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Summary 
When a carbon (C) source is added to a soil volume and causes microorganisms to thrive, a 

microbial hotspot is formed — a microsite with much higher process rates than the 

surrounding bulk soil. The formation, size, and lifetime of microbial hotspots in the vicinity 

of growing roots (rhizosphere) are governed by biotic and abiotic factors. Root exudation 

stimulates the production of extracellular enzymes and thus soil organic matter (SOM) 

decomposition. Nonetheless, we lack a mechanistic understanding of the enzymatic response 

of rhizosphere microorganisms to individual component of the root exudates. The extent and 

spatial distribution of rhizosphere depend on soil matrix (e.g. soil nutrient availability), plant 

properties (e.g. root morphology) and climate changes (e.g. warming and drought). The 

ongoing global change and the manipulation of exudate composition or root morphology 

often occur simutaneously, but the consequences of their interactive effects on microbial 

processes are poorly understood. For example, how the presence of root hairs regulates 

exudate input and microbial strategies in response to climate changes remains unknown. 

Therefore, this thesis coupled novel methods including high-throughout sequencing and in 

situ imaging approaches to demonstrate the effects of biotic or abiotic factors and their 

interactions on microbial localization, community structure, activity, strategy and efficiency.  

The objectives of this thesis are to investigate: 1) which component of root exudates plays 

the key role in stimulating microbial enzyme activities in the absence of living roots and how 

the presence of root hairs or the presence or absence of inhibitory substances within root 

exudates influences the formation of rhizosphere gradients; 2) the effect of soil nutrient 

availability on kinetic parameters in hotspots and bulk soil; 3) whether the response of 

enzyme activities to drought is driven by the selection of drought-resistant microorganisms; 

4) how interactions of root hairs and warming or interactions of root hairs and drought affect 

the spatial distribution of enzyme activities and unravel strategies for plants and 

microorganisms to adapt to climate changes. 

Using artificial roots in combination with specific exudate components, we identified that 

the spatial distribution of microbial-derived enzyme activities is enzyme- and component-

specific: 1) alanine had the overall strongest effect in this nitrogen (N)-limited soil; 2) the 

activities of phosphorus (P)-, N- and sulfur (S)-related enzymes showed clear gradients in 

the rhizosphere while the pattern for enzymes majorly involved in C-cycling was uniform 

and independent of the exudate composition. We also found benzoxazinoids presented in 

exudates suppressed β-glucosidase activity by 30% (mutant with reduced benzoxazinoid 
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content in exudates (bx1) vs. its corresponding wild type maize), but the presence of root 

hairs increased exudate release and expanded the spatial extent of β-glucosidase activity 

around the root axis by 35% (mutant with defective root hair prolongation (rth3) vs. its 

corresponding wild type maize).  

Apart from biotic factors, abiotic factors have fundamental effects on microbial processes 

and microbial community structure. Effects of soil C and nutrients status on functional 

properties of microorganisms in soil hotspots were investigated by coupling zymography and 

measurements of kinetics of substrate-induced growth response and enzyme activities in two 

soils with contrasting soil nutrient availability. The result showed that: 1) differences in 

microbial growth strategy between rhizosphere hotspots and bulk soil were dependent on soil 

nutrient availability; 2) differences in enzyme activity and affinity were detected between 

hotspots and bulk soil in both soils but were enzyme-specific: the difference was significant 

for β-glucosidase, whereas it was insignificant for leucine aminopeptidase. 

Drought (another abiotic factor) only induced minor changes in bacterial community 

structure in rhizosphere hotspots, instead, it increased relative abundance of genera belonging 

to Actinobacteria capable of leucine aminopeptidase and chitinase production and thus 

induced a 5.0 - 17% increase in the number of gene copies encoded by Actinobacteria related 

to these two enzymes. This was reflected in a 35 - 70% increase in the activities of leucine 

aminopeptidase and chitinase under drought. This demonstrates that bacterial communities 

react to drought stress by increasing extracellular enzyme production and they achieve this 

by encoding more enzyme - genes. 

Root hairs proliferation and warming strongly influence exudate release, enzyme activities 

and microbial substrate utilization. To reveal their interactions, mutant with defective root 

hair prolongation (rth3) and its corresponding wild type maize were grown for 3 weeks at 20 

and 30 ℃, respectively. Root hairs regulated enzyme expression, microbial growth strategies 

and thus substrate use efficiency, hence mediating the SOM stocks in response to warming. 

To clarify the relative importance of biotic and abiotic factors, we conducted an experiment 

considering the interactive effects of root hairs and drought. The result showed that both root 

hairs and soil moisture influenced spatial distribution of rhizosphere biochemical properties 

and processes, but soil water availability was more important than root exudates when the 

soil is limited by both water and C sources.  

In summary, both biotic and abiotic factors could influence microbial processes in hotspots. 

The role of root hairs was diminished when interacting with drought even though it was of 
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great importance in regulating enzyme systems and microbial growth to adapt to climate 

warming. Therefore, we suggest that predicting and modeling soil C and nutrient dynamics 

should not only incorporate the interactive effects of biotic and abiotic factors, but also 

consider which factor involved in the interaction. Overall, this thesis strongly contributes to 

the understanding of mechanisms involved in the hotspot’s processes. This is particularly 

crucial for agro-ecosystems where many essential ecosystem services relevant to human 

well-being are linked to micro-scale processes occurring in hotspots. 
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Zusammenfassung  
Wenn einem Bodenvolumen eine Kohlenstoffquelle (C) zugesetzt wird und 

Mikroorganismen gedeihen, entsteht ein mikrobieller Hotspot - eine Microsite mit viel 

höheren Prozessraten als der umgebende Schüttboden. Die Bildung, Größe und Lebensdauer 

von mikrobiellen Hotspots in der Nähe wachsender Wurzeln (Rhizosphäre) wird von 

biotischen und abiotischen Faktoren bestimmt. Wurzelexsudation stimuliert die Produktion 

von extrazellulären Enzymen und damit die Zersetzung organischer Bodensubstanz (SOM). 

Dennoch fehlt uns ein mechanistisches Verständnis der enzymatischen Reaktion von 

Rhizosphären-Mikroorganismen auf einzelne Verbindungen von Wurzelexsudaten. Das 

Ausmaß und die räumliche Verteilung der Rhizosphäre hängen von der Bodenmatrix (z. B. 

Verfügbarkeit von Bodennährstoffen), den Pflanzeneigenschaften (z. B. Wurzelmorphologie) 

und den Klimaveränderungen (z. B. Erwärmung und Trockenheit) ab. Der anhaltende globale 

Wandel und die Manipulation der Exsudationszusammensetzung oder der 

Wurzelmorphologie treten häufig gleichzeitig auf, aber die Konsequenzen ihrer interaktiven 

Auswirkungen auf mikrobielle Prozesse sind kaum bekannt. Zum Beispiel ist unbekannt, wie 

das Vorhandensein von Wurzelhaaren den Exsudationseingang und mikrobielle Strategien 

als Reaktion auf den Klimawandel reguliert. In dieser Arbeit wurden daher neuartige 

Methoden gekoppelt, einschließlich hochgradiger Sequenzierungs- und In-situ-

Bildgebungsansätze, um die Auswirkungen biotischer oder abiotischer Faktoren und ihre 

Wechselwirkungen auf die mikrobielle Lokalisierung, die Gemeinschaftsstruktur, die 

Aktivität, die Strategie und die Effizienz zu demonstrieren. 

Ziel dieser Arbeit ist es zu untersuchen: 1) welche Komponente von Wurzelexsudaten die 

Schlüsselrolle bei der Stimulierung mikrobieller Enzymaktivitäten in Abwesenheit lebender 

Wurzeln spielt und wie das Vorhandensein von Wurzelhaaren oder das Vorhandensein oder 

Fehlen von hemmenden Substanzen in Wurzelexsudaten die Bildung von 

Rhizosphärengradienten beeinflusst; 2) die Auswirkung der Nährstoffverfügbarkeit des 

Bodens auf die kinetischen Parameter in Hotspots und Schüttböden; 3) ob die Reaktion der 

Enzymaktivitäten auf Trockenheit von der Auswahl dürreresistenter Mikroorganismen 

abhängt; 4) wie Wechselwirkungen von Wurzelhaaren und Erwärmung oder 

Wechselwirkungen von Wurzelhaaren und Trockenheit die räumliche Verteilung von 

Enzymaktivitäten beeinflussen und Strategien für Pflanzen und Mikroorganismen zur 

Anpassung an den Klimawandel aufdecken. 
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Unter Verwendung künstlicher Wurzeln in Kombination mit einer spezifischen 

Exsudatverbindung stellten wir fest, dass die räumliche Verteilung der von Mikroben 

abgeleiteten Enzymaktivitäten enzym- und komponentenspezifisch ist: 1) Alanin hatte die 

insgesamt stärkste Wirkung in diesem stickstoff (N) -begrenzten Boden; 2) die Aktivitäten 

von Phosphor (P)-, N- und Schwefel (S)-verwandten Enzymen zeigten klare Gradienten in 

der Rhizosphäre, während das Muster für Enzyme, die hauptsächlich am C-Zyklus beteiligt 

sind, einheitlich und unabhängig von der Exsudatzusammensetzung war. Wir fanden auch, 

dass in Exsudaten präsentierte Benzoxazinoide die β-Glucosidase-Aktivität um 30% 

unterdrückten (Mutante mit reduziertem Benzoxazinoidgehalt in Exsudaten (bx1) gegenüber 

dem entsprechenden Wildtyp-Mais), aber das Vorhandensein von Wurzelhaaren erhöhte die 

Exsudatfreisetzung und erweiterte das räumliche Ausmaß von β -Glucosidase-Aktivität um 

die Wurzelachse um 35% (Mutante mit defekter Wurzelhaarverlängerung (rth3) gegenüber 

dem entsprechenden Wildtyp-Mais). 

Neben biotischen Faktoren haben abiotische Faktoren grundlegende Auswirkungen auf 

mikrobielle Prozesse und die Struktur der mikrobiellen Gemeinschaft. Die Auswirkungen 

von Boden C und Nährstoffstatus auf die funktionellen Eigenschaften von Mikroorganismen 

in Boden-Hotspots wurden durch Kopplungszymographie und Messungen der Kinetik der 

substratinduzierten Wachstumsreaktion und der Enzymaktivitäten in zwei Böden mit 

gegensätzlicher Bodennährstoffverfügbarkeit untersucht. Das Ergebnis zeigte, dass: 1) 

Unterschiede in der Strategie des mikrobiellen Wachstums zwischen Rhizosphären-Hotspots 

und Bulk-Boden von der Nährstoffverfügbarkeit des Bodens abhängen; 2) Unterschiede in 

der Enzymaktivität und -affinität wurden zwischen Hotspots und Bulk-Boden sowohl in 

fruchtbaren als auch in armen Böden festgestellt, waren jedoch enzymspezifisch: Der 

Unterschied war für β-Glucosidase signifikant, während er für Leucin-Aminopeptidase 

unbedeutend war. 

Dürre (ein weiterer abiotischer Faktor) führte nur zu geringfügigen Veränderungen der 

Struktur der Bakteriengemeinschaft in Rhizosphären-Hotspots. Stattdessen erhöhte sie die 

relative Häufigkeit von Gattungen von Actinobakterien, die zur Produktion von 

Leucinaminopeptidase und Chitinase fähig sind, und damit die Anzahl der Genkopien um 

5,0 bis 17% kodiert von Actinobakterien, die mit diesen beiden Enzymen verwandt sind. 

Dies spiegelte sich in einem Anstieg der Aktivitäten von Leucinaminopeptidase und 

Chitinase unter Dürre um 35 bis 70% wider. Dies zeigt, dass Bakteriengemeinschaften auf 

Trockenstress reagieren, indem sie die extrazelluläre Enzymproduktion erhöhen und dies 

erreichen, indem sie mehr Enzym-Gene kodieren. 
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Die Proliferation und Erwärmung der Wurzelhaare beeinflusst die Freisetzung von Exsudat, 

die Enzymaktivitäten und die Verwendung von mikrobiellem Substrat stark. Um ihre 

Wechselwirkungen aufzudecken, wurden Mutanten mit defekter Wurzelhaarverlängerung 

(rth3) und der entsprechende Wildtyp-Mais 3 Wochen lang bei 20 bzw. 30 ° C gezüchtet. 

Wurzelhaare regulierten die Enzymexpression, mikrobielle Wachstumsstrategien und damit 

die Effizienz der Substratnutzung und vermittelten so die SOM-Bestände als Reaktion auf 

die Erwärmung. 

Um die relative Bedeutung biotischer und abiotischer Faktoren zu klären, haben wir ein 

Experiment durchgeführt, bei dem die interaktiven Auswirkungen von Wurzelhaaren und 

Trockenheit untersucht wurden. Das Ergebnis zeigte, dass sowohl Wurzelhaare als auch 

Bodenfeuchtigkeit die räumliche Verteilung der biochemischen Eigenschaften und Prozesse 

der Rhizosphäre beeinflussten, aber die Verfügbarkeit von Bodenwasser wichtiger war als 

Wurzelexsudate, wenn der Boden sowohl durch Wasser als auch durch C-Quellen begrenzt 

ist. 

Zusammenfassend können sowohl biotische als auch abiotische Faktoren mikrobielle 

Prozesse in Hotspots beeinflussen. Die Rolle der Wurzelhaare wurde bei der 

Wechselwirkung mit Trockenheit verringert, obwohl es für die Regulierung der 

Enzymsysteme und des mikrobiellen Wachstums von großer Bedeutung ist, sich an die 

Klimaerwärmung anzupassen. Daher schlagen wir vor, dass die Vorhersage und 

Modellierung des Bodens C und der Nährstoffdynamik nicht nur die interaktiven Effekte 

biotischer und abiotischer Faktoren berücksichtigen, sondern auch berücksichtigen sollte, 

welcher Faktor an der Wechselwirkung beteiligt ist. Insgesamt trägt diese Arbeit stark zum 

Verständnis der Mechanismen bei, die an den Prozessen des Hotspots beteiligt sind. Dies ist 

besonders wichtig für Agrarökosysteme, bei denen viele wesentliche Ökosystemleistungen, 

die für das Wohlbefinden des Menschen relevant sind, mit Prozessen im Mikromaßstab in 

Hotspots verbunden sind. 
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I Extended summary 

1 Introduction 

Localization of active microorganisms in a small soil volume forms microbial hotspot ‒ 

microsites with much higher biogeochemical process rates than the bulk soil (Kuzyakov, 

2010). The formation, spatial organization and lifetime of microbial hotspots depend not only 

on biotic (e.g. root exudates and root morphology) but also on abiotic (e.g. warming and 

drought) factors (Ge et al., 2017; Kuzyakov, 2002). Detailed knowledge about the effects of 

these factors on microbial processes is a prerequisite for deciphering the complex 

biogeochemical processes in the rhizosphere. Especially, our knowledge is very limited on 

how multiple factors control enzyme systems, microbial activity and community in hotspots. 

Despite their very smallscale occurrence, the cumulative effects of exudate-driven 

rhizosphere processes are of global importance (e.g. C and nutrient cycling) (Hinsinger et al., 

2009; Spohn et al., 2013). 

1.1 Biotic factors: root exudates and root morphology 

The input of root exudates boosts the abundance and activity of soil microorganisms and 

produces microbial hotspots in the rhizosphere. Exudate properties depend on root 

morphology such as the presence of root hairs (Kuzyakov and Razavi, 2019). Most 

prominently, root hairs increase the substrate availability for microorganisms (Jones et al., 

2009; Mishra et al., 2009), which in turn stimulates the production of extracellular enzymes 

(Asmar et al., 1994) and hence, soil organic matter (SOM) decomposition (Cheng and 

Coleman, 1990). Thus, interactions between roots and their microbiome may fundamentally 

affect C turnover in hotspots (Paterson et al., 2009; Blagodatskaya et al., 2011). 

Herbaceous plants release 20% and 50% of their photosynthesized C which are in the form 

of low or high molecular weight organic substances (Badri and Vivanco, 2009), through their 

roots into soil (Kuzyakov et al., 2003; Kuzyakov and Domanski, 2000) via various 

mechanisms including secretion, diffusion and cell lysis (Jones et al., 2009). Thus, 

microorganisms are more active and produce more enzymes in the rhizosphere due to the 

large input of easily degradable low-molecular weight organic substances (LMWOS) (Burns, 

1982; Dennis et al., 2010). In most plants, the dominating forms of LMWOS are sugars, 

amino acids and carboxylic acids (Oburger and Jones, 2018). Glucose is the most abundant 

sugars, accounting about 40-50% of the root exudates (Hutsch et al., 2002), and is one of the 

most important energy sources for microorganisms. Following sugars, the concentration of 
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amino acids is the second highest and they are key sources of both C and nitrogen (N) to 

microorganisms. Alanine makes up 15% of amio acid recoverd in dissolved organic carbon 

(DOC) (Fischer et al., 2007) and methionine is another major amino acid of root exudates, 

containing sulfur (S). Organic acids with low concetration in soil involed in many processes, 

such as nutrient mineralizaion and metal detoxification (Jones, 1998). Along with primary 

metabolites, plant roots exudate secondary metabolites such as benzoxazinoids (Dick et al., 

2012) which induce herbivore resistance (Frey et al., 1997; Maag et al., 2016), and have 

strong fungicidal and less pronounced antibacterial effect (Cotton et al., 2019; Kudjordjie et 

al., 2019). Apart from plant protective functions (Erb and Kliebenstein, 2020), 

benzoxazinoids can cause plant biomass decrease (Hu et al., 2018). Such a negative effect of 

benzoxazinoids on crop productivity is mainly attributed to the inhibition of beneficial 

microorganisms belonging to phylum Glomeromycota or to Flavobacteriaceae (Cadot et al., 

2020; Hu et al., 2018), which also release less β-glucosidase (Ahmad et al., 2011; Okamoto 

et al., 2000). Decrease in β-glucosidase activity induces less hydrolyzed available C, which 

is required to maintain higher microbial activity including microorganisms responsible for 

nutrients mining. Furthermore, decomposition of benzoxazinoids by microorganisms with a 

high degradation capacity (i.e., Pseudomonas putida, Neal et al., 2012) requires time and 

energy (Schütz et al., 2019). Accordingly, low or no benzoxazinoids in the exudates may be 

advantageous for rhizosphere microorganisms. Finally, microorganisms activated at root tips 

and other root parts with intensive exudation may decompose benzoxazinoids, thus reducing 

their inhibiting effects. The quantity, composition and spatial distribution of these released 

exudates strongly depend on root morphology (Kaiser et al., 2015; McCully and Canny, 1985; 

Peterson and Farquhar, 1996). For example, the presence of root hairs in barley increased 

root exudation up to threefold, traced by 14C (Holz et al., 2018b), supposedly due to larger 

root surface area (Haling et al., 2013). Increased amount of root exudates activates 

microorganisms (Bertin et al., 2003; Liu et al., 2020), and thus, may expand the enzymatic 

rhizosphere extent (Ma et al., 2018a). Many previous studies have focused on enzyme 

activities in the rhizosphere (Tarafdar and Jungk, 1987; George et al., 2006) or have 

illuminated gradients of enzyme activities as a function of distance from the root surface to 

the soil (Razavi et al., 2016; Ge et al., 2017; Ma et al., 2018b). Nonetheless, knowledge about 

the dependence of enzyme activities and their spatial distributions in the rhizosphere on 

individual component or on the composition and quantity (reflected by root hairs) of root 

exudates remains unclear. Therefore, we combined soil zymography with Rhizon® samplers 

(artificial roots) to investigate whether spatial patterns of microbial enzyme activities in the 
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rhizosphere are component-specific or not (Study 1). Three maize genotypes - wild type, 

mutant with defective root hair prolongation (rth3), and mutant with reduced benzoxazinoid 

content in exudates (bx1) - were chosen to investigate the effects of root hairs and exudate 

composition on the spatial distribution of enzyme activities in the rhizosphere (Study 2). 

1.2 Abiotic factors: drought and soil nutrient availability  

Apart from biotic factors, the abiotic factor, e.g. drought—sub consequences of climate 

change (Hasibeder et al., 2015; Davidson and Janssens, 2006)—directly imposes osmotic 

pressure on both root and microbial cells, disconnects enzymes from substrate as well as 

microorganisms from nutrients, which would lead to microbial death and thus impair enzyme 

activities (Holz et al., 2019a; Turner et al., 2003). In addition, drought commonly alters the 

quantity and allocation of root exudates (Preece and Peñuelas, 2016; Wei et al., 2019), and 

thus affects microbial activity and enzyme production. The plant is likely to up-regulate the 

allocation of assimilated C to belowground in response to drought, to compensate for 

negative effects of drought (Preece and Peñuelas, 2016). For example, an increase in the 

release of mucilage can facilitate root water uptake and ease the root movement in the dry 

soil environment (Ahmed et al., 2014; Holz et al., 2018a). However, the amount of root 

exudates is also projected to decline under severe drought, probably due to the lower 

photosynthesis rate and the C redirection to other vital processes (Gargallo-Garriga et al., 

2018). This will affect the quantity and quality of plant inputs of available organic 

compounds (Bardgett et al., 2008; Jones et al., 2009) and thus probably change the pattern 

of substrate distribution in soil. Heterogeneity in substrate localization is the primary reason 

for the existence of microbial hotspots in soil (Kuzyakov and Razavi, 2019). Previous studies 

have shown similar functions between or within hotspots despite dissimilarities in their 

microbial community structure (Kuzyakov and Blagodatskaya, 2015; Sanaullah et al., 2011). 

Although various communities may carry out similar functions, they may not be equivalent 

in other respects, such as in the efficiencies with which they express these functions in 

hotspots and their sensitivity to abiotic factors (e.g. drought). The degradation of high 

molecular organic matter depends on the microbial community’s repertoire of genes 

encoding for the required enzymes (Bach et al., 2001). Changes in the abundance of enzyme-

encoding genes reveal alteration of the microbial potential to respond to external disturbances, 

such as drought, but can also provide information on the source organisms of a particular 

enzyme (Nannipieri et al., 2018, 2012). Thus, analyzing and quantifying microbial gene 

abundance as well as gene expression enables determining whether a response in enzyme 

expression is driven by the selection of drought-resistant microorganisms. An improved 
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understanding of drought consequences on the micro-scale (i.e., hotspots), and of the 

mechanisms involved, would help assess impacts on ecosystem (e.g., macro-scale) processes 

and functioning. Hence, we coupled soil zymography with high-throughput sequencing to 

test whether specific bacterial taxa have individual responses to drought in enzymatic 

hotspots (Study 4).  

Soil nutrient availability is another factor affecting the structure of rhizosphere community 

(i.e., species dominance and activity) (reviewed by Kuzyakov and Razavi, 2019). Microbial 

and enzyme activities should be higher in the hotspots with higher soil quality due to more 

available nutrients and organic substances. Therefore, the research question is that how the 

difference between the hotspots and bulk soil is impacted by soil nutrient availability, which 

dramatically changes soil C and nutrient status. This question needs to be addressed 

considering that microbial communities in the hotspots and bulk soil are functionally 

different in terms of their life strategies and enzyme kinetic properties due to different 

qualities and quantities of organic substrates (Blagodatskaya et al., 2009; Hoang et al., 2016) 

(Study 3). 

1.3 Interactive effects of biotic and abiotic factors (root hairs * temperature, root hairs 

* drought) on microbial processes in the hotspots  

Both biotic and abiotic factors strongly influence microbial processes in hotspots. However, 

studies that have explored their interactive effects are extremely scarce.  

Root hairs are developed from epidermal cells (Peterson and Farquhar, 1996), and play a 

critical role in resource exchanges between soil, plants and soil microorganisms. One of the 

key contributions of root hairs is to increase the amount of available substrate for 

microorganisms (Jones et al., 2009; Mishra et al., 2009). This fundamentally affects C 

turnover and carbon dioxide (CO2) emissions from the hotspots (Paterson et al., 2009; 

Blagodatskaya et al., 2011).  

The increased amount of C released from roots also could be induced by elevated air 

temperature (Wei et al., 2019). However, the stimulated microbial respiration and 

functionality may be ephemeral responses to warming, either due to thermal acclimation or 

to substrate depletion (Allison et al., 2010; Bradford et al., 2019, 2008). Considering 

warming and root traits, it is far from clear whether root hairs increase the activity of the 

decomposer community through higher exudation rates or decrease it due to temperature 

acclimation. To answer these questions, we coupled soil zymography with enzyme kinetics, 

microbial growth kinetics and heat flow to assess the response of microbial community 
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structure and functionality to warming depending on the root morphology in enzymatic 

hotspots (Study 5). 

Drought not only alters root exudate pattern mentioned in section 1.2, water depletion also 

directly imposes osmotic pressure on both root and microbial cells, disconnects enzymes 

from substrates as well as microorganisms from nutrients, which would lead to microbial 

death and thus impair enzyme activities (Holz et al., 2019; Turner et al., 2003). This suggest 

that the spatial distribution of enzyme activities may also shift based on the pattern of water 

content, especially under drought. The presence of root hairs (e.g. more C input) may also 

magnify the uncertainty in our understanding on drought effects on root exudates and 

microbial functionality (e.g. enzyme activities). Therefore, a better understanding is urgently 

needed to identify the role of root exudates and water content in characterizing enzymatic 

distribution, especially at the root-soil interface. It is still unknown whether more root 

exudates (reflected by root hairs) can offset the direct negative impacts of water stress. Such 

knowledge is vital as it not only defines the soil volume actively used by plant and 

microorganisms, but also determine the soil volume where rhizosphere priming i.e. SOM 

decomposition as an important process in C cycling occurs (Kumar et al., 2018). Hence, as 

the enzymatic decomposition of SOM is the rate-limiting step in C and nutrient cycling, its 

spatial respond to the drought stress in a world with changing climate is essential (Kuzyakov 

and Razavi, 2019). Thus, we combined zymography, 14C imaging and neutron radiograph to 

estimate how enzyme activities and its spatial dependence on root exudates or on water 

content are affected by root hairs and soil moisture (Study 6). 

2 Objectives 

To address the above listed knowledge gaps, the objectives of this thesis were to: 

1) assess the effect of biotic factors on enzyme properties and microbial processes in hotspots:  

- evaluate effects of various components of root exudates on gradients and spatial distribution 

of microbial enzyme activities in the absence of further influencing factors related to real 

roots (Study 1); 

- to test how root hairs and exudate composition affect the spatial distribution of β -

glucosidase activities (Study 2).  

2) investigate the effect of abiotic factors on enzyme properties and microbial processes:  

- investigate the effect of soil nutrient availability on the difference in kinetic parameters 

between hotspots and bulk soil (Study 3) 



Extended summary 

 
 

6 
 

- determine whether a response of enzyme expression in hotspots to drought is driven by the 

changes in enzyme-related genes (Study 4). 

3) determine the interactive effect of biotic and abiotic factors on enzyme properties and 

microbial processes:  

- assess how root hairs regulate microbial growth strategy and enzyme systems to adapt to 

warming in rhizosphere hotspots (Study 5). 

- estimate how root hairs and soil water content affect spatial dependence of β-glucosidase 

activities on root exudates and soil water (Study 6). 

3 Material and Methods 

3.1 Sampling sites 

Soil for study 1 was taken from four plots at the Campus Klein-Altendorf (50° 37′ N, 6° 59′ 

E), south-west of Bonn, Germany. The site has been used for cropping for more than 100 

years.  

The soil for study 2, 5 and 6 was collected from a Haplic Phaeozem close to Schladebach in 

Saxony Anhalt, Germany.  

Study 3: Mitterfels (fertile soil) is located in the Central German Uplands. The samples of 

Mitterfels soil were taken from loamy Ap horizon (Lang et al., 2017) with high C and N 

content. Unterlüss (poor soil) is located in Lower Saxony, Germany. The samples taken from 

Ap horizon of Unterlüss silty loam soil were relatively barren with respectively, 1.6, 2.0 

and 4.1 times lower C, N and P content as compared with Mitterfels soil. 

Soil for study 4 was collected from the Ap horizon of an arable loamy Haplic Luvisol, located 

on a terrace plain of the river Leine in the north-west of Göttingen, Germany. The site was 

for long-term organic farming with high N content but in organic form –unavailable for plant. 
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Fig. ES 1 Map of the soil sampling locations. 

3.2 Experimental layout 

3.2.1 Study 1 

To test the effects of root exudates on microbial enzyme activities in the absence of real roots, 

we used a 100-mm-long Rhizon samplers as a simulated root. Organic substances – glucose, 



Extended summary 

 
 

8 
 

alanine, methionine, citrate and malate- were separately injected from the Rhizon in each 

rhizobox. During 14 days of incubation, rhizoboxes were kept in the climate chamber at 20 

± 1 °C. 

3.2.2 Study 2 

Three maize (Zea mays L.) genotypes – wild type (WT, B73), root-hair defective (>90%) 

mutant (rth3) (Hochholdinger et al., 2018, 2008; Wen and Schnable, 1994) and 

benzoxazinoids (BX) deficit (>90%) mutant (bx1) (Frey et al., 1997) – were grown in the 

rhizoboxes. After 3 days of germination, the pre-germinated seedlings of each genotype were 

planted in four replicates into separate rhizoboxes and all plants were cultivated for 21 days. 

The rhizoboxes were placed at an angle of approximately 45° to ensure roots growing 

towards the wall of the rhizoboxes. About 20 – 22% of volumetric water content (VWC) was 

kept by watering the soil regularly from the top. Plants were grown in the climate chamber 

with a controlled temperature of 22 °C during the day and 18 °C during the night, a 

photoperiod of 12 h, relative air humidity of 65% and a light intensity of 350 µmol m-2 s-1 of 

photosynthetically active radiation at the top of the rhizobox (LED Grow Light, GrowLED, 

France). 

3.2.3 Study 3 

Individual maize plants (Zea mays L., KWS, Germany) were grown in separate rhizoboxes 

in two soils with similar pH but contrasting texture and fertilization. During growth, the 

rhizoboxes were kept inclined at an angle of 45° so that the roots grew at the vicinity of 

the lower wall of the rhizobox due to gravitropism. After cultivating maize plants for 2 

weeks, soil zymography was applied to identify the spatial distribution of β-glucosidase 

and leucine aminopeptidase hotspots around the roots (Razavi et al., 2019). 

3.2.4 Study 4 

Maize seeds (Zea mays L.) were germinated on the filter paper in a dark environment for 3 

days. Then one seedling was transplanted to each rhizobox (12.3 × 12.5 × 2.3 cm), which 

was filled with soil to a final bulk density of 1.4 g cm-3. The plants were kept in a climate 

chamber with a controlled temperature of 22 ± 1 °C and a photo-period of 16 h light 

(photosynthetically active radiation intensity of 300 μmol m-2 s-1) and 8 h night for 3 weeks. 

During the growth period, the rhizoboxes’ surfaces were covered completely to avoid algal 

growth, and they were put inclined at an angle of 45° to ensure roots growth along the lower 

wall of the rhizobox.  
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Two treatments (drought and optimum) with three replicates were established. One group of 

maize was grown in soil with an optimal water content (70% of water holding capacity 

(WHC)) for 3 weeks. Another group of maize was under water limitation conditions, where 

soil water content was maintained at 70% of WHC for the first week, dried to 20% of WHC 

for one week and then kept at 20% of WHC for the last week. 

3.2.5 Study 5 

Two maize genotypes (Zea mays L.) —the root hair defective mutant rth3 (showing root hair 

initiation but disturbed root hair elongation) (Hochholdinger et al. 2008; 2018), and the 

corresponding wild type — were germinated for 3 days. Each seedling was transplanted to a 

separate rhizobox with inner dimensions of 12.3 × 12.5 × 2.3 cm. Two genotypes with 3 

replicates were incubated in a climate chamber at 20 ± 1 °C or 30 ± 1 °C for 3 weeks. The 

daily light period of that climate chamber was 12 h with a photosynthetically active radiation 

intensity of 350 μmol m-2 s-1 and the relative air humidity was 65%. During the growth period, 

these rhizoboxes were covered to avoid algal growth on the surface and kept inclined at an 

angle of 45° to ensure that the roots grew along the lower wall. Each rhizobox was weighed 

and irrigated with distilled water to maintain the soil water content at 60% WHC. 

3.2.6 Study 6 

Two maize (Zea mays L.) genotypes, the root hair defective mutant rth3 (showing root hair 

initiation but disturbed root hair elongation) (Hochholdinger et al. 2008; 2018), and the 

corresponding wild-type sibling were grown for 3 weeks in the rhizoboxes with the inner 

size of 10 × 21 × 0.6 cm.  

Before transplanting plants to the rhizoboxes, seeds were germinated on the filter paper for 

72 h. The rhizoboxes were kept at an angle of 45° to make sure the roots grow along the 

lower side. The soil water content was maintained at 70% WHC in the first 2 weeks. In the 

3rd weeks, the water content was kept at either 70% of WHC (optimal water content) or 

adjusted to 30% of WHC (drought). Therefore, there were in total 12 rhizoboxes: two 

genotypes of maize, two water content conditions, and 3 replicates for each treatment. All of 

the plants were grown in a controlled climate chamber with a constant temperature of 22 ± 

1℃ with the photoperiod was 12 h and the light intensity was 350 μM m-2 s-1. 

3.3 Methods 

Enzyme kinetics, kinetics of the substrate-induced growth response and heat production were 

measured to unravel enzyme and microbial strategies in response to biotic and abiotic factors. 
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Microbial analysis (high-throughput sequencing) was conducted to reveal the response of 

bacterial community structure and functional groups related to enzymes to drought stress. 

Soil zymography was used to visualize and localize enzymatic hotspots. We also employed 

imaging methods – soil zymography, 14C imaging and neutron radiography to elucidate the 

linkage between enzyme and rhizodeposition or between enzyme and water.  

3.3.1 Soil zymography (Study 1, 2, 3, 4, 5 and 6) 

After incubation, soil zymography was applied to visualize spatial distributions and localize 

hotspots of maximal enzyme activities (Razavi et al., 2019). Polyamide membrane filters 

(Tao Yuan, China) (diameter: 20 cm, pore size: 0.45 μm) were saturated with fluorogenic 

substrates based on 4-methylumbelliferone (MUF) and 7-amino-4-methylcoumarin (AMC). 

The saturated membrane was placed on the soil surface. After 1 h incubation, membranes 

were carefully lifted off the soil surfaces and any attached soil particles were gently removed 

using a small brush. Then, the membranes were photographed under ultraviolet (UV) light 

in a dark room with a Canon EOS 6D camera. A calibration line with a series of increasing 

concentration of MUF or AMC was used to transformed gray values to enzyme activities. 

3.3.2 Enzyme kinetics (Study 1, 3, 4, 5 and 6) 

0.5 g soil was mixed with 50 ml sterile water. After 2 min low-energy sonification, 50 μl soil 

suspension, 100 μl substrate with different concentrations and 50 μl buffer (MES, TRIZMA 

or Na-acetate) were added into a 96-well black microplate. The fluorescence was measured 

by a Victor 1420-050 Multi label counter (PerkinElmer, USA) after 0, 30 min, 1 h and 2 h. 

The Michaelis-Menten equation was used to determine Vmax and Km: 

𝑣 = 	
𝑉!"# 	× 	 [𝑆]
𝐾! 	+ 	 [𝑆]

 

where V is the reaction rate, [S] is the substrate concentration, Km is the substrate 

concentration at the half-maximal rate, and Vmax is the maximum reaction rate. The substrate 

turnover time (hours) = (Km + [S])/Vmax (Panikov et al., 1992), where S is the substrate 

concentration regarding to the Vmax. The catalytic efficiency of enzymes was determined by 

catalytic efficiency (Ka) = Vmax/Km (Razavi et al., 2016) 

3.3.3 Kinetics of the substrate-induced growth response (Study 5) 

0.5 g fresh soil in a tube was amended with a mixture containing glucose (10 mg g–1) and 

mineral salts (1.9 mg g–1 (NH4)2SO4, 2.25 mg g–1 K2HPO4, and 3.8 mg g–1 MgSO4·7H2O) 

(Blagodatskaya et al., 2009). Soil samples were incubated in the modified rapid automated 
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bacterial impedance technique (RABIT) system and the CO2 production rate was monitored 

every 20 min. The theory of the microbial growth kinetics has been presented in detail earlier 

(Panikov, 1995). 

3.3.4 Microbial energy response to substrates (Study 5) 

0.5 g soil from each rhizobox was used for incubation. Sand (SiO2) were used as references 

for each treatment. The treatment and the reference should have the same heat capacity at the 

beginning. All the samples containing soil or sand were placed into airtight glass containers 

and incubated at 20 °C and 30 °C, accordingly in the TAM Air Thermostat SN 548. Heat 

flow rate and heat production were monitored continuously every 10 s over 1 h.  

3.3.5 Plant labeling and 14C imaging (Study 2 and 6) 

After 3 weeks of maize growth, each plant was labeled with 0.5 MBq 14CO2 in an airtight 

chamber for 6 hours. The detailed procedures were referred to Kuzyakov et al., (2006). 

Briefly, before labeling, NaOH was put in a glass vial connected with the chamber via a pipe 

to trap CO2 in the chamber for 8 h. NaOH solution was then replaced by 14C as Na214CO3 

solution dissolved by 1 M H3PO4. The released 14CO2 was pumped into the chamber for 6 h. 

After labeling, the remaining 14CO2 in the chamber was trapped with 1 M NaOH for 2 h. 

Directly after labeling, the rhizoboxes were transferred to a dark room. The rooted soil 

surfaces were exposed to storage phosphor screens (BAS-IP MS 2040 E, GE Healthcare, 

U.S.A.). All screens were erased for 10 min under the strong bright light before use, and were 

protected from moisture by transparent plastic bags (polypropylene, 40 μm thickness, density 

0.95 g cm-3, MDF Verpackungen GmbH, Bergisch Gladbach, Germany). The plate with 

plastic bag was attached to the rooted soil surface for 20 h in a totally dark room. Thereafter, 

the plates were scanned with a laser scanner for phosphor-imaging (650 nm excitation, FLA-

7000, GE Healthcare, U.S.A.) with a spatial resolution of 25 μm (Banfield et al., 2017) . 

3.3.6 Neutron radiography (Study 2 and 6) 

Neutron radiography is a non-destructive method which is sensitive to hydrous materials 

(Ahmed et al., 2016; Moradi et al., 2009b), and thus can quantify present water distribution 

in the rhizosphere (Holz et al., 2018a; Zarebanadkouki et al., 2018). The experiments were 

conducted at the ICON beam line at the Paul Scherrer Institute (PSI) in Switzerland. We used 

a CCD camera detector with an array of 1260 by 1260 pixels, a field of view of 15.75 cm by 

15.75 cm, and a spatial resolution of 0.2 mm. 4 radiographs with marginal overlaps were 

scanned to cover the entire sample. 
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3.3.7 Microbial analysis (Study 4) 

DNA was extracted from frozen hot- and coldspot samples (ca. 0.5 g) using the Quick Soil 

Isolation Kit (Omega, USA), according to the manufacturer’s instructions. The V3-V4 region 

of 16S rRNA was amplified with the primers 338F: 5′-ATGCAGGGACTA 

CHVGGGTWTCTAAT-3′ and 806R: 5′-ACTCCTACGGGAGGCAGCA-3′ (Jiang et al., 

2019). Each sample had an eight-base Barcode at the 5′ end of the primers. PCR for 

amplification was carried out under the following conditions: at 95 °C for 3 min followed by 

27 cycles for 30 s at 95 °C, annealing for 30 s at 55 °C, an extension for 45 s at 72 °C and a 

final extension for 5 min at 72 °C. The PCR products after purifying with AxyPrep DNA Gel 

Extraction Kit (Axygen Biosciences. USA) were quantified using a QuantiFluor™-ST 

fluorometer (Promega, USA). The products were then pooled, and the paired-end sequencing 

(2 × 300 bp) was conducted on an Illumina MiSeq sequencer.  

4 Main results and discussion 

4.1 Synthesis of main results of the studies 

1) The rhizosphere extent of microbial-derived enzyme activities is component- and 

enzyme-specific. 

2) The presence of root hairs in wild type maize increased β-glucosidase activity, whereas 

benzoxazinoids in root exudates suppressed microorganisms. 

3) The differences in microbial growth strategy between rhizosphere hotspots and bulk soil 

were dependent on soil fertility; a difference in enzyme activity and affinity was detected 

between the hotspots and bulk soil in the fertile and the poor soils but was enzyme-

specific.  

4) Drought induced minor changes in rhizosphere bacterial community composition, which 

had great implications for the number of functional gene copies related to leucine 

aminopeptidase and chitinase. 

5) Root hair effects on enzyme activities and microbial growth strategy were more 

pronounced at the elevated temperature: i) β-glucosidase activity of the wild type at 30 °C 

was 21% higher than that of mutant rth3; ii) temperature shifted the microbial growth 

strategy, whereas root hairs promoted the fraction of growing microbial biomass; iii) 

Km and the activation energy for β-glucosidase under the mutant rth3 was lower than that 

under wild maize. 
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6) Both root hairs and soil moisture influenced spatial distribution of rhizosphere properties 

and processes, while soil moisture contributed more to the spatial correlation between 

hotspots of enzyme and root exudates/soil water content. 

 

Fig. ES 2 Synthesis of main results of the studies.  

 

4.2 Effects of biotic factors (root exudates and root morphology) on the spatial 

distribution of enzyme activities  
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Fig. ES 3 Zymography images in response to component additions. a.β-glucosidase, b. 

leucine aminopeptidase, c. phosphatase, d. sulfatase. Side color scale is proportional to 

enzyme activities (nmol cm-2 h-1).  

 

Fig. ES 4 The profile of enzyme activity distribution as a function of distance from the root 

center. Each line refers to the mean value of many lines of one part from each zymogram. 0 

on the X axis shows the center of the artificial root. The Y axis is presented in relative units 

as enzyme activity (nmol cm-2 h-1). For leucine aminopeptidase, the right axis is for purple 

line (methionine). Vertical dashed black lines on the curves: artificial rhizosphere extent for 

individual substances.  

 

The spatial distribution of β-glucosidase did not change strongly after component additions 

and there was no clear rhizosphere extent (boundary) for β-glucosidase (Fig. ES3). This 

homogeneous spatial pattern of β-glucosidase involved in the carbohydrate decomposition 

might be mainly because microorganisms use some of the carbohydrate directly as an energy 

source. In contrast, artificial exudates stimulate microorganisms for production of 

phosphatase, leucine aminopeptidase and sulfatase and form spatial gradients from artificial 

roots to the bulk soil (Fig. ES3). Such higher enzyme activities in the rhizosphere are 

traditionally related to inputs of labile organic substances, which activate microorganisms 

(Kuzyakov and Blagodatskaya, 2015). 
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Individual component had a specific effect on the spatial extent of rhizosphere enzyme 

activities. Alanine increased the rhizosphere extent much stronger than other substances, 

while methionine had no effect on the spatial distribution of enzyme activities (Fig. ES4). As 

the soil we used is N limited, the N source provided by alanine most likely explains why the 

activities of all enzymes were more strongly increased by alanine than by any other 

substances. The lower effect of methionine on the enzyme activity was due to the C-S bond, 

which impedes its rapid mineralization (Spohn et al., 2013). 

 

 

Fig. ES 5 General pattern of the effects of maize mutations (root defective rth3 and BX 

deficient bx1 as compared to wild type (WT) on the rhizosphere extent, hotspots, enzyme 

activity level and overlap of β -glucosidase with water and exudates. Significant increase and 

decrease indicated by ↑ and ↓ respectively. 

 

The WT released exudates primarily from root tips, while the rth3 and bx1 mutants released 
14C exudates along the whole roots (Fig. ES 5). The change in spatial distribution of exudates 

in rth3 and bx1 is presumably a plant strategy to maintain high microbial activity and thus 
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enzyme activity (including β-glucosidase) by releasing easily available C into the entire 

rhizosphere (McDougall & Rovira, 1970; Voothuluru et al., 2018; Cotton et al., 2019). 

Root hair rhizodeposits, along with the released exudates, increase the active portion of 

microbial biomass in the rhizosphere (Zhang et al., 2020) and therefore stimulate β -

glucosidase production (Wang & Lu, 2006). Therefore, the presence of root hairs enlarged 

the enzymatic rhizosphere for β -glucosidase activity (+35% of rhizosphere extent). In 

contrast, the absence of root hairs (rth3) induces an increased exudation of primary 

metabolites and β-glucosidase (Gramss et al., 1999) from the mature root zone in rth3. The 

substrate limitation for microorganisms can stimulate exudation by roots (Williams and Vries, 

2020) and increase the spatial extent of the 14C exudation patterns along the mature root 

section (Fig. ES 5). 

The bx1 maize plant did not need to invest high energy into synthesizing benzoxazinoids and 

therefore probably produced more primary metabolites (Pott et al., 2019). The larger 14C 

accumulation area in the soil in bx1 is because the 14C is localized along the whole root, not 

only at the root tip as in WT. The result was 2.5-fold larger 14C exudate hotspot areas. The 

release of benzoxazinoids by roots suppressed the activities of rhizosphere microorganisms, 

which led to 30% lower β-glucosidase activity but did not change the rhizosphere extent (Fig. 

ES 5).  
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4.3 Effects of abiotic factors (soil nutrient availability and drought) on microbial 

processes 

4.3.1 Soil nutrient availability 

 

 

Generally, greater Vmax values in the fertile soil versus poor soil (Fig. ES 6a) was a result of 

more growing biomass in the former (Table 2 in study 3). Growing microorganisms produce 

larger amount of active enzymes (E0) and the Vmax is a function of E0 (Nannipieri and 

Gianfreda, 1998; Allison et al., 2010; Blagodatskaya et al., 2016). 

The higher Vmax in hotspots than bulk soil only occurred for β-glucosidase (Fig. ES 6a), 

which indicated that the activity of β-glucosidase was also a function of the amount of 

available substrate (Allison and Vitousek, 2005). However, the difference of Vmax of leucine 

 

Fig. ES 6 Vmax (a) and Km (b) 

values of β-glucosidase, and 

leucine aminopeptidase in the 

fertile and the poor soils. Values 

are means of three replicates 

(±SE). Asterisks indicate 

significantly different from bulk 

soil. The inserts show the mean 

value of different samples. 
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aminopeptidase between hotspots and bulk soil was negligible. Given the C/N ratio around 

and above 20 in both soils (Table 1 in study 3), the microbial acquisition of N was strongly 

restricted by nutrient supply capacity according to stoichiometric constraints (Sinsabaugh et 

al., 2009). As root exudates and rhizodeposits were generally depleted in N content, the N 

supply capacity was even lower in the hotspots than in bulk soil, thus restricting mobilization 

of organic N by microorganisms (Tarafdar and Jungk, 1987; Badalucco and Nannipieri, 2007; 

Kuzyakov and Xu, 2013). In accordance with ecological principles, the Km increased in 

rhizosphere hotspots compared to bulk soil (Fig. ES 6b), indicating decreased affinity of 

enzymes as an effect of root exudates and rhizodeposits (Blagodatskaya et al., 2009). The 

higher Km values in the hotspots versus bulk soil indicated altered enzyme systems by rhizo-

microbial interactions.  

 

 

 

Differences in the microbial growth response to substrate addition between rhizosphere 

hotspots and bulk soil were dependent on soil nutrient availability and were detected only in 

the poor soil (Fig. ES 7). Equal microbial specific growth rates (μm) in the hotspots and bulk 

Fig. ES 7 Glucose-induced 

respiratory responses of microbial 

community and their 

corresponding specific growth 

rates (μm; inset figures) after 

substrate addition into the (A) 

fertile and (B) poor soil. 

Experimental data are shown as 

symbols and model simulation 

(Equation (1)) as curves. Bars 

show standard errors of the means 

(±SE). Lower-case letter indicates 

significant difference at a level of 

P < 0.05. 
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soil from the fertile soil might be associated with the availability of soil organics (German et 

al., 2011). Due to abundant organics in soil, the energy limitation and dependence of the 

microbial community on labile C input by roots are weak. In contrast, substrate addition to 

hotspots of the poor soil induced strong stimulation of microbial growth compared to bulk 

soil.  

4.3.2 Drought 

 
Fig. ES 8 Conceptual graph showing effects of drought on microbial community structure, 

activity and functionality. Activities of chitinase and leucine aminopeptidase were higher 

under drought conditions. Drought induced higher enzyme-related gene copies encoded by 

Actinobacteria controlling microbial roles in protein and chitin decomposition. 

 

The higher enzyme activities under drought were due to the increased number of functional 

genes copies encoded by the Actinobacteria for both leucine aminopeptidase and chitinase 

(Fig. ES8). Moreover, the interactions between bacteria were less equal under drought (Fig 

8b in study 4), which indicated the adaptation of keystone bacteria to drought stress. The 

genus Luedemannella (Actinobacteria) is probably one of the keystone bacteria that acting 

as module hubs to mediate energy and substance exchanges within modules to maintain the 

interactions between bacterial populations. 
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4.4 Interactive effects of biotic and abiotic factors (root hairs * temperature, root hairs 

* drought) on microbial processes 

4.4.1 Root hairs * temperature 

 

Fig. ES 9 β-glucosidase activity parameters: Vmax (a) and Km (b) at 20 and 30 °C of root-hair 

wild and root-hairless mutant maize. p values were obtained after two-way ANOVA. 

Genotype: wild type and mutant maize; Temperature: 20 and 30 °C. Lower case letters in (a): 

significant differences after two-way ANOVA and Tukey’s HSD test at p < 0.05; Lower case 

letters in (b): significant differences between wild type and mutant maize after two-way 

ANOVA and Student’s t test at p < 0.05. 

 

 

Fig. ES 10 (a) Specific growth rates (μ) of soil microorganisms during incubation at 20 and 

30 °C for the two maize genotypes estimated by substrate-induced respiration. (b) Substrate 

use efficiency expressed as calorespirometric ratios obtained from the 24 h incubation of soil 

samples after glucose addition. p values were obtained after two-way ANOVA. Genotype: 

wild type and mutant maize; Temperature: 20 and 30 °C. Lower case letters in (a): significant 

A

B

a

b
a

b

(a) (b)
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differences after two-way ANOVA and Tukey’s HSD test at p < 0.05. Lower case letters (b): 

significant differences between wild type and mutant maize after two-way ANOVA and 

Student’s t test at p < 0.05; Upper case letters in (b): significant differences between 20 and 

30 °C after two-way ANOVA and Student’s t test at p < 0.05. 

 

β-Glucosidase activities at 30 °C were 63% and 35% higher than at 20 °C in the soil from 

hotspots of root-hair wild type and mutant rth3, respectively (Fig. ES 9a). Vmax and Km of β-

glucosidase activity for wild type was higher than that of the mutant rth3 at 30 °C (Fig. ES 

9). Temperature accelerated the specific growth rates and increased the calorespirometric 

ratios. The rates and ratios were higher in the hotspots of mutant rth3 versus wild type at 

30 °C (Fig. ES 10).  

The higher β-glucosidase activity at 30 °C was probably related to the higher root exudate 

release due to the effect of warming on the membrane permeability of root cells (Steinweg 

et al., 2008; Allison et al., 2010). At 30 °C, root hairs released large amounts of compounds 

(Badri and Vivanco, 2009; Jones et al., 2009; Holz et al., 2018b), and thus increased enzyme 

activities compared to mutant rth3. However, selecting enzymes with lower substrate affinity 

(i.e. higher Km) in the presence of root hairs will restrain the enzyme-mediated reactions at 

higher temperature (Bradford et al., 2019). This means the increased β-glucosidase 

production in the presence of root hairs was sufficient to gain enough energy for microbial 

activity. In addition, the higher relative abundance of slow-growing microorganisms in the 

soil of wild type could induce a lower calorespirometric ratio compared with the mutant rth3. 

Such a higher ratio of C incorporated into microbial biomass meant higher SOM formation 

rates and retarded soil C losses (Bölscher, 2016; Bradford et al., 2019). In comparison, the 

lower Km of β-glucosidase in the hotspots of mutant rth3 maize at higher temperature 

indicated the selection of efficient enzyme systems to compensate for the less amount of 

exudate. The higher abundance of fast-growing microorganisms in the soil of mutant rth3 at 

30 °C responded faster to the available substrates and maximized their growth by increasing 

the calorespirometric ratio (Fierer et al., 2007), leading to a large energy loss as heat 

(Herrmann et al., 2014). 
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4.4.2 Root hairs * drought 

 

Fig. ES 11 (a) Hotspot (%) and (b) bidirectional rhizosphere extent of β-glucosidase activity 

for two maize genotypes (wild type and mutant rth3) under drought and optimal water 

content. p values were obtained after two-way ANOVA. genotype: wild type and mutant rth3; 

water: drought and optimal water content. Data is mean (n=3) and error bars represent 

standard deviation (SD). 

 

 

b)a) b)

(a) Enzyme ! Exudates

Wild Drought

M1: 0.09B

M2: 0.09b

Mutant Optimal

M1: 0.43A

M2: 0.52a

Mutant Drought

M1: 0.18B

M2: 0.08b

Wild Optimal

M1: 0.36A

M2: 0.44a

Two-way ANOVA for M1: 

Genotype: p = 0.4768

Water: p = 0.0329

Genotype*Water: p = 0.9011

Two-way ANOVA for M2: 

Genotype: p = 0.5908

Water: p = 0.0007

Genotype*Water: p = 0.5647
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Fig. ES 12 Colocalization analysis for region of interest (ROIs) of (a) hotspots between β-

glucosidase activity (Enzyme) and 14C exudates (Exudates), or (b) hotspots between β-

glucosidase activity (Enzyme) and water (Water). M1: Manders’ coefficient, the fraction of 

Enzyme overlapping with Exudates or Water; M2: Manders’ coefficient, the fraction of 

Exudates or Water overlapping with Enzyme; p values were obtained after two-way ANOVA. 

genotype: wild type and mutant rth3; water: drought and optimal water content. Upper case 

letters in (a): significant differences for M1 between optimal and drought conditions after 

two-way ANOVA and Student’s t-test at p < 0.05. Upper case letters in (b): significant 

differences for M1 among four treatments after two-way ANOVA analysis and Tukey’s HSD 

test at p < 0.05. Lower case letters in (a) and (b): significant differences for M2 between 

optimal and drought conditions after two-way ANOVA and Student’s t-test at p < 0.05.  

 

Root hairs, which released more root exudates (Pausch et al., 2016), enlarged the enzymatic 

hotspot area and extended the rhizosphere size (Fig. ES 11). Although root exudates directly 

relieved microbial C limitation, the importance of soil moisture outweighed root hairs in 

regulating the occurrence of enzyme hotspots. Drought reduced the hotspot area (Fig. ES 11a) 

and narrowed the rhizosphere extent of β-glucosidase activity (Fig. ES 11b). The larger 

hotspots area and wider rhizosphere extent of β-glucosidase activity were concurrent with 

optimal water content because the proper soil moisture is a prerequisite for higher root 

biomass. It has been strongly suggested as a compelling explanation for higher 

rhizodeposition (Preece and Peñuelas, 2016). Additionally, the optimal water content 

provided a suitable growth environment for microorganisms, and increased microbial access 

to nutrients and energy (Ahmed et al., 2018), as well as enhanced the diffusion of both 

(b) Enzyme ! Water

Wild Drought

M1: 0.07B

M2: 0.04b

Wild Optimal

M1: 0.12B

M2: 0.29a

Mutant Drought

M1: 0.45A

M2: 0.04b

Mutant Optimal

M1: 0.09B

M2: 0.23a

Two-way ANOVA for M1: 

Genotype: p = 0.0170

Drought: p = 0.0251

Genotype*Drought: p = 0.0077

Two-way ANOVA for M2: 

Genotype: p = 0.5649

Drought: p = 0.0032

Genotype*Drought: p = 0.6018
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enzymes and substrate (Holz et al., 2019). Consequently, β-glucosidase activities in wet soil 

were most pronounced. In addition, colocalization between enzymatic hotspots and root 

exudates were only pronounced under optimal soil moisture, while lower soil water 

availability limits the enzymatic hotspot areas when occurring co-limitation of available C 

and water (Fig. ES 12). 

5 Conclusions 

Both biotic (e.g. root exudates and root hairs) and abiotic (e.g. soil nutrient availability and 

climate changes) factors play the key role in enzyme activities and their spatial distributions, 

as well as in microbial functionality. Generally, global changes often occur simultaneously 

with the manipulation of exudate composition or root morphology. For example, the lower 

soil enzyme efficiency and higher substrate use efficiency could offset the exudate-induced 

increase of microbial activity and hence maintain SOM stocks in the presence of root hairs 

under warming. However, the role of root hairs was diminished when drought occurred. Soil 

moisture contributed more to microbial processes and enzymatic distributions in the 

rhizosphere. Accordingly, practices which retain soil water effectively should be 

implemented into arid and semiarid areas. In addition, we found minor changes in bacterial 

community abundance had strong implications for functional gene abundances controlling 

microbial roles in proteins and chitin decomposition in response to drought. This proves the 

importance of microbial functional gene abundance in its function in N cycles. Together, 

these results indicate the necessity of incorporating functional genes and multi-factor 

interactive effects into models for better prediction of biogeochemical cycles. This would 

require interdisciplinary cooperation from soil scientists, microbiologists, ecologists, 

statistician and computer expert.  
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Abstract  
Roots increase microbial activities depending on exudate composition, especially on the 
ratios of sugars, carboxylic and amino acids, and thus structure enzyme activities in the 
rhizosphere. We introduce a new approach combining soil zymography and simulated 
exudates released from Rhizon® samplers to stimulate microbial activities but avoid the 
direct release of enzymes by living roots. This enabled visualizing, localizing and analyzing 
the effects of simulated root exudates on activity of five microbial enzymes involved in 
carbon (C) (β-glucosidase, cellobiohydrolase), nitrogen (N) (leucine aminopeptidase), 
phosphorus (P) (phosphatase) and sulfur (S) (sulfatase) cycles. We tested the hypotheses that 
1) artificial exudates stimulate microorganisms for enzyme production and form spatial 
gradients around roots, and 2) the extent of microbial enzyme activities in the rhizosphere is 
component-specific. In line with these hypotheses, the activities of P-, N- and S-related 
enzymes were higher near the artificial root and gradually decreased as a function of distance 
from the root. The pattern for C-cycle enzymes was uniform and independent of the exudate 
composition. Among all components, alanine increased the rhizosphere extent much stronger 
than other substances, while methionine had no effect on the spatial distribution of enzyme 
activities. Vmax of all enzymes increased with alanine addition, but decreased after adding 
citrate. The ratios of enzyme activities demonstrated that rhizosphere microorganisms release 
more leucine aminopeptidase than other enzymes to meet their N demand. Glucose increased 
the Km of cellobiohydrolase and β-glucosidase, while alanine had the greatest effect on the 
Km of protease and sulfatase. Phosphatase is the enzyme most sensitive to the composition 
of root exudates; consequently, any factor influencing root exudate composition can strongly 
affect the P cycle. We conclude that the rhizosphere extent of microbial-derived enzyme 
activities is component- and enzyme-specific and that this extent depends on the substrate 
stoichiometry and microbial nutrient demand. 
Keywords: Artificial root, microbial hotspots, microbial enzymes, rhizosphere extent, soil 
zymography 
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1.1 Introduction 

Root exudates and rhizodeposits prompt a dynamic interplay between roots, the 

associated microbiome and soil particles. Microorganisms are more active and produce more 

enzymes in the rhizosphere due to the large input of easily degradable low-molecular weight 

organic substances (LMWOS) (Burns, 1982; Dennis et al., 2010). In most plants, the 

dominating forms of LMWOS are sugars, amino acids and carboxylic acids (Oburger et al., 

2018). These substances are typically present in high concentrations in the cytoplasm (0.1–

10 mM) and the vacuoles (up to 50 mM) (Lohaus et al., 1994) compared with the soil solution 

and thus tend to control exudation in quantitative carbon (C) terms. Sugars form the most 

abundant exudate pool (Derrien et al., 2004), with glucose constituting a significant portion 

(ca 40-50% of the root exudates; Hutsch et al., 2002). Following sugars, the amino acid 

content is the second highest pool, providing important sources of both C and nitrogen (N) 

to microorganisms. Alanine makes up 15% of amino acids recovered in dissolved organic 

carbon (DOC) (Fischer et al., 2007), and methionine is another major amino acid of root 

exudates, containing sulfur (S). Carboxylic acids are frequently present in lower 

concentrations than sugars and amino acids but are involved in many processes including 

nutrient mineralization (Jones, 1998). LMWOS are incorporated and used by 

microorganisms rapidly and efficiently, which is the main process removing them from soil 

solution. This process takes only a few minutes for glucose (Hill et al., 2008; Fischer et al., 

2010), several hours of half-life times for amino acids (Jones et al., 2005), to much longer 

half-life time for carboxylic acids due to their fast adsorption to sesquioxides (Jones and 

Brassington, 1998; Fischer et al., 2010). The duration and the rates of microbial utilization 

of LMWOS are the main factors affecting the duration of microbial hot moments, which are 

defined as short-term events or sequences of events that accelerate microbial processes as 

compared to the average rates, and are typically located in the rhizosphere (Kuzyakov and 

Blagodatskaya, 2015). 

Root exudation stimulates the production of extracellular enzymes (Asmar et al., 1994) 

and, thus, SOM decomposition (Cheng and Coleman, 1990). However, the higher enzyme 

activity of the rhizosphere versus root-free soil depends not only on microbial activity but 

also on the direct release of enzymes by roots, the root secretion, consisting of high molecular 

weight compounds (> 1000 Da; e.g. enzymes) or by lysis of root cells (Oburger et al., 2018). 

Enzymes are valuable tools for plants and microbiomes to degrade complex organic 

substances and make nutrients/C available for plant/microbial uptake. Many previous studies 

have focused on enzyme activities in the rhizosphere (Tarafdar and Jungk, 1987; George et 
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al., 2006) or have illuminated gradients of enzyme activities as a function of distance from 

the root surface to the soil (Razavi et al., 2016a; Ge et al., 2017; Ma et al., 2018; Fig. 1a). 

Nonetheless, we lack a mechanistic understanding of the enzymatic response of rhizosphere 

microorganisms to root exudates, in the absence of direct release of enzymes by roots (Fig. 

1b). More specifically, carboxylic acids from roots mobilize nutrients by chemical processes 

(Jones, 1998) and, conversely, affect the microbial decomposability of SOM (Kuzyakov et 

al., 2000). Amino acids or monosaccharides can stimulate microorganisms to switch from a 

dormant state (Blagodatskaya and Kuzyakov, 2013) to an active stage, promoting the release 

of enzymes and thus boosting soil organic matter (SOM) mineralization. The root exudate 

compounds that play the key role in stimulating microbial enzyme activities and formation 

of gradients in the rhizosphere remain unknown. Despite their very small-scale occurrence, 

the cumulative effect of exudate-driven rhizosphere processes such as enzymatic activities 

are of global importance (e.g. C and nutrient cycling). Detailed knowledge about the effect 

of the different quality and quantity of root exudates released around roots is therefore a 

prerequisite for deciphering the complex biogeochemical processes in the rhizosphere and 

their feedback loops. This includes microbial function, changes in enzyme systems and 

catalytic properties, or even the optimal C : nutrients ratio to meet microorganism demand. 

The amount of nutrients released by enzymes can be determined by the above ratio, and also 

by the nutrient content in SOM (Sinsabaugh et al., 2008; Mooshammer et al., 2014). Ratios 

of enzyme activities involved in SOM decomposition can be used as an indicator of microbial 

resource allocation to nutrient acquisition (Waring et al., 2014). Therefore, the stoichiometry 

of enzymes represents a relative nutrient limitation (Hill et al., 2012), and enzyme activities 

are indicators of microbial nutrient demand (Schimel and Weintraub, 2003; Caldwell, 2005; 

Moorhead and Sinsabaugh, 2006). 
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Fig. 1 Mechanisms of formation of enzyme activity gradient in the rhizosphere: a) Secretes 

such as enzymes and root exudate are released by roots and show clear spatial distribution; 

b) Enzymes will be released by microorganisms, whose activities directly depend on root 

functions. Root exudates increase microbial activities, thus microbial enzyme activities in 

the rhizosphere. Theoretically stimulated microbial activity should form a gradient of 

microbial enzyme activity. However, the key compounds for stimulating microbial enzyme 

activities and formation of gradients in the rhizosphere remain unknown. 

The rhizosphere and root system architecture are complex, as are the many 

simultaneously ongoing processes when C compounds are released into the soil by the root 

(i.e. changes in pH, microbial decomposition, microbial growth). This makes the 

identification of mobilized nutrients, enzymatic rates and gradients maintained solely by 

microorganisms (and not by plants, e.g. direct release of enzymes by roots) nearly impossible.  

Soil zymography, a novel in situ method, enables determining the two-dimensional 

spatial distribution of enzyme activities in soil (Spohn and Kuzyakov, 2013; Razavi et al., 

2016a). Combining this technique with Rhizon® samplers (artificial roots) would help to 

localize hotspots of various microbial enzyme activities and mark their correlation with 

substrate turnover. It would also enable testing whether the spatial patterns of enzyme 

activities in rhizosphere are component-specific or not. 

Here, we selected glucose as a representative of sugars; alanine and methionine as 

representatives of amino acids; and citrate and malate as representatives of carboxylic acids 

in order to simulate root exudates but avoid the direct release of enzymes by roots. We 

measured enzymes involved in the terminal reactions of C, N, P and S cycles. These included 

two enzymes in the C-cycle: β-glucosidase and cellobiohydrolase, which are responsible for 

consecutive stages of cellulose degradation; one enzyme in the N-cycle: leucine 

aminopeptidase, which is involved in protein degradation; one enzyme in the P-cycle: 

phosphatase, which catalyzes the hydrolysis of organic P compounds to phosphate esters; 

and one enzyme in the S-cycle: sulfatase, which hydrolyzes ester sulfate. This study was 

designed to 1) investigate the mechanisms of microbial enzymatic response to root exudates, 

in the absence of real roots; 2) evaluate the effects of various components of artificial root 

exudates on the gradients and spatial distribution of microbial enzyme activities; and 3) to 

describe the stoichiometry of enzyme activities in the rhizosphere, where individual root 

exudate compounds have effects on the stoichiometry of available resources. We 

hypothesized that 1) artificial exudates stimulate microorganisms for enzyme production and 
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form spatial gradients; 2) the spatial distribution of microbial enzyme activities in the 

rhizosphere is component-specific, and gradients are maximal for exudates with the longest 

turnover, e.g. carboxylic acids; 3) such stimulation depends on the substrate stoichiometry.  

1.2 Materials and methods 

1.2.1 Soil preparation 

Soil for the incubation experiment was taken from 75–105 cm depth at four plots at the 

Campus Klein-Altendorf (50° 37′ N, 6° 59′ E), south-west of Bonn, Germany. After 

collecting, the soil was mixed by hand; at the same time, roots and stones were removed and 

the soil was placed in ziplock bags and kept cold (~ 4 ℃). Basic soil physiochemical 

properties were shown in Table 1. Before the incubation, soil was passed through a 2 mm 

sieve. The soil is a Haplic Luvisol (WRB). Detailed soil properties are given in Vetterlein et 

al. (2013) and Hoang et al. (2016). 

Table 1 Basic soil physiochemical properties 

pH Soil organic carbon 
(mg C g-1) 

Total nitrogen 
(µg N g-1) 

Total phosphorous 
(mg P g-1) 

6.6 3.2 0.5 0.6 
 

1.2.2 Experimental layout 

100-mm-long Rhizon® samplers (Rhizosphere Research Products, Wageningen) were 

used to simulate the exudation of organic substances from the root into the soil. The rhizobox 

(12 × 14 × 1 cm) is a transparent plastic box with a removable front panel enabled opening 

without affecting artificial root (Rhizon) (Fig. S1). When filling in the soil, the rhizoboxes 

were placed horizontally with one side open, and then the sieved soil was slowly put in. After 

a little soil was poured into the rhizobox, the open side was closed and the sample was re-

oriented vertically, after which it was shaken gently to be homogeneous. The above steps 

were repeated until the rhizobox was full with a stable soil packing.  

Five organic substances – glucose, alanine, methionine, citrate and malate – were chosen 

to estimate the effects of simulated root exudation on microbial enzyme activities. These 

substances, at a concentration of 200 μmol C ml-1, were added to the rhizoboxes during 14 

days of the experiment at a rate of 1.0 ml d-1. 14 days were considered to ensure that the 

gradients will form around the entire artificial root (Keiluweit et al., 2015). The selected 

concentrations correspond to estimated released exudates by plant per day (~2400 μg C day-

1) (Oburger et al., 2013). The same volume of distilled water was added to the control soil. 
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For each substance, four replicates were incubated. During 14 days of incubation, the 

rhizoboxes were kept in the climate chamber at 20 ± 1 ℃. 

1.2.3 Soil zymography 

Soil zymography – following the protocol proposed by Razavi et al. (2016a) – was 

applied to determine the spatial distribution of soil enzymes around the Rhizon® after adding 

organic substances. Membranes saturated with 4-methylumbelliferone (MUF)-substrates and 

7-amino-4-methylcoumarin (AMC)-substrates were used to visualize enzyme activities. 

After hydrolyzing by the specific enzyme, substrates become fluorescent. β-glucosidase, 

cellobiohydrolase, phosphatase, leucine-aminopeptidase and sulfatase activities were 

detected by 4-methylumbelliferyl-β-D-glucoside; 4-methylumbelliferyl-β-D-cellobioside; 4-

methylumbelliferyl-phosphate; L-leucine-7-amido-4-methylcoumarin hydrochloride and 

sulfate potassium salt, respectively. Each of these substrates was dissolved to a concentration 

of 1 mM in MES buffer (for MUF substrate, pH ≈  6.5), TRIZMA buffer (for AMC 

substrate, pH≈7.2), and Na-acetate buffer for sulfatase (Sigma Aldrich, Germany, pH ≈ 

6). Polyamide membrane filters (Tao Yuan, China) (diameter: 20 cm, pore size: 0.45 μm) 

were cut into sizes adjusted to the rhizobox and saturated with the substrates for each enzyme. 

After 14 days, the rhizoboxes were opened from the lower side and the saturated membranes 

were put directly on the soil surface. After incubation for 1 h, the membranes were carefully 

lifted off the soil surfaces and any attached soil particles were gently removed using a small 

brush. Then, the membranes were placed under ultraviolet (UV) light with an excitation 

wavelength of 355 nm in a dark room. In order to compare the enzyme activities of the images, 

the distance between samples, UV light and the camera were standardized (Razavi et al., 

2016). We used a Canon EOS 6D camera with a Canon lens EF 24-105 mm 1: 4L IS, with 

the best results at f=24 mm & f/3.5. Camera settings were defined experimentally (Razavi et 

al., 2017a; Guber et al., 2018) and provided images with a view field of 105 × 3576 mm, at 

a resolution of 20.2 megapixel and flat field non-uniformity of 0.099, assessed as a 

coefficient of grayscale variation measured in a dry polyamide membrane filter. Focal length, 

aperture and shutter speed were set to 250 mm, f/6.3 and 1/125 sec, respectively. 

The gray values of the images were transferred to enzyme activity using a standard 

calibration. The calibration line was obtained from zymography of saturated membranes (2 

× 2 cm2) with increasing concentration of MUF (0, 0.01, 0.02, 0.05, 0.1, 0.2, 0.4, 0.6, 1 mM) 

and AMC (0, 0.01, 0.2, 0.5, 1, 2, 3, 4, 5, 6, 10 mM). The amount of MUF and AMC on an 

area basis was calculated from the solution volume taken up by the membrane and its size 
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(Razavi et al., 2016a). These membranes were imaged under UV light in the same manner as 

the zymograms. 

1.2.4 Image processing and analysis 

Image processing included 3 steps: 1) convert the signal (fluorescence) on images to 

gray values, 2) adjust the background, 3) transfer gray values to enzyme activities based on 

standardization. 

Fluorescence on the images shows that the substrate has been hydrolyzed by a specific 

enzyme. The signal intensity is proportional to enzyme activity (Razavi et al., 2016a). The 

zymograms were quantified using Matlab. Zymograms were transformed to 16-bit grayscale 

images as matrices and corrected for light variations and camera noise. The gray value 

received from the blank sides of the sample served as the referencing point. Then the 

background gray value was subtracted from all the zymograms. The gray values on all the 

images were converted to enzyme activity using the calibration standard line.  

Gray values exceeding 20% of mean gray values of the whole image were defined as 

hotspots (Liu et al., 2017). The total hotspot areas were calculated as a percentage of the 

whole image. 

1.2.5 Enzyme kinetic parameters and substrate turnover time 

After incubation for 14 days, soil was collected near the Rhizon® (dotted line in Fig. S1) 

from each rhizobox. Enzyme kinetics were measured for four replicates of each substance. 

50 ml sterile water was added to 0.5 g soil used for enzyme kinetics. Soil suspension was 

made using low-energy sonication (40 J s-1 output energy) for 2 min. 50 μL of soil suspension, 

100 μL substrate and 50 μL of buffer (MES, TRIZMA or Na-acetate) were added to a 96-

well microplate. To ensure the saturation concentrations of fluorogenic substrates, 

preliminary experiments were performed. Fluorescence was measured at an excitation 

wavelength of 355 nm and an emission wavelength of 460 nm, and a split width of 25 nm, 

with a Victor 1420-050 Multi label Counter (Perkin Elmer, USA). Measurements were taken 

after 0, 30 min, 1 h and 2 h. Enzyme activity was expressed as nmol MUF or AMC g-1 soil 

h-1. The Michaelis-Menten equation was used to determine Vmax and Km: 

                            v = $!"#	×[(]
*!+[(]

                              (1) 

where v is the reaction rate, [S] is the substrate concentration, Km is the substrate 

concentration at half-maximal rate, and Vmax is the maximum reaction rate.  



Manuscripts 

 
 

41 
 

The substrate turnover time was calculated by turnover time (hours) = (Km + [S]) / Vmax 

(Panikov et al., 1992), where S is the substrate concentration regarding to the Vmax. In specific, 

for β-glucosidase, cellobiohydrolase and leucine-aminopeptidase, S = 200 μmol g-1, for 

phosphatase, S = 100 μmol g-1, and for sulfatase, S = 400 μmol g-1 (Fig. S7). 

The catalytic efficiency of enzymes was determined by catalytic efficiency (Ka) = Vmax 

/ Km (Razavi et al., 2016b). The Ka characterizes the enzyme catalytic properties and is used 

as an indicator to reflect the shift of microbial communities (Tischer et al., 2015). The higher 

Ka shows better catalytic properties (Moscatelli et al., 2012).   

1.2.6 Statistical analyses 

Significance of maximal enzyme activity, Km, turnover time, percentage of hotspot, and 

catalytic efficiency was tested by ANOVA followed by the Tukey HSD test using the 

software JMP, at α < 0.05. 

To represent the extension of enzyme activities, a horizontal line was drawn through the 

image from the artificial root center to the image boundary. The gray values of all the pixels 

on this line were extracted. In total, about 60 separate lines were randomly selected from 

each image, and the average gray values of these replicates were plotted against the distance 

from Rhizon® center using Sigmaplot 12.5 (detailed information was shown in Table S1).  

Activities of cellobiohydrolase, β-glucosidase, leucine aminopeptidase and phosphatase 

were loge transformed prior to stoichiometry analysis. Ratios of ln (β-glucosidase + 

cellobiohydrolase): ln (leucine aminopeptidase) and ln (β-glucosidase + cellobiohydrolase) : 

ln (phosphatase) represent the acquisition of organic N and P relative to C (Sinsabaugh et al., 

2008).  

1.3 Results 

1.3.1 Spatial distributions of enzyme activities around artificial roots 

The enzyme activity spatial distributions were component- and enzyme-specific (Figs 2, 

S1). For all enzymes, when water and methionine were added to the artificial roots, the spatial 

distributions of enzyme activities remained constant from the artificial root surface to bulk 

soil. Alanine, citrate, glucose and malate addition caused a radial gradient of enzyme activity 

around the artificial root, whereby alanine inputs had the greatest effects (Figs 2, 3). The 

spatial distributions of cellobiohydrolase and β-glucosidase were uniform and homogeneous 

within the whole rhizoboxes (Figs 2a, S1). Leucine aminopeptidase, phosphatase and 

sulfatase showed clear radial gradients from the artificial root to bulk soil, with higher 
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activities near the artificial roots and a significant decrease with increasing distance (except 

when adding methionine; Figs 2 b, c, d).  

The artificial rhizosphere extension was enzyme-specific: it was maximal for leucine 

aminopeptidase (0.25-1.7 cm), followed by phosphatase (0.6-1.2 cm) and sulfatase (0.5-0.75 

cm), while there was no clear extent (boundary) for cellobiohydrolase and β-glucosidase (Fig. 

3, S2).  

 

 
Fig. 2 Zymography images in response to component additions. a.β-glucosidase, b. leucine 

aminopeptidase, c. phosphatase, d. sulfatase. Side color scale is proportional to enzyme 

activities (nmol cm-2 h-1).  
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Fig. 3 The profile of enzyme activity distribution as a function of distance from the root 

center. Each line refers to the mean value of many lines of one part from each zymogram. 0 

on the X axis shows the center of the artificial root. The Y axis is presented in relative units 

as enzyme activity (nmol cm-2 h-1). For leucine aminopeptidase, the right axis is for purple 

line (methionine). Vertical dashed black lines on the curves: artificial rhizosphere extent for 

individual substances.  

 

The total hotspot area of β-glucosidase after adding alanine was 2.8 times greater than 

after adding water (Subfig. 4a). For leucine aminopeptidase, the percentage of hotspot area 

increased by 84.4% at glucose addition, but decreased by 34.6% at methionine addition 

(Subfig. 4b). All the substances increased the total hotspot area of phosphatase by 13.1 to 

26.2 times (Subfig. 4c). After adding alanine, sulfatase increased strongly, while methionine 

had no effects (Fig. 4).    
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Fig. 4 Relative effects of components to water: log10 (ratio of percentage of hotspot between 

components and water). Below zero shows that percentage of hotspot in respond to each 

component is less than water addition while above zero demonstrates increment of 

percentage of hotspot compared to water addition. Subfigure shows hotspots (with area 

exceeding 20% of average grey values of the whole image), as a percentage of total area for 

(a) β-glucosidase, (b) leucine aminopeptidase, (c) phosphatase, and (d) sulfatase (left axis is 

for green color; right axis is for blue color treatments) in the artificial rhizosphere of six 

substances. Small letters: significant differences (p < 0.05 after Tukey HSD test). 

 

Thus, the spatial distribution of cellobiohydrolase and β-glucosidase did not change 

strongly after component additions. In contrast, the spatial patterns of phosphatase, leucine 

aminopeptidase and sulfatase were higher near the artificial root, and were component- 

specific.  

1.3.2 Response of enzyme kinetics and substrate turnover to exudate components  

Alanine addition increased Vmax of all enzymes, which were similar with the zymogram 

results. Vmax values of all the enzymes decreased (p<0.05) when citrate was added to the soil 

(Fig. 5; S4), in contrast to the zymogram results which show enzyme activities of soil surface. 
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The slopes of ln (β-glucosidase + cellobiohydrolase): ln (leucine aminopeptidase), an 

indicator of potential C : N acquisition, was 0.77. The corresponding ratio of C : P, shown 

by ln (β-glucosidase + cellobiohydrolase) : ln (phosphatase), was 1.00 (Fig. 6). Although S-

containing organic substances are decomposed to meet S deficiencies, they are not main 

carbon sources for soil microorganisms, so sulfatase was not included in the stoichiometry 

analysis.  

 

Fig. 5 Relative effects of components to water: log10 (ratio of enzyme activities between 

components and water). Below zero shows that enzyme activity in respond to each 

component is less than water addition while above zero demonstrates increment of enzyme 

activity compared to water addition. Subfigure shows enzyme activity as a function of 

substrate concentration for (a) β-glucosidase, (b) leucine aminopeptidase, (c) phosphatase 

and (d) sulfatase in response to component additions. Values are means of four replicates 

(±SE). Small letters: significant differences (p < 0.05 after Tukey HSD test) between 

components.  
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Fig. 6 Ratios of (a) log-transformed (β-glucosidase + cellobiohydrolase) and leucine 

aminopeptidase activities; the C:N regression is ln(leucine aminopeptidase) = -1.266 + 1.295 

× ln(β-glucosidase + cellobiohydrolase), R2 = 0.44, p = 0.0021 (b) log-transformed (β-

glucosidase + cellobiohydrolase) and phosphatase activities, the C:P regression is 

ln(phosphatase) = 0.347 + 0.997 × ln(β-glucosidase + cellobiohydrolase), R2 = 0.64, p 

<0.001. Red dash line is with a slope of 1.0.  

 

The Km values of cellobiohydrolase and β-glucosidase when adding glucose were about 

two or four times higher than in soil with water addition. For leucine aminopeptidase and 

sulfatase, the Km values were higher when alanine was added in compare with the other 

substance additions. Phosphatase was the most sensitive to component additions compared 

with other enzymes: the Km values decreased (p<0.05) when adding all the components (Fig. 

7). The turnover times of all substrates in response to alanine input were shorter than in 

response to other components. In contrast, citrate addition prolonged the substrate turnover 

times regarding to all the enzymes (Fig. 8; S5). 
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Fig. 7 ln-Km values of β-glucosidase, cellobiohydrolase, leucine aminopeptidase, 

phosphatase and sulfatase when adding substrates. 

 

 

Fig. 8 Relative effects of components to water: log10 (ratio of turnover time between 

components and water). Below zero shows that turnover time in respond to each component 

is less than water addition while above zero demonstrates increment of turnover time 

compared to water addition. Subfigure shows substrate turnover times of (a) β-glucosidase, 

(b) leucine aminopeptidase, (c) phosphatase and (d) sulfatase when adding substrates. Small 

letters: significant differences (p < 0.05 after Tukey HSD test) of turnover time between each 

substance. 

 

Glucose reduced the catalytic efficiency (Vmax/Km) of β-glucosidase (77.2%, Subfig. 9a) 

and cellobiohydrolase (48.7%, Fig. S6). The catalytic efficiencies of phosphatase after 

alanine additions were 2.18 times higher than after water addition (Subfig. 9c). In contrast, 

the catalytic efficiencies under other conditions remained stable (Fig. 9). In summary, the 
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addition of components by artificial roots showed great effects on enzymes, and were specific 

for added components and individual enzymes.  

 

Fig. 9 Relative effects of components to water: log10 (ratio of catalytic efficiency between 

components and water). Below zero shows that catalytic efficiency in respond to each 

component is less than water addition while above zero demonstrates increment of catalytic 

efficiency compared to water addition. Subfigure shows catalytic efficiency (Vmax/Km) of (a) 

β-glucosidase, (b) leucine aminopeptidase, (c) phosphatase and (d) sulfatase. Small letters 

indicate significant differences between substances p < 0.05 after Tukey HSD test. 

1.4. Discussion 

1.4.1 Spatial distributions of enzyme activities in artificial rhizosphere 

Individual compounds had a specific effect on the spatial extent of rhizosphere enzyme 

activities (Figs. 2, 3). Nonetheless, the hypothesis that the presence of substances would 

always form radial gradients of enzyme activities around the artificial root was not generally 

supported, especially not for the C-related enzymes: β-glucosidase and cellobiohydrolase. 
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The enzymes involved in carbohydrate decomposition revealed homogeneous spatial 

patterns. This might be mainly because microorganisms use some of the carbohydrate 

directly as an energy source, whereas amino acids serve as a C and, more importantly, also 

as an N source (Hamer and Marschner, 2005). As the soil we used soil is N limited, the N 

source provided by alanine most likely explains why the activities of all enzymes were more 

strongly increased by alanine than by any other substances. Increased phosphatase activities 

have been observed after atmospheric N depositions (Saiya-Cork et al., 2002) or alanine 

application (Spohn et al., 2013). Methionine, in contrast, had a low or no effect on enzyme 

activity (Figs. 2, 3). This probably reflects the C-S bond, which impedes its rapid 

mineralization (Spohn et al., 2013). For instance, applying 35S-labeled methionine and 

cysteine to investigate the decomposition of S-containing amino acids in forest soils showed 

that methionine was mostly incorporated into the organic matter instead of being mineralized 

(Fitzgerald and Hale, 1988; Fitzgerald and Hale, 1990).  

In line with our hypothesis 1, N-, P- and S-related enzymes were mostly localized around 

the artificial root. Similar results (higher enzyme activities) were obtained in association with 

the presence of living roots (Appendix. 1). Such higher enzyme activities in the rhizosphere 

are traditionally related to inputs of labile organic substances, which activate microorganisms 

(Kuzyakov and Blagodatskaya, 2015). 

The extent of enzyme activity in the rhizosphere varied between various LMWOS 

exuded (Fig. 3). The spatial distribution of enzyme activities showed clear gradients when 

adding glucose, alanine, citrate or malate. This is probably due to the fast incorporation and 

use of LMWOS by microorganisms (Jones et al., 2003; Fischer et al., 2010). Accordingly, 

microorganisms near the artificial root took the opportunity to uptake the organic substances, 

forming microbial hotspots there (Kuzyakov and Blagodatskaya, 2015).  

The rhizosphere extents along the artificial root were broader than those around real 

roots (e. g., Fig. 3, Appendix 1). In the artificial rhizosphere, water and organic substances 

go from the root to the bulk soil. In the real rhizosphere, however, the water is transported 

by mass flow to the root, but the exudates are exuded from the root. Therefore, the real 

rhizosphere (with opposite fluxes) has a much smaller extent than the artificial rhizosphere. 

Another reason is that enzyme extension is associated with the distance over which the root 

exudates diffuse. For real roots, the gradients of di- and tricarboxylic in the rhizosphere are 

0.2-1.0 mm, depending on soil type, organic acid type and time (Darrah, 1991a; Jones et al., 

1996a). In contrast, the extension of non-adsorbing components such as glucose and 
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monocarboxylic acids can be larger (> 5 mm, Darrah, 1991b). Accordingly, the rhizosphere 

extension of lentil, maize and rice, based on enzyme activity, is between 1 and 3.5 mm 

(Razavi et al., 2016a; Ge et al., 2017). For artificial roots, however, the diffusion of simulated 

exudates was wider and faster. This is because the exudate components for one-day 

requirements were added to the soil at one time, in contrast to living plants, which slowly 

release root exudates from the main roots as well as additionally from root hairs (Pausch and 

Kuzyakov, 2018) and fine roots during the photosynthetically active period of the day 

(Kuzyakov and Gavrichkova, 2010). Consequently, the wider rhizosphere extension is 

associated with a wider distribution of organic components, which stimulates 

microorganisms and increases enzyme activity (Gianfreda and Rao, 2014). 

1.4.2 Enzyme kinetic parameters and substrate turnover  

The addition of components via artificial roots had dissimilar effects on Vmax and Km 

(Fig. 5, 7). Alanine, as the C and N source, increased the Vmax values of C-, P- and S- related 

enzymes and decreased substrate turnover time depending on the substrate stoichiometry. 

Moreover, alanine also increased the activity of leucine aminopeptidase due to the enzyme 

production process, which is N- and energy intensive (Allison and Vitousek, 2005). Contrary 

to our hypothesis, adding glucose did not pronouncedly increase Vmax, possibly because the 

glucose was very likely incorporated in microorganisms, but the energy and C might have 

been insufficient to meet the demands for expression of enzymes. From another point of view, 

glucose is a very ubiquitous substrate and can be distributed over nearly the entire microbial 

community and this could be the reason that the amount of glucose might have been 

insufficient to cause a strong activation of any of the glucose-based microbial groups. Quite 

simply, as the mineralization rate of organic C in soil is concentration dependent (German et 

al., 2011a), constrained decomposition at low concentration may be particularly important 

for substrates that only induce increased enzyme expression at relatively high (>10% of SOM) 

concentrations. It means that glucose addition might have stimulated microbial activity (e.g. 

respiration) (Keiluweit et al., 2015) but did not alter enzyme production. Citrate and malate, 

representing other C sources, caused a strong decrease (13.9-49.9%) in Vmax, which 

subsequently increased the substrate turnover time. Indeed, malate and citrate are favorable 

for a small portion of microbial communities (Jones, 1998; Fig. 2). Nonetheless, with regard 

to the total potential enzyme activities, they showed similar decreasing trends compared with 

water addition. The extreme decrease possibly reflects the importance of the H+ release on 

nutrient mobilization (Jones et al., 2003). Additionally, in contrast to glucose and amino acids, 
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malate and citrate are easily sorbed to the solid phase of soils (Ström et al., 2001), reducing 

the availability of their C for microbial uptake.  

Enzyme production is an energy-intensive process for microorganisms. Soil microbes 

prefer cost-efficient strategies for survival, thus allocating their resources to synthesize 

enzymes that facilitate the acquisition of the most limited elements (Allison and Vitousek, 

2005). Moreover, enzyme activities regulate microbial nutrient acquisition from SOM and 

plant litter. These activities therefore reflect the microbial nutrient demand (Sinsabaugh et 

al., 2008). The ratio of C-, N- and P-acquiring enzyme activities is near 1.0 in the natural 

environment, with similar supply rates of C, N and P from substrates (Sinsabaugh et al., 2008, 

2012). Here, the C/P acquisition ratio ~1 showed equivalent activities of C- and P-acquiring 

enzymes in all treatments, whereas the C/N acquisition ratio < 1 suggested N limitation for 

microorganisms (Fig. 6). Based on the resource allocation theory, microorganisms allocate 

resources to the production of enzymes related to limited nutrients (Allison et al., 2011). The 

input of labile C such as glucose boosted the activities of phosphatase and leucine 

aminopeptidase, while in some cases the labile C inputs did not show similar trends 

(Hernandez and Hobbie, 2010). Glucose addition decreased the catalytic efficiency of β-

glucosidase (Fig. 9) and cellobiohydrolase (Fig. S6) probably due to the end-product (glucose) 

inhibitory effects (Xiao et al., 2004). As glucose does not contain N, P or S, microorganisms 

are strained to produce corresponding enzymes to degrade other sources to acquire these 

nutrients. This leads to hotspots of leucine aminopeptidase and phosphatase activity (Fig. 4) 

and an increased catalytic efficiency of sulfatase (Fig. 9). The presence of malate and citrate 

strongly accelerated phosphatase dissolution, leading to 10-1000-fold higher P 

concentrations depending on soil type and speciation and the concentration of organic acids 

(Jones, 1998). Based on this phenomenon, i.e. the high mobilization of inorganic P, 

phosphatase activity did not increase (Fig. 5) even though citrate and malate are C sources 

for microorganisms. At the same time, this also demonstrated that organic acids strongly 

interacted with the mineral phase of the soil and might thus be much less microbially 

available than other LMWOS added in identical amounts. Alanine addition increased N 

availability, causing C and P limitation for microorganisms. This, in turn, enhanced C-

mobilizing enzymes (Allison and Vitousek, 2005) and phosphatase activity to mobilize 

recalcitrant organic matter (Geisseler and Horwath, 2009; Marklein and Houlton, 2012). This 

increased the proportion of hotspot areas of β-glucosidase and phosphatase. Methionine, 

which contains S, induced hotspot formation less than did alanine (Fig. 4) according to the 

stoichiometric constraints. We therefore conclude that the increase of nutrient-acquiring 
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enzyme activities and C supply resulted from an overall specific nutrient limitation of the 

microbial community. This interpretation was supported by C/N acquisition ratio < 1, 

suggesting N limitation of microorganisms feeding on substrates with high C/N 

stoichiometry.  

Note that enzymes measurements in this study were assayed under pH close to soil 

original pH (6.6). Enzyme assay protocols for soil and litter samples usually call for the use 

of an aqueous buffer to control assay pH and dilute the sample (German, et al., 2011b). 

However, application of different buffer would cause fluctuation in enzyme activity and 

result in driven of contrasting conclusions. Thus, due to effect of pH on enzyme activity, 

further studies considering various ranges of pH on single isolated enzyme or enzymes in 

soil would improve our understanding on the enzymatic activity in response to range of 

substances.  

The response of Km values to artificial root exudates varied between enzymes and 

components (Fig. 7). The increases of Km values for C-cycle enzymes when adding glucose 

(two- to threefold) and for leucine aminopeptidase and sulfatase when adding alanine (two- 

to fourfold) indicated that the enzyme systems were changed to lower affinity to their 

substrate (Razavi et al., 2017b). In fact, such a strong decrease in substrate affinity is in line 

with the stoichiometry theory that microbes regulate enzyme activities in response to soil 

resource availability to fulfill their nutrient requirements (Sinsabaugh and Follstad Shah, 

2012). The major drop in Km for phosphatase means high reaction rates already present at 

very low substrate concentrations (Tischer et al., 2015). Thus, maintaining the stability of 

soil enzyme systems might have ensured efficient enzymatic functioning. Indeed, the 

activities of extracellular enzymes are mainly a function of the amount of available substrate 

and of the microbial biomass present to potentially synthesize them (Blagodatskaya et al., 

2014). The catalytic efficiency (Ka) of enzymes (ratio of Vmax/Km) also suggested the possible 

shift in microbial community structure due to the changes in substrate availability. The 

relative changes of Ka for phosphatase under alanine and malate addition (Fig. 9) and for 

sulfatase under glucose addition compared to water (Fig. 9) revealed that Ka increased 

consistently due to lower substrate availability (Hausmann et al., 2016). Except for the above 

results, the Km values of these enzymes were unaffected by other components, likely 

indicating that these enzyme systems are relatively well conserved. This means that the 

production of enzymes with higher stability and efficiency was a preferred microbial strategy 

in the studied soil (Stone et al., 2012; Razavi et al., 2016b). From another point of view, we 
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assumed that the adaptive modifications to carry out protein and cellulose catalysis at 

sufficient substrate availability are unnecessary in this soil.  

1.5 Conclusions 

For the first time, we showed which compounds of root exudates play the key role in 

stimulating microbial enzyme activities and formation of rhizosphere gradients in the 

absence of living roots. According to the principles of stoichiometry, enzyme activities and 

hotspot areas are partly related to the C and to nutrient availability: i) Alanine increased the 

percentage of hotspot area of β-glucosidase, phosphatase and sulfatase; ii) Methionine caused 

no strong effects on the hotspot area of sulfatase; iii) The hotspot area of leucine 

aminopeptidase and phosphatase was increased greatly by adding glucose; iv) Alanine had 

the overall strongest effect in this N-limited soil. In conclusion, the rhizosphere shape formed 

by microbial activities is enzyme- and component-specific. Within all tested enzymes, 

phosphatase is the most sensitive enzyme to the composition of exuded compounds. This 

shows that those abiotic and biotic factors affecting root exudate composition may strongly 

affect the P cycle. Accordingly, we suggest that predicting and modeling the consequences 

of abiotic and biotic factors that affect root exudate composition for C and nutrient cycles in 

the rhizosphere could assume dissimilarity of enzyme-based processes. It would be 

appropriate that they consider possible factors triggering strong changes in root exudate 

composition, which are reflected in the enzyme systems and thus in the enzyme process rates 

in the rhizosphere – the most diverse hotspots in the biosphere. 
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Appendix 

 
 

Appendix 1 Example of spatial distribution of enzyme activity around the maize root. 

 

Supplementary 

 
Fig. S1 An example of rhizobox (dotted line is the area where we took soil samples); And 

zymography images of cellobiohydrolase in response to component additions. Side color 

scale is proportional to enzyme activities (nmol cm-2 h-1). 
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Fig. S2 The profile of cellobiohydrolase distribution as a function of distance from the root 

center. Each line refers to the mean value of many lines of one part from each zymogram. 0 

on the X axis shows the center of the artificial root. The Y axis is presented in relative units 

as enzyme activity (nmol cm-2 h-1). 

 
Fig. S3 Hotspots (with area exceeding 20% of average grey values of the whole image), as a 

percentage of total area for cellobiohydrolase in the artificial rhizosphere of six substances. 

Small letters: significant differences (p < 0.05 after Tukey HSD test). 
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Fig. S4 Enzyme activity as a function of substrate concentration for cellobiohydrolase in 

response to component additions. Values are means of four replicates (±SE). Small letters: 

significant differences (p < 0.05 after Tukey HSD test) between components. 

 

  

Fig. S5 Substrate turnover times of cellobiohydrolase when adding substrates. Small letters: 

significant differences (p < 0.05 after Tukey HSD test) of turnover time between each 

substance. 

 

 

Fig. S6 Catalytic efficiency (Vmax/Km) of cellobiohydrolase. Small letters indicate significant 

differences between substances p < 0.05 after Tukey HSD test.  
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Fig. S7 Michaelis-Menten kinetics (enzyme activity as a function of substrate concentration) 

for β-glucosidase, leucine aminopeptidase, phosphatase and sulfatase in response to 

methionine addition. 

 

A five-parameter logistic curve was fitted to enzyme activity as a function of distance 

from the center of Rhizon® to the soil, using the same form of equation for all enzymes and 

substances: 

            y = min+ (!"#-!./)
[1+(# 234 )$%&''(')*+],

           (2) 

where, y is enzyme activity for each substance; min and max are minimum and maximum 

horizontal asymptote (the lowest and the highest activity) and x is the independent value 

(distance from the Rhizon center to the soil); EC and Hillslope, respectively, are the point of 

inflection (the point on the S shaped curve halfway between min and max) and Hill’s slope 

of the curve (which reflects curve steepness at point EC); c is asymmetry factor and when 

c=1 we have a symmetrical curve around inflection point and so we have a four-parameters 

logistic equation, in the Sigmaplot (v. 12.5) environment. The five parameters logistic cure 

is characterized by the classic “S” or sigmoidal shape that fits the bottom and top plateaus of 

the curve. The criterion was an equation which gives the highest correlation with the obtained 

results and best describes the observed pattern. 
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Table S1 R2 after 3-, 4- and 5-parameters logistic curve fitted to enzyme activities as a 

function of distance from the artificial root center in response to various components 

Enzymes 
Component

s 

R2 

3 

Parameter

s 

4 

Parameters 

5 Parameters 

β-glucosidase 

water 0.9118 0.9119 0.9119 

glucose 0.3049 0.6558 0.6607 

alanine 0.6223 0.7783 0.7783 

methionine 0.3041 0.3041 0.3041 

citrate 0.5928 0.8657 0.8657 

malate 0.2582 0.7878 0.799 

leucine 

aminopeptidase 

water 0.016 0.0371 0.0178 

glucose 0.7703 0.7955 0.8007 

alanine NAN 0.3045 0.3085 

methionine NAN 0.0443 0.045 

citrate 0.5547 0.8159 0.818 

malate 0.6395 0.741 0.7441 

phosphatase 

water 0.0199 0.1873 0.0687 

glucose 0.5643 0.7354 0.7387 

alanine 0.476 0.9927 0.9928 

methionine 0.0778 0.171 0.158 

citrate 0.3312 0.9124 0.9163 

malate 0.8123 0.8768 0.8772 

sulfatase 

water 0.0228 0.2337 0.2348 

glucose 0.6165 0.871 0.8713 

alanine 0.3807 0.954 0.9583 

methionine 0.3473 0.4047 0.4034 

citrate 0.4434 0.9278 0.9282 

malate 0.5566 0.9102 0.9176 

cellobiohydrolas

e 

water 0.4311 0.5063 0.5063 

glucose 0.8803 0.9726 0.9778 

alanine 0.0372 0.0594 0.0593 
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methionine 0.0717 0.1264 0.0861 

citrate 0.4921 0.8878 0.8965 

malate 0.0585 0.5131 0.5133 
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2 Study 2: Maize genotype-specific strategies to increase microbial activity 
in the rhizosphere 
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Abstract  

Plants stimulate microbial enzyme production in the rhizosphere, regulating soil organic 
matter decomposition and nutrient cycling. Root morphology (i.e., root hairs) and exudate 
composition define the spatial distribution of properties and functions in the rhizosphere, but 
their influence on rhizosphere self-organization remains unknown. We coupled three in situ 
imaging approaches: 14C imaging to localize exudates, soil zymography to analyze enzyme 
activity distribution, and neutron radiography for water fluxes to trace the spatial structure of 
the rhizosphere of three maize genotypes (wild type, mutant with defective root hair 
prolongation (rth3), and mutant with reduced benzoxazinoid content in exudates (bx1)). Co-
localization analysis revealed the pivotal role of both optimal water content and root 
exudation for β-glucosidase production by the rhizosphere microbiome and its hydrolytic 
activity. Root hairs increased the exudate release and expanded the spatial extent of β-
glucosidase activity around the root axis by 35 %, yielding a two-fold faster 14C exudate 
decomposition compared to the rth3 mutant. In contrast, benzoxazinoids suppressed β-
glucosidase activity by 30 %, reflecting decreased microbial activity, whereas their absence 
broadened the rhizosphere. Overall, root hairs in wild type maize increased microbial activity 
(i.e. β-glucosidase production), whereas benzoxazinoids in root exudates suppressed 
microorganisms. 
  
Keywords: microbial activity, primary metabolites, secondary metabolites, soil imaging 
methods, spatial rhizosphere functioning 
*Corresponding author: n.bilyera@soils.uni-kiel.de  
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2.1 Introduction 

The rhizosphere is a microbial hotspot in soil where roots and microorganisms interact 

(Berg & Smalla, 2009; Philippot et al., 2013; Yang et al., 2017; Pett-Ridge et al., 2021) and 

accelerate process rates beyond that in bulk soil (Koranda et al., 2011). To overcome nutrient 

and water limitations, plants have developed various rhizosphere-related strategies such as 

root morphological adaptations (Hinsinger et al., 2009; Vetterlein et al., 2020; Ahmed et al., 

2021), beneficial associations with microorganisms (Smith et al., 2001; Bucher et al., 2014), 

and release of exudates and enzymes (Farrar et al., 2003; Jones et al., 2009; Gianfreda, 2015; 

Vives-Peris et al., 2020). Despite many efforts to study each of these rhizosphere strategies 

(Downie et al., 2015; Canarini et al., 2019; Vetterlein et al., 2020; Watt et al., 2020), the 

spatial organization of the rhizosphere and its functioning remain poorly understood 

(Vetterlein et al., 2020). 

Enzyme activity is crucial for the decomposition of soil organic matter (SOM) and 

nutrient cycling. Enzymes are released into the soil by roots and microorganisms (Sinsabaugh 

et al., 1992; Waring, 2013). Plants produce β-glucosidase, an enzyme important for the first 

step of organic compound degradation; this step releases the easily available monomer 

glucose from any oligo- and polysaccharides or glycosylated compounds, to which β-

glycosidic binds. β-glucosidase is released directly from the roots into the soil (Cairns & 

Esen, 2010; Gómez-Anduro et al., 2011), but plants also facilitate β-glucosidase production 

in microorganisms by releasing easily available organic substances they can access (Kandeler 

et al., 2002). Thus, soil microorganisms synthesize β-glucosidase in response to the presence 

of suitable substrate that must be degraded (Turner et al., 2002; Veres et al., 2015). The 

extent of β-glucosidase activities is one measure to define the soil volume in which SOM 

decomposition is altered by root activity (Huo et al., 2017). The process of SOM 

decomposition is also responsible for C (i.e., glucose) mining by microorganisms in the 

rhizosphere. Beyond substrate availability, optimal abiotic conditions such as soil water 

content are key prerequisites for microbial activity (Masciandaro et al., 2004; Collins et al., 

2008; Henry, 2012). Up to 80% higher β-glucosidase activity was reported in soils with 

optimal moisture content compared to dry soils (Sardans & Peñuelas, 2005; Boeddinghaus 

et al., 2015). Soil water is essential for β-glucosidase activity and serves as a medium for 

diffusion of labile C. Therefore, maintaining a greater enzymatic rhizosphere volume (or 

extent in 2D images) along with higher β-glucosidase activities and optimal water contents 

are necessary for plants to acquire nutrients from organic sources (i.e., SOM) when available 
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and mobile inorganic forms are limited. The extent to which β-glucosidase activity is 

controlled by spatial patterns of exudation and soil water content, however, remains unknown.  

The spatial distribution of released exudates strongly depends on root morphology 

because organic substances are released along the root axis (mainly at the root tips, 

elongation zones, and root hairs) (McCully & Canny, 1985; Peterson & Farquhar, 1996; 

Kaiser et al., 2015). For example, the presence of root hairs increased root 14C exudation up 

to three-fold (Holz et al., 2018), supposedly due to a larger root surface area (Silberbush & 

Barber, 1983; Haling et al., 2013). An increased amount of root exudates – forming more 

readily available C (e.g. sugars, amino acids) – activates microorganisms (Bertin et al., 2003; 

Liu et al., 2020) and can thus expand the enzymatic rhizosphere extent by up to 1.5 times 

(Ma et al., 2018a) in root-hair zones.  

Along with primary metabolites, plant roots exudate secondary metabolites such as 

benzoxazinoids (Dick et al., 2012) which induce herbivore resistance (Frey et al., 1997; 

Maag et al., 2016), and have strong fungicidal and less pronounced antibacterial effects 

(Kudjordjie et al., 2019; Cotton et al., 2019). Apart from plant protective functions (Erb & 

Kliebenstein, 2020), benzoxazinoids can reduce plant biomass (Hu et al., 2018). Such a 

negative effect on crop productivity is mainly attributed to the inhibition of beneficial 

microorganisms belonging to the phylum Glomeromycota or to Flavobacteriaceae (Hu et al., 

2018; Cadot et al., 2020), which also release less β-glucosidase (Okamoto et al., 2000; 

Ahmad et al., 2011; Sørensen et al., 2013). Less β-glucosidase activity induces less 

hydrolyzed available C, which is required to maintain higher microbial activity, including 

microorganisms responsible for nutrient mining. Furthermore, benzoxazinoids 

decomposition by microorganisms with a high degradation capacity (i.e., Pseudomonas 

putida (Neal et al., 2012)) requires time and energy (Schütz et al., 2019). Accordingly, low 

or no benzoxazinoids in the exudates may be advantageous for rhizosphere microorganisms. 

Finally, microorganisms activated at root tips and other root parts with intensive exudation 

may decompose benzoxazinoids, thus reducing their inhibitory effects. This calls for 

investigating the influence of root hairs and benzoxazinoids on the spatial distribution of root 

exudates along and across the roots, and ultimately on the rhizosphere extent and β-

glucosidase activity. 

Imaging methods per se provide the advantage of non-destructively visualizing the 

distribution of compounds or activities in the root-soil continuum. In the case of the 

rhizosphere, unique relations can thus be co-localized, such as effects of the water content 
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and the exudation of labile compounds – two prerequisites for high exoenzymatic activity. 

The spatial distribution of enzyme activity can be detected by soil zymography (Spohn et al., 

2013; Razavi et al., 2019), the release of recently assimilated carbon as root exudates 

visualized with 14C imaging (Holz et al., 2018), and water content localized with neutron 

radiography (Zarebanadkouki et al., 2012). Soil zymography and neutron radiography (Holz 

et al., 2019a) have been successfully coupled, as have soil zymography and 14C imaging 

(Spohn & Kuzyakov, 2013). The combination of the three approaches, however, promises to 

link two spatially highly variable factors – the newly released photoassimilates and the water 

content – to elucidate their separate and combined effects on enzyme activity.  

In this respect, using genotypes with contrasting rhizosphere morphology (i.e. root hair 

defective) (Wen & Schnable, 1994) and exudate profiles (i.e. benzoxazinoids deficit) (Hu et 

al., 2018) will induce varying interactions in the rhizosphere.  

We investigate how the spatial distribution of β-glucosidase activity in the rhizosphere 

of maize depends on the localization of the newly released organic substances via the roots 

and on the soil water content. For this purpose, we compare two maize mutants with the 

corresponding wild type. We hypothesized that: (i) the gradients of β-glucosidase activity in 

the rhizosphere depend on both labile C and soil water availability (H1); (ii) the presence of 

root hairs expands the rhizosphere extent as well as the maximal activity of β-glucosidase 

(H2); (iii) the presence of benzoxazinoids in root exudates suppresses microbial activity, 

reducing β-glucosidase activity (H3). To test these hypotheses, we applied three imaging 

methods (soil zymography, 14C imaging, neutron radiography) to three maize genotypes 

(wild type, mutant with defective root hair prolongation (rth3), mutant with reduced 

benzoxazinoids content in root exudates (bx1)). 

2.2 Materials and Methods 

2.2.1 Experimental setup 

We used a Haplic Phaeozem soil substrate with a loam texture consisting of sand – 33%, 

silt – 48%, and clay – 19% (Vetterlein et al., 2021). The soil pH (CaCl2) was 6.21, total C 

and N were 8.5 and 0.8 g kg-1, respectively; mineral N, available P and K were 1.4, 32.7, and 

28.5 mg kg-1, respectively (Vetterlein et al., 2021). The following nutrients were added to 

the soil before filling the rhizoboxes (10×21.2×0.6 cm): 50 mg kg-1 N as NH4NO3, 50 mg kg-

1 K as K2SO4, 25 mg kg-1 Mg as MgCl26H2O, and 40 mg kg-1 P as CaHPO4. The 1 mm sieved 

soil was homogeneously filled into rhizoboxes, avoiding the formation of layers. The mass 
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of soil was about 161-162 g per rhizobox, assuring a homogeneous bulk density of 1.27 g 

cm-3.  

Three maize (Zea mays L.) genotypes – wild type (WT, B73), root-hair defective (>90%) 

mutant (rth3) (Wen & Schnable, 1994; Hochholdinger et al., 2008, 2018) and benzoxazinoids 

(BX) deficit (>90%) mutant (bx1) (Frey et al., 1997) – were grown in the rhizoboxes. After 

3 days of germination, the pre-germinated seedlings of each genotype were planted in four 

replicates into separate rhizoboxes and all plants were cultivated for 21 days. The rhizoboxes 

were placed at an angle of approximately 45° to ensure roots growing towards the wall of the 

rhizoboxes. About 20-22% of volumetric water content (VWC) was maintained by watering 

the soil regularly from the top. The spatial distribution of water was visualized by neutron 

radiography (details below). Plants were grown in a climate chamber with a controlled 

temperature of 22 °C during the day and 18 °C during the night, a photoperiod of 12 h, 

relative air humidity of 65%, and a light intensity of 350 µmol m-2 s-1 of photosynthetically 

active radiation at the top of the rhizobox (LED Grow Light, GrowLED, France).  

2.2.2 Imaging methods 

2.2.2.1 Plant labeling and 14C imaging 

After 21 days of growth, each plant was labeled with about 0.5 MBq 14CO2 at a target 

CO2 concentration of 500 ppm, following the procedure described by Kuzyakov et al. (2006). 

Briefly, six plants (two replicates of each of three genotypes) were put in an airtight chamber 

(120 L volume) during two days. Before labeling, the CO2 inside the labeling chamber was 

reduced by cycling the air through 1 M NaOH for 8 h with the grow light off. For the labeling, 

Na2CO3 solution containing 3 MBq of Na214CO3 was dissolved in 10 ml phosphoric acid 

(100%). During the labeling, all plants were kept under a grow light (350 µmol m-2 s-1) to 

enable maximum photosynthetic activity. After 6 h, not assimilated CO2 in the chamber was 

trapped by pumping the air through 1 M NaOH for 2 h. 14C activities were determined by 

liquid scintillation counting using a Hidex 300SL Automatic Liquid Scintillation Counter 

(Hidex, Turku, Finland). 0.5 ml of NaOH were added to the 8 ml scintillation cocktail 

Rotiszint Eco plus (Carl Roth, Karlsruhe, Germany) and kept in the dark for 24 h for 

chemiluminescence to cease. 

The 14C imaging was done as described in Holz et al. (2018). Briefly, directly after 

labeling, the rhizoboxes were transferred to a dark room. The rooted soil surfaces were 

exposed to storage phosphor screens (BAS-IP MS 2040 E, GE Healthcare, U.S.A.). All 

screens were erased for 10 min under a strong bright light before use, and were protected 
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from moisture by transparent plastic bags (polypropylene, 40 μm thickness, density 

0.95 g cm-3, MDF Verpackungen GmbH, Bergisch Gladbach, Germany). After 20 h 

exposure in the dark, the screens were removed from the soil-root surface and scanned by a 

laser scanner for phosphorimaging (650 nm excitation, FLA-7000, GE Healthcare, U.S.A.) 

with a spatial resolution of 25 μm. The duration of 20 h was recommended by previous 

studies (Holz et al., 2018; Thu Hoang et al., 2020) to best visualize the 14C signal.  

The 14C images were calibrated by preparing a series of smooth soils with activities 

ranging from 0 to 1.55 MBq at cm-2. The same procedure of 14C imaging and image 

processing procedure was applied. The details are described in Thu Hoang et al. (2020). 

Due to the short time (20 h) between labeling and imaging, almost all of the 14C detected 

can be attributed to exudates and secretion – and a negligible proportion to root cell/tissue 

turnover, which requires longer observation times (> 5 days). 

2.2.2.2 Soil zymography 

Direct soil zymography (Razavi et al., 2016) was used to study the spatial distribution 

of enzyme activities immediately after removing the 14C imaging plates. Enzyme activity 

was visualized using polyamide membranes (0.45 µm mesh size, Tao Yuan, China) saturated 

with 4-methylumbelliferone (MUF)-labeled substrates. The β-glucosidase activity was 

detected with 4-methylumbelliferyl-β-D-glucoside (Sigma-Aldrich, Germany). The substrate 

was completely dissolved in MES buffer (C6H13NO4SNa0.5) (pH: 6.5) (Sigma-Aldrich, 

Germany) by shaking to reach the concentration of 1 g L-1 (Sanaullah et al., 2016), which 

corresponds to 3.5 mM. Polyamide membrane filters (20×20 cm) and a pore size of 0.45 µm 

were cut to 10×20 cm to fit the size of the rhizobox. Each membrane was saturated with 5 ml 

of the substrate solution by covering it completely with the solution in a flat box for 10 s. 

The rhizoboxes were opened from the rooted side, and the saturated membranes were applied 

directly to the soil surface (Razavi et al., 2016). After 1 h incubation at the root-soil interface, 

the membranes were carefully lifted off, and the few attached soil particles were gently 

removed using tweezers and a soft-thin paintbrush.  

The membranes were placed in a dark room under ultraviolet (UV) light with an 

excitation wavelength of 355 nm. Photos were taken with a digital camera Canon EOS 6D 

with a Canon lens EF 94 mm 1: 4L IS. The aperture and shutter speed were set to f/5.6 and 

1/30 s, respectively.  

A standard calibration that relates the enzyme activities to the gray values of zymogram 

fluorescence (i.e. of the membrane) was performed. The calibration function (Fig. S1) was 
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obtained by zymography of 4 cm2 membranes soaked in a solution of MUF with 

concentrations of 0, 0.01, 0.2, 0.5, 1, 2, 4, 6 and 10 mM. The amount of MUF on an area 

basis was preliminarily determined to ensure complete membrane saturation but no excess 

liquid that may drip. The membranes used for calibration were imaged under UV light and 

analyzed with identical light conditions and camera settings as the samples. 

2.2.2.3 Neutron radiography 

Neutron radiography was used to create images of the water content in the sample and 

to identify differences in the water content of rhizosphere and bulk soil.  

Neutron radiography is highly sensitive to hydrous materials and therefore visualizes the  

water distribution along the roots in the soil (Moradi et al., 2009; Ahmed et al., 2016). A 

parallel neutron beam propagates through the sample, and the transmitted neutrons behind 

the sample are detected using a scintillator. The scintillator converts the neutrons into visible 

light captured by a CCD camera. The exposed image carries information on sample thickness 

and composition according to the Beer–Lambert's law (Zarebanadkouki et al., 2012):  

5-67
88-67

= 𝑒𝑥𝑝4−∑ (µ.𝑑.).9/
.91 ;  (Eq. 1) 

where 𝛪 is the transmitted neutron beam intensity [cm-2 s-1], 𝑓𝑓 is the flat field (i.e. the 

transmitted beam without sample) [cm-2 s-1], dc is the dark current (i.e. transmitted beam 

when the beam is off) [cm-2 s-1], 𝜇. is the neutron attenuation coefficient [cm-1], and 𝑑. is 

the thickness [cm] of material 𝑖. The materials composing our samples were: aluminum, dry 

soil, root, and water. The attenuation contribution of aluminum and dry soil were obtained 

from radiographs of empty and dry samples, respectively. The attenuation coefficient of 

water was derived from images of step wedge samples of known thickness filled with water. 

The measurements were performed within 0.5-1 h after zymography at the ICON beamline 

at the Paul Scherrer Institute (PSI), Villigen, Switzerland (Kaestner et al., 2011). We used a 

sCMOS camera detector (Andor NEO, Andor Technologies) with an array of 1260 by 1260 

pixels, a field of view of 15.75 by 15.75 cm, and an effective spatial resolution of 0.2 mm 

(or 2160 × 2560 pixels, yielding a field of view of 13.3 × 16 cm and pixel size of 0.062 mm). 

With this field of view, a 2x2 matrix radiography scan with overlapping marginally was 

needed to fully cover the rhizobox sample. 
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2.2.3 Image processing and co-localization 

2.2.3.1 Image processing 

All images were processed in ImageJ (version 1.52p) (Abràmoff et al., 2004). 

Zymograms, neutron radiographs, and 14C images were transformed into 8-bit grayscale 

images. The backgrounds were calculated and subtracted based on the calibration line at 

concentration of zero added MUF for zymogram, no 14C activity added for 14C images, and 

intensity attenuations values of aluminum and dry soil for neutron images.  

For each treatment the mean values of β-glucosidase activity were measured from 

calibrated zymograms (Fig. S2) at three locations (bulk soil, mature root, root tips) using 

ImageJ. β-glucosidase activity for bulk soil was estimated at 5-7 locations (~2-6 cm2) away 

from all adjacent roots. β-glucosidase activity along the mature root and root tip areas was 

measured at 5-7 root compartments with a good visibility to avoid bias related to attachment 

issues, as described in Razavi et al. (2019).  

Rhizosphere hotspots for β-glucosidase activity, 14C exudates, and water content were 

thresholded by a previously developed statistical approach of Mean+2SD (or µ+2s) (Bilyera 

et al., 2020). 

2.2.3.2 Rhizosphere thresholding procedure 

The rhizosphere extent was determined for root segments >3 cm from the tip and root 

tip regions 0-2 cm from the tip (Yu et al., 2016), irrespective of root type and order, for the 

following parameters: 1) 14C in exudates (14C images); and 2) β-glucosidase activity (soil 

zymograms). To measure the rhizosphere extent, five horizontal transects (angle to the root 

~ 900) were randomly drawn across five randomly selected roots for each 14C image and 

zymogram using ImageJ. In total, this yielded 25 lines per image as pseudo-replicates, and 

their mean was used for each rhizobox (as a true replicate).  

The pixelwise gray values along each section were plotted against their distance from 

the starting point at the root-soil interface. A minimum of five locations (~2-6 cm2) of the 

background activities (bulk soil) per image were manually selected, and their mean pixel 

intensities were determined (Fig. S2) (Hummel et al., 2021). The threshold value (here lower 

limit of the rhizosphere activities) for the rhizosphere was taken from the µ+2s of the pixel 

intensity distribution, as was mentioned above. Then, in the cross sections, the distance 

between the points where the threshold was first / last exceeded from both sides of each root 

was calculated and used as the rhizosphere bidirectional extent (Fig. S2). Root diameters at 
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the same segments of the root system were manually measured in individual photos. Based 

on the assumption that the rhizosphere is symmetrically distributed around the root 

(Hinsinger et al., 2005), the rhizosphere extent was calculated as the difference between 

rhizosphere bidirectional extent and root diameter divided by two.   

2.2.3.3 Co-localization analysis 

Prior to co-localization analysis, all three images from each replicate were cropped to 

the same dimensions and manually registered by spatial alignment with the TrackEM2 plugin 

(Cardona et al., 2012; Saalfeld et al., 2012) in ImageJ. The co-localization of three 

parameters (14C intensity, β-glucosidase activity, soil water content distributions) enables to 

detect if they spatially overlap / coincidence. The co-localization was analyzed using JACoP 

(Just another co-localization plug-in) (Bolte & Cordelières, 2006) in ImageJ. We did not 

correct images for root growth during the imaging processes because soil zymography was 

conducted maximally 10-15 min after the 14C image plate was removed; thus, following 1 h 

of exposure time for zymography, the samples in rhizoboxes were measured for water content 

by neutron radiography 1.5-2 h after 14C imaging. The co-localization analysis was 

conducted for two sets: (1) normalized images of 14C intensity, β-glucosidase activity, and 

soil water content distributions; and (2) thresholded hotspot areas of β-glucosidase activity, 
14C exudates, and water content (binary images of rhizosphere).  

We calculated the following co-localization coefficients: (1) Pearson correlation 

coefficient (PC) – to characterize the correlations of the pixel intensity distribution between 

two images; (2) overlap coefficient (Fig. S3) (r) – to distinguish if the pixel intensity 

distribution of two signals overlap with positive values between two images; (3) Mander’s 

or co-occurrence coefficients (Fig. S3): M1 – the co-localization of parameter A with 

parameter B; M2 – the co-localization of parameter B with parameter A. This image analysis 

produced two coefficients that represent the fraction of co-localizing objects in each 

component of a dual-channel image (Manders et al., 1993). The co-localization coefficients 

were calculated for original images for the whole rhizobox area (bulk and rhizosphere soil). 

Binary images of thresholded rhizosphere were applied for calculation coefficients r, M1 and 

M2 of the rhizosphere.  

Pearson correlation coefficient: 𝑃𝐶 = ∑ (;&-")∙(=&->)&

?		∑ (;&-")-& 	∑ (=&->)-& 		∙
              (Eq. 2) 
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Overlap coefficient: 𝑟 = ∑ ;&∙=&&

@∑ ;&
-

& ∙∑ =&
-

& 	
                                 (Eq. 3) 

 

Manders’ coefficients: 𝑀1 = ∑ /&,,)'),	&
∑ /&&

  with Ai, coloc = Ai if Bi>0    (Eq. 4) 

𝑀2 = ∑ 2&,,)'),	&
∑ 2&&

  with Bi, coloc = Bi if Ai>0   (Eq. 5) 

 

where Ai is the intensity at each pixel of image A, Bi is the intensity at each pixel of image 

B, and a and b are the mean intensities of images A and B, respectively.  

The qualitative interpretation of the quantitative co-localization results is provided 

according to Zinchuk et al. (2013) in five linguistic variables – very weak, weak, moderate, 

strong, very strong (Table S1). 

2.2.4 Statistical analysis 

All data are presented as mean ± standard deviation of four replicate rhizoboxes. The 

Nalimov outlier test was performed to check the reliability of data sets. The Shapiro-Wilk 

test was performed for residues of means to check for normality, and the Bartlett test was 

applied to check the homogeneity of variances. If data meet normality and homogeneity, one-

way ANOVA and Tukey’s HSD post hoc test were performed; if homogeneity was not 

proved, the Welch test and Games-Howell post-hoc test were performed; if normality was 

not met, the Kruskal-Wallis test was applied. All analyses were performed using R software, 

Version 3.6.1 (R Development Core Team, 2011) at a significance level of α = 0.05. 

2.3 Results 

2.3.1 Spatial distribution of 14C from root exudation, β-glucosidase activity and soil water 

content   

Visual analysis of the 14C images showed contrasting exudation patterns for the three 

maize genotypes: 1) stronger exudation at root tip regions in wild type (WT) (Fig. 1d); 

2) rather homogeneous exudation along the whole root system of mutants’ rth3 (Fig. 1e) and 

bx1 (Fig. 1f). Overall, exudation was higher for bx1 than for rth3. β-glucosidase activities on 

zymograms were higher at root tips and young roots in WT (Fig. 1g) but mainly on young 

roots in rth3 (Fig. 1h) and rather homogeneous along the root axis in bx1 (Fig. 1i). Neutron 

images clearly showed the roots themselves due to their high tissue water content (~0.2%) 

and a very variable water content in close proximity to the root (0-1 mm) (Fig. 1j-l). 
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Figure 1. Root images (real light photos) (a,b,c), zymograms of β-glucosidase activity (d,e,f), 
14C phosphor images (g,h,i), and neutron radiographs (j,k,l) of three maize genotypes (WT, 

rth3 and bx1). Side color or gray scales are proportional to β-glucosidase activity (pmol cm-

2 h-1), 14C activity (MBq) and to volumetric water content. Always one representative 

replicate out of four was chosen. WT: wild type maize, rth3: root hair defective mutant; bx1: 

mutant with reduced benzoxazinoids in root exudates. 
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2.3.2 Rhizosphere extent 

The rhizosphere extent of β-glucosidase activity of rth3 was 30-35% smaller for the 

mature root (P<0.05) and root tip region (P<0.001) than for the corresponding regions of 

WT, but there was no difference between bx1 and WT (Fig. 2a). The mean rhizosphere extent 

with respect to β-glucosidase activity was ~50% greater (P<0.001) at the root tip region than 

along mature roots over all genotypes (Fig. 2a). 

The rhizosphere extent of exudation along mature roots was about 2.5 times smaller (P< 

0.001) in the WT versus both mutants (Fig. 2b). In contrast, there was no genotype effect 

(P=0.31) on the spatial 14C extent around the root tips (Fig. 2b). Generally, the exudation 

distance increased 2-6 fold at the root tip versus mature root for all genotypes (P < 0.001).  

 

(a) 
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Figure 2. The rhizosphere extent for β-glucosidase activity (a) and 14C-labeled root exudates 

(b). Data are means for each genotype (WT, rth3 and bx1) (n=4), error bars indicate standard 

deviations. Letters within one root type mark significant differences among the genotypes at 

P<0.05. Asterisks on the bracket at the right side indicate significant differences between 

root sections (‘***’ P<0.001; ‘**’ P<0.01; ‘*’ P<0.05). 

2.3.3 Mean β-glucosidase activity 

Mean β-glucosidase activity in the bulk soil was ~20% (P<0.001) higher for rth3 than 

bx1 and WT (Fig. 3). The mean values along mature roots (Fig. 3) increased to 554 pmol cm-

2 h-1 (P<0.01) in bx1 compared to 436 pmol cm-2 h-1 in WT, whereas they were within the 

same range (550-571 pmol cm-2 h-1, P=0.34) for all genotypes at the root tip region (Fig. 3).   

(b) 
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Figure 3. Mean of β-glucosidase activity in bulk soil (shaded) and in the rhizosphere along 

the mature root and root tips. Data are means for each genotype (WT, rth3 and bx1) (n=4), 

error bars indicate standard deviations. Letters within one root section mark significant 

differences among the genotypes at P<0.05. Capital letters refer to bulk soil, while lower 

case letters refer to rhizosphere soil. Relative increase (fold, times) in β-glucosidase activity 

along mature root and at root tip compared to bulk soil is marked over arrow at each column. 

The vertical thin dashed line separates the bars for bulk and rhizosphere activities. 

2.3.4 Hotspots areas  

The percentage of hotspot areas for β-glucosidase activity did not differ (P=0.24) among 

the genotypes (Fig. 4a). Mutant bx1 had the highest percentage (27% of the total rhizobox 

area) of the hotspot area for exudation (Fig.  4b), which was 3.5-fold greater (P<0.05) than 

for WT or rth3. 
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Figure 4. Hotspots for β-glucosidase activity and 14C exudation. Data are means for each 

genotype (WT, rth3 and bx1) (n=4), error bars indicate standard deviations. Letters within 

one hotspot type marks significant differences among the genotypes at P<0.05. 

2.3.5 Co-localization  

The co-localization analysis of the whole image revealed a moderate Pearson coefficient 

(PC) (in the order rth3 (0.14) < WT (0.18) < bx1 (0.24)) for the dependence of β-glucosidase 

activity on the newly released 14C exudates (Table S2). 14C root exudates strongly induced 

β-glucosidase activity in rth3 (r=0.85, Table S2), but much less pronounced in WT and bx1 

(r=0.26-0.31). The area of enhanced β-glucosidase activity, which co-occurred with 14C 

exudates (represented here by Mander’s coefficient (M1)), increased (P < 0.001) from 0.26 

in WT and 0.39 in bx1 to 0.99 in rth3 (Table S2). β-glucosidase activity co-localized strongly 

(r=0.89-0.96, Table S2) with soil water content for all three genotypes. In contrast, PC for 

the water*enzyme interaction was dependent on genotype (P < 0.01), from very weak in rth3 

(-0.02) to moderate in both WT (0.19) and bx1 (0.23) (Table S2). 

Restricting the co-localization analysis to the rhizosphere hotspot area defined by highest 

β-glucosidase activity resulted in similar overlap coefficients within genotypes for 14C 

exudate hotspots (0.37-0.50) and rhizosphere water hotspots (0.39-0.43) (Fig. 5). The area of 

the β-glucosidase activity hotspot co-occurring with 14C exudates in hotspots (M2) was about 

two times larger in mutant bx1 than WT (Fig. 5). The area of β-glucosidase activity co-
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occurring with the rhizosphere water hotspot (or wet rhizosphere) (M1) was similar for all 

genotypes (0.30-0.39). 

 

 
(a)   1 



Manuscripts 

 
 

81 
 

 

 

 

 

 

 

(b)  
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Figure 5. Region of interest (ROIs) images of hotspots for exudates and β-glucosidase 

activity, and their overlap image for three maize genotypes (WT, rth3, bx1). The results of 

co-localization analysis are given as means of four replicates and presented by overlap 

coefficient (r) and two Manders coefficients (M1 and M2, see detailed explanation in Fig. 

S3). Asterisks on the values indicate significant difference between genotypes (‘*’ P<0.05; 

‘**’ P<0.01; ‘***’ P<0.001). 

2.4 Discussion 

2.4.1 Role of root exudation and water distribution on β-glucosidase activity 

The WT released exudates primarily from root tips (Fig. 1, Fig. S4), as already 

previously identified by 14C labeling (Rovira, 1973; McCully & Canny, 1985). In contrast, 

the rth3 and bx1 mutants released 14C exudates along the whole roots (Fig. 1d-f), i.e. not 

restricted to root tips. The change in spatial distribution of exudates in rth3 and bx1 is 

presumably a plant strategy to maintain high microbial activity and thus enzyme activity 

(including β-glucosidase) by releasing easily available C into the entire rhizosphere 

(McDougall & Rovira, 1970; Voothuluru et al., 2018; Cotton et al., 2019). The rth3 mutant 

could compensate for its up to 70 % smaller root surface area (Tachibana & Ohta, 1983; 

Raghothama & Karthikeyan, 2005; Segal et al., 2008) by increasing the total amount of 

exudates distributed longitudinally along the roots (Lagos et al., 2015). Similarly, the deficit 

of benzoxazinoids in bx1 induces not only an altered exudate composition (Hu et al., 2018), 

with a higher labile C content, but also distributed the exudates along longer segments of its 

root system (Fig. 1).  

Water is crucial not only for microbial functions, but especially for substance diffusion. 

Microorganisms in bulk soil, being at least 12-14 mm away from 14C exudation hotspots, 

rely mainly on SOM as a C source (Vedere et al., 2020). SOM is sparsely and patchily 

distributed a few mm away from roots, and the long diffusion pathways between non-

diffusible enzymes and substrate require closed water films. (Hobley et al., 2018; Benard et 

al., 2019a; Vedere et al., 2020). Low water content reduces the continuity of such substrate 

diffusion paths and increases the probability of enzyme sorption and inactivation (Kandeler, 

1990; Allison, 2006; Guber et al., 2019; Vedere et al., 2020). Accordingly, the dependence 

of enzyme activity on soil moisture is supported by the high correlation (r=0.89-0.96) 

between β-glucosidase activity and water content (Table S2).  

Because enzyme diffusion in soil in nearly absent (Kandeler, 1990; Guber et al., 2019; 

Vedere et al., 2020), the high co-localization of β-glucosidase activities (zymography) with 
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exudate distribution (14C) outside the root surface clearly shows that rhizosphere 

microorganisms use root exudates to produce enzymes. Thus, much (65-78 %) of the β-

glucosidase activity in the rhizosphere is produced by microorganisms, not by roots (only 

22-35%).  

Enzyme activity in the rhizosphere is controlled by environmental conditions favorable 

for microorganisms. Such conditions are present in a biofilm-like environment, which 

stabilizes abiotic conditions and provides a buffer of C availability (Flemming et al., 2016). 

Consequently, root exudates (visible by 14C imaging) with high C availability, which are 

close to the root surface (0-2 mm), create ideal conditions for maximum microbial activity 

(Paterson et al., 2008).  

14C shows the spatial distribution of exudates, and mucilage distribution determines the 

rhizosphere water content (Carminati et al., 2010). Mucilage in the rhizosphere increases 

microbial activity by providing favorable conditions for C diffusion and enzyme production 

(Ahmed et al., 2018; Holz et al., 2019a). The higher β-glucosidase activities and enhanced 

rhizosphere extension of the WT are attributable to mucilage production at the root tips rather 

than along older root sections (Guinel and McCully, 1986; Horst et al., 1982, this study – 

Figs. 2 and 3). Generally, the distinct rhizosphere extent for enzyme activity and exudation, 

along with the increased β-glucosidase activities at root tips compared to mature roots, 

support a bimodal distribution of rhizosphere properties (Carminati & Vetterlein, 2013). This 

concept reflects different age-based properties at the root tip and mature root zone (root tips 

lack fully developed functional tissues). This determines their respective functions and hence 

their ability to acquire water and nutrients. Our findings clearly support the bimodal nature 

of the rhizosphere in WT, but this was less pronounced in bx1 and rth3 (Figs. 2, 3).  

Overall, unlike in a bulk soil, enzyme activity (here β-glucosidase) in the rhizosphere 

was equally co-localized with optimal water content (r=0.39-0.43) and 14C exudates (r=0.37-

0.50) (Fig. 5). This supports our hypothesis (H1) on the important role of soil water and C 

availability in enzyme activity gradients. 

2.4.2 Role of root hairs for spatial distribution of exudates and β-glucosidase activity 

Root hairs are usually abundant only 1-5 cm above the root tip (Jungk, 2001), but the 

rhizodeposits formed when such hairs break and lyse promote microbial activity in the 

rhizosphere of the root region above 5-6 cm from the root tip, as the root continues growing. 

These root hair rhizodeposits, along with the released exudates, increase the active portion 

of microbial biomass in the rhizosphere (Zhang et al., 2020) and therefore stimulate β-
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glucosidase production (Wang & Lu, 2006). Generally, the presence of root hairs enlarged 

the enzymatic rhizosphere by up to 50% (Ma et al. 2018b), which our study also confirmed 

for β-glucosidase activity (+35% of rhizosphere extent) (Fig. 2). The rhizosphere radius 

(~0.36 mm) of maize with root hairs is equivalent to the average length of root hairs alone 

(~0.4 mm) (Ma et al., 2018b). The root hair regions (Gilroy & Jones, 2000; Haling et al., 

2013) could belong to nutrient-depletion zones (Kreuzeder et al., 2018; Hummel et al., 2021). 

When experiencing nutrient limitation, active microorganisms induce higher enzyme activity 

generally and β-glucosidase activity in particular. This expands the rhizosphere radius of 

maize at least within the length of root hairs. Thus, the expanded rhizosphere enzymatic zone 

along the root axis in WT maize (Fig. 1g-l) proves that gradients of β-glucosidase activity 

strongly depend on root hair presence (H2).  

In contrast, the absence of root hairs (rth3) induces an increased exudation of primary 

metabolites and β-glucosidase (Gramss et al., 1999) from the mature root zone in rth3. This 

might reflect the higher membrane permeability in the absence of root hairs. The substrate 

limitation for microorganisms can stimulate exudation by roots (Williams and Vries, 2020) 

and increase the spatial extent of the 14C exudation patterns along the mature root section 

(Fig. 2). Nonetheless, we cannot exclude methodological issues of 14C imaging (i.e. detection 

limits) due to root hair presence: such hairs may result in a more fuzzy distributions of 14C 

images (Holz et al., 2019b). Assuming the same amount of released root exudates from WT 

and rth3, then the much smaller root surface area in rth3 due to the deficient root hairs 

(Tachibana & Ohta, 1983; Segal et al., 2008) will probably yield a larger and/or faster 

exudation rate per root area. Some exudates are decomposed by microorganisms within 24 h 

of 14C imaging (Holz et al., 2019b), and this portion is expected to be larger along the root 

hairs colonized by bacteria (Mercado-blanco & Prieto, 2012). Higher decomposition in WT 

was confirmed by the almost two-fold larger overlap coefficient for 14C exudates (82 % vs. 

46 % in the bx1 and rth3 mutants) and by the formed β-glucosidase hotspot due to the 

presence of root hairs (Fig. 5). Nonetheless, we cannot reject the effect of patchiness along 

the root axis (active and inactive segments/patterns) in the rhizosphere, which may contribute 

to the co-localization results. 

2.4.3 Role of benzoxazinoids for spatial distribution of exudates and β-glucosidase activity 

The bx1 maize plant did not need to invest high energy into synthesizing benzoxazinoids 

and therefore probably produced more primary metabolites (Pott et al., 2019). Consequently, 

microbes very close to the root are less inhibited by defensive secondary metabolites (10-40% 
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lower amount) but instead have 20-30% more primary (soluble protein, amino acids, sugars) 

metabolites (Hu et al., 2018). (Fig. 2). The larger 14C accumulation area in the soil in bx1 is 

because the 14C is localized along the whole root, not only at the root tip as in WT. Due to 

the 25% stronger concentration gradients of sugars (Hu et al., 2018), 14C exudates from bx1 

diffused faster than from WT. Favorable (~15-20 %) soil water contents facilitate the 

diffusion of primary and secondary metabolites from the rhizosphere into the bulk soil, 

especially if this diffusion is induced by the presence of mucilage, ensuring continuous water 

films (Benard et al., 2018, 2019b). Nevertheless, due to their short (< 24 h) half-life in the 

soil (Macías et al., 2005) benzoxazinoids can diffuse no more than 1 cm from the root surface 

(Rice et al., 2012). This means they will not directly affect microbial activity in the bulk soil 

of WT. In contrast, primary exudation metabolites diffuse over larger distances from the 

whole root surface, but not from root tips as in WT. (Fig. 2). More available C further from 

the root surface presumably enlarges the rhizosphere extent for β-glucosidase activity in bx1, 

but this was not demonstrated in our results. Instead, excluding benzoxazinoids from 

exudates resulted in a sharp gradient of β-glucosidase activity (2.4-fold) between the 

rhizosphere and bulk soil (Fig. 3). Moreover, the two-times larger area of non-rhizosphere β-

glucosidase hotspots away from the root surface in bx1 supports the indirect influence of the 

inhibitory effect of benzoxazinoids (Hu et al., 2018) or other secondary metabolites 

(Banerjee et al., 2018). Some β-glucosidase hotspots may belong to the rhizosphere of roots 

covered by soil particles and not visible on Fig. 1a-c, but detected by neutron images (Fig. 1j-

l). Even if the influence on bulk soil remains speculative, the lower benzoxazinoid content increases 

microbial functionality in the rhizosphere (Das & Varma, 2010; Igalavithana et al., 2017) and 

induces higher microbial activation. Thus, the 30% higher β-glucosidase activity in the 

rhizosphere along the root axis of bx1 (Fig. 3) reflects the absence of the fungicidal effect of 

benzoxazinoids (Kudjordjie et al., 2019). In contrast, the presence of benzoxazinoids in 

exudates of WT probably reduces the production rate of β-glucosidase by microorganisms 

(Turner et al., 2002). These findings support our hypothesis (H3) that microbial activity in 

the rhizosphere is inhibited by the presence of benzoxazinoids in root exudates.   

2.5 Conclusions 

Coupling three in situ imaging approaches – 14C imaging for root exudate localization, 

soil zymography for analysis of enzyme activity distribution, and neutron radiography for 

tracing water fluxes – yielded insights into the spatial structure of biochemical gradients and 

functioning in the rhizosphere. This is the first study to provide evidence of maize genotype-

specific exudation strategies, including their implications for microbial functions. Beyond 
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the previously confirmed preferable exudation via the root tip regions in wild type maize, 

maize mutants with defective root hairs (rth3) and secondary metabolism (bx1) released 

considerable amounts of exudates including enzymes from the entire root. The co-

localization analysis of zymograms, 14C exudates, and neutron radiography images revealed 

an equal dependence of β-glucosidase activity on water and 14C exudate availability in the 

rhizosphere. The greater role of water over 14C exudate availability in the bulk soil underlines 

the pivotal role of water availability for the functioning of the soil microbiome and its 

hydrolytic activity.  

We conclude that the shape and extent of the rhizosphere for β-glucosidase activity are 

genotype-specific and depend on the released rhizodeposits. This study shows that gene 

knock-out often substantially alters the process-network in the rhizosphere, including its 

spatial localization along and across the roots. Intensive exudation by root hairs and the 

resulting microbial activity increased the utilization of 14C exudates up to two-fold. This, in 

turn, induced a broader rhizosphere extent for β-glucosidase activity.  

Altered exudation of defensive compounds (i.e., reduced benzoxazinoids), along with a 

strong additional influence of abiotic factors such as water content, lead to a spatial 

reorganization of rhizomicrobial activities in mutants compared to maize wild type. The 

release of benzoxazinoids by roots suppressed the activities of rhizosphere microorganisms, 

which led to 30% lower β-glucosidase activity but did not change the rhizosphere extent. The 

absence of benzoxazinoids induced root exudation along the whole root, but not at the root 

tip as in the wild type. The result was 2.5-fold larger 14C exudate hotspot areas.  

Overall, our findings confirm the contrasting exudation strategies of maize (Fig. 6) to 

ensure beneficial (i.e. producing β-glucosidase) microbial activity in the rhizosphere 1) to 

overcome energy and nutrient limitations due to the absence of root hairs, and 2) to 

compensate for the altered exudation composition and a shift from secondary to primary 

exudates in the profile. 
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Figure 6. General pattern of the effects of maize mutations (root defective rth3 and BX 

deficient bx1 as compared to wild type (WT) on the rhizosphere extent, hotspots, enzyme 

activity level and overlap of β-glucosidase with water and exudates. Significant increase and 

decrease indicated by ↑ and ↓ respectively. 
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Supplementary 

 

Figure S1. Sketch of rhizosphere thresholding methodology: a) an example of zymogram 

with five rectangles (B1-B5) which represent the areas of background β-glucosidase activity; 

b) gray values plotted against the distance. 
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Figure S2 Linear correlation between the gray values of the calibration membranes incubated 

for one hour and methylumbelliferone (MUF) concentrations. 

 

 

Figure S3. Schematic illustration of quantitative co-localization of activities/hotspots on two 

images A (Hotspot 1 – red) and B (Hotspot 2 – green) hotspots. Yellow part indicates 48% 

of overlap between two hotspot images (r=0.48); Manders coefficient 1 indicates that 44% 

of Hotspot 1 (yellow fraction of red hotspot) is considered as co-localized with Hotspot 2 

(M1=0.44); Manders coefficient 2 indicates that 65 % of Hotspot 2 (yellow fraction of green 

hotspot) is considered as co-localized with Hotspot 1 (red hotspot) (M2=0.65).  
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Table S1. Degrees of colocalization as fuzzy linguistic variables and the respective ranges 

of values of popular coefficients used to estimate colocalization, such as PC, r, and M1(M2) 

(Zinchuk et al., 2013) 

Degree of colocalization 
(Fuzzy linguistic variables) 

Pearson coefficient 
(PC) 

Overlap 
coefficient (r) 

Manders 
coefficien
ts M1or 
M2 

Very weak (-1) -(-0.27) 0-0.49 0-0.54 
Weak (-0.26) -0.09 0.50-0.70 0.55-0.77 
Moderate 0.1-0.48 0.71-0.88 0.78-0.94 
Strong 0.49-0.84 0.89-0.97 0.96-0.98 
Very strong 0.85-1 0.98-1.0 0.99-1.0 

 

Table S2. Result of co-localization analysis for the whole image of water content at neutron 

image (Water), 14C exudates (Exudates) and β-glucosidase activity (Enzyme). The co-

localization parameters are overlay coefficient (r), Mander’s coefficient 1 (M1) and 2 (M2). 

Data are means for each genotype and parameter (n=4) ± standard deviations. Capital letters 

mark significant differences among the genotypes at P<0.1 and small letters mark significant 

differences among interactions within genotype at P<0.05 and P<0.1. Asterisks on the p-

values indicate significant differences between root type (‘(*)’P<0.1; ‘*’ P<0.05; ‘**’ 

P<0.01; ‘***’ P<0.001). 
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3 Study 3: Microbial growth and enzyme kinetics in rhizosphere hotspots 
are modulated by soil organics and nutrient availability 
Peng Tiana,b, Bahar S. Razavic,  Xuechen Zhangd , Qingkui Wanga,e*, Evgenia 
Blagodatskayaf,g  

Status: Published in Soil Biology & Biochemistry  
a Huitong Experimental Station of Forest Ecology, CAS Key Laboratory of Forest 
Ecology and Management, Institute of Applied Ecology, Shenyang, 110164, PR China 
b University of Chinese Academy of Sciences, Beijing, 100049, PR China 
c Department of Soil and Plant microbiome, Institute of Phytopathology, University of 
Kiel, Kiel, Germany 
d Department of Biogeochemistry of Agroecosystem, University of Göttingen, 
Göttingen, Germany 
e Huitong National Research Station of Forest Ecosystem, Huitong, 418307, PR China 
f Department of Soil Ecology, Helmholtz Centre for Environmental Research – UFZ, Halle (Saale), Germany 
g Peoples Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation 
Abstract  

The input of labile organics by plant roots stimulates microbial activity and therefore 
facilitates biochemical process rates in the rhizosphere compared to bulk soil, forming 
microbial hotspots. However, the extent to which the functional properties of soil 
microorganisms are different in the hotspots formed in soils with contrasting fertility remains 
unclear. We identified the hotspots related to different levels of Zea mays L. root architecture 
by zymography of leucine aminopeptidase in two soils with contrasting fertility. The hotspots 
localized by tiny wet- needle approach around first- and second-order roots were compared 
for parameters of microbial growth and enzyme kinetics. The pattern of hotspot distribution 
was more dispersed and the hotspot area was one order of magnitude smaller around first-
versus second-order roots. The specific microbial growth rate (μm) and biomass of active 
microorganisms were soil-specific, with no difference between the hotspots and bulk soil in 
the fertile soil. In contrast, in the soil poor in organic matter and nutrients, 1.2-fold higher μm 
and greater growing biomass were found in the hotspots versus bulk soil. Lower enzyme 
affinity (1.3–2.2 times higher Km value) of β-glucosidase and leucine aminopeptidase to the 
substrate was detected in the hotspots versus bulk soil, whereas only β-glucosidase showed 
higher potential enzyme activity (Vmax) in the hotspots, being 1.7–2.1 times greater than that 
in bulk soil.  Notably, the activity of C-acquiring enzyme, β-glucosidase positively 
correlated with the biomass of actively growing microorganisms. The fertile soil, on the 
whole, showed greater Vmax and catalytic efficiency (Vmax/Km) and an approximately 2.5 
times shorter substrate turnover time as compared to the poor soil. Therefore, we conclude 
that i) the differences in microbial growth strategy between rhizosphere hotspots and bulk 
soil were dependent on soil fertility; ii) affinity of hydrolytic enzyme systems to substrate 
was mainly modulated by plant, whereas potential enzymatic activity was driven by both 
plant and soil quality. 
Keywords: Microbial hotspots, Soil zymography, Microbial growth, Enzyme kinetics 
 *Corresponding author: qwang@iae.ac.cn 
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3.1 Introduction 

The input of root exudates and rhizodeposits, mainly easily degradable low-molecular 

weight organic substances, stimulates microbial growth and activity in the rhizosphere, 

which is defined as one of the most dynamic microbial hotspots (Kuzyakov and 

Blagodatskaya, 2015; Kuzyakov and Razavi, 2019). The peculiarity of the rhizosphere as a 

root-soil interface is that the microbial community composition is generally linked to the soil 

microbial community, which is determined by basic soil properties (de Ridder-Duine et al., 

2005). The structure of rhizosphere community (i.e., species dominance and activity), 

however, is strongly modulated by the plant strategy for the nutrient acquisition, which is 

also dependent on basic soil properties, e.g., soil nutrition state (reviewed by Kuzyakov and 

Razavi, 2019). Therefore, the research question: how the difference between the hotspots 

and bulk soil is impacted by soil fertility, which dramatically changes soil C and nutrient 

status, is very relevant. This question needs to be addressed considering that microbial 

communities in the hotspots and bulk soil are functionally different in terms of their life 

strategies and enzyme kinetic properties due to different qualities and quantities of organic 

substrates (Blagodatskaya et al., 2009; Hoang et al., 2016). 

Microbial activity is limited by various environmental factors and especially by carbon 

(C) availability (Hodge et al., 2000; German et al., 2011). Microbial hotspots are formed 

with the input of fresh carbon sources (Hodge et al., 2000; Schimel and Weintraub, 2003). 

Accordingly, soil with higher quality, i.e., the availability of organic substances and nutrients, 

should represent higher microbial and enzyme activity. On the other hand, the relative 

fraction of the hotspots induced by root exudates and rhizodeposits may be lower if soil 

inherent substrate availability is sufficient for microbial metabolism. We hypothesize, 

therefore, that the differences in microbial functional parameters between the hotspots and 

surrounding soil will be smoothed in rich compared to the poor soil. 

In the rhizosphere, root exudation and rhizodeposits stimulate the activities of 

extracellular enzymes (Ge et al., 2017; Ma et al., 2018), which are valuable tools for 

microorganisms to degrade complex polymeric organic substances for acquiring energy and 

nutrients from surrounding soil. However, artificially labeled fluorogenic substrates applied 

in soil studies for determination of extracellular enzymes activity (Marx et al., 2001) are 

much less than natural organic polymers. Despite it is generally assumed that fluorogenic 

substrates are decomposed by extracellular enzymes; this assumption still needs to be proven 

experimentally. Furthermore, application of sonicated soil suspension cannot distinguish the 
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activity of enzymes released by microorganisms in response to substrate addition and earlier 

secreted enzymes immobilized within soil matrix (Nannipieri et al., 2018). Therefore, the 

cumulative activity of enzymes presented in soil suspension is determined by this approach. 

The gradients of enzyme activities as a function of distance from the root surface to the 

soil have been clearly related to nutrients availability (Tarafdar and Jungk, 1987; Badalucco 

and Nannipieri, 2007) and the spatial patterns of such gradients have been recently 

visualized (Sanaullah et al., 2016; Zhang et al., 2019). However, the inhomogeneous 

distribution of microbial hotspots along the roots has also been observed (Pausch and 

Kuzyakov, 2011; Razavi et al., 2016a), which might be due to soil heterogeneity (Webster, 

2000; Heuvelink and Webster, 2001) or variation and distribution of exudation along the 

roots. Therefore, careful localization of the hotspots is necessary for precise soil sampling 

from microbial hotspots. Soil zymography, a novel in situ method, enables determining the 

two-dimensional spatial distribution of enzyme activities in soil (Spohn et al., 2013; Razavi 

et al., 2019; Heitkötter and Marschner, 2018) and localizing hotspots of various enzyme 

activities.  

The most ecologically relevant biogeochemical processes in soils are microbially 

mediated, and microbial functions depend on active microbial pools in soil because only the 

active microorganisms drive biogeochemical processes (Blagodatsky et al., 2000; 

Nannipieri et al., 2003). The rate of biomass-specific respiration is 10–100 times greater 

when it is based on the active than on the total microbial pool (Salazar-Villegas et al., 

2016). Additionally, the fraction of active microorganisms in the hotspots is up to 2 times 

higher than that in bulk soil (Blagodatskaya et al., 2014). Consequently, the simultaneous 

occurrence of numerous hotspots at the micro-scale level determines the microbial functions 

at higher scales (Blagodatsky and Smith, 2012; Kuzyakov and Blagodatskaya, 2015). In turn, 

the effect of hotspots can be quantified by their relevance to functional parameters, such as 

respiration, microbial growth and enzyme activities (Blagodatskaya and Kuzyakov, 2013). 

Kinetic approaches, based on product formation, e.g., respiration, are successful for 

assessment of the active biomass and for relating it to basic soil processes (Blagodatsky et 

al., 2000). Kinetic parameters of microbial growth as well as the dominant strategy can be 

detected using the substrate-induced growth response (SIGR) method (Panikov, 1995). The 

correspondence between microbial growth and functional parameters of enzymes 

hydrolyzing polymeric organic compounds in soil remains to be studied in the precisely 

localized hotspots (Razavi et al., 2015; Ma et al., 2017). 
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Here, two types of soil with contrasting fertility were used to grow maize plants. The 

application of soil zymography enabled accurate localization of the microbial hotspots and 

successful collection of the micro-samples by tiny wet-needle approach. This study was 

designed to i) investigate the potential effect of rhizosphere hotspots on microbial growth 

and enzyme activities; ii) evaluate the effect of soil type on the difference in kinetic 

parameters between the hotspots and bulk soil. We hypothesized that 1) rhizosphere hotspots 

contain a high fraction of stimulated microorganisms (with a high growth rate and enzyme 

activity) compared to bulk soil independently of soil fertility; 2) the difference in kinetic 

parameters between the hotspots and bulk soil are stronger in the poor soil; 3) the enzyme 

activity in soil with higher fertility is higher than in the poor soil. 

3.2 Materials and Methods 

3.2.1 Hotspot identification and sampling 

Individual maize plants (Zea mays L., KWS, Germany) were grown in separate 

rhizoboxes (30 plants in total) in two soils with similar pH but contrasting texture and 

fertilization. Mitterfels (fertile soil) is located in the Central German Uplands. The soil type 

is Hyperdystric Chromic Folic Cambisol (WRB, 2015). The samples of Mitterfels soil were 

taken from loamy Ap horizon (Lang et al., 2017) with high C and N content. Unterlüss 

(poor soil) is located in Lower Saxony, Germany. The soil type is Hyperdystric Folic 

Cambisol (WRB, 2015). The samples taken from Ap horizon of Unterlüss silty loam soil 

were relatively barren, with respectively, 1.6, 2.0 and 4.1times lower C, N and P content 

as compared with Mitterfels soil (Table 1). Further details on the sites, soil profiles and 

soil properties can be found in Lang et al. (2017). During growth, the rhizoboxes were 

kept inclined at an angle of 45° so that the roots grew at the vicinity of the lower wall of 

the rhizobox due to gravitropism. After cultivating maize plants for 2 weeks, soil 

zymography was applied to identify the spatial distribution of β-glucosidase and leucine 

aminopeptidase hotspots around the roots (Razavi et al., 2019). 

Table 1 Stand parameters at two research sites in Germany. Data taken from relevant German 

forest authority (Haußmann and Lux, 1997; Lang et al., 2017) 
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Two types of fluorogenic substrates based on 4-methylumbelliferone (MUF) and 7-

amino-4-methylcoumarin (AMC) were used: 4-methylumbelliferyl-β-D-glucoside (MUF-G) 

for β-glucosidase; L-Leucine-7- amino-4-methylcoumarin (AMC-L) for leucine 

aminopeptidase.  After fitting the substrate-saturated membrane to the soil surface for 1 h, 

enzyme activity was detectable by the appearance of fluorescent products on the membrane 

visible under UV light (Fig. 1a–d). The estimation of fluorescence intensity proportional 

to the activity of the enzyme was calibrated by the range of concentrations of corresponding 

products: either MUF or AMC. In order to transform zymogram images to graphical 

representation, digital image histograms were developed as barcharts, which showed the 

distribution of pixel values according to the color map. These histogram graphs show the 

number of pixels of the zymogram images at each 0.01 color intensity value occurring in 

that image. Numbers of pixels as well as area of whole image were calculated based on these 

histograms. All pixels with the color intensity exceeding average value (i.e., >0.75) were 

assigned to the hotspots for enzyme activities (Sanaullah et al., 2016). 

For both soils, we found higher resolution for the hotspots identified by leucine 

aminopeptidase compared to β-glucosidase. In addition, we found that the hotspots around 

new-developed first-order roots of maize were very small in size and can be considered as 

dots, in comparison with large hotspot areas around second-order root. The zymography 

images of leucine aminopeptidase activity were treated for the hotspots sampling around 

first- and second-order roots, separately. For precisely localized sampling, soil particles were 

carefully collected using wet needle (tip 1.5 mm) of a syringe directly from the hotspots 

identified by zymography (Fig. 1e). No hotspots were detected at the distance exceeding 1.5 

mm from the roots. About 0.1 g soil was collected from large number of hotspots and was 

pooled to form a composite sample for each plant replicate. Bulk soil was collected in a 

similar way from root- free soil. 
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Fig. 1 Examples of maize roots grown in rhizoboxes (center) and zymographs; showing 

spatial distribution of enzyme activities: (a) β-glucosidase, and (b) leucine aminopeptidase 

in the fertile soil; (c) β-glucosidase, and (d) leucine aminopeptidase in the poor soil, and (e) 

the sampling scenario using wet needle. 

3.2.2 Kinetics of substrate-induced growth response 

The kinetic parameters of substrate-induced growth response were estimated by the 

dynamics of CO2 emission from soil amended with glucose and nutrients (Panikov, 1995), 

taking advantage of the rapid automated bacterial impedance technique (RABIT) system in 

a climate chamber enabling to work with reduced (up to 0.5–1 g) soil sample size. Briefly, 

soil sample was incubated in a tube after solution addition with glucose (10 mg g-1) and 

mineral salts: (NH4)2SO4–1.9 mg g-1, K2HPO4–2.25 mg g-1, and MgSO4⋅7H2O–3.8 mg g-1 

(Blagodatsky et al., 2000). Soil water content was adjusted to 60% of water holding capacity 

by adding distilled water. The CO2 production rate was measured hourly at 22 ℃ using 

RABIT. 

Specific growth rate (μm) was determined by fitting of equation parameters to the 

experimental data on CO2 evolution rate (v; Fig. 2) according to the following equation: 

𝑣(𝑡) = A + B × exp	(µ!t)               (1) 

where A is the initial rate of uncoupled (no growth) respiration, B is the initial rate of 

coupled (growth) respiration, t is the time (Panikov and Sizova, 1996; Blagodatsky et al., 

2000); r0, the so-called physiological state index of microorganisms at time zero (before 

substrate addition), is calculated from the ratio between A and B. The total glucose-

metabolizing microbial biomass (sustaining + growing) is 
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                  𝑥A = 𝐵 ⋅ 𝜆 ⋅ 𝑌3B-/𝑟A 	 ⋅ 	 𝑢! 	      (2) 

Biomass yield per unit of CO2-C (YCO2) is assumed to be constant during the experiment 

and equals 1.5, corresponding to a mean value of 0.6 for the microbial yield per unit of 

glucose-C consumed. λ = 0.9 may be accepted as a basic stoichiometric constant (Panikov 

and Sizova, 1996). The growing (active) microbial biomass at time zero is given by 

                  𝑥′A = 𝑥A ⋅ 	 𝑟A      (3) 

The duration of the lag period (tlag) was determined as the time interval between the 

moment of glucose addition and the moment when the increasing rate of growth-related 

respiration B  × exp(μm t) becomes as high as the rate of respiration uncoupled from ATP 

generation; it was calculated using the parameters of the approximated curve of the 

respiration rate of microorganisms by the equation: 

                  𝑡C"D = 	
EF	(/2)

G!      (4) 

In addition, the kinetic approach allowed the assessment of generation time (Tg) of both 

actively growing and total microbial population consuming glucose. The estimation of Tg for 

actively growing biomass is based on specific growth rates, i.e: 

                  𝑇D = 	
EF	(H)
G!      (5) 

3.2.3 Enzyme kinetics 

Activities of β-glucosidase and leucine aminopeptidase for the hotspots and bulk soil 

were measured using the same fluorogenic substrates as for zymography with seven 

concentrations ranging from 0 to 400 μmol L-1. The extraction and determination were 

carried out according to German et al. (2011) and Razavi et al. (2015). Suspensions of 0.5 g 

soil (dry weight equivalent) with 50 mL deionized water were prepared using low-energy 

sonication (40 J s=1 output energy) for 2 min. 

Thereafter, 50 μL of soil suspension was added to 100 μL substrate solution and 50 μL 

of buffer [MES (C6H13NO4SNa0.5), (pH:6.5) for MUF substrate and TRIZMA (C4H11NO3⋅

HCl, C4H11NO3), (pH:7.2) for AMC substrate] in a 96-well microplate. At 0 min, 1 h and 2 

h after mixing, a fluorescence in microplates was measured at an excitation wavelength of 

355 nm and an emission wavelength of 460 nm, slit width of 25 nm, with a Victor3 1420-

050 Multi label Counter (Perkin Elmer, USA). Enzyme activity was expressed as MUF or 

AMC release in nmol per g dry soil per hour (nmol g-1soil h-1). 



Manuscripts 

 
 

108 
 

¼ 

The parameters of Michaelis-Menten kinetics for enzyme activities were determined 

using the equation: 

                  V = I345×[J]
*!+[(]      (6) 

where V is the reaction rate, [S] is the substrate concentration. Km (the substrate 

concentration at half-maximal rate) is related to the enzyme affinity to the substrate. Vmax 

refers to decomposition rates at saturating substrate concentration. 

The substrate turnover time (Tt) was calculated according to the following equation: 

Tt (hours) = (Km + S)/Vmax (Panikov et al., 1992), where S is the substrate concentration. 

The substrate turnover time was calculated at substrate concentration for the situations 

corresponding to the lack and excess of substrate, as S = Km/10 and S = 10* Km, respectively. 

The catalytic efficiency of enzymes (Ka) was determined as Ka = Vmax/Km (Hoang et al., 

2016). The Ka characterizes the enzyme catalytic properties and is used as an indicator to 

reflect the functional changes of microbial communities (Tischer et al., 2015). The higher 

Ka shows better catalytic properties (Moscatelli et al., 2012). 

3.2.4 Statistical analysis 

One-way analysis of variance followed by the Tukey HSD (P < 0.05) was used to test 

the effect of hotspots on microbial and enzyme kinetic parameters, e.g., specific growth rate, 

Vmax, Km, Tt and Ka. All the statistical analyses were performed using SPSS version 22.0 for 

Windows (SPSS Inc. Chicago). 

3.3 Results 

3.3.1 Kinetics of substrate-induced growth response 

Different kinetic responses of microbial growth to substrate addition between the 

hotspots and bulk soil were detected in low fertile soil (Fig. 2 and Table 2). Glucose and 

nutrient input into the poor soil induced stronger stimulation of microbial growth with a 

1.2-fold higher microbial specific growth rate (μm) in the hotspots compared to bulk soil. In 

contrast, μm values were similar between the hotspots and bulk soil of the fertile soil. The 

lag time (tlag) in the fertile soil was estimated as negligible, demonstrating immediate 

microbial growth after substrate input. Furthermore, a very high fraction of active 

microorganisms exceeding 10% of total biomass was observed in the fertile soil (Table 2). In 

contrast, a long lag time of 25.4 h was detected in bulk soil of the poor soil, accompanied by 

a low abundance of growing microbial biomass (Table 2). The growing microbial biomass 

(x’0) was at least 4.8-fold higher in the fertile than in the poor soil. Despite the strong 
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difference in size, no difference in growth kinetic parameters was detected between the 

hotspots of first- and second-order roots. 

 

 

Table 2 Growing microbial biomass and its proportion of total biomass, lag-period and 

generation time of actively growing microbial community consuming substrate during 

incubation of soils with glucose and nutrients. 

 

Fig. 2 Glucose-induced 

respiratory responses of 

microbial community and their 

corresponding specific growth 

rates (μm; inset figures) after 

substrate addition into the (A) 

fertile and (B) poor soil. 

Experimental data are shown as 

symbols and model simulation 

(Equation (1)) as curves. Bars 

show standard errors of the 

means (±SE). Lower-case letter 

indicates significant difference 

at a level of P < 0.05. 
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3.3.2 Enzyme kinetics and substrate turnover 

The maximum potential enzyme activity (Vmax) was 1.7–2.1 times higher in the hotspots 

than in bulk soil for β-glucosidase, whereas no difference was detected for leucine 

aminopeptidase (Fig. 3a). Interestingly, the difference in Vmax of β-glucosidase between the 

hotspots and bulk soil showed a close dependence on the amount of growing microbial 

biomass (R2 = 0.85; Fig. 4). Remarkably, Vmax was approximately 2 times higher in the fertile 

than in the poor soil, whereas the Km showed no difference between the fertile and the poor 

soil. Overall, the Km values of β-glucosidase and leucine aminopeptidase were 1.3–2.2 times 

higher in the hotspots than in bulk soil (P < 0.05; Fig. 3b). Consistent with microbial growth 

kinetics, no difference in enzyme kinetics was detected between the hotspots of first- and 

second-order roots. 

 

Fig. 3 Vmax (a) and Km (b) 

values of β-glucosidase, and 

leucine aminopeptidase in the 

fertile and the poor soils. 

Values are means of three 

replicates (±SE). Asterisks 

indicate significantly different 

from bulk soil. The inserts 

show the mean value of 

different samples. 
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The turnover time for enzymes showed no difference between the hotspots and bulk soil 

except the leucine aminopeptidase in the poor soil in which the turnover time in the hotspots 

around the first-order roots was 40% longer than that in bulk soil (Fig. 5a and b). The same 

pattern in the turnover time was detected under a lack of substrate as under an excess of 

substrate. Furthermore, the turnover time was approximately 2.4–2.9 times as long in the 

poor as in the fertile soil. No change in the catalytic efficiency (Vmax/Km) was detected in the 

hotspots for β-glucosidase or leucine aminopeptidase (Fig. 5c). However, the catalytic 

efficiency was approximately 3 times higher in the fertile versus the poor soil. 

 

Fig. 4 The relationship 

between the Vmax of β-

glucosidase and the 

growing microbial 

biomass (P < 0.05). 
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Fig. 5 The turnover time (a) at 

excess of substrate and (b) lack 

of substrate, and (c) the 

catalytic efficiency of enzymes 

(ratio of Vmax/Km) in the fertile 

and the poor soils. Values are 

means of three replicates 

(±SE). Asterisks indicate 

significantly different from 

bulk soil. The inserts show the 

mean value of different 

samples. 
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3.4 Discussion            

3.4.1 Microbial growth response to substrate addition 

Differences in the microbial growth response to substrate addition between rhizosphere 

hotspots and bulk soil were soil fertility dependent and were detected only in the poor soil 

(Fig. 2), which partly rejects our first hypothesis that microbial hotspots always stimulate 

microbial growth compared with bulk soil.  Equal microbial specific growth rates (μm) in 

the hotspots and bulk soil from the fertile soil might be associated with the availability of 

soil organics (German et al., 2011). Due to abundant organics in soil, the energy limitation 

and dependence of the microbial community on labile C input by roots are weak. In contrast, 

substrate addition to hotspots of the poor soil induced strong stimulation of microbial growth 

compared to bulk soil, confirming our second hypothesis that the difference in microbial 

growth between the hotspots and bulk soil is stronger in the poor soil. Thus, a greater fraction 

of fast-growing microorganisms with r-strategy in the hotspots was selectively stimulated by 

the input of labile C from roots (Grayston et al., 1998; Goddard et al., 2001; Cheng, 2009; 

Philippot et al., 2013).  

Based on the microbial respiration rate, a negligible lag time (tlag) was estimated in the 

fertile soil (Table 2), which was closely associated with the active microbial pool. In the 

fertile soil, growing microorganisms can take up the added substrate immediately for their 

growth (Blagodatskaya et al., 2014). In contrast, a long lag time in the bulk poor soil indicated 

dormancy of microbial community located far from roots and limited by labile C, when the 

very tiny fraction of growing microorganisms was able to maintain activity state 

(Blagodatskaya and Kuzyakov, 2013). In the poor bulk soil, neither inherent soil C source nor 

labile C input from roots could support the activation of microorganisms. Overall, the lag 

time showed a negative correlation with the amount of active biomass, indicating that the 

state of microbial activity is responsible for the duration of tlag (Blagodatskaya et al., 2014). 

Therefore, the hotspot effect on microbial activity was not consistent among soils and was 

largely regulated by soil fertility. 

Last, similar kinetics of the substrate-induced growth response between the hotspots 

associated with either first- or second-order roots suggest the same functional groups and 

activity of microorganisms. Different area and distribution patterns of the hotspots do not 

necessarily mean functional differences, i.e., microorganisms in individual hotspots are not 

fully separated. The size of hotspots is governed by metabolic pathways, which strongly 

depend on the amount of substrate (Dippold and Kuzyakov, 2013). Therefore, different 
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magnitudes of labile C input by first- and second-order roots would be the fundamental cause 

of the various shapes of rhizosphere hotspots (Pausch and Kuzyakov, 2011). 

3.4.2 Enzyme kinetics and substrate turnover 

Generally, greater than doubled Vmax values in the fertile soil versus poor soil is a result 

of more growing biomass in the former (Table 2). Growing microorganisms produce larger 

amount of active enzymes (E0) and the Vmax is a function of E0 (Nannipieri and Gianfreda, 

1998; Allison et al., 2010; Blagodatskaya et al., 2016). 

The difference in Vmax between the hotspots and bulk soil was specific for individual 

enzymes, with higher Vmax of β-glucosidase in thehotspots compared to bulk soil (Fig. 3). 

This observation partly rejected our first hypothesis again. It is necessary to underline that 

the activity of the enzymes was used here as an example of single enzyme-mediated 

processes (e.g., decomposition of cellulose-like oligosaccharides or hydrolysis of amino acid 

residues of polypeptides), which contributed to the decomposition of soil organics along 

with a large number of other processes and corresponding enzymes. Despite some empirical 

relationships observed (Sinsabaugh et al., 2008), neither β-glucosidase nor leucine 

aminopeptidase can be considered as an indicator of the heterogeneous process of C- or N-

cycling. It is conceptually wrong to use the activity of single enzyme (for example, leucine 

aminopeptidase) as an indicator of general microbial N acquisition, which depends on the 

activity of many various enzymes and physiological factors conjointly (Nannipieri et al., 

2018). 

The higher Vmax of β-glucosidase in the hotspots indicates that the activity of enzymes 

is also a function of the amount of available substrate (Allison and Vitousek, 2005). The 

easily available C input by roots triggers microbial activity and thus drives the fast microbial 

metabolism (mainly by r-strategists) on the substrate, which could favor counter- balancing 

the high C inputs (Kuzyakov and Blagodatskaya, 2015), resulting in the higher Vmax in the 

hotspots versus bulk soil (Jones et al., 2003; Fischer et al., 2010). Supporting our 

interpretation, we found a good correspondence of growing microbial biomass and Vmax of 

β-glucosidase (Fig. 4), indicating the strong association between microbial growth and 

functions (Dorodnikov et al., 2009). Thus, the fast-growing microorganisms with r-strategy 

in the hotspots are characterized by production of C-hydrolytic enzyme, which helps to 

consume the continuous input of labile C from roots (Sanaullah et al., 2016). However, the 

activity of the N-hydrolytic enzyme showed no significant correlation with the growing 

microbial biomass due to the insignificant difference in Vmax of leucine aminopeptidase 
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between the hotspots and bulk soil. Given the C/N ratio around and above 20 in both soils 

(Table 1), the microbial acquisition of N was strongly restricted by nutrient supply capacity 

according to stoichiometric constraints (Sinsabaugh et al., 2009). As root exudates and 

rhizodeposits are generally depleted in N content, the N supply capacity was even lower in 

the hotspots than in bulk soil, thus restricting mobilization of organic N by microorganisms 

(Tarafdar and Jungk, 1987; Badalucco and Nannipieri, 2007; Kuzyakov and Xu, 2013). 

In accordance with ecological principles, the Km increased in rhizosphere hotspots 

compared to bulk soil (Fig. 3b), indicating decreased affinity of enzymes as an effect of root 

exudates and rhizodeposits (Blagodatskaya et al., 2009). It is important to note that enzyme 

activity determined in situ in soil is a cumulative action of the entire microbial community, 

which produced a set of isoenzymes with similar functions but different environmental 

optima (Nannipieri et al., 1982; Nannipieri and Gianfreda, 1998). Therefore, the apparent 

Vmax and Km represent average values of kinetic constants, reflecting simultaneous activity of 

a suite of isoenzymes catalyzing the same reactions (Nannipieri and Gianfreda, 1998; Razavi 

et al., 2016a). The higher Km values in the hotspots versus bulk soil indicated altered enzyme 

systems by rhizo-microbial interactions. Such changes resulted in a strong increase in Vmax 

of C-acquiring β-glucosidase due to high availability of oligosaccharides in the 

rhizosphere hotspots; while they were insufficient to increase the Vmax of leucine 

aminopeptidase due to lack of oligopeptides and other N-containing substrates, again 

indicating the possible re- striction of Vmax by basic soil properties. 

Low enzyme affinity to substrate observed in the rhizosphere is typical for fast-

growing r-strategists, showing higher Km values (Fierer et al., 2007). The slow-growing 

K-strategists with enzymes of high substrate affinity are better adapted for growth on 

poorly available substrates, and they are uncompetitive against the r-strategists in 

rhizosphere hotspots (Dorodnikov et al., 2009). In fact, the decrease of substrate affinity 

is in line with the stoichiometric theory postulating that microbes regulate enzyme 

activities in response to soil resource availability to match their nutrient requirements 

(Sinsabaugh and Follstad Shah, 2012). Therefore, the shift in enzyme intrinsic properties 

(Km) under different substrate availability was presumably associated with changes in 

microbial species domination, accompanying with the expression of isoenzymes with the 

same function but different conformations and structures (Somero, 1978). Thus, the Km 

values were independent on basic soil properties, demonstrating that enzyme affinity to 

substrate was mainly modulated by roots. In contrast, Vmax was affected by both soil 

quality and plant-microbial interactions.  
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Rhizosphere hotspots contain a stimulated microbial community with a greater enzyme 

activity and a lower affinity for the substrate compared to bulk soil. However, no difference 

in the catalytic efficiency (Ka) of enzymes or turnover time of the substrate was detected 

between the hotspots and bulk soil due to simultaneous increases in Vmax and Km (Fig. 5). This 

finding was inconsistent with the results of Sanaullah et al. (2016) who found that higher Ka 

was detected in bulk soil, however, we found the same trend: both Vmax and Km increased in 

the hotspots. Thus, our study revealed strong changes in enzyme systems in the hotspots 

versus bulk soil (as indicated by altered activity and affinity); as a result, an increased Km 

counterbalanced an increase in Vmax resulting in similar catalytic efficiency in soil 

microhabitats. Furthermore, much shorter turnover time of substrate and higher catalytic 

efficiency in the fertile versus the poor soil suggest that microbial communities change the 

intrinsic properties of hydrolytic enzymes to adapt to different environments (Razavi et al., 

2016b). 

3.5 Conclusions 

Microbial hotspots and bulk soil were successfully distinguished by soil zymography 

and were precisely sampled by tiny wet-needle approach with the goal of comparing the 

effects of hotspots on microbial growth and enzyme kinetic parameters. Overall, the 

differences in microbial growth between the hotspots and bulk soil were significant in the 

poor soil only, i.e., they were regulated by inherent soil substrate availability (Fig. 6). A 

difference in enzyme activity and affinity was detected between the hotspots and bulk soil 

in the fertile and the poor soils but was enzyme-specific: the difference was significant for 

β-glucosidase (one of enzymes involved in the decomposition of oligosaccharides), whereas 

it was insignificant for leucine aminopeptidase (enzyme contributing to the decomposition 

of proteins). In both soils, enzyme systems changed towards decreased affinity for the 

substrate to maintain similar catalytic efficiency in the hotspots versus bulk soil, which was 

the preferred microbial strategy in the tested soils. 
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Fig. 6 Conceptual graph showing changes of microbial activities and functions in the hotspots 

as affected by soil fertility. Vertical and horizontal red arrow indicate increase and no change 

of microbial kinetics and functions in the hotspots compared to bulk soil, respectively. Red 

gradient arrow indicates increasing trend, blue gradient arrow indicates decreasing trend, 

gray arrow indicates no change along soil fertility. 

Declaration of competing interest 

The authors declare that they have no known competing financial interests or personal 

relationships that could have appeared to influence the work reported in this paper. 

Acknowledgements 

We would like to thank Xiaona Song for her help with the laboratory work. This research 

was supported by the National Natural Science Foundation of China (grant No.31830015), 

National Key Research and Development Program of China (grant No. 2016YFA0600801). 

Contribution of BSR and EB was motivated and supported within the framework of the 

priority program 2089, funded by the DFG- Projects Nr. RA3062/3-1 and Nr. 403664478, 

respectively.  The publication was financially supported by the “RUDN University 

Program 5–100”. The authors appreciate very much the contribution of the reviewer and the 

editor, who identified and suggested to address several very important methodological and 

conceptual issues, improving the clarity and scientific value of the manuscript. 



Manuscripts 

 
 

118 
 

References 

Allison, S., Vitousek, P., 2005. Responses of extracellular enzymes to simple and complex nutrient 

inputs. Soil Biology and Biochemistry 37, 937–944. 

Allison, S.D., Wallenstein, M.D., Bradford, M.A., 2010. Soil-carbon response to warming dependent on 

microbial physiology. Nature Geoscience 3, 336–340. 

Badalucco, L., Nannipieri, P., 2007. Nutrient transformation in the rhizosphere. In: Pinton, R., Varanini, 

Z., Nannipieri, P. (Eds.), The Rhizosphere: Biochenistry and Organic Substrates at the Soil-Plant 

Interface. CRC Prss, Boca Raton, FL, pp. 111–133. 

Blagodatskaya, E.V., Blagodatsky, S.A., Anderson, T.H., Kuzyakov, Y., 2009. Contrasting effects of 

glucose, living roots and maize straw on microbial growth kinetics and substrate availability in 

soil. European Journal of Soil Science 60, 186–197. 

Blagodatskaya, E., Kuzyakov, Y., 2013. Active microorganisms in soil: critical review of estimation 

criteria and approaches. Soil Biology and Biochemistry 67, 192–211. 

Blagodatskaya, E., Blagodatsky, S., Anderson, T.H., Kuzyakov, Y., 2014. Microbial growth and carbon 

use efficiency in the rhizosphere and root-free soil. PLoS One 9, e93282. 

Blagodatskaya, E., Blagodatsky, S., Khomyakov, N., Myachina, O., Kuzyakov, Y., 2016. Temperature 

sensitivity and enzymatic mechanisms of soil organic matter decomposition along an altitudinal 

gradient on Mount Kilimanjaro. Scientific Reports 6, 22240.  

Blagodatsky, S.A., Heinemeyer, O., Richter, J., 2000. Estimating the active and total soil microbial 

biomass by kinetic respiration analysis. Biology and Fertility of Soils 32, 73–81. 

Blagodatsky, S.A., Smith, P., 2012. Soil physics meets soil biology: towards better mechanistic 

prediction of greenhouse gas emissions from soil. Soil Biology and Biochemistry 47, 78–92. 

Cheng, W.X., 2009. Rhizosphere priming effect: its functional relationships with microbial turnover, 

evapotranspiration, and C–N budgets. Soil Biology and Biochemistry 41, 1795–1801. 

de Ridder-Duine, A.S., Kowalchuk, G.A., Klein Gunnewiek, P.J.A., Smant, W., van Veen, J.A., de Boer, 

W., 2005. Rhizosphere bacterial community composition in natural stands of Carexarenaria (sand 

sedge) is determined by bulk soil community composition. Soil Biology and Biochemistry 37, 

349–357. 

Dippold, M.A., Kuzyakov, Y., 2013. Biogeochemical transformations of amino acids in soil assessed 

by position-specific labelling. Plant and Soil 373, 385–401. 

Dorodnikov, M., Blagodatskaya, E., Blagodatsky, S., Marhan, S., Fangmeier, A., Kuzyakov, Y., 2009. 

Stimulation of microbial extracellular enzyme activities by elevated CO2 depends on aggregate 

size. Global Change Biology 15, 1603–1614. 

Fierer, N., Bradford, M.A., Jackson, R.B., 2007. Toward an ecological classification of soil bacteria. 

Ecology 88, 1354–1364. 

Fischer, H., Ingwersen, J., Kuzyakov, Y., 2010. Microbial uptake of low-molecularweight organic 

substances out-competes sorption in soil. European Journal of Soil Science 61, 504–513. 



Manuscripts 

 
 

119 
 

Ge, T.D., Wei, X.M., Razavi, B.S., Zhu, Z.K., Hu, Y.J., Kuzyakov, Y., Jones, D.L., Wu, J.S., 2017. 

Stability and dynamics of enzyme activity patterns in the rice rhizosphere: effects of plant growth 

and temperature. Soil Biology and Biochemistry 113, 108–115. 

German, D.P., Chacon, S.S., Allison, S.D., 2011. Substrate concentration and enzyme allocation can 

affect rates of microbial decomposition. Ecology 98, 1471–1480. 

Goddard, V.J., Bailey, M.J., Darrah, P., Lilley, A.K., Thompson, I.P., 2001. Monitoring temporal and 

spatial variation in rhizosphere bacterial population diversity: a community approach for the 

improved selection of rhizosphere competent bacteria. Plant and Soil 232, 181–193. 

Grayston, S.J., Wang, S., Campbell, C.D., Edwards, A.C., 1998. Selective influence of plant species on 

microbial diversity in the rhizosphere. Soil Biology and Biochemistry 30, 369–378. 

Haußmann, T., Lux, W., 1997. Dauerbeobachtungsflächen zur Umweltkontrolle im Wald: Level II. 

BMELF. Erste Ergebnisse, Bonn 148. 

Heitkötter, J., Marschner, B., 2018. Soil zymography as a powerful tool for exploring hotspots and 

substrate limitation in undisturbed subsoil. Soil Biology and Biochemistry 124, 210–217.  

Heuvelink, G.B.M., Webster, R., 2001. Modelling soil variation: past, present, and future. Geoderma 

100, 269–301.  

Hoang, D.T.T., Pausch, J., Razavi, B.S., Kuzyakova, I., Banfield, C.C., Kuzyakov, Y., 2016. Hotspots 

of microbial activity induced by earthworm burrows, old root channels, and their combination in 

subsoil. Biology and Fertility of Soils 52, 1105–1119.  

Hodge, A., Robinson, D., Filter, A., 2000. Are microorganisms more effective than plants at competing 

for nitrogen? Trends in Plant Science 5, 304–308. 

Jones, D.L., Dennis, P.G., Owen, A.G., van Hees, P.A.W., 2003. Organic acid behavior in soils – 

misconceptions and knowledge gaps. Plant and Soil 248, 31–41. 

Kuzyakov, Y., Blagodatskaya, E., 2015. Microbial hotspots and hot moments in soil: concept & review. 

Soil Biology and Biochemistry 83, 184–199.  

Kuzyakov, Y., Razavi, B.S., 2019. Rhizosphere size and shape: temporal dynamics and spatial 

stationarity. Soil Biology and Biochemistry 135, 343–360. 

Kuzyakov, Y., Xu, X.L., 2013. Competition between roots and microorganisms for nitrogen: 

mechanisms and ecological relevance. New Phytologist 198, 656–669.  

Lang, F., Krüger, J., Amelung, W., Willbold, S., Frossard, E., Bünemann, E.K., Bauhus, J., Nitschke, 

R., Kandeler, E., Marhan, S., Schulz, S., Bergkemper, F., Schloter, M., Luster, J., Guggisberg, F., 

Kaiser, K., Mikutta, R., Guggenberger, G., Polle, A., Pena, R., Prietzel, J., Rodionov, A., Talkner, 

U., Meesenburg, H., von Wilpert, K., Hölscher, A., Dietrich, H.P., Chmara, I., 2017. Soil 

phosphorus supply controls P nutrition strategies of beech forest ecosystems in Central Europe. 

Biogeochemistry 136, 5–29. 



Manuscripts 

 
 

120 
 

Ma, X.M., Zarebanadkouki, M., Kuzyakov, Y., Blagodatskaya, E., Pausch, J., Razavi, B.S., 2018. 

Spatial patterns of enzyme activities in the rhizosphere: effects of root hairs and root radius. Soil 

Biology and Biochemistry 118, 69–78. 

Ma, X.M., Razavi, B.S., Holz, M., Blagodatskaya, E., Kuzyakov, Y., 2017. Warming increases hotspot 

areas of enzyme activity and shortens the duration of hot moments in the root-detritusphere. Soil 

Biology and Biochemistry 107, 226–233. 

Marx, M.C., Wood, M., Jarvis, S.C., 2001. A microplate fluorimetric assay for the study of enzyme 

diversity in soils. Soil Biology and Biochemistry 33, 1633–1640. 

Moscatelli, M.C., Lagomarsino, A., Garzillo, A.M.V., Pignataro, A., Grego, S., 2012. β-Glucosidase 

kinetic parameters as indicators of soil quality under conventional and organic cropping systems 

applying two analytical approaches. Ecological Indicators 13, 322–327. 

Nannipieri, P., Ascher, J., Ceccherini, M.T., Landi, L., Pietramellara, G., Renella, G., 2003. Microbial 

diversity and soil functions. European Journal of Soil Science 54, 655–670. 

Nannipieri, P., Ceccanti, B., Cervelli, S., Conti, C., 1982. Hydrolases extracted from soil: kinetic 

parameters of several enzymes catalysing the same reaction. Soil Biology and Biochemistry 14, 

429–432.  

Nannipieri, P., Gianfreda, L., 1998. Kinetics of enzyme reactions in soil environments. In: Huang, P.M., 

Senesi, N., Buffle, J. (Eds.), Structure and Surface Reactions. John Wiley & Sons, New York, pp. 

449–479. 

Nannipieri, P., Trasar-Cepeda, C., Dick, R.P., 2018. Soil enzyme activity: a brief history and 

biochemistry as a basis for appropriate interpretations and meta-analysis. Biology and Fertility of 

Soils 54, 11–19.  

Panikov, N.S., 1995. Microbial Growth Kinetics. Chapman & Hall, London, UK.  

Panikov, N., Blagodatsky, S., Blagodatskaya, J., Glagolev, M., 1992. Determination of microbial 

mineralization activity in soil by modified Wright and Hobbie method. Biology and Fertility of 

Soils 14, 280–287. 

Panikov, N.S., Sizova, M.V., 1996. A kinetic method for estimating the biomass of microbial functional 

groups in soil. Journal of Microbiological Methods 24, 219–230. 

Pausch, J., Kuzyakov, Y., 2011. Photoassimilate allocation and dynamics of hotspots in roots visualized 

by 14C phosphor imaging. Journal of Plant Nutrition and Soil Science 174, 12–19. 

Philippot, L., Raaijmakers, J.M., Lemanceau, P., van der Putten, W.H., 2013. Going back to the roots: 

the microbial ecology of the rhizosphere. Nature Reviews Microbiology 11, 789–799. 

Razavi, B.S., Blagodatskaya, E., Kuzyakov, Y., 2015. Nonlinear temperature sensitivity of enzyme 

kinetics explains canceling effect-a case study on loamy haplic Luvisol. Frontiers in Microbiology 

6, 1126. 

Razavi, B.S., Blagodatskaya, E., Kuzyakov, Y., 2016. Temperature selects for static soil enzyme 

systems to maintain high catalytic efficiency. Soil Biology and Biochemistry 97, 15–22. 



Manuscripts 

 
 

121 
 

Razavi, B.S., Zarebanadkouki, M., Blagodatskaya, E., Kuzyakov, Y., 2016. Rhizosphere shape of lentil 

and maize: spatial distribution of enzyme activities. Soil Biology and Biochemistry 96, 229–237. 

Razavi, B.S., Zhang, X.C., Bilyera, N., Guber, A., Zarebanadkouki, M., 2019. Soil zymography: simple 

and reliable? Review of current knowledge and optimization of method. Rhizosphere 11. Article 

100161. 

Sanaullah, M., Razavi, B.S., Blagodatskaya, E., Kuzyakov, Y., 2016. Spatial distribution and catalytic 

mechanisms of β-glucosidase activity at the root-soil interface. Biology and Fertility of Soils 52, 

505–514.  

Sinsabaugh, R.L., Follstad Shah, J.J., 2012. Ecoenzymatic stoichiometry and ecological theory. Annual 

Review of Ecology, Evolution, and Systematics 43, 313–343. 

Sinsabaugh, R.L., Hill, B.H., Shah, J.J.F., 2009. Ecoenzymatic stoichiometry of microbial organic 

nutrient acquisition in soil and sediment. Nature 462, 795. 

Sinsabaugh, R.L., Lauber, C.L., Weintraub, M.N., Ahmed, B., Allison, S.D., Crenshaw, C., Contosta, 

A.R., Cusack, D., Frey, S., Gallo,  M.E.,  Gartner,  T.B.,  Hobbie,  S.E., Holland, K., Keeler, 

B.L., Powers, J.S., Stursova, M., Takacs-Vesbach, C., Waldrop, M. P., Wallenstein, M.D., Zak, 

D.R., Zeglin, L.H., 2008. Stoichiometry of soil enzyme activity at global scale. Ecology Letters 

11, 1252–1264. 

Salazar-Villegas, A., Blagodatskaya, E., Dukes, J.S., 2016. Changes in the size of the active microbial 

pool explain short-term soil respiratory responses to temperature and moisture. Frontiers in 

Microbiology 7, 524. 

Schimel, J.P., Weintraub, M.N., 2003. The implications of exoenzyme activity on microbial carbon and 

nitrogen limitation in soil: a theoretical model. Soil Biology and Biochemistry 35, 549–563. 

Somero, G., 1978. Temperature adaptation of enzymes- biological optimization through structure-

function compromises. Annual Review of Ecology and Systematics 9, 1–29. 

Spohn, M., Ermak, A., Kuzyakov, Y., 2013. Microbial gross organic phosphorus mineralization can be 

stimulated by root exudates - a 33P isotopic dilution study. Soil Biology and Biochemistry 65, 

254–263. 

Tarafdar, J.C., Jungk, A., 1987. Phosphatase activity in the rhizosphere and its relation to the depletion 

of soil organic phosphorus. Biology and Fertility of Soils 3, 199–204. 

Tischer, A., Blagodatskaya, E., Hamer, U., 2015. Microbial community structure and resource 

availability drive the catalytic efficiency of soil enzymes under land-use change conditions. Soil 

Biology and Biochemistry 89, 226–237. Webster, R., 2000. Is soil variation random? Geoderma 

97, 149–163. 

WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015. International Soil 

Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil 

Resources Reports. FAO, Rome. 



Manuscripts 

 
 

122 
 

Zhang, X.C., Dippold, M.A., Kuzyakov, Y., Razavi, B.S., 2019. Spatial pattern of enzyme activities 

depends on root exudate composition. Soil Biology and Biochemistry 133, 83–93. 

  



Manuscripts 

 
 

123 
 

4 Study 4: Resistance of microbial community and its functional sensitivity 
in the rhizosphere hotspots to drought    
Xuechen Zhanga,b,c, David D. Myroldd, Lingling Shib,e,f, Yakov Kuzyakovg,k, Hongcui Daia,b*, 
Duyen Thi Thu Hoangh, Michaela A. Dippoldb, Xiangtian Mengi, Xiaona Songb, Ziyan Lij, 
Jie Zhoub, Bahar S. Razavic 

Status: Published in Soil Biology & Biochemistry  
a Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, 
PR China 
b Department of Biogeochemistry of Agroecosystems, University of Göttingen, 
Göttingen, Germany 

c Department of Soil and Plant microbiome, Institute of Phytopathology, Christian-
Albrecht-University of Kiel, Kiel, Germany 

d Department of Crop and Soil Science, Oregon State University, Corvallis, OR 97331 
USA 
e Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of 
Sciences, 132 Lanhei Road, Kunming 650201, China 

f World Agroforestry Centre, China & East-Asia Office, 132 Lanhei Road, Kunming 650201, China 
g Department of Agricultural Soil Science, Department of Soil Science of Temperate Ecosystems, University of 
Göttingen, Göttingen, Germany 
h Master of Climate Change and Development Program, Vietnam-Japan University, Vietnam National 
University, Hanoi    

i University of Chinese Academy of Sciences, Beijing 100049, China 
j College of Resources and Environment, Northwest A&F University, Yangling, 712100, China 
k Agro-Technological Institute, RUDN University, 117198 Moscow, Russia 
 

Abstract 

Climate change impacts soil microbial communities, activities and functionality. Nonetheless, 
the responses of the microbiome in soil microenvironments with contrasting substrate 
availability in the rhizosphere to climatic stresses such as drought are largely unknown. To 
fill this knowledge gap, we coupled soil zymography with site-specific micro-sampling of 
the soil and subsequent high-throughput sequencing. This helped identify how the bacterial 
community structure and the genes encoding N-cycling enzymes (leucine aminopeptidase 
and chitinase) in rhizosphere hotspots and coldspots (microsites with activities in the range 
of bulk soil but localized within the rhizosphere) of maize respond to drought (20% WHC, 
two weeks).  
The elevated activities of leucine aminopeptidase and chitinase in rhizosphere hotspots were 
caused by the tight collaborative relationships between bacteria and their stable network 
structure rather than by any significant shift in bacterial community structure or enzyme-
encoding gene copies. Despite the similarity in bacterial community structure in soil under 
drought and optimal moisture, functional predictions indicated the increased relative 
abundance of genera belonging to Actinobacteria capable of leucine aminopeptidase and 
chitinase production, especially Streptomyces, Nocardioides, Marmoricola, and Knoellia. 
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Accordingly, the number of gene copies encoded by Actinobacteria for these two enzymes 
increased by 5.0 - 17% under drought. Among the bacteria with increased relative abundance 
under drought, Luedemannella played a crucial role in mediating nutrients and energy fluxes 
between bacteria under drought. This was reflected in a 35 - 70% increase in leucine 
aminopeptidase and chitinase activities under drought. The resistance of enzyme activities to 
drought was higher in hotpots than that in coldspots. These results revealed that rhizosphere 
bacterial community composition remained stable, and that the number of gene copies 
encoded by Actinobacteria responsible for N-cycling enzymes increased under drought. The 
expected reduction of processes of N cycle was absent. Instead, bacteria increased N mining 
rate in those hotspots remaining active despite water scarcity.    
 

Keywords: Drought, rhizosphere hotspots and coldspots, functional genes, resistance 
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4.1 Introduction 

One of the critical questions at the forefront of research in ecology is: “how will climate 

change alter the structure and functions of ecosystems across scales of space and time?” 

(Creamer et al., 2015; Sheik et al., 2011). One of the most frequently predicted effects of 

climate change on a broad set of ecosystems worldwide is an increased frequency and 

severity of droughts (Hasibeder et al., 2015). This will affect the quantity and quality of plant 

inputs of available organic compounds (Bardgett et al., 2008; Jones et al., 2009), thus 

probably changing the pattern of substrate distribution in soil. Heterogeneity in substrate 

localization is the primary reason for the existence of microbial hot- and coldspots in soil - 

with significantly increased or decreased biological activity, respectively (Kuzyakov and 

Razavi, 2019). Hotspots are locations in soil, such as the rhizosphere, with increased 

microbial abundance, activities and faster process rates (Kuzyakov and Blagodatskaya, 2015). 

The heterogeneous soil environment forms microsites within the rhizosphere characterized 

by activities that are in the range of bulk soil (here defined as coldspots, Fig. 1). Previous 

studies have shown similar functions between or within hotspots despite dissimilarities in 

their microbial community structure (Kuzyakov and Blagodatskaya, 2015; Sanaullah et al., 

2011). Although various communities may carry out similar functions, they may not be 

equivalent in other respects, such as in the efficiencies with which they express these 

functions in hotspots and their sensitivity to abiotic factors (e.g. drought). An improved 

understanding of drought consequences on the micro-scale (i.e., on hot- versus coldspots), 

and of the mechanisms involved, would help assess impacts on ecosystem (e.g., macro-scale) 

processes and functioning. This is particularly crucial for agro-ecosystems, where many 

essential ecosystem services relevant to human well-being are linked to micro-scale 

processes in hot- or coldspots. For instance, diverse plant communities - unlike monoculture 

agro-ecosystems - favor the development of micropores (30-150 μm). These pores are the 

micro-environments associated with enzymatic hotspots. More such pores mean a greater 

spatial footprint that microorganisms make on the soil and consequently a greater soil C 

storage capacity (Kravchenko et al., 2019; 2021). Moreover, the faster decomposition rates 

of soil organic matter (SOM) in the hotspots than bulk soil, and thus the associated increased 

CO2 release, would provide feedbacks to global warming (Cheng et al., 2014). 

Microorganisms modify the availability of most nutrients (Sheik et al., 2011). Recent 

studies suggest direct effects of soil bacterial community structure on the nitrogen (N) cycle 

(e.g., Cookson et al., 2006; Ollivier et al., 2011). To meet their N demand, microorganisms 

produce a variety of N-cycle related enzymes, such as chitinases and peptidases, to break 
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down complex organic compounds into available forms (Kuzyakov and Xu, 2013). A 

reduction in soil water content can impair microbial metabolic capabilities (Carbone et al., 

2011) and enzyme activities (Ahmed et al., 2018; Chaves et al., 2003), and thus slow down 

N mobilization from SOM (Fuchslueger et al., 2014; Manzoni et al., 2012). Drought - the 

reduction of soil water content - impedes the diffusion of nutrients, substrates and enzymes 

(Davidson and Janssens, 2006), and increases osmotic stress for microbial cells. This induces 

a stress situation for microbial communities, at least in those microhabitats affected by 

drought (Navarro-García et al., 2012; Parker and Schimel, 2011).  

A shift in community structure towards an increase of more tolerant soil biota is one of 

the most common responses to drought. Microbial functions (e.g., enzyme production) can 

also be affected (Bouskill et al., 2013). For instance, Gram-positive bacteria are more tolerant 

to drought because their cell walls are stronger compared with Gram-negative bacteria (Bu 

et al., 2018). The resistance of distinct microbial groups (i.e., their insensitivity to a 

disturbance) helps the whole system to maintain its ecosystem services even in disturbed 

environments (Shade et al., 2012). To “pay” for this resistance, energetically luxurious 

adaptation mechanisms divert resources from growth to survival processes (Schimel et al., 

2007). Accordingly, microsites with abundant resources - microbial hotspots - may enhance 

the resistance of soil ecosystems. Those organisms that fail to cope with environmental 

stresses will die or become inactive, thus altering the composition of the microbial 

community (Placella et al., 2012).  

Intensive discussion has been focused on microbial activity, diversity, and abundance in 

the rhizosphere and bulk soil. Little, however, is known about the spatial dissimilarity in 

microbial dynamics within the rhizosphere, where microorganisms are exposed to similar 

stochastic and temporal environmental changes. In particular, to what extent does drought 

stress determine the shift in initial microbiome community composition and functioning 

within the rhizosphere? 

The degradation of high molecular organic matter depends on the microbial 

community’s repertoire of genes encoding for the required enzymes (Bach et al., 2001). 

Changes in the abundance of enzyme-encoding genes reveal alteration of the microbial 

potential to respond to external disturbances, such as drought, but can also provide 

information on the source organisms of a particular enzyme (Nannipieri et al., 2018, 2012). 

Thus, analyzing and quantifying microbial gene abundance as well as gene expression 

enables determining whether a response in enzyme expression is driven by the selection of 
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drought-resistant microorganisms or by altered regulation of the metabolism. Here, coupling 

high-throughput sequencing of 16S rRNA with soil zymography (used as a map to localize 

the enzymatic hot- and coldspots, Zhang et al., 2019),-we tested the following hypotheses: 1) 

microbial community structure governs the higher enzyme activities in hotspots versus 

coldspot (H1); 2) specific bacterial taxa have individual responses to drought in enzymatic 

hot- and coldspots (H2); 3) the resistance of enzyme activities to drought is higher in hotspots 

than in coldspots due to the high substrate availability (H3).  

4.2 Materials and Methods 

4.2.1 Soil 

Soil samples were taken from the top 10 cm of the Ap horizon of an arable loamy Haplic 

Luvisol located on a terrace plain of the Leine River in the north-west of Göttingen, Germany. 

The soil consisted of 7% sand, 87% silt, 6% clay, with a bulk density of 1.4 g cm-3, a pH of 

6.5, total carbon of 11.6 g C kg-1, and total nitrogen of 1.2 g N kg-1. Total soil organic C and 

N content was determined by dry combustion (Elementar Analysensysteme GmbH, Hanau, 

Germany). The soil pH value was measured at room temperature in H2O. For detailed 

information on the soil properties and methodology of measurement refer to Kramer et al. 

(2012). 

4.2.2 Experiment design 

Maize seeds (Zea mays L.) were germinated on filter paper in a dark environment for 3 

days. Then one seedling was transplanted to each rhizobox (12.3 × 12.5 × 2.3 cm), which 

was filled with soil to a final bulk density of 1.4 g cm-3. The plants were kept in a climate 

chamber at a controlled temperature of 22 ± 1 °C and a photo-period of 16 h light 

(photosynthetically active radiation intensity of 300 μmol m-2 s-1) and 8 h night for 3 weeks. 

During the growth period, the rhizobox surfaces were covered completely to avoid algal 

growth, and they were put inclined at an angle of 45° to ensure root growth along the lower 

wall of the rhizobox.  

Two treatments (drought and optimum) with three replicates were established. We 

irrigated the rhizoboxes with distilled water using capillary rise by immersing the boxes in 

water (with the water table 5 cm above the bottom of the rhizoboxes) for half an hour. During 

the first week’s growth, the soil water content of all the rhizoboxes was maintained at 70% 

of water holding capacity (WHC). Thereafter, the drying stress was initiated (based on 

preliminary experiment, the drying takes 6 - 7 days). Half of the samples were dried (by plant 

transpiration) to 20% of WHC. The water content was measured gravimetrically by weighing 
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the rhizoboxes and subtracting the dry weight (Fig S1). Thus, one group of maize was grown 

in soil with an optimal water content (70% of WHC) for 3 weeks. Another group of maize 

was kept under water limitation conditions, where soil water content was maintained at 70% 

of WHC for the first week, dried to 20% of WHC for one week and then kept at 20% of WHC 

for the last week. 

After maize cultivation, soil zymography - an in situ technique - was applied to visualize 

hot- and coldspots of each enzyme: leucine aminopeptidase (EC 3.4.11.1) and chitinase (EC 

3.2.1.52). Soil zymography was conducted using polyamide membranes (pore size: 0.45 μm, 

Tao Yuan, China) saturated with 4-methylumbelliferone (MUF)-substrates and 7-amino-4-

methylcoumarin (AMC)-substrates. These substrates become fluorescent when hydrolyzed 

by a corresponding enzyme (Razavi et al., 2016b). Leucine aminopeptidase activity was 

determined using L-leucine-7-amido-4-methylcoumarin hydrochloride. 4-

Methylumbelliferyl-N-acetyl-beta-D-glucosamine (MUF-NAG) (Sigma-Aldrich Co.) was 

used to detect chitinase activity ‒ an enzyme that catalyzes the hydrolysis of terminal non-

reducing N-acetylglucosamine (NAG) residues in chitin oligomers. Detailed information can 

be found in Razavi et al. (2019). The zymographic image was used as a map to localize 

hotspots and coldspots of chitinase and leucine aminopeptidase activities (Fig. 1). Hotspots 

were defined as areas with intensities 2 standard deviation (SD) above the mean (Zhang et 

al., 2020); coldspots were considered as activities in the range of bulk soil but localized 

within the rhizosphere. For both drought and optimal conditions, the rhizosphere hot- and 

coldspot areas of leucine aminopeptidase were higher and clearer than that of chitinase. 

Therefore, due to the limited soil amount and to ensure the localization of enzymatic hot- and 

coldspots, the zymograms of leucine aminopeptidase were used for hotspot and coldspot 

sampling (Tian et al., 2020). About 1 g of soil from multiple hotspots or coldspots of each 

rhizobox were collected with a sterile needle and micro-spatula and pooled as one composite 

sample. This yielded a total of 12 samples (2 water conditions × 2 microsites × 3 replicates). 

Each soil sample was then divided into two portions for follow-up analysis (enzyme kinetics) 

or frozen at -80 °C (for molecular biology analysis) immediately.  
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Fig. 1 Example of soil sampling from rhizosphere hotspots and coldspots based on 

zymography images of leucine aminopeptidase. Here, hotspots were defined as areas with 

gray values higher than mean + 2 standard deviation (SD); coldspots were considered as 

activities in the range of bulk soil within the rhizosphere. Color bar represents enzyme 

activity (nmol cm-2 h-1) in soil with maize roots (21 days) under drought (20% of WHC) and 

optimal moisture (70% of WHC). 

4.2.3 Enzyme kinetics and resistance 

The soil collected from rhizosphere hot- and coldspots was used to measure the kinetics 

of leucine aminopeptidase and chitinase. We determined enzyme activities in a range of 

substrate concentrations from low to high (0, 10, 20, 30, 40, 50, 100, 200 µmol L-1). 

Saturation concentrations of fluorogenic substrates were determined in preliminary 

experiments. A soil suspension of 0.5 g soil and 50 mL deionized water was prepared after 

low-energy sonication (40 J s-1 output energy) for 2 min. 50 μL soil suspension, 100 μL 

substrate and 50 μL buffer (TRIZMA for leucine aminopeptidase, MES for chitinase) were 

added to a 96-well microplate (Koch et al., 2007; German et al., 2011). A Victor 1420-050 
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Multi label Counter (Perkin Elmer, USA) was used to measure the fluorescence at an 

excitation wavelength of 355 nm and an emission wavelength of 460 nm, and a split width 

of 25 nm. Enzyme activities were recorded at 4 times (0, 30 min, 1 h and 2 h) and were 

expressed as nmol MUF or AMC g-1 soil h-1. Vmax and Km were calculated with the Michaelis-

Menten equation: 

                          V = I345×[J]
*!+[(]

                       (1) 

where V is the reaction rate, [S] is the substrate concentration, Km is the substrate 

concentration at the half-maximum reaction rate, and Vmax is the maximum reaction rate. 

The resistance (RS) index of enzyme activity to drought was calculated by the following 

equation (Orwin and Wardle, 2004): 

𝑅𝑆	(𝑡A) = 1 − H|L6|
36+|L6|

                  (2) 

where D0 is the difference in a biological function between the control soil (C0) and the 

drought soil (P0) at the end of disturbance (t0). This resistance index is between -1 and +1, 

where +1 indicates no effects of disturbance (maximum resistance) and -1 indicates strongest 

effects (minimum resistance). 

4.2.4 Microbial analysis   

DNA was extracted from frozen hot- and coldspot samples (ca. 0.5 g) using the Quick 

Soil Isolation Kit (Omega, USA), according to the manufacturer’s instructions. The V3-V4 

region of 16S rRNA was amplified with the primers 338F: 5 ′ -ATGCAGGGACTA 

CHVGGGTWTCTAAT-3′ and 806R: 5′-ACTCCTACGGGAGGCAGCA-3′ (Jiang et al., 

2019). Each sample had an eight-base Barcode at the 5 ′  end of the primers. PCR for 

amplification was carried out under the following conditions: at 95 °C for 3 min followed 

by 27 cycles for 30 s at 95 °C, annealing for 30 s at 55 °C, an extension for 45 s at 72 °C and 

a final extension for 5 min at 72 °C. The PCR products after purifying with AxyPrep DNA 

Gel Extraction Kit (Axygen Biosciences. USA) were quantified using a QuantiFluor™-ST 

fluorometer (Promega, USA). The products were then pooled, and the paired-end sequencing 

(2 × 300 bp) was conducted on an Illumina MiSeq sequencer. Sequencing data were 

processed using Quantitative Insights Into Microbial Ecology QIIME software (version 1.9.1) 

whereby the raw fastq files were quality filtered by Fastp0.19.6 and merged by FLASH1.2.11 

based on the following workflow: i) discard the truncated sequences with < 50 bp base if the 

average quality score was lower than 20; ii) Barcode sequences were also removed after 
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sample sequences were sorted according to the barcodes which required no base mismatches. 

The maximum mismatch frequency per primer was < 2 nucleotides. Remove all the 

sequences containing ambiguous bases; iii) sequences with an overlap of at least 10 bp were 

assembled. Singletons were discarded prior to dereplication. Operational taxonomic units 

(OTUs) were clustered at 97% similarity cutoff while simultaneously removing chimera 

sequences (Uparse7.0.1090). Then, clean data were mapped to the representative OTU to get 

the abundance table. Taxonomic annotation was assigned to OTU representative sequences 

based on the Silva 16S rRNA database by RDP classifier (2.11) with a confidence threshold 

of 70% (Quast et al., 2012). All samples were normalized to rarefy sequences to the minimum 

number (24,628 sequences per sample). A total of 554,081 reads with an average length of 

468 bp were detected. The rarefaction curves (Fig. S2) were asymptotic, indicating a near-

complete sampling of the community. 

The number of gene copies responsible for leucine aminopeptidase and chitinase was 

predicted by the Phylogenetic Investigation of Communities by Reconstruction of 

Unobserved States 2 (PICRUSt2) with reference to the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) database (Langille et al., 2013; Wang et al., 2016). PICRUSt2 is freely 

available at https://github.com/picrust/picrust2 (Douglas et al., 2019). To further investigate 

the functional potential of the bacterial community, Tax4Fun2 was used to predict the 

functional profiles based on SILVA database. Tax4Fun2 is available at 

https://sourceforge.net/projects/tax4fun2/ (Wemheuer et al., 2020). The relative abundances 

of all the functions selected were then normalized by z-score. 

4.2.5 Statistical analysis 

All data were presented as mean ± standard deviation (SD) of three replicates. The 

Shapiro-Wilk test was used to check normality, and Levene tests were performed to check 

the homogeneity of variances. If data met normality and homogeneity, the differences of 

enzyme kinetics (Vmax and Km) and all the microbial parameters were analyzed by two-way 

ANOVA using the software JMP, at p < 0.05. The data of the resistance index met normality 

and homogeneity, and thus differences were analyzed by t-tests using the software JMP, at p 

< 0.05. If normality or homogeneity was not proved, the Scheirer-Ray-Hare test was 

performed in R (version 3.6.3), at p < 0.05.   

Principal coordinate analyses (PCoA) at the OTU level were applied to visualize the 

dissimilarity of bacterial communities among samples based on Bray-Curtis distance.  

PERMANOVA was used to assess whether drought, microsite and their interactions affected 



Manuscripts 

 
 

133 
 

the bacterial community structure. PERMANOVA at the OTU level was conducted based on 

Bray-Curtis distance with the default 999 permutations. As the interactions of drought and 

microsite had no effect on enzyme kinetics (Fig. 2) or on bacterial community structure 

(Table S1), we performed network analysis based on the merged dataset (n = 6) from both 

moisture for hot- or coldspots or from both microsites for drought or optimal conditions. The 

network analysis was constructed to estimate the difference of bacterial relationships 

between coldspots and hotspots independent of water content, or only between drought and 

optimal conditions independent of microsites. The networks at the genus level were 

generated using Gephi (version 0.9.2), based on Spearman correlations. Only the top 100 

genera were selected for network analysis. The cutoff value for the correlation coefficients 

was chosen as 0.85 with significance of p < 0.05 (Dai et al., 2019). The natural connectivity 

was used to evaluate the stability of the network and it was estimated by removing nodes in 

the static network (Peng and Wu, 2016).   

The roles of individual nodes in the networks were determined by within-module 

connectivity (Zi) and among-module connectivity (Pi). The topological roles of nodes in the 

network were classified into: module hubs (well-connected nodes in the module, Zi >2), 

network hubs (nodes highly connected both within and between modules, Zi >2 and Pi >0.6), 

connectors (highly connected nodes between modules, Pi > 0.6), and peripherals (few 

connection nodes with other nodes, Zi < 2 and Pi < 0.6), according to nodes’ within-module 

connectivity (Zi) and between-module links (Pi) (Deng et al., 2012; Guimerà and Nunes 

Amaral, 2005). The degree-distribution plot was generated based on network analysis. 

4.3 Results 

4.3.1 Kinetics of leucine aminopeptidase and chitinase 

The Vmax values were higher in hotspots than in coldspots for both leucine 

aminopeptidase and chitinase (Fig. 2 a & b). Accordingly, the results of zymography and 

enzyme kinetics after destructive sampling are in agreement, and our selection of enzymatic 

hot- and coldspots is confirmed. The Km values of cold- and hotspots were similar (Fig. 2 c 

& d).  

Water content had a substantial impact on the catalytic characteristics of the enzymes 

(Fig. 2): the maximum activities (Vmax) of leucine aminopeptidase and chitinase under 

drought were 35 - 70% higher (Fig. 2 a & b) than under optimal moisture; Km under drought 

were 10 - 96% higher than under optimal moisture (Fig. 2 c & d). The enzyme activities in 

hotspots were more resistant to drought than those in coldspots (Fig. 3).  
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Fig. 2 Vmax (a, b) and Km (c, d) of leucine aminopeptidase and chitinase in soil from the 

rhizosphere hot- and coldspot under drought (20% of WHC) and optimal moisture (70% of 

WHC), respectively. Microsites: hotspots and coldspots. Lower case letters: significant 

differences between hot- and coldspots at p < 0.05; Upper case letters: significant differences 

between drought and optimal moisture at p < 0.05. 
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Fig. 3 The resistance of enzyme activity to drought (i.e. resistance = 1- (2|D0| / (C0 + |D0|)). 

D0 is the difference in a biological function between the control soil (C0) and the drought soil 

(P0) at the end of disturbance (t0). Letters indicate significant differences between hot- and 

coldspots. 

4.3.2 Soil bacterial community composition 

At the genus level, the dominant genera with a relative abundance > 1% were Gaiella, 

Arthrobacter, Nocardioides, Knoellia, Sphingomonas, Mycobacterium, Streptomyces, 

Microvirga, Marmoricola and Iamia in all samples (Fig. 4a). Nocardioides and Streptomyces, 

belonging to Actinobacteria, were more abundant in the soil under drought than that under 

optimal moisture (p < 0.05) (Fig. 4b). 

Drought, microsite and their interactions had no effect on alpha-diversity of the bacterial 

compositions (Table S2) and bacterial community structure (Fig. S3 and Table S1). 
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Fig. 4 Relative abundance of soil bacterial community members at the genus level in soil 

from rhizosphere hot- and coldspots under drought (20% of WHC) and optimal moisture (70% 

of WHC); (b) Relative abundance of Nocardioides and Streptomyces which were significant 

higher under drought than optimal conditions based on the merged dataset (n = 6) from both 

microsites. The Shapiro-Wilk test was used to check normality, and Levene tests were 

performed to check the homogeneity of variances. The normality or homogeneity was not 

proved, and the Wilcoxon test was performed at p < 0.05. Asterisks indicate significant 

differences between drought and optimal conditions. 

4.3.3 The number of gene copies relevant to leucine aminopeptidase and chitinase 

At the phylum level, Actinobacteria was the only dominant phylum significantly 

affected by drought in contributing to the genetic potential for expressing leucine 

aminopeptidase and chitinase (Fig. 5). The number of Actinobacteria gene copies encoding 

leucine aminopeptidase was considerably increased (5.0% for coldspots and 16.7% for 

hotspots) under drought compared to optimal moisture (Fig. 5a). Similarly, drought increased 

Actinobacteria gene copies encoding chitinase compared to optimal soil water content (Fig. 

5b). The number of gene copies encoding those N-related enzymes were similar between 

cold- and hotspots (Fig. 5). In order to explore the contribution of the bacteria relative 

abundance to the difference in the number of gene copies between drought and optimal 

moisture, we specifically calculated the relative abundance of genera that belong to the 

phylum Actinobacteria and have genes encoding leucine aminopeptidase and chitinase under 

two different water treatments. The relative abundance of all the genera that have genes 

encoding leucine aminopeptidase and chitinase increased 6.7% and 10.5% under drought 

compared to optimal moisture, respectively. The relative abundance (> 1% under drought) 

of the 5 most increased genera belonging to Actinobacteria with genes encoding these 
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Nocardioides Streptomyces
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enzymes under drought were Streptomyces, Nocardioides, Marmoricola, Knoellia and an 

unclassified genus of that phylum (Table S3 and S4).  

Overall, water limitation increased the Actinobacteria gene copies of leucine 

aminopeptidase and chitinase, but the effects of cold- and hotspots were negligible. 

 

 

Fig. 5 The number of gene copies encoding (a) leucine aminopeptidase (EC 3.4.11.1) and (b) 

chitinase (EC 3.2.1.52) analyzed by PICRUSt2 for the soil from rhizosphere hot- and 

coldspots under drought (20% of WHC) and optimal moisture (70% of WHC), respectively. 

Values are means of three replicates ± standard deviation (SD). Star (*) beside the legends 

indicates significant difference (p < 0.05) between drought and optimal moisture. 

4.3.4 Metabolic functions relevant to leucine aminopeptidase and chitinase activities  

Tax4Fun2 was used to evaluate the functional potential at the level 3 of the KEGG 

pathway hierarchy. Leucine aminopeptidase is involved in metabolic pathways and 

glutathione metabolism. The genes involved in glutathione metabolism were sensitive to 

drought (Fig. S4a). The relative abundance of genes for the pathways chitinase involving in: 

other glycan degradation, various types of N-glycan biosynthesis, glycosaminoglycan 

degradation, and glycosphingolipid biosynthesis - ganglio series were increased under 

drought condition. (Fig. S4a). All these pathways belong to the category of metabolism at 

level 1. 

In addition to the pathways related to enzymes, we selected the functions with gene 

abundance > 1%. Among them, the relative abundance of genes for biosynthesis of 

antibiotics, fatty acid metabolism, valine, leucine and isoleucine degradation, propanoate 

metabolism and fatty acid degradation increased (p < 0.05) under drought (Fig. S4b). 
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4.3.5 Network analysis of the bacterial community  

The number of positively correlated edges in hotspots (edge number = 546) was greater 

than that in coldspots (edge number = 227), and the ratio of positive to negative correlations 

in hotspots were 1.4 times higher than that in coldspots (Fig. 6a). Although there were far 

fewer significant correlations in the bacterial networks under drought (edge number = 357) 

than that under optimal moisture (edge number = 946) at the genus level, the ratios of positive 

to negative correlations were similar in both (drought 1.86, optimal moisture 1.80; Fig. 6b). 

The network structure in the soil of hotspots and of optimal moisture was more stable than 

that of coldspots and drought condition, respectively (Fig. S5).  

 

Fig. 6 Networks of top 100 genera for the soil from rhizosphere hot- and coldspots (a), and 

(b) under drought (20% of WHC) and optimal moisture (70% of WHC), based on Spearman 

correlation analysis. Red and green lines: strong positive relationships (r > 0.85, p < 0.05) 

and strong negative relationships (r < -0.85, p < 0.05), respectively. Colored nodes represent 

corresponding genera assigned to major phyla. The size of each node is proportional to the 

relative abundance. 
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Most nodes (genera) were classified as peripherals, and no genus was assigned as 

network hubs (Fig. 7). In coldspots, nine genera belonging to Proteobacteria, Actinobacteria, 

Acidobacteria and Chloroflexi were identified as connectors. In hotspots, four genera that 

serve as connectors belong to the phylum Proteobacteria, and one genus from the phylum 

Chloroflexi was identified as module hubs (Fig. 7a). Under drought, Luedemannella 

(Actinobacteria) was module hubs (Fig. 7b) and its relative abundance under drought 

increased 16.9% compared with optimal moisture (Fig. S6). Another unclassified genus in 

the phylum Proteobacteria was identified as module hubs. The genera Paenibacillus 

(Firmicutes), Nordella (Proteobacteria) and one unclassified genus belonging to 

Proteobacteria were connectors. Under optimal water content, seven genera belonging to 

Proteobacteria and Actinobacteria were designated as connectors (Fig. 7b).  

 

Fig. 7 ZP-plot showing distributions of genera on their network roles. Each node represents 

a genus (a) in rhizosphere hot- and coldspots, and (b) under drought (20% of WHC) and 

optimal moisture (70% of WHC). Zi: within-module connectivity, Pi: among-module 

connectivity. Note: norank_c_OLB14, norank_c_Gitt-GS-136: unidentified genera 

belonging to phylum Chloroflexi; norank_f_Xanthobacteraceae, 

norank_f_Methyloligellaceae, norank_o_Azospirillales, norank_o__Rhizobiales, 

unclassified_f__Rhizobiaceae, norank_f__Steroidobacteraceae: unidentified genera 

belonging to phylum Proteobacteria; norank_c_Subgroup_6: a norank genus belonging to 

phylum Acidobacteria; unclassified_c_Actinobacteria, norank_o_Gaiellales, 

unclassified_f_Propionibacteriaceae: unidentified genera belonging to phylum 

Actinobacteria. 
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Topological patterns of degree distribution demonstrated that the genera in hotspots were 

randomly distributed (Radj2 = 0.019, p = 0.219), whereas they followed a power-law 

distribution pattern in coldspots (Radj2 = 0.427, p ≤ 0.001) (Fig. 8a). Considering water 

content, the degree distribution showed that the absolute value of the power in the power-

law distribution under drought (0.745) was higher than that under optimal moisture (0.241) 

(Fig. 8b).  

 

 

Fig. 8 Degree distribution pattern for the bacterial communities (a) in rhizosphere hot- and 

coldspots, and (b) under drought (20% of WHC) and optimal moisture (70% of WHC). The 
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degree of a node is the number of connections it has. Count means the number of the node 

with that degree. 

 

Overall, the bacterial genera in hotspots were more positively correlated with each other 

and presented a more stable network topological structure than those in coldspots. The 

interactions of bacterial communities under optimal water content were more complex and 

stable than under drought, but the bacterial communities under drought still maintained 

relatively tight positive correlations. Drought and microsites substantially affected the 

microbial roles in the networks.   

4.4 Discussion            

4.4.1 Similarity of microbial communities between hot- and coldspots in the rhizosphere 

The similarity of bacterial communities between hot- and coldspots (Fig. 4a, Fig. S3 and 

Table S1) was in contrast with our first hypothesis (H1). Such homogeneous bacteria 

community composition was confirmed by their functionality: the same Km values between 

rhizosphere hot- and coldspots (Fig. 2c & d) indicated stability of the expressed enzyme 

systems. Similarly, the number of functional gene copies (Fig. 5) and metabolic functions 

(Fig. S4) relevant to these two enzymes was similar between hot- and coldspots under both 

drought and optimal moisture. The consistency of these results suggests that the occurrence 

of enzymatic hot- and coldspots in close proximity to the roots did not shift the microbial 

community composition. Even though no changes in microbial community composition were 

detected, we attributed the higher enzyme activities in the hotspot soil to: i) a more 

complexed and stable network structure compared to the coldspot soil (Fig. 6a & S5a); ii) 

less competitive relationships among bacteria (Fig. 6a) because probably more root exudates 

were released there (Zhang et al., unpublished); and iii) larger microbial biomass, as common 

in hotspots (Blagodatskaya et al., 2014). Also, the shift of bacterial roles to module hubs (Fig. 

7a) strengthened the fluxes of energy and materials within an ecological module (Shi et al., 

2020). Other sources of increased enzymatic activity are i) the direct secretion of enzymes 

by roots, ii) their release by the root cell lysis, and iii) the production of chitinase by fungi 

(Marinari et al., 2014; Burns, 1982; Tischer et al., 2015). However, such an altered 

exoenzyme secretion along the root axis must be triggered by an altered nutrient availability. 

This altered N supply would trigger microbial enzyme systems towards N mining (Li et al., 

2017), suggesting a coaction of plant-derived and microbial-derived enzyme activities. The 

higher root exudates in the hotspots (Zhang et al., unpublished) and the increased SOM 
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decomposition due to higher enzyme activity provided energy and nutrients to 

microorganisms. Thus, N-releasing enzyme activities were more resistant to drought in 

hotspots than in coldspots (Fig. 3), in line with our H3.  

Consequently, the differentiation of enzymatic hot- and coldspots did not trigger shifts 

in the bacterial community structure. In contrast, microhabitats along the root axis with 

strongly differing microbial activities were likely associated with the stable network structure 

and stronger connections within modules.     

4.4.2 Drought impact on microbial communities and their contribution to N cycle 

Both leucine aminopeptidase and chitinase activities in hot- and coldspots were higher 

under drought than under optimal soil moisture (Fig. 2a & b), similar to the results reported 

by Sanaullah et al. (2011). Nonetheless, this is unexpected compared with some previous 

studies showing that drought decreased enzyme activities because of the negative effects of 

drought on soil biochemical properties, such as reduced diffusion of substrates, the 

suppressed microbial activities and lower microbial biomass (Hueso et al., 2012; Sardans and 

Peñuelas, 2018). However, in our study, one of the probable explanations for this enhanced 

enzymatic response lies in the increased release of root exudates (Preece and Peñuelas, 2016) 

to support microorganisms in compensating for soil water shortage (Bastida et al., 2017). For 

example, plants released more mucilage, which increased the soil water holding capacity and 

simplified the growth of roots in the dry soil (Gargallo-Garriga et al., 2018; Preece and 

Peñuelas, 2016). This, in turn, helped the microbial community to offset the reduced 

diffusion of organic substances to microbial cells and stimulated their activities. The 

increased rhizodeposition also included extracellular enzymes (Preece et al., 2018), which 

promoted the growth and survival of roots and microorganisms. Moreover, lower solute 

mobility most likely triggers an increase in enzyme activities. Water limitation slowed down 

the diffusion of substrate and the movement of microorganisms because the water films along 

the soil pores shrank (Burns et al., 2013; Manzoni et al., 2012; Or et al., 2007). This 

disconnection stimulated microorganisms to produce more enzymes to obtain required 

substrates (Acosta-Martinez et al., 2014). Other likely explanations for higher enzyme 

activities under drought were i) the release of enzymes upon the cell lysis (Berard et al., 

2011); and ii) lower microbial competition with plants that are more sensitive to drought 

(Ochoa-Hueso et al., 2018). The altered amount/type of enzymes produced by the 

microbiome and the conformational changes during the two-week drought in comparison 

with optimal moisture could impair the enzyme affinity to the substrate (higher Km values, 
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Fig. 2 c & d). In soil with water limitation, microorganisms need more energy to retain water 

by producing extracellular polymeric substances (EPS) to keep their habitats moist (Schimel, 

2018). The drought-tolerant microorganisms, however, must release more enzymes to break 

down organic matter to survive and maintain their functions (Steinweg, 2011). Such a process 

is most-likely promoted by the plant. This is because microbial N mobilization helps to 

overcome the reduced nutrient diffusion under drought and allows sufficient plant nutrient 

uptake. Higher peptidase and chitinase released by roots or indirectly by microbial 

stimulation via increased exudation is thus a strategy against drought when nutrient and 

exoenzyme diffusion is restricted. The energy and N required to produce these enzymes were 

probably supported by metabolic pathways in which the number of involved genes copies 

increased under drought (Fig. S4). For example, carbohydrate metabolism and amino acid 

metabolism could provide various compounds and energy for microorganisms (Wei et al., 

2018).  

The higher enzyme activities under drought due to the increase of the number of 

functional genes copies encoded by the Actinobacteria for both investigated enzymes (Fig. 

5) was in line with our H2. The functional gene copies encoded by Actinobacteria were 

enriched probably because: i) drought increased the relative abundance of genera belonging 

to Actinobacteria capable of leucine aminopeptidase and chitinase production, such as 

Nocardioides, Streptomyces, Marmoricola and Knoellia (Table S3 and S4); ii) Although the 

relationships of bacteria under drought were less complex, bacteria still kept relatively tight 

positive correlations (Fig. 6b). Moreover, the interactions between bacteria were less equal 

under drought (Fig. 8b) (Fan et al., 2018), which indicated the adaptation of keystone bacteria 

to drought stress. The genus Luedemannella (Actinobacteria) is probably one of the keystone 

bacteria that acted as module hubs to mediate energy and substance exchanges within 

modules (Fig. 7b) to maintain the interactions between bacterial populations. Furthermore, 

this genus encoded genes for leucine aminopeptidase and chitinase, and its relative 

abundance under drought was 17% higher than in optimal moisture (Fig. S6). All these results 

combined suggested that the higher relative abundance of the bacteria that possess genes 

encoding leucine aminopeptidase and chitinase under drought contributed to the increased 

production of these enzymes. However, it is important to acknowledge that the functional 

differences detected by PICRUSt2 and Tax4Fun2 might be of an artefact of the low 

percentage of functional assignments that these two methods can assign to different taxa.  

Overall, the bacterial community composition and specific enzyme-related bacterial 

groups were similar in rhizosphere hotspots and coldspots. Instead, the stable network 
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structure and less competitive correlations of the bacterial community played a crucial role 

in the high enzyme activities in the rhizosphere hotspots. The more root exudates and faster 

SOM decomposition caused by higher enzyme activities in hotspots contributed to the 

stronger resistance of enzyme activities to drought stress than in coldspots. Drought induced 

minor changes in bacterial community structure, which had strong implications for the 

potential number of functional gene copies controlling microbial decomposition of proteins 

and chitin and, thus, controlling N cycling. This demonstrates that bacterial communities 

react to drought stress by increasing extracellular enzyme production and they achieve this 

by encoding more enzyme- genes regardless of microhabitats (i.e., hotspots or coldspots). 

Note that the functional analysis done here is based on predicted functions. Future studies 

based on metagenomics or transcriptomic data would be necessary to confirm the predicted 

pattern. 
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Supplementary 

 
Fig. S1 Water content of soils during drying cycle. The soil water content was measured 

gravimetrically by weighing the rhizoboxes. The points represent the average of 3 replicates. 
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Fig. S2 Rarefaction curves of Sobs index on OTU level against the number of sequence reads 

for soils from rhizosphere hot- and coldspots under drought (20% of WHC) and optimal 

moisture (70% of WHC), respectively. 

 



Manuscripts 

 
 

152 
 

 

Fig. S3 Principal Coordinates Analysis (PCoA) of bacterial communities in soils from 

rhizosphere hot- and coldspots under drought (20% of WHC) and optimal moisture (70% of 

WHC), respectively. 
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Fig. S4 (a) Metabolic functions related to leucine aminopeptidase and chitinase using 

Tax4Fun2 at level 3 displayed as normalization of relative abundance by Z score. (b) 

Functional profiles of selected metabolisms (relative abundance >1%) based on KEGG 

categories (level 3) displayed as normalization of relative abundance by Z score. Lower case 

letters: significant differences between drought and optimal moisture after two-way ANOVA 

and Student’s t test at p < 0.05. 
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Fig. S5 Network stability analysis. The decrease of natural connectivity when attacking 

nodes in the static network in the soil of (a) hotspot and coldspot, and (b) drought and optimal 

moisture. 

 

 

Fig. S6 The relative abundance of the genus Luedemannella, which was detected as module 

hubs in the network under drought conditions. 

 

Table S1 PERMANOVA analysis at the OTU level based on Bray-Curtis distances 

 Df Sums of  
squares Mean squares F.Model Variation (R2) Pr 

(>F) 

Water content 1 0.040 0.040 1.414 0.132615 0.229 

Microsite 1 0.019 0.019 0.656 0.061557 0.795 

Water content * Microsite 1 0.017 0.017 0.591 0.055422 0.868 

Residual 8 0.229 0.029  0.750406  

Total 11 0.305   1  

 
Table S2 Alpha diversity indices at the OTU level in soil from rhizosphere hot- and coldspots 

under drought (20% of WHC) and optimal moisture (70% of WHC) 
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Samples Shannon ACE Chao 1 

Drought coldspot 6.20 ± 0.01a 2.60*103 ± 67.5a 2.60*103 ± 108.3a 

Drought hotspot 6.17 ± 0.10a 2.61*103 ± 24.3a 2.59*103 ± 32.6a 

Optimal coldspot 6.23 ± 0.02a 2.65*103 ± 93.5a 2.65*103 ± 92.0a 

Optimal hotspot 6.19 ± 0.05a 2.56*103 ± 38.1a 2.56*103 ± 55.6a 

Note: Values are means of three replicates ± SD. Letters indicate significant differences after 

two-way ANOVA at p < 0.05. 

 

Table S3 The relative abundance (> 1% under drought) of the total and 5 most increased 

genera belonging to Actinobacteria related to leucine aminopeptidase under drought (20% of 

WHC) compared with optimal moisture (70% of WHC). Note: 

g__norank_c__Actinobacteria: a norank genus belonging to the phylum Actinobacteria. 

 
Tota
l 

Streptomyc
es 

Nocardioid
es 

Marmoricol
a 

g__norank_c__Acti
nobacteria 

Knoell
ia 

Drought 38.1
7 

1.41 3.13 1.25 2.67 1.93 

Optimal 35.7
6 

0.88 2.21 0.94 2.04 1.49 

 

Table S4 The relative abundance (> 1% under drought) of the total and 5 most increased 

genera belonging to Actinobacteria related to chitinase under drought (20% of WHC) 

compared with optimal moisture (70% of WHC). Note: g__norank_c__Actinobacteria: a 

norank genus belonging to the phylum Actinobacteria. 

 
Total Streptomyc

es 
Nocardioid
es 

Marmoricol
a 

g__norank_c__A
ctinobacteria 

Knoelli
a 

Drought 31.7
1 

1.41 3.13 1.25 2.58 1.93 

Optimal 28.7
0 

0.88 2.21 0.94 1.95 1.49 
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Abstract  

Root hairs proliferation and warming strongly influence exudate release, enzyme activities 
and microbial substrate utilization. However, how the presence of root hairs regulates those 
processes in the rhizosphere under elevated temperature is poorly known. To clarify these 
interactions, a wild type maize (with root hairs) and its hairless mutant were grown for 3 
weeks at 20 and 30 °C, respectively. We combined zymography (localize hotspots of β-
glucosidase) with substrate-induced respiration and microcalorimetry to monitor exudate 
effects on enzyme kinetics, microbial growth and heat production in the rhizosphere hotspots 
in response to warming.  
Root hairs effects were more pronounced at the elevated temperature: i) β-glucosidase 
activity of the wild type at 30 °C was 21% higher than that of the hairless maize; ii) 
temperature shifted the microbial growth strategy, whereas root hairs promoted the fraction 
of growing microbial biomass; iii) Km and the activation energy for β-glucosidase under the 
hairless mutant was lower than that under wild maize. These results suggest that 
microorganisms inhabiting hotspots of the wild type synthesized more enzymes to fulfill their 
higher energy and nutrient demands than those of the hairless mutant. In contrast, at higher 
temperature the hairless maize produced an enzyme pool with higher efficiencies rather than 
higher enzyme production, enabling metabolic needs to be met at lower cost. We therefore 
conclude that root hairs play an important role in regulating enzyme systems and microbial 
growth to adapt to climate warming.  
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5.1 Introduction 

When a carbon (C) source is added to a small soil volume and causes microorganisms to 

thrive, a microbial hotspot is formed — a microsite with much higher process rates than the 

surrounding bulk soil (Kuzyakov, 2010). The formation, size, and lifetime of microbial 

hotspots in the vicinity of growing roots (rhizosphere) are governed by the quantity, 

frequency and quality of root exudate inputs (Zhang et al., 2019; Kuzyakov and 

Blagodatskaya, 2015; Tian et al., 2020). Exudate properties depend on root traits such as the 

presence of root hairs (Kuzyakov and Razavi, 2019). Most prominently, root hairs increase 

the substrate availability for microorganisms (Jones et al., 2009; Mishra et al., 2009), which 

in turn play a vital role in modulating plant responses to stress (Datta et al., 2011; Poirier et 

al., 2018). Thus, interactions between roots and their microbiome may fundamentally affect 

C turnover in hotspots (Paterson et al., 2009; Blagodatskaya et al., 2011). Root hair-less 

mutants have been previously used to test the relevance of root hairs for a range of 

rhizosphere-related phenomena (Bates and Lynch, 2000; Pausch et al., 2016). 

Apart from root hairs, elevated air temperatures stimulate root exudation and thereby 

microbial activity (Wei et al., 2019; Zang et al., 2019) — caused by global warming. 

Increased microbial respiration may be a transient response to warming, either due to thermal 

acclimation of the community or substrate depletion (Allison et al., 2010; Bradford et al., 

2019). Here, acclimation is defined as the individually physiological adjustments in response 

to an experimentally environmental factor (Bradford, 2013). 

Considering warming and root traits, do root hairs increase soil respiration rates, or do 

they weaken soil organic matter (SOM) losses under warming? It is far from clear whether 

root hairs increase the activity of the decomposer community through higher exudation rates 

or decrease it due to temperature acclimation.  

For example, enzyme expressions are shifted to higher binding affinities when substrates 

are limited (Steinweg et al., 2008). Microorganisms stimulated by warming produce more 

enzymes but with lower efficiency (higher Km) since the microbial energy and nutrient 

demands may be met by more and higher Km enzymes (Razavi et al., 2016a). Such trade-offs 

between enzyme structure and functions can help compensate the less available substrate by 

highly flexible enzyme selections (Crowther and Bradford, 2013) or diminish the effects of 

warming on soil C losses by selecting stable enzymes (Razavi et al., 2016a).   

Accordingly, substrate availability may indirectly control the optimal thermo regulation 

strategy (Fig. 1). In pure cultures, for example, microorganisms can produce enzyme pools 
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which enable utilization of a wider range of amino acids, which may pose a survival 

advantage under substrate limitation (Zinser and Kolter, 1999; Finkel, 2006). This production 

of multiple forms of key enzymes under low C availability may be at the cost of decreasing 

metabolic efficiency (Fig. 1). However, substrate limitation may also enable a shift in 

microbial growth strategy: from fast-growing r-strategists to slow-growing K-strategists 

(Panikov and Sizova, 1996). Importantly, this theoretical prediction has never been tested in 

complex matrices such as soil hotspots.  

 

Fig. 1 Schematic microbial response to the input of root exudates in the rhizosphere. 

Substrate limitation shifts gene expression to the production of enzyme systems with a higher 

binding affinity. Production of multiple forms of key enzymes under low C availability 

reduces metabolic efficiency. This investment would impose a tradeoff by reducing the 

allocation of available energy to growth (left). Under high C input, however, microorganisms 

increase enzyme expression and maximize the fraction of resources for biosynthesis (right). 

Thus, the substrate availability as affected by root hair proliferation and warming may control 

the optimal strategy of thermoregulation. 

 

Enzymes are crucial for almost all biological reactions (Burns et al., 2013). Efficient 

enzyme systems involve isoenzymes, which decrease the activation energy (Ea) (Davidson 

and Janssens, 2006; Bradford, 2013; Razavi et al., 2016a) based on the Arrhenius equation 

(Marx et al., 2007; Razavi et al., 2017). Enzyme catalysis also releases energy mostly in the 
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form of heat which can be quantified e.g. by microcalorimetry as net metabolic heat 

production. The calorespirometric ratio (i.e. heat production relative to CO2 emission) is an 

estimate of the efficiency of metabolic processes (an index of substrate use efficiency; 

Herrmann et al., 2014). Our knowledge is very limited on how root hair exudation affects 

enzyme systems, microbial growth strategy and microbial activity in microbial hotspots, 

especially under changing environmental conditions such as global warming. 

Here, we coupled soil zymography — a method to visualize enzymatic activity (Spohn 

and Kuzyakov, 2014; Razavi et al., 2019) — with β-glucosidase kinetics, microbial growth 

and heat production to i) identify microbial hotspots in situ; and ii) assess how warming and 

root hairs affect microbial growth strategy and functionality in rhizosphere hotspots. 

Two genotypes of maize (Zea mays L.) differing in root exudate quantity, a wild type 

with root hairs and the mutant rth3 without root hairs, were grown at 20 or 30 °C for 3 weeks. 

Given that β-glucosidase plays a central role in cellulose degradation (the most abundant 

plant polymer), and cleaves cellobiose into glucose monomers (Lammirato et al., 2010), it is 

the representative of C cycling enzymes (German et al., 2011; Moscatelli et al., 2012).  

We hypothesized that i) warming and root hairs mutually increase root exudation, 

resulting in higher soil enzyme activities and higher abundance of r-strategists (based on 

faster specific growth rates, μ); ii) microorganisms compensate lower amounts of exudation 

from hairless roots through the production of enzymes with higher efficiencies (lower Km 

and Ea; Somero, 1978); and iii) substrate use efficiencies, here studied by the 

calorespirometric ratio, decrease with warming and are regulated by root hairs and thus by C 

input. 

5.2 Materials and methods  

5.2.1 Soil description and experimental setup  

The soil was collected from the 0 to 50 cm depth of a Haplic Phaeozem close to 

Schladebach in Saxony Anhalt. The soil properties were total C 8.5 g kg-1, total N 0.8 g kg-

1, available P 39.7 mg kg-1 and available K 38.5 mg kg-1, and pH 6.4. The soil was 

homogenized and passed through a 2 mm sieve before the experiment.  

Two maize genotypes (Zea mays L.) — wild type (with root hairs) and mutant rth3 

(without root hairs) — were germinated for 3 days. Each seedling was transplanted to a 

separate rhizobox with inner dimensions of 12.3 × 12.5 × 2.3 cm. Two varieties with 3 

replicates were incubated in a climate chamber at 20 ± 1 °C or 30 ± 1 °C for 3 weeks. The 
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daily light period of that climate chamber was 12 h with a photosynthetically active radiation 

intensity of 350 μmol m-2 s-1 and the relative air humidity was 65%. The temperatures used 

were chosen to reflect the moderate temperature for maize growth (20 °C) and the potential 

for higher peak summer temperatures (30 °C) in response to climate change. After 3 weeks 

of incubation, the maize was at the early growth stage with young and developed primarily 

and lateral roots, and reached the bottom of the rhizobox. During the growth period, these 

rhizoboxes were covered to avoid algal growth on the surface and kept inclined at an angle 

of 45° to ensure that the roots grew along the lower wall. Each rhizobox was weighed and 

irrigated with distilled water to maintain the soil water content at 60% of the water holding 

capacity. Preliminary experiments showed that the two genotypes differ in the amount of root 

exudates (Bilyera et al., 2019). 

5.2.2 Soil zymography 

After 3 weeks incubation, one side of the rhizoboxes was opened and direct soil 

zymography for β-glucosidase activity was conducted and analyzed according to the protocol 

optimized by Razavi et al., 2016b, 2019. This involved saturating a polyamide membrane 

(0.45 µm pore size; 100 µm thick, Tao Yuan, China) in 10 mM 4-methylumbelliferyl-β-D-

glucoside substrate solution and placing it on the soil surface. After 1 h incubation, the 

membranes (zymograms) were photographed under UV light with a Canon EOS 6D camera. 

The gray scale values were calculated to enzyme activity by calibrating a series of 4-

methylumbelliferone (MUF) concentrations (0, 0.01, 0.2, 0.5, 1, 2, 4, 6, 10 mM). For the 

calibration, the membranes (2 cm × 2 cm) were saturated with a known amount of MUF 

solution and then imaged under UV light. Finally, zymograms were used as a map to localize 

hotspot of β-glucosidase activity (Fig. 2). The criterium for hotspot identification is the gray 

scale values higher than mean + 2 standard deviations (SD) (Razavi et al., 2019). The soil 

samples were collected from all the identified hotspots of each rhizobox and the mixed soils 

were split into 5 subsamples for further analysis (1 for enzyme kinetics, 2 for kinetics of 

substrate-induced respiration and 2 for heat production).  



Manuscripts 

 
 

162 
 

 

Fig. 2 Examples of soil sampling from hotspots of β-glucosidase activity (nmol cm-2 h-1) for 

further analyses (enzyme kinetics (Fig. 3), kinetics of substrate-induced respiration (Fig. 4) 

and heat production (Fig. S1)). Small circles: the hotspot soil sampled for further analyses. 

Left: wild maize type; right: hairless mutant. 

 

The images obtained from zymography were transformed into a 8-bit gray scale in 

ImageJ. The environmental background and camera noise were corrected by the images taken 

in the dark room without samples. Finally, the calibration line was used to convert gray scale 

values into enzyme activities.  

5.2.3 Kinetics of enzyme activity and activation energy  

The potential activity of β-glucosidase was measured using the same fluorogenic 

substrate for zymography (i.e. 4-methylumbelliferyl-β-D-glucoside). The concentrations for 

the kinetic measurement ranged from low to high (0, 5, 10, 20, 50, 100 μmol L–1), whereby 

the saturation concentrations of fluorogenic substrates were obtained from preliminary 

experiments for this soil. Briefly, 0.5 g soil was mixed with 50 ml sterile water. After 2 min. 

low-energy sonification, 50 μl soil suspension, 100 μl substrate and 50 μl MES buffer were 

added into a 96-well black microplate. The fluorescence was measured by a Victor 1420-050 

Multi label counter (Perkin Elmer, USA) (Marx et al., 2001; German et al., 2011; Razavi et 

al., 2015). The Michaelis-Menten equation was used to determine Vmax and Km: 

	v = I345	×[J]
M3+[J]

                                              (1) 
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where V is the reaction rate, [S] is the substrate concentration, Km is the substrate 

concentration at half-maximal rate, and Vmax is the maximum reaction rate at a given 

temperature. 

The activation energy (Ea) was calculated based on the Arrhenius equation (Eq. 2): 

K = A × exp X-N4
OP
Y                                   (2) 

where k is the reaction rate constant, A is the frequency of molecular collisions, Ea is the 

required activation energy, R is the gas constant (8.314 J mol-1 K-1) and T is the temperature 

in Kelvin. 

5.2.4 Kinetics of the substrate-induced respiration  

Substrate Induced Growth Respiration (SIGR) is an approach to characterize functional 

soil microbial groups, and total and active (growing) microbial biomass (Panikov and Sizova, 

1996; Blagodatskaya et al., 2014). Specifically, 0.5 g fresh soil in a tube was amended with 

a mixture containing glucose (10 mg g–1) and mineral salts (1.9 mg g–1 (NH4)2SO4, 2.25 mg 

g–1 K2HPO4, and 3.8 mg g–1 MgSO4·7H2O) (Blagodatskaya et al., 2009), inducing unlimited 

growth. The samples amended with water instead of glucose were treated as the control. Soil 

samples were incubated in the modified rapid automated bacterial impedance technique 

(RABIT) system (don whitley scientific, UK) at 20 and 30 °C, respectively, and the CO2 

production rate was monitored every 20 min.  

Equation (3) was used to estimate the specific growth rate (μ) of soil microorganisms: 

	COH = A + B × exp	(µt)                          (3) 

where A is the initial respiration rate uncoupled from ATP production, B is the initial rate of 

couple (growth) respiration, and t is the time (Blagodatsky et al., 2000). 

The total microbial biomass (TMB) and growing microbial biomass (GMB) at time zero 

were given by Eq. (4) and (5) 

TMB = Q
R6S

                                    (4) 

GMB	 = 	TMB · rA	                              (5) 

where r0 is the physiological state index of the microbial biomass (MB) before substrate 

addition and was calculated according to Eq. (6) 

     	rA =
Q(1-	T)

U	+	Q(1-	T)
		                                (6) 
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where λ = 0.9, which has been accepted as a basic stoichiometric constant (Panikov and 

Sizova, 1996). Q is the total specific respiration activity:  

  	Q = V
T	WXY-

	                                   (7) 

where YCO2 is the microbial yield per unit of glucose-C consumed, which was assumed to 

be a mean value of 0.6 (Panikov and Sizova, 1996). The theory of microbial growth kinetics 

has been presented in detail earlier (Panikov, 1995). 

5.2.5 Microbial energy response to substrates  

The approach — microcalorimetry — was used to monitor heat production. The 

measured heat production covers all metabolic processes (not only those leading to CO2 

production), making them complementary to respiratory-based investigations (Harris et al., 

2012; Hassan et al., 2014; Herrmann et al., 2014; Bölscher et al., 2016).  

The heat production was estimated with separate sample sets. Briefly, 0.5 g soil was 

amended with the same nutrients and glucose/water as the SIGR described above in section 

2.4. Sterile sand (SiO2) was used as a reference for each sample. The sample and the reference 

should initially have the same heat capacity. All the samples containing soil or sand were 

placed into airtight glass containers and incubated at 20 and 30 °C, respectively, in the TAM 

Air Thermostat SN 548 (TA Instruments, Germany). Heat production was monitored 

continuously every 10 sec.  

Microbial substrate use efficiency is a crucial property in SOM mineralization and helps 

strengthen our mechanistic understanding of the allocation of substrates towards energy 

losses and biosynthesis into microbial biomass in soils (Bölscher et al., 2017). The 

calorespirometric ratio (γ, J mol−1 CO2 or mJ μg−1CO2) is used as an indirect indicator of 

substrate use efficiency. It is the ratio of heat production and CO2 production (Hansen et al., 

2004) and is calculated based on Eq. (8): 

 	γ = 	 S
XY-

			                                     (8) 

where Q (J g−1 soil) is heat production and CO2 (mol CO2 g−1 soil or μg CO2-C g−1 soil) is 

the CO2 production over the period after substrate addition.  

Substrate use efficiency is expected to decrease (e.g. higher calorespirometric ratio) with 

increasing temperature (Sinsabaugh et al., 2013; Wadsö and Hansen, 2015). This reflects 

changes in individuals, populations and/or community compositions (Barros et al., 2010; 

Schimel and Schaeffer, 2012). 
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5.2.6 Statistical analyses 

The significance of differences for maximal β-glucosidase activity, Km, specific growth 

rate, total and growing microbial biomass, and the ratio of Q/CO2 were analyzed by two-way 

ANOVA (i.e. maize genotypes and temperature are the two variables, and their interactions 

were also tested) using the software JMP, at p < 0.05. Significance of differences of Ea for 

Vmax of β-glucosidase activity between the two maize genotypes were tested by the Student’s 

t test using the software JMP, at p < 0.05.  

5.3 Results 

5.3.1 Response of enzyme kinetics to the presence of root hairs and temperature 

β-glucosidase activities at 30 °C were 63% and 35% higher than at 20 °C in the soil from 

hotspots of root-hair wild type and root-hairless mutant maize, respectively. The maximum 

β-glucosidase activity in the soil from hotspots was not affected by root hairs at 20 °C. β-

glucosidase activity in hotspot soil of maize with root hairs was 21% higher than that of the 

mutant at 30 °C (Fig. 3a). The activation energy for Vmax (Ea-Vmax) in hotspot soil of the wild 

type (36.5 kJ mol-1) was higher (p = 0.047) than that of the mutant (21.9 kJ mol-1) (Table 1). 

Km values were also higher for the wild type than hairless mutant (Fig. 3b).  

 

Fig. 3 β-glucosidase activity parameters: Vmax (a) and Km (b) at 20 and 30 °C of root-hair 

wild and root-hairless mutant maize. p values were obtained after two-way ANOVA. 

Genotype: wild type and mutant maize; Temperature: 20 and 30 °C. Lower case letters in (a): 

significant differences after two-way ANOVA and Tukey’s HSD test at p < 0.05; Lower case 

letters in (b): significant differences between wild type and mutant maize after two-way 

ANOVA and Student’s t test at p < 0.05. 
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Table 1 The activation energy for β-glucosidase activity (Ea-Vmax) as obtained by fitting the 

Arrhenius equation (Eq. 2) based on the Vmax of β-glucosidase at 20 and 30 °C. Small letters: 

significant differences after Student’s t test at p < 0.05. 

Maize genotype Ea-Vmax (kJ mol-1) 

Wild 36.5a 

Mutant 21.9b 

  

Thus, the enzyme kinetics (Vmax and Km) in soil hotspots for the two genotypes 

responded differently to temperature increase. The expected higher Km values in hotspot soil 

from the root-hair wild type at 30 °C than that at 20 °C indicated a change of the enzyme 

system to a lower efficiency. In contrast, an unexpected decrease in Km value in the hotspot 

soil of the root-hairless mutant showed a stronger substrate affinity of β-glucosidase to 

compensate the reduced release of root exudates.  

5.3.2 Response of substrate-induced respiration kinetics to the presence of root hairs and 

temperature 

The specific growth rates (μ) were about 2 times faster at 30 °C than 20 °C (p < 0.0001) 

in the hotspot soil of both genotypes (Fig. 4a). The specific growth rates of both genotypes 

were similar at 20 °C (Fig. 4a). In contrast, the rate was 17.8% higher for the hotspot soil of 

root-hairless mutant versus root-hair wild type at 30 °C (Fig. 4a). Root hairs do not affect 

total soil microbial biomass (Table S1), but over doubled the growing microbial biomass and 

its portion in total microbial biomass compared to that of the mutant maize, independent of 

temperature (Fig. 4b and 4c). Thus, temperature caused a shift of the microbial growth 

strategy, while root hairs (i.e. C input) controlled the active portion of the microbial biomass. 

  

Fig. 4 Specific growth rates (μ) of soil microorganisms (a), actively growing microbial 

biomass (b), and the ratio of growing to total microbial biomass (c) during incubation at 20 

and 30 °C for the two maize genotypes estimated by substrate-induced respiration. p values 

were obtained after two-way ANOVA. Genotype: wild type and mutant maize; Temperature: 
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20 and 30 °C. Lower case letters in (a): significant differences after two-way ANOVA and 

Tukey’s HSD test at p < 0.05; Lower case letters in (b) and (c): significant differences 

between wild type and mutant maize after two-way ANOVA and Student’s t test at p < 0.05; 

Upper case letters in (b): significant differences between 20 and 30 °C after two-way 

ANOVA and Student’s t test at p < 0.05. 

5.3.3 Response of calorespirometric ratio to the presence of root hairs and temperature 

The effect of root hairs on heat production was negligible, whereas higher temperature 

increased the cumulative heat production (Fig. S1). The calorespirometric ratios after glucose 

addition to the hotspot soil of both maize genotypes and two temperatures ranged from 41.2 

to 98.6 mJ μg−1 CO2-C. The ratio at 20 °C was lower than that at 30 °C, irrespective of maize 

genotype (Fig. 5), indicating a higher substrate use efficiency at lower temperature. The ratios 

increased with increasing temperature, and the root-hairless mutant maize exhibited the 

highest calorespirometric ratio at 30 °C (Fig. 5). Accordingly, the effect of root hairs on the 

calorespirometric ratio was irrespective of temperature, while temperature induced the 

conversion of more substrates to CO2 independent of root hairs. 

 

Fig. 5 Substrate use efficiency expressed as calorespirometric ratios obtained from the 24 h 

incubation of soil samples after glucose addition. p values were obtained after two-way 

ANOVA. Genotype: wild type and mutant maize; Temperature: 20 and 30 °C. Lower case 

letters: significant differences between wild type and mutant maize after two-way ANOVA 

and Student’s t test at p < 0.05; Upper case letters: significant differences between 20 and 

30 °C after two-way ANOVA and Student’s t test at p < 0.05. 
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5.4 Discussion 

5.4.1 The interactive effects of root hairs and temperature on enzyme activities, microbial 

growth strategy, and substrate use efficiency 

Elevated temperature caused higher β-glucosidase activity (Fig. 3a), which supported 

part of our first hypothesis. This increase was probably related to the higher root exudate 

release due to the effect of warming on the membrane permeability of root cells (Steinweg 

et al., 2008; Allison et al., 2010). More root exudates at warmer temperature stimulated 

microorganisms and thus boosted enzyme production (Ma et al., 2017). Importantly, the 

higher enzyme activities at 30 versus 20 °C coincided with less growing microbial biomass 

(Fig. 4b), so that substrate allocation to microbial growth decreased due to higher 

maintenance demands with temperature (Steinweg et al., 2008; Wen et al., 2019). The higher 

enzyme production in warmer soils required more C and energy input at the cost of reducing 

the proportion of C to microbial growth (Cotrufo et al., 2013; Bölscher, 2016). The higher 

microbial demand for C at elevated temperature highlighted the role of root hairs. At 30 °C, 

root hairs released large amounts of compounds (Badri and Vivanco, 2009; Jones et al., 2009; 

Holz et al., 2018), which increased growing microbial biomass and accelerated enzyme 

activities compared to the soil under the hairless mutant. In contrast, higher Km at 30 °C (Fig. 

3b) and higher Ea (Table 1) in the hotspot soil of wild type maize confirmed the expression 

of low efficient enzymes (Razavi et al., 2017). This means that microorganisms in the 

hotspots of the wild type maintained a slow growth rate but maximized substrate use 

efficiency (Fierer et al., 2007). Accordingly, the increased β-glucosidase production in the 

presence of root hairs was sufficient to gain enough energy for microbial activity and 

proliferation. Higher substrate use efficiency combined with less efficient enzyme systems 

tended to be an evolutionary strategy to increase microbial biomass and probably maximize 

the fraction of resource uptake. Such a higher substrate supply is allocated to biosynthetic 

processes by investing in central metabolism and assimilatory pathways such as amino acid, 

nucleotide, and fatty acid synthesis to build cellular components and reduce SOM 

decomposition (Keiblinger et al., 2010; Wei et al., 2018) (Fig. 1). In contrast, the lower Km 

of β-glucosidase in the hotspots of root-hairless maize at higher temperature (Fig. 3b) could 

be attributed to isoenzyme expression (Razavi et al., 2017) by the same or different microbial 

groups. Such multiple isoenzyme expression will maintain the high efficiency and critical 

functions in the absence of abundant labile C. Lower Km supported hypothesis 2 on the 

efficient enzyme systems of the microbial communities inhabiting enzymatic hotspots of the 

root-hairless mutant to compensate for the lesser amount of exudate. These isoenzymes 
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reduced the activation energy (Ea- Vmax) (Table 1) of their catalytic reactions compared with 

the wild type and thus ensured that the root-hairless-induced enzymes were faster and more 

efficient.  

Interestingly, the effect of root hairs on microbial activity and functionality (e.g. enzyme 

kinetics, specific growth rate and heat production at moderate temperature) at 20 °C was 

negligible. This could be due to the insensitivity of hydrolytic enzymes to substrate 

concentrations at optimal temperature. This would represent a microbial acclimation 

mechanism (Ge et al., 2017). We detected no trends in enzyme-substrate affinity at 20 °C 

and therefore conclude that microorganisms adapted to moderate temperature in the studied 

soil used a similar set of isoenzymes at 20 °C (Razavi et al., 2016a). This also suggests that 

the processes at 20 °C were at a relatively stationary stage (Kuzyakov and Razavi, 2019), 

whereas warming caused extreme variability in microbiome activity and functionality. 

Accordingly, despite the high dynamics of life and processes in hotspots such as in the 

rhizosphere, roots may engineer the local microenvironment and optimize the conditions for 

their habitat (e.g. for better growth under specific soil conditions) (Kuzyakov and Razavi, 

2019).  

5.4.2 What matters more: food or climate? 

We presented three mechanisms of how root hairs regulate microbial processes in 

hotspots in response to warming: i) alter enzyme systems (Fig. 3); ii) shift microbial growth 

strategies (Fig. 4) and iii) change substrate use efficiency (Fig. 5). Selecting enzymes with 

lower substrate affinity (i.e. higher Km) in the presence of root hairs will restrain the enzyme-

mediated reactions at higher temperature (Bradford et al., 2019). In contrast, substrate 

limitation due to the absence of root hairs shifted the expression of enzymes toward higher 

efficiency (i.e. lower Km and Ea) (Bradford, 2013). Such a shift is one way to maintain 

decomposition processes under warmer conditions. Consequently, the altered expression of 

hydrolytic enzymes mediated the response of the microbial decomposition of organic matter 

to sustained warming (Blagodatskaya et al., 2016). The higher relative abundance of slow-

growing microorganisms in the soil of maize with root hairs could induce a lower 

calorespirometric ratio compared with the hairless mutant (Fig. 5). Such a higher ratio of C 

incorporated into microbial biomass (Fig. 4c) meant higher SOM formation rates and 

retarded soil C losses (Bölscher, 2016; Bradford et al., 2019; Wen et al., 2019). In comparison, 

the higher abundance of fast-growing microorganisms in the soil of root-hairless maize at 

30 °C responded faster to the available substrates and maximized their growth by increasing 
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the calorespirometric ratio (Fig. 5) (Fierer et al., 2007), leading to a large energy loss as heat 

(Herrmann et al., 2014). In summary, changes in enzymatic properties and microbial 

functioning are likely to offset the exudate-induced increase of microbial activity in the 

presence of root hairs (wild type) and also compensate the reduced exudate effect in the 

absence of root hairs (mutant) in warmer conditions.   

Overall, for the first time, our data on microbial efficiency and functionality (e.g. enzyme 

activity, growth rate, biomass and substrate use efficiency) confirmed the evolutionary theory 

on structure-function trade-offs of enzymes and thermal-substrate tradeoffs in response to 

warming at the resolution of soil hotspots (Fig. 6). The enzymatic responses we observed 

may involve individual and community adaptations (Treseder et al., 2012; Bradford, 2013; 

Bradford et al., 2019). Nonetheless, independent of the regulatory levels, the underlying 

biochemical mechanisms act through the tradeoffs between enzyme stability or flexibility 

and their facilitated functional rates (Bradford et al., 2019). We therefore conclude that root 

hairs affecting exudate quantity regulated enzyme expression, microbial growth strategies 

and thus substrate use efficiency, hence mediating the SOM stocks in response to warming.  

 

Fig. 6 Generalized effects of temperature and root hairs on microbial and enzyme activities. 

The effects of root hairs are more pronounced at higher temperature. Temperature shifted 

microbial growth strategy towards a higher abundance of fast-growing microorganisms. Root 

hairs induced higher enzyme activity and larger fraction of actively growing microbial 

biomass (GMB) under higher temperature, whereas was coincided with lower enzyme 
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efficiency. Changes in enzymatic properties and in microbial functioning offset the exudate-

induced promotion of microbial activities in the presence of root hairs (wild type) and could 

compensate for the reduced exudate effect in the absence of root hairs (mutant) in a warmer 

world. Vmax: β-glucosidase activity; Ea-Vmax: the activation energy for β-glucosidase activity; 

μ: specific growth rate; GMB: growing microbial biomass. 
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Supplementary 

Table S1 Actively growing and total microbial biomass during incubation for substrate-

induced respiration at 20 and 30°C for the two maize genotypes. Two-way ANOVA analysis 

of the influences of maize genotype, temperature and their interactions on microbial biomass. 

Temperature ( °

C) 

maize 

genotype 
microbial biomass (ug C g

-1
)  GMB/TMB 

ratio (%) growing (GMB) total (TMB) 

20 
wild  2.4 62.3  3.9 

mutant 1.0 86.4  1.1 

30 
wild  1.7 67.6  2.6 

mutant 0.7 67.1  1.1 

Source of variance    

genotype 0.0001 0.1152 0.0005 

temperature 0.0222 0.3244 0.0936 

genotype * temperature 0.2628 0.1039 0.1139 

Note: Significant values are shown in bold (p < 0.05). 

 

 

 
Fig. S1 Cumulative heat production after glucose addition subtract from no glucose addition 

with 3 replicates for the two maize genotypes at 20 and 30 °C, respectively. p values were 

obtained after two-way ANOVA. Genotype: wild type and mutant maize; Temperature: 20 

and 30 °C. Upper case letters: significant differences between 20 and 30 °C after two-way 

ANOVA and Student’s t test at p < 0.05. 
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Abstract  

Root hairs and soil water content play crucial roles in controlling the release of root exudates 

and shaping profiles of microbial activity in the rhizosphere. Understanding the 

photoassimilate allocation localization is crucial for characterizing the spatial distribution of 

enzyme activities in respond to drought. Three imaging techniques (soil zymography, 14C 

imaging and neutron radiograph) were coupled to identity how root hairs and soil moisture 

regulate the spatial dependence of β-glucosidase activities on root exudates and soil water. 

To achieve this, we incubated two genotypes of maize (mutant rth3 with defective root hair 

prolongation and the corresponding wild type) at two soil water contents (70% and 30% of 

WHC).  

Root hairs increased the input and diffusion of root exudates. This induced larger hotspot 

area and broader rhizosphere extent of β-glucosidase activities, as well as 27% - 29% higher 

in potential β-glucosidase activities (Vmax) than that for mutant maize. Although, optimal soil 

moisture increased hotspot area and activities of β-glucosidase, drought widened the 

rhizosphere extent of root exudates and soil water. The effect size of soil moisture was higher 

than root hairs. Co-localization analysis showed that enzymatic hotspots is more co-localized 

with hotspots of root exudates under optimal water conditions; enzyme hotspots showed 

higher dependency on water hotspots under the scarcity of both water and root exudates. We 

conclude that both root hairs and soil moisture influenced spatial distribution of rhizosphere 
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biochemical properties and processes, but soil water availability was more important than 

root exudates when the soil is limited by both water and C sources. 

 

Keywords: in-situ imaging techniques, spatial correlation, drought, root hairs, root exudates, 

enzyme activity 
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6.1 Introduction 

The rhizosphere — a small volume of soil influnced by living roots — is a key hotspot 

of enzyme activities and plays an important role in carbon (C) cycling globally (Hinsinger et 

al., 2009; Kuzyakov and Razavi, 2019). The spatial distribution of the rhizosphere with 

regards to enzyme activities highly depends on soil and plant properties, including soil 

moisture, root morphology and metabolites released by roots (Ahmadi et al., 2018; Ge et al., 

2017; Ma et al., 2018; Zhang et al., 2019).  

Herbaceous plants release 20% and 50% of their photosynthesized C which are in the 

form of low or high molecular weight organic substances (Badri and Vivanco, 2009), through 

their roots into soil (Kuzyakov et al., 2003; Kuzyakov and Domanski, 2000) via various 

mechanisms including secretion, diffusion and cell lysis (Jones et al., 2009). Such a large 

input of C provides a significant energy source for microorganisms (Hinsinger et al., 2009), 

thus inducing higher microbial abundance and activities (Oburger et al., 2014) in the 

rhizosphere than in root-free zones of the soil (Burns, 1982). Detailed knowledge about the 

allocation and localization of photosynthetic C released from roots is an important 

prerequisite for understanding the complex interactions between plants and the rhizosphere 

microbiome.  

The quantity, quality and spatial distribution of root exudates along the root and in the 

soil are strongly affected by root morphology (e.g. root hairs) (Datta et al., 2011; Nguyen, 

2009; Poirier et al., 2018). Root hairs, an extension of the epidermal cells (Peterson and 

Farquhar, 1996), play a critical role in the resource exchange among soil, plants and soil 

microorganisms. The enlargement of root surface area by the extension of root hairs is a cost-

effective morphological strategy of plants to acquire water and nutrients (Cailloux, 1972; 

Carminati et al., 2017; Jungk, 2001). Because an important part of rhizodeposits may be 

released by root hairs, they act as a determinant of enzyme activity (Ma et al., 2018) and 

microbial functioning, e.g. nutrient mobilization. However, researchers have not revealed 

how strong enzyme activities and root exudates co-localize.  

In addition to root hairs, drought - a sub consequence of climate change (Hasibeder et 

al., 2015) - commonly affects the quantity and alters partitioning of root exudates (Preece 

and Peñuelas, 2016). Drought, likely up-regulates the belowground allocation of assimilated 

C to compensate negative effects of drought (Preece and Peñuelas, 2016). For example, an 

increase in the release of mucilage, a gel exuded at the root tip, not only facilitate root water 

uptake but also ease the root movement in the dry soil (Ahmed et al., 2014; Holz et al., 2018b). 
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However, the amount of root exudation are also projected to decline under severe drought, 

probably due to a lower C demand belowground or the C redirection to other vital processes 

(Gargallo-Garriga et al., 2018). The presence of root hairs (e.g. more root exudates) may 

magnify the uncertainty in our understanding how drought affects root exudation and 

microbial functionality (e.g. enzyme activities). Apart from alterations in root exudation 

caused by drought, water depletion directly imposes osmotic pressure on both root and 

microbial cells, disconnects enzymes from substrate as well as microorganisms from 

nutrients, which would lead to microbial death and thus impair enzyme activities (Holz et al., 

2019a; Turner et al., 2003). This suggests that the spatial distribution of enzyme activities 

may also shift based on the pattern of water content, especially under drought. Therefore, a 

better understanding is urgently needed to identify the role of root exudates and water content 

in characterizing enzymatic distribution, especially at the root-soil interface. It is still 

unknown whether more root exudates can offset the direct negative impacts of water stress. 

Such knowledge is vital as it not only defines the soil volume actively used by plant and 

microorganisms, but also determine the soil volume where rhizosphere priming i.e. SOM 

decomposition as an important process in C cycling occurs (Kumar et al., 2018). Hence, as 

the enzymatic decomposition of SOM is the rate-limiting step in C and nutrient cycling, its 

spatial respond to the drought stress in a world with changing climate is essential (Kuzyakov 

and Razavi, 2019). 

Due to the spatial and chemical heterogeneity of soil structure, complexity of root system 

architecture and rapid microbial incorporation of rhizodeposits, deciphering the spatial 

relation between enzyme activity and root exudation or water is highly challenging. Direct 

soil zymography - an in situ technique for two-dimensional (2D) imaging- allows to visualize 

and analyze the spatial distribution of extracellular enzymes (Razavi et al., 2016; Sanaullah 

et al., 2016; Zhang et al., 2019) at high resolution (Heitkötter and Marschner, 2018). The new 

development of 14C imaging has been applied to visualize and quantify 14C photosynthates in 

roots and soil at the microscale (Holz et al., 2019b; Pausch and Kuzyakov, 2011; Spohn and 

Kuzyakov, 2013). Neutron radiography offers an opportunity to quantitatively image the 

water distribution around roots (Esser et al., 2010; Moradi et al., 2009a; Zarebanadkouki et 

al., 2018). 

Here for the first time, we combined three imaging techniques: soil zymography, 

radioisotope imaging (14C imaging) and neutron radiography to: 1) estimate how root hairs 

and soil water content affect gradients of enzyme activities and photosynthates in the 

rhizosphere; 2) unravel whether the spatial linkage between enzyme activities and root 
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exudates or water depends on soil moisture. To achieve these objectives, two maize 

genotypes — wild type with root hairs and rth3 root hair defective mutant — were grown 

under drought conditions (30% of WHC) and at optimal water content (70% of WHC) for 3 

weeks. β-glucosidase was chosen as a phylogenetically conserved enzyme that plays an 

important role for soil microorganisms in moderating enzymatic diversity and function in 

environmentally dynamic niches. Due to the great importance of β-glucosidase in cellulose 

degradation, cleaving cellobiose into glucose molecules, it has always been selected as the 

representative of C cycling related enzymes (German et al., 2011; Zhang et al., 2020). We 

hypothesized that: 1) root hairs (i.e. C input) and optimal soil moisture widened the 

rhizosphere extent of root exudates and β-glucosidase activities. 2) the presence of root hairs 

buffers the negative impacts of drought on roots and microorganisms through the increased 

input of root exudation and thus induce higher enzyme activities. 3) the spatial pattern of 

enzyme activities is more closely co-localized with root exudates under optimal water content, 

while it is highly associated with water under drought.  

6.2 Material and methods 

6.2.1 Soil description and experimental set up 

The loam soil substrate was collected from a Haplic Phaeozem close to Schladebach in 

Saxony Anhalt, Germany. The soil properties are described in detail in Vetterlein et al., 

(2020): organic C 8.5 g kg-1, total N 0.8 g kg-1, mineral N 1.4 mg kg-1, available P 32.7 mg 

kg-1, available K 28.5 mg kg-1, pH (CaCl2) 6.4. Prior to plant transplantation into rhizoboxes, 

NH4NO3-N, K2SO4-K, and MgCl2·6H2O as solution and CaHPO4-P as powder were added 

to the soil to reach the concentrations: 50 mg N kg-1 soil, 50 mg K kg-1 soil, 40 mg P kg-1 soil 

and 25 mg Mg kg-1 soil, respectively. 

Two maize (Zea mays L.) genotypes, the root hair defective mutant rth3 (showing root 

hair initiation but disturbed root hair elongation) (Hochholdinger et al., 2018, 2008), and the 

corresponding wild-type sibling were grown for 3 weeks in rhizoboxes with an inner size of 

10 × 21 × 0.6 cm. For a detailed description of the root hair defective mutant rth3, please 

refer to Hochholdinger et al., (2018) and (2008). 

Before transplanting the plants to the rhizoboxes, seeds were germinated on filter paper 

for 72 h. The rhizoboxes were kept at an angle of 45° to make sure the roots grow along the 

lower side. The soil water content was maintained at 70% water holding capacity (WHC) 

during the first two weeks. In the third week, the water content was kept at either 70% of 

WHC (optimal water content) or adjusted to 30% of WHC (drought). In total 12 rhizoboxes 
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were planted: two genotypes of maize, two water content conditions, and 3 replicates for 

each treatment. All plants were grown under controlled conditions in a climate chamber with 

a constant temperature of 22 ± 1°C. The photoperiod was 12 h and the light intensity was 

350 μM m-2 s-1. 

6.2.2 Plant labeling and 14C imaging 

After 3 weeks of maize growth, each plant was labeled with 0.5 MBq 14CO2 at a target 

CO2 concentration of 500 ppm, in an airtight chamber for 6 hours. For detailed description 

please refer to Kuzyakov et al., (2006). Briefly, before labeling, the CO2 inside the labeling 

chamber was reduced by cycling the air through 1 M NaOH for 8 hours with growth lights 

off. NaOH solution was then replaced by 14C which was prepared as 3 MBq Na214CO3 

solution (0.5 MBq*6 plants) dissolved by 10 ml phosphoric acid (1 M H3PO4). The released 
14CO2 was pumped into the chamber for 6 h. During the labeling, all plants were kept under 

a growth light (350 µM m-2 s-1) for highest photosynthetic activity. After labeling, the 

remaining 14CO2 in the chamber was trapped with 1 M NaOH for 2 h. 14C activities were 

determined by liquid scintillation counting on a Hidex 300SL Automatic Liquid Scintillation 

Counter (Hidex, Turku, Finland). 0.5 ml of NaOH was added to the 8 ml scintillation cocktail 

Rotiszint Eco plus (Carl Roth, Karlsruhe, Germany) and kept in the dark for 24 h for 

chemiluminescence to cease. 

Directly after labeling, the rhizoboxes were transferred to a dark room. The rooted soil 

surfaces were exposed to storage phosphor screens (BAS-IP MS 2040 E, GE Healthcare, 

U.S.A.). All screens were erased for 10 min under the strong bright light before use, and were 

protected from moisture by transparent plastic bags (polypropylene, 40 μm thickness, density 

0.95 g cm-3, MDF Verpackungen GmbH, Bergisch Gladbach, Germany). The plate with 

plastic bag was attached to the rooted soil surface for 20 h in a totally dark room. Thereafter, 

the plates were scanned with a laser scanner for phosphor-imaging (650 nm excitation, FLA-

7000, GE Healthcare, U.S.A.) with a spatial resolution of 25 μm (Banfield et al., 2017).  

6.2.3 Direct soil zymography 

Soil zymography — an in situ technique for two-dimensional imaging of enzyme activity 

— was used to visualize the spatial distribution of β-glucosidase activity after 14C imaging. 

The protocol we followed was referred to Razavi et al., (2019). Polyamide membranes (a 

pore size of 0.45 μm, Taoyuan, China) saturated with the 4-methylumbelliferyl -β-D-

glucoside was applied to determine β-glucosidase activity on soil surfaces. The 4-

methylumbelliferyl- (MUF) containing substrates become fluorescent when hydrolyzed by a 
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substrate-specific enzyme. 4-methylumbelliferyl-β-D-glucoside was dissolved in the 

universal MES buffer at pH 6.5. All the chemicals were purchased from Sigma-Aldrich 

(Germany). After 1 h of incubation, the saturated membranes were lifted off the soil surface 

and the soil particles attached to the membranes were carefully removed using a soft brush.  

A standard calibration line is required to link the β-glucosidase activity to the gray values 

obtained from the zymograms. Briefly, 9 pieces of 2 × 2 cm membranes were soaked in 

solutions of MUF with increasing concentrations (0, 0.01, 0.2, 0.5, 1, 2, 4, 6, and 10 mM). 

The amount of MUF needed for the saturation of each membrane pieces was based on a 

preliminary test. All the membranes used for rhizoboxes and calibration were placed in a 

dark room under UV lamps to be photographed. 

6.2.4 Neutron radiography 

Neutron radiography is a non-destructive method which is sensitive to hydrous materials 

(Ahmed et al., 2016; Moradi et al., 2009b), and thus can quantify present water distribution 

in the rhizosphere (Holz et al., 2018b; Zarebanadkouki et al., 2018). The experiments were 

conducted at the ICON beam line at the Paul Scherrer Institute (PSI) in Switzerland. We used 

a CCD camera detector with an array of 1260 by 1260 pixels, a field of view of 15.75 cm by 

15.75 cm, and a spatial resolution of 0.2 mm. 4 radiographs with marginal overlaps were 

scanned to cover the entire sample. The protocol for calculating water content from neutron 

radiography images were provided in earlier studies (Esser et al., 2010). 

6.2.5 Kinetics of enzyme activity 

Potential β-glucosidase activities for the soil sampled from the rhizosphere of wild type 

and rth3 mutant maize under drought and optimal water content were measured using the 

fluorometric microplate assay based on the 4-methylumbelliferyl-β-D-glucoside (Razavi et 

al., 2015; Zhang et al., 2020). β-glucosidase activities were determined at a range of substrate 

concentration from 0, 5, 10, 20, 50, 100, 200 μmol L-1. 0.5 g soil was homogenously mixed 

with 50 mL sterile water using the low-energy sonication. 50 μL soil suspension, 100 μL 

substrate solution and 50 μL MES buffer were added into a 96-well microplate. The 

fluorescence was measured using a Victor 1420-050 Multi label counter (PerkinElmer, USA) 

at 0, 20 min, 1 h and 2 h. Parameters of Michaelis-Menten kinetics for β-glucosidase activities 

were calculated with the following equation: 

𝑣 = 	
𝑉!"# 	× 	 [𝑆]
𝐾! 	+ 	 [𝑆]
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where v is the reaction rate, Vmax is the maximum enzyme activity, [S] is the substrate 

concentration, and Km is the substrate concentration at half-maximum rate. 

6.2.6 Image processing and analysis 

Images obtained by zymography, 14C imaging and neutron radiography were processed 

in ImageJ. First, the projected signals of the images were transformed to gray values (8-bit) 

and modified by subtracting background gray values. The gravy values were then converted 

either to enzyme activity or to water content based on the corresponding calibration function.  

To quantify the 14C images, results were converted from a log into a linear system by 

applying the following equation:  

𝑃𝑆𝐿 = 	 (
𝑅𝑒𝑠
100)

H ×	
4000
𝑆 	×	10Z	(

[Z
\ -1H	) 

where PSL (photo stimulated luminescence) is the quantified value of the image in linear 

scale and is an arbitrary unit describing the absorbed and corrected energy on the imaging 

plate) (Thu Hoang et al., 2020). Res is the resolution of the image (μm; Res = 25 μm), S the 

sensitivity (S = 1000), L the latitude (L = 5) and G the gradation (G = 256).  

We considered areas with gray values exceeding Mean + 2SD of the whole image as 

hotspots of β-glucosidase activity and 14C activity and soil water content (Zhang et al., 2020).  

Root segments that did not overlap with other roots were randomly selected to calculate 

bidirectional rhizosphere extent for enzyme activities/14C activities/water contents. Briefly, 

a vertical line was drawn through the root, and the gray values of this line were extracted. In 

total, around 20 lines were performed of each image. To determine the extent, the average 

gray values of these replicates were plotted against the distance in Sigmaplot 12.5. The 

distance at which the gray value increased from or dropped to the minimum asymptote was 

firstly visually taken as thresholds for bidirectional rhizosphere extent. Then we check the 

significant difference between the gray values of 5 points lower and 5 points higher than the 

visual threshold. If the difference was significant at p < 0.05, we considered the visual 

thresholds as the real threshold.  

The co-localization analysis between β-glucosidase activity and exudate hotspots or 

between β-glucosidase activity and water hotspots was performed by Just another co-

localization plugin (JACoP) installed in Fiji (Bolte and Cordelières, 2006). Briefly, the 

images were adjusted to identical size. Then, the images were aligned/registered manually in 

Fiji using the plugin TrackEM2 (Cardona et al., 2012). After the registration, the aligned 
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images were used to analyze Manders’ coefficients (M1 and M2, Manders et al., 1993) in 

JACoP.  

𝑀1 =
∑ ]&,,)'),&
∑ ]&&

                                                   (1) 

𝑀H =
∑ \&,,)'),&
∑ \&&

                                                   (2) 

where Ri and Gi are the grey values of each pixel of hotspot area of image R and G, 

respectively. ∑i Ri,coloc and ∑i Gi,coloc are the total co-localized grey values over the threshold 

for image R and G, respectively. ∑i Ri and ∑i Gi are the total grey values over the threshold 

for image R and G, respectively.  

6.2.7 Statistical analysis 

The Shapiro-Wilk test and Levene tests were performed to check normality and 

homogeneity of variances, respectively. Statistical analyses were performed in JMP and the 

significance of differences was tested using two-way ANOVA at a probability level of p < 

0.05. If the effects of both genotype and water were significant, we calculated η2 as a 

parameter to show the contribution of each factor to the total variation (effect size).  

ηH =	 ((/
((7)7"'

                                   

where SSA is the variance between treatments caused by factor A. SStotal was the total sum of 

squares.  

6.3 Results 

6.3.1 Spatial distribution and kinetics of β-glucosidase  

The spatial distribution of β-glucosidase activity was strongly affected not only by root 

hairs but also by soil moisture (Fig. 1). Root hairs and optimal water content increased the 

activity and hotspot area of β-glucosidase (Fig 1, 2a & 3a). For both genotypes, the β-

glucosidase hotspot area was mainly associated with roots (Fig. 1). The hotspot area of wild 

type was higher than that for mutant rth3 by 20% at optimal soil water content and by 49% 

at drought (Fig. 2a). Similarly, the percentage of hotspot area for both wild and mutant rth3 

decreased under drought compared with optimum water content (Fig. 2a).  

The rhizosphere extent of β-glucosidase varied between drought and optimum water 

content (Fig. 2b). It was 36.6% and 60.3% broader under optimal water content conditions 

than that under drought for wild type and mutant rth3, respectively. Additionally, the 
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rhizosphere extent of β-glucosidase activity was wider in the soil for wild type maize than 

that for mutant maize irrespective of soil water content (Fig. 2b, p = 0.0039). 
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Fig. 1 Spatial distribution of β-glucosidase activity for two maize genotypes (wild type and 

mutant rth3) under drought (a & b) and optimal water content (c & d). The color scale is 

proportional to β-glucosidase activity (nmol cm−2 h−1).  

 

 

Fig. 2 (a) Hotspot (%) and (b) bidirectional rhizosphere extent of β-glucosidase activity for 

two maize genotypes (wild type and mutant rth3) under drought and optimal water content. 

p values were obtained after two-way ANOVA. genotype: wild type and mutant rth3; water: 

drought and optimal water content. Data is mean (n=3) and error bars represent standard 

deviation (SD). 

 

Compared to drought, optimal water content increased potential β-glucosidase activities 

(Vmax) by 55% and 57% for wild type and mutant maize, respectively (Fig. 3a). Vmax in the 

rhizosphere soil of wild type was 27% and 29% higher than that for mutant rth3 under 

optimal water content and drought, respectively (Fig. 3a). Similarly, water content and root 

hairs strongly increased both Vmax and Km of β-glucosidase activities (Fig. 3b). The effect 

size of water content (η2 = 0.74 for Vmax and η2 = 0.56 for Km) was higher than that of 

genotype (η2 = 0.22 for Vmax and η2 = 0.28 for Km) (Fig. 3). 

Taken together, optimal water content contributed more to greater hotspot area, broader 

rhizosphere extension and higher activities of β-glucosidase than that of root hairs. 

 

b)a) b)
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Fig. 3 Michaelis–Menten kinetic parameters, i.e. (a) Vmax (nmol g-1 h-1) and (b) Km (µmol g-

1 soil), of rhizosphere soil for two maize genotypes (wild type and mutant rth3) under drought 

and optimal water content. Data is mean (n=3) and error bars represent standard deviation 

(SD). 

6.3.2 Spatial distribution of 14C exudates 

Similar to enzyme activity distributions, the distribution of photoassimilates showed 

root-associated pattern, and the 14C activity was higher under optimum water content than 

under drought (Fig. 4). 

 

a) b)
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Fig. 4 Spatial distribution of root exudates for two maize genotypes (wild type and mutant 

rth3) under drought (a & b) and optimal water content (c & d). 

 

Neither root hairs nor soil water content changed the hotspot area of 14C activity (p > 

0.05, Fig. 5a), but the trend was similar to β-glucosidase hotspots. The bidirectional 

rhizosphere extent of root exudates increased by 27% for both genotypes under drought 

compared with that under optimal water content (Fig. 5b, p = 0.0069). The rhizosphere extent 

of root exudates was broader for wild type (2.6 mm under optimal soil moisture vs. 3.3 mm 

under drought condition) than that for mutant rth3 (2.1 mm under optimal soil moisture vs. 

2.7 mm under drought condition) (Fig. 5b, p = 0.0013). The effect size of water (η2 = 0.42) 

was 10% higher than that of genotype (η2 = 0.32) (Fig. 5). 

 

Fig. 5 (a) Percentage of hotspot and (b) bidirectional rhizosphere extent of root exudates for 

two maize genotypes (wild type and rth3 mutant) under drought and optimal water content. 

p values were obtained after two-way ANOVA. η2: effect size; genotype: wild type and 

mutant rth3; water: drought and optimal water content. Data is mean (n=3) and error bars 

represent standard deviation (SD). 

 

Remarkably, the distribution of exudates along the roots did not depend on the presence 

of root hairs and soil water content. In contrast, the activity of 14C exudation hotspot was 

more affected by soil water content than by root hairs.  

The water content was higher in the rhizosphere compared to that in bulk soil (Fig. 6). 

The water-rhizosphere extent was stimulated by both root hairs and soil moisture, while the 

effect size of water (η2 = 0.54) was much higher than that of genotype (η2 = 0.23) (Fig. 7). 

b)a)
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Fig. 6 Region of interest (ROIs) of soil water spatial distribution for two maize genotypes 

(wild type and mutant rth3) under drought (a & b) and optimal water content (c & d). Side 

color scale is proportional to volumetric water content. 
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Fig. 7 Bidirectional rhizosphere extent of soil water content for two maize genotypes (wild 

type and mutant rth3) under drought and optimal water content. p values were obtained after 

two-way ANOVA. η2: effect size; genotype: wild type and mutant rth3; water: drought and 

optimal water content. Data is mean (n=3) and error bars represent standard deviation (SD). 

6.3.3 Co-localization analysis 

The effect of root hairs was negligible with respect to the co-localization between 

hotspots of enzyme activity and root exudates (Fig. 8a). The fraction of enzyme hotspots 

overlapped with exudate hotspots was larger under optimal conditions that that under drought 

conditions (p = 0.0329, Fig. 8a). 

The interaction of soil moisture and genotypes affected the part of enzyme activity 

hotspots co-localized with hotspots of water hotspots (p = 0.0077, Fig. 8b). The fraction of 

enzyme hotspots co-localized with water was highest under drought conditions with mutant 

rth3. 

Hotspots of root exudates or water colocalized strongly with hotspots of enzyme 

activities under optimal water content than under drought (p < 0.05) (Fig. 8).   
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Fig. 8 Colocalization analysis for region of interest (ROIs) of (a) hotspots between β-

glucosidase activity (Enzyme) and 14C exudates (Exudates), or (b) hotspots between β-

glucosidase activity (Enzyme) and water (Water). M1: Manders’ coefficient, the fraction of 

Enzyme overlapping with Exudates or Water; M2: Manders’ coefficient, the fraction of 

Exudates or Water overlapping with Enzyme; p values were obtained after two-way ANOVA. 

genotype: wild type and mutant rth3; water: drought and optimal water content. Upper case 

letters in (a): significant differences for M1 between optimal and drought conditions after 

two-way ANOVA and Student’s t-test at p < 0.05. Upper case letters in (b): significant 

differences for M1 among four treatments after two-way ANOVA analysis and Tukey’s HSD 

test at p < 0.05. Lower case letters in (a) and (b): significant differences for M2 between 

optimal and drought conditions after two-way ANOVA and Student’s t-test at p < 0.05.  

(a) Enzyme ! Exudates

Wild Drought

M1: 0.09B

M2: 0.09b

Mutant Optimal

M1: 0.43A

M2: 0.52a

Mutant Drought

M1: 0.18B

M2: 0.08b

Wild Optimal

M1: 0.36A

M2: 0.44a

Two-way ANOVA for M1: 

Genotype: p = 0.4768

Water: p = 0.0329

Genotype*Water: p = 0.9011

Two-way ANOVA for M2: 

Genotype: p = 0.5908

Water: p = 0.0007

Genotype*Water: p = 0.5647

(b) Enzyme ! Water

Wild Drought

M1: 0.07B

M2: 0.04b

Wild Optimal

M1: 0.12B

M2: 0.29a

Mutant Drought

M1: 0.45A

M2: 0.04b

Mutant Optimal

M1: 0.09B

M2: 0.23a

Two-way ANOVA for M1: 

Genotype: p = 0.0170

Drought: p = 0.0251

Genotype*Drought: p = 0.0077

Two-way ANOVA for M2: 

Genotype: p = 0.5649

Drought: p = 0.0032

Genotype*Drought: p = 0.6018
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6.4 Discussions 

6.4.1 Effects of root hairs and soil water content on rhizosphere extent and hotspot of β-

glucosidase activities 

Higher β-glucosidase activities around roots (Fig. 1) occurred simultaneously with a 

higher allocation of photosynthesized C to the root and rhizosphere which was illuminated 

by 14C imaging (Fig. 4). The activated and stimulated microbial activities induced by 

abundant labile C input (Wu et al., 2017) and the direct enzyme release from roots (Asmar 

et al., 1994) in the rhizosphere eventually drove the enzymatic hotspot there (Ma et al., 2018). 

The effect of available substrate on the hotspot formation were more pronounced with the 

presence of root hairs. Root hairs, which released more root exudates (Fig. 4 , Pausch et al., 

2016), enlarged the enzymatic hotspot area and extended the rhizosphere size (Fig. 1 and 2) 

as well as increased enzyme activities (Fig. 3a). In contrast, the substrate affinity was higher 

in the rhizosphere soil of the mutant rth3 (Fig. 3b) probably due to the isoenzyme expression 

to compensate for the absence of abundant root exudates (Zhang et al., 2020). Although root 

exudates directly relieved microbial C limitation, the importance of soil moisture outweighed 

root hairs in regulating the occurrence of enzyme hotspots. Drought reduced the hotspot area 

(Fig. 2a) and narrowed the rhizosphere extent of β-glucosidase activity (Fig. 2b). The larger 

hotspots area and wider rhizosphere extent of β-glucosidase activity were concurrent with 

optimal water content because the proper soil moisture is a prerequisite for higher root 

biomass. It has been strongly suggested as a compelling explanation for higher 

rhizodeposition (Preece and Peñuelas, 2016). Additionally, the optimal water content 

provides a suitable growth environment for microorganisms, and increased microbial access 

to nutrients and energy (Ahmed et al., 2018), as well as enhanced the diffusion of both 

enzymes and substrate (Holz et al., 2019a). Consequently, β-glucosidase activities in wet soil 

were most pronounced (Fig. 3a). Such higher β-glucosidase activities were enough to 

maintain microbial activities and crucial functions, and thus the enzyme systems in dry soil 

were more efficient (Fig. 3b). Accordingly, we conclude that the abiotic factors (e.g. soil 

moisture) is likely to contribute more than biotic factors (e.g. root hairs) in controlling 

enzymatic hotspot and distribution in the rhizosphere. Despite this, root hairs still play 

extremely important roles when plants facing drought. For example, root hairs tend to 

increase the hotspot area of root exudates, as well as significantly widened the rhizosphere 

extension of root exudates and water under drought (Fig. 5 & 7). These are likely to facilitate 

microbial activity and increase lubrication in the dry soil (Holz et al., 2018c; Preece and 

Peñuelas, 2016), and thus benefit enzyme activity (Fig. 2 and 3) and nutrient availability. 
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6.4.2 The spatial correlation between β-glucosidase activity and root exudation or soil 

water content 

Although the presence of root hairs showed positive effects on spatial distribution of β-

glucosidase activity (Fig. 2 & 3), its effects on the dependency of β-glucosidase on root 

exudates was negligible (p = 0.477, Fig. 8a). The co-localization between enzymatic hotspot 

with root exudates was strongly influenced by soil moisture (M1 and M2, Fig. 8a), which 

was weaker under drought than under optimal soil water content (Fig. 8a). Such discordance 

in the spatial distribution of enzyme activity hotspots (Fig. 1) and the concentrated 

localization of root exudates (Fig. 4) under drought could be explained by: 1) a lower enzyme 

production. Drought suppressed microbial activities (Dijkstra et al., 2015; Huxman et al., 

2004) due to osmotic stresses (Sanaullah et al., 2011; Turner et al., 2003) and the lower 

substrate mobility (Schimel et al., 2007). Thus, the released root exudates were likely to 

satisfy microbial living and maintenance but insufficient for enzyme production and 

expression. 2) the reduced translocation of easily available C to the rhizosphere (Fig. 4) 

because of the lower belowground C demand and the alteration in the allocation of recent 

photosynthates (Fuchslueger et al., 2014; Hasibeder et al., 2015; Ruehr et al., 2009). 

Consequently, the lower enzyme production combined with a reduced release of root 

exudates probably impaired their link. 3) We assume that the large amount of enzyme which 

were independent on root exudates were those existing in the soil previously. Those enzymes 

functioned under drying probably because enzymes are small and favored of thinner water 

films and smaller water-filled pores induced by drought which facilitated their connection 

with substrates than do microorganisms (Schimel, 2018).  

Nevertheless, the hotspot of β-glucosidase activity was overlapped strongly with water 

hotspot under drought planted with mutant rth3 (M1 = 0.0077) (Fig. 8b). The co-limitation 

of water and root exudates induced higher spatial dependency of enzymatic hotspots on water 

(Fig. 8b) but not on root exudates (Fig. 8a). This indicated that water availability is more 

important than root exudates in the area of enzymatic hotspots when occurrence of their co-

limitations. This can be supported by the higher fraction of soil water contributed to 

enzymatic hotspots under optimal soil moisture (values of M2, Fig. 8b). Drought constrains 

the diffusion rate of root exudates and imparts physiological stresses on microbial community 

activities (Bouskill et al., 2013). Therefore, many microorganisms were unable to thrive even 

though they inhabited in microsites with more C sources. Accordingly, root or/and 

microorganisms developed strategies to maintain water content in the rhizosphere under 

drought. For example, water limitation widened the rhizosphere extent of root exudates 
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irrespective of root hairs (Fig. 5) to compensate for the negative effects of drought. This 

wider extent might be attributed to the increased quantity of gel-like substance — mucilage 

around the drought-stressed root (Sanaullah et al., 2012), which accounted for 2-12% of total 

rhizodeposition (Dennis et al., 2010; Holz et al., 2018). Mucilage was shown to increase the 

water content at the root-soil interface during soil drying (Carminati et al., 2010; McCully 

and Boyer, 1997). The presence of mucilage probably widened water extent close to the root 

(Fig. 7) and thus induced faster diffusion rates of root exudate from root surface to soil 

(Kuzyakov and Razavi, 2019). Despite those beneficial microenvironments for 

rhizomicrobial growth, hotspots and rhizosphere extent of β-glucosidase activities were still 

lower than that in optimal water content (Fig. 2).  

Consequently, although biotic factors (e.g. root exudates) play an important role in 

enzymatic distributions, the abiotic factors (e.g. soil moisture) contributed more to enzyme 

hotspot area and rhizosphere extent. More in detail, the combination of three imaging 

methods (zymography, 14C imaging and neutron imaging) pointed out that the colocalization 

between enzymatic hotspots and root exudates were only pronounced under optimal soil 

moisture, while lower soil water availability limits the enzymatic hotspot areas when 

occurring co-limitation of available C and water. 
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Abstract  

Within just a few years, soil zymography has become accepted as an attractive and unique 
approach for 2D mapping of enzyme activities in intact soil samples. With zymography, 
enzymatic conversion of the substrate into a hydrolysis reaction product can literally be 
visualized. Soil zymography is, however, fraught with methodical difficulties due to: (i) 
membrane or gel attachment to the soil surface; (ii) diffusion of substrates through the 
membrane or gel and of reaction products back to the membrane; (iii) strong effect of imaging 
(photography) and image analysis on the results. In this review, we describe important 
procedural details of soil zymography and define the steps necessary to properly visualize 
enzyme activities in environmental samples. We make the following recommendations to 
improve zymography results 1) run soil background imaging prior to any soil zymography; 
2) confirm that roots are in the soil and not on top of the soil surface; 3) perform soil 
zymography under the initial environmental conditions of the samples (temperature, water 
content, light intensity, etc); 4) examine whether membrane/gel attachment during the 
incubation is appropriate to properly measure enzyme activity; 5) find the right balance 
between saturating substrate concentration of soil and selected substrate concentration for 
zymography; 6) run proper standards to ensure that enzyme activity values can be accurately 
calculated; 7) fix camera settings and photography conditions; 8) ensure that images are 
properly analyzed. These steps should help to develop a unified visualization of enzyme 
activities in soil and ecosystem ecology. Finally, coupling of soil zymography with other 
imaging techniques and advanced analytical approaches will give insight into the net effect 
of multiple processes, such as root respiration, rhizodeposition, nutrient and metal(loid) 
dynamics, plant-mediated oxygen release, microbial respiration and reoxidation of reduced 
compounds in relation to the activities of enzymes released by plants or microbes. 
 
Keywords: spatial pattern, enzyme distribution, imaging, microbial activity, hotspots 
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7.1 Introduction 

7.1.1 Current knowledge and relevance 

The term ‘zymography’ denotes the visualization of enzymatic activity by substrate 

conversion (essentially enzyme photography). The general biochemical reaction can be 

detected for either the appearance of the reaction product or the disappearance of the substrate 

(Vandooren et al., 2013; Spohn et al., 2013; Spohn and Kuzyakov, 2013). Zymography was 

first introduced in 1962, for detecting collagen degradation in tadpole tissue and described a 

matrix metalloproteinase (MMP) (Gross and Lapière, 1962; Vandooren et al., 2013). 

Development of zymography over five decades was mostly focused on the analysis of 

proteases and their inhibitors in various matrices and media besides soil (Hughes and Herr, 

2010; Pan et al., 2011; Choi et al., 2009), for example, to gain insights into tumor formation 

(Kleiner and Stetlerstevenson, 1994; Nemori and Tachikawa, 1999; Wilkesman and Kurz, 

2009).  

Kurzbaum et al. (2010), proposed a novel approach to visualize dehydrogenase activity 

of plant roots by use of tetrazolium violet dye without destructive steps, allowing repeated 

observations of growing plants and the impact of inhibitors such as sodium azide and 

cycloheximide. However, this approach was not tested in soil specimens. Visualization of 

enzyme activities developed rapidly once fluorescently labeled substrates became widely 

applied in environmental samples. During the first attempt at visualization of enzyme activity 

in the soil matrix, the fluorescently labeled substrate was dissolved in agarose solution that 

was then directly poured onto the sample (Baldrian and Vĕtrovský, 2012). The approach was 

successful in visualizing the spatial distribution of enzyme activity in soils and in biological 

specimens such as fungal cell colonies. However, due to the diffusion of the substrate in agar 

gel, the resolution of this enzyme mapping method was low. The same limitation was visible 

following the standard zymography assays for the detection of protease and amylase activity 

in electrophoresis gels (Spohn et al., 2013). The revolutionary optimization of the method 

started by integrating dissolved fluorescently labeled substrates in membrane filters instead 

of gels (Spohn and Kuzyakov, 2013; Sanaullah et al., 2016; Razavi et al., 2016).  

Soil zymography techniques can be utilized for hydrolases or oxidases acting on any 

biological substrate such as proteins and peptides, oligosaccharides and polysaccharides, 

lipids and sugars (Kurzbaum et al., 2010; ; Spohn et al., 2013; Voothuluru et al., 2018).  

To date soil zymography has been adapted for various applications such as studying the 

impact of plant species (Razavi et al., 2016), root morphology (Ma et al., 2018), pathogens 
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(Razavi et al., 2017a), abiotic controls like temperature (Ge et al., 2017), drought (Guhr et 

al., 2015; Ahmadi et al., 2018), nutrient availability (Wei et al., 2018; Giles et al., 2018; 

Heitkötter and Marschner, 2018) and heavy metal pollution (Duan et al., 2018) on the activity 

of different enzymes in various spheres such as the rhizosphere (Spohn and Kuzyakov, 2013; 

Sanaullah et al., 2016), detritusphere (Spohn and Kuzyakov, 2014; Liu et al., 2017; Ma et al., 

2017; Wei et al., 2019), and biopores (Hoang et al., 2016; Razavi et al., 2017b), in both lab 

and field studies (Razavi et al., 2017b). Benefiting from all of these developments, we can 

now test a larger array of hypotheses related to enzyme-based processes and their roles in 

biogeochemical cycling. Besides its potential application, the simple sample preparation 

procedure and relatively worldwide accessibility of all necessary chemicals and equipment 

have made soil zymography one of the most influential imaging techniques in soil.  

Despite the widespread adoption of soil zymography, a comprehensive discussion of the 

details and pitfalls of the method is not available in the literature. In fact, a major motivation 

for writing this contribution is that the authors (and our colleagues) receive dozens of 

inquiries each year on the execution and interpretation of soil zymography. The prevalent 

use of high-throughput soil zymography methods has created the need for a comprehensive 

review of the current state of the art in ecosystem studies. The potential knowledge gap 

affects the quality and utility of contemporary soil zymography data; distort results or often 

resulting in relative activity levels that are incomparable among different studies, even 

though the same enzymes are studied. Methodological optimization will enable the soil and 

ecological community to perform larger scale meta-analyses, aiming to improve 

understanding of how plant and microbial enzymes drive ecosystem processes. For specific 

methodological studies regarding the preparation of calibration lines for soil zymography, 

and the sensitivity of enzyme activity measurements to exposure time during photography 

we refer readers to the recent works by Guber et al. (2018a) and Giles et al. (2018).  

7.2 Soil zymography and its expected outcomes 

Briefly, soil zymography involves visualizing fluorescent compounds produced when a 

substrate reacts with a substrate-specific enzyme. A membrane filter is soaked in a solution 

containing a known concentration of fluorescently labeled substrate. The uniformly saturated 

membrane will be placed in contact with the soil surface either directly (Razavi et al., 2016) 

or protected by a thin layer of gel (Spohn and Kuzyakov, 2013). The membrane will be 

incubated on the soil surface for a given period of time (see 6.4.2) and then will be removed 
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and the imprint of the enzyme on the membrane will be imaged under UV light in dark (Fig. 

1).  

 

Fig. 1. Schematic illustration of soil zymography setup and its main steps: a. shows root 

position and membrane attachment. The inset shows laser scanning for soil surface 

topography; b. Performance of soil zymography under the initial environmental conditions 

of the samples; c. Balance between saturating substrate concentration of soil and selected 

substrate concentration; d. Proper calibration standards; e. Fixed camera settings and 

photography conditions. Art work: Tahoora Emam. 

 

The result of zymography is a 2-D image obtained by a normal camera and is called a 

zymogram. The captured zymogram can be further quantified and related to the probability 
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that a given enzyme reacts with the substrate and activates its fluorescent agent per unit of 

area and time. The fluorescent substrate is initially on the membrane and gets activated when 

it meets a specific enzyme located on the soil surface.  

Theoretically, this activation process may occur by two contrasting diffusion-driven 

processes: i) once a membrane saturated by substrate is placed at the soil surface the substrate 

may diffuse (by Brownian motion) towards the soil surface. As the substrate meets a specific 

enzyme at the soil surface it gets activated. By the nature of diffusion, the now-fluorescent 

substrate may move back to the membrane, where its imprint will be visualized, ii) another 

alternative would be that the enzyme at the soil surface diffuses towards the membrane and 

activates the fluorescent agent of the substrate. Similarly, this process is also Brownian 

motion driven and may occur in both directions (i.e. the enzyme may return to the soil). After 

enough time, both processes will reach a steady state and the detected enzyme activity on the 

membrane will be constant. Although both processes are theoretically possible, the diffusion 

rates for substrate towards the soil and fluorescent product return is higher. The diffusion rate 

of a substance is inversely proportional to the square root of its molecular mass. Typically, 

enzymes have average molecular weights ranging from 10 kD to 2,000 kD (Ogston, 1962; 

Wright, 1962), while the substrate used in zymography has a molecular weight of 176 D. 

This simple consideration would suggest that the probability that substrate diffuses towards 

the soil is surly more than 7.5 times higher than the enzyme towards the membrane (D 

∝	i1/𝑀 , where D is the diffusion rate and M is the molecular weight). Thus, in soil 

zymography, while the membrane is placed on the soil surface it is very probable that the 

substrate diffuses from the membrane to the soil. This diffusion depends strongly on soil 

water content at the soil-membrane interface and the contact between soil and the membrane. 

A partially dried soil surface may adversely affect the results of enzyme activity (consider 

the case that only the first soil pore at the interface between membrane and soil are dry while 

the rest of the soil is wetter). In such cases, if the goal is to estimate potential enzyme activity 

-besides qualitative visualization- soil zymography could be coupled with classical enzyme 

assays (Hoang et al., 2016; Ma et al., 2017; Zhang et al., 2019).  

One of the most important points to consider when performing soil zymography is that 

it is not a replacement for classical enzyme assays. Classical enzyme assays measure 

“maximum potential” enzymatic activity (Burns, 1978; Tabatabai and Dick, 2002; 

Wallenstein and Weintraub, 2008) in soil or litter. By its nature, soil zymography reflects 

enzyme activity associated with surfaces of a given sample rather than its entire volume 

(Baldrian and Vĕtrovský, 2012). Based on experimental data and simulation it was shown 
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that detected enzyme activity is only a small proportion, around 20-30%, of the actual 

reactions that take place within the total soil volume (Ma et al., 2017; Guber et al., 2018b).  

To ensure that estimations are accurate, several factors must be considered and 

procedures carried out before starting soil zymography in environmental samples: chemicals 

and materials, incubation conditions and duration, imaging conditions, sample preparation 

and image analysis. We will address each of these in turn with some examples of adaptations 

for specific conditions; however, for detail methodological descriptions of each hotsphere, 

in the lab and field, we refer the reader to original experimental studies (Hoang et al., 2016; 

Razavi et al., 2017b, Liu et al., 2017; Ge et al., 2017).  

7.3 Chemicals and materials 

7.3.1 Substrate 

Current soil zymography has benefitted greatly from fluorescent dye-conjugated 

substrates [e.g., 4-methylumbelliferone (MUF), 7-amino-4-methylcoumarin (AMC); Marx 

et al., 2001; Saiya-Cork et al., 2002] for the detection of many hydrolytic enzymes. These 

fluorescence agents allow rapid and specific determination of the spatial distribution of 

enzyme activities involved in C, N, P and S cycling and, thus, provide the opportunity to 

answer questions related to the enzymatic hotspots on broader scales. Besides MUF- or 

AMC- conjugated substrates, 1-(3,7-dihydroxyphenoxazin-10-yl) ethanone, (OxiRed) and 

tetrazolium-dye substrates are also suitable for visualization of enzyme activities. OxiRed 

(C14H11NO4), is a fluorogenic substrate that can be used to detect peroxidase activity (Table 

1). The method is based on determination of a fluorescent signal developed from enzymatic 

oxidation of the substrate in the presence of peroxidase in the soil. In the presence of 

horseradish peroxidase (HRP), the OxiRed probe reacts in 1:1 stoichiometry with H2O2 to 

produce highly fluorescent resorufin. The substrates can be dissolved in 300µl dimethyl 

sulfoxide (DMSO) and later diluted with universal buffer to the desired concentration. 

OxiRed is sensitive to light and oxygen, which makes its application more limited than the 

other substrates. Tetrazolium violet-based dyes are qualitative redox indicators that enable 

visualization of dehydrogenase activity (Steponkus and Lanphear, 1967; Kurzbaum et al., 

2010).  

 

Table 1 Enzymes commonly imaged in environmental samples, and their organic matter 

constituents and substrates. 
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The substrate concentration normally suggested are 10 mM (Spohn et al., 2014) or 10µM 

(Razavi et al., 2017b). However, these concentrations are not necessarily an optimum 

concentration for all soil types and, for many soils, concentrations much less than 10 mM 

would be sufficient to reach saturating conditions for each hydrolytic enzyme. The saturated 

concentration can be inferred from Michaelis-Menten kinetics (Michaelis and Menten, 1913). 

Therefore, pre-testing is necessary to determine the appropriate substrate concentration for 

the soil prior to zymography. Application of inappropriate concentrations will complicate the 

interpretation of images, because obtained signals become insensitive to increments of 

concentration. This results in gray values that are out of the linear part of the calibration curve 

(over-saturating signals), (Razavi et al., 2016a; Guber et al., 2018a), (Fig. 2), (for more detail 

see section 6.6.1).  

 

Fig. 2. Examples of calibration line: a) when the correlation of gray values and concentrations 

are linear; b) when the correlation is not linear. When the calibration line shows non-linear 

behavior, the safe zone of the curve according to the concentration and gray values should 

be identified.  
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7.3.2 pH 

Enzymes are sensitive to pH and display specific pH optima (Tabatabai, 1994; Turner, 

2010). However, enzymes in soil may not be at their pH optimum (Burns, 1978). Unlike 

animal digestive tracts, for example, most microbes cannot control the environmental pH for 

their enzyme activity. Thus, in order to visualize enzyme activities in environmental samples, 

soil zymography should be run at the same pH as sample. Based on studies of soil 

enzymology it is known that some of the buffers may interfere with enzyme activity (Burns, 

1978; Tabatabai, 1994; German et al., 2011; Sinsabaugh, 2010). For instance, phosphate 

buffer may interfere with the measurement of phosphatase activities, and is an inhibitor of 

glucosidase (Dahlqvist, 1968), while citrate can chelate iron (Essington et al., 2005), thereby 

inhibiting enzymes with iron-heme prosthetic groups (Sinsabaugh, 2010). Besides, MUF- or 

AMC-conjugated substrates fluoresce best at alkaline pH values (>9; Mead et al., 1955). 

Since assays are typically conducted at a pH lower than 9, NaOH is often added to raise the 

pH immediately before reading the samples in a fluorometer (German et al., 2011). Extreme 

alkalization compromised assay sensitivity because of variation (increase and decrease) in 

the fluorescence of the product/standard (German et al., 2011). Another issue regarding 

alkalization is that the fluorescence of MUF and AMC vary with time following the addition 

of NaOH (Fig. 3). MUF fluorescence increases until ∼20 min after NaOH addition, whereas 

AMC shows a decrease in fluorescence with time following the alkalization. In soil 

zymography, this would lead to exaggerated/elimination signals, which would be incorrectly, 

interpreted as high/low enzyme activities on the soil surface or a high/low percentage of 

hotspots (Fig. 3). It has even been suggested to omit any buffer for enzyme assays (German 

et al., 2011); however, pH fluctuation has been observed in assays performed in the absence 

of buffer (Fig. 3), (Burn, 1978), while, AMC fluorescence with TRIZMA buffer 

[C4H11NO3•HCl, C4H11NO3; pH:7.2] without NaOH addition showed temporal stationary 

pattern. Therefore, the substrates can be dissolved in any universal buffer that shows a static 

trend over time and no inhibitory effect on enzymes (Fig. 3). 
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Fig. 3. Intensity of MUF and AMC standard curves with and without NaOH, as well as trend 

of leucine aminopeptidase activity with and without buffer. 

7.3.3 Membranes 

Ideally, the thickness of the membrane filter should be reduced as much as possible to 

provide uniform vertical distribution of substrate in the membrane. However, thin 

membranes do not eliminate horizontal diffusion within the membrane, which creates an 

illusion of a growing area of enzyme activity over time. More specifically, by placing small 

drops of MUF/AMC with different concentrations in the middle of a membrane saturated 

with a buffer, followed by monitoring the area of the signal development under UV-light 

provides sufficient information for estimating the diffusion coefficients. The calculated 

diffusion coefficient of MUF on a dry membrane filter (Tao Yuan, China) was 5×10−5 mm 

min−1. Estimated diffusion coefficients can be used in calculations of expansion of enzyme 

activity (for example in the rhizosphere). 

7.4 Sample preparation 

7.4.1 Root position and membrane attachment 

Proper contact between the soil surface and the membrane is crucial for achieving 

interpretable results. The interpretation of the fluorescent pattern on zymograms is based on 

the assumption that locations with high fluorescence reflect locations with high enzyme 

activities on the soil surface, while locations with no fluorescence correspond to locations on 

the soil surface without activity. However, the contact between the soil surface and 
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membrane depends on the roughness and topology of the soil surface, which varies 

depending on soil particle size distribution and the positions of roots.  

A lack of proper contact between soil surface and membrane may result in the absence 

of fluorescence signals on the zymograms and thus are interpreted as regions with no activity. 

To reduce the risk of misinterpretation, an initial evaluation of soil heterogeneity by taking 

and analyzing a photograph of the soil surface and, when possible, performing laser scanning 

to assess the roughness of the soil surface, is recommended. Laser scanning of the soil surface 

(e.g. using NextEngine, Inc., Santa Monica, California) prior to zymography could be 

reasonable for soil surface characterization and micro-topography (e.g. the areas of large and 

medium-sized soil pores at the surface as well as root distribution), (Guber et al., 2018b). 

The scanner uses a set of laser beams to hit the soil surface from different angles. Each point 

from the soil surface is automatically positioned by a laser-light sensor in a 3D coordinate 

system at a nominal resolution of 1.7 µm (Uteau et al., 2013). While laser scanning provides 

a detailed soil surface map, it will not yield direct information on which portions of the 

surface will be in contact with the membrane after its placement on the surface. The general 

considerations are that the contact will take place at the areas which have the greatest height 

(peaks) in comparison with another regions of the soil surface, (Guber et al., 2018b). 

The positions of roots on the soil surface is another critical factor that should be 

considered in performing soil zymography. Generally, there are 4 possible positions for root 

growth in a rhizobox or in field rhizotrons (root windows) (Fig. 4): Roots may be positioned: 

i) completely on top of the soil surface, ii) partly buried in soil and partly outside of the soil 

surface, iii) partly buried in soil and positioned at the same level as the soil surface, iv) 

completely buried in the soil.  
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Fig. 4. Four possible positions of root in soil: i) completely out of the soil surface, ii) partly 

buried in soil and positioned partly outside of the soil surface, iii) partly buried in soil and 

positioned at the same level as the soil surface, iv) completely buried in the soil. The 

eliminated zones around the lupine root (a) corresponding to the similar root position as 

position (i). (b), shows eliminated zones around the maize root covered by 1 mm gel plate 

when the root is at a similar position as (i). A clear imprint of enzyme activity on the root 

and surrounding soil (c) corresponding to the similar root position as (iii). All images are in 

true color without image processing. 

 

In the case that a root is in position (i), its footprint will be detected on the zymograms, 

but it should be kept in mind that the contact between the membrane and the surrounding soil 

will deteriorate depending on the thickness of the root: i.e. a thick root will prevent membrane 

contact across a larger region in its surroundings. For the case (ii), the imprint of the root will 

be detected on the zymograms, but the trail in the surrounding soil will be affected by the 

thickness of the root standing above the soil surface. Case (iii) is ideal for zymography (Fig. 

4). The imprint of both roots and the surrounding soil will be detected safely on the 

zymograms. For the case that the root is in position (iii), its thickness will not have any effect 

on the contact between membrane and soil surface and its footprint on the zymogram will 

reflect its enzymatic activity. If roots are completely buried in the soil, (iv), the imprints may 

not be detected on the zymograms. In this case, the intensity of the detected signal mostly 

depends on the thickness of the soil layer between the root and membrane (Fig. 4). It should 

be noted that, if the root is located in position (i) or (ii), or the soil surface is not uniform, 



Manuscripts 

 
 

216 
 

application of any intervening material e.g. filter paper, gel plate, would not improve the 

attachment and there will be a "blind spot" around the roots (Fig. 4, b). The same is valid for 

direct application of membrane, as we cannot fold the membrane (Fig. 4. a). Thus, 

confirmation of an appropriate root position is a critical step prior to any soil zymography 

analysis. 

7.4.2 Incubation conditions and duration 

In general, the incubation time depends on the temperature, soil texture, the activity of 

the tested enzyme in the soil and the soil water content. Soil water content (gravimetric or 

volumetric water content) and soil texture has a great impact on diffusion of enzyme (Burns 

et al., 2013). The drier is the soil the longer is the distance that any substrate should diffuse 

to/from the membrane (the overall chance of enzyme and substrate to diffuse decreases). 

However, theoretically, diffusion rate will increase at high water content and the probability 

that substrate would bind to enzyme (form enzyme-substrate complex) will be enhanced 

(Allison et al., 2011; Manzoni et al., 2012). Hence, the water content of samples should be 

constant. As the VW refers to the percentage of pores that are filled with water, it would 

represents the higher portion of enzymes if we assume that enzymes and microorganisms are 

active in the liquid phase (water-film or biofilms ̶ biosynthesized polymeric substances 

exude by soil microbiome) (Ekschmitt et al., 2005; Or et al., 2007), or if we assume soil pores 

serve as conduits for water flow and chemical transport, as well as habitats for 

microorganisms, and thus play a key role in determining rates and magnitudes of most of soil 

chemical and biological processes (Kravchenko et al., 2015). Thus, soil water content has 

strong effect on results interpretation and accordingly, the incubation time should be long 

enough for diffusion to take place across the soil surface and the membrane. During this time, 

it is important to prevent evaporation from the membrane and ensure contact between the 

membrane and soil surface. To ensure such attachment one may put additional weight onto 

the membrane. However, different weights will greatly change the obtained signal on the 

zymograms (Fig. 5). If the load is necessary (for example in case of mapping enzymes around 

soil columns), then equal weight should be applied to all the samples.  
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Fig. 5. Top: a, b and c presenting three different load levels around a soil column. The sub 

figure of a, shows real soil column. All images are in true color without image processing. 

Bottom: four incubation durations. The radial diffusion on the membrane after 26 h is clearly 

detectable. 

 

The incubation time should not be too long, as this will cause oversaturation of the 

membrane. For a coarser soil with lower water content, a longer incubation time would be 

required than for a wet soil. One hour of incubation is normally selected based on preliminary 

experiments and previous studies (Dong et al., 2007). The criterion for appropriate incubation 

time is based on color intensity and diffusion rate: i) reaching the maximum intensity, ii) no 

detectable horizontal diffusion on the membrane (Fig. 5). After incubation, the membranes 

should be carefully lifted off the soil surface and any attached soil particles should be gently 

removed using tweezers. Another option is taking multiple images during the incubation on 

the soil surface at regular time intervals (2 to 5 minutes) and use the whole image sequence 

in calculations of enzyme activity. 

7.5 Imaging procedure 

7.5.1 Camera setting 

The motivation behind this section is to highlight how strongly the imaging step, camera, 

and the lens models affect the quality of images as well as interpretation of results.  
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Analyses of over 95 different full-frame models on the Canon EOS 6D – a randomly 

selected camera – showed the focal length ranged between 12 mm to 600 mm. These tests 

revealed that, on average, about 45% of the resolution is lost due to lens defects. The data 

from DxOMark Image Labs shows that the EOS 6D camera is able to exceed maximum 

sharpness when paired with the right lens. It should be also taken into account that most 

digital cameras have internal settings to adjust their capturing properties depending on the 

intensity of the light received through the lens. In such cases, these settings should be 

disabled prior to any imaging.  

Due to signal variation under different exposure times, the same camera settings should 

be used for zymograms and calibration standards. For more detailed methodological studies 

involving the sensitivity of measured enzyme activity to exposure time during photography 

we refer readers to (Waters, 2009; Guber et al., 2018a; Giles et al., 2018).  

7.5.2 Photography 

To obtain reliable results it is very important to perform zymography under the same 

conditions, such as temperature and selected incubation time. After/during incubation, the 

membranes will be placed under ultraviolet (UV) illumination with an excitation wavelength 

of 355 nm and an emission wavelength of 460 nm, in a light-proof room or chamber. The 

UV light can be a single circular lamp, a rectangle or a square consisting of 3 or 4 similar 

lamps, with a wattage range of 18 - 22 W. Important is that the sample will receive equal 

light intensity from all sides (Fig. 1). 

The distance between the UV light sources, the camera and the samples (zymograms) 

should be fixed. This includes not only a fixed distance between zymogram, camera and UV 

light but also camera position, orientation, angle, image capture time and all camera settings. 

Any light or reflection will have a direct effect on the images and cause overestimation of 

color intensity. Zymograms should be corrected for the empty membrane (Iem, zymograms 

taken without any substrate) and the dark current (Idc, the signal recorded by the camera when 

there is no zymogram) according to (Eq. 1):   

   𝐼!"#$ = %&%!"
%#$&%!"

     (1) 

where Inorm is the corrected image and I is the original image. Thus, to correct for variations 

of the light intensity over the image area, background images from the uncoated membrane 

as well as background images without any membrane are needed (Eq. 1), (Menon et al., 2007). 

The scaled black flat field similar in all images should be considered as a reference object 
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during whole image processing (Fig. S1). In addition, we strongly recommend a background 

test for each individual soil. This includes incubation of a water- or buffer-saturated 

membrane on the soil and imaging under UV light. This step is indispensable as many soil 

organic compounds can diffuse into the membrane, as can elements that can be detected as 

fluorescence under UV light: humic and a reduced quinone-like compounds 

(quinone compounds can be reduced by cellular reductases), (Watanabe et al., 2004) as well 

as some heavy metals can produce interfering signals (Fig. 6).  

 

Fig. 6. Detected false signals on membrane saturated by sterile water under UV light. Not a 

single pixel refers to spot with enzyme activity. (a) Shows the original zymogram in true 

color and (b) shows the same zymogram after image processing. 

7.6 Image processing, quantification and analysis 

7.6.1 Calibration line 

The amount of MUF, AMC or any other fluorogenic conjugate on an area basis can be 

calculated from the concentration and volume of the solution taken up by the membrane and 

its size. The membranes used for calibration should be imaged under UV light and analyzed 

in the same way as the samples (e.g. imaging and light conditions, the same incubation time 

and same camera settings).  

There are two general approaches for calibration of soil zymograms. The simplest 

consists of saturating the membrane filters with standard MUF/AMC solutions and taking 

photographs of these filters using the same settings as for the zymography (Spohn and 
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Kuzyakov, 2013, 2014). The image obtained with zero concentration of the fluorophore is 

subtracted from the images with known concentrations (background correction). The 

concentration of MUF/AMC per unit of area can be calculated for each membrane based on 

the applied concentration and volume of adsorbed solution. A linear regression with zero 

intercept is fitted to the obtained values of MUF/AMC (Fig. 2b). Normally, the correlation 

of fluorophore concentration and gray values results in an equation as (Eq. (2)) and is used 

to calculate enzyme activity per unit of area on zymograms: 

y=ax+b                           (2) 

where y is enzyme activity, x is the gray value of the zymogram, and a is the slope of the 

fitted curve. The disadvantage of this approach lies in the deviation of the calibration curves 

from linearity due to membrane oversaturation at MUF/AMC content of approximately 12 

mM. Using the calibration beyond this concentration is therefore not reliable (Fig. 2, a).  

The second approach applies a known volume of the standard MUF/ AMC solution to 

the membrane surface with continuous imaging. The disadvantage of this approach is the 

need for many different concentrations and volumes of the standard solutions and a relatively 

complicated algorithm of pixel-based calibration (Eq. (3)). The algorithm comprises two 

sections of linear regression: 

   (3) 

where MMUF/AMC is an average MUF/AMC concentration in the membrane, a2, b1 and b2 are 

parameters of the linear regression, G* is the grey value at the breakpoint (Fig. 2. yellow 

line), and  is the grey value averaged across the membrane. The advantage of the second 

approach is the possibility to extend the calibration curve to larger concentrations of 

MUF/AMC and overall more accurate calibration due to accounting for non-uniformity in 

MUF/AMC contents across the membrane (Guber et al., 2018a).  

7.6.2 Image processing  

Processing zymography images includes 5 steps: 1) transformation of signal 

(fluorescence) from the images to grayscale values, 2) background correction, 3) root 

segmentation, 4) root skeletonization, and 5) conversion of grayscale values to enzyme 

activity.  
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The intensity of fluorescence is proportional to the activity of the enzyme. To obtain 

quantitative information, it is possible to process the zymograms using the image processing 

toolbox in Matlab (MATLAB, The MathWorks). Zymograms first should be transformed to 

grayscale images (8, 16 or 32-bit) as matrices and corrected for light variations and camera 

noise (Eq. (1)) (Soille, 2003; Menon et al., 2007; Zarebanadkouki et al., 2012). Then, the 

zymograms will be referenced based on the grayscale value received from a reference object 

embedded in all the zymograms (or scaled black flat field). After referencing the gray values 

obtained from the zymograms of calibration lines at the concentration of zero can be 

calculated and then this value will be subtracted from all the zymograms. Note that the same 

membrane filters should be applied to all of the images, including both zymograms of the 

samples and the calibration line.  

For further analysis, the roots can be easily segmented [cut off from the image by one or 

more points or lines], due to the strong contrast between the soil and roots. To detect the 

boundaries of the roots, threshold methods provided by Matlab can be used (Chaudhuri et al., 

1989; Hoover et al., 2000). It should be noted that image segmentation is a crucial step in 

image processing, as it affects all subsequent image analyses (Schlüter et al., 2014). Locally 

adaptive segmentation methods (e.g. watershed algorithm; Beucher and Lantuejoul, 1979) 

calculate neighborhood statistics for a class assignment in order to smooth object boundaries, 

avoid noise objects, or compensate for local intensity changes. Due to the added flexibility, 

local segmentation methods often result in improved segmentation results (Iassonov et al., 

2009; Wang et al., 2011). In addition, roots can be segmented and masked by multiplying the 

zymogram to the mask obtained from root segmentation using the Root-tracker 2D program 

(Fig. 7, an example Roottracker image). As the program segments the whole root system, the 

regions with high enzyme activity can be identified and the noise can be excluded from the 

analysis (Fig. 7).  

To calculate enzyme activity as a function of distance along the root, the roots that are 

not overlapping and are entirely visible at the soil surface should be selected (Fig. 7). The 

images are then skeletonized with a thinning algorithm (Lam et al., 1992). The segmented 

roots, their lengths, and radii can be calculated using the Euclidean distance map function in 

Matlab (Menon et al., 2007; Moradi et al., 2011). For the processing of images using ImageJ, 

we refer readers to (Schlüter et al., 2014). 
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Fig. 7. (a) Example of zymogram (true color), and (b) shows segmented root in green, while 

blue is root and noise which should be excluded from the analysis (when the whole root is 

not visible or the contrast between root and background is not sufficient).  

7.7 Identification, quantification and localization of hotspots 

Main relevant biogeochemical processes are take place in the microsites, so called 

hotspots, (Kuzyakov and Blagodatskaya, 2015). Hotspots were defined as the small soil 

volumes with high process rates and very intensive interactions between pools and organisms 

(Kuzyakov and Blagodatskaya, 2015). Hotspots are often defined as a qualitative indicator. 

Precise definitions vary, with typically the highest 10–30% of gray values across the entire 

image considered as hotspots (Hoang et al., 2016; Liu et al., 2017; Ma et al., 2017; Zhang et 

al., 2019). Thus, hotspot percentage is an arbitrary value. However, it is valid for the 

comparison of treatments within one study, provided that the same threshold is applied to all 

analyses. In order to unify the calculation of hotspot percentage we recommend the following 

approach (Kuzyakov and Razavi, 2019): First, the mean gray value in the bulk soil and the 

standard deviation (SD) is calculated. This mean value in the bulk soil is taken as a reference 

= 1.0 ± SD (Helliwell et al., 2017). Then, moving from the bulk soil to the hotspot, the 

enzyme activity will increase. The hotspot boundary is accepted as the point at which enzyme 

activity exceeds +3 SD. The boundary of +3 SD is accepted because 99.7% of all bulk soil 

values are located within ± 3 SD. This approach may provide the most accurate estimation 

of hotspots according to its original definition (Kuzyakov and Blagodatskaya, 2015).  
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In addition to hotspot identification, it is possible to classify different levels of activity 

(e.g. very low activity, low activity, moderate activity, and hotspots), (Fig. 8). The boundaries 

of each category can be confirmed by one way analysis of variance (ANOVA). ANOVA can 

assess the significant differences between independent variables (e.g. mean values of a 

specific number of adjacent pixels, for example equal to 0.1 mm), (Fig. 8a).  

 

Fig. 8. a) Example of detecting the boundaries of different categories of enzyme activities in 

the specific gradient (biopores). Percentage of the area of MUF/AMC concentration in the 

total image is considered as a function of color intensity. Asterisks indicate significant 

differences between the mean values (modified from Hoang et al., 2016). b) Example of 

spatial distribution of hotspots in soil treated with and without fertilizer. Long-term N 

fertilization leads to formation of aggregate hotspots while no fertilization caused dispersed 

distribution of hotspots. The dotted quadrates represent symbolic applied quadrat counts 

method on images. 

 

Besides, spatial pattern analysis quadrat methods (Diggle, 1983; Arnold et al., 1997) and 

calculation of dispersion index can illustrate whether the distribution of hotspots in space are 

aggregated or dispersed (Fig. 8b), (Hoang et al., 2016). Spatial point pattern analysis is a 

statistical method applied to obtain information about the spatial structure of the individual 

points (hotspots) within a study area (zymogram). There are a number of indices that could 

be used with the quadrat count method to detect a significant deviation from a Poisson 

distribution (Fisher et al., 1922). The most common one is dispersion index (I) and is defined 

as: 
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I = 
!
"#

           (4) 

where V and X are the sample variance and the sample mean of the quadrat counts 

respectively. The method is based on fact that for randomly dispersed points, the variance of 

the number of points (hotspots) per quadrat is approximately the same as the average number 

of points per quadrat. Thus, the expected value of the index is I > 1 for clustered distribution 

patterns and I < 1 for dispersed spatial distributions (Fig. 8b).  

Application of spatial point pattern analysis quadrat methods can draw critical 

conclusions on spatial distribution of hotspots through whole soil profiles with different 

origins in response to various factors (temperature, time, light intensity, etc.) and promoters 

(C input, earthworm activities, etc.). 

7.8 Coupling zymography with other approaches 

Soil zymography provides information on the spatial distribution of enzyme activities, 

an important parameter that cannot be obtained with the classical enzyme assay. Soil 

zymography can be used to answer broader questions by coupling with classical enzyme 

assays (Hoang et al., 2016; Ma et al., 2017; Zhang et al., 2019) as well as other imaging 

approaches such as radioisotope imaging (e.g. 14C, 33P, 35S), (Fig. 9), (Spohn and Kuzyakov, 

2013; Hoang et al., 2017), planar optodes (e.g. O2, CO2, pH), (Fig. 9), FISH (Spohn et al., 

2015), neutron radiography, gel-based approaches (e.g. diffusive gradients in thin films 

(DGT), diffusive equilibration in thin films (DET)), and also with µCT to illuminate spatial 

distributions of enzyme activities in three dimensions (Kravchenko et al., 2019). The 

relevance of soil zymography for soil and ecological sciences is highlighted by the 

observation that microorganisms use secreted or cell-membrane-bound digestive enzymes to 

degrade polymeric substances (e.g., cellulose, chitin) and rely on diffusion to access the 

degradation products (Burns, 1982; Sinsabaugh et al., 1991; Sinsabaugh, 1994). The products 

of enzymatic degradation (e.g., glucose, amino acids, phosphate) are then used by 

microorganisms for metabolism and growth. Soil zymography coupled with other imaging 

techniques as well as molecular approaches (e.g., qPCR) enables in situ mapping of all these 

processes in microsites (hotspots) and hotspheres. 
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Fig. 9. a: an example of overlapped 14C image and zymography. The red color corresponds 

to β-glucosidase activity and white represents 14C release (root exudate). b: An illustrative 

example of phosphatase activity (blue) and changes of pH (red) along the maize root. In (a) 

and (b) background (soil) is converted to black to improve the visibility. c: an example of 

three overlapped images: real root, zymogram, and CO2 changes. The green color represents 

the area where leucine-aminopeptidase activity and CO2 release overlapped. Sub-figures 

shows: i. roots, ii. leucine-aminopeptidase imprint, and iii. CO2 release. There are areas 

where microbial respiration is visible while imprint of enzyme activity is not detectable (or 

the activity is low). 

7.9 Summary and moving forward 

Clearly, there are many challenges associated with the visualization of enzyme 

activities in soil and litter. Therefore, we summarized potential abiotic and biotic 

factors which may distort results (Table 2). In addition, we would like to conclude 

with a set of recommendations to improve soil zymography quality and facilitate the 

sharing of optimization procedures across laboratories:  
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1) By incubation of water/buffer-saturated membrane on the soil and its 

photography under UV light (a background test of the soil) prior to any soil 

zymography, ensure that you are detecting enzyme activity not any other fluorescent 

compounds.  

2) Identify the four possible positions for root growth in the rhizobox or in field 

rhizotrons and confirm that the roots are in the soil and not on top of the soil, prior to 

soil zymography.  

3) Perform soil zymography under the initial environmental conditions of 

samples (e.g. keep exactly the same growth temperature, light intensity, water content, 

etc., while incubating the membrane). 

4) Find the balance between saturating substrate concentrations of your soil and 

substrate concentration for soil zymography.  

5) Examine whether attachment during the incubation is appropriate to properly 

map enzyme activity, and run laser scanning for soil surface topography in advance.  

6) Run proper calibration standards to ensure that enzyme activity values are 

properly calculated.  

7) Ensure that camera settings and photography conditions are the same for all 

samples as well as the measurement of calibration line. 

8) Ensure that images are properly analyzed. 

 

Table 2 Summary of abiotic and biotic factors which may distort results. 

 

If all of these steps are followed, then researchers can be more certain that their 

images are indeed reflective of the spatial distribution of enzymatic activity in their 

samples.  
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Although great efforts have been made toward developing, quantifying and adapting 

soil zymography, we still have a long way to go. Standardized, user-friendly and correctly 

interpretable soil zymography tools for non-experts need to be developed and 

commercialized. The combination of mass spectrometry techniques and soil zymography 

will ultimately allow the exact trimming pattern of individual substrates by the enzyme 

(especially proteases) to be determined in situ and in vivo. Considering how the abiotic 

environment of the rhizosphere is controlled through a system of feedback loops between 

roots, microbes, and soil chemistry, in which the dynamics of the microbial community, 

root exudates, nutrient and elements, enzymes, O2, pH, and CO2 play an essential role, it 

is clear that coupling soil zymography with other novel approaches will be beneficial. Soil 

zymography can be used as a mapping tool for localization of microbial hotspots and be 

coupled further with molecular and microbial analysis to identify the microbial 

community, or microbial growth and efficiency.  

Scaling down the soil zymography on a micro-resolution scale or combining soil 

zymography and other approaches with different scales (for instance nanoSIM) is another 

untouched side of science that remains as the dark side of the moon to be discovered.  

All of these steps will encourage better collaboration among researchers investigating 

the links between enzyme activities and decomposition. Furthermore, properly estimated 

enzyme activities may have even more meaning when used in conjunction with functional 

gene analysis, or emerging proteomic and genomic tools that are expanding our ability to 

understand microbial decomposers and the significant roles they play in ecosystems 

(Nannipieri, 2006; Wallenstein and Weintraub, 2008). 
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Abstract 

Understanding the effects of land-use change in drylands on nutrient use efficiencies and losses within 
food production-consumption system provides insights on nutrient management strategies and the 
effectiveness of land-use policies. Weibei dryland is considered as an example to use to evaluate 
changes in nitrogen (N) flows through the food chain following conversion of croplands to apple 
orchards using the Nutrient flows in Food chains, Environment and Resources use (NUFER) model, 
and we also modeled the effects of 20% reduction in N fertilizers on apple yields to obtain a balanced 
fertilization strategy. The apple orchards area increased from 9.6×104 ha in 1978 to 72×104 ha in 2013, 
while the area under cereals decreased from 186×104 ha in 1978 to 152×104 ha in 2013. The increased 
income due to apple orchards led on-one-hand to more N fertilization to get a higher apple yield, and 
on-the-other-hand promoted the consumption of animal foods. Consequently, nitrogen use efficiency 
of crop production (NUEc) and the combination of crop and animal production (NUEc+a) decreased, 
but nitrogen use efficiency of animal production (NUEa) and N losses increased between 1978 and 
2013. The modeled scenario of 20% reduction in N fertilization amounts will still keep optimum 
apple yield but will significantly decrease N losses from the apple orchards. We therefore, suggest 
that the key measures for improving nitrogen use efficiency and decreasing N losses after conversion 
to cash crops are: (a) reducing N fertilization as well as balancing various inorganic fertilizers; and 
(b) implying organic fertilizers. 
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Abstract 

Beneficial interactions between plant roots and rhizosphere microorganisms are pivotal for 
plant fitness. Nevertheless, the molecular mechanisms controlling the feedback between root 
architecture and microbial community structure remain elusive in maize. Here, we 
demonstrate that transcriptomic gradients along the longitudinal root axis associate with 
specific shifts in rhizosphere microbial diversity. Moreover, we have established that root-
derived flavones predominantly promote the enrichment of bacteria of the taxa 
Oxalobacteraceae in the rhizosphere, which in turn promote maize growth and nitrogen 
acquisition. Genetic experiments demonstrate that LRT1-mediated lateral root development 
coordinates the interactions of the root system with flavone-dependent Oxalobacteraceae 



Other studies 

 
 

237 
 

under nitrogen deprivation. In summary, these experiments reveal the genetic basis of the 
reciprocal interactions between root architecture and the composition and diversity of 
specific microbial taxa in the rhizosphere resulting in improved plant performance. These 
findings may open new avenues towards the breeding of high-yielding and nutrient-efficient 
crops by exploiting their interaction with beneficial soil microorganisms. 
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Abstract 

Protein typically represents the largest input of organic nitrogen (N) into soil. Proteases 
subsequently make this protein available for use by both plants and microorganisms, however, 
the factors that regulate protein breakdown in the rhizosphere remain limited. Root exudation 
of carbon (C) and N into soil promotes microbial growth and thus enzyme production, which 
is further enhanced by root morphological traits such as root hairs. However, it is not clear 
how inputs of protein from external sources (e.g. necromass) affect enzyme activity in the 
rhizosphere. Insight into the interaction between protein addition and root morphology will 
enhance our knowledge of plant and microbial strategies for promoting N acquisition. Using 
soil zymography, we investigated the spatial distribution of leucine aminopeptidase activity 
in the rhizosphere of Hordeum vulgare L. (barley) with and without root hairs subject to 
localised protein addition. Seedlings of barley were grown for two weeks in rhizoboxes and 
soluble protein was applied 48 h before analysis of leucine aminopeptidase activity. In situ 
zymography was used to quantitatively visualise leucine aminopeptidase activity while ex 
situ sampling was used to determine its enzyme kinetics. In the zymograms, we found that 
mean and maximal leucine aminopeptidase activity was highest in the barley genotype with 
root hairs and in the presence of soil protein hotspots. This suggests that microorganisms and 
plant roots in the rhizosphere of genotypes with root hairs have a greater advantage in 
accessing protein hotspots in the soil. Leucine aminopeptidase activity did not follow the 
same trends when analysed by in situ zymography and ex situ sampling methods. Therefore, 
we recommend the use of in situ zymography to detect the spatial distribution of enzymatic 
hotspots and rhizosphere extent followed by ex situ sampling for assessing enzyme kinetics 
in the hotspot areas detected by in situ sampling. However, sampling biases must be 
considered to ensure enzyme activities are being interpreted as the true rhizosphere. 
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Abstract 

Biological nitrogen (N) fixation is one of the most significant parts of the N cycle in terrestrial 
ecosystems, and this process is carried out by soil diazotrophs. However, knowledge of 
diazotroph assembly processes and activity in response to diverse fertilization strategies in 
agroecosystems across a large geographical scale is still lacking. Here, we selected nine agro-
ecological experimental sites that covered a wide geographical distance (~3500 km) at a 
continental scale, and investigated the diazotrophic communities, assembly processes, 
distance-decay patterns and N2 fixation activity in response to geographical factors and long-
term fertilization strategies. The results showed that the dominant genera were 
Bradyrhizobium (~30.5%) and Azospirillum (~26.8%) in all samples, and RDA analysis 
showed that the relative abundance of Bradyrhizobium was positive correlated with MAP 
while specific negatively correlated with soil pH and the relative abundance of Azospirillum. 
Geographical factors (location and climate) and fertilization collectively drive diazotroph 
assembly processes and determine diazotroph activity. Diazotroph assembly processes were 
influenced by both stochastic (~36.2%) and deterministic (~63.8%) processes simultaneously 
at large geographical scales and under various fertilization strategies. Moreover, fertilization 
increased the proportion of deterministic processes under various fertilization strategies. The 
N fixation rate was determined by local soil properties. Fertilization changes but does not 
always suppress nitrogen fixation activity. Both geographical factors and fertilization 
through the shift of diazotroph community composition and the changes in soil properties, 
indirectly affected the assembly process and N fixation rate. Among soil properties, pH was 
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the dominant factor and linearly related to diazotrophs assembly process, while N fixation 
rate reached peak at near-neutral pH. These results elucidate the mechanism of soil 
diazotroph assembly process and activity shaped by both geographical factors and 
fertilization; thus, expand the current understanding of the diazotroph community affected 
by fertilization strategies across a large geographical scale. 
 
Keywords: Long-term fertilization, Soil diazotroph, Community assembly, Nitrogen fixation 
rate, Spatial scale dependence 
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Abstract 

Mulching rain-fed farmland ecosystems changes the soil physicochemical properties, 
especially soil organic carbon (SOC), but the metabolic limitations of soil microorganisms 
after these changes are unclear. We established a long-term experiment in 2012 with three 
treatments: no mulch (CK), straw mulch (SM), and plastic film mulch (FM). In 2019 the soil 
enzyme activities were measured in five maize growing periods: planting time, sixleaf period, 
silking period, milk period, and physiological maturity. Extracellular enzymatic 
stoichiometry models were used to examine microbial metabolic limitations. The vector 
length and angle were employed to determine the C and N/P limitations of soil 
microorganisms. Compared with CK, the average SOC and total nitrogen (TN) contents were 
9.7% and 7.8% higher under SM, respectively, in each period. The SOC, TN, and total 
phosphorus (TP) contents were 5.6%, 4.8%, and 2.8% lower under FM, respectively. 
Compared with CK, the Cand N-acquiring enzyme activities were 20.5% and 5.2% lower 
under FM, respectively. The alkaline phosphatase enzyme activities were 2.7% and 13.5% 
higher under SM and FM, respectively, than CK. Soil nutrients, pH, and temperature 
influenced the C and P limitations of soil microorganisms. The different P limitation 
responses under SM and FM were mainly due to SOM. The decomposition of SOC was a 
key source of soil available P. The soil hydrothermal conditions under FM accelerated the 
decomposition of SOC in the early years, thereby increasing the P limitation. However, long-
term SM increased the SOC due to the annual input of straw and its decomposition released 
available P to alleviate the P limitation for microorganisms. Thus, the temperature, water, 
pH, and SOC affect the P limitation for microbes under mulching conditions, but the SOC 
content of alkaline soil in arid farmland is the main factor that leads to microbial P limitation. 
 
Keywords: Ecoenzymatic stoichiometry, microbial metabolism, mulching measures, rain-fed 
agricultural ecosystem 
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Abstract 

Returning sloping farmland (﹥25°) to forest/grassland (RFTF) is an effective ecological 
measure for soil and water conservation. However, changes in nutrient cycles and green 
development are still unclear. Ningxia, in Northwestern China, began to implement RFTF in 
2000. Here, we used the NUFER model to calculate the input and loss of nitrogen and 
phosphorus, utilization efficiency, production and consumption at food-chain scale in 
Ningxia for the period 1985–2015. Five aspects comprised the evaluation of green 
development: society, economy, resources, environment, and productivity. Results showed 
that forest coverage rate increased from 7.74% to 33.2%, while cropping area decreased by 
6.6%. NH3 loss increased from 53,000 to 83,000 tons (56%), N2O increased from 1200 to 
2300 tons (92%) and leaching loss from 18,000 to 62,000 tons (240%). Phosphorus leaching 
loss increased from 13,000 to 35,000 tons (130%). The environmental cost of food nitrogen 
per unit of production decreased from 8 to 6.7 kg/kg (19.4%). Nitrogen and phosphorus use 
efficiencies decreased by 4.8% and 58% in crops-animal systems, respectively, but increased 
by 652% and 430% in animal husbandry systems. The proportion of animal protein 
production increased from 18.3% to 39.0% (113%). The major source of organic waste was 
livestock and poultry manure and urine (70%). Indicators for achieving green development 
level increased from 14 to 18 (14.7%). Improving the level of scientific and technological 
management of aquaculture system, increasing the proportion of organic matter returned to 
farmlands, and paying attention to the combination of planting and breeding will effectively 
promote future cycling efficiency of nitrogen and phosphorus in the food chain, and the 
sustainability of agriculture towards green development. 
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