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- We are all made of Star stuff, we belong to the Universe - 
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Abstract 

The International Space Station (ISS) is an indoor-closed environment in Low Earth Orbit (LEO). Outside of 

the ISS, radiation is the most challenging factor outside. In turn, inside the ISS, spaceflight microgravity is 

the one factor that cannot be evaded. Aspergillus niger and Penicillium rubens are two common isolates 

of the ISS microbiota. As filamentous fungi, they form highly resistant airborne spores that can easily 

spread and colonize the spacecraft habitat. Fungi surface-associated growth (or biofilm formation), can 

biodegrade surfaces and clog life-support systems, and their spores can potentially infect the humans on 

board. In contrast, on Earth filamentous fungi play an important role in biotechnology, producing a wide-

range of compounds of interest, from food to antibiotics. Because of this, envisioned long-term spaceflight 

missions going far beyond low Earth orbit, to the Moon or Mars, will require an intensification of the fungal 

research, not only in relation to astronaut health and spacecraft safety, but also establishing opportunities 

for fungal-based biotechnology in space. Thus, this thesis aims to answer three main questions: i) can A. 

niger spores resist space radiation, and if yes, could they endure interplanetary space travel? ii) if brought 

to the surface of Mars, could A. niger spores survive the martian environment? and iii) how does simulated 

microgravity affect A. niger colony growth and biofilm formation? In total, four strains of A. niger were 

analyzed in this thesis: the industrial and highly pigmented wild-type strain (N402), a strain defective in 

pigmentation (ΔfwnA), a strain defective in DNA repair (ΔkusA), and a strain defective in polar growth 

(ΔracA). To assess the level of resistance and survival limits of fungal spores in a long-term interplanetary 

mission scenario, A. niger spores were exposed to high radiation doses of X-rays and cosmic radiation 

(helium- and iron-ions) and of UV-C radiation. Results show that wild-type spores of A. niger were able to 

withstand high doses of the all tested types of space radiation. This suggests that A. niger spores might 

endure space travel, when considering the radiation factor alone. To evaluate the survival of A. niger to 

Mars surface conditions, dried spores were launched in a stratospheric balloon mission called MARSBOx. 

Throughout the mission, A. niger spores were exposed to desiccation, simulated martian atmosphere and 

pressure, as well as to full UV-VIS radiation. Results revealed that the highly pigmented wild-type spores 

would survive in a Mars-like middle stratosphere environment with radiation exposure, even as a spore 

monolayer (106 spores/ml), i.e. with no self-shielding. Spore survival to space radiation and martian 

conditions suggest that current planetary protection guidelines should be revisited integrating the high 

resistance of fungal spores. Furthermore, A. niger colony growth and biofilm formation under simulated 

microgravity was investigated. Scanning Electron Microscopy (SEM) pictures reveal never-before seen 

ultrastructure of A. niger colonies and biofilms (i.e. vegetative mycelium embedded in extracellular 

matrix). Results reveal changes in biofilm thickness, spore production and dry biomass, suggesting an 

increased potential for A. niger to colonize spaceflight habitats. Lastly, P. rubens was proven as a model 

organism for a spaceflight biofilm experiment aboard the International Space Station. Overall, this thesis 

highlights the extraordinary resistance of fungal spores to extraterrestrial conditions and reveals their 

ability to cope with spaceflight microgravity. This advocates for future research that will enable better 

monitoring and controlling of fungal contaminations in space habitats, and that will help establish 

filamentous fungi as valuable companions of human space exploration. 
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 Introduction 

 Life in the Universe 

 Astrobiology  

How has life originated and why? Is there is life beyond Earth? Will we ever find it? These are some of the 

oldest and most challenging questions of humankind. With the 1960s space age there was a need to 

understand how life adapts and survives in space. Not only humans, but also other organisms. With this, 

scientists such as Joshua Lederberg and Carl Sagan created the discipline of Exobiology (Lederberg, 1960). 

30 years later, this is discipline became known as Astrobiology - the scientific field that studies the origin, 

evolution and distribution of life in the Universe (Soffen, 1997). Astrobiology is highly inter-disciplinary, 

requiring people from different scientific fields (e.g. biology, chemistry, geology, astronomy, physics and 

engineering) working side-by-side to unravel the mysteries of life in the Universe. Earth is, so far, the only 

planet we know that harbors life. Because of this, astrobiologists use what it’s called “the Great Analogy”, 

where Earth is the main (and only) example used to predict how life elsewhere could be possible. Given 

we only have ourselves to start with, astrobiologists extensively study planet Earth and its surrounding 

environment (our Solar System, our Galaxy), for clues on how life could have originated here. Active 

research in the Astrobiology field is being conducted world-wide. Both the NASA Astrobiology Roadmap 

(Des Marais et al., 2008) and the European Astrobiology Roadmap (Horneck et al., 2016) summarize 

guidelines, and focus areas for astrobiology. Today astrobiological research includes studying our own 

planet´s extreme environments; life-detection missions on Mars; studying the composition of icy moons 

of our solar system, such as Enceladus (moon of Saturn), and Europa (moon of Jupiter); as well as the 

search for potentially habitable exoplanets (planets outside of our solar system) (Horneck et al., 2010). 

Another important astrobiological research area is the study of the limits of life and how terrestrial 

microorganisms survive and adapt to extreme extraterrestrial environments. To this research area we call 

Space Microbiology. 

 

 Space Microbiology 

Space Microbiology is part of the research topic number 4 “Life and Habitability”, of the European 

Astrobiology Roadmap (Horneck et al., 2016). It studies how terrestrial microorganisms survive and adapt 

to extreme environments, and it helps us understand the limits of life as we know it and whether or not 

there might be life on other planetary bodies. Extremophiles are “extreme-loving” microbes that are able 

to survive and grow in extreme conditions. They can not only provide valuable information on how life 

was on Early Earth, 4.5 billion years ago, but also whether or not modern terrestrial life could exist beyond 

Earth. Earth harbors many extreme environments, and some can be considered analogs for extraterrestrial 

environments. For instance, the cold McMurdo Dry Valleys in Antarctica, or the Atacama Desert in Chile, 

can be considered analog to Mars (Azua-Bustos et al., 2012; Van Ombergen et al., 2021), whereas deep-

sea hydrothermal vents are considered analog environments to the ocean world of Europa (moon of 

Jupiter) (Longo and Damer, 2020). The International Space Station (ISS) itself, established in 1998, acts as 

a valuable space microbiology laboratory. On the ISS, astronauts work as scientists, conducting 

microbiology experiments both inside and outside of the spacecraft (Horneck et al., 2010). Microbiology 
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experiments aboard the International Space Station make up some of the most innovative and challenging 

research. However, space research is also met with several limitations. Costs, time, astronaut and 

instrument availability, microbial transport and stowage conditions, and space agency regulations are 

some of the most common limitations. This often results in a reduced flexibility of the experimental design, 

and reduced quality and quantity of the desired outcomes. To overcome these limitations, ground-based 

space simulation facilities allow the performance of space-relevant experiments, reducing the costs and 

increasing experimental flexibility. Several platforms are available world-wide and are able to provide 

functional simulations (more on section 1.2). When possible, space simulation experiments are validated 

by comparison with real space experiments.   

How microbes tolerate and grow in extreme environments gives us knowledge on the cellular and 

molecular mechanisms behind their resistance. It can also inform us on current planetary protection 

policies regulated by The Committee on Space Research (COSPAR). COSPAR was created in 1958 with 

affiliations from countries involved in spaceflight activities (Conley, 2014). These policies aim to prevent 

cross-contamination between planetary bodies, and consist on cleaning and sterilization protocols as well 

as definition of thresholds limiting the amount of microbial burden (or bioburden) on a spacecraft surface. 

The policies, or guidelines, depend on the main objective of each space mission (COSPAR, 2020; Gradini et 

al., 2019; Regberg et al., 2020). Indeed, space microbiology research is in the forefront of science allowing 

for novel insights on how microbes could survive and adapt to extraterrestrial environments. Interestingly, 

space stations are scientific experiments in themselves. As indoor-closed habitats, monitoring microbial 

diversity is crucial to guarantee spacecraft safety and astronaut health (Ichijo et al., 2016; Mhatre et al., 

2020; Mora et al., 2016; Yamaguchi et al., 2014). Microbial monitoring was done already in early space 

missions such as Apollo, Skylab, and Space Shuttle, where microbial samples were taken of the spacecraft, 

and were brought back to Earth to be isolated and characterized (Brockett and Ferguson, 1975; Castro et 

al., 2004; Pierson, 2001; Puleo et al., 1973). Today, state-of-the-art sequencing methods allow the 

characterization of the ISS’s microbiome, detecting and identifying even non-culturable organisms (Be et 

al., 2017; Lang et al., 2017; Stahl-Rommel et al., 2021; Venkateswaran et al., 2014). The most common 

bacterial isolates aboard the ISS were spore-formers such as Bacillus spp. and Paenibacillus spp., and the 

most common fungal isolates were found to be Aspergillus and Penicillium spp., which are also spore-

formers (Checinska et al., 2015). Interestingly, the former Russian space station Mir was known to 

welcome astronauts with a “strange smell”, attributed to a diverse fungal flora. In fact, the high microbial 

burden was one of the main reasons why the Mir-station was terminated, given the risk to astronaut health 

and material integrity (Makimura et al., 2001). Currently there are several measures being taken aboard 

the ISS to monitor and control microbial contamination. For instance, astronauts are responsible for a 

thorough cleaning of the ISS, and air-filtration systems have HEPA-filters that are able to prevent 

microorganisms from further circulating the indoor habitat. Still, many microorganisms can go undetected 

and find their way to contaminate a wide range of spacecraft surfaces and systems. Unfortunately 

microbe-led material corrosion can affect metals, plastics and other surfaces (Beech et al., 2005; Gu et al., 

1998; Klintworth et al., 1999; Videla and Herrera, 2005).  

While on the one hand, controlling microbial contamination from negatively affecting life-support systems 

such as drinking water system, air-ventilation system, heating and electricity supply systems is a focus of 

crewed space exploration (Haines et al., 2019; Thornhill and Kumar, 2018; Vaishampayan and Grohmann, 

2019). On the other hand, many research efforts look forward to bring such microorganisms into play to 
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improve mentioned life-support systems. Due to their light weight and multi-purpose character, 

microorganisms can be of great help in space exploration when grown in a planned and controlled manner. 

Indeed, the use of microorganism-based technologies for in situ food production, water, air, and waste 

recovery are being investigated (Ilgrande et al., 2019; Soreanu et al., 2021; Wagner et al., 2016). For 

instance, extremophile applications in biotechnology, e.g. through extremoenzymes, have been a focus 

area (Gabani and Singh, 2013; Raddadi et al., 2015). With all of this, knowing how microorganisms adapt 

and grow in environments beyond Earth, will not only be essential to better understand the origin of life 

on Earth and establish the limits of life as we know it, but also to develop efficient space exploration 

strategies that help thrive the human presence in space. 

 

 Environments beyond Earth 

 Microgravity 

On Earth, gravity of 1-g (or 9.81 m/s2) has been the one constant along the history of evolution of life. 

Because of this, both flora and fauna have adapted to gravity on Earth (Najrana and Sanchez-Esteban, 

2016), and so have all associated chemical, physical and biological processes. In turn, microgravity, also 

known as weightlessness, or zero g, is considered when the gravitational regime is in lower than 1 x 10-3-

g. The International Space Station orbits the Earth at 400 km altitude (in low Earth orbit), and at a constant 

speed of 8 km/second, achieving a microgravity environment of 1 x 10-4 to 10-6-g (Stenzel, 2016). 

Spaceflight microgravity is one of the most unique environments, affecting every living organism aboard 

the international space station. An average astronaut mission on the ISS lasts 6 months, during which the 

spaceflight environment affects the human body in numerous ways. A compromised immune system, 

shifts in body fluids, muscle and bone loss, are some consequences of exposure to microgravity, low dose 

radiation, changes in diet, and mission stress (e.g. sleep, schedule) (Bigley et al., 2019; Mann et al., 2019). 

Space microbiology experiments have found several spaceflight-induced changes in different 

microorganisms, such as increased pathogenicity, increased resistance towards antibiotics, differences in 

growth and changes in biofilm formation (Horneck et al., 2010; Huang et al., 2018; Kim et al., 2013; Leys 

et al., 2004; Nickerson et al., 2004; Ott et al., 2012; Rosenzweig et al., 2010, 2014; Senatore et al., 2018; 

Zea et al., 2017). In outer space, i.e. interplanetary space or deep space, microgravity reaches 1 x 10-12 g, 

which astronauts will experience for example on during the flight to the Moon, or Mars. Once at our 

interplanetary destination, partial gravity of the Moon (0.17-g) and Mars (0.38-g), will also affect biological 

processes of humans and microbes (Garshnek, 1994; Horneck et al., 2003; Kiss, 2014; Santomartino et al., 

2020). 

Knowing how life adapts to microgravity (and other gravitational regimes) will be important to assess both 

risks and opportunities of space exploration. Given that real microgravity experiments are both costly and 

of difficult access, studies have been performed using microgravity simulations. Different facilities and 

devices vary in quality of microgravity simulation, as well as in duration of exposure (Herranz et al., 2012; 

Kiss, 2014). Platforms such as drop towers or parabolic flights provide short-term high-quality 

microgravity, where samples are exposed in the time range of seconds (10 – 30 seconds) (Braun et al., 

2002; Limbach et al., 2005). Moreover, sounding rockets can provide good quality microgravity 

environment in the time range of minutes (6 - 12 min) (Hemmersbach et al., 2006; Kopp et al., 2018). 
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Suborbital platforms such as re-entry capsules can provide both good quality microgravity (10-5-g) and 

long-duration exposure (over 2 weeks), however they are very rare and cost-intensive (Cogoli, 1993; 

Gulimova et al., 2019; Pletser, 2004). In contrast, small devices, such as the Rotating Wall Vessel (RWV), 

the High Aspect Ration Vessel (HARV), the clinostat (also known as 2-D clinostat) (Walther et al., 2000), or 

the Random Positioning Machine (RPM) (also known as 3-D clinostat) (Borst and van Loon, 2008), are very 

cost-effective and can provide long-duration microgravity simulation in the range of days and weeks, 

depending on the model organism. These small devices provide a functional simulation of microgravity 

sharing the same principle: by continuously rotating the samples they reduce the gravity vector to close 

to zero, and consequently prevent particle sedimentation. In 2-D clinostats, microgravity is simulated by 

continuously rotating the samples around the horizontal axis. Here the best quality of microgravity is 

simulated at the very center of the rotation axis. Further from the center, shear forces occur and the 

gravitational force increases (van Loon et al., 2003, 2016). Notably, the 2-D clinostat has been recognized 

to provide better simulation of microgravity than HARV, given that HARV can only provide low shear 

modelled microgravity (Klaus, 2001). The 2-D clinostat can be set to be fast-rotating or slow-rotating, 

depending on the viscosity of the culture medium, to ensure the least amount of shear forces. Here, liquid 

cultures (low viscosity) would require a slow-clinorotation (10 - 25 revolutions per minute, or r.p.m), 

whereas solid media (agar) cultures (with high viscosity) would require fast-clinorotation (60-90 r.p.m). 

The clinorotation principle has been described as early as 1872, where plants were rotated 0.1 – 0.03 r.p.m 

(Newcombe, 1904), and has evolved to be an established scientific device for microgravity simulation. 

Today, different clinostat set-ups can carry various sample holders (petri-dish, slide-flask, pipettes, FEP-

bag, etc.), in both liquid or solid cultures (Brungs et al., 2015; Garschagen et al., 2019; Herranz et al., 2012; 

Liu et al., 2020). 

 

 Space radiation 

On Earth, the magnetic field, ozone layer and atmosphere protect humans from heavy radiation exposure, 

preventing damages to our cells and DNA. Beyond Earth and into the depths of space, the environment 

becomes extreme. With vacuum, extreme temperatures and high doses of different types of radiation, 

outer space is the most extreme environment to life as we know it (Horneck et al., 2006). In space, 

protection from radiation is hard to achieve, and so radiation is considered the most challenging factor for 

space exploration (Chancellor et al., 2014). There are different qualities of space radiation (Figure 1). Non-

ionizing Ultraviolet (UV) radiation can be divided into three types, depending on the wavelength: UV-A 

(315 - 400 nm) which is completely absorbed by the ozone layer and atmosphere; UV-B (280 - 315 nm) 

which is mostly absorbed by the ozone layer; and UV-C (100 – 280 nm) which is not absorbed by the ozone 

layer and is the most damaging for cells. Besides UV radiation, our sun naturally emits ionizing X-rays. 

When there are solar particle events (or solar flares) these emit high doses of X-rays, up to > 5000 μGy/h 

which are dangerous to the astronauts on board the ISS (Dachev et al., 2017). In addition, cosmic events 

such as supernova explosions or pulsars emit what is known as Galactic Cosmic Radiation (here termed 

cosmic rays). Cosmic rays consist mainly of protons (~87 %), helium (~12 %), and heavy ions (~1 %). The 

1% heavy ions are considered highly (H) charged (atomic number, Z) and energy (E) particles (HZE) such as 

Iron (Fe) ions (Horneck et al., 2010). Cosmic rays with charges higher than Z > 2 have energy high enough 

to pierce through space hardware shielding of 1 mm thick, and can pose a risk to organisms aboard 
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(Horneck et al., 2010). Solar flares, and cosmic events can also emit Gamma rays, which are high-energy, 

short-wavelength electromagnetic waves produced as a result of the disintegration of radioactive atomic 

nuclei and in decay of subatomic particles. In 2016, cosmic ray exposure on the ISS was registered as an 

average of 286 μGy/day (Berger et al., 2017). These doses increase dramatically if we are considering inter-

planetary travel. For instance, on a 360-day round-trip to Mars yields a dose of 0.66 ± 0.12 Gy (Zeitlin et 

al., 2013). It is important to note that acute radiation syndrome (followed by death) can be induced in 

humans at a dose of around 5 Gy (Cucinotta and Durante, 2006; Hellweg and Baumstark-Khan, 2007). 

Because UV-C greatly damages cells and biomolecules, monochromatic UV-C radiation (254 nm) is 

commonly used on Earth for food sterilization, in hospital surface disinfection (Corrêa et al., 2017; Santos 

and de Castro, 2021), or in microbiology laboratories, for instance, in safety cabinets where the UV lamp 

is used for around 15 min, reaching a UV dose of approximately 2000 J/m2 (Begum et al., 2009). Also X-

rays, gamma rays and electron-beam (e-beam) radiation have been extensively used in sterilization 

procedures of medical devices, pharmaceuticals and food (Harrell et al., 2018; Hasanain et al., 2014; 

Moosekian et al., 2012; Munir and Federighi, 2020; Ravindran and Jaiswal, 2019). Despite the damaging 

effects of radiation, many microorganisms are known to be able to resist outstandingly high doses. 

Microbial radiation exposure experiments can be done both outside of the ISS and on Earth, using ground 

facilities. For instance, the German Aerospace Center (DLR), in Cologne, has so-called planetary simulation 

facilities, as an official part of ESA’s space simulation platforms (Rabbow et al., 2016). Here, UV lamps and 

UV crosslinkers allow for easy and cost-effective exposure to monochromatic (e.g. 254 nm) or 

polychromatic UV radiation (200-400 nm). Also X-ray systems are commercially available and enable the 

application of targeted doses to biological samples. Both UV and X-ray exposure can be specified by 

adjusting the dose rate (measured using a dosimeter) and regulating the height between the radiation 

source and the sample (Moeller et al., 2007). Exposure to heavy ions can be achieved with a heavy ion 

accelerator (Moeller et al., 2008).  

 

 

Figure 1. Different types of radiation. Electromagnetic waves include infrared radiation, used in our microwaves and Wi-fi routers, 
and visible light (the colors of the rainbow) as well as UV, X-rays and Gamma rays. Space radiation can be defined as including UV, 
X-rays, Gamma rays as well as cosmic rays (i.e. charged particles). Non-ionizing UV radiation is measured in Joules per square 
meter (J/m2) whereas ionizing radiation (e.g. X-rays, Gamma rays and cosmic rays) are measured in Gray (Gy). 
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There are only few facilities in the world able to accelerate heavy ions, such as the Helmholtz Centre for 

Heavy Ion Research (GSI) in Darmstadt, Germany, or the Heavy Ion Medical Accelerator (HIMAC) Chiba, 

Japan (GSI, 2021; NIRS-HIMAC, 2021). Depending on the ion species, the linear energy transfer (LET, 

keV/μm) rate differs significantly. Different LETs deposit different amounts of energy in the biological 

sample, and thus cause different cellular damage (Moeller et al., 2010a). However, while exposure to 

individual types of radiation is relatively easy, exposure to multiple types of radiation simultaneously is 

very challenging. 

 

 Mars surface conditions 

Each planetary body, e.g. the Moon or Mars, has their own set of extreme environmental conditions, e.g. 

atmosphere (or lack thereof), gravity, and radiation exposure that will impact all living systems on it. Space 

agencies and private companies have joined efforts in human space exploration where Mars is one of the 

primary goals (SpaceX, 2021; Witze, 2020). However, with Mars being far from Earth (more specifically 

6.79 x 107 km away), and with crewed flight taking 6-8 months in one direction, one can say that traveling 

to the red planet is a challenging endeavor (Cucinotta et al., 2010). Once in the martian surface, the 

challenge continues. Undeniably, the martian surface is an extreme environment. It is highly desiccating, 

it has low atmospheric pressure (5 - 10 mbar) and extreme temperatures (-73 °C to 20 °C) (Barlow, 2008). 

The Mars atmosphere is composed mostly of carbon dioxide (96 % CO2, 1.9 % Ar, 1.9 % N2, 0.14 % O2, 

0.07% CO) (Mahaffy et al., 2013). Moreover, it’s thin atmosphere and weak magnetosphere (Acuña et al., 

2001) let through more radiation compared to what happens on Earth. Solar non-ionizing UV radiation 

(100 – 400 nm) fluence on the Mars equator is ∼5 mW/cm (Schuerger et al., 2003), and ionizing radiation 

can reach 225 μGy/day (Hassler et al., 2014). 

Regrettably, microbial exposure to the real Mars environment is not yet possible, and accurate and 

simultaneous multi-factorial Mars-like environmental simulations are hard to achieve. Nonetheless, some 

Mars simulation platforms allow for simultaneous exposure to multiple conditions. For instance, the Mars 

Environmental Simulation Chamber (MESCH) (Jensen et al., 2008), or the Space Environmental Chamber 

for Planetary Studies (Santos and de Castro, 2021; Ramachandran et al., 2020). There is also the Mars 

Simulation Facility (MSF) in DLR Berlin which exposed the fungus Cryomyces antarcticus (Zakharova et al., 

2014). What’s more, the Mars simulation chamber (MSC) has been used to expose different 

microorganisms, using elevated radiation and desiccation paired with low pressure and temperature 

alongside a Mars gas mixture  (Cortesão et al., 2019; Jensen et al., 2008; Motamedi et al., 2015; Schuerger 

et al., 2008). The MARTE vacuum chamber of the Center for Astrobiology (CAB), in Madrid, was reported 

to be able to simulate martian hydrological cycles (Sobrado et al., 2014; Sobrado, 2020). Besides, scientific 

balloons can also be used to expose microbes to simulated martian environment. These balloons can fly 

up to the Earth’s stratosphere, where temperature fluctuations and UV fluences are similar to those on 

Mars (Smith and Sowa, 2017). Moreover, combined Mars simulation experiments with real space radiation 

(i.e. outside the space station) have also been performed. For instance, the Biology and Mars Experiment 

(BIOMEX) experiments aboard the ISS combined real outer space radiation exposure with simulated Mars 

atmosphere and/or regolith, were a successful platform in space microbiology research (Aerts et al., 2020; 

Onofri et al., 2018). Moreover, the characterization of fungal isolates from terrestrial Mars-analog sites is 

also used to inform on how terrestrial microbes could survive in the martian environment. For instance, 
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characterization of microbes isolated from Mars analog habitats such as Antarctica (Van Ombergen et al., 

2021), or the Atacama Desert (Santiago et al., 2018). 

 

 Filamentous fungi on Earth and in Space  

Filamentous fungi are ubiquitous in the environment and can present themselves both as opportunities 

and as threats both on Earth and space habitats alike. On the one hand, they are indoor colonizers, food-

contaminators and opportunistic human pathogens (Brown et al., 2012). As an example, Aspergillus 

fumigatus causes 90 % of worldwide fungal infections, followed by Aspergillus flavus and A. niger 

(Bongomin et al., 2017), and the Leading International Fungal Education (LIFE) portal estimated the burden 

of serious fungal infections as over 5.7 billion people, i.e. over 80 % of the world’s population (Denning, 

2017). On the other hand, filamentous fungi such A. niger play a major role in modern-day biotechnology, 

producing a wide-range of valuable compounds (e.g. food, enzymes, antibiotics, etc.), and will likely play 

an essential role in establishing a circular bioeconomy, both on Earth and in Space (Cortesão et al., 2020; 

Meyer et al., 2011, 2020).  

The modern built environment creates unique habitats that are ideal for the survival and interaction of 

microbial communities, with no exception for fungi. Fungal contaminations are commonly found in 

airplane fuel tanks, hospital air-filtration systems and surgical instruments (Caggiano et al., 2014; 

McNamara et al., 2005), as well as on the International Space Station. In fact, fungi have been found on 

several areas of the ISS: windows, walls, water recycling and air-filtration systems (Checinska et al., 2015; 

Sielaff et al., 2019; Novikova et al., 2006)(Figure 2). There is a notorious picture of mold fungi growing on 

the wall of the ISS, where astronauts would hang their sport-clothes to dry (Figure 2). The sweat, i.e. water 

full of nutrients, would condensate on the wall and, coupled with controlled humidity and temperature 

created the perfect environment for fungal growth. Analysis of ISS bioaerosols have detected fungal spores 

(Haines et al., 2019), and fungi have also been found as part of the astronaut microbiome (Satoh et al., 

2021). Filamentous fungi have been found colonizing diverse surfaces aboard the ISS and in spacecraft-

assembly clean rooms on Earth (Novikova et al., 2006; Regberg et al., 2020; Satoh et al., 2016). Surface 

colonization is particularly challenging, since it can lead to material biodegradation. In fact, the fungus P. 

rubens was found responsible for degradation of surfaces in the Mir station (Klintworth et al., 1999). A 

detailed review on fungi in space stations Mir and ISS, with a special focus on the risk of mycotoxin 

exposure in space habitats is provided by (De Middeleer et al., 2019).  
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 Aspergillus niger as a model fungus for space microbiology 

Aspergillus niger is an industrially and medically relevant filamentous fungus (Ascomycete). The industrial 

wild-type industrial A. niger strain N402 (ATCC 64974), has a genome with 35.57 Mb, 49.6 % GC content, 

8 chromosomes and more than 11,000 genes (Pel et al., 2007). Searching for A. niger related literature in 

PubMed reveals more than 10.000 entries (PubMed-NCBI, 2021). A. niger has highly pigmented and 

resistant spores which are airborne and can easily colonize different habitats, foods and animals. It is also 

a human opportunistic pathogen, and inhalation of its spores can cause invasive pulmonary aspergillosis 

and ear infections in immunocompromised humans (Person et al., 2010; Schuster et al., 2002). A. niger 

has been found as a common isolate of the Mir space station and ISS microbiota, and was also found in 

intensely sterilized spacecraft assembly facilities (Be et al., 2017; Checinska et al., 2015; Makimura et al., 

2001; Venkateswaran et al., 2014). A. niger spores are of particular interest for space microbiology since 

they can potentially endure space travel and impact planetary protection policies. Its surface-associated 

colony growth and biofilm formation is also of interest to space habitats, since they impact both spacecraft 

surface integrity and life-support systems (Ramage et al., 2011). Moreover, A. niger can be cultivated over 

a wide range of conditions: temperature (10 – 50 °C), pH (2 – 11), salinity (0 – 34 %) and water activity (0.6 

– 1 aw), as well as under nutrient-poor or nutrient-rich conditions (Meyer et al., 2011). When grown in 

solid-media static and aerial conditions, A. niger colonies are considered analogs to lung-infection biofilms 

and to surface-associated contaminations (Beauvais et al., 2014). When grown in liquid-media submerged 

conditions, A. niger forms dispersed or pelleted macromorphological units that can be used as production 

and secretion system of valuable biotechnological compounds (Cairns et al., 2019; Meyer et al., 2011). 

With a well-annotated genome sequenced in 2007 (Pel et al., 2007) and well established advanced genetic 

engineering and system biology tools, such as a high-quality transcriptomic database (Schäpe et al., 2019), 

A. niger is as an established model system for biotechnology, and microbiology (Cairns et al., 2018; Geib 

Figure 2. On the left, fungal growth on a panel wall of the ISS. On the right, a simplified scheme of connected life support 
systems of the ISS living environment. Credit: NASA 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

10 

and Brock, 2017; Schuetze and Meyer, 2017). Currently, A. niger is used in industrial scale citric acid 

biosynthesis with submerged fermentation techniques (Behera, 2020; Currie, 1917; Tong et al., 2019). 

Citric acid is extensively used in different areas of our daily life, from food industry (e.g. as acidulate, pH 

adjuster, flavoring agent, antioxidant additive, or ice-cream emulsifier) to cosmetic and industrial 

applications (e.g. as a metal ion chelating agent) (He et al., 2018; Lee and Arepally, 2012; Soccol et al., 

2006). Indeed, as a key-player in modern-day biotechnology on Earth, A. niger will likely play an important 

role in fungal-based biotechnology in space. Astronauts settled in space habitats (e.g. Moon or Mars) will 

require resource-independence from Earth, and filamentous fungi, such as A. niger can be valuable 

companions in the production of needed compounds such as pharmaceuticals (Cortesão et al., 2020). As 

a Eukaryote, A. niger´s molecular machinery is closely related to that of plants and humans (i.e., in 

comparison to bacteria, or archaea). This facilitates not only the utilization of A. niger has a valuable 

eukaryotic expression system, but also facilitates the transfer of knowledge concerning molecular 

mechanisms behind the adaptation and resistance to extreme terrestrial and extraterrestrial 

environments to eukaryotic systems.  

 

 Fungal stress resistance mechanisms  

Understanding how fungi adapt and resist to terrestrial extremes will help us understand how they could 

resist and adapt to environmental conditions beyond Earth, in particular to the most challenging ones such 

as radiation. However, compared with other microbes (e.g. Escherichia coli or Bacillus subtilis) or with 

humans, the filamentous fungi stress response is not yet deeply characterized. Overall, when exposed to 

stress conditions cells have two main lines of defense: damage prevention and damage repair. When these 

lines of defense fail, and damage is too great, cells can enter cell-cycle arrest (apoptosis) (Goldman et al., 

2002). Damage prevention is mostly dependent on stress response, with a particular focus on the cell wall. 

Damage repair is mostly dependent on the DNA damage response (DDR), with a focus on DNA repair.  

Stress response in fungi is complex and depends on pathway cross-communication. In sum, stress sensors 

activate the Mitogen-activated protein kinase (MAPK) cascades, i.e. signalling pathways that include the 

Cell Wall Integrity (CWI) pathway, the High Osmolality-Glycerol (HOG) pathway and the Pheromone 

module pathway (Hagiwara et al., 2016) (Figure 3). These MAPK pathways are believed to cross-

communicate with other pathways such as oxidative stress pathway, the calcium-responsive pathway and 

likely also DNA damage response (or DNA repair) (de Castro et al., 2019; Fuchs and Mylonakis, 2009). 

MAPK allows fungal adaptation to a wide range of stress conditions, from osmotic stress, to cell wall stress, 

development, secondary metabolite production, and spore stress resistance (Hagiwara et al., 2016). 

Interestingly, a relation between oxidative stress and secondary metabolism has been suggested in 

filamentous fungi (Montibus et al., 2015), and possibly also between osmotic stress and secondary 

metabolism (Duran et al., 2010) (Figure 3). The pheromone module pathway is implicated in the regulation 

of fungal development, secondary metabolism and pathogenicity (Frawley and Bayram, 2020).  
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Since damage typically acts first on the cell wall, one of the most important pathways in stress response is 

the CWI signaling pathway (Valiante et al., 2015). The fungal cell wall is essential for growth and for 

resisting environmental stresses, such that cell wall is a common target for antifungal drugs. Overall, A. 

niger’s cell wall is rich in chitin 10 – 15 % and α-1,3-glucan (10 – 35 %)(Figure4). Fibrillar polysaccharides 

such as chitin and β-1,3-glucan are essential in the cell wall construction and good antifungal targets. 

Amorphous polysaccharides like α-1,3-glucans, although not essential, have adhesive properties and 

stabilize the cell wall (Beauvais et al., 2014; Latgé, 2017). Remarkably, the fungal cell wall should be seen 

as flexible rather than a fixed component. It undergoes many changes from resting spore, to swollen spore, 

to germling, to hyphae (Figure 5). Indeed, the spore cell wall is different from the hyphal cell wall (Figure 

4), the main difference being the outer layer (Garcia-Rubio et al., 2020) (Figure 4). The outer layer of the 

hyphal cell wall contains galactosaminogalactan – an important virulence factor (Beauvais et al., 2014); 

whereas the outer layer of spores is composed of hydrophobin rodlets and pigments (e.g. melanin) that 

confer hydrophobic properties and prevent immune recognition - spores being the infective morphotype. 

Indeed, both RodA (hydrophobin) and melanin are known key-players in fungal virulence. Melanin, in 

particular, is associated with reduced susception to antifungal drugs, and is known to have a strong anti-

phagocitic function (Cordero and Casadevall, 2017; Latgé, 2017). 

Different fungal morphotypes (spore, germling and hyphae) have different cellular characteristics and thus 

different stress responses (Figure 5). Fungal spores are highly resistant structures able to withstand a wide-

range of extreme conditions. They have been known to resist harsh conditions, such as heat, low water 

Figure 3. Stress response in the genus Aspergilus. Multiple signaling pathways contribute to an efficient stress response. There 
are three main pathways via the MAPK cascade: the Pheromone module pathway; the Cell Wall Integrity pathway, and the 
High Osmolality Glycerol pathway. These cross-communicate with other pathways, such as oxidative stress, DNA repair, 
calcium-responsive and cell-cycle arrest (Valiante et al., 2015, Fuchs and Mylonakis 2009; Braga et al., 2015; Hagiwara et al., 
2016; de Castro et al., 2019; Frawley and Bayram 2020; Zhang et al., 2020). 
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activity as well as house-cleaning products, food-sterilization, and antifungal treatments (Esbelin et al., 

2013; Segers et al., 2018; Singaravelan et al., 2008; Tribst et al., 2009).  The high resistance of fungal spores 

is due to two main properties: the cell wall structure and its inner molecules.  

Firstly, the spore’s structure in itself - a multi-layered cell wall, with rodlet, pigment, cell wall, cell 

membrane (Figure 4), that helps to physically prevent the damage from reaching the most important 

molecule – the DNA. Moreover, CWI pathway plays a key role in remodeling and dealing with damage to 

the cell wall, especially upon revival after stress exposure (i.e. germination) (Figure 5). Response to cell 

wall stress in A. niger activates transcription of cell wall reinforcing genes and requires at least three known 

transcription factors (RmlA, MsnA and CrzA) (Damveld et al., 2005). Moreover, in A. niger cell wall stress 

normally responds with an increased production of chitin through RlmA transcription factor that regulates 

the expression of genes agsA and gfaA, responsible for chitin synthesis (Fiedler et al., 2014; Latgé, 2017). 

Particularly important with regards to resisting space radiation are the pigments in the spore cell wall. 

Melanins are composed of indole- and phenol-type compounds that result in an insoluble and acid 

resistant material. They are able to adsorb all UV, visible and infrared radiation and are have also been 

reported to adsorb X-rays and Gamma rays (Casadevall et al., 2017). Indeed, melanotic fungi are commonly 

found in extreme environments such as Antarctic or Chernobyl. Some fungi are even able to harvest 

electromagnetic radiation and transduce this radiation into forms of energy (i.e. radiosynthesis or 

radiation-induced growth), suggesting the ability of melanotic fungi to be autotrophs (Casadevall et al., 

2017). In filamentous fungi there are two different pathways for melanin production: Polyketide 1,8-

dihydroxynaphthalene (DHN) and 3,4-dihydroxyphenylalanine (L-DOPA) (Eisenman and Casadevall, 2012). 

In A. niger the DHN-melanin pigment has not been identified so far (Pombeiro-Sponchiado, 2017), and 

only three DHN-melanin gene orthologs (namely fwnA, olvA and brnA) seem to be present, in comparison 

to other DHN-melanin producing fungi (such as P. rubens and A. fumigatus) (Guzmán-Chávez et al., 2018; 

Jørgensen et al., 2011; Perez-Cuesta et al., 2020). A. niger strains with a deletion of fwnA, and thus 

defective in a polyketide synthase (PKS) present light-brown pigmentation, while disruptions of the 

ortholog gene alb1 in A. fumigatus have led to a white phenotype (Jørgensen et al., 2011; Perez-Cuesta et 

al., 2020). White A. niger strains have only been found after disruption of the pptA gene, regulating PKS 

and Non-Ribosomal-Pepetide Synthase (NRPS) enzymes. This suggests a more complex pigment synthesis 

in A. niger, with the likely synthesis of another pigment of either of polyketide or non-ribosomal peptide 

nature, that is responsible for the residual fawn color of ΔfwnA strains (Jørgensen et al., 2011).  

Secondly, the spore counts with valuable inner molecules, such as antioxidants and compatible solutes 

that help to adapt to stress conditions (Figure 5). Accumulation of trehalose and mannitol – compatible 

solutes that act as protective molecules by creating high cytoplasmic viscosity – is facilitated by the spore’s 

dormancy and minimal metabolic activity (Dijksterhuis et al., 2007; Thammahong et al., 2017). Compatible 

solutes were involved in heat resistance of Penicillium roqueforti (Punt et al., 2020) and in extreme water 

deprivation in Aspergillus sydowii (Jiménez-Gómez et al., 2020). Moreover, studies with Aspergillus wentii 

have identified compatible solutes as key-molecules to extend the biotic window, i.e. to extend the 

environmental limits where life is possible (Alves et al., 2015). In addition, a fungal spore-specific catalase 

(CatA) has been identified in A. fumigatus as an important molecule in oxidative stress response as a 

scavenger of hydrogen peroxide (H2O2) (Paris et al., 2003). 
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Radiation is the most limiting factor for space exploration, and, like other stressors, it acts first on cell wall. 

However, if damage cannot be prevented it will reach the DNA and threaten genomic integrity. Thus, an 

efficient DNA damage response that activates several DNA repair mechanisms and ensures genomic 

integrity is crucial for radiation-resistance. Radiation damage can be direct, e.g. DNA lesions, and lesions 

to the proteins, and lipids; or indirect, e.g. generated by reactive oxygen species (ROS), which can cause 

oxidative stress within cells (Hayyan et al., 2016; Horneck et al., 2006). Compared with prokaryotes and 

humans, DNA damage response in filamentous fungi is not well understood. Nevertheless, studies with 

Neurospora crassa (Inoue, 1999, 2011), Aspergillus fumigatus (Hartmann et al., 2011), Aspergillus nidulans 

(Goldman and Kafer, 2004) have been unravelling the mechanisms behind genome integrity and DNA 

repair.  Different qualities of radiation affect the cell and the DNA in different ways, and therefore activate 

different DNA repair mechanisms. For instance, UV radiation induces mainly DNA photolesions such as 

cyclobutane pyrimidine dimers (CPDs) and 6-4 pyrimidine-pyrrolidine (Goldman et al., 2002). Indeed, 

photoreactivation via a DNA photolyase has been found to be one of the main pathways for DNA repair in 

filamentous fungi (Goldman et al., 2002). Nucleotide excision repair (NER) is also known to be the mostly 

used repair mechanism to deal with UV-induced single-strand breaks (or SSBs) (Goldman et al., 2002).   

In contrast, ionizing radiation mainly causes double-strand breaks (or DSBs). Here, there are two main 

repair pathways for dealing with double-strand breaks: Non-Homologous End Joining (NHEJ) and 

Homologous Recombination (HR). NHEJ is highly efficient, although error-prone, in filamentous fungi such 

as A. niger. In fact, in the production of new strains it was found that removing NHEJ-repair capabilities 

results in a higher efficiency of gene targeting through homologous integration (Meyer et al., 2007). 

Interestingly, one key difference between bacterial and fungal DNA damage response was found to be 

based on the fact that multinucleated hyphae and multiple genome copies can facilitate the repair of DNA 

lesions (Goldman et al., 2002). Here, DNA damage checkpoints can enable cell-cycle arrest, and advice the 

Figure 4. Differences between A. niger hyphae and spore cell wall. The outer layer of the hyphal cell wall contains 
galactosaminogalactan – an important virulence factor in A. fumigatus whereas the outer layer of conidia is composed of 
hydrophobin rodlets and pigments (e.g. melanin). Pigments are also important virulence factors and key-players in spore 
resistance (Beauvais et al., 2014; Latgé, 2017). 
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cell to enter facilitated cell death (or apoptosis). What’s more, a difference between radiation resistance 

of aseptate and septate hyphae has also been identified, where septate hyphae can compartmentalize 

damage and better ensure genomic integrity (Goldman et al., 2002). Recently, studies with A. fumigatus 

propose that the protein DefA - required for proper fungal growth and development - plays a crucial role 

in protecting hyphae against DNA damage stresses. The study suggests that the velvet protein VeA – a 

transcriptional regulator involved in sporulation that has a DNA-binding motif – controls levels of DefA and 

therefore proposes a VeA-DefA mediation of DNA damage response in A. fumigatus spores (Shin et al., 

2016). How soon after exposure to stress conditions the different types of damage are repaired, i.e. 

whether upon spore revival (germination) or if only in hyphal growth, is not yet known (Baltussen et al., 

2020). Studies with A. fumigatus have identified the fungal‐specific histone acetyltransferase Rtt109 as 

being involved in DNA damage response; however, the connection of Rtt109 with spore germination was 

discarded (Zhang et al., 2020).  

Overall, the ability of filamentous fungi such as A. niger to withstand and adapt to various stress conditions 

is a complex process, and interconnects many physiological and molecular properties. Although there is 

still much to learn when it comes to stress response and DNA repair in Aspergilli, fungal pathogenicity and 

stress resistance are undoubtfully interconnected (Abad et al., 2010; Brown and Goldman, 2016; 

Hartmann et al., 2011). 

 

 

 

 

Figure 5. Aspergillus morphotypes and their main stress response properties. Spores resistance is highly dependent on the multi-
layered cell wall, in particular the outer layer (with hydrophobins and pigments), as well as and inner molecules (such as 
antioxidants and compatible solutes); Upon spore revival, the germling stress reponse involves efficient DNA repair, likely 
through an initial approach via DNA photolyase, as well as a coordinated DNA damage response through action of DNA-binding 
proteins and efficient cell wall remodeling. Later on, hyphae count with efficient DNA repair mechanisms (BER, NER, HR and 
NHEJ) as well as DNA damage checkpoints that can advise the cell to arrest its cycle and possibly entering apoptosis (Baltussen 
et al., 2020; Shin et al., 2016; Zhang et al., 2020). 
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 Real and simulated space experiments with filamentous fungi  

Currently, the best way to expose microorganisms to the space environment is to have space experiments 

aboard the ISS. These space experiments can be set either on the outside of the space station (i.e. testing 

the outer space environment with high doses of radiation, vacuum, and extreme temperatures), or on the 

inside the space station, i.e. testing the spaceflight microgravity, low dose radiation and controlled 

temperatures. Alternatively, space experiments can also take advantage of outer space to test 

microorganism survival to Lunar or Mars-simulated conditions. However, given space experiments have 

many limitations, many ground-based simulations platforms have been used to test microbial adaptation 

to space conditions (Rabbow et al., 2016). Table 1 presents a summary of real and simulated space 

experiments with filamentous fungi.  

So far, most studies conducted on microbial viability to space radiation have been performed with 

bacterial spores (Moeller et al., 2014; Nicholson et al., 2012; Wassmann et al., 2010; Zammuto et al., 2018). 

In fact, the effect of different types of radiation in B. subtilis spores was tested already in Apollo 16, 

Spacelab 1, and D2 missions (Bucker and Horneck, 1975; Facius et al., 1979; Horneck et al., 1974, 1994). 

However, while knowledge of bacterial spore resistance mechanisms is extensive (Setlow, 2014), 

knowledge on fungal spore survival to extreme conditions is rather scarce. Early studies tested A. niger 

spore survival to ultra-high vacuum and solar radiation and hinted the high resistance of fungal spores 

where dried spore monolayers registered 24 % survival after exposure to ∼16 kJ m−2 of UVB (280 – 320 

nm)(Silverman et al., 1967). A later study tested Penicillium sp. and Aspergillus sp. spore resistance to 

gamma and e-beam radiation and revealed survival to high doses of radiation (Blank and Corrigan, 1995). 

Moreover a study that exposed Penicillium expansum to the outside of the spacecraft for 7 months, 

revealed morphological changes such as the increase of polysaccharide capsule and melanin layer in P. 

expansum (Dadachova and Casadevall, 2008). Recently, ESA space microbiology missions EXPOSE, EXPOSE-

R and EXPOSE-R2 exposed several microorganisms, including fungi, to the outside of the ISS in low Earth 

orbit, testing microbial survival to different outer space and Mars-simulated conditions (Rabbow et al., 

2009, 2015, 2017).  

To date, there are no studies on the best microgravity simulation method for filamentous fungi, however, 

several experiments with filamentous fungi have tested different methods. Cortesão et al., 2020 provide 

an historical review on the development of fungal experiments in the space environment, and the 

platforms used to expose the test organisms to both simulated and real microgravity. Overall, liquid 

cultures of A. niger and P. rubens (formerly P. chrysogenum) in HARV, at a rotation speed of 25 r.p.m., 

found no significant changes in spore germination, mycelium growth or cell wall integrity (Sathishkumar 

et al., 2014). Further studies with HARV found changes in P. rubens transcriptome of cell wall ABC 

transporter as well as increase in isopenicillin N Acyltransferase under low shear modeled microgravity 

(Sathishkumar et al., 2016). Further studies that tested the growth of Aspergillus carbonarius in solid, static 

and aerial conditions under simulated microgravity by slow-clinorotation of 20 r.p.m., revealed no changes 

in cell growth or colony appearance, but showed an increase in organic acids (e.g. oxalic acid and citric 

acid) and changes in metabolite transportation (Jiang et al., 2019). A study exposing A. niger to simulated 

microgravity using the RPM (also known as 3-D clinostat) revealed no differences in morphology, growth 

or susceptibility to antifungal agents (Yamazaki et al., 2012).  Further investigations on morphology and 

antifungal susceptibility of ISS isolate strains of the fungi Penicillium sp., Aspergillus sp. and Cladosporium 

sp. found no significant differences to ground strains (Satoh et al., 2016). Additional studies with A. niger 
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investigating changes in proteome showed that the ISS isolate had increased abundance of proteins 

involved in starvation response, oxidative stress, cell wall modulation and nutrient acquisition (Romsdahl 

et al., 2018). A follow-up study with the same strain, revealed enhanced production levels of 

therapeutically relevant secondary metabolites in the ISS isolate (Romsdahl et al., 2020). Another two 

studies with A. fumigatus revealed but found increased virulence, and increased abundance in proteins 

involved in stress responses, carbohydrate and secondary metabolism in ISS isolates (Knox et al., 2016; 

Blachowicz et al 2019a). In addition, A. nidulans colony growth on solid media (agar) aboard the ISS for 4-

7 days, identified changes in secondary metabolite production (Romsdahl et al., 2019). Investigations with 

a Fusarium oxyporum ISS isolate compared with ground strains revealed potential changes in virulence 

(Urbaniak et al., 2019). Research on Ulocladium chartarum colony growth aboard the ISS, exposed to both 

spaceflight microgravity and to ionizing radiation doses of 150 µGy, revealed reduced growth rate of aerial 

mycelium (Gomoiu et al., 2013). Exposure of the yeast Saccharomyces cerevisiae to real microgravity 

reported random budding patterns, reduced invasive filamentous growth and up-regulation of proteins 

related to anaerobic conditions (Van Mulders et al., 2011).  

When investigating microbial adaptation to Mars surface conditions, there has been extensive studies on 

bacterial spores (Cortesão et al., 2019; Newcombe et al., 2005; Schuerger et al., 2003). Despite relevance 

of fungal spore resistance to space and Mars conditions due to planetary protection measures and 

potential for space biotechnology, few studies have addressed filamentous fungi resistance to Mars 

surface conditions. Previous studies investigated the survival of A. niger and B. subtilis spores in dark (non 

UV-irradiated) extreme conditions of the Atacama Desert up to 15 months (Mars analog), where A. niger 

spores were more resistant than B. subtilis spores (30 % versus 15 % survival)(Dose et al., 2001). Another 

study using a stratospheric balloon as a Mars-analog investigated the survival of pigmented spores of the 

fungus Fuligo spectica, showed that spores were viable after 9 h (Díez et al., 2020). In addition, the Lichens 

and Fungi Experiment (LIFE) on EXPOSE-E mission and later the BIOMEX experiment on EXPOSE-R2 

mission, have exposed the highly melanized fungus Cryomyces antarcticus aboard the ISS (de Vera et al., 

2019). This fungus was isolated from cryptoendolithic microbial communities in the McMurdo Dry Valleys 

in Antarctica, and has been exposed to several astrobiology and space microbiology related experiments, 

from simulated Mars conditions aboard the International space station (de Vera et al., 2019; Onofri et al., 

2008, 2012; Selbmann et al., 2018) to high doses of space radiation (Pacelli et al., 2017; Selbmann et al., 

2018), as well as to accelerated helium ions combined within Mars regolith (Pacelli et al., 2020).  Recently, 

a study investigated the proteome and metabolome of twelve fungal strains isolated from Chernobyl, and 

one A. fumigatus strain isolated from the ISS after exposure to Mars conditions and UV-C irradiation. Here, 

A. fumigatus was shown to survive for 30 min in the Mars-simulated environment, and to have 20 % 

survival after exposure to 4000 J/m2 (Blachowicz, et al., 2019b). Besides, fungal diversity has been studied 

in Mars analog sites such as the Atacama Desert (Santiago et al., 2018), and rock-associated fungi from 

Atacama and Antarctic are being tested for their bioactive compounds and potential human pathogenicity 

(Gonçalves et al., 2016, 2017). Interestingly, studies with Aspergillus penicillioides have shown its ability to 

tolerate extremely low water activity (aw = 0.585), which challenges the limits to life in extraterrestrial 

environments such as Mars (Stevenson et al., 2017).   
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Table 1. Real and simulated space experiments with filamentous fungi 

Fungus Space Condition Exposure R/S Effect of space condition Reference 

Aspergillus niger     

 

Microgravity HARV, Liquid 

culture 

S No changes in stress response  (Sathishkumar et 

al., 2014) 

 

Microgravity, 

Radiation 

ISS isolate R Enhanced production of naphto-

Y-pyrones and secondary 

metabolites (pyranonigrin) 

(Romsdahl et al., 

2020) 

 

Microgravity  S No differences in morphology, 

growth asexual development or 

antifungal susceptibility 

(Yamazaki et al., 

2012) 

 

Cosmic rays 

Gamma rays 

Spore 

suspensions  

S Survival LD90 = 0.245 kGy, 

Survival LD90 = 0.199 kGy 

(Blank and Corrigan, 

1995) 

 

UV-B radiation Dried spores S 24 % survival to 1.6 kJ/m2 (Silverman et al., 

1967) 

 

Microgravity and 

Radiation 

ISS R No changes in spore viability (Gomoiu et al., 

2013) 

Aspergillus nidulans     

 

Microgravity, 

Radiation 

ISS  R Changes in stress response and 

secondary metabolites 

(Romsdahl et al., 

2019) 

 

UV-B Spore 

suspensions  

S 0.04 CPDs per 10 kb at a dose of  

900 J/m2  

(Nascimento et al., 

2010) 

Aspergillus fumigatus     

 

Microgravity, 

Radiation 

ISS isolate R Enhanced growth, increased 

virulence.  

(Knox et al., 2016) 

 

Microgravity, 

Radiation 

ISS isolate R Increased abundance in proteins 

involved in stress responses, 

carbohydrate and secondary 

metabolism 

(Blachowicz et al., 

2019a) 

 

UV-B Spore 

suspensions 

S 1.62 CPDs per 10 kb at a dose of 

5400 J/m2 

(Nascimento et al., 

2010) 

 

Mars 

UV-C 

ISS isolate, 

Dried Spores, 

MSC  

S Survive mars-like conditions for 

30 min, 20 % spore survival at 

4000 J/m2 

(Blachowicz et al., 

2019b) 

Aspergillus carbonarius     

 

Microgravity Clinostat, 

Solid media, 

20 r.p.m.  

S No effect in cell or colony 

growth, but increased organic 

acid production 

(Jiang et al., 2019) 

Penicillium rubens (formerly P. chrysogenum)    

 

Microgravity HARV, Liquid 

culture 

S Changes in cell wall; Increased 

expression of Acyl-coenzyme: 

isopenicillin N acyltransferase 

(Sathishkumar et 

al., 2016) 

 

Microgravity HARV, Liquid 

culture 

S Number of mitochondria 

increase 

(Sathishkumar et 

al., 2014) 

 

Microgravity and 

Radiation 

ISS isolate R No changes in morphology or 

antifungal susceptibility 

(Satoh et al., 2016) 

      



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

18 

Table 1.(Continuation) 

Fungus Space Condition Exposure R/S Effect of space condition Reference 

Penicillium expansum     

 

Microgravity 

and Radiation 

ISS, outside R Increase of polysaccharide capsule 

and melanin layer 

(Dadachova and 

Casadevall, 2008) 

Fusariun oxysporum     

 

Microgravity 

and Radiation 

ISS isolate R Higher abundance of polyketide 

synthase domains 

(Urbaniak et al., 

2019) 

Cryomyces antarcticus     

 

Microgravity, 

Space Radiation, 

Mars 

EXPOSE-E, 

EXPOSE-R2 

R/S 12 % survival to full outer space, 

including cold, ionizing and UV 

radiation up to 900 kJ 

(de Vera et al., 

2019; Onofri et 

al., 2012, 2018) 

 

X-rays, UV, 

Cosmic Rays  

Commercial 

radiation 

sources 

S Melanin protection at 300 Gy X-rays 

and at 1.5 kGy Deuterons (heavy 

hydrogen) 

(Pacelli et al., 

2017, 2018, 2019; 

Selbmann et al., 

2018) 

 

Cosmic rays (He-

ions) with Mars 

regolith 

Dried 

colonies 

R, S Survival up to 1 kGy, preservation of 

DNA and melanin – still detectable 

after exposure (biosignatures) 

(Pacelli et al., 

2019, 2020) 

Neurospora crassa     

 

X-rays  

Cosmic Rays  

Commercial 

radiation 

sources 

S NHEJ-deficiency led to differences in 

survival between X-ray and heavy 

ions (Ar and Fe) 

(Ma et al., 2018) 

Ulocladium chartarum     

 

Microgravity 

Radiation 

ISS, Solid 

media 

R Formation of microcolonies, changes 

in colony growth, no changes in spore 

viability 

(Gomoiu et al., 

2013, 2016) 

Saccharomyces cerevisiae     

 

Microgravity 

Radiation 

Soyus and 

ISS 

R Up-regulation of proteins linked to 

anaerobic conditions; random 

budding patterns; reduced invasive 

growth  

(Van Mulders et 

al., 2011) 

Sordaria macrospora      

 

Microgravity Clinostat, 4 

r.p.m. 

S Changes in crossover (Henkel and Hock, 

1991) 

 

Microgravity Space 

Shuttle and 

Mir 

R No changes in crossing‐over 

frequencies under microgravity. 

Increase gene recombination 

frequencies under heavy ion radiation 

(Hahn and Hock, 

1999) 

Knufia chersonesos     

 

Microgavity HARV S No changes in morphology, 

upregulation of enzyme involved in 

the synthesis of (DNH) melanin 

 

(Tesei et al., 2021) 

R/S = Real (R) or Simulated (S); HARV = High Aspect Ration Vessel; ISS = International Space Staion; UV = Ultraviolet Radiation. 

LD90 = dose at which there is 90 % spore inactivation CPDs = cyclobutane pyrimidine dimers. r.p.m = revolutions per minute; 

MSC = Mars Simulation Chamber. 
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 Objective 

Despite the relevance to future space exploration endeavors, in particular in crewed long-term missions, 

the limits of fungal spore resistance to both spaceflight and Mars-like conditions are not yet known. 

Moreover, how fungal growth and biofilm formation can impact spacecraft safety and astronaut health is 

also not well understood. Thus, within the framework of this thesis, the industrial A. niger strain N402 

ATCC 64974 was used as model organism to study the effects of space radiation and simulated martian 

environment in spore survival; and to investigate the effect of simulated microgravity in colony growth 

and biofilm formation. Additionally, in the scope of this doctoral thesis, the filamentous fungus P. rubens 

DSM 1075 (previously known as P. chrysogenum) was used as a model organism for the design and 

establishment of a space microbiology experiment aboard the International Space Station. This thesis is 

divided in four main chapters, each answers the following scientific questions: 

1. Can A. niger spores tolerate different types of space radiation? How does spore pigmentation 

affect survival?  

Relevant publication: Cortesão, M., de Haas, A., Unterbusch, R., Fujimori, A., Schuetze, T., Meyer, 

v., and Moeller, R. (2020) Aspergillus niger spores are highly resistant to space radiation. Frontiers 

in Microbiology. 11:560  

2. Does the martian-like environment affect the viability of A. niger spores? How does self-shielding 

(spore multilayer) impact survival? 

Relevant publication: Cortesão, M. and Siems, K., Koch, S., Beblo-Vranesevic, K., Rabbow, E., 

Berger, T., Lane, M., James, L., Johnson, P., Waters, S.M, Verma, S.D., Smith, D.J., and Moeller, R 

(2021). MARSBOx: Fungal and bacterial endurance from a balloon-flown analog mission in the 

stratosphere. Frontiers in Microbiology. 12:601713. 

3. How does simulated microgravity affect colony ultrastructure and spore vitality of A. niger when 

grown in static, aerial conditions? Is FwnA-derived pigmentation involved in adaptation to 

microgravity? 

Relevant publication: Cortesão, M., Holland, G. Laue, M., Schuetze, T., Moeller, R and Meyer, V. 

Growth and biofilm formation of Aspergillus niger under simulated microgravity, npj Microgravity 

(submitted: NPJMGRAV-00634) 

4. Which experimental design can be established to test biofilm formation of P. rubens in a real 

spaceflight biofilm experiment aboard the ISS? 

Relevant publications: Zea, L., Nisar, Z., Rubin, P., Cortesao, M., Luo, J., McBride, S., Moeller, R., 

Klaus, D., Mueller, D., Varanasi, K., Mücklich, F., Stodieck L. “Design of a spaceflight biofilm 

experiment”. Acta Astronautica 148, 294-300, 2018.  

Cortesao, M., Rubin, P., Luo, J., Hellweg, C.E., Stodieck L. Mücklich, F., Klaus, D., Moeller, R., and 

Zea, L. “Controlling spaceflight fungal biofilms: the search for antimicrobial surfaces”. 

International Astronautical Congress (IAC) 2018  

  



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

20 

 Chapter I: Aspergillus niger spores are highly resistant to space radiation  

 

Publication 

Cortesão, M., de Haas, A., Unterbusch, R., Fujimori, A., Schuetze, T., Meyer, v., and Moeller, R. (2020) 

Aspergillus niger spores are highly resistant to space radiation. Frontiers in Microbiology. 11:560 doi: 

10.3389/fmicb.2020.00560 

 

Author contribution 

Planning: 80 %, Experiment: 50 %, Manuscript: 75 % 

MC, AH, and RU performed the experiments, analyzed the data, and wrote the manuscript. VM, TS, RM, 

and AF contributed to the conception and design of the study, and manuscript preparation. 

 

 

https://www.frontiersin.org/articles/10.3389/fmicb.2020.00560/full
https://www.frontiersin.org/articles/10.3389/fmicb.2020.00560/full
https://www.frontiersin.org/articles/10.3389/fmicb.2020.00560/full
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 Chapter II: MARSBOx: Bacterial and fungal endurance from a balloon-flown 

analog mission in the stratosphere 

 

Publication 

Cortesão, M. and Siems, K., Koch, S., Beblo-Vranesevic, K., Rabbow, E., Berger, T., Lane, M., James, L., 

Johnson, P., Waters, S.M, Verma, S.D., Smith, D.J., and Moeller, R (2021). MARSBOx: Fungal and bacterial 

endurance from a balloon-flown analog mission in the stratosphere. Frontiers in Microbiology. 

12:601713. 

 

Author contribution 

Planning: 30 %, Experiment: 50 %, Manuscript: 50 % 

MC, KS, SK, and KB-V performed the microbial experiments, analyzed the data, and wrote the 

manuscript. DS, SW, SV, ER, and RM contributed to the conception and design of the study, data analyses 

and manuscript preparation. DS, ML, LJ, and PJ prepared and performed the balloon flight mission and 

contributed to manuscript preparation. TB contributed with the M-42 experiment and manuscript 

preparation. All authors contributed to the article and approved the submitted version. 

 

https://www.frontiersin.org/articles/10.3389/fmicb.2021.601713/full
https://www.frontiersin.org/articles/10.3389/fmicb.2021.601713/full
https://www.frontiersin.org/articles/10.3389/fmicb.2021.601713/full
https://www.frontiersin.org/articles/10.3389/fmicb.2021.601713/full
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 Chapter III: Colony growth and biofilm formation of Aspergillus niger under 

simulated microgravity 

 

Publication: 

Cortesao, M., Holland, G. Laue, M., Schuetze, T., Moeller, R and Meyer, V. Growth and biofilm formation 

of Aspergillus niger under simulated microgravity, npj Microgravity (submitted: NPJMGRAV-00634) 

 

Author contribution 

Planning: 75 %, Experiment: 90 %, Manuscript: 80 % 

M.C. designed and performed the experiments and analyzed the data. G.H. and M.L. assisted with SEM 

experimental design, sample preparation, imaging and analysis. M.C., T.S., V.M. and R.M. designed the 

study and jointly interpreted the data. M.C. and V.M. co-wrote the manuscript which was approved by 

all co-authors. 
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ABSTRACT  

Knowing how spaceflight microgravity affects Aspergillus niger’s ability to grow and form biofilms is not 

only crucial to ensure astronaut health and spacecraft safety but it will also pave the way for exploitation 

of fungal-based biotechnology during space exploration. We thus analyzed colony growth and biofilm 

formation of three A. niger strains under simulated microgravity: a wild-type, a pigmentation mutant 

defective in melanin formation, and a hyperbranching mutant of biotechnological interest. Sample 

preparation for scanning electron microscopy (SEM) was able to preserve the ultrastructure of A. niger 

colonies generating high resolution images of A. niger’s mycelial network, extracellular matrix, 

conidiophores and spores. Notably, simulated microgravity led to denser biofilms in the wild-type and the 

hyperbranching mutant and increased spore production in both the pigmentation and the hyperbranching 

mutant. This suggests that colony and biofilm formation of A. niger is affected by spaceflight conditions in 

a strain-dependent manner. 

 

Keywords: Aspergillus niger, simulated microgravity, biofilm, scanning electron microscopy, pigmentation, 

conidiation, mycelium network, GTPase, racA, polyketide synthase, fwnA 
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INTRODUCTION 

Current crewed spaceflight activities are done in low-Earth orbit (LEO) aboard the International Space 

Station (ISS). The ISS is an indoor-closed habitat that creates a comfortable environment by shielding those 

on board from the extremes of space. However, spaceflight microgravity (10-6 g compared to 1g on the 

Earth’s surface) inevitably affects all living systems aboard the ISS. Indeed, microgravity is known to induce 

changes in numerous cellular processes such as nutrient transport, metabolism or signaling1–3, and was 

shown to induce changes in virulence in human pathogenic bacteria like Serratia marcescens, Escherichia 

coli and Pseudomonas4–7. The fungus Aspergillus niger is a common isolate of the ISS´s microbiota8. On 

Earth, industrial A. niger strains are exploited in biotechnology for the production of proteins, enzymes 

and organic acids, playing an important role in the transition from a petroleum-based economy into a bio-

based circular economy9,10. Nevertheless, A. niger natural isolates are also known as disease agents of the 

lung infection aspergillosis in immunocompromised patients11. This happens primarily due to A. niger’s 

highly resistant and airborne spores (named conidia) that can contaminate, colonize and biodegrade 

surfaces. These surfaces can be both biotic (e.g. human lungs) and abiotic (e.g. surgical or construction 

materials, or air- and water systems)12–14. Such surface-associated contamination scenarios are found not 

only in space stations but also in hospitals, industrial facilities and airplane cabins8,15–18. For these reasons, 

and given that A. niger spores are highly resistant to space radiation19, their uncontrolled presence in 

spaceflight habitats will be particularly challenging during long-term space missions, i.e., to the Moon, or 

Mars20,21. Despite these threats, a monitored and controlled use of A. niger for biotechnological purposes 

in long-term space missions can be a valuable resource for sustainable space exploration21. Thus, knowing 

how A. niger can colonize solid surfaces, how it grows into colonies that resemble biofilms due to the 

formation of an extracellular matrix22 and how its spores are produced under spaceflight microgravity will 

be critically important to help maintain astronaut health and safety of habitats, on Earth and in space21. 

Most fungal contaminations and infections occur in static, aerial and surface-associated conditions. 

Because of that, a mature A. niger colony grown on agar is an established model system for fungal biofilm-

mediated infections in human lungs23–25 and can also serve as model for spacecraft surface 

contaminations. A mature colony is the result of the outgrowth of a single spore that germinated and 

elongated into long cell threads named hyphae. These hyphae frequently branch and ultimately create a 

complex interwoven network of hyphae called vegetative mycelium, both on and in the substrate. This 

mycelium is composed of multinucleated hyphae and is therefore considered a syncytia, i.e. 

multinucleated cells sharing a common cytoplasmic environment and functioning as a single coordinated 

unit26. Notably, this vegetative mycelium can be embedded in an extracellular matrix (ECM), which is rich 

in exopolysaccharides such as α-glucans, galactomannan and galactosaminogalactan, extracellular DNA, 

proteins, lipids and polyols27,28. When nutrients become limited beneath the vegetative mycelium, aerial 

hyphae form out of the mycelium to explore the air space. Some of these aerial hyphae differentiate into 

conidiophores for asexual sporulation (conidiation). The conidiophores produce up to 10,000 spores each 

and stay high above the vegetative mycelium to release the spores into the environment using the air 

flow29. This facilitates spread and subsequent colonization of other habitats.  

Only very few studies have so far addressed the growth and adaptation of A. niger and related fungal 

species to microgravity aboard the ISS30,31. As experiments on the ISS are very cost-intensive, difficult to 
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implement, and extremely limited in throughput, microgravity simulation methods are valid alternative 

approaches that can be easily performed on Earth to study adaptation phenomena of filamentous fungi 

to microgravity. For example, previous studies with submerged liquid cultures of A. niger and Penicillium 

chrysogenum under low-shear modeled microgravity in the High Aspect Ratio Vessel (HARV), at a rotation 

speed of 25 r.p.m., found no significant changes in spore germination, mycelium growth or cell wall 

integrity32.  Similar HARV liquid cultures of P. chrysogenum reported transcriptomic changes in cell wall 

transporters and enzymes involved in penicillin biosynthesis33. Notably, the clinostat has been recognized 

to provide better simulation of microgravity than HARV34,35. Growth of the food spoilage fungus A. 

carbonarius in solid, static and aerial conditions under simulated microgravity by slow-clinorotation of 20 

r.p.m., revealed no changes in cell growth or colony appearance, but showed an increase in organic acid 

production (e.g. oxalic acid and citric acid)36.  

In this study we have investigated A. niger colony growth in solid media, static and aerial conditions, under 

simulated microgravity by fast-clinorotation of 60 r.p.m. Three different strains of the same lineage were 

tested: an industrial wild-type strain, a strain defective in pigmentation (∆fwnA) which is more susceptible 

to space radiation19, and a hyperbranching mutant strain (∆racA) that is identical to the wild-type strain 

with respect to biomass formation but produces about 20 % more hyphal tips, and is thus of interest as 

biotechnological platform strain due to its protein hypersecretion phenotype37. We present the impact of 

simulated microgravity on A. niger’s colony ultrastructure through scanning electron microscopy (SEM) 

images of colony cross-sections. We also present data addressing the effect of simulated microgravity on 

the strains' colony surface area, biomass accumulation, spore production and spore vitality. Finally, we 

suggest that fwnA-mediated pigmentation is important for A. niger’s adaptation to simulated microgravity, 

affecting colony growth, mycelium network organization and spore production. 

 

RESULTS 

Wild-type, pigmentation (∆fwnA) and hyperbranching (∆racA) mutant strains were grown as biological 
triplicates in petri-dishes filled with minimal medium agar under normal gravitational conditions on Earth 
(Ground) and under simulated microgravity (SMG) conditions. Microgravity was simulated via a fast-
rotating petri-dish clinostat that reaches 1.2 x 10-2 to 1.6 x 10-2 g, in a colony radius (r) between 0.3 – 0.4 
cm (Figure 1). Colony area, dry biomass and spore production were calculated for 3-day old colonies under 
Ground and SMG conditions to study early stages of colonization. In addition, SEM analyses were 
performed for 5-day old colonies to better distinguish between two different regions – center and edge – 
that correspond to late and early stages of maturation, respectively (Figure 1). The effect of simulated 
microgravity was only investigated in the central region (0 - 0.4 cm), where morphological changes with 
regards to colony ultrastructure were assessed, including thickness of the vegetative mycelium as well as 
conidiophore height. In addition, the vitality of spores produced under Ground and SMG conditions was 
assessed by analyzing their metabolic activity, spore hydrophobicity and germination rate.  
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Colony morphology of A. niger strains under normal gravitational conditions  

3-day old wild-type colonies reached an area of 3.3 cm2, accumulated a total of 8.7 mg dry biomass and 

produced on average 6 x 107 spores (Figure 1, Figure 2 and Supplemental Table 1). In comparison, the 

pigmentation mutant ∆fwnA produced slightly larger colonies (on average 3.7 cm2), accumulated about 30 

% less biomass but produced significantly more spores (9 x 107 spores, p = 0.04), which were less 

hydrophobic. In contrast, ∆racA colonies were significantly smaller than the wild-type colonies (on average 

1.2 cm2, p = 0.02), but accumulated a similar dry biomass (9.7 mg) as previously described due to its 

hyperbranching phenotype37 and produced significantly less spores (6.8 x 106, p < 0.01). 

SEM images of whole colony cross-sections from the wild-type strain revealed morphological differences 

among the different regions of the colony (Figure 3). Cross-sections of the youngest part of the colony 

(edge region) were populated with foraging hyphae that explore the environment and secrete high 

amounts of enzymes. These hyphae were connected in a loose network and were filled with cytoplasm. In 

contrast, hyphae from the oldest part of the colony (central region) were devoid of cytoplasm, with only 

a few granular remnants likely left due to autophagic processes. This data was confirmed by transmission 

electron microscopy (TEM), for which we used another fixation method (high-pressure freezing instead of 

chemical fixation) in order to exclude the possibility that sample fixation could unintentionally alter hyphal 

morphologies (Figure 3 and Supplemental Figure 1). Autophagy in Aspergillus is known to be related with 

aging and integral to nutrient and organelles recycling in older parts of a syncytium and is thought to 

facilitate growth of aerial hyphae and conidiophores38,39. Conidiophores emanating from the central region 

were on average ~ 460 µm high (Supplemental Table 1) and displayed morphological characteristics for 

conidiogenesis as published earlier40: vesicles that developed from stalks formed primary sterigmata 

(metulae), secondary sterigmata (phialide) and chains of spores which were surrounded with an undulated 

surface coating consisting of melanin and hydrophobins (Figure 3a, b, g-i and Supplemental Figure 2). 

Remarkably, wild-type hyphae from the central region (oldest part of the colony) were embedded in 

extracellular matrix (ECM), resulting in a ~ 60 µm thick biofilm, which was not present around the young 

hyphae at the colony edge (Figure 3c-f). Similarly, hyphae from the central region of the ∆fwnA mutant 

were embedded in ECM, resulting in a biofilm thickness of ~ 70 µm.  Conidiophores of ∆fwnA mutant 

reached a height of ~ 450 µm, and spores lacked, as expected, the characteristic melanin/hydrophobin 

layer on the spore surfaces (Figures 4-7 and Supplemental Figure 2). Interestingly, SEM data uncovered 

that the vegetative mycelium formed in the central region of ∆racA colonies is about 3-times thicker 

compared to the wild-type and the ∆fwnA mutant (~ 175 µm, Figure 4 and Supplemental Figure 4), which 

would explain similar dry biomass formation compared to the wild-type despite its reduced colony 

diameter (Figure 2). The structure of the vegetative mycelium in the central region of the ∆racA mutant 

also differed from that of the other two strains. While wild-type and ∆fwnA vegetative mycelia produced 

an ECM that consisted of two distinct layers: an upper layer with hyphae embedded in dense and porous 

ECM, and a lower layer with loose hyphae and with an thin ECM that coated only individual hyphae (Figure 

5); the vegetative mycelium of the ∆racA mutant consisted out of three layers: an upper layer (63 ± 2.7µm) 

with hyphae embedded in a dense ECM, a middle layer (87 ± 3.5 µm) with loose, vertically oriented hyphae 

not embedded in an ECM, and a lower layer (45 ± 1.6 µm), also with loose but horizontally oriented hyphae 

which were not embedded in an ECM (Figure 5). Furthermore, it became evident that the hyperbranching 
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∆racA mutant formed shorter spore chains on often malformed vesicles, although the spore surface 

topology itself resembled the topology of wild-type spores (Figure 6 and Supplemental Figures 2-3).    

 

Colony morphology of A. niger strains under simulated microgravity  

When all three strains were cultivated under SMG conditions, a slight increase in colony diameter was 

seen for all tested strains (Figure 2), suggesting that SMG might support colonization of surfaces. Simulated 

microgravity also affected biomass formation in both mutant strains: the pigmentation mutant produced 

more biomass whereas the hyperbranching mutant produced less. Remarkably, the number of spores 

produced under SMG conditions increased significantly for both mutant strains (26 % in ∆fwnA mutant, p 

= 0.03, and 35 % in ∆racA, p = 0.03), and increased slightly in the wild-type strain (17 %, p = 0.2), implying 

that asexual sporulation might occur faster under simulated microgravity conditions, but that this is, 

however, strain-dependent. Conidiophore height, spore hydrophobicity as well as spore morphology and 

surface topology did not change significantly for either of the three strains under SMG compared to 

Ground conditions. It can thus be concluded that the integrity of A. niger spores is not likely to be affected 

by the microgravity environment (Figure 2, Figure 6 and Supplemental Table 1).  

Furthermore, SEM demonstrated that SMG conditions induced changes in the thickness of the vegetative 

mycelium in central region of the colonies. The thickness of the vegetative mycelium increased significantly 

by 22 % in the wild-type (p = 0.001), 56 % in the hyperbranching mutant (p = 0.04), but only slightly and 

non-significantly in the pigmentation mutant (6 %, p = 0.1, Figure 5, and Supplemental Table 1). A closer 

look at the hyperbranching ∆racA mutant showed that, independently of the gravitational regime, it 

formed a folded vegetative mycelium from which aerial hyphae and conidiophores emanated in both 

directions, i.e., upward and downward (Supplemental Figure 4). Many of the conidiophore stalks in ∆racA 

were able to bud off spores (Supplemental Figure 2), a phenomenon which we only seldomly observed in 

the wild-type and ∆fwnA strains. The three distinct layers of vegetative mycelium of the ∆racA mutant 

were also seen in SMG conditions, with no differences in thickness when compared to Ground: upper layer 

(59 ± 1.5 µm), a middle layer (90 ± 5.2 µm), and lower layer (45 ± 2.4 µm, Figure 5). 

 

Viability of A. niger spores under Ground and SMG conditions 

We finally assessed the metabolic activity as well as germination rate of asexual spores harvested from 

the central colony regions. As summarized in Figure 7 and Supplemental Table 2, the maximum of 

metabolic activity of germinated spores from all strains was reached after 24 - 25 h post-inoculation under 

normal gravitation conditions, and was slightly shifted for the ∆racA strain, towards 21 h under SMG. 

However, no significant microgravity-induced changes in germination rates and metabolic activities were 

observed. 
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Figure 1.  Simulation of microgravity in a petri-dish clinostat and effect of simulated microgravity in colony area. a Colonies were 

grown on a filter that covered minimal medium agar in Petri-dishes. The plates fit into the clinostat that simulates microgravity 

by continuously rotating the petri dishes (60 r.p.m.). Here, the central region of the colony can achieve g-forces from 1.2 x 10-2 to 

1.6 x 10-2 g, in a colony (r) radius between 0.3 – 0.4 cm. Colonies were sampled for SEM in the center and at the edge. b Pictures 

of representative colonies of the three tested strains after 5 days of cultivation (scale = 1 cm).  
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Figure 2. Simulated microgravity induces changes in A. niger colony area, dry biomass area, spore production and spore 

hydrophobicity in a strain-dependent manner. Spores of the three test strains were used to inoculate minimal medium agar 

plates as biological triplicates. After three days of incubation, several morphological characteristics were determined. a 

Colony area. b Dry biomass. c Spore production per colony. d Spore hydrophobicity. Data shown as mean with error bars as 

standard error, where p ≤ 0.05 was considered significant and is indicated with an asterisk. 
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Figure 3. SEM images of Aspergillus niger wild-type colonies grown in static, aerial conditions. a vegetative (Vm) and aerial 

mycelia (Am) with conidiophores. b close-up view of the interface of aerial and vegetative mycelium showing extracellular 

matrix (ECM), stalks (st), loose spores (sp) and vegetative hyphae (h). c ECM that covered vegetative mycelium in the 

center region of the colony. d Hollow hyphae in the center region. e, f hyphae at the edge of the colony not yet covered 

with ECM. f close-up view of compact hyphae filled with cytoplasm at the colony edge. g cross-section of A. niger 

conidiophore revealing stalk, vesicle, metulae, phialides and conidia chains. h,i close-up view of phialides and spore 

chains, revealing folded outer layer of spores. 
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Figure 4. SEM images of A. niger strains from the central region of colonies grown in Ground and 

simulated microgravity (SMG) conditions. Representative images of colony fragment cross-sections 

showing differences in vegetative and aerial mycelia for the tested strains. Note that the thickness of 

the vegetative mycelium and the height of conidiophores differs among the strains. Scale is the same 

for all images. 
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Figure 5.  Vegetative mycelium ultrastructure of different A. niger strains grown under Ground and simulated 

microgravity (SMG) conditions. Note that the thickness of the vegetative mycelium differs between the strains. 

Two or three layers of the vegetative mycelium can be distinguished in a strain-dependent manner and are 

indicated with numbers 1, 2 and 3. Scale is the same for all images in each column. 
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Figure 6. Conidiophores and spore chains of A. niger strains under Ground and simulated microgravity (SMG) 
conditions. Note that the length of the spore chains differs between strains, which can be up to 150 µm in the 
ΔfwnA mutant. Scale is the same for all images in each column.   
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Figure 7.  Spore morphology and vitality from A. niger colonies grown under Ground and simulated microgravity (SMG) 

conditions. a SEM of spores of each tested strain show no morphological differences when produced under SMG. 

Differences between spore surfaces of wild-type and ΔfwnA mutant can be seen, as a defect in pigmentation leads to 

changes in the outer layer of the cell wall. b metabolism upon germination show no significant changes under SMG. 

Data shown as mean from biological triplicates with error bars.  
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DISCUSSION  

In this study, we performed high-resolution SEM of whole colony cross-sections of the industrially and 

medically important filamentous fungus A. niger. SEM analysis demonstrate the complex and intricate 

ultrastructure of the mycelium through which A. niger explores and colonizes its surrounding environment. 

Furthermore, our study investigated changes in A. niger colony growth in both Ground and simulated 

microgravity (SMG) conditions. Changes in A. niger colony growth likely affect surface adhesion and inter-

cellular cohesion, both key factors for contamination potential and decontamination resistance. This is 

particularly important in indoor-closed environments, such as hospitals or space stations, where 

monitoring and controlling fungal contaminations is challenging.  

SEM of wild-type A. niger colonies under normal gravitational conditions showed that hyphae at the colony 

edge were not significantly covered by an extracellular matrix (ECM), while hyphae in the colony center 

were at least partially embedded in a dense ECM. This suggests that the colony develops into a biofilm, 

i.e. ECM embedded vegetative mycelium, during maturation. In a mature colony, the ECM was mainly 

found in the upper layer of the vegetative mycelium suggesting its role in shielding the colony from 

environmental stressors including cleaning agents, antimicrobials and fungicides. As we have proposed 

above, young hyphae of A. niger mainly work as nutrient scavengers, having a highly active and compact 

cytoplasm, whereas old hyphae are important in setting the biofilm’s three-dimensional structure (where 

only the cell wall is needed and thus the cytoplasm appears empty). Previous studies have identified, 

accordingly, that mature fungal colony biofilms are composed of both active and inactive hyphae29,44. SEM 

showed that the youngest part of the wild-type colony (at the very edge) was composed of a single layer 

of hyphae with an intact cytoplasm. This early colony stage of hyphae multilayer is similar to what 

Krijgsheld et al. reported for an A. niger 7-day sandwiched colony29. In contrast, hyphae in the center of 

the colony, which represent the oldest and matured part of the colony, appeared rather empty without 

any structural signatures indicating intact cytoplasm. This was confirmed by performing TEM of colonies 

subjected to physical fixation, to discard the possibility of artifacts introduced by chemical fixation 

(Supplemental Figure 1). A. niger colony growth in static, aerial conditions can be summarized as follows: 

1) spore germination and outgrowth followed by hyphal expansion and increase in colony area; 2) hyphae 

multilayering and increase in vegetative mycelium thickness; 3) secretion of ECM and maturation into a 

biofilm; 4) cell death and transition from active hyphae (nutrient scavenging) to inactive hyphae 

(structural); 4) formation of aerial hyphae, conidiophores and sporulation. Furthermore, quantitative 

analysis of the SEM images showed that A. niger wild-type conidiophores can reach an average height of 

~ 460 µm. This is four times higher than initially reported, for example in A. nidulans (100 µm) 45, and 

suggests an efficient air-dispersal ability of A. niger’s spores. 

Our study shows that simulated microgravity affects A. niger colony area, spore production and biofilm 

thickness in a strain-dependent manner. We propose that RacA might play a role in A. niger’s adaptation 

to simulated microgravity, as its deletion leads to increased mycelium thickness, increased spore 

production and decreased total biomass during SMG conditions. RacA controls actin polymerization in A. 

niger and is thus responsible for maintaining hyphal tip polarity and hyphal branch initiation43 – both are 

essential for the establishment of the complex hyphal network characteristic of a fungal colony biofilm. 

Actin is furthermore known to control several cellular processes, such as intracellular movement of 
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organelles, vesicular trafficking and cytokinesis 46,47. Actin has also been proposed as a gravi-perceptor 

facilitator48 since it is involved in re-orientation of direction of movement or growth. Exactly how fungi 

adapt to different gravitational conditions is still not well understood49. To our knowledge, gravity sensing 

mechanisms in fungi have so far only been studied in Phycomyces, a mucoralean fungus that uses the 

sedimentation of vacuolar protein crystals and the buoyancy of lipid globules in the hyphal apices to direct 

the gravitropism of its sporangiophores50–52. Previous studies also reported changes in growth of 

Saccharomyces cereviseae in a bioreactor, presenting random budding, a process to which actin 

polymerization is central, which was three times higher in weightlessness under microgravity conditions53. 

Future studies will unravel if and how RacA and actin are important for A. niger to adapt to changes to a 

low gravitational regime. 

We furthermore propose that FwnA-mediated melanin production, i.e. pigmentation of A. niger´s hyphae 

and spores, plays a role in microgravity response, as cultivation of the mutant under SMG conditions led 

to increased biomass, biofilm thickness and spore production when compared to cultivation under Ground 

conditions. Secondary metabolites, such as pigments, are known to be involved a wide-range of cellular 

processes, from protection from environmental stress (e.g. radiation, ROS, and possibly microgravity) to 

pathogenicity54,55.  In A. niger, pigments are an important part of the spore surface coating but are also 

thought to be present in the hyphae and extracellular matrix23,56. Deletion of the polyketide synthase FwnA 

leads to fawn-colored spores42, in contrast to white colored spores when the homolog Alb1 is deleted in 

A. fumigatus57,58. Whether A. niger spore melanin is formed through the DHN pathway is still a matter of 

debate. In this study, SEM images reveal that ∆fwnA spores have less undulated spore surface coating, but 

are not completely devoid of them, which is in correspondence to data obtained from the ∆alb1 mutant 

of A. fumigatus57,58. We found that, under normal gravitational conditions, lack of FwnA-mediated 

pigmentation leads to 50 % increased spore production compared with the wild-type during the first 3 

days of colony growth. Interestingly, a previous study suggested that blocking the biosynthetic pathway of 

melanin may result in an accumulation of the precursor substrate acetyl-CoA which may cause the increase 

in sporulation in the fungus Pestalotiopsis microspora59. Such a putative excess of acetyl-CoA might also 

help A. niger to faster colonize the environment under microgravity conditions, a hypothesis worth 

studying further in future experiments. 

Taken together, our study suggests that the growth of A. niger is not inhibited by simulated microgravity, 

which is promising for fungal-based biotechnology in space. However, it also suggests that A. niger’s 

contamination potential of spaceflight environments might increase, given the simulated microgravity-

induced increase in spore production and biofilm thickness. In particular, the formation of thicker wild-

type biofilms under SMG indicates increased potential for surface colonization and possibly material 

biodegradation. This can be of concern for spacecraft materials, air- and water systems. For future long-

term space missions, the search for strategies and technologies to not only control and mitigate fungal 

spaceflight biofilms, but also to apply fungal-based biotechnology in spaceflight will be critical21. 
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MATERIAL AND METHODS 

Strains, media and culture conditions 

Three Aspergillus niger strains were tested in this study and are summarized in Table 1: a fully pigmented 

wild-type strain (N402), a strain defective in pigment biosynthesis (MA93.1, ΔfwnA), and a strain defective 

in hyperbranching (MA80.1, ΔracA). Spore suspensions were prepared by harvesting spores after 3 days 

(for N402 and MA93.1) or 5 days (for MA80.1) of growth on complete media (CM) plates [55 mM glucose, 

11 mM KH2PO4, 7 mM KCl, 178 nM H3BO3, 2 mM MgSO4, 76 nM ZnSO4, 70 mM NaNO3, 6.2 nM Na2MoO4, 

18 nM FeSO4, 7.1 nM CoCl2, 6.4 nM CuSO4, 25 nM MnCl2, 174 nM EDTA, 15 g/L agar supplemented with 

0.5 % (w/v) yeast extract and 0.1 % (w/v) casamino acids], and were suspended in 0.9 % sodium chloride. 

The spore suspensions were then filtered through sterile Miracloth to remove hyphal fragments.  

Plates were inoculated with 10 µL of 106 spores/ml spore suspension at the center of minimal medium 

(MM) plates [55 mM glucose, 11 mM KH2PO4, 7 mM KCl, 178 nM H3BO3, 2 mM MgSO4, 76 nM ZnSO4, 70 

mM NaNO3, 6.2 nM Na2MoO4, 18 nM FeSO4, 7.1 nM CoCl2, 6.4 nM CuSO4, 25 nM MnCl2, 174 nM EDTA, 15 

g/L agar], and grown at 30 °C. Fresh spore suspensions (less than 2 weeks old) were used for all 

inoculations.  

For SEM analysis, a removable polycarbonate-filter (ø 47 mm, 0.4 µm pore size, hydrophilic, Merck 

Millipore, Darmstadt Germany) was placed on top of the agar, before inoculation, to separate the colony 

from the underlying medium and thus enabling further analysis. Prior to inoculation, all filters were 

autoclaved in a glass petri dish (121 °C, 20 min) and dried overnight at 22 °C. Using sterile tweezers, the 

filters were carefully placed on 20 ml minimum media agar plates. Colonies were grown under simulated 

microgravity using the clinostat or under normal gravitational conditions as a control, at 30 °C. For SEM 

analysis, filters carrying 5-days old colonies were carefully transferred into a small petri dish (ø 5 cm) using 

sterile forceps for further sample preparation. There was no change in colony growth with and without 

the polycarbonate filter (data not shown). For non-SEM measurements, 3-days colonies were used, as 

their small diameter ensures culture in the central region where there is better quality of microgravity 

simulation in the Clinostat.  

Clinostat cultivation 

Clinostat cultivation to simulate microgravity has been earlier described for Arabidopsis seedlings, 

Deinococcus radiodurans, S. cerevisiae60–62 and for adherent mammalian cells1. The clinostat simulates 

microgravity through continuous rotation around the horizontal axis (perpendicular to gravity), which 

averages the gravity vector close to zero, over time, for samples that are located directly in the center of 

the petri dish35,63. This continuous rotation prevents particle sedimentation and exposes cells to a 

continuous free fall. It is important to note that the clinostat provides a functional simulation which is 

similar but not identical to that experienced in spaceflight. The quality of simulation is limited to the center 

of rotation - in this case the very center of the colonies, since as the colony radius increases, acceleration 

and centrifugal forces increase. A. niger minimal agar plates were rotated at 60 r.p.m.1,64,65. For SEM 

analysis, colonies were divided into two different regions: center and edge (oldest and youngest, 
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respectively). To study simulated microgravity-induced effects, only the center region was considered (r = 

0.3 – 0.4 cm), as it is the one exposed to microgravity-like g-forces ranging between 1.2 x 10-2 - 1.6 x 10-2 g 

(m s-2)66 (Figure 1).  

 

Scanning Electron Microscopy  

Colonies grown on minimal medium agar plates covered with polycarbonate filters were chemically fixed, 

dehydrated and selected regions were freeze-fractured using forceps as previously described67. This 

method preserves the ultrastructure of the fungal colonies, and generates straight fractures in large 

vertical areas of the colony (cross-section), including major parts of the mycelium and extracellular matrix 

as well as conidiophore heads. Colonies were fixed on their filter support with 2.5 % glutaraldehyde and 

1% para-formaldehyde in 0.05 M HEPES buffer, for 12h at room temperature. Post-fixation was done with 

1 % osmium tetroxide in water before samples were dehydrated in ethanol. During dehydration, colonies 

usually separated from the filter (without leaving any visible residual colony material on the filter) and 

some spores were lost. However, the overall integrity of the colony was preserved. 

To prepare freezing and fracturing, three representative parts (~ 5 x 3 mm) from center, intermediate and 

edge region were extracted from each colony (in 100 % ethanol) by using a razor blade. Samples were 

frozen in liquid nitrogen and fractured according to Fuchs et al.67. However, fracturing of samples from the 

hyperbranching mutant was not successful, most probably because of the thicker vegetative mycelium in 

comparison to the other strains. We thus fractured samples from the hyperbranching mutant in liquid 

nitrogen by using a razor blade. 

After fracturing, samples were thawed in 100 % ethanol and dried by critical point drying using an 

automated device (CPD 300, Leica, Wetzlar, Germany). Dried samples were mounted with cross-sections 

aligned upwards (90° angle) and sputter-coated with 15 nm gold/palladium (Sputtercoater E5100, 

Polaron/Quorum Technologies, UK). Electron microscopy of colony fractures was carried out with a field-

emission scanning electron microscope (Gemini 1530, Zeiss, Oberkochen, Germany) operated at 3 kV and 

a working distance of 5 mm. Signals from the in-lens secondary electron detector were used to investigate 

the samples with topography contrast. 

SEM image evaluation was done with the iTEM software (Version 5.2; EMSIS, Germany), and with Digimizer 

image analysis software (MedCalc Software Ltd). Thickness of the vegetative mycelium and height of the 

conidiophores were determined for the central regions of the colony (at least three measurements per 

image) in each strain, and for each biological triplicate. Thickness of each vegetative mycelium layer of the 

∆racA strain was determined by four measurements of the central regions per image. Hyperbranching 

measurements in “fold-regions” were not included in the mycelium thickness analysis, to allow for 

comparison between strains.  
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Transmission electron microscopy 

Small parts (a few millimeters wide and long) of the colonies cultivated under normal gravitational 

conditions were extracted with a scalpel and sliced in thin sections by using a razor blade. The thin slabs 

were transferred to the shallow depth of an aluminum platelet (3 mm diameter) filled with hexadecen, 

covered with another aluminum platelet and fixed by high-pressure freezing. Frozen samples were freeze-

substituted in 0.2 % osmium tetroxide, 0.01 % uranyl acetate, 5 % H2O in acetone using an automated 

freeze-substitution device (AFS, Leica Microsystems, Germany) for 3 days and embedded in epon resin. 

Thin sections (60-80 nm) were produced with an ultramicrotome (UC7, Leica Microsystems, Germany) and 

contrasted with uranyl acetate and lead citrate. Electron microscopy was performed with a TEM (Tecnai 

Spirit, Thermo Fisher) operated at 120 kV. Images were recorded with a CCD camera (Megaview III, EMSIS, 

Germany). 

 

Evaluation of growth assays 

Colony area was determined by taking pictures of the colony and calculating the area through Fiji/Image J 

by adjusting color and threshold. To determine the amount of spores produced, spores were harvested 

from single colonies after 3 days in MM-agar plates without filter by flooding the petri dish with 5 mL of 

0.9 % sodium chloride, gently scraping the spores with a sterile cotton swab, and filtering the solution 

through sterile miracloth to filter out hyphal fragments. Dry biomass was measured by recovering filter-

grown colonies, placing them inside pre-weighted aluminum paper, and incubating them for 24 h at 60 °C 

(after which weight was constant), and the dry weight was measured. Dry biomass was calculated as 

“weight of dried biomass - weight of wet biomass”. 

 

Evaluation of spore vitality: hydrophobicity, metabolic activity and germination rate 

To compare the relative hydrophobicity profiles of spores from different A. niger strains, the Microbial 

Adhesion To Hydrocarbons (MATH) assay was adapted. Spores isolated from minimal agar plates were 

suspended in 0.9 % sodium chloride and exposed to hexadecane, an apolar solvent, that allows spores to 

settle in either the aqueous or the organic phase, depended on which more strongly interacts with the 

spore surface68,69. This semi‐quantitative approach provides evidence of the surface hydrophobicity of the 

spores via their interactive properties. For that, 2.5 ml of spore suspension (1 x 106 spores/ml) were added 

to glass tubes and 5 ml hexadecane was slowly adding on top. The tubes were vortexed for 2 min, followed 

by a 15 min settling phase, after which 1 ml sample of the suspension was taken carefully from the bottom 

of the tube (through the hexadecane layer). Measurements of spore suspensions at OD600nm were taken 

before (N0) and after contact with hexadecane (N). Hydrophobicity was calculated as [((N/N0) x 100) – 100], 

which determines the percentage of spores in the hydrocarbon layer – i.e.; the higher the percentage of 

spores in the hydrocarbon layer, the higher the hydrophobicity. This experiment was performed two 

independent times, each with three technical replicates. 
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Spore germination rate was determined by inoculating 3 µL of 106 spores/ml in MM supplemented with 

0.003 % yeast extract. After incubation at 22 °C for 22 h, light microscopy allowed for counting of 200 

spores and germlings per replicate, per strain. Germination rate was calculated as the ration (N/NG) 

between germinated (G) and non-germinated spores (NG).  

 

Metabolic activity of spores was measured with the Alamar Blue assay in a 96-well plate.  In each well a 

total volume of 300 µL were pipetted [195 µl of MM, 75 µL spore suspension (106 spores/ml), 30 µL of 

Alamar Blue (Sigma)]. Spores were incubated for max 48 h at 30 °C in a TECAN plate reader (n = 6). The 

color changes when spore start to germinate and thus become able to metabolize resazurin (blue) into 

resorufin (pink). This change was detected by OD570 nm and OD600 nm.  

 

Data analysis   

Data were plotted as Mean and error bars calculated as Standard Error. Graphs were plotted with Sigma 

Plot.14.  Statistical analysis was done with Student’s t-test, using Mean and Standard-Error between 

Ground and SMG conditions, or between a mutant strain and the wild-type. A one-tailed p-value of p ≤ 

0.05 was considered as significant. 
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FIGURE LEGENDS 

Figure 1. Simulation of microgravity in a petri-dish clinostat and effect of simulated microgravity in 

colony area. a Colonies were grown on a filter that covered minimal medium agar in Petri-dishes. The 

plates fit into the clinostat that simulates microgravity by continuously rotating the petri dishes (60 

r.p.m.). Here, the central region of the colony can achieve g-forces from 1.2 x 10-2 to 1.6 x 10-2 g, in a 

colony (r) radius between 0.3 – 0.4 cm. Colonies were sampled for SEM in the center and at the edge. b 

Pictures of representative colonies of the three tested strains after 5 days of cultivation (scale = 1 cm). 

Figure 2. Simulated microgravity induces changes in A. niger colony area, dry biomass area, spore 

production and spore hydrophobicity in a strain-dependent manner. Spores of the three test strains 

were used to inoculate minimal medium agar plates as biological triplicates. After three days of 

incubation, several morphological characteristics were determined. a Colony area. b Dry biomass. c 

Spore production per colony. d Spore hydrophobicity. Data shown as mean with error bars as standard 

error, where p ≤ 0.05 was considered significant and is indicated with an asterisk.  

Figure 3. SEM images of Aspergillus niger wild-type colonies grown in static, aerial conditions. a 

vegetative (Vm) and aerial mycelia (Am) with conidiophores. b close-up view of the interface of aerial 

and vegetative mycelium showing extracellular matrix (ECM), stalks (st), loose spores (sp) and vegetative 

hyphae (h). c ECM that covered vegetative mycelium in the center region of the colony. d Hollow hyphae 

in the center region. e, f hyphae at the edge of the colony not yet covered with ECM. f close-up view of 

compact hyphae filled with cytoplasm at the colony edge. g cross-section of A. niger conidiophore 

revealing stalk, vesicle, metulae, phialides and conidia chains. h,i close-up view of phialides and spore 

chains, revealing folded outer layer of spores. 

Figure 4. SEM images of A. niger strains from the central region of colonies grown in Ground and 
simulated microgravity (SMG) conditions. Representative images of colony fragment cross-sections 
showing differences in vegetative and aerial mycelia for the tested strains. Note that the thickness of the 
vegetative mycelium and the height of conidiophores differs among the strains. Scale is the same for all 
images. 

Figure 5. Vegetative mycelium ultrastructure of different A. niger strains grown under Ground and 
simulated microgravity (SMG) conditions. Note that the thickness of the vegetative mycelium differs 
between the strains. Two or three layers of the vegetative mycelium can be distinguished in a strain-
dependent manner and are indicated with numbers 1, 2 and 3. Scale is the same for all images in each 
column. 

Figure 6. Conidiophores and spore chains of A. niger strains under Ground and simulated microgravity 
(SMG) conditions. Note that the length of the spore chains differs between strains, which can be up to 
150 µm in the ΔfwnA mutant. Scale is the same for all images in each column.   

Figure 7. Spore morphology and vitality from A. niger colonies grown under Ground and simulated 
microgravity (SMG) conditions. a SEM of spores of each tested strain show no morphological differences 
when produced under SMG. Differences between spore surfaces of wild-type and ΔfwnA mutant can be 
seen, as a defect in pigmentation leads to changes in the outer layer of the cell wall b Metabolism upon 
germination show no significant changes under SMG. Data shown as mean from biological triplicates 
with error bars.  
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TABLES 

 

Table 1. Strains used in this study. 

Strain name Relevant 

genotype 

Characteristics Reference 

N402 

 

Wild-type Fully pigmented spores (Bos et al. 1988) 

MA93.1 ΔfwnA Pigmentation mutant that produces 

fawn-colored spores due to the lack of 

the polyketide synthase FwnA 

(Jørgensen et al. 2011) 

MA80.1 ΔracA Hyperbranching mutant due to the 

lack of the Rho GTPase RacA 

(Kwon et al. 2011) 
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Supplemental Figure 1. Comparison of the ultrastructural preservation of A. niger hyphae in different colony regions after 

chemical or cryo-fixation. a SEM of chemically fixed samples. Cross-sections through the colony show empty hyphae in the 

center of a colony, and filled hyphae at the edge region of a colony. b TEM of ultrathin sections  of high-pressure frozen 

samples show almost empty hyphae (exception labeled with an asterisk) in the center of the colony while at the edge hyphae 

reveal a dense, intact cytoplasm with all typical organelles. Arrows indicate the extracellular matrix formed. 
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Supplemental Figure 2. Conidiophore morphologies of A. niger strains. Arrows indicate irregular spore formation, 

through the conidiophore stalk (rather than through the vesicle) which occurred seldomly in the wild-type and ΔfwnA 

mutant but frequently in the ΔracA mutant. 
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Supplemental Figure 3.  Irregular conidiophore morphologies in the hyperbranching mutant strain ∆racA. a 

Aerial mycelium showing conidiophores at different heights and morphologies. b Irregular vesicle formation: 

no vesicle (1-4), doubled vesicle (5) and vesicle with a divergent width (white line, 6-8). Irregularities were 

observed regardless of the gravitational regime. 
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Supplemental Figure 4. Irregular colony morphologies in the hyperbranching mutant strain ∆racA. Representative 

pictures of colony cross-sections show mycelium folds in both Ground (1-3) and simulated gravity conditions (4-6) 

after 5 days of cultivation on minimal medium agar plates. Note that aerial hyphae and conidiophores are formed in 

both directions: upward and downward.  
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Supplemental Table 1. Effect of simulated microgravity in A. niger colony biofilms.  Three strains were tested: wild-

type, pigmentation (∆fwnA) and hyperbranching (∆racA) mutant strains.  

 

*Statistical significance with Students t-test where one-tailed p ≤ 0.05. 

 Parameter Strain Ground SMG ≠ p-value 

Colony Area (cm2)      

 Wild-type 3.3 ± 0.3 3.7 ± 0.2 ↑ 0.3 

  Pigmentation 3.7 ± 0.2 4.4 ± 0.3 ↑ 0.07 * 

  Hyperbranching 1.2 ± 0.0 1.3 ± 0.0 ↑ 0.3 

Dried biomass (mg)      

 Wild-type 8.7 ± 2.6 9,7 ± 0.9 = 0.7 

  Pigmentation 6.0 ± 1.0 8.7 ± 1.5 ↑ 0.2 

  Hyperbranching 9.7 ± 1.8 6.3 ± 0.7 ↓ 0.1 

Spores per colony      

 Wild-type 6.0 x 107 ± 2.4 x 106 7.0 x 107 ± 6.2 x 106 ↑ 0.2 

 Pigmentation 9.0 x 107 ± 4.5 x 106 1.1 x 108 ± 5.4 x 106 ↑ 0.03 * 

 Hyperbranching 6.8 x 106 ± 1.3 x 105 9.1 x 106 ± 7.1 x 105 ↑ 0.03 * 

Spore metabolic max (%)      

 Wild-type 17 ± 0.4 15 ± .09 ↓ 0.1 

  Pigmentation 16 ± 1.1 17 ± 0.3 = 0.7 

  Hyperbranching 19 ± 0.6 19 ± 1.1 = 0.8 

Spore metabolic max (h)      

 Wild-type 25 ± 0.4 24 ± 0.4 ↑ 0.15 

 Pigmentation 26 ± 0.3 26 ± 0.4 = 1 

 Hyperbranching 24 ± 0.6 23 ± 0.4 ↓ 0.2 

Spore germination (G/NG)      

 Wild-type 10 ± 0.4 5.6 ± 1 ↓ 0.02 * 

 Pigmentation 15 ± 1.1 15 ± 2.4 = 0.9 

Spore hydrophobicity (%)      

 Wild-type 49 ± 3 51 ± 15 = 0.9 

 Pigmentation 31 ± 4 34 ± 7 = 0.7 

 Hyperbranching 58 ± 15 90 ± 3 ↑ 0.1 

Biofilm thickness in colony 
center (µm) 

     

 Wild-type 59 ± 1 72 ± 1 ↑ 0.001 * 

 Pigmentation 67 ± 2 63 ± 1 ↓ 0.1 

 Hyperbranching 176 ± 10 275 ± 31 ↑ 0.04 * 

Conidiophore height (µm)      

 Wild-type 466 ± 35 417 ± 35 ↓ 0.4 

 Pigmentation 454 ± 34 510 ± 41 ↑ 0.4 

 Hyperbranching 174 ± 17 165 ± 11 = 0.7 
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 Chapter IV: Design of a spaceflight biofilm experiment; Controlling spaceflight 

fungal biofilms 

 

Publication: 

Zea, L., Nisar, Z., Rubin, P., Cortesao, M., Luo, J., McBride, S., Moeller, R., Klaus, D., Mueller, D., Varanasi, 

K., Mücklich, F., Stodieck L. “Design of a spaceflight biofilm experiment”. Acta Astronautica 148, 294-300, 

2018 

 

Author contribution 

Planning: 15 %, Experiment: 40 %, Manuscript: 15 % 

 

Publication: 

Cortesao, M., Rubin, P., Luo, J., Hellweg, C.E., Stodieck L. Mücklich, F., Klaus, D., Moeller, R., and Zea, L. 

“Controlling spaceflight fungal biofilms: the search for antimicrobial surfaces”. International 

Astronautical Congress (IAC) 2018 
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Planning: 60 %, Experiment: 80 %, Manuscript: 80 % 

 

 

  

https://www.sciencedirect.com/science/article/pii/S0094576517317083
https://www.sciencedirect.com/science/article/pii/S0094576517317083
https://www.sciencedirect.com/science/article/pii/S0094576517317083


Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

91 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

92 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

93 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

94 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

95 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

96 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

97 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

98 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

99 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

100 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

101 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

102 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

103 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

104 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

105 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

106 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

107 

 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

108 

 Discussion  

This doctoral thesis has investigated how the filamentous fungus A. niger adapts to different space 

environments, given the fungus presence in space habitats, its medical and industrial relevance, and its 

role in modern-day biotechnology. For this, the industrial wild-type A. niger strain N402 (ATCC 64974) was 

used, as a biotechnologically relevant strain, along with three other mutant strains (derived from N402) 

that were defective in pigmentation (ΔfwnA), defective DNA repair via NHEJ (ΔkusA) and with a 

hyperbranching phenotype (ΔracA). The resistance of A. niger spores to different types of space radiation 

was assessed by exposing wild-type, ΔfnwA and ΔkusA spores to X-rays, cosmic rays and additionally 

exposing ΔracA to UV radiation. This thesis also presents investigations on the viability of A. niger spores 

in a Mars-like environment, having successfully tested the MARSBOx payload in a balloon-mission to the 

stratosphere, a valuable Mars-analog environment on Earth. Furthermore, in this thesis, simulated 

microgravity-induced changes in A. niger colony morphology, ultrastructure and spore physiology were 

identified for wild-type, ΔfwnA and ΔracA strains. This thesis has reported the petri-dish fast-rotating 

clinostat as a platform for testing filamentous fungi colony growth under simulated microgravity. Lastly, 

as part of this doctoral thesis, pre-flight experiments with the fungus P. rubens were performed in 

preparation for Space Biofilms - a NASA-funded spaceflight experiment aboard the ISS.  

6.1    Fungal spore resistance to space radiation 

When testing spore survival to different kinds of space radiation, it was found that spores of A. niger are 

highly resistant. Wild-type spores survived up to 1000 Gy of X-rays, 500 Gy of cosmic rays (He- and Fe-ions) 

and 4000 J/m2 of UV-C, suggesting that they would survive in outer space, if radiation alone is considered 

as a stressful factor. Radiation resistance is likely due to the highly pigmented cell wall and efficient DNA 

repair, given that a defect in pigmentation (ΔfwnA) or DNA repair (of the NHEJ pathway, ΔkusA) showed 

significantly less survival (to all tested types of radiation). Studies with Bacillus spores and pigmentation 

protection to UV radiation have found pigmentation-derived resistance only to UV-A radiation (and not to 

UV-B or UV-C) (Moeller et al., 2005). In contrast, in this thesis, a FwnA-derived spore pigmentation was 

shown to be essential in A. niger spore survival to UV-C radiation. In addition, melanins have been 

previously suggested to adsorb electromagnetic radiation such as X-rays, and were proposed as 

radioprotectants for space explorations (Casadevall et al., 2017; Cordero and Casadevall, 2017), however, 

in this thesis no difference was found in survival to X-rays between our wild-type and ∆fnwA spores.  

Previous studies exposing spores of A. fumigatus and A. nidulans to up to 5400 J/m2 UVB found that A. 

fumigatus spores had higher frequency of cyclobutane pyrimidine dimers (CPDs) DNA photoproducts, i.e. 

more damage, than spores of A. nidulans. The authors suggested that the reduced cytoplasm space 

(between wall and nucleus) of A. fumigatus (spore size being 1/8 of that of A. nidulans), contributed to 

this via low cytoplasm absorption of radiation (Nascimento et al., 2010). Despite this, knowledge about 

fungal conidial DNA photochemistry is largely unknown, and there is the need to identify other potential 

types of DNA lesions (Nascimento et al., 2010).   

In this thesis, a NHEJ-defective A. niger strain (ΔkusA, Ku70 ortholog) was also tested in exposure to space 

radiation. NHEJ has been implicated in a different response depending on the linear energy transfer (LET) 

of the radiation. High LET radiation (such as Fe-ions) is known to cause more damage, usually more double 
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strand breaks, than low-LET radiation (such as X-rays or He-ions), however, strains deficient in NHEJ have 

shown similar survival levels at the same dose, regardless of the LET. A study with mammalian cells has 

determined that high-LET causes same yield of double-strand breaks, but in smaller fragments (< 40 bp), 

that don´t allow Ku80 to bind and repair (Wang et al., 2008). In accordance, in this thesis it was 

demonstrated that the LD90 values - i.e. dose at which there is 90 % of spore inactivation - of the A. niger 

NHEJ defective strain were similar in both high-LET Fe-ions and low LET X-rays and He-ions (~ 50 - 57 Gy). 

Other studies with N. crassa testing the impact of different forms of ionizing radiation found that a NHEJ-

deficient strain showed resistance to higher X-ray doses (low LET) than wild-type and homologous 

recombination-deficient strain suggesting that when defective in NHEJ, the preferential error-free HR is 

able to ensure DNA repair (Ma et al., 2018). 

Unexpectedly upon radiation with X-rays, overnight desiccation of A. niger spores led to more killing of 

than spores radiated in wet conditions (water or saline solution). Accordingly, it has been suggested that 

spore killing rate during desiccation tends to increase as cellular water is removed (Dose et al., 2001), and 

studies with yeast cells revealed that when they are only partially dried (water content above 20 %) they 

begin to take up oxygen which leads to increased ROS and DNA damage (Koga et al., 1966). Furthermore, 

in this thesis, reduction of A. niger biofilm formation after UV radiation was tested. It was found that 

biofilm formation was reduced by 81 % after treatment with 1000 J/m2 of UV-C (254 nm).  In long-term 

missions, microbial control through disinfection strategies will be critical. Approaches for UV-sterilization 

of water - one of the most important resources (Al-Gabr et al., 2013; Song et al., 2016) are being 

developed, as well as surface sterilization with plasma (ionized gas and UV radiation), both for food and 

medical sectors (Misra et al., 2019; Sharma et al., 2015).  

 

6.2    Fungal spore survival in a Mars-like environment 

In this thesis A. niger spore viability to a martian-like environment was studied by launching wild-type 

dried spores inside a Mars-gas and pressure chamber (TREX box) aboard a scientific balloon to the 

stratosphere (MARSBOx mission).  Results suggested that A. niger spores might be considered some of the 

most likely forward contaminants to survive if inadvertently delivered to Mars. Furthermore, results also 

emphasize the importance of testing microbial survival towards multi-factorial Mars simulation, and the 

use of stratosphere as valuable Mars analog for space microbiology. Spores of A. niger were able to survive 

5 hours of Mars-like environment, even when exposed to over 1000 kJ of UV (UV-A and UV-B) as a spore 

monolayer. Measurements aboard the balloon payload reveal ionizing radiation dose rate in the middle 

stratosphere (~ 38 km altitude) to be 75.5 Gy per day, and further data on UV-C dose rate in the 

stratosphere reveal a dose rate of 1 µW/cm2. This means that on the 5-hour balloon mission, A. niger 

spores were additionally exposed to 21 µGy of ionizing radiation throughout the MARSBOx mission and to 

180 J/m2 of UV-C radiation. Studies with B. subtilis spore survival to simulated Mars conditions, have 

determined that spore killing is mostly UV driven, and that the spores’ outer coat was the most important 

factor in surviving UV irradiated Mars surface conditions (Cortesão et al., 2019). Thus, it is likely that the 

A. niger spore cell wall also plays a critical role in adapting to Mars-like conditions.  

Since the mission-experiment lasted for a total of 5 months, the laboratory controls were in themselves 

an opportunity to study spore resistance to long-term desiccation. Here, A. niger spores were found to 

have less than 1-log reduction after 5 months desiccation in comparison with inoculum, suggesting a high 
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tolerance for desiccation. A. niger spores were also found to be resistant to extreme temperature variation 

effect, under artificial Mars atmosphere and pressure (−51 °C to 21 °C). Fungal spore heat resistance, in 

particularly if associated with high-pressure is interesting from atmospheric re-entry, in a space travel 

scenario. Heat resisting molds seldom include Aspergilli, however multiple species of Aspergillus have 

already been found to be heat resistant, being able to survive heat shocks up to of 80 °C for 60 min (Pitt 

and Christian, 1970; Tribst et al., 2009). Thus, fungal spore sensitivity to extreme heat should be further 

evaluated to better assess the forward contamination potential in Mars analog environments. 

Furthermore, A. niger spores were able to endure cell-wall stress after exposure to Mars-like conditions, 

via calcofluor white (CFW) and caspofungin. CFW is an inhibitor of chitin microfibril assembly that induces 

the cell wall integrity pathway via RmlA which is typically sufficient for cell salvage (Fiedler et al., 2014), 

whereas caspofunging is an antifungic that specifically targets fungal cell wall biosynthesis, and also 

activates MAPK response (Altwasser et al., 2015). 

Given A. niger extreme resistance to space radiation, survival results to Mars-like conditions strongly 

advise revisiting of planetary protection policies. Currently, Mars forward contamination policies restrict 

surface bioburden of ≤ 3 x 105 spores for robotic lander systems that are not carrying instruments to 

investigate extant martian life (caterogy IVa) (COSPAR, 2020). Most of these policies are based on scientific 

studies that determine the limits of microbial resistance to cleaning and sterilizing agents. However, most 

of these studies are performed with bacterial spores such as B. subtilis, which have been shown to be 

highly resistant to various extremes of space (He et al., 2018; Nicholson et al., 2012; Onofri et al., 2012). 

Insights into fungal spore resistance to decontamination are known from food industry (see above, in 

section 6.1) but not in the planetary protection context.  

Results of this thesis also provide valuable insights to the Lithopanspermia theory (Horneck et al., 2008), 

since it suggests the survival of fungal spores through space travel, even without the shielding effect of a 

spore multilayer (i.e. self-shielding). Studies regarding how other factors - e.g. shielding by regolith or rover 

wheels - affect survivability during space travel have been performed with B. subtilis (Kerney and 

Schuerger, 2011; Moeller et al., 2010b; Rettberg et al., 2004). Moreover, a recent study investigated 

survival of the black fungus Cryomyces antarcticus to accelerated helium ions within Mars regolith (Pacelli 

et al., 2020). Another study analyzed proteomics and metabolomics of extremophilic fungi after exposure 

to Mars simulated conditions. It found that ten out of thirteen tested fungal species were able to survive 

the UV-C dose of 2,000 J/m2, but only four strains survived 5-min exposure to simulated Mars conditions, 

A. fumigatus isolated from ISS HEPA filter was among the survivors (Blachowicz et al., 2019b).  

 

6.3    Colony growth under simulated spaceflight microgravity 

Changes in A. niger colony growth and biofilm formation under simulated microgravity were studied using 

a solid media (agar) fast-clinorotation. A summary of colony and spore microgravity-induced changes can 

be found in Table 3. Results show that A. niger has increased colony area and a thicker biofilm (i.e. 

vegetative mycelium embedded in ECM) in the simulated microgravity environment, which suggests 

increased colonization ability in a real spaceflight environment. Furthermore, results suggest that fwnA - 

a gene encoding a Putative polyketide synthase (PKS) involved in dihydroxynaphthalene (DHN) melanin - 

is involved in adaptation to microgravity, as its absence led to changes in colony area, total biomass, 

mycelium thickness and spore production. Another study analyzing the proteome and secretome of the 

black fungus Knufia chersonesos under simulated microgravity using HARV found upregulation of scytalone 
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dehydratase, an enzyme also involved in the synthesis of DNH-melanin (Tesei et al., 2021). Melanins, as 

secondary metabolites are known to be involved in several cellular processes from virulence to radiation 

protection (Cordero and Casadevall, 2017). However, the melanin biosynthesis pathway in A. niger is not 

yet well understood. In addition, simulated microgravity experiments in this thesis suggest that racA - a 

gene encoding a Rho GTPase involved in regulation of cell polarity – is also involved in the fungus 

adaptation to microgravity. It is important to note that the tested strain is RacA-deficient with a 

background deletion of kusA, and is therefore also defective in NHEJ. Given changes in colony growth, it is 

possible that simulated microgravity affects DNA, if so, it will most likely be in the form of indirect damage 

such as reactive oxygen species. However, how fungi adapt to microgravity is still far from being 

understood.  

Most importantly, in this thesis, never before seen SEM images of A. niger colonies were acquired in both 

Ground and simulated microgravity conditions. These images reveal the complex ultrastructure of the 

vegetative mycelium embedded in extracellular matrix, i.e. the biofilm. Fungal biofilms are known threats 

to indoor habitats, medical and scientific instruments, life-support systems and human respiratory 

infections. What’s more, fungal biofilms are known to be highly resistant to decontamination methods and 

antifungal treatments (Ramage et al., 2012). Fungal biofilm formation in the spaceflight environment is a 

challenge, not only in the ISS, but also in indoor environments on Earth (e.g. hospitals and airplanes), and 

will be even more challenging in upcoming long-term space missions, i.e., to the Moon, or Mars. The 

challenge lies mainly in ensuring the integrity of spacecraft material surfaces and in ensuring crew health. 

Biodegradation of spacecraft surfaces happen because, as a saprophyte, A. niger grows associated with 

surfaces by secreting enzymes that promote biodeterioration and biocorrosion (Gutarowska, 2010). These 

enzymes are released from the hyphae and help break down the material substrates, further digesting and 

absorbing the products through the cell wall. Fungal pathogens rely on these digestive enzymes to be able 

to penetrate natural host barriers and infect biotic surfaces, and also enables them to colonize a wide-

range of abiotic surfaces (Hoffmeister and Keller, 2007).  

Indeed, stress resistance and pathobiology are interlinked in Aspergilli (Brown and Goldman, 2016; 

Hartmann et al., 2011), and therefore changes in colonizing ability, e.g. through biofilm thickness, will not 

only affect pathogenicity potential but also fungal resistance to decontamination and to antifungal 

treatments. There are many factors contributing to successful surface colonization: mainly nutrient 

availability, and surrounding environmental conditions. On the ISS, relative humidity and temperature are 

highly controlled as part of the Environmental Control and Life-Support System (ECLSS), creating an ideal 

habitat for humans that can also facilitate microbial growth (ESA, 2010). When it comes to nutrient 

availability, humans are the common providers. Similar to the fungal growth on the ISS wall panel that was 

enabled by the nutrients present in the sweat, other contamination scenarios are created through human-

derivate nutrient sources (e.g. sweat, urine, skin, feces etc.). This happens naturally, as the human 

microbiome is highly complex, and these microbes are easily spreadable in an indoor-closed environment 

(Garrett-Bakelman et al., 2019). Thus, the presence of other microbes (dead or alive), in any given surface, 

can function as nutrient sources for fungi to grow. It is important to bear in mind the fact that microbial 

biofilms can form not only in a mono-species, but also as a multi-species. In the natural environment, 

multi-species biofilms are present both in biotic and abiotic surfaces, and this is no different on the ISS and 

its astronauts. For instance, in human infections the interaction between fungi and bacteria is known to 
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affect their pathogenic potential (Peleg et al., 2010, Melloul et al., 2016) have validated an in vitro model 

of mixed biofilm with the fungus A. fumigatus in association with the bacterium Stenotrophomonas 

maltophilia, mimicking a respiratory multi-species biofilm infection. Here, liquid static co-cultures were 

established and SEM and TEM analysis found bacterial-induced changes in the fungal biofilm, namely 

significantly less biofilm thickness and a thicker A. fumigatus cell wall when grown together with S. 

maltophilia (Melloul et al., 2016). Therefore, further studies with mixed biofilms, especially considering 

spacecraft environmental conditions and relevant material surfaces, should be performed to have a real 

risk assessment for human infections and material contamination in spaceflight. 

 

Table 3. Effect of simulated microgravity on Aspergillus niger colony growth and spore vitality 

 

 

6.4    Penicillium rubens as model organism for a spaceflight experiment 

Part of this thesis was done in the scope of the spaceflight experiment aboard the ISS called Space Biofilms, 

led by Dr. Luis Zea from Bio Serve Space Technologies and University of Colorado, Boulder. The spaceflight 

experiment has the main goal to study the morphological and transcriptional changes of biofilm formation 

on real microgravity environment. For that, two microorganisms, known biofilm formers, were included: 

Pseudomonas aeruginosa and Penicillium rubens. The author of this thesis, Marta Cortesão, was part of 

the Space Biofilms team since 2017, being responsible for the performance of preparatory tests (or pre-

flight tests) with P. rubens, that would help design and establish the final space experiment. Therefore, 

these preparatory tests are presented as part of this doctoral thesis. Four main tests were performed: 

biocompatibility; growth under simulated microgravity with test materials; establishment of protocols for 

analysis of morphology and material-colonization (biofilm formation); as well as transport and stowage 

conditions to and from the space station (pre- and post-flight). These tests were critical to inform the final 

experimental design and contributed to the successful development of the space experiment launched in 

November 2020. Unfortunately, when aboard the ISS, the fungal samples were not activated due to an 

 Wild-type Pigmentation (∆fwnA) Hyperbranching (∆racA) 

Colony Area
 
(cm2) ↑ ↑ ↑ 

Dried biomass (mg) = ↑ ↓ 

Spores per colony ↑ ↑ ↑ 

Spore metabolic max (%) ↓ = = 

Spore metabolic max (h) ↑ = ↓ 

Spore hydrophobicity = = ↑ 

Biofilm thickness (µm) ↑ ↓ ↑ 

Conidiophore height (µm) ↓ ↑ = 
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alteration of astronaut schedule. This means that fungal growth did not start and therefore the experiment 

was not carried out. NASA has been kind to consider a second flight where the Space Biofilms team would 

re-launch and re-test the fungal samples. 

While testing P. rubens biocompatibility and growth under simulated microgravity, analysis of fungal 

material colonization by fluorescence microscopy revealed the ability of P. rubens to grow attached to an 

aluminium surface, and that this growth was not hindered in simulated microgravity through slow-

clinorotation. The tested aluminium material is commonly used as spacecraft surface in thermal and 

cryogenic fuel systems as well as in electronic devices and panels. In fact, Penicillium spp. have been 

associated with corrosion aluminium (Yang et al., 1998), and other microbes have also been identified as 

able to degrade aluminium on spacecraft (Rcheulishvili et al., 2020). Since fungal-led biodegradation (or 

biofouling) is characteristic of indoor environments, not only of spacecraft and aircraft but also of hospitals 

and industrial systems (Coetser and Cloete, 2005; Kokilaramani et al., 2021; McNamara et al., 2005; Mora 

et al., 2016), further studies regarding fungal biodegradation in spaceflight materials should be performed 

to help guarantee spacecraft material integrity and astronaut health. For instance, similar studies to those 

done in Apollo with spacesuits (Breuker et al., 2003). Moreover, studies developing novel spacecraft 

material surfaces with long-term antimicrobial (both antibacterial, antifungal and antiviral) properties 

(Hahn et al., 2017; Paton et al., 2020) will be key to ensure a successful human space exploration. 
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 Conclusion and Outlook 

Investigating how the fungus A. niger adapts to space conditions, namely to simulated microgravity, 

radiation and simulated Mars-surface conditions, this thesis can conclude that: 

• Spores of the fungus A. niger are highly resistant to all tested kinds of radiation (X-rays, He- and 

Fe-ions, and X-rays), and would survive space travel, this is, if we consider the radiation 

environmental factor alone. FwnA-derived pigmentation is not involved in protecting spores from 

ionizing radiation. In contrast, wild-type highly pigmented spores were, as expected, more 

resistant than pigmentation-deficient spores when exposed to UV-C radiation. Partial desiccation 

of A. niger spores leads to an unexpected lower survival to X-ray radiation. 

• A. niger spores can survive Mars-like surface conditions (i.e. desiccation, temperature variation, 

martian atmosphere and exposure to UV-radiation) for at least 5 hours. Survival of A.niger spores 

was possible even as a spore monolayer (i.e. with no self-shielding), although germination was 

delayed in UV-exposed spores. 

• A. niger colony growth in static, aerial conditions - an analog to both spacecraft material 

contamination and human respiratory infections - has a complex and outstanding structure 

revealed via SEM imaging. A. niger colony growth and spore production are not hindered in 

simulated microgravity. In fact, wild-type colonies have increased biofilm (i.e. ECM covered 

vegetative mycelium) thickness and spore production. Furthermore, FwnA-derived pigmentation, 

and RacA-derived polar growth are suggested to be involved in A. niger adaptation to microgravity. 

• The fungus P. rubens is biocompatible with the BioCell culture system, and is able to colonize 

aluminum surfaces, both on ground and in simulated microgravity.  

As our knowledge about fungal adaptation to spaceflight and outer space environment increases, we will 

be able to address the main challenges of space microbiology and space exploration. Overall, it is 

important to emphasize that the impact of fungal growth is not limited to the spacecraft surfaces and 

systems, but rather exist in complex Human-Fungi-Spacecraft interactions. First, the indoor controlled 

environment of space habitats creates several niches for fungi to thrive in. Second, spaceflight and 

mission-derived conditions set a stressful environment for astronauts that result in a compromised 

immune system (Crucian et al., 2018).  And third, human presence was shown to impact fungal diversity 

of inflated lunar/martian analog habitats, where human-microbiome influences microbial potential for 

colonization of the different surfaces (Avila-Herrera et al., 2020; Blachowicz et al., 2017).  

Thus, one challenge will be to in monitor and control fungal burden in spacecraft-associated environments. 

So far, most microbial monitoring in spacecraft-assembly clean rooms do not target fungi, typically 

integrating only 16S sequences (Moissl-Eichinger et al., 2012; Schwendner et al., 2013; Stieglmeier et al., 

2012), or limit identification of fungi to culture-dependent methods (Koskinen et al., 2017). Few studies 

have included 18S‐rRNA and ITS1‐rDNA (Makimura et al., 2001).  It is also important to investigate fungal 

resistance capabilities to extreme environments, exposing fungi to combined, and simultaneous, 

conditions of the space environment (e.g. radiation, vacuum, microgravity, temperature, etc.), as well as 

including other factors that might affect survivability (e.g. shielding from spacecraft materials or Lunar and 

Mars regolith). This will help inform planetary protection guidelines as well as potential space-health 
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guidelines (Rettberg et al., 2016; Simões and Antunes, 2021). In the future, Moon and Mars missions will 

allow us to study fungi (and other microorganisms) in real extraterrestrial lunar and martian environments 

(i.e., partial gravity, lunar and martian regolith, radiation, etc.) (Häder, 2019; Patel et al., 2020; Turroni et 

al., 2020). Indeed, Mars-sample return missions such as ExoMars are already being performed, looking for 

extant martian life, and will bring high astrobiological value (Fairén et al., 2017; Gonzales and Stoker, 2016; 

Vago et al., 2017). Moreover, efforts should focus on developing fast detection of surface-degrading fungi 

(and other microbes) (Rcheulishvili et al., 2020) as well as on developing strategies and technologies to 

monitor, control and mitigate biofilms in spaceflight (Probst and Vaishampayan, 2020; Zea et al., 2020). In 

particular in water-systems where disinfection and waste water management are critical (Amalfitano et 

al., 2020; Richardson and Rautemaa-Richardson, 2019; Wong et al., 2010), and can play a role in circular 

bioeconomy (Collivignarelli et al., 2020; Li et al., 2019).  

Lastly, there is the challenge to employ fungi as valuable components of life-support and science systems 

in long-term crewed space exploration. Here, fungal-based biotechnology will play a critical role, as it is an 

opportunity to become resource-independent, when one is far away from Earth (Cortesão et al., 2020). 

Studies on microbial compound production under microgravity extend our knowledge on both molecular 

stress resistance mechanisms and of new interesting pathways of compound production. Besides, 

investigations on biomining potential in microgravity and Mars gravity are currently underway, exploring 

the potential of geomicrobiology in space exploration (Cockell, 2010, 2020).  Understanding how fungi and 

other microorganisms adapt to the space environment will also yield new developments is areas from as 

space food production, processing and packaging to textiles and construction (Meyer et al., 2020; 

Perchonok et al., 2012; Valero et al., 2008). Indeed, microbes are key-players in space exploration, 

especially in near-future Lunar and Mars settlements as they can play a critical role in life-support, 

biomining, terraforming, etc. (Lopez et al., 2019; Nangle et al., 2020).  

As science and research development should also be sustainable in space, long-term space missions should 

be able to provide not only life-support system for the crew, but also a science-support system (SSS). This 

SSS should empower sustainable in situ, high-throughput research development in microbiology, 

molecular biology, synthetic biology, genetic engineering and biotechnology (Karouia et al., 2017; McNulty 

et al., 2021; Menezes et al., 2015), that will ensure the exploration of the microbial resources and 

adaptation abilities to their full-potential. One step forward was the DNA amplification and sequencing 

done aboard the ISS (Boguraev et al., 2017; McIntyre et al., 2016). Thus it is clear that the challenges posed 

by space exploration are yielding efforts to develop low-resource, sustainable and recycled science (Galli 

and Losch, 2019). These will likely influence how we establish science here on Earth, too.  
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 Appendix 

Table 4: Abbreviation list 

 
Abbreviation Connotation 

2-D Two Dimensional 

3-D Three Dimentional 

A. niger Aspergillus niger 

ATCC American Type Culture Collection 

BER Base Excision Repair 

BIOMEX Biology and Mars Experiment 

CAB Center for Astrobiology 

CFW Calcofluor white 

COSPAR Committee on Space Research 

CPD Critical point drying 

CPDs Cyclobutane pyrimidine dimers 

CWI Cell Wall Integrity 

DDR DNA Damage Response 

DHN 1,8-dihydroxynaphthalene 

DLR German Aerospace Center 

DNA Deoxyribonucleic acid 

DSBs Double-strand breaks 

DSM(Z) German Collection of Microorganisms 

ECM Extracellular matrix 

ESA European Space Agency 

GCR Galactic cosmic radiation 

GSI Hemholtz Center for Heavy Ion Research 

HARV High aspect rotating vessel 

HEPA High efficiency particulate air filter 

HOG High Osmolality Glycerol  

HR Homologous recombination 

HZE High energy charged particles 

ISS International Space Station 

ITS Internal transcribed spacer 

L-DOPA 3,4-dihydroxyphenylalanine 

LEO Low Earth Orbit 

LET Linear Energy Transfer 

LIFE Leading International Fungal Education 

MAPK Mitogen-activated protein kinase 

MESCH Mars Environmental Simulation Chamber 

MSC Mars Simulation Chamber 

NASA National Aeronautics and Space Administration 

NER Nucleotide Excision repair 

NHEJ Non-Homologous End-Joining 
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Abbreviation Connotation 

OD Optical density (nm) 

P. rubens Penicillium rubens 

PBS Phosphate buffered saline 

PFA Paraformaldehyde 

pH Potential of hydrogen: measure of acidity or alkalinity 

PKS Polyketide synthase 

RNA Ribonucleic acid 

ROS Reactive oxygen species 

RPM Random positioning machine (or 3-D Clinostat) 

RWV Rotating wall vessel 

SEM Scanning electron microscopy 

SMG Simulated microgravity 

SSBs Single-strand breaks 

TEM Transmission electron microscopy 

UHV Ultra-high vacuum 

UV Ultraviolet (radiation) 

 
 

 

Table 5: Units and their description 

 

Unit Description 

-g g-force 

°C degrees Celsius 

µl microliter 

µm micrometer 

aw water activity 

bp Base pairs 

CFU colony forming unit 

CM Complete media 

g gram 

Gy Gray 

h hour 

kb Kilobase pairs 

J Joule 

keV kilo electronvolt 

L liter 

Log logaritmic 

m meter 

M Mol 

MM Minimal Media 

min minutes 



Doctoral Thesis                                                                              Marta Cortesão                                                                                       2021 

 

 

142 

Unit Description 

mL milliliter 

mM millimolar 

mm millimeter 

mW milliWatt 

n number of single experiments 

Nm nanometer 

N Tested condition 

N0 Control for the tested condition 

ng Nanogram 

nm nanometer 

RH Relative humidity [%] 

r.p.m. rounds/revelations per minute 

T Temperature (C°) 

W Watt 

Z Atomic number 

 

 


