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Summary 

 

Slow as molasses  (slam) is a gene essential for embryonic development of Drosophila. Slam is 

necessary for the formation and ingression of the plasma membrane and its polarisation, i.e. the 

formation of the basal cortical domain. Later, Slam controls the directed migration of primordial 

germ cells. Slam may organise a platform for Rho signalling and membrane trafficking. Slam 

displays the striking feature that Slam protein and slam mRNA colocalize at the basal domain 

and form a complex which can be isolated by immunoprecipitation. The interaction of the 

protein and the mRNA at the basal domain of the plasma membrane is important for the mRNA 

localization and its efficient translation. 

 

However, little is known about the molecular mechanisms by which Slam fulfils its tasks. Slam 

encodes an unconserved protein of 1196 amino acid residues with no obvious domains and with 

large regions predicted to be structurally disordered.  

 

This study aims to further investigate the biochemistry and molecular interactors of Slam to 

advance the understanding of membrane formation and polarisation. Firstly, a series of Slam 

truncations were constructed and expressed in E. coli to identify Slam fragments which may be 

suitable for crystallographic studies in the future. Investigating Slam’s structure will give 

fundamental insights into its nature and way of function. A protocol for the purification of the 

C-terminal 129 aa region of Slam was developed and optimised to generate high-purity sub-

milligram amounts of the fragment.  

 

Secondly, the proteome of Slam interactors was isolated and identified by mass spectrometry. 

To this end, a multistep immunoprecipitation protocol was developed. Previously known 

interactors were confirmed. Strikingly, the interactors fall into functional classes. Multiple 

components of the actin cytoskeleton were isolated, such as components of the Arp2/3 complex, 

alpha-actinin and non-muscle Myosin II. Furthermore, components related to the cell cortex 

and membrane trafficking were found, including Cindr, Restin homolog (clip190) and Jaguar 

(Myosin 95F). The list of interactors will serve as a starting point for future studies resolving the 

role of Slam for membrane formation and its interaction with the actin cortex.  
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1. Introduction 

 

1.1 Early development of Drosophila melanogaster  

 

1.1.1 Syncytial blastoderm and cellularization 

 

As in most other species of the animal kingdom, the early development of Drosophila 

melanogaster starts with a fertilized egg. Peculiar about insects, like flies, however is that they 

continue their embryogenesis in a coenocytic blastoderm, also called the syncytium. (Willmer 

1990). After fertilization (fig. 1A) the zygotic nuclei undergo 13 rounds of mitotic divisions 

omitting cytokinesis, leading to a multinucleate cell: the syncytial blastoderm. The first 9 rounds 

of mitotic divisions take place in the interior of the single cell embryo (fig. 1B). Then, most of 

the nuclei undergo microtubule-dependent peripheral migration, to divide synchronously 

another 4 times (round 10-13) at the cortex (Foe and Alberts 1983). Some of the nuclei travel to 

the posterior pole of the embryo to form the pole cells (fig. 1C and D), precursors for the adult 

germ cells (Raff and Glover 1989). Finally, around 6000 syncytial blastoderm nuclei, nicely 

arrayed under the plasma membrane, get separated by invaginating plasma membrane furrows 

to form the cellular blastoderm with a polarised epithelium (Zolakar and Erk 1976; Campos-

Ortega and Hartenstein 2014; Mazumdar and Mazumdar 2002). The process of enclosure of each 

syncytial nucleus into a single cell is called cellularization (fig. 1D) (Bate and Martinez Arias 

1993). Cellularization starts with interphase of cycle 14 and lasts about 65-70 min (Bate and 

Martinez Arias 1993). 

 

 

 

 

 

 

 

 

 

 

Figure 1 Simplified depiction of early Drosophila development. (A) The egg after fertilization. (B) The first rounds or mitotic 

division (skipping cytokinesis) take place in the interior of the embryo. (C) After the first 9 cycles the bulk of the nuclei undergo 

cortical migration. (D) Cellularization: cell membrane invaginates between the nuclei and with basal closure all cortical nuclei 

are encapsuled by plasma membrane. A cellular blastoderm has formed. Picture modified from (Acharya 2014). 
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1.1.2 Metaphase furrows and actin caps during syncytial cycles  

 

After the first 8 preblastodermal mitotic cycles the bulk of the nuclei undergo cortical migration. 

At the embryonic cortex somatic buds are formed above the nuclei and their associated 

microtubule organizing centres, the centrosomes (Blake-Hedges and Megraw 2019). These 

somatic buds and the space between them are the first mark of the cortical differentiation into 

caps and intercap regions. During the following 4 final divisions of the syncytial blastoderm, the 

plasma membrane undergoes dynamic changes that are driven by the centrosome-dependent 

actin-microtubule network (Rikhy, Mavrakis, and Lippincott-Schwartz 2015; Blake-Hedges and 

Megraw 2019).  During interphase microvilli- and actin-rich caps form above the nuclei. These 

actin caps expand and fuse as the cycle progresses to become associated with transient 

invaginations of the plasma membrane of approximately 8 µm depths between the nuclei and 

cortical spindles during mitosis. These pseudocleavage or metaphase furrows regress in 

telophase and actin becomes reorganized in the caps leaving out the intercap region (Sullivan, 

Fogarty, and Theurkauf 1993; Stevenson et al. 2002). The formation of actin caps is dependent 

on the SCAR-activated actin-bundling Arp2/3 complex (Zallen et al. 2002).  

 

 

Figure 2 Cytoskeletal rearrangement during syncytial cycles. Once the nuclei reached the cortex after peripheral migration 

actin caps form above their associated centrosomes, which are separated by intercap regions. These actin caps rearrange for 

mitosis and form so called actin-rich metaphase or pseudocleavage furrows. After successful mitosis these furrows regress to 

restructure to actin caps and intercap region. Picture modified from (Acharya 2014). 
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1.1.3 Phases of the cellularization process 

 

Cellularization is a specialized form of cytokinesis and may be divided into a slow and a fast 

phase (Merrill, Sweeton, and Wieschaus 1988; Fullilove and Jacobson 1971; Mahowald 1963). 

Previously the slow phase was described to be behind the first 10 µm of the furrow invagination 

taking 35-40 min. During the fast phase the speed of membrane invaginations increases to 20 µm 

in 15-20 min (Thomas Lecuit, Samanta, and Wieschaus 2002). More recently, however, Figard et 

al. found that the switch from slow to fast phase seems to occur earlier, at 5 µm furrow ingression 

(Figard et al. 2013).   

More precisely, Lecuit and Wieschaus described 4 distinct phases of cellularization (fig. 3) (T. 

Lecuit and Wieschaus 2000). During the first phase the leading edge of the cellularization front 

forms: the furrow canal (FC, 10 min)(Fullilove and Jacobson 1971). Also, nuclei continue to 

elongate basally. In phase 2 (20 min) the nuclei complete their elongation, but the cellularization 

front moves very slow, so that it is hardly detectable (5 µm below the embryo surface). Phase 3 

(20 min) is characterized by a slow invagination of the plasma membrane till the basal part of 

the nuclei. In phase 4 (20 min) the invagination rate suddenly increases to 2-fold and with basal 

closure produces 35 µm long epithelial cells. During basal closure microfilament rings detach 

from each other after passing the basal end of the peripheral nuclei and constrict to form a 

continuous membrane around them (Thomas and Wieschaus 2004).  
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Figure 3 Phases during cellularization (Thomas Lecuit, Samanta, and Wieschaus 2002). During phase 1 the cellularization 

front forms: the furrow canal (FC). The nuclei elongate basally. During phase 2 all nuclei complete their elongation. The plasma 

membrane invaginates slowly. While phase 3 the plasma membrane ingresses slowly till it reaches the basal end of the nuclei. 

In phase 4 the speed of invagination increases drastically, and basal closure completes cellularization. Basal Adherens 

junctions (BAJ) Apical Adherens Junctions (AAJ). Picture modified from (Mazumdar and Mazumdar 2002). 

 

1.1.4 Components of the polarized membrane 

 

As mentioned earlier cytoplasmic or somatic buds form above the nuclei once they have reached 

the cortex. These buds are separated by intercap regions, a slight depression of the plasma 

membrane. During mitotic cycle 10-13 these intercap regions fold out to form metaphase furrows, 

separating adjacent mitotic spindles and regress in telophase to go back to the shallow 

invagination they evolved from. This process requires a series of dynamic cytoskeletal changes 

and proteins, that help regulating and stabilizing interstages. Inevitable for furrow invagination 

and the formation of the furrow canal are adherens junctions.  Once the intercap regions ingress 

to define the first FC basal adherens junctions help separating the FC from the plasma 

membrane (Hunter and Wieschaus 2000; Hunter et al. 2002; Müller and Wieschaus 1996). The 

intercap region is marked by a specific set of proteins like as E-cadherin/β-catenin complexes, 

Myosin II, Patj and Slam, as well as DLG/SAP97 and Scribbles.  As the membrane ingression 
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proceeds three distinct domains emerge. Myosin II, Slam and Patj assemble at the actin-rich FC. 

E-cadherin/β-catenin complexes gather at the basal adherens junctions (BAJ) and Dlg and 

Scribbles at the lateral membrane, apically to the BAJ. The establishment of the BAJ is dependent 

on Slam (Thomas Lecuit, Samanta, and Wieschaus 2002). Nullo, however, is needed for the 

stabilization of the adherens junctions. Nullo gathers more outspread than Slam: to the FC, the 

BAJ and apically to the BAJ (Hunter and Wieschaus 2000; Thomas Lecuit 2004). During the 

ongoing ingression the cellularization front is marked by the three abovementioned proteins 

Slam, Patj and Myosin II. A number of other proteins, however, are also located to the FC. For 

example bottleneck, a regulator of actomyosin network, which times basal closure, is found 

colocalizing with Slam and others at the FC (Schejter and Wieschaus 1993; Theurkauf 1994).  Or 

the actin-binding protein Anillin, which is required for cytokinesis and proposedly gets involved 

with the organization of contractile domains of the actin cytoskeleton (Sechi et al. 2017; C. M. 

Field and Alberts 1995; Christine M. Field et al. 2005). The actin nucleator and formin Dia is 

another protein, which associates with the cleavage front (Yan et al. 2013). There are many more. 

For a number of the proteins, however, the way they work is little understood. We know for 

example, where and when Slam is located, its dynamics and some interactors. We know what 

happens, when it is gone, but the actual task and mechanism of its function is unclear.  
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Figure 4 Components of the metaphase furrow and the early cellularization furrow. Before cellularization the plasma 

membrane is rich in villous projections, which gradually vanish as the membrane invaginates. (A) The metaphase furrow is 

marked by a set of proteins. Among them are Dlg, Scribbles, Patj, Slam, Myosin II and E-cadherin. (B) As the membrane 

ingresses distinct domains appear and the beforementioned proteins separate. Slam, Patj and MyoII mark the furrow canal 

(FC). E-cadherin is located at the basal adherens junctions (BAJ) and Dlg and Scribbles are found at the lateral membrane. 

Picture modified from (Thomas Lecuit 2004). 

 

1.1.5 Slam recruits Myosin II to the furrow canal  

 

During cellularization membrane invaginates to form a honeycomb-like hexagonal network, 

with each hexagon enclosing one of the ~6000 syncytial nuclei (Mazumdar and Mazumdar 

2002). Once this array has passed the basal end of the nuclei, an actomyosin driven force ensures 

basal closure and thus creates the first polarized epithelium of Drosophila development. 
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Simultaneously with the start membrane invagination at the beginning of cellularization F-Actin 

and myosin accumulate at the FC (D. P. Kiehart 1990; Foe, Field, and Odell 2000; C. M. Field and 

Alberts 1995). The recruitment of Myosin II during cellularization was previously divided into 2 

phases (B. He, Martin, and Wieschaus 2016): During the first (flow) phase a tension-driven 

cortical flow brings myosin to the cleavage furrows. In a second phase additional myosin at the 

furrow canal is recruited from the cytoplasm. The first phase requires the zygotic gene dunk, the 

second slam. When the plasma membrane ingression is complete and the actomyosin network 

reorganised to form individual rings, it constricts to close the membrane basally and form new 

cells. Basal closure is very similar to conventional cytokinesis and even though there are striking 

differences between the latter and blastoderm cellularization several proteins are alike (Schejter 

and Wieschaus 1993). Among them the scaffolding protein Anillin (C. M. Field and Alberts 1995), 

Septins (Christine M. Field et al. 2005), Rho1 (Crawford et al. 1998) and the formin Diaphanous 

(Dia) (Afshar, Stuart, and Wasserman 2000), which are also located to the furrow canals. 

 

1.2 Slow-as-molasses 

 

1.2.1 slam during cellularization 

 

The gene slow-as-molasses (slam) is among the genes, which are transcribed early in the 

Drosophila embryo. Initially the RNA-polymerase II is inactive and is activated only about one 

hour after fertilization. This includes slam. During cellularization slam is needed for the 

formation and invagination of the plasma membrane and for its separation into distinct cortical 

domains (Thomas Lecuit, Samanta, and Wieschaus 2002; Acharya et al. 2014). It is required for 

Rho signalling in cellularization and, later, involved in germ cell migration (Wenzl et al. 2010; 

Stein et al. 2002).  

This study addresses Slams biochemistry during cellularization which will be introduced in the 

following chapter.  

There are both, maternal and zygotic gene products, that contribute to the creation of a 

functional cellular blastoderm during cellularization. According to current knowledge most of 

the cytoskeletal constituents are maternal gene products (Mazumdar and Mazumdar 2002). 

There are four exceptions: the genes nullo (Postner and Wieschaus 1994; Rose and Wieschaus 

1992; Hunter et al. 2002; Hunter and Wieschaus 2000; Simpson and Wieschaus 1990), serendipity 

(Saad Ibnsouda et al. 1995; S. Ibnsouda et al. 1993; Schweisguth, Lepesant, and Vincent 1990), 

bottleneck (Theurkauf 1994; Schejter and Wieschaus 1993) and slam (Thomas Lecuit, Samanta, 

and Wieschaus 2002; Beronja and Tepass 2002). In slams case, there is not only zygotically 
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derived RNA and protein. Maternally provided RNA and protein clearly contribute to the process 

of cellularization (Acharya et al. 2014). With only maternal slam the embryo can form furrows 

which ingress, but slower than in wild type. Maternally derived slam RNA and protein, however, 

are not able to form fully functional furrows (Yan and Großhans 2018). With maternal and 

zygotic slam removed, the fly embryo fails embryogenesis at a very early stage, namely to form 

a cellular blastoderm (Stein et al. 2002; Thomas Lecuit, Samanta, and Wieschaus 2002). 

Precisely, the embryo aborts forming furrow canals and basal junctions (Mazumdar and 

Mazumdar 2002).  

Slam underlies a very strong spatiotemporal regulation. It is only detected right before and 

during cellularization and its rapidly degraded afterwards. Zygotic slam can be detected in low 

levels from mitotic cycle 11 (Yan and Großhans 2018). Before that maternal slam contributes. 

Slam localizes to metaphase furrows and intercap regions during the syncytial cycles. First it is 

detected in very low amounts, which gradually increase to reach its peak of expression in 

interphase of cycle 14. During cellularization Slam is localized to the furrow canal (FC), where it 

is tightly attached. It was found, that the restriction of Slam to the FC and its mobility during 

cellularization appears to be controlled by the recycling endosome and the centrosomes 

(Acharya et al. 2014). In the same study it was proposed that slam together with another gene, 

nullo, specifies the furrow. 

 

1.2.2 Slam and its mRNA 

 

Slam and its mRNA transcript have an unusual relationship. In most of the cases a protein is 

translated from its earlier transcribed mRNA and then leaves its place of birth to fulfil its task. 

Normally the mRNA that serves as the code for the emerging protein does not influence its 

function. There are also non-coding RNAs that are not translated into a protein and still have 

distinct functions in the cell. Well known are tRNAs, siRNAs or microRNAs (Bartel 2018; Laganà 

et al. 2015; Sharp et al. 1985). That an mRNA serves as a functional transcript and influences the 

function of the protein it encodes and this protein in turn guides its own mRNA, is peculiar.  

Slam and its mRNA colocalize during early Drosophila development. They are found at 

metaphase furrows and intercap regions during syncytial cycles and to basal particles under the 

nuclei and are strongly enriched at the FC during cellularization (Schmidt, Lv, and Großhans 

2018; Yan et al. 2017). The colocalization of Slam and its mRNA was also observed ectopically in 

nuf females, where the recycling endosome is unfunctional and Slam localizes apically (Yan et 

al. 2017; Acharya et al. 2014; Rothwell et al. 1998). Slam has an estimated half-life of 40 min, 

which matches its function during and the timeframe of cellularization (Acharya et al. 2014). 
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Slam is mainly synthesised during only a few minutes at the switch from mitosis 13 to interphase 

14 to be stable afterwards over the course of cellularization (Yan et al. 2017). By imaging the first 

round of translation (via TRICK assay) it has been found that Slam untranslated mRNA and Slam 

protein colocalize to basal particles at the onset of cellularization (James M. Halstead et al. 2015; 

J. M. Halstead et al. 2016). Within a few minutes after the start of cellularization all the mRNAs 

had their first round of translation.  This indicated that parts of slam mRNA are transcribed at 

the furrow canal and that after the start of cellularization no new mRNA reaches the furrow (Yan 

et al. 2017). This is consistent with strong up-regulation of slam RNA and protein at the emerging 

furrow canal with steady protein levels during cellularization and gradually decreasing RNA 

levels during the second half of cellularization. Since the RNA is present at the FC the first half 

of the cellularization process but only translated the first minutes, it must be subject of some 

translational control (Yan et al. 2017).  Intriguingly an mRNA that has an early stop codon (GFP-

stop-slam) does not localize to the defined basal region/FC in slam deficient embryos (Yan et al. 

2017). Slam is not essential for the specification of the basal region/FC. In Slam deficient embryos 

there will still be a very small depression of the membrane that defines the site of ingression 

(Thomas Lecuit, Samanta, and Wieschaus 2002). Slam mRNA needs the protein to localize to 

the furrow, in contrast Slam protein has its own affinity to the furrow canal and does not need 

the RNA to localize. This was shown by an mRNA which has an alternative codon usage, 

incapable of localisation (slam[ACU]). With only slam[ACU] mRNA Slam was still able to 

localize to the FC. Since the slam[ACU] did not colocalize with Slam at the site of action, Slam 

protein levels were not sufficient to complement the slam phenotype. This was characterized by 

short furrows and incomplete cellularization (Yan et al. 2017). Thus, Slam protein needs its 

mRNA at the FC to fulfil its, yet vastly unknown, task. This interdependency of a protein, that 

attracts its mRNA to the site of action because it needs it for local translation to achieve sufficient 

amounts for its purpose is special. Additionally it has been shown by co-immunoprecipitation 

experiments, that Slam and its mRNA are part of a, yet uncharacterized, complex (Yan et al. 

2017).  

 

1.2.3 Biochemistry of Slam 

 
The gene region of Slam (CG9506) has 2 proteins assigned (TrEMBL): Slam and LD36405p. There 

was evidence for an mRNA coding for 1196 amino acid Slam, which was called LD36405p (Rubin 

2000). LD36405p has N-terminally 23 additional amino acids compared to Slam. In this study 

the 1196 or LD06405p variant was used.  

Slam is not conserved beyond flies. It is a 1196 amino acid protein, that has a calculated weight 

of 133 kDa. During SDS-PAGEs it runs notably at a higher weight of approximately 180 kDa 
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(Wenzl et al. 2010). In the embryo Slam is membrane associated (Thomas Lecuit, Samanta, and 

Wieschaus 2002). Over the span of its sequence no known domains can be assigned. It appears 

however, that Slam displays a class II PDZ binding motif at its C-terminus (-AVEV)(Wenzl et al. 

2010). This is where the PDZ domain containing proteins RhoGEF2 and Patj putatively bind. For 

the recruitment of RhoGEF2, however, it was shown, that the C-terminal PDZ binding motif of 

Slam is not necessary, as a mutated motif does not impair RhoGEF2 localization in the embryo 

(Wenzl et al. 2010).  

According to secondary structure prediction Slam is largely disordered. Especially the middle 

part calculates to be completely disordered. Only the C-terminus predicts profound structure.  

 

1.3 Aims and Objectives  

 
Despite the insights in functions and mechanism on a functional and cellular level, the exact 

function and biochemistry of Slam during the cellularization of the syncytial blastoderm , is little 

understood. In my research I focused on three aspects of Slam biochemistry: 

 

Heterologous Slam protein expression and analysis  

Apart from its PDZ domain binding motif at the far C-terminus, Slam does not display any 

known domains or motifs throughout its entire amino acid sequence. Structural analysis has not 

yet been attempted. One of the reasons is that the purification of heterologous Slam is intricate. 

In this study a purification strategy for heterologous Slam truncations is elaborated.  

 

Slam Interactome  

It was aimed to elaborate the role of Slam and the nature of the ribonucleoprotein complex it 

appears to be part of by determining new possible interactors during cellularization. This was 

done by the co-immunoprecipitation of Slam and putative interactors and subsequent mass 

spectrometric analysis.  

 

Slam post-translational modifications and stability  

This study further attempts to explore the biochemistry of Slam and its mRNA during early 

development of Drosophila melanogaster. Are there post-translational modifications that 

influence Slam? Is there more interdependency between Slam and its RNA, that we do not know 

of?    
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2. Materials and Methods 

 

2.1 Materials 

 

2.1.1 Reagents  

 

Unless otherwise mentioned standard reagents and chemicals were acquired from 

AppliChem GmbH (Darmstadt), Carl Roth GmbH (Karlsruhe), Invitrogen (Carlsbad, USA), 

Merck (Darmstadt), Sigma-Aldrich (St. Louis, USA) and Thermo Fisher Scientific (Waltham, 

USA). 

 

2.1.2 Media and Buffers   

 

Buffers 

 

All buffers were filtered prior to use.  

 

Recombinant Protein Purification  

6x Laemmli sample buffer  375 mM  Tris/HCl pH 6.8 

 10 % SDS 

 50 % glycerol 

 0.6 M DTT 

 0.03% bromophenol blue 

Affinity chromatography  

- Glutathione-S-Transferase (GST) 

load 50mM Tris, 250mM NaCl, 5% Glycerol pH 7.5 

elution 50 mM Tris-HCl, 10 mM reduced glutathione, pH 8.0 

 

- Histidine (His)  

load 20 mM sodium phosphate, 500 mM sodium chloride, 30 mM imidazole 

pH 7.5 

elution 20 mM sodium phosphate, 500 mM sodium chloride, 500 mM imidazole 

pH 7.5 
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AnIon-exchange chromatography (IEX)  

load 50 mM Tris, 50mM sodium chloride pH 7.5 

elution 50 mM Tris, 1 M sodium chloride pH 7.5 

 

Gel filtration  

load 10 mM sodium phosphate, 150 mM sodium chloride pH 7.2 

 

SDS-PAGE 

buffer for stacking gel  0.5 M Tris/HCl  

0.4 % SDS  

pH 6.8  

buffer for separating gel  1.5 M Tris/HCl 

0.4 % SDS  

pH 8.8  

10 x SDS-PAGE running buffer  25 mM Tris 

192 mM glycine 

0.1 % SDS  

 

Western Blot 

Transfer buffer 25 mM  Tris/HCl pH 7.5 

 192 mM  glycine 

 10% methanol (vol/vol) 

 

PBS 130 mM  NaCl 

 7 mM  Na2HPO4 

 3 mM NaH2PO4 

 pH 7.4 

 

PBST 130 mM  NaCl 

 7 mM  Na2HPO4 

 3 mM NaH2PO4 

 0.1% Tween 20 

 pH 7.4 
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Blocking buffer  1x  PBS 

 5% milk powder 

 

Immunoprecipitation  

Immunoprecipitation (IP) Buffer 50 mM  Tris/HCl pH 7.5 

 75 mM NaCl 

 1 mM  MgCl 

 0.05%  NP-40 

 100 mM  Sucrose 

 1 mM  DTT 

 1 mM  AEBSF 

 1x  cOmplete™ mini protease inhibitor 

tablets (Roche) 

 

Radioimmunoprecipitation Assay  10 mM  Tris/HCl pH 7.5  

(RIPA) buffer 150 mM NaCl 

 0.1%  SDS 

 1%  Triton X-100 

 1% Deoxycholate 

 5 mM  EDTA 

 1 mM  AEBSF 

 1x  cOmplete™ mini protease inhibitor 

tablets (Roche) 

 

 

Radioimmunoprecipitation Assay (-) 10 mM  Tris/HCl pH 7.5  

(RIPA(-)) buffer 75 mM NaCl 

 1%  Triton X-100 

 1% Deoxycholate 

 5 mM  EDTA 

 1 mM  AEBSF 

 1x  cOmplete™ mini protease inhibitor 

tablets (Roche) 
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Miniprep of plasmid DNA 

Solution I 50 mM Tris/HCl 

10 mM EDTA 

pH 8.0 

Solution II 1% SDS 

0.2 M NaOH 

Solution III 3 M potassium acetate 

adjusted to pH 5.4 with acetic acid 

 

 

Media 

 

Bacterial cultures 

Media were prepared by laboratory technicians according to standard protocols (Sambrook 

and Russell 2001). 

 

Luria-Bertani Broth (LB Broth) 10 g Bactotryptone  

 5 g Yeast extract 

 10 g NaCl 

 ad 1000 ml ddH20  

 

LB Agar plates 10 g Bactotryptone  

 5 g Yeast extract 

 10 g NaCl 

 15 g  Agar 

 ad 1000 ml ddH20  

   

Medium was autoclaved and allowed to cool down to 55°C. Required antibiotics were added 

and the solution plated into petri-dishes. The Agar plates were stored at 4°C until further 

use.  
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Terrific Broth (TB) 12 g Tryptone (pancreatic digest of casein) 

 24 g Yeast extract 

 9.4 g K2HPO4 

 2.2 g KH2PO4 

 5 g glycerol 

 ad 1000 ml ddH20  

 

Fly media 

 

Fly Food 

128 g agar was added to 10 L water. This was cooked to 2 h till the agar completely dissolved. 

Subsequently 400 fresh yeast, 160 g soya-bean meal and 1.28 kg maize meal was added to 4 L of 

water. This was mixed thoroughly and added to the agar. The mixture was cooked for 2 h. 1.28 kg 

malt extract and 350 g sugar-beet molasses were added to 2 L of water and added to the mixture. 

Everything was cooked for 30 min. In the following the food was allowed to cool down to 

under 60°C. 24 g Nipagin was dissolved in ethanol and together with 150 mL propionic acid 

added to the food. Finally, the fly food was filled into vials and allowed to solidify. The vials were 

then plugged and stored at 18°C until further use.  

 

Apple juice agar plates 

For a 4 L batch 70 g agar was dissolve in 3 L of water and autoclaved. The liquid agar was 

subsequently kept in a 60°C water bath. 100 g sugar was dissolved in 1 L apple juice and warmed 

up in a 60°C water bath. 6 g Nipagin was dissolve in 40 mL of ethanol (tech). The agar, the 

sugared apple juice and the Nipagin-solution were thoroughly mixed and filled into petri-dishes. 

These were stored at 4°C until further use.  

 

2.1.3 Enzymes and Kits  

 

Enzymes 

Restriction enzymes were purchased from Thermo Fisher Scientific (Waltham, USA) and New 

England Biolabs (Ipswich, USA). They were applied according to manufactures guidelines.  

 

DNase I Roche 

Lysozyme  AppliChem 

TEVprotease  kindly gifted by Prof. Görlich (Göttingen) 
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RNase A, DNase, and protease free (10 mg/mL) Thermo Fisher Scientific 

SUMOstar kindly gifted by Prof. Görlich (Göttingen) 

PreScission Protease kindly gifted by Jan Faix 

Taq Polymerase expressed and purified in the Großhans 

lab 

Pfu Polymerase expressed and purified in the Großhans 

lab 

 

Kits 

MiniElute Gel extraction Kit Qiagen 

Plasmid Midi Kit Nucleobond AX Macherey-Nagel 

In-fusion HD cloning kit Clontech 

 

2.1.4 Oligonucleotides  

 

Table 1 Primers used in this study 

Primer  Sequence 5’…3’ Details 

 

GST-Slam1069-1196-His6 cloning 

LC16 atggtgatggtgatgagatctGACCTCCACGGCCC

T 

reverse primer for insert amplification, 

introducing BglII site 

LC20 CAGGGGCCCggatccagatctCTGGACGAGC

TGTTTGC 

forward primer for insert 

amplification, introducing BglII site 

JG158  CGTATTGAAGCTATCCCAC 

 

sequencing primer for pGEX-6O-H 

and pGEX-6P-1 

 

GST-Slam24-527 cloning 

SG5 GGGATCCCCGGAATTCATGGTCCTAAGC

AATTCCACG 

forward primer for insert 

amplification, introducing EcoRI site 

SG6 GTCGACCCGGGAATTCTTACTCTAATTT

TGCGATGGCCTC 

reverse primer for insert amplification, 

introducing EcoRI site 

 

GST-Slam1069-1196 cloning 

SG7 GGGATCCCCGGAATTCCTGGACGAGCTG

TTTGCCAA 

forward primer for insert 

amplification, introducing EcoRI site 



29 
 

SG8 GTCGACCCGGGAATTCTTAGACCTCCAC

GGCCCTCC 

reverse primer for insert amplification, 

introducing EcoRI site 

 

GST-His6 Slam truncations  

LC5 CAGGGGCCCggatccagatctATGCCAGAAA

GCCAC 

forward primer for insert amplification 

in Slam1-300-cloning, introducing BglII 

site 

LC6 atggtgatggtgatgagatctGGCTGCCATGTCAC

C 

reverse primer for insert amplification 

in Slam1-300- and Slam24-300-cloning, 

introducing BglII site 

LC7 CAGGGGCCCggatccagatctATGGTCCTAAG

CAATTCC 

 

forward primer for insert amplification 

in Slam24-250-, Slam24-200, Slam24-450, 

Slam24-500 and Slam24-527-cloning, 

introducing BglII site 

LC7.2 AGGGGCCCggatccagatctATGGTCCTAAGC

AATTCCACG 

forward primer for insert amplification 

in Slam24-350- and Slam24-400-cloning, 

introducing BglII site 

LC8 atggtgatggtgatgagatctCATCTCATTTTGCA

GCTGAAC 

reverse primer for insert amplification 

in Slam24-250-cloning, introducing BglII 

site 

LC9 atggtgatggtgatgagatctCTCCATCTCCGGCA

G 

reverse primer for insert amplification 

in Slam24-200-cloning, introducing BglII 

site 

LC10 atggtgatggtgatgagatctCGATCCCGGCTCCA

G 

 

reverse primer for insert amplification 

in Slam24-350-cloning, introducing BglII 

site 

LC11 atggtgatggtgatgagatctCAGGCATCGGCGG

GG 

 

reverse primer for insert amplification 

in Slam24-400-cloning, introducing BglII 

site 

LC12 atggtgatggtgatgagatctAAACATTTGGCTAT

CCGC 

 

reverse primer for insert amplification 

in Slam24-450-cloning, introducing BglII 

site 

LC13 atggtgatggtgatgagatctCTCAAGTAGCGGTT

G 

 

reverse primer for insert amplification 

in Slam24-500-cloning, introducing BglII 

site 
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LC14 atggtgatggtgatgagatctCTCTAATTTTGCGA

TGGC 

 

reverse primer for insert amplification 

in Slam24-527-cloning, introducing BglII 

site 

LC15 CAGGGGCCCggatccagatctTGCTCGAACG

ATCCGATG 

forward primer for insert amplification 

in Slam 750-1196-cloning, introducing 

BglII site 

LC16 atggtgatggtgatgagatctGACCTCCACGGCCC

T 

 

reverse primer for insert amplification 

in Slam 750-1196-, Slam 800-1196-, Slam 811-1196- 

and Slam 850-1196-cloning, introducing 

BglII site 

LC17 CAGGGGCCCggatccagatctGAGCGCCCTC

GTCGC 

forward primer for insert amplification 

in Slam 800-1196-cloning, introducing 

BglII site 

LC18 CAGGGGCCCggatccagatctGTGATCCGGG

AGGATCAT 

 

forward primer for insert amplification 

in Slam 811-1196-cloning, introducing BglII 

site 

LC19 CAGGGGCCCggatccagatctGATGAGAGTC

CGACCGGC 

 

forward primer for insert amplification 

in Slam 850-1196-cloning, introducing 

BglII site 

 

2.1.5 Plasmids  

 

Table 2 Plasmids used in this study 

Plasmid Details  Source  

pGEX-6-OH GST-His6 fusion protein Prof. Dr. Jörg Großhans 

pGEX-6P-1 GST-fusion protein Amersham 

attB-slam8,5-2intron Slam genomic region  Prof. Dr. Jörg Großhans 

OT-Slam Full length cDNA (LD36405) Prof. Dr. Jörg Großhans 

pGEX-slam23-527 GST-Slam23-527 fusion protein   

pGEX-slam1069-1196 GST-Slam1069-1196 fusion protein   

LD 36405 slam Slam cDNA  
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2.1.6 Antibodies  

 

Table 3 Primary antibodies used in this study 

Antibody  Raised in  Source 

Slam (aa 1-681)  guinea pig  (Brandt et al. 2006) 

α-Tubulin mouse Hybridoma bank B512 

SHMT rabbit  

 

IRDye® Secondary antibodies were purchased from LI-COR Biotechnology and used at a dilution 

of 1:20000 (0.05 µg/ml) as noted in table 4. 

Table 4 Secondary antibodies used in this study 

Antibody  Dilution 

IRDye® 800CW Goat anti-Mouse IgG 

Secondary Antibody 

1:20000 

IRDye® 800CW Donkey anti-Guinea Pig IgG 1:20000 

IRDye® 680RD Donkey anti-Mouse IgG 1:20000 

 

2.1.7 Bacterial Cell Lines  

 

DH5α was used for plasmid amplification and Arctic Express (DE3) for protein purification 

purposes.  

 

Host strain Genotype 

ArcticExpress (DE3) Competent Cells 

(Agilent Technologies) 

E. coli B F– ompT hsdS(rB
– mB

–) dcm+ Tetr galλ(DE3) 

endA Hte [cpn10 cpn60 Gentr] 

DH5α F– φ80lacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 

hsdR17(rK
–, mK

+) phoA supE44 λ–thi-1 gyrA96 relA1 

 

2.1.8 Fly Stocks  

 

Table 5 Fly stocks used in this study 

Name Genotype Source/Lab Serial Nr.  

Oregon-R +/+ A401 

GFP-Slam w ; GFP-Slam[68]{w+} H087  
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2.1.9 Others 

 

Reagents and Materials  

 

Agarose Invitrogen 

BSA/Albumin Fraction V Roth 

DanKlorix 

DNA ladder (1 kb) Thermo Scientific 

dNTPs Thermo Scientific 

Dynabead MyOne Streptavidin T1   Invitrogen 

Falcon tubes (15 ml, 50 ml) BD Falcon 

Filter papers (Ø 110 mm)  Macherey-Nagel 

Fly cages (Ø 50 mm, Ø 94 mm) 

Fly vials  Greiner 

Forceps 

Formaldehyde (37%)  Sigma-Aldrich 

Glass homogenizer  B. Braun Biotech International 

Glass pipettes (5 ml – 25 ml) Silber Brandt 

Glass slides  Thermo Scientific 

Green Taq buffer (10x)  Thermo Scientific 

Milk powder  Sucofin 

Parafilm M Bemis 

Pasteur pipettes Brandt 

Petri dishes  Greiner 

Phenol/Chloroform/Isopropanol Roth 

Pipetman (2 μl, 10 μl, 200 μl, 1000 μl) Gilson 

Pipette tips Sarstedt 

Pre-stained Protein Ladder Thermo Scientific 

Protease Inhibitor Cocktail - Complete Mini (EDTA free) Roche 

Protran Nitrocellulose Membrane Amersham 

Ribolock RNase inhibitor (40U/µL)  Thermo Fisher Scientific  

Sodium Hypochlorite solution (15%) Sigma-Aldrich 

TritonX-100 Roth 

Tween20 Roth 

Viva spin Sartorius 
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Whatman 3 mm blotting paper GE healthcare 

Yeast Dr. Oetker 

 

Equipment  

 

Äkta pure  GE Healthcare Life Sciences  

Centrifuges Eppendorf 

chromatography columns GE Healthcare   

Concentrator Eppendorf 

DynaMag - 5 Magnet Invitrogen 

DynaMag - Spin Magnet Invitrogen 

Electrophoresis Constant Power Supply Pharmacia 

NanoDrop 2000c Thermo Scientific 

Odyssey CLx Infrared imaging system LI-COR Biosciences 

Thermomixer Eppendorf 

Trans-Blot Semidry Biorad 

Ultrasonics Sonifier-450 Branson 

 

2.1.10 Software  

 

Adobe Illustrator CS6 Adobe 

Adobe Photoshop CS6 Adobe 

Image Studio LI-COR Biosciences 

Microsoft Excel 2008 Microsoft 

Microsoft Power Point 2008 Microsoft 

Microsoft Word 2008 Microsoft 

NanoDrop 2000 Thermo Fischer Scientific 

Scaffold Viewer v4.8.4 Proteome Software Inc. 

SeqBuilder DNASTAR 

Zotero Roy Rosenzweig Center for History 

and New Media   
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2.2 Methods  

 

2.2.1 Molecular Biology  

 

2.2.1.1 Molecular Cloning  

 

Unless otherwise stated, molecular cloning techniques were adapted from Sambrook and Russel, 

2001. 

 

Cloning of Slam truncations  

All constructs containing truncated slam were established using the OT-Slam plasmid as 

template. OT-Slam includes the full-length cDNA of Slam clone LD36405 (Rubin 2000). 

 

GST-Slam1069-1196 

To create a GST-tagged C-terminal fusion protein, the slam sequence for aa1069-1196 was 

amplified from the template plasmid (OT-Slam) using the primer pair SG7 and SG8, introducing 

EcoRI restriction sites. pGEX-6P1- was EcoRI digested. The amplicon was introduced to the 

destination plasmid pGEX-6p-1 employing in-fusion cloning technique. The sequence was 

confirmed through Sanger sequencing using the primer JG158. 

 

GST-Slam24-527 

The slam DNA sequence for aa24-527 was amplified from template plasmid OT-Slam using the 

primer pair SG6 and SG7, simultaneously introducing an EcoRI restriction sites. pGEX-6P1- was 

EcoRI digested. The amplicon was introduced to pGEX-6P-1 though the EcoRI restriction site 

employing the in-fusion cloning technique. Sanger sequencing (primer JG158) results confirmed 

the sequence. 

 

GST-Slam1069-1196-His6 

The Slam1069-1196 DNA sequence was amplified from the template plasmid (OT-Slam) using the 

primer pair LC20 and LC16, introducing BglII restriction sites. The destination plasmid (pGEX-

6OH) was BglII digested. The insert was cloned into pGEX-6OH using in-fusion cloning. The 

sequence was confirmed through Sanger sequencing employing the primer JG158. (Lenin 

Chandran) 
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GST-His6 Slam truncations 

To create an expression plasmid carrying a Slam truncation with an N-terminal GST-tag and a 

C-terminal His6-tag the respective sequence was amplified using the primer pair mentioned in 

table 6. The primer pair added a BglII site to the amplicon. The destination plasmid pGEX-6O-

H was BglII digested. The linearized plasmid was fused with the respective amplicon employing 

in-fusion cloning. The correct sequence was verified via Sanger sequencing using the primer 

JG158. 

 

Table 6 Overview of Slam truncations cloned into pGEX-6O-H. Molecular weight and primers, that have been used, are noted. 

Slam truncation Size [kDa] Primers used  
Slam1-300 62 LC5, LC6 
Slam 24-300 58 LC6, LC7 
Slam 24-250 54 LC7, LC8 
Slam 24-200 48 LC7, LC9 
Slam 24-350 65 LC7.2, LC10 
Slam 24-400 70 LC7.2, LC11 
Slam 24-450 76 LC7, LC12 
Slam 24-500 82 LC7, LC13 
Slam 24-527 84 LC7, LC14 
Slam 750-1196 78 LC15, LC16 
Slam 800-1196 73 LC17, LC16 
Slam 811-1196 72 LC18, LC16 
Slam 850-1196 67 LC19, LC16 

 

2.2.1.2 Polymerase Chain Rection  

 

Polymerase chain reactions (PCR) were performed using Taq or Phusion HF DNA polymerase. 

A standard PCR setup contained the following reagents: 

 

 

 

 

 

 

 

component  final concentration 

DNA template  50-200 ng 

forward primer  0.5 µM 

reverse primer  0.5 µM 

dNTP mix  200 µM 

Green Taq or Phusion HF buffer  1x 

Enzyme (Taq or Phusion HF DNA polymerase)  1-2 U/50 µL reaction volume  
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A routine PCR was carried out under the following thermocycling conditions: 

 

 

2.2.1.4 In-fusion Cloning 

 

In-fusion cloning reactions were performed according to the manufacturer’s instructions. 

 

2.2.1.5 Purification of plasmid DNA 

 

Amplification and purification of plasmid DNA was carried out according to Sambrook and 

Russel, 2001. 

 

2.2.1.6 DNA Sequencing  

 

Sanger sequencing was conducted by Seqlab (Göttingen). Plasmid-primer mixtures were 

prepared according to their instructions.  

 

 Taq DNA polymerase Phusion HF DNA polymerase  

step temperature  time  temperature  time   

 

1 Initial     

Denaturation 

 

95°C 

 

2 min  

 

98°C 

 

30 s 

 

 

2 Denaturation 

 

95°C 

 

30 s 

 

98°C 

 

5-10 s 

 

 

 

30 cycles  

(steps 2-4) 

 

3 Annealing 

 

50-60°C 

depending on 

Tm of primers 

 

1 min  

 

50-60°C 

depending on 

Tm of primers 

 

1 min 

 

4 Extension 

 

72°C 

 

1 min/kb 

 

72°C 

 

1kb/15-30s 

 

5 Final Extension 

 

72°C 

 

10 min 

 

72°C 

 

10 min 

 

 

6 Hold  

 

4°C 

 

∞ 

 

4°C 

 

∞ 
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2.2.2 Biochemistry  

 

2.2.2.1 Recombinant Protein Purification  

 

Unless otherwise stated, for recombinant protein expression E. coli ArcticExpress (DE3) cells 

were transformed by heat pulse with the respective protein expression plasmid. The cells were 

incubated overnight at 37°C on agar plates (containing gentamycin and ampicillin). 

Transformants were picked and grown overnight at 37°C in 2YT medium supplemented with 

gentamycin and ampicillin for selection of the expression plasmid. The optical density (OD600) 

was adjusted to 0.1 using the overnight cultures. The cells were grown without antibiotic 

selection at 30°C to an OD600 of 0.3. They were then further incubated at 12°C until they reached 

an OD600 of 0.6. The expression of the plasmid was induced using 0.1 mM Isopropyl β-D1-

thiogalactopyranoside (IPTG). Cells were further incubated at 12°C for 24h. 

The cells were harvested by centrifugation at 5000rpm for 30 min. The cell pellets were frozen 

in liquid nitrogen and stored at -20°C until further use.  

For lysis the pellet was resuspended in lysis buffer (50mM Tris, 150mM NaCl, 5% glycerol, pH 7.5; 

supplemented with cOmplete Mini protease inhibitor cocktail, Roche) and incubated 30 min on 

ice with 1 mg/mL lysozyme and a spatula tip of DNase (Roche). The cells were sonicated 

(Branson sonifier, standard disruptor horn) 4X10s at an output level of 6 and 50% duty cycle. 

Between each cycle the lysate was cooled down on ice for 1 min. The cells were centrifuged at 

15000rpm and 4°C for 20 min. The soluble fraction (supernatant) underwent further treatment 

and the insoluble parts (pellet) were discarded after taking a sample for analytical purposes 

(SDS-PAGE). 

The supernatant was filtered through a 0.45 µm syringe filter and applied to the respective pre-

equilibrated chromatography column (GE Healthcare) via an Äkta pure (GE Healthcare) pump 

system. 

 

2.2.2.2 Gel Filtration  

 

For size-exclusion chromatography (SEC) staged, cellularizing Drosophila embryos (1.5–2.5 h) 

were lysed in 1 mL RIPA buffer (10 mM Tris/HCl pH 7.5, 150 mM NaCl, 0.1% SDS, 1% Triton X-

100, 1% deoxycholate, 5 mM EDTA, 1 mM AEBSF, 1 × protease inhibitor cocktail (Roche)). After 

clarification of the crude lysate, 250 µL of the sample was applied to a preequilibrated Superdex 

200 (HR 10/30) column (GE Healthcare) using an Äkta (pure) pump system (GE Healthcare). 

The flow rate was adjusted to 500 µL/min and 1 mL fractions were collected. The protein of 
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400 µL of each fraction was acetone precipitated and redissolved in 30 µL 1x Laemmli buffer. The 

samples were analysed by SDS-PAGE and Western blot.  

 

2.2.2.3 Western Blot 

 

Unless otherwise stated the marker used for SDS-PAGES, that were planned to undergo western 

blot procedure, was PageRuler™ Plus Prestained Protein Ladder (10 to 250 kDa, see figure 6). 

After separation by SDS-PAGE, proteins were blotted onto a nitrocellulose membrane by semi-

dry transfer. Filter papers and membrane were soaked in transfer buffer and assembled 

according to  . Air bubbles were removed. The proteins were transferred 90 min at 60 V/gel.  

After transfer the membrane was blocked in 5% milk powder (0.5g milk powder in 10mL freshly 

made PBS buffer) for at least 35 min at RT (room temperature). Then, the primary antibody was 

added (gp-slam 1:5000). This was incubated at RT for 2h or o/n at 4°C shaking. The membrane 

was rinsed 3x with PBST buffer and washed 4x 10 min each shaking. The membrane was 

incubated with the secondary antibody (IRDye® 800CW Donkey anti-Guinea Pig IgG at a 

dilution of 1:20000) light protected for 1.5h at RT. The rinsing and washing steps were repeated. 

The bands were detected using the Odyssey CLx Infrared imaging system.  

  

 

 

 

 

2.2.2.4 Immunoprecipitation (IP) 

 

For IP-experiments 300-600 mg (for each experiment the amount GFP-Slam and WT embryos 

were similar) of staged fly embryos (GFP-Slam and WT) were lysed in 4 mL IP, RIPA(-) or RIPA 

buffer. Both samples, GFP-Slam and WT, were treated the same. An input sample was taken 

from the clarified embryonic lysate. 1.5 µL 100 µM biotinylated GFPbinder (anti-GFP nanobody, 

kindly gifted by Prof. Görlich) were added to the (20 µL lysate plus 20 µL 2x Laemmli) lysate. 

Figure 6 PageRuler™ Plus Prestained 

Protein Ladder (fishersci.de) 

Figure 5 Assembly of Western Blot 



39 
 

The GFPbinder was allowed to bind to GFP-Slam on ice for 1 h. Meanwhile 240 µL Streptavidin 

magnetic beads (Invitrogen) were 2x PBS and 1xIP/RIPA(-) washed. The lysate was added to 

120 µL of the washed beads, respectively. The samples were incubated for 1 h on a rotary mixer 

at 4°C. The beads were placed to the magnet (DynaMag, Invitrogen) for 1 min and the unbound 

sample was taken (20 µL lysate plus 20 µL 2x Laemmli). The residual supernatant was discarded. 

The tube was removed from the magnet and the beads were resuspended in 1 mL IP buffer. The 

tube was again placed to the magnet and after 1 min the supernatant was removed and discarded. 

The washing step was repeated twice to a total of 3 washes. After the third was the beads were 

again resuspended in 1 mL IP buffer and 1 µL of SUMOstar (kindly gifted by Prof. Görlich) was 

added to each of the 2 tubes (GFP-Slam sample and WT sample). The tube was placed to a rotary 

mixer at 4°C and incubated to 1 h to allow SUMOstar to elute GFP-Slam from the beads. The 

tubes were placed to the magnet and after 1 min the supernatant (cleaved sample) was placed to 

a new tube. The protein of the cleaved sample was acetone precipitated and resuspended in 

30 µL of the respective buffer and 30 µL Laemmli buffer. Unless otherwise mentioned the beads 

(bound sample) were taken up in 30 µL of buffer and 30 µL Laemmli. The samples were stored 

at -20°C until further use.   

 

2.2.2.5 Protein Precipitation  

 

Unless otherwise mentioned, protein was precipitated using the acetone precipitation protocol. 

For this, the required volume of acetone was precooled to -20°C. Four times the sample volume 

of col acetone was added to the sample. The mixture was vortexed and incubated at -20°C for 

1 h. Subsequently the sample was centrifuged at 14000 rpm and 4°C for 10 min. The supernatant 

was discarded. The protein pellet was allowed to air dry for 30 min and resuspended in the 

respective buffer.   

 

2.2.2.6 Mass Spectrometry 

 

Three biological replicates of IP and RIPA(-) buffer immunoprecipitation samples (3 mutant and 

3 WT samples, respectively) were submitted to mass spectrometric analysis to the Scientific Core 

Facility Proteomics of the University Medical Center Göttingen (CF Pro). Sample proteins were 

separated via SDS-PAGE into 11-12 equidistant bands, which were diced, digested in-gel with 

trypsin, and the resulting peptides extracted. The extracts were then analysed by LC/MS/MS. 

Two technical replicates of each sample were measured. Proteins were identified and validated 
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as described previously (Batschkus et al. 2018). Database searches were conducted against 

Drosophila melanogaster in TrEMBL. Scaffold Viewer v4.8.4 was employed for data evaluation 

(Proteome Software Inc., Portland, OR, USA). Proteins were identified using a False-Discovery 

Rate of < 1%. The following settings were applied for identifications: protein probability 

threshold 99% (prophet algorithm); peptide probability threshold 95% (naive Bayes classifier). 

Proteins with less than 2 identified unique peptides were neglected. Significance in enrichment 

was defined as follows: enrichment in at least 2 replicates and a Benjamini-Hochberg (BH) 

corrected p-value of < 0.00964 (t-Test, A), <0.0003 (t-Test, B), <0.00181 (t-Test, C) and 0.03674 

(ANOVA, RIPA(-) samples). Fold enrichment (FE) was calculated as the ratio of the normalized 

total spectral count of the identified protein in the GFPSlam and WT sample. Technical 

replicates were averaged.  

 

2.2.2.7 Phosphorylation Assay 

 

66 mg staged (1.5-2.5h), dechorionated wild type Drosophila embryos were lysed as using IP-

Buffer (including cOmplete™ Protease Inhibitor and 1 mM AEBSF).  10µL input sample were 

taken after lysis and 10µL 2x loading dye added. The mixture was incubated 5 min at 99°C, spun 

down and stored on ice. The remaining extract was used for the assay. The Lambda Protein 

Phosphatase (Lambda PP) was purchased from New England Biolabs (NEB). The kit included 

the buffer for Protein MetalloPhosphatases (PMP) and the MnCl2 supplement.   

The set up was as follows (corresponding to the manual): 

 

 
+ Lambda PP – Lambda PP 

sample size  100 µL 100 µL 

Lambda PP 800 U – 

Buffer  1x PMP buffer  

1 mM MnCl2 

1x PMP buffer  

1 mM MnCl2 

 

The mixtures were incubated for 30 min at 30°C. Afterwards 18 µL 6x loading dye were added to 

the sample (+LambdaPP) and the negative control (-LambdaPP). The solutions were incubated 

at 99°C for 5 min and spun down. The samples were loaded on an 8% SDS-PAGE gel and run at 

16mA for approx. 1h. 
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The proteins were blotted to a nitrocellulose membrane. The membrane was cut at 70kDa and 

stained against slam (upper part, IRDye donkey anti-guinea pig 800CW) and α-tubulin (lower 

part, IRDye 800CW goat anti-mouse). 

 

2.2.2.8 Stability and RNA Assay  

 

Staged wt fly embryos (1.5-2.5 h) were lysed using RIPA(-) buffer. An input sample was taken, 

and Laemmli sample buffer added. The input sample was immediately heated to 99°C for 5 min. 

The lysate was either treated with RNase A, RNase A (Thermo Fisher Scientific) and RNase 

inhibitor (Thermo Fisher Scientific) or ddH2O (control). The mixtures were incubated at RT for 

10 min. The reaction was stopped by the addition of Laemmli sample buffer. Sample proteins 

were separated by SDS-PAGE, blotted onto a nitrocellulose membrane and immunostained for 

Slam and either SHMT or tubulin as a control. 

 

2.2.3 Developmental Biology  

 

2.2.3.1 Collection of Staged Fly Embryos 

 

Fly embryos were collected at 25°C for one hour on apple-juice agar plates partially coated with 

live yeast. The eggs were incubated at 25°C for another hour. This sums up to an embryo age of 

1.5-2.5 h. The bulk of the yeast was removed. The embryos were dechorionated using 50% 

DanKlorix solution for 90 s (2,8 g sodium hypochlorite per 100g solution). The dechorionated 

embryos were water-washed and dried on disposable KimTech® wipes and collected into an pre 

weighed Eppendorf tube. The embryos were spun down at low rotations. Subsequently the tubes 

were weighed, the weight of the tube was subtracted, and the weight of the embryo mass noted. 

The prepared embryos were frozen in liquid nitrogen and stored at -80°C. 1 g embryo mass are 

approximately 100 embryos. 

 

2.2.3.2 Lysis of Fly Embryos 

 

The respective amount of buffer was added to a precooled Dounce homogenizer. Frozen fly 

embryos were added to the homogenizer and gently lysed on ice. The crude extract was 

transferred to an Eppendorf tube using a cooled glass pipette and centrifuged 15 min at 15000 

rpm and 4°C. The emerging lipid layer was removed, and the lysate was separated from the 
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debris by transferring it to a new Eppendorf tube.  The lysate was then submitted to 

corresponding further treatment. 
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3. Results 
 

3.1 Expression and purification of recombinant protein fragments of Slam 

 

3.1.1 Bioinformatic analysis of Slam 

 
Introductory remarks 

Two proteins are assigned to the gene region CG9506 (TrEMBL): Slam and LD36405p. A cDNA 

clone provided evidence for the mRNA of 1196 amino acid Slam or LD36405p (Rubin 2000). Both 

proteins have the same amino acid sequence except for a difference in the first 23. LD36405p 

uses the first start codon and Slam the second. Slam is predicted to have 1173 amino acids and 

LD36405p 1196 amino acids. Unless otherwise stated Slam is assumed to consist of 1196 amino 

acids and the sequence information of LD36405p is used, since no evidence points towards the 

use of the second start codon. 

 

Secondary Structure Prediction  

Secondary structure was predicted using PSIPRED (D. T. Jones 1999; Buchan and Jones 2019). To 

get a depiction of the results over the span of the whole protein, Slam needed to be split into 

two parts for structure prediction. Slam contains no known motifs or domains, which can be 

detected by sequence alignments. Considering the insolubility of the full-length recombinant 

protein, the first third of Slam shows moderate stability under purifying conditions. Hence, Slam 

was divided into the first N-terminal third and the rest of the protein.  

 

Figure 7 and 8 visualize the PSIPRED structure prediction. PSIPRED predicts mainly helices. For 

a few amino acids it computes beta sheets. A major part of the protein may not fold 

independently. The N-terminally 500 and the C-terminally 200 amino acids predict to be the 

most structured regions among Slam protein. The middle part may be vastly unstructured.  
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Figure 7 Sequence Plot of Slam (LD36405p) displaying amino acid 1 to 480. The plot was generated using PSIPRED. Strand, 

helix, and coils are depicted. The N-terminal third of Slam is predicted to be rich in structure compared to the middle part (see 

fig. Figure 8).  

 

Figure 8 Sequence Plot of Slam (LD36405p) displaying amino acid 481 to 1196. The plot was generated using PSIPRED. Strand, 

helix, and coils are depicted. There is little structure predicted for the middle part of Slam. The C-terminus however predicts to 

predominantly be folding into a helical structure.  

 

As indicated above, Slam is predicted to have a high degree of disorder. The plot in figure 9 

shows the result of the DISOPRED3 (D. T. Jones and Cozzetto 2015) disorder prediction. 

Especially the middle part of the protein, between amino acid 478 and 687, and 750 and 795, 

predicts to be entirely without structure.  
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Figure 9 Slam disorder prediction using DISOPRED3. For the calculation of disorder propensity DISOPRED3 uses multiple 

sequence alignment employing UniRef90 database for finding homologs during a PSI-BLAST search.  The plot shows the 

disorder confidence score against the amino acid sequence position of Slam. The grey horizontal line marks the threshold 

above which the respective amino acid is regarded as disordered. Slam is predicted to have a high degree of intrinsic disorder.  

 

 

Truncated Slam protein 

In figure 10 the consecutive numbering of Slam is depicted. The numbering starts with the first 

ATG of the Slam coding sequence. This means the first 23 amino acids are included and it is 

assumed for this thesis, that Slam consists of 1196 amino acids. Accordingly, recombinant 

produced protein fragments are named. Consecutive numbering of amino acids starts with the 

first start codon of the Slam coding sequence.  
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Figure 10 Amino acid sequence of Slam starting with the first ATG (LD36405p) of the coding sequence (NCBI Reference 

Sequence: NT_033779.5). The first 23 amino acids resulting from the sequence upstream of the second ATG (Slam) are 

highlighted in yellow.  

       10         20         30         40         50         60  

MPESHSYKLK RLTSTTRQQT NTKMVLSNST PNNQSKHNQM VVDTAAMNSD DLSELLQLNA  

 

        70         80         90        100        110        120  

EIEERRRSSR HGDASTACGL LRATMTREEL FEISSLDDDR FLTALEYQNS FASPRRVQVT  

 

       130        140        150        160        170        180  

DLDLSSIENL MKYFDEEVPV TPTKTLGTTK AAGNTGKVAS TIAKLALQSD PVTPPKPKVG  

 

       190        200        210        220        230        240  

SGHLKISELK QKYEQLPEME TPRSAYQASR KVSASLPMKV KEMAQLFNSK ISQVMRRTEE  

 

       250        260        270        280        290        300  

PQYVQLQNEM SPEVKAQNRL VSPLESPVQG PCLVAEEVFR ELSVKDKALL FNKFIGDMAA  

 

       310        320        330        340        350        360  

KHPKFTAHAA DLKEKVNKQV ARGEVVAERQ ASVKHLAQEL EAKCILEPGS PPRPGGVSPP  

 

       370        380        390        400        410        420  

KTTESKTETC TSQLHVSTLT VILKPSPERR APQPRPRRCL DRQSDEHARE PSQKRNLAAI  

 

       430        440        450        460        470        480  

RTMMPTEAYA PPKKIRRTRQ ERTGADSQMF FQNEHLETLF YSWLSSENGV QFDITSVSDG  

 

       490        500        510        520        530        540  

QQTIEIATEE GNLLEQPLLE PSTATLEDVS QKSAVERLLE EAIAKLELDN ESKKETQVEE  

 

       550        560        570        580        590        600  

KKEMDTAQDP IVQVTPRRIK RQAPPVPAPR PSLSQVTSSA SSCKQSEAEE SESGLSTLPK  

 

       610        620        630        640        650        660  

ITSDESQPET PKDDLQTGEF DFAKPQRPPR KKKMRRTLTW KKENSIVEAT AITSTDSDSD  

 

       670        680        690        700        710        720  

YKPPLSGAAK KKSGAICNPL PMPEPSFIEL DKSLMRHLNS PRKIKSAYTL TVMSSPSPNA  

 

       730        740        750        760        770        780  

DSDQSPSQTP RQSLVQAMRD SFVDQGFETC SNDPMDNSPI RRSSLGATES KPSGFSTPVK  

 

       790        800        810        820        830        840  

GRHASSPAQQ QLFSPILIQE RPRRSSLAMQ VIREDHPLDL DATSSSPSTP CSEREFFANA  

 

       850        860        870        880        890        900  

PTVEIDNSQD ESPTGKAHSM FWITSGDFTV SLEIFKNSPE RLRLLYEIFT QKSWETRDLA  

 

       910        920        930        940        950        960  

FGIDGHKFIR GAPSSDSVRQ SLPERPPSVK GCSHYWFASG DLAVPFSGKL MSSEKIERLF  

 

       970        980        990       1000       1010       1020  

AFLSGEQSEL RFGVDHIEFS SVPEFWPTTQ KYSIESSYSI LVGLQTGASN GLEGRSKYSW  

 

      1030       1040       1050       1060       1070       1080  

PNSSISANQA IKTSDLDQTE FESDSFGNNS GRLSFSPDLF SLDYEAVPLD ELFAKAPPSA  

 

      1090       1100       1110       1120       1130       1140  

ATPAMSVPQM MQTLKQQQSK LRSVEQRIRG YAKPANLADS SLEHCRNTPQ YVHKLRSIIR  

 

      1150       1160       1170       1180       1190  

AIDNIGRDDG FRGCSMEQLE SFMYFLSEYA DVCLANCSEH MDKILDTLMD RRAVEV  
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3.1.2 Purification  of recombinant Slam fragments  

 

The full-length Slam shows little solubility (figure 11). Slam predicts to have a high degree of 

intrinsic disorder (figure 9), which can lead to insolubility of proteins (De Simone et al. 2012). 

Over the span of the protein it is the N- and C-terminus, that compute to exhibit most structure. 

It is therefore the N- and C-terminus that have been chosen for first purification and 

crystallization attempts.  

 

 

Under 3.1.2.1 and 3.1.2.2 optimized example purifications are described to outline the progress 

in recombinant Slam purification, with the objective to facilitate future purification efforts.  

 

 

3.1.2.1 Slam 24-527 (N-Terminal)  

 

GST-tagged Slam24-527 is lacking the first 23 amino acids of the Slam sequence. Amino acid 164 to 

532 have recently been found to be necessary and sufficient for cortical localization of Slam 

protein in S2 cells (Yan and Großhans 2018). Thus, the N-terminal third might carry a 

localization function for Slam. GST-Slam24-527 exhibits moderate solubility (figure 12), which was 

increased by choosing a richer growth medium for the expression host (figure 13).  

 

 

Figure 11 Expression and solubility of recombinantly produced Slam 

protein. The full-length protein (His6-Slam-ZZ) runs higher than its 

calculated weight (145 kDa) at approximately 160 kDa. The induced 

sample was IPTG-treated. The control sample was not induced with 

IPTG. A comparison of soluble (lysate) and insoluble (pellet) protein 

reveals a low solubility of full-length Slam. 
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A one step affinity purification procedure (GSTrap 4B, GE healthcare) of GST-Slam24-527 from a 

3 L culture results in approximately 0,3 mg comparably clean protein (figure 14 ). Other visible 

protein bands are likely to be degradation products of GST-Slam24-527 since they appear only after 

the purification procedure and increase with time. 

 

 

 

 

 

 

 

 

 

Figure 12 Expression and solubility of 

recombinantly produced truncated Slam.

GST-Slam24-527 shows a moderate 

solubility. The induced sample was IPTG-

treated. The control sample was not 

induced with IPTG. A comparison of soluble 

(lysate) and insoluble (pellet) protein 

reveals a low solubility of Slams N-terminal 

third. 

Figure 13 GST-Slam24-527solubility is increased with 

changing growth medium for the expression host.

When using TB-medium the quantity of protein in 

solution increases compared to LB-medium.   

 

Figure 14 Purification of GST-Slam24-527. One chromatographic step (GSTrap 4B) removes most 

of the protein impurities from the lysate. Additional visible bands are likely to be degradation 

products of GST-Slam24-527.  



49 
 

3.1.2.2 Slam 1169-1196
 (C-Terminal) 

 

GST- Slam1069-1196 

 

The C-terminal part of Slam was chosen for purification attempts for several reasons. The 

secondary structure prediction of the C-terminal end of Slam indicates a comparibly abundant 

structure (helices) and a low disorder profile (figure 8 and 9). The C-terminus of Slam has been 

found to be involved in its downstream signalling (Wenzl et al. 2010). Furthermore the C-

terminal third of Slam protein seems to be essential for the  regulation of the downstream 

effectors (Yan et al. 2017). 

 

In figure 15 the purification plan for the GST (glutathione-S-transferase)-tagged C-terminal part 

of Slam is depicted. The strong affinity between GST and immobilized glutathione serves as 

capturing step. Subsequently the GST-tag is removed by PreScission protease (gifted from Prof. 

Jan Faix). The GST-tag and Slam1069-1196 are separated by another step of affinity chromatography. 

Since it was observed that those three steps do not yield a sufficient purity of Slam1069-1196, an 

anion exchange chromatography functions as an intermediate purification and the size 

exclusion chromatography as polishing step. 

 

Figure 15 Overview of the multistep purification procedure of GST- Slam1069-1196, which includes affinity, anion-exchange, and 

size-exclusion chromatographic steps. 

 

In figure 16 the first step of the multistep purification procedure of Slam1069-1196 is shown. The 

cleared lysate was applied to a pre-equilibrated GSTrap 4B column (GE Healthcare). A major 

part of the protein bound to the column (B) and was eluted in 3 fractions (A,B) with reduced 

glutathione (50 mM Tris-HCl, 10 mM reduced glutathione, pH 8.0). The purity of GST- Slam1069-

1196 was greatly increased by the first purification step. The 3 elution fractions, that contained 

GST- Slam1069-1196
, were pooled and PreScission treated (C). PreScission protease removes the 

GST-tag from Slam1069-1196 and cuts 8 amino acids before the start of Slam1069-1196. It will therefore 

leave Slam1069-1196 with 8 additional amino acids. After protease treatment the buffer was changed 

to PBS and the protein mixture was reloaded to the GSTrap to separate tag and  
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Slam1069-1196.  Even though still detectable, large parts of the GST-tag in flow-through and wash 

were removed. Therefore, flow-through and wash fraction were pooled and underwent the next 

purification step (figure 17). The theoretical pH(I) of Slam1069-1196 computes to 4.82. Hence, an 

anion-exchange chromatography was chosen as next purification step. The buffer was changed 

to anion-exchange loading buffer (50 mM Tris, 50mM sodium chloride pH7.5) and the sample 

was applied to a pre-equilibrated strong anion exchanger (HiTrap Q HP, GE Healthcare) 

column. Bound protein was eluted (elution buffer 50 mM Tris , 1 M sodium chloride pH 7.5) by 

a linear gradient (see figure 18, A). In figure 18 the chromatogram and analytics of the anion-

exchange chromatography step are depicted. In the chromatogram (A) the, mainly masked, peak 

of Slam1069-1196 was marked 1. Fraction 7 showed the strongest Slam1069-1196-band (B) and higher 

fractions contain decreasing amounts. This indicates that the peak marked 2 belongs to a 

different protein, though it still includes of Slam1069-1196. A doublet cannot be completely ruled 

out. Concerning the polishing success of C-terminal Slam during the IEX, especially in fraction 

6 and 7 higher molecular weight proteins were separated from Slam1069-1196. Albeit the 

Figure 16 Capturing step of GST- Slam1069-1196 purification: GST- Slam1069-1196 was purified using a GSTrap. (A,B) The tag was 

removed using PreScission protease (C) and reloaded to the column to separate GST and Slam1069-1196 . (A) Chromatogram of 

the first purification step 
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achievement of a small increase in purity for Slam1069-1196, there are still several impurities 

detectable (B). During the subsequent gel filtration (HiLoad 16/600 Superdex 200 pg, GE 

Healthcare) of the pooled fractions 6 and 7, Slam1069-1196 and GST were still not completely 

separated (figure 19). Also, the amount of C-terminal Slam decreased significantly, even though 

still detectable by a Coomassie-stain after SDS-PAGE separation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17 Reapplication of protease-treated protein mixture to the 

GSTrap 4B to separate tag and Slam1069-1196. The fractions labelled 

with ‘LOAD AEX’ are the samples, that were pooled (flow-

through&wash) and underwent the next purification step (ion-

exchange chromatography) 
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Figure 18 Anion-exchange chromatography of Slam1069-1196. The chromatogram (A) and stained SDS-gel (B) are depicted. The 

elution peak 1 can be ascribed to Slam1069-1196 (A) Analytics revealed several impurities left in the sample. (B) 
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Figure 19 Last step of the multi-step purification of Slam1069-1196: Size-exclusion chromatography. (A) The chromatogram 

indicates a strong decrease in protein concentration. (B) Slam1069-1196 is detectable by Coomassie-stain after SDS-PAGE, but 

still not pure enough for crystallization attempts.   

 

Slam1069-1196 was recombinantly expressed and has been purified employing affinity, ion-exchange 

and size-exclusion chromatography. As, after strong optimization efforts, the C-terminus of 

Slam was still contaminated with impurities and did not meet the purity requirements to 

undergo crystallization attempts an additional His-tag was introduced and yet the possibility of 

another purification step. 

 

 

GST- Slam1069-1196-His6 

 

To increase the purity of Slam1069-1196, a C-terminal hexahistidine tag was introduced by in-fusion 

cloning of slam(aa1069-1196) to pGEX6OH (conducted by Lenin Chandran).  

pGEX6OH codes for a N-terminal GST and C-terminal poly-histidine tag. This allowed another 

step of affinity purification and thus a new design of the Slam1069-1196 multistep purification 

procedure. The tag is small and there usually is no need to remove the tag. It binds strong and 

specific to immobilized metal ions during affinity chromatography (IMAC) at a neutral pH. 
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The solubility of GST-Slam1069-1196-His6 appeared to be notably worse than the solubility of GST- 

Slam1069-1196 (figure 20). Concerning GST- Slam1069-1196, approximately half of the produced protein 

was found to be in the soluble fraction (supernatant, figure 20 A). GST-Slam1069-1196-His6 seemed 

to be not soluble at all (figure 20 B). Different E. coli host trains were tried, and expression media 

were altered (figure 20 B). There was no gain in solubility of the His-tagged C-terminal Slam 

fragment. The theoretical pI of GST-Slam1069-1196 is lower, than the pI of GST-Slam1069-1196-His6, 

that is, 5.79 for GST-Slam1069-1196 and 6.57 for GST- Slam1069-1196-His6. In spite of the higher pI of 

GST-Slam1069-1196-His6 the pH difference of the standard lysis buffer and the pI should be big 

enough with 0,93. Regardless, a lysis buffer with a higher pH (9) and a slightly different lysis 

method (three instead of one freeze/thaw cycles before sonication) was tested (figure 21). The 

solubility increased but was still low. 

 

 

 

 

 

Figure 20 Analysis of GST- Slam1069-1196 and GST- Slam1069-1196-His6 solubility by examining protein content in supernatant and 

pellet after lysis via SDS-PAGE and Coomassie stain. The solubility of GST-Slam1069-1196-His6 is remarkably lower, than the 

solubility of GST- Slam1069-1196. Solubility of GST- Slam1069-1196 after one freeze/thaw cycle and sonication (A) Solubility screen 

of GST-Slam1069-1196-His6 altering expression host and media (B) 
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Figure 21 Solubility of GST-Slam1069-1196-His6 after three freeze/thaw cycles 

and a pH increase of lysis buffer  

 

The hexahistinde tag was introduced to gain purity of Slam1069-1196 during a purification 

procedure. In figure 22 the two-step purification procedure for GST-Slam1069-1196-His6
 is depicted. 

Affinity chromatography serves as capturing (GSTrap) and as polishing (HisTrap, GE 

Healthcare) step. After the first purification step the GST-tag is proteolytically removed. 

 

 

Figure 22 GST-Slam1069-1196-His6 two-step purification plan.  

 

For purification, 6 g frozen E. coli cells, that had produced GST-Slam1069-1196-His6, were thawed 

and lysed (standard lysis buffer pH 9; 3 freeze/thaw cycles). The cleared lysate was applied to a 

pre-equilibrated GSTrap 4B (5 mL, see figure 22 A and B). Bound protein was eluted with 

reduced glutathione (50 mM Tris-HCl, 10 mM reduced glutathione, pH 8.0). Fraction 4,5 and 7 

were pooled and underwent an o/n PreScission protease treatment (see figure 23). The protein 

mixture was applied to a pre-equilibrated (20 mM sodium phosphate, 500 mM sodium chloride, 

30 mM imidazole pH 7.5) HisTrap HP (1 mL) and bound protein gradient eluted (20 mM sodium 

phosphate, 500 mM sodium chloride, 500 mM imidazole pH 7.5). The analysis of the samples is 

shown in figure 24. The eluted protein got separated from most impurities. Albeit its bad 

solubility and the disadvantages that come with a low protein yield, the His-tag eased the 

purification procedure and increased the protein purity within a two-step purification 

procedure.   



56 

 

 

Figure 23 Purification of GST- Slam1069-1196-His6: Capturing step. Chromatogram of the GST-affinity purification step with a 

zoomed depiction of the elution. (A) Biochemical analysis via SDS-PAGE and Coomassie stain of samples. (B) Analysis of the 

proteolytic cleavage of the GST-tag from the rest of the protein. (C) 
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3.1.3 GST-His6 Slam truncations    

 

Slams structure is unknown and there are no bioinformatically recognizable domains over the 

span of its sequence. The full-length protein is vastly insoluble. Solubility is a prerequisite to 

most biochemical and structural approaches. The low solubility of Slam and the two 

beforementioned Slam truncations made it impossible to obtain sufficient amounts of protein 

for crystallization attempts. For a solubility screen, Slam N- and C-terminal truncations were 

constructed. The design was based on the secondary structure prediction (PSIPRED and 

DISOPRED3) and the boundaries that potentially derive from it. For visualization RePROF (Rost 

and Sander 1993) and Meta-Disorder (A. Schlessinger, Yachdav, and Rost 2006; Avner 

Schlessinger et al. 2009) was employed. In figure 25 the created Slam truncations are depicted. 

Since intrinsic disorder may decrease the solubility of a heterologous produced protein, the 

truncations were designed around the middle part of Slam, that predicts to be completely 

unstructured. The plasmids are available for a solubility screen.  

 

Figure 24 Purification of GST- Slam1069-1196-

His6: Polishing step. Biochemical analysis of 

affinity (HisTrap) chromatographic samples to 

separate GST and left GST- Slam1069-1196-His6 

from Slam1069-1196-His6. Most of the protein 

could be separated from Slam1069-1196-His6. 
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Figure 25 Slam truncations for a solubility screen. Depicted are the DISOPRED3 disorder prediction (upmost), the RePROF and 

Meta-Disorder prediction and the respective truncations, which have been cloned into pGEX-6O-H to be N-terminally GST- and 

C-terminally His6-tagged 

 

3.1.4 Final conclusions  

 

Slam truncations were recombinantly produced and purification procedures suggested. The full-

length protein and the N-terminal third are rather unsuitable for production and purification of 

protein aiming mg amounts. This is due to their low solubility and stability.  

GST-tagged C-terminal 129aa of Slam displayed higher stability and good solubility. The 

disadvantage of a GST-tagged  truncation was the purification procedure itself. It was not 

possible to separate all impurities from the protein of interest. Including impurities, it was 

possible to gain several mg amounts of protein from a 2 L culture in a two-step purification 

procedure.  

A C-terminal His-tag decreased the solubility but made it possible to gain sufficiently clean 

protein after a two-step purification. The low solubility would make a very high culture volume 

necessary to obtain several mg amounts of protein for crystallization attempts. It is not clear, 

however, if the obtained protein has the qualities for good crystallization.  

Several N-terminal and C-terminal GST-His6 Slam truncations were constructed but first 

solubility screens seemed unpropitious. 
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My conclusive suggestion is to focus on functional  assays in the future since Slam purification 

is intricate and the chances to gain usable crystals and diffraction data is in my opinion too low.  

 

 

3.2. Interactome of Slam 

 

3.2.1 Putative interactors in data bases and previous reports 

 

Some interactors of Slam have previously been described. During cellularization Slam is 

necessary to recruit the Rho-activating guanyl-nucleotide exchange factor RhoGEF2 to the 

furrow by its PDZ domain (Grosshans et al. 2005; Wenzl et al. 2010). RhoGEF2 in turn is needed 

to localize the formin Diaphanous (Dia) to the furrow. RhoGEF2 and the Dia are both necessary 

for furrow formation (Grosshans et al. 2005). Both share the same initial localization with Slam 

at the tip of the emerging furrow. RhoGEF2 positively regulates Rho1 during cellularisation, 

which also localizes to the FC and regulates Dia and Myosin II (zipper) (Barrett, Leptin, and 

Settleman 1997; Grosshans et al. 2005, 0; Acharya 2014). Dia nucleates actin filaments. Myosin II 

is a non-muscle myosin that drives actomyosin contraction. Myosin II localization is also 

dependent on and is even ectopically recruited by Slam (Thomas Lecuit, Samanta, and 

Wieschaus 2002).  

A direct interaction has not only been shown for RhoGEF2 but also Patj, which again perfectly 

colocalizes with Slam at the furrow and basal particles (Wenzl et al. 2010). Patj was reported to 

play supporting roles in the stabilisation of adherens junctions by interacting with the Myosin-

binding subunit of Myosin phosphatase, subsequently decreasing Myosin dephosphorylation, 

which again results in more activated Myosin (Sen, Nagy-Zsvér-Vadas, and Krahn 2012). Patj has 

4 PDZ domains and the interaction to Slam seems to be mediated by the C-terminus of Slam, 

since a C-terminal truncation (slamwaldo1) does clearly reduce Patj levels at the FC (Wenzl et al. 

2010).  

A direct interaction has also been described for Slam and Oskar (Hurd et al. 2016). Apart from 

the similarity that oskar mRNA is also spatiotemporally controlled, Slam and Oskar have no 

known intersections and complete different localizations (Krauss et al. 2009).  
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3.2.2 Immunoprecipitation-mass spectrometry (IP-MS) based identification of Slam 

interactors 

 

3.2.2.1 Development of the GFP-Slam Immunoprecipitation Assay  

 

During cellularization there is cytosolic- and membrane-attached Slam. Slam is associated to 

the plasma membrane without being a transmembrane protein. It can be detached from the 

membrane by using high salt (fig. 26)(Acharya 2014). For initial immunoprecipitations (IP) the 

buffer of choice was RIPA buffer, which contains ionic detergents (SDS and sodium 

deoxycholate) and disrupts membranes.  Lysis with RIPA buffer will yield a higher amount of 

membrane attached Slam, but also tends to disrupt protein complexes, and was therefore 

replaced with a milder IP buffer that solubilizes some of the membrane-attached, but mainly 

cytosolic Slam (fractionation assays, not shown). During co-IP experiments with Slam and its 

mRNA Dr. Shuling Yan found that reduced salt and detergent concentrations in RIPA buffer will 

preserve the membrane attached complex, that contains Slam and its RNA. The use of RIPA(-) 

(75 mM salt and no SDS) however, will still have a comparatively high yield of Slam. The fact, 

that the IP buffer solubilizes less of the membrane attached Slam gives the opportunity of 

comparison. Will varying buffer conditions give different results during mass spectrometric 

analysis and therefore indicate distinct cytosolic and membrane attached interaction partners? 

 

For this study flies were used that carry N-terminally GFP-tagged Slam. Flies that carry only 

GFPSlam and no endogenous Slam are not viable. They are able to cellularize but will not 

complete development. Additionally GFPSlam localizes less to the membrane than wild type 

Slam (fig.26) (Acharya 2014).  For the following study it must be kept in mind that GFP seems to 

interfere with the function of Slam to some degree.  
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Figure 26 Slam is associated to membranes. (modified from (Acharya 2014)) Slam is no transmembrane protein as seen by 

the solubilization of Slam with high salt (1M NaCl). Cellularizing embryos have been lysed in fractionation buffer (50 mM 

Tris pH 7.5, 75 mM NaCl, 1 mM MgCl2, 0.05% NP-40, 1 mM DTT, 2 mM PMSF, 1X Roche Protease inhibitor cocktail, 0.01 U/µL 

RNase inhibitor). A sample was taken. After centrifugation a sample from the supernatant (cytoplasm) and the pellet 

(membrane) was taken. The residual pellet was redissolved in fractionation buffer and 1 M NaCl was added. After 

centrifugation a sample from the supernatant was taken (high salt membrane).(A) During a fractionation experiment of 

staged (1.5-2.5h) GFPSlam mutant embryos it can be noted that GFPSlam has a lower affinity to the plasma membrane than 

wild-type Slam.(B) Both experiments were accomplished by Dr. Sreemukta Acharya. For detailed information please refer to 

her PhD thesis (Acharya 2014). 

 

The conducted assay is a combination of an immunoprecipitation (use of antibody) and a pull-

down assay (use of other affinity system but antibody). The underlying principle is the affinity 

of a) Streptavidin towards Biotin (pull-down) and b) of the biotinylated GFPbinder (anti-GFP 

nanobody) towards GFP (IP, figure 27). A biotinylated anti-GFP nanobinder (GFPbinder) was 

added to lysates of cellularizing embryos expressing transgenic GFPSlam. As a negative control 

a wild type lysate was treated equally. After the incubation time magnetic, Streptavidin-coupled 

beads (Invitrogen) were added to the solution. After binding time on a rotator, the beads were 

washed and subsequently treated with SUMOstar protease. SUMOstar cuts right at the end of 

the GFPbinder and selectively elutes bound protein and therefore putative binding partners of 

Slam into the solution. Ideally no wild-type protein binds to the beads. In figure 27 the basis (A) 

and an exemplified pull-down (B) of the conducted IP is depicted. The shown example IP 

underwent mass spectrometric analysis and evaluation (IP sample C). GFPSlam was bound (27B 
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left) and elution functional, which strongly increases sample purity. WT Slam did not bind to 

the biotinylated GFPbinder nor the beads (27B right), hence represents a good negative control. 

Not every negative control, however, was completely devoid of Slam, which is visible in the mass 

spectrometric results. The eluted protein was acetone precipitated (GFPSlam as well as WT 

sample) and resuspended in the respective buffer and 2xLaemmli. It was submitted to mass 

spectrometric analysis to the Scientific Core Facility Proteomics (CF Pro) of the University 

Medical Center Göttingen (Dr. Christof Lenz).  

 

 

Figure 27 GFPSlam pull-down assay for mass spectrometric analysis of putative Slam binding partners. (A) Simplified 

schematic of the GFPSlam pull-down assay. A biotinylated anti-GFP nanobody (GFPbinder) binds to GFPSlam and putative 

binding partners. Paramagnetic beads, that have Streptavidin covalently coupled to their surface, pull down the prebound 

complex of GFPbinder and Slam and its potential binding partners. SUMOstar protease cleaves between the nanotrap and 

Slam and leaves the Slam complex in solution and the nanotrap bound to the beads. The eluted proteins were acetone 

precipitated and submitted to mass spectrometric analysis. Samples of lysates from embryos expressing GFPSlam (genomic 

transgene) were compared to wild-type extracts. (B) Western blot analysis of samples that were submitted to mass 

spectrometry. The amount of embryo equivalents (ee) that were applied to the SDS-gel are indicated in the table below.  

GFPSlam was bound (right) and bound protein eluted by SUMOstar protease. The wild-type protein was not detectable by 

western blot in the eluted and bound samples (left).   
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3.2.2.2 IP-MS using immunoprecipitation (IP) buffer and detergent-containing (RIPA(-)) buffer  

 

Table 7 summarizes the mass spectrometric results. For detailed information and p-values 

please refer to the appendix.  

 

IP buffer samples 

 

The bait, Slam, was highly enriched in all 3 IP samples, albeit the spectral counts in sample A 

(1008) were ~5 times higher, than in sample B (209) and C (243). In sample A and C Slam was 

not detectable in the wild-type control samples. Sample B measured very little Slam in the wild-

type control (one spectral count in one technical replicate). This indicates specificity of the 

immunoprecipitation/pulldown assay and plausibility of the detected binding partners.  

Several proteins were found enriched in all 3 samples including the cell polarity protein Patj, the 

cytoplasmatic linker Restin homolog, the probable ubiquitin-protein ligase Herc 2 and its 

neuralized homologue and substrate Neurl4 (Al-Hakim et al. 2012).  

The Drosophila CIN85/CD2AP orthologue Cindr interacts with Anillin (scraps) to control 

cytokinesis (Anillin has been measured with an averaged 4 SC in the mutant A sample but not 

in the WT or other samples). They colocalize at cleavage furrows, intercellular bridges and 

midbodies in dividing Drosophila S2 cells (Haglund et al. 2010). It was found enriched in 2 of the 

3 samples isolated under IP buffer conditions (A and B). Low spectral counting shows high 

variability (Lundgren et al. 2010). Cindr may have fallen below the detection limit in sample C, 

since it was hardly measurable in sample B (averaged spectral counts (SC) of Slam 209 and Cindr 

2) Sample C had only little more Slam measured ( Slam SC 243), therefore the overall protein 

quantity may have been similar. Taking the high variability in low spectral counting into account 

Cindr may very well have been masked during analysis of sample C. 

Bottleneck, a key regulator of microfilament network during Drosophila cellularization, is worth 

mentioning for similar reasons. 33-fold increased total spectrum counts for Bottleneck were 

detected in IP sample A. However, no spectrum could be matched to Bottleneck in sample B and 

C. Bottleneck may have fallen below the detection limit in sample B and C, so it cannot be ruled 

out as an interactor of Slam of either direct or indirect kind.  

Several actin-related proteins were enriched in one or more of the IP samples. Actin 5C was 

detected 4-fold (ratio GFPSlam and wild type) in sample A.  In sample B and C, however, Actin 

57B was detected. In sample B it was slightly higher in GFPSlam embryos than wild type (FE 1.3). 

In sample C actin was not detectable under the used settings (protein threshold 99%, min. 

peptides 2, peptide threshold 95%). Under changed settings (protein threshold 1% FDR, min. 

peptides 2, peptide threshold 1% FDR) though it was detectable but higher in the wild type 
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control. Other actin related proteins behaved similar. The following proteins were only detected 

in sample A: Spectrin alpha chain (FE 24), the barbed end binding  F-actin-capping protein 

subunit alpha and beta (FE 9) and parts of the actin polymerization regulating Arp 2/3 complex 

Arpc4 and Arpc5 (FE 9 and 13 respectively). In sample A and B alpha-actinin (FE 11 and only 

detected in GFPSlam sample with SC 9), Arpc1 (FE 5 and 3) and Arp3 (FE 13 and 3) were enriched 

compared to the wild type control. Arpc2 and Arp2 were enriched in sample A (FE 8 and only 

detected in GFPSlam sample with SC 7) but were also detectable in sample B (GFPSlam only) 

under the beforementioned changed setting (see also table 10 to 15, appendix). Sample C had 

less actin measured in the GFPSlam sample than the wild-type control. Correspondingly other 

actin related proteins were measured: Arpc2 and Arp2 were higher in the wild type sample. Arp3 

was detected in very similar amounts in both samples: bait and control (averaged SC 12 and 11, 

respectively). To summarize (please consult table 7), several actin-binding and regulating 

proteins have clearly been detected and enriched in sample 1 (all of the above mentioned). In 

sample B proteins were either enriched in the GFPSlam sample, were below the detection limit 

or were not traceable. Sample C, however, had only little of the proteins detected (Act57B, 

Aprpc2/Arp2/Arp3) and except for Arp3, which has similar SC for both GFPSlam and wild-type 

control, they all were higher in the control. Since all the abovementioned actin-binding proteins 

are associated, it is no surprise, that their quantities correlate in one sample.  

Another detected protein category are Myosins. In sample A the heavy chain of the 

unconventional myosin 95F (Jaguar) was 50-fold higher in the GFPSlam sample than the wild-

type control.  In sample B it has a 29-fold enrichment and in sample C it was slightly higher in 

the control. This result somehow matches the upper observation. The class VI unconventional 

myosin Jaguar transports particles along actin filaments during Drosophila syncytial blastoderm 

stage (Valerie Mermall, McNally, and Miller 1994). The blastoderm stage precedes 

cellularization. But also during cellularization Jaguar binds F-actin as shown by co-IP 

experiments (Sisson et al. 2000). Thus, Jaguar is interconnected to Actin. Since in sample C actin 

was higher in the control, it may interrelate with the slight enrichment of Jaguar in the latter.   

Myosin V (Dilute class unconventional myosin, didum) was detected in the A and B mutant 

sample but not in the control. It was not measurable in sample C. MyoV  interestingly promotes 

posterior localization of Oskar mRNA in Drosophila oocytes by associating with Oskar mRNA 

transport complex and counterbalancing the microtubule-based motor Kinesin (Krauss et al. 

2009). We do not know how Slam mRNA is transported from the nucleus to the tip of the 

invaginating furrow and maintained at the site of action. MyoV may play a role here. Further it 

should be noted that Kinesin light chain was detected in sample A (FE 2,5) but not in sample B 
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or C. Kinesin heavy chain was identified in sample B (FE 4,6) and in sample C (slight enrichment 

in mutant sample FE 1,1). 

Myosin VIIa, which is involved in cellular protrusion formation and cargo intracellular transport, 

was found in sample A and C (FE 18 and only detected in mutant sample with SC 6, 

respectively)(Yang et al. 2006; Daniel P Kiehart et al. 2004).  

Non-muscle Myosin II (zipper) can bind and cross-link actin. It plays a crucial role during 

cellularization forming the actomyosin contractile apparatus together with F-actin (Miller and 

Kiehart 1995). In vivo Slam and MyoII colocalize at the intercap region and, later, at the most 

basal part of the furrow canal. Slam even appears to recruit MyoII to the furrow canal. (Thomas 

Lecuit, Samanta, and Wieschaus 2002) Accordingly, Myosin II heavy chain has been identified 

in sample A and C (FE 10 and 2, respectively). It was not detectable in sample B. 

 

RIPA(-) buffer samples 

 

In contrast to IP buffer, RIPA(-) buffer contains the biological and mild detergent deoxycholate 

and the non-ionic surfactant (detergent) Triton-X-100. To preserve the Slam RNP SDS has been 

removed from the original RIPA recipe and salt has been reduced to 75 mM NaCl. Despite the 

changes, RIPA(-) buffer  seems to have dissolved some of the protein-protein interactions. The 

results are summarized in table 7. For detailed information on the technical replicates and p-

values please refer to table 10 to 15 in the appendix. 

Slam was found enriched in all 3 biological replicates (FE 6, 4 and 418 for samples A, B and C, 

respectively). Sample C contained considerably more Slam than sample A and B. Patj, too, was 

found enriched in all 3 sampled (FE 7 and 5 for sample A and B, 314 SC for C but not detected in 

WT). Restin homolog, however, was only measured negligibly higher in the mutant sample of 

biol. replicate A and B (FE 1.08 and 1.05) and in sample C even higher in WT (not detected in 

GFPSlam). The ubiquitin-protein ligase Herc2 was higher in WT for sample A and B (FE 0.8 and 

0.6) and not detected in sample C. Neurl4 was detected in 2 samples at very low spectral counts 

(data not shown). Cindr again was detected in sample A and C in the mutant but not in the wild-

type sample (SC 1 and 23). It was not identified in sample B. 

Bottleneck was detected with a few SC in sample B but higher in WT (averaged SC 1 for mutant 

and 2 for WT).  

In biological replicate A, Actin (FE 1.1), alpha Spectrin (FE 1.02), alpha Actinin (FE 1.1) , F-actin-

capping protein subunit alpha and beta (FE 1.2 and 1.3, respectively), Arpc1, 2 and 5 (all 3 FE 1.1) 

and Arp2 (FE 1.5) were all slightly higher in the bait-containing mutant sample, which again 



66 

 

emphasizes their connection. Arpc4 was detected with the same SC in mutant and WT sample 

(FE 1). Arp3 was faintly higher in the WT sample (FE 0.97). 

In RIPA(-) buffer replicate B the majority of the identified actin-related proteins measured 

slightly higher in the wild type sample. Actin (FE 0.8), alpha Spectrin (FE 1.1), alpha Actinin (FE 

0.96) , F-actin-capping protein subunit alpha and beta (FE 1.2 and 0.6, respectively), Arpc1 (FE 

0.7), Arpc2 and 4 (FE 0.8 ) and Arpc5 (FE 0.7), Arp2 (FE 0.8) and Arp3 (FE 1.06). 

In replicate C all actinin-related proteins were found higher in the wild type control. Except 

Arpc4 and 5, which were not detected at all. For fold enrichment values please refer to table 7. 

Again, the variability of low spectral counting must be stressed here. It cannot be concluded that 

a protein is more abundant in a sample when the enrichment is based on low spectral counting. 

The results for this thesis were evaluated carefully and low spectral counts were only considered 

when they support distinct results from other replicates or for comparison. For itemized spectral 

counting please refer to the appendix. Also, the term fold enrichment might be misleading when 

the ratio of GFPSlam and WT falls under 1. For simplicity the term was maintained.   

Jaguar was higher in WT for sample A and C (FE 0.8 and 0.1). In sample B it was minimally higher 

in the bait-containing sample (FE 1.04). MyoV was found enriched in the WT sample (A and B) 

and not detected in sample C. MyoVIIa was 2-fold enriched in sample A, more abundant in the 

WT in sample B (FE 0.9) and not detected in sample C. MyoII was higher in WT for sample A 

and C (FE 0.7 and 0.4) and slightly more abundant in the mutant sample in biol. replicate B (FE 

1.2). 

Taken together, the RIPA(-) buffer samples gave very different results upon mass spectrometric 

analysis than the IP buffer treated embryos.  Proteins that were distinctly enriched under milder 

lysis conditions gave random results under harsher conditions. One example is Restin homolog 

that was clearly more abundant in the bait-containing samples, when lysed with IP buffer, but 

was only insignificantly higher in embryos carrying GFPSlam under RIPA(-) lysis conditions. In 

case of RIPA(-) buffer replicate C it even gave the opposite result. Restin homolog was not 

detected in the GFPSlam sample but in WT. The same applies to Herc2. Bottleneck too resulted 

in the opposite: higher in WT in one case, and undetectable in the other two. Under IP buffer 

conditions it was clearly enriched in one GFPSlam sample and undetectable in the other 2 

replicates. Also, most of the Myosins yielded opposite results.  

To summarize, there are only 2 proteins, that have been enriched in correlation with the bait 

under milder and harsher conditions: Patj and Cindr. The rest gave distinct results, when 

cellularizing embryos were lysed with IP buffer but more random results when lysed with 

detergents. This may hint towards a stronger (direct) association of Patj and Cindr with Slam. It 
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seems likely, that under RIPA(-) buffer conditions the complex of Slam and its mRNA stays intact 

(Dr. Shuling Yan).  
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Table 7 Selection of proteins identified in IP and Ripa(-) buffer samples by mass spectrometric analysis (bait: GFPSlam). 

Indicated are protein names, UniProt reference numbers, normalized total spectrum counts of GFPSlam (2 technical replicates 

have been averaged), fold enrichment (FE) towards wild-type sample and statistical significance (SS).  The upper table presents 

the results of IP buffer-based samples and the lower table the samples, when RIPA(-) buffer was employed. For p-values and 

detailed information may be referred to the appendix. ndiWT not detected in wild type, nd not detected 

 

 

 

  

IP buffer samples

biol. replicat

protein UniProt ID counts FE SS counts FE SS counts FE SS

Slow as molasses (Slam) Q9VME5 1008 ndiWT yes 209 417 yes 243 ndiWT yes

PatJ A4V1B2 223 ndiWT yes 30 ndiWT no 36 ndiWT yes

Restin homolog Q9VJE5 28 ndiWT no 2 ndiWT no 67 5 no

Herc2 Q9VR91 251 46 no 24 16 no 135 5 no

Neuralized E3 ubiquitin protein ligase 4 A0A1L4AAD6 58 11 no 6 ndiWT no 2 ndiWT no

Cindr Q9VA36 38 ndiWT yes 2 ndiWT no nd

Bottleneck P40794 17 33 yes nd nd

Actin (5C/57B/57B) X2JCP8/ P53501 440 4 yes 122 1.3 no nd no

Alpha Spectrin M9PGV6 37 24 yes nd nd

Alpha actinin F0JAG6 48 11 yes 9 ndiWT no nd

F-actin-capping protein subunit alpha Q9W2N0 26 9 yes nd nd

F-actin-capping protein subunit beta P48603 37 9 yes nd nd

Arpc1 O97182 11 5 yes 2 3 no nd

Arpc2 Q9VIM5 25 8 no nd 13 0.6 no

Arpc4 Q9VMH2 9 ndiWT yes nd nd

Arpc5 Q9VQD8 13 13 yes nd nd

Arp2 P45888 7 ndiWT yes nd 9 0.8 no

Arp3 P32392 20 13 yes 2 3 no 6 1.1 no

Kinesin light chain P46824 15 3 no nd nd

Jaguar A0A0B4KGX1 273 50 yes 15 29 no 28 0.7 no

Dilute class unconventional myosin A1Z6Z9 142 ndiWT yes 12 ndiWT no nd

Myosin-VIIa Q9V3Z6 27 18 no nd 6 ndiWT no

Myosin II1
Q99323 (B4J9L6) 187 10 yes nd 596 2 yes

RIPA(-) buffer samples

biol. replicat

protein UniProt ID counts FE SS counts FE SS counts FE SS

Slow as molasses (Slam) Q9VME5 75 6 yes 96 4 yes 2297 418 no

PatJ A4V1B2 7 7 yes 5 1.8 yes 314 ndiWT no

Restin homolog2
Q9VJE5 57 1.08 yes 70 1.05 yes 3 0.2 no

Herc2 Q9VR91 3 0.8 yes 8 0.6 yes nd no

Cindr Q9VA36 1 ndiWT no nd no 23 ndiWT no

Bottleneck3
P40794 nd no 1 0.5 no nd no

Actin (5C) X2JCP8 301 1.1 no 181 0.8 no 247 0.7 no

Alpha Spectrin2
M9PGV6 181 1.02 yes 142 1.1 yes 3 0.05 yes

Alpha actinin F0JAG6 70 1.1 yes 47 0.96 yes 12 0.3 yes

F-actin-capping protein subunit alpha Q9W2N0 19 1.2 no 24 1.2 no 12 0.4 no

F-actin-capping protein subunit beta P48603 14 1.3 no 10 0.6 no 5 0.5 no

Arpc12
O97182 9 1.1 no 9 0.7 no 3 0.5 no

Arpc22
Q9VIM5 20 1.1 yes 19 0.8 yes 3 0.1 yes

Arpc4 Q9VMH2 4 1 yes 3 0.8 yes nd yes

Arpc5 Q9VQD8 5 1.1 yes 4 0.7 yes nd yes

Arp2 P45888 8 1.5 no 7 0.8 no 5 0.6 no

Arp3 P32392 18 0.97 no 17 1.06 no 9 0.5 no

Jaguar A0A0B4KGX1 28 0.8 yes 44 1.04 yes 3 0.1 yes

Dilute class unconventional myosin A1Z6Z9 5 0.7 yes 7 0.5 yes nd yes

Myosin-VIIa Q9V3Z6 11 2 yes 13 0.9 yes nd yes

Myosin II Q99323 237 0.7 yes 266 1.2 yes 80 0.4 yes

B CA

A B C

3 non-detectable in GFPSlam sample but measurable in WT sample below 3 spectral counts in sample A+C

1 not assigned to DROME but other Drosophila subspecies in sample A
2 spectral counts for sample C (GFPSlam) have been set from 0 to 3 to avoid division by zero
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3.2.3 Validity analysis of putative interactors 

 

3.2.3.1 Arp2/3 complex 

 

The last 4 division of the nuclei before Drosophila cellularization during interphase of cycle 14 

are occurring synchronously just beneath the plasma membrane at the cortex of the embryo. 

These last divisions (cycle 10-13) are characterized by a cyclic cytoskeletal rearrangement. During 

each interphase actin accumulates in caps above the nuclei. As the mitotic cycle proceeds these 

caps expand and fuse with neighbouring caps to form pseudocleavage or, indicating the 

timepoint, metaphase furrows. Thereby these transient furrows are separating centrosomes 

during mitosis. As cytokinesis is skipped, the furrows regress with mitotic exit and actin 

rearranges in the actin caps. The actin-nucleating factor Arp2/3 is a complex that is essential for 

the expansion of actin caps and thus the formation of metaphase furrows (Stevenson et al. 2002). 

As suggested by the crystal structure of bovine Arp2/3 complex, its functional assembly consists 

of Arp2, Arp3, Arpc1, Arpc2, Arpc3 (A and B, respectively in Drosophila), Arpc4 and Arpc5 

(Robinson 2001). Arp2/3 nucleates branches at actin filaments at an angle of 70°. It is inactive 

until assembly through nucleation-promoting factors (NPFs like WASp and SCAR). During early 

interphase Arp3 localizes around the emerging actin caps in small perforated bands. As soon as 

the actin caps gather and begin to expand Arp3 localizes to the leading edge of the cap margins 

and, like actin, the emerging metaphase furrows. During cellularization Arp3 is localized apically 

and not at the FC. Since Arp3 is part of a functional complex the rest of the assembly likely 

colocalizes. For Arpc2 this is shown (Stevenson et al. 2002).  

Like Arp3, Slam and its mRNA colocalize at metaphase furrows while mitosis and after mitotic 

exit, during interphase, in the intercap region (Schmidt, Lv, and Großhans 2018). In contrast to 

an unfunctional Arp2/3 complex (arpc1 mutant) however, there are no known abnormalities in 

slam mutants before cycle 14 (Stevenson et al. 2002; Thomas Lecuit, Samanta, and Wieschaus 

2002; Acharya 2014). Localizing to the same sites one or more of the proteins of the Arp2/3 

complex may have direct or indirect contact to Slam. Except Arpc3, all the proteins participating 

in the Arp2/3 complex have been enriched in the GFPSlam IP buffer sample 1.  Arp3 has been 

enriched in all 3 GFPSlam IP samples, Arpc1 in 2. Since the others have not been detected in 

most of the cases, they may have fallen under the detection limit. All this hints towards an 

attraction of the Arp2/3 complex and Slam may it be of direct or indirect kind. Also, the 

detergent containing RIPA(-) buffer GFPSlam sample A yielded slightly enriched Arpc1, 2, 5 and 

Arp2.  Arpc2 appears to have direct contact to Anillin, MyoV (didum) and Actin (D’Avino et al. 

2008; Guruharsha et al. 2011). Arpc1 was also shown to contact the mother actin filament 

(Guruharsha et al. 2011). Additionally F-actin capping protein subunit alpha and beta, both 
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contact all the Arp2/3 complex proteins (Guruharsha et al. 2011). Apart from those interactions 

there are of course several contacts between the Arp2/3 complex subunits. It is possible that one 

of the abovementioned proteins has co-precipitated the Arp2/3 complex and that the interaction 

to Slam is of secondary, tertiary, or higher kind.  

Unlike Slam, Arp3 does not localise to the furrow canal during cellularization. It stays apically, 

at the surface of the embryo (Stevenson et al. 2002). This makes a physical interaction unlikely 

during the cellularization process.  

Regarding their functional involvements during mitotic cycle 10-14 of Drosophila early 

development it seems Arp2/3 complex passes the baton on to Slam: Arp2/3 acting in the 

establishment of a metaphase furrow and thus definition of the invagination site, and Slam, 

which is needed for furrow invagination during actual cellularization. Looking closer at possible 

interdependences would be interesting. 

 

3.2.3.2 MyoV (didum) 

 

Myosin V is an unconventional myosin. Conventional myosins (MyoII) are engaged in filament 

formation and force generation, whereas unconventional myosins are involved in cell motility, 

cytokinesis and trafficking (Yamashita 2000; Woolner and Bement 2009; Pocha, Shevchenko, 

and Knust 2011). Woolner et al. reported that unconventional myosins, particularly (mice 

MyoVa) MyoV, are acting as tethers for endosomes and membrane-associated proteins (like 

Slam) (Desnos et al. 2007; Provance et al. 1996; Wu et al. 1998; Woolner and Bement 2009).  

Vertebrate and fly MyoV-motors exhibit well-preserved functions in cytoplasmatic transport but 

basic mechanisms appear to be different (Tóth et al. 2005).  

Drosophila MyoV has been shown to facilitate the posterior localization of oskar mRNA in 

oocytes.  MyoV is part of a transport competent RNP that, together with Kinesin, ensures right 

localization of oskar mRNA (Krauss et al. 2009). MyoV has been shown to interact with Kinesin 

heavy chain counterbalancing Kinesin function. This insures the beforementioned posterior 

localization of oskar mRNA and functional embryonic development of Drosophila (Krauss et al. 

2009).   

MyoV as well as Kinesin heavy and light chain have been detected in IP samples (MyoV: A (SC 

142) and B (SC 12) only measured in GFPSlam sample, not detected in sample C; Kinesin light 

chain: detected in A (FE 2,5) but not in sample B or C, Kinesin heavy chain detected in sample B 

(FE 4,6) and in sample C (FE 1,1)). We know, that Slams localization to the FC depends on the 

centrosome controlled recycling endosome even though it does not directly localize with 

recycling endosome marker Rab11 (Wilson et al. 2005; Acharya 2014). Slam and its mRNA are not 
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only found at intercaps, metaphase and cellularization furrows but also in vesicle like basal 

particles near the FC (Schmidt, Lv, and Großhans 2018; Yan et al. 2017), which show a rather 

random than microtubule-dependent direct movement (Laupsien 2012). In Oskars case the 

RNA-binding protein Staufen promotes assembly and stabilisation of oskar RNP (Ramos et al. 

2000; St Johnston, Beuchle, and Nüsslein-Volhard 1991; Ferrandon et al. 1994). It is not 

completely resolved if Slam itself binds its mRNA or if there is an associated RNA-binding 

protein, that contributes to the assembly of the complex that includes both. No known RNA-

binding protein has been specifically coimmunoprecipitated with Slam in this study (except for 

a slight enrichment of IGF-II in RIPA- buffer sample A-C). Further we do not know how this 

RNP is transported to and entrapped at the furrow. Concerning the transport of oskar mRNA to 

the posterior pole of the embryo during stage 9 of development: Krauss et al. conclude that it is 

“long-range MT-based oskar mRNA transport throughout the cytoplasm, coupled to Kinesin-

independent but MyoV-dependent short-range actin-based translocation to the cortex” (Krauss 

et al. 2009). Both MyoV and Kinesin have been found attached with Slam. It could be checked if 

Slam and slam mRNA localization would be affected by reduced MyoV activity (e.g. by a 

dominant negative MyoV protein like in Krauss et. al). Such an experimental approach could 

enlighten a possible relationship between Slam and its mRNA and MyoV, like it was observed 

for Oskar and its mRNA. 

It has additionally been shown that MyoV specifically coimmunoprecipitates with Patj and the 

Crumbs complex during a study that reported how Crumbs regulated rhodopsin transport in the 

fly retina (Pocha, Shevchenko, and Knust 2011). Therefore, it is possible that MyoV was indirectly 

coimmunoprecipitated via a direct interaction with Patj. Several other interactors have been 

reported for MyoV. Among them Jaguar (Finan, Hartman, and Spudich 2011; Hurd et al. 2016), 

F-actin capping protein subunit alpha and beta (Guruharsha et al. 2011), Rab11 (Ji et al. 2015) and, 

naturally, Actin (Guruharsha et al. 2011). It could be all of the abovementioned that 

coprecipitated MyoV. A possible physical interaction of Slam and MyoV could be investigated 

via an AP-crosslinking experiment to identify primary, secondary or tertiary interactors.  

 

3.2.3.3 Myosin II/Patj 

 

During mitotic cycle 10-13 of Drosophila development metaphase furrows transiently form to 

mature into furrow canals during cellularization. In both cases non-muscle Myosin II (zipper) is 

located at or near the furrow (Daniel P. Kiehart 1990; C. M. Field and Alberts 1995; Foe, Field, 

and Odell 2000). MyoII is an indispensable part of contractile actomyosin structures, which are 

one of the driving forces of cellularization. When the furrow starts to invaginate actin and 
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myosin localize to the invagination front and form a network (Young, Pesacreta, and Kiehart 

1991; Schejter and Wieschaus 1993; C. M. Field and Alberts 1995; Foe, Field, and Odell 2000; 

Royou et al. 2004). With continuing furrow ingression between cortical nuclei, the actomyosin 

network restructures into separate actomyosin rings. These rings then constrict to finish 

cellularization with basal closure (Schejter and Wieschaus 1993). MyoII and Slam localize to the 

leading edge of the invaginating furrow. Slam was reported to be involved and required for direct 

recruitment of MyoII to the furrow canal (Thomas Lecuit, Samanta, and Wieschaus 2002; 

Acharya 2014; B. He, Martin, and Wieschaus 2016). Also, Slam has been shown to ectopically 

localize MyoII when expressed after cellularization (Thomas Lecuit, Samanta, and Wieschaus 

2002). MyoII was co-immunoprecipitated with Slam in 2 IP buffer (FE 10 and 2) samples and not 

detected in one. Taking co-localization and ectopic recruitment into account, this could point 

towards a direct interaction of MyoII and Slam. Patj, however, has been found to directly bind 

to spaghetti squash (Sqh), the regulatory light chain of MyoII, which also localizes to the furrow 

front (Sen, Nagy-Zsvér-Vadas, and Krahn 2012; Karess et al. 1991).  Sqh is directly associated to 

MyoII (Vicente-Manzanares et al. 2009). It was proposed that Patj is affecting adherens junction 

stability by directly binding Sqh and subsequent recruitment of MyoII and further by inhibiting 

Myosin phosphatase and thus enhancing Myosin activity (Sen, Nagy-Zsvér-Vadas, and Krahn 

2012). Patj has been shown to directly bind Slam (Wenzl et al. 2010). This was verified with this 

study. Patj was enriched in all 6 GFPSlam samples (IP and RIPA(-) buffer). This could mean, that 

the interaction of MyoII and Slam is of indirect kind. Either a direct binding assay or crosslinking 

experiments could shed light on the nature of this interaction.   

 

3.2.3.4 Restin homolog/Jaguar 

 

Restin homolog (also cytoplasmatic linker protein, CLIP190) is the Drosophila homologue of 

human CLIP170 (Lantz and Miller 1998). It has been associated with the connection of vesicles 

and organelles to microtubule plus ends (Rickard and Kreis 1996). In pre- and cellularizing 

embryos it colocalizes with Lava Lamp (Lva) and α-Spectrin to large cytoplasmatic puncta. Some 

of these puncta are located close to the furrow front. Restin homolog alone, however, is also 

observed at the furrow tips (Sisson et al. 2000). Lva is suggested (together with spectrin) to build 

a Golgi-based scaffold, which may facilitate an interaction of Golgi bodies with microtubule 

cytoskeleton and thus promote Golgi-derived membrane secretion, needed for the formation of 

new furrow during cellularization (Sisson et al. 2000). 

Myosin VI, also Myosin 95F or Jaguar is unique. Unlike all other known Myosins, it moves 

towards the pointed (minus) end of actin filaments (Cramer 2000). With its singularity, it is no 
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surprise that Jaguar has been shown to be involved in a number of processes during the 

development of several organisms. It is required for stereocilia organization in human and 

mouse hair cells, which are maybe mostly known for their function in the inner ear (Tama 

Hasson et al. 1997; Self et al. 1999), for microvilli organization in Mouse and pig absorptive 

epithelial cells (T Hasson and Mooseker 1994; Heintzelman, Hasson, and Mooseker 1994; Self et 

al. 1999) and in Drosophila spermatogenesis in (Hicks et al. 1999), just to name a few. Earlier 

Jaguar has been found to ATP-dependent transport particles on actin filaments  in the 

Drosophila embryo (Valerie Mermall, McNally, and Miller 1994). These particles are found at 

metaphase furrows. In embryos, where Jaguar function is experimentally impaired, profound 

defects of the syncytial blastoderm are observed. Actin caps and furrows are blurred and show 

abnormal spacing. Interestingly, similar to the Slam phenotype during cellularization, 

metaphase furrows do not invaginate deep enough to separate adjacent mitoses, as microtubule 

structures cross over them and spindles fuse. This leads to nuclear defects (V. Mermall and 

Miller 1995).  The particles, that colocalize with Jaguar are found in cytoplasmic domains around 

the nuclei during interphase. When mitosis begins Jaguar is majorly found where metaphase 

furrows will form. As the transient metaphase furrows emerge, Jaguar gets less concentrated. 

This made Mermall and Miller conclude as early as 1995, that “95F myosin (Jaguar) may be 

indirectly involved in furrow formation through the delivery of required components” (V. 

Mermall and Miller 1995). During Drosophila embryonic neuroblast development Jaguar is 

necessary for the localization of cell fate determinant and adaptor protein Miranda and their 

associated proteins. It has been suggested that Jaguar is involved in the translocation of the 

Miranda protein complex, which most interestingly also includes an mRNA (prospero 

mRNA/Staufen) (Petritsch et al. 2003).   

For Slam and its mRNA it has been shown that the initial accumulation at the emerging furrow 

is vesicle dependent (Acharya et al. 2014). A colocalization with the recycling endosomes maker 

Rab11 could not be observed at any timepoint. It is not known how Slam is transported to the 

membrane. The strong enrichment of Jaguar in two of the IP samples (50- and 29-fold) and the 

involvement in the transport of proteins of similar nature (Miranda, with Slam supposedly being 

an adaptor protein) may indicate a role of Jaguar in Slam translocation.  

Both Restin homolog (CLIP-190) and Jaguar have been co-immunoprecipitated with Slam 

(Restin homolog 3/3 IP samples and Jaguar 2/3 IP samples).  Further, Jaguar and Restin homolog 

have been found to coexpress in several tissues during embryogenesis in Drosophila (Lantz and 

Miller 1998).  In neurons they colocalize in vesicle like particles, actin cytoskeleton-dependent 

at the posterior pole during early Drosophila development and to organelles in several cell types 

(Lantz and Miller 1998; Beaven et al. 2015).  They co-immunoprecipitated and colocalize in the 
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embryonic nervous system, both actin- and microtubule-dependent (Beaven et al. 2015). The 

function of Restin homolog and Jaguar interaction is not known (Lantz and Miller 1998; Finan, 

Hartman, and Spudich 2011; Beaven et al. 2015). It was suggested that this connection of a myosin 

and a microtubule-associated protein may link the actin und microtubule cytoskeleton. Slam, 

Restin homolog and Jaguar are all localized at or near the emerging furrow during cellularization 

and somewhat support the growth of the emerging furrow. Restin homolog is mainly known for 

its role in linking vesicles to microtubules. The function of the interaction of Jaguar and Restin 

homolog is unclear. The connection between all 3 can be either an intermediate binder (e.g. 

MyoV, both MyoV and Jaguar were reported to co-precipitate with Long Oskar (Hurd et al. 

2016)) or the dependence of Slams accumulation at the furrow on vesicle transport is somehow 

associated to Jaguar and Restin homolog. This may be addressed in further studies.  

 

3.2.3.5 CD2AP/CIN85 related (Cindr) 

 

The CD2AP/CIN85 family of adaptor proteins is suggested to mainly function in endocytosis to 

down-regulate receptor tyrosine kinase activity (Dikic 2003); but also, have been described to 

interact with other trafficking proteins like Rab4, PAK2 and Dab2 (Cormont et al. 2003; Kurakin, 

Wu, and Bredesen 2003; Kowanetz, Terzic, and Dikic 2003). Furthermore, a relationship 

between CD2AP/CIN85 proteins and actin has been proposed, as they were detected in actin-

rich regions of podocytes and cultured cells. They have been found to bind actin in vitro and 

support actin bundling (Welsch et al. 2001; Lehtonen, Zhao, and Lehtonen 2002; Gaidos et al. 

2007). CD2AP was shown to bind F-actin capping protein CAPZ in T-cells and inhibit its function 

in vitro (Hutchings et al. 2003; Bruck et al. 2006) . Furthermore it is reported to bind anillin at 

the cleavage furrow (Monzo et al. 2005). Most interestingly the CD2AP/CIN85 family has been 

linked to E-cadherin. It has been shown, that CD2AP interacts with E-Cadherin in vitro via its 

SH3 domain  (Lehtonen et al. 2004; Mustonen et al. 2005). In Drosophila it was reported that 

Cindr is needed for normal localization of E-Cadherin and Roughest in the retina. In the same 

study Cindr has been co-immunoprecipitated with F-actin capping protein alpha and beta. Here, 

a role of Cindr in intermediating between junctions and actin cytoskeleton was proposed.  

(Johnson, Seppa, and Cagan 2008).  

During cellularization, YFP-tagged Cindr has been shown to localize to the front of the 

invaginating membrane (basal junctions and furrow canal could not be distinguished at this 

point) to become cytoplasmatic after the cells have been encapsuled (Lye, Naylor, and Sanson 

2014). In Drosophila S2 cells Cindr localizes to cleavage furrows, intercellular bridges and 

midbodies. It colocalizes with Anillin during the whole cytokinesis and throughout Drosophila 
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development (Haglund et al. 2010). A reduction of Cindr (RNAi) in S2 cells results in 3-fold 

binucleate cells, assigning a certain function during cytokinesis. This was similarly reported for 

human cells (Haglund et al. 2010). The SH3 domains of mammalian CD2AP/CIN85 family 

members interact with Px(P/A)xxR motifs (Kowanetz et al. 2003; Kurakin, Wu, and Bredesen 

2003). Such a motif was found within the Anillin sequence and proposed as binding site. During 

co-IP experiments, when Anillin was divided into 4 GST-tagged parts, Cindr indeed associated 

with Anillin’s Px(P/A)xxR motif (PLARLR, amino acids 145–150) containing part (Haglund et al. 

2010). The interaction was impaired when the consensus arginine was mutated to alanine 

(R150A). Since Cindr was co-precipitated with Slam in IP buffer samples and even under harsher 

conditions with RIPA(-) buffer (5 of 6 and not detected in 1) and Cindr was found to localize to 

the cellularization front, the Slam sequence was checked for a Px(P/A)xxR motif. Indeed 2 of 

these motifs were found within the Slam (LD36405p) sequence. The first one was between amino 

acids 392 and 397 (PQPRPR) and the second between amino acids 565 and 570 (PVPAPR). 

Taken together this strongly indicates a direct interaction of Slam and Cindr via its SH3 domain. 

Testing this hypothesis could be approached as described for Anillin in Haglund et al. 2010. The 

motif containing parts could be cloned and tagged. Subsequently one can check if the respective 

Slam fragments can coimmunoprecipitate Cindr (from embryonic lysate or S2 cells for instance) 

compared to non-motif parts of Slam. Further it could be tested if a mutation within the 

consensus sequence would impair these potential interactions.  

During mitotic cycle 10-13 cytoplasmatic buds rich in villous projections are repeatedly separated 

by flat invaginations of the plasma membrane, the metaphase furrow. The metaphase, or 

pseudocleavage furrow, contains specific junctional proteins among them 

E-cadherin/β-catenin complexes, MyoII, Patj and Slam, as well as Dlg and Scribbles (Hunter and 

Wieschaus 2000; Thomas Lecuit, Samanta, and Wieschaus 2002). As invagination proceeds 

during actual cellularization these proteins separate into proteins marking the cellularization 

front (Slam, Patj, MyoII) and junctional proteins localizing at (E-cadherin/β-catenin) and 

apically to basal adherens junctions (BAJ; Dlg/Scribbles)(Thomas Lecuit 2004). It was shown 

that Cindr, as well as Slam, localizes to the cellularization front and that Cindr co-

immunoprecipitates with E-cadherin. E-cadherin shares the localization to the metaphase 

furrows with Cindr and Slam. To clarify if Cindr moves forward with the invaginating membrane 

during cellularization or stays somehow associated to or near to the BAJ would be advised. Since 

the formation of the BAJ is dependent on Slam, it would also be absorbing to know if Slam might 

be somehow mediating between Cindr and junctional proteins during metaphase furrow 

formation (Lecuit et al., 2002). 
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3.2.3.6 Bottleneck  

 

The gene bottleneck (bnk) has been characterised during zygotic screens. Bottleneck has been 

shown to determine the timepoint of basal closure by regulating the actomyosin network 

(Schejter and Wieschaus 1993). Mutations of bnk lead to premature contraction of the 

microfilament network before the cellularization front has passed the basal end of the nuclei. 

Thus some nuclei are trapped within the constricted actomyosin rings and assume an hourglass-

like shape (Schejter and Wieschaus 1993; Theurkauf 1994). In some cases, the nuclei are pushed 

away from the emerging cell and short cells without nuclei form.  Similar to zygotic slam, first 

bnk transcripts are detected during mitotic cycle 11 (Schejter and Wieschaus 1993). Subsequently 

expression undergoes rapid upregulation and mRNA levels reach a peak just before 

cellularization to quickly decrease in the following (Thomas Lecuit 2004; Reversi et al. 2014). 

Bottleneck colocalizes to the furrow front with F-actin and Myosin II during slow phase of 

cellularization (Schejter and Wieschaus 1993; Thomas and Wieschaus 2004). Bottleneck is a 300 

amino acid protein, which is extremely basic and, just like Slam, with no known protein domains 

(Reversi et al. 2014). There are no interactors reported for Bottleneck (flybase.org).  

Reversi et al. have been exploring a possible mechanism of how Bottleneck determines the 

timing of basal closure (Reversi et al. 2014). They found that Bottleneck together with PI(3,4,5)P3 

appears to counteract PI(4,5)P2  dependent-contractility of  the actomyosin network during 

cellularization. In this regard, Bottleneck proposedly cross-links actin and limits myosin 

recruitment to the plasma membrane until it is time for actomyosin ring contraction and thus, 

basal closure.  

Bottleneck was found enriched 33-fold in one of the IP samples (A) and stayed undetected in the 

other 2 samples (B and C). Since Bottleneck likely fell under the detection limit in sample B and 

C it has to be considered as a Slam interactor of either direct or indirect kind. Apart from their 

similar expression pattern during the onset of and their major role during cellularization, 

Bottleneck and Slam have more things in common. They both localize to the furrow front during 

slow phase of cellularization and most importantly they seem to have an interface in seriously 

influencing myosin levels at the furrow front. In this regard, they are reported to have 

counteracting roles: Bottleneck restricts Myosin II levels at the furrow front and Slam recruits 

Myosin II to the furrow canal. In one point however, they collaborate: to ensure plasma 

membrane invagination beyond the basal end of the nuclei in order guarantee single unit 

epithelial cells.  
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3.2.3.7 Herc2/Neurl4 

 

The probable ubiquitin-protein ligase Herc2 and its homologue and substrate Neuralized E3 

ubiquitin protein ligase 4 were both enriched in all 3 IP samples (Herc2: FE 46, 16 and 5 for 

sample A, B and C respectively; Neurl4: FE 11 in sample A, SC 6 and 2 and not detected in wild-

type for sample B and C). Herc2 and Neurl4 were shown to associate with CP110, a centrosome 

component involved in centrosome biogenesis (Al-Hakim et al. 2012). The complex of ubiquitin 

ligase Herc2, the adaptor protein Neurl4 and CP110 were reported to regulate centrosome 

architecture in human cells. Neurl4 lacks an E3 ligase domain and is characterised by 6 

Neuralized Homology Repeats (NHR domain), which is thought to be mediating protein-protein 

interaction (J. Li et al. 2012; F. He et al. 2009). Neurl4, which therefore likely lacks ligase activity 

was shown, however, to promote CP110 ubiquitylation in human cell lines (J. Li et al. 2012).   

In Drosophila Neurl4 was first identified during blastoderm development where it was shown to 

disrupt the localization of oskar mRNA (J. Li et al. 2012). Neurl4 in Drosophila also localizes to 

centrosomes and downregulates CP110, which suggests a similar role in flies (J. Jones and 

Macdonald 2015). Also a specific role in germ-cell morphology was reported (J. Jones and 

Macdonald 2015). By the beforementioned Neurl4/CP110 biochemical pathway it seems to affect 

PGC morphology and number. In this case it is not clear if Neurl4 is subject to Herc2 

ubiquitination and subsequent downregulation as in mammalian cells. An interaction of Herc2 

and Neurl4 has not been reported for Drosophila. The coimmunoprecipitation of Herc2 and 

Neurl4 with Slam is an indication for a similar relationship of Herc2/Neurl4 and CP110 as 

reported for mammalian cells.  

Although there has no specific function been assigned to both proteins during cellularization, 

an interaction of Herc2/Neurl4 and Slam has to be considered with respect to the outcome of 

the mass spectrometric analysis of GFPSlam co-IP samples. There is, however one connection 

between Herc2/Neurl4 and Slam: Notch signalling, a pathway for intercellular communication 

mainly during cell fate decision (Bray 2006) Herc2 and Neurl4 have both been shown to be 

involved in Notch signalling, through the endosomal pathway (Imai et al. 2015).  

Notch signalling is initiated in the course of cellularization (Falo-Sanjuan et al. 2019). 

Specification and ingression of  the furrow during cellularization requires Slam and Nullo, which 

both localize to the basal  part of the FC (Hunter and Wieschaus 2000; Thomas Lecuit, Samanta, 

and Wieschaus 2002). Notch and Delta were reported to be present on the growing lateral 

membrane (Falo-Sanjuan and Bray 2021). In the same study (preprint) it was shown that the 

notch signalling onset is membrane growth, and thus, Slam-dependent. If there is any rather 

direct correlation between the notch signalling onset through Herc2 and/or Neurl4 and Slam, 
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must be subject of further studies. Another possibility is, that Slam is ubiquitinylated by Herc2 

either for regulatory purposes or degradation. This may be mediated by adaptor protein Neurl4. 

It is also possible that Herc2 or Neurl4 pulled down the other since they are known interactors. 

Both proteins have not been investigated much in Drosophila. There sure is still a lot to explore 

for ubiquitin ligase Herc2 and its substrate Neurl4.  

 

3.3 Post-translational modifications and stability of Slam  

 

3.3.1 Post-translational modification 

 

If Slam is isolated from its original organism, D. melanogaster, it runs higher than its expected 

molecular weight during SDS-PAGE (~180 kDa, calculated MW 133 kDa). Also, it runs in a double 

band (figure 28). One reason could be a post-translational modification. Precisely, the double 

band could be the result of multiple phosphorylation. To test Slam for phosphorylation an assay 

was conducted: staged fly embryos were collected and lysed. One lysate was phosphatase-

treated, the control stayed untreated. The result is shown in figure 29 and 30. 

 

On the western blot in figure 29 3 samples are depicted. The input sample, the phosphatase 

treated (+ LambdaPP) and non-treated (− LambdaPP) control. Slam usually appears in a double 

band, which is slightly visible in the input sample. The lower band is very close to and fainter 

than the upper band. In contrast to this, another band emerges upon phosphatase treatment, 

which corresponds to a smaller molecular weight than the usually appearing lower band of the 

Slam double band (see figure 29). The non-treated sample only shows a shadow at the 

corresponding molecular weight. Even though the western blot has only poor quality this hints 

towards a possible post-translational phosphorylation of Slam. 

 

Figure 28 Slam double band. Western blot and immunostain for Slam of staged fly 

embryos (1.5-2.5h). Flies were harvested during cellularisation stage and lysed. The 

proteins in the lysate were separated via SDS-PAGE and blotted on a nitrocellulose 

membrane. The blotted proteins were then stained for Slam. 
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Figure 29 Putative phosphorylation of Slam. Western blot to detect Slam and α-tubulin (as loading control) in samples of the 

phosphorylation assay. Samples were separated by SDS-PAGE (8%). For lane 1-3 (marked Input, + LambdaPP and − LambdaPP) 

the loaded embryo equivalents (e) are listed. To lane 4 the protein weight reference marker was applied. The phosphatase 

treated sample shows an additional lower weight band, which is not visible in the control or the input sample.  

Owing to the bad quality of the western blot the analytical procedure was repeated. The 

percentage of the SDS-PAGE gel was changed to 6% and a comb with bigger wells was used to 

achieve a better horizontal separation of the bands. A shortage of input sample explains the 

repeatedly low amount of loaded embryo equivalents. The result is shown in figure 30. 

 

Figure 30 Analytics repetition of phosphorylation assay samples. Analytics (SDS-PAGE (6%), western blot, immunostaining) 

were repeated for samples in figure 29 to detect Slam and α-Tubulin in LambdaPP-treated and non-treated  samples. Lane 4 

contains the reference proteins.  

 

The band of the input sample is faint but detectable. The two Slam bands did not separate as 

they did during the SDS-PAGE in figure 29. Even though the bands did not separate it is visible 

that the Slam band in the phosphatase-treated sample is thinner, also compared to the vague 

input band. The band thinned down to the lower part which indicates a loss of mass and/or 

change in migration behaviour during SDS-PAGE.  Since the sample was treated with a 
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phosphatase, Slam may very well be phosphorylated. However, to state that with certainty other 

assays must be conducted. Mass spectrometry or phospho-specific antibodies could be utilized 

for further experiments.  

Protein phosphorylation is one of the most common post-translational modification (PTM)(X. 

Li et al. 2013, 20; Sacco et al. 2012). The reversible process of phosphorylation and 

dephosphorylation is involved in countless regulatory processes (H. S. Lu et al. 2012; Ardito et 

al. 2017). Protein kinases phosphorylate and protein phosphatases dephosphorylate. By this 

means the target protein is activated/deactivated and thus undergoes an upstream regulation 

and may further control downstream effectors. Since the preceding results indicated a 

phosphorylation of Slam and mass spectrometric results also displayed multiple 

phosphorylations (data not shown, mass spectrometry analyses in cooperation with Christof 

Lenz and Bernhardt Schmidt) the double band of Slam was investigated during the first hours 

of Drosophila development.  

Wild-type embryos have been collected in an hourly timeframe till after cellularization. The 

embryos were flash-frozen in liquid nitrogen immediately and stored at -80°C until analysis. 1x 

loading dye (Laemmli) was directly added to the samples. The embryos were lysed in 1.5 mL 

sample tubes using a small homogenizer. Samples were heated to 95°C for 5 min, spun down 

and applied to a 10% SDS-PAGE gel. After SDS-PAGE the proteins were blotted to a 

nitrocellulose membrane and immunostained for Slam and Tubulin (as a control).  

The Slam double band appears to change during the first hours of embryogenesis. slam has its 

peak of expression at the onset of cellularization and the protein is stable throughout the process 

and rapidly degraded afterwards. The quantity of Slam during cellularization reflects the 

expression profile (fig. 31).  Cellularization of the blastoderm starts approximately 130 min after 

fertilization of the egg and lasts about an hour (Campos-Ortega and Hartenstein 2014). This is 

exactly where most of Slam is detected. In the next hour (3-4 h) the majority of protein is 

degraded. The Slam double band appears to have a similar strength at 1-2 h, before 

cellularization. Then, during cellularization, the lower band proposedly dephosphorylated band, 

seems clearly stronger than the upper and putatively phosphorylated band. This could be due to 

degradation, but the two bands again show similar strength after cellularization (3-4 h). At 4-

5 h the bands that are detected by an antibody against the N-terminal third of Slam appear in a 

different pattern. The upper band is undetectable, and the lower band seems to have made a 

slight shift upwards. The increased strength of the lower band could be due to regulative 

dephosphorylation. It is possible that the dephosphorylated or less-modified version of Slam is 

in an active state and can fulfil its task at the furrow front. Together serine and threonine 

represent almost 1/5 of Slams amino acids (serine 12,2% and threonine 6.4%, 
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ProtParam)(Gasteiger et al. 2005). There is room for manifold phosphorylation. The band at 

Slams calculated weight at about 130 kDa doesn’t undergo striking changes apart from the usual 

upregulation of slam at the onset of cellularization. At this point it is not assumed that there is 

a direct interaction between Slam and its RNA, however, it cannot be completely ruled out. It is 

well known that a lot of RNA-binding proteins involved in pre-mRNA splicing and mRNA decay 

undergo a regulation by phosphorylation (Thapar 2015). The phosphorylation effects the 

ribonucleoprotein assembly. During an immunostaining on a Western blot against the N-

terminal third of Slam it mainly appears in the two upper bands which are separated by an 

estimated weight of a few kDa. The upper band seems quite stable in strength but is also 

influenced by the slam upregulation during cellularization and the degradation after. In contrast 

the lower band appears much stronger during the course of cellularization, which means this 

state of Slam seems to be needed during the process. May be, that these two states of Slam serve 

different functions. The upper band Slam has a function, that is also needed prior to 

cellularization and the lower band Slam one that is also required during syncytial cycles but 

mainly during cellularization. For the upper band Slam there may be a role in recruitment and 

spacial specification of mRNA and the lower band Slam may rather be involved as adaptor 

protein and in the recruitment of Patj, RhoGEF2, MyoII and other proteins needed at or near the 

furrow front during cellularization. This is purely hypothetical and needs to be untangled during 

further research on Slam and its biochemistry during early Drosophila development. There is 

proof however that Slam is at least partially phosphorylated and the phosphorylation assay and 

the quantitative profile of Slam during cellularization hint towards a stronger phosphorylation 

and even regulation through phosphorylation and dephosphorylation before and during 

cellularization. Furthermore, Slam has high phosphorylation potential due to his richness in 

serine and threonine. 

 

 

Figure 31 Quantitative profile of Slam during the first hours of Drosophila deleopment. 80 e have been applied for each 

sample. The upper and lower band seem to change in ratio during the early fly development. Where the bands show similar 

strength before and after, the lower band seems much stronger during the timecourse of cellularization (~130-180 min after 

fertilization, 2-3 h). After basal closure Slam is rapidly degraded (3-4 h).  
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3.3.2 Stability of Slam 

 

3.3.2.1 Stability in lysate  

 

In a lysate of cellularizing fly embryos Slam degrades gradually but full-length Slam will be 

detectable for a considerable amount of time. In figure 32 a western blot is depicted, which is 

stained for Slam. Staged fly embryos were lysed in RIPA(-) buffer (including AEBSF and complete 

protease inhibitor). An input sample was taken, and enzymatic reactions immediately stopped 

by the addition of Laemmli buffer and an incubation at 99 °C for 5 min. The lysate was incubated 

at 30 °C and samples were taken at 1 min, 2 min, 3 min, 4 min, 5 min and 10 min. Sample proteins 

were separated by SDS-PAGE and a Western blot was conducted to visualize Slam protein.  

 

Figure 32 Slam degrades gradually in an embryonic lysate. Stability of Slam in a lysate of cellularizing Drosophila embryos: 

The lysate was incubated at 30 °C for the respective amount of time. The input sample was taken directly after lysis. 80 embryo 

equivalents were applied to each lane. Proteins were gel electrophoretically separated and blotted to a nitrocellulose 

membrane using semi-dry transfer. The blot was stained with an anti-Slam (N-terminally) antibody (guinea pig) and visualized 

with IRDye secondary antibody (anti-Guinea pig 800CW, Biorad). The quantity of full-length Slam slowly decreases. The lower 

band of the Slam double band degrades first. The upper band seems more stable under beforementioned conditions.  

 

Electrophoretically separated in a polyacrylamide gel, Slam runs at a higher molecular weight 

than expected. The calculated weight of Slam is 133 kDa. The observed molecular weight during 

an SDS-PAGE is approximately 180 kDa. The difference is almost 50 kDa. To investigate if Slam 

would also exhibit a higher molecular weight during a gel filtration, 190 mg cellularizing 

Drosophila embryos were lysed in 1 mL RIPA buffer (including complete protease inhibitor). 

After clarification of the crude lysate, 250 µL sample were applied to a Superdex 200 (HR 10/30) 

column in RIPA buffer. 1 mL fractions were collected. The protein of 400 µL of each fraction were 

acetone precipitated and analysed (SDS-PAGE, Western blot, immunostain for SHMT and 

Slam). The result is shown in figure 33. The separation range of Superdex 200 is 104-6x105 kDa. 

Slam elutes right after the void volume, which indicates a molecular weight (MW) of around 

600 kDa.  
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Figure 33 Chromatogram (A) and analysis (B) of a Superdex 200 gel-filtration of Drosophila (WT) embryonic extract (1.5-

2.5 h). 250 µL sample were injected. 1 mL fractions were collected (fraction numbers are indicated), and 0,4 mL of each 

fraction were acetone precipitated and redissolved in Laemmli buffer. The analytical process included an SDS-PAGE to separate 

sample protein followed by a Western blot and an immunostain for Slam and SHMT. Slam elutes shortly after the void volume 

(V0) under peak 1 (A) and must therefore be part of an assembly that has a size close to 600 kDa (separation range Superdex 

200: 104-6x105 kDa). SHMT elutes with peak 2. The elution volume of SHMT corresponds to a MW (globular protein) of 

approximately 250 kDa (Winkler et al. 2017).  

 

Slam colocalizes with its mRNA, also during ectopic localization. Slam was found to be necessary 

for its mRNA to localize to its site of action: the basal region of the furrow canal. There is a co-

dependency between Slam protein and its mRNA. Slam is necessary for the mRNA to localize to 

the emerging furrow canal. The mRNA, however, is required to obtain a sufficient amount of 

Slam protein to fulfil its, yet unknown, task, which eventually leads to successful cellularization 

of the embryo (Yan et al. 2017). Slam and slam mRNA specifically co-precipitate during 

immunoprecipitation experiments. This indicates that Slam and its mRNA are part of a complex. 

Since Slam does not display any RNA binding motif, it may be an RNA-binding protein involved 

(Yan et al. 2017). To test if the RNA effected the elution volume of Slam during a gel filtration of 
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an embryonic lysate, it was treated with RNase before column application.  For that, 100 mg 

wild-type embryos were lysed. An input sample was taken (10 µL sample plus 10 µL Laemmli 

buffer). 1 µL of RNase (10 mg/mL) was added to the lysate and incubated 10 min at RT. A sample 

was taken. A third sample was taken just before column application. It was proceeded with the 

gel filtration. 250 µL sample were applied to the column. Flow rate was adjusted to 500 µL/min. 

1 mL fractions were collected. The fraction samples were treated and analysed as described in 

the beforementioned gel filtration procedure.  The result (figure 34) was unexpected. RNase 

treatment of the lysate had a strong effect on Slam: it was undetectable by Western blot after a 

10 min treatment at RT. In figure 32 the stability of Slam in lysate is demonstrated. It was clearly 

detectable on a Western blot after a 10 min incubation at 30 °C. The undetectability of Slam can 

also not be explained by the dilutional effect of a gel filtration. The samples were acetone 

precipitated and the protein therefore reconcentrated. Additionally, Slam was visible in the 

preceding gel filtration and SHMT had a similar signal strength. 

 

 

Figure 34 Slam is almost undetectable in samples after RNase treatment. Western blot (stained for Slam and SHMT) of 

samples from gel filtration of Drosophila embryonic lysate after RNase treatment. Fraction numbers are indicated. Before the 

RNase treatment Slam was visible and seems completely vanished after a 10 min treatment with DNase- and protease-free 

RNase. A shadow of signal was detectable of Slam in fraction 3 (indicated by an arrow labelled with 1). SHMT is unaffected of 

the treatment and elutes with the same volume of preceding gel filtrations.   

 

3.3.2.2 Slam’s stability decreases in the presence of RNase 

 

To probe if Slam’s stability was dependent on the presence of additional RNase, first the amount 

of RNase was titrated to the lysate. For this, 91 mg of cellularizing fly embryos were lysed in 1 mL 

RIPA(-) buffer. RIPA(-) has no SDS and lower salt than conventional RIPA. RIPA(-) will not 
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disturb the (possibly indirect) contact between Slam and RNAs (Dr. Shuling Yan). An input 

sample was taken (100 µL lysate plus 17 µL 6x Laemmli). The further setup was as follows (table 

8). 

 

Table 8 Titration of RNase in fly embryo lysate 

sample treatment 

input  100 µL lysate (2 e/µL)  

control 100 µL lysate + 1 µL ddH2O (2 e/µL)  

RNase 100 µL lysate + respective amount of RNase 

 

After an incubation of 10 minutes at RT, the reaction was stopped by the addition of Laemmli 

buffer and 5 min at 95 °C. Sample proteins were electrophoretically separated and blotted on to 

a nitrocellulose membrane (semi-dry transfer). The blot was stained for Slam and SHMT, 

respectively. In figure 35 the result of sample analysis is depicted. RNase incubation had little or 

no effect on SHMT. The band, which was incubated with the highest amount of RNase (10 µg) 

appears sharper than the rest of the bands. Since the aforementioned band also shows a stronger 

stain, it cannot be concluded, that there was less SHMT present. Slam, however, is strongly 

affected by the presence of RNase. A 10 min incubation (RT) with 3 µg or higher, will make Slam 

disappear in a western blot. This means the amount of protein has fallen below the detection 

limit of immunostaining on a western blot, which is around 100 pg. The control shows that 

molecular movement or proteolytically active enzymes in the lysate will lead to the degradation 

of a certain amount of protein. The addition of RNase increases this degradation distinctly. The 

amount of RNase, that is needed to see an effect on Slam has been titrated to an amount of 0,3 µg 

in 100 µL lysate. 
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Figure 35 Titration of RNase to the lysate of cellularizing fly embryos.  Respective amounts of protease- and DNase-free 

RNase (Thermo Fisher Scientific) was added to a fresh embryonic lysate and incubated for 10 min at RT. The reaction was 

stopped by addition of Laemmli buffer and an incubation of the mixture at 99°C for 5 min. Proteins in the samples were 

separated by SDS-PAGE (8%), transferred to a nitrocellulose membrane but semi-dry western blot and immunostained 

against Slam and SHMT as control. The input sample was taken directly after lysis and the control sample was incubated 

without RNase (see table 8). Overall, the amount of SHMT was not affected by the RNase. The more RNase was added, the 

less Slam was detected after the incubation time. The control sample showed less Slam than the input sample, but clearly 

more than the RNase-treated samples. The approximate amount of RNase for 100 µL sample was titrated to 0,3 µg. 

 

Is it really the RNase, that makes Slam more prone to degradation? To ascertain the effect of 

the RNase on Slams stability the experiment was repeated with an additional sample that 

contained RNase inhibitor (table 9). The degradation of Slam in the presence of RNase 

appears to be very fast. Hence, the RNase and its inhibitor were preincubated (5 min on ice). 

In this experiment 50 µL sample were treated with 0.1 µg of RNase.  

 

Table 9 Samples for the verification of the influence of the presence of RNase on Slam stability. 

sample treatment 

input  50 µL lysate (2 e/µL)  

control 50 µL lysate + 1 µL ddH2O 

(2 e/µL)  

RNase & RNase inhibitor 1 µL (0.1 µg) RNase; 

1 µL (40 U) RNase inhibitor; 

+ 8 µL buffer (50 mM Tris pH 7.5, 75 mM NaCl) 

+ 40 µL lysate (1.6 e/µL) 

RNase 50 µL lysate+ 

1 µL (0.1 µg) RNase 

(2 e/µL) 
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The western blot analysing the samples is shown in figure 36. The samples were stained for Slam 

and SHMT (control). It verifies, that RNase seems to have a destabilising effect on Slam. The 

RNase treated sample is fainter than the control sample and the RNase inhibitor reduces this 

effect. The band is stronger. SHMT is vastly unaffected by the RNase treatment. The samples 

vary in strength in a normal range. The RNase treated sample rather appears to be the strongest 

of the 4 bands.  

 

Figure 36 Degradation of Slam in lysate is faster in the presence of additional RNase. Western blot analysis of the 

experimental samples ascertaining the effect of additional RNase on Slam protein.  The RNase-treated (RNase) sample shows 

less Slam after a 10 min incubation time than the non-treated (control) and inhibitor-treated (RNase + inhibitor) sample. SHMT 

approximate quantity appears unaffected by the different treatments. The bands stained for SHMT show similar strengths.  
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4. Discussion  
 

4.1 Purification of recombinant Slam  

 

The C-terminus of Slam appears to be involved in downstream signalling. It is for this reason 

and because of its profound predicted structure, which makes it the most promising part of Slam 

for crystallization attempts, that in this study purification strategies were mainly elaborated for 

the far C-terminus of Slam. The purification of Slam is intricate. Heterologous Slam does not 

display high solubility or stability. Further developing a purification strategy for C-terminal Slam 

was a balancing act between solubility and purity. For further purification attempts it could be 

advantageous to employ insect cells for expression and production of Slam or Slam truncations 

(Altmann et al. 1999). As it was reported in this study, Slams stability seems to be at least partially 

dependent on the presence of its RNA. Since there are no reasons to assume that Slam is an 

RNA-binding protein, it is likely part of a complex. This complex may stabilize Slam and has a 

much higher chance to also assemble, when in a biochemical surrounding that is similar to the 

evolving blastoderm. Drosophila S2 cells would be an example. In S2 cells Slam localizes to the 

membranes and binding partners are more likely present than in E. coli. Furthermore, known 

binding partners can be co-expressed to improve Slams stability and solubility during 

purification attempts.  

In respect of the difficulties that come along with the solubilization and purification of Slam and 

Slam truncations and the chances of gaining good diffracting crystals from purified Slam 

truncations (taking its intrinsic disorder into account) it may be advisable to focus on functional 

experiments rather than working on structural objectives in the future. Bioinformatic analyses 

are a well-developed part of biochemical research and it is valid to put trust in the results in 

cases where a structure is unattainable. 

 

4.2 Biochemistry of Slam 

 

Slam and its mRNA colocalize and are part of the same RNP complex. The nature of this complex 

is not yet resolved. In this study is was shown, that Slam protein degradation in wild-type lysate 

accelerates in the presence of additional RNase. This suggests that the stability of the RNP is 

dependent on Slam mRNA or another RNA. Slams (predicted) missing structure likely makes it 

prone to degradation without any interactors. If the mRNA of Slam is an essential part of a 

complex that assembles around Slam it may protect it from early degradation. The elucidation 

of this complex would be an interesting subject to further studies.  
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Wild-type Slam runs in a double band and displays a much higher weight than calculated 

(+~30 kDa) during SDS-PAGES. Further, Slam is phosphorylated. This was seen in mass 

spectrometric analyses during this thesis (data not shown). To what degree, is not clear. Serine, 

threonine, and tyrosine make up nearly 20% of Slams amino acids (12,2%, 6,1% and 1,6%, 

respectively). There is high potential for great phosphorylation. A phosphatase assay during this 

study supported the idea of Slam multiple phosphorylation. Upon phosphatase treatment the 

lower band deepened, which indicates a higher phosphorylation status of the upper band. 

Usually phosphorylation of a protein serves regulatory purposes. Interactors can or are hindered 

to bind upon phosphorylation of the target protein. Since Slam is likely an adaptor protein that 

attracts effectors to the FC (RhoGEF2, Patj, MyoII), a regulatory phosphorylation fits the 

concept.  

The quantitative profile during first hours of Slam development exposed a pattern of the Slam 

double bands. The lower band (putatively less or dephosphorylated) clearly increased in 

strength approximately 2-3 hours after fertilization. This suggests a function of the lower band 

Slam or less dephosphorylated Slam during cellularization. After the time course of 

cellularization both bands again adopt similar strengths. Slam may be in a somewhat inactive 

state till start of cellularization and gets activated when it reaches the furrow to attract 

downstream effectors. It is also possible, however,  that it is the inactivated variant of Slam since 

the lower band can also indicate the end of cellularization. A deeper look into this context is 

necessary to make final conclusions. First, antibodies against e.g. phosphoserines could be used 

to verify the phosphorylation of Slam during a western blot. This would also clarify if the lower 

band is less or dephosphorylated. Since the ubiquitin ligase Herc2 was coprecipitated with Slam 

it should also be looked for a possible ubiquitination of Slam. Secondly, embryos treated with 

immunofluorescent antibodies with subsequent microscopic analysis could shed light on spatial 

distribution of phosphorylated or non-phosphorylated (or ubiquitinylated) Slam in the fly before 

and during cellularization. Once the understanding of Slam PTMs has increased more subtle 

assays could be developed to understand its regulation during cellularization.  

 

4.3 Interactors of Slam 

 

Co-IP/mass spectrometric results of this thesis extended the knowledge of the Slam interactome. 

Several binding partners were suggested, some are likely to interact directly. Verification of 

direct or indirect interaction may be addressed in further studies.     
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Slam regulates Rho1 and its effector Diaphanous by the direct biochemical interaction and  

recruitment of Rho1 activating RhoGEF2 to the furrow canal (Grosshans et al. 2005; Wenzl et al. 

2010). As a result, Slam essentially influences cytoskeletal organization during cellularization. 

RhoGEF2 was not found as a binder of Slam during co-IP experiments conducted in the context 

of this thesis. But MyoII (zipper), one other effector of the Rho1-Rok signalling, was co-

precipitated with Slam. The Rho1-Rok-MyoII pathway leads to actomyosin contraction. Slam is 

needed to localize MyoII to the FC and will also recruit it ectopically. There is a possibility that 

the recruitment of MyoII is through the upstream regulator RhoGEF2 but since it was not 

enriched (but identified) in the co-IP experiments it may not be involved. In my estimation Slam 

serves as an adapter protein for the Rho1-Rok pathway, which is indicated by the recruitment of 

both RhoGEF2 (other studies) and MyoII and several other actomyosin related proteins. In fact, 

the vast majority of the interacting proteins identified are actin related. These include Cindr as 

a possible direct interactor (through a SH3 binding motif on Slam), MyoV, MyoVIIA, the Arp2/3 

complex and capping proteins. These results are also consistent with a yeast-two-hybrid-screen 

conducted earlier, where the formin Spire, Myo10a and formin-like (CG32138) were identified as 

Slam interactors (Laupsien 2012). Even though Actin was found (slightly) enriched in 3 of the 6 

IP/Ripa- buffer samples, the low enrichment and the overall results contradict a direct contact 

of Slam to Actin filaments. The enrichment was very low (FE 4, 1.3 and 1.1) and in 2 of the 6 

samples in was measured higher in the wild type sample (FE 0.8 and 0.7) at comparably high 

spectral counting (SC 181 and 247, which is representative for all the measurements except IP 

buffer sample C, where Actin was not detected). In conclusion, the results of this thesis indicate 

that Slam is rather an actin-binding protein interactor than a direct actin-binder. Although it 

may not be a direct binder of actin filaments its impact on the actomyosin network during 

cellularization is immense. Without Slam the FC does not invaginate and cellularization cannot 

be completed. The interactors that were identified in this thesis support Slams role as an 

actomyosin regulator in the form of an adaptor promoting the assembly of proteins that lead to 

actomyosin-driven membrane invagination.  

 

Slam as adaptor  

The task of an adaptor protein is experimentally hard to distinguish from anchoring, scaffolding 

or docking functions. Terms and functions are overlapping and, to some degree, 

interchangeable. A simple definition is that adaptor proteins “facilitate signal transduction 

through interactions with other proteins” (Borowicz et al. 2020; Langeberg and Scott 2015). Such 

a function was shown for Slam through the necessity for the recruitment and the verification of 

direct binding of RhoGEF2, a regulator of the Rho-Rok pathway (Wenzl et al. 2010). The 
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superordinate or adaptor role of Slam during this pathway is concreted with MyoII, another 

effector of the Rho-Rok signalling, being an interactor of Slam as shown by co-IP as a result of 

this thesis. Furthermore, the slam phenotype hints towards an assembling role during Rho-Rok 

signalling.  

According to Borowicz et al. an adaptor protein should correspond to some characteristics:  Slam 

is membrane associated but no transmembrane protein, which qualifies it for the title ‘adaptor 

protein’. To our current knowledge Slam has no enzymatic activity and is not involved 

enzymatically in cellular signalling (Langeberg and Scott 2015). The protein should have no 

DNA- or RNA-binding activity. Slam does not display any known DNA- or RNA-binding domain 

and the binding of its mRNA seems to be facilitated by an associated, not yet identified, RNA-

binder. “Adaptor proteins, which engage in the formation of stable complexes, are excluded” 

(Borowicz et al. 2020). Slams function during Drosophila development follows a strong 

spatiotemporal regulation, which suggest a flexibility in interaction and function. Binding 

partners identified in this study hint towards an involvement in several sub-processes during 

the course cellularization. RhoGEF2 (which was identified in a different study) and MyoII are 

part of the Rho-Rok pathway. Identified actin binding proteins like the Arp2/3 complex or 

capping proteins may be associated to Slams adaptor function in this pathway. Patj for example 

is involved in adherens junctions stabilisation, and its function is at least not directly associated 

to the Rho-Rok pathway. Cindr, Restin homolog and Jaguar are interactors, that indicate 

functions of Slam apart from Rho-Rok signalling. Under semi-harsh conditions most of the 

interactions are not retained, which suggests rather moderate and repetitive, or higher-order 

interactions. The difficulty of explaining the slam phenotype with one or two binding partners 

in a simple context is another hint towards a multi-protein binder with transient interactions 

and various functions during cellularization. Taken together, Slam fulfils all the requirements 

for a proper adaptor protein during a most sensibly regulated process of Drosophila 

development.  

 

Adaptor proteins facilitate the right localization of their binders and to fulfil that task they need 

certain qualities (Borowicz et al. 2020; Langeberg and Scott 2015): binding domains, binding 

motifs and structural flexibility. A PDZ-binding motif and an SH3-binding motif have been 

identified for the recruitment of (at least) RhoGEF2 (PDZ), Patj (PDZ) and Cindr (SH3). 

Slam has no known domains and several results indicate little structure. The high intrinsic 

disorder suggests a great structural flexibility of Slam protein, a feature which is highly relevant 

for adaptors. This is (among other things) because they can easily be post-translationally 

modified, the disorder enables flexible links between structured domain and binding sites, it 
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makes dynamic structure changes possible, it increases the hydrodynamic radius of the protein 

and promotes oligomerization (Borowicz et al. 2020; Iakoucheva 2004; Houtman et al. 2006; 

Hofmann et al. 2012; Cortese, Uversky, and Keith Dunker 2008).  

 

There is a graphic in Borowiczs anniversary article, that I would like to present in this thesis. 

This is because, when I look at the models depicted (figure 37), that present the functions of 

adaptor proteins, I clearly recognize Slam. All the things we know about Slam point towards an 

adaptor function. Slam and its interactors define space and time for the membrane invagination 

during cellular blastoderm development. The Rho-Rok pathway with Dia and MyoII being two 

of its effectors, leads to actomyosin contraction and membrane invagination (Crawford et al. 

1998). The localization of RhoGEF2, an upstream regulator of Rho1, and MyoII, an effector of 

Rho1 signalling, both depend on Slam. The localization of both at the same place increases the 

probability of interaction of intermediate proteins. Bottleneck, an essential timer of dorsal 

closure was also found interacting with Slam during co-IP. For several interactors identified in 

this study further experiments have to be conducted to make final conclusions and interconnect 

the different functions of Slam during cellularization. I am positive, that following experiments 

will endorse an adaptor function of Slam.  

  

 

Figure 37 “Schematic overview of hypothetical models presenting functions of adaptor proteins”, picture adapted from 

(Borowicz et al. 2020). Scientific results concerning Slam all point towards a possible adaptor function during Drosophila 

cellularization. Slam fulfils all the requirements for a proper adaptor and likely displays multiple spacial and temporal functions 

of the ones named above.  
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Localization of slam mRNA 

Yet unresolved is how Slam and its mRNA are recruited to and hold at the FC. We know that 

Rab11 and the recycling endosome is essential for the localization of Slam and that Slam protein 

itself is required for the localization of its mRNA. No known RNA-binder was found enriched 

with Slam except for IGF-II in RIPA- buffer sample A-C. This enrichment was so low (FE 2,3; 1,4 

and 1,3 respectively), that I will not discuss IGF-II as a Slam binding partner. It shall not stay 

unmentioned either. The process of Slam protein localization and accumulation at the FC takes 

only around 5 min (Yan et al. 2017), whereas Slams role in membrane invagination takes place 

in a timeframe of 45 min (Acharya et al. 2014). There is a higher chance of finding Slam binders, 

that are involved in the second process. To specifically find interactors participating in Slam and 

slam mRNA localization an embryo collection of narrower timed staging would be advised.  

 

4.4 Conclusion 

 

Several interactors of Slam were considered in this thesis. Patj was confirmed as one interactor 

of Slam. RhoGEF2 could not be found during this co-IP mass spectrometric approach. Cindr was 

detected as reliable as Patj and Slam displays a Cindr binding consensus sequence. I propose 

that Cindr is a direct interactor of Slam and should be investigated during cellularization as 

distinct protein and as Slam interactor. Restin homolog, Jaguar and MyoII are also good 

candidates for a direct interaction with Slam. These results should be verified by western 

blotting after a direct binding assay.  

What may be considered, however, is that the vast majority of the proteins are interconnected 

to one another. Several interactions between detected proteins are reported (fig. 38 ). It is likely 

that not all the identified coimmunoprecipitated proteins are direct interactors of Slam and that 

some have pulled down others.  

I propose that Slam functions as an adaptor protein for the Rho-Rok pathway and other proteins, 

that have been discussed in this thesis and need to be subject of further investigations, which is 

regulated by phosphorylation (and possibly ubiquitinylation) during the course of 

cellularization. 

It is part of a complex that contains its own mRNA, but no obvious RNA-binding protein was 

detected among the coimmunoprecipitated proteins. Interactors involved in Slam translational 

control and the complex in which Slam is associated with its RNA make up only a small fraction 

of Slam protein and only at the onset of cellularization. In this IP - mass spectrometric approach, 

the Slam RNP complex likely fell under the detection limit. The experiment has to be optimized 
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for the isolation of the Slam RNP. The mediator between Slam, possible other components of 

the RNP and slam mRNA has yet to be identified.  

For further characterization of the nature of interactions it is advised to perform an AP-

crosslinking experiment to distinguish between primary/secondary and tertiary binders. The 

expansion of our knowledge concerning the interactive network Slam is part of, and which is 

delicately regulated during embryogenesis in flies as well as in other organisms will advance our 

understanding of the developmental processes Slam and its interactors are involved with. 

 

 

Figure 38 Interactions between a selection of identified proteins coprecipitated with Slam referred to flybase.org (physical 

interactions). Interactors that did not fit into the depiction were listed under the respective protein. 
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Appendix 

Table 10 Normalized total spectrum counts of enriched proteins. UniProt reference numbers are indicated. GFPSlam served 

as bait, wild type (WT) as control. FE fold enrichment, p (BH) Benjamini-Hochberg corrected p-value, nd non-detectable  

 

 

Table 11 Normalized total spectrum counts of proteins that have been enriched in sample A (IP). Same proteins have been 

checked in this sample for comparison. UniProt reference numbers are indicated. GFPSlam served as bait, wild type (WT) as 

control. FE fold enrichment, p (BH) Benjamini-Hochberg corrected p-value, nd non-detectable 

 

IP buffer sample A

protein UniProt ID GFPSlam GFPSlam                 
(tech. replicate) 

WT WT                   
(tech. replicate)

FE p  (BH)

Slow as molasses (Slam) Q9VME5 991 1025 nd nd 0.00028

PatJ A4V1B2 215 230 nd nd 0.001

Restin homolog Q9VJE5 31 24 nd nd 0.019

Herc2 Q9VR91 240 261 3 8 46 0.0021

Neuralized E3 ubiquitin protein ligase 4 A0A1L4AAD6 49 67 6 5 11 0.029

Cindr Q9VA36 39 36 nd nd 0.00076

Bottleneck P40794 17 16 1 0 33 0.0021

Actin (5C/57B/57B) X2JCP8/ P53501 440 442 122 127 4 < 0.00010

Alpha Spectrin M9PGV6 37 36 1 2 24 0.00058

Alpha actinin F0JAG6 47 48 5 4 11 0.00026

F-actin-capping protein subunit alpha Q9W2N0 27 24 2 4 9 0.0026

F-actin-capping protein subunit beta P48603 37 36 4 4 9 0.0068

Arpc1 O97182 10 11 2 2 5 0.0055

Arpc2 Q9VIM5 23 27 4 2 8 0.011

Arpc4 Q9VMH2 9 8 nd nd 0.0015

Arpc5 Q9VQD8 13 13 1 1 13 0.00095

Arp2 P45888 7 6 nd nd 0.0035

Arp3 P32392 20 19 1 2 13 0.0026

Kinesin light chain P46824 16 14 7 5 3 0.017

Jaguar A0A0B4KGX1 257 288 7 4 50 0.0035

Dilute class unconventional myosin A1Z6Z9 133 151 nd nd 0.0040

Myosin-VIIa Q9V3Z6 33 21 1 2 18 0.056

Myosin II1 Q99323 (B4J9L6) 174 200 18 19 10 0.0058

IP buffer sample B

protein UniProt ID GFPSlam GFPSlam                 
(tech. replicate) 

WT WT                   
(tech. replicate)

FE p  (BH)

Slow as molasses (Slam) Q9VME5 212 205 0 1 417 0.00028

PatJ A4V1B2 31 29 nd nd 0.0012

Restin homolog Q9VJE5 2 2 nd nd 0.041

Herc2 Q9VR91 22 26 3 0 16 0.0092

Neuralized E3 ubiquitin protein ligase 4 A0A1L4AAD6 5 6 nd nd 0.018

Cindr Q9VA36 2 1 nd nd 0.099

Bottleneck P40794 nd nd nd nd

Actin (5C/57B/57B) X2JCP8/ P53501 124 120 96 95 1.3 0.0053

Alpha Spectrin M9PGV6 nd nd nd nd

Alpha actinin F0JAG6 9 9 nd nd 0.0012

F-actin-capping protein subunit alpha Q9W2N0 nd nd nd nd

F-actin-capping protein subunit beta P48603 nd nd nd nd

Arpc1 O97182 1 2 0 1 3 0.59

Arpc2 Q9VIM5 nd* nd* nd nd

Arpc4 Q9VMH2 nd nd nd nd

Arpc5 Q9VQD8 nd nd nd nd

Arp2 P45888 nd* nd* nd nd

Arp3 P32392 2 1 1 0 3 0.56

Jaguar A0A0B4KGX1 12 17 0 1 29 0.036

Dilute class unconventional myosin A1Z6Z9 9 14 nd nd 0.050

Myosin-VIIa Q9V3Z6 nd nd nd nd

Myosin II Q99323 nd nd nd nd
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Table 12 Normalized total spectrum counts of proteins that have been enriched in sample A (IP). Same proteins have been 

checked in this sample for comparison. UniProt reference numbers are indicated. GFPSlam served as bait, wild type (WT) as 

control. FE fold enrichment, p (BH) Benjamini-Hochberg corrected p-value, nd non-detectable 

 

 

Table 13 Normalized total spectrum counts of proteins that have been enriched in sample A (IP). Same proteins have been 

checked in this sample for comparison. UniProt reference numbers are indicated. GFPSlam served as bait, wild type (WT) as 

control. FE fold enrichment, p (BH) Benjamini-Hochberg corrected p-value (ANOVA), nd non-detectable 

 

IP buffer sample C

protein UniProt ID GFPSlam GFPSlam                 
(tech. replicate) 

WT WT                   
(tech. replicate)

FE p  (BH)

Slow as molasses (Slam) Q9VME5 251 235 nd nd 0.00028

PatJ A4V1B2 34 37 nd nd 0.0011

Restin homolog Q9VJE5 62 72 9 16 5 0.01

Herc2 Q9VR91 143 127 30 30 5 0.0057

Neuralized E3 ubiquitin protein ligase 4 A0A1L4AAD6 4 2 nd nd 0.092

Cindr Q9VA36 nd nd nd nd

Bottleneck P40794 nd nd nd nd

Actin (5C/57B/57B) X2JCP8/ P53501 nd*- nd*- nd nd 0.0053

Alpha Spectrin M9PGV6 nd nd nd nd

Alpha actinin F0JAG6 nd nd nd nd

F-actin-capping protein subunit alpha Q9W2N0 nd nd nd nd

F-actin-capping protein subunit beta P48603 nd nd nd nd

Arpc1 O97182 nd nd nd nd

Arpc2 Q9VIM5 12 14 21 22 0.6 0.023

Arpc4 Q9VMH2 nd nd nd nd

Arpc5 Q9VQD8 nd nd nd nd

Arp2 P45888 8 10 12 11 0.8 0.25

Arp3 P32392 6 6 7 4 1.1 0.56

Jaguar A0A0B4KGX1 30 25 37 46 0.7 0.036

Dilute class unconventional myosin A1Z6Z9 nd nd nd nd

Myosin-VIIa Q9V3Z6 7 5 nd nd 0.047

Myosin II (zip) Q99323 590 582 382 389 2 0.00053

RIPA(-) buffer sample A

protein UniProt ID GFPSlam GFPSlam                 
(tech. replicate) 

WT WT                   
(tech. replicate)

FE p  (BH)

Slow as molasses (Slam) Q9VME5 76 74 12 15 6 <0.00010

PatJ A4V1B2 9 5 1 1 7 <0.00010

Restin homolog Q9VJE5 54 59 53 52 1.1 <0.00010

Herc2 Q9VR91 3 2 2 4 0.8 <0.00010

Cindr Q9VA36 1 1 nd nd 0.49

Bottleneck3 P40794 nd nd nd nd 0.097

Actin (5C) X2JCP8/ P53501 301 301 265 271 1.1 0.86

Alpha Spectrin M9PGV6 180 182 182 174 1 <0.00010

Alpha actinin F0JAG6 73 66 62 61 1.1 0.0037

F-actin-capping protein subunit alpha Q9W2N0 16 21 16 16 1.2 0.38

F-actin-capping protein subunit beta P48603 13 15 12 10 1.3 0.057

Arpc1 O97182 9 8 8 7 1.1 0.035

Arpc2 Q9VIM5 20 19 20 14 1.1 0.00097

Arpc4 Q9VMH2 3 4 3 4 1 0.00049

Arpc5 Q9VQD8 5 4 4 4 1.1 0.00024

Arp2 P45888 6 9 5 5 1.5 0.65

Arp3 P32392 19 17 18 19 0.97 0.58

Jaguar A0A0B4KGX1 29 27 36 37 0.8 0.00015

Dilute class unconventional myosin A1Z6Z9 5 5 8 7 0.7 <0.00010

Myosin-VIIa Q9V3Z6 9 12 6 8 1.5 <0.00010

Myosin II Q99323 237 237 351 336 0.7 0.016
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Table 14 Normalized total spectrum counts of proteins that have been enriched in sample A (IP). Same proteins have been 

checked in this sample for comparison. UniProt reference numbers are indicated. GFPSlam served as bait, wild type (WT) as 

control. FE fold enrichment, p (BH) Benjamini-Hochberg corrected p-value (ANOVA), nd non-detectable 

 

 

Table 15  Normalized total spectrum counts of proteins that have been enriched in sample A (IP). Same proteins have been 

checked in this sample for comparison. UniProt reference numbers are indicated. GFPSlam served as bait, wild type (WT) as 

control. FE fold enrichment, p (BH) Benjamini-Hochberg corrected p-value (ANOVA), nd non-detectable 

 

  

 

RIPA(-) buffer sample B

protein UniProt ID GFPSlam GFPSlam                 
(tech. replicate) 

WT WT                   
(tech. replicate)

FE p  (BH)

Slow as molasses (Slam) Q9VME5 92 100 26 26 4 <0.00010

PatJ A4V1B2 4 5 2 3 2 <0.00010

Restin homolog Q9VJE5 70 69 70 62 1.1 <0.00010

Herc2 Q9VR91 9 7 12 14 0.6 <0.00010

Cindr Q9VA36 nd nd nd nd 0.49

Bottleneck P40794 1 1 3 1 0.5 0.097

Actin (5C) X2JCP8/ P53501 176 185 213 219 0.8 0.86

Alpha Spectrin M9PGV6 138 145 130 122 1.1 <0.00010

Alpha actinin F0JAG6 47 46 49 48 0.96 0.0037

F-actin-capping protein subunit alpha Q9W2N0 24 23 20 20 1.2 0.38

F-actin-capping protein subunit beta P48603 10 9 16 18 0.6 0.057

Arpc1 O97182 6 12 12 13 0.7 0.035

Arpc2 Q9VIM5 20 18 22 24 0.8 0.00097

Arpc4 Q9VMH2 3 2 3 3 0.8 0.00049

Arpc5 Q9VQD8 4 4 6 5 0.7 0.00024

Arp2 P45888 7 7 9 8 0.8 0.65

Arp3 P32392 18 16 15 17 1.1 0.58

Jaguar A0A0B4KGX1 40 48 46 39 1 0.00015

Dilute class unconventional myosin A1Z6Z9 6 7 14 14 0.5 <0.00010

Myosin-VIIa Q9V3Z6 12 14 15 14 0.9 <0.00010

Myosin II Q99323 265 267 231 204 1.2 0.016

RIPA(-) buffer sample C

protein UniProt ID GFPSlam GFPSlam                 
(tech. replicate) 

WT WT                   
(tech. replicate)

FE p  (BH)

Slow as molasses (Slam) Q9VME5 1743 2805 7 4 413 <0.00010

PatJ A4V1B2 247 380 nd nd <0.00010

Restin homolog Q9VJE5 nd nd 20 18 <0.00010

Herc2 Q9VR91 nd nd nd nd <0.00010

Cindr Q9VA36 46 nd* nd nd 0.49

Bottleneck3 P40794 nd nd nd nd 0.097

Actin (5C) X2JCP8/ P53501 494 nd 355 343 0.7 0.86

Alpha Spectrin M9PGV6 nd nd 61 55 <0.00010

Alpha actinin F0JAG6 23 nd 38 51 0.3 0.0037

F-actin-capping protein subunit alpha Q9W2N0 23 nd 25 29 0.4 0.38

F-actin-capping protein subunit beta P48603 9 nd 9 11 0.5 0.057

Arpc1 O97182 nd nd 2 9 0.035

Arpc2 Q9VIM5 nd nd 20 27 0.00097

Arpc4 Q9VMH2 9 nd 2 0 5 0.00049

Arpc5 Q9VQD8 nd nd nd nd nd 0.00024

Arp2 P45888 9 nd 7 9 0.6 0.65

Arp3 P32392 18 nd 16 22 0.5 0.58

Jaguar A0A0B4KGX1 5 nd 20 18 0.1 0.00015

Dilute class unconventional myosin A1Z6Z9 nd nd nd nd <0.00010

Myosin-VIIa Q9V3Z6 nd nd nd nd <0.00010

Myosin II Q99323 160 nd*- 180 177 0.4 0.016

*non-detectable under given settings but detectable and enriched under changed settings (protein threshold 1.0 % FDR; min. peptides: 2; and peptide threshold 1.0% FDR)

1 not assigned to DROME but other Drosophila subspecies 

*-non-detectable under given settings but detectable and NOT enriched under above-mentioned settings
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