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Abstract

In aeroacoustic testing one seeks to localize and reconstruct the power of an aeroacous-

tic source, given correlation estimates of pressure fluctuations in the frequency domain.

This inverse problem with operator-valued data is the research object of this thesis.

We establish a framework on infinite-dimensional spaces which allows for a deeper anal-

ysis of the problem. In particular, we prove that the power of a spatially uncorrelated

source is uniquely determined by the correlation data.

Furthermore, we analyze several reconstruction methods in an infinite-dimensional and

discrete setup. In the latter, the concept of weighted norms is introduced together with

a theoretical result on on the optimal weighting choice.

Finally, we discuss important aspects regarding the regularization and numerical imple-

mentation of source power reconstruction methods. These are illustrated with various

numerical experiments.
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Chapter1
Introduction

Historical background
The task of localizing or reconstructing sound sources from measurements of the gener-
ated sound field arises in many different fields in engineering science. Typical scenarios
are for instance

◦ Analysis of the rail and wheel noise of passing high speed trains (see e.g. [BKP87]),

◦ speaker localization and speech enhancement for hearing aid devices (see e.g.
[GP17, LCH+19, WTdHEB09]),

◦ analysis of noise sources on wind turbines (see e.g. [OSL07]).

The real-world problem that forms the starting point of this work is the aeroacoustic
testing of aircraft (resp. ground vehicle) components. We would like to outline this
term a little more precisely.

Aeroacoustics
Roughly spoken, aeroacustics is concerned with sound that is generated by fluid flows.
Either by the turbulent structures within the flow field itself or by fluid-structure inter-
action. Aeroacoustics as an autonomous field of research has existed since the 1950s -
initiated by the fundamental work of Sir Michael James Lighthill [Lig52, Lig54]. He de-
rived the famous Lighthill analogy by rearranging the equations of fluid and gas dynamics
such that a wave operator occurs on one side of the equation.

Testing of aircraft components
We would like to emphasize that we are considering experimental methods here i.e. the
evaluation of measured acoustic data. Therefore, we will often use the term experimental
aeroacoustics to highlight the difference from computational aeroacoustics (CAA).
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Principle of the experimental investigation:
A solid object (for example a scaled model of an aircraft wing) is placed inside an
airstream of a wind tunnel. By fluid-structure interactions the object acts as an aeroa-
coustic sound source. The generated sound field is captured by an acoustic measurement
device. From those measurements we seek to quantify and localize the power of the aeroa-
coustic sound sources.

Measurement device:
The methods discussed in this work are all based on measurements with microphone
arrays. Such arrays are also employed in many other fields of application, for example
radar [HHL+93] or geophysics [BSC01]. Since the 1970s, microphone arrays have also
been used in aeroacoustic experiments and measurements (see e.g. [BK76]). Previously,
elliptical mirrors were mostly used for this purpose (see e.g. [GJW75]). However, due
to their versatility, microphone arrays have become the standard measurement device in
most applications. The concept of microphone arrays and elliptic mirrors is illustrated
in Figure 1.1.

Test environment:
Aeroacoustic measurements are conducted in wind tunnels with open or closed test
sections. Each environment has its specific challenges and uncertainties regarding the
measurement signals.
In open test sections the microphones are usually placed outside the flow. Thus the
sound waves caused by the flow-structure interaction have to pass the turbulent shear
layer between core flow and the medium at rest around the microphones. An analytical
model that describes the refraction of sound waves at an infinitely thin shear layer was
presented by Amiet in 1978 [Ami78]. Amiet’s model was used by Humphreys et al.
[JBJM98] to include refraction at the shear layer into microphone array methods. An
approach to model the coherence loss due to the shear layer by random media theory
was presented by Ernst et al. [ESB15].
In closed wind tunnels, microphones are typically flush-mounted at the wind tunnel wall.
During the experiment, the wind tunnel flow forms a turbulent boundary layer (TBL)
that covers the microphones. Therefore, the microphones capture not only the acoustic
pressure fluctuations caused by the aeroacoustic effects but also the hydrodynamic ones
generated by the TBL.

Correlation-based source imaging

The measurement environment of aeroacoustic experiments is subject to stochastic ef-
fects. Therefore, the raw data (pressure fluctuations in time domain) is usually post-
processed to correlation estimates in frequency domain. We briefly review the most com-
mon correlation-based imaging methods. Only a few of them are examined in greater
detail in this thesis.
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Figure 1.1.: Schematic sketch of the principles of an elliptic mirror (left) and a microphone array
(right). The focus point in the source region is indicated in blue and microphones
in black. The elliptic mirror aperture contains a single microphone and has to be
mechanically adjusted for every focus point. The array consists of many microphones
and the adjustments can be done by post-processing of the recorded signals.

Methods that are studied in this thesis:

Beamforming:
Beamforming methods rely on the principle of backpropagation. For each location they
provide an explicit estimator of the source power and do not require any evaluation of the
forward operator. However, they rather capture the main characteristics of the source
and do not provide precise reconstructions. This is certainly the reason why Beamform-
ing results are often called dirty map. Beamforming methods are also closely related to
helioseismic holography methods that are used to study structures in the interior and
far-side of the Sun (see [GFY+18, Lin00, LB00]).

Variational inverse methods:
Variational inverse methods are based on a matrix (or operator) equation that connects
the source power to the observed data, the so-called forward model. A solution is ob-
tained by solving a suitable minimization problem. Such methods either work on the
correlation data directly (cross spectral matrix fitting a.k.a. CMF) or on a precomputed
Beamforming estimator (deconvolution approach for the mapping of acoustic sources
a.k.a. DAMAS).

Methods that are not studied in this thesis:

CLEAN:
The CLEAN method has its origin in astronomy and was first introduced by Högbom
in 1974 [Hög74]. CLEAN methods work on dirty maps and follow a greedy principle.
They iteratively seek to locate the current strongest source, remove its impact on the
dirty map and then find the next strongest one. Several variants have been proposed for
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aeroacoustic applications, with CLEAN based on spatial source coherence (CLEAN-SC)
[Sij07] certainly being the most popular among them.

Eigenvalue-based methods:
Those methods are based on an eigenvalue decomposition of the empirical correlation
matrix. The MUSIC algorithm (Multiple Signal Classificatoin) [Sch86, WTdHEB09]
divides the data into a noise and a signal part, using the magnitude of the eigenval-
ues. Methods like Generalized Inverse Beamforming [Suz08] or Orthogonal Beamform-
ing [SS06] perform source reconstructions on each eigenspace separately.

Bayesian methods:
In contrast to the frequentist perspective, Bayesian methods (e.g. [Ant12, PAL15]) do
not assume the existence of a ground truth but rather treat the source power function
as a random variable. The two ingredients of such methods are an initial belief of the
source power distribution π0 (prior) and a probability distribution of the data πC|q, given
the source power function (likelihood). The result, the posterior distribution πq|C of the
source power, given the observed data is then provided by the famous Bayes formula

πq|C ∝ π0 · πC|q .

The crucial steps of most Bayesian approaches are the choice of an appropriate prior dis-
tribution and a procedure to obtain point estimators or an representative set of samples
from the posterior distribution.

Outline and purpose of this thesis
We would like to explain what the intention of this work is and point out in what way
it seeks to contribute to current research.

Infinite-dimensional modelling:
When dealing with the aeroacoustic inverse source problem (with correlation data) from
a mathematical perspective, one is quickly confronted with the challenge that almost all
work on it is based exclusively on discrete formulations. However, to study fundamental
properties such as the uniqueness of the problem, an infinite-dimensional formulation
is essential. This requirement is the starting point of this work and will be dealt with
in Chapter 2 and 3. Chapter 2 presents the sound propagation model (the convected
Helmholtz equation) for several geometrical setups (free-space resp. waveguides in R2

and R3). Chapter 3 establishes a mathematical formulation of the inverse problem on
function spaces. In the second part we prove one of the main theorems of this work - the
uniqueness of the inverse problem. Both chapters will frequently make use of techniques
and results that are well-known e.g. in the field of scattering theory (see [CK13]) and
adapt them to our framework.
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Connection of mathematical theory with discrete models:
The framework from the first chapters now allows an infinite-dimensional characteri-
zation of standard imaging methods (Beamforming, DAMAS and CMF) in Chapter 4.
Furthermore those formulations reveal, how the methods are related to each other. In
a separate section we discuss the related problem of pure source localization (i.e. the
detection of the support of the source power function). It turns out that the principles
of the factorization method [KG07] can be carried over to inverse source problem stud-
ied here. We then move on towards a discrete setup, which lays the foundation for the
investigations in subsequent parts of the thesis. Chapter 5 introduces the concept of
finite-dimensional, weighted data spaces. With this setup, many well-known Beamform-
ing variants can be characterized and an optimal weighting with respect to the variance
can be derived. Furthermore, this concept can be easily integrated into the CMF resp.
DAMAS method.

Numerical treatment:
The third part of this thesis is concerned with the numerical implementation of the
previously discussed methods. As a basic concept, we employ generalized Tikhonov reg-
ularization with a quadratic data fidelity term and a penalty functional that consists of
a nonnegativity constraint plus L2− and L1−norm penalties. In Chapter 6 we discuss
several important aspects of the numerical implementation. This includes in particular
the choice of a suitable solver for the minimization problem - the fast iterative shrinkage-
thresholding algorithm (FISTA). Finally, we present several numerical experiments in
Chapter 7 to illustrate the ability of the discussed methods. We investigate computa-
tions with synthetic data as well as with experimental data.

We conclude this thesis with an outlook on further possible research directions (Chapter
8) and appendices on the proofs of auxiliary statements (Appendix A) resp. on basic
results from calculus, measure theory and convex analysis (Appendix B).

All in all, this work intends to provide an infinite dimensional mathematical description
of the aeroacoustic inverse source problem. The three important topics to be covered
are: theory of the problem, methodology and numerics. For the first two, we present
new insights and perspectives and prove new theoretical results. The treatment of nu-
merics in this thesis should be seen as a consistent continuation and illustration of the
investigations from the first two parts. Moreover, this last part intends to demonstrate
a practice-oriented application of inverse methods in experimental aeroacoustics.
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Chapter2
Sound Propagation in Homogeneous Flows

This chapter treats the basic model of sound propagation which is used in this thesis - the
convected Helmholtz equation. We discuss the forward source problem associated with
this equation and show existence and uniqueness for a weak formulation of this problem.
Furthermore, the fundamental properties of the corresponding Green’s functions in free
space and waveguide geometries in 2 and 3 spatial dimensions are investigated.

2.1. The convected Helmholtz equation . . . . . . . . . . . . . . . . . . . . . . 15
2.2. The deterministic source problem . . . . . . . . . . . . . . . . . . . . . . . 18
2.3. Green’s function in free space . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.4. Green’s function in waveguides . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5. Solution of the deterministic source problem . . . . . . . . . . . . . . . . . 37

2.1. The convected Helmholtz equation
The forward model in this work considers time harmonic sound propagation within a
homogeneous and subsonic flow field. This is of course a simplified modeling of the
real measurement conditions since the flow inside a wind tunnel is usually not uniform
over the entire domain. Furthermore the geometry of the aeroacoustic model (a scaled
aircraft for instance) will be neglected. Despite the simplifications that are introduced,
most source reconstruction methods for aeroacoustic experiments in closed test sections
are based on those assumptions (see e.g. [Sij04, Ahl16, BHE+17, MMSS+19]).

Let c denote the speed of sound, ω the angular frequency and k = ω
c the wavenum-

ber. As discussed above, we consider a constant flow field u ∈ Rd, where d ∈ {2, 3}.
Without loss of generality we can assume that u = (u1, 0, . . . , 0)>. Moreover, we as-
sume a subsonic regime i.e. the vector m = 1

cu satisfies |m| < 1, where |m| is usually
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called Mach number. For the time factor convention e−iωt and a domain of definition
D ⊂ Rd, time-harmonic sound propagation in the flow field u is described by the con-
vected Helmholtz equation

[k + im · ∇]2 p+ ∆p = −Q in D . (2.1)

Here p denotes the sound pressure field in frequency domain and Q an acoustic source.
Note that in this model p and Q depend only on ω and x. For m = (0, . . . , 0)>, Equation
(2.1) reduces to the standard Helmholtz equation that models time harmonic sound
propagation in a medium at rest. A very useful relation between the Helmholtz equation
with and without convection is provided by the Lorentz transformation (a.k.a. Prandtl-
Glauert transformation). More precisely, the Lorentz transformation maps solutions of
the standard Helmholtz equation to solutions of the convected Helmholtz equation. For
the entire thesis we will therefore assume that only the first component of m may be
nonzero i.e.

m = (m1, 0, . . . , 0)> for m1 = |m| ∈ [0, 1) .

We further define the scaling factor β ∈ (0, 1] by

β =
√

1− |m|2 . (2.2)

Proposition 2.1 (Lorentz transformation ([HRS20, Proposition 3.1])).
Let m = (m1, 0, . . . , 0)> ∈ Rd and T = diag

(
1
β , 1, . . . , 1

)
∈ Rd×d with β ∈ (0, 1] as in

Equation (2.2). We consider an open domain U ⊂ Rd and functions φ0 ∈ C2(U), Q ∈
C0(U) with [

k2

β2 + ∆
]
φ0(x) = −Q(x) on U .

The transformed function

φm(x) = exp
(
−|m| ik

β2 x1

)
φ0 (Tx)

then solves the convected Helmholtz equation with a modified source term on a scaled
domain. More precisely on T−1(U) we have

[
(k + im · ∇)2 + ∆

]
φm(x) = −exp

(
−|m| ik

β2 x1

)
Q (Tx) . (2.3)

Proof. A more general result for the wave equation in time domain holds with the coor-
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dinate transform

T̂
((

x
t

))
:=
(

Tx
βt+ |m|

βc x1

)
,

see e.g. [Cha00, GSAL15]. It states that if
[
∆2 − 1

c2
∂2

∂t2

]
ψ0(x, t) = −F (x, t) then the

pullback ψm := ψ0 ◦ T̂ satisfies[
∆− 1

c2

(
∂

∂t
+ u1

∂

∂x1

)2]
ψm = −F ◦ T̂ .

The statement (2.3) is then obtained from this time domain result for the special case
of time harmonic functions ψ0(x, t) = φ0(x)e−i

ω
β
t.

Similarly to the last proposition we have the following reverse result.

Proposition 2.2 (Lorentz transformation - backwards).
Let m and T be as in Proposition 2.1. We consider an open domain U ⊂ Rd and a
function φm ∈ C2(U), Q ∈ C0(U) with[

(k + im · ∇)2 + ∆
]
φm(x) = −Q(x) on U .

The transformed function

φ0(x) = exp
( |m| ik

β
x1

)
φm

(
T−1x

)
then solves the standard Helmholtz equation at wavenumber k

β with a modified source
term on a scaled domain. More precisely[

k2

β2 + ∆
]
φ0(x) = −exp

( |m| ik
β

x1

)
Q
(
T−1x

)
on T(U) . (2.4)

From now on we will frequently use the differential operator of the convected Helmholtz
equation

Lk := k2 + 2 |m| ik ∂

∂x1
− |m|2 ∂2

∂x2
1

+ ∆ = (k + im · ∇)2 + ∆ (2.5)

and its transposed operator

L>k := k2 − 2 |m| ik ∂

∂x1
− |m|2 ∂2

∂x2
1

+ ∆ = (k − im · ∇)2 + ∆ . (2.6)

For the operators defined above we have the following integral formula.
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Proposition 2.3 (Integration by parts formula).
Let U ⊂ Rd (d ≥ 2) be a bounded domain with Lipschitz boundary and u, v ∈ C2(U).
Then the following integral equation is valid∫

U
u(y)(Lkv)(y)dy =

∫
U

(L>k u)(y)v(y)dy

+
∮
∂U
{u(y)∇v(y)− v(y)∇u(y)} · nds(y)

+ |m|2
∮
∂U

{
v(y) ∂u

∂y1
n1 − u(y) ∂v

∂y1
n1

}
ds(y)

+ 2ik |m|
∮
∂U
u(y)v(y)n1ds(y),

where n = (n1, . . . , nd)> ∈ Rd denotes the unit normal vector of ∂U , pointing outwards
of U .

Proof. The proof relies on multidimensional integration by parts and is shifted to Ap-
pendix A.

2.2. The deterministic source problem
Roughly speaking, for a given source function s, a (direct) deterministic source problem
seeks to solve the partial differential equation

Lku = −s in D ,

where u satisfies additional radiation conditions at infinity and boundary conditions at
∂D. For this work and especially the analysis of the inverse problem, a weak formulation
of the direct problem will be sufficient. These weak formulations will be discussed in
this section together with formulations of the radiation conditions for the following two
geometrical setups

• D = Rd (free space),

• D is an infinite cylinder (waveguide).

For U ⊂ Rd we will denote by W k,p(U) the Sobolev space (based on weak derivatives)
of order k with exponent p (see e.g. [Alt16]). Furthermore Lploc(U) denotes the space of
functions f on U such that ∫

K
|f(x)|p dx <∞

for every compact set K ⊂ U .

Free space
We start with the free space problem i.e. D = Rd for d ∈ {2, 3} and consider a source
function s ∈ L2(Rd) with compact support. The source problem will be formulated as a
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variational problem with trial space L2
loc(Rd) and test space C∞c (Rd).

The problem reads: find u ∈ L2
loc(Rd) such that for all φ ∈ C∞c (Rd)∫
Rd
uL>k φ dx = −

∫
Rd
sφ dx (SP1a)

and the back-transformation bu(x) := exp
(
|m|ik
β x1

)
u
(
T−1x

)
satisfies

lim
|x|→∞

|x|
d−1

2

(
∂bu
∂ |x| − i

k

β
bu

)
= 0 , (SP1b)

uniformly for all directions x̂ = x
|x| . Here the second condition requires in particular that

the derivative ∂bu
∂|x| is well defined for x sufficiently large. This is guaranteed since s has

compact support and therefore Lku = 0 (in the sense of distributions) on Rd\supp(s). El-
liptic regularity results ([Fol95, Chapter 6]) then yield u ∈ C∞

(
Rd\supp(s)

)
. Property

(SP1b) is the famous Sommerfeld radiation condition [Som49, p. 192] and characterizes
solutions that radiate to infinity. The source Problem (SP1a)+(SP1b) has at most one
solution, this fact is transferred from the special case |m| = 0.

Theorem 2.4 (Uniqueness of SP1).
If u1, u2 ∈ L2

loc(Rd) both satisfy (SP1a)+(SP1b), then

u1 = u2 .

Proof. We sketch the important steps of the proof. By substracting the variational
formulations for u1 and u2 we conclude, that u1 − u2 solves (SP1a)+(SP1b) for s = 0.
By elliptic regularity results ([Fol95, Chapter 6]), u1 − u2 ∈ C∞(Rd). Thus, the back-
transformation bu1−u2 satisfies

∆bu1−u2 + k2

β2 bu1−u2 = 0

and
lim
|x|→∞

|x|
d−1

2

(
∂bu1−u2

∂ |x| − i
k

β
bu1−u2

)
= 0

in the classical sense. Hence, bu1−u2 must vanish everywhere due to the uniqueness
results for the standard Helmholtz equation in R3 [CK13, Proof of Theorem 8.7] and R2

[CC06, Special case of Theorem 5.24].

Waveguides
As an idealized geometry of a windtunnel we consider infinite waveguides with constant
cross section area. For the entire thesis we impose the following assumption.

Assumption 2.5 (Shape of cross section).
Let the cross section A ⊂ Rd−1 with d ∈ {2, 3} be a bounded and connected domain
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with Lipschitz boundary i.e. ∂A can be locally represented as the graph of a Lipschitz
continuous function. Furthermore assume that A satisfies at least one of the following
geometric properties

1. ∂A is of class C2,

2. A is convex.

The waveguide domain is now given by

D = R×A.

The walls of the waveguide are assumed to be sound hard, i.e. on the boundary ∂D we
impose Neumann boundary conditions in a weak sense. This is achieved by using the
corresponding eigenfunctions of the transverse Laplacian

∆⊥ =
d∑
l=2

∂2

∂x2
l

.

The eigenfunctions are characterized by the following theorem.

Theorem 2.6 (Spectral Theorem for the Neumann-Laplace Operator).
Let A ⊂ Rd−1 satisfy Assumption 2.5. Then there exists an orthonormal system of
functions {ψn}∞n=0 ⊂ L2(A) and real numbers {λn}∞n=0 ⊂ [0,∞) such that

(i) −∆ψn = λnψn ,

(ii) L2(A) = span {ψn}∞n=0 ,

(iii) {ψn}∞n=0 ⊂
(
C∞(A) ∩W 2,2(A)

)
,

(iv) ∇ψn · n = 0 on ∂A for all n ∈ N0.

Proof. See Appendix A.

Remark 2.7 (Dirichlet boundary conditions).
A similar theorem is valid for the Laplace Operator with homogeneous Dirichlet boundary
conditions (see [GT83, Theorem 8.37]). Therefore, the strategies of the proofs in this
section are also applicable for sound soft boundaries.

For the further analysis we require additionally that the eigenfunctions ψn are uni-
formly bounded and smooth up to the boundary.

Assumption 2.8 (Properties of eigenfunctions).
Let A ⊂ Rd−1 satisfy Assumption 2.5 and assume further that the L2-normalized eigen-
functions ψn from Theorem 2.6 satisfy

(i) supn∈N0 ‖ψn‖L∞(A) <∞,

(ii) ψn ∈ C∞(A).
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Note that Assumption (2.8) covers the important case of rectangular waveguides. In
that scenario the normalized eigenfunctions are given by

ψn(x2) =
√

2− δ0,n
h1

cos
(
nπ

h1
x2

)
for n = 0, 1, 2, . . .

for d = 2 and by

ψn,m(x2, x3) =
√

2− δ0,n
h1

cos
(
nπ

h1
x2

)√2− δ0,m
h2

cos
(
mπ

h2
x3

)
for n,m = 0, 1, 2, . . .

for d = 3. Here δ0,n denotes the Kronecker delta and h1, h2 the side lengths of the
rectangular cross section.

We define further the cross section coordinates

x⊥ :=
{

(x2, x3) for d = 3
x2 for d = 2

in order to introduce the deterministic source problem in waveguides. Again we consider
a compactly supported source function s ∈ L2(D) with supp(s) ⊂ D. The trial space
will be L2

loc(D) and the test space

V Neu :=
{
φ ∈ C∞c (D) : ∂φ

∂n
= 0 on ∂A

}
. (2.7)

Here ∂φ
∂n denotes the derivative in normal direction at the boundary. Let n ∈ Rd−1

denote the outer normal vector of ∂A then we have the identity

∂φ

∂n
(x1, x⊥) = ∇⊥φ(x1, x⊥) · n ,

where ∇⊥ denotes the Gradient operator with respect to the transverse coordinates x⊥
i.e.

∇⊥φ(x1, x⊥) =
(
∂φ(x1, x⊥)

∂x2
, . . . ,

∂φ(x1, x⊥)
∂xd

)>
.

The deterministic source problem in waveguides then reads: find u ∈ L2
loc(D) such that

for all φ ∈ V Neu ∫
D
uL>k φdx = −

∫
D
sφ dx . (SP2a)

Furthermore, the coefficients

b(n)
u (x1) :=

∫
A
bu(x1, x⊥)ψn(x⊥)dx⊥
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of the back-transformation bu(x) = exp
(
|m|ik
β x1

)
u
(
T−1x

)
satisfy

lim
|x1|→∞

(
∂

∂|x1| − i
√

k2

β2 − λn
)
b
(n)
u (x1) = 0 if k2

β2 − λn > 0

lim sup
|x1|→∞

∣∣∣b(n)
u (x1)

∣∣∣ <∞ if k2

β2 − λn < 0
. (SP2b)

Remark 2.9 (Smooth solutions).
Consider a smooth solution u ∈ C2(D) of the variational formulation (SP2a) and a
continuous source function s ∈ C0(D) with compact support. For a fixed test function
φ ∈ V Neu we can find a bounded interval I ⊂ R such that φ the support of φ is contained
in the closure of U = A×I. Note that we can choose I sufficiently large such that φ van-
ishes identically in a neighborhood of ∂U\(R× ∂A). Moreover φ satisfies the Neumann
boundary condition on all parts of ∂U and the first component of the d−dimensional
outer normal vector of ∂U is always zero on ∂U ∩ (R × ∂A). Now we can integrate by
parts in (SP2a) (i.e. apply Proposition 2.3 ). By all the facts mentioned above many
boundary expression vanish and the remaining terms read as∫

U
(Lku)(x)φ(x)dx−

∮
I×∂A

φ(x)∂u
∂n

(x)ds(x) = −
∫
U
s(x)φ(x)dx . (2.8)

Choosing φ ∈ C∞c (Ω) we get by the fundamental lemma of calculus of variations (cf.
[Alt16, 4.22 p.122]) that

(Lku)(x) = −s(x) for x ∈ D

in the strong sense. Hence, from (2.8) we get∮
∂D

φ(x)∂u
∂n

(x)ds(x) = 0 for all φ ∈ V Neu . (2.9)

We sketch how (2.9) implies Neumann boundary conditions in the strong sense for the
special case of rectangular waveguides in R3 (the two dimensional case works similar).
In that case we have A = (0, h1) × (0, h2) with h1, h2 > 0. Assume there exists a point
z ∈ ∂D such that ∂u

∂n(z) > 0. As u ∈ C2(D) we may assume without loss of generality
that z = (z1, 0, z3) with z3 < h2. Moreover, there exists a small ε > 0 such that ∂u∂n(x) > 0
for x ∈ Bε(z) ∩ ∂D. Now take a nonnegative function ϕ ∈ C∞c (R2) that is not the zero
function with ϕ(y1, y2) = 0 for

√
y2

1 + y2
2 ≥ ε. Let further η ∈ C∞c (R) with 0 ≤ η(t) ≤ 1

for all t ∈ R and

η(t) =

1 if t ∈
(
−h1

2 ,
h1
2

)
0 if t ≥ 2h1

3 .

The function φ(x1, x2, x3) = ϕ(z1 +x1, z2 +x2) ·η(x2) now satisfies φ ∈ V Neu and testing
with this particular φ in (2.9) leads to a contradiction to ∂u

∂n(x) > 0 for x ∈ Bε(z)∩ ∂D.
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Hence, ∂u
∂n(x) = 0 for x ∈ ∂D in the strong sense.

Vice versa, assume u ∈ C2(D) satisfies

(Lku)(x) = −s(x) for x ∈ D (2.10)
∂u

∂n
(x) = 0 for x ∈ ∂D

in the strong sense. Then we can multiply (2.10) by a test function φ ∈ V Neu, integrate
over D and use integration by parts. Then all boundary integrals vanish and we get that
u satisfies the variational formulation (SP2a).

To avoid the resonance case we require that

k2

β2 − λn 6= 0 for all n ∈ N0 . (2.11)

In that case, there exists at most one solution of the deterministic source problem in
waveguides.

Theorem 2.10 (Uniqueness of SP2).
Let (2.11) and Assumption 2.8 be satisfied. If u1, u2 ∈ L2

loc(D) both satisfy (SP2a)+(SP2b),
then

u1 = u2 .

Proof. We will again sketch the proof. Similar to the free space problem u1 − u2 solves
(SP2a)+(SP2b) for s = 0. Moreover, u1 − u2 ∈ C∞(D) and the back-transformation
bu1−u2 satisfies

∆bu1−u2 + k2

β2 bu1−u2 = 0

and 
lim
|x1|→∞

(
∂

∂|x1| − i
√

k2

β2 − λn
)
b
(n)
u1−u2(x1) = 0 if k2

β2 − λn > 0

lim sup
|x1|→∞

∣∣∣b(n)
u1−u2

∣∣∣ <∞ if k2

β2 − λn < 0
.

We will show that all coefficients b(n)
u1−u2 vanish. By the Lorentz transformation (i.e.

testing (SP2a) with φ (Tx) exp
(
|m|ik
β2 x1

)
, the back-transormation bu1−u2 satisfies the

variational formulation ∫
D
bu1−u2

{
k2

β2 + ∆
}
φdx = 0

for all φ ∈ V Neu. As the eigenfunctions ψn are smooth up to the boundary (Assumption
2.8.ii), we can test in particular with φ(x1, x⊥) = η(x1)ψn(x⊥) with a function η ∈
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C∞c (R). This yields

0 =
∫
D
bu1−u2

{
k2

β2 + ∆
}
φdx =

∫
D
bu1−u2

{
k2

β2 ηψn + η
′′
ψn + η∆⊥ψn

}
dx

=
∫
R

{(
k2

β2 − λn

)
η + η

′′
}
b
(n)
u1−u2dx1 . (2.12)

Equation (2.12) implies that b(n)
u1−u2 is a distributional solution of a one-dimensional

ordinary differential equation and since b(n)
u1−u2 ∈ C∞(R) it is also a strong solution.

Thus by standard theory of ordinary differential equations (see e.g. [Tes12, Chapter 3])
we can represent b(n)

u1−u2 explicitly by

b
(n)
u1−u2(x1) = A(n)exp

i√k2

β2 − λnx1

+B(n)exp

−i√k2

β2 − λnx1

 (2.13)

with some constantsA(n), B(n) ∈ C. By a distinction of cases
(
k2

β2 − λn > 0 and k2

β2 − λn < 0
)

we conclude that (2.13) together with the radiation conditions (SP2b) imply A(n) =
B(n) = 0 for all n ∈ N0 and hence b(n)

u1−u2 = 0.

2.3. Green’s function in free space

For y ∈ D a Green’s function g(·,y) of Equation (2.1) is defined as the distributional
solution of

[k + im · ∇]2 p+ ∆p = −δy in D . (2.14)

Here δy denotes the Dirac delta distribution at y. For this section we consider the entire
space as domain of definition i.e. D = Rd. In that case, g is often called the fundamental
solution. Note that Equation (2.14) is not sufficient to determine the Green’s function
uniquely. However, an additional radiation condition similar as in (SP1b) allows the
selection of physically meaningful solutions.

Standard Helmholtz equation:
For m = 0, Equation (2.1) reduces to the Helmholtz equation. In that case physical
meaningful solutions (i.e. outgoing waves) are characterized by the Sommerfeld radiation
condition

lim
|x|→∞

|x|
d−1

2

(
∂p

∂ |x| − ikp
)

= 0 , uniformly for all directions x̂ = x
|x| . (2.15)
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The Green’s functions satisfying (2.15) are given by [CK13, p. 5 resp. p.74]

for d = 3 : g(x,y) = eik|x−y|

4π , x 6= y (2.16)

for d = 2 : g(x,y) = i

4H
(1)
0 (k |x− y|) , x 6= y (2.17)

where H(1)
0 denotes the Hankel function of the first kind of order zero.

Convected Helmholtz equation:
The solutions presented above can be mapped by means of the Lorentz transformation to
the case where m 6= 0. Denote by g0(x,y, k) the no-flow Green’s function ((2.16), (2.17))
at wavenumber k. The mapping property of the Lorentz transformation (Proposition
2.1) then implies that the Green’s function with convection at wavenumber k is given by

g(x,y) = 1
β

exp
(
− ik
β2 (x− y) ·m

)
g0

(
Tx,Ty, k

β

)
. (2.18)

For an explicit representation of g it is convenient to define the Mach norm

|z|m =
√

(z ·m)2 + β2 |z|2 ,

where β =
√

1− |m|2. With the identity

|Tz| = 1
β
|z|m

we obtain explicitly

for d = 3 : g(x,y) =
exp

(
ik
β2 (−(x− y) ·m + |x− y|m)

)
4π|x− y|m

, (2.19)

for d = 2 : g(x,y) = i

4β exp
(
− ik
β2 (x− y) ·m

)
H

(1)
0

(
k

β2 |x− y|m
)
. (2.20)

For the remainder of this section, we will study further properties of the free space
Green’s function.

Asymptotic behavior
For the standard Helmholtz equation it is well-known that the Green’s function behaves
asymptotically like an outgoing spherical wave see [CK13, p.22, p.74]. By means of the
Lorentz transformation this result can be generalized to the case with subsonic uniform
convection. Propagation directions x̂ can be generalized as elements of the unit sphere
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Figure 2.1.: 2D Greens function for D = R2 (left) and D = R× [0, 1] (right).
Plot of |g(·,0)| for wavenumber k = 18.48. Values above 0.75 are truncated.

with respect to the Mach norm

Sd−1(m) =
{

x ∈ Rd : |x|m = 1
}
.

Proposition 2.11 (Asymptotic behavior of Green’s function [HRS20, Proposition 3.2]).

Let B = BR(0) be a ball, with radius R, then for x ∈ Rd\B and y ∈ B the following
asymptotic holds true:

g(x,y) = C(d)h(x) |x|−
(d−1)

2m exp
(
ik

β2 (m−Ax̂) · y
)

+O
(
|x|−

(d+1)
2

)
as |x| → ∞

(2.21)

with the auxiliary quantities

C(2) := ei
π
4

√
8πk

, h(x) := exp
(
ik

β2 (|x|m − x ·m)
)
,

C(3) := 1
4π , A := mm> + β2I, x̂ := x

|x|m
.

The asymptotic formula (2.21) holds uniformly for all y ∈ B and all directions x̂ ∈
Sd−1(m).

Proof. The proof boils down to an application of Proposition 2.1 and the asymptotic
behavior of the no-flow Green’s function, see [HRS20].

Integrability
In the subsequent analysis and in future chapters we will need the notion of a Hilbert-
Schmidt operator and Hilbert-Schmidt integral kernels (cf. Proposition and Definition
B.2 in the Appendix B). For the uniqueness of the inverse problem, the following two
integrability statements will be useful.
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Proposition 2.12 (Hilbert-Schmidt kernel - free field).
For any open, bounded set B ⊂ Rd the Green’s function is square integrable on B × B
i.e. ∫

B

∫
B
|g(x,y)|2 dxdy <∞ .

Moreover, the auxiliary function

hB(y) :=
∫
B
|g(x,y)|2 dx (2.22)

belongs to L∞(B).

Proof. Due to the norm equivalence in finite dimensional spaces and the singular resp.
asymptotic behavior of the Bessel functions [Wyl76, Chapter 4] [CC06, p. 51], there
exist constants C > 0 such that

|g(x,y)| ≤ C |x− y|−1 , x 6= y , (2.23)

for d = 3 and

|g(x,y)| ≤ C |x− y|−1/2 , x 6= y (2.24)

for d = 2. Hence, g is a square integrable integral kernel and therefore defines a Hilbert-
Schmidt operator on L2(B) [Alt16, 10.16 p. 342 ff.]. This is equivalent to the first
statement by Proposition B.3.
For the second statement we note that the bounds of the singularity (Equation (2.23)
and (2.24)) state that there exists a C > 0 such that for all x,y ∈ D with x 6= y

|g(x,y)| ≤ C |x− y|−
d−1

2 .

Because B is bounded we can define R := sup{|y1 − y2| : y1,y2 ∈ B} and set B =
{x ∈ Rd : |x| ≤ R}. Hence, we have the estimate

h(y) ≤ C2
∫
B
|x|−(d−1) dx for every y ∈ B .

This yields the claim as the right hand side is finite and independent of y.

Fundamental solution property
As already discussed above, for any fixed y ∈ Rd, g(·,y) (defined by (2.19) or (2.20))
solves Equation (2.14) in the sense of distributions. With the differential operators Lk
(2.5) and L>k (2.6) the fundamental solution property is precisely formulated by the
following proposition.
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Proposition 2.13 (Fundamental solution property - free field).
For any test function φ ∈ C∞c (Rd) and any y ∈ Rd, we have∫

Rd
g(x,y)

[
L>k φ

]
(x)dx = −φ(y) .

Proof. For m = 0, the claim follows immediately from Green’s formula (see [CK13, p.
17, p. 74]). Hence, the no-flow Green’s function g0 satisfies

−φ(y) =
∫
Rd
g0(x,y, k)

[
k2φ+ ∆φ

]
(x)dx . (2.25)

The fundamental solution property for |m| > 0 can be derived by means of the Lorentz
transformation. With

γ = |m| ik
β

and ψ(x) = exp (−γ [x−Ty]1)φ
(
T−1x

)
we have the identity

φ(x) = exp
(
γ

β
(x1 − y1)

)
ψ (Tx) .

Straightforward calculations show further that

[
L>k φ

]
(x) = exp

(
γ

β
(x1 − y1)

)[
k2

β2ψ + ∆ψ
]

(Tx) .

Putting all these statements together yields∫
Rd
g(x,y)

[
L>k φ

]
(x)dx = 1

β

∫
Rd

exp
(
−γ
β

(x1 − y1)
)
g0

(
Tx,Ty, k

β

) [
L>k φ

]
(x)dx

= 1
β

∫
Rd
g0

(
Tx,Ty, k

β

)[
k2

β2ψ + ∆ψ
]

(Tx) dx

=
∫
Rd
g0

(
x,Ty, k

β

)[
k2

β2ψ + ∆ψ
]

(x) dx = −ψ (Ty) = −φ(y) .

Representation formula
A well-known result for the standard Helmholtz equation in two or three spatial dimen-
sions is the so-called representation theorem. Again, this result can be carried over to
the convected Helmholtz equation by means of the Lorentz transformation.

Theorem 2.14 (Representation theorem - free field).
Let U ⊂ Rd be a bounded domain of class C2 and u ∈ C2(Rd\U) ∩ C1(Rd\U) such that
Lku = 0 in Rd\U . Furthermore, assume that v(y) := exp

(
|m|ik
β x1

)
u
(
T−1x

)
satisfies
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the Sommerfeld radiation condition (2.15). Then we have the following representation
formula for any x ∈ Rd\U

u(x) =
∮
∂U
{u(y)∇yg(x,y)− g(x,y)∇yu(y)} · nds(y)

+ |m|2
∮
∂U

{
g(x,y) ∂u

∂y1
(y)− u(y) ∂g

∂y1
(x,y)

}
n1ds(y)

− 2 |m| ik
∮
∂U
u(y)g(x,y)n1ds(y) ,

where n = (n1, . . . , nd)> is the outer unit normal vector of ∂U .

Proof. The proof is based on the Lorentz transformation and the corresponding result for
the standard Helmholtz equation (see [CC06, Theorem 3.1 p. 52] and [CK13, Theorem
2.5 p.19]). Since it is quite technical, it is shifted to the Appendix A.

2.4. Green’s function in waveguides

In this section we derive an explicit representation of the Green’s function for a waveguide
domain D = A× R, where the cross section satisfies Assumption 2.5. The walls of the
waveguide are assumed to be sound hard, i.e. on the boundary ∂D we impose Neumann
boundary conditions. Thus the sound pressure field p generated by a source Q satisfies

k2p+ 2 |m| ik ∂

∂x1
p+ β2 ∂

2

∂x2
1
p+ ∆⊥p = −Q in D (2.26a)

∇p · n = 0 on ∂D . (2.26b)

As we seek to find a Green’s function the source term Q has to be chosen as a Dirac
distribution i.e.

Q(x1, x⊥) = δ(x1 − y1)δ(x⊥ − y⊥)

for an arbitrary but fixed source position y ∈ D. First we will formally derive a repre-
sentation of the Green’s function and then prove its essential properties. We consider
a series expansion using the Neumann eigenfunctions ψn from Theorem 2.6 in order to
satisfy the boundary condition (2.26b)

g (x1, x⊥, y1, y⊥) =
∑
n∈N0

cn(x1)ψn(x⊥) . (2.27)

The coefficient functions cn have to be determined.

Standard Helmholtz equation
Assuming |m| = 0 and formally inserting the modal series representation (2.27) into
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equation (2.26a) leads to

∞∑
n=0

(
c′′n(x1) + (k2 − λn)cn(x1)

)
ψn(x⊥) =

∞∑
n=0
−ψn(y⊥)δ(x1 − y1)ψn(x⊥) , (2.28)

and we define

kn :=
√
|k2 − λn| . (2.29)

In order to exclude the resonance case kn = 0, we assume that the wavenumber k satisfies
(2.11) with β = 1 i.e.

k2 /∈ {λn : n ∈ N0} .

Equating the coefficients in (2.28) yields an one dimensional ordinary differential equa-
tion with constant coefficients for each n ∈ N0

c′′n(x1) + (k2 − λn)cn(x1) = −ψn(y⊥)δ(x1 − y1) . (2.30)

Due to linearity we may solve instead

b′′n(x1) + (k2 − λn)bn(x1) = δ(x1 − y1) (2.31)

and recover the original solution afterwards by cn(x1) = −ψn(y⊥)bn(x1).

To obtain a solution in the sense of distributions, we divide the real line into two parts:
R< = {x ∈ R : x < y1} and R> = {x ∈ R : x > y1}. We further assume that
bn ∈ C2(R≶) ∩ C1(R≶). That yields solutions of the form

bn(x1) = i

2
√

(k2 − λn)
e±i
√

(k2−λn)|x1−y1| .

Depending on the sign of (k2 − λn), the coefficients bn are either of constant magnitude
or grow resp. decay exponentially. In order to select physical meaningful solutions, we
employ the radiation conditions from (SP2b). To this end, we make a distinction of
cases.

Case k2 > λn (propagating modes):
That case occurs finitely many times and we choose physical solutions

bn(x1) = i

2kn
eikn|x1−y1|

via the radiation condition

lim
|x1|→∞

(
∂

∂ |x1|
− ikn

)
bn(x1) = 0 . (2.32)
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Case k2 < λn (decaying modes):
That case occurs infinitely many times and we choose physical solutions

bn(x1) = 1
2kn

e−kn|x1−y1|

that do not tend to infinity for |x1| → ∞. In terms of the radiation condition (SP2b)
this is the choice for which lim sup

|x1|→∞
|bn(x1)| <∞.

With the number of propagating modes

nprop = sup
{
n ∈ N0 : (k2 − λn) > 0

}
the no-flow Green’s function reads as

g0 (x1, x⊥, y1, y⊥, k) = −i2

nprop∑
n=0

1
kn
eikn|x1−y1|ψn(y⊥)ψn(x⊥)

− 1
2

∞∑
n=nprop+1

1
kn
e−kn|x1−y1|ψn(y⊥)ψn(x⊥).

(2.33)

Convected Helmholtz equation
For |m| > 0 denote by gm(x1, x⊥, y1, y⊥, k) the Green’s function for Equations (2.26a)
and (2.26b). Via the Lorentz transformation (Proposition 2.1) it is given by

gm(x1, x⊥, y1, y⊥, k) = 1
β

exp
(−ik |m|

β2 (x1 − y1)
)
g0

(
x1
β
, x⊥,

y1
β
, y⊥,

k

β

)
. (2.34)

For the case with convection, we assume that (2.11) (avoiding the resonance case) is
satisfied i.e. k2

β2 − λn 6= 0 for all n ∈ N0. For an explicit representation of (2.34), we
define

sn =
√
|k2 − β2λn| , (2.35)

nprop = sup
{
n ∈ N0 : k2 > β2λn

}
. (2.36)

That yields

gm(x1, x⊥, y1, y⊥, k)

= −i2 exp
(−ik |m|

β2 (x1 − y1)
) nprop∑

n=0

1
sn

exp
(
i
sn
β2 |x1 − y1|

)
ψn(y⊥)ψn(x⊥)

− 1
2exp

(−ik |m|
β2 (x1 − y1)

) ∞∑
n=nprop+1

1
sn

exp
(
− sn
β2 |x1 − y1|

)
ψn(y⊥)ψn(x⊥).

(2.37)
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For the remainder of this section, we will prove similar results for the Green’s function
in waveguides as for the Green’s function in free space.

Integrability
The waveguide Green’s function (2.37) satisfies two similar integrability properties as in
free space (cf. Proposition 2.12).

Proposition 2.15 (Hilbert-Schmidt kernel - waveguide).
For any open, bounded set B ⊂ D the Green’s function is square integrable on B×B i.e.∫

B

∫
B
|g(x,y)|2 dxdy <∞ . (2.38)

If moreover, the eigenfunctions ψn from Theorem 2.6 satisfy Assumption 2.8, then the
auxiliary function

hB(y) :=
∫
B
|g(x,y)|2 dx (2.39)

belongs to L∞(B).

Proof. We start with the proof of the first statement (2.38). For the sum over the first
nprop + 2 summands, the statement is true, since the sum is finite and all summands
are bounded functions. Thus it is sufficient to consider the decaying part starting at
n = nprop + 2

gdec(x1, x⊥, y1, y⊥) :=
∞∑

n=nprop+2
cn(x1, y1)ψn(y⊥)ψn(x⊥) (2.40)

with the streamwise coefficients

cn(x1, y1) = −1
2sn

exp
(
− sn
β2 |x1 − y1|

)
exp

(−ik |m|
β2 (x1 − y1)

)
.

A sufficient condition for (2.38) is that for any bounded interval I = [−R,R] the iterated
integral

Idec :=
∫
I×I

∫
A×A

∣∣∣gdec(x1, x⊥, y1, y⊥)
∣∣∣2 d(x⊥, y⊥)d(x1, x2) (2.41)

is finite. Note that the functions ϕn(x⊥, y⊥) = ψn(x⊥)ψn(y⊥) form an orthonormal
system on L2(A × A). Now let x1, y1 with x1 6= y1 be arbitrary but fixed. Further we
obtain from Parsevals equation (for the Hilbert space H = span{ϕn})∥∥∥gdec(x1, ·, y1, ·)

∥∥∥2

L2(A×A)
=

∞∑
n=nprop+2

|cn(x1, y1)|2 .

Hence, the function gdec(x1, ·, y1, ·) belongs to L2(A×A) if we can show that the right
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hand side is finite. By Weyl’s Law, the eigenvalues λn grow at least as fast as n (see
Proposition A.1) i.e. there exists a constant CWeyl > 0 such that

CWeyl · n ≤ λn for all n ∈ N0 .

This implies the following bound for n > nprop

1
sn

= 1√
|k2 − β2λn|

= 1√
λn

1√∣∣∣β2 − k2

λn

∣∣∣ ≤ B1
1√
n

(2.42)

with the constant

B1 := 1√
CWeyl

sup
n>nprop

1√∣∣∣β2 − k2

λn

∣∣∣ .
For the exponential term we obtain similarly

exp
(−2sn

β2 |x1 − y1|
)

= exp

−2
√
λn

√∣∣∣β2 − k2

λn

∣∣∣
β2 |x1 − y1|


≤ exp

(
−B2
√
n |x1 − y1|

) (2.43)

with the constant

B2 :=
2
√
CWeyl
β2 inf

n>nprop

√∣∣∣∣β2 − k2

λn

∣∣∣∣
Thus, we obtain using the estimates (2.42) and (2.43)

∞∑
n=nprop+2

|cn(x1, y1)|2 =
∞∑

n=nprop+2

1
s2
n

exp
(−2sn

β2 |x1 − y1|
)

≤ B2
1

∞∑
n=nprop+2

1
n

exp
(
−B2 |x1 − y1|

√
n
)

≤ B2
1

∫ ∞
1

1
z

exp
(
−B2 |x1 − y1|

√
z
)
dz .

That implies

Idec ≤ B2
1

∫ ∞
1

1
z

[∫
I×I

exp
(
−B2 |x1 − y1|

√
z
)
dx1dy1

]
dz .
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The inner integral can be estimated by the fact that∫ R

−R
exp

(
−B2 |x1 − y1|

√
z
)
dx1

= 2
B2
√
z
− 1
B2
√
z

{
exp

(
B2(R+ y1)

√
z
)

+ exp
(
−B2(R− y1)

√
z
)}

≤ 2
B2
√
z

(2.44)

and hence

[. . . ] ≤ 4R
B2
√
z
.

Altogether we obtain

Idec ≤ 4RB2
1

B2

∫ ∞
1

1
z3/2

dz <∞ .

This proves (2.38).
For the second statement we note that there exists a bounded interval I = [−R,R] such
that

hB(y) ≤
∫
I
‖g(x1, ·, y1, y⊥)‖2L2(A) dx1 .

To bound the last expression from above, it is sufficient to consider only the sum over
the decaying modes starting at n = nprop + 2 (cf. Equation (2.40)). Parseval’s equality
yields

∥∥∥gdec(x1, ·, y1, y⊥)
∥∥∥2

L2(A)
=

∞∑
n=nprop+2

|cn(x1, y1)|2 |ψn(y⊥)|2 .

Since ψn(y⊥) is uniformly bounded independent from n and y⊥ there exits a C > 0 such
that

hB(y) ≤ C
∫
I

∞∑
n=nprop+2

|cn(x1, y1)|2 dx1 .

Now we can conclude similar as in the proof of the first statement (cf. Equation (2.44))
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and obtain

hB(y) ≤ C
∫
I

∞∑
n=nprop+2

|cn(x1, y1)|2 dx1

≤ CB2
1

∫
I

∫ ∞
1

1
z

exp
(
−B2 |x1 − y1|

√
z
)
dz dx1

≤ 2CB2
1

B2

∫ ∞
1

1
z3/2

dz <∞ .

Hence hB ∈ L∞(B).

Fundamental solution property
In order to prove the fundamental solution property of the Green’s function in waveg-
uides, we start with a useful lemma on the representation of test functions.

Lemma 2.16 (Series representation for test functions).
Assume the eigenfunctions ψn from Theorem 2.6 satisfy Assumption 2.8. Let further
φ ∈ V Neu =

{
φ ∈ C∞c (D) : ∂φ

∂n = 0 on ∂A
}
and define the coefficients

an(x1) =
∫
A
φ(x1, x⊥)ψn(x⊥)dx⊥ for n ∈ N0 .

Then there exists a constant C independent of n such that the derivatives a(l)
n up to order

2 satisfy

max
l=0,1,2

sup
x1∈R

∣∣∣a(l)
n (x1)

∣∣∣ ≤ C 1
λ

3/2
n

for n ≥ 1 .

Moreover, we have

(i) for every x ∈ D:
φ(x) =

∑
n∈N0

an(x1)ψn(x⊥) ,

(ii) for every x1 ∈ R:[
L>k φ

]
(x1, ·) =

∑
n∈N0

[
(k2 − λn)an(x1)− 2 |m| ika′n(x1) + β2a′′n(x1)

]
ψn(·) in L2(A) .

Proof. See Appendix A.

Similarly to Proposition 2.13, we can now formulate the fundamental solution property
for the Green’s function in waveguides explicitly.
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Proposition 2.17 (Fundamental solution property - waveguide).
For any test function φ ∈ V Neu and any y ∈ D, we have∫

D
g(x,y)

[
L>k φ

]
(x)dx = −φ(y) .

Proof. Firstly, note that the integral expression is well defined as for all y and φ ∈ V Neu

we can find a bounded set B = [−R,R]×A such that∫
B
|g(x,y)|2 dx <∞

by the second statement of Proposition 2.15. Now keep φ ∈ V Neu and y ∈ D arbitrary
but fixed and choose an R > |y1| such that supp(φ) ⊂ [−R,R]×A. We get∫

D
g(x1, x⊥, y1, y⊥)

(
L>k φ

)
(x1, x⊥)d(x1, x⊥)

=
∫ R

−R

∫
A
g(x1, x⊥, y1, y⊥)

(
L>k φ

)
(x1, x⊥)dx⊥ dx1 . (2.45)

By Lemma 2.16 we have for every x1 ∈ R[
L>k φ

]
(x1, ·) =

∑
n∈N0

[
(k2 − λn)an(x1)− 2 |m| ika′n(x1) + β2a′′n(x1)

]
ψn(·) in L2(A) .

Using the separated Green’s functions

cn(x1, y1) = −1
2sn

exp
(
ik |m|
β2 (x1 − y1)

)
·

i · exp
(
i sn
β2 |x1 − y1|

)
for n ≤ nprop

exp
(
− sn
β2 |x1 − y1|

)
for n > nprop

,

we can replace g(x1, ·, y1, y⊥) and
[
L>k φ

]
(x1, ·) in the inner integral of (2.45) by their

series representation. This yields∫
D
g(x1, x⊥, y1, y⊥)

(
L>k φ

)
(x1, x⊥)d(x1, x⊥)

=
∫ R

−R

∑
n∈N0

ψn(y⊥)cn(x1, y1)
(
D>k,nan

)
(x1)dx1 , (2.46)

with the differential operators

Dk,n := (k2 − λn) + 2 |m| ik ∂

∂x1
+ β2 ∂

2

∂x2
1

Dk,n := (k2 − λn)− 2 |m| ik ∂

∂x1
+ β2 ∂

2

∂x2
1
.
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Note that ∑
n∈N0

ψn(y⊥)cn(x1, y1)
(
D>k,nan

)
(x1)

converges pointwise almost everywhere in [−R,R] and has an integrable majorant m ∈
L1(−R,R). To construct a suitable m we choose N ≥ nprop + 2 sufficiently large such
that for all n ≥ N

max
{∣∣∣k2 − λn

∣∣∣ , 2 |m| k, β2
}
≤ λn . (2.47)

Now we can find positive constants C1, C2, C3, C4 independent of n and x1 such that for
all n ≥ N

sup
x1∈R

∣∣∣(D>k,nan) (x1)
∣∣∣ ≤ C1

1√
n
,

sup
y⊥∈A

|ψn(y⊥)| ≤ C2 ,

|cn(x1, y1)| ≤ C3√
n

exp
(
−C4
√
n |x1 − y1|

)
.

Here we have used (2.47), Lemma 2.16, Assumption 2.8 and the decay properties of the
eigenvalues similar as in the proof of Proposition 2.15. A majorant m is then given by

m(x1) =
N−1∑
n=0

∣∣∣ψn(y⊥)cn(x1, y1)
(
D>k,nan

)
(x1)

∣∣∣+ C1C2C3

∞∑
n=N

1
n

exp
(
−C4
√
n |x1 − y1|

)
.

Moreover, the cn satisfy

(Dk,ncn) (x1, y1) = −δ(x1 − y1)

in the sense of distributions. Hence we conclude by interchanging summation and inte-
gration in (2.46) ∫

D
g(x1, x⊥, y1, y⊥)

(
L>k φ

)
(x1, x⊥)d(x1, x⊥)

=
∑
n∈N0

ψn(y⊥)
∫ R

−R
cn(x1, y1)

(
D>k,nan

)
(x1)dx1

= −
∑
n∈N0

an(y1)ψn(y⊥) = −φ(y) .

Here we have used the series representation of φ from Lemma 2.16 in the last line.

2.5. Solution of the deterministic source problem
Using the Green’s functions that were presented in the last two sections we can now
construct solutions of the deterministic source problem in free space ((SP1a)+(SP1b))
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and waveguides ((SP2a)+(SP2b)).

We define the following functions and operators, which are well defined due to the
Hilbert-Schmidt property of the Green’s function (cf. Proposition 2.12 and 2.15)

• The volume potential ws of a function s ∈ L2(D) with compact support

ws(x) :=
∫
D
g(x,y)s(y)dy for x ∈ D . (2.48)

• S : C∞c (D) ⊂ L2(D)→ L2
loc(D)

(Sφ)(y) :=
∫
D
g(x,y)φ(x)dx for y ∈ D .

Where S is a possibly unbounded, densely defined linear operator.

We start with some calculation rules that will be useful for the proofs within this section.
Recall that for any linear operator T : H1 → H2 between two Hilbert spaces, the
transposed operator T> : H2 → H1 is defined by

T>u := T ∗(u)

and for any u ∈ dom (T ∗) , v ∈ dom (T ) we have〈
T>u, v

〉
H2

=
〈
u, Tv

〉
H1

.

With a slight abuse of notation we can extend these relations to the operator S.

Definition & Proposition 2.18 (The operators S? and S>).
Define the set

L2
c(D) := {v ∈ L2(D) : v has compact support} .

The linear operators S? : L2
c(D) ⊂ L2(D)→ L2

loc(D)

(S?v)(x) :=
∫
D
g(x,y)v(y)dy (2.49)

and S> : L2
c(D) ⊂ L2(D)→ L2

loc(D)

(S>v) := (S?v) (2.50)

are well defined. Furthermore, for every u ∈ L2
c(D) and v ∈ L2

c(D) ∩ L∞(D) we have〈
S>u, v

〉
L2(D)

=
〈
u, Sv

〉
L2(D)

. (2.51)
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Proof. Let v ∈ L2
c(D) then for every compact set K ⊂ D∫
K
|(S?v)(x)|2 dx ≤ ‖v‖2L2(K)

∫
K

∫
K
|g(x,y)|2 dxdy <∞

since g is square integrable. This proves the well definedness of S? and S>. Now fix
u, v ∈ L2

c(D) with v ∈ L∞(D) and take a compact set K with (supp(u) ∪ supp(v)) ⊂ K.
We compute

〈
S>u, v

〉
L2(D)

=
∫
D

(∫
D
g(x,y)u(y)dy

)
v(x)dx =

∫
K

(∫
K
g(x,y)u(y)dy

)
v(x)dx

Fubini−Tonelli=
∫
K
u(y)

(∫
K
g(x,y)v(x)dx

)
dy =

〈
u, Sv

〉
L2(D)

.

Here the Fubini-Tonelli theorem (cf. Theorem B.1) is applicable, since∫
K

(∫
K
|g(x,y)u(y)| dy

)
|v(x)| dx ≤

√
|K| ‖v‖L∞(K) ‖u‖L2(K)

(∫
K

∫
K
|g(x,y)|2 dydx

)1/2

and the upper bound is finite. This proves the statement (2.51).

Note also that for any s ∈ L2
c(D), the volume potential ws satisfies

ws = S>s . (2.52)

With the introduced tools we can now prove the existence of solutions of the deterministic
source problems introduced in Section 2.2 ((SP1a)+(SP1b) and (SP2a)+(SP2b)), which
are moreover unique by Theorem 2.4 and Theorem 2.10.

Theorem 2.19 (Solution of the forward source problem - free space).
Let s ∈ L2

c(Rd), then the volume potential ws (2.48) is the unique solution of the source
problem (SP1a)+(SP1b).

Proof. Firstly, ws belongs to the trial space L2
loc(Rd) due to (2.52). For the variational

property (SP1a) we have to show that for all φ ∈ C∞c (Rd)∫
Rd
wsL

>
k φdx = −

∫
Rd
sφ dx . (2.53)

Recall that the fundamental solution property of the Green’s function (Proposition 2.13)
directly implies that

S
(
L>k φ

)
= −φ for all φ ∈ C∞c (Rd) . (2.54)
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We compute ∫
Rd
wsL

>
k φdx (2.52)=

〈
S>s, L>k φ

〉
L2(Rd)

(2.51)=
〈
s, S

(
L>k φ

)〉
L2(Rd)

(2.54)= −
〈
s, φ

〉
L2(Rd)

= −
∫
Rd
sφ dx ,

which proves (2.53). For the radiation condition consider the back-transformation bws
and apply a change of variables

bws(x) = exp
( |m| ik

β
x1

)∫
Rd
g
(
T−1x,y

)
s(y)dy

= βexp
( |m| ik

β
x1

)∫
Rd
g
(
T−1x,T−1y

)
s
(
T−1y

)
dy

=
∫
Rd
g0

(
x,y, k

β

)
s
(
T−1y

)
dy ,

where g0
(
x,y, kβ

)
denotes the Green’s function for the standard Helmholtz equation at

wavenumber k
β (cf. (2.18)). Now fix a ball B such that 0 ∈ B and supp

(
s ◦T−1) ⊂ B.

For x ∈ R\B we can differentiate under the integral which yields

|x|
d−1

2

(
∂bws
∂ |x| − i

k

β
bws

)
= |x|

d−1
2

∫
B

{
∇xg0

(
x,y, k

β

)
· x
|x| − i

k

β
g0

(
x,y, k

β

)}
s
(
T−1y

)
dy .

Since g0 is a radiating solution of the standard Helmholtz equation, the right hand side
converges to 0 uniformly for all directions x

|x| and y ∈ B as |x| → ∞ (see e.g. [Kir11,
Section 6.2] for d = 3 and [CK13, Section 3.4] for d = 2). This completes the proof since
there exists at most one solution by Theorem 2.4.

Theorem 2.20 (Solution of the forward source problem - waveguide).
Let D = R×A, where A ⊂ Rd−1 satisfies Assumption 2.5 and assume the eigenfunctions
ψn satisfy Assumption 2.8. Moreover, let s ∈ L2

c(D) and (2.11) be satisfied. Then the
volume potential ws (2.48) is the unique solution of the source problem (SP2a)+(SP2b).

Proof. Again it is sufficient to show the solution properties (SP2a)+(SP2b) since the
uniqueness follows by Theorem 2.10. Note that for a waveguide geometry we had the
test space (cf. Equation (2.7) )

V Neu =
{
φ ∈ C∞c (D) : ∂φ

∂n
= 0 on ∂A

}
.

The variational property (SP2a) follows completely similar to the proof for the free
space problem since by the fundamental solution property for the Green’s function in
waveguides (Proposition 2.17) we have

S
(
L>k φ

)
= −φ for all φ ∈ V Neu . (2.55)
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It remains to show the radiation condition (SP2b). Similar as in the free space case we
have a relationship of the Green’s fuctions g, g0 (see (2.34)) and the back-transformation
bws can be represented by

bws(x) =
∫
D
g0

(
x,y, k

β

)
s
(
T−1y

)
dy .

Now fix R > 0 such that supp
(
s ◦T−1) ⊂ [−R,R]×A. For n ∈ N0 and for almost every

x1 ∈ R the modal coefficients b(n)
ws are given by

b(n)
ws (x1) =

∫
A
bws(x1, x⊥)ψn(x⊥)dx⊥ =

∫ R

−R

∫
A
s(βy1, y⊥)cn(x1, y1)ψn(y⊥)dy⊥dy1 ,

where the functions cn are now given by the no-flow Green’s function g0 (cf. Equation
(2.33))

cn(x1, y1) = exp

i√k2

β2 − λn |x1 − y1|

 ·

− i

2
1√

k2/β2−λn
if k2

β2 > λn

i
2

1√
k2/β2−λn

if k2

β2 < λn
.

In the case of propagating modes
(
k2

β2 > λn
)
we can differentiate under the integral for

x1 ∈ R\[−R,R] and observe that ∂

∂ |x1|
− i
√
k2

β2 − λn

 cn(x1, y1) = 0

for every x1 ∈ R\[−R,R] and y1 ∈ [−R,R]. In particular the Sommerfeld radiation
condition (first line of (SP2b)) is satisfied. For the case of decaying modes we need to
show that for all n ∈ N0 with

(
k2

β2 < λn
)

lim sup
|x1|→∞

∣∣∣b(n)
u (x1)

∣∣∣ <∞ .

This is satisfied since for x1 sufficiently large, b(n)
ws (x1) decays exponentially.
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Chapter3
Inverse Source Problem in Aeroacoustics

Based on the sound propagation theory from the last chapter, we proceed with a math-
ematical modelling of the inverse aeroacoustic source problem with correlation data. In
particular this includes a formulation of the forward operator on infinite dimensional
vector spaces. Essentially we treat the mathematical framework that was presented in
[HRS20] in some more detail and generality. The main result consists of a uniqueness
theorem which is valid for both free-field and waveguide geometries.

3.1. Correlation measurements of random sources . . . . . . . . . . . . . . . . 43
3.2. Uniqueness of the inverse source problem . . . . . . . . . . . . . . . . . . 47

3.1. Correlation measurements of random sources
This section presents a derivation of the forward operator of the inverse source problem.
Some parts are taken from [HRS20], where the forward operator was derived for a free
field geometry. As in the last chapter we denote by D ⊂ Rd with d ∈ {2, 3} the open
domain of definition (or propagation domain) and we will restrict the analysis to the
geometries discussed so far.

Assumption 3.1 (Propagation domain).
Assume that the propagation domain D ⊂ Rd with d ∈ {2, 3} satisfies one of the following

(i) D = Rd,

(ii) D = R × A, where A ⊂ Rd−1 satisfies Assumption 2.5 and the eigenfunctions ψn
from Theorem 2.6 satisfy Assumption 2.8.

Moreover we consider the following geometrical setup (cf. [HRS20] and Figure 3.1)
for the entire thesis.
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Figure 3.1.: Sketch of a possible geometrical setup in R3.

Assumption 3.2 (Measurement setup).

(i) Assume that Ω ⊂ D (the source region) is a bounded, open and connected set
such that D\Ω is connected. Furthermore assume there exists an ε > 0 s.t.

Bε (Ω) :=
{

x ∈ Rd| dist(Ω,x) < ε
}
⊂ D .

(ii) Assume that M (the measurement region) is a bounded open set with M ⊂ D\Ω .

Recall the Green’s functions for the geometries of interest (cf. (2.19) for D = R3,
(2.20) for D = R2 and (2.37) for waveguides)

g(x,y) =
exp

(
ik
β2 (−(x− y) ·m + |x− y|m)

)
4π|x− y|m

(d = 3)

g(x,y) = i

4β exp
(
− ik
β2 (x− y) ·m

)
H

(1)
0

(
k

β2 |x− y|m
)

(d = 2)

gm(x1, x⊥, y1, y⊥) = −i2 exp
(−ik |m|

β2 (x1 − y1)
) nprop∑

n=0

1
sn

exp
(
i
sn
β2 |x1 − y1|

)
ψn(y⊥)ψn(x⊥)

− 1
2exp

(−ik |m|
β2 (x1 − y1)

) ∞∑
n=nprop+1

1
sn

exp
(
− sn
β2 |x1 − y1|

)
ψn(y⊥)ψn(x⊥) .

The volume potential operator G : L2(Ω)→ L2(M)

(Gv)(x) :=
∫

Ω
g(x,y)v(y)dy

maps source signals in the source region to measurement signals in the measurement
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region. Note that G has the adjoint operator G∗ : L2(M)→ L2(Ω)

(G∗w)(y) =
∫
M
g(x,y)w(x)dx .

For deterministic sources s ∈ L2(Ω) and given pressure data p ∈ L2(M), the inverse
source problem then reads as

find s ∈ L2(Ω) s.t. Gs = p . (3.1)

It is well-known that solutions to problem (3.1) are not unique since G has a non-
trivial kernel. This is due to the fact that there exist non-radiating sources i.e. sources
s ∈ L2(Ω) such that Gs vanishes everywhere outside of Ω. The typical example of such
a non-radiating source is

s(y) = Lkφ(y), φ ∈ C∞c (Ω) . (3.2)

Similar to the proof of the fundamental solution property (Propositions 2.13 and 2.17)
we get that L>k g(x, ·) = δx in the sense of distributions. Hence, for a source of type (3.2)
and for every x ∈ D\Ω we get

(Gs) (x) =
∫

Ω
g(x,y)Lkφ(y)dy = 0 .

For further reading on the deterministic inverse source problem, we refer to the publi-
cations by Griesmaier et al. [GHR12, GHR13, GS16, GS17a, GS17b] and the references
therein. However, since aeroacoustic experiments are usually conducted in environments
subject to random processes, we will consider a statistical model for source and mea-
surement signals. The aeroacoustic source Q is considered as a Hilbert space process i.e.
Q is a continuous linear functional

Q : L2(Ω)→ L2 (W,F ,P) ,

where (W,F ,P) denotes a probability space (cf. [Fra70, LPS89]). This definition covers
in particular random variables Z in a Hilbert space H with finite second order moment(
i.e. E

(
‖Z‖2H

)
<∞

)
since

〈
Z̃, ·

〉
H

: H → L2 (W,F ,P)

defines a Hilbert space process on H. Note that Hilbert space processes are often used
to model stochastic errors in an infinite dimensional setup. In that case, a white noise
process on a L2-space can be interpreted as a random variable in a Sobolev space with
negative exponent (see e.g. [WH19, Section 3]).

We recall some basic notions and properties for the source process Q (cf. [BHMR07]).
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Definition & Proposition 3.3 (Source process).

1. There exists a unique element E[Q] ∈ L2(Ω) (the expectation of Q) satisfying

〈E[Q], v〉L2(Ω) = E (Qv) , for all v ∈ L2(Ω).

2. There exists a unique linear, continuous operator Cov[Q] : L2(Ω) → L2(Ω) (the
covariance operator of Q) satisfying

〈Cov[Q]v1, v2〉L2(Ω) = Cov (Qv1, Qv2) , for all v1, v2 ∈ L2(Ω).

Moreover, Cov[Q] is positive semi-definite and self-adjoint.

Aeroacoustic source reconstruction methods often assume that the source is spatially
uncorrelated. Therefore the analysis of the inverse problem within this thesis is restricted
to uncorrelated sources with zero mean.

Assumption 3.4 (Source signal).
Assume that the source process Q has the following properties

1. E[Q] = 0.

2. The source is spatially uncorrelated i.e. there exists a q ∈ L2(Ω) such that

Cov[Q] = Mq ,

where (Mqv)(x) := q(x)v(x) denotes the source power multiplication operator.

Note that the source power function q must be bounded (i.e. q ∈ L∞(Ω)), real-valued
and non-negative due to the properties of the covariance operator Cov[Q]. For a fixed
position x ∈ M in the measurement region, the observable random pressure signal is
given by

p(x) = Q (g(x, ·)) .

Note that p(x) is a complex scalar random variable with zero mean due to Assumption
3.4. The observable correlation data for two positions x1,x2 ∈M is given by

cq(x1,x2) := Cov (p(x1), p(x2)) = 〈Mqg(x1, ·), g(x2, ·)〉L2(Ω)

=
∫

Ω
g(x1,y)g(x2,y)q(y)dy .

(3.3)

By means of the covariance function (3.3), the covariance operator of the random pressure
signal p is given by the integral operator C(q) : L2(M)→ L2(M)

(C(q)v) (x1) =
∫
M
cq(x1,x2)v(x2)dx2
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and can be equivalently represented by

C(q) = GMqG∗ . (3.4)

The representation of the forward operator by its factorization (3.4) will be of great
use for the further analysis of the problem. The next proposition shows that C(q) ∈
L
(
L2(M)

)
is even a Hilbert-Schmidt operator.

Proposition 3.5 (Hilbert-Schmidt covariance operator).
For any q ∈ L∞(Ω), the covariance operator C(q) belongs to the space of Hilbert-Schmidt
operators HS

(
L2(M)

)
.

Proof. Since the Hilbert-Schmidt norm is given by the L2 norm of the integral kernel cq
(see Proposition B.3), the claim is equivalent to ‖cq‖L2(M×M) <∞. As

‖cq‖2L2(M×M) ≤ ‖q‖L∞(Ω)

(∫
M

∫
Ω
|g(x1,y)|2 dydx1

)(∫
M

∫
Ω
|g(x2,y)|2 dydx2

)
the claim follows from the fact that g is a Hilbert-Schmidt kernel (Proposition 2.12 and
2.15).

3.2. Uniqueness of the inverse source problem
Following the illustrations of the previous section, we define the operator-valued forward
operator of the inverse source problem by

C : L∞(Ω)→ HS(L2(M)) , q 7→ C(q) = GMqG∗ ,

which is linear and bounded. The following analysis aims at a uniqueness result for the
operator equation

C(q) = C

with C ∈ HS(L2(M)) and the geometrical scenarios described at the beginning of the
last section (cf. Assumption 3.1 and Assumption 3.2). We recall the following definitions
and calculation rules from Chapter 2:

• The volume potential wv of a function v ∈ L2(D) with compact support is defined
by

wv(x) =
∫
D
g(x,y)v(y)dy for x ∈ D .

• With the operators S : C∞c (D) ⊂ L2(D)→ L2
loc(D)

(Sφ)(y) =
∫
D
g(x,y)φ(x)dx for y ∈ D ,
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and S> : L2
c(D) ⊂ L2(D)→ L2

loc(D) (cf. Proposition and Definition 2.18) we have
for every u ∈ L2

c(D) and v ∈ L2
c(D) ∩ L∞(D)〈

S>u, v
〉
L2(D)

=
〈
u, Sv

〉
L2(D)

. (3.5)

• With the differential operator Lk = k2 + 2ikm ∂
∂x1
− |m|2 ∂2

∂x2
1

+ ∆ we have for any
φ ∈ C∞c (D)

L∗k = Lk ,

L>k (φ) = L∗k

(
φ
)
. (3.6)

• For any v ∈ L2
c(D), the volume potential wv satisfies

wv = S>v . (3.7)

• For any φ ∈ C∞c (D) we have (cf. (2.54) and (2.55))

S
(
L>k φ

)
= −φ . (3.8)

For the standard Helmholtz equation in free space it is well known that the volume
potential wv is a C∞−solution on the complement of supp(v). By the existence Theo-
rems for the deterministic source problem (Theorem 2.19 and Theorem 2.20), we get a
generalized version of this statement that is valid in the presence of subsonic uniform
convection and for the geometries considered here.

Corollary 3.6 (Volume potential solves convected Helmholtz equation).
The volume potential of any function v ∈ L2(Ω)

wv(x) =
∫

Ω
g(x,y)v(y)dy

satisfies wv ∈ C∞(D\Ω) and

Lkwv = 0 on D\Ω .

Proof. We note that U := D\Ω is an open and connected domain in Rd. Furthermore,
we extend v by zero on whole D (denoting the extension again by v). By the existence
theorems for the deterministic direct source problem (Theorem 2.19 and Theorem 2.20)
wv satisfies ∫

D
wv(x)L>k φ(x)dx = −

∫
D
v(x)φ(x)

for all test functions φ (cf. (SP1a) and (SP2a)). By taking only test functions φ ∈ C∞c (U)
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we get ∫
U
wv(x)L>k φ(x)dx = 0 for all φ ∈ C∞c (U) ,

since supp(v) ∩ supp(φ) = ∅. Hence wv solves the homogeneous convected Helmholtz
equation in U in the sense of distributions. By the regularity result for elliptic differential
operators [Fol95, Theorem 6.33 p. 214] we obtain wv ∈ C∞(U). Hence

Lkwv = 0 in U

in the classical sense.

The next proposition provides an analyticity theorem, similar to [CK13, Theorem
2.2] and [CC06, Theorem 3.2] (solutions of the homogeneous Helmholtz equation are real
analytic). For a definition of a real analytic function see Definition B.4.

Proposition 3.7 (Analyticity of C2 solutions of the convected Helmholtz equation).
Let U ⊂ Rd be a connected domain and w ∈ C2(U) such that

Lkw = 0 on U . (3.9)

Then w is real analytic.

Proof. Let w ∈ C2(U) be a solution of the homogeneous convected Helmholtz equation
at wavenumber k i.e

(Lkw) (x) =
[
k2 + 2 |m| ik ∂

∂x1
− |m|2 ∂2

∂x2
1

+ ∆
]
w(x) = 0 in U . (3.10)

Let γ = |m|ik
β and T = diag

(
1
β , 1, . . .

)>
the transformation matrix of the Lorentz

transformation. We consider the auxiliary function ϕ ∈ C2 (T(U)) defined by

ϕ(x) = exp (γx1)w
(
T−1x

)
. (3.11)

By the backward Lorentz transformation (Proposition 2.2) we have that[
k2

β2 + ∆
]
ϕ(x) = 0 in T(U)

i.e. ϕ solves the homogeneous standard Helmholtz equation at wavenumber k
β . By the

analyticity theorem for the standard Helmholtz equation on Rd ([CK13, Theorem 2.2]
for d = 3 and [CC06, Theorem 3.2] for d=2) ϕ is real analytic on T(U) and by definition

w(x) = exp
(
−γ
β
x1

)
ϕ (Tx) . (3.12)
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Since exp
(
− γ
βx1

)
is real analytic on Rd, (3.12) yields that w is analytic on U .

Combining the last two propositions we get the following corollary.

Corollary 3.8 (Analyticity of the volume potential).
The volume potential wv is real analytic on D\Ω.

Proof. By Proposition 3.6 holds

Lwv = 0 on D\Ω

and D\Ω is connected by assumption. Hence, wv is analytic on D\Ω by Proposition
3.7.

The essential tool for the proof of uniqueness characterizes a subset of the closure of
the range of the volume potential operator.

Proposition 3.9 (Subset of ran (G∗)).
The following inclusion is valid:

W ⊂ ran (G∗) , (3.13)

with

W :=
{
u ∈ C∞ (Ω) : L∗ku = 0 & ∃φu ∈ C∞c (D) s.t. φu

∣∣
Ω = u

}
.

Proof. We can equivalently show that W ⊂ ker (G)⊥. So let v ∈ ker (G) i.e wv vanishes
on M. Due to Corollary 3.8 wv is analytic and by analytic continuation [Joh82, p. 65]
wv vanishes on D\Ω. The extension of v by zero on D\Ω will be again denoted by v.
Now for u ∈ W we obtain

0 = 〈wv, L∗ku〉L2(Ω)
(3.7)=

〈
S>v, L∗kφu

〉
L2(Ω)

(3.5)=
〈
v, S

(
L∗kφu

)〉
L2(D)

(3.6)=
〈
v, S

(
L>k φu

)〉
L2(D)

(3.8)= −〈v, φu〉L2(D) = −〈v, u〉L2(Ω) .

Here we have used the facts that supp(wv) ∩ supp (L∗kφu) = ∅ (first "=") and supp(v) ∩
supp (φu) ⊂ Ω (last "=").

Recall the definition of the Mach norm

|z|m =
√

(z ·m)2 + β2|z|2 ,

with corresponding unit sphere

Sd−1(m) = {x ∈ Rd : |x|m = 1} .
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Further we need the following auxiliary quantities

A = mm> + β2I

um,x̂(y) = exp
(
ik

β2 (Ax̂−m) · y
)
. (3.14)

It turns out that plane waves of the form (3.14) solve the convected Helmholtz equation
if and only if x̂ ∈ Sd−1(m). As a consequence, we obtain the following corollary.

Corollary 3.10 (Plane wave solutions).
For any x̂ ∈ Sd−1(m) we have

um,x̂ ∈ W .

Proof. Firstly, we note that due to the geometry assumptions (Assumption 3.2), Bε(Ω) ⊂
D is an open cover of Ω. Hence there exists a cutoff function η ∈ C∞c (D) (see e.g.
[AF03, Theorem 3.15]) s.t. η = 1 on Ω and 0 ≤ η ≤ 1. Thus for any u ∈ C∞(D) we can
define the localized function φu = ηu, where φu and u coincide on Ω. Straightforward
calculations show that on Ω

Lkum,x̂ = L∗kum,x̂ = 0 for x̂ ∈ Sd−1(m) .

Finally we can prove the uniqueness of the inverse source problem, i.e. the injectivity
of the forward operator C.

Theorem 3.11 (Uniqueness c.f. [HRS20]).
If q1, q2 ∈ L∞ (Ω) such that C(q1) = C(q2), then

q1 = q2 .

Proof. Due to linearity is suffices to show that C(q) ≡ 0 implies q = 0. So let q ∈ L∞ (Ω)
such that C(q) ≡ 0. Then

0 = 〈GMqG∗v1, v2〉L2(M) = 〈MqG∗v1,G∗v2〉L2(Ω)

for all v1, v2 ∈ L2(M) and hence

〈qu1, u2〉L2(Ω) = 0 for all u1, u2 ∈ ran (G∗) . (3.15)

Since q ∈ L∞(Ω), we can apply a density argument to show that property (3.15) holds
also for elements of ran (G∗). By Corollary 3.10 we can choose for u1 and u2 plane waves
of the form um,x̂1 , um,x̂2 with x̂1, x̂2 ∈ Sd−1(m). Together with (3.15) this implies

0 =
〈
qum,x̂1 , um,x̂2

〉
L2(Ω) =

∫
Ω
q(y)exp

(−ik
β2 A(x̂2 − x̂1) · y

)
dy . (3.16)
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Note that
{x̂2 − x̂1 : x̂1, x̂2 ∈ Sd−1(m)} = {x ∈ Rd : |x|m ≤ 2}

contains an open set O with respect to | · | and the set V = k
β2 A(O) is also open as

A is a homeomorphism on Rd. Extending q by zero to the whole space (denoting the
extension again by q) and using (3.16) we obtain

q̂(ξ) =
∫
Rd
q(y)e−iξ·ydy = 0 for ξ ∈ V , (3.17)

i.e. the Fourier transform of q vanishes on the open set V . Since q has compact support,
q̂ is real analytic [RS75, Section IX.3], and hence it must vanish everywhere by analytic
continuation [Joh82, p. 65]. Since the Fourier transform is injective, we obtain that
q = 0.

Remark 3.12 (Uniqueness for arbitrary domains).
Although the proof of uniqueness that was presented here is restricted to free space and
infinite waveguides, the principles apply to a much larger class of domains D. The crucial
statement of the uniqueness analysis in this thesis is the Hilbert-Schmidt kernel property
of the Green’s function (i.e. Propositions 2.12 and 2.15). This property formulates
therefore a sufficient condition for uniqueness. Whenever the Green’s function is square
integrable on every B×B with B ⊂ D open and bounded, the strategy of the uniqueness
proof presented in this thesis can be applied without significant modifications.

Remark 3.13 (Correlated sources).
As discussed in [HRS20, Remark 3.7] uniqueness does not hold anymore if one allows
arbitrary covariance structures for the source covariance operator Cov[Q]. Assuming
that Cov[Q] can be represented by a source correlation function κq i.e.

Cov[Q](v)(y1) =
∫

Ω
κq(y1,y2)v(y2)dy2 ,

one may impose some further restrictions on κq. A reasonable constraint would be, for
example

|κq(y1,y2)| ≤ b(|y1 − y2|) ,

with a rapidly decaying (e.g. exponentially) upper bound b. However, the uniqueness
analysis of this thesis cannot be directly transferred to these cases.
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Chapter4
Source Power Imaging Methods

This chapter discusses several aspects regarding imaging of the source power function
with experimental data. In Section 4.1 we focus on three important source imaging
methods, namely Beamforming, DAMAS (deconvolution approach for the mapping of
acoustic sources) and CMF (covariance matrix fitting). For each of these well-known
discrete methods we will present a continuous formulation. The task of reconstructing
only the support of the source power function is discussed in Section 4.2. It turns out
that the principle of factorization methods that are well-known for example in shape
identification problems in inverse scattering can be transferred to the inverse source
problem with correlation data. Section 4.3 is concerned with the mathematical modelling
of the discrete measurement process and measurement noise.
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4.1.1. Adjoint of the forward operator . . . . . . . . . . . . . . . . . . . . 54
4.1.2. Towards discrete reconstruction techniques . . . . . . . . . . . . . 56
4.1.3. Covariance matrix fitting (CMF) . . . . . . . . . . . . . . . . . . . 59
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4.1. Continuous formulations of reconstruction methods
Many results of this section can be found in [HRS20, Section 4]. Again we consider
the geometrical setup described at the beginning of Chapter 3 i.e. Assumption 3.1 and
Assumption 3.2.

4.1.1. Adjoint of the forward operator
Recall from Proposition 2.12 and Proposition 2.15 that for the considered geometries
(i.e. free space and waveguides with uniformly bounded eigenfunctions) and a bounded
set B ⊂ D, the auxiliary function

hB(y) =
∫
B
|g(x,y)|2 dx

belongs to L∞(B). By means of this statement the domain of the forward operator C
can be extended from L∞(Ω) to L2(Ω).

Proposition 4.1 (Extended forward operator).
If Assumption 3.1 is valid, then for any q ∈ L2(Ω), the covariance operator C(q) belongs
to the space of Hilbert-Schmidt operators HS

(
L2(M)

)
and C : L2(Ω) → HS

(
L2(M)

)
is

bounded.

Proof. For the associated integral kernel cq of the operator C(q) we have

‖cq‖2L2(M×M) =
∫
M

∫
M

∣∣∣∣∫
Ω
g(x1,y)g(x2,y)q(y)dy

∣∣∣∣2
≤ ‖q‖2L2(Ω)

∫
Ω

(∫
M
|g(x,y)|2 dx

)2
dy .

Now choose a bounded domain B ⊂ D with Ω ∪M ⊂ B. Then the second factor in
the last expression is bounded by |B| ‖hB‖2L∞ , which is finite by Proposition 2.12 resp.
Proposition 2.15.

Due to Proposition 4.1, the forward operator C maps between Hilbert spaces. The
next proposition characterizes its adjoint.

Proposition 4.2 (Adjoint forward operator C∗ [HRS20, Proposition 4.1]).
If Assumption 3.1 is valid, then the adjoint of the forward operator

C : L2(Ω)→ HS(L2(M)), q 7→ C(q)

is given by
C∗ : HS(L2(M))→ L2(Ω), (C∗K) (y) = 〈K,Py〉HS ,

for K ∈ HS(L2(M)) and y ∈ Ω with the monopole operator Py ∈ HS(L2(M)) defined by

(Pyϕ) (x1) =
∫
M
g(x1,y)g(x2,y)ϕ(x2)dx2
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for ϕ ∈ L2(M) and x1 ∈ M. If K is associated with its integral kernel k ∈ L2(M ×M)
(cf. Proposition B.2) we have the representation

(C∗K)(y) =
∫
M

∫
M
k(x1,x2)g(x1,y)g(x2,y)dx1 dx2 .

Proof. For q ∈ L2(Ω) and K ∈ HS(L2(M)), we need to show that∫
Ω
q(y)〈K,Py〉HS dy = 〈C(q),K〉HS . (4.1)

Note that Py is a Hilbert-Schmidt operator on L2(M) with integral kernel ly(x1,x2) =
g(x1,y)g(x2,y). We observe furthermore that

‖Py‖HS = ‖ly‖L2(M×M)

an with a bounded set B such that Ω ∪M ⊂ B

‖Py‖HS ≤ hB(y) with hB(y) =
∫
B
|g(x,y)|2 dx .

Moreover, hB ∈ L∞(B) by the integrability properties of g (cf. Proposition 2.12 and
Proposition 2.15). Now let {ϕj} be an orthonormal basis of L2(M). Then 〈K,Py〉HS =∑∞
j=1〈Pyϕj ,Kϕj〉 (cf. Proposition B.2). The sequence

fn(y) =
n∑
j=1
〈Pyϕj ,Kϕj〉L2(M)

converges pointwise for all y ∈ Ω and has the integrable majorant hB(y)‖K‖HS. Thus
we can interchange the integration over Ω and the infinite sum in (4.1) by the dominated
convergence theorem. This yields∫

Ω
q(y)〈K,Py〉HS dy =

∞∑
j=1

∫
Ω
q(y)〈Pyϕj ,Kϕj〉L2(M) dy

=
∞∑
j=1

∫
Ω
q(y)

∫
M

(Pyϕj) (x1)(Kϕj) (x1)dx1dy

=
∞∑
j=1

∫
M

(Kϕj) (x1)
∫

Ω
q(y) (Pyϕj) (x1) dy dx1

=
∞∑
j=1

∫
M

(Kϕj) (x1) (C(q)ϕj) (x1) dx1 = 〈C(q),K〉HS

where we have used the Fubini-Tonelli theorem (Theorem B.1) in order to interchange
the integration over Ω and M.
The second representation follows by the isometry between HS(L2(M)) and L2(M×M)
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(see Proposition B.2) since

〈K,Py〉HS(L2(M)) = 〈k, ly〉L2(M×M) .

Under the assumptions of Proposition 4.1 the extended forward operator is also com-
pact.

Proposition 4.3 (Compact forward operator).
Let Assumption 3.1 be valid. Then the forward operator C : L2(Ω) → HS(L2(M)) is
compact.

Proof. We can associate the Hilbert space HS(L2(M)) with L2(M ×M) in the sense of
the isometric isomorphism described in Proposition B.3. In that setting C is an integral
operator with integral kernel

κ(x1,x2,y) = g(x1,y)g(x2,y) .

Moreover we have κ ∈ L2 ([M×M],Ω) since with a bounded set B such that Ω∪M ⊂ B∫
Ω

∫
M×M

|κ(x1,x2,y)|2 dx1dx2dy ≤
∫
B
hB(y)2dy <∞ .

Hence, by the characterization of Hilbert-Schmidt operators on L2 spaces (see Propo-
sition B.3), C belongs to HS

(
L2(Ω), L2(M×M)

)
. As Hilbert-Schmidt operators are

always compact, this completes the proof. Alternatively one may prove the compactness
by means of finite rank approximations of the forward operator (see e.g. [DES20, Lemma
2.1]).

4.1.2. Towards discrete reconstruction techniques

So far we considered only an infinite dimensional modelling. However, for practical
applications we need to consider finite dimensional discretizations. In the engineering
literature, propagation and reconstruction are mostly formulated in such a discrete setup
since the microphone array consists only of finitely many microphones. The aim of the
remainder of this section is to link such finite dimensional formulations to the infinite
dimensional setup introduced so far. We focus on three particular (discrete) source re-
construction methods namely Covariance Matrix Fitting (CMF) (also known as spectral
estimation method) [BE04, YLSC08], Conventional Beamforming (CBF) [VB88, JD93]
and DAMAS [BH06]. For each method we will provide a finite and infinite dimensional
formulation. Discrete quantities that have a infinite dimensional counterpart, will be
marked by an underscore.

Assume that the microphone array consists of nmic microphones at positions {xm}nmic
m=1 ⊂

M. Let further {PN}∞N=1 denote a family of partitions of Ω i.e. for any N ∈ N we have
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PN = {Ω1, . . . ,ΩN} with open sets Ωn such that

Ω =
N⋃
n=1

Ωn and Ωn ∩ Ωn′ = ∅ if n 6= n′ .

We assume further that there exists a continuous, monotonically decreasing function d
such that

d(N)→ 0 as N →∞ and max
Ωn∈PN

diam (Ωn) ≤ d(N) ∀ N ∈ N .

Here diam (Ωn) denotes the diameter of the smallest closed ball that completely contains
Ωn. For each subdomain Ωn we fix a corresponding focus point yn ∈ Ωn. Consider the
orthonormal basis

φn = 1√
|Ωn|

1Ωn with XN := span (φ1, . . . , φN ) . (4.2)

Using this basis, an approximation of the random source Q is given by

Q =
N∑
n=1

πnφn ,

where the complex random amplitudes πn satisfy

E(πn) = 0 for n = 1, . . . , N and Cov (πn, πn′) = 0 if n 6= n′ .

Furthermore we assume that the autopowers are given by the mean value of the source
power function on the subdomain i.e.

E
(
|πn|2

)
= qn
|Ωn|

with qn :=
∫

Ωn
q(y)dy .

The next proposition shows that for a continuous source power function and under the
previous assumptions, the discrete pressure correlations converge to the true pressure
correlations.

Proposition 4.4 (Convergence of discrete source model).
Let φn = 1Ωn |Ωn|−

1/2 and q ∈ C0(Ω) s.t.

Cov (πn, πn′) =

0 if n 6= n′

1
|Ωn|

∫
Ωn q(y)dy if n = n′

and

Q =
N∑
n=1

πnφn .
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Then for all xm,xl ∈M we have

Cov
(∫

Ω
g(xm,y)Q(y)dy,

∫
Ω
g(xl,y)Q(y)dy

)
→ cq(xm,xl) as N →∞ .

Proof. See Appendix A.

For the volume potential operator we obtain the following approximation on the dis-
crete source space XN (4.2)

(Gφn)(xm) = 1√
|Ωn|

∫
Ωn
g(xm,y)dy ≈

√
|Ωn|Gmn with Gmn := g(xm,yn) .

With Mq = diag (q1, . . . , qN ) this yields the discrete forward operator

C(q) = GMqG∗ .

Remark 4.5 (Convention for discrete operators).
In [HRS20] the discrete volume potential operator and the discrete source multiplication
operator are defined slightly different, namely

Gmn =
√
|Ωn|g(xm,yn) and Mq = diag (q(y1), . . . , q(yN )) .

The definitions have been adjusted in this work to be in line with the relevant engineering
literature. There it is typically assumed that the random source is composed of a sum of
monopoles i.e.

Q =
N∑
n=1

πnδyn ,

where δyn denotes the Dirac distribution at yn. Inserting this assumption yields the
pointwise discretization of the volume potental operator Gmn = g(xm,yn), random signals
p(xm) =

∑N
n=1 g(xm,yn)πn and a source power distribution q =

∑N
n=1 E

(
|πn|2

)
δyn.

Using the latter quantities, we have formally

E
(
|πn|2

)
=
∫

Ωn
q(y)dy .

For a given frequency ω, denote by p(xm, ω) the random pressure signal at the m−th
microphone. The exact discrete correlation data is given by the cross spectral matrix
(CSM) C ∈ CM×M with entries

Cml = E
(
p(xm, ω)p(xl, ω)

)
.

From now on we will omit the dependency on the frequency ω. Denote by Cobs resp.
Cobs an empirical estimate of the covariance operator C(q) (continuous case) resp. the
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cross spectral matrix (discrete case). Since all presented methods were originally formu-
lated for a finite dimensional setup we start with the discrete formulation, followed by
an infinite dimensional version.

4.1.3. Covariance matrix fitting (CMF)

The discrete version of CMF a.k.a. spectral estimation method (SEM) [BE04, YLSC08]
is defined by the least squares problem∥∥∥C(q)− Cobs

∥∥∥2

F
= min! (4.3)

where ‖ · ‖F denotes the Frobenius norm. Note that the Frobenius norm is the Hilbert-
Schmidt norm of a finite dimensional matrix. For infinite dimensional quantities the
CMF problem reads as ∥∥∥C(q)− Cobs

∥∥∥2

HS
= min! , (4.4)

which is uniquely solvable for q ∈ L∞ (Ω) and correlation data Cobs ∈ ran
(
C|L∞(Ω)

)
by

Theorem 3.11.

4.1.4. Conventional Beamforming

Conventional Beamforming (CBF) [VB88, JD93] is a widely used source imaging method.
It provides a fast and robust estimator of the source power. CBF is defined via an imaging
functional that maps each focus point y ∈ Ω to an estimator of the source power I(y).
Since the point evaluations of the imaging functional are independent from each other,
no system of equations needs to be solved.

Remark 4.6 (Time domain Beamforming).
Conventional Beamforming in frequency domain is closely related to backpropagation
methods in time domain, such as delay-and-sum Beamforming (see e.g. [JD93]) or
Kirchhoff migration (see e.g. [BPT05]). The principle of such methods is as follows:
For each focus point y the travel times τ(xm,y) between the microphone positions and the
focus point are computed and all microphone signals are shifted according to τ(xm,y).
Forming a (weighted) sum of the shifted signals causes an amplification of the source
signal that originates at y.

The propagation vector g(yn) ∈ CM is defined as the pointwise evaluation of the
Green’s function at all microphones

g(yn) =

 g(x1,yn)
...

g(xM ,yn)

 . (4.5)
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The discrete monopole operator Pyn = g(yn)g(yn)∗ ∈ CM×M is therefore also called
propagation matrix. In analogy to Proposition 4.2, the discrete adjoint forward operator
is

C∗ : CM×M → CN , (C∗ (K))n =
〈
K,Pyn

〉
F
,

where 〈·, ·〉F denotes the Frobenius scalar product. Note that we can equivalently char-
acterize the discrete adjoint forward operator by

C∗ (K) = diag (G∗KG) .

The CBF functional can be characterized by a one dimensional minimization problem
(see e.g. [Sij04])

I(yn) = argmin
µ∈C

∥∥∥Cobs − µPyn

∥∥∥2

F
. (4.6)

The solution to (4.6) is given by

I(yn) =
g(yn)∗Cobsg(yn)∣∣∣g(yn)

∣∣∣4 =
〈Cobs,Pyn〉F∥∥Pyn

∥∥2
F

=

(
C∗(Cobs)

)
(yn)∥∥Pyn

∥∥2
F

.

Note that for Cobs Hermitian, I(yn) ∈ R and for Cobs moreover positive semi-definite,
I(yn) ≥ 0.

For the continuous version we obtain analogously the characterizing minimization prob-
lem

I(y) := argmin
µ∈C

∥∥∥Cobs − µPy
∥∥∥2

HS
,

with solution

I(y) = 〈C
obs,Py〉HS

‖Py‖2HS
=

(
C∗(Cobs)

)
(y)

‖Py‖2HS
. (4.7)

Again I maps to the real numbers if Cobs is self-adjoint and maps to the the non-negative
real numbers if Cobs is moreover positive semi-definite. The Hilbert-Schmidt norm of
the monopole operator is given by

‖Py‖2HS =
∫
M×M

∣∣∣g(x1,y)g(x2,y)
∣∣∣2 d(x1,x2) = ‖g(·,y)‖4L2(M) > 0 .

Remark 4.7 (Interpretation of Beamforming results).
Note that Conventional Beamforming is not a quantitative reconstruction method i.e. we
cannot expect that the imaging procedure yields the true source power function. Whenever
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supy∈Ω ‖Py‖−1
HS <∞, the mapping

Cobs 7→ 〈C
obs,Py〉HS

‖Py‖2HS

defines a linear and bounded operator from HS(L2(M)) to L2(Ω). Therefore, it cannot
be the inverse of C because C is compact and hence, its inverse must be unbounded.
However, as the evaluation of the imaging functional does not require the solution of a
large minimization problem, the Conventional Beamforming result can be computed very
fast.

4.1.5. DAMAS
DAMAS (deconvolution approach for the mapping of acoustic sources) is an inverse
method that aims at deblurring the source information of a CBF solution. Again we
start with the discrete formulation as it was introduced by Brooks & Humphreys [BH06],
which is given by the following linear system

I(yn) =
N∑

n′=1
ψ (yn,yn′) qn′ . (4.8)

Here ψ is usually referred to as point spread function (PSF) and

ψ (yn,yn′) =

〈
Pyn′ ,Pyn

〉
F∥∥Pyn

∥∥2
F

.

The formulation on function spaces is given by an integral equation of the first kind,

I(y) =
∫

Ω
ψ(y,y′)q(y′)dy′ . (4.9)

With the PSF

ψ(y,y′) = 〈Py′ ,Py〉HS

‖Py‖2HS
=
(
C∗(Py′)

)
(y)

‖Py‖2HS
.

Remark 4.8 (DAMAS Nomenclature).
For a shift invariant PSF, (4.9) reduces to a convolution integral. However in the sce-
narios, considered in this thesis the PSF is not shift invariant. Nevertheless, deblur-
ring methods like DAMAS are usually called deconvolution methods in the aeroacoustic
community. Furthermore within this theses, DAMAS will always refer to the integral
equation (4.9). This is emphasized here since in most literature DAMAS refers to the it-
erative Gauß-Seidel method, suggested in [BH06] in order to solve the finite dimensional
linear problem (4.8).
The integral equation of DAMAS (4.9) and the least squares problem of CMF (4.4)
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are closely related, as the next proposition shows.

Proposition 4.9 (Normal equation [HRS20, Proposition 4.3]).
The DAMAS problem (4.9) is equivalent to the operator equation

C∗C(q) = C∗Cobs (4.10)

which is the normal equation of the CMF problem (4.4).

Proof. First of all we can multiply (4.9) by ‖Py‖2HS which yields the equivalent integral
equation (

C∗(Cobs)
)

(y) =
∫

Ω
〈Py′ ,Py〉HS q(y′)dy′ . (4.11)

For an orthonormal basis {ϕj}j∈N of L2(M), reformulating the right-hand side of (4.11)
yields∫

Ω
〈Py′ ,Py〉HS q(y′)dy′ =

∫
Ω

∞∑
j=1
〈Py′ϕj ,Pyϕj〉L2(M) q(y′)dy′

=
∞∑
j=1

∫
Ω
〈Py′ϕj ,Pyϕj〉L2(M) q(y′)dy′

=
∞∑
j=1

∫
M

[∫
Ω

(
Py′ϕj

)
(x)q(y′)dy′

]
(Pyϕj) (x)dx . (4.12)

We obtain further

[. . . ] =
∫

Ω

(∫
M
g(x,y′)g(x′,y′)ϕj(x′)dx′

)
q(y′)dy′

=
∫
M
cq(x,x′)ϕj(x′)dx′ = (C(q)ϕj) (x) . (4.13)

Inserting (4.13) into (4.12) yields∫
Ω
〈Py′ ,Py〉HS q(y′)dy′ = 〈C(q),Py〉HS = (C∗C(q)) (y) .

The relation of DAMAS and CMF is similar for the discrete versions.

Corollary 4.10 (Discrete normal equation [HRS20, Corollary 4.5]).
The problem (4.8) is equivalent to the linear system

C∗C(q) = C∗Cobs (4.14)

which is the normal equation of (4.3).

From the last proposition we can easily deduce a uniqueness result for the DAMAS
integral equation.
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Corollary 4.11 (DAMAS uniqueness [HRS20, Corollary 4.4]).
For exact data Cobs = C(q) with q ∈ L∞ (Ω), the solution of (4.9) is unique in L∞ (Ω).

Proof. By the uniqueness theorem of the inverse problem (Theorem 3.11) we obtain

ker (C∗C) ∩ L∞(Ω) = ker (C) ∩ L∞(Ω) = {0} .

Remark 4.12 (DAMAS and CMF without regularization).
A possible strategy for the solution of the CMF or DAMAS problem may be the selection
of a (least squares) solution of minimum norm, often called best-approximate solution.
Consider the sets of solutions for given data Cobs ∈ HS

(
L2(M)

)
given by

solCMF
(
Cobs

)
= argmin

q∈L2(Ω)

∥∥∥Cq − Cobs
∥∥∥

HS(L2(M))
,

solDAMAS
(
Cobs

)
=
{
q ∈ L2(Ω) : C∗C(q) = C∗Cobs

}
.

For Cobs ∈ ran (C) + ran (C)⊥, we have that q is a least squares solution if and only
if the normal equation is satisfied i.e. solCMF

(
Cobs

)
= solDAMAS

(
Cobs

)
(see [EHN96,

Section 2.1.]). Moreover in that case, there exists a unique best-approximate solution
q† ∈ solCMF

(
Cobs

)
that satisfies∥∥∥q†∥∥∥

L2(Ω)
= inf

{
‖q̃‖L2(Ω) : q̃ ∈ solCMF

(
Cobs

)}
.

The best-approximate solution can be characterized by

q† = C†Cobs ,

where C† denotes the Moore-Penrose generalized inverse (see [EHN96, Definition 2.2.
and Theorem 2.5.]). As the forward operator C is compact (Proposition 4.3), C† is an
unbounded linear operator (see [EHN96, Proposition 2.7.]). Hence, small errors in the
data can lead to arbitrarily large deviations in the best-approximate solution.

4.1.6. Tikhonov regularization

We have seen in Proposition 4.3 that C : L2(Ω)→ HS(L2(M)) is compact. Since ran(C)
is infinite dimensional this implies that the inverse source problem

C(q) = C

is ill-posed [CK13, Theorem 4.2 p.96]. Such problems require regularization to avoid
unstable results in case of noisy data (cf. Remark 4.12). As a regularization technique
we will consider generalized Tikhonov regularization within this thesis. For a generic
convex (cf. Definition B.5) penalty functional R and a regularization parameter α > 0
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this yields source power estimators of the form

q̂CMF,α ∈ argmin
q∈L2(Ω)

[∥∥∥C(q)− Cobs
∥∥∥2

HS(L2(M))
+ αR(q)

]
(4.15)

in case of CMF and

q̂DAMAS,α ∈ argmin
q∈L2(Ω)

[∥∥∥C∗C(q)− C∗Cobs
∥∥∥2

L2(Ω)
+ αR(q)

]
(4.16)

in case of DAMAS. Some typical examples of penalty functionals used in acoustic source
imaging are (see e.g. [YLSC08, LPB+17])

• R(q) = 1
2 ‖q‖

2
L2(Ω) (L2 norm penalty),

• R(q) = ‖q‖L1(Ω) (L1 norm penalty),

• R(q) =
{

0 if q(y) ∈ [a, b] for a.e.y
∞ else .

(box constraint with bounds a, b ∈ R).

To discuss the existence and uniqueness of the Tikhonov minimizers (4.15) and (4.16)
we need some further assumptions on the penalty functional R.

Assumption 4.13 (Properties of penalty functional).
Let R : L2(Ω) → [0,∞] with dom(R) := {f ∈ L2(Ω) : R(f) < ∞} 6= ∅ be weakly
sequentially lower semicompact. This explicitly means: for any β ≥ 0 the sublevel sets
levβ(R) := {f ∈ L2(Ω) : R(f) ≤ β} are weakly sequentially compact i.e. for any
sequence (fn)n∈N ⊂ levβ(R) there exists a subsequence (fnk)k∈N such that fnk converges
weakly to some f ∈ levβ(R).

A sufficient condition for the existence and uniqueness of source power estimators is
provided by the following theorem.

Theorem 4.14 (Existence and uniqueness of minimizers).
Assume that R fulfills Assumption 4.13, then there exist Tikhonov minimizers (4.15)
and (4.16). If R is moreover strictly convex, then the minimizers are unique.

Proof. By assumption the sublevel sets of R are weakly sequentially compact and there-
fore in particular weakly sequentially closed. The latter fact is equivalent to R being
weakly sequentially lower semicontinuous (cf. Definition B.6 and [BC17, Lemma 1.36,
p.16]). If R is strictly convex, the entire Tikhonov functional is stricly convex since the
data fidelity term

∥∥∥C(q)− Cobs
∥∥∥2

HS(L2(M))
resp.

∥∥∥C∗C(q)− C∗Cobs
∥∥∥2

L2(Ω)
is convex. The

statement then follows by the theory on minimization of convex Tikhonov functionals
(see e.g. [MST12, Theorem 2.5]).
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4.2. The factorization method 1

So far we treated the problem of reconstructing the source power function q from cor-
relation data. However, this section is concerned with the localization problem only i.e.
the problem of reconstructing the support of the source power function. Such shape
identification problems are well-studied for inverse problems e.g. in the field of inverse
scattering. Here we will only deal with the so-called factorization method that yields
a necessary and sufficient condition that some point z ∈ Rd belongs to the shape that
should be reconstructed. The factorization method was introduced by Kirsch in the
late 1990s with applications to shape identification in inverse obstacle scattering [Kir98]
and identification of the support of the perturbation of the refractive index in inverse
medium scattering [Kir99]. For a deeper analysis of the factorization method along with
applications in several fields in inverse problems we refer to the monograph [KG07]. If
we apply the principles of the factorization method to the aeroacoustic inverse source
problem, we will observe that this leads exactly to the method of Capon [Cap69]. Sur-
prisingly, in the referenced article, this method was derived by a completely different
approach in a discrete setting.

Within this section we restrict the analysis to a free space geometry in two or three
spatial dimensions. Hence the Green’s function is of the form (2.19) or (2.20). For a
given source power function q ∈ L∞(Ω) we define the interior of the essential support

Ωq := int (ess supp(q)) = int
(
Rd\

⋃{
O ⊂ Rd : O open and q = 0 a.e. in O

})
.

For q fixed we define the restricted operator GΩq : L2(Ωq)→ L2(M)

(GΩqv)(x) :=
∫

Ωq
g(x,y)v(y)dy for x ∈M

with adjoint G∗Ωq : L2(M)→ L2(Ωq) given by

(G∗Ωqw)(y) =
∫
M
g(x,y)w(x)dx for y ∈ Ωq .

The proofs in this section require some additional assumptions on the source power
function q.

Assumption 4.15 (Source properties).

1. ∃q0 > 0 such that q(y) ≥ q0 for a.e. y ∈ Ωq ,

2. Rd\Ωq is connected.
1The content of this section was initiated at the Obwerwolfach workshop "computational inverse prob-
lems for partial differential equations" [Mat20]
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The following theorem yields a criterion to identify Ωq by knowing only the covariance
operator C(q).

Theorem 4.16 (Range criteria).
Let D = Rd i.e. the Green’s function is given by (2.19) or (2.20). Furthermore, let q
satisfy Assumption 4.15 and let y0 ∈ Ω. Then the following statements are equivalent.

(i) g(·,y0) ∈ ran
(
C(q)1/2

)
.

(ii) g(·,y0) ∈ ran
(
GΩq

)
.

(iii) inf
{∣∣∣〈w, C(q)w〉L2(M)

∣∣∣ : w ∈ L2(M), 〈w, g(·,y0)〉L2(M) = 1
}
> 0.

(iv) y0 ∈ Ωq.

Proof. We start with a few general observations.

• Mq is coercive on L2(Ωq) i.e. ∀ v ∈ L2(Ωq) we have

〈v,Mqv〉L2(Ωq) ≥ q0 ‖v‖2L2(Ωq) . (4.17)

• We have the factorization

C(q) = GΩqMqG∗Ωq . (4.18)

• g(·,y0) ∈ L2(M) (i.e. all terms are well defined).

”(i)⇔ (ii)” :
The factorization (4.18) satisfies the assumptions of [KG07, Corollary 1.22]. Thus we
have ran

(
C(q)1/2

)
= ran

(
GΩq

)
. For this specific problem one may easily prove this

relation directly as follows: We have the decomposition C(q)1/2 = (BB∗)1/2 = |B∗|, where
B = GΩqM

√
q and the absolute value of an operator A is defined as |A| = (A∗A)1/2. By

polar decomposition (see e.g. [Sun97, Theorem 4.2.5, p. 120]) there exists a partial
isometry U such that

B = |B∗|U∗ and |B∗| = BU . (4.19)

Now (4.19) implies that ran(|B∗|) = ran(B). Since M√q is an isomorphism on Ωq we
conclude that ran(B) = ran

(
GΩq

)
and hence

ran
(
C(q)1/2

)
= ran(|B∗|) = ran(B) = ran

(
GΩq

)
.

”(ii)⇔ (iii)” :
It holds more generally by [KG07, Theorem 1.16], that for any φ ∈ L2(M), φ 6= 0 that
φ ∈ ran

(
GΩq

)
if and only if the inf-criterion is satisfied.
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”(ii)⇒ (iv)” :
Proof by contradiction. Assume there exists a v0 ∈ L2(Ωq) such that

g(·,y0) = GΩqv0 =: w

and that y0 /∈ Ωq. By definition of the volume potential operator and analytic continu-
ation, w and g(·,y0) can be extended to Rd\Ωq such that

g(x,y0) = w(x) for x ∈ Rd\Ωq .

Now denote by B1(y0) the ball with radius 1 and center y0 and set

K(y0) :=
(
Rd\Ωq

)
∩B1(y0) .

We obtain further for x ∈ K(y0) and any bounded set B with (K(y0) ∪ Ωq) ⊂ B

|w(x)| ≤ ‖v0‖L2(Ωq)

√∫
B
|g(x,y)|2 dy .

As |g(x,y)| = |g(y,x)|, we can use the integrability properties of g (cf. Proposition 2.12
and Proposition 2.15) to get an upper bound for the expression under the square root
uniformly for all x ∈ K(y0). This proves that w ∈ L∞(K(y0)). On the other hand

lim
x→y0

|g(x,y0)| =∞ .

This is a contradiction and hence y0 ∈ Ωq.

”(iv)⇒ (ii)” :
We construct an element v ∈ L2(Ωq) such that

GΩqv = g(·,y0) in M .

Since y0 ∈ Ωq by assumption, there exist an ε > 0 such that the ball Bε(y0) is completely
contained in Ωq. Now take a function η ∈ C∞(R) with 0 ≤ η(s) ≤ 1, η(s) = 0 for s < ε

2
and η(s) = 1 for s ≥ ε. Then the function

φ(y) := η(|y− y0|)g(y,y0) belongs to C∞(Rd) .

We claim that v := Lk(−φ) satisfies

GΩqv = g(·,y0) . (4.20)
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Note that v vanishes outside of Bε(y0) and that g(·,y0) = φ outside of Bε(y0). Using the
integration by parts formula for Lk (Proposition 2.3) we obtain for every x ∈ Rd\Bε(y0)

(
GΩqv

)
(x) =

∫
Bε(y0)

g(x,y)Lk(−φ)(y)dy

=
∫
Bε(y0)

(
L>k g(x, ·)

)
(y)(−φ)(y)dy

+
{∮

∂Bε(y0)
[g(x,y)∇(−φ)(y)− (−φ(y))∇yg(x,y)] · nds(y)

+ |m|2
∮
∂Bε(y0)

(−φ)(y)∂g(x,y)
∂y1

n1 − g(x,y)∂(−φ)(y)
∂y1

n1ds(y)

+ 2ik |m|
∮
∂Bε(y0)

g(x,y)(−φ)(y)n1ds(y)
}
.

The volume integral vanishes, since L>k g(x, ·) = 0 on Bε(y0). Since φ solves the homoge-
neous convected Helmholtz equation outside of Bε(y0), we can apply the representation
formula (Theorem 2.14) for the remaining boundary integrals and obtain

{. . . } = φ(x) = g(x,y0) .

By the spectral theorem for compact self-adjoint operators (see e.g. [Alt16, 12.12
+ 12.13 p.395 ff.]), there exists a decreasing sequence of eigenvalues λj > 0 and an
orthonormal set of eigenfunctions ψj of C(q) such that for any v ∈ L2(M) we have

(C(q))(v) =
∞∑
j=1

λj〈v, ψj〉L2(M)ψj . (4.21)

Using the spectral representation (4.21), we can also represent (C(q))1/2 by

(C(q))1/2 (v) =
∞∑
j=1

√
λj〈v, ψj〉L2(M)ψj . (4.22)

Note that the square root (C(q))1/2 is also compact. Following again the principles
presented in [KG07] we then get a representation of the indicator function of Ωq.

Corollary 4.17 (Indicator function of Ωq).
The indicator function of Ωq

1Ωq(y0) =
{

1 if y0 ∈ Ωq

0 if y0 /∈ Ωq
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can be represented by

1Ωq(y0) = sgn
(
inf
{∣∣∣〈w, C(q)w〉L2(M)

∣∣∣ : w ∈ L2(M), 〈w, g(·,y0)〉L2(M) = 1
})

. (4.23)

Moreover, we have another representation by

1Ωq(y0) = sgn


 ∞∑
j=1

1
λj

∣∣∣〈g(·,y0), ψj〉L2(M)

∣∣∣2
−1

 , (4.24)

with the convention ∞−1 := 0.

Proof. The first statement is a direct consequence of Theorem 4.16 as y0 ∈ Ωq if and
only if the infimum is strictly positive.
For the second statement note first that ker (C(q)) = ker

(
C1/2(q)∗

)
and hence

ran
(
C1/2(q)

)
= ker (C(q))⊥. Moreover, if φ ∈ L2(M) belongs to ker (C(q)) we get

0 = 〈C(q)φ, φ〉L2(M) = 〈qG∗φ,G∗φ〉L2(Ω) ≥ q0

∫
Ωq
|(G∗φ) (y)|2 dy .

And hence by analytic continuation (G∗φ) (y) = 0 for all y ∈ Ω i.e. φ ∈ ker (G∗). Taking
the inner product of φ ∈ ker (C(q)) and g(·,y0) we get further

〈φ, g(·,y0)〉L2(M) =
∫
M
φ(x)g(x,y0)dx = (G∗φ) (y0) = 0 .

The last equation together with the previous statements shows that g(·,y0) ∈ ran
(
C1/2(q)

)
.

By Theorem 4.16 we have that y0 ∈ Ωq if and only if there exists a solution ϕ ∈ L2(Ω)
to the equation

(C(q))1/2 ϕ = g(·,y0) . (4.25)

By the Picard criterion [Kir11, Theorem A.54] Equation (4.25) is solvable if and only if
g(·,y0) ∈ ran

(
C1/2(q)

)
and

∞∑
j=1

1
λj

∣∣∣〈g(·,y0), ψj〉L2(M)

∣∣∣2 <∞ ,

which yields the claim.

Theorem 4.16 and Corollary 4.17 motivate an imaging functional of the form (4.24)
or

I fac(y0) =

 ∞∑
j=1

1
λj

∣∣∣〈g(·,y0), ψj〉L2(M)

∣∣∣2
−1

.
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Moreover, in a discrete setting, the covariance matrix C ∈ Cnmic×nmic is often positive
definite. In that case we can consider the imaging functional

I fac(y0) =

nmic∑
j=1

1
λj

∣∣∣g(y0)∗ψ
j

∣∣∣2
−1

, (4.26)

where {(λj , ψj)}
nmic
j=1 denotes the set of eigenpairs of C with normalized eigenvectors ψ

j

and g(y0) the propagation vector defined in (4.5). Note further thatnmic∑
j=1

1
λj

∣∣∣g(y0)∗ψ
j

∣∣∣2
−1

=
∥∥∥C−1/2g(y0)

∥∥∥−2

2
=
(
g(y0)∗C−1g(y0)

)−1
. (4.27)

This is actually a well-known method in the field of seismic imaging, known as Capon’s
method [Cap69]. In the context of array imaging of acoustic sources this method is often
referred to as adaptive Beamforming or minimum variance method. This is somewhat
astounding, since in the original article by Capon, the method is derived from a com-
pletely different perspective (increasing the wavenumber resolution of the array imaging
functional).

Linear beamformer with minimal output
A class of linear imaging functionals that are often considered in practice are beamform-
ers with unit gain (c.f. Section 5.1 and [Sij04]). Transferring this idea to our infinite
dimensional setup this leads to imaging functionals of the type

Iw(y0) = 〈w, C(q)w〉L2(M) , (4.28)

where the function w ∈ L2(M) must satisfy the normalization condition

〈w, g(·,y0)〉L2(M) = 1 . (4.29)

In the array imaging context, this condition is usually called unit gain. It ensures that if
the correlation data is noiseless and generated by a single monopole, the correct source
power is recovered. I.e. let C(q) = µPy0 with µ > 0, then we obtain

Iw(y0) = µ〈w,Py0w〉L2(M) = µ

(∫
M
w(x1)g(x1,y0)dx1

)(∫
M
g(x2,y0)w(x2)dx2

)
= µ .

Often, the method of Capon is then characterized by the method that generates the
minimum output of that class. In our function space setting this translates as

ICap(y0) = inf
{∣∣∣〈w, C(q)w〉L2(M)

∣∣∣ : w ∈ L2(M), w satisfies (4.29)
}
.
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This is exactly the infimum from the inf-criterion (Theorem 4.16.(iii)), i.e.

sgn
(
ICap(y0)

)
= 1Ωq(y0)

in our continuous setting with noise-free data. Note that Capon’s method therefore only
reconstructs the support of the source power function q and does not recover the exact
source power values.

4.3. Discrete correlation estimation
We have already seen discrete formulations of reconstruction methods in the last section.
In this section we will present a modeling of the discrete measurement and correlation
estimation process that reflects the usual procedures in practice.

4.3.1. Maximum likelihood estimation of the covariance matrix
For each microphone position xm the measured data consists of a time series of relative
pressure fluctuations with a total length of nT ∈ N time samples. Assuming equidistant
time instances, yields time data of the form

p(xm, n∆t) n = 0, . . . , nT − 1

where ∆t denotes the sampling interval. Typical values for the sampling interval are of
the order O(10−5 s) and the sampling frequency is defined as fs = 1

∆t . In experimental
aeroacoustics, the correlation estimation in frequency domain from the discrete time
data is usually carried out by Welch’s method [Wel67] which is outlined in the following.

1. Generate block samples: The data is divided into nsamp time blocks with ntime
samples each where ntime is often chosen as a power of 2 and usually ntime is much
smaller than nT . Furthermore the block samples may be chosen overlapping in
time. A common choice for the size of the overlap is half of the block sample size
i.e. ntime

2 .

2. Window block samples: Each block sample signal p(j)(xm) ∈ Rntime is modified
component-wise by a window function w. Examples for common window functions
are

w(·)n = (·)n for: n = 1, . . . , ntime (rectangular window),

w(·)n = 1
2

[
1− cos

(2π(n− 1)
ntime − 1

)]
(·)n for: n = 1, . . . , ntime (Hann window) .

3. Discrete Fourier transform: Apply the discrete Fourier transform (DFT) on
the windowed time signals, which yields block samples in frequency domain

p̂(j)(xm, ωk) =
[
DFT

(
w(p(j)(xm))

)]
k

for: k = −ntime
2 , . . . ,

ntime
2 − 1 .
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The discrete angular frequencies are defined by ωk = 2πk
∆tntime

and

[
DFT

(
w(p(j)(xm))

)]
k

=
ntime∑
n=1

e−in∆tωk
[
w(p(j)(xm))

]
n
.

4. Sample correlation: For a fixed frequency ωk define the microphone vectors
p̂(j)(ωk) =

(
p̂(j)(x1, ωk), . . . , p̂(j)(xnmic , ωk)

)>
. The empirical estimate of the cor-

relation matrix is then given by

Cobs = 1
nsamp

nsamp∑
j=1

p̂(j)(ωk)p̂(j)∗(ωk) . (4.30)

For the mathematical analysis we make the following assumptions regarding the pressure
signals in frequency domain.

Assumption 4.18 (Pressure signals).
The pressure vectors {p̂(j)}nsamp

j=1 are drawn independently from a complex valued Gaussian
random variable p̂ with zero mean and covariance matrix C i.e.

p̂ ∼ NC(0, C) .

For a concise introduction to the theory of complex random variables and the com-
plex normal distribution we refer to [AHSE95]. To distinguish between real and complex
Gaussian distributions, they will be denoted by NR and NC respectively.

Under the above assumptions, the likelihood function for the data {p̂(j)}nsamp
j=1 is given

by

L(C) = π−nmicnsamp det(C)−nsampexp

− nsamp∑
j=1

p̂(j)∗C−1p̂(j)

 .

The maximum likelihood estimator of the covariance matrix C is defined as the solution
to the following optimization problem

maximize L(C)
subject to C is Hermitian and positive semi-definite.

(4.31)

The maximizer of problem (4.31) is given by the sample covariance matrix Cobs (see e.g.
[AHSE95, Theorem 4.1]).
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4.3.2. Discrete noise model

We may decompose the correlation data into the sum of the true data and a noise term

Cobs = C +
(
Cobs − C

)
= C + Z . (4.32)

where C is deterministic and the noise matrix Z a matrix-valued random variable with
E(Z) = 0. Since we do not want to deal with matrix-valued random variables, we
consider their vectorized versions instead. Therefore, for any A ∈ Cd×d the column-wise
vectorization is defined as

vec (A) = (A11, . . . , Ad1, A12, . . . , Ad2, . . . , A1d, . . . , Add)> .

Thus, vec (Z) ∈ Cn2
mic is a complex vector-valued random variable with zero mean. The

positive semi-definite covariance matrix of vec (Z) is given by means of the covariance
matrix of correlations

Σ := Cov (vec (p̂p̂∗)) , (4.33)

as

Cov(vec (Z)) = E (vec (Z) vec (Z)∗) = 1
nsamp

Σ .

Since C is deterministic, Equation (4.32) implies

Cov
(
vec

(
Cobs

))
= Cov(vec (Z)) = 1

nsamp
Σ.

The entries of Σ are of the form

nsamp Cov

 1
nsamp

nsamp∑
j=1

p̂(j)
m p̂

(j)∗
l ,

1
nsamp

nsamp∑
j=1

p̂
(j)
m′ p̂

(j)∗
l′


= Cov (p̂mp̂∗l , p̂m′ p̂∗l′)
= E (p̂mp̂∗l p̂∗m′ p̂l′)− E (p̂mp̂∗l )E (p̂m′ p̂∗l′)

∗ for m,m′, l, l′ = 1, . . . nmic .

Hence, constructing the data covariance matrix Σ, requires the knowledge of fourth-
order moments of the pressure vector p̂. Under Assumption 4.18, Isserlis’ theorem (for
the case of fourth-order moments) [Iss16] is applicable and provides an explicit formula.
For our scenario that yields

E (p̂mp̂∗l p̂∗m′ p̂l′) = E (p̂mp̂∗l )E (p̂∗m′ p̂l′) + E (p̂mp̂∗m′)E (p̂∗l p̂l′) + E (p̂mp̂l′)E (p̂∗l p̂∗m′) .

Combining the last two equations yields

Cov (p̂mp̂∗l , p̂m′ p̂∗l′) = E (p̂mp̂∗m′)E (p̂∗l p̂l′) + E (p̂mp̂l′)E (p̂lp̂m′)∗ . (4.34)
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For a deeper discussion of Formula (4.34) and its versions for further higher-order mo-
ments we refer to [GB04] and [FGHB14]. Formula (4.34) reveals that the data covariance
matrix Σ may be estimated by using only second-order moments of the data. Inserting
the corresponding empirical estimates yields

Cov (p̂mp̂∗l , p̂m′ p̂∗l′) ≈ Cobs
mm′C

obs
ll′
∗ + Cps

ml′C
ps
m′l
∗
, (4.35)

with the empirical pseudo correlation matrix

Cps = 1
nsamp

nsamp∑
j=1

p̂(j)p̂(j)> .

Another straightforward possibility to estimate Σ is given by the data sample covariance
matrix (multiplied by the number of block samples nsamp)

Σ ≈
nsamp∑
j=1

[
vec

(
Cobs(j)

)
− vec

(
Cobs

)] [
vec

(
Cobs(j)

)
− vec

(
Cobs

)]∗
, (4.36)

which does not rely on any statistical assumptions on the pressure samples. For further
statistical evaluations, additional properties of the estimated data covariance matrix Σest

are desirable.

Hermitian: Both approximation formulas (4.35) and (4.36) ensure that Σest is Hermi-
tian.

Positive semi-definite (psd): If Σest is estimated by Formula (4.36), the result is always
psd as it is the sum of psd matrices. Formula (4.35) does not ensure a positive semi-
definite result.

Regular: Formula (4.35) does not ensure regularity. Formula (4.36) reveals that the
rank of the resulting matrix is at most nsamp (due to the rank inequality) and hence
whenever nsamp < n2

mic the matrix cannot be regular.

For practical applications an uncertainty quantification of the correlation estimations
provides valuable information on the quality of the data. One interesting measure may
be the stochastic noise level of the correlation data which is defined by the root mean
square deviation

δrms(Cobs) :=

√√√√√E

 nmic∑
m,l=1

∣∣∣Cobs
ml − Cml

∣∣∣2
 . (4.37)
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Using the definitions of Σ and the noise term Z we obtain further

δrms(Cobs) =

√√√√√E

 nmic∑
m,l=1

|Zml|2
 =

√√√√ nmic∑
m,l=1

Var (Zml) =
√

1
nsamp

tr (Σ) .





77

Chapter5
Weighted Data Spaces

The results that are presented in this chapter are mostly published in the article [RSHE20].

Based on the discrete formulations of the last chapter we will introduce the concept
of weighted data norms as presented in [RSHE20]. This framework is applicable to all
imaging methods presented so far (i.e. Beamforming, DAMAS and CMF). Several ex-
plicit weighting choices are discussed and analyzed.

5.1. Weighted norms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.2. Weighted Beamforming . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1. Choice of the Gramian matrix . . . . . . . . . . . . . . . . . . . . 78
5.2.2. Variance minimizing weighting . . . . . . . . . . . . . . . . . . . . 83

5.3. Weighted DAMAS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5.4. Weighted CMF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.1. Weighted norms
The discrete versions of source reconstruction methods introduced in Section 4.1 (see
(4.3) and (4.6)) are formulated on the finite-dimensional Hilbert space (Cnmic×nmic , 〈·, ·〉F ) '(
Cn2

mic , 〈·, ·〉2
)
with inner product

〈A,B〉F =
nmic∑
m,l=1

Aml (Bml)∗ =
n2

mic∑
j=1

vec (A)j
(
vec (B)j

)∗
= 〈vec (A) , vec (B)〉2 .

Any inner product on Cn2
mic can be characterized by its Gramian matrix (see e.g.

[RAH12]) which is Hermitian, positive definite and will be denoted by W in the follow-
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ing. For each Hermitian, positive definite matrix W we define the space
(
Cn2

mic , 〈·, ·〉W
)

via its inner product

〈X,Y 〉W =
〈
W
−1/2X,W

−1/2Y
〉

2
=
〈
X,W−1Y

〉
2

for X,Y ∈ CM
2
. (5.1)

With the eigenvalue decomposition (EVD) of W given by

W = Udiag (λ1, . . . , λM2)U∗ ,

the matrix W−1/2 is defined by

W−
1/2 = Udiag

(
λ
−1/2
1 , . . . , λ

−1/2
n2

mic

)
U∗ .

The corresponding norm is defined as

‖X‖W =
√
〈X,X〉W for X ∈ Cn

2
mic .

5.2. Weighted Beamforming

Recall that Conventional Beamforming (CBF) is characterized by a minimization prob-
lem on (Cnmic×nmic , 〈·, ·〉F ) (see (4.6)). If we consider a generic Hilbert space with
Gramian matrix W instead, a generalized Beamforming functional is defined by

IW (y) = argmin
µ∈C

∥∥∥vec (Cobs
)
− µvec

(
Py
)∥∥∥2

W
. (5.2)

In analogy to CBF the solution to (5.2) is given by

IW (y) =

〈
vec

(
Cobs

)
, vec

(
Py
)〉

W∥∥vec (Py
) ∥∥2

W

. (5.3)

5.2.1. Choice of the Gramian matrix

The generic beamformer in (5.2) is defined for any Hermitian, positive definite Gramian
matrix W . In the following we will mostly use the term weighting matrix instead of
Gramian matrix. We will discuss various particular choices for W which incorporates
several common imaging methods into the generic framework presented above. Fur-
thermore, weighting choices that depend on the data covariances (introduced in Section
4.3.2) will be considered.
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Conventional Beamforming:

W = σ2I for σ2 > 0 . (5.4)

If W is a positive multiple of the identity matrix, the induced norm ‖·‖W is just the
standard Euclidean norm times the factor σ2. Hence, the minimization problem (5.2) is
equivalent to

IW (y) = argmin
µ∈C

∥∥∥vec (Cobs
)
− µvec

(
Py
)∥∥∥2

2
,

which is exactly the CBF solution. For the remainder of this section, we will omit the
dependency on the focus point y to increase the readability.

Diagonal inverse covariance weighting (iv-d):

Wij =
{

Σij if i = j

0 else
. (5.5)

Recall that Σ denotes the covariance matrix of pressure correlations (see Equation
(4.33)). The weighting (5.5) is based on the variances of the CSM components

σ2
ml = Var

(
Cobs
ml

)
.

As W is a diagonal matrix, the induced norm may be rewritten in matrix notation

‖vec (A)‖2W =
nmic∑
m=1

nmic∑
l=1

1
σ2
ml

|Aml|2 for A ∈ Cnmic×nmic . (5.6)

This is a modified Frobenius norm, where each component is weighted by its inverse
variance. This may be interpreted as a reliability weighting on the empirical correlation
data. Components that exhibit a high variance are considered as less reliable than
components with a low variance. Thus, components with low variances have a larger
impact on the imaging result than components with high variances.

Full inverse covariance weighting (iv-f):
In that case the weighting matrix W is the entire data covariance matrix i.e.

W = Σ . (5.7)

The distance measure

d(X,Y ) := ‖X − Y ‖Σ for X,Y ∈ Cn
2
mic
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is known as Mahalanobis distance [Mah36]. In the field of statistics, the approach of
weighting a least squares problem with the data covariance matrix is known as generalized
least squares [Ait36].

Remark 5.1 (Whitening).
The iv-f (5.7) weighting applies a whitening transformation on the data since we have
by definition

Cov
(
Σ−1/2vec

(
Cobs

))
= I .

Moreover, the iv-d and conventional weighting perform also whitening transformations
under the assumption that the vectorized noise vec (Z) is uncorrelated (iv-d) respectively
white (conventional).

Beamforming with shading:
From the practical point of view it is sometimes desirable to endow each microphone with
an individual positive weight ν1, . . . , νnmic . That may be useful if for instance different
microphone types are used within the same array. Such an approach is usually referred
to as shading in the literature (see e.g. [Sij10, BMP87]). A Beamforming functional
with shading is defined by

Ishad = argmin
µ∈C

nmic∑
m=1

nmic∑
l=1

∣∣∣Cobs
ml − µνmνlgmg∗l

∣∣∣2 .

This can be incorporated into the presented framework by the weighting matrix

W = diag
(
vec

(
νν>

))−1
,

with ν = (ν1, . . . , νnmic)
>.

Capon’s method:
This method was introduced by Capon [Cap69] and we already discussed its relation to
the factorization method in Section 4.2. It is also known as Minimum Variance Method
or Adaptive Beamforming and defined by

ICap = w∗CapC
obswCap . (5.8)

The vector wCap is implicitly defined by the solution of

min
w∈CM

w∗Cobsw subject to g∗w = 1 . (5.9)

Note that with the random pressure vector p̂ we have

E
[∣∣∣w∗p̂∣∣∣2] = w∗E

[
p̂p̂∗
]
w = w∗Cw ≈ w∗Cobsw .
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Since p̂ has zero mean by Assumption 4.18 we have

E
[∣∣∣w∗p̂∣∣∣2] = Var

(
w∗p̂

)
. (5.10)

That explains the term Minimum Variance Method (see also [JD93]). We will assume
in the following that Cobs is regular. In that case the explicit solution of (5.9) is

wCap =

(
Cobs

)−1
g

g∗
(
Cobs

)−1
g
. (5.11)

The fact that the vector wCap depends on the empirical correlation data explains the
term Adaptive Beamforming. Inserting (5.11) into (5.8) yields (cf. Equation (4.26) and
(4.27))

ICap =
(
g∗
(
Cobs

)−1
g

)−1
. (5.12)

The Capon beamformer (5.12) can also be characterized by a weighting matrix. Since
the derivation is not as straightforward as for the previous cases, we will formulate it as
a lemma.

Lemma 5.2 (Weighting matrix for Capon’s method).
If Cobs is regular, the Capon beamformer is characterized by

W = Cobs> ⊗ Cobs , (5.13)

where ⊗ denotes the Kronecker product.

Proof. For a definition of the Kronecker product see e.g. [HJ91, Def. 4.2.1 p.243].
Firstly, W defined as in (5.13) is a valid choice since it is regular, Hermitian and positive
definite. All those properties are inherited by Cobs (see [HJ91, p. 243 ff.]). By elementary
properties of the Kronecker product [HJ91, Lemma 4.3.1 p.255] we have for any A ∈
Cnmic×nmic

W−1vec (A) =
(
Cobs> ⊗ Cobs

)−1
vec (A) = vec

(
Cobs−1

ACobs−1)
.

Using this identity for A = Cobs and A = P yields

IW =

〈
vec

(
Cobs

)
, vec (P)

〉
W∥∥vec (P)

∥∥2
W

=

〈
W−1vec

(
Cobs

)
, vec (P)

〉
2

〈vec (P) ,W−1vec (P)〉2

=

〈
vec

(
Cobs−1)

, vec (P)
〉

2〈
vec (P) , vec

(
Cobs−1PCobs−1)〉

2

=
g∗Cobs−1

g

g∗Cobs−1
gg∗Cobs−1

g
= ICap .
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If the pressure signals have additional statistical properties, the Capon and iv-f beam-
former are equivalent in the following sense.
Lemma 5.3 (Relation of Capon and iv-f beamformer with exact data).
In addition to Assumption 4.18, let the pressure signal p̂ satisfy

E
(
p̂p̂>

)
= 0 . (5.14)

Then, for exact correlation data C holds(
g∗C−1g

)−1
= 〈vec (C) , vec (P)〉Σ∥∥vec (P)

∥∥2
Σ

,

i.e. the Capon beamformer (left) coincides with the iv-f beamformer (right).
Proof. From Property (5.14) and Equation (4.34) we obtain

Cov (p̂mp̂∗l , p̂m′ p̂∗l′) = E (p̂mp̂∗m′)E (p̂∗l p̂l′) .

For the data covariance matrix Σ that yields

Σ = Cov
(
vec

(
p̂p̂∗
))

= C> ⊗ C .

In analogy to Lemma 5.2 we conclude that the expression on the right hand side is
the weighting matrix that characterizes Capon’s method with exact data, given by(
g∗C−1g

)−1
.

Remark 5.4 (Relation of Capon and iv-f beamformer with noisy data).
In a real experimental setup only the noisy CSM Cobs and an approximate data covari-
ance matrix Σest are available. If the pressure signal satisfies Assumption 4.18 along
with (5.14), the components of Σest may be estimated by

Cov (p̂mp̂∗l , p̂m′ p̂∗l′) ≈ Cobs
mm′C

obs
ll′
∗
. (5.15)

In that case we obtain similar to Lemma 5.3

(
g∗Cobs−1

g
)−1

=
〈vec

(
Cobs

)
, vec (P)〉Σest∥∥vec (P)
∥∥2

Σest

.

Complex Gaussian random variables z that satisfy

E(z) = 0 and E(zz>) = 0

are usually called proper [PJS14, Def. 2.1, p.35].

Robust Adaptive Beamforming (RAB):
For most real experimental datasets, Cobs is indeed regular but also ill-conditioned which



5.2. Weighted Beamforming 83

is a drawback of Capon’s method. Therefore Cox et al. [CZO87] suggested a regularized,
robust version of the Capon beamformer. RAB depends on a control parameter µ > 0
that is added on the diagonal of Cobs. The method is defined by

IRAB =
g∗
(
Cobs + µI

)−1
Cobs

(
Cobs + µI

)−1
g(

g∗
(
Cobs + µI

)−1
g

)2

=

〈
vec

(
Cobs
µ
−1
CobsCobs

µ
−1)

, vec (P)
〉

2〈
vec

(
Cobs
µ
−1PCobs

µ
−1)

, vec (P)
〉

2

,

with Cobs
µ = Cobs + µI. RAB is characterized by the following weighting matrix

W = Cobs
µ
> ⊗ Cobs

µ . (5.16)

The derivation of (5.16) is analogous to the proof of Lemma 5.2 and will be omitted
here.

5.2.2. Variance minimizing weighting

Recall the class of generic beamformers IW defined in Equation (5.3)

IW =
〈vec

(
Cobs

)
, vec (P)〉W∥∥vec (P)
∥∥2
W

.

By construction, those estimators are all linear with respect to the data. However, the
class of all linear estimators is larger. For each source position y, any ` ∈ Cn2

mic defines
a linear source power estimator by.

`∗vec
(
Cobs

)
.

If the exact data is given by a monopole with source power µ2 and hence

Cobs = µ2P + Z with E (Z) = 0

it is desirable, that the estimator is unbiased i.e. that

E
(
`∗vec

(
Cobs

))
= µ2 .

For monopole data this is equivalent to

`∗P = 1 . (5.17)
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Property (5.17) is often referred to as unit gain, thus we define the set of linear estimators
with unit gain by U := {` ∈ Cn2

mic : `∗vec (P) = 1}. Note that all beamformers that
were presented in this section belong to this class by

`W = 1∥∥vec (P)
∥∥2
W

W−1vec (P) .

Since the CSM estimator Cobs is random, each estimator `∗vec
(
Cobs

)
is random as well

and its expected value is given by

E
(
`∗vec

(
Cobs

))
= `∗vec (C) ,

which is the estimator in case of exact data. A good estimator should therefore have
only a small deviation from this ideal value i.e. it should hava a small variance

Var
[
`∗vec

(
Cobs

)]
= E

[∣∣∣`∗vec (Cobs
)
− E

(
`∗vec

(
Cobs

))∣∣∣2] .
The next result is closely related to the Gauss-Markov Theorem for linear unbiased
estimators (see e.g. [Kar04, Theorem 2.1]) and states that the iv-f beamformer (`Σ) has
the lowest variance among all linear estimators with unit gain.

Theorem 5.5 (Strong variance optimality of iv-f among U).
Assume that the data covariance matrix Σ = Cov

(
vec

(
Cobs

))
is regular, then for any

` ∈ U with ` 6= `Σ we have

Var
(
`∗Σvec

(
Cobs

))
< Var

(
`∗vec

(
Cobs

))
.

Proof. For arbitrary ` ∈ U with ` 6= `Σ we obtain the following identity

Var
(
`∗vec

(
Cobs

))
= Var

(
`∗Σvec

(
Cobs

))
+ Var

(
(`∗ − `∗Σ)vec

(
Cobs

))
+ 2Re

(
Cov

(
(`∗ − `∗Σ)vec

(
Cobs

)
, `∗Σvec

(
Cobs

)))
.

The last summand vanishes since

Cov
(
(`∗ − `∗Σ)vec

(
Cobs

)
, `∗Σvec

(
Cobs

))
= (`∗ − `∗Σ)E

(
vec

(
Cobs

)
vec

(
Cobs

)∗)
`Σ − (`∗ − `∗Σ)E

(
vec

(
Cobs

))
E
(
vec

(
Cobs

))∗
`Σ

= (`∗ − `∗Σ)Σ`Σ

= 1∥∥vec (P)
∥∥2

Σ

(`∗ − `∗Σ)vec (P) = 0 ,



5.3. Weighted DAMAS 85

where the last equality follows by the unit gain property (5.17). Hence we have

Var
(
`∗vec

(
Cobs

))
= Var

(
`∗Σvec

(
Cobs

))
+ Var

(
(`∗ − `∗Σ)vec

(
Cobs

))
= Var

(
`∗Σvec

(
Cobs

))
+ (`∗ − `∗Σ)Σ(`− `Σ) .

The last summand is always non-negative since Σ is positive semi-definite. As Σ is
regular by assumption, it is even positive definite and hence the last summand vanishes
if and only if ` = `Σ. As this case is excluded by assumption we conclude

Var
(
`∗vec

(
Cobs

))
= Var

(
`∗Σvec

(
Cobs

))
+ Var

(
(`∗ − `∗Σ)vec

(
Cobs

))
> Var

(
`∗Σvec

(
Cobs

))
.

As already noted, the weighted beamformers IW all belong to the set U . If we restrict
U to the class of estimators that are characterized by a minimization problem on a
Hilbert space (cf. (5.2)), we get a similar optimality result for the variance

VW := Var IW = E
[
|IW − E (IW )|2

]
.

Corollary 5.6 (Variance optimality of iv-f [RSHE20, Theorem 4.1]).
Assume that the data covariance matrix Σ = Cov

(
vec

(
Cobs

))
is regular, then for any

Hermitian, positive definite matrix W ∈ CM2, the variance of the corresponding beam-
former IW is bounded from below by the variance of the iv-f beamformer i.e.

Var (IΣ) ≤ Var (IW ) .

Proof. The statement follows directly from Theorem 5.5. A direct proof can be found
in [RSHE20, Theorem 4.1].

5.3. Weighted DAMAS

The principle of weighted data norms can also be transferred to the discrete DAMAS
problem. The weighted version of the point spread function is defined by

ψ
W

: Ω× Ω→ C,
(
y,y′

)
7→ argmin

µ∈C

∥∥∥vec (Py′
)
− µvec

(
Py
)∥∥∥2

W
.

For a convex penalty functional R : RN → R and a regularization parameter α > 0, the
corresponding regularized minimization problem is given by

min
q∈RN

∥∥∥HW q − ybf
W

∥∥∥2

2
+ αR(q) (5.18)
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with

[HW ]nl = ψW (yn,yl) and
[
ybf
W

]
n

= IW (yn) for n = 1, . . . , N.

5.4. Weighted CMF
The discrete CMF problem can be generalized in a similar way. As the discrete CMF
forward operator maps from RN to Cnmic×nmic , the Frobenius norm on the image space
has to be replaced by the weighted norm induced by W . That yields the following
regularized minimization problem

min
q∈RN

∥∥∥vec (GMqG∗
)
− vec

(
Cobs

)∥∥∥2

W
+ αR(q) . (5.19)

We recall that the discrete source multiplication operator was defined byMq = diag(q1, . . . , qN )
with

qn =
∫

Ωn
q(y)dy

and the discrete volume potential operator by

Gmn = g(xm,yn) .
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Chapter6
Computational Aspects

In this chapter we investigate a procedure for the numerical solution of the discrete CMF
and DAMAS problem. We discuss the most important aspects that have to be considered
for an implementation of imaging methods and the evaluation of experimental data.

6.1. Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.1.1. Fast Iterative Shrinkage-Thresholding Algorithm . . . . . . . . . . 91
6.1.2. Choice of the regularization parameters . . . . . . . . . . . . . . . 93

6.2. Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.1. Optimization

We will discuss optimization algorithms for Tikhonov functionals of the form

J (q) = 1
2

∥∥∥Tq − yobs
∥∥∥2

Y
+R(q) . (6.1)

Here T : L2(Ω) → Y is a bounded linear operator between Hilbert spaces L2(Ω) and
Y, and R : L2(Ω) → [0,∞] denotes the penalty functional. Note that both Tikhonov
functionals (CMF and DAMAS) from (4.15) and (4.16) belong to this class (see Table
6.1). Since in aeroacoustic experiments the regions of large source power values are
are usually relatively small compared to the entire source domain, the sparsity of the
reconstructed source is often a reasonable assumption. Therefore, we will employ sparsity
promoting penalty functionals. More precisely we will consider a penalty functional of
the form

R : L2(Ω)→ [0,∞] R(q) = χN+(q) + α2
2 ‖q‖

2
L2(Ω) + α1 ‖q‖L1(Ω) , (6.2)
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CMF DAMAS

Forward operator T = C (Proposition 4.1) T = C∗C (Proposition 4.2)

Observed data yobs = Cobs yobs = C∗Cobs

Data space Y = HS
(
L2(M)

)
Y = L2(Ω)

Table 6.1.: Operators and data spaces for generalized Tikhonov regularization of CMF and
DAMAS.

where N+ is the set of a.e. nonnegative functions i.e.

N+ =
{
f ∈ L2(Ω) : f ≥ 0 a.e.

}
and χN+ its indicator function

χN+(q) =
{

0 if q ∈ N+

∞ else
.

The first summand of the penalty functional (6.2) enforces a nonnegative solution. The
L2-norm penalty makes the Tikhonov functional stricly convex and therefore the min-
imizer is unique. The L1-norm penalty on the other hand promotes a sparse solution
which is often desirable (see i.e. [HS17, YLSC08, Suz08]).

Proposition 6.1 (Existence & uniqueness for L1 − L2 penalty).
Let α2 > 0, then the Tikhonov functional in (6.1) has a unique minimizer q̂α1,α2 ∈ L2(Ω).

Proof. We show that R is weakly sequentially lower semicompact and strictly convex
(Assumption 4.13).
R is strictly convex since all summands are convex and α2 ‖·‖2L2(Ω) is strictly convex.
Now let β ≥ 0 and (fn)n∈N ⊂ levβ(R). This implies that ‖fn‖L2(Ω) is uniformly bounded
since

‖fn‖2L2(Ω) ≤
2
α2
R(fn) ≤ 2

α2
β .

Hence, there exists a subsequence (fnk)k∈N ⊂ (fn)n∈N that converges weakly to an
element f (see e.g. [BC17, Lemma 2.45, p.37]). Moreover, the sublevel sets levβ(R) are
convex and closed. Convexity follows by the definition of R. To show closedness we take
a sequence (qn)n∈N ⊂ levβ(R) that converges to some q ∈ L2(Ω) and use the fact that
Ω is bounded. This yields

R(q) ≤ R(qn) + α1 ‖q − qn‖L1(Ω) + α2
2 ‖q − qn‖

2
L2(Ω) + α2 ‖qn‖L2(Ω) ‖q − qn‖L2(Ω)

≤ β +
(
α1

√
|Ω|+ α2

2 ‖q − qn‖L2(Ω) + α2 ‖qn‖L2(Ω)

)
‖q − qn‖L2(Ω) .
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The expression in the round brackets is uniformly bounded and the last factor converges
to 0. Thus for n→∞ we obtain R(q) ≤ β i.e. q ∈ levβ(R). Convex closed sets are also
weakly sequentially closed (cf. [BC17, Theorem 3.34, p.60]) and therefore R is weakly
sequentially lower semicontinuous. Hence we obtain

R(f) ≤ lim infR(fnk) ≤ β

i.e. f ∈ levβ(R). Thus R is weakly sequentially lower semicompact and the statement
follows by Theorem 4.14.

Finally we would like to prove convergence of the Tikhonov minimizers to the true
solution q ∈ L∞(Ω) of the operator equation

Tq = y

as the noise level tends to zero. For a generic convex penalization functional R, stan-
dard convergence theorems in regularization theory (see e.g. [SGG+09, SKHK12]) yield
convergence to the so-called R-minimizing solution

q† := argmin
q∈L2(Ω) Tq=y

R(q) .

Hence, in the convergence analysis we have to make sure that the R-minimizing solution
belongs to L∞(Ω). To this end, we define the following penalty functional for constants
U > 0 and θ ∈ [0, 1]

R̃θ,U : L2(Ω)→ [0,∞] R̃θ,U = χNU+
(q) + 1− θ

2 ‖q‖2L2(Ω) + θ ‖q‖L1(Ω) , (6.3)

where NU
+ is the set of a.e. nonnegative functions that are bounded by U i.e.

NU
+ =

{
f ∈ L2(Ω) : f(x) ∈ [0, U ] for a.e. x ∈ Ω

}
.

For a deterministic noise model we get the following standard convergence theorem for
the Tikhonov functional

J̃α,yobs(q) = 1
2

∥∥∥Tq − yobs
∥∥∥2

Y
+ αR̃θ,U (q) . (6.4)

Theorem 6.2 (Convergence of Tikhonov minimizers).
Let T,Y and yobs be defined according to Table 6.1 and consider an exact source power
function q ∈ L∞(Ω) with exact data y := Tq. Moreover, let θ ∈ [0, 1) and U ≥ ‖q‖L∞(Ω).
Assume that we have a sequence of noise levels (δk)k∈N converging to 0 and a sequence
of data (yobs

k )k∈N ⊂ Y with
∥∥∥yobs
k − y

∥∥∥
Y
≤ δk. Suppose that the sequence of regularization
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parameters (αk)k∈N satisfies

lim
k→∞

αk = 0 and lim
k→∞

δ2
k

αk
= 0 .

Then there exist unique Tikhonov minimizers qk ∈ L∞(Ω) defined by

qk := argmin
q̃∈L2(Ω)

J̃αk,yobs
k

(q̃)

and we have the following types of convergence

qk → q weakly in L2(Ω) (6.5a)
R̃θ,U (qk)→ R̃θ,U (q) (6.5b)
lim
k→∞

‖qk − q‖L2(Ω) = 0 . (6.5c)

Proof. Since θ ∈ [0, 1) we can show existence and uniqueness of Tikhonov minimizers qk
similar to Theorem 6.1. Moreover, the R̃θ,U -minimizing solution

q† = argmin
q∈L2(Ω) Tq=y

R̃θ,U (q)

is unique and q = q† as T is injective on L∞(Ω) (see Theorem 3.11 and Corollary 4.11).
Now the first two convergence properties (6.5a) and (6.5b) follow by standard results in
regularization theory (see e.g. [SGG+09, Theorem 3.26, p.66]). For the proof of strong
convergence we consider the two sequences

ak := R̃θ,U (qk)− R̃θ,U (q) and bk := 〈q + θ, qk − q〉L2(Ω) .

By the result above, each sequence converges to 0 and hence also (ak − bk) → 0. Com-
puting the difference explicitly we obtain

ak − bk

= (1− θ)
2 ‖qk‖2L2(Ω) + θ ‖qk‖L1(Ω) −

(1− θ)
2 ‖q‖2L2(Ω) − θ ‖q‖L1(Ω)

− 〈q, qk〉L2(Ω) + ‖q‖2L2(Ω) − θ ‖qk‖L1(Ω) + θ ‖q‖L1(Ω)

= (1− θ)
2 ‖qk‖2L2(Ω) + (1− θ)

2 ‖q‖2L2(Ω) − (1− θ)〈q, qk〉L2(Ω) + θ ‖q‖2L2(Ω) − θ〈q, qk〉L2(Ω)

= (1− θ)
2 ‖q − qk‖2L2(Ω) + θ ‖q‖2L2(Ω) − θ〈q, qk〉L2(Ω)

= (1− θ)
2 ‖q − qk‖2L2(Ω) + θ〈q, q − qk〉L2(Ω) .

The second summand of the last line converges to 0 due to weak convergence (6.5a). As
the entire sum in the last line converges to 0 as well, we conclude that the first summand
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(
(1−θ)

2 ‖q − qk‖2L2(Ω)

)
must also converge to 0. This proves strong convergence in L2(Ω)

(6.5c).

Note that for practical applications we can choose the upper bound U ∈ R sufficiently
large such that it can be neglected for the numerical treatment and we can work with
the penalty functional defined in (6.2).

6.1.1. Fast Iterative Shrinkage-Thresholding Algorithm

The fast iterative shrinkage-thresholding algorithm (FISTA) for a `1-norm penalty was
first proposed by Beck & Teboulle [BT09]. The FISTA algorithm makes use of the
proximal mapping of the penalty functional R. In our L2 setting and with τ > 0 it is
defined as

proxτR : L2(Ω)→ L2(Ω) proxτR(g) = argmin
f∈L2(Ω)

[
R(f) + 1

2τ ‖f − g‖
2
L2(Ω)

]
.

The proximal mapping of the discussed L1 − L2 penalty with nonnegativity constraint
(6.2) is given by

proxτR(g) = argmin
f∈L2(Ω)

[
R(f) + 1

2τ ‖f − g‖
2
L2(Ω)

]
= argmin

f∈N+

[
α2
2 ‖f‖

2
L2(Ω) + α1 ‖f‖L1(Ω) + 1

2τ ‖f − g‖
2
L2(Ω)

]
= argmin

f∈N+

[
α2τ + 1

2τ

∫
Ω
f2 − 1

τ

∫
Ω
f(g − τα1)

]
= argmin

f∈N+

[∫
Ω
f2 − 2

∫
Ω
f

(
g − τα1
α2τ + 1

)]

= argmin
f∈N+

∥∥∥∥f − (g − τα1
α2τ + 1

)∥∥∥∥2

L2(Ω)

= PN+

(
g − τα1
α2τ + 1

)
.

Here PN+ denotes the L2 metric projection onto N+ i.e.

(PN+(f))(x) = max{0,Re (f(x))} .

A generic FISTA algorithm for Tikhonov functionals as in Equation (6.1) endowed with
the discussed penalty functional (6.2) is presented in Algorithm 1 (cf. [Bec17, p. 291]
for a more general formulation). The algorithm approximates the unique Tikhonov
minimizer given by

q(α1,α2) = argmin
q∈L2(Ω)

1
2

∥∥∥Tq − yobs
∥∥∥2

Y
+ χA(q) + α2

2 ‖q‖
2
L2(Ω) + α1 ‖q‖L1(Ω) . (6.6)
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The convergence of Algorithm 1 is ensured by the next proposition.

Algorithm 1: FISTA
input : T : L2(Ω)→ Y (linear, bounded), α1, α2 > 0, yobs ∈ Y observed data,

q(0) ∈ L2(Ω) starting value, τ ∈
(

0, 1
‖T ∗T‖L(L2(Ω))

)
stepsize, niter number

of maximum iterations
output: q̂α1,α2 ∈ L2(Ω) approximation of q(α1,α2) (6.6)
/* Initialization */

t0 := 0; q(−1) := q(0); z := Re
(
T ∗yobs

)
for n = 0, . . . , niter − 1 do

tn+1 := 1
2

(
1 +

√
1 + 4t2n

)
;

βn := tn −1
tn+1

;
h(n) := q(n) + βn(q(n) − q(n−1));
g(n) := h(n) − τ(T ∗Th(n) − z) ;
q(n+1) := PN+

(
g(n)−τα1
α2τ+1

)
; // Apply proximal mapping

end
q̂α1,α2 := q(niter) ; // Return solution
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Proposition 6.3 (Convergence of FISTA).
Assume that argminJ is non-empty, then for any minimizer q? ∈ argminJ and n ≥ 1

J (q(n))− J (q?) ≤ 2
(n+ 1)2 ‖T

∗T‖L(L2(Ω))

Proof. The penalty functional R is proper, convex and lower semicontinuous by defi-
nition. Furthermore the gradient of F (q) = 1

2

∥∥∥Tq − yobs
∥∥∥2

L2(Ω)
is Lipschitz continuous

with Lipschitz constant ‖T ∗T‖L(L2(Ω)). Now the statement follows by the convergence
properties of the generic FISTA algorithm [Bec17, Theorem 10.34, p.292].

6.1.2. Choice of the regularization parameters

For a practical use, the choice of regularization parameters is of great importance. There-
fore we will briefly discuss some strategies.

Reduction to a single parameter:
We may set

α1 = θα α2 = (1− θ)α

for θ ∈ [0, 1] and α > 0. This principle has been proposed e.g. in Zou & Hastie
[ZH05] and is often referred to as elastic net regularization. The parameter θ models the
preference towards the L1 or L2 penalty and the parameter α controls the magnitude
of the entire regularization term. In practice one may choose θ a-priori and then use a
common parameter choice rule for problems with a single regularization parameter.

Discrepancy principle:
One of the most common parameter choice rules is Morozov’s discrepancy principle
[Mor66]. It requires a measure of the noise level on the data i.e. for deterministic noise
a bound δ such that ∥∥∥y − yobs

∥∥∥
Y
≤ δ ,

where y denotes the exact data. The discrepancy principle relies on the idea that for
an approximate solution q̂α one should choose α such that

∥∥∥T q̂α − yobs
∥∥∥
Y
≈ δ. More

explicitly one chooses α = αδ such that

αδ = sup
{
α > 0 :

∥∥∥T q̂α − yobs
∥∥∥
Y
≤ τδ

}
(6.7)

with some constant τ > 1 (cf. [EHN96, Section 4.3.]). A measure of the noise level
in case of random noise may be the provided by the statistics of the correlation data
(cf. Equation (4.37) and Section 4.3.2). However, for random noise the discrepancy
principle (6.7) is not an optimal strategy since it tends to overestimate the regularization
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parameter for fine discretizations (i.e. large N). This phenomenon has been investigated
e.g. in [Han10, Chapter 5].

Lepskĭı principle:
This parameter choice rule goes back to the work of Lepskĭı [Lep90]. Let q denote the
exact solution of the inverse problem and qα, q̂α the Tikhonov solution for regularization
parameter α for the exact resp. noisy data. The Lepskĭı principle is based on the error
decomposition

‖q − q̂α‖ ≤ ‖q − qα‖+ ‖qα − q̂α‖ .

The first term of the upper bound is deterministic, unknown and expected to be an
increasing function of alpha. The second term depends on the data noise and is expected
to be an decreasing function of alpha. Moreover in many scenarios there are good upper
bounds available for the propagated data noise error ‖qα − q̂α‖. In order to implement
the Lepskĭı principle, we need a finite set of regularization parameters α1 < α2 < · · · <
αm and an upper bound on the propagated data noise error, given by a decreasing
function Ψ : {1, . . . ,m} → R+. Within this thesis we will follow the general approach
of the Lepskĭı principle for random noise that was presented in [MP06]. Applying these
ideas to the scenario within this thesis we get the following procedure:
For discrete Tikhonov estimators q

α
, q̂
α
, assume that there is a decreasing function Ψ

such that for all j = 1, . . . ,m holds

E
(∥∥∥q

αj
− q̂

αj

∥∥∥2

2

)
≤ Ψ2(j) .

Now we choose the regularization parameter αjLep with index

jLep := max
{
j :

∥∥∥q̂
αi
− q̂

αj

∥∥∥
2
≤ 4Ψ(i) for all i ≤ j

}
. (6.8)

For more theoretical analysis of this parameter choice rule (e.g. an abstract oracle
inequality) we refer to [MP06]. In our setup, the upper bound Ψ cannot be computed
analytically but since we have an estimate of the covariance matrix of the data noise (cf.
Section 4.3), Ψ can be estimated by a Monte Carlo simulation (see next chapter).

6.2. Discretization

Recall that nmic denotes the number of microphones in the array, N the number of focus
points and Cobs ∈ Cnmic×nmic the CSM. Similar to Chapter 5, we will consider vectorized
data.

Subset of sensor pairings
In practice it is often beneficial for the reconstruction results to consider only a subset
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S of all possible sensor pairings (see e.g. [Sij04])

S ⊆ {1, . . . , nmic}2 .

From the vectorized correlation data vec
(
Cobs

)
, all entries are removed that do not

correspond to a sensor pairing from the set S. In many experiments, the diagonal
entries of the CSM is corrupted by strong noise e.g. by the turbulent boundary in closed
wind tunnel test sections. In such scenarios one may set

S =
{

(m, l) ∈ {1, . . . , nmic}2 : m 6= l
}
,

which is known as diagonal removal. Since the CSM is Hermitian, the data can be further
reduced by considering only the lower triangular part with or without the diagonal i.e.

S =
{

(m, l) ∈ {1, . . . , nmic}2 : m ≤ l
}

or S =
{

(m, l) ∈ {1, . . . , nmic}2 : m < l
}
.

Following the setup described above, we denote by ycor ∈ Cncor the corresponding cor-
relation vector, where ncor := |S|. To incorporate the framework from Chapter 5 on
weighted imaging methods, we denote by WS ∈ Cncor×ncor the weighting matrix and by
vecS (Pyn) ∈ Cncor the monopole correlations that are obtained by only considering the
sensor pairings in S. With this notation the Beamforming result at a focus point yn is
given by

IWS (yn) =
ycor∗WS

−1vecS (Pyn)
vecS (Pyn)∗WS−1vecS (Pyn)

.

The vector of Beamforming results is then defined as

ybf ∈ CN ybf
n

= IWS (yn) for n = 1, . . . , N.

Finally we can define the discrete forward operator of the CMF problem

TCMF : RN → Cncor : q 7→ vecS
(
C(q)

)
(6.9)

and the DAMAS problem

TDAMAS : RN → CN : q 7→


(
TCMFq

)∗
WS
−1vecS (Pyn)

vecS (Pyn)∗WS−1vecS (Pyn)

N
n=1

. (6.10)

Note that we will use the scaled version of the normal equation for the discrete DAMAS
problem as it was originally proposed by Brooks & Humphreys [BH06].
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Discrete Tikhonov functionals
The configurations for the discrete CMF and DAMAS problem are summarized in Table
6.2.

CMF DAMAS

Forward operator T = TCMF (6.9) T = TDAMAS (6.10)

Observed data yobs = ycor yobs = ybf

Data space Y = Cncor Y = CN

Data norm ‖·‖Y = ‖·‖WS ‖·‖Y = ‖·‖2

Table 6.2.: Configuration for the implementation of CMF and DAMAS.

That yields the following discretized version of the infinite dimensional Tikhonov func-
tional (see (4.15) and (4.16))

J (q) = 1
2

∥∥∥Tq − yobs
∥∥∥2

Y
+ α1

∥∥∥q∥∥∥
1

+ α2
2

∥∥∥q∥∥∥2

2
+ XN+(q), (6.11)

with

XN+(q) =
{

0 if ∀n : qn ≥ 0
∞ else

.
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Chapter7
Numerical Experiments

This chapter is intended to illustrate the concepts and numerical methods introduced
in Chapter 4,5 and 6. In particular, we focus on aspects that are important from an
experimenter’s point of view. For each considered aspect a small computational example
on a simple synthetic dataset is examined. By the end of the chapter, we will also show
some results of source power reconstruction methods on an experimental dataset.

7.1. Synthetic data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
7.1.1. Influence of additive noise . . . . . . . . . . . . . . . . . . . . . . . 99
7.1.2. Detection of the support . . . . . . . . . . . . . . . . . . . . . . . . 101
7.1.3. Whitening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.1.4. Spatially extended sources . . . . . . . . . . . . . . . . . . . . . . . 104
7.1.5. The Lepskĭı principle . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.2. Experimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.1. Aspects of the evaluation procedure . . . . . . . . . . . . . . . . . 112
7.2.2. Reconstruction results . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1. Synthetic data

All the numerical evaluations within this section are performed on a synthetic dataset
whose framework is described in the following and illustrated in Figure 7.1.

Geometry and Propagation: Free field propagation model in R2 (i.e. Greens’s function
according to Equation (2.20)) and a square source domain Ω = [−0.5 m, 0.5 m]2. The
mach vector is set to (0.2, 0)> and the speed of sound to c = 343 m

s .
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Discretization: The source domain is discretized by a equidistant grid with resolution
∆xy. To prevent inverse crimes, the data is generated on a finer grid with ∆xy = 0.005 m
and the reconstruction is performed on a coarser grid with ∆xy = 0.02 m.

Source power function: Sum of four approximate point sources, where each point
source is supported on a square Rs := {y : |y− ys|∞ ≤ 0.02} with center ys and side
length 0.04, for s = 1, . . . , 4. More precisely we set

q(y) =
4∑
s=1

µs1Rs(y) .

y1 = (−0.28,−0.08)>,y2 = (0.02, 0.34)>,y3 = (0.12, 0.24)>,y4 = (0.32,−0.28)> .
µ1 = 104, µ2 = 7 · 103, µ3 = 4 · 103, µ4 = 7 · 103 .

Array: nmic = 25 Microphones arranged in a half circle with radius 0.75 m centered at
the origin.

Data generation: For the finer grid for the data generation we have N = 4 · 104 grid
points and the true source power vector is denoted by q ∈ RN . To generate a datapoint
we fix a frequency f (and hence k = 2πf

c ) and generate nsamp ∈ N pressure samples by

p(j) = G
(
η(j) �√q

)
+ ε(j) for j = 1, . . . , nsamp .

Here � denotes the pointwise multiplication (Hadamard product) and η(j), ε(j) are each
iid samples from complex, vector-valued random variables η resp. ε with

η ∼ [NC(0, 1)]N

ε ∼
[
NC(0, ρ2

abs)
]nmic

ρabs = ρrel

√√√√ N∑
n=1
|qn| . (7.1)

η ⊥ ε .

The additive noise ε(j) models additional measurement noise that may be caused for
instance by the turbulent boundary layer in a windtunnel experiment. The empirical
CSM estimate is then obtained by

Cobs = 1
nsamp

nsamp∑
j=1

p(j)p(j)∗ . (7.2)

For the experiments we will vary the Parameters f (frequency), ρrel (additive noise level)
and nsamp (number of pressure samples).
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Figure 7.1.: Source and array configuration for the numerical experiment.

7.1.1. Influence of additive noise

Letting the number of pressure samples in (7.2) tend to infinity we observe that the
empirical correlation matrix converges to

C + ρabsI ,

where C = E
(
p̂p̂∗
)
denotes the exact correlation matrix of the microphone array. Hence,

for large numbers of pressure samples and large additive noise levels, one expects that
the diagonal entries of the empirical correlation matrix are much more corrupted by noise
effects that the off-diagonal entries. This effect is well-known e.g. from measurements
in closed wind tunnel test sections. In such cases one may consider only the off-diagonal
entries of the empirical correlation matrix for the source power reconstruction as indi-
cated in Section 6.2. Within this Section we will illustrate how the imaging result may
be affected by strong noise on the diagonal and how diagonal removal may improve the
imaging result.
Three imaging methods are evaluated: Conventional Beamforming and Tikhonov reg-
ularized CMF and DAMAS with penalty terms given in (6.11). For the latter two
methods, FISTA (Algorithm 1) was employed using the following configuration.

• Fixed numer of iterations niter = 2000.

• τ = 0.95 · 1
λmax

, where 1
λmax

denotes the largest eigenvalue of T ∗T (see Table 6.2
for the definition of T ).

• Purely L2 regularization i.e. θ = 0.
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• The reconstruction is evaluated for the regularization parameters
α ∈ {10−15+j : j = 0, · · · , 15}.

Among the reconstructed source power vectors q̂
α
we choose the solution with the lowest

reconstruction error

E2 :=
∥∥∥q̂
α
− q2

∥∥∥ , (7.3)

where q denotes the true source power vector on the reconstruction grid. Note that the
n−th component of q is given by

∫
Ωn q(y)dy.

0 5 10

(a) CBF

0 1 2 3 4

(b) DAMAS: E2 = 1.20

0 1 2 3 4

(c) CMF: E2 = 1.59

Figure 7.2.: Imaging results for f = 2000 Hz, nsamp = 1000, ρrel = 0.01. Full CSM used.

0 5 10 15 20 25

(a) CBF

0 0.2 0.4 0.6 0.8 1 1.2

(b) DAMAS: E2 = 11.11

0 0.2 0.4 0.6 0.8 1

(c) CMF: E2 = 11.36

Figure 7.3.: Imaging results for f = 2000 Hz, nsamp = 5000, ρrel = 0.1. Full CSM used.
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0 2 4 6 8 10 12

(a) CBF

0 1 2 3 4

(b) DAMAS: E2 = 4.77

0 1 2 3

(c) CMF: E2 = 3.70

Figure 7.4.: Imaging results for f = 2000 Hz, nsamp = 5000, ρrel = 0.1. Only off-diagonal parts
of CSM used.

The evaluations show that in case of a low additive noise level (Figure 7.2), the recon-
struction based on the full empirical correlation matrix works very well and yields results
with low errors. However, when the number of averages and the additive noise level is
increased the results suffer from noise effects and the imaging result is strongly blurred.
In that case, the reconstruction based only on the off-diagonal entries of Cobs provides
more accurate results. The L2 error is smaller and the point sources are localized much
better. Furthermore, noise effects are strongly reduced in regions where the true source
is zero.

7.1.2. Detection of the support
Within this section we examine the influence of data noise on the factorization method
from Section 4.2, which has been shown to be closely related to Capon’s method. For our
dataset, the observed covariance matrix Cobs will be always positive definite. Therefore,
we can consider the discrete imaging functional given by (cf. (4.26))

I(y) =
(
g(y0)∗Cobs−1

g(y0)
)−1

.

Figure 7.5 shows that for this simple source power distribution the reconstruction of the
support works almost perfectly on exact data. However, for noisy data with nsamp = 100
averages the accuracy drops significantly and gets much worse with increasing noise level.
For relative additive noise levels of 0.05 and 0.1, the values of the imaging functional
are almost nowhere close to zero but the source locations may still be indicated by a
local peak of the imaging functional. With increasing noise, the factorization method
provides qualitatively similar results as Conventional Beamforming (cf. Figure 7.6).
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0 1 2 3 4

(a) Exact data.

0 2 4 6

(b) nsamp = 100, ρrel = 0.01.

0 2 4 6 8 10 12

(c) nsamp = 100, ρrel = 0.05.

0 5 10 15 20

(d) nsamp = 100, ρrel = 0.1.

Figure 7.5.: Imaging result of the factorization method for f = 2000 Hz.

0 5 10

(a) Exact data.

0 5 10 15 20 25

(b) nsamp = 100, ρrel = 0.1.

Figure 7.6.: Imaging result of Conventional Beamforming for f = 2000 Hz.
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(a) nsamp = 1000, ρrel = 0.01.
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(b) nsamp = 1000, ρrel = 0.05.
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(c) nsamp = 1000, ρrel = 0.1.

Figure 7.7.: Error graphs for standard and whitened CMF/DAMAS with θ = 0.

7.1.3. Whitening
This section examines the weighted imaging methods that were introduced in Chapter 5.
For the (weighted) CMF and DAMAS evaluations we use the same parameters as in Sec-
tion 7.1.1. The computations are carried out for the frequencies f ∈ {250 Hz+j ·250 Hz :
j = 0, . . . , 15}. As weighting (resp. whitening) matrix, the full covariance matrix of the
correlation data Σ is used and estimated by means of Isserlis’ theorem (cf. (4.35)).

Figure 7.7 shows the L2 error of each reconstruction method for three different lev-
els of additive noise. We observe that especially for the case with lower additive noise,
the whitened method has a considerably lower reconstruction error than its standard
weighted counterpart. However, for the scenario with stronger additive noise (ρrel = 0.1),
the results of whitened and standard methods are very similar for frequencies above
2000 Hz. Below 2000 Hz, the whitened CMF method even produces slightly larger er-
rors.

Figure 7.8 illustrates the effects of whitened methods (Beamforming, CMF and DAMAS)
on the imaging result. We observe that the peaks around the source locations are slightly
sharper for the weighted imaging methods and the reconstruction error is also reduced.
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0 5 10 15

(a) Standard Beamforming

0 0.5 1 1.5

(b) Standard DAMAS,
E2 = 8.18

0 1 2 3

(c) Standard CMF,
E2 = 7.11

0 5 10

(d) Whitened Beamforming

0 0.5 1 1.5 2

(e) Whitened DAMAS,
E2 = 6.30

0 1 2 3

(f) Whitened CMF,
E2 = 6.05

Figure 7.8.: Imaging results for f = 1000 Hz, nsamp = 1000, ρrel = 0.05, θ = 0. Full CSM used.

7.1.4. Spatially extended sources

So far we considered only a sparse source power distribution with a few approximate
point sources. For the next experiment we consider a different source power function that
consists of two approximate point sources, an approximate line source and a spatially
extended source (see Figure 7.9). A more complex source configuration is better suited
to compare the capability of different reconstruction methods. We consider Conven-
tional Beamforming, the Factorization method (Capon’s method) as well as regularized
DAMAS and CMF with 10000 FISTA iterations. For the latter two methods we evaluate
the standard weighted methods and the whitened version (cf. Section 7.1.3) with the
optimal regularization parameter selected from the set

α ∈
{
αrel ·

∥∥∥yobs
∥∥∥2

Y
: αrel = 10−15+j , j = 0, . . . , 15

}
.
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Figure 7.9.: Exact source power function on the reconstruction grid.

See Table 6.2 and Section 6.2 for the definition of the discrete data norms ‖·‖Y.

Figure 7.10 shows the reconstruction results of each method. The results clearly show
that neither CBF nor the Factorization method are quantitative reconstruction methods
since they miss the correct order of magnitude significantly. Additionally both methods
only detect the rough shape of the spatially extended source component.

The two variational methods behave similarly here whereby CMF provides slightly better
results than DAMAS. The whitened versions of regularized CMF and DAMAS show each
minor improvements i.e. slightly smaller reconstruction errors. Moreover, the whitened
CMF reconstruction is the only one that recovers the correct magnitudes of the point
sources. We would like to note here that the discrete degree of ill-posedness (i.e. the
condition number of the forward matrix) of DAMAS is much larger than that of CMF.
The discrete forward operators (cf. (6.9) and (6.10)) are related by

TDAMAS = DTCMF∗TCMF ,

with a diagonal matrix D. Neglecting the influence of D, the magnitude of the condition
number for the discrete DAMAS forward operator will be squared i.e.

cond‖·‖2
(
TDAMAS

)
≈ cond‖·‖2

(
TCMF

)2
.

Here cond‖·‖2(A) = σmax(A)
σmin(A) and σmax(A), σmax(A) denote the largest resp. smallest

nonzero singular values of a matrix A. However, in this particular example this does not
seem to have a strong effect on the reconstruction results.
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0 10 20 30 40

(a) Conventional Beamforming.

0 10 20 30

(b) Factorization method.

0 0.5 1 1.5

(c) Standard DAMAS.
E2 = 4.97, αrel = 10−5.

0 0.5 1 1.5 2

(d) Standard CMF.
E2 = 4.50, αrel = 10−5.

0 0.5 1 1.5

(e) Whitened DAMAS.
E2 = 4.73, αrel = 10−6.

0 0.5 1 1.5

(f) Whitened CMF.
E2 = 4.20, αrel = 10−11.

Figure 7.10.: Comparison of different imaging methods for a spatially extended source.
Parameters are f = 2000 Hz, nsamp = 1000 and ρrel = 0.005.
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7.1.5. The Lepskĭı principle
With this section we would like to move towards an application oriented evaluation pro-
cedure. To this end, we examine regularized CMF reconstructions for θ ∈ {0, 0.5, 1}
i.e. purely L2 resp. L1 regularization and an intermediate choice. Since in experimen-
tal datasets, we have usually strong boundary layer noise on the CSM diagonal, the
evaluations are performed by using only the off-diagonal part of the CSM. We consider
regularization parameters

α ∈
{
αrel ·

∥∥∥ycor
∥∥∥2

2
αrel = 10−7+ j−1

3 : j = 1, · · · , 25
}
,

where ycor denotes the vector of off-diagonal correlations of the datapoint (cf. Table 6.2).
Moreover, we do not only consider the parameter with the lowest reconstruction error
but also employ the Lepskĭı principle. As mentioned in the last chapter, this parameter
choice rule requires an upper bound Ψ2 on the mean square propagated data noise error
i.e.

E
(∥∥∥q

αj
− q̂

αj

∥∥∥2

2

)
≤ Ψ2(j) .

Given the data noise covariance matrix Σ this upper bound can be estimated by a Monte
Carlo simulation, which is explained in more detail below.

Data sampling procedure: Each exact data sample within the Monte Carlo simulation
is based on a source power sampling procedure similar to the approach presented in
[HS17]. Similar to the exact source power function examined so far, each sample is given
as the sum of scaled indicator functions of squares Rs := {y : |y− ys|∞ ≤ 0.02}.

q(y) =
nsource∑
s=1

µs
1
|Rs|

1Rs(y) . (7.4)

The parameters nsource,ys, µs are randomly sampled as follows

• nsource ∼ 1+Pois(3), where Pois(3) denotes the Poisson distribution with parameter
3.

• ys is sampled from a discrete uniform distribution on a equidistant grid on Ω with
resolution ∆xy = 0.005 m.

• µs is sampled from a Rayleigh distribution Ray(10) with parameter 10.

Monte Carlo algorithm: Based on the described source sampling we can estimate the
expected mean square error Ψ by a Monte Carlo estimate Ψsim. The procedure for the
Monte Carlo simulation is summarized in Algorithm 2.
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Algorithm 2: Monte Carlo simulation for an estimate on the upper bound of
the root mean square propagated data noise error.
input : nsamp number of samples for CSM estimate, correlation covariance

matrix Σ, navg number of Monte Carlo samples.
output: Ψsim : {1, . . . ,m} → R+ upper bound on root mean square data noise

error.
/* Initialization */

Lchol := chol
(

1
nsamp

Σ
)
; // Cholesky decomposition LcholLchol∗ = 1

nsamp
Σ

Pj := 0 for j = 1, . . . ,m ;
for n = 1, . . . , navg do

sample source power vector q according to (7.4) ;
y := TCMFq ; // Exact correlation data

sample z from [NC(0, 1)]ncor ; // Standard complex normal noise

yobs = y + Lcholz ; // Noisy correlation data

for j = 1, . . . ,m do
compute q

αj
from y ; // reconstruction on exact data

compute q̂
αj

from yobs ; // reconstruction on noisy data

Pj = Pj + 1
navg

∥∥∥q
αj
− q̂

αj

∥∥∥2

2
end

end
Ψ(j) :=

√
Pj for j = 1, . . . ,m.

Model for the (propagated) data noise error: We briefly discuss the effects that con-
tribute to the data noise and some alternative approaches to bound the propagated data
noise error. Note that the the data noise error∥∥∥Cobs − C

∥∥∥2

F

is driven by two causes:

1. the additive measurement noise ε (7.1),

2. the finite number of signal samples nsamp.

In our synthetic model (see Section 7.1), the first one is driven by the matrix

Zε := 1
nsamp

nsamp∑
j=1

ε(j)ε(j)∗
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and independent of the true source power function. The second one is driven by the
matrix

Zq :=

 1
nsamp

nsamp∑
j=1

[
G
(
η(j) �√q

)] [
G
(
η(j) �√q

)]∗− C
and depends on the true source power function. For a correlation value of two distinct
microphones, both quantities are expected to decay with the rateO

(
1

nsamp

)
. The relation

between the two error sources will be illustrated by a small computational example. We
examine the error on the lower triangular part of the cross spectral matrix without the
diagonal i.e. for 25 microphones the number of considered correlations is given by

ncorr = (nmic − 1)nmic
2 = 300 .

We set nsamp = 1000 and consider the two error measures

Emeas :=

√√√√√E

∑
m>l

∣∣Zεml∣∣2
 = ρ2

abs

√
ncorr
nsamp

(7.5)

Esource :=

√√√√√E

∑
m>l

∣∣Zqml∣∣2
 . (7.6)

If we consider normalized sources with√√√√ N∑
n=1
|qn| = 1 , (7.7)

the first error (7.5) is given explicitly, whereas the value of (7.6) depends on q. To
get an estimate of the order of magnitude of Esource, we sample nsource = 100 source
power functions by the procedure described above. Moreover, the sampled vectors are
normalized according to (7.7) and hence ρrel = ρabs. Figure 7.11 shows both error
measures plotted over the additive noise magnitude ρrel. In practice the relation between
the two errors will depend on the specific properties of the measurement setup (e.g. test
section, microphone types or frequency range).

Remark 7.1 (Estimation of the propagated data noise error).
In this chapter we do not impose any assumptions on the dominance of a specific error
component (i.e. Esource or Emeas). Therefore, the approximation procedure for the mean
square propagated data noise error (Algorithm 2) was chosen such that a dependency on
the source power function is allowed. If the data is measured in a regime where Emeas
dominates one may argue that the propagated data noise error is also controlled by an
upper bound that is independent of the source power function q. In such cases we can
drop the source sampling procedure in Algorithm 2. Moreover, for classical Tikhonov reg-
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ularization (i.e. only L2 penalization), the tools of regularization theory with variational
inequalities (see e.g. [WH12, Theorem 3.3]) imply an error splitting of the form

∥∥∥q̂
α
− q

∥∥∥2

2
≤ 2

∥∥∥Cobs − C
∥∥∥2

F

α
+ Φ(α) ,

with an increasing function Φ. Here the Lepskĭı principle can be applied in a similar
manner, where the first summand plays the role of the propagated data noise error. In
that case we get explicitly

E

2

∥∥∥Cobs − C
∥∥∥2

F

α

 = 2
α

tr (Σ)

with the trace of the correlation covariance matrix tr (Σ) =
n2

mic∑
n=1

Σnn.

0.1 0.2 0.3 0.4 0.5
0

0.04

0.08

0.12

ρrel

Emeas

Esource

Figure 7.11.: Illustration of the data error measures (7.5) and (7.6) for the computational example
described in Section 7.1.5 with f = 4000 Hz. The blue stripe around the mean value
of Esource indicates the standard deviation of the set of estimates.

Imaging results: The imaging results for all three penalty functionals are summarized
in Figure 7.12. The first column shows the reconstruction result for the optimal index j∗
with minimum error. The second column shows the reconstruction result for the index
jLep according to the Lepskĭı principle. The last column shows the L2 reconstruction
error and the Monte Carlo estimate Ψsim. We observe, that the reconstruction errors
decrease with increasing θ, for both parameter choices j∗ and jLep respectively. Espe-
cially for the Lepskĭı parameter choice, the results for the sparsity promoting penalties
θ ∈ {0.5, 1} are quite similar whereas the purely L2 regularization produces much larger
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Figure 7.12.: Imaging results for f = 4000 Hz, nsamp = 10000, ρrel = 0.075.
Reconstruction without diagonal entries of the CSM.
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reconstruction errors. This is of course an expected behavior since we considered a very
sparse source power function.

7.2. Experimental data
To conclude this chapter, we apply the procedure from Section 7.1.5 to an experimental
dataset. The measurement considered here was conducted at the cryogenic wind tunnel
in Cologne (DNW-KKK) [Ahl13] and examines a scaled half-model of a Dornier 728
aircraft. The measurement parameters that are varied are: Mach number, temperature
and the angle of attack i.e. the angle between the cross section plane of the wing and
the x1x3−plane. This measurement data is widely used as an experimental benchmark
dataset (see e.g. [ML18, BL20, BHE+17]) and is available at the website of the University
of Cottbus under the label ’DLR1’ [Ben17].

7.2.1. Aspects of the evaluation procedure

In experimental practice, there are several principles that are standardly employed in the
evaluation process. Therefore we will briefly discuss those principles and point out how
this affects the numerical source reconstruction and the representation of the results.

Frequency bands: To reduce noise effects, one often averages source power estimators
over a certain frequency band. I.e. for a frequency band B one considers the sum∑

f∈B
q̂
α
(f) .

A typical choice, that is also considered here is the third octave band (cf. ISO 266:1997
[Int97]) with center frequency f0 defined by

B(f0) =
[
2−1/6f0, 21/6f0

]
.

Sound pressure level: The reconstructed source power estimator q̂
α
has the unit (Pas-

cal [Pa])2. Instead of the squared sound pressure, one usually considers the sound pres-
sure level (SPL)

SPL(x) = 10 · log10

(
x

p2
0

)
,

where p0 denotes a reference pressure and is chosen as p0 = 2 · 10−5 Pa here.

Parameter choice rule: As in the previous section we employ the Lepskĭı principle.
The Monte Carlo routine for the estimation of the root mean squared data noise er-
ror is performed similarly as in the synthetic data case. The sources are sampled
as point sources on a grid with resolution ∆xy = 0.001 m with nsource ∼ 1 + Pois(4)
and µs ∼ Ray(0.2). The quantity Ψsim was only calculated for three frequencies f ∈
{4000 Hz, 6000 Hz, 8000 Hz}. For other frequencies, the values of Ψsim were interpolated
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by the nearest neighbor principle. The regularization parameters were scaled according
to the correlation data i.e.

α = αrel ·
∥∥∥ycor

∥∥∥2

2
, (7.8)

where αrel ∈ {10−7+ j−1
3 : j = 1, · · · , 25}. The FISTA computation was stopped after

niter = 1000 iterations.

7.2.2. Reconstruction results
We consider regularized CMF evaluations for θ ∈ {0, 0.5, 1} with diagonal removal on a
planar source region that is aligned to the cross section of the aircraft wing. The array
consists of 134 microphones arranged in spiral arms (cf. Figure 7.13). The computations
were performed on a grid with resoulution ∆xy = 0.02 m.
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Figure 7.13.: Microphone positions of the experimental dataset.

Figure 7.14 shows third octave band SPL source maps for the center frequencies
4000 Hz, 6000 Hz and 8000 Hz. We observe that the purely L2 regularization (θ = 0)
shows by far the strongest noise effects. Within the dynamic range of 20 dB, the two
sparsity promoting methods reconstruct almost exclusively sources on or close to the
aircraft model. However, in contrast to the purely L2 regularization (θ = 0) they also
tend to suppress weaker source components.
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Figure 7.14.: Imaging results for the experimental benchmark dataset using regularized CMF with
α ∝ αrel (7.8) chosen by the Lepskĭı principle.
Reconstruction without diagonal entries of the CSM. Dynamic range 20 dB, Mach
number: 0.15, angle of attack: 3◦.
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Chapter8
Conclusions and Outlook

This work presented a mathematical formulation and analysis of the inverse source prob-
lem in aeroacoustics. We covered the fields of sound propagation modelling (Chapter 2),
mathematical analysis of the infinite dimensional (Chapter 3) respectively finite dimen-
sional problem (Chapter 4 and 5) and numerical methods (Chapter 6 and 7). In each
of these fields, natural and interesting questions emerge, either aimed at an extension of
the theoretical framework or an adaption to experimental conditions.

Stability estimates and variational source conditions
A natural extension of the results presented in Chapter 2 would be the proof of a condi-
tional stability estimate. For the inverse source problem discussed in this work such an
estimate would be of the form

l (q1, q2) ≤ Cϕ
(
‖C(q1)− C(q2)‖HS(L2(M))

)
for q1, q2 ∈ B ⊂ L2(Ω) .

Here l denotes a loss function, ϕ : [0,∞)→ [0,∞) an index function (i.e. continuous and
strictly increasing with ϕ(0) = 0) and B a subset of the source space, usually containing
functions with a certain smoothness. An even stronger result would be the verification of
a variational source condition (VSC) (cf. eg. [HW15]). The derivation of a VSC would
provide error bounds and convergence rates of the reconstruction error. As a starting
point one may consider the framework presented e.g. in [Wei19] and transfer the ideas
to the inverse source problem studied in this thesis.

Model order reduction
Recall the factorization of the discrete forward operator

GMqG∗ ,

with G ∈ Cnmic×N and q ∈ RN . For standard implementations, one evaluation of the
forward operator has the complexity O

(
n2

micN
)
. Thus for large arrays and fine dis-
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cretizations, it is desirable to reduce the complexity of the discrete problem to ensure
numerical feasibility. The forward operator studied within this work fits exactly into
the class of problems that is examined in the recent work by Dölz, Egger & Schlottbom
[DES20]. Hence, the tools presented therein may also be useful for the aeroacoustic
source power reconstruction problem.
In recent years, the use of MEMS (Micro-Electro-Mechanical Systems) microphones in
aeroacoustic measurement has become increasingly popular (see e.g. [EGK+20]). A
huge advantage of MEMS microphones is their extremely low price compared to classic
measurement microphones. Therefore, large arrays using 10 or even 100 times more
microphones than standard arrays can be realized. Having in mind that the numerical
complexity scales with n2

mic, model order reduction methods will become more and more
important for the evaluation of aeroacoustic measurements.

Sound propagation with numerical methods
The assumptions on the sound propagation model used in this thesis are strongly simpli-
fying compared to realistic measurement conditions. Numerical schemes for the solution
of the (convected) Helmholtz equation such as the Boundary Element Method (BEM) or
the Finite Element Method (FEM) could be employed to get more realistic sound prop-
agation models (i.e. volume potential operators). A straightforward generic procedure
for such an approach is based on the following steps

1. Fix a set of basis functions XN := {φn}Nn=1 ⊂ L2(Ω).

2. For each φn ∈ XN solve a numerical BEM or FEM scheme (that may incorpo-
rate complex geometries and boundary conditions) to compute the pressure field
pφn(xm) at the microphone positions {xm}nmic

m=1 generated by φn.

3. Set up the the volume potential operator by

Gmn = pφn(xm).

Moreover, one may ask if our source power reconstruction problem allows for a formu-
lation that avoids the explicit evaluation of the forward operator (known as all-at-once
formulations [Kal16, Kal18]). For the deterministic inverse source problem, such an ap-
proach has been investigated in [KKG18, GKK18, HK21]. Applying those ideas for the
random inverse source problem with correlation data we obtain formally the following
system of equations: find q and P such that

F (q, P ) = 0 (physical model) , (8.1a)
Cov(P ) = C (observation map) . (8.1b)

Where P denotes the random pressure field and the physical model (8.1a) is given by a
stochastic partial differential equation (SPDE) rather than a partial differential equation
(PDE) as in the deterministic case. Therefore, a numerical realization of this approach
is not straightforward, since we need a computational scheme that efficiently implements
(8.1a).
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AppendixA
Auxiliary Statements

Proof of Proposition 2.3 [Integration by parts formula]
Let U ⊂ Rd (d ≥ 2) be a bounded domain with Lipschitz boundary and u, v ∈ C2(U).
Then the following integral equation is valid∫

U
u(y)(Lkv)(y)dy =

∫
U

(L>k u)(y)v(y)dy

+
∮
∂U
{u(y)∇v(y)− v(y)∇u(y)} · nds(y)

+ |m|2
∮
∂U

{
v(y) ∂u

∂y1
n1 − u(y) ∂v

∂y1
n1

}
ds(y)

+ 2ik |m|
∮
∂U
u(y)v(y)n1ds(y),

where n = (n1, . . . , nd)> ∈ Rd denotes the unit normal vector of ∂U , pointing outwards
of U .

Proof. The proof relies on Green’s second formula (cf. [CK13, p. 17])∫
U

(φ(y)∆ψ(y)−∆φ(y)ψ(y))dy =
∮
∂U

(φ(y)∇ψ(y)− ψ(y)∇φ(y)) · nds(y) (A.1)

and multidimensional integration by parts (cf. [Gri11, Theorem 1.5.3.1 p.52])∫
U
φ(y) ∂

∂yi
ψ(y)dy = −

∫
U

∂

∂yi
φ(y)ψ(y)dy +

∮
∂U
φ(y)ψ(y)nids(y) , (A.2)

where φ, ψ ∈ C2(U). We have∫
U
u(y)(Lkv)(y)dy =

∫
U
u(y)

{
k2 + 2ik |m| ∂

∂y1
− |m|2 ∂2

∂y2
1

+ ∆
}
v(y)dy .
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By the calculation rules above we obtain∫
U
u(y)2ik |m| ∂

∂y1
v(y)dy (A.2)= −

∫
U

2ik |m| ∂
∂y1

u(y)v(y)dy

+
∮
∂U

2ik |m|u(y)v(y)n1ds(y)

|m|2
∫
U
u(y) ∂

∂y2
1
v(y)dy twice (A.2)=

∫
U
|m|2 ∂2

∂y2
1
u(y)v(y)dy

+
∮
∂U
|m|2

{
u(y) ∂

∂y1
v(y)− ∂

∂y1
u(y)v(y)

}
n1ds(y)∫

U
u(y)∆v(y)dy (A.1)=

∫
U

∆u(y)v(y)dy

+
∮
∂U
{u(y)∇v(y)− v(y)∇u(y)} · nds(y) .

Proof of Theorem 2.14 [Representation theorem - free field]
Let U ⊂ Rd be a bounded domain of class C2 and u ∈ C2(Rd\U) ∩ C1(Rd\U) such that
Lku = 0 in Rd\U . Furthermore, assume that v(y) := exp

(
|m|ik
β x1

)
u
(
T−1x

)
satisfies

the Sommerfeld radiation condition (2.15). Then we have the following representation
formula for any x ∈ Rd\U

u(x) =
∮
∂U
{u(y)∇yg(x,y)− g(x,y)∇yu(y)} · nds(y)

+ |m|2
∮
∂U

{
g(x,y) ∂u

∂y1
(y)− u(y) ∂g

∂y1
(x,y)

}
n1ds(y)

− 2 |m| ik
∮
∂U
u(y)g(x,y)n1ds(y) ,

where n = (n1, . . . , nd)> is the outer unit normal vector of ∂U .

Proof. By Proposition 2.2, the function

v(x) = exp
( |m| ik

β
x1

)
u
(
T−1x

)
solves the ordinary Helmholtz equation for wavenumber k

β on Rd\T(U). We denote
by g0 the no-flow Green’s function for wavenumber k

β and employ the representation
formula for the ordinary Helmholtz equation (see [CC06, Theorem 3.1 p. 52] for d = 2
and [CK13, Theorem 2.5 p.19] for d = 3). Moreover we employ the fact that for a vector
field f ∈

[
C1(U)

]d the divergence theorem together with the change of variables ŷ = Ty
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implies∮
T(U)

f(ŷ) · n∂T(U)ds(ŷ) =
∫

T(U)
(div(f)) (ŷ)dŷ = |detT|

∫
U

(div(f)) (Ty)dy

= |detT|
∫
U

(
div(f̃)

)
(y)dy = |detT|

∮
U

f̃(y) · n∂Uds(y) ,

where

f̃(y) := T−1f(Ty) such that
(
div(f̃)

)
(y) = (div(f)) (Ty) .

That yields for any z ∈ Rd\T(U)

v(z) = exp
( |m| ik

β
z1

)
u
(
T−1z

)
=
∮
∂T(U)

{v(y)∇yg0(z,y)− g0(z,y)∇yv(y)} · n∂T(U)ds(y)

= 1
β

∮
∂U

{
v(Ty)T−1 (∇yg0) (z,Ty)− g0(z,Ty)T−1 (∇yv) (Ty)

}
· n∂Uds(y)

= 1
β

∮
∂U

{
exp

( |m| ik
β2 y1

)
u(y)T−1 (∇yg0) (z,Ty)

}
· n∂Uds(y)

− 1
β

∮
∂U

{
g0(z,Ty)exp

( |m| ik
β2 y1

)
T−1

( |m| ik
β

u(y)
(

1
0
0

)
+ T−1∇yu(y)

)}
· n∂Uds(y) .

From now on we omit the index of the normal vector, and n always denotes the outer
normal vector of the corresponding integration domain. Note the following identities
that will be used further on

g(x,y) = 1
β

exp
(
−|m| ik

β2 (x1 − y1)
)
g0 (Tx,Ty) , (A.3a)

T−2∇yg(x,y) = 1
β

exp
(− |m| ik

β2 (x1 − y1)
)

T−1 (∇yg0) (Tx,Ty) (A.3b)

+ 1
β

|m| ik
β2 exp

(− |m| ik
β2 (x1 − y1)

)
· g0(Tx,Ty)

(
β2

0
0

)
,

T−2 = I−
(
|m|2 0 0

0 0 0
0 0 0

)
. (A.3c)
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Setting z = Tx with x ∈ Rd\U and multiplying by exp
(
−|m|ik
β2 x1

)
on both sides yields

u(x) = 1
β

∮
∂U

{
exp

(− |m| ik
β2 (x1 − y1)

)
u(y)T−1 (∇yg0) (Tx,Ty)

}
· nds(y)

− 1
β

∮
∂U

{
g0(Tx,Ty)exp

(− |m| ik
β2 (x1 − y1)

)

·T−1
( |m| ik

β
u(y)

(
1
0
0

)
+ T−1∇yu(y)

)}
· nds(y)

(A.3b)+(A.3a)=
∮
∂U
u(y)

{
T−2∇yg(x,y)− 1

β

|m| ik
β2 exp

(− |m| ik
β2 (x1 − y1)

)

· g0(Tx,Ty)
(
β2

0
0

)}
· nds(y)

−
∮
∂U
g(x,y)

{
T−1

( |m| ik
β

u(y)
(

1
0
0

)
+ T−1∇yu(y)

)}
· nds(y)

(A.3a)=
∮
∂U
u(y)

{
T−2∇yg(x,y)− |m| ik

β2 g(x,y)
(
β2

0
0

)}
· nds(y)

−
∮
∂U
g(x,y)

{
T−1

( |m| ik
β

u(y)
(

1
0
0

)
+ T−1∇yu(y)

)}
· nds(y)

(A.3c)=
∮
∂U
{u(y)∇yg(x,y)} · nds(y)− |m|2

∮
∂U
u(y) ∂g

∂y1
(x,y)n1ds(y)

− |m| ik
∮
∂U
u(y)g(x,y)n1ds(y)− |m| ik

∮
∂U
u(y)g(x,y)n1ds(y)

−
∮
∂U
{g(x,y)∇yu(y)} · nds(y) + |m|2

∮
∂U
g(x,y) ∂u

∂y1
(y)n1ds(y)

=
∮
∂U
{u(y)∇yg(x,y)− g(x,y)∇yu(y)} · nds(y)

+ |m|2
∮
∂U

{
g(x,y) ∂u

∂y1
(y)− u(y) ∂g

∂y1
(x,y)

}
n1ds(y)

− 2 |m| ik
∮
∂U
u(y)g(x,y)n1ds(y) .

Proof of Theorem 2.6 [Spectral Theorem for the Neumann-Laplace Operator]
Let A ⊂ Rd−1 satisfy Assumption 2.5. Then there exists an orthonormal system of
functions {ψn}∞n=0 ⊂ L2(A) and real numbers {λn}∞n=1 ⊂ [0,∞) such that

(i) −∆ψn = λnψn ,

(ii) L2(A) = span {ψn}∞n=0 ,

(iii) {ψn}∞n=0 ⊂ C∞(A) ∩W 2,2(A),

(iv) ∇ψn · n = 0 on ∂A for all n ∈ N0.
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Proof. Denote by W 1,2(A) the Sobolev space (based on weak derivatives) of order k = 1
with exponent p = 2 (see e.g. [Alt16]). Let V :=

{
v ∈W 1,2(A)|

∫
A v(x)dx = 0

}
denote

the subspace of functions with zero mean. Note that V is a closed subspace of the Hilbert
spaceW 1,2(A) and thus itself a Hilbert space. Now fix v ∈ L2(A) and define the bilinear
form

a(·, ·) : V × V → R a(u, φ) =
∫
A
∇u∇φdx

and the linear form

bv(·) : V → R bv(φ) =
∫
A
vφdx .

By the generalized Poincaré Inequality (see [Alt16, 8.16 p.242])

‖u‖L2(A) ≤ C ‖∇u‖L2(A) for u ∈ V,

a(·, ·) is strictly coercive on
(
V, ‖·‖W 1,2(A)

)
. Hence by the Lax-Milgram theorem for

coervice bilinear forms (see e.g. [Eva10, Theorem 1, p.315]), the variational problem

find uv ∈ V s.t a(uv, φ) = bv(φ) for all φ ∈ V,

has a unique solution uv ∈ V . Due to Rellich’s theorem (see [Alt16, A8.4 p.261]), the
embedding W 1,2(A) ↪→ L2(A) is compact. Hence the operator

−∆−1 : L2(A)→ L2(A) v 7→ −∆−1v := uv (A.4)

is bounded, linear and compact. It is further self-adjoint and positive definite since

〈−∆−1v, w〉L2(A) = bw(−∆−1v) = a(−∆−1w,−∆−1v) = a(−∆−1v,−∆−1w)
= bv(−∆−1w) = 〈v,−∆−1w〉L2(A) w, v ∈ L2(A) .

Thus we can apply the spectral theorem for compact self-adjoint operators (see e.g.
[Alt16, 12.12 + 12.13 p.395 ff.]). There exist a set of mutually orthogonal eigenfunctions
{ψn}∞n=1 with eigenvalues {µn}∞n=1 ⊂

(
0,
∥∥−∆−1∥∥

L(L2(A))

]
such that

• −∆−1ψn = µnψn for all n ∈ N,

• µn → 0 as n→∞,

• L2(A) = span {ψn}∞n=1 ⊕ ker
(
−∆−1).

The kernel ker
(
−∆−1) is given by span{ψ0} with ψ0 :≡ 1√

|A|
. Since ran

(
−∆−1) ⊂ V

we obtain further that

•
∫
A ψn(x)dx = 0 for all n ≥ 1.
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In addition, the eigenfunctions solve the elliptic variational problem∫
A
∇ψn · ∇φ dx− λn

∫
A
ψnφ dx = 0 for all φ ∈W 1,2(A) , (A.5)

with

λn =
{ 1
µn

for n ≥ 1
0 for n = 0

.

Since the right hand side and all coefficients of (A.5) are smooth, elliptic interior regu-
larity results (see [GT83, Section 8.3 p.183 ff.]) imply that

• {ψn}∞n=1 ⊂ C∞(A) .

The property ψn ∈ W 2,2(A) is obtained by regularity results up to the boundary (see
[Alt16, A12.3 p.415] in case of a smooth boundary and [Gri11, Proof of Theorem 3.2.1.3]
in case of a convex domain). Finally we conclude from (A.5) and integration by parts
that for all φ ∈ C∞c (A) ∫

A
−∆ψnφ dx = λn

∫
A
ψnφ dx .

Thus

−∆ψn = λnψn

in the classical sense by the fundamental lemma of calculus of variations [Alt16, 4.22,
p.122].

Proposition A.1 (Eigenvalue Asymptotics - Weyl’s law).
The eigenvalues from Theorem 2.6 have the following asymptotics

lim
n→∞

n

λn
= |A|4π for m = 2 (A.6)

lim
n→∞

n2

λn
= |A|

2

π2 for m = 1 (A.7)

Proof. For (A.6) see [Wey12] (original paper from Weyl) or [Str07, Section 11.6 p. 322
ff.] (English version of the proof). For (A.7) the only open, bounded and connected
domains are intervals. In that case the eigefunctions are given by

cos
(
nπ

|A|
x

)
.

Hence, the eigenvalues are

λn = n2
(
π

|A|

)2
.
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Proof of Lemma 2.16 [Series representation for test functions]
Assume the eigenfunctions ψn from Theorem 2.6 satisfy Assumption 2.8. Let further
φ ∈ V Neu =

{
φ ∈ C∞c (D) : ∂φ

∂n = 0 on ∂A
}
and define the coefficients

an(x1) =
∫
A
φ(x1, x⊥)ψn(x⊥)dx⊥ for n ∈ N0 .

Then there exists a constant C independent of n such that the derivatives a(l)
n up to order

2 satisfy

max
l=0,1,2

sup
x1∈R

∣∣∣a(l)
n (x1)

∣∣∣ ≤ C 1
λ

3/2
n

for n ≥ 1 .

Moreover, we have

(i) for every x ∈ D:
φ(x) =

∑
n∈N0

an(x1)ψn(x⊥) ,

(ii) for every x1 ∈ R:[
L>k φ

]
(x1, ·) =

∑
n∈N0

[
(k2 − λn)an(x1)− 2 |m| ika′n(x1) + β2a′′n(x1)

]
ψn(·) in L2(A) .

Proof. We start with the bound on the coefficients an and their derivatives up to order
2. Using the variational formulation from the proof of Theorem 2.6 (Equation (A.5))
and integration by parts we obtain for n ≥ 1

∣∣∣a(l)
n (x1)

∣∣∣ =
∣∣∣∣∣
∫
A

∂(l)

∂x
(l)
1
φ(x1, x⊥)ψn(x⊥)dx⊥

∣∣∣∣∣ = 1
λn

∣∣∣∣∣
∫
A
∇⊥

(
∂(l)

∂x
(l)
1
φ(x1, x⊥)

)
· ∇⊥ψn(x⊥)dx⊥

∣∣∣∣∣
= 1
λn

∣∣∣∣∣−
∫
A

∆⊥
∂(l)

∂x
(l)
1
φ(x1, x⊥)ψn(x⊥)dx⊥

+
∮
∂A
∇⊥

(
∂(l)

∂x
(l)
1
φ(x1, x⊥)

)
· nψn(x⊥)ds(x⊥)

∣∣∣∣∣
= 1
λn

∣∣∣∣∣
∫
A

∆⊥
∂(l)

∂x
(l)
1
φ(x1, x⊥)ψn(x⊥)dx⊥

∣∣∣∣∣
= 1
λ2
n

∣∣∣∣∣
∫
A
∇⊥

(
∆⊥

∂(l)

∂x
(l)
1
φ(x1, x⊥)

)
· ∇⊥ψn(x⊥)dx⊥

∣∣∣∣∣ .
Here the boundary integral vanishes since we can interchange the order of differentiation
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of φ i.e.

∇⊥

(
∂(l)

∂x
(l)
1
φ(x1, x⊥)

)
· n = ∂(l)

∂x
(l)
1

[
∂φ

∂n
(x1, x⊥)

]

and the inner term vanishes for all x1 ∈ R. Let d ∈ {2, 3} denote the spatial dimension,
then we obtain from the calculations above

∣∣∣a(l)
n (x1)

∣∣∣ ≤ 1
λ2
n

‖φ‖C5(D)

∫
A

d∑
j=2

∣∣∣∣∣∂ψn∂xj
(x⊥)

∣∣∣∣∣ dx⊥
≤
√

(d− 1) |A|
λ2
n

‖φ‖C5(D)

√√√√√∫
A

d∑
j=2

∣∣∣∣∣∂ψn∂xj
(x⊥)

∣∣∣∣∣
2

dx⊥

=
√

(d− 1) |A|
λ2
n

‖φ‖C5(D)
√
λn =

√
(d− 1) |A| ‖φ‖C5(D)

1
λ

3/2
n

. (A.8)

Here we have used the Cauchy-Schwarz inequality twice in the second line and the
variational formulation (testing with ψn in Equation (A.5)) in the third line. This yields
the claim since the upper bound in (A.8) is independent of x1 and l. Now fix x = (x1, x⊥),
then by standard Fourier theory

φ(x1, ·) =
∑
n∈N0

an(x1)ψn(·) in L2(A) .

By the previous statement and the uniform boundedness of the eigenfunctions ψn (As-
sumption 2.8), the right hand side converges uniformly on A i.e. the limit is continuous.
As both terms are continuous and they coincide in the L2 sense, they have to be identical
for every x⊥ ∈ A.
For the last statement we fix x1 ∈ R and compute the Fourier coefficients of

[
L>k φ

]
(x1, ·)

with respect to the orthonormal basis ψn on L2(A). To prove the claim wee need to
show that these Fourier coefficients are given by the following identity for all n ∈ N0∫
A

[
L>k φ

]
(x1, x⊥)ψn(x⊥)dx⊥ = (k2 − λn)an(x1)− 2 |m| ika′n(x1) + β2a′′n(x1) . (A.9)

Firstly note that we can split the differential operator L>k by

L>k = D>k + ∆⊥

with

D>k := k2 − 2 |m| ik ∂

∂x1
+ β2 ∂

2

∂x2
1
.

Using Green’s second formula (cf. [CK13, p. 17]) and the fact that the normal derivative
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of φ(x1, ·) and ψn vanishes on ∂A we obtain∫
A

[
L>k φ

]
(x1, x⊥)ψn(x⊥)dx⊥ = D>k

∫
A
φ(x1, x⊥)ψn(x⊥)dx⊥ +

∫
A
φ(x1, x⊥)∆⊥ψn(x⊥)dx⊥

= D>k

∫
A
φ(x1, x⊥)ψn(x⊥)dx⊥ − λn

∫
A
φ(x1, x⊥)ψn(x⊥)dx⊥

= (k2 − λn)an(x1)− 2 |m| ika′n(x1) + β2a′′n(x1) .

This proves (A.9) and therefore yields the claim.

Proof of Proposition 4.4 [Convergence of discrete source model]
Let φn = 1Ωn |Ωn|−

1/2 and q ∈ C0(Ω) s.t.

Cov (πn, πn′) =

0 if n 6= n′

1
|Ωn|

∫
Ωn q(y)dy if n = n′

and

Q =
N∑
n=1

πnφn .

Then for all xm,xl ∈M we have

Cov
(∫

Ω
g(xm,y)Q(y)dy,

∫
Ω
g(xl,y)Q(y)dy

)
→ cq(xm,xl) as N →∞ . (A.10)

Proof. Evaluation of the left hand side of (A.10) yields

Cov
(∫

Ω
g(xm,y)Q(y)dy,

∫
Ω
g(xl,y)Q(y)dy

)

=
N∑
n=1

{
|Ωn|−1

[∫
Ωn
g(xm,y)dy

] [∫
Ωn
g(xl,y)dy

]
|Ωn|−1

∫
Ωn
q(y)dy

}
.

For the real part we obtain

Re
(

Cov
(∫

Ω
g(xm,y)Q(y)dy,

∫
Ω
g(xl,y)Q(y)dy

))

=
N∑
n=1

{
|Ωn|−1

[∫
Ωn

Re (g(xm,y)) dy
] [∫

Ωn
Re (g(xl,y)) dy

]
|Ωn|−1

∫
Ωn
q(y)dy

+ |Ωn|−1
[∫

Ωn
Im (g(xm,y)) dy

] [∫
Ωn

Im (g(xl,y)) dy
]
|Ωn|−1

∫
Ωn
q(y)dy

}
.
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Now we can apply the mean value theorem of integral calculus for each of the integrals
over Ωn i.e. there exist y(1)

n ,y(2)
n ,y(3)

n ,y(4)
n ,y(5)

n ∈ Ωn such that

N∑
n=1
{. . . } =

N∑
n=1
|Ωn|Re

(
g
(
xm,y(1)

n

))
Re
(
g
(
xl,y(2)

n

))
q
(
y(3)
n

)

+
N∑
n=1
|Ωn| Im

(
g
(
xm,y(4)

n

))
Im
(
g
(
xl,y(5)

n

))
q
(
y(3)
n

)
.

Recall the definition of the correlation kernel

Re (cq(xm,xl)) = Re
(∫

Ω
g (xm,y) g (xl,y)q (y) dy

)
=
∫

Ω
Re (g (xm,y))Re (g (xl,y)) q(y) dy +

∫
Ω
Im (g (xm,y)) Im (g (xl,y)) q(y) dy .

The functions g(xm, ·), g(xl, ·), q are uniformly continuous on Ω since they are continuous
and Ω is compact. Hence, for any ε > 0 there exists an Nε ∈ N such that for all N ≥ Nε,
every n = 1, . . . , N and y ∈ Ω

fn(y) :=
∣∣∣∣Re (g (xm,y(1)

n

))
Re
(
g
(
xl,y(2)

n

))
q
(
y(3)
n

)
+ Im

(
g
(
xm,y(4)

n

))
Im
(
g
(
xl,y(5)

n

))
q
(
y(3)
n

)
− Re (g (xm,y))Re (g (xl,y)) q(y)− Im (g (xm,y)) Im (g (xl,y)) q(y)

∣∣∣∣ ≤ ε .
Finally, by the last equation, we can bound the discretization error∣∣∣∣Re(Cov

(∫
Ω
g(xm,y)Q(y)dy,

∫
Ω
g(xl,y)Q(y)dy

))
− Re (cq(xm,xl))

∣∣∣∣
≤

N∑
n=1

∫
Ωn
fn(y) dy ≤ |Ω| ε .

Since ε can be chosen arbitrarily small this yields

Re
(

Cov
(∫

Ω
g(xm,y)Q(y)dy,

∫
Ω
g(xl,y)Q(y)dy

))
→ Re (cq(xm,xl)) as N →∞ .

The proof for the imaginary part is completely analogous and will be omitted here.
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AppendixB
Fundamentals from Calculus and Convex
Analysis

The theorem of Fubini-Tonelli is a version of Fubini’s theorem that does not require
the assumption of integrability with respect to the product measure. Since it is used
several times within this thesis it is included in this appendix. For further reading on
the fundamentals of measure theory, we refer to one of the numerous monographs on
this subject (such as [Els11]).

Theorem B.1 (Fubini-Tonelli cf. [Els11][2.1 c) p.176]).
Let (X,µ), (Y, ν) be measure spaces with σ−finite measures and f a function that is
measurable with respect to the product measure µ⊗ ν. Assume that one of the following
iterated integrals exists ∫

X

(∫
Y
|f(x, y)| dν(y)

)
dµ(x)∫

Y

(∫
X
|f(x, y)| dµ(x)

)
dν(y) .

Then we have∫
X×Y

fdµ⊗ ν =
∫
X

(∫
Y
f(x, y)dν(y)

)
dµ(x) =

∫
Y

(∫
X
f(x, y)dµ(x)

)
dν(y) .

The class of Hilbert-Schmidt operators between two Hilbert spaces H1,H2 is a subset
of all linear compact operators K : H1 → H2 and can be defined by means of the singular
values of K. However, for this work a definition on separable Hilbert spaces is sufficient.

Definition & Proposition B.2 (Hilbert-Schmidt operator).
Let H1,H2 be separable Hilbert spaces i.e. there exist complete orthonormal bases {en}n∈N ⊂
H1 and {fn}n∈N ⊂ H2. Let T : H1 → H2 be a linear bounded operator, then T is called
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Hilbert-Schmidt operator if it satisfies∑
n∈N
‖Ten‖2H2

<∞ .

In particular T is compact. The Hilbert-Schmidt norm of T is defined as

‖T‖HS :=

∑
n∈N
‖Ten‖2H2

1/2

,

where the value of the series is independent of the choice of the orthonormal basis. The
space of Hilbert-Schmidt operators T : H1 → H2 will be denoted by HS (H1,H2) (or
HS (H1) in case of H1 = H2 ). Moreover, HS (H1,H2) is a Hilbert space with scalar
product

〈S, T 〉HS :=
∑
n∈N
〈Sen, T en〉H2

and the definition is again independent of the choice of the orthonormal basis.

Proof. The definition and proofs of this statement can be found in various textbooks on
operator theory. We refer to [Sun16], where the statements can be found in Definition
3.3.2, Lemma 3.3.1. (independence of the basis), Proposition 3.3.3. c) (compactness)
and Remark 3.3.4 (Hilbert space with scalar product).

For L2 spaces there exists a characterization of Hilbert-Schmidt operators by integral
operators with square integrable kernel.

Proposition B.3 (Hilbert-Schmidt integral operator cf. [Sun16, Proposition 3.3.5]).
Let (X,BX , µ) and (Y,BY , ν) be σ-finite measure spaces and let H1 = L2 (X,BX , µ),
H2 = L2 (Y,BY , ν). For a bounded linear operator T : H1 → H2 the following statements
are equivalent

(i) T ∈ HS (H1,H2) .

(ii) There exists a kernel k ∈ L2 (X × Y,BX ⊗ BY , µ⊗ ν) such that for all f ∈ H1

(Tf)(x) =
∫
Y
k(x, y)f(y)dν(y) almost everywhere.

Moreover, if one of these statements is satisfied we have

‖T‖HS = ‖k‖L2(µ×ν) .

For the definition of real analytic functions we employ the multi-index notation. Let
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α ∈ Nd0 and z ∈ Rd, then the power with respect to a multi-index is defined as

zα :=
d∏
j=1

z
αj
j .

Definition B.4 (Real analytic function cf. [KP02, Definition 2.2.1, p.29]).
Let U ⊂ Rd be an open set. A function f : U → C is called real analytic if for each y ∈ U
there exists a neighborhood Oy of y such that there exists a power series expansion with
coefficients cα ∈ C that satisfies

f(x) =
∑
α∈Nd0

cα(x− y)α for x ∈ Oy .

Definition B.5 (Convex function).
Let X be a vector space. A function F : X → [−∞,∞] is called convex if for any
λ ∈ (0, 1) and x1, x2 ∈ X, the inequality

F(λx1 + (1− λ)x2) ≤ λF(x1) + (1− λ)F(x2)

holds true. F is called strictly convex if the inequality is strict for x1 6= x2.

For this work it is sufficient to use the the definition of sequential lower semicontinuity.
For a definition on lower semcontinuity on topological vector spaces using nets we refer
to [BC17, Chapter 1].

Definition B.6 (Sequentially lower semicontinuous function).
Let (X, τ) be a Hausdorff space. A function F : X → [−∞,∞] is called sequentially
lower semicontinuous at x ∈ X if for every sequence xn

τ→ x,

F(x) ≤ lim inf
n→∞

F(xn) .

F is called sequentially lower semicontinuous on X if F is sequentially lower semicon-
tinuous for all x ∈ X.
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