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Abstract

Active matter is a collection of constituent elements that constantly consume energy,
convert it to mechanical work, and interact with their counterparts. These materials op-
erate out of equilibrium and exhibit fascinating collective dynamics such as spontaneous
pattern formation. Self-organization of bio-polymers within a cell, collective migration
of bacteria in search of nutrition, and the bird flocks are paragons of active living
matter and the primary source of our knowledge on it. To understand the overarching
physical principles of active matter, it is desirable to build artificial systems that are
capable of imitating living active matter while ruling out the biological complexities.

The goal of this thesis is to study active micro-droplets as a paradigm for biomimetic
artificial active particles, using fundamental principles of fluid dynamics and statis-
tical physics. The Marangoni-driven motility in these droplets is reminiscent of the
locomotion of some protozoal organisms, known as squirmers. The main scientific
objectives of this research are to (i) investigate the potential biomimetic features of
active droplets including compartmentalization, adaptability (e.g. multi-gait motility),
and information processing (signaling and sensing) and (ii) study the implications of
those features in the collective dynamics of active emulsions governed by hydrodynamic
and autochemotactic interactions. These objectives are addressed experimentally using
microfluidics and microscopy, integrated with quantitative image analysis. The quan-
titative experimental results are then compared with the predictions from theory or
simulations. The findings of this thesis are presented in five chapters.

First, we address the challenge of compartmentalizing active droplets. We use
microfluidics to generate liquid shells (double emulsions). We propose and successfully
prove the use of a nematic liquid crystal oil to stabilize the liquid shells, which are
otherwise susceptible to break up during motility. We investigate the propulsion
dynamics and use that insight to put forward routes to control shell motion via
topology, chemical signaling, and topography.

In the second results chapter, we establish the bimodal dynamics of chaotic motility
in active droplets; a regime that emerges as a response to the increase of viscosity



in the swimming medium. To establish the physical mechanism of this dynamical
transition, we developed a novel technique to simultaneously visualize the hydrodynamic
and chemical fields around the droplet. The results are rationalized by quantitative
comparison to established advection-diffusion models. We further observe that the
droplets undergo self-avoiding random walks as a result of interaction with the self-
generated products of their activity, secreted in the environment.

The third results chapter presents a review of the dynamics of chemotactic droplets
in complex environments, highlighting the effects of self-generated chemical interactions
on the droplet dynamics.

In the fourth results chapter, we investigate how active droplets sense and react
to the chemical gradients generated by their counterparts— a behavior known as
autochemotaxis. Then, we study the collective dynamics governed by these autochemo-
tactic interactions, in two and three dimensions. For the first time, we report the
observation of ‘history caging’, where swimmers are temporarily trapped in an evolving
network of repulsive chemical trails. The caging results in a plateau in the mean
squared displacement profiles as observed for dense colloidal systems near the glass
transition.

In the last results chapter, we investigate the collective dynamics in active emulsions,
governed by hydrodynamic interactions. We report the emergence of spontaneously
rotating clusters. We show that the rotational dynamics originates from a novel symme-
try breaking mechanism for single isotropic droplets. By extending our understanding
to the collective scale, we show how the stability and dynamics of the clusters can be
controlled by droplet activity and cluster size.

The experimental advancements and the findings presented in this thesis lay the
groundwork for future investigations of emergent dynamics in active emulsions as
a model system for active matter. In the outlook section, we present some of the
new questions that have developed in the course of this research work and discuss a
perspective on the future directions of the research on active droplets.
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Chapter 1

Introduction

We have all been fascinated by the mesmerizing scene of bird flocks flying around in
harmony. As explored more in nature we were able to find more examples of such
large-scale pattern formation in fish schools [1], swarms of midges [2, 3], bacterial
communities [4], and even human crowds [5]. While the curiosity to understand these
patterns is as old as human history, we have only recently been able to develop tools and
techniques that can help us systematically observe them and quantify their dynamics.

Discovering the striking similarities in the phenomenology and even mechanisms
of various types of pattern formation have led to the emergence of a new research
field known as active matter. Active matter is a collection of active "agents" that
consume energy, convert it to mechanical work (e.g. movement), and interact with
their counterparts. Such a definition will encompass a broad spectrum from actin
filaments [6] and microtubules in motility assays [7] to bacteria [4] and all the way to
the bird flocks [8, 9].

Due to continuous injection of energy, active matter systems operate out of ther-
modynamic equilibrium which means the thermodynamic properties of the system
vary temporally and spatially. The spatial gradients in those properties result in the
transport of mass, momentum, and energy [9, 10]. A thermodynamic equilibrium
will not be reached unless access to the source of energy is lost. What distinguishes
active matter from other non-equilibrium systems is the local (microscopic) dissipation
of energy. The energy input for the system is done through individual constituent
elements, hence, each element has irreversible dynamics [9, 10].

While many studies in the field are still curiosity-driven, we have come to realize the
significance of understanding active matter physics by putting it into bigger contexts.
In particular, the micro-scale active matter is proven to be of great importance. For
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Introduction

instance, biofilm formation in bacterial communities leads to contamination in coronary
implants and water transport systems [11, 12] and collective migration of pelagic
phytoplankton plays a role in the energy transfer into the biosphere [13]. It has
also shown great promise in creating novel approaches to extract work in micro-scale
systems [14] or developing new functional bio-materials with reduced viscosity [15, 16].

Emergent complexity in active matter dynamics is intimately related to the mutual
interactions between the constituents [9, 10]. These interactions can be of a purely
physical origin, such as steric or hydrodynamic interactions, or of biological nature,
like visual signals or quorum sensing [17].

Aiming for universality, most of the theoretical attempts are on generic and simplified
models– in terms of shape and interaction rules– of the active constituents. On the
other hand, the majority of the experimental work is focused on pattern formation in
micro-scale and on micro-organisms. The reason, beyond their particular biophysical
importance per se, is that they are the simplest form of living systems that are also
available in large numbers and detectable via our present technological capabilities.
However, even for the simplest forms of micro-organisms, it is a great challenge to
distinguish and separate the purely physical interaction from the more biologically-
related ones and no theoretical model can include all these nuances that exist within a
multitude of length and time scales. Hence, we need to develop an experimental model
system that is controllable, adaptive and works on the basis of simple principles of
physical chemistry. Such a system can be used as a benchmark for direct comparison
with computer simulations and theoretical predictions. In the absence of biological
complexity, we can rule out different possible inter-particle interactions and concentrate
on pattern formation based on a single type of interaction and step-by-step add on
different scenarios that eventually lead to emergent complexity.

Once we have gained the knowledge to describe the dynamics of the model system,
we can benefit from it in two ways. First, development of non-equilibrium micro-
machines with embedded functionalities e.g. cargo transport or sensing. Second, we
can study fundamentals of active matter with protocells with designs that are gradually
evolving to incorporate more biomimetic features.

In the next section, we will present some of the fundamental concepts in biomimetic
active matter.

2



1.1 Hallmarks of living matter

1.1 Hallmarks of living matter

Living systems, as we know them, are results of billions of years of evolution and we
are at the beginning of a long way to understand their complex nature. Despite the
immense emergent diversity and complexity in living systems, there are characteristics
that are common between all forms of life [18]. Advancements in cell biology have
enabled us to explore and understand the simplest forms of life. This knowledge of
how the simplest living systems work can inspire us to design and engineer biomimetic
artificial systems from the bottom up. In the following, we will discuss hallmarks
of simple living systems: Compartmentalisation, Growth and division, Information
processing, Energy transduction, and Adaptability, as summarized in Fig. 1.1 .

Figure 1.1 – The hallmarks of living systems. Taken from [18] with permissions.

Compartmentalization is critical to separate the components of the living system
from the environment. It spatially concentrates reactants and chemical networks and
confines the genetic material of the cell. In cells, this semi-permeable membrane is
responsible for compartmentalisation. It regulates the communication of the cell with
the environment enabling the cell to create spatiotemporal chemical gradients that are
critical for functioning out of equilibrium.

3



Introduction

Growth and division: The generation of new cells is done through growth and
subsequent self-replication. To this end, the compartments are supposed to regulate
the spatiotemporal dynamics of growth, deformation, and eventually division. Living
cells undergo this process through complex dynamics in their cytoskeleton [19].

Information processing: Living systems are able to sense, process, and respond
to information (signals). The source of the signals can be internal or external. At
the intracellular level, this function is primarily associated with processing the genetic
information from carrier molecules e.g. DNA and RNA. The cell also responds to
extracellular information including environmental cues as well as intercellular commu-
nication. Through their compartment interface (i.e. the membrane), cells sense these
cues from their surroundings, communicate with other cells, and adapt their behavior
accordingly.

Energy transduction: As systems that are operating out of equilibrium, cells need
to harness energy from external sources to be able to run the biochemical reactions
necessary for their activity i.e. metabolism. Cells receive the energy from their
environment and convert it into energy currencies, such as ATP molecules, which then
spread in the cell body powering the metabolic chemical reactions.

Adaptability: The adaptability of a living system to variations in the environment
is critical for its survival and, in turn, its evolution [20]. An important and ubiquitous
example of adaptability is motility in living systems. It is motivated by their need
to move towards energy sources, or interact with interfaces, e.g. in biofilm formation.
In the cells’ case, they have evolved to process environmental cues, identify energy
sources, and respond to them by directing/biasing their motion accordingly. Exam-
ples are directing movement towards sources of light (phototaxis) [21] or chemical
substances, “food”, (chemotaxis) [22], following topology (topotaxis) [23] or magnetic
fields (magnetotaxis) [24], and active reorientation with respect to gravity or external
flows (gravitaxis [25] and rheotaxis [26, 27], respectively).

To perform self-propulsion, an entity has to convert its consumed energy into kinetic
energy (in the form of a movement of the entire or a part of the body). Since cells
consume energy and convert it to mechanical work at an individual level, one can study
them as active matter when they form a community [9, 28, 29].
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1.2 Swimming at low Reynolds number

While far from developing an artificial system capable of mimicking all hallmarks of
life, science has made great progress in building systems that emulate one or combine
a few characteristic features of life. Bottom-up approaches, successful in developing
such systems, have employed the principles of physical chemistry within a new context:
developing adaptable self-sustaining systems that function out of equilibrium. Building
minimal model systems that show life-like behavior will inform us about the underlying
physicochemical rules that drive actual biological systems and step-by-step, direct
us towards more complicated designs for biomimetic active matter. This thesis aims
to develop an artificial model system for motile active particles and investigate its
biomimetic features. The first challenge for a motile particle is to overcome the fluidic
constraints. Thus, in the next section, we discuss the physics of swimming at very
small small scales.

1.2 Swimming at low Reynolds number

To describe the flow and obtain the force distribution on an object moving inside a
fluid, one needs to solve the Navier-Stokes equation. The solution for the velocity field
u(r, t) and pressure field p(r, t) for an incompressible Newtonian fluid flow satisfies the

ρ

(
∂

∂t
+ u.∇

)
u = −∇p+ η∇2u, (1.1)

and the continuity equation

∇.u = 0. (1.2)

where ρ and η are density and viscosity of the fluid, respectively. Navier-Stokes and
continuity equations mathematically express the conservation of momentum and mass.
Identifying the boundary conditions and making appropriate assumptions for them are
critical to acquiring an accurate solution to the problem. Once u and p are known,
one can find the stress tensor, and subsequently, through integration over the surface
of the object, the hydrodynamic force and torque can be obtained.

The dimensionless quantity that characterizes the flow regime described and solved
by the Navier-Stokes equation is the Reynolds number. For a steady flow with velocity
U and characteristic length scale L, the Reynolds number is defined as the ratio of
the inertial term, ∼ ρu · ∇u, to the viscous term, ∼ η∇2u, in the Navier-Stokes
equation [30]. Hence,
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Re = ρUL

η
. (1.3)

There are two other very useful interpretations of the Reynolds number. The first
one is based on the ratio of the relevant time scales. Re can be defined as the ratio of
the advective time scale for transport of a velocity perturbation, tadv ∼ L/U , to the
time scale for this perturbation to diffuse away, tdiff ∼ ρL2/η. Thus, Re = tdiff/tadv will
give the same definition as above. The second interpretation arises from the ratio of
forces acting on the body of an object. The viscous and inertial forces acting on a bluff
body have the form of fviscous ∼ η UL and finertial ∼ ρU2L2, respectively. The third
definition of Re = finertial/fviscous again leads to the same simple form shown above.

Re can characterize a broad spectrum of flow regimes i.e. if they are laminar or tur-
bulent. The critical values, can be used universally to predict the dynamical transition
in the flow behavior. For example, for the flow generated by human breaststroke, which
is turbulent, Re = O(104). In the world of micro-swimmers, such as the bacterium
E. coli, the swimming (U ≈ 10µm and L ≈ 1 − 10µm) has a Reynolds number of
Re = O(10−5 −10−4). At such low Re, the inertial effects are negligible and the viscous
damping is dominant. Thus, it is possible to study them at the limit of Re = 0. This
assumption reduces the Navier-Stokes equation to the Stokes equation:

− ∇p+ η∇2u = 0, ∇ · u = 0. (1.4)

The fact that these equations are time-invariant and linear has significant impli-
cations in the locomotion of micro-swimmers. For example, if a swimming E. coli
suddenly stopped its activity, it would only coast a distance in the order of 0.1 Å
and then stop [31, 32]. Another well-known example is known as Purcell’s scallop
theorem [31]. A scallop moves by opening its shell slowly and closing it very quickly
so that a jet of fluid is pushed out. Purcell argued that this mechanism has to be
operated in an inertial flow regime. Otherwise, since at the low Re regime the flow is
time-reversible, the reciprocal movement of the shell cannot lead to a net propulsion.
This underscores the importance of non-reciprocal movements to break the symmetry
and thereby achieve a directional self-propulsion.

Since the inertia-based swimming mechanisms used by larger animals are not
applicable at low Re regime, micrometer-sized biological swimmers have evolved to
develop propulsion mechanisms that break the symmetry via non-reciprocal movements.
The motility of many micro-swimmers depends on one or more appendages that are
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1.2 Swimming at low Reynolds number

connected to molecular motors that perform the mechanical work. A few examples are
presented in Fig. 1.2 . Sperm is a mono-flagellated example that swims via whip-like
movements of a flexible filament at its rear side. E. coli is a well-studied organism
with multiple flagella that are connected to a rotary motor, embedded in the cell body.
Once the motors rotate, the left-handed helical flagella bundle and generate thrust
which pushes the body forward. Chlamydomonas reinhardtii, a green alga which can
be found in wet soil, is a biflagellated organism. The flagella, located at the front of
the cell, perform a non-reciprocal breaststroke, and pull the body forward. A rather
big organism called Paramecium uses a spectacular method to generate thrust. Its
body is covered with flexible cilia that are considerably shorter compared to body size.
These cilia synchronously beat, resulting in a net drag force that propels the body.

Figure 1.2 – Sketches of biological micro-swimmers, to scale. (a) E. coli. (b) C. crescen-
tus. (c) R. sphaeroides, with flagellar filament in the coiled state. (d) Spiroplasma, with
a single kink separating regions of right-handed and left-handed coiling. (e) Human sper-
matozoon. (f) Mouse spermatozoon. (g) Chlamydomonas. (h) A smallish Paramecium.
from [30] with permissions.

A well-established approach to categorize the biological micro-swimmers is based
on the type of far-field flow that the organism generates. The squirmer is a model for
spherical microswimmers that propel by a purely tangential velocity on their surface.
The velocity at a point rs on the surface of a squirmer of radius a is given by [33]

vs(rs, ê) =
2∑

n=1

2
n(n+ 1)Bn

(
ê · rs

a

rs

a
− ê

)
P ′
n(ê · rs/a) (1.5)
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where Bn are constants, P ′
n(x) is the derivative of the nth Legendre polynomial, ê is

a unit direction vector. Usually, a good approximation of the resulting flow field, in
the far-field, is already provided by the first two modes of the polynomial expansion.
Then, Eqn. (1.5) gives the surface velocity as uθ = B1sinθ+ 0.5B2 sin2θ where θ is the
polar angle. The relative strengths of B1 and B2 known as the squirmer parameter
β ≡ B2/B1 determines the characteristics of the surface velocity. For β ̸= 0, two
distinct types of far-field flow are generated by squirmers: pusher type and puller type.

Pusher micro-swimmers

When β < 0 the generated flow has a pusher form. E coli is an example organism
that generates a pusher type flow field. When it is moving forward, the flagella bundle
at its rear side rotate to push the body forward, generating a flow field visualized by
Drescher et al. [34] (Fig. 1.3 a). It is called a pusher since the distinguishing feature is
that the fluid is pushed away from the swimmer at its front and rear. Consequently,
the fluid is pulled towards the body from the sides of the swimmer.

Puller micro-swimmers

When β > 0 the generated flow has a puller form. Chlamydomonas reinhardtii is an
example organism that generates a puller type flow field. The body is pulled by the two
flagella located at its front. The flagella beat in a breaststroke-like pattern, resulting
in the thrust that propels the organism forward. The generated hydrodynamic flow
field is shown in Fig. 1.3 b). It is called a puller due to the fact that the fluid is pulled
towards the swimmer at its front and rear. Thus, the outward flow streams occur at
the sides of the swimmer.

1.3 Motile biomimetic microswimmers

Artificial micro-swimmers have been designed and manufactured to reproduce certain
features of motile microorganisms. They can be building blocks of synthetic active
matter; a system consisting of these artificial constituents that can emulate collective
dynamics, observed in nature, in a controlled setting, and even be programmed to
produce new dynamics. The swimmers can also be used as micro-machines engineered
for transport or sensing applications. They can be categorized based on the type of
energy input and the strategy for self-propulsion.
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1.3 Motile biomimetic microswimmers

Figure 1.3 – Mean flow field generated by a single freely swimming (a) E. coli as a
pusher swimmer (from [34] with permissions), and (b) C. reinhardtii as a puller swimmer
(from [35] with permissions).

Energy input: internal vs. external

Particles can be driven by external fields such as magnetic, electric, and acoustic [36].
The advantage of this approach is the ability to control the motion speed and direction
via modulating the strength and direction of the external field. For example, a
ferromagnetic colloid in an external alternating magnetic field shows a rolling motion
which is driven directly by the force induced by the rotating field. [37, 38].

In contrast, there are active particles that are driven out of equilibrium through
local conversion of energy (e.g., catalytic processes). The best known method to
induce propulsive force onto colloid is phoretic transport. By creating a self-made
gradient in chemical, electrostatic, or thermal field around the particle an autophoretic
motion takes place. It will be discussed in detail in Section 1.3.1. For example, Janus
micro-swimmers use an asymmetric chemical reaction catalyzed on their own surface
to achieve self-propulsion [39–41].

Micro-swimmers with or without moving parts

Artificial microswimmers that are driven mechanically use moving parts that mimic
biological counterparts in performing non-reciprocal movements. The first example of
such systems was the linear chains of DNA-linked magnetic colloids that were attached
to a red blood cell [42]. The flexible synthetic flagellum was actuated by an external
oscillating magnetic field. The manufacturing of such designs is challenging and they
are prone to fatigue failure.
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On the other hand, most of the synthetic micro-swimmers are able to self-propel
without any moving parts. For the case of self-driven swimmers, the above-mentioned
autophoresis method is broadly used.

1.3.1 Autophoretic active particles

In classical fluid mechanics, the boundary conditions at the interface are imposed by
the continuity of velocity and stress. However, it has been shown that an interface has
an infinitesimal but finite thickness and dynamical transport processes can take place
in there, resulting in discontinuities in velocity and stress at the interface [43]. These
interfacial forces can actually be exploited to induce colloidal transport.

Consider a small spherical droplet inside a second fluid with a gradient in the
concentration of a chemical species (e.g. a molecular solute). Assume the solute is
insoluble in the droplet and it can change the interfacial tension γ at the droplet
interface and both liquids have the viscosity of η. If the droplet undergoes a drift
with a velocity U , the solute gradient on the droplet interface generates a front-aft
interfacial tension gradient that propels the droplet forward. By balancing viscous
dissipation and the work by surface tension gradients we can obtain U ∝ ∆γ/η. ∆γ
is the first order approximation for front-aft interfacial tension gradient. Assuming
a viscosity close to water’s η ∼ 10−3Pa.s, a very small interfacial tension gradient of
∼ 10−9N/m2 is enough to move the droplet with a speed of 1µm/s. Experiments have
reported considerably larger magnitudes for velocity O(10 − 100µm/s) [13].

Young et al. [44] obtained the expression for droplet’s velocity

U = a

3ηi + 2ηo

(
− ∂γ

∂C

)
∇C∞, (1.6)

where C∞ is the undisturbed solute concentration, a is the radius, ηi and ηo are
viscosities of inner and outer fluids. For the case of a solid particle (ηo → ∞), the
velocity calculated by eqn.(1.6) goes to zero. However, early experiments in the
80s [45–49] have shown that concentration gradients of solutes are able to propel solid
particles. A fact predicted by Derjaguin et al. in 1947 [50]: the diffuse nature of the
interface enables the formation of osmotic flows due to a gradient field e.g. chemical
concentration or temperature. This is a consequence of a mechanism, known as phoretic
effect [43], that generates slip velocity at the interface due to interactions with the
surface of the particle.

The mechanism of flow generation at the fluid-fluid interface is called the Marangoni
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1.3 Motile biomimetic microswimmers

effect. Due to an interfacial tension gradient at the interface, a shear stress jump is
induced which results in velocity continuity and stress discontinuity at the interface [43,
51, 52]. In contrast, in the phoretic effect, a local gradient can induce a slip velocity at
the (typically fluid-solid) interface [43].

At the interfacial region, with thickness ζ, the particle phase and the outer fluid
phase coexist and interact [53]. While at the particle scale, the velocity and/or
the stress fields are discontinuous, at the interfacial layer, they are continuous and
determined through the interactions between the two phases. Typically, there is an
order-of-magnitude difference between the particle radius and the interfacial layer
thickness (a ≫ ζ). Thus, we can take advantage of the separation of length scales.
One can treat the interfacial layer as a virtually flat surface, and solve it for velocity
and stress profiles. Then, use those values as boundary conditions at the interface–
assuming ζ ≈ 0 – to solve the problem at the particle scale.

To understand the physico-chemical interactions at the interfacial layer, one needs
to decipher the interplay of fluid dynamics, interfacial dynamics, and transport of mass,
charge, or thermal energy. Depending on the type of involved field, the particle can
undergo propulsion due to a gradient in an electric field (electrophoresis), temperature
(thermophoresis), or chemical concentration field (diffusiophoresis). The specific details
for modelling each case can be found in reference [43].

To describe the general case for the motion of an autophoretic particle driven by
diffusiophoresis and Marangoni effects, we consider a force-free spherical droplet of
radius a and overview the involved equations and associated boundary conditions
following Morozov and Michelin’s work [54] that modifies the Anderson model [43] for
an active droplet. The first assumption is that the capillary number Ca = ηoU/γ0 is
small, i.e. capillary pressure dominates drag preventing the droplet from deformations
due to hydrodynamic forces. For typical values of radius a and propulsion velocity U ,
Re = ρUa

ηo
≪ 1. Thus, one can use Stokes equation for both outer phase (swimming

medium) and inner phase (droplet).

− ∇po + ηo∇2uo = 0, ∇ · uo = 0. (1.7)

− ∇pi + ηi∇2ui = 0, ∇ · ui = 0. (1.8)

where o and i respectively denote outer and inner phase. With the assumption that
there is no transport of solute into the droplet, the concentration of solute molecules

11



Introduction

C in the outer phase can be found by solving the advection-diffusion equation:

∂C

∂t
+ uo · ∇C = D∇2C (1.9)

where D is the diffusion coefficient of the solute. After knowing the governing
equations, one needs the proper boundary conditions to solve the system of equations.

The solute interacts with the interface via a chemical reaction. For the sake of
simplicity we assume a constant reaction rate A at the interface.

Dn · ∇C = A at r = a, (1.10)

where n is the outward normal to the interface.
The diffusiophoretic effect causes a finite slip velocity at the interface

ui − uo = M(I − nn) · ∇C at r = a. (1.11)

where M is the phoretic mobility coefficient and I is the identity tensor.
To account for the Marangoni effect we consider a stress jump at the interface. For

simplicity, we do a first-order approximation that interfacial tension changes linearly
with the solute concentration at the interface

γ = γ0 − γC(C − C∞ + Aa
D

) at r = a. (1.12)

Here, γ0 is the reference value of interfacial tension at a solute concentration of
C = C∞ − Aa/D and γC is a positive constant. The gradient in interfacial tension
contributes to the balance of stresses. For a non-deformable droplet the balance of
tangential stress at the interface results

n · (σi − σo) = −γC(I − nn)∇C at r = a (1.13)

where σ is the stress tensor of the fluids. At regions far from the swimmer, the
flow velocity in the swimmer reference frame and the solute concentration have the
fixed values of

uo = U∞ez and C = C∞ (1.14)

Anderson [43] obtained a general formula for droplet’s velocity which included the
effects of stress jump and velocity jump at the interface. A modified version of it
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1.3 Motile biomimetic microswimmers

which is the terminal velocity of a droplet driven by a solute gradient of A/D due to a
combination of diffusiophoresis and Marangoni effects is

V = A(γCa+ 3ηiM)
D(2ηo + 3ηi)

. (1.15)

1.3.2 Mechanisms for symmetry breaking

So far, it has been shown that a fore-aft asymmetry in a field is necessary to propel
a phoretic particle. However, an isotropic particle, which undergoes isotropic surface
activity, generates a homogeneous concentration field, and thus will not self-propel [10].
Hence, the symmetry of the system should be somehow broken. For a particle driven
by Marangoni and diffusiophoresis, the solute concentration field is coupled to the
hydrodynamic field via the advection-diffusion equation (eqn.(1.9)). We can use the
terminal velocity V to define a Peclet number Pe = Va/D which characterizes the
relative strength of advective transport to diffusive transport for the solute. Using Pe,
one can non-dimensionalize eqn.(1.9):

∂c

∂t
+ u · ∇c = 1

Pe
∇2c. (1.16)

For the diffusive regime (the limit of Pe → 0), the solute concentration field can be
described by the steady state diffusion equation

∇2c = 0 (1.17)

which is linear. With negligible advection, the coupling between solute transport
and fluid dynamics– through u · ∇c term– disappears. The diffusion and the Stokes
equations are linear and cannot result in an instability. Hence, the asymmetry should
be imposed geometrically. On the other hand, when Pe has a finite value, solute
transport and fluid dynamics are coupled and the nonlinear advective term u · ∇c can
be a source for instabilities and spontaneous symmetry breaking [10, 19, 53].

1.3.2.1 Intrinsic symmetry breaking

Intrinsic symmetry breaking means the asymmetry is imposed on the systems, typically
geometrically, and is not a result of dynamical instability. Thus, it is useful for the
diffusive regime where Pe ≪ 1. The broadly-adopted approach for creating such an
asymmetry is to spatially vary the surface activity. Janus particles are well-known
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examples of this approach. They can be spherical, rod-shaped, porous, etc. They are
usually made by coating one half of a silica micro-particle with a reactive metallic
material [55]. This leads to asymmetric reaction rate and, in turn, asymmetric solute
distribution resulting in a slip velocity.

The isotropic concentration field can be distorted by adding a secondary particle of
a different size. In this two-sphere system, both particles have isotropic surface activity
and mobility, and the symmetry is broken geometrically [56].

1.3.2.2 Spontaneous symmetry breaking

As discussed before, a particle with isotropic surface activity can undergo a dynamical
instability that leads to self-propulsion. This instability originates from the complex
coupling between hydrodynamic and chemical fields through the nonlinear advective
term u ·∇c in the advection-diffusion equation. It has been shown theoretically that for
an active isotropic particle, the motionless solution becomes unstable when Pe > 4. In
this regime, the stable solution is a particle that moves with a finite velocity (Fig. 1.4 )
due to a concentration field with a dipolar, fore-aft asymmetry [57]. Same author, in
reference [58], overviews different scenarios for an active droplet which emits solute
(summarized in Fig. 1.5 ).

Figure 1.4 – Terminal swimming velocity of an autophoretic particle, U∞ (solid line) as
a function of the Peclet number. The steady state solute distribution around the particle
is plotted for Pe = 1, Pe = 5, and Pe = 15. The swimmer is swimming upwards. Taken
From [57] with permissions.
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1.3 Motile biomimetic microswimmers

Figure 1.5 – The spontaneous symmetry breaking and self-propulsion mechanism for
an isotropic droplet. Taken From [58] with permissions.

1.3.3 Active droplets

The framework discussed in Section 1.3.1 is applicable to any autophoretic particle which
undergoes chemical activity at its surface such as active droplets. Active droplets,
in particular, are known as the experimental realization of isotropic autophoretic
particles. Estimates from scaling analysis suggest that the dominant driving force
for active droplets is provided by Marangoni stresses (see Chapter 3). Thus, active
droplets have to induce a self-sustaining fore-aft gradient in interfacial tension to
achieve continuous propulsion. This gradient generally originates from a chemical
activity at the interface which drives a fluid dynamical advection-diffusion instability.
Based on the way the energy for activity is obtained, the experimental systems fall
into three distinct categories: i) a chemical reaction taking place inside the droplet, ii)
phase separation, and iii) micellar solubilization.

i. Internal chemical reaction

Since the chemical reaction takes place inside the droplet, this type of active droplet,
compared to its counterparts, has a shorter lifetime and thereby shorter cruising
range, i.e. the maximum distance the swimmer can self-propel before stopping. The
mechanism depends on a specific chemical reaction, therefore, it is challenging to tune,
modify, or improve. This limits the applications as well as further studies where for
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example one needs to change the composition of the environment.
In 2006, Toyota et al. [59] observed self-propulsion for octyloxybenzaldehyde droplets

immersed inside an aqueous solution of a reactive surfactant (10-(4-aminophenoxy)decyl-
trimethylammonium bromide). They reported internal convection and formation of
vesicles at the wake of the droplets (Fig. 1.6 a,b). They showed that the vesicles were
created by molecules that were a product of a condensation reaction between the
amino group of the surfactant molecules and the formyl group of the droplet molecules.
Another example for these systems is the application of a spatiotemporal chemical
oscillator as a fuel source, known as Belouzov-Zhabotinsky (BZ) reaction [60–62].
The majority of the experimental systems however work based on chemical reactions
happening for a surfactant layer at the droplet interface. In an oil-in-water system,
the droplet is loaded with a surfactant precursor. The precursor undergoes hydrolysis
at the interface and generates the surfactant [63] (Fig. 1.6 c). The advection-driven
instability then results in the sustained interfacial tension gradient which propels the
droplet. Ban et al. [64] studied the self-propulsion of nitrobenzene droplets inside an
aqueous solution, reporting the controlled droplet swimming via tuning the pH value
of the environment. The droplets contained di(2-ethylhexyl)phosphoric acid (DEHPA),
which exhibits intermediate surface activity when protonated. The deprotonation of
DEHPA was the reaction rendering the molecules more surface active in comparison
with the pristine molecules. The reaction rate was a function of the pH value of the
aqueous phase.

Thutupalli et al. developed a system where a water droplet, loaded with bromine,
self-propels in an oil phase which includes monoolein as a surfactant. The bromination
of the surfactant increases the interfacial energy at the leading front of the droplet [65]
(Fig. 1.6 d).

ii. Phase separation

Spontaneous symmetry breaking and subsequent instabilities can also develop in ternary
liquid solutions, provided that the composition alters, crossing the two-phase line in
the phase diagram. This phase separation can happen when components evaporate
at different rates into the bulk medium, or when a substance is adsorbed from the
bulk into the droplet. Experimental realizations for such systems include a mixture of
water, ethanol, surfactant in oil [68], and solutions of polymers and salts undergoing
phase separation [69, 70].
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1.3 Motile biomimetic microswimmers

Figure 1.6 – (a) Phase-contrast images of swimming oil droplet (site P) with a trail of
giant vesicles (site Q) and (b) the schematic of propulsion mechanism from [66]. (c) Onset
of symmetry breaking leading to propulsion of an oil droplet in an aqueous surfactant
solution in Reference [63]. From [67] with permissions. (d) The trajectory of a water
droplet, loaded with bromine, which self-propels in an oil phase containing monoolein as
surfactant, from [65] with permissions.
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iii. Micellar solubilization

Surfactant-stabilized droplets inside a micellar solution can also spontaneously self-
propel. Unlike previous examples, in this system, the gradient in surfactant coverage at
the droplet interface is produced not by a chemical reaction but by an inhomogeneous
depletion driven by a solubilization process [67]. This process is known as micellar
solubilization [71]. When an oil droplet is placed in an aqueous surfactant solution
at a concentration well above the critical micelle concentration (CMC), it starts to
solubilize: oil molecules move from the interface into the surfactant micelles in the
aqueous solution. Hence, the final state is a homogeneous suspension of oil-filled
micelles i.e. a nanoemulsion. If the surfactant concentration is high enough, the droplet
displays a spontaneous symmetry breaking and starts to self-propel.

Figure 1.7 – Schematic illustration of the micellar and molecular pathways for the
solubilization of an oil droplet inside a micellar surfactant solution. The oil phase is
denoted by LC since in that particular study it is 5CB which is a nematic liquid crystal.
In the micellar pathway, micelles collect oil through impinging directly onto the droplet
interface. In the molecular pathway, the oil molecules diffuse into the aqueous phase and
micelles collect them and grow. From [67] with permissions.

There are hypotheses to describe the mechanism of solubilization. Consider an oil
droplet in an aqueous micellar solution (the reversed case is also possible). The oil
droplet is covered with a surfactant monolayer. There are two possible, competing
pathways for solubilization [71, 72]: i) micellar pathway, during which micelles collect
oil molecules through direct impinging onto the interface, or ii) molecular pathway,
where micelles take up oil molecules that have diffused from the droplet into the
aqueous solution [67] (see also Fig. 1.7 ). The solubility of the oil phase in water and
the potential electrostatic repulsion between micelles and the surfactant monolayer at
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1.3 Motile biomimetic microswimmers

the interface dictates which pathway is dominant. For systems with an ionic surfactant,
the latter is particularly important.

Since during the solubilization process, the oil-filled micelles grow in size, they
require more molecules – compared to empty micelles – in their surfactant monolayer.
Thus, the surfactant concentration at the vicinity of the interface is depleted. This
deficit of surfactant molecules is compensated by taking molecules either directly from
the interface (micellar pathway) or from the background of free surfactant molecules
in equilibrium with the interface (molecular pathway) [67]. Fig. 1.8 ) illustrates the
respective concentration profiles of the oil and surfactant molecules as well as the
empty micelles. Solubilizing droplets outperform other systems in terms of activity
duration–in the order of hours– and thereby cruising range.

Figure 1.8 – Depiction of the concentration profiles of the free surfactant molecules,
diffused oil (LC) molecules, and empty micelles. ρj is the number density of a particular
species, and the z denotes the distance from the droplet interface (located at z = 0 in
(a) and at some value z < 0 in (b)). (a) Micellar pathway and (b) Molecular pathway.
From [67] with permissions.
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The surfactant coverage at the interface is coupled to the background concentration
field at the vicinity of the interface. Thus, the interfacial tension rises with the local
ratio of filled to empty micelles. When experiencing an advective perturbation, the
radial symmetry of the micelle distribution around the droplet is spontaneously broken
generating a front-aft asymmetry. This asymmetry results in an interfacial tension
gradient and thereby Marangoni stresses which drive the droplet forward Section 4.3.
The details of the advection-diffusion model that predicts the interfacial instability can
be found in [13, 54, 73].

Figure 1.9 – The schematic illustration of the Marangoni-driven propulsion mechanism
in solubilizing droplets.

1.4 Collective dynamics in active matter

The non-equilibrium nature of active matter can result in pattern formation behav-
ior. Due to interactions of each constituent with other counterparts and with the
environment, the fluctuations at the microscopic scale can get amplified and result in
dynamical instabilities [10, 74]. Consequently, macroscopic coherent structures can
emerge out of these mechanical instabilities. The spontaneous emergence of order
due to local interactions between the constituents of an initially disordered system is
known as self-organization or self-assembly. It requires a constant source of energy to
overcome the propensity of the system to move towards disorder. In active matter,
this energy is injected at an individual level [75].

Two ubiquitous features of collective dynamics in the active matter are phase separa-
tion and collective directed motion [10]. An example of the first one is motility-induced
phase separation (MIPS). For instance, a suspension of active colloids can undergo
a crystallization process that is driven by inter-particle attractive chemical interac-
tions [76–78] (Fig. 1.10 ). Examples for the second one can be found in bacterial colonies
such as suspensions of Bacillus subtilis exhibiting bacterial turbulence (Fig. 1.11 a),
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algal suspensions like Euglena gracilis forming bio-convection patterns (Fig. 1.11 b),
all the way to larger scales such as fish schools and bird flocks (Fig. 1.11 c). In these
systems, directional ordering results in long-range correlations in the movement of the
neighboring constituents.

As discussed before, autophoretic colloids and droplets are chemically active. They
locally generate a chemical gradient at their surface that induces a flow which in turn sets
the surrounding fluid into motion. Depending on the relative inter-particle distance,
the particles can interact chemically– by changing the concentration fields of one
another– or hydrodynamically– through mutual entrainment. Such chemohydrodynamic
interactions can result in states of nontrivial collective behavior [79–81]. For details,
see [10]. In the following, we discuss different types of interactions between phoretic
particles.

1.4.1 Collective dynamics governed by short-range interac-
tions

For systems in equilibrium, the steady state is independent of the kinetic parameters.
On the contrary, in a crowded suspension, the local concentration of active particles
is higher at regions where their motility is slower [9]. They tend to slow down at
high-density regions in the domain where short-range steric interactions between
particles slow them down. This positive feedback loop results in motility induced
phase separation between dense and dilute phases of the suspension. Buttinoni et
al. [76] experimentally showed the dynamical cluster formation of active Janus particles
governed mainly by steric interactions.

1.4.2 Collective dynamics governed by long-range interactions

Long-range inter-particle interactions in phoretic suspensions include [10]
(i) Chemical interactions. The chemical activity of these particles generates local

gradients in the chemical species concentration field and in turn, influences the dynamics
of the neighboring particles.

(ii) Hydrodynamic interactions. The flow generated by one moving particle can
influence the dynamics of other counterparts and vice versa.

The hydrodynamic field induced by particles depends on the chemical field gradients
and similarly, the flow of particles can alter the chemical field. Hence, these two fields
are dynamically coupled, and the collective dynamics are dictated by their interplay.
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Figure 1.10 – Motility induced phase separation in suspensions of synthetic active
particles. (a) Snapshots of a cluster of active carbon-coated Janus particles. Taken
from [76], (b) Left: living crystals of photo-activated colloidal particles form from a
homogeneous suspension (inset) when illuminated. Right: The crystals melt by thermal
diffusion when light is turned off: the snapshot shows the system after 10 s (inset, after
100 s). Reprinted from [78].

1.4.2.1 Chemical interactions

The phoretic particles move towards or away from concentration gradients depending on
the type of chemical reaction. Assume a point source of a chemical species undergoing
diffusion in the surrounding medium. It will generate a steady-state concentration
field that decays as ∼ 1/r. Where r is the distance from the source. A phoretic
particle influenced by this gradient will experience a chemotactic drift velocity that is
proportional to the strength of the gradient and consequently, decay as ∼ 1/r2. Such
long-range interactions, if attractive, can give rise to cluster formation even in dilute
systems [84–86]. Driven by these interactions, Janus particles have shown clustering
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formation at a packing fraction smaller than 10% [84, 85, 87]. In the absence of attractive
chemical interactions, that number rises to more than 30% [88]. Depending on the
diffusive time scale of the chemical species, and the nature of the interactions, further
non-trivial collective behavior might also emerge. Self-propelling droplets undergoing
micellar solubilization have shown negative (repulsive) autochemotactic behavior in
response to slowly-diffusing chemical trails of their counterparts [89]. While the trail-
mediated interactions in biological swimmers have been studied at individual [90] and
collective [91] scales, the autochemotactic interactions and subsequently, collective
dynamics in such active droplets is virtually unexplored.

1.4.2.2 Hydrodynamic interactions

The swimming medium plays a crucial role in inter-particle interactions. Micro-
organisms usually swim in semi-dilute or dense suspensions. The velocity field generated
by a force-free swimmer, in the absence of boundaries, decays as ∼ 1/r2 [30]. Once
a swimmer is close enough to feel the flow field of a neighbor, it will (i) be carried
away (entrained) by that flow and (ii) change its orientation in response to the
gradients in the velocity field generated by the neighbor. In dense suspensions, these
interactions can influence the dynamics at the entire population scale. For example,
dense bacterial suspensions, show large-scale coherent flow patterns in the form of
swirls and jets [30, 92–98] and Wood mouse spermatozoa swim faster by forming
aggregates [99]. Two-dimensional simulations of active particles, taking into account
the near-field hydrodynamic effects, have shown cluster formation. For active droplets,
it has been shown that in the presence of a boundary (typically the bottom surface of
a reservoir) swimmers attract each other and form multiple two-dimensional clusters
that hover over the bottom surface [79]. It is indeed an example of flow-induced phase
separation [80].

1.5 Scope of this Thesis

In this thesis, we aim to propose active droplets as a minimal paradigm and a testing
bed to investigate a number of current problems in biomimetic swimmers and active
matter. Previous works on active droplets have shown some features of the system that
mimic the hallmarks of life. However, there is still a long way ahead. To develop a life-
like protocell, we have to provide routes for functionality beyond mere self-propulsion.
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In the framework of a droplet swimmer as a protocell, there are nontrivial challenges
to be addressed:

Energy transduction. In Section 1.3.3, we discussed the possible route to use
chemical reactions as a source of energy for activity–such as motility. Such self-
sustaining reactions maintain the out-of-equilibrium state of the system.

Compartmentalization. While adding internal compartments to the protocell
is critical in the context of biomimicry, from an applied science perspective, active
droplets can be used as cargo carriers, sensors, or micro-reactors. In both cases, we
need to incorporate internal structures that are stable and do not hamper the droplet
motility.

Adaptability. As summarized in section 1.3.3, there are multiple studies that
report motility for active droplets. However, due to the complex coupling between
the fluid flow and chemical transport, there exist many questions about how a droplet
would react to changes to its environment. Namely, response to changes in the viscosity,
interactions with boundaries, and adapting their dynamics when interacting with their
counterparts.

Information processing. Active droplets possess the capability to sense and re-
spond to signals from the environment. Particularly, they have been shown to undergo
chemotaxis as well as autochemotaxis [89]. However, we still lack the quantitative un-
derstanding of the autochemotactic interactions between droplets and the consequences
within active emulsions.

Growth and division. Since droplets are not solid, they have the potential to
deform and even divide. Growth and division through phase separation have been
reported theoretically for droplets [100].

In this thesis, we address some of these challenges, aiming for a general experimental
framework that is applicable to a broad range of autophoretic particles. In terms
of fabrication, we have adapted and improved microfluidic techniques to generate
compartmentalized droplets. To elucidate the complex interplay of hydrodynamics
and transport of chemical species, we have introduced a visualization technique that
significantly advances the state of the art of time-resolved imaging these fields. Based
on our studies on the individual particle scale, we show first results on observing and
analyzing the more complex emergent dynamics of collective systems.
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1.6 Structure of the thesis

The remainder of this thesis, including 4 publications and preprints, is structured as
follows:

In Chapter 2 [101], we address the compartmentalization challenge in active
droplets. We use microfluidics to incorporate an aqueous core inside a liquid crystal
droplet; a composite design known as a double emulsion or a liquid shell. While inactive
double emulsions are stable against bursting, the internal convective flow in motile
shells can displace the core toward the interface and cause coalescence. We show how
the nematoelasticity of the shell phase impedes this the coalescence, resulting in a
stable motile liquid crystal shell. We further study the propulsion dynamics of the
shells rationalizing a peculiar shark-fin like trajectory in 2D and a helical trajectory in
3D.

In Chapter 3 [102], we study how an active droplet adapts to the variation of
viscosity of the swimming medium. We report that, as a response to increasing
the viscosity, droplet dynamics transition from steady propulsion to bimodal chaotic
swimming. To elucidate the non-linear coupling between the hydrodynamics and
chemical fields, we developed a novel technique to simultaneously visualize the two
fields around the droplet.

Chapter 4 [103] presents a brief review of studies on chemotactic interactions in
our group, followed by experimental results that investigate complex interactions of
droplets with external and self-generated chemical fields and complex environments,
demonstrated by the peculiar interactions of droplets with microfluidic pillar arrays.
This motivated us to go for a full quantitative study of the elementary case of two
droplets interacting via their chemical signatures in a 2D space.

This quantitative analysis is presented in Chapter 5 [104]. We derive a phase
diagram for the autochemotactic interactions in two dimensions, sorted by trail-crossing
and reflecting interactions. In the second part of the study, we investigate the collective
dynamics, governed by autochemotactic interactions, in 2D and 3D. We report a
novel state of dynamical arrest in active emulsions: ‘autochemotactic caging’, where
swimmers are temporarily trapped in an evolving network of repulsive chemical trails.

Chapter 6 presents our work on the emergence of spontaneously-rotating clusters
of active droplets. We explain the origins of rotation for single isotropic droplets and
extend our understanding to these clusters that have formed due to hydrodynamic
interactions.
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Finally, Chapter 7 summarizes and contextualizes the findings and implications of
the previous chapters, highlighting active droplets as a promising model for autophoretic
active matter. We present a brief summary of ideas for continuing projects based on
the studies outlined above, some of which have already been initialized.
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Figure 1.11 – Examples of collective directed motion in nature. (a) Bacterial turbulence
within a dense suspension of Bacillus subtilis; yellow lines show the flow field of bacterial
migration. Taken from [4], (b) Bioconvection pattern inside a suspension of Euglena
gracilis. Reprinted from [82], (c) Trajectories of birds flying in a flock. The Photo is the
courtesy of Xavi Bou. Taken from [83].
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Chapter 2

Topological stabilization and
dynamics of self-propelling nematic
shells1

Abstract
Liquid shells (e.g. double emulsions, vesicles etc.) are susceptible to interfacial

instability and rupturing when driven out of mechanical equilibrium. This poses a
significant challenge for the design of liquid shell based micro-machines, where the
goal is to maintain stability and dynamical control in combination with motility. Here,
we present our solution to this problem with controllable self-propelling liquid shells,
which we have stabilized using the soft topological constraints imposed by a nematogen
oil. We demonstrate, through experiments and simulations, that anisotropic elasticity
can counterbalance the destabilizing effect of viscous drag induced by shell motility,
and inhibit rupturing. We analyze their propulsion dynamics, and identify a peculiar
meandering behavior driven by a combination of topological and chemical sponta-
neously broken symmetries. Based on our understanding of these symmetry breaking
mechanisms, we provide routes to control shell motion via topology, chemical signaling
and hydrodynamic interactions.

1This chapter is published in Hokmabad, B. V., Baldwin, K. A., Krüger, C., Bahr, C., & Maass,
C. C. (2019). Topological stabilization and dynamics of self-propelling nematic shells. Physical
review letters, 123(17), 178003. B. V. H. designed the research, performed experiments and data
analyses and wrote the manuscript. K. A. B. performed experiments and data analyses and wrote the
manuscript. C. K. designed the research and performed experiments. C. B. performed the numerical
simulation and wrote the manuscript. C. C. M. designed the research, performed data analyses and
wrote the manuscript.
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2.1 Introduction

The capability to produce controllable, actively self-propelling microcapsules would
present a leap forward in the development of artificial cells, microreactors, and mi-
crosensors. Inactive microcapsules have been developed in the form of double emulsions
(droplet shells), which have been applied as, e.g., reactive microcontainers [105], syn-
thetic cell membranes [106], food and drug capsules [107, 108], optical devices [109–111],
and biotic sensors [112]. However, these highly structured compound droplets are
usually non-motile, and any actuation that displaces their liquid cores makes them
susceptible to shell rupture if the interfaces of the nested compartments can coalesce.
Alternative compartmentalized structures such as vesicles, capsids or polymersomes
typically possess immobile interfaces which impede self-actuation. Hence, engineering
such motile systems requires further complexities in design and fabrication [113–115].
In contrast, to survive motility, any liquid shell with mobile interfaces requires a
stabilizing force to counter the destabilizing swimming dynamics.

In this paper, we present a new approach to the problem of combining encapsulation
with autonomous motility, by using nematic active double emulsions, where anisotropic
micellar solubilization induces motility, and the nemato-elasticity of the shell provides
stability without requiring further complexities in the design. Through experiments
and simulation of the elastic energy in the liquid crystal shell, we show that active
shells are stable only in the nematic state. We demonstrate that the shell dynamics are
dictated by anisotropic self-generated chemical fields, broken topological symmetries,
and hydrodynamic interactions, and that by tuning these factors we can control
and direct their motion, providing avenues for applications in transport, guidance
and targeted release. Our framework provides a bottom-up approach for developing
functional micro-machines using established physicochemical mechanisms.

2.2 Results and discussion

Our active double emulsion system is comprised of water-in-oil-in-water droplet shells.
Shells self-propel while slowly dissolving in a micellar surfactant solution. Micelles swell
while filling with oil, which depletes the surfactant coverage of the shell’s posterior.
This induces a self-sustaining tension gradient in the external oil-water interface that

30
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Figure 2.1 – Droplet production and setup schematics. (a) Double emulsion production
via microfluidic flow junctions. (b) Droplet propulsion via a self-sustaining Marangoni
gradient in the interface. (c) Microfluidic cell and inverted microscope setup for quasi-2D
observation. All schematics are not to scale, spherical shells and micelles are represented
by their 2D cross-section.

drives the droplet motion [13, 58, 67] (Fig. 2.1 b). Swimming droplets shed persistent
trails of oil-filled micelles, from which they are subsequently repelled [89].

We use the nematogen 5CB as the oil phase, and solutions of the anionic surfactant
TTAB as the aqueous phases, where the internal core droplet is submicellar (c =
0.75 CMC), and the external swimming medium is supramicellar (c > 30 CMC). We
mass-produce highly monodisperse oil droplet shells using consecutive microfluidic
cross-junctions in flow-focusing configuration [106], (Fig. 2.1 a, also see section 2.4.1)
and observe them in quasi-2D microfluidic cells under videomicroscopy (Fig. 2.1 c).

Despite the displacement of the aqueous core towards the shell boundary (Fig. 2.2 a),
the shells self-propel stably and reproducibly for long times, dissolving down to thin
shells with a minimum stable shell/core radii fraction of Rs/Rc ≈ 1.05. The life stages
of these self-propelling shells (Fig. 2.2 b and c) fall into three regimes: (I) ‘Shark-fin’
meandering. At early times, the core is small compared to the shell diameter (Fig. 2.2 b,
top) and is deflected considerably from the polar axis of the shell, resulting in a
meandering instability. (II) Thin shells. As the shell thins, eventually there is little
room for significant asymmetry in the shell-core arrangement (Fig. 2.2 b, bottom).
During this stage, the motion grows noisy while the speed decreases, until propulsion
stops. (III) Single Emulsion. On reaching a critical minimum thickness, the shell bursts,
reconstituting into a single oil droplet. From a comparison of pre- and post-burst
radii, we estimate that the average shell thickness at this point is less than 1 µm
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Figure 2.2 – Life stages of active shells. (a) Polarized images of resting and swimming
shell. (b) Video stills of droplet life stages. (c) Example trajectory colored by shell radius
Rs, recorded over 40 min. The sudden change of color from blue to red corresponds to
the burst moment. (d) Average speed V (dotted, red) and radius Rs (solid, blue) for 13
shells, time t relative to bursting time tb (scatter plots: values for all experiments).

(Fig. 2.2 d). The droplet then propels with an undisturbed internal convection, leading
to a sudden increase in speed (Fig. 2.2 d), and a curling motion as observed in nematic
single emulsions [116](Fig. 2.2 c).

In contrast to these reproducible stages in nematic shells, we find that under
otherwise identical conditions, shells made from isotropic oils (CB15 or 5CB/BPD, see
section 2.4.1) burst significantly earlier. Fig. 2.3 a shows burst statistics for 5CB shells,
where below the clearing point (T < 34.5 ◦C, nematic) shells survive for long times,
whereas above the clearing point (T > 34.5 ◦C, isotropic), most droplets do not reach
the thin shell stage.

We attribute the shell stability to a nemato-elastic energy barrier: 5CB molecules
arrange to minimize the elastic energy associated with the deviations from a uniform
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Figure 2.3 – Stabilization of the active shells. (a) Burst statistics (number of bursts
NB normalized to initial number of shells N0) for shells below and above the clearing
point, plotted against time t normalized to final time tf with no remaining shells
(tf (24◦C)≈ 45 min., tf (39◦C) ≈ 10 min., initial Rs = 30 µm, Rc = 18 µm) (b) Elastic
energy E/Ec (Ec: core at center of droplet) as a function of core displacement d/dmax,
with dmax = Rs− Rc− 100 nm, for two different ratios Rs/Rc. (c) Ratio of elastic energies
Ei/Ec (Ei: core droplet close to outer shell interface) against ratio of radii Rs/Rc, using
Rc = 25 µm and Rs shrinking from 125 µm to 25.6 µm. Schematics are illustrative,
illustrated radius values do not directly correspond to the simulation parameters.

director field imposed by the boundary conditions (here homeotropic anchoring [117]).
In a resting shell, this causes a radially symmetric arrangement of the director field [118]
with the aqueous core at the center. In a moving shell the internal flow drives the core
off-center: the director field is therefore distorted both by the displacement of the core
and the flow field, such that the stored elastic energy is increased.

To estimate the competing forces we numerically simulated the director field inside
the shell and calculated the elastic energy E stored in a resting shell with a core
displaced by a distance d. We applied a common numeric minimization technique [119,
120] based on the Q tensor representation [121] of the nematic director field (see
section 2.4.3). The tensor elements of a uniaxial nematic with scalar order parameter
S and local director n are given by:

Qjk = S

2 (3njnk − δjk) . (2.1)

Since topological defects are not present in the director field of our shells, we
neglected a variation of the magnitude of S and assumed a constant value S = 1. For
the calculation of the elastic energy density fe we used the one-constant approximation
of the nematic elasticity, i.e., Ksplay = Ktwist = Kbend = K. Then, fe is obtained as:

fe = K

9 Qjk,lQjk,l (2.2)
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where, Qjk,l = ∂lQjk. The total elastic energy E is then calculated by integration
over the shell volume Ω:

E =
∫

Ω
fedΩ. (2.3)

As shown in (Fig. 2.3 b), we find that E increases by a factor of Ei/Ec ≈ 1.4 when the
core droplet is located at the outer interface (E = Ei, d = dmax), as compared to the
centered configuration (E = Ec). Remarkably, we find only a minor dependence on
the thickness of the nematic shell. Ei/Ec drops significantly towards unity only for
Rs/Rc < 1.1 (Fig. 2.3 c), i.e., the elastic energy barrier vanishes only in the limit of
zero shell thickness.

Figure 2.4 – Swimming behavior: (a) Top: PIV data for flow at the outer interface
and in the core. Bottom: schematic of core and flow arrangement. (b) Top: ‘shark-fin’
meandering of swimming trajectory over 2 minutes (Rs = 36 µm); the shell switches
periodically between clockwise and anticlockwise turns. Bottom: zoomed in view of the
shell-core alignment with the swimming trajectory, with superimposed core flow fields and
color-coded circulation. (c) Core circulation Γ/Γmax, local curvature κ, and shell speed V
versus time over four meandering periods. (d), (e), and (f) show the nematic structure
(top, polarized images of the droplets at rest with overlaid director field schematic) and
3D swimming trajectories (bottom, multiple exposure micrograph captured over 60 s) for
a no core droplet (d), a single core droplet (e) and a two core droplet (f). See supporting
movie S8.

We calculate the elastic force Fe = ∂E/∂d acting on a core displaced to the boundary
of a 5CB shell [122, 123] to be of the order of ≈ 100 pN. This is equivalent to the

34



2.2 Results and discussion

Stokes drag [13],
FS = 2πRcv

2η5CB + 3ηaq

1 + ηaq/η5CB
, (2.4)

acting on an aqueous core moving through bulk 5CB at v ≈ 6µm/s, which is comparable
to the velocity of the convective flow in our shells. We propose that the nemato-
elastic repulsion provides a significant, although not insurmountable, barrier against
coalescence.

We have analyzed the meandering dynamics by simultaneously tracking the circula-
tion of the flow inside the core Γ(t), local trajectory curvature κ(t), and propulsion
speed V (t) (Fig. 2.4 a–c). In quasi-2D confinement, the core is trapped off-axis inside
the convective torus, where it co-rotates with the convective flow, as shown by the core
flow and color coded Γ values in Fig. 2.4 a, b. In this arrangement, there is less viscous
resistance to the driving interfacial flows in the part of the shell containing the core,
resulting in asymmetric flow with respect to the direction of motion (shown by the
color bar in Fig. 2.4 a), and a curved trajectory. This eventually curves the shell back
towards its own trail, where chemotactic repulsion causes V and Γ to slowly decay and
then abruptly reverse - the tip of the ‘shark-fin’ motion (Fig. 2.4 b, c). This abrupt
reorientation corresponds to a spike in the local curvature and is followed by a sharp
acceleration (Fig. 2.4 c), caused by repulsion from the local gradient of filled micelles.
Due to the flow reversal, in the co-moving reference frame the core has now switched
sides and the shell curves in the opposite direction, once again towards its own trail. We
distinguish three time scales: a short timescale (≈ 1 s) for autochemotactically driven
abrupt reorientation, an intermediate timescale (≈ 5 s) for the curved motion between
two shark-fin tips, and a long timescale (> 100 s) corresponding to the persistent
motion imposed by the chemical field in the trail of the shell (cf. Appendix, Fig. 2.7 ).

To further investigate the role of the core in breaking the flow symmetry, we
have additionally experimented in 3D bulk media, using deep microfluidic wells and
matching the density of oil and swimming media by substituting a fraction of water with
deuterated water in the surfactant solution. We compared the dynamics of droplets
with zero, one and two cores (Fig. 2.4 d–f). With no core, we reproduce previous
findings [116], where the displacement of the radial ‘hedgehog’ defect induces a torque
on the droplet. Given the freedom of a third dimension, the droplet is not arrested by
its own trail and does not reverse its direction, resulting in helical trajectories. With
one core, we observe similar behavior, with the core precessing around the axis of
motion. Shells propel in more tightly wound helices than single emulsions, which can
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be understood in terms of the torque applied by the respective viscous anisotropy: for
shells, it is the viscosity ratio of oil and water, η2(5CB)/η(H2O) ≈ 50; in contrast, for
single emulsions [116], it refers to the intrinsic viscous anisotropy of a nematic liquid
crystal η2(5CB)/ηiso(5CB) ≈ 3 [123]. With two cores, this broken symmetry argument
does not hold, and thus we are able to rectify the meandering motion.

While a single-core nematic shell is defect free and spherically symmetric at rest,
double core shells have a fixed axis set by the two cores, with a topological charge of
+1 resolved by a hyperbolic hedgehog defect, or a defect loop [124–126]. This defect
provides a barrier against core coalescence [127]. Hence, as in the single-core case, the
shell thickness shrinks to ≈ 1µm until the shell bursts (Fig. 2.5 a). The most likely
flow field configuration inside a moving double-core shell is with both cores trapped
on opposite sides of the convection torus and no symmetry breaking mechanism or
curling. Instead, the shell moves perpendicularly to the core alignment, with some
rotational fluctuations (demonstrated in quasi-2D, Fig. 2.5 b).

Changing the topology of the liquid crystal, e.g. by controlling the number of cores,
provides one method to rectify the propulsion dynamics. However, based on our work
on single emulsions [89, 103], we have further options to guide self-propelling shells and
improve their utility as cargo carrying vessels and sensors, by exploiting microfluidic
topography [128, 129] and chemical gradients. First, topographical guidance: Fig. 2.5 c
shows a shell swimming along a wall, turning both convex corners without detachment
and concave corners without arrest (further examples in Fig. 2.9). Second, chemotactic
guidance: In Fig. 2.5 d, crystalline surfactant (‘attractant’) is allowed to dissolve into
a quasi-2D cell. The resulting gradient extends ≈ 1 mm into the cell, attracting the
shells, doubling their speed and rectifying the meandering instability.

2.3 Conclusion

In conclusion, we have developed a versatile platform for microscopic cargo delivery:
self-propelling droplet shells. While motility induces convection that acts to destabilize
these cargo vessels, we have demonstrated through experiments and simulations that
nemato-elasticity can be employed as a topologically stabilizing agent, a fact we
anticipate will be utilized in novel designs of microreactors and artificial cells. We have
also provided pathways for guiding the trajectories of these droplets, through both
chemical signaling and topography. Finally, we have analyzed the interesting swimming
behavior of these self-propelling shells, and anticipate that the understanding of the
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Figure 2.5 – Control of shell dynamics. Micrographs of shells with two cores, showing
(a) long-time stability and (b) no meandering in 2D confinement (multiple exposure
micrographs at two shell thicknesses). Due to the larger initial volume of the oil phase,
survival times are increased compared to Fig. 2.2 b. (c) Topographical guidance by
walls. Multiple exposure micrograph taken over 65 seconds at 3 second intervals. (d)
Chemotaxis: diffusing surfactant guides shells to the left (trajectories colored by shell
speed V ).

rich ‘shark-fin’ meandering dynamics will impact the design of artificial microswimmers,
where swimming behavior can be tweaked by tuning the routes for spontaneous
symmetry breaking.

Financial support from the Deutsche Forschungsgemeinschaft (SPP1726 “Mi-
croswimmers”) is gratefully acknowledged. We thank Stephan Herminghaus for stimu-
lating discussions and Julien Petit for invaluable experimental advice.
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2.4 Appendix

2.4.1 Double emulsion fabrication

Our emulsions comprise the nematic liquid crystal 4-pentyl-4’-cyano-biphenyl (5CB) and
an aqueous solution of the surfactant tetradecyltrimethylammonium bromide (TTAB).
Where required, we match the densities between the oil (ρ5CB = 1.022 g ml−1 at 24◦C)
and surfactant solution phases by D2O (ρD2O = 1.107 g ml−1) admixture, with adjust-
ments for TTAB content. In separate experiments, we created isotropic double emul-
sions, using: the branched 5CB isomer CB15 ((S)-4-Cyano-4’-(2-methylbutyl)biphenyl,
Synthon Chemicals); or a 10:1 volumetric ratio of 5CB and BPD (Bromopentadecane,
Sigma-Aldrich). These shells were highly unstable when active, and were not examined
further.

We generate and observe double emulsion droplets in microfluidic PDMS chips on
glass slides; fabricated in-house using standard soft lithography methods [130]. We
follow the recipe of Petit et al. [106], for creating monodisperse water-in-oil-in-water
emulsions, where the chips consist of two sequential cross-shaped flow junctions, for
water-in-oil followed by oil-in-water droplet pinch-off (Fig. 2.6). The number of cores,
as well as the core and shell diameters, are set by the flow rates [131]. Shell and core
radii were produced in the range of Rs = 20-130µm and Rc = 10-50µm respectively.
Typical flow rates were in the ranges 10-30, 60-150, and 200-500 µl hr−1 for the core
aqueous phase, oil phase, and external aqueous phase respectively.

To ensure the oil phase did not wet the initially hydrophobic PDMS walls, the
outer flow channels were hydrophilised prior to droplet production. This was achieved
by drawing a sequence of liquids through the outermost channel via a vacuum pump
induced pressure gradient. The sequence was as follows: a 1:1 volumetric ratio of
hydrochloric acid (HCl at 37 wt.%, Sigma-Aldrich) and hydrogen peroxide (H2O2 at
30 wt.%, Sigma-Aldrich) for 2 minutes; Milli-Q water for 30 seconds; 5 wt.% aqueous
solution of poly(diallyldimethylammonium chloride) (PDADMAC, average molecular
weight Mw ≈ 100, 000-200, 000 g mol−1, Sigma-Aldrich), for 2 minutes; 2 wt.% aqueous
solution of poly(sodium 4-styrenesulphonate) (PSS, Mw ≈ 1, 000, 000 g mol−1, Sigma-
Aldrich) for 2 minutes.

During production and in storage, both the internal and external aqueous phases
contain a submicellar concentration of TTAB (0.1 wt.%): sufficient to stabilize the
interface, but insufficient to induce solubilisation (CMC = 0.13 wt.%). 5CB double
emulsion droplets at room temperature (T = 24◦C) are stable against coalescence for
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Figure 2.6 – Screenshot of a microfluidic chip producing double emulsion droplets
(Rs ≈ 30 µm). Blue and red arrows indicate flow of aqueous and oil phases respectively.
The channel height is 50 µm.

several months.

2.4.2 Observation and analysis

We performed experiments in two geometries, quasi-2D PDMS reservoirs with typical
dimensions of 7.5 mm × 5 mm × 50 µm, and deeper wells of size 10 mm × 6 mm × 100
µm. We used bright field microscopy to record shell trajectories, polarized microscopy
for nematic order and higher resolution fluorescence microscopy to measure flow fields
using 0.5 µm fluorescent tracer colloids. For polarised microscopy we used a Nikon
Eclipse LV100 microscope equipped with a digital camera (EOS 600d, Canon). Crossed
polarisers with an added λ retardation plate were used to visualise the nematic director
field inside the liquid crystal phase. We used two inverted microscopes (Olympus
IX-73 and IX-81) with either a Grasshopper (GS3-U3-41C6M-C) greyscale camera
(2048 × 2048 pixels) or a Canon (EOS 600d) digital camera (1920 × 1080 pixels) for
regular visible light microscopy recording images at 4-24 fps and 4-40× magnification
for tracking the swimmers. The fluorescent imaging was done on an IX-73 inverted
microscope at 24 fps and 20× magnification for PIV measurements around the shells
and at 48 fps and 40× magnification for PIV inside the core. We extracted shell
positions from video microscopy data using standard Python libraries for numpy, PIL
and opencv (Scripts available on request). Essential steps are background correction,
binarisation, blob detection by contour analysis and minimum enclosing circle fits. We
calculated trajectories and speeds using a simple next neighbour algorithm [132]. We
identified bursting times by frame-by-frame inspection. We estimated core position and
orientation angles from high resolution video data by semi-automatically determining
circular shell and core outlines and comparing the line of centers to the trajectory
normal. The mean squared displacement of the shell trajectory was calculated as

⟨(∆r)2⟩t = ⟨[r(t0 + t) − r(t0)]2⟩t0 , (S1)
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where r is the position vector of the shell. The angular or velocity autocorrelation
function was calculated as

C(t) =
〈

V(t0 + t).V(t0)
|V(t0 + t)||V(t0)|

〉
t0

, (S2)

and the (signed) local curvature of the trajectory was defined as

κ = x′y′′ − y′x′′

(x′2 + y′2)3/2 , (S3)

where the prime denotes derivation with respect to time.
For illustration, we have included speed, orientation, mean squared displacement

⟨(∆r)2⟩t and velocity autocorrelation C(t) data in Fig. 2.7 for one trajectory (see also
Fig. 3 in the main text). The periodic meandering reflects in a dip in the ⟨(∆r)2⟩t,
which is ∝ t2 for long times, approaching ballistic motion. The absence of rotational
noise reflects in a periodic, non-decaying character of C(t).

Figure 2.7 – Characterisation of the swimming behaviour. (a) The magnitude of the
swimming velocity. The vectors show the location of the core at each time. The sudden
acceleration right after the abrupt reorientation corresponds to the autochemotactic
repulsion from the trail of filled micelles. (b) Mean squared displacement of an individual
swimmer with the trajectory as the inset. The dip corresponds to the meandering period.
(c) Velocity auto-correlation function of the same swimmer.

For the PIV analyses in Fig. 3 a and Fig. 4 b. the shell was pinned in a shallow
cell and the aqueous phase was seeded with 0.5µm fluorescent tracer colloids (Thermo
Fisher Scientific). For PIV inside the core, the core was seeded with the same tracers,
the core position was tracked manually and the time-resolved PIV images were collected.
All PIV analyses and flow calculations were performed via the MATLAB based PIVlab
interface [133]. Additional custom MATLAB scripts were written to calculate the
circulation of the flow inside the internal aqueous droplet [134]:

Γi(t) = ẑ .

[∑
(x,y)i

ri(x, y) × u(x, y, t)
]
, (S4)
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where ri is the vector from the core center to (x, y) inside the projected area of the
core on the x-y plane and u is the velocity vector field inside the core.

2.4.3 Numerical simulation

The estimated elastic energies (E) plotted in Fig. 2 b, c were calculated by applying
a common numeric minimisation technique [119, 120] based on the Q tensor rep-
resentation [121] of the nematic director field, where we have assumed that the 3
nematic elasticity constants are equal, and the scalar order parameter is equal to 1 in
a defect-free shell. More details of these calculations have been included in the main
manuscript.

In order to determine the structure possessing the minimal value of E, the shell
was mapped onto a cubic grid with 2563 nodes. The tensor components at each node
were assumed to relax to their equilibrium values according to a simplified equation of
motion, governed only by the rotational viscosity γ1. In a discretised form with time
steps ∆t we have:

γ1
∆Qjk

∆t = − δfe
δQjk

. (S5)

The right-hand side of the above equation represents the functional derivative of fe
with respect to tensor component Qjk. Details of the numerical procedures and explicit
expressions for the various functional derivatives are given in [119]. For the boundary
conditions we assumed strict homeotropic anchoring of the director at all interfaces, i.e.,
for the nodes located at the outer or inner surface of the shell, the orientation of the
nematic director at the interface is set perpendicular to the interface and held constant
(so-called strong anchoring conditions). We varied the shell size and the position of the
inner aqueous droplet over a wide range and determined the corresponding equilibrium
structures and values of E. Fig. 2.8 illustrates some examples. We note that we
considered here solely the interplay between the shell size, the position of the internal
core, and the elastic energy of the nematic director field. We neglected the internal
convectional flow which is present in our self-propelling shells, which certainly leads to
additional effects on the structure of the director field.
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Figure 2.8 – Simulation of the director field. Row (a) shows the effect of size ratio for
the maximum displacement of the core from the center, row (b) shows the uniform (left)
and distorted director fields (right), indicating the effect of core displacement on the
deviation of the director field.

Figure 2.9 – Further examples of topographical guidance of the shells, including around
edges and corners, cf. Fig. 4, main text. The scale bar is 100 µm.
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Supplementary movies are available for viewing under
http://asm.ds.mpg.de/index.php/media/.

Figure 2.10 – Movie S5 showing one
shell (Rs ≈ 30 µm, 131 s, speed x 6 at
24 fps) ‘shark-fin’ meandering, with high
persistence and periodicity, as well as a
‘curling’ single emulsion droplet, in a uni-
form bulk environment.

Figure 2.11 – Movie S6 showing selected
trajectories for an ensemble of ‘shark-fin’
meandering shells (500 s, speed x 25 at
10 fps, field of view 5.4 x 3 mm). Reorien-
tation on long timescales is caused by the
filled micelles in the wake of previously
passing shells.

Figure 2.12 – Movie S7 (255 s, speed x 1
at 24 fps) tracking circulation, speed and
core orientation for a meandering shell,
data corresponding to Fig. 3 b, c in the
main text.

Figure 2.13 – Movie S8 (speed x 12 at
24 fps) showing the dynamics and life
stages of a double core shell (see Fig. 4 in
the main text).
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Chapter 3

Emergence of bimodal motility in
active droplets1

Abstract
Artificial model swimmers offer a platform to explore the physical principles en-

abling biological complexity, for example, multi-gait motility: a strategy employed by
many bio-microswimmers to explore and react to changes in their environment. Here,
we report bimodal motility in autophoretic droplet swimmers, driven by characteris-
tic interfacial flow patterns for each propulsive mode. We demonstrate a dynamical
transition from quasi-ballistic to bimodal chaotic propulsion by controlling the viscos-
ity of the environment. To elucidate the physical mechanism of this transition, we
simultaneously visualize hydrodynamic and chemical fields and interpret these observa-
tions by quantitative comparison to established advection-diffusion models. We show
that, with increasing viscosity, higher hydrodynamic modes become excitable and the
droplet recurrently switches between two dominant modes due to interactions with the
self-generated chemical gradients. This type of self-interaction promotes self-avoiding
walks mimicking examples of efficient spatial exploration strategies observed in nature.

1This chapter is published in Hokmabad, B. V., Dey, R., Jalaal, M., Mohanty, D., Almukambetova,
M., Baldwin, K. A., Lohse, D. and Maass, C. C. (2020). Stop-and-go droplet swimmers. arXiv
preprint arXiv:2005.12721 and currently under review. B. V. H. designed the research, performed
experiments and data analyses and wrote the manuscript. R. D. performed the theoretical analyses and
wrote the manuscript. M. J. designed the research, performed experiments and wrote the Manuscript.
D. M. and M. A. and K. A. B. performed experiments. D. L. and C. C. M. supervised the project
and wrote the manuscript.
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3.1 Introduction

In response to physical constraints in nature, microorganisms have adapted and
developed various locomotion strategies. Depending on cues from the environment,
these strategies range from the more commonplace helical swimming [135, 136], run-and-
tumble, and switch-and-flick motility [137], to more sophisticated transient behaviours,
e.g. peritrichous bacteria switching poles in response to a steric stress [138], octoflagellate
microalgae exhibiting run-stop-shock motility with enhanced mechanosensitivity [139],
and starfish larvae maximising fluid mixing, and thereby nutrition uptake, through rapid
changes of ciliary beating patterns [140]. Such intricate gait-switching dynamics [141,
142] enable organisms to navigate in external flows [26, 143], to follow gradients [144] or
to efficiently explore their environment [145, 146]. Recent efforts in the development of
synthetic swimmers have led to synthesis of systems that are capable of mimicking some
of the aforementioned features of their natural counterparts such as rheotaxis [147,
148], chemotaxis [89, 149], and gravitaxis [150]. However, dynamic multi-modal motility
in the absence of external actuation has not been explored before in artificial swimmers,
and the mechanisms underlying unsteady behaviour in self-actuating systems are
not well understood, particularly with respect to distinguishing states with increased
random fluctuation from ones featuring true multimodal behavior[151, 152].

Paradigms for biomimetic artificial swimmers include autophoretic microswimmers,
powered by chemical activity at their interface, which are able to generate long-living
chemical gradients in the environment [149]. In this regard, droplet microswimmers
driven by micellar solubilization [67], provide a sophisticated experimental realisation.
Unlike most synthetic swimmers which are inherently asymmetric, active droplets
are isotropic. Interfacial activity spontaneously breaks the symmetry, allowing for
emergence of different flow patterns depending on the environmental parameters. Here
we use such active droplets as model systems to demonstrate the physical principles
guiding the emergence of multi-modal motility in response to changes in environmental
conditions.

We show that active droplets adapt to an increase in the viscosity of the swimming
medium by exhibiting increasingly chaotic motion– a counter-intuitive response given
that increasing viscous stress generally tends to stabilise non-inertial dynamics. Using
time-resolved in situ visualisation of the chemical and the hydrodynamic fields around
the droplet interface, we found that the emergence of the chaotic dynamics correlates
with the onset of higher hydrodynamic modes at increasing Péclet number Pe. Once
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these higher modes prevail, the droplet exhibits an unsteady bimodal exploration
of space triggered by its interaction with a self-generated, slowly-decaying chemical
gradient. The conditions for the onset of this dynamical transition are quantitatively
predicted by an advection-diffusion model for the transport of the chemical species,
which takes into account the nonlinear coupling between the hydrodynamic and chemical
fields. The visualisation technique and the findings presented here lay the groundwork
for future investigations of emergent dynamics in active phoretic matter.

3.2 Droplets propelled by micellar solubilisation

Oil droplets that are slowly dissolving in supramicellar aqueous surfactant solutions
can spontaneously develop self-sustaining gradients in interfacial surfactant coverage,
resulting in Marangoni stresses which lead to self-propulsion [13]. This interfacial
instability may be understood as follows (Fig. 3.1 a,b): During the solubilisation of
the droplet, oil molecules migrate into surfactant micelles in a boundary layer around
the droplet interface, causing the micelles to swell and take up additional surfactant
molecules from the aqueous phase. This depletes the interfacial surfactant concentration,
unless there are empty micelles present to replenish it by disintegration. The interfacial
tension therefore increases with the local ratio of filled to empty micelles. Following
an advective perturbation in the vicinity of the droplet, the radial symmetry of the
filled micelle distribution is spontaneously broken; the resulting fore-aft asymmetry
generates a surface tension gradient which drives the droplet towards more empty
micelles leading to sustained self-propulsion, while leaving behind a trail of swollen
micelles. Such spontaneous self-propulsion stemming from the advection-diffusion
driven interfacial instability arises only if the Péclet number, Pe, which characterises
the ratio of advective to diffusive transport, exceeds a critical threshold [54, 57, 58,
73]. For the active droplet system, Pe can be shown to be a monotonically increasing
function of the swimming medium (outer) viscosity µo, here non-dimensionalised as
µ = µo/µi using the constant inner viscosity µi:

Pe = VtRd

D
≈ 18π2

kBT
qsr

2
sζR

2
dµ

i

[
µ

(
2µ+ 3ζ/Rd

2µ+ 3

)]
, (3.1)

where Vt is the theoretical terminal droplet velocity in an external surfactant gradi-
ent [43, 54], Rd = 30µm the droplet radius, D = kBT

6πrsµo the diffusion coefficient for the
surfactant monomer (length scale rs ∼ 10−10 m), qs the isotropic interfacial surfactant
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consumption rate per area, and ζ ∼ 10 nm the characteristic length scale over which
the surfactants interact with the droplet [43, 58] (see Appendix 3.9 for the derivation
of eqn. (3.1)). In experiments, we controlled µo by using water/glycerol mixtures as
the swimming medium (viscosity values in Appendix 3.9, Fig. 3.7 ). Increasing µo

corresponds to an increase in Pe, besides the increase in viscous stresses. Henceforth,
we represent an increase in µo by this corresponding increase in Pe, as tabulated by the
colour map in Fig. 3.2 . We note that in view of the necessary simplifications in the
derivation of eqn. (3.1), all experimental Pe values should be regarded as approximate.

Figure 3.1 – Droplet propulsion mechanism and visualisation technique. (a) Top:
Schematic illustration of the micellar solubilization of oil at the droplet interface leading
to self-propulsion. Bottom: Streaks of tracers following the flow inside and outside of the
droplet during 2 seconds, with streamlines of the external flow from PIV analysis (droplet
reference frame). Data from double channel fluorescence microscopy, with illumination at
561 nm (Nile Red doped oil, red emission) and 488 nm (tracer colloids, green emission).
(b) Sketch of the filling and growth of micelles travelling in a boundary layer along the
interface, causing a propulsive Marangoni flow. (c) Microscopy set-up schematic with
the droplet (radius 30 µm) swimming in a Hele–Shaw cell (height 60 µm). (d) Sample
micrograph, with the droplet’s centroid trajectory traced in white.

48



3.3 Simultaneous visualisation of chemical and hydrodynamic fields

3.3 Simultaneous visualisation of chemical and hy-
drodynamic fields

To visualise the chemical and hydrodynamic fields involved in the droplet activity, we
directly imaged the chemical field of swollen micelles by adding the hydrophobic dye
Nile Red to the oil phase (Fig. 3.1 c,d, see also Appendix 3.9 and Video S1). The
dye co-migrates with the oil molecules into the filled micelles, which fluoresce when
illuminated. We seeded the surrounding medium, a supramicellar aqueous surfactant
solution, with green fluorescent tracer colloids and measured the flow field using particle
image velocimetry (PIV). The emission spectra of dye and colloids are sufficiently
non-overlapping to be separately detected in dual channel fluorescence microscopy.
Consequently, both fields can be simultaneously observed and analysed; we provide an
example micrograph with an overlay of the extracted droplet trajectory in Fig. 3.1 d.
Due to the large size (∼ 5 nm) of the filled micelles, the time scale of their diffusive
relaxation exceeds that of the droplet motion; thus, there is a persistent fluorescent
trail in the wake of the droplet.

3.4 Destabilised motion with increasing Péclet num-
ber

We begin, however, with an overview of the droplet dynamics using trajectory plots
and statistical analyses of speed and orientational persistence taken from bright-field
microscopy (Fig. 3.2 ). With increasing Pe, the droplet propulsion changes from
uniform speeds and persistent motion to unsteady motion with abrupt reorientations
(Fig. 3.2 a-d). We define P (|δθ(t)|) as the distribution of the reorientation angle δθ of
the 2D droplet velocity V (t) during a fixed time step δt [153],

δθ(t) = arctan
(

V (t) × V (t+ δt)
V (t) · V (t+ δt)

)
. (3.2)

P (|δθ(t)|) broadens significantly, corresponding to more frequent and sharper
reorientation events (Fig. 3.2 e). The faster decay of the angular velocity autocorrelation
function,

CV V (t) =
〈

V (t0 + t) · V (t0)
|V (t0 + t)||V (t0)|

〉
t0

, (3.3)
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Figure 3.2 – Destabilized droplet motion with increasing Péclet number Pe. (a-d)
Example trajectories of droplets for Pe ∈ {4, 19, 101, 1112}, with zoomed-in insets colour-
coded by propulsion speed V . All scale bars are 50 µm. (e) Distribution of the velocity
reorientation angle, |δθ| for increasing Pe, measured during a time step δt = 0.1 s set by
the video recording rate of 10 Hz. Profiles of the velocity auto-correlation function, CV V ,
in the inset, show the loss of directionality in swimming. (f) Distribution of propulsion
speeds V for increasing Pe, with mean and standard deviation of speeds in the inset. See
also Supporting Videos S2-S5. The color bar relating experimental Pe estimates to the
viscosity ratio µ = µo/µi applies to all subsequent figures.

50



3.4 Destabilised motion with increasing Péclet number

illustrates the loss of directionality with increasing Pe (Fig. 3.2 e, inset). Fig. 3.2 f shows
that at sufficiently large Pe, the speed distribution P (V ) includes values as small as zero
(stopping events) and, surprisingly, as large as 70µm/s, much greater than the uniform
speed of 30µm/s observed for low Pe ≈ 4. While the mean speed barely changes with
Pe, the standard deviation of V grows by over one order of magnitude (Fig. 3.2 f, inset).
Hence, both the rotational and the translational motion of the swimmer are destabilised
with increasing Pe, similar to recent numerical studies of solid phoretic particles [154].
Note that the thermal fluctuations (O(kbT/2Rd) ∼ 10−16 N) are negligible compared
to the hydrodynamic drag force (O(6πµoRdV ) ≳ 10−10 N), such that thermal noise is
an unlikely cause for the unsteady swimming.

Figure 3.3 – Signatures of unsteady dynamics in the time evolution of chemical and
hydrodynamic fields. Rows (a), (b) and (c) correspond to Pe ≈ 4, Pe ≈ 36 and Pe ≈ 293,
respectively; Left column, trajectories colour coded by time; middle column, kymographs
of I and uθ during 45 seconds of propulsion; right column, selected red channel images,
overlaid by the flow streamlines at the laboratory reference frame. Each frame corresponds
to the point in time indicated on the kymographs by I, II or III. Panel (d) defines the
mapping of the profiles of red light intensity I (filled micelle concentration) and tangential
velocity, uθ, around the droplet circumference onto the y axis of the kymographs in
the middle column. All uθ profiles are in the translational droplet reference frame, but
with θ = 0 fixed at the laboratory x direction to visualize the reorientation dynamics.
In (c), the third kymograph corresponds to the radial velocity ur in the laboratory
reference frame to better depict the quadrupolar symmetry of the flow field. The second
hydrodynamic mode starts to appear at intermediate Pe and dominates the dynamics
for high Pe. See also Appendix 3.9, Fig. 3.11 for additional flow field examples. All scale
bars are 50 µm.
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3.5 Signatures of unsteady dynamics in the time
evolution of chemical and hydrodynamic fields

To investigate the origin of this unsteady behaviour, we studied the evolution of
chemical and hydrodynamic fields around the droplet. We extracted the tangential
flow velocity uθ(θ) and the red fluorescence intensity I(θ) of the chemical field close to
the interface (Fig. 3.3 d, Appendix 3.9), and mapped them in kymographs I(θ, t) and
uθ(θ, t).

For low Pe ≈ 4, at persistent propulsion, I(θ, t) shows a single fixed-orientation
band marking the origin of the filled micelle trail at the rear stagnation point of the
droplet (Fig. 3.3 a and Video S6). The two bands in uθ(θ, t) correspond to a steady
flow field with dipolar symmetry that is consistent with the I(θ, t) profile. On the right
side of Fig. 3.3 a we have superimposed the streamlines of this dipolar flow field on the
corresponding chemical micrograph at the time marked by I in the I(θ, t) kymograph.

For intermediate Pe ≈ 36 (Fig. 3.3 b, Video S7), I(θ, t) shows secondary branches
forming at the anterior stagnation point of the droplet and subsequently merging with
the main filled micelle trail. This coincides with a transient second hydrodynamic mode
with quadrupolar symmetry (Fig. 3.3 b,II), causing the accumulation of an additional
aggregate of filled micelles at the droplet anterior (see also Appendix 3.9, Fig. 3.11 for
additional flow field examples).

The ratio of the diffusive (R2
d/Dfm) to advective (Rd/V ) time scales for the migration

of filled micelles is V Rd

Dfm
≫ 1 for all experiments, assuming a diffusion coefficient

Dfm = kBT/6πµorfm, with a micellar radius of O(rfm) ∼ 2.5 nm. Therefore, the
aggregate is unlikely to dissipate by diffusion, and will continue to grow as long as
the quadrupolar mode exists. However, this mode is not stable. Eventually, the
dipolar mode dominates and advects the secondary aggregate towards the main trail
(Fig. 3.3 b,III). The transport of the aggregate along one side of the droplet locally
disturbs the interfacial flow, leading to an abrupt reorientation of the swimming
direction (Fig. 3.3 b,I-III). As shown in the trajectories in Fig. 3.2 b and c, these
reorientation events become more frequent with increasing Pe; accordingly, uθ in
Fig. 3.3 b exhibits quasi-periodic reorientation patterns.

For high Pe ≈ 293 (Fig. 3.3 c, Video S8), the quadrupolar mode eventually prevails,
resulting in a predominantly symmetric extensile flow around the droplet (Fig. 3.3 c,I),
as shown by a pronounced fourfold pattern in the additional kymograph ur(θ, t) of the
radial velocity. Due to the non-propelling quadrupolar mode the droplet is trapped in

52



3.5 Signatures of unsteady dynamics in the time evolution of chemical and
hydrodynamic fields

Figure 3.4 – Dependence of hydrodynamic modes on the Péclet number. (a) Critical
Péclet Pecr values (black lines), necessary for the onset of different hydrodynamic modes
(n), with varying µ; The markers (□) show the Péclet number Pe (eqn. (3.1)) which
increases with µ. The colour code is taken from Fig. 3.2 (b) (top) Steady self-propulsion
of the active droplet; theoretical solution for n = 1 mode (left) and experimental streak
image for low Pe (right); (bottom) the extensile flow corresponding to n = 2 mode (left)
and the experimental image for higher Pe (right). The theoretical and the experimental
flow fields are in the swimmer reference frame. (c) Instability growth rates corresponding
to the first two hydrodynamic modes as a function of Pe. Beyond the dashed vertical
line (grey region) λn=2 > λn=1 and thus the n = 2 mode is dominant.

place. The gradual accumulation of filled micelles at the two stagnation points with
radially outward flow manifests in two stable branches in the chemical kymograph
(marked by I in Fig. 3.3 c). The growth of the two micellar aggregates locally generates
a lateral chemical gradient, which eventually pushes the droplet out of its self-made
trap. Concomitantly, the two points of filled micelle emission move along the droplet
interface and merge on the new rear side of the droplet into a single filled micelle
trail (Fig. 3.3 c,II and III). The chemorepulsion from the local field micelle gradient
induces an apparent dipolar mode which gradually decays as the droplet leaves the
self-made trap. Now, the quadrupolar mode re-saturates, with an aggregate growing
at the droplet anterior, until the droplet is trapped again and a new bimodal ‘stop-
and-go’ cycle begins. Since the escape direction is always lateral, consecutive runs are
approximately perpendicular, resulting in the sharp reorientation events apparent in
the trajectories in Fig. 3.3 c and Fig. 3.2 d, as well as the broadening |δθ| distribution
in Fig. 3.2 e.
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3.6 Dependence of hydrodynamic modes on the Pé-
clet number

In order to understand the dependence of the emergence of bimodal motility on Pe,
we analysed the underlying advection-diffusion problem for the active droplet within
the framework of an axisymmetric Stokes flow following refs. [54, 57, 73, 155] (see
Fig. 3.4 , and Appendix 3.9). At the smallest value of µ, Pe is approximately equal
to the critical value of 4 necessary for the onset of the first hydrodynamic mode
(n = 1), i.e. the mode with dipolar flow symmetry [54, 57, 73]. With increasing
µ, Pe (markers in Fig. 3.4 a) eventually exceeds the critical values necessary for the
onset of the higher hydrodynamic modes (lines in Fig. 3.4 a), specifically the second
hydrodynamic mode (n = 2), i.e. the mode with quadrupolar symmetry. A linear
stability analysis around an isotropic, quiescent base state (see Appendix 3.9 and [57,
73]), which is the idealized starting point for each experiment, shows that for small
to moderate Pe, the non-dimensionalised instability growth rate λ for n = 1 exceeds
that for n = 2 (Fig. 3.4 c). Accordingly, for lower Pe, n = 1 dominates, resulting
in steady self-propulsion stemming from the fore-aft asymmetry of the surfactant
distribution (Fig. 3.4 b,I). Consequently, the active droplet exhibits persistent steady
translation (trajectories in Fig. 3.2 a,b) with a dominant dipolar flow field (Fig. 3.4 b,II
and Fig. 3.3 a). However, for Pe ≳ 92, n = 2 (Fig. 3.4 b,III) has a faster instability
growth rate (Fig. 3.4 c), thereby becoming the dominant mode when evolving from
the quiescent base state. Accordingly, the droplet is initially stuck in a non-propelling
mode with a quadrupolar flow field (similar to Fig. 3.4 b,IV). Such quadrupolar flow
field gives rise to the filled micelle field with the two points of outflux. The synergy
between the n = 2 mode and the transiently-growing filled micelle field subsequently
results in the onset of the bimodal ‘stop-and-go’ motion of the droplet for moderate to
higher Pe (trajectories in Fig. 3.2 c,d). Since we observe in experiments with Pe ≳ 100
that the active droplet experiences sustained periods of dynamical arrest during which
it remains stationary with a surrounding extensile flow (Fig. 3.3 c), it appears that
the n = 2 mode can also evolve from a non-quiescent state and prevail in a similar
Péclet regime as derived from the performed stability analysis. Note that we restrict
our analysis to the first two hydrodynamic modes since these two are solely responsible
for the droplet propulsion and the associated far-field hydrodynamic disturbance.
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Figure 3.5 – Interactions with self-generated chemical gradients cause speed bursts at
reorientation events. (a) Conditional averaging of tangential acceleration, at, speed, V ,
and reorientation angle, |δθ|, for abrupt reorientation events at Pe ≈ 36 (see Appendix
3.9, Fig. 3.12 , for an illustration of the identification criteria). The dotted line marks the
maximum speed at t = τ1 after reorientation. (b) Video stills of the chemical field for
one such event with t = 0 s set to the point of minimum speed; white arrows track the
accumulation of the secondary filled micelle aggregate at the anterior stagnation point
and its advection along the interface, black arrows correspond to the droplet velocity
vector. The droplet speed is maximal when the secondary aggregate and the trail merge
at t = 0.93s. See also Videos S9 and S10. (c) An example trajectory for Pe ≈ 36.
Any reorientation event (curved arrows) is preceded by a deceleration and followed by
an acceleration. The lowest speed occurs at the point with the highest curvature. (d)
Correlation function between reorientation angle and speed, C|δθ|,V (∆t) for increasing
Pe. Times τ1 and τ2 (next reorientation event) are identified by the respective peak
and dip in C|δθ|,V . (e) Time scale for the growth of the n = 2 mode vs. corresponding
Pe: experimentally obtained, τ2 − τ1 (◦), compared to values from stability analysis,
λ−1
n=2Rd/Vt (□).
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3.7 Interactions with self-generated chemical gra-
dients cause speed bursts

It remains to explain the broadening of P (V ) with increasing Pe (Fig. 3.2 e), particularly
the remarkable bursts in speed for high Pe. While the dipolar mode is propulsive, the
quadrupolar mode is not. Hence, the growth and decay of the respective modes will
affect the droplet speed. As shown in Fig. 3.3 , recurrent transitions between the two
hydrodynamic modes lead to abrupt reorientation events; we therefore investigated the
correlation between changes in speed and reorientation angle |δθ|.

In a typical trajectory for intermediate Pe ≈ 36, each sharp turn is preceded by a
deceleration and followed by an acceleration, as shown in the plot of the positional
data colour-coded by speed in Fig. 3.5 c. Signatures of these correlations in the droplet
dynamics appear in the conditional averages〈

X(t− ti)
∣∣∣∣∣|δθ(ti)| > 0.2, dδθ(ti)

dt = 0
〉
i

of |δθ|, V and tangential acceleration at as quantities X for all sharp reorientation
events i in the trajectory, centered at t = ti of maximum |δθ| (Fig. 3.5 a); the events
were identified by choosing a threshold value of |δθ| > 0.2 (see Appendix 3.9, Fig. 3.12 ).

We can now directly compare these dynamics to the higher resolution fluorescence
data taken at Pe ≈ 36 presented in the kymographs in Fig. 3.3 b. Fig. 3.5 b shows a
series of micrographs of the chemical field, with arrows marking the droplet velocity
vector (black) and the position of the secondary filled micelle aggregate (white). The
aggregate accumulates, is then entrained and finally merges with the posterior trail,
corresponding to the creation and merging of a secondary chemical branch in the
kymograph.

For t < 0 the droplet decelerates while the secondary aggregate is accumulating.
t = 0 marks the point in time where V is minimal and the aggregate is on the cusp
of leaving the anterior stagnation point. For t > 0, the aggregate is advected to the
droplet posterior and the droplet accelerates due to the re-saturation of the dipolar
mode. V peaks once the aggregate has merged with the main trail — creating an
amplified fore-aft gradient — at t ≈ 1 s, which is comparable to the advective timescale
Rd/V ≈ 1 s. In the wide-field data analysis in Fig. 3.5 a, this is the time τ1 it takes the
droplet to reach maximum speed after a reorientation.
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Figure 3.6 – Anomalous diffusive swimming. (a) Mean squared displacement profiles
of experimental trajectories for different Pe. Dashed lines mark the predicted scaling
for ballistic motion, ∝ t2, 2D self-avoiding walk (SAW), ∝ t3/2, and random walk (RW),
∝ t. For higher Pe, there is a transition from ballistic to 2D SAW. (b) A segment of the
trajectory associated with the SAW and schematics of the droplet exhibiting bimodal
swimming causing the SAW. See also Appendix 3.9, Fig. 3.13 .

We now use the correlation function between V and |δθ|,

C|δθ|,V (∆t) =
〈
|δθ(t)| · V (t+ ∆t)

〉
t
,

plotted in Fig. 3.5 d, to estimate the growth times of the second mode from our data
for Pe > 10. Since V is minimal at maximum |δθ(t)| (Fig. 3.5 d), C|δθ|,V (∆t) dips at
∆t = 0. It subsequently peaks at the point of maximum V with a time delay ∆t = τ1,
when the contribution of the propulsive dipolar flow is maximal. The next dip at a
time τ2 > τ1 marks the next reorientation event; based on the discussion pertaining to
Fig. 3.3 and Fig. 3.4 c, for moderate to high Pe, τ2 − τ1 approximately corresponds
to the time scale for the growth and re-saturation of the n = 2 mode during the
bimodal motility (i.e. starting from a non-quiescent base state). Nevertheless, we
compare this experimentally obtained τ2 − τ1 with the theoretical growth times for
the n = 2 mode starting from the isotropic base state, λ−1

n=2Rd/Vt (Fig. 3.4 c), for
different values of Pe. Fig. 3.5 e shows that these two time scales, which are strictly
speaking different, still are of the same order of magnitude and show similar decreasing
trend with increasing Pe. We note that the growth time of the dipolar flow above
Pe ≈ 100 cannot be used for comparison to λn=1, since this flow is imposed by the
lateral chemical gradient. However, we can assume that this gradient increases with Pe,
resulting in faster acceleration, markedly higher swimming speeds, and hence, reduced
τ1, as observed experimentally (Fig. 3.5 d).
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3.8 Consequences for spatial exploration

Reminiscent of gait switching dynamics in biological locomotion, we have demonstrated
the emergence of complex swimming behaviour in a minimal active droplet system by
tuning the Péclet number. We found a transition from persistent swimming at low Pe

to chaotic bimodal swimming at high Pe — the latter results from the excitation of
higher hydrodynamic modes beyond critical Pe values, while the continuous switching
between them is caused by the self-generated chemical gradient in the environment.

This gradient sensitivity causes trail avoidance [89], which in turn affects the way
these droplet swimmers explore their environment. With increasing reorientation
frequency, we find a transition from quasi-ballistic propulsion to a 2D self-avoiding
walk (2D SAW). This effect is illustrated by the trajectories in Fig. 3.2 a-d, and also
by the fact that CV V in Fig. 3.2 e does not decay to zero. For a statistical analysis we
have plotted mean squared displacements for selected Pe values in Fig. 3.6 a, which
reproduce the expected scaling with t2 (ballistic) for Pe ≈ 4 and a transition to t3/2

(2D SAW, [156]) for Pe ≳ 36, with the crossover time decreasing with increasing Pe.
While transitions to random walks governed by run-and-tumble gait switching are
common in bioswimmers [157], self-avoidance requires chemical self-interaction [158].

Examples of anomalous diffusion driven by repulsive biochemical signalling have
been found in the spreading of slime molds [159, 160] — active droplets can show
analogous behaviour based on purely physicochemical mechanisms.

Conclusion

In this work, we demonstrated that the manner in which hydrodynamic and self-
generated chemical fields are coupled determines the nonlinear dynamics of autophoretic
micro-swimmers. The fluorescence-based visualisation technique used to simultaneously
probe this coupling can provide insight into many recent autophoretic models [57,
58, 67, 101, 152, 161, 162]. For example, extensive theoretical studies [163–166] have
demonstrated the importance of quantifying far-field and near-field contributions,
coupling to chemical fields and the effects of confinement to understand how swimmers
approach each other or form bound states, which is vital to nutrient entrainment, food
uptake and mating in bioswimmers.

While many micro-swimmer models incorporate unsteady dynamics via stochastic
fluctuations, we have shown that the interplay of nonlinear dynamics and interaction
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with the history of motion also allows for the emergence of memory-driven chaotic
behaviour. An appealing example from a different field are droplet walkers on a
vibrated bath [167], which show a transition from persistent to a bimodal, stop-and-go
motion based on an effective ‘system memory’ parameter [168, 169]. The corresponding
theoretical framework [168] is general enough to also apply to bimodal chaotic motion
in droplet swimmers.

We acknowledge fruitful discussions with Stephan Herminghaus, Arnold Mathijssen
and Prashanth Ramesh, as well as financial and organisational support from the DFG
SPP1726 “Microswimmers” (CCM, RD, BVH), the ERC-Advanced Grant “DDD” (DL,
MJ), and the Max Planck Center for Complex Fluid Dynamics.
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3.9 Appendix

Materials and Methodology

Materials and characterisation

Our samples consisted of droplets of (S)-4-Cyano-4’-(2-methylbutyl)biphenyl (CB15)
doped with the fluorescent dye Nile Red in an aqueous solution of the anionic surfactant
tetradecyltrimethylammonium bromide (TTAB) corresponding to 5 wt.% in pure water,
with a critical micelle concentration of CMC= 0.13 wt.% (50 mg in 1 ml of solution). We
purchased CB15, TTAB, and Nile Red from commercial suppliers (Synthon Chemicals
and Sigma-Aldrich) and used them as is. We controlled the viscosity of the swimming
medium, µo, by adding glycerol to the aqueous TTAB solution.

We used an Anton Paar MCR 502 rotational rheometer to characterise the shear
viscosity of water-glycerol-surfactant solutions (Fig. 3.7 ). Experiments were carried
out using a cone-plate geometry, to find shear-rate versus shear-stress curves at a fixed
temperature, and viscosity versus temperature a fixed shear rate. To limit effects of
solution evaporation, the cone-plate geometry was surrounded by a water bath and
covered by a Peltier hood. Over the shear rate range 0.01 s−1 < γ̇ < 100 s−1, viscosity
was found to be constant, such that our solutions are well-described as Newtonian, as
should be expected: Water/glycerol mixtures are used as Newtonian standard media
throughout the existing literature.

To estimate the surfactant consumption rate qs in (3.1), we extracted the droplet
shrinking rate dRd/dt from the bright field microvideography data presented in Fig. 3.2 .
We found a moderate dependence on the glycerol fraction (Fig. 3.8 ), which we included
as a first order approximation, via linear regression (blue line), to evaluate qs in the
Pe estimates in the main manuscript.

PDMS soft lithography for droplet generation

For the production of monodisperse oil droplets, we fabricated microfluidic channels in-
house, using standard soft lithography techniques. First, 2D photomasks were designed
in AutoCad, and then printed onto an emulsion film in high-resolution (128,000 dpi) by
a commercial supplier (JD Photo-Tools). Next, the photoresist SU-8 3025 (MicroChem)
was spin-coated onto a 4 inch diameter silicon wafer (Si-Mat), where spin-speed and
duration were adjusted to give a controllable uniform thickness. A negative mold
was cured in the SU-8 through the photomask by UV light exposure. After further
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Figure 3.7 – Viscosity of the swimming medium, a mixture of water, glycerol and
TTAB surfactant, for increasing glycerol/water ratios. Surfactant concentration is 50 mg
in 1 ml of solution.

Figure 3.8 – Solubilisation rate |dRd/dt|, for increasing glycerol/water ratios, blue line
marks a linear regression fit to y = 0.000058x + 0.0047. Surfactant concentration is 50 mg
in 1 ml of solution.
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Figure 3.9 – The microfluidic chip used to produce mono-dispersed oil droplets in a
surfactant solution.

chemical treatment with photoresist developer, uncured SU-8 was removed, leaving
behind cured SU-8 microstructures on the silicon wafer.

We then poured a poly(dimethyl siloxane) (PDMS, Sylgard 184, Dow Corning)
mixture of 10:1 volumetric ratio of base to cross-linker over the wafer, and baked for 2
hours at 80 ◦C, producing a solid PDMS layer with microstructured indentations. We
peeled the indented PDMS from the wafer, and punched holes through it to create
liquid inlets/outlets at opposing ends of the channels. The structured PDMS surface,
as well as a glass coverslip, were cleaned and treated with partial pressure air-plasma
(Pico P100-8; Diener Electronic GmbH + Co. KG) for 30 seconds, and then pressed
together, bonding the two surfaces. Fig. 3.9 shows a micrograph of such a PDMS chip
during droplet production.

The walls of these microfluidic chips were selectively treated to hydrophilise the
channels where surfactant solution will flow. This prevents oil from wetting the walls
during droplet production. We followed the technique of Petit et al.[106]: First, the
channel walls were oxidised by a 1:1 mixture of hydrogen peroxide solution (H2O2
at 30 wt.% , Sigma-Aldrich) and hydrochloric acid (HCl at 37 wt.%, Sigma-Aldrich).
This mixture was flushed through the channels for approximately 2 minutes by using a
vacuum pump system. After the oxidation, the channel was rinsed by flushing double
distilled water for 30 seconds. Next, a 5 wt.% solution of the positive polyelectrolyte
poly(diallyldimethylammonium chloride) (PDADMAC, Sigma-Aldrich) was flushed for
2 minutes through the oxidised channel of the device. The PDADMAC binds to the
activated channel walls by ionic interactions. Finally, a 2 wt.% solution of the negative
polyelectrolyte poly(sodium 4- styrenesulfonate) (PSS, Sigma-Aldrich) was flushed for
2 minutes.
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Droplet generation

Once the chips had been treated, we mounted syringes of oil and 0.1 wt.% aqueous
TTAB solution to a microprecision syringe pump (NEM-B101-02B; Cetoni GmbH),
and connected these to the two inlets of the microfluidic chip via Teflon tubing (39241;
Novodirect GmbH), and tuned the flow speed through the chip until the desired droplet
size was reached. Once droplet production was monodisperse (after approximately 5
minutes) and at a steady state, these droplets were collected in a bath of 0.1 wt.%
TTAB solution. This solution is of a high enough concentration to stabilize the droplets
against coalescence, but not high enough to induce solubilization.

Fabrication of the observation Hele-Shaw cell

The swimming behaviour of the droplets was observed in a quasi-2D Hele-Shaw reservoir,
which we fabricated directly from SU-8 photoresist without PDMS casting. To fabricate
the reservoirs we therefore used a photo-mask with inverted polarity. We spin-coated
the photoresist directly onto a glass slide (50×75 mm2) and followed the same procedure
for photo-lithography as outlined in Section 3.9. This resulted in a layer of crosslinked
SU-8 (thickness ≈ 60µm) with reservoirs of the dimensions 8×13 mm. These reservoirs
were filled with the samples, sealed with a glass cover slip and put under a microscope.

Double-channel fluorescent microscopy technique

We used double-channel fluorescent microscopy for simultaneous imaging of the chemical
and hydrodynamic fields. A schematic of the setup is shown in Fig. 3.10 . Two laser
units excite the test section. The Nile Red dye (Thermo Fisher Scientific), which
visualises the oil phase, is excited with a 561 nm laser and emits light at a maximum
of ∼ 630 nm. The green fluorescent particles (FluoSpheresTM, yellow-green fluorescent,
500 nm in diameter), which visualise the fluid flow around the droplet, are excited
with a 488 nm laser and emit light at a maximum of ∼ 510 nm. The emitted light was
separated using a beam splitter and appropriate filters for each emission maximum. We
also used a spatial pinhole (confocal microscopy) to enhance image quality. Examples
of snapshots recorded on each channel are shown in Fig. 3.10 b,c.

Image processing and data analysis

To observe the long time statistical behaviour of the active droplets, as in Fig. 3.2 ,
we observed their motion in a glass-bounded Hele-Shaw cell (quasi-two dimensional
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Figure 3.10 – Dual-channel fluorescent microscopy. (a) Light path schematic with
excitation laser lines. (b, c) Example micrographs showing the separated emission from
filled micelles (b) and fluorescent tracers (c).

reservoir, 13 × 8 mm and height h ≈ 60µm) under a bright field microscope (Leica
DM4000 B) at low magnification (5×) compared to the double-channel fluorescence
microscopy setup. Videos were recorded at a frame rate of 10 fps using a Canon
(EOS 600d) digital camera (1920 × 1080 px). The droplet coordinates in each frame
were extracted from video frames using the common Python libraries numpy, PIL
and openCV (scripts available on request). Steps include background correction,
binarisation, blob detection by contour analysis and minimum enclosing circle fits.
Swimming trajectories were obtained using a frame-by-frame nearest-neighbour analysis.

To acquire the kymographs of the chemical field and tangential and radial velocities
around the droplet interface, we observed the droplet behaviour by double-channel
fluorescent microscopy as described in Section 3.9. We used a 512 × 512 pixels camera
at a frame rate of 14 fps connected to a 20× objective. First we split the red (NileRed,
filled micelles) and green (tracer particles) channels. Then, the red frames were used
to extract the droplet coordinates via the blob detection algorithm described above.
We developed a MATLAB script that centred the droplet and recorded the red light
intensity value along the interface at a distance 15.6µm for Pe ≈ 4 and 36 and 20.4µm
for Pe ≈ 293. We note that it was not possible to record the intensity closer to the
interface because the strong fluorescence from the large amounts of dye inside the
droplet created a very bright region extending several micrometres beyond the actual
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interface. We plotted the extracted profiles versus time to generate spatiotemporal
kymographs.

For a quantitative analysis of the flow field around the droplet we performed
particle image velocimetry (PIV) on the tracer particles images (green channel) using
the MATLAB-based PIVlab interface [133]. The objective was focused on the mid-plane
of the Hele-Shaw cell. We defined a moving mask for the area covered by the droplet.
We performed the analysis in 16 × 16 pixel interrogation windows with 75% overlap.
The spatial resolution is 1.2 µm/s. After obtaining the velocity vector field, we centered
the droplet and read the velocity vectors at a certain distance from the droplet interface
(3.6 µm for Pe ≈ 4 and 36 and 8.4 µm for Pe ≈ 293). The tangential (uθ, in the
droplet reference frame) and radial (ur, only for Pe ≈ 293, in the lab reference frame)
velocity components were then calculated and plotted in the kymographs. Due to the
impermeability boundary condition, the radial component of the velocity directly at
the interface is supposed to be zero; however, since we read the values at a certain
distance from the interface there was an inward and outward radial contribution to
the flow. We used this observation in particular at Pe ≈ 293 to show the quadrupolar
symmetry of the flow field at the stopping moment.

In Fig. 3.1 a and supplementary video S1, we tracked the droplet and centred
it in the image. To obtain the pathlines of the tracer particles in the video we
used FlowTrace [170] to convolve a superposition of 10 frames for each image. For
Fig. 3.1 a we superimposed 30 frames. To visualise the motion of the tracer particles
in Fig. 3.4 b,IV and the supplementary videos S6-S9, we processed the green channel
of the input video (8 bit RGB) as follows: for each pixel coordinate, the intensity was
replaced by its standard deviation within a 20 frame window around the current frame.
Each frame was subsequently contrast maximised within a [0, 255] intensity range. The
red and blue channels were not modified. This procedure was inspired by ImageJ’s Z
projection algorithm; the respective Python code is available on request.

Viscosity dependence of hydrodynamic modes

In this appendix we describe the mathematical framework for the coupled hydrodynamic
and advection-diffusion problems pertaining to the active droplet system. Note that
we have followed the solution methodology of refs. [54, 57, 73], and have reworked
each step of the analysis for the present system. The appendix shows the origins of all
expressions and equations (including the scaling analyses necessary for simplifications)
needed to understand the theoretical framework, and importantly, the origin of Fig. 4.
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We especially show each step of the linear stability analysis so that the derivation of
the equations governing the instability growth rates for the hydrodynamic modes are
clear.

Governing equations and boundary conditions for the active droplet system

Considering an axisymmetric Stokes flow (Reynolds no. for the swimming of the active
droplet Re ∼ 10−4), and the impermeability of the droplet interface, the flow field
around and inside the spherical active droplet (capillary number Ca << 1) can be
expressed in terms of the non-dimensional stream function ψ, in (r, θ) co-ordinate
system, as [54, 73, 155]:

ψo = a1

(1
r

− r2
)

(1 − η2)P ′
1(η) +

∞∑
n=2

an

(
1 − r2

rn

)
(1 − η2)P ′

n(η) (3.4)

ψi =
∞∑
n=1

bn(rn+1 − rn+3)(1 − η2)P ′
n(η) (3.5)

Here, and in the subsequent discussions, superscripts ‘o’ and ‘i’ refer to quantities
outside and inside the active droplet respectively, r is the radial coordinate non-
dimensionalised by droplet radius Rd, η = cos θ, and Pn(η) is the Legendre polynomial
of degree n with the prime denoting its derivative; n here physically represents the
nth hydrodynamic mode. The non-dimensional radial and tangential flow velocity
components around and inside the droplet are related to ψ as ur = − 1

r2
∂ψ
∂η

and
uθ = − 1

r(1−η2)1/2
∂ψ
∂r

. The coefficients an and bn in eqn. 3.4 and eqn. 3.5 are constrained
by the following boundary conditions [54, 155]:
(i) tangential velocity (uθ) condition at the droplet interface (r = 1):

uoθ − uiθ = m
( 2µ+ 3

1 + 3m

)
(1 − η2)1/2

(
∂c

∂η

)
r=1

(3.6)

(ii) tangential stress (τrθ) condition at the droplet interface (r = 1) (Marangoni effect):

τ orθ − τ irθ = − 1
µ

( 2µ+ 3
1 + 3m

)
(1 − η2)1/2

(
∂c

∂η

)
r=1

(3.7)

The coefficients on the right hand side of eqn. 3.6 and eqn. 3.7 essentially stem from
the non-dimensionalization of the classical boundary conditions. Note that the flow
velocity is non-dimensionalized using Vt = qs(γcRd+3µiM)

D(2µo+3µi) , which is a theoretical estimate
for the terminal velocity of the active droplet considering the contributions of both
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the Marangoni and the diffusiophoretic effects [43, 54]. Furthermore, µ = µo/µi is
the ratio of the swimming medium viscosity µo to the droplet viscosity µi, and the
non-dimensional parameter m represents the relative strengths of diffusiophoretic to
Marangoni effects [54]. Essentially, m can be considered as a ratio of the diffusio-
phoretic velocity scale to the viscocapilllary velocity scale representing the Marangoni
effect. Accordingly, m = µiM

γcRd
≈ ζ

2Rdµ
, where M ≈ kBT

2µo ζ
2 is the diffusiophoretic mobility

[43, 58], γc ≈ kBTζ is the leading order change in the interfacial surface tension γ with
surfactant concentration c (alternatively, γc = dγ

dc
can be considered to be a measure

of the change in γ with c assuming a linear variation) [54, 58], and ζ ∼ 10 nm is the
characteristic length scale over which the surfactants interact with the droplet in the
interfacial region. For the active droplet system, O(m) ∼ 10−3 − 10−2 for the entire
range of experiments; hence, for the present physical problem the diffusiophoretic effect
is much weaker as compared to the Marangoni effect. However, the former is considered
in the analysis here for the sake of generality. In the definition of Vt, qs is an isotropic
and constant interfacial surfactant consumption rate per unit area necessary for the
droplet activity, and D = kBT

6πrsµo is the diffusion coefficient for the surfactant monomer
(length scale for surfactant monomer rs ∼ 10−10 m).

Eqn. 3.6 and eqn. 3.7 delineate the dependence of the swimming hydrodynamics on
the distribution of the non-dimensional surfactant concentration c in the vicinity of
the droplet. Naturally, c is governed by an advection-diffusion relation [54, 73, 155]:

Pe

[
uor
∂c

∂r
− uoθ

r
(1 − η2)1/2 ∂c

∂η

]
= 1
r2

∂

∂r

(
r2 ∂c

∂r

)
+ 1
r2

∂

∂η

(
(1 − η2)∂c

∂η

)
(3.8)

The distribution of c is subject to the following boundary conditions:
(i) isotropic and constant surfactant consumption at the droplet interface (r=1)

(
∂c

∂r

)
r=1

= 1 (3.9)

(ii) the bulk condition
c(r → ∞) → c∞ (3.10)

Note that eqn. 3.9 addresses the depletion of the interfacial surfactant monomers due
to the creation of the filled micelles by considering the isotropic and constant interfacial
surfactant adsorption rate per unit area of qs, corresponding to a flux with unit of
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number per area per time (in dimensional form: D∇c∗ · n̂ = qs; this gives a scale for
the surfactant concentration as ∼ qsRd

D
) [54, 73]. Pe in eqn. 3.8 is the system Péclet

number– the details of which are discussed in the following sub-section. The above
system of equations (eqn. 3.4–eqn. 3.10) can be solved for ψ (therefore ur, uθ), and
c using the singular perturbation technique for certain limiting cases [54, 73]. The
solvability condition clearly shows that the actuations of different hydrodynamic modes
depend on certain threshold values of Pe (Fig. 4a in the main text) [54]. Furthermore,
the asymptotic analysis also provides a physical understanding of the hydrodynamic
and surfactant concentration fields corresponding to the different modes, specifically
n = 1 and n = 2 (Fig. 4b in the main text).

The system Péclet number

The important thing to understand now is the dependence of Pe on µ. Classically, Pe
can be written as Pe = VtRd

D
, where Vt = qs(γcRd+3µiM)

D(2µo+3µi) is the theoretical estimate for
the terminal velocity of the active droplet considering the contributions of both the
Marangoni and diffusiophoretic effects, as mentioned in the preceding sub-section [43,
54]. Utilizing the aforementioned definition of Vt, and following some simple algebraic
manipulations, Pe can be expressed in terms of system constants and the parameter µ
as:

Pe = VtRd

D
= qs (γcRd + 3µiM)

D (2µo + 3µi)
Rd

D

⇒ Pe = qsM

Dm

(1 + 3m)
(2µ+ 3)

Rd

D

⇒ Pe ≈ 18π2

kBT
qsr

2
sζR

2
dµ

i

[
µ

(
2µ+ 3ζ/Rd

2µ+ 3

)] (3.11)

In the last step of eqn. 3.11, the approximate expressions for M and m (see sub-
section 3.9), and the definition of D (see sub-section 3.9) are utilized to derive the final
expression for Pe. Eqn. 3.11 expresses Pe as a monotonically increasing function of the
viscosity ratio µ (markers in Fig. 4a in the main text). Note that qs is approximately
estimated by relating the dissolution rate of the active droplet to the isotropic and
constant surfactant consumption at the droplet interface [58]; the dissolution rate of
the active droplet is dependent on the glycerol concentration (Fig. 3.8 ) which effectively
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makes qs dependent on µo . We further note that the second term in the numerator
within parenthesis O

(
ζ
Rd

)
∼ 10−4; this further substantiates the fact that the diffusio-

phoretic effect is much weaker compared to the Marangoni effect for the present system.

Linear stability analysis about a motionless (isotropic) base state

For the linear stability analysis (also see [57, 73]), the time-dependent form of the
advection-diffusion equation (eqn. 3.8) is used:

Pe

[
∂c

∂t
− 1
r2
∂ψo

∂η

∂c

∂r
+ 1
r2
∂ψo

∂r

∂c

∂η

]
= 1
r2

∂

∂r

(
r2 ∂c

∂r

)
+ 1
r2

∂

∂η

(
(1 − η2)∂c

∂η

)
(3.12)

Next, the desired quantities are expressed in terms of the unsteady (instability) modes–
ψ = eλt

∑
n ψ̃n(r)Pn(η) and c = −1

r
+ eλt

∑
n c̃n(r)Pn(η), where λ(> 0) is the non-

dimensional growth rate for the instability modes. Using the aforementioned expressions
for ψ and c, and linearizing eqn. 3.12, the governing equations for the first two modes
can be obtained as:

d

dr

(
r2dc̃1

dr

)
−
(
2 + λ2

sr
2
)
c̃1 = 2Pe a1

1 − r3

r3 (3.13)

d

dr

(
r2dc̃2

dr

)
−
(
6 + λ2

sr
2
)
c̃2 = 6Pe a2

1 − r2

r4 (3.14)

where λs =
√
λ Pe, and a1 and a2 are the coefficients of the first and second modes

respectively of the outer stream function (as in eqn. 3.4). Eqn. 3.13 and eqn. 3.14 are
solved to evaluate c̃1 and c̃2, respectively:

c̃1 = Pe a1

(
2
x2 + λ3

s

2x3

)
+ α1

(1 + x

2x2

)
e−x − Pe a1

λ3
s

4x2

[(1 + x

2

)
(Chi(x) + Shi(x)) e−x

−
(1 − x

2

)
(Chi(x) − Shi(x)) ex

]
(3.15)
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c̃2 = Pe
a2

8

(
8λ4

s

x4 + λ4
s

x2 − 6λ2
s

x2

)
+ α2

(
x2 + 3x+ 3

2x3
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e−x

+ Pe a2
λ2
s(6 − λ2

s)
16x3

[(
x2 + 3x+ 3

)
(Chi(x) + Shi(x)) e−x

−
(
x2 − 3x+ 3

)
(Chi(x) − Shi(x)) ex

]
(3.16)

Here, x = rλs is a rescaled spatial variable, Chi(x) and Shi(x) are the hyperbolic
cosine integral and hyperbolic sine integral functions, and α1 and α2 are the constants
of integration. Note that eqn. 3.15 and eqn. 3.16 are evaluated in a manner which
satisfies the bulk condition for the surfactant distribution (eqn. 3.10) i.e. as r → ∞,
c− c∞ → 0. Furthermore, considering the expression for c, the interfacial surfactant
consumption condition (eqn. 3.9) reduces to the form:

(
∂c

∂r

)
r=1

= 1 ⇒
(
dc̃1

dx

)
x=λs

= 0;
(
dc̃2

dx

)
x=λs

= 0 (3.17)

Using eqn. 3.15 and eqn. 3.17, α1 can be evaluated as:

α1 = −Pe a1
eλs

4 (λ2
s + 2λs + 2)

[
2
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λ4
s + 6λ2

s + 16
)

+ λ3
s
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s

(
λ2
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(Chi(λs) + Shi(λs)) e−λs

] (3.18)

Similarly, using eqn. 3.16 and eqn. 3.17, α2 can be evaluated as:

α2 = Pe a2
λ2
se
λs

8 (λ3
s + 4λ2

s + 9λs + 9)
[
−2λs

(
5λ2

s + 2
)

+
(
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) (
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s + 9λs − 9
)
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λ2
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) (
λ3
s + 4λ2

s + 9λs + 9
)

(Chi(λs) + Shi(λs)) e−λs

] (3.19)

Eqn. 3.15 and eqn. 3.16, along with eqn. 3.18 and eqn. 3.19, give closed form expressions
for c̃1 and c̃2.

Considering the hydrodynamic boundary conditions (eqn. 3.6 and eqn. 3.7), and
using the orthogonality condition for Legendre polynomials, a set of two simple algebraic
equations for the coefficients an, and bn for each of the first two modes can be written
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as:
(i) first mode (n = 1)

3a1 − 2b1 = m
( 2µ+ 3

1 + 3m

)
c̃1 (3.20)

µa1 + b1 = 1
6

( 2µ+ 3
1 + 3m

)
c̃1 (3.21)

(ii) second mode (n = 2)
a2 − b2 = m

2

( 2µ+ 3
1 + 3m

)
c̃2 (3.22)

µa2 + b2 = 1
10

( 2µ+ 3
1 + 3m

)
c̃2 (3.23)

Note that c̃n in the above equations is explicitly dependent on an (see eqn. 3.15,
eqn. 3.18, and eqn. 3.16, eqn. 3.19). Considering the closed form expression for c̃1

(eqn. 3.15 and eqn. 3.18), the solvability condition for eqn. 3.20 and eqn. 3.21 gives:

− (Chi(λs) − Shi(λs)) eλsλ4
s − λ3

s + λ2
s − 2λs + 6

12 (λ2
s + 2λs + 2) = 1

Pe
(3.24)

Similarly, considering the closed form expression for c̃2 (eqn. 3.16 and eqn. 3.19), the
solvability condition for eqn. 3.22 and eqn. 3.23 gives:

−(6 − λ2
s) (Chi(λs) − Shi(λs)) eλsλ4

s

8 (λ3
s + 4λ2

s + 9λs + 9) + (λ2
s + 2λs + 2) (λ3

s − 3λ2
s + 6)

8 (λ3
s + 4λ2

s + 9λs + 9)

= 10
Pe

(1 + µ)(1 + 3m)
(2µ+ 3)(1 + 5m)

(3.25)

eqn. 3.24 and eqn. 3.25 are solved numerically to evaluate the variations of the non-
dimensional growth rates

(
λ = λ2

s

Pe

)
with Pe for the first and second instability modes

respectively (Fig. 4c in the main text). Note that eqn. 3.24 is identical to that derived
for the spontaneous motion of an autophoretic isotropic particle [57]. Furthermore, it is
important to note here that the inverse of the time scale used for non-dimensionalizing
the growth rate is Vt

Rd
, which is consistent with the entire analysis.

Supplementary figures

Extending Fig. 3.3 , Fig. 3.11 provides additional flow field snapshots to illustrate
transient flow modes, with the chemical field kymographs plotted for a longer period
of 60 seconds. Supporting Videos S6-8 respectively correspond to the kymographs in
Fig. 3.11 (a-c).
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In Fig. 3.12 , we have plotted the long-time tangential acceleration, speed and
the reorientation angle for Pe = 36. This data set was used to identify the abrupt
reorientation events. We identified these events based on a cutoff criterion for the
reorientation between video frames |δθ| = 0.2 rad (Fig. 3.12 , c & d), aligned and
overlaid the profiles of all events with the turning point (|δθmax|) set as t = 0, and
calculated the time-dependent average (⟨⟩ represents ensemble averaging over all
events).

In Fig. 3.13 , we plotted the the long time acceleration signal for Pe = 293
to demonstrate signatures of bimodal swimming. Such events can be identified by
intermittent strong fluctuations in the acceleration profile. The zoomed-in view further
demonstrates the difference between stopping (n = 2) and swimming modes (n = 1).
Constant transitions beween these modes result in the anomalous diffusive behaviour
shown in Fig. 3.6 in the main text.
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Figure 3.11 – Additional data for Fig. 3.3 : Kymographs of the chemical field with
selected instantaneous frames. Rows (a), (b) and (c) respectively correspond to Pe = 4,
Pe = 36 and Pe = 293. In (b), the red arrow shows the location of the growing filled
micelle blob.
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Figure 3.12 – Conditional averaging over reorientation events. (a), (b) and (c) are
tangential acceleration, speed and the reorientation angle magnitude, respectively. In (c),
the identified sharp reorientation events are shown by grey (◦) symbols. The zoomed-in
view is one example event that shows the general trend, a delay, τ1, between |δθ| and |V |.
(d) The distribution of |δθ| and the cutoff value. The sharp turning events are coloured
in red.

Figure 3.13 – Signatures of bimodal space exploration in the long-time tangential
acceleration signal. The corresponding Pe is 293.
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Chapter 4

Chemotactic droplet swimmers in
complex geometries1

Abstract
Chemotaxis2 and auto-chemotaxis are key mechanisms in the dynamics of micro-

organisms, e.g. in the acquisition of nutrients and in the communication between
individuals, influencing the collective behaviour. However, chemical signalling and the
natural environment of biological swimmers are generally complex, making them hard
to access analytically. We present a well-controlled, tunable artificial model to study
chemotaxis and autochemotaxis in complex geometries, using microfluidic assays of
self-propelling oil droplets in an aqueous surfactant solution [13, 116].Droplets propel
via interfacial Marangoni stresses powered by micellar solubilisation. Moreover, filled
micelles act as a chemical repellent by diffusive phoretic gradient forces. We have
studied these chemotactic effects in a series of microfluidic geometries, as published
in [89]: First, droplets are guided along the shortest path through a maze by surfactant
diffusing into the maze from the exit. Second, we let auto-chemotactic droplet swimmers
pass through bifurcating microfluidic channels and record anticorrelations between
the branch choices of consecutive droplets. We present an analytical Langevin model
matching the experimental data. In a previously unpublished experiment, pillar arrays

1This chapter is published in Jin, C., Hokmabad, B. V., Baldwin, K. A., and Maass, C. C. (2018).
Chemotactic droplet swimmers in complex geometries. Journal of Physics: Condensed Matter,
30(5), 054003. Stop-and-go droplet swimmers. arXiv preprint arXiv:2005.12721. C. J. designed the
research, performed experiments and data analyses and wrote the manuscript. B. V. H. performed
experiments and data analyses and wrote the manuscript. K. A. B. performed experiments and wrote
the manuscript. C. C. M. supervised the project and wrote the manuscript.

2Extended write-up of a talk given by C. Maass at Liquids 2017, presenting new data in the context
of a review of our previous work on the subject.
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of variable sizes and shapes provide a convex wall interacting with the swimmer and, in
the case of attachment, bending its trajectory and forcing it to revert to its own trail.
We observe different behaviours based on the interplay of wall curvature and negative
autochemotaxis, i. e., no attachment for highly curved interfaces, stable trapping at
large pillars, and a narrow transition region where negative autochemotaxis makes the
swimmers detach after a single orbit.

4.1 Introduction

One need only to look to nature to conclude that swimming techniques must be tailored
to the swimmer’s size. For a blue whale, for example, their enormity means their
momentum dominates over viscous drag, and long drift times are the result. In contrast,
for microscopic swimmers, such as algae or artificial microrobots, viscous forces will
dominate, drift times become negligible, and the swimmer must sustain a continuous
asymmetric flow pattern to achieve net motion, which in a Newtonian fluid is only
possible via a time asymmetric swim-stroke, as shown by Purcell’s infamous Scallop
Theorem [171].

For microorganisms, propulsion is more than simply a means of random autonomous
motion, it must also be responsive to the local environment, to reorient and propel
the organism toward their various attractants. A few examples of this are chemical
gradients, such as toward a food source (chemotaxis), flow gradients, such as towards a
quiescent medium (rheotaxis), or light gradients, such as towards the Sun (phototaxis).
Moreover, many organisms produce their own chemical gradients, to communicate
their history with either neighbouring cells or their own future-selves (autochemotaxis).
This latter example – a cell’s ability to produce and respond to microbial chemical
signals – is crucial for individual cell survival and colony formation.

Indeed, microbial life happens in complex bounded spaces – bacteria often live in
soil, or are confined to biological tissues or fluid interfaces – which affects both the
behaviour of the swimmers as well as the distribution of chemoattractants.

For the design of artificial microswimmers used as reactant vessels or chemical
sensors, similar signalling pathways must also be considered if the swimmer is to reach
a predetermined target, despite the many chemical, rheological and biological obstacles
in its specific environment.

Taking lessons from biology for understanding and designing simple microscopic
self-propulsion and signalling techniques is, however, complicated by the many other
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features of single-celled life: self-replication, irregular structure, metabolism, colony
formation, mutation, and cell-death. To this end, various methods of artificial and
biohybrid self-propulsion have been developed based on more rudimentary physical
mechanisms. [41, 42, 58, 65, 172–177]

Active emulsions are a class of artificial swimmers that are particularly attrac-
tive as an ideal microswimmer as they are self-propelling in homogeneous fluids, are
environment-sensitive, exhibit swimmer-to-swimmer chemical signalling, and are com-
putationally simple due to their spherical symmetry. In this manuscript, based on
a presentation given at Liquids 2017 in Ljubljana, we discuss our work on a specific
type of active emulsion: liquid crystal droplets suspended in a cationic surfactant
solution. These droplets display a rich variety of swimming behaviours, reminiscent of
the stunning array of behaviours that micro-organisms exhibit. After a short review of
current literature relating to the problem of chemoresponsive swimmers near interfaces
in section 4.2, sections 4.3 to 4.5 provide a review of the features of our specific system
as previously published in [13, 79, 89, 116]. In section 4.6, we present an experiment
on the interaction of droplets and circular pillars exhibiting a complex interplay of
interfacial topology and phoretic effects.

4.2 Interfacial interactions and chemotaxis in mi-
croswimmers

As argued above, the accurate physical modelling of biological systems in both theory
and experiment is of high practical interest. Experimental and theoretical studies
in this field evolve from the interplay of chemical gradients, interfaces and collective
effects. The following review of current research should at least give a flavour of the
complex task involved in bringing these concepts together. Doing the field of active
swimmers fully justice would provide material for an entire monograph; we therefore
restrict ourselves to a selection illustrating our specific problem and recommend to the
reader extensive review articles like [178] and [179] and references therein.

A point much discussed in theoretical studies is that a swimmer is force and torque
free by virtue of its self propulsion [178, 180]. Setting up the required overdamped equa-
tions of motion is a delicate task. In the active Brownian particle model (ABP) [181],
the forces and torques associated with self propulsion and the back action in the flow
field are substituted with effective quantitites and balanced against external forces in
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the system, as in noise terms, steric effects, phoretic forces and taxes. This computa-
tionally efficient phenomenological approach has been successfully used in a number of
studies to capture aspects of interfacial and collective interactions too complex for a
full hydrodynamic treatment and is applicable to all classes of microswimmers ranging
from bioswimmers over phoretic colloids to active emulsions. [182–185]

However, hydrodynamic flow fields can crucially determine the nature of interactions
with obstacles, as e.g. observed in experimental studies on bioswimmer navigation at
boundaries [186, 187]. Realistic studies need to test the validity of far field pusher/puller
type and near field approximations, and quantitatively estimate the relative importance
of hydrodynamic effects against steric or phoretic influences. Particularly in the case
of interactions at curved interfaces, this force balance can determine the difference
between scattering and entrapment [179, 188–193]. In our own experiments, we have
observed large scale convective phase separation governed by hydrodynamic cutoff
lengths and gravity [79].

A precise estimation of the force balance is specifically relevant if a phenomenological
approach like an ABP model needs to be extended with respect to external influences like
chemotaxis. Biological chemotaxis is usually not directly coupled to the chemoactive
gradient. Small organisms like prokaryotes, due to their small size, have to sense
gradients by time integration adapted to their typical propulsion strategies [194] -
run and tumble [195, 196], reverse and flick [197] or helical swimming [198]. Larger
organisms able to probe gradients over their body length like amoeboids, leucocytes
or dictyostelium [199, 200], can couple directly into spatial gradients, but in such
cases comparative theoretical and artificial models have to accommodate intricate
biomechanisms and related delay times, as has recently been demonstrated for a robotic
system [201]. Delayed reactions are especially relevant for autochemotaxis [90, 202],
where the gradients are produced by the active agents themselves and expected to
change rapidly.

Chemotactic swimmers in complex environments have shown fascinating effects in a
number of experiments on bioswimmers, [203–207] but these assays are quite often too
complex for a full and quantitatively reliable analysis. Thus, there is a clear need for
well controlled and tunable systems accessible to analytical modelling, and we believe
active emulsions to be a promising candidate.
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4.3 Active liquid crystal emulsions

Figure 4.1 – Schematic of the surfactant coverage on the droplet interface, the distribu-
tions of empty and filled micelles and the flows involved in self propulsion.

4.3 Active liquid crystal emulsions

We begin with a review of the general properties of the system as previously published
in [13, 116]. We consider an emulsion of mesoscopic oil droplets in a micellar aqueous
solution of an ionic surfactant. The oil disperses gradually into a micellar nanoemulsion,
and the droplets self propel while dissolving, a motion that is caused by a self-sustaining
gradient between the anterior and posterior poles of the droplet.

We model this interfacial instability as follows [13]: due to their charge, micelles are
repelled from the interface, such that they are primarily filled in a boundary layer close
to the interface by oil molecules diffusing in the water. This process requires the oil to
be sparingly soluble in water. Micelles swell to accommodate the oil, thereby locally
depleting the background of free surfactant to a concentration below the critical micelle
concentration (CMC). Under these conditions, empty micelles must disintegrate and
replenish both the CMC and the equilibrium interfacial coverage, but filled micelles
are stabilized by the incorporation of oil molecules, and do not disintegrate. By this
mechanism, the interfacial surfactant coverage is coupled to the local density of empty
micelles outside the boundary layer, as it depends directly on the density of free
surfactant in the aqueous phase at the interface. For a droplet at rest, all distributions
are radially symmetric.

If a droplet is displaced by a random jolt, the initially spatially symmetric cloud
of filled micelles around it will shift away from its front, and therefore the interfacial
surfactant coverage at the anterior side of the droplet will increase, causing a gradient
in interfacial tension towards the posterior (Fig. 4.1).

The resulting flow along the interface is coupled to both the aqueous and oil phases.
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Chemotactic droplet swimmers in complex geometries

Figure 4.2 – Average speed of 5CB droplet swimmers in a Hele-Shaw cell, depending
on the TTAB surfactant concentration in weight percentage. Figure adapted from [13],
modified with permission of the Royal Society of Chemistry

In the aqueous phase, empty micelles are continually advected to the anterior interface,
sustaining the surfactant coverage gradient, and thereby constant forward propulsion,
while inside the droplet, there is a toroidal convective flow.

A qualitative analytical model of the advection-diffusion dynamics of micelles and
molecules [13, 67] at the interface predicts a global threshold concentration of surfactant
exceeding the CMC, below which the interfacial coverage is stable against positional
fluctuations, a range of increasing concentration during which the droplet will speed up,
and a plateau in speed for high concentrations. We have confirmed this experimentally
(Fig. 4.2).

Internal and external advective and convective flows affect two characteristic features
of our self-propelling droplets. First, due to the direct coupling of the interfacial
surfactant coverage to the local density of empty micelles, the droplets swim in the
direction of positive surfactant gradients, i.e. exhibit chemotaxis. Since regions where
droplets have previously traversed contain filled micelles (and therefore fewer empty
micelles), droplets will avoid their own and other droplets’ trails, i.e. exhibit negative
autochemotaxis.

Second, droplets can be elastically anisotropic, if we use a nematic liquid crystalline
oil phase. In this case, the internal toroidal flow will interact with the elastic field inside
the droplet, causing broken symmetries and torques that lead the droplets on helical
or looped trajectories [116]. We show a polarised micrograph of the defect structure in
a droplet confined to a straight capillary and looped trajectories in a Hele-Shaw cell in
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4.4 Methods

Figure 4.3 – (a) Polarised micrograph of a self propelling droplet with superimposed
sketches of the nematic director field (black lines) and the internal convective flow (green
lines). The central defect is pulled towards the anterior pole. (b) This type of elastic
deformation causes helical swimming. Figure adapted from [116], with permission of the
American Physical Society. Colour online.

Fig. 4.3. This behaviour can be reliably suppressed by using isotropic oils, in which
case the swimming reverts to persistent random motion with a rather large persistence
length around 101 to 102 droplet radii [116]. All data presented in the remainder of
this paper are taken from analyses of isotropic swimmers.

4.4 Methods

Figure 4.4 – Monodisperse oil droplets (radius 50 µm) are mass produced in a microfluidic
flow junction. The water phase contains surfactant at c < ccmc to suppress coalescence.

All experiments presented in this paper have been conducted in quasi 2D microfluidic
cells. Microfluidic devices are fabricated with standard soft lithography techniques [208],
generating a Polydimethylsiloxane (PDMS) imprint of a SU8 photoresist stamp. The
latter is cured in house using UV lithography and externally printed photomasks. The
imprints are bonded to glass slides, connected to microfluidic pumps with Teflon tubing
and mounted on microscope stages. These PDMS cells were used for both droplet
production and experimental observations.
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Chemotactic droplet swimmers in complex geometries

Oil-in-water droplets are produced at high rates (10/s to 30/s) and monodispersity
with radii a ranging from 15 µm to 50 µm in cross-shaped flow junctions [209], as
illustrated in Fig. 4.4. The oil phase consists of either: the nematogen 5CB, with a
density of 1.04 g/cm3 at room temperature and a nematic-isotropic phase transition
at 35 ◦C; an isotropic mixture of 5CB with 10% bromopentadecane, an insoluble oil
of comparable density (5CB:BPD); or of the branched 5CB isomer CB15, commonly
used as a chiral dopant, which in its pure form is isotropic at room temperature.

The continuous phase of our emulsions is an aqueous solution of the ionic surfactant
TTAB, with a CMC of ccmc = 0.13 wt.%. For droplet production, we use a concentra-
tion of c = 0.1 wt.% < ccmc, sufficient to inhibit coalescence, but not high enough to
support oil solubilisation or droplet swimming. Thus, stock emulsions are stable for
months.

To initiate swimming, ≈ 0.3 µl of stock solution is added to a 5 µl to 10 µl concen-
trated c > 30ccmc surfactant solution, and the mixture is pipetted into the experimental
container. Depending on their size and solubilisation rate, the droplets propel over a
time scale between 20 min up to several hours, with a cruising range of several thousand
droplet radii [13]. We observe them with bright field video microscopy and polarised
video microscopy to image birefringent nematic liquid crystal phases. Numerical image
analysis from video data provides reproducible dynamical and morphological data in
statistically robust quantities.

4.5 Chemotaxis and autochemotaxis

The evolution of empty micelle distribution shapes the dynamics of our droplet swim-
mers, as demonstrated by the following three experiments in quasi 1D and 2D mi-
crofluidic geometries: droplet swimmers orienting towards a surfactant source, being
guided through a maze by chemotaxis, and anticorrelated directional decisions guided
by autochemotaxis. The latter two have been recently published in [89] and will be
presented as a review.

As a consequence of the coupling between the density of empty micelles and the
interfacial surfactant coverage described in sec. 4.3, swimmers will align their axis of
motion with the gradient direction and swim towards higher surfactant concentrations,
accelerating in the process. We first illustrate this in a simple experiment reminiscent
of Adler’s E. coli demonstrations, [196] where we placed a concentrated TTAB source
at one end of a quasi 2D cell containing swimmers, and measured their speed and
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4.5 Chemotaxis and autochemotaxis

Figure 4.5 – TTAB gradient chemotaxis. (a) Trajectories of droplet swimmers after
TTAB source is added to the left side of the microfluidic cell, colour coded by droplet
speed. (b) Average speed as a function of distance for the data set in (a). Colour online.

distance from the surfactant source over time.
50 µm radius CB15 droplet swimmers were added to 5wt.% TTAB solution, and

the mixture was pipetted into one of our 10 mm × 6 mm microfluidic cells, where the
swimmers began persistent swimming immediately. After waiting for approximately
1 min to allow the transient flows initiated by pipetting to dissipate, a small quantity
on the order of 10 mg of pure TTAB powder was added to one of the two entry ports
for this cell, which were then sealed to prevent evaporative flux. Over time, TTAB
micelles diffused into the chamber from the pure powder, and the swimmers responded
by reorienting their swimming towards the surfactant source, i. e. to the left in Fig. 4.5
(a), initially accelerating, and then reaching a steady maximum speed of v ≈ 45 µm/s.
This behaviour is evident in Fig. 4.5 from both the trajectories colour coded by speed
(dark blue to light yellow, corresponding to slower to faster) in panel (a) and the
average speed mapped to the distance from the source in panel (b).
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Chemotactic droplet swimmers in complex geometries

Figure 4.6 – (a) Fluorescently labelled surfactant spreading in a maze. (c) and (d)
spreading surfactant guides swimmers along the shortest path (b) trajectory lengths from
panels (c) and (d) vs. time of maze entry. Figure adapted from [89], with permission of
the National Academy of Sciences (USA). Colour online.

4.5.1 Maze solving

We can exploit this tendency to prefer regions of higher surfactant density, and therefore
reorientation in the direction of surfactant gradients, for guidance in complex geometries.
Fig. 4.6, from [89], shows this for droplets swimmers in a microfluidic maze structure
connecting an entry and an exit reservoir. The maze was prefilled with a surfactant
solution enabling self propulsion (5wt.% TTAB); we then simultaneously added droplet
stock solution to the entry and TTAB powder to the exit reservoir, cut off external flow
and observed how droplet swimmer trajectories progressively aligned along the shortest
path through the maze while the added surfactant spread through the structure.

Accompanying time lapse observations of the spread of surfactant dyed with Nile
Red inside the same maze without swimmers (panel (a)) showed that the additional
surfactant develops a gradient along the shortest path, guiding the swimmers.

Panel (b) shows the length of individual trajectories inside the maze versus the time
at which the swimmer passes the entry point for a maze with (“gradient”) and without
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4.5 Chemotaxis and autochemotaxis

Figure 4.7 – (a) a pair of swimmers choosing alternating branches around pillars in a
channel. (b) Pillar schematic with length definitions for eqs. 4.1 to 4.3. (c) anticorrelation
data from experiments, with a fit to eqn. 4.3. Figure adapted from [89], with permission
of the National Academy of Sciences (USA)

(“control”) added solid surfactant. For the gradient experiment, the trajectories revert
to the shortest path when the surfactant has spread through the maze, while no such
effect is present in the control experiment. Panels (c) and (d), using the same data,
illustrate this by mapping the trajectories, colour coded by the time in the experiment,
onto a micrograph of the maze structure.

4.5.2 Diffusion controlled autochemotaxis

To study autochemotactic effects, we designed an experiment where a series of swimmers
passes through a channel containing a series of tear-drop shaped bifurcations, where
the flow splits at the rounded side, and recombines at the tip.

We observed that consecutive swimmers prefer alternating branches of the same
bifurcation and that this anticorrelation decays with time ∆t between passages. Fig. 4.7
(a) shows two swimmer trajectories plotted over a channel with 3 bifurcations. In this
example, the swimmers passed in very close sequence, ∆t < 10 s, and all branch choices
are anticorrelated.

We now give a summary of a simple model of the anticorrelation decay over time,
based on micellar diffusion. A full derivation can be found in [89].

We consider the passage of two consecutive swimmers through a bifurcation, where
the first swimmer randomly chooses a branch path (in this case the upper path), and
our analysis begins at time ∆t = 0, as this swimmer leaves the junction.
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Chemotactic droplet swimmers in complex geometries

We assume that the fluid in the lower branch is unaffected by the swimmer’s
passage prior to ∆t = 0, whereas the upper branch is filled with an initially constant
concentration of swollen micelles, which then diffuse around the pillar. Thus, the
second swimmer will encounter a gradient in the concentration of filled micelles ∂xc(∆t),
corresponding to an autochemotactic drift force downwards, with a coupling constant
κ. Adding a Gaussian noise term Γ to model a random branch choice of a swimmer
with diffusion coefficient Ds, we set up the Langevin equation of motion for the second
swimmer entering the junction at x = l (see Fig. 4.7 for length definitions):

dx

dτ

∣∣∣∣∣
x=l

= κ∂xc+
√

2DsΓ(τ). (4.1)

Calculating the probability at the two absorbing boundaries at l±d yields an expression
for the average correlation depending on the time evolution of the surfactant gradient:

⟨C⟩ = tanh (ξ(∆t)) , (4.2)
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with two parameters, a prefactor α and a time constant β:

α = γ
κ

Ds

√
Dm

, β = l2

Dm

. (4.3)

Here, γ is a prefactor combining experimental parameters (see eq. 7 in [89]). We
can interpret α as a measure of chemotactic strength versus Brownian noise, while β
corresponds to the decay time based on micellar diffusion. We have plotted the average
correlation for ≈ 4000 passage pairs and a fit derived from eq. 4.3 in fig. 4.7 (c). There
is no absolute value for α as the diffusion constant of a confined active droplet is ill
defined; however, our measured value of β is consistent with the known values for the
micellar diffusion constant Dm and the size of the bifurcation l.

This model provides reasonable evidence that the autochemotactic force is linearly
coupled to the gradient in filled micelles, which can be modelled reliably by micellar
diffusion.
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4.6 Chemotactic effects at pillars

4.6 Chemotactic effects at pillars

Figure 4.8 – (a) Schematic of attractive and repulsive forces involved in the swimmer-
pillar interaction. (b)-(d) Example trajectories of swimmers at 30 µm, 100 µm and 250 µm
pillars, with sections identified as attached by numerical filtering marked in colour. We
observe a transition from bouncing to trapping with an intermediate regime of one-orbit
trapping. Movies for panels (b)-(d) are included in the supplementary information.

We demonstrate in a simple model system how chemotactic signalling can shape
the interaction of swimmers and interfaces to the point of switching from attraction to
repulsion, using quasi-2D PDMS cells containing arrays of pillars of variable sizes. As
outlined in sec. 4.2, previous experimental studies and theoretical models of biological
and artificial swimmers at pillars have shown a transition from scattering to trapping
for increasing pillar sizes [190, 192, 210]. However, in our swimmers we have observed
an additional intermediate regime where droplets leave after circling the pillar only
once due to chemotactic repulsion (Fig. 4.8). Attachment statistics were derived from
the video tracking of droplets in regular microfluidic pillar arrays (Fig. 4.9).

We have observed that droplet swimmers are generally attracted to interfaces; the
hydrodynamic and phoretic contributions to this attraction are yet to be determined.
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Figure 4.9 – Experimental screenshot of a PDMS cell with a 100 µm pillar array. The
contrast of this image has been modified for clarity.

Figure 4.10 – (a) Schematic of the filled micelle gradients leading to a radial chemotactic
force at a pillar (b) a non-crossing trajectory (c) a self crossing trajectory

In continuous quasi 2D and 3D media, they move in a very persistent manner with
little rotational fluctuation. Attachment to a pillar of radius R much smaller than the
persistence length of the swimmer would require a sudden reorientation with very little
interfacial area to mediate attraction. Thus, the swimmer is likely to scatter off the
pillar, or to detach very easily, resulting in a distribution P (s) of attachment lengths
s tailing off well below a pillar orbit, s = 2π(R + a), for a swimmer of radius a. For
pillars larger than the persistence length, little reorientation is required and the wall
attraction leads to near indefinite trapping, s → ∞. This behaviour is comparable to
the aforementioned studies.

However, for intermediate pillar sizes, we need to consider that a swimmer circling
a pillar will after one orbit encounter its own trail of filled micelles, which corresponds
to an additional chemotactic gradient force f(∂c) pointing away from the pillar. We
have sketched the micelle distribution around a pillar in Fig. 4.10 (a), using polar
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coordinates (r, θ) with the origin at the pillar centre. During the first orbit of the
pillar, r ≈ (R + a), θ < 2π, there are no filled micelles in the path of the swimmer
and f(∂c) is zero. When the swimmer encounters the rear end of its own trail, the
filled micelle density will increase with θ: f(∂c) = f(r, θ), ∂θ|f | > 0. After that, for a
swimmer traveling on its trail at constant speed, the force will be radial and constant in
θ, f(∂c) = f(r)er, during each orbit, 2πn < θ < 2π(n+ 1). Since filled micelles diffuse
away from the pillar over time, f(r) decreases with the increasing orbiting period of
the swimmer, leading to weaker repulsion for larger pillars or slower swimmers.

Combining the effects of persistence, wall attraction and chemotactic repulsion,
there is an intermediate pillar size where the first two are of the same order, but
the chemotactic force will shift this balance towards repulsion. This shift can be so
pronounced that the swimmer is already repelled when it encounters the increase
in filled micelles at the rear of its own trail, resulting in a non-crossing pillar orbit
(Fig. 4.10 b). If the chemotactic repulsion is sufficiently small to enable the swimmer to
travel on its own trail (Fig. 4.10 c), the swimmer will detach stochastically, depending
on the strength of f(r), such that the peak of P (s) at one orbit develops a tail that
increases for larger pillar sizes and respectively weakening f(r). Eventually, in the
limit of very large pillars, P (s) will show an increase for very long trapping times.

We have observed a transition from scattering to one orbit trapping to indefinite
trapping in experiments, using 5CB:BPD droplet swimmers of radius a = 15 µm in
regular pillar arrays with radii R varying from 15 µm to 125 µm.

We filled pillar arrays with a 7.5wt.% TTAB solution containing small quantities of
swimmers (n < 5 /µl) and recorded the swimmer dynamics on a bright field microscope
under 4x magnification. For one pillar size, we typically have data from more than
20 experiments of 5 min to 10 min with 5 to 20 swimmers and 1 to 200 individual
pillar interactions per experiment. We numerically extracted the swimmer trajectories,
identified all trajectory segments corresponding to pillar attachment and binned them
by segment length s, normalised to the pillar circumference, to collect statistics for the
attachment length distribution P (s).

The experimental screenshot in Fig. 4.9 shows a typical cell geometry with pillar
radius R = 50 µm. Fig. 4.8 illustrates the transition with example trajectories taken
from experiments using swimmers of radius a = 15 µm, with the numerically extracted
interaction segments s marked in colour. We see scattering off 15 µm pillars, both self
crossing and non-crossing one orbit trapping at 50 µm pillars and indefinite trapping
at 125 µm pillars.
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Figure 4.11 – a = 15 µm swimmers: Scattering for R = 15 µm pillars, onset of one
orbit trapping at R = 50 µm pillars and transition to indefinite trapping for R = 125 µm
pillars. We plot data from scattering interactions in light cyan and data from attachment
interaction in dark green.
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4.6 Chemotactic effects at pillars

Figure 4.12 – a = 50 µm swimmers: Onset of one orbit trapping at R = 50 µm pillars
and transition to indefinite trapping for R = 250 µm pillars. This range is studied in more
detail in Fig. 4.13 to resolve the transition from self crossing to non-crossing trajectories.

We begin with a statistical analysis of the full range of pillar interactions from
scattering to trapping using swimmers of radius a = 15 µm. We consider a swimmer
to be attached if its direction of motion calculated from the trajectory’s tangent is
changed by pillar attraction, in all other cases we consider it to have scattered off the
pillar. Histograms of P (s) vs. s for 4 pillar radii, 15 µm, 50 µm, 75 µm and 125 µm, are
plotted in Fig. 4.11, showing a pronounced peak corresponding to one orbit trapping
around pillars of R = 50 µm between regimes of scattering for small pillars and trapping
for large pillars.

Since we are able to reliably identify self intersecting trajectories, we have studied
the transition from non-crossing to self-crossing pillar interactions in more detail for
a = 50 µm swimmers at pillars in a radius range from 50 µm to 250 µm between the
onset of one orbit trapping and the transition to indefinite trapping. Here, the one
orbit peak is more pronounced, as scattering is weak for larger swimmers. We note in
the comparison of a = 15 µm and 50 µm data that P (s) cannot be rescaled easily to
the relation of swimmer and pillar radii, as the swimmer speed, persistence length and
solubilisation rates depend nonlinearly on the swimmer size as well.

The histograms in Fig. 4.12 represent the approximate boundaries of the regime
where one orbit trapping is dominant, i.e. pillar radii of 50 µm and 250 µm. This data
range is resolved in more detail in Fig. 4.13, with pillar radii of 50 µm, 75 µm, 100 µm and
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Figure 4.13 – a = 50 µm swimmers: For increasing pillar radii, attachment events in the
one orbit range shift from non-crossing (dark grey) to self-crossing (light red) trajectories.
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250 µm and a length range focusing on the one orbit peak, 0.75(2π⟨r⟩) < s < 1.5(2π⟨r⟩).
We furthermore separate the recorded events into self crossing (red) and non-crossing
trajectories (grey) and observe a clear shift towards the self crossing regime for increasing
pillar sizes, as well as the emergence of a tail towards more stable attachment. In
future work, we will fit these statistics with an analytical stochastic model analogous
to the one outlined in Sec. 4.5.2.

4.7 Conclusion

In a straightforward demonstration experiment combining the effects of complex
boundaries and chemotactic forces on droplet swimmers at complex interfaces, we have
reproduced established phenomena of pillar scattering and trapping and observed a
new one orbit trapping regime directly caused by chemotactic effects. We note that
this effect is observable due to the slow diffusion of the chemorepellent. We have
furthermore sketched an avenue towards quantitatively evaluating our data in the
context of an active particle model.

One of the advantages of the active emulsion model is the wide range of controllable
parameters and inspection methods. While we have not yet included hydrodynamic
effects in the present study, it is both feasible experimentally via micro-PIV and
interferometry to map flow fields and lubrication effects. Moreover, by virtue of the
high symmetry of the system, active droplets are suitable for very detailed numerical and
analytical analysis. Focussing all these approaches on the same experimental parameters
should offer important insight on the cooperation of hydrodynamic, phoretic and steric
effects in active media.
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Chapter 5

Quantitative characterization of
chemorepulsive alignment-induced
interactions in active emulsions1

Abstract
The constituent elements of active matter in nature often communicate with their

counterparts or the environment by chemical signaling which is central to many bi-
ological processes. Examples range from bacteria or sperm that bias their motion
in response to an external chemical gradient, to collective cell migration in response
to a self-generated gradient. Here, in a purely physicochemical system based on self-
propelling oil droplets, we report a novel mechanism of dynamical arrest in active
emulsions: swimmers are caged between each other’s trails of secreted chemicals. We
explore this mechanism quantitatively both on the scale of individual agent-trail col-
lisions as well as on the collective scale where the transition to caging happens as a
result of autochemotactic interactions.

1This chapter is published in Hokmabad, B. V., Saha, S., Agudo-Canalejo, J., Golestanian, R. and
Maass, C. C. (2020). Quantitative characterization of chemorepulsive alignment-induced interactions
in active emulsions. arXiv preprint arXiv:2012.05170. B. V. H. designed the research, performed
experiments and data analyses and wrote the manuscript. S. S. performed theoretical modeling, data
analyses and wrote the manuscript. J. A. performed theoretical modeling, data analyses and wrote the
manuscript. R. G. supervised the project and wrote the manuscript. C. C. M. designed the research,
performed data analyses, supervised the project, and wrote the manuscript.
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5.1 Introduction

Motile micro-organisms have evolved to sense their environment and react to it, e.g.
by reorientation. They sense the gradients of an external stimulus or a field in their
surroundings and migrate up or down that gradient; a behavioral response called taxis. If
the gradient is formed in the concentration field of a chemical species, and the organism
responds to it in the form of a change in their propulsion directionality/strategy, they
have shown chemotaxis.

In single cellular organisms, chemotaxis guides many processes like colony migra-
tion [211] or biofilm formation (cf. Dictyostelium or Physarum). The response of an
organism to a chemical gradient that is produced by the microorganisms themselves,
is called autochemotaxis. Whether the chemical species is a chemoattractant or a
chemorepellent the system displays positive or negative autochemotaxis, respectively.
Existing studies are usually based on attractive signaling; however, repulsive signaling
is also of practical importance, e.g. if a colony wants to explore space efficiently by
mutual avoidance.

Autochemotaxis in colonies of living organisms causes complex behavior governed
by an interplay between physical effects and biological processes [212, 213]. One way
to understand the underlying mechanism for the emergence of these complex behaviors
is to untangle the biological effects and the physical mechanisms. To this end, the
rapidly growing field of artificial active matter is attempting to design and develop
synthetic micro-swimmers that can mimic for example chemotaxis strategies using
principles of non-equilibrium physics. Self-phoretic particles are the broadly-studied
example of artificial micro-swimmers that locally generate a chemical gradient and drift
in this self-made gradient. It has been shown that suspensions of these particles exhibit
non-trivial dynamics influenced by autochemotaxis [84, 86, 87, 214, 215]. We have
previously demonstrated that self-propelling droplets [67] can be used as a model system
for repulsive chemical signalling [89, 216]. The droplets leave behind a trace of ‘used
fuel’ which acts as a chemorepellent to other droplets, where the the motion of such a
droplet is affected by the previous passage of another droplet. The phenomenology of
the system has similarities to the collective chemotaxis of trail-following bacteria [90,
217], expect that the interactions with the slow chemicals are repulsive rather than
attractive.

In this study, we present a quantitative analysis of individual ‘delayed collisions’ and
compare it to an analytical model based on time lag, angle of incidence and chemical
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Figure 5.1 – Visualization of the chemical trail. (a) Schematic of the experimental
setup for fluorescent microscopy of the filled micelle trail. (b) A micrograph of the
chemical trails made by droplets under fluorescent microscopy. We used a higher
surfactant concentration (15 wt.%) to increase the solubilization rate and thereby the
trail fluorescence. (c) Zoomed view of the panel (b). AA′ is the cross-section at which
the intensity profile was quantified. (d) The schematic for the propulsion mechanism of
the droplet. The black arrow shows the direction of motion. (e) The flow field generated
by Marangoni flow at the droplet interface visualized via streak lines of 0.5 µm tracer
particles. (f) The time evolution of light intensity profiles along AA′ superimposed with
the Gaussian fits. (g) The peak values of intensity profiles versus time. To account for
the initial shape of the trail intensity profile, We model it with a linear chemical source
that was released and started diffusing 20 seconds (obtained from fitting) before the
passage of the droplet (see Methods). Scale bars show 50 µm.

coupling strength. We show that these parameters determine whether a droplet can go
through the trail laid out by another active droplet or bounce back from it. In the
second part of the study, we demonstrate how individual binary collisions lead to a
novel state of autochemoctactic arrest in swimmer ensembles, a kind of ‘history caging’,
where droplets are temporarily trapped in an evolving network of repulsive trails.

5.2 Methods and general swimming behaviour

Unless noted otherwise, all experiments were done in microfluidic cells using a quasi 2D
Hele-Shaw geometry, with a typical cell area of 75 × 50 mm2 and height of 50µm and
observed using bright field or fluorescent microscopy. The active emulsions we used
consisted of microdroplets of the oil CB15 with a diameter adrop = 50 µm placed, at
low number densities, in an aqueous, supramicellar solution of the surfactant TTAB (at
5wt.%, unless otherwise stated,with CMC = 0.13wt.%). If the surfactant concentration
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in the bulk medium exceeds a threshold value the droplet spontaneously undergoes a
dynamical instability which breaks the symmetry and propels the droplet at a speed
V ≈ 25 µms−1. The underlying propulsion mechanism [13, 67] can be summarized
as follows: The oil droplets gradually solubilize, with oil molecules migrating into
surfactant micelles Since the interfacial surfactant density is coupled to the respective
local densities of oil-filled and empty micelles, the trail of oil-filled micelles in the wake
of a moving droplet locally increases the interfacial tension (Fig. 5.1 d), thus creating a
self-sustaining Marangoni stress at the interface that pushes the droplet forward.

To visualize the chemical trail we added the hydrophobic fluorescent dye NileRed
to the oil phase [102]. As the dye co-migrates with the oil into the micelles, we can
obtain and quantify the distribution of oil field micelles from fluorescent microscopy
(Fig. 5.1 a,b). Fig. 5.1 c, d and e respectively, present the zoomed-in view of a flu-
orescent image, the schematic of the propulsion mechanism, and the streak lines of
tracer particles that visualize the flow generated by the droplet (in droplet reference
frame). We note that, for illustration purposes, the micrographs in Fig. 5.1 b,c and
Fig. 5.5 a were recorded at a higher surfactant concentration of 15 wt.% to increase the
solubilization rate and thereby the trail fluorescence. However, a lower concentration
yields very ballistic droplet motion and long cruising ranges and is therefore preferable
in quantitative experiments. To model the trail diffusion, we approximate the droplet
as a moving point source emitting chemorepellent at a constant rate. Accordingly, the
chemorepellent profile along a line perpendicular to the trail (e.g. AA′ in Fig. 5.1 f,inset),
represented by the fluorescence intensity, should be Gaussian with a peak height scaling
with t−1/2. We have plotted Gaussian fits of the time dependent recorded intensity
along AA′, as well as the respective amplitudes from the fits in Fig. 5.1 e,f, with
excellent agreement, validating both the Gaussian distribution and t−1/2 decay, and
yielding a diffusion constant for filled micelles Dfm = 52.5 µm2/s. This is consistent
with our observations from previous studies [89] and common literature values for
micellar diffusion (for details of the fitting please see Supp. Mat.). Based on this highly
regular behaviour, we can in the following extract a chemical gradient map for the
entire experiment by tracking the motion of all droplets in the system and treating
them as chemorepellent point sources, even without recording micellar fluorescence.
Using the experimentally-obtained quantities we can estimate the diffusive time scale of
the trail decay: τdiff. = a2

drop/Dfm ≈ 24 s, which is quite long due to the large size of the
filled micelles (≈ 5nm), and remarkably longer than the droplet’s advective time scale
adrop/V ≈ 2 s. Such long-living chemical gradients can change the chemical potential
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landscape and influence the propulsion dynamics of other droplets even without direct
hydrodynamic interaction. Beyond the advective timescale, we can therefore model
droplet-trail interactions by a Chemically Active Polar Particle model approach [218],
as follows.

5.3 Chemically Active Polar Particle model

The fore-aft flow at the interface is determined by the gradient in the local concentration
of the empty micelles. We assume that, in the steady swimming state, the fore-aft
asymmetry of the droplet is stably maintained and thus the swimming droplet can
be modelled as a chemically-active polar particle [218, 219]. Thus, when a droplet
encounters a trail, it experiences an effective torque governed by a coupling constant Ω,
and an effective force with coupling α. We note that the general theory of chemically-
active polar particles also allows for an effective force projected along the axis of the
particle, with a third coupling constant, but we will neglect this possibility here as the
data can be explained within the more minimal model with two coupling constants.

We define droplets to have a position r and orientation n and to move in the (x, y)
plane. The Langevin dynamics for r and n are as follows [218]:

ṙ = V0n − α∇c+
√

2Dt ξt, (5.1)

ṅ = Ω n × (n × ∇c) +
√

2Dr n × ξr, (5.2)

where ξt and ξr represent Gaussian distributed translational and rotational noise
with unit strength, and Dt and Dr are the corresponding translational and rotational
diffusion coefficients of the droplet. Analysis of the mean squared displacement of the
droplets in dilute conditions reveals ballistic trajectories over periods larger than 100 s
(see Fig. 5.5(b)), suggesting that Brownian translational diffusion is negligible, and
that the rotational diffusion coefficient is also small, with an upper bound of Dr = 0.01
rad2/s corresponding to persistence lengths larger than V0/Dr ≈ 2.5 mm.

We model the micelle trail as a chemical field c with Gaussian profile perpendicular
to the direction of motion, with a width that depends on the time elapsed since the
preceding droplet moved away from the point of interest. Without loss of generality we
assume the preceding droplet to propel along x, so that the chemical field is given by

c(y) = c0√
4πDfm∆t

exp
(

− y2

4Dfm∆t

)
, (5.3)
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where Dfm is the diffusion coefficient of the (filled) micelles. Because the diffusion of the
micelles is slow compared to the propulsion velocity of the droplets (Dfm/(∆tV 2

0 ) ≪ 1),
we can neglect the x-dependence of the concentration profile, as well as its time-
dependence, so that we can use (5.3) to describe the interaction of the incoming droplet
with the trail.

We thus solve the following deterministic equations in 2D for the incoming droplet’s
position (x, y) and orientation θ, which is defined as the angle between n and the
x-axis (see Fig. 5.2 d):

ẋ = V0 cos θ, (5.4)

ẏ = V0 sin θ + αc0y√
2π(2Dfm∆t)3/2

exp
(

− y2

4Dfm∆t

)
, (5.5)

θ̇ = − Ωc0y√
2π(2Dfm∆t)3/2

exp
(

− y2

4Dfm∆t

)
cos θ. (5.6)

5.4 Experimental quantitative analysis of droplet-
trail interactions in 2D

We experimentally studied individual droplet-trail interactions by placing droplets at
low number densities in aqueous surfactant solutions in shallow Hele-Shaw microfluidic
reservoirs. We recorded and analysed the droplet trajectories via video microscopy and
mined the data for trail interactions (see Supp. Mat., section 5.10.3 for criteria).

Fig. 5.2 shows examples of crossing and reflecting interactions and the extracted
data for the following droplet’s signed trail distance d, speed V and orientation θ (as
shown in panels e and f for the interactions in b and c).

Since our model assumes the preceding droplet to move in a pristine medium with
isotropic chemical field, we selected interactions where its motion that can locally be
well approximated by a straight line (red trajectories in Fig. 5.2 a,b), and where we
assume the chemical gradient in the trail to evolve according to Eqn. 5.3.

The droplet approaches the trail at an incident angle θinc with respect to the
first trajectory (the blue trajectory in Fig. 5.2 a). An interaction starts and ends
when the distance |d| between the droplet and the trail falls below a threshold value
dmax = 220µm. We identify the points of intersection (green points in a and b), or, for
reflection, closest approach on each trajectory, and define the time lag ∆t as the interval
between each droplet passing these points, and the time origin t0 as the respective

100



5.4 Experimental quantitative analysis of droplet-trail interactions in 2D

Figure 5.2 – Autochemotactic interaction between droplets. (a) The fluorescent micro-
graphs of crossing and reflecting interactions. The red trajectory corresponds to the first
passing droplet (secreting the trail) and the blue trajectory corresponds to the second
droplet. (c) and (d) data from bright field microscopy, typical trajectories of crossing
and reflecting interactions. (e) and (f) Plots of distance, swimming speed and rotation
rate (angular velocity) for the interactions in (c) and (e), respectively. All scale bars are
50 µm.

point in time for the following droplet. We note that for non-specular reflections with
α0 ̸= 0 (Eqn. 5.2) the time of maximum rotation rate, tturn = |dθ/dt|max, should be
slightly delayed with respect to the time of closest approach.

We observe that the probability of crossing versus reflection depends both on θinc

– for a shallow angle of incidence, the required turning rate for reflection is lower –
and on ∆t, which determines the gradient strength (Eqn. 5.3). We illustrate this in
Fig. 5.2 a,b: we observe, for similar θinc, a transition from reflection to crossing with
increasing ∆t. As shown in panels (d) and (f), there is also evidence of non-specular
reflection, as well as the following droplet slowing down and speeding up around t0,
suggesting a negative α0.

To derive a phase diagram for crossing and reflection in (∆t, θinc) space, we will
now proceed to a quantitative estimate of the model’s parameters by numerical fits to
our recorded data.
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5.5 Fits of model and experiment droplet-trail in-
teractions

We fit the theoretical trajectories obtained from numerical solution of (5.3–5.6) to the
experimental trajectories in order to obtain estimates for the two unknown coupling
constants Ωc0 and αc0, which were used as fitting parameters. For the diffusion
coefficient of the micelles, we used the measured value Dfm = 52.5 µm2/s. The droplet
velocity v was estimated as the average velocity in the given trajectory, and the
experimentally-measured time lag ∆t was used as an input. Initial conditions for the
time evolution of (x(t), y(t), θ(t)) were obtained from the data as described in the
previous section: y(0) ≈ 200 µm corresponds to the initial value of the signed distance
dmax, θ(0) to the incidence angle, and x(0) = 0 without loss of generality.

For our analysis of the fits, we focused on sharp reflection events with θinc > 60◦,
for which our minimal model of the trail as a static Gaussian with constant width is
best justified (for low incidence angles, interactions occur over longer times and a wider
range of x-values, which may affect the validity of our approximation and introduce
differences between parallel and antiparallel reflection events). The 54 reflection events
were fitted and ordered from best to worst fit according to the fit error. By analyzing
the median values of Ωc0 and αc0 calculated from the n best fits as a function of n,
we found that the median values stabilize at Ωc0 ≈ 7 · 103 µm2/s and αc0 ≈ 3 · 104

µm3/s between n ≈ 20 and n ≈ 40. Smaller n values are susceptible to the noise due
to small number statistics, whereas for larger n we would include bad fits that skew
the distribution, presumably corresponding to non-ideal trajectories (e.g. interactions
with curved trails or measurement artifacts due to global drift in the chamber). Details
can be found in Fig. 5.10 of the Supplement.

Examples of the fits are shown in Fig. 5.3 for three experimental trajectories.
Here, blue lines correspond to the actual fit to the given trajectory, whereas red lines
correspond to the theoretical prediction using the values Ωc0 = 7 · 103 µm2/s and
αc0 = 3 ·104 µm3/s. The characteristic features of the evolution of the position, velocity,
and angular velocity with time are well recapitulated by the model, both for each
particular fit and when using the median values. Importantly, Ω > 0 implies that the
droplet reorients to point away from the trail, whereas α > 0 implies that the droplet
is also directly repelled by the trail. While we found that the trajectory shapes are
most sensitive to changes in Ω, which is the key parameter governing the interaction,
the presence of a positive α is essential in order to correctly capture the time evolution
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Figure 5.3 – Three example fits of the chemically-active polar particle theory to
experimental trajectories, where each column corresponds to a different trajectory. Two
fit parameters (Ωc0 and αc0) were adjusted. The blue lines correspond to the resulting
best fit for the given trajectory, whereas the red lines are the theoretically predicted
trajectories using the median values of all fits analyzed, Ωc0 = 7 · 103 µm2/s and
αc0 = 3 · 104 µm3/s.
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Figure 5.4 – Phase diagram of autochemotactic interactions. The colormap represents
the maximum rotation rate during the particle-trail interaction |dθ/dt|max as obtained by
fitting to the white (reflection events) and green (crossing events) points. The dashed line
is the boundary between the crossing and reflecting events predicted by the theoretical
model (including the uncertainty caused by rotational diffusion).

of the droplet velocity (second row in Fig. 5.3), which decreases before the turning
point and increases after it.

5.6 Phase diagram using results of the fit

We determined θinc and ∆t for all selected interactions and plotted them in the phase
diagram in Fig. 5.4 a, with reflections marked by white and crossings by black data points
(164 reflection and 90 crossing events). We note that we do not distinguish between
parallel and antiparallel interactions – for θinc > 90◦, we convert to 180◦ − θinc. The
background colour map interpolates the maximum turning rate measured for reflections.
We can confirm two key features: For one, crossing is more likely for decreasing ∇c, i.e.
increasing ∆t. Second, for increasing θinc, i.e. sharper reorientations, reflection requires
a higher turning rate, mediated by Ω|∇c|, such that crossing is also more likely for
increasing θinc.

We can construct a theoretical phase diagram by using the median values of Ωc0
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and αc0 obtained in the previous section. The separatrix (dashed white line) between
crossing and reflecting trajectories, which coincides with those trajectories for which
the turning point is exactly at the center of the trail (y = 0), reproduces the salient
features of the experimental observations. The small amount of rotational noise present
in the system can cause some uncertainty in the location of the separatrix, which
can be estimated by considering the standard deviation of the orientation while the
incoming droplet approaches the trail, which is δθ ≈

√
2DrT , where the approach time

is T ≈ dmax/(V0 sin θinc) and the upper bound of the rotational diffusion coefficient
Dr ≈ 0.01 rad2/s is used. The strongest deviations between the theoretical prediction
and experimental results are observed at low θinc and large ∆t, in which case both
crossing and reflecting trajectories are seen to coexist experimentally. We expect that
in this region higher order effects, such as the time-dependence and space-dependence
of the trail width (which breaks the symmetry between parallel and antiparallel
trajectories) will play a role.

5.7 Collective dynamics governed by autochemo-
tactic interactions: history caging

In a more crowded system, moving droplets trace out a network of diffusing trails,
leading to frequent reorientations, and causing a dynamically evolving chemical potential
landscape. This causes droplets to get transiently trapped in the interstitial spaces of
the trail network.

To study the collective dynamics in 2D, we placed suspensions of swimmers at
number densities between n ≈ 0.025 and 8.58/mm2 in a quasi-2D Hele-Shaw cell and
recorded their trajectories for long times (≈ 5 min). We first illustrate the trapping
behaviour by snapshots from a fluorescently dyed sample in Fig. 5.5 a. We follow one
swimmer by marking its trajectory in cyan. The first image was chosen shortly after
the addition of the droplets, hence, the experiment starts with almost no secreted
trails. Initially, all droplets move persistently, and their first reorientation is a result
of the first encounter with a trail. As they travel the secreted trails gradually form
a network of trails. A potential landscape based on ∇c, evolves, with local minima
(dark regions) between the trails. The swimmers get dynamically arrested by multiple
reflections at the walls of these transient cages – escape is possible only when ∇c has
decreased sufficiently at the boundaries or when the chemical buildup caused by the
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droplet itself forces it out of the cage.
Fig. 5.5 b shows, for increasing number densities, the mean squared displacement

profiles obtained by ensemble averaging over the trajectories,

MSD(t) = 1
N

N∑
i=0

(ri(t) − ri(t0))2 ,

where t0 is the starting moment of the experiment and N the number of droplets. For
any number density, droplets initially undergo ballistic propulsion (MSD ∼ t2). For
a single droplet (no interactions), we do not see a transition to diffusive scaling. For
intermediate number densities, we observe a change in the slope of the MSD profiles,
which is associated with the reorientations caused by the autochemotactic interactions.
At large number densities (150 droplets and more), after a short ballistic period, the
MSD reaches a plateau. This plateau is reminiscent of the caging signature of in the
MSD for colloidal glasses [220], however, here the caging is caused by trail-droplet
instead of direct droplet-droplet collisions and is therefore observed at much lower
volume fractions (ϕdroplets ≈ 10−2, cf. [221]). For more crowded systems, the crossover
to caging happens earlier, the lifetime of the cage is longer, and the cage size is
smaller. The plateau is followed by a crossover to a third, subballistic regime caused
be consecutive caging events. We have illustrated this for an example trajectory in
Fig. 5.5 c, for a droplet that undergoes three caging events in a very crowded system
(300 droplets). The droplet trajectory is mapped by circles colour coded by time in the
experiment. To highlight the cage formation by spatiotemporal density fluctuations,
we plotted in the image background, using the same colour code, all droplet positions
recorded within a window of d < 220 µm and 0 < ∆t < 50 s around the current droplet
position. Entering an area with increased density, the droplet reorients frequently,
staying in place until it is ejected by the chemical buildup into a less populated space,
where it proceeds ballistically until it encounters the next high-density location (’cage
escape’). Since ballistic runs are uncorrelated, the long-time dynamics presumably
correspond to a Gaussian random walk, however, it is not feasible to reliably quantify
the respective exponent in the MSD due to the limited lifetime of the droplets and the
finite size of the experimental cell.
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Figure 5.5 – 2D caging. (a) Snapshots from fluorescent microscopy of an active emulsion
in a Hele-Shaw cell (droplet size 50 µm). The experiment was conducted at high droplet
solubilization rate to increase trail visibility. One sample trajectory is plotted to show
the evolution from ballistic propulsion to a caging event. The scale bar is 1 mm. (b)
Mean squared displacement profiles for emulsions with different number densities. The
⋆ denotes the cross-over to the caging regime. The ⋆ denotes the cross-over to the
third regime (cage-escape). (c) A typical trajectory s(t) undergoing several caging and
cage-escape events (thick symbols). Thin symbols: other droplets approaching within a
spatiotemporal window of d < 220 µm and 0 < t0 − t < 50 s around the current trajectory
point s(t0) The colormap represents the time.

5.8 Extending the system to 3D

One intriguing feature to study is how far dimensionality matters in caging effects.
While, in two dimensions, fully confining cages exist even for point-like particles and
one-dimensionally parameterized trajectories, in three dimensions the cage would
always have holes the droplet can escape through. Caging in 3D is therefore only
possible owing to the finite volume of the diffusing trail.

To investigate caging in 3D, we studied droplet ensembles in unconfined, force
free bulk media. We eliminated the effect of gravity, matching the density of the
swimming droplets with the aqueous surfactant solution by adding heavy water, D2O.
We observed dyed droplets using a scanning light sheet fluorescence microscope over a
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volume of 3 × 3 × 3 mm3.
To validate the diffusive spreading of the trail in 3D, we first captured the time-

dependent fluorescence in the trail of a droplet sedimenting under gravity along the
light sheet normal, taken at a fixed sheet position in z (Fig. 5.6 a). We extracted the
fluorescence intensity profile I(x, t) of a cross section of the trail along the line AA′

(Fig. 5.6 c), as shown in the false-colour sample image in Fig. 5.6 b. The peak values
Ipeak scale with t−1/2 (inset), similar to the 2D behaviour analyzed in Fig. 5.1 .

Next, to study the collective dynamics in 3D, we recorded the 3D trajectories of
droplets in active emulsions over long times. Fig. 5.6 d illustrates the simultaneous
tracking for an experiment at intermediate number density, n = 8/mm3, showing
a 3D reconstruction of all droplet positions at an arbitrary time in the experiment,
superimposed with trajectories for the droplets we were able to track for sufficiently
long times (≈ 5 min). We have plotted typical trajectories for systems with different
number densities in Fig. 5.6 e-g. In the dilute case (n = 2mm−3), the trajectory is quite
straight, while in the system with intermediate number density, the droplet experiences
a few reorientation events. The trajectory for the dense system shows alternating
quasi-ballistic and caged sections similar to the dynamics in 2D (Fig. 5.5 c).

In Fig. 5.6 h, we plotted the mean squared displacement of a set of 3D trajectories
of sufficient length extracted from the data sets used for Fig. 5.6 e-g. The signatures of
caging can be observed in the form of plateaus in the MSD profiles (in particular for
the n = 22mm−3 case). These observations suggest that even in 3D, the droplet can
get trapped in an evolving chemical potential landscape created by the trails of other
swimmers.

5.9 Conclusion and outlook

In conclusion, we used dilute active emulsions as artificial systems to explore the col-
lective dynamics of active particles governed by negative autochemotactic interactions.
Based on fluorescent imaging, we visualized and measured the diffusion coefficient of the
filled micelle trails left in the wake of the droplets; a quantity necessary for theoretical
modeling of the interactions. We quantified these autochemotactic interactions and
showed that whether a droplet crosses or is reflected by a trail can be predicted by the
time lag between droplet passages and the angle of incident.

We further explored the collective dynamics in active emulsions and observed a
novel dynamical arrest mechanism: transient autochemotactic caging. We extended
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Figure 5.6 – Extending the system to 3D. (a) The schematic of trail visualization in
3D. The green sheet represents the laser light which scans the trail at different heights
obtaining images like (b). (c) The temporal evolution of intensity profiles obtained by
laser sheet measurements. The inset shows the peak values versus time. The dashed line
is a fit to the data to show the scaling with t−1/2. (d) The 3D distribution of the droplets
obtained by reconstruction of the scanned images superimposed with the trajectories.
(e-g) Typical 3D trajectories of a droplet in emulsions with different number densities (2,
8, and 22/mm3, respectively). The background shows the 3D distribution of the droplets
in the emulsion at an arbitrary time during the experiment. The ending points of the
trajectories are denoted by the star symbol. (h) Mean squared displacement profiles for
emulsions with different number densities.

our system to 3D and showed that caging also happens in unconfined suspensions of
active droplets. Interestingly, caging already happens at significantly lower volume
fractions (ϕ ≈ 10−4), compared to the 2D case. Apart from dimensional effects, one
contributing factor might be that the droplet motion in 3D is not rectified by the cell
boundaries and that reflection is therefore already effected by weaker gradients. This
question, however, cannot be resolved yet without further quantitative modelling of
the coupling parameters.

While it is in principle feasible to treat individual droplet-trail interactions including
hydrodynamic feedback [222], the chemically-active polar particle model does a very
good job in capturing essential features of the collision behaviour: Due to the slow
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(a)

(b)

Figure 5.7 – Fluorescent emission in the trail of a Nile Red doped droplet. (a) Data vs.
Iδ(x, t) ((5.7)) and IH(x, t) ((5.9)) fit models (b) The integrated fluorescence does not
decay over time.

trail diffusion, our experiments show that reflection is still frequent after the flows
caused by the leading droplet have decayed, and statistically the majority of observed
interactions would happen when there is no advective contribution from the leading
droplet. This makes the collective behaviour far more accessible to numerical and
analytical modelling by using a similar simplified paradigm.

5.10 Materials and Methods

5.10.1 Materials and characterisation

Our oil phase consists of CB-15, an isotropic isomer of the common nematic liquid crystal
oil 5CB. Monodisperse droplets (size approx. 50µm, exact values to be added) are mass
produced in microfluidic flow junctions. For the purpose of chemical quantification,
we dissolved small amounts of the fluorescenct dye Nile Red in the oil phase. Nile
Red does not fluoresce in water, such that we can assume the fluorescent intensity
to stem from micelles filled with oil and co-migrating Nile Red. This assumption is
supported by the diffusive spread of fluorescence in the trail mapped in Fig. 5.7 . The
swimming medium is 5wt% aqueous solution of TTAB surfactant. For force free bulk
measurements, the density of 5CB (ρ5CB = 1.05 g/cm3) was matched by appropriate
heavy water substitution (ρD2O = 1.2 g/cm3). Microfluidic Hele-Shaw cells were made
from the photoresist polymer SU8 by photolithography.
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5.10.2 Micellar diffusion quantification by fluorescence

We recorded fluorescent emission by videomicroscopy (λex. = 545 nm, λem. = 572) on
an Olympus IX-73 at 4x magnification and 4 fps, using a 4Mpx Grasshopper camera.
After rotation and rectification of the extracted image series, we extract profiles along
a y = const. image slice (line A-B in Fig. 5.7 a). We fit the profiles to the time and
space dependent decay from a fluorescence quantity c(x, t = t0) = M0δ(0). t0 is earlier
than the actual moment of droplet passage, since the droplet is not a point source:

Iδ(x, t) = M0√
4πDfm(t− t0)

exp
(

−x2

4Dfm(t− t0)

)
, (5.7)

M0 =
∫ ∞

−∞
I(x, 0) dx (5.8)

We calculate the micellar diffusion coefficient via σ2 = 2Dfm(t− t0). We note that a
more precise model can be based on a decay from two step functions at a distance
d = 50 µm, with c(x, t = 0) = c0 [H(x+ d/2) −H(x− d/2)].

IH(x, t) = I0

2

[
erf

(
x+ d/2√

4Dfmt

)
− erf

(
x− d/2√

4Dfmt

)]
(5.9)

However, for our times of interest beyond the advective time scale the difference
between the models is negligible (Fig. 5.7 ).

We note that, since the integrated fluorescence does not decay over time in Fig. 5.7 b,
we do not have to account for possible bleaching effects in our analysis.

5.10.3 Binary collisions: Image processing and data analysis

After region of interest selection, background correction and binarisation, we extracted
droplet coordinates via a contour search algorithm [223] combined with a blob size
filter for each video frame. To rule out interactions by hydrodynamic entrainment, or
direct droplet to droplet interactions, we filtered the resulting coordinate set to exclude
droplets whose distance within the same frame are below a set threshold, as well as
droplets too close to the cell boundaries. Droplet trajectories were extracted from the
filtered set via a Crocker-Grier type algorithm, providing droplet coordinates x, y and
speed vectors v for each recorded timestep. We identified and analysed interactions
as follows: for each pair of trajectories, we identified matching sections where the
trajectory distance fell below a set threshold. Interactions that include a trajectory
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endpoint were excluded as we cannot guarantee these to be complete. Segment pairs
s1, s2 were sorted by time. We assume the droplet creating s1 to move freely, such
that s1 can be safely approximated by a straight line. We note that our swimmers’
dynamics are persistent Brownian rather than strictly ballistic, however, the trajectory
persistence length, as seen in Fig. 5.8 , clearly exceeds the typical interaction length, so
that our assumption of straight segments is reasonable. We identified the orientation ê1

of s1 via a linear regression fit. If the standard deviation of this fit exceeded a certain
value, the segment was considered to be too crooked, i.e. not relating to free motion,
and the interaction was discarded. Fig. 5.8 shows trajectories from one experimental
run with the numerically identified interactions marked in colour. We further discarded,
by visual inspection, any interactions that were disturbed by multiple trail collisions.
For segment s2, we extracted the following quantities:

1. the time ∆t = t2 − t1 elapsed between the two points of closest trajectory
approach, which we chose as the time delay of the interaction.

2. for each coordinate in s2, the distance to the closest point in s1, i.e. distance
d(t) of swimmer to trail over time. To mark crossing events, by convention, d is
signed via sgn(d) = sgn(n2 × ê1), with n2 denoting the s2 trajectory normal and
× the 2D cross product.

3. from a projection of v2 on ê1, droplet speeds v∥ parallel and v⊥ perpendicular to
the trail, as well as the angle θ between v2 and ê1. To avoid discontinuities in θ

due to 2π periodicities, θ was calculated with respect to −ê1 if ⟨v∥⟩ > 0.

5.10.4 Laser sheet fluorescent microscopy

The setup (Fig. 5.9 ) consists of an illumination unit (producing the thin laser sheet)
and a detection unit (the camera and the objective) that are synchronized and translate
vertically (in z-direction) capturing images at a frame size of 1MP in the x-y plane at
4.15 µm/px resolution. Images are recorded at 150 frames per second, while the z-stages
are driven by a sawtooth signal with an amplitude of 3 mm and a frequency of 0.7 Hz,
yielding a voxel size of 4.2x4.2x27 µm3. The laser sheet’s beam waist is ≈40 µm thick.
The scanned volume in the square cuvette we use is 3x3x3 mm3. Our samples consist
of Nile Red doped droplets with a diameter of 50 µm in density matched mixtures of
TTAB/H2O/D2O.

3D droplet positions are reconstructed from binarized stacks of z-slices for each
half period of the sawtooth signal. We extract fluorescent droplet contours for each
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Figure 5.8 – Identification of collision events.
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Figure 5.9 – Fluorescent light sheet microscope, schematic.

slice [223] and grouped contours associated with the same droplet within consecutive
slices using a mean shift clustering algorithm [224, 225]. Time and z position for each
slice are calculated using timestamps provided by the camera and translation stage
software interfaces, resulting in full xyzt datasets.
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Figure 5.10 – Analysis of the fits to the 54 experimental reflection events with large
incidence angle θinc > 60◦, using two fitting parameters Ωc0 and αc0. (a) The fits are
ordered from best to worst according to the error of the fit. (b,c) Median values of (b)
Ωc0 and (c) αc0 as a function of the the number n of trajectories used in the calculation
of the median value. We observe a plateau at Ωc0 ≈ 7 · 103 µm2/s and αc0 ≈ 3 · 104

µm3/s (grey band), when a sufficient number of trajectories is considered (n ≳ 20) but
the worst fits are left out (n ≲ 40). (d) As an example, we show the histogram for the
values of Ωc0 and αc0 (two-dimensional, as well as projected along each dimension) when
using the n = 21 best fits, which corresponds to using only the fits with relative error
< 4 · 10−3.
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Chapter 6

Spontaneously rotating clusters of
active droplets: Collective
dynamics governed by
hydrodynamic interactions1

Abstract
We report on the emergence of spontaneously rotating clusters within an active

emulsion. The constituent self-propelling droplets sediment, self-organize into ordered
planar clusters, and then hover over the bottom boundary exhibiting regular rotational
dynamics. We trace back the origin of this rotation to the nonlinear dynamics of the
individual droplets and demonstrate a novel symmetry breaking mechanism: helical
propulsion dynamics for an isotropic active particle. The helical swimming regime is
limited to a very narrow range of droplet activity between the straight and chaotic
regimes. However, we show that by forming an ordered cluster, the droplets coopera-
tively suppress their chaotic dynamics, turning it into a steady rotational motion. We
study the collective dynamics as a function of droplet activity and cluster size.

1This chapter is under preparation for publication. B. V. H. designed the research, performed
experiments and data analyses and wrote the manuscript. Akinori Nishide, from Center for Exploratory
Research, R&D group, Hitachi Ltd., performed experiments and data analyses. Corinna Maass designed
the research, performed data analyses, supervised the project, and wrote the manuscript.
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Spontaneously rotating clusters of active droplets

6.1 Introduction

Suspensions of colloidal particles have been shown to demonstrate a variety of collective
behaviors when they are driven out of equilibrium. Whether driven externally [176, 226,
227] or internally [78, 79], the initially disordered suspensions tend to spontaneously
form flocks and vortices or self-assemble into ordered crystal-like structures in the
vicinity of a solid boundary. The majority of the studies on collective dynamics
have focused on motility-induced phase separation (MIPS) where the particle velocity
depends on the local concentration of its counterparts [9, 76, 78]. In these studies,
mutual hydrodynamic interactions have been neglected. On the other hand, recently, a
growing body of research has focused on collective behavior in active matter driven
mainly by hydrodynamic interactions [228–231]. In particular, flow-induced self-
assembly into ordered two-dimensional crystals has been reported in suspensions of
Thiovulum majus bacteria [232] which attract their neighbors by generating a tornado-
like flow field. Flow-induced phase separation has also been observed in suspensions of
artificial active particles such as bottom-heavy Janus colloids [78] and active droplets [79,
80].

In this chapter, we study flow-induced self-assembly in active emulsions and report
on the collective dynamics of swimming droplets that lead to a novel emergent behav-
ior: close to a boundary, active droplets form ordered two-dimensional clusters that
spontaneously undergo rotational motion. We show that the stability and dynamics
of the clusters can be controlled by droplet activity and cluster size. To elucidate
the underlying mechanism behind the rotational dynamics, we studied the individual
swimming behavior in three dimensions and observed helical swimming which is a
novel mechanism of spontaneous symmetry breaking for an isotropic active particle.
Our experiments show that this scenario is limited to a very narrow activity range
before the propulsion dynamics become chaotic. We discuss how forming an ordered
cluster might stabilize the chaotic dynamics of individual droplets, thereby resulting in
emergent rotational dynamics.

6.2 Attractive hydrodynamic interaction between
droplets

We study active emulsions of oil droplets (CB15, radius Rd = 25µm) submerged in
an aqueous supramicellar solution of surfactant TTAB (cTTAB = 6 − 20wt.%, where
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6.3 Formation of spontaneously-rotating clusters

CMC = 0.13wt.%). Due to the presence of the micelles, the oil droplets slowly dissolve
by micellar solubilization. Hence, the system is out of equilibrium. Above a critical
cTTAB the droplets undergo a dynamical instability and start to self-propel with a
speed of V ≈ 25µm/s (see Section 1.3.3 and references [13, 58]).

We used particle image velocimetry (PIV) to measure the external flow field
generated by a droplet in a Hele-Shaw cell (height≈ 2Rd). Fig. 6.1 a shows that
the magnitude of the interfacial velocity does not peak at the equator. Instead, the
droplet generates an asymmetric flow that is stronger at its rear side, thereby showing
a weak "pusher" flow in the far-field. This has also been observed in the numerical
simulations of active droplets [58] as well as solid phoretic particles [57]. Thutupalli et
al. [80] attributed this asymmetry to the balance between viscous and nematic stresses
within the, in their case, liquid crystal droplet. Our experiments on isotropic droplets,
however, show that this asymmetry originates from the complex transport of surfactant
molecules in the external phase rather than the internal structure of the droplet.

To understand the mutual hydrodynamic interactions between droplets, we start
from the simplest case: two droplets in a Hele-Shaw cell. As shown in Fig. 6.1 b,c, the
two droplets attract each other, form a stable configuration, and continue swimming side-
by-side for a long time. This attraction is associated with the long-range hydrodynamic
interaction between the two droplets. The pusher swimmers induce a flow field that is
directed toward the body, along their sides. Once two pushers swim on a converging
course, they experience an attractive force [80] and reorient each other, until parallel
side-by-side swimming is achieved [30]. It is also noteworthy that the particles never
come in contact and the stable configuration is reached at a finite interparticle distance.
This might be associated with the solute-mediated interactions where the two clouds
of solutes around the droplets overlap, leading to a repulsive force [233]. Hence, the
final distance may be determined by the interplay of the hydrodynamic attraction and
the phoretic repulsion.

6.3 Formation of spontaneously-rotating clusters

The attractive hydrodynamic interactions discussed in the previous section can result
in flow-induced self-assembly and phase separation in a crowded system [79, 80]. To
study the formation of such clusters, we filled a deep closed reservoir (6 mm in diameter
and 5 mm in depth) with an active emulsion of monodisperse droplets. Due to their
higher mass density, the droplets gradually sediment to the bottom of the reservoir.
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Spontaneously rotating clusters of active droplets

Figure 6.1 – (a) Mean flow field generated by a single freely swimming droplet inside a
Hele-Shaw cell. The colormap shows the speed. (b) The interaction between two active
droplets. We have overlaid the frames recorded during an 80 s period. In this particular
data set, the droplets had shrunk somewhat due to the solubilization, before starting
the recording. that is why their diameter is smaller than 50µm. (c) Variation of the
separation distance d between the two droplets in time. The shaded region corresponds
to the long-range hydrodynamic interactions leading to the formation of a droplet pair.

There, they start to interact with each other and autonomously assemble into planar
clusters. This out-of-equilibrium process takes place in four stages (Fig. 6.2 a-c): (i)
Sedimentation, due to gravity, (ii) Aggregation, due to the mutual hydrodynamic
attractive forces, (iii) Cluster formation, during which, the droplets form hexagonally-
ordered crystal-like structures and all droplet reorient to swim vertically against gravity,
and (iv) Rising and Rotation, where the droplets cooperatively start to hover and
rise, accompanied by a rotational motion. Since the system has no inherent broken
symmetry – the droplets themselves are isotropic and rotation occurs even in symmetric
heptamer structures like the one in Fig. 6.2 c– the emergence of this rotational motion
was unexpected and the symmetry needs to be broken by the nonlinear dynamics of
the system. In this chapter we present experimental evidence of possible mechanisms.

We tracked seven individual droplets that eventually form a cluster. We have
plotted the individual droplet trajectories centered around the coordinate of the middle
droplet. As shown in Fig. 6.2 d, initially, droplets exhibit a random disordered motion
which can be due to the chaotic propulsion dynamics (as discussed in Chapter 3) as
well as multiple particle-particle and particle-boundary interactions. However, after
the cluster is formed, the dynamics spontaneously change into an ordered state and
steady rotational motion that is stable for a very long time.

All of the individual droplets in a cluster reorient to swim upwards against
gravity, thereby generating a global convective flow which makes the cluster hover
(Fig. 6.2 b) [79]. The planar arrangement of the cluster is stabilized by the interaction
with the cell bottom [234]. Using the calibrated z-drive of the stage of an Olympus
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IX-83 microscope at 40× magnification, we measured the hovering height of clusters
with different sizes. Fig. 6.2 e demonstrates the variation of cluster height in time.
Regardless of the cluster size (number of droplets N), they all tend to gradually rise
with a speed on the order of 1µm/s. This continuous rise continues up to a height
of several hundred µm. Here, apparently, the stabilizing effect of the cell bottom has
become so weak that the cluster disintegrates. We attribute the cluster’s rise to the
fact that the droplets dissolve and their mass decreases accordingly.

6.4 Phase diagram for the cluster dynamics

We now study the phase behavior of the clusters and characterize their dynamics. The
two parameters that we choose to study are cluster size N and Péclet number (Pe).
We choose N as a simple measure of collectivity in the cluster, while, as shown in
Chapter 3, Pe characterizes the droplet dynamics at the individual scale.

For an active droplet, Pe is defined as [102]

Pe = VtRd

D
≈ 18π2

kBT
qsr

2
sζR

2
dµi

[
µ

(
2µ+ 3ζ/Rd

2µ+ 3

)]
, (6.1)

where Vt is the theoretical terminal droplet velocity in an external surfactant gradi-
ent [43, 54], Rd = 25µm the droplet radius, D = kBT

6πrsµo
the diffusion coefficient for the

surfactant monomer (length scale rs ∼ 10−10 m), qs the isotropic interfacial surfactant
consumption rate per area, ζ ∼ 10 nm the characteristic length scale over which the
surfactants interact with the droplet [43, 58], µo and µi the viscosities of the outer
and inner phases, and µ = µo/µi. Pe represents the relative strength of the advective
transport of surfactant molecules to their diffusion. It increases monotonically with
droplet activity which here is proportional to qs. We control this quantity by varying
cTTAB—higher cTTAB results in higher qs (cf. Appendix 6.7).

In a space spanned by droplet activity (Pe) and cluster size (N), we observe
four regimes (Fig. 6.3 a): (i) No clustering due to insufficient droplet activity, (ii)
Non-rotating clusters, (iii) Rotating clusters, and (iv) unstable clusters due to high
activity. At low Pe, droplets generate weaker flow and only small clusters form
(N = 3 − 5 at Pe = 5.2). By increasing Pe, the droplet activity increases and in
turn the hydrodynamic interactions are strong enough to form larger clusters. At
Pe = 6.8 to 8.7, the dynamics of smaller clusters (N < 8) transition from non-rotating
to rotating. At sufficiently large Pe, we observe unstable clusters that rearrange their
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Figure 6.2 – (a) Trajectories of the individual droplets undergoing the four stages of
flow-induced self-assembly resulting in spontaneously-rotating clusters. The micrograph is
one snapshot from the experiment. Panel (b) schematically and panel (c) experimentally
demonstrate the four different stages that a group of seven droplets undergo to form a
rotating cluster. The colored droplets in (c) reside in the focal plane of the objective. (d)
Trajectories of droplets forming one cluster. The z-axis represents the elapsed time. (e)
Variation of cluster hovering height with time.
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structure frequently. In this regime, during the very short periods when the cluster
possesses an ordered structure, it shows rotational dynamics before melting again into
a disordered aggregate.

While increasing Pe results in the formation of larger clusters, the cluster size also
influences the collective dynamics. As shown in Fig. 6.3 a, at a given Pe, the cluster
behavior changes from rotating to non-rotating with N . For instance, at Pe = 10.9,
very large clusters of size N > 20 barely rotate, while smaller clusters (N < 10)
rotate steadily. This is reflected in Fig. 6.3 b, in which we have plotted the measured
rotational period of clusters with different N at Pe = 13.2. The rotational velocity
of a cluster linearly decreases with N . A similar trend was reported for Thiovulum
majus bacteria that transition to downwards oriented bound states near surfaces [235]
and self-organize into 2D clusters rotating on a solid boundary [232]. The clusters
only rotate counter-clockwise since each individual, flagellated bacterium generates
flow fields with counter-clockwise chirality. In contrast, droplet clusters, show both
clockwise and counter-clockwise rotation and can spontaneously switch between the
two. Hence, their rotation is not due to an internal chirality. We note, however, that
chirality can be imposed on the cluster by using liquid crystalline droplets with a chiral
dopant [79]. The significant dependence of the collective behavior on Pe suggests that
the emergence of a rotating cluster can be attributed to the individual dynamics of the
constituent droplets.

6.5 Rotational broken symmetries in individual droplets

To this end, we investigated helical states in the propulsion dynamics of individual
droplets in response to variation of Pe. By adding heavy water (D2O), we matched
the density of the aqueous TTAB solution with that of the droplets. This allowed
for observation of the individual droplet trajectories in a force-free, off-boundary
bulk medium. In each experiment, we placed only a small number of droplets in the
reservoir so that the inter-particle interactions are negligible. In Fig. 6.4 , each image
shows the overlaid trajectories of individual droplets at different Pe. At low Pe, the
droplets show a persistent and directed motion. At intermediate values (Pe =6.8
to 8.7), the symmetry is spontaneously broken, and the droplets swim in a helical
trajectory with no global handedness. At Pe ≥ 10.9, droplets demonstrate increasingly
chaotic swimming behavior. In our previous experiments in quasi-2D confinement
(Chapter 3), we demonstrated that, due to the non-linearity of the surfactant advection,

123



Spontaneously rotating clusters of active droplets

Figure 6.3 – (a) The phase diagram of the cluster dynamics and stability. In the
horizontal axis, the cTTAB values and the corresponding Pe values are presented. •
and ◦ denote non-rotating and rotating clusters, respectively. The half-full circle cor-
responds to the margin where both behaviors are observed. ⋄ corresponds to unstable
clusters. (b) Rotational period of the clusters versus their size, labels denote clockwise,
counterclockwise and switching rotation.

by increasing Pe the propulsion dynamics transition from steady and persistent to
unsteady and chaotic. Now, in 3D, remarkably, there appears to be a far more ordered
and steady helical swimming regime between straight and chaotic propulsion. While
a full understanding of this intermediate helical regime appears unfeasible without
extensive numerical modelling, we can at least speculate about possible origins based on
our previous findings. As shown in Chapter 3, for intermediate Pe values in 2D, higher
hydrodynamic modes are excited momentarily, generating a flow with quadrupolar
symmetry. Such flow results in a accumulation of filled micelles (“spent fuel”) at the
front stagnation point of the droplet. This accumulation results in a torque imbalance,
reorienting the droplet away from this self-made chemical trap. The droplet undergoes
recurrent reorientations in a semi-periodic manner resulting in a quasi-meandering
trajectory (Fig. 3.3 b and Fig. 3.5 b). While the dynamics in a Hele-Shaw cell are
confined to two dimensions, in a 3D bulk medium the droplet can now reorient within
the entire angular space, allowing for more complex modes of symmetry breaking which
can lead to helical states [54, 102, 116]. A similar dynamical instability is a possible
mechanism causing the rotational motion of planar clusters. In future work, we will
investigate these instabilities using our established methods of imaging chemical and
flow fields around a rotating cluster (Chapter 3).
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Figure 6.4 – Dynamical behavior of individual active droplets with varying Pe. The
Pe range for each regime is shown by a different color.

6.6 Discussion and Conclusion

We demonstrated that the dynamics of isotropic droplet swimmers transition from
straight to helical and then to chaotic when the interfacial activity is increased (char-
acterized via Pe). This dynamical instability, which is solely due to the nonlinearity
of surfactant transport, could explain the emergence of rotating clusters. However,
this intermediate regime is limited to a very narrow range of 6.8 ≤ Pe ≤ 8.7. Beyond
Pe = 8.7, the dynamics become increasingly chaotic. In contrast, the planar clusters
exhibit rotational dynamics within the range of 6.8 ≤ Pe ≤ 91.8 which is remarkably
broader compared to the range for the individual droplets. In other words, the clusters
show ordered rotational motion, even at a Pe range corresponding to the chaotic
motion of its constituent elements. This suggests that the cluster formation suppresses
the chaotic dynamics of the individual droplets and integrates them into an ordered
collective system which performs a synchronized rotational motion. This stability is
achieved cooperatively through mutual hydrodynamic interactions between the con-
stituent elements of the clusters. At very high Pe, only very large clusters maintain
their ordered structure (stability) and undergo rotation. While the rotational motion
of the clusters is reminiscent of the collective dynamics in the suspensions of Thiovulum
majus bacterium, it is essentially different since for the bacteria, the rotational flow
arises from their chiral body shape, whereas for the isotropic droplets, the symmetry is
spontaneously broken due to the nonlinearity of the surfactant advection.

In conclusion, we demonstrated that a simple emulsion of active droplets can use
hydrodynamic interactions to self-organize into rotating planar clusters reminiscent of
that in living systems. We attributed the emergence of this rotational dynamics to
the complex coupling between the hydrodynamics and the chemical transport. We
characterized the 3D dynamics of individual droplets based on Pe and identified three
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regimes of persistent, helical, and chaotic swimming. We observed that the cluster
formation suppresses the chaotic fluctuations of individual droplets at high Pe, resulting
in the emergence of ordered rotating clusters of isotropic droplets. We showed that the
collective behavior, in terms of rotation and stability, can be controlled by tuning the
activity (Pe) and the cluster size.

6.7 Appendix

Dissolution rate of active droplets

To estimate the surfactant consumption rate qs to calculate Pe, we measured the
droplet shrinking rate dRd/dt (plotted in Fig. 6.5 ). We found a dependence on the
cTTAB. We used a first order approximation, via linear regression (black line), for
dRd/dt, to calculate qs for different cTTAB values. qs is estimated by relating the
dissolution rate of the active droplet to the isotropic surfactant consumption at the
droplet interface [58]

Viscosity measurements

We measured the viscosity of the oil phase µi = 138 mPa.s and the surfactant solution.
The measured values were µi = 1.3, 1.6, 1.9, and 2.9 mPa.s, corresponding to cTTAB =
5, 10, 15, and 20 wt.%, respectively. The estimated values, corresponding to other
cTTAB, were extracted by interpolation.

Figure 6.5 – Dissolution rate of active droplets dRd/dt versus different cTTAB values.
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Chapter 7

Discussion and Outlook

Non-equilibrium physics has paved the way for a new, exponentially growing research
field known as active soft matter. It has provided us great insight into our efforts to
understand the physics of living matter. The very appealing possibility, offered by
active soft matter, is the promise of developing an artificial, physical system that mimics
living matter. The construction of such biomimetic systems from soft components
has two main benefits. From a fundamental perspective, it can provide ground to test
the hypotheses about the underlying physics behind the biological functions. From a
technological point of view, it offers the possibility of employing the same principles
to create synthetic functional materials that possess some type of autonomy and can
perform tasks that are currently beyond the state of the art.

The main objectives of this thesis were to explore the biomimetic features of active
droplets and study the emergent collective behavior in active emulsions. In Chapter 1,
we discussed the hallmarks of living systems and the challenges in developing a life-like
protocell, in the framework of active droplets.

In Chapter 2, we addressed the challenge of compartmentalization. We used
microfluidics to produce composite droplets known as double emulsions–where a water
droplet is placed inside an oil droplet. Motility in such a design results in coalescence
and the liquid shell breaks up. We addressed this challenge using a nematic liquid crystal
as the shell. The nematoelasticity of the liquid crystal balances the hydrodynamic
drag force on the water droplet and impede the coalescence. We studied the peculiar
propulsion dynamics of the active shells in 2D and 3D and provided routes to control
the motion via topology, chemical signaling and hydrodynamic interactions with the
boundaries.

In chapter 3, we studied the adaptability of an active droplet to variation of
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viscosity in the outer environment. We developed a novel technique based on dual-
channel fluorescent microscopy to visualize the hydrodynamics and chemical fields
simultaneously and investigate the spatiotemporal dynamics of the system. We observed
the emergence of chaotic propulsion with increasing the viscosity of the swimming
medium. Using the visualization technique, we demonstrated the bimodal nature of
this chaotic motion. Our results show that the slowly-decaying products of activity
have a memory effect on the dynamics of the droplets. The recurrent switching between
flow modes and the self-avoiding random walks are both caused by interactions of the
droplet with the chemical products–a critical factor that has been overlooked so far.

Chapters 4 and 5 focus on the information processing aspect of the active droplets.
In Chapter 4, we studied the dynamics, governed by the interplay of topography (pillars
of different diameter) and negative autochemotaxis. We reported on how the curvature
of the boundary and autochemotaxis can lead to different scenarios: no wall-attachment
for highly curved interfaces, stable trapping at large pillars, and a narrow transition
region where interaction with own chemical trail makes the droplet detach after a single
orbit. In Chapter 5, we used fluorescent imaging of the filled micelle trail to measure
their diffusion coefficient. We quantified the autochemotactic interactions between
droplets and the trails of their counterparts and obtained a phase diagram based on
delay time and incident angle. Next, we studied the collective dynamics, governed by
autochemotactic interactions, in active emulsions. We report a novel dynamical arrest
mechanism: transient autochemotactic caging where a droplet is trapped inside a cage
made of the trails of other droplets. By extending the study to 3D, we showed caging
in unconfined suspensions of active droplets.

A significant appeal of active particles is their ability to self-organize and exhibit
phase separation. Artificial prototypes of active particles enabled us to study the
underlying physics of such collective behavior in the absence of any biological complexity.
In Chapter 6, we studied active emulsions in which droplets undergo flow-induced phase
separation in the vicinity of a boundary [79, 80]. We report spontaneous rotation in
clusters of isotropic active droplets. We trace this symmetry breaking to the dynamics
of the individual swimmers. At higher interfacial activity rates, the nonlinear coupling
between the hydrodynamics and the chemical transport results in spontaneous helical
swimming for a droplet. The helical swimming only happens in a very narrow transition
region, before the droplet switches to chaotic motion. In a cluster, however, collective
hydrodynamic interactions suppress the chaotic dynamics, changing it into an ordered
rotational motion of a cluster.
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In conclusion, we explored active droplets as a paradigm for biomimetic synthetic
microswimmers. They are driven by chemical activity and generate long-lived chemical
gradients in the environment. Unlike most artificial microswimmers with built-in
polarity, active droplets are radially isotropic. Thus, they can undergo multiple
spontaneous symmetry breaking scenarios depending on the environmental cues. These
characteristics make active droplets an elegant, versatile and responsive model system.
They are indeed an experimental realization for the squirmer model introduced by
Lighthill in 1952 [236] and thus can be used to validate the theoretical predictions in
fundamental fluid dynamics.

To acquire insight into the emergence of collective behavior and phase transitions in
out-of-equilibrium systems, active droplets can be used to understand pair interactions
and build our knowledge from the bottom up to more complicated many-body systems.
The framework and the techniques that we introduced advance the state of the art
of the field enabling further quantitative studies of the complex dynamics, propulsion
strategies, or more sophisticated composite designs.

During the course of this study, the spectrum of the research ideas broadened and
new possibilities and challenges emerged.

To continue the work presented in Chapter 5, we are currently collaborating with
Prof. Marco Mazza, from Loughborough University, and Dr. Fabian Schwarzendahl,
from the University of California in Merced, on the theoretical modeling of the collective
dynamics governed by autochemotactic interactions (caging in a two-dimensional
system).

To demonstrate the generality of our framework, we collaborated with a chemistry
group (Prof. David Officer, University of Wollongong, Australia) who developed pH-
responsive active droplets. The Marangoni stress that propels the droplet is caused
by a deprotonation reaction in an external alkaline gradient. The deprotonation
of merocyanine salt MCH+DBS- by base (NaOH) liberates the surfactant sodium
dodecylbenzene sulphonate (NaDBS) and give the free merocyanine MC. The MC
molecules possess a red color. As an active droplet propels, it secrets MC molecules in
its wake– similar to the secretion of filled micelles by a solubilizing droplet– in the form
of one or two visible red plumes, depending on the propulsive mode. We used the same
approach as introduced in Chapter 3, to identify the propulsive mode of the droplets,
and studied how active droplets adapt their dynamics in response to a chemical gradient.
We observed the suppression of higher modes of interfacial activity due to pH gradients
resulting in a transition from chaotic to straight motion at stronger gradients. We are
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further collaborating on developing light-activated swimming droplets.
While the majority of studies, including the work in Chapter 3, assume a constant

reaction rate at the interface, the validity of this assumption has not been proven
yet. We are currently studying the effect of the local concentration of products of
activity on the reaction rate at the interface. We have performed high-resolution flow
measurement and chemical field visualization to tackle this problem. We have observed
that the presence of filled micelles (spent fuel) inhibits the reaction at the interface
and weakens the Marangoni stress.

Future research on the individual dynamics of active droplets should focus on
the memory effects due to the presence of slowly-decaying products of activity. Un-
derstanding such effects can explain the emergence of helical swimming for isotropic
droplets and provide us further insights on how to tune the physicochemical properties
of the system to achieve more complex functionalities. The application of the joint
visualization technique, introduced in this thesis, can be very informative if combined
with direct numerical simulations of the system in three dimensions. Such simulations
can facilitate the systematic study of the dynamics by producing phase diagrams based
on many numerical experiments.

To continue the collective dynamics in active emulsions, now that we have the
capability to perform time-resolved joint visualization of the involved fields, the starting
point should be pair interactions. There are multiple theoretical studies [163–166]
that can be used for comparison. A fascinating phenomenon in bacterial colonies is
their wave-like collective migration due to a self-generated chemical gradient [211].
This phenomenon can also be observed in active emulsions since they leave behind
chemo-repellents, generating a gradient that might cause a collective migration to the
unexplored regions. Such behavior would be even more interesting to study in model
porous media, such as artificial soil, where the swimming mechanism is influenced
by the hydrodynamic interactions with the boundaries. Such measurements are now
possible, even in 3D, via refractive-index matching of the the bulk swimming medium.
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