
blue dots represent samples
from class -1. Figure adapted
from [11].

cation, the following decision function is be used:

h(x) = sign
(
wTx+ b

)
, (2.1)

with w being the normal vector to the hyperplane and sign being the sign func-
tion, switching value at 0.

The SVM tries to construct a hyperplane between the data samples of the two
classes (cf. Fig. 2.2). Optimally, the created hyperplane has a maximum dis-
tance (margin) to the closest samples of any of the two classes involved. These
close samples are also called “support-vectors”. The margin maximization
heuristic is important to reduce classification error during testing. This is due
to the fact that test samples from one class may be even closer to training sam-
ples of the other class. The hyperplane parameters have to be adapted during
training to obtain robust classification results during evaluation.

For scaling the binary classification method of SVMs to multiple classes, a one-
vs-rest approach can be taken. Here, an individual SVM is trained for each
class, where samples are either members of the class or not, thus reducing the
problem again to the binary case. For n classes, this results in n SVMs. During
evaluation, the test sample is evaluated by all n SVMs and classified according
to the SVM that yielded the highest output result to the given input sample [11].

9

Chapter 2

SVMs can be extended, i.e. if the samples of the two classes are overlapping, so-
called “soft-margin” SVMs can be employed. In software frameworks [21, 82],
kernel functions or precomputed kernel matrices (“Gram matrix”) can be pro-
vided to the SVM instead of the specific data samples in feature space. The
kernel function k can be applied to tuples of samples, thus resulting in the ker-
nel matrix when applied to all combinations of samples. This kernel matrix
can be considered as a novel feature space of the original samples. A popular
choice for the kernel function is the dot-product k(xi, xj) = (xi · xj). Especially
in Computer Vision, similarity measures such as Histogram Intersection [6]
are frequently used:

k(xi, xj) =
m∑
k=1

min(xik · xjk), (2.2)

wherem is the number of bins of each histogram. xjk refers to the kth bin inside
histogram xj .

2.2 Graphs

The basic structure of a graph can be denoted by G = (V,E). V represents
the set of nodes of the graph, whereas E represents the set of edges inside the
graph. Each edge is characterized by a source and a target node. Graphs may
be directed or undirected.

Figure 2.3: Different
concepts inside graphs:
vertices, edges, short-
est path and 1-ring
neighborhood. Figure
adapted from [57].

10

Foundations

For undirected graphs, (vi, vj) ∈ E if and only if (vj, vi) ∈ E (cf. Fig. 2.3). Nodes
are attributed by numerical or categorical properties. If all node attributes are
categorical, the node attributes are considered discrete and the graph is called
“labeled”. If all node attributes are numerical node attributes, the graph is con-
sidered to be “attributed”. Additionally, edges may be attributed by weights,
indicating the connection strength between nodes. To represent the set of edges
inside a given graph G, the adjacency matrix A can be used:

Aij =

1 if (vi, vj) ∈ E

0 otherwise
(2.3)

Therefore, the adjacencymatrixA has size n×n, where n = |V | is the number of
nodes inside the graph. Another important graph matrix is the degree matrix
D:

Dij =

{
deg(vi) if i = j

0 otherwise
(2.4)

where deg is the degree function of the node, counting all edges that this node
is a source or target of. Analogous to A, D is of size n × n. From these two
matrices, the Laplacian L of a graph can be obtained: L = D − A. The graph
G = (V,E) is usually attributed with node feature vectors xi,∀i ∈ V .

2.2.1 Weisfeiler-Lehman test

The Weisfeiler-Lehman test is usually used in order to determine graph iso-
morphisms. Satisfying this test is required for isomorphism, but not sufficient
(there are indeed non-isomorph pairs of graphs that satisfy the WL-test, but
these are usually rare). The Weisfeiler-Lehman (WL) test uses the concept of
label propagation to test whether two labeled graphs are isomorph [101]. In
this context, labeledmeans that a discrete label is assigned to each node of each
graph.

Given a labeled graph, all nodes are updated in an iterative manner until no

11

Chapter 2

Figure 2.4: Visualization
of the color refinement
scheme via Weisfeiler-
Lehman for discretely
labeled graphs. For the
attributed graphs, Eq. 5.11
is used as propagation
scheme between itera-
tions. Figure adapted
from [57].

changes occur. In each update step, each node is relabeled by considering its
own label and the multiset of labels in their neighbourhood; if the resulting
label was never used before, a novel label is thus created (cf. Fig. 2.4). When
considering labels as colors, this algorithm can be easily visualized as over the
iterations, the node colors will change as neighbourhood information is propa-
gated. Applying this coloring scheme to two graphs can then be used to check
whether both will converge to the same composition of colors.

2.3 Neural Networks & Graph Neural Networks

Graph Neural Networks (GNNs) are a family of recently developed methods
that extend the Neural Network (NN) framework and enable graph process-
ing. In Neural Networks, neurons are the atomic units involved in the decision-
making process of the model.

Figure 2.5:
a) Simplified
percep-
tron. b)
Multi-Layer-
Perceptron.
Figures
adapted
from [38].

12

Foundations

Neurons are characterized as computational nodes that are connected to (mul-
tiple) input nodes, each of which may have an individual connection strength
to the target neuron (cf. Fig. 2.5). The neuron weighs each input signal accord-
ing to the respective connection strength, sums up the result and - based on an
activation function - returns an output signal.

During training, the connection strengths (or “weights”) between input nodes
and the neuron get adjusted to result in better output estimates. This adjust-
ment is usually accomplished by backpropagation [93]. The backpropagation
training algorithm requires an error signal in order to adjust all weights of the
network appropriately. In the case of supervised learning, this error signal re-
flects the discrepancy between predicted output of the network and desired
output (“ground truth”). Multiple neurons are often grouped together (cf.
Fig. 2.5, b). These groups are called layers and are often evaluated sequentially.

Especially in Computer Vision tasks, convolutional layers show promising re-
sults and are widely employed in many different models [58, 110, 127]. In
convolutional layers, a convolution operation over the input signal is applied,
where input as well as output may consist of multiple planes, so called “chan-
nels”. The weights of the convolutional layer are called the kernel, which is

Figure 2.6: a) Convolution in 2D: element-wisemultiplication of the input by
the kernel and subsequent aggregation by a summation operation. b) Max-
Pooling in 2D: the maximum element inside the group of 2× 2 activations is
selected as output.

13

Chapter 2

element-wise multiplied by the input and subsequently aggregated by a sum-
mation operation (cf. Fig. 2.6, a). This convolutional operation is executed over
the entire input in a sliding window manner, where the parameters “stride”
and “dilation” influence the step size and the input elements that are consid-
ered. As the same kernel is applied to all regions of the image, the weights
are considered to be “shared”. Per convolutional layer, multiple of these ker-
nels are usually maintained in order to capture multiple important patterns.
Each convolutional layer may also lead to a smaller output than its input. In
image classification, a pooling strategy called “Max-Pooling” (cf. Fig. 2.6, b)
is frequently used to reduce a group of activations to a single scalar by apply-
ing the max operator. For the final classification, the intermediate activation
matrix is usually reorganized into vector form and processed by a Multi-Layer-
Perceptron (MLP) classification head. ThisMLP headwill reduce the extracted
n-element feature vector to a dense prediction: a scalar for each output class,
called “logits”. To obtain the respective class probabilities from the logits, a
Softmax layer can be employed:

Softmax(ẑ)i =
ezi∑K
j=1 e

zj
for i = 1, ..., K and ẑ = (z1, ..., zK). (2.5)

The concept of convolutional layers was later adopted for Graph Neural Net-
works (GNNs). In GNNs, the input to the network is provided as graph data,
which might be highly heterogenous compared to CNNs used for image clas-
sification. Where CNNs often expect the input image to have a specific size,
GNNs are able to handle various graphs of different node and edge sizes. For
these GNNs, the adjacencymatrixA and the featurematrixX are used as input.
A graph layer at depth l + 1 is generally formalized as

H(l+1) = f(H(l), A), (2.6)

with H(0) = X and f being a specific propagation function. An example of a
propagation function would be:

f(H(l), A) = σ
(
AH(l)W (l)

)
, (2.7)

14

Foundations

whereW (l) is the l-th layer weight matrix and σ(·) represents an activation func-
tion. After extending this rule to account for self loops (such that the current
nodes’ own internal state is leveraged as well as its neighbours) and normaliz-
ing A to avoid an explosion of the scaling in deeper layers of the network, the
following formula is obtained [56]:

f(H(l), A) = σ
(
D̂− 1

2 ÂD̂− 1
2H(l)W (l)

)
, (2.8)

with Â = A+ I , I being the identity matrix and the diagonal node matrix of Â:

D̂ii =
∑
j

Âij. (2.9)

There are different graph convolutional layers, differing in propagation or ag-
gregation behaviour [75, 129]. Others make use of edge weights between the
nodes of the graph [30, 32] or employ attention-mechanisms [113, 118].

2.4 3D Surface Meshes

Meshes are one of several modalities for describing objects in 3D. Digital 3D
mesh models are composed of polygons. Polygons can be described by a set of
vertex coordinates

V = {v1, ..., vV }, vi ∈ R3 (2.10)

and a set

F = {f1, ..., fF}, fi ∈ V × V × V (2.11)

of lists of indices referring to vertex indices and thus creating the polygons.
Such a collection of polygons is called a “polygon soup”. Triangle meshes only
consist of triangular polygons. As multiple triangles may share common ver-
tices, they can createmore complex surfaces and topologies (cf. Fig. 2.7). These

15

Chapter 2

Figure 2.7: a) Example of triangles (faces) forming a mesh. Examples of
degeneracies in meshes: b) A single hole (missing face definition). c): Over-
lapping faces. Here, no common topology can be extracted, as the two faces
do not share a common edge. d) Non-referenced vertex. The unreferenced
vertex cannot be reached via any path as no incident edge to the vertex exists.
Figures adapted from [14].

surface meshes often contain degeneracies. Such degeneracies can be holes,
which result from missing surfaces, or overlapping faces, which are hard to lo-
cate by visual inspection. In case of overlapping faces, pairs of vertices might
be close to each other but each is referenced by one of the faces involved. An-
other problem are unreferenced vertices, which can never be reached if only
traversing the face-topology. All these degeneracies need to be repaired, as
most algorithms on 3D meshes assume watertightness (mesh creates a closed
volume) or at least 2-manifoldness (surface is locally homeomorphic to a disk)
[14].

2.5 Metrics

To objectively compare or rank various approaches, metrics can be applied on
a given test set. These metrics often reduce multiple results to a small amount
of values, or - in some cases - single scalars.

16

Foundations

2.5.1 Accuracy

Accuracy ismost frequently used for classification tasks andmeasures themeth-
ods’ success rate. Given a sequence of predictions ŷ and ground truth y of
length nsamples, the accuracy of the classifier can be calculated as:

Accuracy(y, ŷ) = 1

nsamples

nsamples−1∑
i=0

δ(ŷi, yi), (2.12)

with δ being the Kronecker delta:

δ(i, j) =

0 if i ̸= j

1 if i = j
(2.13)

Adownside of thismetric is that possible imbalances between the various classes
inside the dataset are not considered. In case of the dataset containing signif-
icantly more samples of specific classes compared to other underrepresented
classes, this dataset is considered imbalanced. In this scenario, high accuracy
values are misleading as they can be achieved by always predicting classes of
high representation. One approach to improve the meaningfulness of the ac-
curacy metric on imbalanced data is to use a weighting scheme for individual
classes according to their frequency.

2.5.2 Rand Index (RI)

Rand Index is a widely used [4, 39, 54] metric for segmentation tasks. Given
two segmentations, the Rand Index is represented as a scalar reflecting the sim-
ilarity between the two segmentations. In [23], the Rand Index is formalized
as:

RI (S1, S2) =

(
2

N

)−1 ∑
i,j,i<j

[CijPij + (1− Cij) (1− Pij)] , (2.14)

17

Chapter 2

Figure 2.8: Example of two binary segmentations S1 and S2. The original
entity consists of eight primitives. S1 and S2 both assign each of these eight
primitives to one of two segments. There is no limitation on how many seg-
ments (here represented as colors) are used in any segmentation.

where S1, S2 represent two given segmentations, containing sequences s11, ..., s1n
and s21, ..., s

2
n indicating which segment the ith element is assigned to. Cij =

δ(s1i , s
2
j) is the Kronecker delta comparing element s1i and s2j , whereas Pij =

δ(s2i , s
2
j) is the Kronecker delta comparing elements of the same segmentation:

s2i and s2j . It is important to note that Funkhouser [23] defined the RI score as
1−RI to reflect a measure of dissimilarity instead of similarity. In the following
chapters, this convention will be used. Lower RI scores are desired in segmen-
tation approaches as these represent low dissimilarities between predicted and
reference segmentation.

2.5.3 Mean Intersection-over-Union (mIoU)

The mean Intersection-over-Union (mIoU) is a metric to capture semantic seg-
mentation performance often used to monitor fully-convolutional segmenta-
tion networks. The Intersection-over-Union (IoU) or Jaccard-Index [49] can
be calculated by:

IoU(S1, S2) =
|S1 ∩ S2|
|S1 ∪ S2|

(2.15)

For each semantic class, an individual IoU can thus be calculated between a
predicted semantic segmentation and the ground truth. If the average of all
semantic classes is taken, this metric is considered the mIoU.

In the example shown in Fig. 2.8, two sets of segmentations of eight entities
are presented. Calculating the IoU for each individual class (orange & blue),

18

Foundations

yields:

IoUo(S1, S2) =
1

6
, IoUb(S1, S2) =

2

7
. (2.16)

Averaging over both classes results in mIoU ≈ 0.226, where mIoU = 0 would
mean no agreement in segmentation and mIoU = 1 would indicate identical
segmentation.
For IoU and mIoU concrete labeling of the entities is required, whereas the
Rand Index does not make use of this information.

19

Chapter 2

20

3
3D Object Segmentation

3.1 Introduction

Segmentation is an essential component of many Computer Vision processes,
especially tasks related to scene understanding. In 3D mesh segmentation, in-
put objects are decomposed into their parts. Part segmentation is quite chal-
lenging as often part boundaries between segments are not easily detectable.
Moreover, specific formal criteria (such as ones regarding concavity and cur-
vature) for parts or part boundaries may not be applicable to all possible sce-
narios. For instance, one might consider the forearm and the upper arm two
separate parts of a human body, even when the arm is stretched and only very
small visual cues - such as creases - offer explanation to the existence of the
part boundary. Both geometrical properties as well as semantic criteria impact
our understanding of what we consider as parts of an object. Providing explicit
semantic knowledge (i.e. an arm is composed of upper and forearm) about the
world is often unfeasible in practice.

21

Chapter 3

It is important to distinguish Segmentation from Semantic Segmentation and
Instance Segmentation - two other popular tasks in Computer Vision. For seg-
mentation, the input is only separated into - often disjunct - regions, where-as
in Semantic Segmentation the input data gets densely labeled in addition. In In-
stance Segmentation, additionally to dense semantic labeling, entity instances
are separated from each other.

Instead of explicit semantic knowledge, thanks to recent advances in Machine
Learning, systems can be trained on collected data, such as ground truth seg-
mentations of objects. Generated by humans, the ground truth can be used as
a supervision signal to a model that tries to reproduce such ground truth by
predictions based on the original input data (supervised learning). Especially
in Computer Vision, these supervised and data-driven methods are often em-
ployed, as image data acquisition and annotation is usually cheap. The goal
is to avoid formalizing concepts explicitly and to train the model on data that
implicitly contains the concepts. Deep Neural Networks succeed in many of
these Computer Vision tasks such as classification and segmentation. Segmen-
tation algorithms serve the purpose of partitioning the input into disjoint clus-
ters. Such algorithms map each input primitive to a specific cluster index. For
point cloud input, a segmentation algorithmwill assign a specific cluster index
to each point. For mesh input, segmentation will assign cluster indices to faces
on the mesh surface.

Various segmentation approaches exist for the different 3D modalities (cf. Fig.
3.1). These approaches differ in the criteria they employ to partition the input
object into multiple clusters. Popular criteria make use of insights from percep-
tion and psychology [44, 67, 105], especially the concepts of convexity/concav-
ity [24, 53, 80, 98] and the minima-rule [23, 51]. Through the use of CNNs,
systems can be trained to segment given 2D images, especially important for
robotics and autonomous driving. In recent years, focus shiftedmore andmore
towards 3D data as 3D sensors are getting cheaper and systems may benefit
from the depth information gained by 3D data compared to 2D images. But

22

3D Object Segmentation

Figure 3.1: Different 3D modalities and respective segmentations. From left
to right: Original mesh, segmented mesh, original point cloud, segmented
point cloud.

more data - in general - also requires more space, more computational power
and often more time to train a system. Since the field of 3D machine learning
is still young, many of its methods have been lent from 2D machine learning.
Results in [84] on 3D data classification tasks suggest that 2D methods may
often outperform techniques that explicitly work on the original 3D data. In
these 2D techniques, the 3D shapes - usually provided as mesh surfaces - are
projected onto a virtual camera and these rendered images are subsequently
classified [108].

A conventional rendering technique for 2D image projections of 3D data is the
Phong shading [83], resulting in a gray scale image of themesh. The pixel inten-
sity is determined by the angle of the surface normal, the camera pose and the
light sources’ location. Using such rendered images of the 3D shapes, a CNN
can be employed in order to obtain a mesh classification model. In [108], Su et
al. combine images taken from multiple positions around a canonical pose of
the object. The authors combine these views by means of a pooling layer. The
max-pooled activations result in a single feature vector that can be fed to the
classification head of the network.

In [62], analogous to the classification task, a method was developed to seg-
ment 3D shapes based on multiple 2D projections. Their pipeline consists of
two parts: first, the rendered multiple views of the 3D model are individually

23

Chapter 3

Figure 3.2: Phong
shading renderings
of a 3D mug object
from various differ-
ent views.

fed into a Fully-Convolutional MVCNN, meaning all layers are Convolution-
al/Pooling/Upsampling layers such that the output of this model will have the
same size as the input. The goal is to train this model to detect salient regions
inside the image that may indicate part boundaries.

In the following, the data-driven segmentation approach from [62] (MVCNN)
is extended (“MVCNN++”) by leveraging different surface properties such as
normal and depth information. Furthermore, various possible design choices
for the proposed method are discussed and tested in order to identify the opti-
mal model architecture. The performance of the investigated method is quanti-
tatively compared to other popular segmentation algorithms via a benchmark
dataset. Advantages anddisadvantages are later discussed, focusing on qualita-
tive segmentation results and comparing them to ground truth segmentations.

3.2 Related Works
Classical 3D segmentation techniques often rely on concepts such as finding
creases and concavities on the shapes’ surface, whereas newermethods usually
use supervised data-driven approaches to learn the features that are important
for segmentation implicitly.

Clustering techniques such as K-means [71] were one of the first methods ap-
plied in the field of mesh segmentation [102]. Based on randomly chosen seed
faces, the mesh can easily be clustered by assigning each face to the closest
prototype. Weighting of the dihedral angle between faces even allows for a
more advanced clustering that will be sensitive to concavities and convexities.
However, this 3D segmentation method requires user input about the num-

24

3D Object Segmentation

ber of final clusters and is therefore not usable as an automatic approach. In
the ShapeDiam [100] approach, the Shape Diameter Function, measuring the
length of rays inside the mesh is used in order to find salient part boundary
regions. This approach is able to automatically choose a fitting amount of seg-
mentation clusters on its own based on a heuristic that reasons about the SDF
distribution on the global shape. Especially 3D objects that are accurately de-
scribed by their skeleton (medial axis transform) can be well segmented with
this method. However, objects which contain a lot of unsmooth creases - such
as box-shaped furniture created from CAD software - are often poorly seg-
mented by the SDF approach. In CoreExtra [54], the authors use Multi Di-
mensional Scaling (MDS) [59] to transform the input mesh into a canonical
pose in order to extract feature points for final the segmentation. Their method
leverages geodesic distances between the points of the mesh. NormCuts [39] is
a face clustering technique that leverages face area and concavity information
in a cost function to hierarchically merge adjacent face clusters. Normalized
Cuts are a widely employed technique in 2D Computer Vision for image seg-
mentation. However, the approach [39] does not include any heuristic to infer
a fitting number of segments, thus rendering it as a manual approach. The
RandWalks [60] method employs Random Walks on the mesh surface, relying
on the dihedral angle between faces for appropriate traversal costs. Again, this
method has to be initialized with a desired number of final clusters. Attene et
al. [4] developed a method that approximates the given input shape as a col-
lection of primitives. The proposed method uses spheres, cylinders and boxes
as the set of primitives used for fitting. Whereas this segmentation approach
performs verywell on “Computer-aideddesign”models (“CAD”), the segmen-
tation results for other objects such as animals and humans are often inadequate.
Benhabiles et al. [9] extract rich features related to curvature and concavity for
the edges between vertices of the mesh. With the help of a SVM they are able
to train a model on predicting boundary and non-boundary edges on novel
meshes, based on the aforementioned features. After a region thinning step,
contours between parts are obtained and optimized in order to retrieve the fi-
nal segmentation [4, 100].

25

Chapter 3

Figure 3.3: Example ren-
dering used for backpro-
jection. Each pixel is color
coded by the face ID that
was projected to the 2D
plane to obtain this ren-
dering. From the RGB
value, the original faces ID
can be obtained.

Since the first mesh segmentation papers contained rather qualitative results
showing particular output of their methods, Funkhouser et al. [22] created a
dataset of 380 meshes from 19 different object classes such that existing meth-
ods can be compared to one another more easily. In order to also compare
to and analyze human performance, multiple human annotations of manual
segmentations of each model into its parts was provided. Interestingly, the seg-
mentations from different users do not always agree, i.e. some users segmented
human models into 6 parts (head, body, 4 extremities), others segmented the
same models into 10 parts (hands and feet separately).

In [62], Truc et al. explored the task of 3D mesh segmentation by using pro-
jections in 2D. By providing multiple views of the same 3D object to the net-
work, possible part boundary regions from various perspectives are obtained.
These resulting “edge probability maps” are then fed to a Long-Short-Term-
Memory [43] (“LSTM”), whose task is to correlate boundary regions across
multiple maps in order to obtain more consistent edge probability maps. The
order in which the multiple edge probability maps are fed into the LSTM is
fixed, as a canonical ordering of views is initially defined such that themaps cre-
ate a time series (a video) which the LSTM processes. The output of the LSTM
will still be an ordered series of boundary probability maps. Afterwards, via a
technique called backprojection (cf. Fig. 3.3), the boundary candidates can be
recovered inside the originalmesh. Amapping between the originalmesh faces
and the pixels’ coordinates inside the rendered views (and the boundary prob-
ability maps) is maintained. Finally, a region growing algorithm is employed

26

3D Object Segmentation

Figure 3.4: Different rendering methods used: a) Phong shading. b) depth
map. c) color coded normal vectors relative to the camera. d) normal map
used for color coding.

on the original mesh in order to obtain the mesh segmentation of the 3Dmodel.
The reported training time of theMVRNNmodel is three days for theMVCNN
and additional three days for the LSTM stage, both ran on an Nvidia TITAN X.
This does not include the preprocessing steps of rendering all training and test-
ing objects, resulting in a very time- and computation-expensive method. The
authors of MVRNN justify the need for the LSTM step by suboptimal segmen-
tation results of the first stage alone - the Fully-Convolutional MVCNN.

3.3 Methods

In this work, similar to [62], a fully-convolutional network is employed. The
multiple rendered views serve as input to this network. In contrast to [62], the
originalMVCNNwhich uses the “holistically-nested edge detection” (HED) ar-
chitecture [126] is substituted by a Fully-Convolutional ResNet architecture [41]
(“DenseResNet”). This new architecture will create output that is nearly on
par with the original MVRNN two-stage method, making the refinement step
nearly redundant (as it provides diminished return) and saving a lot of training
time and computations along the way. Secondly, the input size of the rendered
images is increased to 256 as premature experiments showed that higher im-
age resolutions resulted in better segmentations in general, possibly since in
the backprojection step boundary faces may not be visible inside the 2D pro-
jection, leading to “bleeding” effects in the final region growing stage. Two

27

Chapter 3

Figure 3.5: Original 3D object rendering and dilation results of the ground
truth segmentation pixels. From left to right: phong shading, ground truth
part boundary mask, weakly dilated (1 dilation iteration) part boundaries,
strongly dilated (2 dilation iterations) part boundaries.

more modalities are provided for each rendered view to the network: a normal
rendering and a depth map. The motivation behind this is that part bound-
aries are often observable at creases between two parts. These creases may be
easier detectable by the respective depth map or normal map as both normals
as well as depth strongly varies around these regions. Furthermore, true part
boundary masks are dynamically changed during the training stage: as the
true boundary pixels occupy only a small subset of pixels in the rendered im-
ages, themasks are dilatedwith a big kernel at the first epochs and this dilation
kernel is reduced over time (cf. Fig. 3.5). This strategy may lead to faster train-
ing convergence as the model will start learning to identify fuzzy regions that
contain boundaries first and in later epochs it will shift to exact boundary local-
isation.

The overview of the resulting method is illustrated in Fig. 3.6. First, 60 2D pro-
jections from different poses around the meshes are rendered using different
modalities (phong shading, depth- and normalmaps). Also, ground truth part
boundary maps are rendered in this step. Next, the novel MVCNN++ evalu-
ates all 60 views of a given mesh to densely predict locations of the part bound-
aries in each of these views. Afterwards, the part boundary predictions from
all 60 views are combined and the respective regions on the mesh are marked
via backprojection. Using an automatic clustering technique (GraphCut [15]),
the final segments are identified on the object surface. In the following sections,
these steps are explained in greater detail.

28

3D Object Segmentation

...

Figure 3.6: Pipeline of the proposed segmentation method. 60 views are ren-
dered from the original input mesh, each view creating images for phong
shading, normals and depth maps. The different modalities of a single view
are concatenated and fed into the DenseResNet architecture, which predicts
per-pixel part boundary probabilities. Aggregating all predictions from the
60 views, the pixels can be reprojected to the original mesh faces. Using the
GraphCut algorithm [15], the final segmentation is obtained.

Preprocessing
Similar to the MVRNN preprocessing, all 3D objects were rendered from 60
different poses (fixed positions of the camera around the unit sphere). The ob-
jects are scaled in order to capture their full extent in each image. The camera
is always oriented towards the coordinates (0|0|0). In total, 380 3D objects from
the Princeton MeshSeg dataset were used across 19 object classes with each 20
instances. Similar to Truc [62], 16 objects per category were used as training
samples and 4 objects were used for testing respectively. For the training in-
stances, the canonical (upward) object pose and 15 random initial rotations of
the object were used in order to augment the data. For each object rotation, 7
different renderings were created for each of the 60 views:

• Phong shading: grayscale image (single channel), as in [83] (cf. Fig. 3.2)

• Normal map: RGB image (three channels), where the color represents

29

Chapter 3

the values of the surface normal at the specific location relative to the
camera orientation. To map the vectors to color values, the difference be-
tween the surface normal and the camera orientation in polar coordinates
is calculated and the image in Fig. 3.4 d) is used as the normal color map.

• Depth map: (single channel), indicates the distance of the surface to the
camera. The values are clipped between 0 and 0.9 for each image, where
0.9 indicates the closest distance between camera and the unprojected ob-
ject surface and 0 indicates farthest distance respectively. Clipping at 0.9
was done in order to still be able to distinguish the object from the back-
ground (which has value 1.0).

• Ground truth part boundary mask: (single channel, only provided to
training instances) indicates which pixels represent regions between two
parts. As mentioned above, the boundary mask is dilated in earlier train-
ing steps.

Model and Training
In this section, the design of the proposed model is described. The purpose of
the model is to retrieve a 2D boundary prediction from a given 2D image input.
Such a model requires a fully-convolutional architecture: the output size needs
to be the same as the input size. Output of convolutional filters usually tends
to be smaller than their input. Therefore, an autoencoder-like structure was
imitated, where in the first part of the network the input image is processed
through a cascade of convolutions which extract important features. This will
result in a spatially small vector or matrix that afterwards needs to be inflated
again to obtain an output matrix that has the same dimensions as the original
input image. For this inflation, bilinear upsampling operations are used to in-
crease the current feature matrix.

30

3D Object Segmentation

Figure 3.7: a) The
fully-convolutional
DenseResNet
architecture. b)
ConvBlocks consist
of mainly two
sequential con-
volutional layers,
each followed by
BatchNorm [48].
After the first BN,
a ReLU activation
[40] is used. c)
a DeconvBlock
obtains the input
from the previous
layer/block which
is upsampled and
concatenated with
output from earlier
ConvBlocks. d)
illustrates that
residual connec-
tions are added to
block outputs at
specific points.

31

Chapter 3

A dense ResNet18 [41] (a fully-convolutional variant of ResNet, in the follow-
ing called “DenseResNet”) is used as the proposed model for this boundary-
detection task and trained in mini-batches of 32 view instances per batch. The
ResNet [41] architectures contain blocks (sequences of layers) where the input
of each block is added to its output before feeding it to the next layer or block.
These shortcut connections force the network to fit a residual mapping. The au-
thors of ResNet argue that fitting this mapping requires less effort than fitting
the underlying desired mapping. Eight “ConvBlocks” are used to first extract
important features from the input image (cf. Fig. 3.7). The amount of kernels
that are used inside the convolutional layers is successively increased from 64
up to 512. For the size of the convolutional kernels, 3 × 3 was chosen as in the
original ResNet work [41].

In order to densely predict the likelihood of part boundaries, bilinear upsam-
pling is used. After the upsampling, the result and the input from the resid-
ual connection are concatenated and are fed into another convolutional layer
for each “DeconvBlock”. The last two “DeconvBlocks” in the model skip the
concatenation as they do not receive any residual input. Using this sequence
of deconvolutions, the original image size is reached. The penultimate layers’
output is a binary map of logits representing background (no part boundary)
and foreground (part boundary). With its skip-connections, this architecture
highly resembles the overall structure of fully-convolutional networks such as
UNet [90] or FCN [69].

Model predictions are visualized in Fig. 3.8. Analogue to MVRNN [62], every
training object is sampled from 16 random rotations so that in total 291840 im-
age instances are obtained (16 objects× 19 object classes× 16 random rotations
× 60 renderings). 10% of the training instances are randomly sampled as vali-
dation set that is evaluated after each epoch in order to measure the boundary
edge detection performance on held back, unseen instances. The ADAM opti-
mizer [55] was used with a learning rate of 0.001, the models were trained for
50 epochs and early stopping was employed to stop the training process if the
validation performance (measured in mIoU) did not improve for the last five

32

3D Object Segmentation

Figure 3.8: Predictions of the DenseResNet model on a chair overlaid on
Phong rendering of the view.

epochs.

Post-processing and segmentation evaluation
After the model evaluated all 60 views of a given object, 60 prediction maps
from different poses are obtained. In combination with the backprojection ren-
derings, the faces that occupy predicted part boundaries can be identified. For
each of the 60 views, the respective part boundary faces are stored and subse-
quently aggregated: If any of the 60 predictions estimates a face as a part bound-
ary face, this face will be considered a part boundary candidate (cf. Fig. 3.9).
Still, the identified regions are big andmore thinning needs to be done in order
to obtain closed paths representing sets of edges between parts. Such paths
can be easily extracted if all faces are completely labeled (each one assigned to
a specific cluster), as boundary edges are then identified by having two neigh-
bouring faces from different labels. Graph cut optimization [15] is employed to
obtain this final face labeling. Graph cut optimization is a popular method in
Computer Vision for tasks such as smoothing, segmentation or the correspon-
dence problem. Essential to graph cut is that all entities (here: faces) will have
costs associated to them for the explicit assignment to labels (unary term) and
also edges (connections between neighbouring faces) will have costs based on
whether the faces involved share the same label (smoothness term). Thus, the
overall energy is formalized as

E(x) =
∑
f∈F

edata (f, xf) +
∑
f,g∈N

esmooth (xf , xg) , (3.1)

33

Chapter 3

Figure 3.9: Left: Number of total boundary predictions for all faces after ag-
gregating all 60 predictions. Middle: number of viewswhere a particular face
is visible. Right: Ratio of boundary predictions to number of visible views.

where xf indicates the label assigned to face f . Based on the regions identified
as in the previous paragraph, initially one (random) face of each of these re-
gions is labeled with a unique cluster label. The unary term can be formalized
as:

edata(f, xf) =

0.0 if xf = xfinit

1000.0 else,
(3.2)

where xfinit
is the initial cluster label (if present). This term enforces that neigh-

bouring clusters do not merge to a single one, as the cost for changing the label
of the cluster prototype face is very high. The second term on the other hand
enforces smoothness by punishing not identically labeled adjacent faces with a
high cost.

esmooth (xf , xg) =

0.025 if xf = xg

1.000 if xf ̸= xg

(3.3)

The method of Boykov et al. [15] is used in order to obtain a solution to the
graph cut optimization problem by means of an energy function (cf. Eq. (3.1)).
This solution is a set of cuts through the edges of the constructed graph. These
cuts will result in n isolated graphs, each representing a cluster. Thus, the final
partition of all faces is achieved.

34

3D Object Segmentation

Figure 3.10: Train-
ing time and
segmentation per-
formance of the pro-
posed MVCNN++
method compared
to MVRNN &
MVCNN as re-
ported in [62].
Segmentation-
Performance:
RandIndex af-
ter [22] (lower is
better).

3.4 Results

Benchmark
The presented approach is compared to other 3D mesh segmentation methods.
The results are visualized in Fig. 3.12. It is important to note that several of these
methods are supervised methods (MVRNN, MVCNN++, Shu2016, MVCNN)
that use individual training and test splits. Therefore, the resulting RI may not
be the result of all meshes but only a subset or an average over multiple sets via
cross validation. Furthermore, many methods (namely RandCuts, NormCuts,
FitPrim, RandWalks, KMeans) are not completely automatic but require the
number of total segments as input. These methods are evaluated using a vari-
ety of possible values for the number of total segments and the results are av-
eraged in order to compare them to fully automatic segmentation approaches.

Fig. 3.12 shows that recent approaches seem to even outperform average human
segmentation results. This may be due to high variation in the level-of-detail
in the segmentation task that was conducted for the original benchmark[22].
The performance of the proposed method is only surpassed by MVRNN. Due
to its similarity to MVRNN and MVCNN, the proposed models’ performance

35

Chapter 3

Model R D N Res. Rot. Pre-trained RI
DenseResNet18 ✓ ✓ ✓ 400x400 9.72
DenseResNet18 ✓ ✓ ✓ 128x128 12.74
DenseResNet18 ✓ ✓ ✓ 256x256 9.63
DenseResNet18 ✓ 256x256 9.92
DenseResNet18 ✓ 256x256 9.68
DenseResNet18 ✓ 256x256 9.45
DenseResNet18 ✓ ✓ 256x256 9.65
DenseResNet18 ✓ ✓ 256x256 9.16
DenseResNet18 ✓ ✓ 256x256 9.58
DenseResNet18 ✓ ✓ ✓ 256x256 ✓ ✓ 9.31
DenseResNet50 ✓ ✓ ✓ 256x256 9.29

Table 3.1: Results for different configurations of the MVCNN++. The best
single-input configuration is achieved by normals, whereas the best paired
input performance is achieved by depth and normals. Rotation augmenta-
tion during training and the use of a pre-trained feature extractor improved
results in case of all three modalities used for input (9.63 to 9.31). The RI
values here are multiplied by 100 for reporting more precision.

and training time is compared to these two approaches in Fig. 3.10. It can be
seen that the novel method reduces training time significantly (8 hours) thus
rendering it an attractive alternative to the slightly better-performing MVRNN
(training time: 36 hours) and the MVCNN (training time: 72 hours).

Experiments
Experiments with varying model and training configurations have been con-
ducted in order to measure the impact of the different features on the overall
segmentation result. Particularly, the impact of varying image resolutions, dif-
ferent combinations of input features as well as various model designs is ana-
lyzed.

Image Resolution
Many of the meshes inside the MeshSegBenchmark dataset consist of several

36

3D Object Segmentation

thousands of faces. When applying the boundary prediction technique to the
rendered input images, the following condition is essential to the success of the
technique: each face should occupy at least one pixel in at least one of the 60
views in order to be classified either as boundary or non-boundary face. When
using low resolutions for the input images backprojection, not all faces may
get the opportunity to be classified. This might lead to the well-known seg-
mentation problem of “cluster bleeding”: if the boundary contour between
clusters is not completely closed (due to a face on the contour that was not
classified as a boundary face), the involved regions may get merged to a sin-
gle supercluster. For the original input image resolution in the MVRNN (and
MVCNN), 128x128 was chosen by the authors. Low resolutions were found to
lead tomany open creases in the predicted boundary regions and subsequently
to suboptimal segmentations. Therefore two further resolutions are employed:
256x256 and 400x400. As shown in Tab. 3.1, the overall segmentation perfor-
mance is heavily impacted by the chosen resolution. Interestingly, there seems
to exist a local optimum around 256x256 pixels, since the respective model per-
formance (9.63) is slightly higher than the 400x400 variant (9.72).

Input Features
To investigate how well the individual 3D modalities may help in predicting
the part boundary regions, the experiment was ran with different input fea-
ture configurations, namely R (phong shading), D (depth), N (normals) and all
combinations of these three modalities: RN, RD, ND and RND. Comparing the
performance of the resulting architectures may offer insights on how much in-
formation overlap there is between these modalities. Also, a group of features
that may contain complementary information is identified, which is beneficial
to provide in combination to the network. Regarding single modalities, the
data in Tab. 3.1 support the conclusion that the normal map is the most helpful
modality when it comes to predicting part boundaries. Interestingly, the phong
shading seems to be the least informative modality, even outperformed by the
depth map. Looking at the two-modality models, a combination of depth and
normals lead to the best overall result (9.16), whichmay indicate that these two
modalities hold relatively much complementary information that is important

37

Be
nc

h-
Ra

nd
-

Sh
ap

e
N
or

m
-

Co
re
-

Ra
nd

-
Fi
t

K-
Co

nc
-

M
V-

M
V-

Sh
u2

01
6

W
C-

M
V-

m
ar
k

Cu
ts

D
ia
m

Cu
ts

Ex
tra

W
al
ks

Pr
im

M
ea

ns
Aw

ar
e

RN
N

CN
N

[1
03

]
Se

g
CN

N
+
+

Av
er
ag

e
0.
10

3
0.
15

7
0.
17

6
0.
17

8
0.
21

1
0.
23

0
0.
21

6
0.
25

5
0.
09

4
0.
08

2
0.
15

4
0.
11
8

0.
12

3
0.
09

2
H
um

an
0.
13

5
0.
15

8
0.
17

9
0.
18

2
0.
22

5
0.
29

5
0.
17

1
0.
20

3
0.
11
9

0.
10

6
0.
19

6
0.
11
6

0.
12

8
0.
12

7
Cu

p
0.
13

6
0.
22

4
0.
35

8
0.
23

6
0.
30

7
0.
33

4
0.
40

9
0.
43

9
0.
09

9
0.
10

0
0.
10

0
0.
09

6
0.
17

1
0.
07

7
G
la
ss
es

0.
10

1
0.
09

7
0.
20

4
0.
14

2
0.
30

1
0.
31

6
0.
23

0
0.
17

8
0.
13

6
0.
06

6
0.
11
5

0.
17

3
0.
17

3
0.
08

1
A
irp

la
ne

0.
09

2
0.
11
5

0.
09

2
0.
18

6
0.
25

6
0.
26

1
0.
16

6
0.
22

7
0.
07

9
0.
08

5
0.
15

7
0.
15

0
0.
08

9
0.
09

5
A
nt

0.
03

0
0.
02

5
0.
02

2
0.
04

7
0.
06

5
0.
06

8
0.
08

6
0.
13

1
0.
01

9
0.
02

1
0.
04

4
0.
00

1
0.
02

1
0.
01

6
Ch

ai
r

0.
08

9
0.
18

9
0.
11
1

0.
09

3
0.
18

7
0.
16

7
0.
21

4
0.
21

3
0.
05

4
0.
05

1
0.
07

8
0.
04

0
0.
10

3
0.
05

1
O
ct
op

us
0.
02

4
0.
06

7
0.
04

5
0.
06

3
0.
05

1
0.
06

9
0.
10

3
0.
10

0
0.
01

8
0.
02

2
0.
06

0
0.
03

6
0.
02

9
0.
02

8
Ta

bl
e

0.
09

3
0.
37

4
0.
18

4
0.
09

8
0.
24

4
0.
13

9
0.
20

0
0.
37

9
0.
06

2
0.
07

2
0.
09

1
0.
04

0
0.
09

1
0.
04

9
Te

dd
y

0.
04

9
0.
04

5
0.
05

7
0.
12

1
0.
11
4

0.
12

7
0.
13

2
0.
18

1
0.
03

1
0.
03

5
0.
05

5
0.
02

4
0.
05

6
0.
04

0
H
an

d
0.
09

1
0.
09

7
0.
20

2
0.
15

6
0.
15

5
0.
22

2
0.
20

6
0.
16

4
0.
10

4
0.
07

6
0.
12

2
0.
13

5
0.
11
6

0.
07

0
Pl

ie
r

0.
07

1
0.
10

9
0.
37

5
0.
18

3
0.
09

3
0.
23

0
0.
16

9
0.
26

3
0.
05

4
0.
05

4
0.
14

3
0.
15

1
0.
08

7
0.
06

6
Fi
sh

0.
15

5
0.
29

7
0.
24

8
0.
39

9
0.
27

3
0.
40

6
0.
42

1
0.
41

4
0.
12

9
0.
14

6
0.
25

3
0.
28

8
0.
20

3
0.
12

5
Bi

rd
0.
06

2
0.
11
4

0.
11
5

0.
21

2
0.
12

4
0.
28

0
0.
20

6
0.
19

9
0.
10

4
0.
05

9
0.
11
9

0.
17

1
0.
10

1
0.
07

1
A
rm

ad
ill
o

0.
08

3
0.
08

1
0.
09

0
0.
12

0
0.
14

1
0.
10

7
0.
09

4
0.
11
6

0.
08

0
0.
06

0
0.
12

0
0.
07

3
0.
08

1
0.
11
5

Bu
st

0.
22

0
0.
25

1
0.
29

8
0.
33

2
0.
31

5
0.
33

5
0.
32

7
0.
35

2
0.
21

4
0.
16

2
0.
35

1
0.
27

5
0.
26

6
0.
29

2
M

ec
h

0.
13

1
0.
28

3
0.
23

8
0.
17

5
0.
38

7
0.
24

4
0.
27

2
0.
42

6
0.
10

0
0.
12

1
0.
36

9
0.
07

3
0.
18

2
0.
06

5
Be

ar
in
g

0.
10

4
0.
12

9
0.
11
9

0.
17

9
0.
39

8
0.
27

1
0.
23

4
0.
26

0
0.
09

7
0.
08

0
0.
10

4
0.
05

6
0.
12

2
0.
06

5
Va

se
0.
14

4
0.
16

0
0.
23

9
0.
26

8
0.
22

6
0.
28

7
0.
28

9
0.
40

1
0.
16

0
0.
10

6
0.
21

6
0.
21

2
0.
16

1
0.
14

0
Fo

ur
Le

g
0.
14

9
0.
17

7
0.
16

1
0.
18

9
0.
19

1
0.
20

8
0.
18

3
0.
19

5
0.
13

3
0.
13

5
0.
21

3
0.
14

0
0.
15

2
0.
19

5

Ta
bl
e
3.
2:

Co
m
pa

ris
on

by
Ra

nd
In

de
x
of

di
ffe

re
nt

m
es

h
se

gm
en

ta
tio

n
m
et
ho

ds
by

ca
te
go

ry
.N

ot
e
th

at
Be

nc
hm

ar
k

is
th

e
H
um

an
an

no
ta
tio

n.

38

3D Object Segmentation

Figure 3.11: Qualitative results of the best model (Fully-Convolutional
ResNet18, 256x256 pixel input, depth and normal data as input).

for part boundary prediction.

Models
Different sizes of the DenseResNet architecture were tested: DenseResNet18
and DenseResNet50 and also measure the impact of using pre-trained weights
(provided by ImageNet) and data augmentation via random rotation of the
training meshes. However, as shown in Tab. 3.1, these choices seem to only
have a minor impact on the overall segmentation results.

Qualitative Results
In Fig. 3.11, segmentation results of the proposed method on the test data are
shown qualitatively. The segmentations resemble the ground truth and major
problems are usually encountered in object classes where other segmentation
algorithms struggle aswell: i.e. fish and bust often contain unintuitive partitions,
which have a negative impact on the RI score. Also, the part boundaries of
CAD-like models such as cubes or cylinders are not perfectly refined but some-
times cross neighboured part regions. The teddy class is often a challenge for

39

Chapter 3

Figure 3.12: Segmentation performance comparison of various methods.
Lower RI is better.

completely non-data-driven methods as the part boundaries are occasionally
traversing convex regions (upper arms), but the proposed method manages to
still identify part boundaries there. In Fig. 3.13, ground truth and predictions
are compared. As visible in the mug and octopus mesh, due to the graphcut al-
gorithm [15] applied on a very fuzzy boundary prediction, additional clusters
may be predicted, leading to bad segmentation.

3.5 Conclusion

In this work, a 2D multi-view segmentation approach for 3D mesh was devel-
oped by identifying and addressing three main concerns of the existing MV
CNN [62] approach. First, input resolution is crucial to the segmentation pro-

40

3D Object Segmentation

Figure 3.13: Ground truth segmentations and qualitative results. Upper row:
GT, Bottom row: MVCNN++ (ours).

cess in the sense that higher resolution (up to a certain point) increases the
performance heavily. Second, the choice of the HED architecture was shown
to be a bottleneck, training time-wise and performance-wise. Employing the
DenseResNet further enhances the model performance and lowers the training
time dramatically. Third, enriching the input by providing additional modali-
ties containing complementary information boosts the model prediction even
further. Through these enhancements, the proposed method can achieve ac-
ceptable segmentation results without extensive training time. In the future, ex-
tending this approach by providing multiple segmentation proposals together
with the already tested input modalities to the network can be investigated.
We aim for a system capable of fusing multiple segmentation approaches this
way, as these are often complementary. For instance, the SDF approach works
well for humanoid objects and suboptimally on CAD-like objects; the FitPrim
approach performs complementary to this. By considering multiple segmen-
tation approaches, a best-of-both-worlds compromise may be found to obtain
good segmentation results on all different object classes.

This chapter dealt with 3Dmesh segmentation. The topic of segmentation reap-
pears in the subsequent chapters as it is essential to bottom-up understanding

41

Chapter 3

of objects and the creation of part-graphs. In the next chapter, part segmen-
tation information is utilized for object classification. Instead of an automatic
segmentation approach as in this chapter, focus is on perfect segmentation in-
formation and the question whether it provides benefits for the classification
task.

42

4
Concept Learning in 3D

4.1 Introduction

Humans are able to learn concepts - “building blocks of thoughts” as formu-
lated in [72]. Learning such concepts has various advantages: often, only small
amounts of examples are required in order to learn the representation of enti-
ties by means of concepts, which in turn generalize well to unseen data later
on [61, 112]. For instance, a child may easily learn to perceive and recognize
hand-written digits - without the need of thousands of examples. Contrary,
modern data-driven deep learning approaches are considered data hungry and
often require thousands of samples for accurate classification. A reason for this
might be that current computer systems are often instructed to find discrimi-
natory features in the input data instead of explicitly learning concepts.

In this work, a concept is defined as a set of rules. Each rule is made of symbols
and their spatial relationship to each other. To remain with the handwritten

43

Chapter 4

Figure 4.1: Instances of handwritten digit 7 (top), segmented (bottom) and
entity graph as a prototype of a ruleset (right).

digit example: seven is usually represented by two or three strokes. Namely,
a horizontal stroke on top, a diagonal stroke from top right to bottom left and
optionally another smaller horizontal stroke in the middle (cf. Fig. 4.1). Each
stroke in this example would be considered a symbol. The concept of the digit
seven is composed of these symbols, represented by strokes, and their relation
to each other. These kinds of concepts can be applied to many human-made
objects. This is because human-made objects are often highly structured, fol-
lowing such rules, e.g. “A chair is a seat with a back and at least one leg.”.

As mentioned before, current computer models will unlikely learn any con-
cepts explicitly. Additionally, these systems can often be tricked by adversarial
attacks [1, 16]. By only manipulating a small set of input elements (i.e. pixels),
deep neural networks prone to these attacks maymisclassify objects seen in 2D
images. As the manipulation created by these attacks are often subtle, humans
may not even recognize them. Similar to 2D models, 3D models can also be
impacted by adversarial attacks.

One of the most widely employed 3D point cloud classification architectures is
PointNet [85]. The authors of PointNet [85] found that often, only a small num-
ber of points inside the input cloud (called “critical points”) is shaping the fi-

44

Concept Learning in 3D

Figure 4.2: Visualization of critical points (green) and non-critical points
(pink) of two point clouds evaluated on a trained PointNet architecture. Only
the green points contribute to the final feature vector. Obfuscation of pink
points would thus result in the same feature vector and classification result.

nal class prediction (cf. Fig. 4.2). This behaviour shows yet again the weakness
of discriminative sub-symbolic learners: perturbation of small input regions
(e.g. points in 3D) may lead to significantly altered predictions. The aforemen-
tioned practice may be detrimental to the overall classification performance of
the model.

To summarize, methods that are able to learn concepts have at least the follow-
ing two major advantages. First, the learned concepts may be utilized to im-
prove the robustness of the classification system and - in general - may decrease
data required for training. Second, systems with symbolic reasoning may pro-
vide more human-like explanation for decisions. For instance, attributing the
classification prediction of an image on specific object parts instead of scattered
pixels. One approach to steer current models into the direction of learning con-
cepts is to make it easier to recognize symbols. A bottom-up approach can be
used that first segments the input data in order to extract the individual sym-
bols. If the model successfully learned the underlying class concepts, these
symbols can later be utilized for the classification.

There are several questions that arise from this theoretical approach. Does seg-
mentation indeed improve classification? Are current 3D classification meth-
ods already exploiting reoccuring subpatterns - symbols - to the fullest extent?

45

Chapter 4

These two questions are tackled by creating a dataset that different models are
benchmarked on. First, a symbolic dataset for the emulation of class concepts
is developed. These concepts consist of spatial relationship rules between sym-
bols. Our dataset provides not only symbolic data but also offers 3D point
clouds (raw, and segmented) based on these symbols. Four classification mod-
els are employed on these three data modalities. The already existing PointNet
and PointNet++ are chosen for raw point cloud classification. Additionally,
two newmodels are designed: Graph-PointNet andGraphNet, working on seg-
mented point clouds and symbolic data respectively. By comparing the perfor-
mance of these four approaches, the impact of segmentation and efficiency of
symbol extraction from 3D data is quantified. Lastly, how strongly certain pa-
rameters (i.e. size of symbol alphabet) may impact the overall classification is
quantified as well.

4.2 Related Works

Symbolic & subsymbolic datasets
Symbolic data is especially present in Computer Graphics. As for games and
simulations, systems need to keep track of objects, agents and other entities.
Maintaining entity instantiation parameters such as position, orientation, pose
and size for each dynamic object allows for renderings of entire 3D scenes.
Recently, the machine learning community started to use games and game
engines for creating synthetic datasets. Particularly for semantic segmenta-
tion tasks, game engines that render (instantiate) symbolic data are a major
boon to current models [87, 89, 91], as the rendering looks more and more
realistic.Secondly and more importantly: The process of automatic rendering
of scenes makes the - otherwise required - task of human annotations of se-
mantic labels unnecessary. Semantic labels can be trivially obtained by repro-
jecting the image pixels to the represented object, rendering costly human an-
notators redundant and saving hours of work. Third, the resulting semantic
segmentations can be much more accurate compared to human semantic seg-
mentation annotations which often suffer from simplified shapes or contours

46

Concept Learning in 3D

such as polygons consisting of only several anchor points. With automatic se-
mantic labeling of synthetic data on the other hand, a pixel-level granularity
can be achieved. For classification tasks, there are few datasets that are using
variations of subsymbolic representation. In [32], oversegmentation was ap-
plied to the popular MNIST dataset [63]. Thus, new data samples containing
graphs of superpixels were created in order to use the obtained irregular data
structure on Graph Convolutional Networks. Compared to pixel-level expla-
nations, through the oversegmentation, more human-like explanations can be
constructed. This stands in stark contrast to per-pixel scalars when using ex-
planation techniques on CNNs, where consistency is often not achieved and
neighbouring pixels may indicate opposing classes. Different from the here
presented dataset, the Graph-MNIST dataset does not explicitly contain the un-
derlying symbolic rules to generate new data but only the 2D instantiations.

Concept learning
In [61], Lake et al. introduce Omniglot - a dataset of handwritten characters.
The dataset consists of over 1600 characters from 50 alphabets, drawn by 20
different people. The provided stroke data enables complete segmentation
of individual strokes. Using this Omniglot dataset, Lake et al. compare one-
shot classification performance of deep learners and their proposed Bayesian
Program learner. Different from this approach, the here presented dataset is
dynamically created based on randomly created concepts in 3D. In [18], Cao
et al. develop a meta-learning strategy to create models that identify human-
understandable concepts (here: animals) inside images. The identified parts
are correlated with known prototypes and leveraged for few-shot learning on
image classification. The authors selected the UCS Bird dataset [121], contain-
ing multiple instances of different birds. Different from their approach, the
here presented dataset is working on artificially created concepts instantiated
in 3D point clouds instead of 2D images.

3D classification using segmentation
In recent years, multiple approaches were developed that are making use of
rudimentary segmentation information in order tomore robustly classify given

47

Chapter 4

3D data. PointNet++ [86] uses a kNN approach to groupmultiple points, thus
creating local patches. Through multiple, hierarchical groupings, PointNet++
uses these local patches of varying granularity for point cloud classification.
This stands in stark contrast to its predecessor PointNet, which instead focused
on individual points instead of point clusters. However, this kNN clustering
method only considers distances between points for the grouping. This may be
problematic as desired local patchesmay contain outlier points that are emitted
by other patches in local vicinity. The approach of Vincze et al. [122] uses a re-
gion growing approach to cluster 3D meshes into a fixed number of segments.
Afterwards, a Graph Neural Network [56] is employed in order to classify the
sampled 3D point clouds of the given mesh by considering the point clouds of
the extracted segments. Vincze et al. report that their approach generalizeswell
from artificial to real-world data, as they benchmark their part-based approach
against the classical PointNet [85] method. Although, Vincze et al. only use
one cluster granularity instead of a more hierarchical approach, their grouping
resembles the kNN strategy of PointNet++. Similar to PointNet++, semantic
part boundaries are ignored and extracted clusters have no semantic meaning.

The aforementionedComputerVisiondatasets are using 2D images as notmuch
research on concepts in 3D is conducted yet. Here, we want to fill the void and
create an abstract and adjustable dataset with the additional feature to instan-
tiate individual samples in 3D.

4.3 Methods

As the dataset will serve as input to the models, the dataset generation pro-
cess is described in this section. Afterwards, the four individual models are
introduced: PointNet, PointNet++ and two proposed models - GraphNet and
Graph-PointNet.

48

Concept Learning in 3D

Figure 4.3: The process of creating the dataset. a) Rules are generated
by sampling random pairs of symbols and one random spatial relationship
(“above”, “below”, “left”, “right”, “in front of”, “behind”). b) On a discrete
grid, a class concept can be instantiated by sampling coordinates of the sym-
bols involved on a discrete 3D grid. c) Noise can be added by inserting ran-
dom symbols at non-occupied coordinates. d) Through noisy symbols, other
class concepts may also be satisfied by this sample. The sample has to be
newly generated in case it satisfies any other class concept. e) Each symbol is
transformed into a point cloud and added to the global cloud of the current
sample. f) After removing the symbol instance segmentation, a raw cloud is
obtained.

4.3.1 Dataset Generation

Thedataset developedhere contains two important features. First, the designed
dataset offers multimodal data. In addition to symbolic data samples, the data-
set is able to generate 3D point clouds from these samples. Two different types
of point clouds can be obtained: raw, unsegmented clouds as well as instance
segmented clouds, where each point is mapped to its respective symbol. The
second major feature of the dataset is its parameterization: the most impor-
tant variables inside the dataset are adjustable. This enables individually tuned
datasets for different desired scenarios. Parameters of the dataset include vari-
ables such as: number of symbols used, number of rules used for each class

49

Chapter 4

Figure 4.4: Visualization of randomly created class concepts and instantia-
tions thereof. First row: ruleset (concepts) of class 1 and class 2. Second row:
symbolic data instances that adhere to the rules. Third row: raw point cloud
generated from rules, possible input to PointNet and PointNet++. Fourth
row: instance-segmented point clouds, input to Graph-PointNet. “Noisy”
columns contain one additional random symbol that is added to the scene.

concept, number of class concepts, and the resolution of the discrete grid. The
entire dataset generation process is compartmentalized into an initial symbolic
class concept generator (cf. Fig. 4.3 a and b), a noise addingmodule (cf. Fig. 4.3
c) and a 3D instantiator module (cf. Fig. 4.3 e and f). Additionally, an instance
validation module (cf. Fig. 4.3 d) is needed to test whether given instances in-
deed only satisfy the concepts of the target class and no other class.

50

Concept Learning in 3D

Symbolic class concepts
In the dataset, any class concept can be represented by a set of rules. A rule
is composed of a pair of symbols and their spatial relationship. For each rule,
the pair of symbols is randomly chosen from all possible symbols - the symbol
alphabet. The spatial relationship is randomly sampled as well from the set
“above”, “below”, “right”, “left”, “in front of”, “behind”. Given the desired
number of classes and the desired size of the symbol alphabet, rules for each
class have to be generated. Provided with these parameters, a specific number
of rules is added to each of the classes. Next, it has to be checked whether
through the above mentioned process of rule aggregation, identical concepts
in different classes were created. If this is the case, class concepts have to be
resampled until all classes have disjoint sets of rules.

Symbolic data instantiation
From the created class concepts, concrete symbolic data can be instantiated. For
this, a discrete 3D grid is used to assign the involved symbols to the coordinates
of the grid. To instantiate a given class concept, all symbols’ coordinates are
sampled from the discrete 3D grid. In case any of the class concept rules cannot
be satisfied by the choice of the randomly sampled symbol coordinates, these
symbol coordinates are resampled. Furthermore, it has to be validatedwhether
other class concepts may be satisfied by the symbol coordinates. In this case, all
symbol coordinates have to be resampled. Additionally, a predefined number
of randomly chosen symbols can be added to the sample during this step to
emulate noise in the data.

3D point cloud instantiation
After sampling symbolic data instances fromeach class concept, 3Dpoint clouds
can be generated from these symbolic data instances. First, the symbols are
transformed to point clouds for later use as input in 3D classification mod-
els. Therefore, a 3D point cloud representation of each individual symbol is
required. Here, distinct primitive 3D shapes are chosen: a sphere, a cuboid,
three cylinders and three boxes. The cylinders and boxes differ in orientation
and thus vary in appearance, such that models have the opportunity to distin-

51

Chapter 4

Figure 4.5: a) rule and concrete rule instantiation. b) 3D instantiation.

guish them based on their shape. For each symbolic data sample, the abstract
symbols are substituted by the aforementioned shapes and 256 points are sam-
pled from each of these shapes to obtain the final 3Dpoint cloud transformation
of the original symbolic data sample. The designed dataset offers both raw, un-
segmented global 3D point clouds for each symbolic data sample, as well as
instance segmented 3D point clouds.

4.3.2 Benchmark models

Here, the four individual models are introduced: PointNet, PointNet++ and
two proposed models - GraphNet and Graph-PointNet.

PointNet
PointNet is one of the most widely employed 3D classification models in recent
years. The model uses 3D point clouds as input. In the original work [85], the
authors propose two architectures: a classification network and a semantic seg-
mentation network. This section focuses on the classification model proposed
by Qi et al. [85]. One of the issues with supervised 3D point cloud classifi-
cation is that the resulting process should be permutation independent. This
means that the order in which the points are fed into the system should not
impact the final prediction. Therefore, PointNet uses a Max-Pooling operation
on extracted features of all individual points, as themax operator is considered
a symmetric function. For symmetric functions, the order of input elements

52

Concept Learning in 3D

Figure 4.6: Architectures of a) PointNet, b) Graph-PointNet and c) Graph-
Net.

does not impact the results of the function. Starting with X, Y and Z coordi-
nates of the cloud, each point is first fed into a sequence of MLPs of varying
sizes (cf. Fig 4.6). These MLPs share their weights over all input points, mean-
ing that each point of the input cloud is fed into the same MLP network. After
a 1024 element feature vector of each point has been extracted, the aforemen-
tioned Max-Pooling reduces the point cloud feature matrix to a global feature
vector. For classification, an MLP is used to compute the final class predictions
of the point cloud based on the extracted global feature vector. Due to high
scores on many benchmark datasets [19, 124, 131] and easy implementation,
PointNet was quickly adapted into many Computer Vision pipelines and fur-
ther improved by numerous extensions [2, 79, 86].

PointNet++
PointNet++adds several improvements to the classic PointNet in order to boost
classification and segmentation performance further. Firstly, one of the biggest
issues of PointNet is that each point is processed individually without consid-
ering its local neighbourhood. If the point cloud is sampled from a 3D sur-
face, points in proximity of a specific point often describe the local surface and
may contribute to important local geometric information. In PointNet++, pro-

53

Chapter 4

totype points sampled in a farthest-point manner are selected and points in
proximity of these prototypes are collected, creating multiple small clusters
on the input cloud. Then, each of these clusters is fed into a PointNet back-
bone. Although PointNet usually captures global shape features, through mul-
tiple local point set queries, patch-wise, local shape information is acquired.
Whereas PointNet++ shows superior performance compared to PointNet in
many benchmarks [19, 117, 124], there is still room for improvement. The neigh-
bourhood clustering around prototype points in PointNet++ can be seen as a
segmentation of the overall object, similar to the methods discussed in Chap-
ter 3. However, compared to part segmentation, the clusteringmethod in Point-
Net++ does not consider any semantically meaningful information, but only
uses the criteria of proximity to create clusters. This will result in points in-
fluencing (feature vectors of) clusters from neighbouring parts of the object.
As outlined in Chapter 5, suboptimal segmentation (including under- or over-
segmentation) might have a negative impact on the classification performance.
Therefore, one way to possibly boost performance would be to exchange the
clustering method with a more advanced segmentation technique.

Graph-PointNet (G-PN)
To investigate the benefit ofworking on symbols instead of subsymbolic entities,
a pipeline for symbol extraction is needed. A PointNet backbone is used, which
runs on the 3D input, but additionally leverages a segmentationmask that clus-
ters the point cloud into separate entities. For segmentation, the ground truth
segmentations of the symbols are used. It is not trivial to obtain such perfect
segmentations in realworld scenarios (i.e. object classification). However using
these segmentations allows for measuring the performance gap between sub-
optimal segmentations (in PointNet++ via kNN) and optimal symbolic seg-
mentations. Due to the irregular nature of the symbolic representation of the
dataset (data samplesmay vary in the number of symbols they contain), Graph
Convolutional Networks [56] are used to process the acquired symbol-like en-
tities and to reason about the final class. In fact, a single GraphConv layer [75]
is employed to propagate the individual node information to all neighbours.
The output of this layer is a 16-element vector for each part. After aggregating

54

Concept Learning in 3D

these vectors via Max-Pooling, the output class is predicted using a single fully
connected layer.

GraphNet (GN)
Since the designed dataset implicitly works directly with symbolic entities, the
upper limits of Graph-PointNet are investigated, given the correct symbol is
already extracted. For this particular model, raw 3D data or 3D data with ad-
ditional segmentation information is not provided but rather the underlying
symbolic state. First, the occupied cells are selected and represented as nodes
of the input graph. Each node thus may be represented as a (one-hot) symbol
vector. In a one-hot vector, all entries are 0 except for the element at index p.
With these vectors, categorical data can be represented. Additionally, the dis-
crete coordinates of the symbol is appended to the state vector of each node. A
graph of all nodes is constructed by creating edges between all possible pairs of
nodes. The developed model contains a GraphConv layer [75] to process the
symbols of the grid, which are represented as nodes of the input graph. After
the GraphConv layer, the results of all symbol nodes of the graph are aggre-
gated via Max-Pooling. The resulting global feature descriptor is leveraged for
classification, utilizing a single fully connected layer.

4.4 Experiments
Several experiments are performed, differing in the dataset creation parameters
on all four methods. Default values for the datasets are: 4 symbols, 6 classes,
grid resolution of 6 and 2 rules per class. The number of additionally intro-
duced noise symbols per data sample is set to 1. For each individual experi-
ment, 5 random instances of the artificial dataset are created. For each dataset
in each class, 1100 instances are sampled. 1000 instances per class are used for
testing and 100 instances per class for training. The training data is provided
to each network in a batch size of 32.

10% of the training data was separated as a validation set during training to
monitor the models performance. Each model was trained for 100 epochs or

55

Chapter 4

Figure 4.7: Performance of the benchmarked models on the artificial dataset
for single run. As expected, GN quickly saturates at 100% accuracy, as purely
symbolic data is used as input and the only challenge is to filter out noise.
PointNet stagnates below 40% accuracy. PointNet++ needs many epochs
to reach an accuracy around 85%, whereas Graph-PointNet - provided with
ground truth segmentations - saturates around 90%.

until the loss on the validation data did not increase anymore for 10 consecu-
tive epochs. Default values for each parameter were set such that in each run of
the experiment, only a single parameter is changed to observe its impact on the
model performances. All models were implemented via PyTorch and PyTorch
Geometric [31, 81] and trained on an Nvidia GeForce GTX 1080 Ti GPU using
CUDA [76]. For easy comparison, the Adam optimizer [55] was chosen with a
learning rate of 0.001 and the negative log-likelihood as the loss function. To
gain insights into which entities each model relied on for the final class pre-
diction, the Integrated Gradients (IG) method [109] was employed. With this
method, important attributes of the input data on the final prediction can be

56

Concept Learning in 3D

parameter values Point- Point- Graph- Graph-
Net Net++ PointNet Net

symbols 4 45.3 86.1 92.4 99.3
6 41.7 83.9 94.2 99.1
8 47.8 79.2 89.9 98.4

classes 4 57.2 91.6 96.0 99.8
6 42.6 83.4 89.9 98.7
8 44.1 83.2 92.7 99.3

grid resolution 6 39.0 83.4 92.1 99.8
8 40 86.9 83.3 100.0

10 41.6 71.1 78.6 97.9

rules 1 39.2 96.7 86.5 100.0
2 45.2 90.6 93.6 98.9
3 36.1 68.1 95.5 99.0

Table 4.1: Accuracy (in percent) on test data for different configurations of
the dataset for the benchmarked methods.

visualized.

4.5 Results
In Tab. 4.1, the results for the four different methods with different dataset
configurations are shown. In general, the performance of each model varies
strongly for each run. One underlying condition that enables this behaviour is
the fact that the randomly created class prototypes share varying numbers of
common rules with each other across the different runs. More disjoint rulesets
lead to less classification confusion in general, whereas the more sets of rules
overlap, the higher the confusion. In most cases, the GraphNet achieves nearly
100%. This is expected, as - by design - the input data of the GraphNet method
is already symbolic and each symbol’s position is provided explicitly as well.
In Fig. 4.7, the test accuracy is tracked over the training epochs for eachmethod.
As expected, when provided with the symbols directly, the model (GraphNet)

57

Chapter 4

Figure 4.8: Explain-
ability via Integrated
Gradients. Here, two
different classes are
used, having four
symbols as prototypes
each. A single noise
symbol is added in
each instance. For
consistency, results of
GraphNet are mapped
to point clouds, al-
though symbolic data
is used here. In both
Graph-PN and Graph-
Net, the noise symbol
has less impact on
the final class com-
pared to PointNet and
PointNet++.

quickly reaches perfect accuracy. The performance of PointNet here saturates
at around 35-40%. Whereas PointNet++ needs a long time (approximately 20-
30 epochs) to saturate, Graph-PointNet reaches accuracies of 80% and beyond
much faster (already after 15 epochs).

Performance on varying Symbol size
Increasing the number of symbols that are considered may have at least the
following two effects. On the one hand, individual classes might be easier to

58

Concept Learning in 3D

distinguish from others due to discriminatory symbols that uniquely exist in
only one/few of all classes. This might intuitively ease the task of classifica-
tion. On the other hand, when instantiating additional symbols, the chance
of confusing any of these symbols with each other increases. The number of
symbols seems to have only a minor impact on the overall classification per-
formance. PointNet performs worst, as it correctly classifies only 41.7%-47.8%
of the samples across the three settings. PointNet++ performs better than PN,
however a performance gap compared toG-PN exists. The performance gap be-
tween PN++ and G-PN increases with growing alphabet size. As mentioned
before, the negative impact of an increased number of symbols in case of PN++
might be due tomore likely confusions of these entities. G-PN is providedwith
correct segmentation of all entities, thus reducing the negative impact of an in-
creased alphabet size.

Performance on varying number of classes
Principally, increasing the number of classes will make the classification prob-
lem harder, as more classes are introduced that can be confused and may even
share some common rules with other classes. Whereas performance of PN++
strongly decreases for 6 and 8 classes, the resolution impact on Graph-PointNet
is lower. GraphNet consistently achieves high classification accuracy.

Performance on varying grid resolution
Varying grid resolution is an important parameter, as increasing grid size en-
ables more instances for each class to sample from. In smaller grids - with
appropriate training samples - all possible spatial configurations between the
prototypesmight be extracted and learned. Inmore complex grids, the number
of possibilities explodes. To succeed, classification methods need to leverage
the spatial relations between entities to generalize to the test data. Similar to
varying numbers of symbols and classes, superior performance using Graph-
PointNet is observed compared to PointNet++ and PointNet.

Performance on a varying number of rules per class
For this setting, the change in performance is significant for PN++ and Graph-

59

Chapter 4

PointNet. Additionally, while the increasing number of rules seems to improve
the classificationperformance ofGraph-PointNet, PointNet++performance de-
creases strongly. An increased number of rules per class implies more entities
overall inside the grid. Thus, with an increasing number of symbols inherent
to the prototype, the signal-to-noise ratio increases as the total number of noise
symbols is fixed.

Attribution
Fig. 4.8 shows the original prototypes of two samples without any noise (first
row). In order to qualitatively check the predictions made by the different sys-
tems, Integrated Gradients are used to visualize important attributes of the in-
put for each method. As Fig. 4.8 shows, the attribution of PointNet and Point-
Net++ is very diffuse: a lot of points - dispersed over all entities - seem to be
attributed to the network’s prediction. On the other hand, as Graph-PointNet
uses ground truth segmentations, each symbol will be attributed isolated from
each other. This leads to the opportunity to detect and visualize the noisy sym-
bol inside each sample in an “odd-one-out” manner. Similarly, GraphNet is
able to achieve this detection of noisy symbols as well (cf. Fig. 4.8 bottom row).

4.6 Conclusion
In this chapter, a novel classification dataset generation method has been intro-
duced, consisting of symbols adhering to specific spatial rules. The dataset is
easily tunable to create new data and it provides methods to transform the dis-
crete, symbolic data into 3D point clouds. Additionally, the dataset provides
multiple modalities such as raw point clouds and part-segmented point clouds,
where points emitted by the same symbol obtain a common label. With these
modalities the impact of perfect segmentation compared to a raw point cloud
on 3D classification approaches was investigated. PointNet only considers the
global point cloud and showed shortcomings in the classification task. This is
consistent with the expectation that if symbols are not learned, small amounts
of training data will not lead to good overall generalization in this classic ap-
proach. PointNet++, which uses a primitive automatic segmentation strategy

60

Concept Learning in 3D

improves the performance further, offering empirical evidence that segmen-
tation indeed helps in this classification task. The proposed Graph-PointNet
method uses ground truth segmentations and improves on PointNet++ results
in most of the scenarios. To summarize the findings, most importantly, a strong
accuracy boost in classification is observedwhen leveraging the perfect symbol
segmentations. These results show that designing accurate segmentation algo-
rithms in the future for employing in classification tasksmay be critical for tasks
where the underlying data is known to adhere to components in specific spatial
relations.

From the observations in this chapter, an important question emerges: are real-
world objects structured enough such that part-based methods may improve
classification compared to global methods? This question is explored in Chap-
ter 5 by means of part-graph decompositions of more realistic 3D objects com-
pared to the abstract rule-based data in this chapter.

61

Chapter 4

62

5
Part-graph-based Object

Classification

5.1 Introduction
Object classification is crucial for interacting with our environment in our ev-
eryday life. But also many robotic applications depend on the recognition and
subsequent classification of objects. In autonomous driving and autonomous
robots, classification methods are employed to categorize (parts of) the visual
input. If classification fails, e.g. a traffic sign is recognized but misclassified as
a tree, the consequences may be dramatic when considering autonomous cars.
Light detection and ranging (LiDAR) devices have become cheaper in recent
years, and with 3D sensors offering additional depth information compared
to 2D camera systems, these devices become more and more attractive for the
task of object classification. Due to the shift in input modality from 2D to 3D
data, new approaches for classification have to be found, optimally approaches
that leverage the depth information and geometry. Feature extraction mecha-

63

Chapter 5

nisms are a popular method to reduce objects to a fixed vector or descriptor,
on which subsequently classification algorithms can be employed. Earlier vari-
ants of features were hand-designed, i.e. specific algorithms were developed
to obtain desired shape characteristics [97, 123]. Whereas at the start of these
approaches, smaller regions of the overall shape are evaluated, at the end, all
information is aggregated in order to create one single fixed-size vector or ma-
trix (i.e. by using histograms). This aggregation stands in stark contrast to the
fact that the shape (and its characteristics) may vary from region to region on a
single object. Neglecting this intra-object shape-variance may lead to poor clas-
sification performance due to less nuanced shape descriptors. In the field of
psychology, Biederman postulated his Theory of Recognition-By-Components
[10]. Biederman postulates that object recognition by humans starts with sep-
arating the target into its parts and reducing each part to a certain primitive
volume called “geon” such as cubes, spheres and cylinders. Biederman sug-
gests that subsequently, using these geons and their spatial relation to each
other, the final object class is inferred.

In this chapter, a pipeline is proposed that follows this process of object classifi-
cation. The proposed method will first segment the 3D mesh into its parts and
extract feature descriptors from each part individually. Afterwards, graph ker-
nels are used to train a model that can handle the unstructured data at hand.
The method is tested on different segmentation methods, feature descriptors
and graph kernels. Additionally, the method is benchmarked against classifi-
cation via global 3D feature extraction.

5.2 Related Works

Initial 3D classificationmethods used hand-engineered feature descriptors that
make use of certain properties of the geometry of the input [97, 115, 123]. Most
methods focus on point clouds as the 3D input modality. Using randomly sam-
pled combinations of points from the cloud, distance profiles of point pairs as
well as areas and angles between point triplets can be calculated, as in the case

64

Part-graph-based Object Classification

of ESF [123]. These profiles are usually aggregated by histograms [97, 115, 123].
Thus, mapping each measurement to a discrete bin and normalizing the result-
ing frequencies, a final global feature descriptor can be obtained. These feature
descriptors can be used in a supervised manner in combination with a classi-
fication model such as k-nearest neighbour (kNN) [25], decision trees [88] or
SVMs [13].

More recent methods [84, 85, 86] leverage the power of Deep Learning to avoid
predefined explicit feature descriptors and instead try to dynamically learn a
compact representation of the input. Maturana et al. [73] discretized the input
into volumetric primitives - “voxels” - in order to apply 3D CNNs to the data, a
method which was very successful in 2D image classification. In PointNet [85],
the model extracts a 1024-element feature vector from each point of the point
cloud individually and subsequently applies Max-Pooling to obtain a global
point cloud descriptor. This representation is used inside a classification head
that mostly consists of Multi-Layer-Perceptrons (MLPs) that map the global
descriptor to an output vector where each element represents one class. These
networks are trained via Backpropagation [93] to minimize the prediction er-
ror on the training data.

The MVCNN approach [107] aims to render images from the input mesh from
different perspectives and subsequently employing a 2D CNN on each view.
This way, for each view a descriptor could be extracted. Descriptors from all
views are then Max-Pooled to obtain a single descriptor that can be processed
by a classification header - similar to the one in PointNet. Recently, FoldingNet
[130] was proposed. FoldingNet follows an auto-encoder structure which con-
sist of an encoder and a decoder module. The input point cloud is passed
through the encoder network to be reduced to a 1024-element descriptor. In
the decoding stage, based on this descriptor, the original point cloud is tried to
be reconstructed. Based on the reconstruction error given as e.g. Chamfer Dis-
tance [7] or Earth Mover’s Distance [92], the two modules are optimized dur-
ing training, such that the intermediate representation holds a lot of shape in-
formation and characteristics about the input. This method does not explicitly

65

Chapter 5

contain classification capabilities but can rather be seen as a learnable feature
extraction method. However, the authors propose the use of a SVM which is
trained on the extracted feature descriptors of the point clouds inside the train-
ing set. Thus, the method is extended to 3D object classification in a two-stage
manner.

5.3 Methods
Instead of direct global aggregation of the 3D shape to obtain a feature descrip-
tor for each object, a multi-stage pipeline is proposed: First, the object, rep-
resented as a mesh is segmented into its parts. For each part, a part-mesh is
automatically obtained at the end of this stage. Second, an individual feature
descriptor is extracted from each part of the object. Part meshes are uniformly
sampled to obtain part-specific point clouds to extract features from. Next, a
part graph is constructed with nodes representing parts and edges represent-
ing spatial neighbourhood between parts. Subsequently, graph kernels are em-
ployed to calculate similarities between graphs from the training data and the
currently evaluated object’s part graph. Last, the similarity of the part graph at
hand to all training samples is fed to the SVM to obtain a final prediction of the
object class. In the following, each step will be explained individually in more
detail.

5.3.1 Preprocessing

First, the mesh is transformed such that it is centered at the coordinates (0|0|0)
and it is completely contained inside a unit sphere. The segmentation method
that is employed later on requires the mesh to be watertight. This means that
the mesh needs to be clean, enclose a volume and not contain any topologi-
cal inconsistencies. To make the input mesh watertight, the method from
Huang [46] is used. Similar to the popular Marching Cubes method [70],
Huang’s approach [46] voxelizes the input space and extracts isosurfaces. Af-
ter applying this method, the input mesh is a watertight mesh without degen-
eracies.

66

Part-graph-based Object Classification

Figure 5.1: Overview
for global descriptor
pipeline and the part
graph pipeline. For the
former, global descrip-
tors are extracted from
the input shapes (here
either VFH, ESF or
FoldingNet), which are
fed to the SVM. For the
part graph pipeline, the
input shape is first de-
composed into its parts,
using ground truth or
automatic segmentation.
Subsequently, the part
graph is created and
the parts’ descriptors
are extracted (again,
either VFH, ESF or Fold-
ingNet descriptors).
Finally, graph kernels
(ShortestPath, Graph-
Hopper or Wasserstein
Weisfeiler-Lehman) are
used to compute the
kernel matrix between
all graphs to train a
SVM. Figure adapted
from Teich et al. [111].

67

Chapter 5

Figure 5.2: Left: Rendering of raw 3D data from the ShapeNet dataset. Indi-
vidual components have different colors. Different shades indicate degenera-
cies such as inconsistent face orientations of adjacent triangles. Right: pro-
cessed mesh, cleaned, watertight and only consisting of a single component.

5.3.2 Segmentation

For the segmentation algorithm, theConcavity-Awaremethod fromAuet. al [5]
has been implemented. The Concavity-Aware method analyses features of iso-
lines on gradient fields across the 3D mesh shape in order to select several of
them as part boundaries. The idea behind this approach is to first identify im-
portant points on the shape’s surface that are far away from the central region of
the surface. Then, the problem of finding part boundaries can be reformulated
into a heat diffusion problem. Assuming that convex regions on the shape’s sur-
face propagate heat efficiently and concave regions inhibit heat propagation, a
gradient field between pairs of the above mentioned critical points can be cre-
ated. Isolines across these gradient fields represent possible part boundaries
such that heuristics can be used to identify the most likely part boundaries and
obtain the final segmentation of the mesh in turn.

5.3.3 Feature descriptors

Two hand-engineered descriptors [97, 123] as well as one data-driven feature
descriptor [130] are considered. In this section, the individual descriptors are
explained. As all three feature descriptors are only applicable to point clouds,
point cloud extraction for each part individually is needed. Therefore, 1000

68

Part-graph-based Object Classification

points are uniformly sampled from each parts’ surface.

VFH
The Viewpoint Feature Histogram (VFH) is an extension of the FPFH descrip-
tor [96], which in turn builds on top of the PFH [95]. The PFH additionally
requires normal information of the points inside the point cloud. For all points
of the cloud, the neighbourhood is analyzed by always considering the current
point and one of its neighbours. Their normals’ angular distance can be de-
scribed by three parameters, each of which is binned into a separate histogram.
The fourth histogram captures the euclidean distance between the coordinates
of the two points. FPHF prunes the number of considered neighbours for each
point to make the algorithm faster. For the VFH descriptor, viewpoint informa-
tion is additionally considered for the histogram creation. The implementation
of the VFH inside the Point Cloud Library [94] returns a 308 element feature
vector for each point cloud.

ESF
The ensemble of shape functions (ESF) [97] captures the following point cloud
properties: distance, angles, and area. For the area property, three random
points are sampled from the point cloud and the triplet is categorized as ei-
ther lying completely inside the surface, completely outside/on the surface or
partly inside and partly outside. For each of these three categories, an individ-
ual histogram is used. The squared surface area that the currently sampled
triangle creates is then added to the appropriate histogram. This sampling of
triplets is repeated either for a fixed number of iterations, which should be a
high number to capture representative values for the area characteristic of the
point cloud. Analogous to the area property, the same method is employed
for distances (where pairs of points are sampled) and angles (where triplets
of points are sampled). Finally, a tenth histogram is created that captures the
relative length (of each straight line between two points of the cloud) that lies
inside the surface. These ten histograms are normalized and appended to result
in one feature descriptor. As each histogram contains 64 bins, the final feature
vector will have a length of 640 elements. The ESF is implemented in the Point

69

Chapter 5

Cloud Library [94] in C++, allowing for fast feature extraction of point clouds.
The ESF is robust against outliers and against occlusion [97].

FoldingNet
Different from VFH and ESF, FoldingNet is a data-driven approach, which
means that the feature extraction process has to be learned on training data
first. FoldingNet is an autoencoder [93] structure that uses a PointNet [85]
backbone inside the encoder to obtain a 1024-element descriptor of the input
point cloud. During training this descriptor will also be passed through the de-
coder networkwhich tries to reconstruct the original point cloud. The Chamfer
distance [7] is used as the error signal that captures the distance between orig-
inal and reconstructed cloud during training.

Graph creation

Each part obtained by the segmentation algorithm is represented as an indi-
vidual node inside the part graph. Since the watertight and clean mesh in-
troduces a complete topology on the mesh, neighbouring parts can easily be
identified and edges between them can be added to the part graph. For the
node attributes, the extracted feature vectors are used, whereas edges are kept
unlabeled. Other techniques for graph creation would also be possible, e.g. via
kNN.

5.3.4 Graph kernels

The attributed graphs obtained by the previous steps will highly differ in their
number of nodes, connectivity and node attributes. Therefore a method is
needed which is able to handle this type of irregular data. A popular approach
for this are graph kernels, which have proven to be useful in various tasks in-
volving irregular data such as protein classification [12] and room classifica-
tion [34]. Three different graph kernels are employed: the Shortest-Path ker-
nel [12], theGraph-Hopper kernel [29] and theWassersteinWeisfeiler-Lehman
kernel [114]. In general, graph kernels define distances between smaller en-
tities, i.e. pairs of nodes (each from one of the two graphs). Based on these

70

Part-graph-based Object Classification

Figure 5.3: Objects are automatically segmented and part graphs are created.
3D shape descriptors (here: ESF) of parts serve as node attributes in the
graph. Using these node embeddings, graph kernels (here: Shortest Path
kernel) can be used to estimate the similarity between objects represented as
graphs. Graph node colors and part colors are selected randomly across the
objects. Figure adapted from Teich et al. [111]

atomic distances, distances for more complex entities such as paths can be cre-
ated (cf. Fig. 5.3).

Shortest-Path kernel
The Shortest-Path kernel [12] is one of the earliest graph kernels developed and
was successfully applied to bioinformatical data. Given any graph G with ver-
tices V and edges E (expressed as pairs (vi, vj)), path are defined as sequences
of vertices: π = v0, v1, ..., vn. Every two subsequent vertices inside the sequence
of the path must be adjacent, i.e.:

(vi, vi+1) ∈ E. (5.1)

Additionally, paths should not contain cycles:

vi ̸= vj if i ̸= j (5.2)

The Shortest-Path kernel will analyze the two input graphs and compare all

71

Chapter 5

pairs of shortest paths inside the two graphs. First, a Shortest-Path graph can
be constructed from each of the two individual input graphsGi andGj to make
further processing easier. To transform a graph Gi into a Shortest-Path graph,
a copy of the original graph is created, called Si and edges are added such that
each edge in Si indicates that there exists a path between the two vertices inGi.
After transforming both input graphs into their respective shortest-path graphs
Si, Sj , the Shortest-Path kernel is then defined as:

k (Si, Sj) =
∑
ei∈Ei

∑
ej∈Ej

kpath (ei, ej) (5.3)

where ei = (ui, vi) and ej = (uj, vj). The path distance is calculated as:

kpath (ei, ej) =kv (l (vi) , l (vj)) ke (l (ei) , l (ej)) kv (l (ui))+

kv (l (vi) , l (uj)) ke (l (ei) , l (ej)) kv (l (vj)) ,
(5.4)

where ke(l(ei), l(ej)) compares the lengths of the two paths via the Dirac func-
tion:

ke (l (ei) , l (ej)) =

1 if l (ei) = l (ej)

0 otherwise
(5.5)

For the node distance kernel, two different kernels are experimented with; the
linear kernel:

kv (u, v) = uT · v (5.6)

and the histogram-intersection kernel:

kv (u, v) =
m∑
k=1

min (uk, vk) . (5.7)

Normalization is applied to the calculated graph distances of the training data:

72

Part-graph-based Object Classification

k (Gi, Gj)√
k (Gi, Gi) k (Gj, Gj)

. (5.8)

GraphHopper kernel
Since the Shortest-Path kernel is computationally very expensive with a com-
plexity of O(n4) [57], the more recent GraphHopper kernel was also tested, as
it promises lower computational cost [57]. The building block of the Graph-
Hopper kernel are the paths on the individual graphs Gi and Gj again.

k (Gi, Gj) =
∑
π∈P

∑
π∈P ′

kpath (π, π
′) , (5.9)

with sets of shortest paths P , P ′ fromGi andGj . Path kernel kpath is only calcu-
lated if the length of both paths πi, πj is identical:

kpath (π, π
′) =

∑|π|

j=1 kv (π(j), π
′(j)) , if |π| = |π′|,

0, otherwise,
(5.10)

where π(j) represents the jth node inside the path π. As the vertex kernel, the
linear kernel (Eq. (5.6)) is used.

Wasserstein Weisfeiler-Lehman kernel
The Wasserstein Weisfeiler-Lehman (WWL) graph kernel provides a frame-
work for attributed graphs to estimate distances between each other. TheWWL
can be seen as an amalgamation of the Weisfeiler-Lehman test (for continuous
attributes in our case) and the Wasserstein distance. The WWL graph kernel
first computes feature vectors for all nodes of the involved graphs and then uses
the Wasserstein distance for matching nodes between the two graphs.

Given an attributed graph, node attributes can be described by a0(v) for all ver-
tices v ∈ G. In this work, the node attributes are the part descriptors, obtained
by the feature extraction from the individual parts of the object. Toginalli et al.

73

Chapter 5

Figure 5.4: Schematic
of the Wasserstein
Weisfeiler-Lehman trans-
form of graphs into
a shared embedding
space. Correspondence
between nodes of the in-
volved graphs is solved
via the sinkhorn algo-
rithm. Figure adapted
from [114].

[114] propose a novel propagation scheme in this continuous node label case:

ah+1(v) =
1

2

ah(v) +
1

deg(v)
∑

u∈N (v)

w(v, u) · ah(u)

 (5.11)

with w(v, u) being the edge weights between node u and v (always 1 in our
case). This formula basically updates the current node attribute by considering
all neighbors of a specific node, calculating their average and finally averaging
the nodes’ current attribute and the aforementioned neighborhood attribute.
A specific amount of iterations can be chosen in order to create multiple node
attributes for each node. All these node attributes for can later be concatenated
to obtain a single node attribute per node inside the graph.

In traditional graph kernels [12, 29], the graphs are decomposed into smaller
entities of which all combinations between the two involved graphs are later
compared and aggregated. Instead, the authors implement a matching ap-
proach based on theWasserstein distance (or “Earthmover’s distance” (EMD)).
Given two probability distributions, the EMD can help constructing a distance
between them by considering the effort of transporting smaller amounts of one
of the distributions such that the result will be the second distribution. This
transportation problem is executed on the nodes of the two graphs (cf. Fig. 5.4).
As the distance between twonodes, Togninalli et al. [114] propose the euclidean

74

Part-graph-based Object Classification

Figure 5.5: a) Illustration of two initial attributed graphs and subsequent
Weisfeiler-Lehman iterations (cf. Eq. 5.11) to result in new nodewise at-
tributes. b) distance matrix using euclidean distance between pairs of nodes.
c) sparse matching between the nodes.

distance:

dE(v, v
′) =∥ v − v′ ∥ (5.12)

Given the distance matrix between all nodes from the two graphs, a nearly op-
timal solution minimizing the overall transportation cost can be found. For
this, the Sinkhorn method is used, as this approach approximates the exact
EMD with great precision and simultaneously reduces the computational cost
needed [26]. Input to the Sinkhorn algorithm is the node distance matrix of
all node pairs between the two graphs as calculated by Eq. 5.12 and visualized
in Fig. 5.5 b). The output of the Sinkhorn algorithm is a soft assignment or

75

Chapter 5

Figure 5.6: Class
representation
in the original
subset of part
annotations of
ShapeNet. As
representation of
different classes
varies strongly, a
balanced subset
of 880 objects (55
from each class)
was sampled
and used for the
experiment.

matching between the nodes of the graphs. Each entry inside the matching
lies between 0 and 1 and each row as well as each column has the sum 1, as
visualized in Fig. 5.5 c). The overall WWL distance between the two graphs
is then obtained by multiplying the node distance and the matching matrix
and taking the sum of the resulting matrix. Additionally, the graph distances
DfWL

W obtained by the EMD matching are preprocessed as [114] propose to use
a Laplacian kernel.

KWWL = e−λD
fWL
W . (5.13)

λ is another hyper parameter that can be tuned, similar to the regularization
parameterC that is used in SVMs. This procedure results in a kernel matrix for
the given set of graphs, which can be used inside an SVM for graph classifica-
tion.

76

Part-graph-based Object Classification

Figure 5.7: t-SNE em-
bedding of the global
FoldingNet descriptor
extracted from several 3D
objects of the ShapeNet
dataset. Although class
specific clusters can be
identified visually, there
are outlier instances that
are located close to the
wrong cluster. This may
eventually lead to inferior
classification results.
Ideally, non-overlapping
clusters are desired.

5.4 Experiment: Ordinary Object Classification

5.4.1 Experiment

The novel part-based 3D object classification pipeline is tested on a subset of
the Shape-Net dataset [20]. The ShapeNet dataset consists of over 51.000 3D ob-
jects from 55 different categories. A subset of this dataset is richly annotated, in-
cluding consistent segmentation and labeling of parts of the 3D objects. From
this dataset of over 16.000 objects from 16 classes, 880 objects were selected
(55 instances of each class) randomly since the original dataset is highly imbal-
anced, as visualized in Fig 5.6. For the part-based pipeline, two segmentations
are available: the above-mentioned ground truth and the part segmentation ob-
tained by the automatic approach described in Section 5.3.2. Each variation of
the segmentation is benchmarked in combination with each of the three graph
kernels (SP, GH, WWL). To compare against global methods, the respective
global features are extracted from the meshes and kNN as well as SVMs are
employed for the final class predictions on these global approaches. For both
the global SVM as well as for the graph kernel SVMs, Grid Search Cross Valida-

77

Chapter 5

Classifier VFH ESF FoldingNet

Global descriptor-based Pipeline

kNN 62.26 ± 2.86 73.73 ± 2.95 92.43 ± 1.87
SVM 65.32 ± 3.46 79.89 ± 2.92 95.84 ± 1.58

Graph-based Pipeline

GH automatic seg. 71.96 ± 3.00 78.32 ± 3.04 95.43 ± 1.57
SP automatic seg. 75.38 ± 3.13 78.68 ± 3.12 92,81 ± 1.82
WWL automatic seg. 76.86 ± 2.85 82.46 ± 2.82 96.49 ± 1.41

GH ground truth seg. 82.31 ± 2.78 85.88 ± 2.51 96.60 ± 1.41
SP ground truth seg. 84.16 ± 2.28 85.67 ± 2.76 94.86 ± 1.48
WWL ground truth seg. 84.33 ± 2.77 89.26 ± 2.58 97.38 ± 1.11

Table 5.1: Classification accuracy of tested methods. The columns refer
to different descriptors. Especially for the VFH and ESF descriptors, clas-
sification accuracy of the graph-based approaches are significantly higher
than the respective global-pipeline. TheWWL graph kernel performs always
best, whereas GH and SP are often still performing better than their global-
descriptor counterparts. Table taken from Teich et al. [111].

tion is used only on the training data for parameter tuning. k = 10 is chosen as
the number of neighbours in the kNN classifier, based on which the prediction
is made.

5.4.2 Results

Quantitative results of the experiment are summarized in Tab. 5.1. Looking
at the individual descriptors, a big gap between hand-engineered (VFH, ESF)
features and the data-driven FoldingNet descriptor is observable: both global
descriptor pipelines (kNN and SVM) only achieve about 60-80% accuracy on
VFH and ESF, whereas FoldingNet accuracy lies around 92 - 96%. However,
it is important to emphasize that the FoldingNet descriptors’ improved accu-
racy comes with the downside of training the autoencoder structure for several

78

Part-graph-based Object Classification

λ

C

A
cc

ur
ac

y

Figure 5.8: Visualiza-
tion of Grid Search (with
cross validation) on the
training data for hyper
parameter tuning of λ
(see Eq. 5.13) and C
(SVM regularization pa-
rameter). These two
parameters are used in
the SVM and will signif-
icantly impact the pre-
diction result. Descrip-
tor: FoldingNet, graph
kernel: WWL.

epochs, disqualifying it for plug-n-play solutions in e.g. robotic pipelines.

Comparing the results of the graph-based pipeline, significant improvements
in classification seem to occurwhen the ground truth segmentation is provided.
This observation seems intuitive, since ground truth segmentations create a
consistency in the segmentation scheme, i.e. legs are always separated from the
table, whereas in the automatic segmentation approach, parts may get merged
due to inadequate segmentation and the descriptor of the resulting graph-node
might be far away from typical prototypes of the two original parts involved.
This deficient segmentation behaviour subsequently leads to flawed class pre-
dictions, as similarities between graphs will be impacted by these inconsistent
segmentations. Furthermore, the impact of providing correct segmentation to
the part-based pipeline seems to differ for the three descriptors: VFH and ESF
greatly benefit from the canonical ground truth segmentation, whereas accu-
racy on FoldingNet improves by a smaller margin. Furthermore, GraphHop-
per and Shortest-Path kernels show inferior performance than theWWL kernel
overall.

79

Chapter 5

Figure 5.9: Qualitative classification results of global classifiers and graph
classifiers based on automatic segmentations and using the VFH descriptor.
Ground truth segmentation is shown for comparison of segmentations. Note
that GH, SP andWWL predictions are based on automatic segmentation, not
ground truth segmentations. Figure adapted from Teich et al. [111].

5.5 Experiment: Out-of-Distribution Object Classi-
fication

5.5.1 Experiment

Additional to the classification task described in Section 5.4, an experiment on
out-of-distribution data was performed. The motivation here is due to the de-
sign of the graph kernels: sinceR-Convolutionswork on decompositions of the
involved graphs, in general close distances are assigned to graphs that share a
significant substructure with each other. This behaviour can be used to easier
recognize e.g. a chairwith five legs sincemany of its subgraphs resemble graphs
inside the training data, usually chairs consisting of four legs. To demonstrate
this advantage of graph kernels, artificial data (50 objects) was created from
three classes (chairs, tables, and mugs). For each class, a part label was chosen

80

Part-graph-based Object Classification

Figure 5.10: Difference between confusion matrices of the global VFH-SVM
and the VFH-GH graph kernel SVM using the automatic segmentation ap-
proach over 25 runs. Numbers indicate how many more samples were pre-
dicted as Class X in the global SVM compared to the graph-based method.
Thus, on the diagonal, pink regions indicate superior performance of the
graph-based VFH-GH, whereas outside of the diagonal, green spots indicate
superior performance of VFH-GH.

that - if present multiple times on the same object - would not change the over-
all object class. By adding such redundant parts, the out-of-distribution dataset
is created. Between one and up to six legs were added to all tables and chairs
and also one to six handles to all mugs. All redundant parts were pasted on ap-
propriate regions to not change the final object class. Examples of this artificial
dataset are visualized in Fig. 5.11.

81

Chapter 5

Figure 5.11: Artificial object examples. Tables and chairs contain redundant
legs and mugs contain additional handles. These objects are taken from the
out-of-distribution dataset.

5.5.2 Results

Consistent with the results from Section 5.4.2, graph-based methods outper-
form the global classification approach in this experiment. Interestingly, the
WWL kernel is not the best choice in all settings: in case of using the VFH
descriptor, the two other graph kernels (GH and SP) both outperform WWL
(although in case of GH only by a slight margin). Another important obser-
vation is the wide performance gap between the global SVM and the graph-
based methods in case of the FoldingNet descriptor: the redundant parts seem
to have a significant impact on the global shape descriptor (SVM: 84%, graph-
based methods: 96-98%). The results show that the graph-based methods may
be able to exploit the known substructures in the training dataset to re-identify
them when confronted with objects containing redundant parts.

82

Part-graph-based Object Classification

Method VFH ESF Folding-
Net

Global descriptor

SVM 72 80 84

Graph-based

GH, autom. seg. 78 76 96
SP, autom. seg. 90 84 98
WWL, autom. seg. 76 88 98

Table 5.2: Classification
accuracy of tested methods
on out-of-distribution ob-
jects. The columns refer to
different descriptors. The
global SVM classification
results are inferior to the
respective graph-based
SVM result (except for the
GH kernel when using the
ESF descriptor). Table taken
from Teich et al. [111].

5.6 Conclusion

In this chapter, classic global 3D shape classification was analyzed and an alter-
native part-based pipelinewas proposed. The novel approachwas evaluated in
an experiment, also accounting for different shape descriptors, segmentations
and graph kernels. The result on the out-of-Distribution data supply more em-
pirical evidence that one of the advantages of graph-based methods is that the
final predictions are based on common subgraphs between training and evalua-
tion data. Extending existing robotic applications - thatmake use of classical de-
scriptors like VFH and ESF - by the here introduced graph-based method may
increase their performance further and eventually lead to more reliable vision
pipelines. One bottleneck of the graph-based technique seems to be the auto-
matic segmentation subprocess, as processes of the pipeline are relying on a cor-
rect segmentation. The performance gap between the automatic segmentation
and ground truth segmentation indicate that there is room for improvement
for future segmentation algorithms. Thanks to the modularity of the approach,
newly developed segmentationmethods (and graph kernels as well) can easily
be exchanged to boost the classification accuracy towards the theoretical limit
of the ground truth segmentation. In the future, investigating possibilities of
adapting the graph-based approach on Graph Neural Networks [56] as a sub-
stitute for the SVM is important, as SVMs introduce practical limitations to the

83

Chapter 5

size of training data (as kernel matrices grow quadratically). Graph Neural
Networks may alleviate this issue and may offer similar classification perfor-
mance.

The next chapter focuses on the task of object repairment. Here, it is essential to
entangle the different parts of the object and to individually evaluate whether
a part needs to be fixed or not. For this, an automatic segmentation approach
as well as a part-graph-based model are used - similar to the developed ap-
proaches in Chapters 3, 4 and 5.

84

6
Assembly Repairment

6.1 Introduction

As novel algorithms are being developed and systems evolve, robots are more
and more integrated into society [36]. In various application areas, ranging
from assistive elderly care [27, 119], over industrial use cases [120] to human-
centered services [42, 116, 132], robots are already used. To further support hu-
mans, more sophisticated robotic systems have to be designed. One task that
is currently still outside the realm of possibility for robots is object repairment.
Given a defect or manipulated instance of an object, the task is to repair the ob-
ject and restore its canonical structure. This task is significantly different from
predefined conveyor-belt-like robotic assembly tasks where a specific set of in-
structions is already hardcoded and executed. In object repairment, the main
issues are twofold. First, it is not explicitly stated which part of the object is
manipulated and thus has to be changed. Second, even if the compromised ob-
ject part is known, it is not clear where to assemble it without prior knowledge

85

Chapter 6

about the object’s function or structure. In the following, the task of assem-
bly repairment is formalized and tackled from a Computer Vision viewpoint
where additional annotation information is limited or non-existent and only a
“raw” point cloud is used as input. This stands in stark contrast to current ob-
ject assembly pipelines where part segmentations and labels are assumed to be
provided from the start - an assumption that is hardly satisfied in real-world
scenarios.

6.2 Related Works

In recent years, many different works in the field of Computer Graphics en-
abled working on highly-detailed and annotated 3D point clouds of man-made
objects. From object assembly [45], over object generation to object interpola-
tion [74], many of these methods focus on datasets that are arguably hard to
obtain, to create and to annotate in the wild. The task of object assembly is
very fundamental in robotics and already has a lot of applications. In bigger in-
dustry settings, robots are often employed to assemble parts into entire objects
in a predefined way. But humans can also benefit from robotic object assem-
bly in their everyday life: given a package of parts and tools, assistive robots
may be able to construct furniture bought from retailers that offer unassembled
products such as IKEA [8, 52, 64]. Of course, these products often come with
manuals containing step-by-step instructions for assembling the final product.
However, when there are not many parts to consider, humans are sometimes
able to assemble them “intuitively” and thus do not need to rely on any explicit
set of instructions. On the other hand, robots still seem to lack this skill of au-
tonomously assembling the product without much prior knowledge.

Generative Models: A large body of work in the field of Computer Graphics fo-
cuses on object understanding via generative models. In [128], the authors
acquired 3D mesh models of household objects with consistent semantic seg-
mentations. Through evolutionary algorithms [35], theirmodel is able to create
novel objects of the same class, resulting in interesting combinations of object

86

Assembly Repairment

parts from multiple object instances. This process might be of great benefit for
designers as the qualitative results often look plausible yet still artificial. Ran-
dom part combinations obtained through this process do not consider typical
ingredients of man-made design: cultural context and function [77]. In [65],
an autoencodermodel was designed that enables encoding of the objects’ struc-
ture, part layout and spatial part relationships. Using this model, object blend-
ing/interpolation is possible. Given two instances of the same object class, in-
stances in between can be sampled, e.g. to visualize a step-by-step transforma-
tion from the source instance to the target instance. Similarly, Mo et al. [74] use
supervised learning on Graph Neural Networks [56] to train models that are
able to generate novel object instances, respecting the typical object structure
and spatial part relations. Their work [74] can be seen as an improvement over
GRASS [65] as the resulting models resemble realistic objects, whereas objects
generated by GRASS may often lack realistic appearance.

In [45], Huang et al. develop a Graph Neural Network for 3D object assembly.
The process involves multi-stage message passing in a coarse-to-fine manner.
Their proposed model takes advantage of the semantically labeled input data
to alternatingly propagate information between part instances of the same class
and all part instances. This way, all instances of a given class can first reorga-
nize themselves and afterwards refine their orientations and relations based on
the global part structure. Different from [45], the presented approach does not
require semantic labels or even segmentations as input during evaluation. In
fact, the proposed approach will internally make use of an automatic segmen-
tation method in order to obtain knowledge of the individual object parts. This
relaxation allows for an easier use of the proposedmethod in new scenarios, as
no segmentation ground truth or semantic labels are required for evaluation.
Furthermore, no leveraging spatial relations such as adjacency or symmetry
are leveraged explicitly.

A more relaxed setting of the assembly problem is object repairment. Given that
the overall object is already assembled and only a single part of the object was
previously somehow manipulated, the task is to find out how to transform

87

Chapter 6

Figure 6.1: Qualitative results of the ACD [66] segmentation method.

which part to restore the overall object. In this chapter, object repairment is
seen as part pose prediction on an unlabeled 3D point cloud input.

6.3 Methods

Dataset & Segmentation
The input to the proposed pipeline is a point cloud of the object that requires re-
pairment. We use a subset of the ShapeNet dataset [19] for training and evalua-
tion. The dataset contains objects from classes such as chairs and tables. During
evaluation, first the object is segmented into individual parts. For automatic
segmentation, Approximate Convex Decomposition (ACD) [66] is used. This
algorithm clusters the 3D input into groups, each covering its members by a
convex hull. The results are often slight oversegmentations of the original ob-
jects. This approach works very well for CAD-like objects constructed from
3D primitives but may be suboptimal in cases of high details inside the object
(such as engravings or jittery object surfaces).

Point cloud reconstruction
As the repair task can be formulated as a per-part pose estimation, supervised
learning techniques can be applied - given an appropriate error signal. How-
ever, the idea is to not directly supervise the predicted transformation signal it-
self. Instead, the predicted transformation is applied to a reference point cloud
and the disparities in reconstruction are used as error signal. Thus, the trans-
formed point cloud becomes a proxy for the underlying transformation that it

88

Assembly Repairment

Figure 6.2: Illustration of matchings used for Chamfer and EMD distances
between two point clouds.

was subjected to. There are typically two different distances that can be used
for point clouds: Earth mover’s distance and Chamfer distance.

Earth mover’s distance
For computing the Earth mover’s distance, a matching between points of the
two clouds is required. This matching needs to minimize the sum of all pairs
of euclidean distances between a point in cloud S1 and its matched point in
cloud S2.

dEMD(S1, S2) = min
Φ:S1→S2

∑
x∈S1

||x− Φ(x)||2 (6.1)

where Φ : S1 → S2 is a bijection.

Chamfer distance
Comparing two point clouds by means of the Chamfer distance is often com-
putationally less expensive than by means of EMD. This is due to the simpler
definition of the Chamfer distance, as no advanced matching technique has to
be used. The distance is defined as the sum of two terms, each of which ag-
gregates the (euclidean) distance of each point of one of the two clouds to its

89

Chapter 6

closest neighbour inside the other cloud.

dCD(S1, S2) =
∑
x∈S1

min
y∈S2

||x− y||22 +
∑
y∈S2

min
x∈S1

||x− y||22 (6.2)

During preliminary experiments on both the Chamfer and EMD loss, several
observations are made. First, the Chamfer and EMD distance between clouds
will grow quadratically, when one of the two point clouds is moved away from
the other in one dimension (cf. Fig. 6.4). However, in case of the Chamfer
distance, this growth is stronger as the second cloud moves away from the ref-
erence cloud. Additionally, when using the Chamfer distance, a bigger portion
of the overall loss may be due to the reconstructed clouds’ translation instead
of its orientation.

6.3.1 Part-level pose prediction

The proposed method will predict a transformation for each of the identified
parts of the object individually. In Fig. 6.3 b), this pipeline is visualized. We
start with the point cloud of the part as input to the PointNet [85] backbone.
The purpose of this backbone is to process the 3D input in an appropriate man-
ner (order invariant) and extract meaningful features of the global shape. Sim-
ilar to [45], after a 1024-element feature vector is extracted, twoMLPs are used
in order to predict the required transformation: oneMLPwill regress the trans-
lation (3 elements: x,y,z) and the second MLP will regress the rotation (4 ele-
ments: rotation quaternion). We opted for the use of quaternions due to two
major advantages over their alternatives: First, compared to rotation matrices,
quaternions are much more compact (4 elements vs 9 elements) as well as nu-
merically stable. Second, compared to euler angles, quaternions avoid the gim-
bal lock problem [17]. Quaternion rotations are 4 element vectors that can be
represented as:

q = s+ xi+ yj + zk s, x, y, z ∈ R, (6.3)

90

Assembly Repairment

Figure 6.3: a) Assembly repairment pipeline. Given a point cloud of a com-
promised object, ACD [66] is used to split the individual parts. After creating
a part graph, individual features are extracted from each part’s point cloud.
These features are then propagated to all other parts via the GraphConv layer.
Subsequently, twoMLPs extract rotation and translation for each part. b) Per
part pipeline. During training, correct part configurations are known and can
be used for computing the loss.

inspired by the notation of complex numbers. To test whether the above-
mentioned network is able to capture spatial properties of a given shape, a
preliminary experiment is conducted on customized point clouds. Investiga-
tion onwhether the PointNet backbone indeed captures such spatial properties
is crucial for the overall system that will eventually tackle the assembly repair-

91

Chapter 6

Figure 6.4: Reconstruction of a single part (box), captured by different met-
rics. Translation as well as rotation seem to partially improve the regres-
sion performance compared to “no manipulation”. However, when apply-
ing both transformations to the input point cloud, the reconstruction error
strongly increases.

ment task, as it relies on accurate spatial information about the respective object
parts. The process of this intermediate experiment is visualized in Fig. 6.3 b).
We sampled a single point cloud (“reference point cloud”) and during train-
ing we applied random transformations to this point cloud. Subsequently, the
manipulated point cloud is fed to the model as input. The model creates a pre-
dicted transformation vector (7 elements, 3 for translation, 4 for rotation) that
can be applied to the reference point cloud. Using EMD or Chamfer distance,
the reconstruction error can be calculated and the weights of the model can
be adapted accordingly. In Fig. 6.4, the results of the experiments are visu-
alized. A point cloud of 1024 points, sampled from a box mesh with extents
[0.2, 0.4, 1.0] and center coordinates (0, 0, 0) were used as the reference point

92

Assembly Repairment

Figure 6.5: EMD and Chamfer distance for rotation and translation.

cloud. We ran the experiment for different configurations, for 50000 training
iterations per configuration:

• nomanipulation: here, the transformation is not changing the point cloud.
Thus, the desired output of the model is supposed to be (0, 0, 0, 1, 0, 0, 0).

• translation: the point cloud was randomly translated in each dimension
based on a uniform random distribution between [−0.5, 0.5]

• rotation: the point cloud was rotated randomly.

• translation & rotation: the point cloud was first translated randomly as
detailed above and subsequently randomly rotated.

We use the Chamfer distance and EMD for measuring the reconstruction error.
Additionally, the distance between themean of the original point cloud and the
reconstruction in euclidean space is measured (“l2”). It is worth mentioning
that the l2 metric only captures one aspect of the reconstruction (rough spatial
location) and thus may not capture the rotational differences between the two
clouds. Looking at the results in Fig. 6.4, several observations can be made.
First, across the four different configurations, values for all three measured
metrics change similarly. Interestingly, the reconstruction error is consistently

93

Chapter 6

Figure 6.6: Qualitative reconstruction results based on the predicted pose of
the PointNet backbone during training for all four manipulation configura-
tions.

reduced when changing the configuration from “no manipulation” to “transla-
tion”. A possible explanation for this behaviour is that for the “no manipula-
tion” action, only a very limited subset of the input space is actually presented
to the system during training. On the other hand, when employing translation,
many more regions inside the input space are covered during training, from a
statistical perspective. This input variety translates into learning more useful
convolutional kernels compared to the “no manipulation” setting, observable
by the lower reconstruction errors. Second, rotation - similar to translation -
reduces the reconstruction error, compared to the “no manipulation” setting,
at least in the case of Chamfer distance and l2. When using both manipula-
tions in conjunction, the reconstruction error increases, compared to all other

94

Assembly Repairment

Translation Rotation mean CD input mean CD reconstruction
0.000 0.0024

✓ 0.0832 0.0018
✓ 0.0370 0.0031

✓ ✓ 0.1624 0.0101

Figure 6.7: Comparison of mean Chamfer distance between input cloud and
reference clouds (“mean CD input”) and mean Chamfer distance between
reconstructed cloud and reference cloud (“mean CD reconstruction”).

settings due to many more possible poses that have to be captured. To offer
more perspectives for the results of the single point cloud reconstruction by
pose estimation, the mean Chamfer distance for randomly manipulated input
clouds and their reconstruction for all four settings was analyzed. The results
are shown in Tab. 6.7. This table illustrates that input point clouds subjected to
both translation and rotation are - on average - orders of magnitude stronger
perturbed than their single-manipulation counterparts (0.1624 vs. 0.0832 and
0.0370).

6.3.2 Object-level pose prediction

Since objects usually differ in the number of parts they are composed of, the
segmentation output is highly irregular. Thus, Graph Convolutional Networks
[56] are used to process the object bymeans of a part graph. These graphs allow
for rich representations of individual parts (nodes) and relations between these
parts (edges). Graph Convolutional Networks allow propagating information
contained in nodes to their neighbours as well as subsequent updating of each
node’s state based on the newly aggregated neighbourhood information. Sim-
ilar to Huang et al. [45], each part’s initial feature vector is propagated to all
other parts of the object. Afterwards, each part’s transformation is predicted in-
dividually. For this prediction, the aforementioned PointNet backbone is used.
Note, that the learned weights of this network module are shared across all
nodes, meaning each node is evaluated using the same network. An illustra-
tion of this pipeline is shown in Fig. 6.3.

95

Chapter 6

During training, the single-node backbone is provided with a point cloud as
input and the predicted transformation is applied to this input point cloud and
compared to the reference cloud in an auto-encoder manner. The distance be-
tween the reconstructed point cloud and the reference cloud is then used as
the error signal during backpropagation to adapt the individual weights of the
network. Instead of the Chamfer loss used in [45], the Earth mover’s distance
is used due to better reconstruction performance in preliminary experiments.
For the convolutional graph layer, GraphConv [75] is employed, as this layer
performed best compared to other convolutional layers such as GCN [56], GAT
[118] or GIN [129]. For the GraphConv layer, the node features are updated as
follows:

x̃i = W1xi +W2

∑
j∈N (i)

xj, (6.4)

with weight matrices W1,W2.
We identified two critical hypotheses that are relevant for the employed ap-
proach.

Context improves pose prediction accuracy
The reconstruction performance of single parts was investigated in Sec. 6.3.1.
It is important to quantify whether correctly placed parts will improve the re-
construction performance. If this hypothesis does not hold true, there is little
justification for using techniques such as message passing to propagate part in-
formation to all parts involved. To empirically investigate this hypothesis, an
experiment is ran on a custom table subset of the 3D dataset for two different
configurations:

• The tabletop is already located at the correct position and only a single
leg now has to be placed accordingly.

• The tabletop and three legs are already located at the correct positions
and the fourth leg has to be placed accordingly.

96

Assembly Repairment

Figure 6.8: Test loss during training for the settings of the two experiments.

Intuitively, for humans these two tasks are both easily solvable. However, the
intuition here is that the GCNs will use redundant parts to their advantage,
i.e. by exploiting symmetry information. In the first configuration, there is no
redundant information about the other three legs that can be exploited. In the
second configuration however, point- and axes symmetry relations may help to
consistently predict the desired pose of the fourth leg.

Segmentation improves context
If indeed context helps to improve the reconstruction, why not provide it (the
already correctly placed parts) as one single entity? Here it is investigated
whether deconstruction of the complex object may increase the performance
of the reconstruction further. Again, a custom table subset of the 3D dataset is
used and two different scenarios are constructed. In both scenarios, the table-
top and three legs are already located at the correct positions and the fourth leg
has to be placed accordingly.

• Provide the tabletop and the three legs as one aggregated part to the net-
work.

• Provide the tabletop and the three legs as segmented parts to the network.

97

Chapter 6

Figure 6.9: Qualitative results for the different settings.

6.4 Experiments

As mentioned in Sec. 6.3, a subset of the ShapeNet dataset is used for the ex-
periments. Specifically, 4096 chairs and tables are sampled from the dataset.
The automatic ACD segmentation of the respective objects was taken from [37].
Ground truth semantic segmentations of these objects were obtained from the
original PointNet [85] repository. As objects first need to be manipulated in
order to create scenarios where repairment is needed, the ground truth seg-
mentations for this particular task were used. After transforming the semantic
segmentations to instance segmentations, individual parts of each object can be
manipulated. In the experiment, all objects were first centered and scaled to fit
into a unit sphere. Afterwards, a randompart from the ground truth segmenta-
tion was selected. The selected part was translated randomly using a uniform

98

Assembly Repairment

Figure 6.10: Absolute distances of scenarios before and after repairment.
Quantified by evaluating Chamfer distance to ideal object configuration. 64
samples considered.

distribution of U(−0.5, 0.5) for all three dimensions. For the rotation manipu-
lation, a random quaternion was sampled from a uniform distribution U(0, 1)
and normalized to reflect only rotation and no change in scale.

qnorm =
q

||q||
, where ||q|| =

√
w2 + x2 + y2 + z2,with q = [w, x, y, z]. (6.5)

After retrieving the automatic ACD segmentation for the cloud, a new segment
for the points that were affected by the manipulation action was created. This
is reasonable, as the manipulated part usually creates a novel connected com-
ponent which is spatially disconnected from the rest of the object, such that
this connected component can be clustered into a single segment. We split the
data objects into a training and test set, using 10% of the objects for testing. The
pipeline was implemented in PyTorch Geometric [31]. The training consisted
of 50 epochs and was executed on an Nvidia GTX 1080 Ti. A batch size of 4
objects was used and the learning rate of the Adam optimizer [55] was set to
0.001. As loss during training, EMD was used.

6.5 Results

Fig. 6.10 showsquantitative results of the approach on 64 randomobjects, where
always a single part was manipulated (“before repair”) in order to create a sce-

99

Chapter 6

Figure 6.11: Qualitative results for four chairs.

nario where the object is defect. The dispersion inside the input configuration
(“before repair”) reflects the variance of the individual manipulations: the uni-
formly distributed translation and the random rotation of the part. On average,
the mean Chamfer distance between the original point cloud and the defect ob-
ject point cloud is 0.45. The designed approach greatly reduces the distance to
the optimal point cloud by entire orders of magnitudes. This is also illustrated
in Fig. 6.12. Here, the Chamfer distance to the ideal cloud was normalized by
dividing the distance of the prediction by the initial (defect) input configura-
tion. As it can be seen, the proposed approach reduces the distance to the ideal
configuration to maximally 10% in most cases.

As strong drops in the l2 center loss can be observed, most of the improvement
in Chamfer distance can be attributed to precise prediction of the translation
of the defect part. On the other hand, as visualized in Fig. 6.11, orientation

100

Assembly Repairment

Figure 6.12: Distances of reconstructed assembly to ideal configuration, rel-
ative to pre-repairment state. Only 64 samples considered.

prediction may sometimes lack precision. The repaired chairs in column 2, 3
and 4 of Fig. 6.11 are not completely orthogonally oriented in relation to the
seat.

6.6 Conclusion
In this chapter, a pipeline for the novel task of object repairment was designed.
The introduced approach tackles multiple issues by employing automatic 3D
segmentation and dense pose regression of the individual object parts. In the
experiments, empirical evidencewas found for two important hypotheses. First,
in contrast to non-segmented object scenarios, the segmentation of the object
improved the prediction of corrected poses on the test dataset. Second, the ap-
proach makes use of the various parts of the object. Concretely, the proposed
method was more accurate in predicting the correct pose of the fourth leg of
a table compared to scenarios where other legs were missing. As the method
does not require any prior semantic segmentation or classification of the objects’
parts, this is a step towards potential real-world applications, e.g. in robots.
While unsegmented and unlabeled, the used dataset may not completely cap-
ture real world scenarios, where regions of the object might be occluded, back-
ground noise is present and 3D data is often only obtained by single-view cam-
eras. Thus, investigating more realistic 3D domestic environment data in the
future is very important.

101

Chapter 6

102

7
Conclusion

In this work, part-based object understanding by means of graphs was used
for classification tasks on artificial and real 3D data, as well as for object repair-
ment.

As segmentation is crucial to any bottom-up reasoning approach, the topic of
3D object segmentation is explored. TheMVCNN [62] approachwas extended
by defining a fully-convolutional ResNet architecture for more accurate part-
boundary prediction. The presented model significantly cuts training time of
the boundary-prediction network, making the RNN submodule of the origi-
nal MVRNN [62] unnecessary. Most importantly, it was found that leveraging
alternative rendering modalities may boost segmentation results of multi-view
approaches. Especially the normal shading seems to containmore critical infor-
mation about part-boundaries than the original phong-shading. Additionally,
higher resolution of the input data and the use of augmentation techniques
such as dilation on ground truth improve the robustness of the final part seg-
mentations. For future extensions of themethod, wewant to provide automatic

103

Chapter 7

segmentations of other segmentation approaches as input to the model. This
approach of segmentation-fusion may boost performance even further, as cur-
rent methods are often complementary: one approach performs well on hu-
manoid objects [100] and the other on CAD-created objects [4]. By providing
both results to the network, a best-of-both-worlds result might be obtainable, if
the model learns a heuristic when to rely on which segmentation aspect.

Secondly, symbolic and artifical data is explored by designing a rule-based
dataset. Rules are comprised of symbols and their spatial relations to each
other. As samples of the symbolic dataset can be transformed into 3D point
cloud data, benchmarking of different classification systems on the various
modalities is made possible. Two important aspects are focused on, namely
the perception gap and the symbol gap. By comparing two models, one using
segmented point clouds (indicating the represented symbols) and one using
the symbolic data directly as input, we are able to quantify the perception gap,
i.e. how much accuracy is due to imperfect extraction of symbolic data from
the segmented point clouds. Good classification results are observable in both
cases. The symbolic-input model nearly achieves maximum accuracy, whereas
the performance drop of the segmented point cloud model is about 20% on
average. The second important aspect is the impact of the correct symbolic
segmented point cloud compared to its completely unsegmented point cloud
counterpart. Here, the results show that providing the segmentation increases
classification performance, outperforming standard methods such as PointNet
and PointNet++. These results offer empirical evidence that - at least as long
as the data adheres to underlying spatial rules and object classes are highly
structured - better segmentation strategies may boost classification results in
the future when employed in such models.

Furthermore, graph kernels are transferred to the 3D domain for object classi-
fication. By employing an automatic segmentation approach, part graphs are
obtained that are attributed using 3D feature descriptors. The employed graph
kernels enable us to compare graphs to each other, allowing for a robust classi-
fication pipeline. The results show that the novel approach is often superior to

104

Conclusion

methods that directly extract global shape descriptors for classification, specif-
ically kNN and SVMs. The class predictions achieved on the test data show
that objects that share common structures are easier to associate with each
other, resulting in higher classification accuracy. In a second experiment the
exploitation of important substructures by the part-based approach is demon-
strated as artificial data is used in which redundant parts are added to the
objects. Differences in the various kernels are observable, as the Wasserstein
Weisfeiler-Lehman kernel dominates over the Shortest-Path and GraphHopper
kernel. Additionally, the theoretical upper bound of the part-based approach
is explored by providing ground truth segmentations to the pipeline. Here, big
performance gaps compared to automatic segmentation can be observed. This
implies that with better segmentation, further improvements to the part-based
approach can be achieved. As the pipeline is highly modular, all three main
components can easily be exchanged: feature descriptor and graph kernel as
well as the segmentation method.

Lastly, a pipeline for object repairment via part-graphs is created. The proposed
pipeline automatically segments a given object point cloud into its parts, and
predicts manipulation actions for each part individually in order to repair the
overall object. First, during initial experiments, it was found that the already
correctly placed parts enrich the scene, ultimately improving the predictions of
the model. This might indicate that the model is able to learn concepts such as
symmetry, however, additional evidence is required before a definitive state-
ment can be made. Second, the automatic segmentation increases repairment
results compared to non-segmented input clouds. As a subnetwork was used
for feature extraction from the point clouds, it was found that less complex
point clouds are better covered by their extracted feature descriptor than more
complex point clouds. By employing an automatic segmentation approach,
these more complex clouds get separated into primitive, more simple clouds,
leading to better regression results. The approach was demonstrated on a het-
erogeneous dataset containing both chairs and tables that need to be repaired.
The results show that approximating the translation of all parts involved works
to a great extent. The biggest contributor to the overall reconstruction error are

105

Chapter 7

the part orientations of the compromised part. Thus, there is still room for im-
provement for orientation prediction in the future, e.g. through better feature
extractors. In the future, more meaningful aspects - such as anchoring - of the
object assembly have to be considered and need to be reflected in metrics for
more accurate quantitative measurements.

106

107

Bibliography

[1] Naveed Akhtar and Ajmal Mian. Threat of adversarial attacks on deep
learning in computer vision: A survey. IEEE Access, 6:14410–14430, 2018.

[2] Yasuhiro Aoki, Hunter Goforth, Rangaprasad Arun Srivatsan, and Si-
mon Lucey. Pointnetlk: Robust & efficient point cloud registration us-
ing pointnet. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 7163–7172, 2019.

[3] Ehsan Asoudegi and Zhibing Pan. Computer vision for quality con-
trol in automated manufacturing systems. Computers & Industrial En-
gineering, 21(1):141 – 145, 1991. ISSN 0360-8352. doi: https://doi.org/
10.1016/0360-8352(91)90078-K. URL http://www.sciencedirect.
com/science/article/pii/036083529190078K.

[4] Marco Attene, Bianca Falcidieno, and Michela Spagnuolo. Hierarchical
mesh segmentation based on fitting primitives. The Visual Computer, 22
(3):181–193, 2006.

[5] Oscar Kin-Chung Au, Youyi Zheng, Menglin Chen, Pengfei Xu, and
Chiew-Lan Tai. Mesh segmentation with concavity-aware fields. IEEE
Transactions on Visualization and Computer Graphics, 18(7):1125–1134, 2011.

[6] A. Barla, F. Odone, and A. Verri. Histogram intersection kernel for
image classification. In Proceedings 2003 International Conference on Im-
age Processing (Cat. No.03CH37429), volume 3, pages III–513, 2003. doi:
10.1109/ICIP.2003.1247294.

[7] HG Barrow, JM Tenenbaum, RC Bolles, and HCf Wolf. Parametric corre-
spondence and chamfermatching: Two new techniques for imagematch-
ing. In Proceedings: Image Understanding Workshop, pages 21–27. Science
Applications, Inc Arlington, VA, 1977.

[8] Yizhak Ben-Shabat, Xin Yu, Fatemeh Saleh, Dylan Campbell, Cristian
Rodriguez-Opazo, Hongdong Li, and Stephen Gould. The ikea asm
dataset: Understanding people assembling furniture through actions,

108

http://www.sciencedirect.com/science/article/pii/036083529190078K
http://www.sciencedirect.com/science/article/pii/036083529190078K

objects and pose. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision, pages 847–859, 2020.

[9] Halim Benhabiles, Guillaume Lavoué, Jean-Philippe Vandeborre, and
MohamedDaoudi. Learning boundary edges for 3d-mesh segmentation.
In Computer Graphics Forum, volume 30, pages 2170–2182. Wiley Online
Library, 2011.

[10] Irving Biederman. Recognition-by-components: a theory of human im-
age understanding. Psychological review, 94(2):115, 1987.

[11] Christopher M Bishop. Pattern recognition and machine learning. springer,
2006.

[12] Karsten M Borgwardt and Hans-Peter Kriegel. Shortest-path kernels on
graphs. In Fifth IEEE international conference on data mining (ICDM’05),
pages 8–pp. IEEE, 2005.

[13] Bernhard E Boser, Isabelle MGuyon, and Vladimir N Vapnik. A training
algorithm for optimal margin classifiers. In Proceedings of the fifth annual
workshop on Computational learning theory, pages 144–152, 1992.

[14] Mario Botsch, Leif Kobbelt, Mark Pauly, Pierre Alliez, and Bruno Lévy.
Polygon mesh processing. CRC press, 2010.

[15] Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy
minimization via graph cuts. IEEE Transactions on pattern analysis and
machine intelligence, 23(11):1222–1239, 2001.

[16] Wieland Brendel, Jonas Rauber, and Matthias Bethge. Decision-based
adversarial attacks: Reliable attacks against black-box machine learning
models. In International Conference on Learning Representations, 2018.

[17] Danail S Brezov, ClementinaDMladenova, and IvaïloMMladenov. New
perspective on the gimbal lock problem. In AIP Conference Proceedings,
volume 1570, pages 367–374. American Institute of Physics, 2013.

[18] Kaidi Cao, Maria Brbic, and Jure Leskovec. Concept learners for few-
shot learning. In International Conference on Learning Representations, 2021.
URL https://openreview.net/forum?id=eJIJF3-LoZO.

[19] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan,
Qixing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song,
Hao Su, et al. Shapenet: An information-rich 3d model repository. arXiv

109

https://openreview.net/forum?id=eJIJF3-LoZO

preprint arXiv:1512.03012, 2015.
[20] Angel X. Chang, Thomas A. Funkhouser, Leonidas J. Guibas, Pat Han-

rahan, Qi-Xing Huang, Zimo Li, Silvio Savarese, Manolis Savva, Shu-
ran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu. Shapenet: An
information-rich 3d model repository. CoRR, abs/1512.03012, 2015. URL
http://arxiv.org/abs/1512.03012.

[21] Chih-Chung Chang and Chih-Jen Lin. Libsvm: A library for support
vector machines. ACM Trans. Intell. Syst. Technol., 2(3), May 2011. ISSN
2157-6904. doi: 10.1145/1961189.1961199. URL https://doi.org/10.
1145/1961189.1961199.

[22] Xiaobai Chen, Aleksey Golovinskiy, and Thomas Funkhouser. A bench-
mark for 3D mesh segmentation. ACM Transactions on Graphics (Proc.
SIGGRAPH), 28(3), August 2009.

[23] Zhi-Quan Cheng, Kai Xu, Bao Li, Yan-Zhen Wang, Gang Dang, and Shi-
Yao Jin. A mesh meaningful segmentation algorithm using skeleton and
minima-rule. In International Symposium on Visual Computing, pages 671–
680. Springer, 2007.

[24] Simon Christoph Stein, Markus Schoeler, Jeremie Papon, and Florentin
Worgotter. Object partitioning using local convexity. In Proceedings of the
IEEEConference onComputer Vision and PatternRecognition, pages 304–311,
2014.

[25] T. Cover and P. Hart. Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory, 13(1):21–27, 1967. doi: 10.1109/TIT.1967.
1053964.

[26] Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal
transport. Advances in neural information processing systems, 26:2292–2300,
2013.

[27] Miroslawa CYLKOWSKA-NOWAK, Slawomir Tobis, Claudia Salatino,
Adriana Tapus, and Aleksandra Suwalska. The robots in elderly care.
In 2nd International Multidisciplinary Scientific Conference on Social Sci-
ences and Arts SGEM2015, Albena, Bulgaria, 2015. URL https://hal.
archives-ouvertes.fr/hal-01762539.

[28] P. Felzenszwalb, D. McAllester, and D. Ramanan. A discriminatively

110

http://arxiv.org/abs/1512.03012
https://doi.org/10.1145/1961189.1961199
https://doi.org/10.1145/1961189.1961199
https://hal.archives-ouvertes.fr/hal-01762539
https://hal.archives-ouvertes.fr/hal-01762539

trained, multiscale, deformable part model. In 2008 IEEE Conference on
Computer Vision and Pattern Recognition, pages 1–8, 2008.

[29] Aasa Feragen, Niklas Kasenburg, Jens Petersen, Marleen de Bruijne, and
Karsten Borgwardt. Scalable kernels for graphs with continuous at-
tributes. In Advances in neural information processing systems, pages 216–
224, 2013.

[30] Matthias Fey. Just jump: Dynamic neighborhood aggregation in graph
neural networks. arXiv preprint arXiv:1904.04849, 2019.

[31] Matthias Fey and Jan Eric Lenssen. Fast graph representation learning
with pytorch geometric. arXiv preprint arXiv:1903.02428, 2019.

[32] Matthias Fey, Jan Eric Lenssen, Frank Weichert, and Heinrich Müller.
Splinecnn: Fast geometric deep learning with continuous b-spline ker-
nels. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 869–877, 2018.

[33] Martin A Fischler and Robert A Elschlager. The representation and
matching of pictorial structures. IEEE Transactions on computers, 100(1):
67–92, 1973.

[34] Matthew Fisher, Manolis Savva, and PatHanrahan. Characterizing struc-
tural relationships in scenes using graph kernels. InACMTransactions on
Graphics (TOG), volume 30, page 34. ACM, 2011.

[35] Lawrence J Fogel, Alvin J Owens, and Michael J Walsh. Artificial intel-
ligence through simulated evolution. Wiley, New York, NY, 1966. URL
https://cds.cern.ch/record/107769.

[36] Susanne Frennert. Older People Meet Robots: Three Case Studies on the Do-
mestication of Robots in Everyday Life. PhD thesis, Certec - Rehabilitation
Engineering and Design, August 2016. Defence details Date: 2016-09-09
Time: 09:15 Place: Stora Hörsalen, IKDC, Sölvegatan 26, Lunds Tekniska
Högskola External reviewer(s) Name: Jaeger, Birgit Title: Professor Af-
filiation: Roskilde Universitet, Danmark —.

[37] Matheus Gadelha, Aruni RoyChowdhury, Gopal Sharma, Evangelos
Kalogerakis, Liangliang Cao, Erik Learned-Miller, Rui Wang, and
Subhransu Maji. Label-efficient learning on point clouds using approxi-
mate convex decompositions. In European Conference on Computer Vision

111

https://cds.cern.ch/record/107769

(ECCV), 2020.
[38] Aurelien Geron. Hands-on machine learning with Scikit-Learn and Tensor-

Flow. O’Reilly, Beijing, first edition edition, 2017.
[39] Aleksey Golovinskiy and Thomas Funkhouser. Randomized cuts for 3d

mesh analysis. In ACM SIGGRAPH Asia 2008 papers, pages 1–12. 2008.
[40] RichardHRHahnloser, Rahul Sarpeshkar, MishaAMahowald, Rodney J

Douglas, and H Sebastian Seung. Digital selection and analogue am-
plification coexist in a cortex-inspired silicon circuit. Nature, 405(6789):
947–951, 2000.

[41] KaimingHe, XiangyuZhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770–778, 2016.

[42] Wei He, Zhijun Li, and CL Philip Chen. A survey of human-centered
intelligent robots: issues and challenges. IEEE/CAA Journal of Automatica
Sinica, 4(4):602–609, 2017.

[43] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.
Neural computation, 9(8):1735–1780, 1997.

[44] DonaldDHoffman andManish Singh. Salience of visual parts. Cognition,
63(1):29–78, 1997.

[45] Jialei Huang, Guanqi Zhan, Qingnan Fan, Kaichun Mo, Lin Shao, Bao-
quan Chen, Leonidas Guibas, and Hao Dong. Generative 3d part as-
sembly via dynamic graph learning. In The IEEE Conference on Neural
Information Processing Systems (NeurIPS), 2020.

[46] Jingwei Huang, Hao Su, and Leonidas Guibas. Robust watertight man-
ifold surface generation method for shapenet models. arXiv preprint
arXiv:1802.01698, 2018.

[47] Daniel Huber, Anuj Kapuria, Raghavendra Donamukkala, and Martial
Hebert. Parts-based 3d object classification. In Proceedings of the 2004
IEEE Computer Society Conference on Computer Vision and Pattern Recogni-
tion, 2004. CVPR 2004., volume 2, pages II–II. IEEE, 2004.

[48] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating
deep network training by reducing internal covariate shift. In Interna-
tional conference on machine learning, pages 448–456. PMLR, 2015.

112

[49] Paul Jaccard. The distribution of the flora in the alpine zone. New Phy-
tologist, 11(2):37–50, 1912. doi: https://doi.org/10.1111/j.1469-8137.1912.
tb05611.x. URL https://nph.onlinelibrary.wiley.com/doi/
abs/10.1111/j.1469-8137.1912.tb05611.x.

[50] Joel Janai, Fatma Guney, Aseem Behl, and Andreas Geiger. Computer
vision for autonomous vehicles: Problems, datasets and state-of-the-art.
Foundations and Trends in Computer Graphics and Vision, 12, 04 2017. doi:
10.1561/0600000079.

[51] Hui Jia and Jiangang Zhang. Extract segmentation lines of 3d model
based on regional discrete curvature. International Journal of Signal Pro-
cessing, Image Processing and Pattern Recognition, 9(1):265–274, 2016.

[52] Jonathan D Jones, Cathryn Cortesa, Amy Shelton, Barbara Landau, San-
jeev Khudanpur, and Gregory D Hager. Fine-grained activity recogni-
tion for assembly videos. arXiv preprint arXiv:2012.01392, 2020.

[53] Oliver Van Kaick, Noa Fish, Yanir Kleiman, Shmuel Asafi, and Daniel
Cohen-Or. Shape segmentation by approximate convexity analysis.ACM
Transactions on Graphics (TOG), 34(1):1–11, 2014.

[54] Sagi Katz, George Leifman, and Ayellet Tal. Mesh segmentation using
feature point and core extraction. The Visual Computer, 21(8):649–658,
2005.

[55] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic opti-
mization. International Conference on Learning Representations, 12 2014.

[56] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. 2017.

[57] Nils M Kriege, Fredrik D Johansson, and Christopher Morris. A survey
on graph kernels. Applied Network Science, 5(1):1–42, 2020.

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet clas-
sification with deep convolutional neural networks. Advances in neural
information processing systems, 25:1097–1105, 2012.

[59] Joseph B Kruskal. Multidimensional scaling. Number 11. Sage, 1978.
[60] Yu-Kun Lai, Shi-Min Hu, Ralph R Martin, and Paul L Rosin. Fast mesh

segmentation using random walks. In Proceedings of the 2008 ACM sym-
posium on Solid and physical modeling, pages 183–191, 2008.

113

https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x
https://nph.onlinelibrary.wiley.com/doi/abs/10.1111/j.1469-8137.1912.tb05611.x

[61] Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum.
Human-level concept learning through probabilistic program induction.
Science, 350(6266):1332–1338, 2015.

[62] Truc Le, Giang Bui, andYeDuan. Amulti-view recurrent neural network
for 3Dmesh segmentation. Computers & Graphics, pages 103–112, August
2017.

[63] Yann LeCun and Corinna Cortes. MNIST handwritten digit database.
2010. URL http://yann.lecun.com/exdb/mnist/.

[64] Youngwoon Lee, Edward S Hu, Zhengyu Yang, Alex Yin, and Joseph J
Lim. Ikea furniture assembly environment for long-horizon complexma-
nipulation tasks. arXiv preprint arXiv:1911.07246, 2019.

[65] Jun Li, Kai Xu, Siddhartha Chaudhuri, Ersin Yumer, Hao Zhang, and
Leonidas Guibas. Grass: Generative recursive autoencoders for shape
structures. ACM Transactions on Graphics (TOG), 36(4):1–14, 2017.

[66] Jyh-Ming Lien and Nancy M Amato. Approximate convex decomposi-
tion of polyhedra. In Proceedings of the 2007 ACM symposium on Solid and
physical modeling, pages 121–131, 2007.

[67] Ik Soo Lim and E Charles Leek. Curvature and the visual perception of
shape: Theory on information along object boundaries and the minima
rule revisited. Psychological Review, 119(3):668, 2012.

[68] Joseph J. Lim, Hamed Pirsiavash, and Antonio Torralba. Parsing IKEA
Objects: Fine Pose Estimation. ICCV, 2013.

[69] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3431–3440, 2015.

[70] William E Lorensen andHarvey E Cline. Marching cubes: A high resolu-
tion 3d surface construction algorithm. ACM siggraph computer graphics,
21(4):163–169, 1987.

[71] James MacQueen et al. Some methods for classification and analysis of
multivariate observations. In Proceedings of the fifth Berkeley symposium on
mathematical statistics and probability, volume 1, pages 281–297. Oakland,
CA, USA, 1967.

[72] Eric Margolis and Stephen Laurence. Concepts. In Edward N. Zalta,

114

http://yann.lecun.com/exdb/mnist/

editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab,
Stanford University, summer 2019 edition, 2019.

[73] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d convolutional
neural network for real-time object recognition. In 2015 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), pages 922–928.
IEEE, 2015.

[74] Kaichun Mo, Paul Guerrero, Li Yi, Hao Su, Peter Wonka, Niloy Mitra,
and Leonidas Guibas. Structurenet: Hierarchical graph networks for 3d
shape generation. ACM Transactions on Graphics (TOG), Siggraph Asia
2019, 38(6):Article 242, 2019.

[75] Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton,
Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and le-
man go neural: Higher-order graph neural networks. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33, pages 4602–4609,
2019.

[76] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scal-
able parallel programmingwith cuda: Is cuda the parallel programming
model that application developers have been waiting for? Queue, 6(2):
40–53, 2008.

[77] Don Norman. The design of everyday things: Revised and expanded edition.
Basic books, 2013.

[78] Nemer Odeh and Cem Direkoglu. Automated shopping system using
computer vision. Multimedia Tools and Applications, pages 1–11, 2020.

[79] Anshul Paigwar, Ozgur Erkent, Christian Wolf, and Christian Laugier.
Attentional pointnet for 3d-object detection in point clouds. In Proceed-
ings of the IEEEConference on Computer Vision and Pattern RecognitionWork-
shops, pages 0–0, 2019.

[80] Jeremie Papon, Alexey Abramov, Markus Schoeler, and Florentin Wor-
gotter. Voxel cloud connectivity segmentation-supervoxels for point
clouds. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2027–2034, 2013.

[81] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

115

Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An im-
perative style, high-performance deep learning library. In H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems 32, pages 8024–
8035. Curran Associates, Inc., 2019.

[82] F. Pedregosa, G. Varoquaux, A. Gramfort, V.Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

[83] Bui Tuong Phong. Illumination for computer generated pictures. Com-
munications of the ACM, 18(6):311–317, 1975.

[84] Charles R Qi, Hao Su, Matthias Nießner, Angela Dai, Mengyuan Yan,
and Leonidas J Guibas. Volumetric andmulti-view cnns for object classi-
fication on 3d data. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 5648–5656, 2016.

[85] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet:
Deep learning on point sets for 3d classification and segmentation. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 652–660, 2017.

[86] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-
net++: Deep hierarchical feature learning on point sets in a metric
space. In Advances in neural information processing systems, pages 5099–
5108, 2017.

[87] Weichao Qiu, Fangwei Zhong, Yi Zhang, Siyuan Qiao, Zihao Xiao,
Tae Soo Kim, and Yizhou Wang. Unrealcv: Virtual worlds for computer
vision. In Proceedings of the 25th ACM international conference on multime-
dia, pages 1221–1224, 2017.

[88] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–
106, 1986.

[89] Stephan R Richter, Vibhav Vineet, Stefan Roth, and Vladlen Koltun. Play-

116

ing for data: Ground truth from computer games. In European conference
on computer vision, pages 102–118. Springer, 2016.

[90] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolu-
tional networks for biomedical image segmentation. In International Con-
ference onMedical image computing and computer-assisted intervention, pages
234–241. Springer, 2015.

[91] German Ros, Laura Sellart, Joanna Materzynska, David Vazquez, and
Antonio M Lopez. The synthia dataset: A large collection of synthetic
images for semantic segmentation of urban scenes. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 3234–
3243, 2016.

[92] Yossi Rubner, Carlo Tomasi, and Leonidas J Guibas. The earth mover’s
distance as a metric for image retrieval. International journal of computer
vision, 40(2):99–121, 2000.

[93] David E Rumelhart, Geoffrey EHinton, and Ronald JWilliams. Learning
internal representations by error propagation. Technical report, Califor-
nia Univ San Diego La Jolla Inst for Cognitive Science, 1985.

[94] Radu Bogdan Rusu and Steve Cousins. 3D is here: Point Cloud Li-
brary (PCL). In IEEE International Conference on Robotics and Automation
(ICRA), Shanghai, China, May 9-13 2011.

[95] Radu Bogdan Rusu, Zoltan Csaba Marton, Nico Blodow, and Michael
Beetz. Persistent point feature histograms for 3d point clouds. In Proc
10th Int Conf Intel Autonomous Syst (IAS-10), Baden-Baden, Germany, pages
119–128, 2008.

[96] Radu Bogdan Rusu, Nico Blodow, and Michael Beetz. Fast point feature
histograms (fpfh) for 3d registration. In 2009 IEEE international conference
on robotics and automation, pages 3212–3217. IEEE, 2009.

[97] Radu Bogdan Rusu, Gary Bradski, Romain Thibaux, and John Hsu. Fast
3d recognition and pose using the viewpoint feature histogram. In 2010
IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
2155–2162. IEEE, 2010.

[98] Markus Schoeler, Jeremie Papon, and Florentin Worgotter. Constrained
planar cuts-object partitioning for point clouds. In Proceedings of the IEEE

117

Conference on Computer Vision and Pattern Recognition, pages 5207–5215,
2015.

[99] Julius Schöning and Gunther Heidemann. Taxonomy of 3d sensors-a
survey of state-of-the-art consumer 3d-reconstruction sensors and their
field of applications. In VISIGRAPP (3: VISAPP), pages 194–199, 2016.

[100] Lior Shapira, Ariel Shamir, and Daniel Cohen-Or. Consistent mesh parti-
tioning and skeletonisation using the shape diameter function. TheVisual
Computer, 24(4):249–259, 2008.

[101] Nino Shervashidze, Pascal Schweitzer, Erik Jan Van Leeuwen, Kurt
Mehlhorn, and Karsten M Borgwardt. Weisfeiler-lehman graph kernels.
Journal of Machine Learning Research, 12(9), 2011.

[102] Shymon Shlafman, Ayellet Tal, and Sagi Katz. Metamorphosis of poly-
hedral surfaces using decomposition. In Computer graphics forum, vol-
ume 21, pages 219–228. Wiley Online Library, 2002.

[103] Zhenyu Shu, Chengwu Qi, Shiqing Xin, Chao Hu, Li Wang, Yu Zhang,
and Ligang Liu. Unsupervised 3d shape segmentation and co-
segmentation via deep learning. Computer Aided Geometric Design, 43:
39–52, 2016.

[104] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob Fergus. In-
door segmentation and support inference from rgbd images. In European
conference on computer vision, pages 746–760. Springer, 2012.

[105] Manish Singh and Donald D Hoffman. Part-based representations of
visual shape and implications for visual cognition. In Advances in psy-
chology, volume 130, pages 401–459. Elsevier, 2001.

[106] Richard Socher, Cliff Chiung-Yu Lin, Andrew Y Ng, and Christopher D
Manning. Parsing natural scenes and natural language with recursive
neural networks. In ICML, 2011.

[107] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik Learned-
Miller. Multi-view convolutional neural networks for 3d shape recogni-
tion. In Proceedings of the IEEE international conference on computer vision,
pages 945–953, 2015.

[108] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-
Miller. Multi-view convolutional neural networks for 3d shape recogni-

118

tion. In Proc. ICCV, 2015.
[109] Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution

for deep networks. In International Conference on Machine Learning, pages
3319–3328. PMLR, 2017.

[110] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and
Zbigniew Wojna. Rethinking the inception architecture for computer
vision. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 2818–2826, 2016.

[111] Florian Teich, Timo Lüddecke, and Florentin Wörgötter. 3d object classi-
fication via part graphs. In VISAPP 2021, 2020.

[112] Joshua B. Tenenbaum, Charles Kemp, Thomas L. Griffiths, and Noah D.
Goodman. How to grow a mind: Statistics, structure, and abstraction.
Science, 331(6022):1279–1285, 2011. ISSN 00368075. doi: 10.1126/science.
1192788.

[113] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li.
Attention-based graph neural network for semi-supervised learning.
arXiv preprint arXiv:1803.03735, 2018.

[114] Matteo Togninalli, Elisabetta Ghisu, Felipe Llinares-López, Bastian
Rieck, and Karsten Borgwardt. Wasserstein weisfeiler-lehman graph ker-
nels. In Advances in Neural Information Processing Systems, pages 6436–
6446, 2019.

[115] Federico Tombari, Samuele Salti, and Luigi Di Stefano. Unique signa-
tures of histograms for local surface description. In European conference
on computer vision, pages 356–369. Springer, 2010.

[116] Iis P Tussyadiah and Sangwon Park. Consumer evaluation of hotel ser-
vice robots. In Information and communication technologies in tourism 2018,
pages 308–320. Springer, 2018.

[117] Mikaela Angelina Uy, Quang-Hieu Pham, Binh-Son Hua, Thanh
Nguyen, and Sai-Kit Yeung. Revisiting point cloud classification: A
new benchmark dataset and classification model on real-world data. In
Proceedings of the IEEE International Conference on Computer Vision, pages
1588–1597, 2019.

[118] Petar Veličković, GuillemCucurull, Arantxa Casanova, Adriana Romero,

119

Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[119] Alessandro Vercelli, Innocenzo Rainero, Ludovico Ciferri, Marina Boido,
and Fabrizio Pirri. Robots in elderly care. DigitCult-Scientific Journal on
Digital Cultures, 2(2):37–50, 2018.

[120] Valeria Villani, Fabio Pini, Francesco Leali, and Cristian Secchi. Survey
on human–robot collaboration in industrial settings: Safety, intuitive in-
terfaces and applications. Mechatronics, 55:248–266, 2018.

[121] C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The Caltech-
UCSD Birds-200-2011 Dataset. Technical Report CNS-TR-2011-001, Cali-
fornia Institute of Technology, 2011.

[122] Jean-Baptiste Weibel, Timothy Patten, and Markus Vincze. Addressing
the sim2real gap in robotic 3-d object classification. IEEE Robotics and
Automation Letters, 5(2):407–413, 2019.

[123] WalterWohlkinger andMarkus Vincze. Ensemble of shape functions for
3d object classification. In 2011 IEEE international conference on robotics
and biomimetics, pages 2987–2992. IEEE, 2011.

[124] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Linguang Zhang,
Xiaoou Tang, and Jianxiong Xiao. 3d shapenets: A deep representation
for volumetric shapes. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1912–1920, 2015.

[125] Yu Xiang, Wonhui Kim, Wei Chen, Jingwei Ji, Christopher Choy, Hao Su,
Roozbeh Mottaghi, Leonidas Guibas, and Silvio Savarese. Objectnet3d:
A large scale database for 3d object recognition. In European conference on
computer vision, pages 160–176. Springer, 2016.

[126] S. Xie and Z. Tu. Holistically-nested edge detection. In 2015 IEEE Interna-
tional Conference on Computer Vision (ICCV), pages 1395–1403, 2015. doi:
10.1109/ICCV.2015.164.

[127] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, andKaimingHe.
Aggregated residual transformations for deep neural networks. CoRR,
abs/1611.05431, 2016. URL http://arxiv.org/abs/1611.05431.

[128] Kai Xu, Hao Zhang, Daniel Cohen-Or, and Baoquan Chen. Fit and di-
verse: Set evolution for inspiring 3d shape galleries. ACM Transactions

120

http://arxiv.org/abs/1611.05431

on Graphics, (Proc. of SIGGRAPH 2012), 31(4):57:1–57:10, 2012.
[129] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How pow-

erful are graph neural networks? 2019.
[130] Yaoqing Yang, Chen Feng, Yiru Shen, and Dong Tian. Foldingnet: Point

cloud auto-encoder via deep grid deformation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 206–
215, 2018.

[131] Li Yi, Vladimir G. Kim, Duygu Ceylan, I-Chao Shen, Mengyan Yan, Hao
Su, Cewu Lu, Qixing Huang, Alla Sheffer, and Leonidas Guibas. A scal-
able active framework for region annotation in 3d shape collections. SIG-
GRAPH Asia, 2016.

[132] Georgios A Zachiotis, George Andrikopoulos, Randy Gornez, Keisuke
Nakamura, and George Nikolakopoulos. A survey on the application
trends of home service robotics. In 2018 IEEE International Conference on
Robotics and Biomimetics (ROBIO), pages 1999–2006. IEEE, 2018.

121

Curriculum Vitae – Florian Teich

Address Christophorusweg 14,
37075 Göttingen

Email fteich1@gwdg.de

Date of Birth 12th December 1992
Place of Birth Göttingen
Nationality German/American

Education

since 2017 Research Assistant
Georg-August University of Göttingen
III. Physics Institute
Department of Computational Neuroscience
Topic:”Graph-based Functional Object Understanding”

2015-2017 M.Sc. in Applied Computer Science
Georg-August University of Göttingen
Specialization: Computational Neuroscience
Thesis:”Multiple Extended Target Tracking using Multiplicative
Error Shape Model and Network Flow Labeling”

2011-2015 B.Sc. in Applied Computer Science
Georg-August University of Göttingen
Specialization: Computational Neuroscience
Thesis: ”Multichannel electrotactile biofeedback for predictive control
of myoelectric prostheses”

2003-2011 General qualification for university entrance
Grotefend-Gymnasium Münden

Employment

since 2017 University of Göttingen, III. Physics Institute
Research Assistant

122

mailto:fteich1@gwdg.de

2015 - 2017 IVDK, Göttingen
Software-& Hardware-Administration, Software Development,
System Hardening

2014 - 2017 Institute of Computer Science, Göttingen
Web representation of the Institute, Software Development

Publications

2021 3D Object Classification via Part Graphs
Teich, Lüddecke, Wörgötter
VISAPP (2021)

2019 A Data-driven Approach for General Visual Quality Control
in a Robotic Workcell
Reich, Teich, Tamosiunaite, Wörgötter, Ivanovska
Journal of Physics: Conference Series (2019)

2017 Network Flow Labeling for Extended Target Tracking PHD filters
Yang, Teich, Baum
IEEE Transactions on Industrial Informatics (2017)

2017 GM-PHD filter for Multiple Extended Object Tracking based on
the Multiplicative Error Shape Model and Network Flow Labeling
Teich, Yang, Baum
IEEE Intelligent Vehicles Symposium (2017)

2016 Electrotactile EMG feedback improves the control of prosthesis
grasping force
Schweisfurth, Markovic, Dosen, Teich, Graimann, Farina
Journal of Neural Engineering 13.5 (2016)

123

	Introduction
	Foundations
	Machine Learning
	Graphs
	Neural Networks & Graph Neural Networks
	3D Surface Meshes
	Metrics

	3D Object Segmentation
	Introduction
	Related Works
	Methods
	Results
	Conclusion

	Concept Learning in 3D
	Introduction
	Related Works
	Methods
	Experiments
	Results
	Conclusion

	Part-graph-based Object Classification
	Introduction
	Related Works
	Methods
	Experiment: Ordinary Object Classification
	Experiment: Out-of-Distribution Object Classification
	Conclusion

	Assembly Repairment
	Introduction
	Related Works
	Methods
	Experiments
	Results
	Conclusion

	Conclusion

