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Abstract 

 

Skeletal muscle disease modeling offers the unique opportunity to investigate devastating muscle 

diseases like Duchenne Muscle Dystrophy in vitro but requires advanced three-dimensional (3D) 

model systems reflecting the characteristics of human muscle in vivo. The aim of this study was to 

generate engineered models of skeletal muscle from human pluripotent stem cells (hPSCs) with 

physiological properties by recapitulating specific stages of muscle development. 

To allow for robust skeletal muscle tissue engineering first a directed differentiation protocol was 

established in 2D culture under serum-free conditions. Comparison of hPSC differentiation to 

embryonic muscle development confirmed significant overlap with characteristic signatures of 

paraxial mesoderm, dermatomyotome, and somite stage. The protocol robustly directed multiple 

hPSC lines into skeletal muscle cells in 2D culture as well as in a collagen-1/Matrigel® hydrogel 

in 3D generating bioengineered skeletal muscle (BSM) organoid. By identifying additional 

maturation cues (creatine, triiod-L-thyronine) hPSC-derived skeletal myogenic cells embedded 

into a collagen-1/Matrigel® hydrogel generated engineered skeletal muscle (ESM) with compact 

muscle syncytia, anisotropically arranged sarcomeres, properly localized dystrophin-associated 

complex proteins, and contractile function of developing fast muscle. Importantly, Pax7-positive 

cells were found adjacent to muscle fibers underneath a laminin-positive basal lamina in a satellite-

like cell position. Cardiotoxin injury of ESM induced a regenerative response with recovery of 

tetanic force after complete loss of function. Finally, modelling of Duchenne Muscular Dystrophy 

(DMD) in ESM demonstrates “proof of concept” for efficacy of CRISPR/Cas9 based exon 

skipping. 

Collectively, human BSM and ESM models provide unprecedented opportunities to study muscle 

development, maturation, and regeneration in vitro and may serve as preclinical test bed for novel 

therapies of skeletal muscle disease.  
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1. Introduction 

Skeletal muscle as the largest tissue in the human body comprises more than 600 individual 

muscles across the body (Janssen et al. 2000) performing essential functions not only in movement, 

but also in power generation, heat production, homeostasis and metabolism regulation (Ostrovidov 

et al. 2014). Moreover, the robust regeneration capacity of skeletal muscle allows it to efficiently 

restore function after traumatic injury  (Rosenblatt 1992). Despite the high regenerative potential, 

many types of diseases including metabolic, neuromuscular and dystrophic disorders can 

functionally impair skeletal muscle leading to jeopardized quality of life. 

 

Developing a physiological reliable skeletal muscle in vitro from human pluripotent stem cells will 

provide an invaluable tool to better understand the basis of muscle regeneration as well as 

effectively model skeletal muscle disease and elucidate potential therapeutic approaches. To 

achieve this goal, Nature’s blueprint of skeletal muscle structure and embryonic muscle 

development in vivo was studied to closely recapitulate these steps in vitro. 

 

In the human body, three types of muscle are recognized: 1) smooth muscle existing in the wall of 

the internal organs, 2) cardiac muscle only present in the heart and 3) skeletal muscle distributed 

through the body and connected to the skeleton (Figure 1). Contrary to smooth and cardiac muscle, 

skeletal muscle can be moved voluntarily (Frontera and Ochala 2015). 

 

        

 
Figure 1. The three types of muscle tissue in the human body. 
A, Cardiac muscle with branching striated cells. B, Skeletal muscle with single, long striated cells which are 
multinucleated, and C, Smooth muscle with single fusiform cells without striations. (Image from 
www.scientistcindy.com) 

A B C 
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1.1 Structure of skeletal muscle  

Skeletal muscle encompasses a very organized hierarchical structure. Each skeletal muscle is 

composed of several muscle fascicules surrounded by fibrous perimysium. Each muscle fascicule 

contains several muscle fibers which are surrounded by endomysium. Each muscle fiber is a 

multinucleated muscle cell which has a cylindrical shape with a diameter between 50 to 100 μm 

and a length up to cm scale. The plasma membrane of muscle fibers (sarcolemma) is encased by a 

laminin- and collagen IV-rich basal lamina (Gillies and Lieber 2011). Skeletal muscle stem cells 

(satellite cells) reside between sarcolemma and basal lamina adjacent to the muscle fiber. In mature 

muscle fibers the nuclei are positioned in the periphery just underneath the sarcolemma (Figure 

2). 

                         
 
Figure 2. The hierarchical structure of skeletal muscle. 
Skeletal muscle attaches to the bone by tendons. Each skeletal muscle is made up of fascicules. Fascicules contain 
several muscle fibers. Muscle fibers are multinucleated with nuclei located at the periphery of the cell underneath the 
sarcolemma. The sarcolemma of each muscle fiber is surrounded by a basal lamina. Satellite cells are attached to the 
muscle fiber between the sarcolemma and basal lamina. Mitochondria and membranous structure of T-
tubules/sarcoplasmic reticulum are present in the sarcoplasm. Muscle fibers contain several myofibrils which are 
composed of repeating sarcomere units (defined by Z line). In each sarcomere, the Z line is the anchoring band of the 
actin filaments and M line is the anchoring band of the myosin filaments (Image adapted with permission from 
Development, Company of Biologists, Relaix and Zammit 2012). 
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Each muscle fiber contains several myofibrils encircled by T-tubules and sarcoplasmic reticulum 

(SR) which form close contacts (triads). Mitochondria are located adjacent to SR along the 

myofibrils. Each myofibril consists of myofilaments, structural and regulatory proteins. Assembly 

of myofilaments in a highly organized pattern forms the sarcomere with a length of 1.9 to 3 µm 

(Cutts 1988). Each sarcomere is considered as the functional unit of the muscle (Frontera and 

Ochala 2015). The two most abundant myofilament proteins in the sarcomere are the thin filament 

actin and the thick filament myosin (Figure 2). Another structural myofilament protein with 

multifaceted roles in the sarcomere is titin which stabilizes the alignment of myosins (Linke 2018; 

Swist et al. 2020).  
 

1.2 Skeletal muscle development in vivo 

Skeletal muscle development is a long, multistep process that starts with paraxial mesoderm 

formation from pluripotent preimplantation embryo (epiblast) and continues with somite 

formation, primary skeletal myogenesis and secondary skeletal myogenesis that will be followed 

by postnatal and adult muscle growth. This process is regulated by a set of specific signaling 

molecules and transcription factors (Figure 3A,B).  

 

1.2.1 Paraxial mesoderm specification 

During early gastrulation paraxial mesoderm (PM) forms as bilateral strips of presomitic 

mesoderm (PSM) flanking the neural tube and notochord alongside the forming posterior-anterior 

(P–A) axis at the posterior domain of the embryo (Chal and Pourquié 2009).  

When Wnt-signaling is activated in multipotent progenitors near the embryonic node, dishevelled 

(Dvl/Dsh) will be recruited to inhibit the glycogen synthase kinase 3 (GSK3) located in the beta-

catenin destruction complex. This leads to an accumulation of free non-phosphorylated beta-

catenin in the cytosol, which will be translocated to the nucleus and activates Wnt-target genes 

such as T (brachyury) to give rise to primitive streak mesoderm (Liu et al. 1999; Ramkumar and 

Anderson 2011). In the absence of BMP signaling, the enhancer N1 will be activated by synergistic 

action of Wnt and FGF signals. N1 is responsible for Sox2 regulation to give rise to T/Sox2 
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coexpressing neuromesodermal progenitors (NMP) in paraxial mesoderm (Garriock et al. 2015; 

Takemoto et al. 2011). WNT together with FGF signaling will repress the neural fate by 

antagonizing Sox2 in NMPs and promote the formation of posterior presomitic mesoderm (pPSM) 

by upregulation of Tbx6 and Msgn1 (Takemoto et al. 2011; Yoon, Moon, and Wold 2000). 

Oscillations of the segmentation clock which generates pulses of Wnt, FGF and Notch signaling 

conduct the differentiation of pPSM towards the somite (Aulehla and Pourquié 2008; Dunty et al. 

2008; Hubaud and Pourquié 2014; Miura et al. 2006). A decreasing posterior to anterior (P–A) 

gradient of Wnt/FGF activity with simultaneous activation of Notch signaling is proposed as 

defined threshold called determination front. At this level Tbx6 in pPSM will respond to the 

segmentation clock by activating the expression of segmentation genes such as Hes7 and Mesp2 

to enter the anterior presomitic mesoderm (aPSM) and express genes such as Foxc2, Meox1 and 

Pax3 (González et al. 2013; Kume et al. 2001; Mankoo et al. 2003; Oginuma et al. 2008; Pourquié 

2011; Saga et al. 1997).             
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Figure 3. Skeletal myogenesis in vivo. 
A, Schematic of dorsal view of spatial organization of mesoderm fate and limb skeletal myogenesis progression from 
posterior (left) to anterior (right) region of a developing amniote embryo. IM: intermediate mesoderm, LPM: lateral-
plate mesoderm, NMPs: neuromesodermal progenitors, pPSM: posterior presomitic mesoderm; aPSM: anterior 
presomitic mesoderm. B, Diagram of differentiation of paraxial mesoderm to skeletal muscle fibers of limb with color 
coded cell types according to the fate map in (A) are shown from left to right. Key signaling pathways identified 
during the in vivo differentiation of paraxial mesoderm and skeletal myogenesis as well as the corresponding marker 
genes are indicated. Foxc1: Forkhead-related transcription factor 1; Foxc2: Forkhead-related transcription factor 2; 
Myod1: Myogenic differentiation 1; Myog: Myogenin; Mrf4: Myogenic regulatory factor 4; Myh3: Myosine heavy 
chain 3; Myh7: Myosine heavy chain 7; Myh8: Myosine heavy chain 8; Myl3: Myosin light chain 3;  Msgn1: 
Mesogenin 1; Meox1: Mesenchyme homeobox 1; Meox2: Mesenchyme homeobox 2; Nfix: Nuclear factor I X; NMPs: 
neuromesodermal progenitors, Pax3: Paired box gene 3; Pax7: Paired box gene 7; pPSM: posterior presomitic 
mesoderm; aPSM: anterior presomitic mesoderm. Six1: Sine oculis-related homeobox homolog 1; Six4: Sine oculis-
related homeobox homolog 4; Sox2: SRY-box transcription factor 2; T: T-box transcription factor T; Tbx6: T-box 
transcription factor 6 (Image adapted with permission from Development, Company of Biologists, Chal and Pourquié 
2017 and from Current Topics in Developmental Biology, Elsevier, Pourquié et al. 2018). 
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1.2.2 Somite patterning  

In the aPSM increasing level of retinoic acid (RA) and FGF signaling (Pourquié 2011; Yamaguchi 

et al. 1994) induce Notch signaling inhibition to establish the compartmentalization of the somite 

(Morimoto et al. 2005). The aPSM progressively condenses and coincidently somites exit as 

epithelial spheres from the dorsal-most region of aPSM. The cell population oriented towards the 

notochord will differentiate into the sclerotome via an epithelial–mesenchymal transition. The 

remaining epithelium forms the dermomyotome, which will later give rise to skeletal muscle and 

dermis (Tajbakhsh and Spörle 1998). Notch signaling inhibition in somites will promote 

dermomyotome formation (Mayeuf-Louchart et al. 2014).  

The dermomyotome can anatomically be divided into dorsomedial (epaxial) and ventrolateral 

(hypaxial) compartments which will give rise to skeletal muscle of trunk and limb respectively 

(Figure 4) (Cinnamon et al. 2001). Dermomyotomal cells at the level of the limb skeletal 

myogenesis are characterized by expression of Pax3 and at the level of trunk skeletal myogenesis 

are characterized by expression of Myf5 (Bentzinger, Wang, and Rudnicki 2012; M Ying et al. 

2011; Martins et al. 2009; Mayeuf-Louchart et al. 2014; Parker, Seale, and Rudnicki 2003).  

 

1.2.3 Skeletal myogenesis 

The myogenic program can be subdivided into primary/embryonic and secondary myogenesis.  

The epaxial dermomyotome which is specified by BMP inhibition will generate skeletal muscle 

of the myotome and later trunk and back muscles (Marcelle, Stark, and Bronner-Fraser 1997). 

During primary myogenesis the neural crest cells that migrate between the neural tube and somites 

by expressing the Notch ligand delta-like 1 (Dll1) will transiently activate Notch signaling in 

epaxial dermomyotome cells to express Myf5 that rapidly will give rise to MyoD expressing 

myoblasts (Borycki et al. 1999; Kablar et al. 1997; Rios et al. 2011; Rossi and Messina 2014).  

The hypaxial dermomyotome will give rise to myogenic progenitors migrating to the early limb 

bud to develop limb and diaphragm muscles (Buckingham and Relaix 2007; Hirsinger et al. 2000). 

During primary myogenesis at the limb bud level, the transcription factors sine oculis-related 

homeobox 1 and 4 (Six1 and Six4) guide the Pax3 expressing progenitors from the dermomyotome 

towards the myogenic lineage (Figure 4) (Grifone et al. 2005; Laclef et al. 2003; Relaix et al. 

2013). Pax3 controls c-met (tyrosine kinase receptor) expression (Epstein et al. 1996; Kassar-
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Duchossoy et al. 2005). c-met and its ligand, hepatocyte growth factor (HGF), regulate growth and 

migration of myogenic precursor cells derived from dermomyotome through the myogenic 

differentiation program by sequentially expressing the myogenic regulatory factors (MRFs) such 

as MyoD and Myogenin to give rise to primary myoblasts (F. Bladt et al. 1995).             

        

   
 
Figure 4. Origin of limb and trunk skeletal muscle. 
Schematic of the dermomyotome that gives rise to epaxial (trunk and back) and hypaxial (limb and diaphragm) 
muscles. The hypaxial muscle progenitor cells are specified by Six4/Six1, Pax3 and c-met that will migrate to the limb 
bud. NC: notochord; NT: neural tube (Image adapted with permission from frontiers in Cell and Developmental 
Biology, Nassari, Duprez, and Fournier-Thibault 2017). 
 
 
 
Insulin-like growth factor (IGF) will promote myoblast fusion to form primary myotubes (van der 

Velden et al. 2006). These myotubes express specific proteins such as Myogenin and embryonic 

myosin heavy chain (Myh3). 

 

In secondary or fetal/neonatal myogenesis a subset of the somitic Pax3+ myogenic progenitors 

express Pax7 and downregulate Pax3. These Pax7+ myogenic progenitors will proliferate and fuse 

to each other to form secondary myoblasts expressing transcription factor Nfix, or will fuse to the 

primary myotubes to give rise to the secondary or fetal fibers that expressing markers such as 

myosin light chain 3 (Myl3) and neonatal myosin heavy chain (Myh8) (Biressi, Molinaro, and 
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Cossu 2007; Buckingham and Relaix 2007; Messina et al. 2010; White et al. 2010). The expression 

of the transcription factor Nfix is induced by Pax7+ myogenic progenitors in fetal muscle, 

activating the transcription of fetal specific genes such as muscle creatin kinase (Ckm). Thus, Nfix 

has been proposed to control the switch from embryonic to fetal myogenesis (Messina et al. 2010). 

Six factors (Six1 and Six4) and the transcriptional repressor Sox6 are also controlling the gene 

program of fast muscle fibers at the stage of the switch from embryonic to fetal myogenesis 

(Hagiwara, Yeh, and Liu 2007; Niro et al. 2010). 

 

1.2.4 Postnatal muscle growth 

While a detailed characterization of the dynamics of postnatal skeletal muscle growth and 

maturation is lacking (Gattazzo et al. 2020), the current knowledge postulates that during postnatal 

stage the number of muscle fibers remains constant, while the size of each muscle fiber starts to 

increase by hypertrophy through the accretion of muscle protein within growing fibers and an 

increase in the number of myonuclei through fusion of differentiating PAX7+ satellite cells to the 

growing muscle fiber(Goldspink 1970; Montgomery 1962; White et al. 2010).  

During postnatal growth, muscle fibers will lose polyneuronal innervation and different stimuli 

such as mechanical loading and thyroid hormone level will induce the size-independent maturation 

process in skeletal muscle including the isoform transformation of myosin heavy chain (MYH) in 

the muscle fiber. Postnatally skeletal muscle expression of immature MYH like embryonic myosin 

heavy chain (Myh3) and neonatal myosin heavy chain (Myh8) decreases while the expression of 

adult myosin heavy chain isoforms increases (Gambke et al. 1983; Schiaffino et al. 1988, 2015). 

In principle, adult myosin heavy chain polymorphism gives rise to four major types of fibers with 

different contractile properties distributed in varying levels in limb, trunk, and head muscle tailored 

to the specific motor performance of the respective muscle. Type I fibers express myosin heavy 

chain 7 (Myh7), type IIa fibers express myosin heavy chain 2 (Myh2), type IIx fibers express 

myosin heavy chain 1 (Myh1) and type IIb fibers express myosin heavy chain 4 (Myh4). ATPase 

activity of myosin isoforms categorizes the type I fibers as slow-twitch fibers with sustained 

tension, whereas type II fibers are fast-twitch fibers performing short burst activities with rapid 

decline in tension following repetitive stimulation. (Schiaffino and Reggiani 2011). 
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Neuronal activity and molecular make-up of the neuromuscular junctions (NMJ), a synapse 

between a motor neuron and nicotinic acetylcholine receptors (nAChRs) in the postsynaptic 

membrane of the muscle fiber, are determinants of the skeletal muscle fiber development. Nerve-

induced muscle contraction is required for correct myofibrillar growth in developing muscle fibers 

and for the selective expression of AChR subunits at the NMJ by synapse-associated nuclei. All 

embryonic muscles express the gamma subunit AChRs exclusively while the majority of adult 

muscle fibers express epsilon subunit and have no detectable gamma subunit (Afshar Bakooshli et 

al. 2019; Fambrough 1979; Missias et al. 1996). 

 

1.3 Contractile function of skeletal muscle 

Skeletal muscle contraction begins with propagation of action potentials from the motor neuron to 

the muscle cell through the neuromuscular junction, a cholinergic synapse between a motoneuron 

and a muscle fiber. Following the release of acetylcholine (ACh) into the synaptic cleft, ACh will 

bind to the nicotinic receptors (nAChR), ligand-gated ion channels located on the sarcolemma. 

Binding of Ach will lead to influx of sodium ions which depolarizes the membrane and triggers 

the excitation-contraction coupling via release of calcium from the SR to generate tension. One 

action potential causes a single muscle twitch and multiple action potentials at maximal stimulation 

frequencies result in summation of twitches leading to tetanic tension development (Figure 5A). 

Tension development reflects the Ca2+ dependent actin-myosin cross bridge formation in the 

sarcomere (Racca et al. 2013). Both sarcomeric arrangements and actin-myosin cross bridge 

detachment define the tension relaxation. The rate of tension development and relaxation is 

significantly slower in human fetal myofibrils than adult ones (Figure 5B) (Poggesi, Tesi, and 

Stehle 2005). Twitch tension of skeletal muscle significantly increases with maturation which is 

postulated to be mainly caused by increased sarcomere alignment and myofibril density. Human 

fetal myofibrils produce significantly less force than adult ones (Racca et al. 2013).  
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Figure 5. Force trace patterns of mammalian muscle fibers. 
A, Representative force traces of single twitches at 1 Hz, unfused tetanus at 30 Hz and fused tetanus at 150 Hz of adult 
rat fast muscle motor units (Image adapted with permission from journal of Physiology and Pharmacology, 
Celichowski 2000). B, Normalized tetanic force traces presenting the slower activation and relaxation kinetics of 
human fetal myofibril (black line) in comparison with the adult counterpart (red line) (Image adapted with permission 
from Journal of Physiology Racca et al. 2013). 
 
 

1.4 Skeletal muscle regeneration 

1.4.1 Origin of satellite cells 

The self-renewing stem cell of skeletal muscle is called satellite cell. Pax7+ myogenic progenitors 

originating from somites are the source of adult satellite cells (Gros et al. 2005; Seale et al. 2000). 

During late neonatal stage the pool of satellite cell progenitors represents up to 30% of the 

mononucleated cells and while they are actively dividing some of these Pax7+ cells exit the cell 

cycle and localize to the muscle fiber underneath the basal lamina to establish the quiescent 

satellite cell niche (Figure 6A) (Hellmuth and Allbrook 1971; Mauro 1961).  

By adulthood the proportion of satellite cell progenitors reduces to a small pool (5-6%) of 

mitotically quiescent satellite cells (Allbrook, Han, and Hellmuth 1971; Schultz 1974). In adult 

skeletal muscle, satellite cells express a set of markers including the paired domain transcription 

factors Pax7 (Figure 6B,C) and Pax3 (Buckingham et al. 2003; Seale et al. 2000), myogenic 

regulatory factor Myf5 (Cornelison and Wold 1997), homeobox transcription factor Barx2 (Meech 

et al. 2012), tyrosine kinase receptor c-Met (Allen et al. 1995) and Caveolin-1 (Volonte, Liu, and 

Galbiati 2005). Specifically, Pax7 is the canonical marker for quiescent and proliferating satellite 

cells (Seale et al. 2000). 
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Figure 6. Satellite cell niche of skeletal muscle. 
A, Transmission electron microscopy image of satellite cell (white arrow) sitting under the basal lamina (Black arrow) 
of muscle fiber. Mf: Muscle fiber; Sat: Satellite cell (Image adapted with permission from Journal of Histochemistry 
and Cytochemistry, Yablonka-Reuveni 2011). B, Immunostaining for Pax7 (red-nuclear) and Caveolin-1 (green) to 
reveal a satellite cell (indicated by an arrow) resting in its niche adjacent to a muscle fiber isolated from an adult 
mouse (Image adapted with permission from Development, The Company of Biologists, Relaix and Zammit 2012). 
C, Immunostaining of a cross section of an adult mouse muscle for Pax7+ satellite cell (red) indicated by arrow, 
Dystrophin (white) to delineate the sarcolemma of the muscle fiber and DAPI (blue). The arrowhead highlights a 
myonucleus (Image adapted with permission from Development, The Company of Biologists, Relaix and Zammit 
2012).  

 

1.4.2 Sequential stages of skeletal muscle regeneration 

Upon muscle injuries caused by resistance training, exposure to myotoxins or trauma, the resulting 

muscle fiber loss will be regenerated (Luz, Marques, and Santo Neto 2002) by satellite cells 

breaking quiescence, proliferating, and differentiating into satellite cell-derived myoblasts. These 

myoblasts then fuse and give rise to immature myotubes (with central myonuclei) and finally 

muscle fibers  (Bischoff 1975; Sambasivan et al. 2011).  

Specific signaling pathways such as Notch and HGF signaling are implicated in activation of 

satellite cells. Notch signaling is on one hand crucial for maintaining the satellite cell quiescence 

(Mourikis et al. 2012) and on the other hand it is essential for activation and proliferation of 

satellite cells. Following injury, both satellite cells and myofibers upregulate expression of Notch1 

A B

C
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resulting in activation of the satellite cell, which in turn will proliferate (Conboy and Rando 2002). 

Inhibition of Notch signaling has been shown to block regeneration in rat engineered skeletal 

muscle (Tiburcy et al. 2019). In the early phase of muscle regeneration, HGF is sequestered by 

heparan sulfate proteoglycans within the basal lamina. HGF will bind to cell surface receptor c-

Met on both quiescent and activated satellite cells to stimulate proliferation (Cornelison and Wold 

1997; Miller et al. 2000; Tatsumi and Allen 2004). Proliferative satellite cells will rapidly 

differentiate to MyoD expressing myoblasts and begin to fuse to damaged myofibers or fuse to 

each other to form new myofibers (Yin, Price, and Rudnicki 2013). 

 

1.5 Human in vitro models of skeletal muscle  

1.5.1 Directed skeletal myocyte differentiation of human pluripotent stem cells 

To enhance the translational impact of experimental models for muscle disease, relevant human in 

vitro models are a promising tool. Although primary human myoblasts are available, typically 

limited numbers can be obtained from biopsies and genetic modification to interrogate genotype-

phenotype relations is nearly impossible in primary cells. Recently, encouraging progress has been 

made in differentiating human pluripotent stem cells (hPSCs) into a myogenic fate in two 

dimensional culture without the need of genetic modification such as overexpression of Pax7 or 

MyoD (Chal et al. 2016; Choi et al. 2016).  

The protocol provided by Chal et al. 2016 starts with dual modulation of Wnt and BMP signaling 

pathways, followed by FGF signaling activation to generate induced paraxial mesoderm cells 

(iPAMs). In the next steps iPAMs were exposed to growth factors HGF and IGF1 to be 

differentiated into trunk skeletal myogenic cells within 30 days. By this approach they obtained a 

myogenic differentiated culture with 22% Myogenin+ nuclei and 23% PAX7+ nuclei (Chal et al. 

2016; Pourquié et al. 2018). In the protocol provided by Choi et al. only Wnt signaling is activated 

to obtain presomitic progenitors. Next, to increase the speed and efficiency of myogenic 

specification, Notch signaling is blocked. The reported yield of myogenic cells at day 30 is 61% 

Myogenin and 63% Myosin (labelled by MF20 antibody) expressing cells  (Choi et al. 2016). 
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While there is significant progress in skeletal muscle differentiation from human PSCs the 

limitations of 2D monolayer cultures in supporting functional properties of mature muscle fibers 

are inevitable (Afshar Bakooshli et al. 2019; Chal et al. 2016). Therefore, in vitro generation of 3 

dimensional (3D) models of human skeletal muscle with enhanced maturation is important to offer 

more desirable physiological platforms for experimental and therapeutic testing. Tissue 

engineering may address some of these limitations. 

 

1.5.2  Tissue engineering of skeletal muscle 

Tissue engineering is a promising tool to add a third dimension to monolayer culture models. 

Tissue engineering of skeletal muscle from rodent and human primary cells has been pioneered 

more than 30 years ago (Vandenburgh, Karlisch, and Farr 1988). Work from our own group 

demonstrated that engineered skeletal muscle from rat cells faithfully recapitulates skeletal muscle 

physiology including the presence of a functional satellite cell niche that regenerates the muscle 

in vitro (Tiburcy et al. 2019).  

 

Only recently, three models of tissue engineered skeletal muscle from hPSCs have been reported 

(Figure 7) by using either forced expression of Pax7 (Rao et al. 2018; Xu et al. 2019) or directed 

multi-lineage differentiation (Maffioletti et al. 2018). 
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Figure 7. Tissue engineering models of skeletal muscle from hPSCs. 
A, (i) Human skeletal muscle bundle generated from Pax7 induced myogenic progenitor cells, anchored within a nylon 
frame. (ii) Immunostaining of cross striated myotube for sarcomeric α-actinin (SAA, red) and myonuclei (DAPI, blue) 
in a 4 wk muscle bundle. Scale bar: 10µm (Image adapted with permission from Nature Communications, Rao et al. 
2018). B, (i) Side view of the multilineage 3D artificial skeletal muscle model from iPSC. (ii) Immunofluorescent 
image of multilineage 3D artificial muscle derived from WT human iPSCs containing isogenic myofibers (Muscle, 
gray), vascular cells (ECs, red and PCs, yellow), and motor neurons indicated by arrowheads (SMI32, green). ECs: 
endothelial cells; PCs: pericytes. Scale bar: 10 µm (Image adapted with permission from Cell Reports, Maffioletti et 
al. 2018). C, (i) Three representative muscle constructs generated from PAX7-induced hESC-derived myogenic 
progenitors. (ii) Immunostaining of aligned myotubes and striated sarcomere structures indicated by sarcomeric α-
actinin (SAA, green) (Image adapted with permission from Advanced Biosystems, Xu et al. 2019). 

 

An ideal tissue engineered skeletal muscle should display all characteristic morphological (e.g. 

formation of adult muscle fiber syncytium with a proper niche for satellite cells) and functional 

(e.g. tetanic contractions upon high frequency stimulation) properties of bona fide skeletal muscle 

to be eligible for downstream applications in regenerative medicine and disease modeling (Madden 

et al. 2015; Tiburcy et al. 2019). Advanced tissue engineering approaches to provide a 3D culture 

environment containing not only differentiated human PSCs-derived skeletal myocytes, but also 
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supportive non-myocyte populations and exhibiting robust skeletal muscle function are still in 

need. 

 

1.5.3 Duchenne muscular dystrophy in in vitro models of human skeletal muscle 

Duchenne muscular dystrophy (DMD) is a fatal, X-linked recessive disorder caused by mutations 

in DMD gene encoding Dystrophin protein. DMD patients face a progressive muscle weakness 

with muscle fibrosis and futile regeneration at early age. Weakness of the diaphragm and 

cardiomyopathy become clinically apparent with advanced disease and cause life threatening 

breathing difficulties and cardiac failure. 

Dystrophin and its associated protein complex (dystroglycans, sarcoglycans, sarcospan, a-

dystrobrevins, syntrophins, syncoilin, nNOS, and caveolin-3 (Ehmsen, Poon, and Davies 2002)) 

anchors the sarcolemma to the Z disk of the sarcomere as force generating unit in striated muscle 

(Lapidos, Kakkar, and McNally 2004). In skeletal muscle, lack of dystrophin renders muscle fibers 

more susceptible to membrane damage during increased mechanical stress (Petrof et al. 1993). 

While rodent (Amoasii et al. 2017) and large animal models (Amoasii et al. 2018; Moretti et al. 

2020) of DMD have been established, there is no doubt that the clinical and physiological aspects 

of human DMD mutations cannot fully be recapitulated in animal models (van der Worp et al. 

2010). In vitro 3D models of human skeletal muscle carrying patient-specific mutations are at least 

complementary to animal models, providing more comprehensive approaches to genotype-

phenotype relations of human dystrophic skeletal muscle disease. As an example, it is 

demonstrated that CRISPR/Cas9-mediated “myoediting” of DMD mutations restores dystrophin 

expression and the corresponding force of contraction in a 3D model of engineered heart muscle 

(EHM) from patient specific iPSC-derived cardiomyocytes (Long et al. 2018). In another study 

Maffioletti et al, presented that a 3D skeletal muscle construct can stimulate differentiation of 

dystrophic human PSCs, modeling severe and incurable forms of muscular dystrophy (Maffioletti 

et al. 2018). 
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1.6 Aim and hypotheses of the study 

Considering the significance of human skeletal muscle disease we aimed to generate engineered 

skeletal muscle from human PSC to model skeletal muscle disease in vitro. 

 

To achieve this goal, we investigated the following specific hypotheses:  

1) A robust protocol for directed skeletal muscle differentiation from human PSCs can be 

established by recapitulating embryonic developmental cues. 

2) Human engineered skeletal muscle with physiological function can be generated in vitro. 

3) Human engineered skeletal muscle regenerates after injury in vitro. 

4) Human engineered skeletal muscle recapitulates the phenotype of patients with Duchenne 

Muscular Dystrophy. 
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2 Materials and Methods 

 

2.1 Human cell culture techniques 

2.1.1 Human pluripotent stem cell lines 

The following human pluripotent stem cell (hPSC) lines were utilized in this project. 

 

Table 1. List of human PSC lines 
Line Description Source Identifier 

HES2 Human embryonic stem cell line WiCell (Reubinoff et al. 
2000) 

iPSC 1 Human wild type line TC-1133 (WT1) RUDCR (Baghbaderani 

et al. 2016) 

iPSC 2 Human wild type line(WT2) D. Garry, University of 

Minnesota 

(Long et al. 

2018) 

iPSC 3 Human DMD  line (DMD del; deletion 

of exon 48-50 

E. Olson,  University of 

Texas, Southwestern 

(Long et al. 

2018) 

iPSC 4 Human DMD iPSC line (DMD del cor; 

corrected by myoediting 

E. Olson,  University of 

Texas, Southwestern  

(Long et al. 

2018) 

iPSC 5 Human DMD iPSC line (DMD pEx; 

pseudoexon 47A) 

E. Olson,  University of 

Texas, Southwestern  

(Long et al. 

2018) 

iPSC 6 Human DMD iPSC line (DMD pEx cor; 

corrected by myoediting) 

E. Olson,  University of 

Texas, Southwestern  

(Long et al. 

2018) 

 

All lines were routinely tested for pluripotency and confirmed to be free of mycoplasma (Lonza 

MycoalertTM kit). 
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2.1.2 Ethics statement 

The use of HES2 line was approved by the Robert-Koch-Institute (Nr. 3.04.02/0160).  

 

2.1.3 Human pluripotent stem cell culture 

Human PSC lines were maintained on 1:120 Matrigel™ (BD) in phosphate-buffered saline 

(Thermo Fisher Scientific)–coated plates and cultured in StemMACS iPS-Brew XF (Miltenyi 

Biotec) at 37 °C and 5% CO2. Medium was changed every day and when the culture reached a 

confluency of 80-90%, it was rinsed once with PBS (Thermo Fisher Scientific) and incubated in 

Versene solution (Thermo Fisher Scientific) for 3-5 min at room temperature. Versene was 

carefully aspirated and cells were washed gently with StemMACS iPS-Brew XF (Miltenyi Biotec) 

supplemented with 5 μM Y27632 (Stemgent). Cells were counted (CASY cell counter) and 

passaged every 3 to 4 days at a 1:6 to 1:8 ratio by plating 1x106 cells into a new T75 flask.  

 

2.1.4 Skeletal muscle differentiation media and reagents 

To perform the skeletal muscle differentiation, the following media and reagents were prepared 

(Table 2). A complete list of media and reagents can be found in the Appendix, Table A1. 

Note: All media were warmed up to 20-24°C prior to use. 

 

Table 2. List of media and reagents 

CHIR99021 stock solution Reconstitute CHIR99021 in DMSO to obtain a 10 mM stock 

solution. Aliquot and store at -20°C for up to one year. Once 

thawed, keep at 4°C for up to one week. 

LDN193189 stock solution Reconstitute LDN193189 in DMSO to obtain a 10 mM stock 

solution. Aliquot and store at -20°C for up to one year. Once 

thawed, keep at 4°C for up to one week. 
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DAPT stock solution Reconstitute DAPT in DMSO to obtain a 20 mM stock solution. 

Aliquot and store at -20°C for up to one year. Once thawed, keep 

at 4°C for up to one week. 

FGF-2 stock solution Dissolve FGF-2 in PBS containing 0.1% recombinant albumin to 

obtain a 10 µg/ml stock solution. Aliquot and store at -20°C for up 

to one year. 

Once thawed, keep at 4°C for up to one week. 

HGF stock solution Dissolve HGF in PBS containing 0.1% recombinant albumin to 

obtain a 10 µg/ml stock solution. Aliquot and store at -20°C for up 

to one year. 

 Once thawed, keep at 4°C for up to one week. 

N2 medium 

 

DMEM low glucose (1 g/L), GlutaMAX supplement and pyruvate 

with: 

- 1% Pen/Strep 

- 1x N2 supplement (from 100x stock) 

- 1x MEM non-essential amino acid solution (from 100x 

stock) 

Note: Keep N2 supplement stocks in -20°C, thaw it in room 

temperature while it is protected from light and immediately add 

it to the medium. 

Note: Store N2 medium in 4°C for maximum 1 week. 

N2-CLF medium 

(day 0, 1, 2 and 3) 

 

N2 medium plus: 

- 10 µmol/L CHIR99021 (C), must be added freshly before 

use. 

- 0.5 µmol/L LDN193189 (L), must be added freshly before 

use. 

- 10 ng/ml FGF-2 (F), must be added freshly before use. 
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N2-FD medium 

(day 4 and 5) 

N2 medium plus: 

- 20 ng/ml FGF-2 (F), must be added freshly before use. 

- 10 µmol/L DAPT (D), must be added freshly before use. 

N2-FDH medium 

(day 6 and 7) 

N2 medium plus: 

- 20 ng/ml FGF-2 (F), must be added freshly before use. 

- 10 µmol/L DAPT (D), must be added freshly before use. 

- 10 ng/ml HGF (H), must be added freshly before use. 

N2-DHK medium 

(day 8, 9, 10 and 11) 

N2 medium plus: 

- 0.1 mM 2-Mercaptoethanol. 

- 10 µmol/L DAPT (D), must be added freshly before use. 

- 10 ng/ml HGF (H), must be added freshly before use. 

- 10% knockout serum replacement (K). 

Expansion medium 

 

N2 medium plus: 

- 0.1 mM 2-Mercaptoethanol. 

- 10 ng/ml HGF, must be added freshly before use. 

- 10% knockout serum replacement, must be added freshly 

before use. 

Note: Keep KO serum stocks in -20°C, once thawed keep in 4°C 

for max. 2 weeks. 

Maturation medium DMEM low glucose (1 g/L), GlutaMAX supplement and pyruvate 

with: 

- 1% Pen/Strep 

- 1x N2 supplement (from 100x stock) 

- 2x B-27 supplement (from 50x stock)  

Note: Keep N2 and B27 supplement stocks in -20°C, thaw it at 

room temperature while it is protected from light and immediately 

add it to the medium. 

Note: Store maturation medium in 4°C for maximum 1 week. 
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Maturation medium plus 

T3 and Creatine 

(MM-TC) 

Maturation medium plus: 

- 1 mM Creatine monohydrate 

- 0.1 µmol/L Triiodo-L-thyronine (T3) 

Y27632 stock solution 

 

Reconstitute Y27632 in DMSO to obtain a 10 mM stock solution. 

Aliquot and store at -20°C for up to one year. Once thawed, keep 

at 4°C for up to one week. 

 

Matrigel To dilute Matrigel: 

a. Thaw Matrigel (7-10 mg/ml) on ice at 4°C for 16-24 h. 

b. Prepare 250 μl aliquots into 50 ml falcon tubes using ice-cold 

pipette tips and tubes, and directly freeze. Store aliquots at -

20°C for up to one year. 

To coat cell culture plates (e.g. T75 flask): 

c. Resuspend a frozen Matrigel aliquot in 29.75 ml cold PBS to 

obtain the working dilution of 1:120. 

d. Add 6 ml of diluted Matrigel per T75 flask and ensure that 

the entire surface is covered. 

e. Incubate at 37°C for 60 min before plating the cells. 

Note: Coated plates can be stored in 4°C for up to 2 weeks, but 

should not be used if the Matrigel has dried up. 

 

 

2.1.5 Directed differentiation of human PSCs into skeletal myocytes 

Human PSCs were plated at 1.7 x 104 cells/cm2 on 1:120 Matrigel™ (BD) in phosphate-buffered 

saline (Thermo Fisher Scientific) –coated plates and cultured in StemMACS iPS-Brew XF 

(Miltenyi Biotec) with 5 μM of Y27632 (Stemgent). After 24h when the culture reached a 

confluency of 30% (day 0), iPS-Brew XF was replaced with daily refreshed N2-CLF medium 

(Table 2) for 4 days. Differentiating cultures were highly delicate at this stage, therefore medium 

changes were done slowly to avoid cell detachment. At day 4, the medium was changed every day 
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to N2-FD medium (Table 2) until day 6. For day 6 and 7 the medium was replaced daily with N2-

FDH medium (Table 2). The medium was switched to N2-DHK medium (Table 2) on day 8, 9, 

10 and 11. From day 12 to 22, myogenic cells were cultured in expansion medium (Table 2) which 

was refreshed every second day. Day 22 differentiated cultures were dissociated for downstream 

applications including culture expansion, myogenic maturation, freezing and generation of human 

engineered skeletal muscle.  

 

2.1.6 Enzymatic dissociation of human PSC-derived skeletal myocytes 

Day 22 differentiated cultures were rinsed once with PBS (Thermo Fisher Scientific). TrypLE 

(Thermo Fisher Scientific) was added to the cells and incubated for 5 to 7 minutes at 37 °C and 

5% CO2. TrypLE digestion was stopped using expansion medium with 5 μM Y27632 (Stemgent). 

Cell suspension was triturated very gently with a 10-ml serological pipette to break up the cell 

clumps and centrifuged at 100xg, 10 minutes at 20-24°C. Supernatant was removed and the pellet 

was resuspended very gently in expansion medium with 5 μM Y27632 (Stemgent). Cells were 

replated on 1:120 Matrigel™ (BD) in phosphate-buffered saline (Thermo Fisher Scientific)-coated 

plates at a density of 60–70,000 cells/cm2 in expansion medium with 5 μM Y27632 (Stemgent). 

From the next day, the expansion medium was refreshed every other day for one week. To further 

differentiate the cells to myotubes in monolayer culture expansion medium was replaced with 

maturation medium (Table 2) for another 4 weeks. Where indicated 0.1 µmol/L T3 and 1 mmol/L 

creatine were added to the maturation medium (MM-TC, Table 2). 

 

2.1.7 Cryopreservation of human PSC-derived skeletal myocytes 

Human PSC-derived skeletal myocytes were cryopreserved for long term storage. On day 22 of 

differentiation, cell culture was rinsed once with PBS (Thermo Fisher Scientific). TrypLE (Thermo 

Fisher Scientific) was added to the cells and incubated for 5 to 7 minutes at 37 °C and 5% CO2. 

TrypLE digestion was stopped using expansion medium with 5 μmol/L Y27632 (Stemgent). Cell 

suspension was triturated very gently with a 10-ml serological and centrifuged with 100xg at 20-

24°C for 10 minutes. Supernatant was removed and the pellet was resuspended very gently in 

freezing medium which contained cold expansion medium (4°C) with 5 μM Y27632 (Stemgent) 
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and 10% DMSO (Sigma-Aldrich). 10x106 human PSC-derived skeletal myocytes were frozen in 

1.5 ml freezing medium per cryovial in a MrFrosty™ freezing container (Nalgene) at -80°C 

overnight and then stored at -150°C (SANYO, Ewald Innovationstechnik GmbH). 

 

2.1.8 Thawing of human PSC-derived skeletal myocytes 

A frozen cryovial was taken from -150°C freezer (SANYO, Ewald Innovationstechnik GmbH) 

and quickly thawed in water bath at 37°C for approximately 2 min until a small ball of ice was still 

visible in the thawing medium. The cryovial was sprayed with alcohol and taken under the laminar 

flow hood. Using a 2 ml serological pipette, the contents of the cryovial were transferred to a pre-

prepared 15 ml tube containing 9 ml of expansion medium with 5 μM Y27632 (Stemgent). The 

cell suspension was centrifuged at 100xg, 10 minutes at 20-24°C. Supernatant was removed and 

the pellet was resuspended very gently in expansion medium with 5 μM Y27632 (Stemgent) for 

plating. 

 

2.2 Human engineered skeletal muscle 

2.2.1 Preparation of casting molds and static stretchers 

For the generation of 3D muscle poly-dimethylsiloxane (PDMS; SYLGARDTM 184 Silicone 

Elastomer Kit, Dow Corning) circular molds with inner/outer diameter 4/6 mm and 2.5 mm height 

were fabricated and allowed to cure overnight at 55°C. Static stretch devices were made from a 

Teflon® base and stainless steel holders. The detailed protocol for the preparation of the casting 

molds and static stretchers has been described previously (Soong, Tiburcy, and Zimmermann 

2012; Tiburcy et al. 2014).  

 

2.2.2 Generation of human bioengineered skeletal muscle (BSM) organoids 

To make bioengineered skeletal muscle (BSM) organoids undifferentiated human iPSC were 

dissociated according to section 2.1.2 when the monolayer cell culture reached a confluency of 80-

90%. A final 250 µl/BSM hydrogel mixture of i) 0.23 mg acid soluble collagen type 1 (Collagen 
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Solutions), ii) concentrated 2x DMEM (Thermo Fisher Scientific) serum-free medium (0.27 g 

DMEM powder in 10 ml ddH2O), iii) NaOH 0.1 N (Carl Roth), iv) 10% v/v Matrigel™ (BD) and 

v) 0.8 x 106 iPSC resuspended in StemMACS iPS-Brew XF (Miltenyi Biotec) medium with 5 μM 

Y27632 (Stemgent), 10 ng/ml FGF-2 (Peprotech) and 10% knockout serum replacement 

(ThermoFisher Scientific) was cast into circular polydimethylsiloxane (PDMS) molds (Table 3). 

After 1 h of condensation at 37°C, BSMs were cultured in StemMACS iPS-Brew XF (Miltenyi 

Biotec) medium with 5 μM Y27632 (Stemgent), 10 ng/ml FGF-2 (Peprotech) and 10% knockout 

serum replacement (ThermoFisher Scientific). Following tissue compaction (typically after 24 to 

48 hrs) BSMs were induced to skeletal muscle differentiation following the exact protocol for 2D 

monolayer cells (section 2.1.4). On day 22 of differentiation, BSM was loaded on static stretchers 

at 120% of slack length and cultured in maturation medium (Table 2) with the addition of 1 

mmol/L creatine monohydrate (Sigma-Aldrich) for 4 weeks.  

 

Table 3. Composition of hydrogel master mix for BSM  
BSM number 1x unit 

Acid soluble collagen type 1 (6.5 mg/ml) 144 µl 

2x DMEM serum-free medium 36  µl 

NaOH 0.1 N 6.75 µl 

Matrigel 25  µl 

Cell suspension (including 0.8x106 iPSC) 157.5  µl 

Total volume 250  µl 

 

2.2.3 Generation of human engineered skeletal muscle (ESM) 

To generate human engineered skeletal muscle (ESM), either PSC-derived skeletal myocytes were 

dissociated, or frozen PSC-derived skeletal myocytes were thawed as described in section 2.1.8. 

A final 250 µl/ESM hydrogel mixture of i) 0.23 mg acid soluble collagen type 1 (Collagen 

Solutions), ii) concentrated 2x DMEM (Thermo Fisher Scientific) serum-free medium (0.27 g 

DMEM, powder in 10 ml ddH2O), iii) 0.1 N NaOH (Carl Roth), iv) 10% v/v Matrigel™ (BD) and 

v) 1.25x106 of day 22 hPSC-derived skeletal myocytes resuspended in expansion medium with 5 

μM Y27632 (Stemgent), was cast into circular PDMS molds (Table 4). After 1 h of condensation 
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at 37°C, ESMs were cultured in expansion medium with 5 μmol/L Y27632 (Stemgent) for 24 h 

and then expansion medium for another 6 days to consolidate into mechanically stable tissue. 

Medium was changed every second day and subsequently ESMs were transferred onto static 

stretchers to exert isometric load at 120% of the slack length. ESMs were cultured in maturation 

medium (Table 2) under mechanical load for up to 9 weeks. Maturation medium was changed 

every second day. Where indicated 1 mmol/L creatine monohydrate (Sigma-Aldrich) and 0.1 

µmol/L T3 were added to maturation medium from week 4 to 9 (MM-TC, Table 2). 

 

 Table 4. Composition of hydrogel master mix for ESM  

ESM number 1x unit 

Acid soluble collagen type 1 (6.5 mg/ml) 144 µl 

2x DMEM serum-free medium 36  µl 

NaOH 0.1 N 6.75 µl 

Matrigel 25  µl 

Cell suspension (including 1.25x106 skeletal myocytes) 157.5  µl 

Total volume 250  µl 

 

  

2.2.4 Cardiotoxin injury model 

To induce muscle injury ESM were incubated in maturation medium with 25 µg/ml of Naja pallida 

cardiotoxin (CTX; Latoxan) for 24 h (Tiburcy et al. 2019). Subsequently the injured tissue was 

rinsed and cultured in expansion medium (Table 2) for 1 week and then switched to maturation 

medium with 1 mmol/L creatine. Medium was refreshed every second day. 

To arrest cell cycle activity ESMs were irradiated with 30 Gy using an STS Biobeam 8000 

(Germany) gamma irradiation 24 hrs before CTX injury. 
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2.3 Immunostaining and confocal imaging 

2D cell cultures were fixed in 4 % formalin (Carl Roth) at 20-24°C for 15 min. ESM/BSM were 

fixed in 4 % formalin at 4°C overnight. For dystrophin staining, ESMs were fixed in ice-cold 100% 

acetone for 10 min. After 2 washes with PBS, ESM/BSM were dehydrated in 70% ethanol at 20-

24°C for 1 min and then embedded in 2% agarose (peqGOLD) in 1X Tris Acetate-EDTA (TAE) 

buffer. Using a vibratome (Leica VT1000S), 400 µm sections were cut and kept in 4°C 1X PBS. 

Prior to staining, 2D cell cultures as well as ESM sections were washed with 1X PBS followed by 

a blocking step to reduce unspecific binding using staining buffer (1X PBS with 5% fetal bovine 

serum, 1% bovine serum albumin (BSA), and 0.5% Triton-X). The following antibodies were 

applied for primary staining in staining buffer at 20-24°C for 4 hrs (Appendix, Table 3): Oct4 

(1:500, Abcam), Pax3-concentrate (1:100, DSHB), Pax7-concentrate (1:100, DSHB), MyoD 

(1:100, Dako) and Myogenin-concentrate (1:10, DSHB), Sarcomeric α-actinin (1:500, Sigma-

Aldrich), Laminin (1:50, Sigma-Aldrich), Dystrophin (1:500, Millipore), neurofilament H, SMI32 

(1:20000, Biolegend), Beta-dystroglycan (1:50, LCL-b-DG, Leica Biosystem) and Ki67 

(1:100, Abcam). After 3x PBS washes for 5 minutes, the appropriate Alexa Fluor-coupled 

secondary antibodies (1:1000, Thermo Fisher Scientific) were applied for 2h at 20-24°C. In 

parallel with secondary antibodies, Alexa Fluor 633-conjugated phalloidin (1:100, Thermo Fisher 

Scientific), Alexa Fluor 594-conjugated α-Bungarotoxin and Hoechst 33342 (1:1000, Molecular 

Probes) were added to stain f-actin and nuclei, respectively. Following 3 washes with PBS, 

samples were mounted in Fluoromount-G (Southern Biotech). All images were acquired using a 

Zeiss LSM 710/NLO confocal microscope. To quantify the labeled cells, 3 random focal planes 

per sample from 3 different experiments were chosen for analysis with ImageJ cell counter tool. 

 

2.4 Flow cytometry 

After cell fixation in 4% formalin (Carl Roth) at 20-24°C for 15 min and 2X washes with PBS, 

samples were kept on ice for the staining process. To block unspecific binding, cells were 

incubated in staining buffer (1X PBS with 5% fetal bovine serum, 1% bovine serum albumin 

(BSA), and 0.5% Triton-X) for 10 min. Cells were stained for Pax7 (1:500, DSHB), MyoD (1:500, 

Dako) and Myogenin (1:50, DSHB) and Sarcomeric α-actinin (1:4000, Sigma-Aldrich), or 
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appropriate isotype controls (R&D systems) for 45 min. Following two washes with PBS 

secondary antibodies (1:1000, Thermo Fisher Scientific) were applied for 30 min. Samples were 

stained with Hoechst-3342 for nuclear DNA counting and exclusion of cell doublets. Cells were 

run on a LSRII SORP cytometer and at least 10,000 events per sample were analyzed using Diva 

software (BD Biosciences). 

 

2.5 RNA sequencing 

RNA was purified using Trizol (Thermo Fisher Scientific) according to the manufacturer’s 

instructions. RNA quality was ensured with the Fragment Analyzer from Advanced Analytical by 

using the standard sensitivity RNA Analysis Kit (DNF-471). RNA-seq libraries were prepared 

using a modified strand-specific, massively parallel cDNA sequencing (RNA-Seq) protocol from 

Illumina, the TruSeqStranded Total RNA. Libraries were sequenced on a HiSeq4000 platform 

(Illumina) generating 50 bp single end reads (30-40 Mio reads/sample). Sequence images were 

transformed with Illumina software BaseCallerto BCL files, which was demultiplexed to fastq 

files with bcl2fastq v2.17.1.14. The quality check was done using Fast QC (version 

0.11.5, Babraham Bioinformatics). Sequence reads were aligned to the human genome reference 

assembly (UCSC version hg38) using Star. For each gene, the number of mapped reads was 

counted using Feature Counts. Raw counts were normalized and transformed to log2CPM values. 

Reads Per Kilobase per Million mapped reads (RPKM) were calculated based on Ensembl 

transcript length using biomaRT (v2.24). RNA sequencing was performed by the NGS Integrative 

Genomics (NIG) Core Unit. 

 

2.5.1 Bioinformatic analyses  

Weighted gene co-expression network analysis was performed by Dr. R. Islam, Fischer lab, 

Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, using 

(WGCNA) package (version 1.61) in R. Briefly, normalized counts were transformed into log 

(base 2) counts and were used to calculate pairwise bi-weighted mid-correlations between genes. 

Next, based on approximate scale-free topology a soft threshold power of 14 was chosen and was 
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used to calculate pair-wise topological overlap between genes to construct a signed gene co-

expression network. Modules of co-expressed genes was later identified based on following 

criteria: minimum module size of 100, method = “hybrid”, deepSplit=0, pamRespectsDendro=T, 

pamStage= T. Modules with correlation higher than 0.85 were merged together. Different modules 

were summarized as modular eigengenes (MEs), those were then used to compare expression of 

the given module across differentiation time points. The module specific genes were further 

filtered based on a module membership correlation coefficient cutoff of 0.60. Gene ontology of 

the modules were analyzed using cluster Profiler (v3.0.4) and after multiple adjustments only 

statistically significant gene ontology terms (FDR <0.05) were retrieved. For pathway analysis, 

Reactome (https://reactome.org/) database was used. To compare to human embryo data sets raw 

data from the study of (Xi et al. 2017) was retrieved from NCBI GEO (accession: GSE90876).  

Briefly, sequencing reads were mapped to human genome hg38 using STAR aligner (v2.5.2b). 

After mapping, raw count files were generated using featureCounts of subread package (v1.5.1). 

For differential expression analysis, all samples were processed together and genes with less than 

5 reads in 50% of the samples were filtered out prior to the analysis. Differential expression 

analysis was performed using DESeq2 package (version 1.28.1) in R. Genes with FDR < 0.05 were 

considered as differentially expressed. To test above chance overlap between previously identified 

module and differentially expressed genes, Fisher´s exact test was performed.                            

 

2.6 Single cell transcriptomics by single nuclei RNA sequencing 

Single nuclei were isolated from flash frozen cells. The cell pellet was homogenized using a plastic 

pestle in a 1.5 ml Eppendorf tube containing 500 µl EZ prep lysis buffer (Sigma, NUC101-1KT) 

with 30 strokes. The homogenate was transferred into 2 ml microfuge tubes, lysis buffer was added 

up to 2 ml and incubated on ice for 7 minutes. After centrifuging for 5 minutes at 500xg supernatant 

was removed and the nuclear pellet was resuspended into 2 ml lysis buffer and incubated again on 

ice (7 minutes). After centrifuging for 5 minutes at 500xg, the supernatant was removed and the 

nuclei pellet was resuspended into 500 µl nuclei storage buffer (NSB: 1x PBS; Invitrogen, 0.5% 

RNase free BSA;Serva, 1:200 RNaseIN plus inhibitor; Promega, 1x EDTA-free protease inhibitor; 

Roche) and filtered through 40 μm filter (BD falcon) with additional 100 μL NSB to collect 

residual nuclei from the filter. Isolated nuclei were stained with a nuclear stain (7AAD) and FACS 
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sorted (BD FACSaria III) to ensure a homogenous and viable nucleus preparation. Sorted nuclei 

were counted in a Countess FL II automated cell counter (ThermoFischer AMQAF1000, DAPI 

light cube: ThermoFischer: AMEP4650) with DAPI staining and nuclei concentration was 

adjusted to 1000 nuclei/μL. The nuclei were further diluted to capture and barcode 4000 nuclei 

according to Chromium single cell 3ʹ reagent kit v3.1 (10X Genomics). Single nuclei barcoding, 

GEM formation, reverse transcription, cDNA synthesis and library preparation were performed 

according to 10X Genomics guidelines. cDNA libraries were pooled and sequenced 8 times in 

Illumina NextSeq 550 in order to achieve the target reads / nuclei. Each sequencing run was 

acquiring 150bp paired-end reads (Illumina NextSeq 550 High Output Kit v2.5). Demultiplexing, 

read mapping (to pre-mRNA reference genome) and gene counts per nuclei were computed with 

cellranger (v4.0) software. The nuclei barcoding and sequencing pipeline typically allows to obtain 

50.000-100.000 reads/nucleus resulting in detection of 200-10.000 genes/nucleus (median: ~2000 

genes/nucleus) for further downstream analysis These analyses were done in collaboration with S. 

Sadman, Fischer lab, Department for Epigenetics and Systems Medicine in Neurodegenerative 

Diseases.                            

 

2.6.1 Bioinformatic analysis of single-nucleus RNA-sequencing 

Gene counts were obtained by aligning reads to the hg38 genome (NCBI:GCA 000001405.22) 

(GRCh38.p7) using CellRanger software (v.3.0.2) (10XGenomics). The CellRanger count pipeline 

was used to generate a gene-count matrix by mapping reads to the pre-mRNA as reference to 

account for unspliced nuclear transcripts. The SCANPY package was used for pre-filtering, 

normalization and clustering (Wolf, Angerer, and Theis 2018). Initially, cells that reflected low-

quality cells (based on read number and expression of house-keeping genes (Eisenberg and 

Levanon 2013)) were excluded. Next, counts were scaled by the total library size multiplied by 

10.000, and transformed to log space. Highly variable genes were identified based on dispersion 

and mean, the technical influence of the total number of counts was regressed out, and the values 

were rescaled. Principal component analysis (PCA) was performed on the variable genes, and 

UMAP was run on the top 50 principal components (PCs) (Becht et al. 2018). The top 50 PCs 

were used to build a k-nearest-neighbours cell–cell graph with k= 100 neighbors. Subsequently, 

spectral decomposition over the graph was performed with 50 components, and the Leiden graph-
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clustering algorithm was applied to identify cell clusters. We confirmed that the number of PCs 

captures almost all the variance of the data. For each cluster, we assigned a cell-type label using 

manual evaluation of gene expression for sets of known marker genes. A muscle gene panel 

(Appendix) was identified by calculating the differentially expressed genes between myogenic 

and non-muscle cluster with a low frequency cutoff of 1 and an adjusted p value of <0.05. These 

analyses were done by D. Krüger, Fischer lab, Department for Epigenetics and Systems Medicine 

in Neurodegenerative Diseases.           

                  

2.7 Isometric force measurements 

Contractile function of engineered muscle was measured under isometric conditions in a 

thermostatted organ baths (Föhr Medical Instruments) filled with gassed (5% CO2/95% O2) Tyrode 

solution (containing: 120 NaCl, 1 MgCl2, 0.2 CaCl2, 5.4 KCl, 22.6 NaHCO3, 4.2 NaH2PO4, 5.6 

glucose, and 0.56 ascorbate; all in mM) at 37°C. The calcium concentration was set to 1.8 mM. 

To adjust the muscle length to maximal force production ESMs were electrically stimulated at 1 

Hz with 4 ms square pulses of 200 mA and the muscle length was step-wise increased by intervals 

of 125 μm until the maximum twitch force was observed. At the length of maximal force 

generation, tetanic twitch tension was assessed at higher frequency stimulations (stimulation at 5, 

10, 20, 40, 60, 80 and 100 Hz for 4 seconds). Activation of nicotinic acetylcholine receptors was 

investigated by adding the unspecific cholinergic receptor agonist carbachol (1 µM). Contraction 

data was recorded with BMON software and analyzed using AMON software (Ingenieurbüro 

Jäckel).  

 

2.8 Western blot analysis 

For protein isolation ESMs were placed in Eppendorf tubes and snap frozen in liquid nitrogen. 150 

µl of ice-cold protein lysate buffer (2.38 g HEPES, 10.20 g NaCl, 100 ml Glycerol, 102 mg MgCl2, 

93 mg EDTA, 19 mg EGTA, 5 ml NP-40 in a total volume of 500 ml ddH2O) containing 

PhosSTOP® phosphatase inhibitor and cOmplete® protease inhibitor mix (Roche) was added to 

the ESM. A 7 mm stainless steel bead (Qiagen) was placed in the Eppendorf tube and the sample 
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was homogenized using TissueLyser (Qiagen) for 30 seconds at 30 Hz at 4°C and subsequently 

incubated on ice for 2 hours and then centrifuged for 30 min at 12000 rpm at 4°C. The supernatant 

was collected as protein sample and protein concentration was measured using the Bradford 

protein assay. 30 µg of protein sample was loaded on a 4 to 15% gradient sodium dodecyl sulfate 

(SDS)-polyacrylamid gel (Bio-Rad), run at 100V for approximately 2.5 hours followed by protein 

transfer to a polyvinylidene fluoride (PVDF) membrane at 30V in an ice-filled box staying in cold 

room overnight. To visualize the total protein, the PVDF membrane was stained with Ponceau 

Red. Primary antibody (4 h at 20-24°C) and secondary antibody (1 h at 20-24°C) staining was 

performed in a staining buffer containing 5% milk in 1x Tris-buffered saline (TBS) and 0.1% 

Tween 20. The following primary antibodies were applied: dystrophin monoclonal antibody 

(1:500, MANDYS8, Sigma-Aldrich), embryonic myosin heavy chain 3 (1:500, F1.652, DSHB), 

slow type myosin heavy chain 7 (1:500, A4.951, DSHB) and fast type myosin heavy chain 2 

(1:100, A4.74, DSHB). Protein loading was controlled by Vinculin (VCL) antibody (1:5000, 

V3131, Sigma-Aldrich). The membrane was washed for 5 min with 1x Tris-buffered saline (TBS) 

and 0.1% Tween 20. Horseradish peroxidase conjugated goat anti-mouse IgG antibody (1:10000, 

P0260, Dako) was used for the secondary staining. After washing the membrane for 5 min with 

1x Tris-buffered saline (TBS) and 0.1% Tween 20, the blot was developed using femtoLUCENT™ 

PLUS-HRP Chemiluminescent reagents (Gbiosciences) and the protein bands were imaged using 

the BIO-RAD ChemDocTMMP system. Signal quantification was performed using ImageJ.  

 

2.9 Transmission Electron Microscopy 

Ultrastructural analysis was performed in collaboration with Dr. A. Unger, Institute of Physiology 

II, on ESM samples fixed in 4 % formalin (Carl Roth), 15% saturated picric acid in 0.1 M PBS, 

pH 7.4, at 4°C overnight. ESMs were rinsed twice in PBS and treated with 0.5% OsO4 for 45 min 

following several washing steps in 100 mM phosphate buffer. Samples were counterstained with 

uranyl acetate, dehydrated via ethanol series, and embedded in DurcupanACM epoxy resin 

(Sigma-Aldrich). Ultrathin sections were prepared from resin blocks using a Leica UltracutS 

ultramicrotome (Mannheim, Germany) and adsorbed to glow-discharged formvar-carbon–coated 

copper single-slot grids. Electron micrographs were recorded using a Zeiss LEO 910 electron 
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microscope; images were taken with a TRS SharpeyeCCD camera (Troendle, Moorenweis, 

Germany). 

 

2.10 Statistical analysis 

All data were analyzed using GraphPad Prism 7 software (GraphPad Software Inc., San Diego) 

and presented as mean ±standard error of the mean (SEM). Statistical analyses were done using 

unpaired, two-tailed, Student’s t-test, one-way or two-way ANOVA where appropriate assuming 

equal variances. Significantly different variances were corrected for. Results showing p < 0.05 

were considered significant and n indicates the number of samples.  
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3 Results 

 

3.1 Directed differentiation of hPSCs into skeletal myocytes 

3.1.1 Sequential recapitulation of key stages of skeletal muscle development  

To generate hPSC-derived skeletal myocytes specific signaling pathways were emulated to 

recapitulate the key stages of embryonic muscle development (Figure 8A). The first stage is the 

induction of paraxial mesoderm. In vitro, activation of Wnt and FGF signaling will push the PSC 

to the mesodermal fate and prevent formation of ectopic neural tissue (Boulet and Capecchi 2012; 

Chal et al. 2015). Parallel inhibition of BMP signaling will promote paraxial but not lateral plate 

mesoderm differentiation (Chal et al. 2018; Miura et al. 2006). Therefore, to robustly generate 

paraxial mesoderm within the first 4 days of differentiation hPSCs were treated with 10 µM of 

glycogen synthase kinase 3 (GSK3) inhibitor CHIR99021 (canonical Wnt signaling activator 

(Naujok et al. 2014)), 10 ng/ml of FGF2 (FGF receptor agonist) and 0.5 µM of BMP receptor 

inhibitor LDN-193189 (Boergermann et al. 2010). It was confirmed that this treatment induces 

expression of paraxial (TBX6) but not lateral plate mesoderm (MESP1) markers (Figure 8B).  In 

the following developmental step, Notch signaling inhibition promotes the formation of 

dermomyotome from FOXC2-positive progenitors of the anterior region of presomitic mesoderm 

(aPSM). Parallel inhibition of BMP signaling in vivo will specifically form the epaxial 

dermomyotome expressing MYF5 which further develop into trunk muscle (Marcelle et al. 1997; 

Tajbakhsh and Spörle 1998). Since the aim was to direct the cultures towards hypaxial 

dermomyotomal progenitors expressing SIX1, which will later give rise to the limb myogenic 

progenitors and not trunk, inhibition of BMP signaling was stopped while inhibition of Notch 

signaling was started with a gamma secretase inhibitor (DAPT, 10 µM) to specifically drive the 

aPSM cells towards dermomyotomal progenitors of the limb (F. Bladt et al. 1995; Buckingham 

and Relaix 2007; Mayeuf-Louchart et al. 2014). Since Notch activation increases the expression 

level of FOXC2 in aPSM progenitors which will pave the way for endothelial differentiation, 

inhibition of Notch signaling was also crucial to downregulate FOXC2 and elevate the ratio of 

PAX3/FOXC2 with a subsequent increase in the number of PAX3+ dermomyotomal progenitors 

(Delfini et al. 2000; Mayeuf-Louchart et al. 2014). Differentiation of the aPSM progenitors to 

dermomyotomal progenitors of limb was evident by downregulation of FOXC2 and upregulation 
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of PAX3 from day 4 to day 13. (Figure 8C). In addition, the upregulation of SIX1 in the absence 

of MYF5 clearly indicates formation of limb muscle (Figure 8C).  
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Figure 8. Directed limb skeletal myogenesis in vitro.  
A, Diagram of key myogenic markers and a timeline of their approximate expression during directed differentiation 
of hPSCs into limb skeletal muscle cells, B, Specific paraxial but not lateral mesoderm induction in human PSCs. PSC 
cultures were treated with Wnt activator (10 µM CHIR99021), FGF receptor agonist (10 ng/ml FGF2) and BMP 
inhibitor (0.5 µM LDN-193189) from day 0 to day 4. Comparison of reads per kilobase million (RPKM) of signature 
genes of lateral mesoderm (MESP1) vs. paraxial mesoderm (TBX6) in PSC-derived presomitic progenitors (PSM) was 
performed on day 4 of differentiation; n=4/group; *p<0.05 by Student’s t-test. C, Expression (RPKM) of presomitic 
(FOXC2) and dermatomyotomal (PAX3, MYF5, SIX1) progenitor genes in day 4 (n=4) and day 13 (n=2) cultures in 
the presence of Notch inhibitor DAPT. D, Impact of Notch inhibition on skeletal myocyte differentiation. 
Differentiating PSC cultures (HES2) were treated with Notch inhibitor (10 µM DAPT) or without from day 4-day 13. 
Immunostaining of resulting skeletal myocytes was performed at day 22 for myogenic regulatory factor MYOD, 
sarcomeric 𝛼 −Actinin, and Nuclei (blue). Scale bars: 50 µm. ACTN2: Actinin alpha 2; FOXC2: Forkhead-related 
transcription factor 2; MYOD1: Myogenic differentiation 1; MYOG: Myogenin; PAX3: Paired box gene 3; POU5F1: 
POU Class 5 homeobox 1 (OCT4); SIX1: Sine oculis-related homeobox homolog 1; TBX6: T-box transcription factor 
6.  
 
 
 

The yield of skeletal myocytes at day 22 of differentiation in cultures treated with DAPT was 

clearly enhanced compared to cultures without Notch inhibition (Figure 8D). Considering that 

Notch inhibition prevents differentiation of PAX3+ cells to early myoblasts DAPT was stopped 

on day 12 of differentiation to stimulate the expression of myogenic regulatory factors (MRFs) 

such as PAX7, MYOD and Myogenin (Choi et al. 2016; Hirsinger et al. 2001). 

During primary skeletal myogenesis of the limb, PAX3 increases the transcription of c-MET, a 

receptor tyrosine kinase that after binding of its ligand, hepatocyte growth factor (HGF), regulates 

growth and migration of myogenic precursor cells derived from dermomyotome. Furthermore, 

HGF signaling supports activation of MYOD expression and migration of myoblasts (Friedhelm 

Bladt et al. 1995; Buckingham and Relaix 2007; Mayeuf-Louchart et al. 2014). Consequently, 10 

ng/ml of HGF to stimulate c-MET signaling was applied from day 6 to 22 of differentiation. Fusion 

of MYOD expressing myoblasts into Myogenin+/Actinin+ myotubes was stimulated by using 

maturation medium from day 22 to 29 of differentiation.  

 

The resulting final protocol is displayed in Figure 9A. To further characterize the specific stages 

of muscle development the expression patterns of key signature genes were analyzed. This 

confirmed the recapitulation of sequential distinct phases of myogenesis with loss of pluripotency 

(POU5F1), induction of paraxial mesoderm (MSGN1), generation of presomitic progenitors 
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(MESP2), generation of dermomyotomal progenitors (PAX3, PAX7), and developing myoblasts 

(MYOD1, MYOG, ACTN2, DMD) (Figure 9B). 

 

 
 
Figure 9. Recapitulation of sequential distinct phases of myogenesis during directed skeletal muscle 
differentiation from human PSCs.  
A, Summary of the protocol for directed skeletal muscle differentiation from PSC indicating the sequence and the 
timing of factor addition to modulate specific signaling pathways involved in skeletal myogenesis. +/- indicates 
pathway activation/inhibition, respectively. B, Reads Per Kilobase Million (RPKM) of signature genes for 
pluripotency (POU5F1), paraxial mesoderm (MSGN1), somitogenesis (MESP2), dermomyotome formation (PAX3), 
myogenic regulatory factors (PAX7, MYOD and MYOG) and structural assembly (ACTN2), during skeletal muscle 
differentiation from human PSCs; n = 2-4/time point. ACTN2: Actinin alpha 2; MESP2: Mesoderm posterior BHLH 
transcription factor 2; MSGN1: Mesogenin 1; MYOD1: Myogenic differentiation 1; MYOG: Myogenin; PAX3: Paired 
box gene 3; PAX7: Paired box gene 7; POU5F1: POU class 5 homeobox 1 (OCT4). 
 
 
This sequence of muscle developmental steps was also confirmed on protein level. In accordance 

with the transcriptome data, immunostaining during 29 days of skeletal muscle differentiation 

demonstrated OCT4+ pluripotent stem cells on day 1, expansion of PAX3+ early somite cells on 
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day 8 and expression of PAX7+ myogenic progenitors in parallel with alignment of fusion-

competent myoblasts expressing sarcomeric 𝛼 −ACTININ, MYOD1 and MYOGENIN initiated 

on day 13 and enhanced by day 22 and day 29 (Figure 10). 

 
 

 
 
 
Figure 10. Development of key marker proteins during directed skeletal muscle differentiation of hPSCs.  
Immunostaining of OCT4, PAX3, PAX7, MYOD1, MYOGENIN, sarcomeric 𝜶 −ACTININ (in gray), and Nuclei 
(blue) at indicated time points of skeletal muscle differentiation from TC1133 line (iPSC 1). Scale bar: 500 µm. 
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3.1.2 Evaluation of skeletal muscle differentiation efficiency 

To characterize the differentiated cultures the expression of bona-fide skeletal myogenic markers 

was quantified by immunostaining (Figure 11A). Differentiated cultures at day 22 contained a 

myogenic cell population consisting of 43±4% PAX7+, 52±2% MYOD1+, and 49±4% 

MYOGENIN+ cells (Figure 11B).         

 

                      
Figure 11. Efficient differentiation of hPSCs into skeletal muscle cell populations.  
A, Immunostaining for myogenic regulatory factors: PAX7 (left, gray), MYOD1 (middle, gray), MYOGENIN (right, 
gray), f-ACTIN (green) and Nuclei (blue) in 22 days old skeletal muscle culture from TC1133 (iPSC 1) line; Scale 
bars: 50 µm. B, Quantification of nuclei positive for PAX7, MYOD1 and MYOGENIN in 22 day old myogenic 
cultures from HES2 and from TC1133 (iPSC 1) lines; n = 9 -13.  
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These data were confirmed by flow cytometry for nuclear myogenic regulatory factors on day 22 

differentiated cultures. In line with the immunostaining results of adherent cultures the results were 

comparable with 45.4% PAX7, 51.0% MYOD1, 55.5% MYOGENIN positive cells in the TC1133 

(iPSC 1) line. Importantly, flow cytometry also confirmed a similar efficiency between multiple 

iPSC and ESC lines employed supporting the robustness and reproducibility of the protocol 

(Figure 12). 

 

               
Figure 12. Robust skeletal muscle differentiation from multiple hPSCs lines.  
Flow cytometry analysis of myogenic regulatory factors: PAX7, MYOD1 and MYOGENIN on 22 days old skeletal 
muscle differentiations from 5 human PSC lines. The percentage of cells positive for the respective marker is indicated.  
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3.1.3 Transcriptome profiling of skeletal muscle differentiation from hPSCs 

To further dissect the dynamic transcriptional landscape during skeletal myogenesis from hPSCs 

in vitro an RNA sequencing experiment was performed. RNA samples were collected on decisive 

time points of differentiation including day 0, 1, 4, 8, 13, 22, 29, and 60 (Figure 13A). Unbiased 

clustering of genes identified temporally distinct developmental gene expression patterns (Figure 

13B). Interestingly, by clustering the genes according to their changes in time (weighted 

coexpression analysis) 22 gene clusters were identified of which some showed remarkable 

similarity to the biological processes of skeletal muscle differentiation in vivo (Figure 13C). 
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Figure 13. Unbiased transcriptome profiling identifies temporally distinct clusters of skeletal muscle 
development. 
 A, Scheme of skeletal muscle differentiation from hPSCs with sampling time points for RNA sequencing. B, 
Unsupervised clustering of the samples from different time points. C, Weighted coexpression analysis identified 22 
cluster of genes with similar expression dynamics (coexpression clusters), heatmap of mean eigen values. Clusters are 
generically labeled by colors. Data obtained in collaboration with Dr. R. Islam, Fischer lab, Department for 
Epigenetics and Systems Medicine in Neurodegenerative Diseases. 
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The unsupervised coexpression analysis confirmed the induction of paraxial mesoderm with a 

simultaneous decrease of pluripotency markers (POU5F1; cluster yellow) and a transient but 

robust increase in posterior (TBX6; cluster brown) and anterior (FOXC2; cluster turquoise) 

paraxial mesoderm markers. Interestingly, also segmentation genes like HES7 (cluster red) were 

activated in in vitro myogenesis (Figure 14). 

 

           
 
Figure 14. Signature gene expression in temporal coexpression clusters.  
Normalized expression levels (RPKM) of indicated signature genes in identified coexpression clusters, n = 2-4/time 
point. ERBB3: Erb-B2 receptor tyrosine kinase 3; FOXC2: Forkhead-related transcription factor 2; HES7: Hes family 
BHLH franscription factor 7; PAX3: Paired box gene 3; POU5F1: POU Class 5 homeobox 1 (OCT4); MEF2C: 
Myocyte enhancer factor 2C; MIXL1: Mix paired-like homeobox; MYBPC2: myosin binding protein C2; MYF6: 
Myogenic factor 6; MYL3: Myosin light chain 3; MYL4: Myosin light chain 4; MYMK: Myomaker, myoblast fusion 
factor; MYMX: Myomixer, myoblast fusion factor; NGFR: Nerve growth factor receptor; SIM1: Sim BHLH 
transcription factor 1; TBX6: T-box transcription factor 6; TNNC2: Troponin C2, fast skeletal type; TNNT3: Troponin 
T3, fast skeletal type; TTN: Titin; TWIST1: Twist family BHLH transcription factor 1. Data obtained in collaboration 
with Dr. R. Islam, Fischer lab, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases.                     
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Dermomyotome specification was characterized by co-occurring expression of PAX3, SIM1 and 

TWIST1 (cluster salmon) on day 13, followed by an increase in genes indicative of myogenesis 

(ERBB3 and NGFR) and fusion of myoblasts (MYMX; cluster darkred) to form myotubes (Figure 

15). Further differentiation of myotubes was identified by expression of MEF2C, MYL4, TNNT3, 

MYMK, MYBPC2 and TNNC2 (cluster black and pink) paralleled by expression of genes related 

to myotube maturation (TTN, MYF6 and MYL3; cluster blue; Figure 14). In summary, the 

trajectories of characteristic signature genes expression and GO term analysis allowed to annotate 

biological processes to 15 of 22 clusters (Table 5). 

 
                              Table 5. Annotation of biological processes to coexpression clusters 
 

                  
 

Cluster identifier Biological process 

Black Myotube development 

Blue Myotube maturation  

Brown Presomitic progenitor development 

Cyan Not annotated 

Darkgreen Cellular respiration 

Darkred Myoblast development 

Green Cilium organization 

Greenyellow Not annotated 

Grey Primitive streak development 

Lightcyan DNA organization 

Lightgreen Unfolded protein response 

Lightyellow Not annotated 

Magenta Not annotated 

Midnightblue Not annotated 

Pink Myotube development 

Purple Not annotated 

Red Presomitic progenitor development 

Royalblue Lipid storage 

Salmon Dermomyotome development 

Tan Not annotated 

Turquoise Presomitic progenitor development 

Yellow Pluripotency  
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We next asked if any of the identified coexpression clusters overlap with developmentally 

regulated genes in human embryonic muscle. We made use of a published data set (GSE908776) 

containing the transcriptomes of embryonic presomitic mesoderm (PSM), nascent somite (SM), 

and developed somite (SM dev; (Xi et al. 2017)). Interestingly, several clusters (black, blue, 

royalblue, salmon, green, and pink) showed significant overlap with embryonic development 

(Figure 15). Please note that the very early developmental gene clusters (i.e presomitic mesoderm 

stage and earlier) are not represented in the embryo data set and therefore not overlapping. 

 

 

                                                                                       
 
Figure 15. Coexpression clusters in vitro overlap with embryonic muscle development in vivo.  
Developmentally regulated genes were identified based on a published human embryonic muscle data set (Xi et al. 
2017). The table indicates the overlap of coexpression clusters genes to genes regulated between presomitic mesoderm 
(PSM) and nascent somite (SM) or presomitic mesoderm (PSM) to developed somite (Dev SM). Overlap is graded as 
either not significant (n.s.), p<0.05 (*), p<0.01 (**), or p<0.001 (***). The color codes for the number of genes 
overlapping. Data obtained in collaboration with Dr. R. Islam, Fischer lab, Department for Epigenetics and Systems 
Medicine in Neurodegenerative Diseases.                 
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Next the co-expression analysis was utilized to identify transcriptome patterns coinciding with 

dissected phases of muscle development. We focused on the blue cluster as this showed the highest 

overlap with the developed somite in vivo and may therefore contain transcripts that are indicative 

of muscle maturation. Interestingly, cluster blue was highly enriched in signaling transcripts 

(Figure 16A). Among them several transcripts were identified that have been associated with 

muscle maturation such as NRG1 (Selvaraj et al. 2019), IGF1, VEGF (Xu et al. 2019) and thyroid 

hormone (Butler-Browne, Barbet, and Thornell 1990; Simonides and van Hardeveld 2008)  

(Figure 16B). Collectively, the transcriptome data indicates that hPSC differentiation in vitro is 

very similar to the developmental process in vivo and allows to dissect genes involved in particular 

stages of muscle development. Interestingly, also genes implicated in neuron development were 

found (Figure 16A), which prompted us to dissect the cell composition during skeletal muscle 

differentiation on a single cell level. 
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Figure 16. Identification of skeletal muscle maturation genes in coexpression cluster.  
A, GO terms specifically enriched in coexpression cluster blue. B, List of genes associated with “regulation of 
signaling” in coexpression cluster blue. 
 

3.1.4 Composition of skeletal myocyte cultures on single cell level  

To gain further insight into the cell populations during skeletal muscle differentiation we 

investigated day 22 cultures by single nuclei sequencing (Kim et al. 2017). 8 cell populations were 

separated by unsupervised clustering (Figure 17A). To identify myogenic cells a panel of genes 

(muscle genes, Appendix) was extracted. This panel identified 3 myogenic cell populations 
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as mesenchymal progenitor cells (41%), neuroectodermal progenitor cells (9%), and neurons (5%) 

(Figure 17C). The composition of myogenic cells could be separated into PAX7+ progenitors and 

more matured MYH3+ myoblasts. Consistent with the data from bulk RNA sequencing we found 

a population of DCX+/MAPT+ neurons and SOX2+/PAX3+/PAX7+ neuroectodermal progenitor 

cells. The mesenchymal cells showed an expression pattern consistent with fibro-adipogenic 

progenitor cells with combined expression of PDGFRA and brown fat transcription factor EBF2 

(Rajakumari et al. 2013; Uezumi et al. 2010; Xi et al. 2020). These data indicate that the 

differentiation protocol not only recapitulates the embryonic development of muscle cells but also 

of the organotypic, supporting non-muscle cells. Next, we asked if these cell populations would 

generate an organotypic 3D muscle in vitro.  

 

 

 
 
Figure 17. Single cell transcriptomes of skeletal muscle differentiation.  
A, Unsupervised clustering (UMAP) of a day 22 skeletal muscle culture. B, A muscle gene panel identifies the 
myogenic cell clusters (skeletal muscle cells, SkM). C, Quantification of skeletal muscle cells (SkM), neuroectodermal 
progenitor cells (NPC), neurons, and mesenchymal progenitor cells (Mes). D, Expression levels of representative 
muscle-related genes and non-muscle genes. CDH15: Cadherin 15; DCX: Doublecortin; EBF2: EBF transcription 
factor 2; MAPT: Microtubule associated protein tau; MYH3: Myosin heavy chain 3; NEB: Nebulin; PAX3: Paired box 
gene 3; PAX7: Paired box gene 7; PDGFRA: Platelet derived growth factor receptor alpha; PITX2: Paired like 
homeodomain 2; SOX2: SRY-box transcription factor 2. Data obtained in collaboration with S. Sadman and D. Krüger, 
Fischer lab, Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases.               
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3.2 Human engineered skeletal muscle  

3.2.1 Generation of human bioengineered skeletal muscle organoids from iPSC 

To generate human skeletal muscle in vitro it was first tested if the established in vitro myogenesis 

protocol is capable of directing iPSCs into skeletal muscle tissue in a 3D environment. In contrast 

to monolayer 2D culture iPSCs were embedded in a hydrogel containing collagen type 1 and 

Matrigel™ and then subjected to skeletal muscle differentiation (Figure 18A). The mixture was 

cast into circular molds to consolidate into mechanically stable ring-shaped tissues which were 

maintained under isometric mechanical load in maturation medium for a minimum of 4 weeks.  

 

Figure 18. Generation of functional human bioengineered skeletal muscle (BSM) organoid from PSCs. 
A, Bioengineered skeletal muscle (BSM) organoids were generated from TC1133 (iPSC 1) iPSC mixed with collagen 
type 1 and Matrigel™ in a ring-shaped hydrogel. After consolidation in PDMS casting molds, BSMs were directed 
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towards skeletal muscle using the protocol established in monolayer cultures. +/- indicates pathway 
activation/inhibition, respectively. Following functional maturation under isometric load up to 4 wks (day 22 to 50), 
twitch tension (TT) was measured under isometric conditions in a thermostatted organ bath. Scale bar: 1 mm. B, 
Representative force traces of 4 wks old BSM with electrical stimulation at 1 Hz (black curve) and at 100 Hz (red 
curve). C, Quantification of the twitch tension (TT) generated by 4 wks old BSM in response to increasing stimulation 
frequencies; n = 9/group.  
 
 
 
In accordance with the results from monolayer differentiation a muscle tissue – termed 

bioengineered skeletal muscle (BSM) organoid – was generated with characteristic skeletal muscle 

function. Without electrical stimulation BSM demonstrated slow, spontaneous, non-coherent 

contractions. At 1 Hz electrical stimulation BSM generated single twitches whereas at higher 

frequencies tetanic contractions were observed which were maximal at 100 Hz (1.1±0.1 mN; 

Figure 18B,C).  

 

To investigate the muscle content of the BSM immunostaining of ACTIN and dystrophin-

associated glycoprotein, 𝛽-DYSTROGLYCAN was performed, which indicated that 26% of the 

total cross sectional area contained muscle cells (Figure 19A). Muscle cells were nicely aligned 

and cross striated indicating a well developed sarcomeric structure in agreement with the robust 

contractile function. In line with the transcriptome data of monolayer cultures, BSM also contained 

mature neurofilaments positive for the motor neuron marker SMI32 (Figure 19B). 
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Figure 19. Generation of highly organized skeletal myofibrils in human bioengineered skeletal muscle. 
A, Immunostaining of the total muscle area in cross sections of BSM with 𝛽-DYSTROGLYCAN (magenta), ACTIN+ 
(green), and Nuclei (blue). B, Immunostaining of neurofilament heavy SMI32 (magenta), sarcomeric 𝛼 −ACTININ 
(green) and Nuclei (blue) in longitudinal sections of BEM. Scale bar: 500 µm (A) and 50 µm (B). 
 
 

3.2.2 Generation of human engineered skeletal muscle with organotypic function 

In an alternative approach to generate in vitro skeletal muscle with increased muscle mass and 

function we aimed to control the cellular input of the 3D model. Skeletal muscle cultures including 

PAX7+/MYOD+ myogenic progenitors and primary myotubes on day 22 were found to be the 

optimal for ESM generation as cultures could be readily dissociated. Older cultures tended to be 

too dense with a lot of extracellular matrix (ECM) that prohibited efficient enzymatic digestion 

and inadvertently caused excessive cell death. In addition, spontaneous twitches of skeletal 

myocytes caused the 22+ day old differentiated culture to detach as a sheet of cells from the 

substrate. Dissociated cultures were reassembled into engineered skeletal muscle (ESM) by casting 

them into a collagen-1/Matrigel hydrogel. After consolidation for 1 week in expansion medium 

the ESM was maintained under isometric mechanical load in maturation medium for 4 to 8 weeks 

(Figure 20A).  

During mechanical loading, spontaneous, non-coherent twitches were observed in ESM. By 4 

weeks maturation (5 weeks old) ESM robustly developed measurable force with typical properties 
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of skeletal muscle such as positive force-frequency response and tetanic contractions with 

increasing stimulation frequencies (Figure 20 B,C).     

                                                                                                                                                                                                                                 

By prolonging the culture for up to 9 weeks under defined serum-free conditions, tetanus twitch 

tension generated by ESM at 100 Hz stimulation frequency, significantly increased form 2.9±0.3 

mN (n = 8) at 5 weeks to 5.5±0.3 mN (n = 4) at 9 weeks (Figure 20B, C) which may indicate 

advanced sarcomere alignment in parallel with increased myofibril density (Racca et al. 2013). 
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Figure 20. Contractile function of engineered skeletal muscle increases with time. 
A, Scheme of engineered skeletal muscle (ESM) generation from human PSC-derived skeletal muscle populations 
including PAX7+/MYOD+ myogenic progenitors and primary myotubes mixed with collagen type 1 and Matrigel™ 
in a ring-shaped hydrogel. ESM formation in expansion medium for 1 week in PDMS casting molds, functional 
maturation under isometric mechanical load (ESM on metal hooks of the static stretcher) for up to 9 wks; measurement 
of twitch tension under isometric conditions in a thermostatted organ bath. Scale bar: 1 mm. B, Representative traces 
of single twitches of 5 wks old and 9 wks old ESM at 1 Hz (left panel) and at 100 Hz (right panel) stimulation 
frequencies. C, Twitch tension of 5 wks and 9 wks old ESM in response to increasing stimulation frequencies; n = 
8/group at 5 wks and n = 4/group at 9 wks, *p<0.05 by 2-way ANOVA and Tukey’s test.  
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3.2.3 Advanced muscle structure of engineered skeletal muscle 

To characterize the skeletal muscle morphology immunostaining studies were performed on 9 

weeks ESM. Analysis of ESM cross sections showed densely packed muscle cells embedded in a 

Laminin+ extracellular matrix making up 68% of the total cross sectional area (Figure 21A). High 

power images of ESM cross sections further demonstrated a high resemblance to skeletal muscle 

with compact cylindrical myofibers and localized, membrane-associated organization of the 

dystrophin-associated glycoprotein, 𝛽-DYSTROGLYCAN (Figure 21B). 

 

Figure 21. Advanced development of skeletal muscle structures in human engineered skeletal muscle. 
A, Immunostaining of ACTIN+ muscle cells (green) and LAMININ+ extracellular matrix (magenta) in a 
representative cross section of 9 wks old ESM. B, Immunostaining of 𝛽-DYSTROGLYCAN (magenta) in the 
sarcolemma of ACTIN+ muscle fibers (green) in a cross section of ESM. C, D and E, Immunostaining of striated 
muscle fibers in longitudinal sections of ESM for C,  sarcomeric 𝛼 −ACTININ (green) and Nuclei (blue), D, ACTIN 
(green) and Nuclei (blue), E, ACTIN (green), neurofilament heavy SMI32 (magenta), 𝛼-bungarotoxin (BTX) labeled 
nicotinic acetylcholine receptors (white) and Nuclei (blue). Scale bar: 500 µm (A), 40 µm (B) and 20 µm (C,D,E).  
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Longitudinal sections of ESM further demonstrated advanced differentiated and aligned skeletal 

myofibrils with multiple nuclei and regular arrangement of sarcomeres labeled by sarcomeric 

𝛼 −ACTININ and ACTIN (Figure 21C,D). The average muscle fiber diameter was 12±0.21 µm 

at 9 weeks of maturation.  

Clusters of 𝛼- bungarotoxin positive nicotinic acetylcholine receptors (AChR) were found on the 

periphery of skeletal muscle fibers (Figure 21E). Interestingly, and in line with the transcriptome 

data the presence of neurons in ESM was confirmed by SMI32 as a specific marker of mature 

neurofilaments in motor neurons. Of note, some of these were seemingly innervating muscle cells 

by close association of the motor neuron’s axonal terminals with the 𝛼- bungarotoxin-positive 

motor end plate (Figure 21E). To test the functionality of the nicotinic acetylcholine receptors the 

unspecific cholinergic receptor agonist carbachol (1 µmol/L) was applied. Incubation of ESM with 

carbachol lead to a rapid decrease in stimulated contractions indicative of a depolarizing muscle 

block. This effect was completely reversible after washing out the carbachol (Figure 22). 

 

             
Figure 22. Functional nicotinic acetylcholine receptors in ESM. 
A, Representative recording of an ESM twitch tension (bar indicates 1 mN) at 1 Hz electrical stimulation. The 
unspecific cholinergic receptor agonist carbachol (1 µM) is added where indicated and later washed out from the organ 
bath. B, Quantification of twitch tension at 1 Hz stimulation before and after treatment of ESM with 1 µM carbachol 
and after washout; n = 5; *p<0.05 by 1-way ANOVA and Tukey’s multiple comparison test.  
 
 
Additional ultrastructural analyses confirmed a high skeletal muscle mass with advanced stages of 

myofibrillogenesis. Organized sarcomeres with distinct banding pattern including I- bands, A-

bands, M-lines and Z disks were observed (Figure 23A). Average length of sarcomere in ESM 

was 1.93±0.06 µm. Membranous structures of the triad, composed of a central T-tubule surrounded 
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by two terminal cisternae from the sarcoplasmic reticulum were identified (Figure 23B) (Al-

Qusairi and Laporte 2011). Peripheral nuclei and well-differentiated mitochondria with dense 

matrix and developed cristae were found aligned with compact sarcomeres (Figure 23C, D).  

 

                 
      
Figure 23. Ultrastructure of human engineered skeletal muscle. 
Transmission electron microscopy (TEM) images of A: sarcomeric structure, B: Triad junction, C: a long 
multinucleated (2 nuclei) muscle cell and D: mitochondria along the muscle fibers in ESM. M: M-line, Mt: 
Mitochondria, N: nuclei. Scale bar: 1µm (A), 500 nm (B), 1µm (C) and 250 nm (D). 
 
 

3.2.4 Creatine supplementation enhances force of ESM 

Although the twitch tension recorded for ESM exceeds previously published models it is still far 

from the force production of adult muscle (Racca et al. 2013). Therefore, the next aim was to 

further enhance the ESM functionality. It has been demonstrated that strength training in 

combination with creatine supplementation led to greater skeletal muscle mass, strength gain and 

fatigue resistance (Bonilla and Moreno 2015; Cooke et al. 2009; Olsen et al. 2006; Willoughby 
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and Rosene 2001). Since loading the ESM on static stretchers is resembling isometric exercise for 

the tissue, we hypothesized that supplementation of maturation medium with creatine 

monohydrate would enhance the function of ESM. 

Maturation medium of ESM was supplemented with 1 mM creatine monohydrate during early 

maturation (5 weeks) or late maturation (9 weeks) time windows (Figure 24A). Creatine enhanced 

the twitch tension of ESM by 1.5±0.2 fold at week 5 and by 1.3±0.02 fold at week 9 (Figure 24B). 

 

   

  
 
Figure 24. Creatine supplementation increases ESM twitch tension. 
A, Scheme indicating the experimental design for ESM treatment with 1mM creatine monohydrate (green arrows) for 
4 wks. B, Quantification of tetanic twitch tension at 100 Hz stimulation twitch tension of control ESM (Ctrl; black 
bars) vs. creatine treated ESM (+creatine, blue bars) at 5 wks and 9 wks maturation time; n = 3/group at each time 
point, *p<0.05 by Student’s t-test.  
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3.2.5 Maturation of myosin isoforms by T3 treatment 

Next, the knowledge gained from the transcriptome data was exploited to enhance the functionality 

of ESM. Thyroid hormone receptor was part of “maturation cluster” (coexpression cluster blue) 

which prompted us to test if ESM would respond to Triiodo-L-thyronine (T3) treatment. T3 does 

not increase maximal force production but has been described to enhance physiological maturation 

of skeletal muscle by triggering the transition in myosin heavy chain isoform expression towards 

adult fast myosin isoforms (Larsson et al. 1994; Schiaffino et al. 1988, 2015; Simonides and van 

Hardeveld 2008). It was therefore investigated if addition of T3 to early maturation (5 weeks) or 

late maturation (9 weeks) phase of ESM would influence ESM function (Figure 25A). 

 

 
 
Figure 25. Effect of thyroid hormone on twitch tension generated by ESM. 
A, Scheme of experimental design of ESM maturation for 5 or 9 wks with or without additional application of 0.1 
µmol/L Triiodo-L-thyronine (T3) for 4 wks. B, Twitch tension in response to increasing stimulation frequencies of 5 
wks and 9 wks old ESM cultured with (blue bars) or without T3 (black bars); n = 11-16/group at 5 wks; 7-10/group 
at 9 wks).  
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T3 treatment did not influence the maximal twitch tension (Figure 25B), but clearly shortened the 

duration of single twitches of both 5 weeks and 9 weeks ESM. Accordingly, the speed of 

contraction (Time to 90% contraction -T1) of single twitches as well as relaxation (Time to 50% 

relaxation -T2) at 5 weeks and 9 weeks was significantly decreased (Figure 26A,B). In addition, 

the rate of force development (RFD) in tetanic contractions (100 Hz stimulation frequency) tended 

to be faster in ESM treated with T3. The rate of force decline was enhanced in 5 weeks ESM 

treated with T3 with a tendency also in 9 weeks ESM (Figure 26C,D).   

 
 
Figure 26. Advanced contractile kinetics of ESM by thyroid hormone treatment. 
A, Normalized representative traces of single twitches of 5 wks old control (black line) or +T3 (blue line) ESM at 1 
Hz (left panel); Quantification of contraction (T1) and relaxation (T2) time of single twitches of 5 wks old control 
(black bars) or +T3 (blue bars) ESM at 1 Hz (right panel); n = 8-11/group, *p<0.05 by Student’s t-test. B, Normalized 
representative traces of single twitches of 9 wks old control (black line) or +T3 (blue line) ESM at 1 Hz (left panel); 
Quantification of contraction (T1) and relaxation (T2) time of single twitches of 9 wks old control (black bars) or +T3 
(blue bars) ESM at 1 Hz (right panel); n = 5-6/group, *p<0.05 by Student’s t-test. C, Representative traces of twitch 
tension of 5 wks old control (black line) or +T3 (blue line) ESM at 100 Hz tetanus (left panel); Rate of force 
development (RFD; rate of contraction: dTT/dt+ and rate of relaxation: dTT/dt-) of 5 wks old control (black bars) or 
+T3 (blue bars) ESM at 100 Hz tetanus (right panel); n = 8-11 /group, *p<0.05 by Student’s t-test. D, Representative 
traces of twitch tension of 9 wks old control (black line) or +T3 (blue line) ESM at 100 Hz tetanus (left panel); Rate 
of force development (RFD; rate of contraction: dTT/dt+ and rate of relaxation: dTT/dt-) of 9 wks old control (black 
bars) or +T3 (blue bars) ESM at 100 Hz tetanus (right panel); n = 4-7/group. 
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The tetanus threshold (i.e. frequency where single twitches fuse to tetani) is greater in mammalian 

adult fast muscle fiber in comparison to slow muscle fibers (Buller and Lewis 1965). The tetanus 

threshold of ESM with and without T3 treatment was analyzed by calculation of a fusion index 

(Figure 27A) derived from twitch recordings at increasing stimulation frequencies (Figure 27B). 

The tetanus fusion index was different in ESM treated with T3 with a significant shift towards 

higher stimulation frequencies (50% fusion at 3.92±0.24 Hz vs 5.44±0.05 Hz in control ESM vs. 

ESM+T3, respectively (Figure 27C). Collectively, these functional data suggest that T3 enhances 

fast muscle properties of ESM.  

   

 
 
Figure 27. Thyroid hormone elevates the tetanus threshold of human ESM. 
A, Fusion index calculated on representative traces of twitch tension generated by control (black) and +T3 (blue) ESM 
at 5 Hz tetanus stimulation. The fusion index calculated as the percentage ratio of the maximal relaxation amplitude 
before the last contraction of the tetanus (Cmin) to the amplitude of this last contraction (Cmax). B, The fusion index-
frequency curve of control (black line) and +T3 (blue line) ESM. C, Stimulation frequency at 50% tetanus fusion of 
control (black bar) and +T3 (blue bar) ESM; n = 8/group, *p<0.05 by Student’s t-test.  

1 sec

5
m

N

Control

Fusion index: % fusion = Cmin/Cmax x100

T3

C
max

C
min

80% fusion
40% fusion

C
max

C
min

A

0
0

50

100

150

40 60 80 1005

Tetanus fusion index

%
 te

ta
nu

s
fu

si
on

*

T3
0

2

4

6

Fr
eq

ue
nc

y 
at

 
50

%
 te

ta
nu

s 
fu

si
on

 (H
z) *

Ctrl
Frequency (Hz)
10 20

B C          



 

 73 

We next asked if the T3 treatment affects the myosin heavy chain (MYH) isoform expression in 

ESM. Interestingly, T3 treatment clearly enhanced the abundance of adult fast MYH2 isoform 

with a reduction of the embryonic MYH3 isoform. The levels of the slow myosin isoform MYH7 

were unchanged (Figure 28A, B). These molecular changes are well in line with the functional 

phenotype suggesting that T3 indeed supports maturation of fast skeletal muscle properties in 

ESM. The data also demonstrates that ESM respond to physiological stimuli comparable to 

skeletal muscle in vivo. 

                                               
 
Figure 28. Myosin heavy chain isoform expression in human ESM treated with thyroid hormone. 
A, Representative immunoblot for immunoreactive bands of fast myosin heavy chain (MYH2), slow myosin heavy 
chain (MYH7), embryonic myosin heavy chain (MYH3) and the loading control vinculin (VCL). B, Protein 
abundance of MYH2 (left panel), MYH7 (middle panel) and MYH3 (right panel) in 9 wks old ESM cultured with 
(blue bars) or without T3 (black bars); n = 3/group, *p<0.05 by Student’s t-test. 
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3.3 Regenerative capacity of engineered skeletal muscle 

3.3.1 Satellite cells in engineered skeletal muscle 

A fundamental property of skeletal muscle is the regenerative capacity by muscle stem cells called 

satellite cells (Bischoff 1975; Sambasivan et al. 2011). In a recent study from our lab, it was 

demonstrated that engineered skeletal muscle generated from rat myoblasts contains satellite cell 

niches that preserve regenerative capacity of ESM in vitro (Tiburcy et al. 2019).  

To investigate whether human ESM would likewise have the capacity to regenerate in vitro, it was 

first scrutinized if ESM harbor stem cells resembling the native skeletal muscle’s quiescent 

satellite cell population expressing transcription factor PAX7. Immunostaining identified a pool 

of cells with PAX7+ nuclei in ESM (13±1% of total nuclei). 63±4% of the PAX7+ cells were 

adjacent to differentiated skeletal myofibers and positioned beneath a LAMININ+ basal lamina 

which is a characteristic of the in vivo satellite cell niche (Figure 29A). Of note, 75±6% of these 

PAX7+ cells were Ki67 negative, implicating a quiescent state (Figure 29B).  
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Figure 29. PAX7-positive cells adopt a satellite cell niche in human ESM.  
Immunostaining of longitudinal sections of ESM for A, LAMININ (magenta), and B, KI67 (red), ACTIN (green), 
PAX7 (gray), and Nuclei (blue). Scale bars: 10 µm. C, Immunostaining of LAMININ (magenta), PAX7 (gray), 
ACTIN (green), and Nuclei (blue) in 2D monolayer cultures at day 60. Scale bar: 50 µm. D-F, RNA transcript (Reads 
per Kilobase Million, RPKM) of indicated muscle stem cell markers in 2D monolayer cells at day 22 and day 60, plus 
day 60 ESM; n = 3/group, *p<0.05 by 1-way ANOVA and Tukey’s multiple comparison test.  
 
 
 
 
Same age 2D skeletal myocyte cultures prepared in parallel from the same stock of day 22 cells 

were compared for the presence of PAX7+ cells. While PAX7+ cells were identified on protein 

and transcript level in a similar quantity (Figure 29C,D), only 32±5% were associated with muscle 

fibers in 2D suggesting a higher propensity to resume a satellite cell position in 3D. In line with 

this, higher expression of “mature” satellite cell markers MYF5 and BARX2 in ESM was found 

(Figure 29E,F) (Cornelison and Wold 1997; Meech et al. 2012). These data suggest that ESM 

may provide a favorable niche for the maintenance of the bona fide skeletal muscle stem cells in 

vitro. 

 



 

 76 

3.3.2 Regenerative capacity of cardiotoxin injured ESM 

Finally, it was tested if the identified satellite-like cells in ESM can repair muscle in vitro. To 

induce muscle damage cardiotoxin (CTX 25 µg/ml) was applied for 24 hours in 5 weeks old ESM 

(Figure 30A) according to Tiburcy et al., 2019.  

48 hrs after CTX injury (day+2) ESM twitch tension could not be detected indicative of complete 

muscle destruction. The functional regenerative response was then assayed by tetanic force 

measurements. A partial but robust recovery of tetanic force (to 37±2% of initial force) was 

observed in ESM after 21 days of recovery (Figure 30B). In agreement with the recovery of 

function newly formed muscle fibers with organized sarcomeres were founded (Figure 30C).  

To confirm that the recovery of contractile force was related to the function of proliferative, 

activated muscle stem cells, ESMs were irradiated with 30 Gray to prevent cell cycle activity 

before CTX injury (Tiburcy et al. 2019). It has been shown that irradiation does not affect the 

viability and function of matured postmitotic muscle fibers, but effectively inhibits cell cycle 

activity in muscle stem cells (Rosenblatt 1992; Tiburcy et al. 2019). Consistent with this 

observation the control tissue without CTX injury did not show a significant change in twitch 

tension after irradiation. In contrast, the injured tissue did not show any recovery of force, 

suggesting the regeneration by proliferating cells is effectively stopped (Figure 30B). In line with 

this, hardly any morphologically intact muscle cells were identified inside the ESM by 

immunostaining (Figure 30D). These data suggest a regenerative role of proliferative muscle stem 

cells inside ESM.  
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Figure 30. Functional regeneration of human engineered skeletal muscle. 
A, Experimental design of cardiotoxin (CTX) injury model. ESM were incubated with 25 µg/ml CTX for 24 hrs. The 
irradiated group was treated with 30 Gy 24 hrs before CTX injury (Tiburcy et al. 2019). B, Tetanic twitch tension at 
100 Hz stimulation frequency of ESM without (black bars) or with irradiation (blue bars) at indicated time points after 
CTX (25 µg/ml) injury or control (Ctrl) condition; n=3-4/group, *p<0.05 vs. the respective Ctrl day +2, by 1-way 
ANOVA and Tukey’s multiple comparison test, #*p<0.05 CTX day +2 vs. CTX day +21. C, Immunostaining 
of sarcomeric 𝛼 −ACTININ (green) and Nuclei (blue) in non-irradiated ESM (left panel) and irradiated ESM (right 
panel) 21 days after CTX injury. Scale bars: 50 µm. 
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3.4 Modeling Duchenne Muscular Dystrophy in engineered skeletal muscle 

To evaluate ESM as a biologically relevant 3D platform to model skeletal myopathies, we 

hypothesized that dystrophin mutations associated with Duchenne Muscular Dystrophy (DMD) 

induce a pathological ESM phenotype.  

To investigate this iPSC generated from a healthy individual (WT iPSC2) and two patients with 

frameshift mutations in the dystrophin (DMD) gene were included in the study. The first DMD 

patient harbors an exon deletion (del; lacking exons 48 to 50) while the second DMD patient 

harbors a pseudoexon (pEx; pseudo-exon 47A leading to premature stop codon) (Long et al. 2018). 

Corresponding “myoedited”-DMD lines corrected by CRISPR/Cas9 mediated exon skipping were 

kindly provided by Eric N. Olson to serve as isogenic controls (Long et al. 2018). All lines were 

subjected to skeletal muscle differentiation (Figure 31A). Immunostaining on day 22 of 

differentiation illustrates a phenotypically comparable culture of elongated sarcomeric 

𝛼 −ACTININ-positive skeletal myocytes in both DMD and myoedited-DMD cultures (Figure 

31B). 
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Figure 31. Efficient generation of skeletal myocytes from DMD and myoedited DMD iPSC lines. 
A, Myoediting strategy in Del DMD iPSCs. In dystrophin (DMD) gene, deletion of exons 48 to 50 creates a frameshift 
mutation in exon 51 leading to premature stop codon in exon 51. By making use of the PAM sequences at the splice 
acceptor site of exon 51, the splice acceptor site was targeted by CRISPR/Cas9. Destruction of the splice acceptor site 
enabled efficient skipping of exon 51 thereby restoring the reading frame (adapted from Long et al. 2018). B, 
Myoediting strategy in pEx DMD iPSCs. In dystrophin (DMD) gene, an intronic mutation between exon 47 and 48 
creates an additional splice site leading to a pseudo exon 47A with a premature stop codon. Two guide RNAs were 
used to target pseudo-exon 47A pEx by CRISPR/Cas9. After destruction of the additional splice site the reading frame 
was efficiently restored (adapted from Long et al. 2018). C, Representative sarcomeric 𝛼 −ACTININ-positive (green) 
skeletal myocytes in 22 days old differentiated culture from DMD (Del) and myoedited DMD (Del-cor) iPSCs. Scale 
bar: 50 µm. D, Western blot analysis of WT, DMD (Del), myoedited DMD (Del-cor), DMD (pEx) and myoedited 
DMD (pEx-Cor) derived skeletal myocytes indicating the immunoreactive bands of dystrophin and Vinculin loading 
controls.  

Western blot analysis on day 22 skeletal myocytes confirmed the absence of dystrophin protein in 

DMD cell lines, and restoration of dystrophin expression in myoedited-DMD skeletal myocytes 

(Figure 31C). Accordingly, no dystrophin expression was observed in DMD-ESM (Figure 32). 

Re-expression of dystrophin with proper localization at the sub-sarcolemmal space was confirmed 

in ESM with genetic repair (Figure 32C,E). Importantly, contractile function was impaired in 

DMD-ESM (0.7±0.2 mN for DMD-Del ESM and 1.1±0.4 mN for DMD-pEx ESM at 100 Hz 

stimulation; Figure 33) and restored in myoedited ESM (4.7±0.3 mN for DMD-Del ESM and 

2.6±0.2 mN for DMD-pEx at 100 Hz stimulation; Figure 33).  
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Figure 32. Restoration of Dystrophin expression in DMD ESM by myoediting. 
Immunostaining of A, WT ESM, B, DMD ESM (pEx), C, myoedited DMD ESM (pEx-Cor), D, DMD ESM (Del) 
and E, myoedited DMD ESM (Del-Cor) cross sections for DYSTROPHIN (magenta), ACTIN (green) and Nuclei 
(blue); Scale bar: 20 µm. 
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Figure 33. Rescue of DMD ESM dysfunction by myoediting. 
Tetanic twitch tension at 100 Hz stimulation frequency generated by WT, DMD and myoedited DMD ESM. n = 4 
WT ESM; n = 7-8/DMD line, *p<0.05 by Student’s t-test. 
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4  Discussion 

 
Human development and disease are challenging to study because of limited access to patients and 

patient-derived material. While the use of animal models is valuable for studying physiology and 

pathophysiology in an in vivo context and for aiding pre-clinical development of therapeutics, 

animal models are costly, difficult to interrogate, and not always equivalent to human biology (Xi 

et al. 2017).  

Innovative in vitro human cell-based models have the potential to overcome the problems with 

animal models and facilitate translation of findings from basic cellular research of human 

development and disease mechanisms into a patient context. It should be taken into consideration 

that cell-based models need to recapitulate the architecture, multicellular complexity and 

physiology of an organ but at the same time accommodate systematic experimental interventions. 

For these reasons, tissue engineering has emerged as an attractive technique to provide 3D cell-

based models that recapitulate key aspects of in vivo tissue and organ complexity while being 

amenable to experimentation (Schmeichel and Bissell 2003). 

Use of human PSCs for tissue engineering is expanding, and promising results have been obtained 

with human PSC-derived 3D tissues models of various organs including skeletal muscle. Still, the 

current human PSC-derived 3D models for skeletal muscle are criticized for immature properties 

of muscle fibers and modest physiological responsiveness (Maffioletti et al. 2018; Rao et al. 2018). 

Therefore, generating advanced human PSC-derived 3D models of skeletal muscle is instrumental 

for future translational applications.  

 

By building on existing expertise of human PSC culture and tissue engineering (Soong et al. 2012; 

Tiburcy et al. 2017, 2019; Zimmermann et al. 2000) we aimed to generate engineered skeletal 

muscle (ESM) from human PSCs as a system for studying regeneration and modelling of muscular 

disease like Duchenne Muscular Dystrophy (DMD). Following this aim, the main achievements 

of this thesis are: 

1) A robust, directed protocol for skeletal muscle differentiation of human wild-type and 

patient-specific iPSCs. 

2) A close recapitulation of central stages of human skeletal muscle development in vitro. 
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3) Feasibility of bioengineered skeletal muscle (BSM) organoid generation with characteristic 

skeletal muscle function. 

4) ESM with physiological function from human PSC-derived skeletal myocytes under 

mechanical stimulation in serum free conditions. Typical skeletal muscle properties of 

ESM were demonstrated by: 

i. a physiological myosin isoform switch in ESM treated with Triiodo-L-thyronine (T3) 

ii. establishment of a satellite cell niche 

iii. a robust regenerative response after cardiotoxin-induced injury 

5) ESM as a disease model of Duchenne Muscular Dystrophy.  

 

4.1 Robust protocol for skeletal muscle differentiation of human iPSCs 

Despite the tremendous progress in developing protocols for directed differentiation of PSCs into 

skeletal myocytes (Chal et al. 2016; Choi et al. 2016), the challenges in directed differentiation of 

human PSCs toward a myogenic fate have hampered the development of robust in vitro models of 

skeletal muscle. This is likely due to the highly complex developmental process of skeletal 

myogenesis. To short cut these developmental processes most recent work has resorted to 

overexpression of myogenic regulatory factors like PAX7 in human PSC derived mesenchymal 

cells, a method pioneered in 1987 with the identification and overexpression of MYOD1 in non-

muscle cells (Davis, Weintraub, and Lassar 1987). Timed overexpression of PAX7 may allow for 

specific programming of non-muscle into muscle cells, however it is not clear how this may affect 

the function of resulting myocytes and tissues (Rao et al. 2018). Therefore, to provide a 

reproducible protocol for skeletal muscle differentiation from PSCs without genetic modifications, 

a precise appreciation of the specific signaling pathways involved is required.  

The protocol reported here specifically directs human PSCs towards myogenic progenitors of limb 

muscle followed by primary and secondary skeletal myogenesis. Starting to establish the protocol 

in our lab, first two published protocols for directed skeletal muscle differentiation of human PSCs 

by Chal et al. 2016 and Choi et al. 2016 were tested without the desired outcome. Thus, we 

revisited the process of skeletal muscle development aiming at directing human PSCs to paraxial 

mesoderm progenitors under serum free culture conditions. To achieve this goal, we exposed 

human PSCs to CHIR99021 for Wnt activation, FGF2, and LDN-193189 for inhibition of BMP 



 

 84 

signaling. Wnt and FGF activation were applied to induce paraxial mesoderm formation  (Boulet 

and Capecchi 2012; Chal et al. 2015; Ciruna and Rossant 2001; Yamaguchi et al. 1994). BMP 

inhibition was crucial to prevent the paraxial mesoderm progenitors from drifting to lateral 

mesoderm differentiation (Chal et al. 2016; Miura et al. 2006). An optimal paraxial mesoderm 

induction was the most critical step for a subsequent efficient skeletal myogenesis. Optimization 

efforts concentrated on finding an optimal initial cell density (resulting in an appropriate cell 

confluency of 30-40%), as well as small molecule concentrations and exposure times for different 

PSC lines to obtain a homogenous culture of anterior paraxial mesoderm progenitors expressing 

specific markers including FOXC2 and MESP2. In the concurrent step, the differentiating culture 

was specifically directed towards generation of dermomyotomal progenitors of limb by removing 

the LDN-193189 from the culture to stop BMP inhibition and starting to use DAPT to inhibit 

Notch signaling. Notch inhibition is not only essential for dermomyotomal progenitor formation, 

but is also crucial to prevent the differentiation of anterior paraxial mesoderm progenitors to 

endothelial cells. The influence of Notch inhibition was obvious in our differentiation culture by 

antidromic expression of  PAX3 and FOXC2 (Choi et al. 2016; Mayeuf-Louchart et al. 2014). 

Following the myogenic program of limb skeletal muscle characterized by expression of specific 

markers including Six1, in the next step HGF was used to promote the proliferation and 

differentiation of PAX3+ cells to a skeletal myogenic cell population (F. Bladt et al. 1995; Chal et 

al. 2016) including proliferative myogenic progenitors, myoblasts, spontaneously twitching 

myotubes and non-myocytes. The following figure summarizes the different tested protocols (Chal 

et al. 2016; Choi et al., 2016;). 
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Figure 34. Summary of the tested skeletal myogenesis protocols. 
Summary of the protocols for skeletal muscle differentiation from PSC optimized in A, Chal et al, 2016, B, Choi et al 
2016 and C, this thesis indicating the sequence and the timing of factor addition to modulate specific signaling 
pathways involved in skeletal myogenesis. Significant differences between protocols indicated in red. +/- indicates 
pathway activation/inhibition, respectively. 
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The developmental fidelity of our final protocol for skeletal muscle differentiation stems from the 

precise modulation of BMP, Notch and HGF signaling pathways to recapitulate the myogenic 

program of limb skeletal muscle and is underscored by the transcriptome data which showed great 

overlap to muscle development of the human embryo. Although Choi et al. 2016 took the 

advantage of using DAPT to inhibit Notch signaling, their protocol did not exploit (1) BMP 

inhibition for controlled paraxial mesoderm development and (2) HGF signaling activation for 

efficient promotion of skeletal myogenesis. In the protocol published by Chal et al. 2016 extended 

BMP inhibition in the absence of Notch inhibition directs the cells towards the trunk myogenic 

program rather than limb muscle (Pourquié et al. 2018). Importantly, the efficiency of our skeletal 

muscle differentiation protocol was high with significant numbers of Pax7, MyoD, and Myogenin-

positive cells. Per input iPSC cell we obtained on average 34 skeletal muscle cells with 15 

myogenic progenitors/myocytes, 14 mesenchymal progenitors, and 5 neurons. Flow cytometry 

confirmed the quantification of immunostaining data on day 22 of differentiation and showed 

comparable efficiency for 5 different iPSC lines indicating the robustness of the protocol.  

 

4.2 Engineered models of skeletal muscle from human PSCs 

In conventional 2D culture of human PSC-derived skeletal muscle fibers remain in an immature, 

embryonic phenotype which is vastly different compared to bona fide skeletal muscle. Culture 

systems to generate myogenic cells that are sufficiently mature to mimic the physiology of their 

counterparts in the intact organism are needed. 

Only recently three studies reported the generation of skeletal muscle tissue from human 

pluripotent stem cells (Maffioletti et al. 2018; Rao et al. 2018; Xu et al. 2019) 

collectively suggesting a potential of 3D skeletal muscle for disease modeling and regenerative 

medicine. The contractile function output of these reported models is low compared to postnatal 

muscle and for the only transgene-free model published so far, muscle function was 

not reported (Maffioletti et al. 2018). No single strategy has yet been able to promote complete 

maturation of engineered constructs to a state indistinguishable from native adult human muscle 

tissue. 

 



 

 87 

In this thesis, the capacity of two different approaches to generate 3D models of skeletal muscle 

from human PSCs was tested: 

 

4.2.1 Bioengineered skeletal muscle (BSM) organoid from human PSCs 

For generation of BSM organoids undifferentiated iPSCs were embedded in a hydrogel of collagen 

type 1 and Matrigel™ and then subjected to the in this thesis established in vitro myogenesis 

protocol for skeletal muscle differentiation. Similar to the differentiation in 2D and in line with 

other published skeletal muscle, BSM organoids not only contained myocytes, but also non-muscle 

cells including neurons. A similar cell composition was recently reported in an alternative skeletal 

muscle organoid model (Faustino Martins et al. 2020). About 75% of the cross sectional area of 

BSM was populated by non-muscle cells in extracellular matrix. The clearly distinguishable 

muscle fibers showed a high degree of organized myofibrils. Importantly, BSM organoids 

developed organotypic contractile function with single twitches and tetanic contractions at high 

frequency stimulation. Further optimization is needed to increase the amount of muscle and to 

characterize the function of the non-muscle cells. Irrespective of the need for further optimization, 

BSM organoids recapitulate muscle development suggesting that BSM can be applied to model 

human developmental biology. 

 

4.2.2 Engineered skeletal muscle from human PSC-derived skeletal muscle cells 

Based on previous work in the rat (Tiburcy et al. 2019), we demonstrate that Engineered Skeletal 

Muscle (ESM) from human iPSC-derived skeletal myocytes supports physiological skeletal 

muscle function and provides a regenerative satellite cell niche in vitro. In contrast to BSM 

organoids, ESMs are generated from enzymatically dissociated day 22 monolayer PSC-derived 

skeletal muscle cells. This allows precise control over the cellular input and composition of the 

ESM. After optimizing ESM conditions, the skeletal muscle cell content of ESM was 2.5 fold 

higher than in BSM organoids and functional output (maximal tetanic twitch tension) was 2-2.5 

fold higher in ESM compared to BSM organoids of identical time in culture (28 days maturation).  
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The use of 22 days old skeletal myocytes for further physiological development of muscle fibers 

in ESM was based on the immunostaining and transcriptome data showing that day 22 cells 

contained a high number of PAX7+ myogenic progenitors among narrow aligned primary 

myotubes indicative of the primary myogenesis stage. We reasoned that this stage would be 

optimal to use in ESM to stimulate further fusion in 3D and to aid secondary myogenesis (Biressi 

et al. 2007; Buckingham and Relaix 2007). The continuum of muscle development with fetal stage 

secondary myogenesis in ESM was evident by expression of NFIX, CKM, and MYH8 

(Supplemental Figure 1). 

 

Further evidence for continuing physiological development in ESM were obtained by 

immunostaining showing a highly organized muscle fiber syncytium surrounded by sarcolemma 

with properly localized Dystrophin-associated protein complexes. A mature ultrastructure 

containing sarcomeres with M-bands, t-tubules, and organized mitochondria further supports an 

advanced maturation. Finally, contractile parameters are in agreement with fetal muscle 

development (Racca et al. 2013). It should be noted however, that ESM is still in a maturing state 

of development as evidenced by the small average muscle cell diameter, the myosin isoform 

pattern, the absolute force development (3-10% of adult muscle), and higher numbers of progenitor 

cells. Strategies to enhance physiological hypertrophic growth are still needed to further improve 

ESM.   

 

4.3 Myosin isoform switch in ESM under Triiodo-L-thyronine exposure 

There are different approaches to define the maturation state of skeletal muscle fibers. Final fiber 

type of a given muscle is mainly determined by developmental history, physiological properties 

and innervation. Physiologically the skeletal muscle fibers are classified according to twitch speed 

and primary ATP production patterns (Schiaffino and Reggiani 2011). Myosin heavy chain 

(MYH), the most abundant motor protein in human skeletal muscle, is an important intrinsic 

determinant of muscle twitch (Baldwin and Haddad 2001). The expression of MYH isoforms 

follows a developmental sequence, with the embryonic (MYH3) and slow MYH (MYH7) being 

the first to be expressed. Fetal and neonatal fibers transiently express perinatal MYH (MYH8), 

while the fast isoforms start to be expressed during late fetal myogenesis. Adult muscle fibers of 
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limb and trunk skeletal muscle express specific isoforms of MYH. Adult slow twitch fiber type I 

expresses slow MYH7, whereas adult fast twitch fibers type IIa and IIx express fast MYH2 and 

fast MYH1 respectively (Schiaffino and Reggiani 2011).  

 

A major factor involved in postnatal muscle fiber type differentiation is the level of thyroid 

hormone (triiodothyronine), which is low until birth, then increases to reach its maximum level at 

2 to 3 weeks after birth. Triiodothyronine (T3), independent of the neuronal innervation, has a role 

in the postnatal transition from embryonic and neonatal to adult MYHs. Moreover, T3 stimulates 

slow-to-fast muscle fiber type conversion by inducing the transition of MYH7 to MYH2 and 

MYH2 to MYH1 (Schiaffino and Reggiani 2011; Simonides and van Hardeveld 2008).  

The influence of thyroid hormone has not been investigated in a human in vitro model of skeletal 

muscle so far. Here, we show that the ESM model responds physiologically to T3 treatment. 

Functional analysis of the ESM revealed that T3 treatment increased the speed of contraction (T1) 

of single twitches at early and late maturation stages as well as the speed of relaxation (T2) at late 

maturation and subsequently shifted the tetanus threshold to higher frequencies. By T3 treatment 

the expression pattern of MYH in ESM showed characteristic patterns in line with the functional 

changes. While expression level of adult fast MYH2 was significantly increased, no significant 

change was found in the expression of adult slow MYH7. More importantly, T3 induced a 

significant decrease in expression level of embryonic MYH, collectively shifting the myosin 

isoform pattern to a more mature fast muscle pattern. These findings establish that the 

supplementation of T3 is fundamental for the routine culture of engineered muscle. 

 

4.4 Regenerative potential of ESM in response to cardiotoxin-induced injury 

Adult skeletal muscle has a remarkable capability for self-repair and regeneration after injury. 

Skeletal muscle stem cells (satellite cells) are the main source of regeneration in injured muscle. 

Satellite cells are mitotically quiescent, located under the basal lamina in an intimate association 

with plasma membrane of adult muscle fiber. Satellite cells are specifically characterized by 

expression of PAX7 and they have the potential for cell cycle activation, myogenic differentiation 

and functional regeneration upon injury (Sambasivan et al. 2011; Seale et al. 2000).  
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Recently, our group confirmed that a satellite cell niche with true muscle stem cell properties and 

regenerative capacity can be preserved in rat ESM (Tiburcy et al. 2019) supporting earlier studies 

on the regeneration potential of tissue engineered muscle (Juhas et al. 2014). In this study we 

provide evidence that human PSC-derived skeletal muscle fibers generated in our ESM model are 

mature enough to provide a proper niche for PAX7+/Ki67- quiescent satellite cells. The majority 

but not all of PAX7+ cells were situated adjacent to a muscle fiber. The non-adjacent PAX7+ cells 

resemble the proliferating progenitor cells giving rise to developing fetal muscle fibers in ESM. 

 

It has been demonstrated that cardiotoxin (CTX)-induced injury is a feasible method to 

preferentially damage the sarcomeric structure of muscle fibers in rat skeletal engineered skeletal 

muscle, resulting in full contractile failure without affecting the satellite cell niche (Tiburcy et al. 

2019). Therefore, to evaluate the regenerative potential of the satellite cells in human ESM, the 

CTX injury method was adapted to our model. Approximately 37% of contractile function of the 

human ESM was regained after 3 weeks of regeneration by injured human ESM. To verify this 

outcome, CTX injury was applied to irradiated human ESM (Heslop, Morgan, and Partridge 2000; 

Tiburcy et al. 2019; Wakeford, Watt, and Partridge 1991). The fact that the contractile function of 

irradiated, mitotically inactivated human ESM was not regenerated in response to CTX injury, 

confirmed the regenerative potential of the satellite cell niche (by its activation from a quiescent 

to a proliferative state) of human PSC-derived skeletal muscle fibers in ESM model. While these 

data provide a proof-of-principle for satellite cell-based regeneration it remains to be established 

whether in vitro activation recapitulates in vivo processes and whether a complete regeneration 

with 100% recovery of force can be achieved in vitro. One important aspect could be the presence 

or absence of supporting cells for regeneration. For example, macrophages have been shown to 

support muscle regeneration (Juhas et al. 2018; Shang et al. 2020). By addition of macrophages to 

the ESM formulation, this will be tested in future studies. 

 

4.5 Modeling Duchenne Muscular Dystrophy in ESM 

Since several muscular dystrophies, including Duchenne Muscular Dystrophy (DMD) develop in 

in postnatal life, in vitro models of human skeletal muscle tissue comprising of embryonic cells 
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may be inappropriate to accurately recapitulate the phenotypes of DMD patients (Nam et al. 2015; 

Smith et al. 2016).  

Here, we hypothesized that i) using our established 2D differentiation protocol, DMD iPSCs can 

be differentiated to skeletal myocytes and ii) ESM model has the capacity to generate sufficiently 

mature human DMD iPSC-derived skeletal muscle fibers mimicking the muscle pathophysiology 

of DMD. In comparison with WT ESM, ESM generated from human DMD iPSC-derived skeletal 

myocytes (DMD ESM) showed contractile weakness. This lack of function corresponded to the 

absence of dystrophin localized to the sarcolemma of skeletal muscle fibers in DMD ESM. Of 

note, the degree of skeletal muscle weakness was different in the two lines, with a less severe 

phenotype in the DMD pEx line. This is in line with contractile function data from Engineered 

Heart Muscle (EHM) and may also reflect the severity of disease in the patient (Long et al 2018). 

Interestingly, restoring the dystrophin expression through myoediting, a CRIPSR/Cas9 based 

method pioneered by Eric N. Olson and colleagues (Long et al. 2018), could effectively rescue the 

contractile function of ESM generated from myoedited skeletal myocytes (corrected DMD ESM). 

These data demonstrate that human ESM generated from DMD induced PSC-derived skeletal 

myocytes can serve as a preclinical platform for disease modeling. 
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5 Summary and perspectives 

 
In this project, we provide a robust transgene-free protocol for skeletal muscle differentiation of 

human pluripotent stem cells (PSCs) in a serum-free culture followed by generation of maturing 

skeletal muscle fibers in novel 3D models of skeletal muscle, namely ESM and BSM organoids. 

Molecular and morphological analyses demonstrate the stage specific recapitulation of skeletal 

muscle development. Creatine supplementation enhanced the contractile function of mechanically 

conditioned ESM. Thyroid hormone (T3) treatment elevated the maturation level of PSC-derived 

skeletal muscle fibers in ESM. Functionality of the apparent niche for skeletal muscle satellite 

cells was documented by regeneration of contractile function after cardiotoxin (CTX)-injury. 

Modelling Duchenne Muscular Dystrophy (DMD) in ESM provided “proof-of-concept” for 

disease modeling and therapeutic genome editing by CRISPR/Cas9 based exon skipping. 

According to these findings, we propose ESM as a high fidelity in vitro model of skeletal muscle 

addressing the need for robust human preclinical models of skeletal muscle disease. This 

methodology may in addition lay the groundwork for the development of novel therapies targeting 

skeletal muscle dysfunction, muscle regeneration and muscle loss.  
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7 Appendix 

 

7.1 Reagents  

Table A1. List of Chemicals, Peptides and Recombinant Proteins 

Chemicals, Peptides and Recombinant 

Proteins 

Source Identifier 

Aceton Carl Roth Cat. #5025 

Agarose, universal, peqGOLD VWR Peqlab Cat. #7322789P 

B-27 Supplement Thermo Fisher 

Scientific 

Cat. #17504044 

Bovine Serum Albumin  Sigma-Aldrich Cat. #A3294 

Carbachol (Carbamoyl choline chloride)  Sigma-Aldrich Cat. #C4382 

CHIR99021, 6-[[2-[[4-(2,4-Dichlorphenyl)-5-(5-

methyl-1H-imidazol-2-yl)-2 

pyrimidinyl]amino]ethyl]amino]-3 

pyridinecarbonitril, CT99021 

Stemgent Cat. #040004 

Collagen (Acid Solubilized Telo Collagen) LLC Collagen 

Solutions 

Cat. #FS22024 

Creatine monohydrate  Sigma-Aldrich Cat. #C3630 

Cardiotoxin Latoxan Cat. #L8102 

DAPT, tert-Butyl (2S)-2-[[(2S)-2-[[2-(3,5-

difluorophenyl)acetyl]amino]propanoyl]amino]-

2-phenylacetate Gamma γ-secretase inhibitor 

Tocris Cat. #2634 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich Cat. #D2650 

DMEM, low glucose, GlutaMAXTM Supplement, 

pyruvate 

Thermo Fisher 

Scientific 

Cat. #10567014 
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DMEM, powder,low glucose, pyruvate Thermo Fisher 

Scientific 

Cat. #31600036 

DNase I recombinant, RNase-free Roche Cat. #4716728001 

Ethanol (99.5%) Carl Roth Cat. #5054 

Fast SYBR Green Master Mix  Thermo Fisher 

Scientific 

Cat. #4385610 

FemtoLUCENTTM Plus HRP Gbiosciences Cat. #786003 

FGF-2, basic fibroblast growth factor Peprotech Cat. #AF10018B 

Fluoromount-G  Southern Biotech Cat. #010001 

Formalin solution 4 % (Histofix) Carl Roth Cat. #P0871 

HGF, Hepatocyte growth factor  Peprotech Cat. #10039B 

High Capacity cDNA Reverse Transcription Kit  Applied Biosystems Cat. #10400745 

Knockout serum replacement Thermo Fisher 

Scientific 

Cat. #10828028 

LDN193189, 4-[6-(4-piperazin-1-

ylphenyl)pyrazolo[1,5-a]pyrimidin-3-

yl]quinoline;hydrochloride 

Stemgent Cat. #040074 

Matrigel (Growth Factor Reduced) Becton Dickinson/BD 

Biosciences 

Cat. #354230 

MEM Non-essential amino acid solution, 100x Thermo Fisher 

Scientific 

Cat. #11140035 

2-Mercaptoethanol Thermo Fisher 

Scientific 

Cat. #21985023 

Mini-PROTEIN TGXTM Precast gels  BioRad Cat. #4561084 

N-2 Supplement Thermo Fisher 

Scientific 

Cat. #17502048 

NaOH 1 mol/L (1N) Carl Roth Cat. #K0211 

Phosphate-buffered saline (PBS) Thermo Fisher 

Scientific 

Cat. #14190094 
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Penicillin/Streptomycin (100x) Thermo Fisher 

Scientific 

Cat. #15140122 

Phosphatase inhibitor, PhosSTOP Roche Cat. #4906845001 

SYLGARDTM 184 Silicone Elastomer Kit Dow corning Cat. #1317318 

Protease inhibitor, cOmplete Mini Roche Cat. #11836153001 

StemMACS iPS-Brew XF Medium Miltenyi Biotec Cat. #130104368 

Triiodo-L-thyronine (T3) Sigma-Aldrich Cat. #T2877 

TritonTM X-100 Sigma-Aldrich Cat. #T8787 

TrizolTM Reagent Thermo Fisher 

Scientific 

Cat. #15596026 

TrypLE Express Thermo Fisher 

Scientific 

Cat. #12605010 

Versene Solution (0.48 mM EDTA) Thermo Fisher 

Scientific 

Cat. #15040033 

Y27632, 4-[(1R)-1-aminoethyl]-N-pyridin-4-

ylcyclohexane-1-carboxamide;dihydrochloride 

Stemgent Cat. #04001210 
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Table A2. List of antibodies 

Antibodies Source Identifier 

α-actinin (Sarcomeric) Sigma-Aldrich A7811 

Beta-Dystroglycan Leica Biosystem NCL-b-DG 

Dystrophin Monoclonal  Millipore MAB 1645 

Dystrophin Monoclonal  Sigma-Aldrich MANDYS8 

Goat anti-mouse Alexa Fluor 488 Thermo Fisher Scientific A32723 

Goat anti-mouse Alexa Fluor 546 Thermo Fisher Scientific A-11030 

Goat anti-rabbit Alexa Fluor 546 Thermo Fisher Scientific A-11035 

HRP conjugated goat anti-mouse-IgG Dako P0161 

Ki67 Abcam Ab15580 

Laminin Sigma-Aldrich L 9393 

MyoD Dako MA1-41017 

Myogenin DSHB F5D-c 

Myosin heavy chain 2 (fast type) DSHB A4.74 

Myosin heavy chain 3 (embryonic) DSHB F1.652 

Myosin heavy chain 7 (slow type) DSHB A4.951 

Neurofilament H, SMI32 Biolegend SMI-32P 

Oct4 Abcam Ab19857 

Pax3 DSHB Pax3-c 

Pax7 DSHB Pax7-c 

Vinculin (VCL) Sigma-Aldrich V9264 
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7.2 Gene panel 

List of muscle enriched genes (muscle_gene panel)  
 
ABCC9, ABCG1, ABLIM3, ACADL, ACOT11, ACTC1, ACTN2, ACVR2A, ADAM2, ADAMTS20, 
ADAMTS5, ADGRA1, AFAP1L1, AKR1C1, AKR1C2, AKR1C3, AL138752.2, AL591806.4, 
ALPK2, ALPK3, AP006333.1, ARHGAP18, ARHGAP9, ARMC3, ARPP21, ASB5, ATP2A1, 
ATP2B1, B4GALNT3, BBOX1, BCL11B, BICDL1, BLCAP, BMPR1B, BVES, C10ORF90, 
C1QTNF7, CACNA1S, CACNA2D1, CACNA2D4, CAP2, CASQ2, CASS4, CASZ1, CCDC141, 
CCNG2, CD82, CD96, CDH15, CDH7, CDK15, CELF2, CFL2, CHD7, CHODL, CHRNA1, 
CHRNB1, CHRND, CHRNG, CLCN5, CLSTN2, COBL, COL19A1, COL25A1, COQ8A, CPM, 
CYB5R1, DACH1, DES, DGKB, DLG2, DNAH17, DOCK6, DOCK9, DOK7, DSCAML1, 
DUSP10, DUSP27, DYSF, ECHDC2, EFHD2, EHBP1L1, EMC10, ENO3, ENPP1, ERBB3, 
EYA1, EYA2, EYA4, EZR, FASTKD1, FAT1, FGD4, FGF10, FGF13, FGF9, FGFR4, FNDC5, 
FOXO1, FOXP2, FREM2, FRMD3, FRMPD1, FST, FSTL4, GABRB3, GADL1, GATM, GCNT1, 
GEN1, GLI1, GLRB, GPA33, GPRIN3, GRAMD1B, GREM2, GSG1L, HES, HEYL, HIPK4, 
HS6ST2, IGDCC4, INPP4,  ITGA4, ITGA7, ITGB6, ITIH5, JAM3, JPH1, JPH2, JSRP1, 
KCND3, KCNN2, KIF24, KLHL13, KLHL14, KLHL31, KLHL41, KREMEN1, KREMEN2, LDB3, 
LDLRAD3, LFNG, LHFPL6, LINC00514, LMOD3, LRIG1, LRP5, LRRC3B, LRRFIP1, LZTS1, 
MACROD1, MAMSTR, MAN1C1, MAP4K1, MARCHF3, MATR3_2, MB21D2, MEF2C, 
MEGF10, MET, MICAL1, MICAL2, MLIP, MMP23B, MRLN, MSR1, MTHFD1L, MYH3, MYL1, 
MYL4, MYLK4, MYO18B, MYOG, MYOM3, MYOZ2, MYPN, NCOA1, NEB, NECTIN1, NES, 
NEXN, NKAIN4, NNAT, NPNT, NRK, NTF3, NTN5, NXPH2, OLFML2A, OLFML2B, ORC4, 
OVCH1, P3H2, PALM2AKAP2, PALMD, PARM1, PAX7, PC, PDE1C, PDGFC, PDLIM3, 
PITPNM3, PITX2, PITX3, PKP4, PLAC1, PLS3, PLXNA2, POLA1, PPFIA4, PRELID3A, 
PRKCB, PRUNE2, PSEN2, PTGFR, PUS7, RALYL, RAPSN, RASSF3, RASSF4, RBM20, RBM24, 
RCL1, RELL1, RGS7, RIF1, RYR1, RYR2, SCN7A, SEMA3D, SEMA6B, SEPTIN4, SETD7, SGCA, 
SGCD, SHD, SHISA9, SIM1, SKP2, SLC16A10, SLC24A2, SLC24A3, SLC38A5, SLC7A2, 
SLC8A3, SLF2, SMC6, SMOC1, SMYD1, SNTG2, SOX6, SPAG6, SPATS2L, SRL, SRPK3, 
ST6GALNAC5, ST7, STARD13, STC1, STC2, STK26, SYN2, SYNE3, SYTL3, TANC1, TEAD4, 
TMEM131L, TMEM232, TMTC1, TNC, TNNI1, TNNT1, TNNT2, TNNT3, TNPO1, TPM2, TRDN, 
TRIM55, TRIM72, TRPA1, TSHZ3, TSPAN12, TSPAN33, UNC45B, USP6, VGLL2, VGLL3, 
VWCE, WDR43, ZEB2, ZNF536 
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7.3 Supplemental figure 

Supplemental Figure 1 

 

Supplemental Figure 1. Secondary myogenesis in ESM. 
Expression levels (Reads per Kilobase Million, RPKM) of genes indicative of secondary myogenesis in day 22 
monolayer skeletal muscle cultures (Myo) and 5 wk old ESM generated from hPSC.  
 
 
 
 
 
 

 

 

 


