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Foreword to the structure of this work 
 

Dear reader, 

As the title already suggests, this thesis work deals with rare neurometabolic disorders (a 

biological question) and liquid chromatography mass spectrometry (a more methodological 

aspect). Therefore, this work is structured into an introduction that leads from the general topic 

of rare neurometabolic disorders to a short introduction to basics in mass spectrometry. 

Consequently, this chapter-based thesis work further consists of multiple chapters dealing with 

singular aspects such as the development of the metabolomics pipeline and applications to 

different rare disorders. Each chapter may be read individually, however all are connected to 

solve the greater question of the use of mass spectrometry in rare disorders characterization. 

The thesis then concludes with a general discussion of the advancements of mass 

spectrometry-based metabolomics in rare neurometabolic disorders. In the supplementary 

chapters 10.1 (p. 154) and 10.2 (p.156) we have included a short glossary of important mass 

spectrometry terms and lipid nomenclature that may improve the understanding of this thesis. 

Henry G. Klemp 
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Abstract 
Rare diseases are a class of disorders where every single disease has a low prevalence, but 

due to their incredible variety, they affect more than 100 million people worldwide. A significant 

number of these disorders lead to neuropediatric, neurometabolic, and neurodegenerative 

disorders. The high diversity of disorders and widespread missing information hinder 

potentially life-saving diagnoses. While newborn screening successfully alleviated diagnostic 

problems for the most common rare disorders, the majority remain unstudied. Next-generation 

sequencing methods have led to a giant leap forward in rare disease detection, but 

undocumented variants of unknown significance can still hinder diagnosis. Additionally, the 

outbreak and severity of many of these disorders cannot be predicted from the genotype alone. 

As metabolism is the interphase between exogenous factors and endogenous factors, the 

holistic study of metabolism, metabolomics, may help characterize rare neurometabolic 

disorders working in concert with genomics techniques. Consequently, the main aim of this 

project was to establish a liquid chromatography mass spectrometry-based platform for the 

characterization of rare neurometabolic and neuropediatric disorders.  

For this, we developed an in-house untargeted metabolomics platform, as well as applied the 

commercial AbsoluteIDQ p180-kit from Biocrates for targeted metabolomics applications. For 

our untargeted platform, we selected a combination of a chromatography method for 

hydrophilic analytes, as well as a technique for lipids. To alleviate identification problems 

common to untargeted metabolomics, we decided to generate a metabolite identification library 

for the hydrophilic method comprising 408 human disease-relevant metabolites. Our 

untargeted method compared well with other methods in the field and was able to show 

additional validation parameters commonly not studied by other metabolomics methods. 

In a second part, we aimed to apply our complete metabolomics platform to several research 

projects in the rare disease field. Here we were able to discover new potential biomarkers for 

peroxisomal disorders, find potential prognostic biomarkers for developing the cerebral 

phenotype of X-Adrenoleukodystrophy, provide metabolic validation data to a single patient 

with an alteration in fatty acid elongation, as well as study the organic cation transporter 1 

(OCT-1).  

Using these applications, we could successfully fulfill the aims of this project and show the 

utility of metabolomics in characterizing neurometabolic conditions. Further research is needed 

to study the abilities of this metabolic platform in detail. However, this metabolomics platform 

may significantly contribute to the diagnosis and characterization of rare disorders, especially 

in association with other omics disciplines. 
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1.0 General introduction: The diagnostic odyssey of 

rare disorders 
In the late 1920s, two parents made an alarming discovery regarding their children. Even though she had 

developed normally, the oldest child, a girl, failed to acquire speech as she was already three years old. Her 

younger brother grew normally for a couple of months but then lost interest in the environment and never learned 

to sit or walk. While physically, both developed normally, there seemed to be something affecting their mind. At 

the same time, the parents started recognizing a “strange musty odor” of their children’s urine. After severe 

worsening of the boy’s symptoms, the parents went from one medical professional to another. However, all 

standard laboratory work and clinical assessment did not result in a diagnosis. The parents even saw advice from 

self-proclaimed natural healers or prophets. But they did not give up. The father remembered that he had heard 

lectures from Prof. Fölling, a specialist in metabolic disorders in college. Thus, they started contacting Prof. Fölling, 

and he agreed to see the children. While classical laboratory work on the children remained normal initially, Prof. 

Fölling decided to do one last test for ketones in the urine. Ketonuria is usually caused by metabolic abnormalities 

such as those found in diabetes or starvation. It was imaginable, those might (when remaining for a longer time) 

lead to neurologic effects. The skilled physician then made an astounding discovery: Upon addition to the test 

solution (ferric chloride), the solution turned green instead of the classical red-brown color. This reaction has never 

been described before. In cooperation with the parents over multiple months, Prof. Fölling managed to isolate the 

substance causing this reaction from “about 20 liters of urine”. After extensive chemical analysis, he determined 

the substance to be phenyl pyruvic acid, a phenyl ketone. Later, he went to multiple psychiatric wards and found 

further patients with this disorder. In a research article, he then coined the term “imbecillitas phenylpyruvica” for 

this disorder, which was later renamed phenylketonuria (PKU). Partly adapted from Centerwall and Centerwall, 

2000; Fölling, 1934 

In 1947 Dr. Jervis uncovered that the accumulation of phenyl pyruvic acid resulted from 

defective phenylalanine catabolism (Jervis, 1947). Based on this, Dr. Bickel (and others) 

developed a phenylalanine-low diet that significantly reduced phenylketonuria and 

substantially improved symptoms (Bickel et al., 1954). Subsequently, it was proposed that 

early recognition of the disorder and early dietary changes may prevent symptoms from 

progressing and enable the children an everyday life. For this early detection, Dr. Guthrie 

developed a bacterial growth inhibition test that could be conducted from heel-prick blood 

spotted on a filter paper (Guthrie, 1992). The Guthrie test enabled massive newborn screening, 

which was formally introduced for the first time in Massachusetts in 1962 and was introduced 

to Germany in the 1970s. Since then, the newborn screens have been steadily improved, and 

more diseases included. 

The history of phenylketonuria is an excellent example of stories of many neurometabolic 

disorders. Typical “hallmarks” include: 

- normal development until a certain age 

- the combination of a neurologic phenotype with blood or urine abnormalities 

- multiple occurrences in the family (inheritance) 

- first recognition by primary caregivers, but no abnormalities found in routine medical 

  screening 

- diagnostic odyssey 

- discovery of biochemical changes by specialized tests 

- discovery of genetic or metabolic causes 

- sometimes: development of therapy options that can even prevent disease progression 

- sometimes: inclusion into a screening program 

In the above example, it might seem evident that one fundamental necessity for proper patient 

treatment is diagnosis. However, as seen in this example, the diagnosis of uncommon 

disorders can be cumbersome.   
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For these uncommon disorders, the legal term “rare disorder” was coined. The following 

sections will include further definitions of rare disorders, diagnostic opportunities, and their 

connection to the “omics” era. 

1.1 Introduction to rare disorders and their statistics  

Rare disorders are an umbrella term for a multitude of different disorders with strongly varying 

causes. Legal definitions vary from country to country; European legislation defines a rare 

disorder to have a prevalence of less than 5 in 10,000 or 1 in 2000 (Richter et al., 2015). 

However, the term rare disorder can be misleading, and there are also no clear definitions of 

what defines a disorder, as opposed to single patients with medical alterations. Thus, rare 

disorder numbers vary greatly and range from 5000 to 9000 entities, though rare disorders are 

highly diverse no matter the exact number (Ferreira, 2019). Consequently, the cumulated 

worldwide prevalence of all rare disorders is guessed to be in the range of multiple hundred 

million patients (Nguengang Wakap et al., 2020). The high diversity of this group and 

insufficient information about their causes might contribute to an extraordinarily high number 

of misdiagnoses. This was further analyzed by the EurordisCare studies 1-3 conducted by the 

European rare disease patient advocacy group EURORDRIS from 2002-2008 in 6-16 

exemplary rare disorders (https://www.eurordis.org/publication/voice-12000-patients, 

accessed 05.08.2021). An astonishing number of 25% had to wait longer than 5 years until 

reaching a diagnosis, in some cases, even up to 30 years. Also, around 40% of patients 

received initial misdiagnoses. Apart from the burden for patients, this creates an economic 

burden for society as well. The average cost of around 80,000 € yearly per patient in Germany 

has been described based on 8 major rare disorders (Linertová et al., 2017). For pediatric care, 

this has prime importance as it is guessed that over 50% of neonatal or infant death is caused 

by rare malformations or genetic conditions (Stevenson and Carey, 2004). Numbers vary 

greatly; nevertheless, most authors agree that the most significant causes for rare disorders 

are genetic (Ferreira, 2019). Rare genetic disorders also include the group of inherited 

disorders of metabolism, where most are also neurometabolic neuropediatric disorders 

(Filiano, 2006; Rath et al., 2010; Willemsen et al., 2016).  

Diagnostic capabilities must be thus further extended. The international rare disease research 

consortium (IRDiRC) aims in their goals for 2017-2027 for a reduction of diagnosis time to less 

than one year (Austin et al., 2018). EURORDIS has further confirmed this in their 2030 goals 

(Kole, A., Hedley V., et al., 2021). For this, more efficient and holistic diagnostic possibilities 

are needed. Here we aim to delineate further diagnostic principles and opportunities for the 

group of inherited disorders of metabolism (IMD). 

1.1.1 Common diagnostic procedures in IMD and the role of newborn screening 

As seen in the introduction, the first significant achievement of rare disease diagnostics was 

the invention of the Guthrie method for the newborn screen of phenylketonuria (Guthrie, 1992). 

In the beginning, those tests were biochemical, with the Guthrie-test relying on bacterial growth 

inhibition, or enzymatic tests with photometric or fluorescence detection, for instance, in 

Galactosemia (Beutler and Baluda, 1966). With the upcoming of these methods that allowed 

for newborn screening, Wilson and Jungner defined criteria which diseases should be 

screened for, that were later widely adopted (Wilson and Jungner, 1968). Apart from other 

requirements, especially the treatability of the disorders played a big role, which in fact 

excludes many rare IMDs. In Europe, most nations have established national screening 

programs, although partly analyzing different diseases (Therrell et al., 2015).   

https://www.eurordis.org/publication/voice-12000-patients
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The advances in newborn screening and their wide availability would not have been possible 

without immense technological achievements. One was the introduction of liquid 

chromatography mass spectrometry (LC-MS) into newborn screening, first developed to detect 

acyl-carnitines (la Marca, 2014; Millington et al., 1990). This massively increased detection 

speed, needed to process the 100-1000 samples that arrive at the laboratories every day 

(Rousseau et al., 2012). However, the typically up to 40 parameters (in most countries less) 

measured cannot diagnose all 1500 IMDs classified (Ferreira et al., 2021). Thus, most rare 

IMDs remain undiscovered and undiagnosed by the newborn screen, and other diagnostic 

procedures are necessary. 

1.1.2 The role of genetics, sequencing, and genomics in rare disorders 

In the previous sections, we established that many rare inherited disorders of metabolism are 

monogenetic. Clearly, genetic screens are essential for the diagnosis of these disorders. 

Simple genetic sequencing techniques, such as Sanger sequencing, have long been used to 

confirm biochemical results (Katsanis and Katsanis, 2013). Albeit recent advances in next-

generation sequencing have helped rare disease diagnostics a giant leap forward (Turro et al., 

2020; Vinkšel et al., 2021; Wright et al., 2018). Techniques such as whole-exome sequencing 

or whole-genome sequencing have arrived as almost standard methods for examining 

undiagnosed rare disease patients. While indeed highly beneficial to patients and researchers 

alike, these techniques have pitfalls (Vinkšel et al., 2021). One of the most significant pitfalls 

is the inability to judge the relevance of findings conclusively. In these screens, results of 

altered genes are rather common. Even after filtering using patient-parent trio sequencing (Zhu 

et al., 2015) and other advanced filtering techniques (Sevim Bayrak and Itan, 2020), a higher 

number of potential causes can remain (Wright et al., 2018). If these variants are not previously 

documented and cannot be judged for their pathogenicity using computational predictors 

(McLaren et al., 2016), a high number of those variants of unknown significance (VUS) remain 

(Federici and Soddu, 2020; Sullivan, 2021). These VUS require further testing; in the case of 

IMDs, studying the potentially affected enzymes and metabolic pathways is the logical next 

step. Still, those disorders can be complex, affecting multiple pathways, and can show 

interdependently changed metabolites. New techniques to further elucidate changes in the 

metabolism in a holistic manner being comparable to genomics are needed. One approach 

would be the use of metabolomics. 

1.2 Introduction to metabolomics as a holistic perspective on metabolism 

To our knowledge the first terms that used the suffix -ome, were “biome” and “genome” 

(Clements, 1917; Winkler, 1920). In more recent times, this suffix has then been further 

concretized by system biology. One possible definition is that -ome is the holistic perspective 

on a system that shows emergent properties (Mazzocchi, 2012). An emergent system is a 

system where its parts, based on their interaction effects, gain properties that they would not 

possess independently. Typically omic-disciplines study the -ome using high-throughput 

technologies (Micheel et al., 2012). 

Thus, the metabolome is the holistic study of metabolites and their interaction effects (Fiehn, 

2002; Lindon et al., 2000; Oliver et al., 1998). Most definitions for metabolism include small 

molecules of up to 1500-2000 Da (Wishart et al., 2013). While there are many deviating 

definitions, for this work, we define a metabolite as an endogenous molecule below 2000 Da 

that partakes in processes necessary to sustain life in that organism. 
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Metabolism itself provides interesting insights into diseases, as it is influenced by internal 

(genome, proteome), as well as external factors (e.g. nutrition) and thus provides a “link 

between phenotype and genotype” (Figure 1; Fiehn, 2002). It is to note that there are also 

other contributors, that do not follow the scheme below. These include effectors such as 

ribozymes (Walter and Engelke, 2002) or epigenetic modifications (Cavalli and Heard, 2019).  

 

Figure 1 The metabolome is the interface between genotype and phenotype. The metabolome is influenced 
by endogenous factors such as the proteome and genome, but also by external factor such as nutrition and physical 
activity. In return, the metabolome can influence genome and proteome on its own. Created with BioRender.com 

We can separate two main approaches to study metabolism with an omics-perspective: 

Untargeted and targeted metabolomics. 

Untargeted metabolomics is an approach where the set of analyzed metabolites is not known 

and not defined beforehand. The approach allows an unbiased overview of the metabolome 

and is especially useful for the characterization of unknown phenotypes or the search for 

biomarkers (Fiehn, 2002; Schrimpe-Rutledge et al., 2016; Vinayavekhin and Saghatelian, 

2010). In its most extreme form, as metabolic fingerprinting, single metabolites are not 

identified but rather interpreted on a feature level. A feature in this context can be a signal of 

any kind from the used detector, typically assigned identifiers specific to the used detector. 

Targeted metabolomics is studying a predefined list of metabolites, enabling the techniques to 

be more sensitive and specific (Roberts et al., 2012). Due to different reasons (explained in 

chapter 1.3.2.6, p. 16), only targeted metabolomics can be fully quantitative. 

1.2.1 Planning a metabolomics study requires multiple steps 

As mentioned above, most -omics fields utilize high-throughput techniques to benefit from 

broader coverage. Many papers deal with the correct planning of a metabolomics analysis, 

and many specific approaches exist (Barnes et al., 2016; Jacyna et al., 2019; Shriver, 2016). 

In a synopsis of the literature, metabolomics analyses require the definition of (Figure 2): 

- The purpose of the study 

- The appropriate analytical technology 

- The cohort 

- Sample preparation guidelines 

- Data analysis 
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Figure 2 Planning a metabolomics study requires the definition of multiple steps. Planning of a metabolomics 
study requires the definition of its purpose and then selecting the appropriate technology, cohort, sample 

preparation and data analysis. Created with BioRender.com 

1.2.1.1 Metabolomics requires definition of an analytical purpose 

Independent of the specifications of an analytical platform, every project starts with a general 

project initiative cause or purpose. Frequently, initiative causes can be:  

- a basic scientific research question (e.g., “Why is the brain so reliant on glucose 

consumption?”)  

- or in the case of our clinically oriented neuropediatric institute, a specific patient case (e.g., 

“An unconscious pediatric patient with honey-sweet urine is charged into intensive care, what 

is the cause for the disorder and how can we treat it?”). 

The purpose defines all further steps, such as requirements for sensitivity or specificity. 

Noteworthy is also if the sample can be disintegrated or needs to remain intact. For example, 

blood samples may be completely disintegrated in a blood biomarker study, but if the dynamic 

metabolism in a human brain should be studied, disintegration is not recommended. 

After the initiative cause is determined, the first experiments are performed to build a 

hypothesis. For this, very open screening methods are used. In the case of metabolomics, 

typically untargeted metabolomics methods are utilized. These methods are also commonly 

only semiquantitative. Based on the newly generated hypothesis, specific metabolites are 

picked and analyzed in confirmatory analyses. In a second step, targeted metabolomics 

analysis consists of ideally fully quantitative methods and can then confirm or disprove the 

initial hypothesis (Jacyna et al., 2019).  

1.2.1.2 Metabolomic studies need defined cohorts  

In metabolomic studies, designing an appropriate cohort is very important, as the metabolome 

reacts to many influences (Johnson and Gonzalez, 2012; Kochhar et al., 2006; Lenz et al., 

2004). In studies from biofluids (to less extent also tissues), impacts can include:  

- Age 

- Sex 

- Nutrition (including liquid intake) 

- Bodyweight, body fat, and muscle mass 

- Physical activity 

- Sleep deprivation 

- Iatrogenic influences, e.g., drugs 

- Diurnal effects 

- Ethnicity 
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Thus, the cohort should be carefully selected and should observe a specialized protocol. 

In the case of the (typically) monogenetic inherited disorders of metabolism (IMD), 

metabolomic alterations are usually very fulminant (Miller et al., 2015). Changes in the range 

of 10-1000-fold are usual, and most of the discussed effects are typically smaller. 

Consequently, in IMD research and diagnosis, cohort selection is accepted to be less strict. 

In IMD research and diagnosis, patient and control cohorts are usually very small, with most 

studies being single-patient, being lower than the recommended minimum of 5 biological 

replicates (Sumner et al., 2007). Additionally, invasive procedures such as blood draws cannot 

be performed in pediatric research without a medical indication. Therefore, specific control 

cohorts include patients that are not healthy in the original sense but are not assumed to have 

the same alterations as the patient of interest (Griggs et al., 2009). For example, in peroxisomal 

disease research (which mainly affects lipid metabolism), phenylketonuria patients who have 

been admitted for routine check-ups may be used. Unfortunately, there is often a large age-

mismatch between target patients and controls. The use of the patients’ parents as controls is 

also not uncommon. While this represents a challenge for research in rare neuropediatric 

disorders, it is alleviated by the above-mentioned strong changes expected in IMDs. To 

concretize, the deciding factor is the statistical power of the analysis. If the metabolic effect is 

large enough, smaller sample sizes can be acceptable (Blaise et al., 2016).  

1.2.1.3 The analytical technology needs to match the studies´ purpose 

After defining the purpose of the analysis, requirements regarding sensitivity, specificity, and 

destructiveness are defined. The next step is to determine an analytical technique that can 

generate distinguishable features. In metabolomics, nuclear magnetic resonance 

spectroscopy (NMR) or mass spectrometry (MS) are the two most common techniques 

(Barnes et al., 2016). The most significant advantage is that NMR works in situ and is not 

destructive. Therefore, even intact tissues or live organisms can be measured (Emwas, 2015). 

In vivo NMR is also known as magnetic resonance spectroscopy, MRS (Vingara et al., 2013). 

However, not all elements (or isotopes) generate NMR signals, and the signal intensities are 

comparatively low, reducing the sensitivity of detection. 

The other technique is mass spectrometry (MS). While this technique is destructive, it typically 

performs with higher sensitivity, is amenable to all elements and a more comprehensive range 

of compounds, and has higher linearity and dynamic range (Aretz and Meierhofer, 2016; 

Dettmer et al., 2007). Most biomarker studies are performed on biofluids; thus, the 

destructiveness of the analysis does not play a significant role (Califf, 2018). Based on these 

vital points, most metabolomics studies are conducted using mass spectrometry. 

Mass spectrometry can be combined with a wide range of other methods that increase its 

specificity and analytical power. The most predominant are chromatography techniques 

(Croley et al., 2012). There are different chromatography techniques, each dependent on the 

physical state of the analyte and separation setup. In metabolomics, the most common are 

liquid chromatography (LC) or gas chromatography (GC), with the name defining whether the 

analytes are in a liquid or gaseous state. GC needs analytes in the gaseous state; hence the 

analytes need to be volatile (Dettmer et al., 2007). However, a wide range of metabolites are 

not volatile, so that GC requires derivatization to change their physicochemical properties and 

make them amenable to analysis (Halket et al., 2005). The derivatization removes the 

metabolome from its native state, and many metabolites are excluded by derivatization.   
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Even though it has these shortcomings, it is a very reliable and stable technique that can 

analyze complicated analytes efficiently. For our analysis, we decided to use LC techniques 

commonly not requiring derivatization, allowing samples to remain in a more native state.  

In summary, for this project, we decided to use mass spectrometry combined with liquid 

chromatography, LC-MS. 

1.2.1.4 Sample preparation is demanded to be adapt to the analytical technology 

Independent of the used analytical techniques, every method requires a clear definition of 

analytical targeted groups and principles for acquiring analytical material. Apart from selecting 

experimental groups that fit the pipeline’s initiative cause, the appropriate material collection is 

key to a successful project.  

The appropriate material collection is always dependent on the target analytes, the analytical 

matrix, and the analytical platform itself (Fan, 2012; Vuckovic, 2012, 2013).  

Starting with the analytes, generally, small hydrophilic molecules are highly unstable (Hu et al., 

2020). This especially applies to metabolites with high intrinsic energy, such as metabolites 

that participate in energy converting reactions of primary metabolism. Described here are ATP, 

NAD, FADH2, hexose/pentose phosphates, and similar compounds (Fu et al., 2019; Mičová et 

al., 2017; Trammell and Brenner, 2013). Their biological purpose is to transfer energy, and 

they can do this even when not intended by the experimental protocol. Among those high 

energy metabolites, common reactions are the oxidation reactions leading to loss of protons 

and electrons (e.g., 𝑁𝐴𝐷𝐻 → 𝑁𝐴𝐷 + 𝐻+ + 2 𝑒−) or hydrolysis causing loss of high energy 

phosphates (e.g., 𝐴𝑇𝑃 + 𝐻2𝑂 → 𝐴𝐷𝑃 + 𝑃𝑖). Other reactions include deamination (e.g, 𝐺𝑙𝑛 →

𝐺𝑙𝑢 + 𝑁𝐻3). Lipophilic molecules are generally more stable, mainly if not containing previously 

mentioned groups. Triacylglycerides containing 3 fatty acids bound by carboxy-esters to the 

polyol glycerol do not hydrolyze under normal conditions but require high temperatures and 

extreme pH (Giegel, 1974; Matthan et al., 2010). Aromatic groups also stabilize more lipophilic 

compounds due to their delocalized π-electrons. Only unsaturated lipids (double bonds), 

especially when they are occurring more than once in a molecule (e.g., polyunsaturated fatty 

acids), are more reactive. Double bonds are reactive, can quickly oxidize to form reactive 

carbonyl-radicals, and oxidize other molecules in the sample (Metherel and Stark, 2016). For 

example, the hardening of oil paint relies on the formation of lipid radicals in between α-linolenic 

acid molecules (3 double bonds) contained in the used linseed oil (Boelhouwer et al., 1967). 

The stability of all these metabolites can be affected by pure physical/chemical effects, but of 

course, also by enzymes. Hence, the analytical matrix changes the requirements for 

appropriate sample collection.  

Biological materials such as cells and tissues can demand complex guidelines (Cuperlović-

Culf et al., 2010). Both have a high content of working enzymes influencing the metabolites. 

Especially when natural membranes (cell and organelle membranes) are destroyed, a highly 

reactive environment forms. Enzymes responsible for degradation (e.g., the lysosome) or 

oxidation (e.g., the Peroxisome or the Mitochondria) are freely reacting in the suspension. 

Thus, one process with key importance is the quick deactivation of enzymatic reactions to keep 

the metabolites in their original state (metabolic quenching; (Vijay Kapoore et al., 2017; 

Wahrheit and Heinzle, 2014).  

In cells and tissue, this requires another component: making the inside of cells and tissues 

accessible to extract analytes.   
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Most obviously, in tissue metabolomics, the targeted organs need to be harvested quickly. 

Their location (e.g., the location of the brain inside the skull) or their contamination with 

biofluids like blood (e.g., the liver needs to be drained of blood) can impede the process. Tissue 

samples also commonly require manual or automatic physical disintegration, different 

homogenizers based on beads or blenders are used. Frozen tissue can also be ground using 

a mortar (Römisch-Margl et al., 2012). 

Handling cell culture samples is more facile, commonly only requiring removing cell culture 

supernatant and a washing step. All these procedures should be occurring as fast as possible, 

so the metabolic quenching can occur to preserve a pristine metabolic state. 

For metabolic quenching, multiple methods are used. The most ubiquitous is applying low 

temperatures to slow enzyme activity by either applying precooled buffers or placing the 

sample in a low-temperature container (Pabst et al., 2010).  

This method is mild, and it does not lead to denaturation of enzymes enabling precise analysis 

of these. However, it is not very effective. Cooling is slow, and enzymes still show residual 

activity, as temperatures lower than 0°C cannot be used due to the freezing of aqueous buffers. 

While the freezing-point depression with salts (e.g., sodium/potassium chloride in road 

antifreeze) or polyols (e.g., ethylene glycol or glycerol in car-anti-freeze) is possible, it typically 

affects further preparation steps negatively. In the case of tissue extraction from organs, 

advanced techniques have been developed, including the application of a focused microwave 

beam applied to the in-situ brain, leading to the denaturation of enzymes and metabolic 

quenching (Epstein et al., 2013).  

Instead of thermal techniques for metabolic quenching (especially in cell culture), typically 

organic solvents are used, leading to instant denaturation and deactivation of enzymes (Bi et 

al., 2013; Dunn and Winder, 2011). Typically, methanol or acetonitrile are used alone or in 

combination with each other. Sometimes also ethanol or butanol is added (Löfgren et al., 

2016). Still, denaturation also leads to more inhomogeneities of the samples; not all of the 

samples can be transferred by pipetting.  

Metabolic quenching can also use strong acids such as sulfosalicylic acid and perchloric acid. 

Perchloric acid is often used to determine glucose or lactate (Astles et al., 1994), but it is not 

used in metabolomics due to the high risk of hydrolyzing other metabolites.  

If not already occurred, for instance by applying organic solvents, cells need to be lysed. 

Unfortunately, the most efficient lysing agents, detergents such as sodium dodecyl sulfate 

(SDS), cannot be used due to their strong bonding to LC columns and MS signal depression. 

Instead, only physical techniques are used. Common is the use of hypotonic buffers that lead 

to osmotic stress and cell lysis. Repeated freezing and thawing steps to create expansion 

stress and cell lysis are utilized, too (Tansey, 2006).  

Biofluids such as blood, urine, or CSF do not face this problem and are mostly stable. Only 

blood requires further workup, as separating cellular components from plasma is necessary. 

Cellular enzymes in EDTA full blood partly remain active (Jobard et al., 2016). Thus, removing 

the cells quickly is essential. Especially glucose and lactate are metabolites that are known to 

be affected, as the strongly glycolytic erythrocytes stay active in drawn blood.   
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Prolonged storage may also lead to lysis of erythrocytes (hemolysis), contaminating the 

plasma with intracellular compounds (Malm et al., 2016). Very importantly, full blood should 

never be frozen, as it leads to even more substantial hemolysis after thawing.  

As previously mentioned, reducing sample extraction time, proper metabolic quenching, and 

storing the samples appropriately are essential factors for keeping metabolites stable. 

Additionally, other agents may be added to stabilize the compounds. One agent commonly 

used in metabolomics is butylated hydroxytoluene (BHT), an aromatic molecule that can 

scavenge free radicals, especially for lipid analysis (Burla et al., 2018; Metherel et al., 2013). 

Also, EDTA can help stabilize the metabolome, removing metal ions from reactions (Khadka 

et al., 2019). Most enzymes have a metallic cofactor, thus by chelation with EDTA, the 

enzymes are deactivated. Also, by means of the Fenton reaction, metallic ions (mainly Fe2+) 

create free radicals, thus removing them also leads to lower oxidation (Winterbourn, 1995). 

Both agents are also relatively non-toxic and partially even used in food.  

Tissue, cell, and urine metabolomics face a similar problem: samples can contain diverging 

amounts of metabolites. Urine is a biofluid that can have highly altered metabolite 

concentrations. Depending on the intake of fluids or an unrelated unphysiological reason (e.g. 

ethanol-intoxication or cardio-vascular medication), urine can be concentrated in the kidney 

extensively. As we are not interested in the osmotic effects, this effect has to be normalized. 

In clinical chemistry, mainly the molecule creatinine is used, as it shows stable glomerular 

excretion and is not reabsorbed (Sawant et al., 2018). Creatinine is formed in a nonenzymatic 

irreversible reaction from creatine, a compound used primarily in muscles and brain as 

creatine-phosphate for short-term energy storage (Wyss and Kaddurah-Daouk, 2000). 

Unfortunately, creatinine excretion is dependent predominantly on muscle mass and can also 

be influenced by muscle damage as for instance, in accidents (crush-syndrome) or in response 

to drugs (e.g., propofol (Rácz et al., 2012). Consequently, in newer urine metabolomics 

studies, exceedingly other markers such as total osmolarity are used as more stable markers 

(Khamis et al., 2018).  

Tissue and cells show natural variations in their metabolite contents due to differences in cell 

numbers or cell sizes. Non-adherent cells can be counted in aliquots before lysis, but adherent 

cell numbers cannot be counted. Cell numbers can be partially controlled in cell culture, as the 

seeding cell number can be determined; however, cells in culture keep dividing (and/or dying) 

so that seeding cell number does not necessarily correlate with cell number before cell lysis 

(Muschet et al., 2016). Tissues can be accurately weighed, and buffer volume adjusted to 

match concentrations between different samples. However, the tissue homogenization and/or 

cell lysis procedures are never complete and can vary so that metabolite content should be 

primarily determined in the lysate. Mainly described as a proxy for metabolite content is the 

use of total protein determination (Dettmer et al., 2011). Protein is generally accepted to be 

correlated to the concentration of metabolites and can be determined by simple means such 

as the bicinchoninic acid reaction (BCA). However, when analyzing protein concentration, 

protein denaturation using organic solvent crushing presents a problem, creating 

inhomogeneities.  



1.0 General introduction: The diagnostic odyssey of rare disorders  

10 
 

Especially for lipid analysis, the total lipid can be determined using the phosphovanillic acid 

reaction, albeit this reaction is not particularly sensitive and may not work in low-lipid samples 

such as cell culture samples (Zöllner and Kirsch, 1962). Quantification of cellular DNA was 

also described as a normalization method (Silva et al., 2013). 

Each of the discussed factors (sample preparation, sample matrix, and respective metabolite 

stability) can also influence which metabolites can be detected by untargeted metabolomics 

methods. While metabolites may be not excluded actively, these factors can exclude 

metabolites passively just by their analytical design. 

In summary, sample preparation is a crucial step in metabolomics that can heavily influence 

results. Sample preparation needs to observe metabolite stability and must be carefully 

optimized. Therefore optimizing sample preparation is an important part of this work. Sample 

preparation requirements specific to LC-MS and our metabolomics platform are found in the 

next chapters.  

1.2.1.5 Adapt data analysis is a core interpretative step 

Data analysis in metabolomics is complex, and many approaches exist (Bartel et al., 2013; 

Cambiaghi et al., 2017; De Livera et al., 2013). Very superficially, it can be separated into nine 

stages: 

1. Metabolomic features need to be extracted, separating single entities from a 

continuous data flow, denoted using a unique identifier and an instrument signal 

intensity is associated with it. 

2. In most studies, features need to be identified to be specific metabolites and redundant 

data is removed (one metabolite often forms multiple features) 

3. Data needs to be checked for data integrity and often exported into other data formats 

for statistical exploration 

4. Data needs to be filtered, meaningless features and outliers need to be removed 

according to predefined neutral guidelines to ensure meaningful interpretation. E.g., 

signals with a low signal to noise ratio are removed 

5. Data needs to be transformed and normalized. In most statistical methods, metabolites 

are compared so that they need to have the same range and are centralized around a 

zero mean. Data normality is a further requirement for most statistical testing. 

6. General chemometric methods such as principal component analysis (PCA) are used 

for assessing data quality and basic separation 

7. Univariate (e.g., Student's T-test) and multivariate (PCA, neuronal networks) analysis 

methods are used for further analysis. 

8. Especially relevant metabolites are selected and subjected to further analysis, including 

classical literature search or metabolite pathway analysis 

9. The conception of further confirmatory studies (that may use targeted metabolomics) 

In clinical research and especially in rare disease research, experimental groups are typically 

very small. Most statistical techniques were conceived for more extensive studies, with multiple 

hundreds of samples. In our research, most studies are single-patient studies, typically also 

with small control cohorts. Therefore, statistical evaluations should proceed with utmost care. 
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Predominant analysis types in rare disease research are two-group comparisons (“healthy”-

vs.- “diseased”). Thus, multiple t-tests, ANOVAs, and volcano-plots (displaying logarithmic p-

values depending on logarithmic fold changes) are common.  

Heatmaps together with clustering techniques are used as well. For hypothesis generation, 

partial least squares discriminant analysis (PLS-DA) is used (Fonville et al., 2010). This is a 

biased technique that can be used to determine metabolites that lead to the separation of two 

groups under the assumption that there is a separation. 

However, while these techniques are the easiest to interpret, all techniques rely on linear 

relationships between the metabolite and the phenotype or with each other. Many effects in 

metabolism and other omics fields are not linear and involve network effects. Therefore, 

techniques such as artificial neural networks are more adapted to analyze this data (Pomyen 

et al., 2020). As there are numerous pitfalls and optimization is needed, neural networks in 

clinical metabolomics are still in development (Mendez et al., 2019).  

The key to successful metabolomics studies is then to select metabolites that should be 

analyzed further. Here literature search can be used or, more importantly, pathway analysis 

tools such as pathway enrichment (Karnovsky and Li, 2020). In multi-omics studies, 

sequencing data can massively help to associate gene and metabolite differences to diseases. 

Typically, further confirmatory analysis follows to further delineate and prove the generated 

hypothesis. 

1.3 Introduction to liquid chromatography and mass spectrometry in metabolomics 

Liquid chromatography mass spectrometry (LC-MS) is the most prevalent analysis technique 

in metabolomics. It typically enables the study of the widest variety of intact metabolites, as 

opposed to NMR, while it has superior sensitivity and dynamic range (Dettmer et al., 2007). It 

consists of two parts acting together: 

• a liquid chromatography system that separates molecules based on their chemical 

interactions  

•  a mass spectrometer that separates molecular ions based on physical interactions and 

mass/charge ratio (Gu, 2019).  

These techniques are not kept separate, but the chemically separated molecules are directly 

transported into the mass spectrometer so that the chromatographic separation properties can 

now be associated with the mass spectrometry properties. These combined LC-MS data can 

then also be used for the identification of metabolites.  
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1.3.1 Liquid chromatography  
(Adapted from “Introduction to liquid chromatography”, Snyder and Dolan 2009) 

Liquid chromatography (LC) is a technique that separates molecules based on their chemical 

properties. LC uses a tube (usually made from stainless steel or PEEK) filled with particles of 

a specific size and a defined chemical surface (LC-column, Figure 3). The particles are 

typically composed of porous silica, where the silica can also be modified by functional groups 

such as long alkanes or zwitterionic groups. Other materials exist; however, they are more rare 

(e.g. porous graphitic carbon; (Pereira, 2008). The columns have a large surface area that can 

interact with material moving through the column (stationary phase).  

A fluid is pumped through the column that carries the analytes (mobile phase). Analytes then 

interact with the stationary phase and mobile phase in varying ways based on their chemical 

properties (retention).  

Depending on the strength and number of interactions of the analyte with the stationary phase, 

the analytes are retained in the column for a time that is specific to their chemistry (retention 

time). Thus, the retention time can be used as a molecular identification parameter specific to 

the analyte’s molecular interactions. The retention time and separation efficiency can be 

influenced by multiple parameters that need to be thoroughly optimized for designated 

purposes. Influences include the length of the column, the surface modifications, temperature, 

and mobile phase composition. The mobile phase composition is also a parameter that can be 

altered during the run to optimize separation (gradient). Different techniques for LC separation 

exist. In mass spectrometry-based metabolomics, the two most predominant are reversed-

phase (RP) and hydrophilic liquid interaction chromatography (HILIC). RP is optimal for the 

separation of lipophilic compounds, separating them using a column modified with unpolar 

groups (e.g., an alkane chain such as octadecane, C18). HILIC is optimal for the separation of 

hydrophilic compounds and separates them on a chromatographic column that carries 

hydrophilic groups (zwitterionic groups, such as sulfobetaine). These hydrophilic groups form 

an aqueous layer that can interact with hydrophilic analytes (Alpert, 1990). Each of them 

requires different optimization strategies and different sample preparation strategies to make 

them amenable for analysis.   
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While there is an excellent separation of analytes using LC, there is still a large range of 

analytes with the same retention time (coeluting analytes) in every method. Thus, a different 

technique is needed for better identification, such as mass spectrometry.  

 

LC by itself also needs a way to record analytes that exit the column (detector), such as a 

mass spectrometer. Other techniques such as fluorescence detection, UV detection are 

available but scarcely used in metabolomics.   

Figure 3 Liquid chromatography is a separation technique. Liquid chromatography (LC) requires a 
chromatographic column filled with a chemically modified particulate stationary phase. A liquid mobile phase solvent 
carries the analytes, which are separated by their interaction effects of the column and mobile phase. Thus, LC is 

a pure separation technique demanding a further detector for complete analysis. Created with BioRender.com 
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1.3.2 Mass spectrometry 
(Adapted from “Massenspektrometrie”, Gross, 2013) 

Mass spectrometry is a technique to separate analytes based on their physical properties. The 

essential requirement is that the analyte must be charged/ionized. Ions can be manipulated 

using electromagnetic fields (Lorentz force), which is essential for the transport inside the 

spectrometer and the analysis itself. Most mass spectrometers consist of at least 3 parts: the 

ionization source, a mass analyzer, and the detector (Figure 4). Some mass spectrometers 

also include a fragmenting compartment (collision cell), which can fragment molecular ions, 

and an additional mass analyzer. To avoid unwanted collisions with air molecules, the 

instrument is evacuated. 

 

Figure 4 Mass spectrometers separate analyte ions based on their mass to charge ratio. The scheme 
represents a typical mass spectrometer, based on a time-of-flight mass (ToF) analyzer. The analytes enter the MS 
on the left side through the ESI capillary and become ionized. Molecular analyte ions can be fragmented in a 
collision cell and then get drawn into a mass analyzer. The mass analyzer separates ions based on their mass to 
charge-ratio using different physical principles. Ions are conclusively entering the detector and intensities and 
mass/charge information is then yielded. Created with BioRender.com. 

1.3.2.1 Ionization is key to mass spectrometry analysis 

The ion source is responsible for ionizing incoming analyte molecules to make them amenable 

for mass analysis. In LC-MS, most ion sources use electrospray ionization (ESI). Other sources 

exist but are typically limited to more specialized applications, such as atmospheric pressure 

chemical ionization (APCI; Kostiainen et al., 2003). After leaving the LC, the mobile phase with 

analytes enters a narrow bore capillary with an open-end (ESI-capillary). The capillary is 

charged with a high voltage and surrounded by a (heated) nitrogen gas flow. First, by running 

through this needle, a cone forms (Taylor cone) at the tip from which a spray originates. The 

spray consists of analyte and solvent drops. As there is a high voltage applied, strong forces 

inside the drops lead to cycles of breaking apart by charge repulsion until only analyte ions 

remain. Unionized molecules (e.g., solvents) are removed by vacuum suction; ionized 

molecules enter the mass spectrometer. The applied voltage can be positive or negative 

(positive and negative ionization mode), leading to either positive or negative analyte ions. 

These ions can be complex and depend on the analyte’s chemical properties. For example, 

acidic molecules predominantly form negative ions by proton donation; basic molecules accept 

protons and form positive ions. Ions that cluster the analyte molecule with inorganic ions (Na+, 

Cl-) and molecules (NH4
+) exist, too. While ESI is regarded as a mild ionization technique, 

ionization can induce fragmentation, and loss of H2O or CO2 are common. Ionization in ESI 

depends on the environment of the solvent, non-volatile solvents (or buffers), and other ions 

can reduce ionization efficiency (ion suppression). 
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1.3.2.2 Fragmentation of analyte can be used to increase identification specificity  

The fragmentation compartment or collision cell is responsible for purposefully creating smaller 

fragments out of the molecular analyte ions, and the intensity of fragmentation can typically be 

altered by applying different fragmentation energies. Different strategies for fragmentation 

exist, however collision induced fragmentation (CID) is the most common in LC-MS (Sleno and 

Volmer, 2004). CID works by accelerating ions using different energies into a compartment 

filled with an inert gas, mostly argon (Morris et al., 1994). Upon impact of the ion into the gas 

atom (molecule), the kinetic impact energy leads to fragmentation. The combination of 

fragments can be very specific to respective analytes and present a vital identification 

possibility. The fragmentation follows typical reactions in the gas phase and can be partially 

predicted (Allen et al., 2015); albeit, the actual fragmentation is dependent on the surrounding 

environment and thus on the LC method and sometimes the specific sample.  

1.3.2.3 Mass analyzers separate analyte ions based on their mass to charge ratio 

The mass analyzer is responsible for the separation of analyte ions. However, different 

possibilities for the mass analyzer exist. In metabolomics, quadrupole, time of flight and ion 

trap mass spectrometers are the most common (Lei et al., 2011). Quadrupole analyzers 

consist of four parallel metal rods that generate an alternating electromagnetic field. Based on 

their mass to charge ratio, ions can either fly through the electromagnetic field or become 

unstable and get attracted to the metal rods. The electromagnetic field can be modified so only 

the analyte ion with a specific mass to charge ratio passes and reaches the detector. Simply 

put, one can imagine the quadrupole analyzer as a filter for a subset of ions. As at every time 

point, only one mass/charge ratio can pass, to analyze the whole spectrum, the analyzer must 

scan through all mass ranges. These devices typically have a low mass resolution (Zhou et 

al., 2012). Based on this relatively targeted nature, quadrupole-based mass spectrometers are 

mostly used for targeted metabolomics (Roberts et al., 2012). As only one targeted ion at each 

time can pass, it reduces surrounding noise, making them able to be highly sensitive and 

suitable for quantification.  

The ion traps similarly use electromagnetic fields, but they are used to store packages of ions. 

By slowly alternating the electromagnetic field, ions with specific mass/charge-ratio can leave 

the ion trap and enter the detector. These devices are typically sensitive and have low noise; 

however, their resolution is strongly enhanced compared to quadrupole analyzers. These 

devices generally are slightly slower than quadrupole mass spectrometers (Zhou et al., 2012).  

The third type are the time of flight (ToF) mass spectrometers. When a package of analyte ions 

enters the mass spectrometer, they are accelerated with the same energy into an evacuated 

flight tube using an electromagnetic field. As the kinetic energy ions gain is different depending 

on their mass/charge ratio, the resulting velocity of the ions is different. By accurately 

measuring the time the ion spends for the flight until it reaches the detector (time of flight), one 

can calculate the mass/charge ratio of the ion. This type of analyzer is faster than ion traps 

and shows better resolution than the quadrupole. However, the noise is higher, making them 

less able to quantify low abundant metabolites. Thus, ToF mass spectrometers are typically 

most useful for untargeted metabolomics (Freiburghaus et al., 2019). 

Combinations of different mass analyzers exist as well. For quantification, the most common 

are arrays of three sequential quadrupoles (Triple-Quads or QqQ), where the middle 

quadrupole is a collision cell.   
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This enables very selective analyses by targeting a specific ion with the first quadrupole and 

then using the third quadrupole to target one specific fragment ion. Triple-Quads are 

exceptionally sensitive and have good specificity (Zhou et al., 2012). Also, quadrupole time of 

flight mass spectrometers (QTof) exist as well.  

During the course of this work, we worked with a QTof and a Triple-Quad mass spectrometer 

in our institute, combining abilities for targeted and untargeted metabolomics. 

1.3.2.4 Detectors in mass spectrometry often use electron amplifiers 

After passing through the mass spectrometer, the analyte ions reach the detector. Most 

detectors use different types of secondary electron amplifiers; microchannel-plate detectors 

are common (Fraser, 2002; Geno, 1992). Here ions hit the side of a channel arranged in a 

plate, producing the exit of electrons. The plate is charged so that the electrons accelerate and 

hit the channel wall again, generating a higher number of electrons. This repeats multiple 

times, creating a strongly amplified electron avalanche that can then be detected. 

1.3.2.5 Identification in mass spectrometry is based on mass to charge information 

Mass spectrometers can collect information about the mass to charge ratio of the analyte 

molecular ion and the collected fragments. As the atomic mass of single elements is known, 

using combinatoric calculations elemental formulas can be calculated for each of the 

mass/charge ratios. Using different databases, the most likely molecule can be identified. The 

identification usually follows specific rules that reduce the number of possible combinations 

(Vijlder et al., 2018). 

However, often there is a high number of analytes that share the same mass/charge ratio and 

cannot be uniquely identified (isobaric compounds). Potential fragments can be calculated 

from the structural formulas and help with the identification, although they often need to be 

predetermined. Even though measurement approaches that do not utilize LC exist (flow 

injection analysis, FIA; Fuhrer et al., 2011), separation by LC is beneficial for sensitivity and 

necessary for proper identification using retention time information (Xiao et al., 2012). 

1.3.2.6 Quantification in mass spectrometry requires adept internal standards 

Mass analyzers are a priori “quantitative” instruments that count analyte ions hitting the mass 

spectrometer detector. This “counts” are then translated into ion intensities, sometimes called 

ion abundances. However, ion production efficiency from analytes in the ionization source 

varies greatly and depends on the specific mass spectrometer. Also, the translation of ion 

counts to abundances varies significantly between manufacturers, and even slight changes in 

the configuration of the ion source (e.g., changing the ESI capillary) can change abundances. 

Thus, ion abundances are not a quantitative marker and cannot be compared between 

metabolites, different mass spectrometers, or even between runs, making ion 

intensities/abundances a semiquantitative feature. In order to translate ion abundances in 

quantitative values (e.g., concentration), a standard/calibration curve is necessary. There is 

another level of complexity, as the ionization efficiency varies in the surrounding 

chromatographic environment (ion suppression). For correcting these effects, the use of 

internal standards is necessary. Consequently, (absolutely) quantitative results can only be 

yielded from targeted metabolomics approaches, as only here the appropriate calibration 

curves and internal standards are used. 
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1.4 Summary of the introduction and goal of this thesis project 

The term “rare diseases” is an umbrella term for a very diverse group of disorders, where the 

single disorders have a particularly low prevalence, but cumulatively patients in the hundred 

million range are affected. Due to missing widespread disease information and high diversity, 

most rare disorders go by undetected for a long time. This limits patient care as well as 

research. Among the rare disorders, a large group are the inherited disorders of metabolism, 

leading to neuropediatric neurometabolic, and neurodegenerative disorders. While some rare 

disorders are part of the newborn screens mandated by many countries, the great majority are 

still unrecognized. As these disorders affect metabolism, the holistic approach to study 

metabolism, metabolomics might further detect and study these diseases. Many strategies for 

metabolomics measurements exist. However, most metabolomics studies utilize liquid 

chromatography mass spectrometry (LC-MS). 

Therefore, we propose the use of LC-MS-based metabolomics to characterize rare 

neurometabolic and neurodegenerative disease further. This thesis aims to develop an LC-

MS-based metabolomics platform to characterize these disorders in an optimized fashion. In 

a second step, we aim to prove the utility of our platform on the example of four selected 

projects. 
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2.0 General materials and methods 
2.1 Materials 

2.1.1 List of chemicals  

Acetonitrile for LC-MS ≥99.95% (Art.-Nr.: 2697.2500, CHEMSOLUTE/Geyer, Höxter, 

Germany) 

Ammonia solution 25% for LC-MS, LiChropur (Art.-Nr.: 5.33003.0050; Sigma-Aldrich/Merck, 

Darmstadt, Germany) 

Ammonium acetate (Art.-Nr.: 431311-50G; Honeywell, Charlotte, USA) 

Ammonium formate ≥99.995% trace metal basis (Art.-Nr.: 516961-100G; Sigma-Aldrich, 

Darmstadt, Germany)  

Butylated hydroxytoluene (BHT) ≥99%, FCC, FG (BHT; Art.-Nr.: W218405-SAMPLE-K; 

Sigma-Aldrich, Darmstadt, Germany) 

Formic acid 99%, ULC/MS-CC/SFC (Art.-Nr.:00069141A8BS, Biosolve, Valkenswaard, The 

Netherlands) 

Human metabolite reference standard library, self-modified (MetaSci, Toronto, Canada). A list 

of acquired metabolites can be found in Table 22 (p. 181).  

Methanol absolute ULC/MS-CC/SFC (Art.-Nr.:0013684101BS, Biosolve, Valkenswaard, The 

Netherlands) 

Palmitic acid-d31 98 atom%D, 99% CP (Art.-Nr.: 366897-100MG, Sigma-Aldrich; Sigma-

Aldrich/Merck, Darmstadt, Germany) 

Potassium hydroxide, Emsure (Art.-Nr.:105033, Merck Millipore, Darmstadt, Germany) 

Tetrahydrofuran, 99%, stabilized with 250-350 ppm BHT (Art.-Nr.: L13304, AlfaAesar, 

Haverhill, USA) 

2-propanol for LC-MS ≥99.95% (Art.-Nr.: 1178.1000, CHEMSOLUTE/Geyer, Höxter, 

Germany) 

2.1.2 List of bought buffers, other solutions and disposable materials 

AbsoluteIDQ p180-Kit (Art.-Nr.: p180WU-6334, Biocrates, Innsbruck, Austria) 

Acquity UPLC 700µl Round 96-Well Sample-Plate (Art.-Nr.:186005837, Waters, Milford, USA) 

BCA-Solution: BCA protein assay kit (Art.-Nr.: UP95424, Interchim, Montluçon, France), 1:50 

solution B to A, prepared on use 

Bond Elut 96 Square-well, C18, 100 mg (Art.-Nr.:A396011C, Agilent, Santa Clara, USA) 

BSA-Standard: Uptima BSA-standard for protein assay 2 mg/ml in water (Art.-Nr.:UP36859A, 

Interchim, Montluçon, France), stored at 4°C 

Buffer solution pH 7.0 (Art.-Nr.: A518.1, Roth, Karlsruhe, Germany) 

Buffer solution pH 4.0 (Art.-Nr.: A517.1, Roth, Karlsruhe, Germany)  



2.0 General materials and methods  

19 
 

Buffer solution pH 9.0 (Art.-Nr.: A519.1, Roth, Karlsruhe, Germany) 

Chromabond HILIC, 45 µm, 3 ml, 500 mg (Art.-Nr.: 730593, Macherey-Nagel, Düren, 

Germany) 

Combitips advanced 50 mL (Art.-Nr.: 0030089.480, Eppendorf, Hamburg, Germany) 

Combitips advanced 10 mL (Art.-Nr.: 0030089.820, Eppendorf, Hamburg, Germany) 

Conical tubes, PP, 15 mL, sterile (Art.-Nr.: 62.554.502, Sarstedt, Nümbrecht, Germany) 

Conical tubes, PP, 50 mL, sterile (Art.-Nr.: 62.547.254, Sarstedt, Nümbrecht, Germany) 

Cortecs UPLC T3 column (CortecsT3) 2.1 x 150 mm 1.6µm column (Art.-Nr.: 186008500, 

Waters, Milford, USA) 

LC-MS glass screw neck vials with cap, PTFE/silicone septa pre-slit (Art.-Nr.:600000670cv, 

Waters, Milford, USA) 

Microplate 96-well, PS, F-Bottom, Clear (Art.-Nr.: 655101, Greiner bio-one, Frickenhausen, 

Germany) 

Pipette tips 10 μL (Art.-Nr.: 70.113, Sarstedt, Nümbrecht, Germany) 

Pipette tips 200 μL (Art.-Nr.: 70.760.002, Sarstedt, Nümbrecht, Germany) 

Pipette tips 1000 μL (Art.-Nr.: 70.3050.020, Sarstedt, Nümbrecht, Germany) 

Polypropylene mat caps for round plates (Art.-Nr.:186002483, Waters, Milford, USA) 

Reaction tubes, SafeSeal, 1.5 mL (Art.-Nr.: 72.706.200, Sarstedt, Nümbrecht, Germany) 

Reaction tubes, SafeSeal, 2.0 mL (Art.-Nr.: 72.695.400, Sarstedt, Nümbrecht, Germany) 

Reaction tubes, SafeSeal, 5 mL (Art.-Nr.: 72.701, Sarstedt, Nümbrecht, Germany) 

Rotiprotect-Nitril green (Art.-Nr.: HXK2.1, Roth, Karlsruhe, Germany) 

Serological pipettes, 5 mL (Art.-Nr.: 86.1253.001, Sarstedt, Nümbrecht, Germany) 

Serological pipettes, 10 mL (Art.-Nr.: 86.1254.001, Sarstedt, Nümbrecht, Germany) 

Serological pipettes, 25 mL (Art.-Nr.: 86.1685.001, Sarstedt, Nümbrecht, Germany) 

Sequant ZIC-HILIC 3.5 µm, 250 x 2.1 mm 100 Å PEEK-coated HPLC-column (Art.-Nr.: 

1.50443.0001); Sequant/Merck, Darmstadt, Germany) 

Storage solution for pH and ORP electrodes (Art.-Nr.: HI70300, Hanna instruments, 

Woonsocket, USA) 

Water for LC-MS: LC-MS water was used freshly from an Arium basic water purification system 

(Sartorius Stedim, Göttingen, Germany) with a maximum conductivity of 0.075 µS/cm. 

2 ml Square Collection Plate (Art.-Nr.:186002482, Waters, Milford, USA) 

2.1.3 List of devices and other equipment 

Acquity I-Class liquid chromatography system with binary solvent manager and FTN Sample 

manager (Waters, Milford, USA) 
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Bio-Freezer -80°C (Forma-Scientific/Thermo Fisher, Waltham, USA) 

Centrifuge 5424 (Eppendorf, Hamburg, Germany) 

EF103 easy-fit ice machine (Scotsman, Milano, Italy) 

FCB table top balance (Kern, Balingen, Germany) 

Gen5 1.11 (Biotek, Winooski, USA) 

Measuring pipette, glas, Blaubrand, 10 mL (Brand, Wertheim, Germany) 

Measuring pipette, glas, Blaubrand, 25 mL (Brand,Wertheim, Germany) 

Measuring pipette, glas, Blaubrand, 50 mL (Brand,Wertheim, Germany) 

MH 15 Magnetic stirer with heater (Roth, Karlsruhe, Germany) 

Mikro 220R centrifuge (Hettich, Tuttlingen, Germany) 

OptiPlex 5040 with Intel Core i3-6100 3 GHz and 4 GB RAM and Windows 10 Enterprise (Dell, 

Round Rock, USA) 

OptiPlex 5060 with Intel Core i5-8500 3 GHz and 16 GB RAM and Windows 10 Enterprise 

Version 1809 (Dell, Round Rock, USA) 

Oven 400 HY (Bachofer, Reutlingen, Germany) 

pH-Meter CG820 (Schott Geräte) 

Pipette, manual, Eppendorf Research,10 μL (Eppendorf, Hamburg, Germany) 

Pipette, manual, Eppendorf Research, 200 μL (Eppendorf, Hamburg, Germany) 

Pipette, manual, Eppendorf Research,1000 μL (Eppendorf, Hamburg, Germany) 

Predator PH315-53 with Intel Core i7-10750H 2.6 GHz and 32 GB RAM and Windows 10 

Home Version (Acer, New-Taipeh, Taiwan) 

Savant SpeedVac SPD140DDA Vacuum concentrator equipped with a Savant RVT5105 

Refrigerated Vapor Trap and a OFP400 Vacuum Pump (ThermoFisher Scientific, Waltham, 

USA) 

Synergy Mx Microplate reader (Biotek, Winooski, USA) 

Thermal Shake lite (VWR, Vienna, Austria) 

ThinkStation C30 with Intel Xeon CPU E5-2620 2.1 GHz and 16 GB RAM and Windows 10 

Enterprise Version (Lenovo, Quarry Bay, Hongkong) 

Universal 320 centrifuge (Hettich, Tuttlingen, Germany) 

VF2 Vortex mixer (Janke&Kunkel IKA Labortechnik, Staufen im Breisgau, Germany) 

Water bath (Memmert, Schwabach, Germany) 

Xevo G2-S QTof mass spectrometer (Waters, Milford, USA) 

Xevo TQ-S mass spectrometer (Waters, Milford, USA)  
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2.1.4 List of scientific programs and other software 

BioRender.com (BioRender, Toronto, Canada) 

ClassyFire 1.0 (Djoumbou Feunang et al., 2016) 

MassLynx V4.1 software (Waters, Milford, USA) 

Matplotlib 3.0 (Hunter, 2007) 

MetIDQ Carbon (Biocrates, Innsbruck, Austria) 

MetaboAnalyst 5.0 (Pang et al., 2021; Xia et al., 2009) 

Microsoft Office Professional Plus 2016 (Microsoft, Redmond, USA) 

MS-Dial 4.60 (Tsugawa et al., 2015, 2020) 

Prism 8.3 (GraphPad Software, San Diego, USA) 

Progenesis QI 2.4 (Nonlinear Dynamics, Newcastle upon Tyne, UK) 

Python 3.6 (The python software foundation, 2021) 

UNIFI version (Waters, Milford, USA) 

Zotero 5.0.96 (Roy Rosenzweig Center for History and New Media of the George Mason 

University, Fairfax, USA) 

2.1.5 Buffers and other solutions 

BHT solution: For a 1% (w/v) butylated hydroxytoluene (BHT) solution, 1 g BHT were dissolved 

in 100 ml methanol. The solution was stored at room temperature in the dark for up to 4 weeks. 

CortecsT3 sample solvent: For 100 ml, 50 ml water, 25 ml methanol and 25 ml acetonitrile 

were combined. The solvent can be stored for at least 3 months at room temperature.  

Leucine-Encephaline lockspray solution: First, prepare 200 ml dilution solvent by combining 

100 ml LC-MS grade water, 100 ml acetonitrile and 200 µl formic acid. For the first dilution of 

400 ng/µl dissolve 3 mg of leucine-enkephalin in 7.5 ml water. Then for the second dilution 

step of 1 ng/µl, dissolve 50 µl of the 400 ng/µl dilutions in 20 ml dilution solution. This dilution 

can be stored in PTFE-coated containers at -14°C for 6 months. Before immediate use, dilute 

20 ml of the 1 ng/µl dilution step in 80 ml dilution solution and sonicate for 15 minutes. The 

solutions can be stored at room temperature for at least one month. 

Modified Bligh and Dyer lipid extraction solvent: Modified from (Bligh and Dyer, 1959). For 100 

ml, 32.2 ml chloroform, 61.4 ml methanol, 3.2 ml BHT solution, and 3.2 ml 3M HCl were 

combined and stored at room temperature for up to 4 weeks and prechilled to -15°C before 

immediate use. 

Phosphate buffer for cell lysis: For 1L of 10 mM buffer, 1.4 g sodium dihydrogen phosphate 

was dissolved in LC-MS-grade water, and pH was adjusted with HCl to pH 7.0. Buffer was 

stored at room temperature for up to 2 weeks and prechilled to 4°C before immediate use. 

Protein precipitation buffer for RPLC-SPE: For 50 ml combine 47.5 ml of methanol with 3.5 ml 

1% BHT-solution. The solution was stored at room temperature in the dark for up to 4 weeks. 
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RPLC-MS CortecsT3 buffer A: For 1 L, weight 630 mg ammonium formate in a 2 ml reaction 

tube and dissolve in 1ml LC-MS 100% formic acid by vortexing vigorously.  

Then combine 400 ml LC-MS water, 600 ml acetonitrile, and formic acid/ ammonium formate 

solution and sonicate for 10 minutes. Prepare one day in advance before use. Buffer was 

stored at room temperature for up to 2 weeks. 

RPLC-MS CortecsT3 buffer B: For 1 L, weight 630 mg ammonium formate in a 2 ml reaction 

tube and dissolve in 1ml LC-MS 100% formic acid by vortexing vigorously. Then combine 900 

ml LC-MS 2-propanol, 100 ml acetonitrile, and formic acid/ ammonium formate solution and 

sonicate for 10 minutes. Prepare one day in advance before use. Buffer was stored at room 

temperature for up to 2 weeks. 

RPLC-MS CortecsT3 purge buffer: For 1 L, combine 400 ml LC-MS water and 600 ml 

acetonitrile. Buffer was stored at room temperature for up to 3 months. 

RPLC-MS CortecsT3 wash buffer: For 1 L, combine 100 ml LC-MS water and 900 ml 

acetonitrile. Buffer was stored at room temperature for up to 3 months. 

RPLC-SPE lipid elution buffer: For 100 ml, combine 25 ml tetrahydrofuran (with BHT) and 75 

ml methanol. The solution was stored at room temperature in the dark for up to 4 weeks. 

Sodium formate QTof calibration solution: First, prepare 1 ml 10% formic acid solution by 

adding 100 µl formic acid to 900µl water. Then dissolve 12.5 µl 1 M sodium hydroxide solution 

in 22.5 ml 2-propanol and 2.5 ml water. Add 10 % formic acid and sonicate for 15 minutes and 

use immediately. The solutions can be stored at room temperature for at least one month. 

ZIC-HILIC SPE buffer: For 1L, 700 ml tetrahydrofuran, 250 ml acetonitrile, 50 ml methanol 

were combined. Buffer was stored at room temperature for up to 3 months. 

ZIC-HILIC-MS buffer stock: For 500 ml of a 30 mM ammonium acetate stock solution: 1.16 g 

LC-MS grade ammonium acetate was dissolved in 500 ml LC-MS-grade water was adjusted 

to pH 7.0 using 25% ammonia solution. Use immediately. 

ZIC-HILIC-MS buffer A: For 500 ml, 450 ml ZIC-HILIC-MS running buffer stock were combined 

with 50 ml acetonitrile. Buffer was stored at room temperature for up to 2 weeks. 

ZIC-HILIC-MS buffer B: For 500 ml, 50 ml ZIC-HILIC-MS running buffer stock were combined 

with 450 ml acetonitrile. Buffer was stored at room temperature for up to 2 weeks. 

ZIC-HILIC-MS purge buffer: For 1 L, combine 200 ml LC-MS water and 800 ml acetonitrile. 

Buffer was stored at room temperature for up to 3 months. 

ZIC-HILIC-MS wash buffer: For 1 L, combine 900 ml LC-MS grade water and 100 ml 

acetonitrile. Buffer was stored at room temperature for up to 3 months. 

2.2 Methods 

2.2.1 Preparation of EDTA-plasma for metabolomics 

After participant approval according to the local ethics regulation, venous blood was drawn into 

Sarstedt EDTA-plasma vials by the responsible medical professional and shook lightly to 

distribute EDTA in the blood. Blood was filled to appropriate markings to ensure equal 

concentration of EDTA.   
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Where possible, EDTA blood was delivered to the testing laboratory in less than 1 hour. Then 

EDTA-blood was centrifuged at 3000 rpm for 5 minutes and plasma (supernatant) was 

aliquoted in 550 µl aliquots without disturbing the pellet.  

Samples with visually recognizable hemolysis were excluded from the study. Aliquots were 

then stored at -80°C. 

2.2.2 Preparation of cell cultures for metabolomics analysis 

Cells were seeded preferably in 150 mm dishes or 6-well plates, with consistent seeding 

densities for the specific experiment. Seeding densities were dependent on the respective cell 

type. Typically, 1 x106-3x106 cells were used for large cells (such as fibroblasts) and 10x106 

cells for smaller cell types (HEK or HELA cells). Cells were then cultured in the appropriate cell 

culture medium for at least 3 days before cell lysis.  

2.2.3 Cell lysis of cell culture samples for metabolomics analysis 

Phosphate buffer for cell lysis was prechilled to 4 °C and stored on ice. Then cells in 150 mm 

plates were removed from the incubator and washed quickly without force one time with PBS 

(room temperature) and all remaining liquid was removed. Then ice cold cell lysis solution was 

applied to the plate, and cells were mechanically rapidly brought into the solution with a cell 

scraper. Around 1000 µl of the cell homogenate was aliquoted into Safe seal 2 ml reaction 

tubes and immediately snap-frozen in liquid nitrogen. As the short time between removing the 

cells from the incubator and snap-freezing is crucial, only up to 3 plates were handled 

simultaneously. Then cells were lysed using a repeated freeze-thaw protocol. Here cells were 

first defrosted for around 1-2 minutes at 80°C using a thermo-block with intermittent vortexing 

and, upon near-complete defrosting, snap-frozen immediately. The time in the thermo-block 

should be kept at less than 2 minutes to avoid high internal sample temperatures. After snap-

freezing, this procedure was repeated an additional 3 times. Then the cell homogenate was 

sonicated for 15 mins in a cold ice-water bath. The lysate can be used immediately, stored on 

ice for up to 2 hours, or held at -80°C for at least 3 months. 

2.2.4 Standardization of cell culture lysates  

For standardization of different samples from the same cell type, total protein concentration in 

the cell lysate was used to determine an approximator for the number of cells in the sample 

and cell lysis efficiency to ensure reproducible results. After cell lysis, protein concentration 

was determined using bichinoic acid assay (BCA) reaction with the Interchim kit according to 

the guidelines of the manufacturer. Briefly, cell lysates were diluted in a transparent 96-round-

well microplate with water. For large cell types (e.g., fibroblasts) with lower protein 

concentrations, 15 µl lysate was diluted with 10 µl water. For small cell types with higher protein 

concentrations, 5 µl lysate and 20 µl water were used. Then using the 2 mg/ml BSA standard, 

a calibration curve was prepared, comprising of 0, 5, 10, 15, 20, and 30 µg of BSA protein. All 

measurements occurred in technical duplicates. The assay solution was prepared by 

combining reagent A with B in a ratio of 1:50, and 200 µl were applied to each well. The 

microwell plate was incubated for 30 minutes at 37°C, and absorbance at 540 nm was 

determined using a microplate reader. A water blank was subtracted from each well. Then 

samples were standardized to the sample with the lowest protein concentration in the same 

experimental set, setting its volume to 1000 µl. The volumes of other lysates were then 

adjusted negative proportionally to their protein concentration and filling their volume to 1000 

µl. The adjusted lysate can be used directly or stored at -80°C for at least 3 months.  
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2.2.5 Sample preparation for untargeted metabolomics  

2.2.5.1 Lipid extraction using the modified Bligh and Dyer method 

500 µl EDTA-plasma or 1000 µl standardized cell culture lysate was added to 1000 µl cold ( -

20°C) modified Bligh and Dyer (Bligh and Dyer, 1959) extraction buffer with 1 µl palmitic acid 

d31 (5 mg/ml in methanol) as internal standard. After intensive vortexing, samples were 

centrifuged at 14,000 rpm for 5 minutes in a cold centrifuge, and the resulting two-phase 

system aliquoted separately. 1000 µl of the upper, hydrophilic, phase was then used for 

extraction with the hydrophilic ZIC-SPE method. Either 150 µl for the plasma samples or 300 

µl for cell culture samples of the lower lipid-phase were aliquoted and dried using a vacuum 

centrifuge at 35°C and below 100 mPa for 15 minutes. The dried extract was redissolved in 

100 µl CortecsT3 sample solvent and after vortexing centrifuged for 2 minutes and max. speed. 

The extract was then transferred to the LC-MS measurement vial. 

2.2.5.2 Hydrophilic metabolite extraction with the ZIC-SPE 

1000 µl of the hydrophilic extract from the Bligh and Dyer extraction (chapter 2.2.5.1, p. 24) 

were mixed with 1500 µl ZIC-SPE solvent. The ZIC-SPE columns were initiated with 2 ml water 

and primed with 3 ml ZIC-SPE solvent. Then the samples were applied and eluted in a cold 

(4°C) environment. The eluate was removed and metabolites eluted with 2.5 ml water. The 

eluate was collected in two reaction tubes, snap-frozen, and dried in the frozen state in a 

vacuum centrifuge at 60°C, below 10 mPa for 2.5 hours. The dried extracts were dissolved in 

100 µl ZIC-HILIC mobile phase B and combined. Particulates were removed using 

centrifugation for 2 minutes at maximum speed and aliquoted to a LC-MS sample 96-well plate.  

2.2.5.3 Metabolite extraction using the RPLC-SPE method 

For the sample extraction with the RPLC-SPE method, 500 µl of plasma sample or 1000 µl of 

standardized cell culture lysate was applied to a round-well 2 ml 96-well plate. Then 1000 µl 

BHT solution was applied to the samples and shaken for 15 mins in a cold (4°C) environment. 

Then samples were centrifuged for 5 minutes at max. speed and the supernatant used further. 

The 96-well RPLC SPE plate was once washed with 1 ml methanol, then 2 ml water, and then 

1000 µl sample supernatant were applied to each well. The hydrophilic metabolites were 

collected in this eluate in a different 2 ml collection plate. The hydrophilic extract was dried in 

a vacuum centrifuge at 60°C and below 10 mPa for 3 hours. The dried hydrophilic extract was 

reconstituted in 150 µl ZIC-HILIC mobile phase B by agitating at 1500 rpm for 30 minutes. The 

lipophilic metabolites were eluted by applying 1000 µl RPLC-SPE extraction buffer. The 

lipophilic eluate was then dried at 45°C and below 10 mPa for 1.5 hours in a vacuum centrifuge 

and the extract reconstituted in 250 µl CortecsT3 lipid sample buffer by agitating for 15 minutes 

at 1500 rpm.  

2.2.6 Processing of the Biocrates Absolute IDQ p180-kit 

For the metabolome analysis using the AbsoluteIDQ p180-kit, EDTA-plasma or serum samples 

were processed according to the manufacturer’s guideline and as described previously (Siskos 

et al., 2017). The kit was used on a BEH amide column with a Xevo TQ-S mass spectrometer. 

The kit is conceived in a 96-well-plate format, with an extraction plate stacked onto a second 

collection plate. Each well of the extraction plate contains a small insert carrying a small round 

filter piece. At least 11 of these wells are reserved for the application of a 7-point calibration 

curve (for the quantification of amines), one well for a blank (mainly necessary to determine 

the limit of quantification for lipids),   
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and 3 human plasma-based quality controls in different concentration levels. However, to 

check the quality of the run, 3 further wells are used by distributing the medium quality control 

level over the plate. The remaining 85 wells can be used for samples.  

To determine the suitability of the LC-MS system, checkups are required before every kit run. 

For LC-MS, a test mix of biogenic amines and respective internal standards is provided that is 

run manually using the provided LC-MS method. Here, the retention times of each analyte in 

the mass spectrometry method are modified so that they match with times in the test mix. This 

is to ensure proper detection of all compounds, as retention times are subjected to variation. 

Before every FIA-Measurement the mass spectrometer and sample manager fluidics have to 

be cleaned extensively, as remaining lipids strongly interfere with FIA-MS lipid analysis. 

Following cleaning, the blank intensity is determined. If the blank total ion chromatogram is 

higher than 1x106, additional cleaning is performed. Then an FIA-MS test mix, consisting of 

several proprietary compounds, is measured and evaluated by the kit. 

Before the kit can be used, samples must be registered and assigned to specific well-positions 

in MetIDQ, a software delivered with the kit. This software then generates plate schemes for 

the wet-lab processing and sample lists for the mass spectrometry measurement using unique 

sample identifiers. As the evaluation of the FIA-MS data and validations of quality controls can 

only be done using the software, prior registration and names are necessary for correct kit 

measurements. After the kit is registered, it can be processed in the wet lab.  

Briefly, a proprietary internal standard solution was first applied to all but one (blank) well for 

the wet lab processing. Then 10 µl of either sample, calibrator, or quality control were applied 

to the wells as assigned in MetIDQ software. The plate was then dried using a positive pressure 

manifold, and amines were derivatized using phenylisothiocyanate. After another drying step, 

metabolites were extracted from the filter plate using 5 mM ammonium acetate solution in 

methanol. Then the extract was diluted in separate plates. For FIA-MS, the extract was diluted 

with FIA-MS solvent. Water was used to dilute LC-MS samples. While the LC-MS-Plate should 

be measured directly after extraction, the FIA-MS plate may be stored for up to two weeks at 

4°C. 

The kit was then measured using the liquid chromatography and mass spectrometry methods 

provided with the kit. Solvents are defined by the kit manufacturer; the FIA-MS solvent contains 

a special proprietary solution that is delivered with the kit. After the kit run, LC-MS data were 

evaluated using the provided analysis method with MassLynx. To ensure proper determination 

of the metabolites, peak integration of every peak was controlled manually and adjusted if 

necessary. Then LC-MS Data were imported in MetIDQ. FIA-MS-Data were imported directly 

into MetIDQ and evaluated automatically. After the import of both analyses, MetIDQ performs 

automatized quality controls by comparing the results of the three different concentration levels 

and the sample distributed over the plate with internally saved values. If accuracy and precision 

are within the defined limits (±15%), an analyte is validated, and data of concentrations (e.g., 

in µM) can be exported for statistical evaluation.  

2.2.7 Cleaning the G2-S QTof mass spectrometry before use 

To avoid signal deterioration based on contamination of the mass spectrometer by usage, the 

mass spectrometer sample inlet (sampling cone) and lock spray-deflection baffle (baffle) was 

cleaned before each run.   
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Cleaning was performed by immersing the mass spectrometer parts in 50% methanol and 50% 

of a 10% formic acid in water solution and sonicating for 15 minutes in a sonic water bath. 

Then the solution was exchanged to 50% water and 50% methanol, and sonication was 

repeated before repeating the sonication a third time with 100% methanol. The parts were then 

air-dried and used.  

2.2.8 Preparing the I-Class-LC and G2-S QToF mass spectrometer for a measurement. 

Independent of the specific type of analysis, preparing the I-Class liquid chromatography 

system and G2-S QToF mass spectrometer follows the same general protocol. To ensure 

proper equilibration, the LC mobile phase was prepared one day before use and not older than 

2 weeks for the highly aqueous mobile phases and not more than 4 weeks for higher organic 

mobile phases. Mobile phases were attached to the LC system and primed for 5 minutes. Then 

the column was equilibrated with 50% of each phase for 15 minutes and equilibrated at LC 

starting conditions. In parallel, the mass spectrometer is set into operation mode and 

equilibrated for 30 minutes, while the infusion of mobile phase avoids corrosion by corona 

discharge. After equilibration, the intensity and stability of the internal mass spectrometry 

compound (“Lockmass”/”Lockspray”) were determined using the internal IntelliStart program. 

Then the calibration of the mass spectrometer was inspected by using a calibration mix 

containing sodium formate using IntelliStart. Sodium formate forms clusters of different mass 

to charge ratios covering the entire mass range with defined and known masses. The deviation 

of each measured mass to the expected is determined, and the square root of mean deviations 

is calculated. We defined a variation of less than 10 ppm as acceptable.  

After equilibration of the LC system, one LC gradient without an injection of a sample is run.  

2.2.9 General conditions of the I-Class-LC and G2-S QTof mass spectrometer run 

Generally, samples are stored in LC-MS-grade glass vials with PTFE-membrane caps or in 

LC-MS grade 700µl 96-well-plates. Before the run, samples were stored at -80°C and during 

the run at 8°C. Each run consists of a blank sample made from the sample solvent and a 

quality control sample made by pooling an equal amount of each sample to reach an amount 

of at least 100 µl (pool). Blank and pool samples are repeated multiple times over the course 

of the run. Typically experiments with replicates were run by groups with one replicate of each 

sample group followed by a blank and a pooled sample, continuing with a second group of 

replicates. At least three blank/pool samples are included in each run. In order to avoid long-

term intensity deterioration and retention time shifts, the maximum runtime was limited to 4 

days for each sample set. 

2.2.10 Final conditions of the ZIC-HILIC-MS method 

First, the ZIC-HILIC-MS mobile phase was prepared as above: mobile phase A was 90 % 

30mM ammonium acetate pH 7.0 in water, 10% acetonitrile; mobile phase B was 10% 30mM 

ammonium acetate pH 7.0 in water, 90% acetonitrile. 80% acetonitrile, 20% water was used 

as autosampler purge solvent; 10% acetonitrile, 90% water was used as autosampler wash 

solvent. We used a Sequant ZIC-HILIC in the dimensions 2.1x250mm at room temperature, 

and 5 µl sample were injected. The 30 min gradient used a flow of 0.2 ml/min, initially starting 

with 90% mobile phase B held for 2 min. This was followed by a linear gradient to 0% B in the 

next 18 minutes and held for 4 mins. In the next minute, the solvent returned to 90% B using 

a linear gradient and the column was equilibrated for 5 minutes before the next run. We used 

a Xevo G2-S QTof mass spectrometer was with an ESI ionization source.   
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We used the mass spectrometer in positive and negative ionization mode in sensitivity settings 

using the conditions displayed in Table 1. Data were acquired in continuous MSe mode.  

Table 1 Mass spectrometer conditions for ZIC-HILIC-MS method. 

 

 

2.2.11 Final conditions of the CortecsT3-RPLC-MS lipidomics method 

The CortecsT3 lipidomics method was adapted from a method widely used in the field 

(Narváez-Rivas and Zhang, 2016; Rampler et al., 2018). Here we shortened the run time to 30 

mins by using a chromatographic column with a higher peak efficiency. Briefly, as described 

above, this method used 40% 10 mM ammonium formate in water with 0.1% formic acid and 

60% acetonitrile as mobile phase A; 90% 2-propanol and 10 % acetonitrile with 0.1% formic 

acid and 10 mM ammonium formate were used as mobile phase B. 40% water and 60% 

acetonitrile were used as autosampler purge, and 90% acetonitrile and 10% water were used 

as autosampler wash solvent. We used a Cortecs UPLC T3 column in the dimensions 

2.1x150mm at 45°C, and 5 µl samples were injected. The 35 min gradient used a flow of 0.3 

ml/min and started with 35% mobile phase B increasing linearly to 40% B. In the next 5 mins, 

a linear gradient was used to reach 43% B before changing to 50% B in 0.1 mins. Afterward, 

a linear gradient in 12.40 mins to 54% B was used, followed by a jump to 70% B in the next 

minute. In the following 6 minutes, 95% B was applied and held for 3 mins. In the end, the 

column was equilibrated back to 35 % B in 2 minutes and held additional 3 minutes. We used 

a Xevo G2-S mass spectrometer with an ESI ionization source in continuous MSe mode. We 

used the mass spectrometer in positive ionization mode in resolution settings using the 

conditions displayed in Table 2. 

Table 2 Mass spectrometer conditions for the RPLC-MS CortecsT3 lipidomics method. 

 

  

Setting Positive mode Negative mode 

ESI capillary voltage 2.5 kV -1.5 kV 

Cone voltage 50 V 

Source offset 60 V 

Source temperature 120 °C 

Desolvation temperature 500 °C 

Mass range 50-800 Da 

Fragmentation Ramp between 10V-40V 

Setting Positive mode 

ESI capillary voltage 0.8 kV 

Cone voltage 25 V 

Source offset 80 V 

Source temperature 150 °C 

Desolvation temperature 20 °C 

Mass range 50-800 Da 

Fragmentation Ramp between 

10V-40V 
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2.2.12 General data analysis and data storage 

After measurement, data and sample lists were regularly secured on a high-fidelity server. For 

data analysis using MS-Dial, data were copied to the computer used for analysis.  

Generally, mass spectrometry data were first imported into specialized mass spectrometry 

software (UNIFI, MetIDQ, or MS Dial). Here, metabolite features were extracted, abundances 

determined, and metabolites identified. Subsequently, data were exported to an excel-

document and stored together with raw data. Extracted metabolite data were then further 

analyzed using MetaboAnalyst 4.0, and specific features examined using GraphPad prism. If 

not otherwise mentioned, data are shown as mean ± SEM. The significance level of p-values 

after statistical testing are displayed as *P < .05, **P < .01, ***P < .001.  

2.2.12.1 Analysis of mass spectrometry data using the open-source metabolomics software 

MS-Dial 

For untargeted metabolomics analysis, we decided to use MS-Dial released by the RIKEN 

Center for Sustainable Resource Science: Metabolome Informatics Research Team under the 

lead development of Hiroshi Tsugawa (Tsugawa et al., 2015, 2020). Mass spectrometry data 

from untargeted metabolomics experiments were imported into MS-Dial and processed using 

optimized parameters based on the program's recommendation. Processing parameters were 

adapted to the specific analysis method (ZIC-HILIC-MS negative/positive, CortecsT3 

lipidomics method). Common to all analysis methods was the alignment to a quality control 

sample (pool) and the signal normalization using either the identified metabolite total ion 

chromatogram (mTIC) or quality control-based local regression (LOESS).  

For ZIC-HILIC-MS analyses, parameters in Table 3 for positive ionization mode and Table 4 

for negative mode were used. Compared to the recommended settings, the mass range was 

adjusted to cover most small hydrophilic compounds while reducing data size (50-800 Da). 

Mass accuracies were adjusted based on typical mass deviations while selecting slightly 

broader ranges to encompass more metabolites characteristic for a screening method. 

Alignment was modified to higher retention time tolerances and broader peaks specific for a 

HILIC method with an HPLC column. Identification was carried out using our in-house human 

metabolite identification library combined with the mass/fragment information from the 

FiehnHILIC database (https://mona.fiehnlab.ucdavis.edu/, last accessed 04.06.2021). For 

further analysis, we included metabolites with matching retention time (difference<0.5 min) as 

identified compounds but also features that were only determined by the mass and/or 

fragments from the FiehnHilic library. After processing with MS-Dial, we used the normalized 

aligned peaks for further statistical analysis. Features of special relevance to the experiment 

that our metabolite library did not identify were subjected to further identification studies.  

https://mona.fiehnlab.ucdavis.edu/
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Table 3 MS-Dial processing parameters for ZIC-HILIC-MS method in positive ionization mode. 

 

Table 4 MS-Dial processing parameters for ZIC-HILIC-MS method in negative ionization mode. 

 

For lipidomics analyses using the CortecsT3 method, we used the parameters in Table 5. Here 

mass ranges were adapted to typical ranges of lipids (100Da-1200Da). Also, retention time 

tolerances were adjusted to the higher retention time stability of RPLC methods. For the 

identification of lipid species, we used the identification pipeline integrated into MS-Dial. After 

analysis and selection of lipids of special interest, identification of lipid species was confirmed 

based on the typical retention times ranges of lipid classes and were possible, by acquisition 

of new reference standards. 

 

Data collection Peak detection Alignment 

MS1 tolerance: 0.01 Da Minimum peak height: 300 A.U Retention time tolerance: 0.4 min  

MS2 tolerance: 0.05 Da Mass slice width: 0.02 Da MS1 tolerance: 0.03 Da  

Retention time begin: 1.5 min MS2Dec Retention time factor: 0.4 

Retention time end: 26 min Sigma window value: 0.2 MS1 factor: 0.6  

MS1 mass range begin: 50 Da MS/MS abundance cut off: 500 A.U N% detected in group: 50%  

MS1 mass range end: 800 Da Identification   

MS/MS mass range begin: 50 Da Retention time tolerance: 1 min   

MS/MS mass range end: 800 Da Accurate mass tolerance (MS1): 0.05 Da   

Maximum charged number: 2 Accurate mass tolerance (MS2): 0.1 Da   

Adduct Identification score cutoff 10 %   

[M+H]+, [M+NH4]+, [M+Na]+ Only report top hit yes   

Data collection Peak detection Alignment 

MS1 tolerance: 0.01 Da Minimum peak height: 300 A.U Retention time tolerance: 0.4 min  

MS2 tolerance: 0.05 Da Mass slice width: 0.02 Da MS1 tolerance: 0.03 Da  

Retention time begin: 1.5 min MS2Dec Retention time factor: 0.4 

Retention time end: 26 min Sigma window value: 0.2 MS1 factor: 0.6  

MS1 mass range begin: 50 Da MS/MS abundance cut off: 500 A.U N% detected in group: 50%  

MS1 mass range end: 800 Da Identification   

MS/MS mass range begin: 50 Da Retention time tolerance: 1 min   

MS/MS mass range end: 800 Da Accurate mass tolerance (MS1): 0.05 Da   

Maximum charged number: 2 Accurate mass tolerance (MS2): 0.1 Da   

Adduct Identification score cutoff 10 %   

[M-H]-, [M-H2O-H]-, [M+Cl]-, [M+Hac-H]- Only report top hit yes   
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Table 5 MS-Dial processing parameter for the CortecsT3 method.  

2.2.12.2 Statistical analysis of metabolomics data using MetaboAnalyst 

After transforming metabolomics data (targeted and untargeted data) from the respective mass 

spectrometry software to a tabular, excel format, we proceeded with statistical data analysis. 

Here we used the R-based web tool MetaboAnalyst developed by McGill University under lead 

by Jianguo Xia (Pang et al., 2021; Xia et al., 2009). This tool is adapted for the purpose of 

metabolomics analysis and encompasses necessary steps from data integrity checks to data 

normalization, and provides functions for univariate analyses (e.g., Student’s T-tests, volcano-

plots), chemometric analyses (PCA, PLS-DA), and cluster analyses (cluster-heatmaps). 

For general data analysis of our metabolomics data, we selected features from the previous 

mass spectrometry programs that led to identification at least by mass. Features that were not 

identified were removed to reduce data noise and enable better interpretability. 

The intensities of different metabolites can vary over large magnitudes. Thus, for metabolites 

to be comparable in analysis (e.g., comparing fold changes), metabolic features need to be 

scaled (van den Berg et al., 2006). Here we used either auto-scaling or pareto-scaling. When 

defining 𝑥ij as the the j-th value (measurement) from the metabolite with the i-th index, 𝑥i̅ as 

the mean of the i-th metabolite, 𝑠i as its standard deviation and 𝑥ij̃ as the transformed value; 

autoscaling can be defined by 𝑥ij̃ =  
𝑥ij−  𝑥i̅

𝑠i
 and pareto scaling is defined by 𝑥ij̃ =  

𝑥ij−  𝑥i̅

√𝑠i
. For 

most classical statistical testing procedures, data should be normally distributed and possess 

sufficiently low heteroscedasticity. To achieve better normality, we calculated the generalized 

logarithm transform 𝑥iĵ of 𝑥ij. First 𝑥ij̃ = 𝑙𝑜𝑔10𝑥ij is calculated and then the mean of each 

metabolite 𝑥ij̃ is deducted from each value and the transformed value 𝑥iĵ is yielded as 𝑥iĵ = 𝑥ij̃ −

𝑥i̅̃.  

For first data exploration, we commonly used principal component analysis to assess the global 

separation of experimental groups. Furthermore, we used cluster-heatmaps to determine the 

global extent of metabolites altered between groups and find patterns of metabolites that are 

altered together (higher correlation). We used Euclidean distance with Ward-Clustering on the 

normalized data for heatmap analysis, if not otherwise mentioned.   

Data collection Peak detection Alignment 

MS1 tolerance: 0.01 Da Minimum peak height: 300 A.U Retention time tolerance: 0.3 min  

MS2 tolerance: 0.1 Da Mass slice width: 0.02 Da MS1 tolerance: 0.03 Da  

Retention time begin: 0.8 min MS2Dec Retention time factor: 0.5 

Retention time end: 32 min Sigma window value: 0.5 MS1 factor: 0.5  

MS1 mass range begin: 100 Da MS/MS abundance cut off: 800 A.U N% detected in group: 33%  

MS1 mass range end: 1200 Da Identification   

MS/MS mass range begin: 100 Da Retention time tolerance: n.a   

MS/MS mass range end: 1200 Da Accurate mass tolerance (MS1): 0.05 Da   

Maximum charged number: 1 Accurate mass tolerance (MS2): 0.1 Da   

Adduct Identification score cutoff 10 %   

[M+H]+, [M+NH4]+, [M+Na]+ Only report top hit yes   
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The Euclidean distance between two points (e.g., different samples) is the squared root of the 

quadrated differences in all dimensions (e.g., the difference between metabolomics features) 

𝐷 =  √(𝑥1,𝑗 − 𝑥1,𝑘)2 + ⋯ + (𝑥𝑖+𝑛,𝑗 − 𝑥𝑖+𝑛,𝑗)2, where 𝑥𝑖𝑗 is the intensity/concentration of the j-th 

sample in the i-th metabolite, 𝑥𝑖𝑘 is the intensity in the k-th sample, that this pair-wise distance 

is calculated with (Gower, 1982). Iterating over all metabolites, results in the Euclidean 

distance between two samples, analyzing the distances between all samples results in a 

distance matrix. This distance matrix can then be used for clustering by the ward algorithm 

(Ward, 1963). Ward algorithm is an agglomerative clustering algorithm, that operates by 

merging the clusters (or points) that have the lowest sum of squared distances. For the 

hypothesis-generation purpose and to simplify data interpretability, typically only 65 or 80 

metabolites with the lowest p-value after Student’s T-test or ANOVA were used.  

For correlation analysis we used Pearson correlation coefficient (Pearson, 1895). Pearson 

correlation coefficient is defined as: 𝑅𝑥,𝑦 =  
1

𝑛−1
 ∑ (

𝑥𝑖−�̅�

𝑠𝑥
)𝑛

𝑖=1 (
𝑦𝑖−�̅�

𝑠𝑦
), where 𝑥𝑖 and 𝑦𝑖 are two 

individual sample points (e.g., metabolite concentrations) to be correlated, 𝑛 is the sample size, 

�̅� and �̅� the sample means for 𝑥 and 𝑦 respectively.  

For the evaluation of linear regressions we used the coefficient of determination 𝑅2 =

 
∑  (𝑦𝑖−𝑓𝑖)2

𝑖

∑  (𝑦𝑖−�̅�)2
𝑖

, where 𝑦𝑖 is the observed data point, �̅� the mean of all 𝑦𝑖 and 𝑓𝑖 the calculated data 

point (Ellis et al., 1968). 

2.2.12.3 Specialized statistical data analysis with python 

For specialized data analysis we used python with the Matplotlib, Seaborn, and Scikit-learn 

libraries (Hunter, 2007). Volcano plots for two-group comparisons were generated by first 

calculating Student´s T-test p-values and foldchange by using Metaboanalyst. Then we plotted 

the negative log10 transformed p-value versus the log2-transformed fold change using the 

python library Matplotlib. For data sets of the untargeted lipidomics method or the AbsoluteIDQ 

p180-kit, we used different colors to indicate lipid classes of the presumptively identified 

compounds.  

For an overview of lipidomics data with two experimental groups before identification, we 

calculated foldchange and Student´s T-test p-value for each metabolite. Then we calculated 

the log10 of the fold changes between the groups and assigning the color blue to metabolites 

with a negative log10 fold change (decreased metabolites) and red to the positive fold changes 

(increased metabolites). The transparency of the colors represented the magnitude of the 

change, with metabolites with the most significant fold change having the lowest transparency 

(the highest color boldness). Here the highest 5 % of the foldchanges were set at minimum 

transparency, and the other metabolites scaled using min-max-scaling.  

The -log10 p-values of the Student´s T-tests of each metabolite were then calculated and scaled 

as above. Scaled p-values were then used to display the point size. Then each metabolite was 

plotted using the color, transparency, and point size to the respective retention time and mass 

to charge ratio. This plot was then used to determine global changes in the lipidome. 
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3.0 Development of the metabolomics platform 

for rare neurometabolic disorders 
3.1 Introduction to the development of a metabolomics platform 

The holistic nature of metabolomics analyses can provide deeper insights into the 

metabolism in diseased states than classical biochemical studies may allow (D’Alessandro 

et al., 2012; German et al., 2005). Therefore, the holistic nature may offer an advanced 

diagnostic power for rare neurometabolic disorders (Coene et al., 2018; Piras et al., 2016; 

Willemsen et al., 2016). However, the development of a metabolic platform consists of many 

steps that need to be optimized and untargeted as well as targeted methods that need to 

be developed (Figure 5). In parallel, we decided to establish also a commercial targeted 

metabolomics kit to gain first insights into metabolomics. This Absolute IDQ p180-kit from 

Biocrates company will provide our platform with an easily comparable method between 

institutes facilitating data exchange and reproducibility. While this method is established, 

we will then focus on developing an untargeted metabolomics platform to cover the 

metabolome holistically.  

To summarize, in this project, we aim to set up a metabolomics platform based on two 

pillars:  

1) An in-house untargeted metabolomics platform.  

2) A targeted metabolomics platform, based on multiple methods, starting with the 

commercial AbsoluteIDQ p-180-kit. 

 

Figure 5 Metabolomics platforms need to include multiple steps in their pipelines. Metabolomics analyses 
require sample preparation, followed by LC-MS measurement and statistical evaluation. Created with 

BioRender.com. 

3.1.1 The AbsoluteIDQ p180-kit for targeted metabolomics 

As an complimentary approach to our in-house metabolomics pipeline, we applied the 

AbsoluteIDQ p180-kit from Biocrates. The p180-kit is a set of sample preparation and mass 

spectrometry methods as well as disposables and standards for the analysis of up to 187 

metabolites from various sample matrices (https://biocrates.com/absoluteidq-p180-kit/, 

Accessed on 31.05.2021). It consists of a common sample preparation method for two 

different MS analysis methods (Figure 6):  

- Firstly, a classical liquid chromatography mass spectrometry (LC-MS) measurement for 

biogenic amines.  

- Secondly, a flow-injection mass spectrometry (FIA-MS) measurement without an LC 

separation to analyze lipids and carnitines.  

https://biocrates.com/absoluteidq-p180-kit/
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Figure 6 The AbsoluteIDQ p180-kit from Biocrates is a set of metabolomics method for the analysis of 
lipids and biogenic amines. The targeted metabolomics AbsoluteIDQ p180-kit from Biocrates is organized in 
a 96-well plate scheme, including the calibration curve, the quality controls (QC) and samples. After application 
to the plate, amines are derivatized with phenylthioisocyanate (PITC) and split into two dilutions for flow-injection 

analysis (FIA-MS) for lipids and LC-MS for biogenic amines. Created with BioRender.com 

According to the manufacturer's application notes, the kit can quantify up to 145 metabolites 

in the FIA-MS mode (40 acyl-carnitines, 15 sphingolipids, 76 phosphatidylcholines, and 15 

lysophosphatidylcholines). In the LC-MS mode, up to 42 metabolites (21 canonical amino 

acids and 21 other biogenic amines, e.g., neurotransmitters) can be quantified. The kit has 

been conceived based on recommendations of different regulatory bodies, such as the FDA 

and EMA (Bioanalytical method validation guide, EMA, 2012), and also it has been 

successfully validated in an international ring trial (Siskos et al., 2017). Additionally, the kit 

has already been applied in many different laboratories and to a myriad of various projects. 

Still, each kit application to another mass spectrometer or laboratory may pose certain 

insecurities that should be assessed. Thus, before deploying the kit, we first evaluated the 

general suitability of our devices and at least evaluated the quality and simplicity analysis 

qualitatively.   
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3.1.2 Introduction to the development of an untargeted metabolomics platform 

Untargeted metabolomics is the metabolome analysis without actively excluding a set of 

compounds to generate an open overview of the phenotype (Schrimpe-Rutledge et al., 

2016). Truthfully, a completely open method does not exist. Based on every method's 

specifics, there is always a certain bias to certain analytes due to their intrinsic chemical 

properties and analytes are excluded even in untargeted studies simply by analysis design 

(Christians et al., 2011). Thus, typically a combination of different techniques is used to 

acquire data from a more significant subset of metabolites. Most metabolomic platforms 

divide the analyses based on two general properties of a metabolite: the polarity of the 

analyte, separating hydrophilic analytes such as amino acids from unpolar analytes such 

as lipids; secondly, the ability to generate positively charged or negatively charged ions in 

mass spectrometry. Based on the different chemical properties, most methods for 

hydrophilic and unpolar analyses use different chromatographic protocols, while positive 

and negatively ionizable molecules often can use the same chromatography procedures 

(Masson et al., 2010). For a higher sample throughput, it is essential to reduce the number 

of chromatographic methods, as each requires a significant amount of time (typically 15-60 

min per analysis).  

Also, each different chromatography method increases the number of chromatographic 

columns and the solvent consumption, increasing the overall cost of the investigation. 

Consequently, up to four mass spectrometry methods are used for most untargeted 

platforms, and between one to four chromatographic techniques are used. In the analysis 

of lipophilic compounds (for lipids: lipidomics), often analysis of negatively charged 

molecules is omitted due to the substantial prevalence of positively ionizable lipids (Naz et 

al., 2017; Wang et al., 2015). Because of the broader range in chemical space, hydrophilic 

methods typically analyze both. Opposing to this common platforms, there are also 

concepts that just use one analytical run (Schwaiger et al., 2019). 

Based on this, we decide to develop one untargeted method in positive ionization mode for 

lipids and one chromatographic analysis method for hydrophilic compounds in positive and 

negative ionization mode.  

3.1.2.1 Analytical LC-MS method development is needed for further steps 

The development of a metabolomics method commonly starts reversed to the final 

procedures for the samples (Honour, 2011). First, the LC-MS analytical methods need to 

be developed, as the analytical method is the only way to assess features such as the 

efficiency of sample preparation (Gika et al., 2014). Generally, LC-MS development 

requires developing methods for the MS part and the LC part. Designing a metabolomics 

method often focuses on the chromatography method, but an MS method is necessary to 

evaluate this appropriately. However, the MS method is also dependent on the specific 

chromatographic environment (Furey et al., 2013). 

Albeit mostly, the initial MS conditions are adjusted to notes of the manufacturer or literature. 

Then a reference mixture should be selected containing the target analytes in a sufficient 

amount, concentration, and purity (Bergeron et al., 2009). This reference is used for further 

optimization. For targeted analyses, simply the metabolites of interest are used. For 

untargeted analyses, this may present more complicated, as there is no definite target for 

optimization.   
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Some groups have used mixtures of metabolites with the highest possible chemical 

difference to assess all chemical space. Other groups have used biological material such 

as plasma from local donors or acquired standardized material such as the NIST standard 

plasma SRM 1950 (Ribbenstedt et al., 2018). The advantage of directly using plasma for 

optimization is the closeness to the final sample; however, many signals may overlay, and 

there is no definitive group for optimization, making the optimization analysis more difficult 

(Wang et al., 2019). The selection of specific metabolites to optimize simplifies analysis, but 

when analyzing actual samples after optimization, certain metabolites may be overlayed by 

other signals from the matrix. 

After the selection of the optimization targets, optimization of the LC-MS method can occur. 

Optimization parameters include selecting the LC column, selecting the mobile phase, and 

lastly, the appropriate separation gradient. Each parameter can partially affect the other. 

Therefore, for complete optimization, all parameters need to be assessed in all possible 

combinations; however, this requires a high amount of time and material costs due to the 

high amount of different combinations. Thus, commonly, optimization follows an elimination 

pattern, also called a “one-factor-at-a-time” (OFAT) approach (Dolan and Snyder, 2017; 

Lakka and Kuppan, 2019; Peraman et al., 2015). At first chromatographic columns are 

compared using mobile phases as recommended by the manufacturer or literature. Then 

the best performing column is selected for further optimization. For reversed-phase 

analyses, the most common columns include columns with a saturated 18-carbon chain 

connected to the silica beads (C18 column), other columns such as C8 or even columns 

with perfluorinated aromatic groups are also available (pentafluorophenyl, PFP; (Criscuolo 

et al., 2019). For hydrophilic analytes, more modifications are available, including bare silica 

columns or silica modified with amine (NH2), amide, or a variety of different zwitterionic 

groups (ZIC) (Buszewski and Noga, 2012).  

Then the different mobile phases are optimized, changing the solvent, buffering salt, 

buffering salt concentration, and pH in each round of optimization. As buffers in MS need 

to be volatile, typically only ammonium acetate or ammonium formate are used. For most 

methods, a range from 5-30 mM salt is used. Conjugated acids such as acetic acid and 

formic acid (Monnin et al., 2018), or bases such as ammonium hydroxide (Tang et al., 2016) 

can be added to modify the pH. For specialized methods ion-pairing reagents, amphiphilic 

molecules that enable separation of polar metabolites on RPLC columns, exist. However, 

they are usually limited to peptide analysis (Åsberg et al., 2017; Guo et al., 1987). Even 

metal ions, such as cesium, have been described as additives for carbohydrate analytics 

(Rogatsky et al., 2005). 

As metabolomics methods are often screening methods, the content of organic and 

aqueous components in mobile phases is often as high (or low) as possible to achieve a 

maximum range of separation. For the analysis of hydrophilic molecules, HILIC methods 

are often used. A high organic starting condition is therefore required, conditions higher 

than 90% are mostly described (Buszewski and Noga, 2012). Reversed-phase techniques 

require a starting mobile phase with almost no organic content, e.g., typically below 10%.  

Elimination-wise optimization is a suitable mechanism for optimization in a fast and 

resource-saving manner. Though, it leads only to local optimization.   
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A better method may be available but is not found, given that only a specific combination of 

parameters leads to it. One way to reach a global optimum is to test all possible 

combinations, which is not feasible. However, newer strategies have introduced 

automatized multiparameter optimization techniques, that by strategically altering multiple 

parameters at once, can create a more global overview of method optima. These 

techniques use polynomial equation solving techniques such as response-surface modeling 

for finding optimal method parameters (Tome et al., 2019). Multi-platform technologies are 

available, such as the “multi-platform unbiased optimization of spectrometry via closed-loop 

experimentation (MUSCLE)”-tool development by the University of Birmingham (Bradbury 

et al., 2015). 

In typical LC-MS method optimizations for regulated environments, but also for targeted LC-

MS analyses in research, specific method parameters are assessed. During the 

development of the LC-Ms method itself, the linearity of the method and analytical stability 

(e.g., retention time stability) are determined.  

3.1.2.2 Development of analytical sample preparation pipelines makes sample amenable 

to analysis 

Following the optimization of the LC-MS method, the sample preparation pipeline needs to 

be developed. Optimization aims to decrease unwanted compounds while increasing 

compounds of interest and making the sample amendable for analysis (Vuckovic, 2012). In 

untargeted metabolomics, the extracted metabolites should be from the widest chemical 

range possible.  

To minimize metabolite alterations and possible contamination risk, samples should be 

handled as fast and with the lowest treatment as possible. In metabolomics, simple 

techniques from basic protein removal to liquid-liquid extractions and elaborate solid-phase 

extractions are used.  

To assess sample preparation efficiency, mainly important is the determination of signal 

abundances and reproducibility of targeted analytes, optimizing the methods for high signal 

intensity and high reproducibility. To generate more easily interpretable data, in untargeted 

metabolomics, this can be done on a metabolite class levels (e.g., “amino acids”) or based 

on global intensities (e.g., total ion chromatogram). Some groups have monitored protein 

removal efficiency as a marker (utilizing protein assays) for analytical cleanup (Polson et 

al., 2003). For hydrophilic analytes, especially the removal of phospholipids is measured 

(Bylda et al., 2014). Protein aggregates lead to clogging of instrument capillaries and 

columns, and phospholipids can lead to lower sensitivities by causing ion suppression. 

Protein removal 

Protein removal can be achieved utilizing flow molecular weight filters (typically below 3000 

Da) or by precipitation using adding organic solvents. Ultrafiltration is commonly used for 

biofluids (e.g., urine) and removes proteins based on their size. It does not change the 

solvent composition of the analytes. However, certain metabolites are not liberated from 

their protein carriers, leading to unwanted removal. In high proteinaceous samples (cell 

lysate, blood), filters clog and are often not usable. Protein precipitation techniques are 

more commonly used and usually work by denaturation.   
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Strong pH changes by acids (Link and LaBaer, 2011), changing ionic strength by using 

chaotropic salts (Shih et al., 1992), flocculation by polyelectrolytes (Chen et al., 1992), 

nanomaterials (Zhang et al., 2016), or removing solvation shells by organic solvents (Merrill 

and Fleisher, 1932) can precipitate proteins. The first ones are uncommon to LC-MS as 

they can lead to interferences or reduces metabolite stability. Instead, organic solvent 

precipitation is used predominantly (Vuckovic, 2012).  

Different protein precipitation solvents better extract different compounds and different sizes 

and precipitates' stabilities (Polson et al., 2003; Want et al., 2006). Acetonitrile, methanol, 

acetone, and butanol are typical organic solvents used and they are often mixed or modified 

using acids and salt buffers to regulate pH and ionic strength.  

Metabolite extraction 

Certain groups of metabolites can be extracted from the sample to reduce interference from 

the respective not extracted group (Yang et al., 2013b). For example, lipids can be extracted 

from hydrophilic metabolites to minimize ion suppression from phospholipids. Metabolite 

extraction primarily uses either liquid-liquid extraction or solid-phase extraction. 

Two-phase liquid-liquid extraction employs the use of an aqueous sample buffer and an 

organic, water-immiscible solvent (Martin et al., 2014). Different solvents are used, with 

chloroform being the most common (Bligh and Dyer, 1959; Folch et al., 1951), but also 

ethyl-acetate or methyl-tert-butyl ether (MTBE) are used, with the latter being favored due 

its lower volatility and lesser toxicity (Matyash et al., 2008). Liquid-liquid extraction can be 

optimized by choice of organic solvent, pH change, salts to change ionic strength, and the 

volume ratios of extraction solvent and sample (Ulmer et al., 2018). 

Liquid-liquid extraction cannot handle many samples at the same time and is not easily 

automatable. Based on the manual liquid handling, the inter-sample deviations are also 

high. While matrices such as diatomaceous earth have been used for an automatable solid-

phase supported liquid-liquid extraction (Cheng and Jiang, 2019), they are optimized for 

only the recovery of one phase (primarily organic phase). Thus, these methods cannot be 

used when both extracts are relevant. 

The most automatable sample preparation technique is the use of solid-phase extraction 

(Dettmer et al., 2007). Similar to liquid chromatography, this technique uses a silica 

stationary phase coated with functional groups and filled in a column structure, and 

compounds are separated from a liquid stationary phase. Typically, the silica particles have 

a bigger diameter enabling higher flow rates with lower backpressure. The elution of 

compounds from SPE also differs; generally, elution occurs step-wise, with different solvent 

volumes applied and not by continuous flow as in LC-MS (Poole, 2003). Other formats are 

widely available, including higher throughput able 96-well formats and even integrates 

systems that use SPE during an LC-MS measurement (online-SPE, (Calderón-Santiago et 

al., 2015)). Very similarly to liquid chromatography, the selected solid phase and the 

selected solvents need to be optimized. 

Additionally, based on the stepwise nature of SPE volumes applied to the column need to 

be optimized. Optimizing follows similar principles as in LC optimization.   
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3.1.2.3 Normalization of samples corrects for sample-wise and artificially introduced 

intensity variation 

Loss of analytes during sample preparation is unavoidable (Ejigu et al., 2013; Misra, 2020). 

While this should be reduced by designing appropriate sample preparation pipelines and 

reducing the number of cleanup steps to a certain amount, it will persist. Clearly, analyte 

loss influences sensitivity, but more important is to monitor the homogeneity of analyte loss 

in every sample. This is important to achieve high reproducibility. Typically, analyte loss is 

very dependent on the specific metabolite due to individual properties (e.g., logP, pKa), and 

analyte losses do not linearly correlate with each other. The solubility of each analyte also 

depends on the different analytes in the sample, contributing to increasing solubility or 

decreasing it. Apart from the sample preparation, errors can also be introduced by the LC-

MS measurement. Here samples can differ in small amounts, or analyte intensities can vary 

due to sample-specific ion suppression by matrix compounds, such as phospholipids 

(Annesley, 2003; King et al., 2000).  

Therefore, in targeted analyses, every analyte of interest typically corresponds to a 

respective internal standard with the same chemical properties (Bansal and DeStefano, 

2007). In most LC-MS analyses, the same metabolites are used as the targeted 

metabolites, only differing in isotopic composition; this is called isotopic dilution mass 

spectrometry (Ciccimaro and Blair, 2010). The stable hydrogen isotopes deuterium (H2), 

but in fewer cases, the carbon isotope C13 are exchanged with their more abundant 

counterparts protium (H1) or C12. The isotopically modified internal standards retain most 

chemical properties (e.g., extraction efficiency, retention time, or ion suppression) while 

being identified as different substances by their varied masses in the mass spectrometer. 

However, these are expensive and not available for all compounds making the reduction of 

their use necessary (Stokvis et al., 2005). Especially in untargeted metabolomics, target 

analytes are unknown beforehand, and very varied, so specific internal standards cannot 

be added.  

Instead, then internal standards are selected for distinct classes e.g., in lipidomics for each 

lipid class (Boysen et al., 2018; Sysi-Aho et al., 2007; Wang et al., 2017). Sometimes just 

single substances are added for normalization of extraction. This is common for untargeted 

screening methods as the standard deviations are accepted to be higher.  

Other internal standard types exist, such as standards similar in chemical aspects, but not 

occurring naturally in the samples, e.g., tricarballic acid for organic acids or miltefosine for 

phospholipids (Godfrey et al., 2017). Those are commonly cheaper than isotopically 

modified standards, but they to be carefully validated. 

Normalization can also occur on a data level after measurement. Used for normalization 

are the total ion chromatogram (TIC), the total ion chromatogram of identified metabolites 

(mTIC), or other multiparameter methods (Ejigu et al., 2013; Misra, 2020). Among the latter, 

the locally weighted scatter plot smoother (LOESS) algorithm is the most common 

(Cleveland, 1979; Dunn et al., 2011; van der Kloet et al., 2009).   
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3.1.2.4 Analytical method validation is the last step in metabolomics method development 

The expected last step of developing an analytical platform is method validation (Bansal 

and DeStefano, 2007; Honour, 2011). Different authorities document method validation 

guidelines for controlled environments such as good laboratory or good manufacturing 

practices (ICH, FDA, EMA). Validation of metabolomics methods for scientific use is, 

unfortunately, less well documented. Currently, there are efforts to standardize validation 

criteria, but typically there are some similar procedures followed as in EMA or FDA 

guidelines. Based on the wide and untargeted nature of potential analytes as well as the 

endogenous nature of analytes, these guidelines can only be followed in very open ways 

(Broadhurst et al., 2018; Coene et al., 2018; Klupczynska et al., 2020; Ribbenstedt et al., 

2018). The assessment of the following parameters is generally recommended by FDA, 

EMA, ICH or others (FDA, EMA, ICH; Bansal and DeStefano, 2007):  

• specificity/the selectivity 

• sensitivity  

• linearity  

• accuracy and precision 

• stability  

• matrix effects, dilution integrity 

Assessment of specificity and selectivity 

The specificity and selectivity are typically the first parameters to be assessed as they are 

essential to determine the identity of a compound (Peris-Vicente et al., 2015). Specificity of 

a method is the ability of the method to react only to one compound with an appropriate 

response but not to others. Selectivity is the ability to differentiate the analytes from other 

endogenous analytes. In typical validations, authorized reference standards are used for 

each compound. In untargeted metabolomics analysis, this is usually not available. In LC-

MS the important identification criteria for metabolites are retention time and the 

mass/charge-ratios of the compound as well its fragments (Kushnir et al., 2005; Rozet et 

al., 2011; Saah and Hoover, 1997).  

In classical method validation, specificity and selectivity are assessed mainly by determining 

the aberration of these parameters in samples to the reference standards. Additionally, the 

reproducibility of retention time and mass parameters between different runs in a sample 

can be assessed (inter-run retention time stability and mass accuracy). The latter criteria 

can even be determined in untargeted metabolomics methods as shown e.g., in a 

publication by Stefanie Wernisch and others (Wernisch and Pennathur, 2016).  

Assessment of sensitivity 

The sensitivity of compounds is the ability to detect a compound from a matrix safely (Peris-

Vicente et al., 2015). Conceptually it can be separated into two distinct parameters: the limit 

of detection (LOD) and the lower limit of quantification (LLOQ). The limit of detection is 

defined as the lowest possible concentration where the analyte is safely identified from the 

surrounding noise. The ICH accepts three ways to determine the LOD: visual evaluation, 

signal-to noise-ratio and standard deviation of the blank.  
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The LLOQ is defined as the lowest possible concentration that can be quantified and 

depends on the signal/noise range and the linearity of the method. Commonly, the 

sensitivity is assessed by standard addition to the sample matrix. In endogenous analytes, 

the isotope standards are being used. If not otherwise possible, sample matrix substitutes 

are possible, containing typical matrix compounds but the target analyte.  

The FDA and EMA recommend the LLOQ to be the lowest non-zero standard of the 

calibration curve. Its intensity should be at least five times higher than the zero calibrators.  

In untargeted metabolomics, this presents as difficult. Metabolites expected in analyses are 

commonly unknown, of a high number and wide range of different analytes. A possible 

proxy marker for the sensitivity is the dilution integrity. By diluting the sample in various 

stages, at least a broad information can be yielded by which dilution factor becomes 

undetectable.  

Calibration linearity 

The calibration linearity is a marker for the dependency of the analytes concentration and 

instrument response caused by it (Shabir, 2003). Sufficient linearity is necessary for the 

quantification of an analyte. The linearity is commonly determined by adding a 

nonendogenous compound to the sample matrix and plotting the resulting signal intensity. 

For endogenous analytes, matrix substitutes or internal isotopic standards can be used. 

The calibration points should encompass the range of concentrations that should be 

determined later. Typically, apart from matters of linearity, the LLOQ should be at least 5 

times higher than the blank. The regression coefficient is used for assessing linearity; in 

most quantitative methods, an R2>0.9 is found (Karnes and March, 1991). In untargeted 

metabolomics, linearity cannot be determined usually due to the absence of standards and 

number, but similar to the sensitivity might be assessed by doing sequential dilutions. 

Precision 

Precision is the property of an analysis to determine the same value for the same sample 

between different analysis trails. Accuracy is the ability to produce analytical results as close 

as possible to a known reference.  

Precision can be assessed by determining the covariance (CV) of analyte concentrations 

between different runs and accuracy to the known reference. The FDA recommends a 

maximum covariance of 15-20% for accuracy and precision. As there is no concentration 

reference in metabolomics, precision is mainly determined as intra-run signal stability (Lin 

et al., 2020). In untargeted metabolomics, CVs tend to be substantially increased, as they 

are semiquantitative methods.  

Metabolite stability 

The stability of an analyte can be determined by treating the sample with different conditions 

(Stevens et al., 2019). Here influences on the sample should be studied that are relevant to 

typical analyses. Typical is the effect of different time spans or temperatures on different 

steps of the analysis. Different matrices also can influence stability in different ways. For 

instance, occurrences such as hemolysis can influence multiple parameters (Denihan et al., 

2015).   
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Specific analytes may be increased due to the higher intracellular concentration of 

metabolites in erythrocytes. Some other analytes may be decreased due to instability or 

due to problems in sample preparation.  

Matrix effects 

Matrix effects can be judged by analyzing the difference between the analyte signal intensity 

in a pure solvent and the intensity in an actual sample. Due to the different impacts such 

as, e.g., ion suppression, analytes present with lower intensities in real matrices such as 

blood (Chamberlain et al., 2019). For example, certain metabolites in the blood may not be 

detectable, but they are detectable in urine even though they had the same concentration. 

In untargeted metabolomics, this is mostly relevant when comparing different matrices. In 

general, this comparison is deprecated, even though the previously mentioned effect of 

hemolysis on the metabolome can still be studied.  

3.1.2.5 Identification of analytes need to be optimized in metabolomics  

In the strictest sense, in early biomarker development or early untargeted metabolomics, 

metabolomic features do not require identification (Dettmer et al., 2007). Each feature can 

be assigned a unique identifier (typically retention time and mass/charge ratio). This 

identifier can then be used for statistical analysis, and parts can be identified later after 

becoming relevant in the statistical analyses. However, it is crucial to identify analytes for 

doing pathway analyses and separating data from the noise. Mass spectrometry provides 

mass/charge-ratios as a basal identification criterium. Based on combinatoric calculations, 

a list of empirical formulas can be calculated and matched to online databases. In MS/MS 

also fragments can be matched with potential hits in databases (Kind and Fiehn, 2007; 

Schymanski et al., 2014). Lastly, isotopic distribution criteria can provide a secondary 

criterium for identification. There are a vast number of different libraries accessible and 

quickly provide preliminary identifications such as the human metabolite database (HMDB) 

by the lab Prof. Wishart (Wishart et al., 2013). Additionally a list of minimum identification 

criteria has been proposed by the metabolomics standards initiative (Sumner et al., 2007). 

However, this identification is typically of lower confidence, mainly due to isobaric 

compounds. These are structurally different compounds that still have the same (or similar 

enough) mass/charge-ratio to not be distinguishable by mass alone (e.g., leucine and 

isoleucine). Hundreds of isobaric analytes can be found in certain mass ranges, severely 

impacting identification confidence and increasing misidentifications (Opialla et al., 2020). 

Retention time and fragmentation patterns are parameters with supreme importance for the 

identification of metabolites. These parameters cannot be calculated but have to be 

determined empirically (Xiao et al., 2012). Classical untargeted metabolomics methods can 

only identify metabolites by their calculated mass and by potential fragments, thus suffering 

from a high rate of misidentified analytes. After determining features of interest, their identity 

must then be confirmed in yet another measurement. This two-step procedure can take a 

long time due to the partly long times for reference compound delivery and interpreting data 

that is not useful for analysis.   
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To address this issue, we decided to create a different set-up for our untargeted method 

platform. For identifying a metabolite, it does not need to be targeted. Every untargeted data 

set still contains the criteria necessary for identification: retention time and mass so that 

metabolites, where those are known, can be identified without changing the original data 

set (Coene et al., 2018; Naz et al., 2017). 

3.1.2.6 Summary of the introduction to metabolomics method development 

Rare neuropediatric disorders are typically complex disorders, affecting multiple metabolic 

pathways and interacting with the environment. To better understand and diagnose these 

disorders, we decided to build a metabolomics platform. We chose to concept a 

metabolomic platform based on an untargeted in-house metabolomics method and targeted 

metabolomics methods, including a commercially available metabolomics kit.  

To enable faster and more confident identification in our untargeted method, we decided to 

build a metabolite reference library, including spectral data, fragment data, and retention 

times. In this library, the retrospective addition of metabolites and the retrospective 

identification of compounds should be possible, too.  

As for most metabolomics platforms, there is not much validation information available, 

consequently we were also interested in how this method performs in different validation 

criteria. Additionally, we were also interested in seeing changes in metabolite stabilities 

under different circumstances and finding out about the limitations of the method. 

To summarize, using targeted metabolomics with the AbsoluteIDQ p180-kit and untargeted 

metabolomics analysis with an in-house metabolite identification library, we created a 

metabolomics platform for the analysis of rare neuropediatric disorders.   
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3.2 Methods for the development of the untargeted LC-MS platform 

3.2.1 A LC-MS metabolite library of authentic reference compounds 

For accurate metabolite identification, LC methods heavily rely on retention time and 

fragments of analytes as prime identifiers. However, these parameters cannot be calculated 

(as, for instance, the molecular mass) and therefore have to be determined empirically. To 

increase identification confidence in time-saving manner, we decided to create an in-house 

metabolite identification database (Figure 7). 

 

Figure 7 The metabolite identification library is generated from the measurements of metabolite 
reference standards. Metabolites for the library are selected and combined into master mixes to reduce 
measurement time and retention time and fragment data acquired using LC-MS. Identification data is then 
curated into the in-house database and then can be used to identify metabolites in experimental data. When 
metabolites relevant to an experiment are found, which were not part of the database before, they can be 
retrospectively included. Created with BioRender.com. 

3.2.1.1 Human metabolite standards of important pathways are preferentially selected 

As the purchase of a sufficient number of metabolites in singular purchases is highly 

laborious and expensive, we selected a company for the custom preparation of metabolite 

standards. Here we used MetaSci (Toronto, Canada) to produce a customized ordered 

library of undissolved reference standards placed in small glass vials. First, we manually 

selected the offered 1200 metabolites based on their relevance to our research. We 

primarily selected metabolites participating in endogenous human metabolism, with a focus 

on inherited disorders of metabolism.  

A small number of xenobiotics were selected because of their importance in nutrition or their 

involvement in therapies common to neuropediatric practice (e.g., anti-convulsive drugs). 

Based on these constraints, we acquired 502 reference standards, a list of metabolite 

reference standards from MetaSci can be found in Table 22 (p.181).  

3.2.1.2 Master mixes are were created to shorten measurement time 

Commonly, LC-MS measurements can last for 30 to 60 mins; thus, measuring 502 

metabolites as single measurements of each compound is unfeasible. Hence, we combined 

multiple compounds into 39 different master mixes, reducing measurement time drastically.  

For this, we first determined whether a compound is rather soluble in water or organic 

solvents by determining the logP from either experimental or predicted data. The logP is the 

decadic logarithm of the octanol-water-partition coefficient, which can be a measure for 

lipophilicity (positive logP) or hydrophilicity (negative logP) of a compound (Sangster, 1997). 

Then samples with a logP>0 and logP<0 were grouped separately. More hydrophilic 

compounds were dissolved in water, more hydrophobic compounds in acetonitrile. 

Compounds were diluted to have a concentration of 5 mg/ml or 10 mg/ml. 
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In either group, we then determined the monoisotopic mass and grouped metabolites in a 

way that all metabolites in a master mix had a mass difference of more than 1 Da. This was 

done, to avoid misidentification by having peaks with the same mass/charge ratio in the 

same measurement. Then metabolites were added to their master mixes and diluted to a 

final concentration of 100 µM in 50% acetonitrile/ 50% water. Before measurement, 

metabolites were stored at -80°C. 

3.2.1.3 Measurement of metabolite standards and generation of library database 

Based on the method screening studies results, we selected the ZIC-HILIC-MS method as 

the primary method for the generation of the library. Thus, we acquired LC-MS data in the 

positive as well as in the negative ionization mode of each master mix. Using UNIFI, we 

then processed each master mix and evaluated each metabolite that the mix contained. 

Peaks that had a sufficient signal intensity (>1000 A.U.) and sufficiently narrow peak widths 

(<1.5 minutes) were included in the library with their respective retention time. Based on 

their structural formula UNIFI predicted possible fragments for each metabolite. We 

evaluated the predicted structural formula whether the fragment chromatogram matched 

the main adduct chromatogram (coelution, similar profile). From this, only fragments that 

were expected to behave reproducibly in ESI-ionization were included. Principally excluded 

were carbon-carbon bond breaks (e.g., acyl-chains) and aromatic ring breaks due to their 

low repeatability under ESI conditions. Fragments of bonds between functional groups (e.g., 

amides fragmenting in carboxy- and amino-groups) and fragments leaving a highly 

stabilized group (such as tryptophan fragmenting into an aromatic indole) were preferred. 

Chromatograms, fragmentation spectra and from this corresponding retention time and 

fragmentation data were stored in a database system using UNIFI.  

For use in other programs (such as open-source mass spectrometry software, e.g., MS-

Dial), retention time and fragmentation information were exported to a tabular format. 

3.2.2 Generating an identification file for use in open-source metabolomics programs 

To facilitate the possibility of open data exchange and for use in open-source metabolomics 

software, we exported our retention time library into other formats. Commonly used are 

ASCII-text-based formats such as the MSP format developed by the national standards 

institute for science and technology (NIST). This is a standardized text format containing 

names, molecular ions, and fragment masses with corresponding relative intensities. 

Additionally, other groups have added retention times and molecular structure identifiers 

such as InchlKey or SMILES. To identify metabolites that were not part of our library (even 

in a less confident manner), we combined our library with a further library. Here we used 

the FiehnHilic library, which can also be openly accessed through the MassBank of North 

America (MoNA) (https://mona.fiehnlab.ucdavis.edu, last accessed on 10.06.2021). In our 

identification file, we replaced metabolites in the FiehnHilic-File with our identification data.  

3.2.2.1 Processing of mass spectrometry data using UNIFI 

Especially for the systematic analysis and organization of mass spectrometry data for the 

metabolite library, we selected the UNIFI mass spectrometry software from Waters. This 

software provides the ability to analyze mass spectrometry data and extract discrete 

metabolic features from the provided sample. For the identification of mass spectrometry 

features, the software accepts a predefined list of compounds and structural formulas.   

https://mona.fiehnlab.ucdavis.edu/
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Using the structural formula, UNIFI can predict theoretical fragments and, where applicable, 

points them out in the experimental fragmentation spectrum. The experimentally verified 

retention time and fragmentation data can then be saved with spectral data using a 

database functionality. Additionally, the software is applied to a server that provides regular 

backup functions.  

The combination of data analysis and the possibilities for database curation make this 

software an ideal tool for the generation of a human metabolite identification database.  

After completion of the mass spectrometry measurement, data was imported into UNIFI for 

processing. The parameters were based on the recommended settings and optimized to 

the type of liquid chromatography and mass spectrometer used. The optimized parameters 

can be found in Table 6 and Table 7. Generally, we used “Accurate Mass Screening 

Analysis on MSe data”.  

Table 6 UNIFI processing parameters for ZIC-HILIC positive mode. Processing parameters for the 
processing of ZIC-HILIC-MS data in positive mode for the metabolite identification library with UNIFI software. 
Parameters were modified based on recommendation of the software. 

 

Smooth 3D Isotope clustering Analysis Specific Settings 

Smoothing algorithm: mean Maximum considered charge  

for cluster: 

1 Adducts: +H, +NH4, +Na  

Half width: 5 Maximum number of isotopes  
per cluster: 

3 Lock Mass  

Iterations: 1 Target by mass Combine width: 3 

Find 3D Peaks Match tolerance: 20 ppm Mass window: 0.5  

Apply lockmass correction: yes Fragment match tolerance: 5 mDa Reference mass: 556.2766  

Chromatographic peak width 1.5 Allow scores below 5   

High energy intensity threshold:  200 Look for in-source fragments: True   

Low energy mass start: 55 Da Maximum Candidates: 50000   

Low energy mass end: 800 Da Maximum Unidentified Candidates: 10000   

Low energy intensity threshold 500 Maximum number of targets 
with the same m/z to keep 

5   

Maximum peaks per channel 10000     
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Table 7 UNIFI processing parameters for ZIC-HILIC negative mode. Processing parameters for the 
processing of ZIC-HILIC-MS data in negative mode for the metabolite identification library with UNIFI software. 
Parameters were modified based on recommendation of the software. 

  

Smooth 3D Isotope clustering Analysis Specific Settings 

Smoothing algorithm: mean Maximum considered charge  

for cluster: 

2 Adducts: -H, +Cl  

Half width: 5 Maximum number of isotopes  
per cluster: 

3 Lock Mass  

Iterations: 1 Target by mass Combine width: 3 

Find 3D Peaks Match tolerance: 25 ppm Mass window: 0.5  

Apply lockmass correction: yes Fragment match tolerance: 5 mDa Reference mass: 554.2609  

Chromatographic peak width 1.5 Allow scores below 5   

High energy intensity threshold:  50 Look for in-source fragments: True   

Low energy mass start: 50 Da Maximum Candidates: 50000   

Low energy mass end: 800 Da Maximum Unidentified Candidates: 10000   

Low energy intensity threshold 250 Maximum number of targets 
with the same m/z to keep 

5   

Maximum peaks per channel 10000     
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3.3. The AbsoluteIDQ p180-kit, a general description of results 

The AbsoluteIDQ p180-kit is a commercially available set of sample preparation methods, 

various standards, and LC-MS methods to enable mass spectrometry-experienced 

laboratories to conduct metabolomics experiments quickly (https://biocrates.com/ 

absoluteidq-p180-kit/, accessed on 31.05.2021). Using one sample preparation, the kit 

measurement is separated into two parts: a classical LC-MS analysis for the determination 

of biogenic amines, and secondly a flow-injection mass spectrometry analysis for the 

determination of various lipid classes. While the kit has been validated in an international 

ring trial (Siskos et al., 2017) and therefore is shown to produce comparable results between 

many laboratories, each kit application to a lab has specific challenges. Thus, the first kit 

application is commonly accompanied by the in-house modification of parameters by a 

Biocrates application scientist. Additionally, prior to every kit measurement, the system must 

be checked for suitability using included tests. So, while the kit is a commercially, thoroughly 

validated kit, we deemed a short note on the application of the kit to our lab a necessary 

part of this work. While the kit has been widely used to study different research areas, to 

our knowledge, rare neuropediatric diseases have not been studied widely (Klemp et al., 

2021).  

3.3.1. The AbsoluteIDQ p180-kit: System suitability testing shows good identification 

reliability 

Before each run of the commercial kit, the system suitability of the LC-MS system for the 

p180-kit needs to be examined. For this, the LC-MS method and FIA-MS method are tested 

separately. Due to the lower stability of the biogenic amines studied by the LC-MS method, 

the kit supplier recommends starting the kit measurement with the LC-MS part. We made 

the experience that the FIA-MS system suitability should only be checked after the LC-MS 

run, as the LC-MS run can lead to slight contaminations of the mass spectrometer (Keller 

et al., 2008; Yao et al., 2016a). These may not be noticed during LC-MS runs, but in the 

FIA-MS run with commonly very low sample injection flows, it becomes evident.  

The system suitability tests of the LC-MS part require the most user interaction; due to the 

natural aging of the chromatographic columns, the retention time slightly varies between 

measurements (McMaster, 2007). Therefore, to guarantee optimal detection of the 

metabolites, during the system check, each metabolites´ retention time has to be examined 

and the mass spectrometry method adjusted to it. We observed that different kit runs with 

the same column varied between around 0.02 minutes and about 0.04 minutes with different 

columns. During nine kit runs, with around 864 injections, we used three different LC-

columns due to peak and intensity deterioration. In classical LC-MS methods, similar 

columns last around 1000 injections. Similarly, we observed that certain metabolites in the 

test-mix, such as the polyamines spermine, spermine, and the alanine-derivative sarcosine, 

often presented with peaks not applicable for analysis. Due to multiple amino groups, 

polyamines are strongly positively charged and are not easily separated in RPLC. Even 

when using advanced ion-pairing methods, peak tailing still occurs, making polyamines 

notoriously difficult to analyze (Häkkinen, 2011; Magnes et al., 2014). 
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The system suitability testing of the FIA-MS part begins with the checkup of blank intensities 

to examine potential contamination by lipids in the analysis. Lipids are omnipresent in most 

sample preparations in the clinical setting (Keller et al., 2008; Yao et al., 2016a) and, due 

to their amphiphilic nature, often accumulate in mass spectrometry systems (Guo and 

Lankmayr, 2011). Therefore, if studying lipids samples with low intensities, it is important to 

reduce background noise caused by lipid contamination in the system.  

Also, the lower limit of quantification of the FIA-MS part is determined by the blank intensity. 

Thus, an extensive cleaning protocol was necessary before every FIA-MS measurement. 

Then a system suitability test mix with a proprietary mixture of compounds was injected to 

assess signal intensity and stability. Due to the compounds' proprietary nature, the test mix 

assessment had to occur through the kit software MetIDQ. Here we occasionally saw 

unstable signals but generally sufficient intensities (Figure 8). 

 

Figure 8 Exemplary chromatograms of acceptable and problematic FIA-MS measurements. A: Typical 
chromatogram of FIA-MS measurement using the Biocrates p180-kit, B: Signal deterioration and collapse in an 
FIA-MS measurement that leads to quantification issues. Three different exemplary mass/charge-ratios are 

shown in different colors in both chromatograms. 

3.3.2 The AbsoluteIDQ p180-kit: Quality control samples show validity of most metabolites  

After the kit measurement using LC-MS and FIA-MS, the data sets are imported into 

MetIDQ. Here the software also performs quality controls necessary for the validation of the 

kit. While the validation of most LC-MS parameters presented flawlessly, in some cases, 

the polyamines (spermine/spermidine) presented faulty validation, as already seen in the 

system check. Additionally, leucine and isoleucine often did not pass the quality check.  

In the international ring trial, the spermine, spermidine, and carnosine also presented 

problems in the validation, exceeding their specifications in two points higher than 20% 

(Siskos et al., 2017). 

In the FIA-MS part, certain runs had to be repealed entirely, as they could not be validated. 

Further assessment showed low signal intensities as well as high noise and deviating flow 

profiles. Only after repeated cleaning, signal intensities were restored and the kit validated. 

In no kit measurement, we were able to quantify the sum of hexoses. To our knowledge, 

the entire kit measurement is conducted in positive ionization mode; therefore, hexoses that 

are typically only visible in negative mode might be undetected.   
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In the ring trial by Siskos et al., SM C18:0 and C12 acyl-carnitine were found to have poor 

inter-laboratory reproducibility (Siskos et al., 2017). Apart from the mentioned difficulties, 

the other metabolites were validated well. 

3.3.3 The AbsoluteIDQ p180kit: 167 metabolites are typically visible in human serum 

In human blood-derived biofluids such as plasma and serum, we commonly found around 

167 of the 187 quantifiable kit metabolites. Thus the kit performed comparably to the ring 

trial of Siskos et al., where they excluded 27 compounds as they were below the LOD or 

showed high variability (Siskos et al., 2017).  

They also documented that the lipids PC aa C30:2, PC aa C32:2, PC aa C38:1, SM C22:3 

are in general not analyzable by mass spectrometers from Waters, our MS supplier. Certain 

metabolites such as the previously mentioned polyamines and the sum of hexoses were 

not found. Additionally, the number of metabolites varied slightly between measurements 

as the limit of quantification also changed between measurements. Apart from the 

mentioned limitations, we were successfully able to use the kit in multiple projects in serum, 

plasma, and tissue, which are being discussed in later chapters, but two are also published 

(Kettwig et al., 2021; Klemp et al., 2021). 

3.4. The in-house platform for untargeted metabolomics analysis provides broader 

metabolite information 

The AbsoluteIDQ p180-kit as a targeted assay is an excellent introduction to metabolomics 

analysis. However, our metabolomics platform's main goal is to screen a wide range of the 

metabolism in an untargeted manner to find even previously undocumented metabolic 

aberrations in rare neurometabolic disorders. Based on previous literature (Contrepois et 

al., 2015; Naz et al., 2017; Ribbenstedt et al., 2018; Tang et al., 2016; Wernisch and 

Pennathur, 2016), we decided to divide our untargeted analysis into 2 parts: a method for 

relatively hydrophilic compounds with smaller masses common to primary metabolism; 

secondly a method for the study of lipid metabolism. Ideally, both methods should possess 

orthogonality, together covering most of the metabolism without too much redundancy. 

While there have been many methods for metabolomics proposed, the exact pipeline 

heavily depends on the infrastructure accessible (e.g., mass spectrometer type) and is 

strongly dependent on the focus of research institutes. Here we aimed to develop a platform 

suited for the needs of neuropediatric research and potentially diagnostics. Accurate 

identification using retention time information is of greater importance for hydrophilic 

analytes. We first began our untargeted platform development with the development of our 

LC-MS method, then continued generating the metabolite reference library, established the 

sample preparation, and concluded with an insight into essential validation parameters. 

3.4.1 A ZIC-HILIC column is an appropriate selection for a hydrophilic metabolite LC-

MS/MS method 

Method development for a metabolomics method requires authentic reference compounds 

that the method should be optimized with (Bergeron et al., 2009). Using these reference 

compounds, general parameters such as retention, intensity, and peak shape can be judged 

more easily than when using a prepared sample that might introduce matrix effects. As a 

reference we decided to use a standard mixture of biogenic amino acids, commonly used 

in our institute.   
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Amino acids have a wide range of polarities and pKa (and therefore different retention), are 

commonly found and easily acquired, and have supreme importance in the field of inherited 

disorders of metabolism (Le et al., 2014).  

Target of the optimization was to generate a method with a broad spectrum (increase the 

number of metabolites seen) while having high sensitivity (increase the signal intensity). 

Optimization of the peak shape played secondary roles.  

Firstly, we conducted intensive literature research on methods that other groups have used 

to study metabolomics. Then we decided to first start with a comparison of different column 

chemistries. We decided to examine two different chromatography concepts: Reversed-

phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography 

(Buszewski and Noga, 2012; Tang et al., 2016). As there is a wealth in different column 

modifications for HILIC, we also determined the applicability of other HILIC-columns 

(Jandera, 2008). However, comparison of varying column chemistries is difficult, as each 

column chemistry requires different mobile phases and mass spectrometry conditions. For 

example, a reversed-phase column initially requires very low organic mobile phases, but 

HILIC chemistries require very high organic phases (Alpert, 1990). Thus to compare 

reasonably, we decided to use the recommendation of the manufacturer and/or further 

metabolomics literature for the mobile phases used for primary selection (Contrepois et al., 

2015; Ribbenstedt et al., 2018; Si-Hung et al., 2017; Sonnenberg et al., 2019; Vass et al., 

2016; Wernisch and Pennathur, 2016). Here we found that HILIC-column chemistry with 

zwitterionic surface groups (ZIC-HILIC) was able to analyze the broadest range of amino 

acids, as well as had the highest overall signal intensities. The reversed-phase column 

(C18) had low intensities with small and/or positive amino acids, such as lysine, valine, 

serine, and proline. The other HILIC phases globally performed worse and showed lower 

intensities with arginine and lysine. Wernisch et al. found in their analysis that in their 764 

metabolite library, the best total coverage was achieved by an RPLC method. However, the 

method with good retention and third-highest total coverage was achieved by a zwitterionic 

sulfobetaine column comparable to our method (Wernisch and Pennathur, 2016). Together 

the RPLC column and sulfobetaine column outperformed all other tested column 

combinations. Similarly, in most tested criteria, the ZIC column outperformed the other 

column chemistries, such as amide modifications. Similarly, in a comparative study of 46 

compounds by Contrepois, the ZIC-HILIC method was found to be superior compared to 

other studied column chemistries (Contrepois et al., 2015). 

Combining ZIC-HILIC columns and RPLC is common (Contrepois et al., 2015; Schwaiger 

et al., 2019), especially using QToF mass spectrometers such as ours (Naz et al., 2017). 

Given our results and backup by other groups, we decided to optimize the chromatographic 

conditions with the ZIC-HILIC column further (Figure 9). 

We then further modified mobile phase parameters such as pH and buffer concentration 

and the type of gradient used for analysis. We then selected a buffer containing 30 mM 

ammonium acetate and a pH of 7.0. Also, a steeper linear gradient was selected instead of 

multiple different steps of an isocratic gradient. The use of mobile phases widely varies in 

the literature, with some groups utilizing no buffer salts (0.1 % formic acid in water or 

acetonitrile; (Naz et al., 2017), some others have described 10 mM ammonium acetate.  
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Figure 9 Exemplary picture of the LC-MS method selection process. A reference mixture of amino acids 

was used to determine MS signal abundance (numbers) and peak shapes (color). Green colors represent 

optimal peaks (symmetric and narrow), yellow suboptimal (skewed and/or broad), and red non-admissible 

peaks (extremely broad or absent). Exemplary selection of a set of methods that lead to the development of 

the current pipeline.  

Lastly, we optimized mass spectrometry parameters to increase the overall signal 

intensities, as they should be adapted to the used mass spectrometry mobile phases. The 

complete optimized method can be found in the method section (chapter 2.2.9, p. 26) 

3.4.2 The human metabolite reference library for the ZIC-HILIC-MS method contains 

over 400 compounds 

High confidence identification of metabolites by LC-MS requires at least valid mass and 

retention time identifiers (Schrimpe-Rutledge et al., 2016). While mass/charge ratio can be 

calculated from the elemental sum formula, the retention time has to be determined 

empirically. This holds true especially for ZIC-HILIC chromatography, as there is not always 

a straightforward prediction from the hydrophilicity possible, such as in RPLC (Chirita et al., 

2011). In untargeted metabolomics, it is possible to work with data sets without identifying 

the features contained in them and identifying them after the measurement. A set of most 

likely reference metabolites is acquired, retention time determined, and retrospectively 

identified metabolic features. However, the selection of features deemed relevant for 

identification can be cumbersome when there is no knowledge about their biological 

function and interaction with other features/metabolites.  

Another drawback is that there is no possibility to efficiently study the limitations of the 

method, as, for instance, the typical limits for detection of metabolites are undetermined. 

Also, retrospective purchase of new reference standards results in waiting times, 

decreasing the overall speed of project progress.  

Therefore, we decided to avoid those obstacles by creating a metabolite identification library 

containing over 500 human metabolite reference standards to provide better identification 

information for the ZIC-HILIC-MS method (chapter 3.2.1., p. 43). To develop the human 

metabolite library of 502 compounds (list in Table 22, p. 181), we first decided to split the 

LC-MS acquisition into 39 sets of metabolites (master mixes) to increase the speed of 

analysis.   
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We detected 402 of the 502 substances in the reference mixes across positive and negative 

ionization modes. In positive mode, 174 metabolites were detected with stable 

fragmentation patterns, which could be used as identification parameters for later studies 

(Figure 10). 100 metabolites did not produce relevant fragments. 29 metabolites had a 

retention time lower than 2.5 minutes, a timeframe lower than to be chromatographically 

resolved.  

RT<2.5 min (29)
Fragments (174)
No fragments (100)
Undetectable substances (199)

A) Positive ionization mode

Total=502 Total=502

RT<2.5 min (43)
Fragments (243)
No fragments (47)
Undetectable substances (169)

B) Negative ionization mode

 

Figure 10 Coverage of the metabolite reference library: ZIC-HILIC-MS. A total of 502 human metabolite 

reference standards were acquired and divided into 39 measurement sets. Data of retention time, main 

adduct, and fragment mass were acquired using the ZIC-HILIC-MS method in positive A) and negative 

ionization mode B). Compounds were either not sufficiently detectable (“Undetectable substances”), delivered 

reproducible fragments (“Fragments”/”No Fragments”), or had a retention time equal to the flow time without 

chromatographic separation (dead volume, “RT<2.5 min”). A complete overview of metabolite identifcation 

data can be found in Table 19 and Table 20. 

Partly overlapping with this, in negative mode, 243 metabolites were detected with 

fragments, 47 without fragments, and 43 compounds had a retention time lower than 2.5 

minutes. Across both ionization modes, we can therefore detect around 80% from 

standards, which is very slightly higher than the around 70% in the ZIC-HILIC method 

discussed by Wernisch et al. (Wernisch and Pennathur, 2016).  

We then decided to create a database of the retention time library using the commercial 

UNIFI software for better data integrity and more straightforward handling. This allows for 

the structured archiving of metabolite identifiers (such as retention time, mass, fragments) 

alongside the original chromatograms and fragment mass spectra of these compounds. 

This database allows for the identification of compounds even years after the initial creation 

of the database.  

For better metabolomics data analysis using open-source software, we stored the main 

identification criteria in the form of a tabular format (excel) and a plain text text-file format 

(msp) that was created by the national institutes of science and technology (NIST). An 

example of what information is used for the identification of metabolites can be found in 

Table 8. The complete list of identification criteria can be found in the annex Table 19 and 

Table 20 for positive and negative ionization mode separately. The high number of 

identification information of metabolites are an important result, as they are a main necessity 

to detect rare disease using LC-MS.  
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Table 8 Exemplary data set from tryptophan in the metabolite identification library. Authentic metabolite 
reference standards were analyzed using the ZIC-HILC-MS method in positive ionization mode. Data was 
imported and assessed using UNIFI and retention time and correlating predicted fragments entered the 
database. For further analysis, important identification information was exported to excel. An exemplary data 
entry from Tryptophan in positive ionization mode is shown; the full table can be found in the annex. 

 

In order to avoid a high number of misidentifications, we only used the mass spectrometry 

adducts “-H” and “+H” as precursor types for the database. The metabolite ontology was 

created using ClassyFire “Subclass” after batch import of InChIkey (Djoumbou Feunang et 

al., 2016).  

For identifying metabolites that were not part of our library, we combined our library with 

the publicly available FiehnHilic library (https://mona.fiehnlab.ucdavis.edu, last accessed 

on 10.06.2021).  

  

NAME Ontology PRECURSORMZ FORMULA INCHIKEY RETENTIONTIME Fragmentlist

Tryptophan
Indolyl carboxylic 

acids and derivatives
203.082 C11H12N2O2

QIVBCDIJIAJPQS-

VIFPVBQESA- N
7.55

159.09255,130.06607,

74.02535

https://mona.fiehnlab.ucdavis.edu/
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3.4.3 The RPLC-MS/MS platform for lipidomics analysis 

Based on previously mentioned literature (Contrepois et al., 2015; Schwaiger et al., 2019; 

Wernisch and Pennathur, 2016) and the interest in neuropediatric research, we found that 

using a method for lipidomics would complement our ZIC-HILIC-MS method for hydrophilic 

analytes.  

The lipidomics reversed phased LC-MS/MS method was modified from an already 

established method, commonly used in the lipidomics community (Narváez-Rivas and 

Zhang, 2016; Rampler et al., 2018). However, the run time with 60 mins per sample was 

long and increased runtime related artifacts. In order to increase sample throughput, a 

UPLC column with solid-core particles was used due to their higher peak separation power 

with higher flow rates rate (higher peak efficiency; Kirkland et al., 2013). Subsequently, by 

increasing the flow rate and compressing the gradient we were able to shorten sample 

analysis to 30 minutes (the full gradient can be found in chapter 2.2.10, p. 27). A higher flow 

rate mostly leads to a faster elution of compounds. Based on the used chromatographic 

column, we refer to the method as the CortecsT3 lipidomics method. 

3.4.3.1 Structured lipids allow for higher identification certainty even without retention time 

information 

Lipids can be structured into a lipid-class defining head group and varying fatty acid acyl 

chains that define the specific lipid (Figure 11; Gyamfi et al., 2019). Further information to 

lipids and their nomenclature can be found in chapter 10.2, p. 156 in the annex. 

  

Figure 11 Scheme of a typical, structured lipid. Most lipids can be structured into lipid-class defining 
headgroup two variable fatty acids using a linking molecule. Created with BioRender.com  

In RPLC-MS, there is a relationship between the polarity of the analyte (increasing retention 

time with decreasing polarity; (Knittelfelder et al., 2014). The polarity of a lipid is greatly 

determined by the polarity of the head group and, to a lesser extent, by the length of the 

attached fatty acid (the more carbon-atoms, the less polar). Thus, the retention time of lipids 

may be extrapolated by these criteria (Aicheler et al., 2015; Tsugawa et al., 2017). Here, 

we aimed to examine whether lipids of the same class indeed appear in grouped retention 

times and if they match the patterns from authentic lipid reference standards.   
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We used EDTA plasma from a healthy human volunteer as a typical sample and acquired 

LC-MS data using the RPLC CortecsT3 lipidomics method. A typical graph of the total sum 

of all ions (from all mass ranges) dependent on time (total ion chromatogram, TIC) shows 

a high concentration of signals in discreet time points (Figure 12). A higher density of LC-

MS signals can be found primarily in the beginning, middle, and end of the part 

chromatogram.  

 

Figure 12 A typical total ion chromatogram of EDTA plasma measured with the lipidomics method 

shows different lipid signals. Healthy human EDTA plasma was prepared and analyzed using the 

CortecsT3 lipidomics method. Graph of total ion abundance (TIC, sum over all ions from different mass 

ranges) dependent on time is presented.  

After identification using the adduct mass and fragments, a similar pattern of high signal 

concentrations may be found (Figure 13). 

 

Figure 13 A plot of identified lipids and lipid classes from EDTA-plasma over different retention and 

mass ranges further shows a structure in lipid retention times. Healthy human EDTA-plasma was 

prepared and analyzed using the CortecsT3 lipidomics method. MS-features were filtered based on the 

presence of fragments and identified using adduct mass and fragment mass by the MS DIAL lipidomics 

library. MS-features were then graphed based on their respective identified mass and retention time; the color 

represents different lipid classes: CAR: acyl-carnitine; CE: cholesteryl-ester; LPC: lysophosphatidylcholine; 

LPE: lysophosphatidylethanolamine; MG: monoacylglycerol; PC: phosphatidylcholine; PE: 

phosphatidylethanolamine; PG: phosphatidylglycerol, SM: sphingomyelin; TG triacylglycerol;  
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Using the presumptive identification of the lipid classes (note the color code), we recognized 

that especially polar lipid classes such as carnitines or lysolipids appear in concentrated 

regions at the beginning. Less polar lipids (e.g., triglycerides) appeared at the end of the 

chromatogram. Some lipid classes, such as sphingomyelins, can be found more distributed 

over the middle part of the chromatogram. On average, lipid classes, such as 

lysophosphatidylcholines, produced peaks of higher signal intensity, potentially because of 

their higher abundance in plasma or better MS ionization efficiency.  

To confirm these observations and generalize them to other chromatograms, we then 

acquired retention time data of selected lipids with reference standards (Figure 14). 

 

Figure 14 Reference lipids of different lipid classes similarily show patterning. Data were acquired from 

38 lipid reference standards of 10 different lipid classes using the CortecsT3 lipidomics method. MS-features 

were filtered based on the presence of fragments then identified using adduct mass and fragments using the 

MS DIAL lipidomics library. MS-features were then graphed based on their respective mass and retention 

time; the color represents different lipid classes: CAR: acyl-carnitine; CE: cholesteryl-ester; LPC: 

lysophosphatidylcholine; LPE: lysophosphatidylethanolamine; MG: monoacylglycerol; PC: 

phosphatidylcholine; PE: phosphatidylethanolamine; PG: phosphatidylglycerol, SM: sphingomyelin; TG 

triacylglycerol; 

Similarly, also in the authentic lipid reference standards we observed a clustering of different 

lipids according to their lipid class. Here is the dependence on the head group polarity, an 

increase of retention time with an increase of fatty acid chain length, and a decrease of 

retention with increasing unsaturation. These results match well with the commonly 

published results as for instance of Ovčačíková et al. (Ovčačíková et al., 2016).  

3.4.4. Development of a sample preparation method for the untargeted metabolomics 

platform 

Human biofluids (tissues and cells) are rarely directly admissible to LC-MS. Thus, sample 

preparation must occur. The main goals for sample preparation in LC-MS-based 

metabolomics are removing unwanted contaminants (e.g., proteins) while enriching the 

metabolites of interest and delivering the sample in a way that is admissible for the type of 

analysis (e.g., correct solvent). Essential criteria for assessing the preparation are the 

broadness of visible metabolites (variety of different metabolites classes, number of 

metabolites), intensity or signal-to-noise ratio, and reproducibility of the analysis (standard 

deviation between the same samples, prepared multiple times).   
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As we selected two LC-MS methods to optimize the analysis of hydrophilic and lipophilic 

analytes separately, the sample preparation method should also extract these groups with 

maximum orthogonality. Because samples are often limited, ideally, both extracts should 

be prepared from one sample. 

3.4.4.1 RPLC-SPE provides reliable lipid extraction than the Bligh and Dyer method 

Generally, two methods are primarily used for the extraction of lipophilic metabolites: liquid-

liquid and solid-phase extraction (Dettmer et al., 2007). While the first method also removes 

proteins by denaturation and accumulation in the interphase between the chloroform and 

water-phase, solid-phase extraction requires a previous removal of proteins. However, the 

solid-phase extraction is available in higher throughput, 96-well-plate formats.  

Thus, we aimed to test whether the liquid-liquid extraction (modified Bligh and Dyer method; 

(Bligh and Dyer, 1959; Ulmer et al., 2018) or the solid-phase extraction (RPLC-SPE) is more 

admissible to our metabolomics pipeline. We analyzed the mean intensity and mean 

covariance of different lipid classes to overview extraction efficiency, as chemical properties 

(e.g., polarity) are most different between different lipid classes.  

In most lipid classes, the reversed-phase SPE method (RPLC-SPE) showed superior 

mean group intensities of lipid classes than the liquid-liquid extraction method (Figure 15). 

This especially applies to rather polar lipid classes (e.g., sphingomyelins, 

phosphatidylethanolamines). On the other side, lipid classes that are very unpolar (such 

as triacylglycerol) show higher intensities with the Bligh and Dyer method. Thus, both 

methods appear to target different polarity ranges of metabolites.
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Figure 15 The mean intensity of different lipid classes is greater in the RPLC-SPE. Human EDTA-

plasma was prepared using liquid-liquid extraction (modified “Bligh and Dyer” method) and the C18-reversed-

phase solid phase (RPLC-SPE) extraction methods. Data were acquired using the CortecsT3 lipidomics 

method, and lipids were identified by mass and fragment masses. Mean intensity over different lipids from the 

specific lipid classes was calculated. n=5 extraction replicates with the same original sample were used. 

Subgraphs use different exes due to different intensities: A) LPC: lysophosphatidylcholine; PC: 

phosphatidylcholine; B) CAR: acyl-carnitine; CE: cholesteryl-ester; LPE: lysophosphatidylethanolamine; SM: 

sphingomyelin; TG triacylglycerol; C) MG: monoacylglycerol; PE: phosphatidylethanolamine; PG: 

phosphatidylglycerol.  
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Another important point to consider is the repeatability of the analysis. Sample preparation 

inaccuracies can increase standard deviation and obscure biologically significant effects. 

Similarly, we tested the mean variance of different lipid classes in multiple preparations of 

the same sample. 
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Figure 16 The mean group variance of different lipid classes is lower in the RPLC-SPE. Human EDTA-

plasma was prepared with liquid-liquid extraction (modified “Bligh and Dyer” method) and the C18-reversed-

phase solid phase extraction (RPLC-SPE) methods multiple times from the same sample. Data were acquired 

using the CortecsT3 lipidomics method, and lipids were identified by mass and fragment masses. Mean 

intensity and corresponding variance (in % mean) over different lipids from the specific lipid class were 

calculated. n=5 extraction replicates with the same original sample were used. PC: phosphatidylcholine; PE: 

phosphatidylethanolamine; PG: phosphatidylglycerol; PI: phosphatidylinositol; PS phosphatidylserine; SM: 

sphingomyelin; TG triacylglycerol; CAR: acyl-carnitine; CE: cholesteryl-ester; DG: diacylglycerol. 

The manual Bligh and Dyer method has a higher mean group covariance in all tested lipid 

classes than the 96-well-plate scheme RPLC-SPE method (Figure 16). As a high mean 

group variance points to higher inaccuracies in sample preparation, the RPLC-SPE method 

appears to be superior.  
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Figure 17 The RPLC-SPE has superior intensities and smaller deviations than the Bligh and Dyer 
method: Exemplary lipids. Human EDTA-plasma was prepared with liquid-liquid extraction (modified “Bligh 
and Dyer” method) and the C18-reversed-phase solid phase extraction (RPLC-SPE) methods multiple times 
from the same sample. Data were acquired using the CortecsT3 lipidomics method, and lipids were identified 
by mass and fragment masses. n=5 extraction replicates with the same original sample were used. PC: 
phosphatidylcholine; CAR: acyl-carnitine; LPC: lysophosphatidylcholine. Mean±SD. 
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However, the mean group variance should not be compared to variances in typical 

analytical methods. The ranges here are higher than in analytical method specifications 

(>15-20% for FDA validated methods). As the mean group average presents an average 

over all identified MS signals, lipids with a low signal-to-noise ratio in the respective 

preparation are included in the analysis. Thus, noisy signals can lead to higher variance, as 

they are nonetheless included in the mean group variance. Therefore, this marker should 

be used with caution only to analyze sample preparation methods and does not substitute 

for by-compound analysis. In Figure 17 we extracted the raw abundances of three 

exemplary lipids, where the higher intensities and lower standard deviation of the RPLC-

SPE is well noticeable. 

Unfortunately, most research groups did not assess mean group intensities to compare 

between methods, but rather the number of uniquely identified lipid species, the intensity of 

exemplary lipids, or analyze recovery from artificial material (Matyash et al., 2008; Reis et 

al., 2013; Yang et al., 2013b). Interestingly we were not able to find further use of an RPLC-

SPE method for a general extraction of lipids, instead, most SPE methods focused on 

specific lipid classes (Aldana et al., 2020; Züllig et al., 2020). However, a variant of SPE, 

solid-phase microextraction, SPME, was superior to the Bligh and Dyer method in terms of 

analytical variability and lipid diversity (Birjandi et al., 2017). This overall matched our results 

from the SPE method.  

Based on lower variability in sample extraction, the high-throughput ability, the ability to 

create extracts for hydrophilic and hydrophobic analytes, and the higher lipid diversity, we 

decided to proceed with the RPLC method. 

3.4.4.2 The RPLC-SPE can also be used for sample preparation of hydrophilic metabolites 

In previous experiments, we identified the RPLC-SPE method to be superior for the 

reproducible analysis of lipids. The main goal of the sample preparation pipeline is to be 

able to extract lipophilic metabolites, as well as hydrophilic metabolites from the same 

sample. Consequently, we aimed to determine if the RPLC-SPE can also be used as 

sample preparation for hydrophilic metabolites. The alternative method for analyzing 

hydrophilic samples would be the specific extraction of hydrophilic metabolites, for example, 

by using a ZIC-HILIC-SPE column. This method has been developed before by the author 

and is mentioned elsewhere (Jensen et al., 2021). While this method may increase the 

extraction efficiency, it would not be directly compatible with the RPLC-SPE and is not 

readily (commercially) available in a 96-well plate format. Thus, we mainly aimed to 

determine if the ZIC-HILIC-SPE is necessary or the RPLC-SPE alone delivers acceptable 

intensities for hydrophilic metabolites. 

As the metabolite classes of hydrophilic analytes include a wider variety of different classes 

than lipids, we decided against the use of the mean group intensity or covariance as a 

marker to evaluate the methods as we did in the previous section. Instead, we decided to 

group metabolites based on their respective signal-to-noise ratios (S/N).   
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Using the RPLC-SPE method and analyzing hydrophilic metabolites using the ZIC-HILIC-

MS method in positive mode, we observed that the distribution of S/N-ratios was very similar 

(Figure 18). 

Total=202

1000<S/N>100 (62)

100<S/N>10 (116)

A) RPLC-SPE

S/N<10 (7)

S/N>1000 (17)

Total=211

S/N>1000 (16)

1000<S/N>100 (64)

100<S/N>10 (131)

B) ZIC-SPE

S/N<10 (0)

 

Figure 18 Signal-to-noise ratios of two SPE methods: ZIC-HILIC MS in positive ionization mode. Human 

EDTA-plasma was prepared using the A) RPLC-SPE or B) ZIC-SPE method and analyzed using the ZIC-

HILIC-MS method in positive ionization mode. Metabolites were identified using MS-DIAL, and only 

metabolites that were identified by at least mass were used for the analysis. Signal to noise-ratios (S/N) were 

determined using MS-Dial in n=5 extraction replicates with the same original sample. 

In negative ionization mode, the ZIC-SPE method appears to enrich more metabolites. 

However, slightly more metabolites have an S/N-ratio>1000 in the RPLC-SPE method 

(Figure 19). Yet, this seems to be only a minor benefit, as the ZIC-SPE method has higher 

metabolite numbers in the following categories. 

Total=211

1000<S/N>100 (65)

100<S/N>10 (120)

A) RPLC-SPE

S/N>1000 (25)

S/N<10 (1)

Total=261

S/N>1000 (19)

1000<S/N>100 (90)

100<S/N>10 (151)

B) ZIC-SPE

S/N<10 (1)

 

Figure 19 Signal-to-noise ratios of two SPE methods: ZIC-HILIC MS in negative ionization mode. 

Human EDTA-plasma was prepared using the A) RPLC-SPE or B) ZIC-SPE method and analyzed using the 

ZIC-HILIC-MS method in positive ionization mode. Metabolites were identified using MS-DIAL, and only 

metabolites that were identified by at least mass were used for the analysis. Signal to noise-ratios (S/N) were 

determined using MS-Dial in n=5 extraction replicates with the same original sample. 

While the ZIC-SPE method has increased signal-to-noise ratios for the hydrophilic 

metabolites, the RPLC-SPE method appears to have higher metabolite intensities and 

higher reproducibility for the lipophilic metabolites.  

In Figure 20 we extracted the raw signal abundance of three representative metabolites 

(tryptophan and phenylalanine in negative ionization mode; carnitine in positive mode). 

Here we can see that the RPLC-SPE extracted metabolites do not always have the highest 

signal intensities, but typically a lower variation.  
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Figure 20 The RPLC-SPE method has lower deviations, but not higher mean intensities than the ZIC-
SPE method in selected hydrophilic metabolites. Human EDTA-plasma was prepared using the RPLC-SPE 
or -SPE method and analyzed using the ZIC-HILIC-MS method in positive (Carnitine) or negative (Tryptophan 
and Phenylalanine) ionization mode. Metabolites were identified using MS-DIAL, and only metabolites that were 
identified by at least mass were used for the analysis. Raw signal abundance of n=5 extraction replicates with 
the same original sample are graphed with mean±SD. 

Counterintuitively so far, we have not encountered use of RPLC-SPE in the way we 

proposed. Most groups in metabolomics analysis focus on either simple protein precipitation 

or liquid-liquid extraction techniques to yield hydrophilic and lipophilic extracts e.g., the 

group of Masson et al (Masson et al., 2010). Common for the analysis of hydrophilic 

metabolites, is also the removal of phospholipids by specialized Zirconia-SPEs (Tsakelidou 

et al., 2017). HILIC-SPE, in the context of metabolomics, was primarily described for 

phospholipid removal (Bylda et al., 2014; Van Damme et al., 2014). The combination of 

liquid-liquid extraction and the HILIC-SPE process is also not readily available in 96-well-

plate formats. This limits sample throughput (only around 15 samples can be prepared at 

the same time) and is not easily automatable.  

As the ZIC-SPE was not necessary to increase extraction efficiency, we selected the RPLC-

SPE alone for further analyses. We decided to use the RPLC-SPE for the separation of 

hydrophilic and lipophilic metabolites.  

3.4.5 Stability of the untargeted metabolomics platform and analytical validation 

In the first part, we developed an untargeted metabolomics platform comprising a ZIC-

HILIC-MS method in positive and negative ionization mode for hydrophilic analytes and a 

CortecsT3 RPLC-MS method for lipidomics. Naturally, we were interested in the analytical 

performance and especially the limitations of this method, as most untargeted 

metabolomics platforms do not comprehensively assess them (Masson et al., 2010; Naz et 

al., 2017; Ribbenstedt et al., 2018). This publication mainly focused only on a subset of 

known metabolites or discussed only reproducibility or the number of detected metabolites. 

Some others also include retention time stability or peak area variations of known 

metabolites (Bonte et al., 2019). However, they still lacked information about the influences 

of errors in the sample preparation, commonly required to be assessed in a regulated 

environment (FDA, EMA, ICH).   
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The first part of this chapter (chapter 3.4.1 p. 49 to chapter 3.4.6 p. 59) focused mainly on 

detecting reference standards from solvents. To study the analytical validation, we now 

primarily concentrate on measurements from biomaterials and, as opposed to other studies, 

try to evaluate validation parameters for a broader range of compounds.  

Different parameters are used to study the validity of analytical methods. According to 

regulatory bodies such as the ICH, FDA or EMA essential parameters include the 

specificity/selectivity of the method, the sensitivity of a method, and the linearity of a method. 

Due to the endogenous nature of the metabolites and the large number of different 

metabolites to be studied, classical methods to study validation parameters cannot easily 

be applied to untargeted metabolomics. To gain some insides into these parameters, we 

assessed proxy-markers that can give at least a particular estimation. For the specificity 

and selectivity in LC-MS analytical methods, retention time and mass/charge ratios have 

utmost significance, as they are the primary identifiers of specific metabolites. The 

sensitivity in metabolomics methods may be studied by the detectability of metabolites in 

different biomaterials or dilutions of biomaterials with solvents. The latter may also be used 

to study an approximation of the linear range. Due to the absence of accurate reference 

standards, we can only correctly assess the specificity of metabolites in the ZIC-HILIC-MS 

library, as standards for the lipid method are rarer. 

3.4.5.1 Influences on specificity: Mass error and retention time stability 

The main parameters to monitor specificity in LC-MS/MS methods are the mass deviation 

to a reference mass (mass error) and the retention time deviation to a reference retention 

time (retention time error). As peak detection and thus retention and mass errors may be 

different depending on different signal intensities, we analyzed the errors over different 

sample concentrations.  

We first analyzed the distribution of mass errors and the stability of masses inside the run 

as the molecular ion mass is the key parameter for identification, especially of metabolites 

without retention time data.  

Most identified metabolites had a mean mass difference to the reference library of less than 

5 mDa, comprising 65 % of the metabolites, and 95 % of metabolites have a mass error of 

less than 38 mDa (Figure 21). The distribution is left-skewed, with an increased proportion 

of lower mass deviations, as expected.  
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Figure 21 Stability of mass deviation to reference standards: ZIC-HILIC-MS. 10, 50, 50,100, 150, 300, 

400, and 500 µl human EDTA-plasma were prepared and measured using the ZIC-HILIC-MS method in 

positive A) and negative B) ionization mode. Peaks were identified using the retention time reference library in 

MS-Dial, and mean mass deviation for each metabolite was calculated for n= 21 measurements of 7 different 

concentrations in triplicates. A histogram with a bin width of 5 mDa was created.   
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When examining the intra-run mass error, most of the error lies below 2 mDa, comprising 

89% of the metabolites (Figure 22). 95% of the metabolites had a mass error of less than 

6.8 mDa. Similarly, the distribution is also left-skewed. 
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Figure 22 Stability of intrarun mass deviation: ZIC-HILIC-MS. 10, 50, 50,100, 150, 300, 400, and 500 µl 

human EDTA-plasma were prepared and measured using the ZIC-HILIC-MS method in positive A) and 

negative B) ionization mode. Peaks were identified using the retention time reference library in MS-Dial, and 

intrarun mass standard deviation for each metabolite were calculated for n= 21 measurements of 7 different 

concentrations in triplicates. A histogram with a bin width of 1 mDa was created.  

Based on calibration-checkup data of our mass spectrometer before every measurement, 

average mass errors to the calibration mix in a range of 2-5 mDa were reported, which is 

typical for a QTof mass spectrometer (Bristow and Webb, 2003; Köfeler and Gross, 2005). 

The other important parameter for identification is the retention time; hence, a highly 

reproducible retention time is desirable. Therefore, we determined the mean retention time 

error to our reference library and inside a run (Figure 23). 
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Figure 23 Stability of retention error to reference standards: ZIC-HILIC-MS. 10, 50, 50,100, 150, 300, 

400, and 500 µl human EDTA-plasma were prepared and measured using the ZIC-HILIC-MS method in 

positive A) and negative B) ionization mode. Peaks were identified using the retention time reference library in 

MS-Dial and retention time deviation to reference standard for each metabolite was calculated for n= 21 

measurements of 7 different concentrations in triplicates. A histogram with a bin width of 0.1 min was created. 

The retention time error to the reference library appears with a broader shape, without a 

clear maximum. 50% of metabolites occur with a retention time error of less than 0.16 min. 

95% of metabolites have an error to the reference of fewer than 0.65 mins. Typically, most 

LC-MS methods have a retention time error of fewer than 0.2 mins in targeted methods. 

However, while our methods exceed this, this is not unexpected for an untargeted method 

that is not specific for an analyte. Additionally, some analytes may present with broader 

peaks, making the accurate determination of their maximum and, therefore, their retention 

time harder. In their metabolomics method, Bonte et al. have found a retention time CV of 

around 5% for most of their selected analytes, leading to a mean RT difference of around 

0.25 min (Bonte et al., 2019).   
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However, this was only estimated for a small, targeted set of analytes, not for an extensive 

range of different metabolites. Our ZIC-HILIC-MS method is also conceived as a screening 

method, where results frequently will be confirmed using other analytical techniques. Thus, 

intra-run stability is of greater importance than retention time errors to standards. 

Most of the intrarun retention time errors appear below 0.04 min, comprising 52% of the 

metabolites. 95% of the metabolites have an intra-run retention time error of less than 0.1 

mins (Figure 24). The intra-run retention time error is mainly influenced by shifts in the 

chromatographic analysis due to small variations on the column surface. Adsorption of 

matrix components such as lipids but even metabolites of interest can change the column 

selectivity (Dolan and Snyder, 2017). Also, a method can never be completely optimized for 

all analytes and this method was especially creating for screening of a wider range of 

compounds and not accurate detection. 
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Figure 24 Stability of intra-run retention time error: ZIC-HILIC-MS. 10, 50, 50,100, 150, 300, 400, and 500 

µl human EDTA-plasma were prepared and measured using the ZIC-HILIC-MS method in positive A) and 

negative B) ionization mode. Peaks were identified using the retention time reference library in MS-Dial, and 

intrarun retention time standard deviation for each metabolite was calculated for n= 21 measurements of 7 

different concentrations in triplicates. A histogram with a bin width of 0.02 min was created. 

The low intra-run retention time deviations point to a well reproducible method, at least 

inside the same run. This allows for longer run times required by large batches of a large 

number of samples. To summarize, while specific metabolites show a higher than typical 

retention time error, the intra-run retention time cv is very low, pointing out the high 

reproducibility of the method.  

3.4.5.2 Influences on specificity: retention time distribution 

For the identification of the metabolite signals apart from the retention time stability, the 

separation between different chromatographic peaks is important, as it decreases the 

chance of confusing different metabolites. A better chromatographic separation can also 

increase sensitivity by lower ion suppression effects. 
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Thus, ideally, the total amount of metabolite signals should be distributed equally over the 

retention time range. 
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Figure 25 Retention time distribution of metabolites in ZIC-HILIC MS. Retention times of metabolites in 

the retention time reference library were analyzed using the ZIC-HILIC-MS metabolomics method in positive 

A) and negative B) ionization mode. A histogram was calculated with a bin of 1 minute.  

In the ZIC-HILIC-MS method as well in the positive as in the negative mode, metabolite 

retention time appears to be distributed between mainly the first 10 minutes (Figure 25). 

After the first 10 minutes, only a minority of metabolites are eluting. In both modes, no single 

apparent maximum can be determined. An even more distributed metabolite profile would 

be desirable, but it is still very acceptable.  

3.4.5.3 Sensitivity: Coverage of the metabolome in the healthy state 

Classically, the sensitivity of an analytical method would be determined by adding a 

reference standard to the matrix in decreasing concentrations and assessment when a 

defined minimum signal to noise ratio is fallen below. As in metabolomics, the target 

metabolites are endogenous, an accurate limit of detection cannot be determined easily. 

Instead, we first studied which metabolites can be determined from different matrices 

(EDTA-plasma, fibroblast cell lysate) in a healthy/control situation. This is a common marker 

used in metabolomics method development (Zhang et al., 2020). Using the sample 

preparation pipeline, we can detect around 192 metabolites from our reference library 

across positive and negative ionization mode in healthy human plasma and wild-type 

human fibroblast cell lysate (Figure 26 A).  

 

 

 

Figure 26 The ZIC-HILIC-MS method shows a high number of detectable metabolites. Healthy human 

EDTA-plasma and fibroblast cell culture lysate of 1*106 cells were measured using the ZIC-HILIC-MS method 

in positive and negative ionization mode. Peaks were identified using the retention time reference library in 

MS-Dial, and only metabolites with matching mass and retention time are presented (A) or metabolites that 

were also identified in an untargeted manner using mass/charge-ratios were analyzed (B). 

A) Identifications based on the in-house 

metabolite library 

B) Identifications, including the untargeted 

metabolite library 
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Both ionization modes show considerable orthogonality, with most metabolites that can only 

be analyzed in one ionization mode separately. If including metabolites that are identified 

presumptively using mass adduct and fragmentation information, up to 403 metabolites can 

be identified (Figure 26 B).  

While some metabolites can be seen in both ionization modes as well as in EDTA-plasma 

and cell lysates, others can only be seen in one matrix or ionization mode (Figure 27).  

EDTA-plasma, negative (23)
Cell lysate, negative (49)
EDTA-plasma, positive (45)
EDTA-plasma, positive and negative (12)
Cell lysate and EDTA-plasma, only negative (47)
Cell lysate and EDTA-plasma,
both negative and positive(16)

Total=192
 

Figure 27 Different metabolites are detectable in different matrices. Healthy human EDTA-plasma and 

fibroblast cell culture lysate of 1*106 cells were measured using the ZIC-HILIC-MS method in positive and 

negative ionization mode. Peaks were identified using the retention time reference library in MS-Dial, and only 

metabolites with matching mass and retention time are presented. 

Using the 192 metabolites from our metabolite reference library, the metabolome can thus 

be covered in critical key pathways (Figure 28), pointing at the usability of our method.  

 

 

 

 

 

 

 

 

 

 

Figure 28 Using the ZIC-HILIC metabolomics pipeline, the metabolome can be covered in important 

checkpoints. Healthy human EDTA-plasma and wildtype fibroblast cell lysate was analyzed using the ZIC-

HILIC -MS pipeline and identified using the metabolite reference library. 192 metabolites with matching 

retention time and masses were then plotted as red dots on the metabolome using IPath3 to illustrate 

metabolite coverage. 

This included a number of metabolites from amino acid metabolism (esp. tryptophan 

metabolism) and nucleotide metabolism (esp. purine metabolism), but also a great number 

of other pathways.  
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Unfortunately, while our reference library contains a great number of metabolites from the 

glycolysis and citrate cycle, these were not detected. This may be due to the fast reaction 

times in glycolysis, the similar structure of hexose, and the high charge of tricarboxylic acids, 

hindering successful chromatography. Other essential metabolites such as biogenic amines 

can be detected well.  

Our method performed comparatively well with the method of Bonte et. Al that detected 178 

annotated metabolites (Bonte et al., 2019), the method of Naz et. Al detected around 112 

metabolites (Naz et al., 2017), the method of Coene et. Al identified around 222 metabolites 

in patient plasma (Coene et al., 2018). In all described methods, metabolite retention times 

were confirmed using authentic reference standards. Consequently, compared to other 

analytical methods in the field, our method performs well and provides a broad insight into 

different metabolic pathways. 

3.4.5.4 Sensitivity: Most metabolites can be detected in only 100 µl of human EDTA-plasma 

As metabolite sensitivity cannot be determined using standard addition, we used a dilution 

of healthy human EDTA-plasma with PBS to establish roughly how many-fold a metabolite 

can drop from its initial concentration before it is not detectable anymore. Apart from the 

method validation aspect, this is also helpful in case material is limited and only a smaller 

volume can be analyzed. By this analysis, we can extrapolate which analytes might be 

detectable. For this purpose, we defined a metabolite as observable when the signal 

abundance is at least three times higher than in an analytical blank (only PBS). 

In the positive mode of the ZIC-HILIC-MS method, most of the metabolites can already be 

detected in 300 µl of EDTA-plasma, comprising around 50.0 % of metabolites (Figure 29 

A). 21 metabolites were already detectable in 10 µl plasma. 55 metabolites showed very 

high abundances in the blank and should be analyzed only with caution. In negative mode, 

most of the metabolites can be detected in a minimum of 100 µl of EDTA-plasma, 

comprising of around 62.5 % of metabolites (Figure 29 B), 31 metabolites were already 

detectable in 10 µl plasma. 19 metabolites showed very high abundances in the blank. 

Total=122

50 µl EDTA-plasma (14)

100 µl EDTA-plasma (14)

10 µl EDTA-plasma (21)

150 µl EDTA-plasma (9)

300 µl EDTA-plasma (3)

400 µl EDTA-plasma (2)

500 µl EDTA-plasma (4)

High blank (55)

A) ZIC-HILIC positive mode

Total=143

50 µl EDTA-plasma (28)

100 µl EDTA-plasma (31)

10 µl EDTA-plasma (31)

150 µl EDTA-plasma (10)

300 µl EDTA-plasma (12)

400 µl EDTA-plasma (6)

500 µl EDTA-plasma (6)

High blank (19)

B) ZIC-HILIC negative mode

 

Figure 29 Detectability of metabolites in different plasma concentrations in ZIC-HILIC-MS. 10, 50, 

50,100, 150, 300, 400, and 500 µl human EDTA-plasma were prepared and measured using the ZIC-HILIC-

MS method in positive A) and negative B) ionization mode. Peaks were identified using the retention time 

reference library in MS-Dial, and mean signal abundance for each metabolite was calculated for n= 21 

measurements of 7 different concentrations in triplicates. The limit of detection was defined as thrice the signal 

abundance as the PBS-blank. 



3.0 Development of the metabolomics platform for rare neurometabolic disorders  

68 
 

As mass spectrometry methods tend to be very sensitive, environmental contamination can 

increase analytical noise, as seen in the blank of this analysis. This may be originating from 

solvent production, used materials (e.g., vials), or even as reaction products on the column 

or the mass spectrometer ionization source. Unfortunately, this data cannot be easily 

compared with other analytical platforms. However, other relevant methods usually use 100 

µl of plasma in their respective methods (Coene et al., 2018; Naz et al., 2017). 

3.4.5.5 Sensitivity: Limit of detection of metabolites that are not detectable in wildtype 

biological matrices 

Some metabolites that have been detected in reference standards have not been detected 

in biological matrices. However, as in inherited disorders of metabolism, enzyme 

dysfunctions often can lead to increased metabolite concentrations to the 100-1000 fold; 

metabolites may then become well detectable. To estimate to which concentrations these 

metabolites need to reach to be observable, we selected 50 metabolites of particular 

importance due to their involvement in different disorders. We then added these metabolites 

to EDTA plasma and assessed their detectability in different plasma dilutions. The previous 

chapter defined a metabolite as detectable when the signal intensity was at least three times 

higher than the blank. 

In the 50 metabolites that were previously not detectable, in this measurement, we found 7 

metabolites in the positive method and 3 metabolites that were detectable even in the 

untreated plasma. The mass spectrometers' sensitivity varies slightly between 

measurements, depending on factors such as contamination from previous runs, but even 

exogenous factors such as room temperature can slightly influence sensitivity. Using the 

standard addition to EDTA-plasma, we found that 22% of the metabolites can be detected 

in ZIC-HILIC-MS positive mode when adding them in concentrations up to 100 µM to plasma 

(Figure 30 A). In negative ionization mode 32% of metabolites can be detected, which are 

mostly not overlapping with the positive mode (Figure 30 B). Around half of the compounds 

can be determined when they reach concentrations of at least 100 µM. The other half of 

metabolite cannot be detected from biomaterials after standard additions. 
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This may be caused by improper sample preparation, degradation in plasma, or even 

absorption of proteins. This effect is expected, as we include many metabolites with very 

different chemical properties. 

Total=50

LOD>100 (31)
LOD<100 (5)
LOD<33.33 (4)
LOD<11.11 (1)
LOD<1.23 (1)
LOD<0.41 (3)
LOD<0.14 (2)
Plasma (3)

B) ZIC-HILIC negative modeA) ZIC-HILIC positive mode

LOD>100 (32)
LOD<100 (2)
LOD<33.33 (1)
LOD<11.11 (1)
LOD<3.70 (1)
LOD<1.23 (1)
LOD<0.41 (2)
LOD<0.14 (3)
Plasma (7)

Total=50

 

Figure 30 Limit of detection of 50 metabolites that were not detectable in healthy specimens. 50 

metabolites that were not previously detectable in healthy human EDTA-plasma or wildtype fibroblasts with 

1*106 cells were spiked into healthy human EDTA-Plasma and serially diluted to reach 8 different 

concentration levels. Then samples were measured using the ZIC-HILIC-MS method in positive A) and 

negative B) ionization mode. Peaks were identified using the retention time reference library in MS-Dial, and 

mean signal abundance for each metabolite was calculated for n=18 measurements of 9 different sample 

concentrations in duplicates. The limit of detection was defined as thrice the signal abundance as the PBS-

blank. 
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Adding metabolites to EDTA-plasma also allows us to determine the linearity of those 

metabolites in closer detail (Figure 31). In positive as in negative ionization mode, some of 

the 50 compounds show excellent linearities, such as nicotinic acid (R2=0.988), thiamine 

(R2=0.967), and biotin (R2=0.987). Others such as creatine (R2=0.412) did not correlate 

well. This is not unexpected, as this method was concepted mainly as a screening method. 
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Figure 31 4 exemplary metabolites that were previously not detected in biospecimen showed high 

linearity in spiked samples: ZIC-HILIC-MS. 50 metabolites that were not detectable in healthy human 

EDTA-plasma or wildtype fibroblasts with our method were spiked into healthy human EDTA-plasma and 

serially diluted to reach 8 different concentration levels. Then samples were measured using the ZIC-HILIC-

MS method in positive and negative ionization mode. Peaks were identified using the retention time reference 

library in MS-Dial, and raw signal abundance plotted for n=18 measurements of 9 different sample 

concentrations in duplicates. 2 exemplary metabolites with high and low linearity are presented. 

The linearity was consistently in the expected range and, together with the detected 

metabolite in standard addition, shows its sensitivity. 

3.4.5.6 Linearity of the metabolomics method 

Similar to the sensitivity, the linearity of the method cannot be determined classically due to 

the complexity of the metabolome and its endogenous nature. Thus, we can only assess 

the correlation of metabolite intensities to different EDTA-plasma dilutions.  

Using plasma concentrations of 7 different dilutions, we find that over 50% of the analytes 

identified by ZIC-HILIC-MS in negative mode have a Pearson correlation coefficient of over 

0.899 (Figure 32 B). 16 metabolites have a coefficient of less than 0.5. In positive ionization 

mode we find that over 50% of metabolites had a correlation greater than 0.35 with 73 

metabolites that had a correlation of less than 0.5 (Figure 32 A). The negative ionization 

mode presented with a good amount of correlating metabolites that is comparable to other 

methods. The positive ionization mode has a greater amount of analytes that did not 

correlate well with the plasma concentration. It is possible that there is a higher amount of 

noise affecting correlation in the positive ionization mode. Mainly phospholipids may 

introduce the noise due to their ionization in positive mode. Phospholipids then may 

contribute to ion suppression, especially with increasing plasma concentrations.  



3.0 Development of the metabolomics platform for rare neurometabolic disorders  

71 
 

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

0

5

10

15

Pearson correlation coefficient

N
u

m
b

e
r 

o
f 

m
e
ta

b
o

li
te

s

A) ZIC-HILIC positive mode

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

0

10

20

30

40

Pearson correlation coefficient

N
u

m
b

e
r 

o
f 

m
e
ta

b
o

li
te

s

B) ZIC-HILIC negative mode

 

Figure 32 Distribution of Pearson correlation coefficient of identified metabolites from ZIC-HILIC-MS. 

10, 50, 50,100, 150, 300, 400, and 500 µl human EDTA-plasma were prepared and measured using the ZIC-

HILIC-MS method in positive A) and negative B) ionization mode. Peaks were identified using the retention 

time reference library in MS-Dial, and Pearson correlation coefficient for each metabolite was calculated for n= 

21 measurements of 7 different concentrations in triplicates. Metabolites with a coefficient greater than 0.5 

were plotted as a histogram with a bin width of 0.05. 

Previous validation parameters such as specificity could not be analyzed for the CortecsT3 

lipidomics method due to the absence of reference standards for most metabolites. 

However, the sensitivity of the method using plasma dilution can be analyzed.  

When analyzing the CortecsT3 lipidomics method, we find that over 50% of the 540 

identified metabolites in the analysis have a Pearson correlation coefficient greater than 

0.835 (Figure 33). 193 metabolites had a coefficient of less than 0.5. 
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Figure 33 Distribution of Pearson correlation coefficient of identified metabolites from CortecsT3 

lipidomics method. 10, 50, 50,100, 150, 300, 400, and 500 µl human EDTA-plasma were prepared and 

measured using the CortecsT3 lipidomics method. Peaks were identified using the retention time reference 

library in MS-Dial, and the Pearson correlation coefficient for each metabolite was calculated for n= 21 

measurements of 7 different concentrations in triplicates. Metabolites with a coefficient greater than 0.5 were 

plotted as a histogram with a bin width of 0.05. 

Additionally, to the distribution of correlation coefficients, we were also interested in whether 

there is a relationship to other parameters such as signal intensity.  
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While the correlation of the analyzed metabolites does not seem to be in a relationship with 

the intensity of the metabolites alone, the correlation coefficients appear to be in a 

connection between the ratio between the mean abundance of the maximum plasma 

concentration to the mean abundance of the PBS-blank. This may be used to represent an 

alternative signal-to-noise ratio (Figure 34, A).  

 

 

 

 

 

 

 

Figure 34 Graph of Pearson correlation coefficient in dependence on the maximum plasma/blank-ratio: 

A alternative signal to noise ratio. 10, 50, 50,100, 150, 300, 400, and 500 µl human EDTA-plasma were 

prepared and measured using the CortecsT3 lipidomics method. Peaks were identified using the retention 

time reference library in MS-Dial and Pearson correlation coefficient for each metabolite was calculated for n= 

21 measurements of 7 different concentrations in triplicates. Then mean abundance of 500 µl plasma to mean 

abundance of PBS-blank-ratio to Pearson correlation of plasma concentration was plotted. A) Plasma/Blank-

Ratio was plotted logarithmically. B) A linear regression of ratios up to 2.5 was calculated (black line). A 

correlation coeffcient may be used as measure for the linearity of the metabolite and metabolites with a high 

linearity may behave more reliably when comparing between different samples. 

For Plasma/Blank-Ratios of up to 2.5, there is an acceptable linear fit (R2=0.559) of the 

Plasma/Blank-Ratio to plasma correlation coefficient (Figure 34, B) in the CortecsT3 

lipidomics method. The regression line meets the correlation coefficient of 0.5 at a ratio of 

approximately 2.4. Setting a threshold of 2.4 removes 91% of the metabolites with a 

correlation of less than 0.5, and 5.5% of these values have a correlation of more than 0.5.  

Similarly, for ZIC-HILIC-MS, the minimum Plasma/Blank-Ratio can be calculated. For 

negative mode, the linear fit was close to the lipidomics method (R2=0.591); the threshold 

appears to be at 1.8. Setting the threshold at 1.8, 75% of metabolites with a correlation of 

less than 0.5 were removed, and this value contained 10.4% values with a correlation of 

larger than 0.5. Due to larger scattering in the ZIC-HILIC positive mode, the threshold 

cannot be determined unequivocally. However, using the threshold from negative mode set 

at 1.8, removing 76.7% metabolites with a concentration of less than 0.5 and 3.1% have a 

correlation higher than 0.5. 

The Plasma/Blank-Ratios very well reach the recommended level of a signal/noise ratio of 

3.0. Even so, all values were slightly smaller, indication an above-average performance for 

most analytes.  
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3.4.5.7 Selectivity: Certain metabolites are influenced by hemolysis 

Human plasma samples are prepared by using centrifugation to separate the liquid plasma 

from cellular components. Of the cellular components, erythrocytes are the most abundant 

cell type. Due to various reasons, such as, e.g., prolonged or inappropriate storage, different 

disorders, or others, erythrocytes can lose their plasma integrity leading to a mixture of 

erythrocyte cell contents with blood plasma. This can lead to various shifts in the 

concentration of a significant number of metabolites and influence sample preparation 

(Denihan et al., 2015). Possible effects include the increase of typically intracellular 

metabolites and the decrease of metabolites due to problems in sample preparation.  

Thus, we investigated which of the metabolites tested by our platform are affected by using 

four different concentrations of hemolyzed blood. 

In ZIC-HILIC-MS with negative ionization mode, we found a strong increase in especially 2-

octenoic acid and reduced glutathione and decreased metabolites such as bilirubin (Table 

9). Reduced glutathione is a specific intracellular metabolite, protecting the erythrocytes 

from oxidative damage. Reduced glutathione is typically not found inside the plasma due to 

its oxidative environment. An increased concentration of reduced glutathione after 

hemolysis was also found by another group (Giustarini et al., 2004). 

2-octenoic acid is a monounsaturated medium chain fatty acid, while an intermediate of β-

oxidation, its occurrence has not been described in Erythrocytes so far. It is possible that 

this compound may be a product of reactions in the mass spectrometry source and 

originates from other compounds.  

Table 9 TOP 5 metabolites altered by hemolyzed blood: ZIC-HILIC-MS in negative mode. Healthy human 

EDTA-plasma was spiked with 2, 10, 20, and 50% of lysed whole blood from the same blood draw to 

determine metabolite alterations caused by hemolysis. The samples were measured using the ZIC-HILIC-MS 

method in negative ionization mode, and peaks were identified using the retention time reference library in 

MS-Dial and Spearman correlation coefficient for each metabolite was calculated for n=10 samples of 5 

different lysed blood concentrations, measured in duplicates. 

 

 

 

 

 

 

 

  

Increased with hemolyzed blood Decreased with hemolyzed blood 

Metabolite Correlation Metabolite Correlation 

2-Octenoic acid 0.995 O-Succinylhomoserine -0.994 

Quinaldic acid 0.986 N-Acetylserine -0.987 

2-Methylhippuric aid 0.980 Bilirubin -0.973 

Glutathione(reduced) 0.974 Tetradecanedioic acid -0.956 

Methylhistidine 0.962 Dihydroxybenzaldehyde -0.949 
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Both compounds correlate very well with the concentration of lysed blood over a great range 

of concentrations (Figure 35). These compounds may be used as estimators for estimating 

the degree of hemolysis. However, they may also be influenced by the diseased state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 35 Exemplary metabolites that changed with the concentration of lysed human whole blood: 

ZIC-HILIC negative mode. Healthy human EDTA-plasma was spiked with 2, 10, 20, and 50% of lysed whole 

blood from the same blood draw to determine metabolite alterations caused by hemolysis. Samples were 

measured using the ZIC-HILIC-MS method in negative ionization mode, and peaks were identified using the 

retention time reference library in MS-Dial. n=10 examples of 5 different lysed blood concentrations, measured 

in duplicates. 

Among the decreased metabolites in negative mode especially was bilirubin, a degradation 

product of hemoglobin. While the positive correlating metabolites increase linearly, most 

negative correlation metabolites rather decreased exponentially. Some intracellular 

erythrocyte components, such as e.g., hemoglobin, may decrease the retention of bilirubin 

on the solid phase extraction column, leading to a decrease. Using bilirubin, even small 

degrees of hemolysis may be detected. Interference of hemolysis in bilirubin analysis is 

known widely in clinical chemistry (Brady and O’Leary, 1998; Brunori et al., 2011). However, 

here it primarily originates from interference in indicator reaction and detection. To our 

knowledge, an influence in the extraction of bilirubin was not documented. 

In ZIC-HILIC positive ionization, especially metabolites such as imidazole acetic acid and 

2-hexenal, were increased in the lysed blood (Table 10, Figure 36). The imidazole-ring is 

a very prominent feature in the structure of heme, thus probably originating as a degradation 

product. However, to our knowledge there were no previous information published in this 

context. Imidazole acetic acid has also been described as degradation product of histamine 

(Tabor, 1954).  
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Similar to octanoic acid, 2-hexenal has not been described so far in lysed blood but also 

may be originating from degradation products. 2-hexenal is known as marker for oxidative 

stress (Frankel et al., 1989). It possibly is created by lipid peroxidation due to increased 

oxidative stress by hemolysis. 

Table 10 TOP 5 metabolites alterated by hemolyzed blood: ZIC-HILIC-MS in positive mode. Healthy 

human EDTA-plasma was spiked with 2, 10, 20, and 50% of lysed whole blood from the same blood draw to 

determine metabolite alterations caused by hemolysis. The samples were measured using the ZIC-HILIC-MS 

method in positive ionization mode and peaks were identified using the retention time reference library in MS-

Dial and spearman correlation coefficient for each metabolite was calculated for n=10 samples of 5 different 

lysed blood concentrations, measured in duplicates. 

 

 

 

 

 

 

The degree of hemolysis especially affected small positive molecules such as arginine and 

citrulline. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 36 Exemplary metabolites that changed with the concentration of lysed human whole blood: 

ZIC-HILIC positive mode. Healthy human EDTA-plasma was spiked with 2, 10, 20, and 50% of lysed whole 

blood from the same blood draw to determine metabolite alterations caused by hemolysis. The samples were 

measured using the ZIC-HILIC-MS method in positive ionization mode, and peaks were identified using the 

retention time reference library in MS-Dial. n=10 samples of 5 different lysed blood concentrations, measured 

in duplicates. 

Especially when studying urea cycle disorders, the degree of hemolysis should be 

controlled.   

Increased with hemolyzed blood Decreased with hemolyzed blood 

Metabolite Correlation Metabolite Correlation 

Imidazole acetic acid 0.986 Bilirubin -0.925 

2-Hexenal 0.975 Arginine -0.889 

Gluconolactone 0.933 Glutamic acid -0.873 

Anserine 0.927 Citrulline -0.872 

Nicotinamide 0.922 Glycero-3-Phosphocholine -0.853 
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Interestingly we only found few and contradictory information on alterations of these 

metabolite in the context of hemolysis. Instead of a decrease, others have found a slight 

increase of arginine and citrulline during hemolysis (Kamlage et al., 2014).Thus, we 

concluded that the variation in our hands might originate from interfering with sample 

preparation. 

In CortecsT3 lipidomics analysis, especially ether-phosphatidylethanolamines (Ether-PE) 

and cardiolipins were increased in lysed blood (Table 11, Figure 37). Ether-PEs are well 

known as essential constituents of cell membranes. Cardiolipins as well are important lipids 

in membranes. An increase is, therefore, only logical. Ether-linked triacylglycerides and 

monacylglycerides show a negative correlation with lysed blood. However, the effect is less 

intense.  

Table 11 TOP 5 metabolites altered by hemolyzed blood: CortecsT3 Lipidomics method. Healthy human 

EDTA-plasma was spiked with 2, 10, 20, and 50% of lysed whole blood from the same blood draw to 

determine metabolite alterations caused by hemolysis. The samples were measured using the CortecsT3 

lipidomics method, and peaks were identified using MS-Dial. The total sum of a lipid class was calculated, and 

the Spearman correlation coefficient for each lipid class was calculated for n=10 samples of 5 different lysed 

blood concentrations, measured in duplicates. LPC: lysophosphatidylcholine; PC: phosphatidylcholine; CAR: 

acyl-carnitine; CE: cholesteryl-ester; LPE: lysophosphatidylethanolamine; SM: sphingomyelin; TG 

triacylglycerol; MG: monoacylglycerol; PE: phosphatidylethanolamine; PG: phosphatidylglycerol. 

 

 

 

 

 

 

Also, regarding ether-phosphatidylethanolamines and cardiolipins, we did not find further 

evidence in the literature regarding their influence by hemolysis. 
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Figure 37 Exemplary metabolites that changed with the concentration of lysed human whole blood: 

CortecsT3 lipidomics method. Healthy human EDTA-plasma was spiked with 2, 10, 20, and 50% of lysed 

whole blood from the same blood draw to determine metabolite alterations caused by hemolysis. The samples 

were measured using the CortecsT3 lipidomics method, and peaks were identified using MS-Dial. The total 

sum of lipid classes were then calculated for n=10 samples of 5 different lysed blood concentrations, 

measured in duplicates. 

Increased with hemolyzed blood Decreased with hemolyzed blood 

Metabolite Correlation Metabolite Correlation 

EtherPE 0.979 EtherTG -0.854 

CL 0.970 MG -0.833 

SHexCer 0.968 SM -0.787 

TG_EST 0.952 EtherPC -0.772 

OxTG 0.934 Cer_NDS -0.662 
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In a study by Denihan et al. they found ether-phosphatidylcholines, 

lysophosphatidylcholines and sphingomyelins decreased (Denihan et al., 2015). That 

indeed matches also our observations with reduced sphingomyelin and ether-

phosphatidylcholine levels. 

To summarize, we found increases in different metabolites ranging from typical intracellular 

metabolites over metabolites that may originate from their degradation and cell membrane 

lipids that may show hemolysis in plasma membranes. Also, we learned that especially 

parameters such as bilirubin and small positive amines such as arginine are severely 

affected by hemolysis. While there were no published details about most alterations for 

hydrophilic metabolites, we saw similar decreases of sphingomyelin and ether-

phosphatidylcholines than another group. 

3.4.5.8 Storage stability of different metabolites. 

Metabolomic analyses require partly long sample handling times before analysis. The time 

from blood draw from the patient to analysis and variable conditions (such as temperature) 

during sample analysis strongly influence the sample stability (Breier et al., 2014; Haid et 

al., 2018; Stevens et al., 2019). While there is sufficient knowledge of the stability of some 

metabolites, the influences on stability may be strongly dependent on the analytical pipeline. 

Hence, we also aimed to assess which analytes are most affected by sample preparation 

and storage and which conditions have the greatest impact. For this, we treated a human 

healthy control sample with 8 different conditions. Apart from a control sample prepared 

freshly using the classical separation method, we also incubated EDTA whole blood for 

different times and different temperatures before plasma preparation. Also, plasma and the 

prepared metabolite extract were studied. Additionally, we tested for the effects of multiple 

freeze-thaw cycles on plasma. To get an overview of which conditions have the strongest 

influences on metabolites, we decided to compare the significantly (p<0.05) changed 

metabolites compared to the control (Figure 38).  

In ZIC-HILIC-MS positive mode, we found that storage of prepared EDTA-plasma at 

different temperatures and freeze cycles did not have a substantial effect on the 

metabolome. However, storing either EDTA-blood or prepared extract above 4°C leads to 

a high number of altered metabolites. In negative mode, we found strong alterations in all 

conditions; however, the freeze-thawed sample and the samples stored as EDTA-plasma 

had the least number of altered metabolites. In the publication by Haid et al. EDTA-plasma 

had a higher stability (compared to serum), with more metabolites changed at room 

temperature and a low number of alterations found for up to 3 hours (Haid et al., 2018)   
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Among the strongly altered compounds in the negative mode were especially lactate, 

hypoxanthine, and glutamic acid (Figure 39). Lactate is specifically increased in the sample 

stored as EDTA blood, but very slightly increased also in plasma stored overnight at room 

temperature. The alteration of lactate in the blood may be caused by the continuous 

consumption of glucose and aerobic glycolysis to lactate. Temperature-dependent 

increases in full-blood are widely described (Seymour et al., 2011).  
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Figure 38 Significant alterations in metabolome in different extraction states under various external 

conditions: ZIC-HILIC-MS. Healthy human EDTA-plasma was stored under different extraction conditions (as 

LC-MS sample extract, EDTA-plasma, or EDTA-full-blood) and different storage times and temperatures 

(overnight, room temperature/RT or 4°C). Then samples were measured using the ZIC-HILIC-MS method in 

positive A) or negative B) ionization mode. Peaks were identified using the retention time reference library in 

MS-Dial and normalized using LOESS-Algorithm. Samples were measured in technical duplicates. Student’s 

T-test p-values were calculated on the changes to normally treated plasma, and values with a p<0.05 were 

counted. 

Hypoxanthine is a degradation product of purine bases, including adenine, and is a known 

factor increased in hypoxia and known to leak from erythrocytes (Boulieu et al., 1983; 

Saugstad, 1975). Thus, strongly increased Hypoxanthine may be related to the hypoxic 

condition after the blood draw. 
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Figure 39 Representative metabolites changed by different extraction states under various external 

conditions: ZIC-HILIC-MS negative mode. Healthy human EDTA-plasma was stored under different 

extraction conditions (as LC-MS sample extract, EDTA-plasma, or EDTA whole blood) and different storage 

times and temperatures (overnight, room temperature/RT or 4°C). Then samples were measured using the 

ZIC-HILIC-MS method in negative ionization mode. Peaks were identified using the retention time reference 

library in MS-Dial and normalized using LOESS-Algorithm. Samples were measured in technical duplicates. 
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Glutamic acid is decreased significantly in the overnight stored samples (Figure 40). 

Glutamic acid may be deaminated either by enzymes (in plasma and EDTA whole blood) 

or nonenzymatically transformed (stored extract). Interestingly, so far, mostly degradation 

of glutamine to glutamate (with a concurrent increase of glutamate) was observed 

(Kornhuber et al., 1991; Rosenling et al., 2011) 
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Figure 40 Representative metabolites changed by different extraction states under various external 

conditions: ZIC-HILIC-MS positive mode. Healthy human EDTA-plasma was stored under different 

extraction conditions (LC-MS sample extract, EDTA-plasma, or EDTA whole blood) and different storage 

times and temperatures (overnight, room temperature/RT, or 4°C). Then samples were measured using the 

ZIC-HILIC-MS method in positive ionization mode. Peaks were identified using the retention time reference 

library in MS-Dial and normalized using LOESS-Algorithm. Samples were measured in technical duplicates. 

 

In the lipidome, we see the least changes under overnight storage as extract at room 

temperature and short time storage of one hour as EDTA-blood (Figure 41). The most 

significant changes can be seen in storing blood overnight or the extract at a high 

temperature. 
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Figure 41 Significant changes in metabolome in different extraction states under various external 

conditions: CortecsT3 lipidomics method. Healthy human EDTA-plasma was stored under other extraction 

conditions (LC-MS sample extract, EDTA-plasma or EDTA-full-blood) and different storage times and 

temperatures (overnight, room temperature/RT or 4°C). Then samples were measured using the CortecsT3 

lipidomics method. Peaks were identified using the retention time reference library in MS-Dial and normalized 

using LOESS-Algorithm. Samples were measured in technical duplicates. The total sum of lipid classes was 

then calculated. Student’s t-test p-values were calculated on the changes to normal treated plasma, and 

values with a p<0.05 were counted. 
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Especially total acyl-carnitines, as well as the total sum of ether-PE, was increased under 

different conditions (Figure 42). We found the highest increase of acyl-carnitines in blood 

stored overnight at 4°C, and it is decreased in extract stored at 37 °C. Acyl-carnitines are 

classical intracellular metabolites involved, for instance, in β-oxidation. Breier and Yang et 

al. showed similar decreases of different acyl-carnitines at 37°C (Breier et al., 2014; Yang 

et al., 2013a). However, they found most acyl-carnitines to be unchanged when stored at 

room temperature. 

We also found an increase in ether-phosphatidylethanolamine in EDTA blood. As seen 

before, Ether-PE is increased in samples with higher hemolysis. Thus, the rise of compound 

classes may be attributed to the stronger hemolysis under those conditions. 
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Figure 42 Representative metabolites changed by different extraction states under various external 

conditions: CortecsT3 lipidomics method. Healthy human EDTA-plasma was stored under different 

extraction conditions (as LC-MS sample extract, EDTA-plasma, or EDTA-full-blood) and different storage 

times and temperatures (overnight, room temperature/RT or 4°C). Then samples were measured using the 

CortecsT3 Lipidomics method. Peaks were identified using the retention time reference library in MS-Dial and 

normalized using LOESS-Algorithm. The total sums of lipid classes were then calculated. Samples were 

measured in technical duplicates. 

 

Summarizing, we showed that the sample should ideally be stored as EDTA-plasma. Other 

conditions such as time after blood draw or storage as extract should be kept as small as 

possible. For most metabolites, the time to the extraction of up to one hour did not lead to 

strong alterations. Lactate and hypoxanthine were shown as very sensitive to storage as 

whole-blood.   
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3.5 Discussion: Development of a platform to detect rare neuropediatric disorders with mass 

spectrometry-based metabolomics 

Rare neuropediatric disorders are often very complex disorders involving a multitude of 

different metabolomic pathways, even in monogenetic disorders (Willemsen et al., 2016). 

While next-generation sequencing techniques have ameliorated diagnostic complications, 

diagnosis and research on those remain challenging (Vinkšel et al., 2021). This especially 

applies to cases where disease-causing mutations are not previously documented, and the 

clinical significance of these is undetermined (variants of unknown significance, VUS). 

Thus, a technique that can assess actual metabolic changes and even judge the relevance 

of VUS may significantly improve diagnostics of rare neurometabolic disorders. 

Metabolomics, the holistic study of metabolism, may provide such diagnostic abilities 

(D’Alessandro et al., 2012; German et al., 2005; Piras et al., 2016). Together with next 

generation sequencing studies, metabolomics might deliver highly complementary results. 

Hence, we decided to establish a mass spectrometry-based metabolomics platform for the 

characterization of rare neurometabolic disorders. Metabolomics has been applied to study 

various rare disorders in predefined groups (to uncover biomarkers), but the diagnostic 

utility of metabolomics to our knowledge was only studied by few groups (Almontashiri et 

al., 2020; Bonte et al., 2019; Coene et al., 2018; Miller et al., 2015). Curiously, the analytical 

methods intensely varied, pointing out the need to develop in-house methods adapted to 

the local requirements and infrastructure. However, all those groups, Bonte et al., Coene et 

al., and Miller et al., used reversed-phase chromatography (RPLC) for their analyses. While 

certainly reducing measurement times and having high analytical stability, it has been 

reported that using hydrophilic interaction chromatography (HILIC) in combination with 

RPLC has greater orthogonality and provides a higher number of possible analytes 

(Contrepois et al., 2015; Naz et al., 2017; Tang et al., 2016; Wernisch and Pennathur, 2016). 

The previously proposed methods, for instance, do not provide insides into disorders such 

as lipid metabolism disorders (e.g., peroxisomal disorders).  

Additionally, the publications of these authors mainly did not provide data about analytical 

limitations, such as sensitivities, specificities, or metabolites that are especially sensitive to 

interferences (e.g., of storage conditions, hemolysis).  

Consequently, this project aimed to develop an untargeted metabolomics platform that 

would be primarily based on HILIC-MS but still be complemented using RPLC-MS, utilizing 

the same sample preparation platform. To ensure identification confidence, we created an 

in-house metabolite identification library. For further targeted and quantitative metabolomics 

analyses, we decided to apply the commercial AbsoluteIDQ p180-kit from Biocrates. 

3.5.1 We successfully applied the AbsoluteIDQ p180-kit to our institute 

To enable metabolomic analysis before establishing our untargeted metabolomics pipeline, 

we used the AbsoluteIDQ p80-kit by Biocrates (https://biocrates.com/absoluteidq-p180-kit/, 

Accessed on 31.05.2021). In the later stages of our metabolomics platform, we launched 

the kit as the second pillar of our platform for targeted metabolomics. Using a classical LC-

MS and a fast, flow injection analysis MS (FIA-MS) method, the kit can analyze up to 187 

metabolites in combined 17 minutes per sample. While this kit has been widely applied to 

many research areas and studied in an international ring trial (Siskos et al., 2017), every 

application to different laboratories is different.   

https://biocrates.com/absoluteidq-p180-kit/
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Additionally, not many have systematically studied the suitability over a longer time frame. 

Thus we wanted to get a small, qualitative overview of how the kit performed over the course 

of 4 years.  

In general, we have produced well-received results using this method and successfully 

applied the method. System suitability tests, as well as quality controls, have primarily 

shown a stable running method. However, to ensure these checks' success, intensive 

cleaning of the flow paths in the devices necessary. This, applied mainly to the FIA-MS part, 

where even small (not detectable by other methods) lipid contaminations can severely 

increase the background noise and reduce the sensitivity of the analysis. In a few instances, 

we also observed strong intra-run signal breakdowns. Interestingly these were not reported 

by the ring-trial study of Siskos et. Al (Siskos et al., 2017). High background may be caused 

by chemical noise in the mass spectrometer, where liquid chromatography buffer 

depositions lead to degradations of capillary material and signal breakdowns (Doff et al., 

2012; Kang et al., 2017). Organic compounds such as phospholipids also accumulate and 

caused ion suppression (Annesley, 2003). Commonly found environmental contaminations 

of lipids, e.g., from gloves, hand creams, reaction tubes, and other materials, can further 

lead to worse detection limits due to higher noise (Keller et al., 2008). Of note is also that 

ESI-capillaries are optimized for higher flow methods and have a larger diameter than 

capillaries that should be used for lower flow methods (Gama et al., 2013). Lower flow 

methods, such as the FIA-MS method, when used with a non-optimized capillary, may lead 

to lower reproducibility of signals (Schmidt et al., 2003). So also, the p180-kit ring trial study 

observed interlaboratory reproducibility issues of C12:0 and C18:0-acylcarnitines, as well 

as the inability to analyze the sum of hexoses, PC aa C30:2, PC aa C32:2, PC aa C38:1, 

and SM C22:3 with our mass spectrometer supplier (Siskos et al., 2017). However, in most 

instances, the FIA-MS part of the p180-kit well-performed suitability checks and quality 

controls to fastly produce relevant results. 

In regard to the system suitability checks and quality controls, we observed mainly well-

validated signals with stable retention times. Curiously, the chromatographic columns had 

a reduced lifetime even with careful storage, compared to usual methods. For around 860 

sample injections, three columns were used. Typically these columns last for about 500-

1000 (Dong, 2006) injections each, using some methods even more. The reduced lifetime 

can have a multitude of reasons. One possibility would be the degradation of not completely 

removed derivatization reagents, which can be highly reactive or lead to the formation of 

particulates in the samples. Due to the used sample extraction method, typical other causes 

for low lifetimes, such as protein buildup, are improbable. Similarly observed by some 

laboratories in the ring trial (Siskos et al., 2017), we have seen problems in the standards 

as well as in the samples for the measurement of spermine, spermidine, and carnosine. 

These polyamines have a high polarity due to their typically multiple charges, and that may 

remain even after derivatization. This affects separation, leading to varying retention times. 

In fact, this was also observed by researchers using other methods (Häkkinen, 2011; 

Magnes et al., 2014). We, therefore, decided to exclude these metabolites in most analyses. 

For most other analytes, the p180-kit produced very stable results. Most measurements of 

serum or plasma were able to detect around 167 of the 187 metabolites theoretically 

measurable by the kit. This is congruent with the international ring trial.   
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While, as discussed, certain analytes had to be excluded due to analytical reasons, certain 

lipids may just not be occurring in these sample types high enough for detection. Thus, in 

our institute, this kit provides the astonishing ability to quantify a very high number of 

metabolites using an inherently comparable method between different laboratories.  

One note should be made to the identification limitations of the kit. Due to the used methods, 

the kit can only provide a total sum carbon count inside the esterified fatty acids chain and 

a total sum of double bonds without specifying the exact chain length or double bonds of 

the specific fatty acid chains. Additionally, there is no information on the position of the 

double bonds. This results in the absence of knowledge which fatty acid composition this 

feature now really has, and lipids with the same combination (same mass) interfere with the 

detection (isobaric analytes). As the fatty acid composition can significantly influence lipid 

function, follow-up studies are recommended. This could be potentially alleviated by using 

mass spectrometers that generate fragments using electron-induced dissociation (EID) 

techniques as opposed to the more common collision induced fragmentation. EID is able to 

reproducibly create fragments that allow for subdifferentiation of fatty acid conformation and 

double bond position (Jones et al., 2015). Albeit this is approach is not even widely utilized 

in the untargeted lipidomics field. However, due to the fast and easy application of the FIA-

MS p180-kit method, it merits potential identification caveats. 

In summary, we were able to apply the AbsoluteIDQ p180-kit from Biocrates to our institute 

successfully. We were able to solve practical problems and were able to generate 

reproducible data. In the following chapters (chapter 4.0 p. 88 and chapter 5.0 p. 99), we 

then applied the kit to different disorders and gained relevant insights that were also 

published in peer-reviewed journals (Kettwig et al., 2021; Klemp et al., 2021). 

3.5.2 We established an untargeted metabolomics pipeline 

The AbsoluteIDQ p180-kit enabled us to quantitatively study up to 187 metabolites in a fast 

and reproducible manner. However, the coverage of the metabolome using only this method 

would be small. Thus, as a second pillar of our metabolomics platform, we developed 

untargeted methods to characterize a broader range of metabolites. This may allow us to 

detect metabolomic changes with higher sensitivities. Only a small set of platforms were 

described for the detection and research of previously not diagnosed rare disorders (Bonte 

et al., 2019; Coene et al., 2018; Miller et al., 2015). Curiously, these methods vary strongly; 

however, all used reversed-phase liquid chromatography (RPLC) and focused primarily on 

targets with medium polarity. Very polar metabolites or lipids were not targets of their 

screens. To increase the scope of analyzable metabolites, several authors have already 

proposed combining RPLC-methods with an orthogonal method, hydrophilic ion interaction 

chromatography (HILIC; Contrepois et al., 2015; Naz et al., 2017; Tang et al., 2016; 

Wernisch and Pennathur, 2016). While the use of a single RPLC-method by the groups of 

Coene, Bonte, and Miller reduces the time of analysis and RPLC methods are also known 

to be more stable than HILIC methods, we decided to use an approach similar to the one 

by Naz et al. and combined a lipid-analysis RPLC method with HILIC-MS for hydrophilic 

metabolites. As discussed previously, for high identification confidence, especially 

hydrophilic metabolites, retention time and accurate fragment data are needed. Thus, we 

also decided to acquire 502 metabolites to generate a metabolite identification library and 

retrospectively analyze metabolites, even from an untargeted dataset. 
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3.5.2.1 We development a LC-MS method for the untargeted metabolomics pipeline 

We successfully developed a HILIC-MS method for the detection of up to 408 compounds. 

An overview of the most important metabolite identification parameters can be found in the 

annex (Table 19, Table 20). 

To gain more information on the validity of our metabolite identification, we studied the 

retention time and mass error inside specific runs, as well as our metabolite reference 

library. Opposed to most other groups, we did not only explore a distinct set of internal 

standards but all detectable metabolites from our library. We found values well within the 

ranges of other methods, typical for this type of mass spectrometer regarding the mass 

error (Bristow and Webb, 2003; Köfeler and Gross, 2005). The retention time errors inside 

a run were low; however, the retention time errors to our metabolite library were partly very 

high. Most metabolites had a retention time error of less than 0.2 minutes. However, some 

others had an error of up to 0.65 minutes. Compared to the method by Bonte et al., as well 

as to the selected standards by Coene et al. and classical validation guidelines this is quite 

high (Bonte et al., 2019; Coene et al., 2018). The comparatively lower retention time stability 

of HILIC methods is widely described (Spagou et al., 2010; Tang et al., 2016; Wernisch and 

Pennathur, 2016). Instabilities are typically caused by insufficient (re-)equilibration times 

and complex interactions with sample matrix compounds, including salt and phospholipids 

(Alpert, 1990; Erngren et al., 2021; Naidong, 2003). However, as we mainly plan to use this 

method as a first-tier screening method and results are confirmed in secondary steps, a 

broader metabolite coverage is of greater importance than absolute identification 

confidence. Furthermore, in the lipidomics method we showed that lipid identification does 

not rely as strongly on retention time libraries due to the structured nature of lipids. 

3.5.2.2 RPLC-SPE was introduced as superior method for sample preparation 

Based on this, we continued developing a sample preparation method that allows us to 

extract samples for both, the RPLC and HILIC measurement from just one respective 

sample (Figure 43). Here we decide to use an RPLC solid-phase extraction (SPE) protocol. 

Interestingly, the use of an RPLC-SPE to split hydrophilic and lipophilic metabolites into two 

samples as described by us is uncommon to the metabolomics setting. Typically SPE 

methods in general are only used for the removal of unwanted compounds such as 

phospholipids (Bylda et al., 2014; Tsakelidou et al., 2017; Van Damme et al., 2014). In 

metabolomics, most platforms incorporate either simple protein precipitation or Liquid-liquid 

extraction techniques to yield hydrophilic and lipophilic extracts (Bonte et al., 2019; Coene 

et al., 2018; Dettmer et al., 2007).  
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In our method, the aqueous extract has a high ion strength as ions are not removed by the 

SPE column and increased by sample evaporation. High ion strengths in LC-MS can be 

problematic as they lead to interferences/ion suppression as well as lead to degradation of 

columns as mass spectrometers (Doff et al., 2012; Erngren et al., 2021). 

 

Figure 43 Our untargeted metabolomics pipeline uses RPLC-SPE and two LC-MS-methods for the 
analysis of lipids and hydrophilic metabolites. The untargted metabolomics pipeline consists out of mulitple 
steps. First the protein of biological samples is removed and then hydrophilic and lipophilic metabolites are 
extracted from the same sample using a reversed phase solid phase extraction (RPLC-SPE). The hydrophilic 
metabolites are measured using the ZIC-HILIC-MS method, the lipophilic metabolites are measured using the 
CortecsT3 RPLC-MS lipidomics method. The data are evalauted using MS-Dial and ZIC-HILIC measurements 
evaluated using the in-house identification database. Further statistical analysis with MetaboAnalyst and other 
tools allows interpretation and characterization of disorders.  

Reduction of inorganic ions cannot simply be achieved, as standard techniques such as 

ion-exchange column also remove charged metabolites of interest. Most harmful ions leave 

the column either before or after most of the analytes. To protect at least the mass 

spectrometer, we therefore direct these into the waste using a fluidic valve. For the analysis 

of the compounds of interest, the valve then switches the LC flow back into the MS. 

3.5.2.3 We were able to include 408 metabolites into the library and detect 192 in biological 

samples  

Using our complete method platform for hydrophilic metabolites, we detected up to 192 

metabolites from our retention time library in the healthy state. With these metabolites, we 

were able to cover an extensive range of the metabolome. Including metabolites that we 

could identify by using publicly available mass/fragment libraries, we could detect up to 408 

compounds (with less confidence).   
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We observed limitations of our method, especially for metabolites in the central carbon 

metabolism (primarily sugars and certain tricarboxylic acids), typically not distinguishable or 

showing very broad signals. Due to the polyol nature and their high similarity, the separation 

of sugars is not easy to achieve.  

Therefore, sugar analysis is mainly done with GC-MS (Xia et al., 2018) or high specialized 

LC-MS methods, including derivatizations (Licea-Perez et al., 2016). Even though sugar 

analysis is not a strength of this method, we still might recognize changes in this metabolite 

class and reanalyze the sample with a targeted metabolomics method. 

In comparison to platforms with similar aims, our method performed well. Bonte et al. 

detected 178 annotated metabolites (Bonte et al., 2019), the method of Coene et al. 

identified around 222 metabolites in patient plasma (Coene et al., 2018), each with verified 

retention times. Additionally, our pipeline also analyzes the lipid profile, significantly 

increasing the detectable metabolites, even without retention time information. 

We determined that most metabolites were detectable even in plasma samples as low as 

100 µl. The information on which metabolites are typically visible in specific plasma volumes 

is highly beneficial for analyzing volume-restricted samples. In neuropediatric care, a great 

proportion of patients is very young, and blood cannot be extracted easily. Thus, it is 

important to know which metabolite will not be visible when reducing sample volume. With 

this data set, we also showed a good correlation between the applied sample amount and 

LC-MS signal for a great number of metabolites. A good correlation is indicative that also 

samples that have different concentrations (e.g.,” healthy”-“diseased”) can be distinguished. 

Very high intensity and very low-intensity metabolites showed less good correlation, and 

certain metabolites had high intensities in blanks. A lower change of signal intensity of high-

intensity metabolites is a usual phenomenon and can be caused either by saturation of the 

extraction process, ionization source, or detector saturation (Lu et al., 2017). In our analysis, 

we showed some typically low intensity and/or high blank intensity metabolites. Increased 

background noise and smaller intensities (low signal/to noise) ultimately lead to larger 

intensity variations. As a result, this then leads to worse correlation and ultimately to lower 

distinguishing power in the samples. Hence, we determined the sample intensity/blank 

intensity as a proxy parameter for the signal/noise ratio and showed a relationship to the 

correlation coefficient. We then estimated optimal parameters for the cut-off to ensure 

reproducibility for our analyses.  

3.5.2.3 Discussion: Interferences and metabolite stability 

In the following steps, we determined the sensitivity of our pipeline against interferences 

and metabolite stability. Unfortunately, to our knowledge, there are no comprehensive 

untargeted metabolomics studies available. We found only one article that directly analyzed 

hemolysed blood using a targeted metabolomics method (Denihan et al., 2015). In our 

study, hemolysis mainly impacted levels of glutathione, bilirubin, arginine, citrulline, ether-

phosphatidylethanolamines, as well as sphingomyelins and ether-phosphatidylcholines. 

The increase in glutathione (Giustarini et al., 2004), as well as the decrease of 

sphingomyelins and ether-phosphatidylcholines (Denihan et al., 2015), were previously 

mentioned. For the other metabolites, we could not find relevant documentation. Other 

substances such as hemoglobin and salts that are typically altered in routine clinical 

chemistry are not amendable to our analysis and were not studied (Koseoglu et al., 2011).  
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We also broadly studied which storage conditions affect metabolite stability and which 

metabolites are altered. We found that most metabolites tolerated storage of up to one hour 

as EDTA whole blood and storage of EDTA-plasma overnight at 4°C. This matched 

observations commonly found in literature (González-Domínguez et al., 2020; Kamlage et 

al., 2014).  

In our analysis, we especially found that lactate and hypoxanthine and etherphosphatidyl-

ethanolamines increased in response to more extended storage as whole-blood. The 

increase of lactate is well described and the result of anaerobic glycolysis in erythrocytes 

(Jobard et al., 2016; Malm et al., 2016; Seymour et al., 2011). Hypoxanthine also has been 

found after whole blood storage and is probably caused by hypoxic conditions in the blood 

or leaking from erythrocytes (Boulieu et al., 1983; Saugstad, 1975). The increase of ether-

phosphatidylethanolamines has not been described, but we observed in the previous 

chapter as an increased metabolite in hemolysis.  

3.6 Summary: Development of a LC-MS-based metabolomics platform for characterization 

of neuropediatric disorders. 

To summarize, we successfully developed an LC-MS-based metabolomics platform for the 

characterization of rare disorders. The platform consists of untargeted methods as well as 

targeted methods, including the ring-trial validated AbsoluteIDQ p180-kit. We developed an 

untargeted metabolomics platform consisting of an RPLC and a HILIC method utilizing a 

quadrupole time of flight mass spectrometer. For the reliable identification of hydrophilic 

compounds, we then successfully established an identification library of 408 compounds 

that contains retention time and fragment data. This library can be increased with every 

project, and metabolites can even be identified retrospectively. Then we developed a 

sample preparation method to study 193 of those metabolites in the HILIC measurement 

and were also able to extract lipids for the RPLC method. We determined validation 

parameters and compared our method with the methods of other researchers. Lastly, we 

broadly analyzed which parameters are altered upon different storage conditions or affected 

by hemolysis. 

In the following chapters, we want to present some of the successful applications 

comprehensively to demonstrate the utility of our platform. 
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4.0 Applications: LC-MS based platform simplifies 

access to metabolomics for peroxisomal disorders 
Parts of this work have been published as Klemp HG, Kettwig M, Streit F, Gärtner J, Rosewich H, Krätzner R. LC-MS Based 

Platform Simplifies Access to Metabolomics for Peroxisomal Disorders. Metabolites. 2021 May 29;11(6):347. doi: 

10.3390/metabo11060347. 

4.1 Introduction to metabolomics for peroxisomal disorders 

Peroxisomes are key organelles for lipid metabolism inside cells, being central to the 

catabolism of very long chain fatty acids (VLCFA), phytanic acid, pristanic acid, and the 

synthesis of ether-phospholipids (Waterham et al., 2016). Alterations in the genes 

responsible for their biogenesis, the PEX genes, lead to devastating and complex disorders. 

These disorders, classified as Zellweger Spectrum disorders (ZSS), typically involve the 

brain, liver, and kidneys (“cerebro-hepato-renal syndrome”; Kelley, 1983; Klouwer et al., 

2015). Neurological symptoms range from attention-deficits and behavioral abnormalities 

to dementia, poor development, and convulsions. Other peroxisomal disorders, such as 

disorders in single enzymes, may influence only a subset of the peroxisomal metabolism 

and partly lead to less severe symptoms (Wanders and Waterham, 2006). Belonging to this 

subgroup are diseases such as X-Adrenoleukodystrophy (X-ALD) and D-bifunctional 

protein deficiency type III (D-BPIII). X-ALD is caused by a mutation in the ABC-transporter 

D1 gene (ABCD1, X-ALD protein, ALDP; Blaw, ME, 1970; Mosser et al., 1994), most likely 

responsible for the import of very long chain fatty acids into peroxisomes. Mutations in the 

HSD17B4 gene, a protein taking part in peroxisomal β-oxidation, result in D-BPIII 

(Ferdinandusse et al., 2006).  

As mentioned, one central function of peroxisomes is the degradation of very long chain 

fatty acids (VLCFA). Hence this is intensively used in biochemical diagnostics of most 

peroxisomal disorders (Moser and Moser, 1996). The primary VLFCA markers are 

lignoceric acid (24-carbon fatty acid) and cerotic acid (26-carbon fatty acid), often used also 

as a ratio to a non-VLFCA such as behenic acid (22-carbon fatty acid) to provide more 

nutrition independent markers. For subdifferentiation of peroxisomal disorders, ether-

phospholipids (e.g., plasmalogens) are used as diagnostic markers, as peroxisomes are 

necessary for introducing the ether-bond in those lipids (Hardeman and van den Bosch, 

1989). Here conditions such as peroxisomal biogenesis disorders (e.g., ZSS) show a 

reduction, diseases affecting VLFCA-alone such as X-ALD do not affect ether-lipids. 

Additionally, other peroxisomal metabolites such as phytanic and pristanic acid can be 

determined (Verhoeven et al., 1998; Wanders et al., 2011). All analytes are typically 

determined using gas chromatography mass spectrometry (Verhoeven et al., 1995). While 

this technique provides very stable results, it often requires perilous and laborious 

derivatization procedures leading to low analytical speed. In the last years, several ZSS 

cases with milder or atypical classical peroxisomal laboratory biomarkers were reported 

(Bacino et al., 2015; Mignarri et al., 2012; Zeharia et al., 2007). As the biochemical 

biomarkers are still crucial for the assessment before the genetic screen is started 

(Braverman et al., 2016), this suggests that there are several wrongly characterized 

patients. Thus, it remains necessary to find additional new biomarkers for improved 

diagnostics and research purposes. The peroxisomal metabolism is complex and interacts 

with multiple other organelles (Sargsyan and Thoms, 2020), such that a holistic technique 

as metabolomics may be able to find further useful biomarkers.   
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Previously there have been mainly untargeted metabolomics studies, especially in 

fibroblasts and serum (Herzog et al., 2016, 2018a, 2018b). These studies were able to find 

new biomarkers such as sphingomyelins and certain species of phosphatidylcholines. 

Untargeted metabolomics pipelines nevertheless face problems (Liebisch et al., 2017, 

2019). These pipelines often require specialized knowledge in setting up analytical 

infrastructure, are only semiquantitative, and often produce results not easily comparable 

between different institutes. The incidences of peroxisomal disorders are low (Suzuki et al., 

1996). To advance research, it is of supreme importance to easily compare the results of 

different groups to maximize knowledge in these disorders. 

To alleviate this, we decided to apply the commercial AbsoluteIDQ p180-kit from Biocrates. 

As mentioned in the previous sections, this kit is a liquid-chromatography and flow injection 

mass spectrometry-based approach to quantify up to 187 metabolites. This kit can deliver 

quantitative results and was validated in international ring trials, showing its high 

comparability between different institutes. Here we decided to use ZSS and X-ALD as two 

significant peroxisomal disorders to find whether the AbsoluteIDQ p180-kit delivers results 

comparable to untargeted metabolomics methods and may provide additional biomarkers 

for this group of peroxisomal disorders. This is the first application of this metabolomics kit 

in our institute, making it very relevant for us to assess whether the kit integrates well in our 

metabolomics platform.  
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4.2 Specialized methods and cohorts: new LC-MS based platform for peroxisomal disorders 

A total of 17 ZSS patients with a genetically confirmed and known mutation in the 

Peroxisome biogenesis factor 1 (PEX1) gene with a mean age of 2.6±4.9 years were 

analyzed. Patients had a ratio of lignoceric acid (C22:0) to behenic acid (C24:0) of 1.6±0.3 

as determined by total serum fatty acid analysis by GC-MS.  

In addition to these patients with peroxisomal biogenesis defects, a total of 38 patients with 

peroxisomal single enzyme defects were examined with this kit. This group consisted of 36 

X-ALD patients with genetically confirmed and known mutations in the ABCD1 gene and 

two patients with D-bifunctional protein deficiency type III (D-BPIII) with mutations in the 

HSD17B4 gene. 

The control cohort consisted of 28 age-matched patients, which submitted serum for a 

routine check-up of amino acids in serum but did not display any abnormalities and did not 

have any prior history of peroxisomal disorders.  

All procedures occurred following the ethical standards of the responsible committee on 

human experimentation and the Helsinki Declaration. The institutional Ethics Committee of 

University Medical Centre Göttingen approved this study (protocol code 4/11/16, date: 

06.12.2016).  
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4.3 Results: a new LC-MS based platform for peroxisomal disorders 

The AbsoluteIDQ p180-kit is a flow-injection and liquid chromatography mass spectrometry-

based platform for the quantitative analysis of up to 187 metabolites (further information can 

be found in chapter 3.1.1, p. 32). We were interested if it can be used for the analysis of 

peroxisomal disorders, can reproduce key findings of other (untargeted) metabolomics 

studies, and may even be able to find new biomarkers for the detection of these disorders. 

Additionally, our group was interested in whether the commercial kit can be integrated as 

part of our metabolomics platform. 

To assess the suitability of the commercial kit, we examined serum samples of 17 Zellweger 

spectrum patients (ZSS, PEX1-mutation), 36 X-adrenoleukodystrophy patients (X-ALD, 

ABCD1-mutation), as well as two D-bifunctional protein deficiency patients (DPBIII, 

HSD17B4-mutation).  

4.3.1 167 metabolites were found in plasma samples. 

Using the commercial kit, we found 167 metabolites with concentrations higher than the 

limit of quantification. These metabolites were used for further evaluations. 

4.3.2 ZSS patients present with decreased ether-linked phospholipids 

Among the altered metabolites in ZSS patients, especially acyl-ether-linked phospholipids 

were severely depleted, as visualized by the volcano plot (Figure 44). In previous 

untargeted metabolomics studies, acyl-ethyl-linked phospholipids such as PC ae 36:4, 40:6 

and 44:5 were similarly found to be decreased (Herzog et al., 2018b).  

 

Figure 44 Volcano-plot showing metabolic changes of Zellweger syndrome spectrum patients 

(ZSS/PEX1) in serum compared to the control group. Components with a raw p-value< 0.05 and log2 fold 

change (log2FC)>1.0 are displayed in color. lysoPC: lysophosphatidylcholine; PC aa: phosphatidylcholines 

with two acyl-linkages; PC ae: phosphatidylcholine with one acyl and one ether linkage; SM: sphingomyelin 

The determination of ether-lipids by GC-MS is a routine method for the biochemical 

diagnosis of ZSS. For this determination, two derivatization products of these lipids, 

commonly C16-diacetal and C18-diacetal are used as markers, as the lipids themselves 

are not stable in GC-MS.  

Hence, we also examined C16 and C18-diacetal in our ZSS patients. Curiously, in four 

cases C18-diacetal and in 3 instances also C16-diacetal appeared normal (Table 12).  
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While the patients presented normally using the classical GC-Marker, the new FIA-MS 

ether-lipid marker PC ae 36:4 was clearly decreased.  

Table 12 ZSS patients with irregularly high GC-MS plasmalogen markers can still be identified as 

plasmalogen deficient by the FIA-MS marker PC ae 36:4. Red blood cell membrane plasmalogen from 

PEX1 patients was analyzed using GC-MS, and serum from the same sample was analyzed using the 

Biocrates AbsoluteIDQ p180 kit. For the reference range, a 95% confidence interval from 28 controls was 

used. 

 

Typically, analysis of the ether-lipid markers C16- and C18-diacetal (with GC-MS) was only 

possible by isolation of erythrocyte membranes, as sensitivity and reproducibility from 

serum were not sufficient (Björkhem et al., 1986). However, these membranes cannot be 

stored for long periods and are also not stored in biobanks. Thus, analysis of larger cohorts 

or retrospective analysis of a patient is not easily possible. Our study and another study by 

Herzog et al. (Herzog et al., 2016) showed that analysis of ether-lipids (including 

plasmalogens) from serum is indeed possible, when directly analyzing specific ether-lipids. 

This is possible even in samples older than ten years. To our knowledge, however, our 

study is the first to characterize ether-lipids as ZSS biomarkers from serum using an FIA-

MS-based method. 

4.3.3 VLCFA-linked lipids are increased in ZSS and X-ALD, but sphingomyelin is only 

decreased in ZSS patients 

In ZSS patients most sphingomyelin species (such as SM 16:0,16:1,18:0,18:1, 24:0,24:1) 

were decreased, but SM 26:0 with an even longer acyl-chain length was increased 

compared to controls (Table 13). While SM 26:0 was also increased in X-ALD patients, the 

shorter sphingomyelins were not reduced.   

 C16:0-diacetal 

(ratio to 16:0 FA) 

C18:0-diacetal  

(ratio to 18:0 FA)  

PC ae 36:4 (µM) 

Patient  Subject Reference 

range 

Subject Reference- 

range 

Subject 95% 

confidence 

ZSS_1 5.2 6.8-11.9 11.2 10.6-24.9 0.801 7.24-11.32 

ZSS_2 9.0 6.8-11.9 20.4 10.6-24.9 0.619 7.24-11.32 

ZSS_3 6.9 6.8-11.9 15.4 10.6-24.9 3.69 7.24-11.32 

ZSS_4 7.3 6.8-11.9 18.0 10.6-24.9 1.25 7.24-11.32 
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Sphingomyelins are not currently used as biomarkers for peroxisomal disorders, but 

untargeted lipidomics studies in blood also have found the reduction of SM (SM 

16:0,16:1,18:1,22:0, 24:1; (Wangler et al., 2018) and a study in fibroblasts the accumulation 

of SM 26:0 (Herzog et al., 2016).  

Table 13 VLCFA sphingomyelin species are elevated in the serum of X-ALD and ZWS patients, non-

VLCFA sphingomyelin species are reduced in ZSS patients compared to controls. Serum from patients 

analyzed using the Biocrates AbsoluteIDQ p180 kit. Concentrations of sphingomyelin species (SM) in µM, n= 

36 (X-ALD/ABCD1), 28 (Controls), 17 (ZSS/ PEX1). 

 Mean serum concentration (µM) SEM (µM) 

  X-ALD Control ZWS X-ALD Control ZWS 

SM C16:0 113.98 131.31 62.73 4.44 14.44 5.68 

SM C16:1 15.72 15.41 6.61 0.57 1.12 0.63 

SM C18:0 14.70 29.81 7.93 0.72 4.22 1.19 

SM C18:1 8.35 13.57 4.23 0.44 1.34 0.75 

SM C20:2 0.48 0.56 0.19 0.04 0.13 0.03 

SM C24:0 33.97 28.31 13.39 1.46 2.15 1.28 

SM C24:1 59.63 68.97 30.85 2.79 6.11 3.14 

SM C26:0 0.84 0.28 0.81 0.07 0.03 0.14 

SM C26:1 1.27 0.56 1.45 0.09 0.06 0.29 
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Additionally, lysoPC 26:0 was increased in both peroxisomal disorders (Figure 45). The 

VLCFA-lysophosphatidylcholine lysoPC 26:0 is used as a marker for X-ALD in newborn 

screening and is commonly found in lipidomics studies (Herzog et al., 2018a, 2018b). 

Increases in phosphatidylcholines with VLCFA were found in other studies but were not 

measured using this kit.  
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Figure 45 Membrane lipids indicate differential phenotype between Zellweger syndrome spectrum 

patients (ZSS) and X-linked adrenoleukodystrophy (X-ALD) patients, as well as controls. Mean±SEM, 

n= 36 (X-ALD/ABCD1), 28 (Controls), 17 (ZSS/ PEX1). *: p<0.05, **: p<0.01, ***:<0.001 after 1-way ANOVA 

multiple comparisons analysis, Tukey correction. lysoPC: lysophosphatidylcholine; PC aa: 

phosphatidylcholines with two acyl-linkages; PC ae: phosphatidylcholine with one acyl and one ether linkage; 

SM: sphingomyelin 

4.3.4 D-bifunctional protein deficiency type III patients have altered peroxisomal 

biomarkers 

As we were able to characterize two different peroxisomal disorders successfully, we were 

interested in getting an insight into another peroxisomal disorder, D-bifunctional protein 

deficiency type III (D-PBIII). We analyzed two patients with this disorder, where one of the 

patients provided two samples. Here we saw increased levels of lysoPC 26:0 (patient 1 with 

1.33 µM and 5.86 µM; patient 2 with 3.97µM) compared to controls (0.54±0.15 µM), similar 

to the other peroxisomal disorders. The ether lipid PC ae 36:4 was slightly decreased in the 

patients (5.66 µM and 5.32 µM in patient 1, 2.82 µM in patient 2 and 9.28±1.04 µM in 

controls). While a decrease of ether-lipids is unusual for DPIII (Ferdinandusse et al., 2006) 

and points in the direction of ZSS, an even more substantial reduction was found in GC-MS 

plasmalogens analysis (Table 14). Even though a decrease of ether-lipids was also seen 

in PC ae 36:4 analysis, the separation to ZSS patients (0.67±0.2 µM) was considerably 

more significant than in GC-MS analysis. This may allow for superior identification of D-

BPIII, especially from ZSS patients.  
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Table 14 D-BPIII patient with irregularly low GC-MS plasmalogen markers can still be identified as dif-

ferent to ZSS patients, but also controls, by the FIA-MS marker PC ae 36:4. Red blood cell membrane 

plasmalogen from D-BPIII patient was analyzed using GC-MS, and serum from the same sample was 

analyzed using the Biocrates AbsoluteIDQ p180 kit. For reference range, a 95% confidence interval from 28 

controls was used. 

 

Similarly, to ZSS, SM C24:1 was reduced in D-BPIII patients (Patient 1: 21.2 µM and 35.5 

µM; Patient 2: 32.6 µM) and SM 26:0 increased (Patient 1: 0.525 µM and 1.13 µM; Patient 

2: 1.08 µM).  

To summarize, we found an increase in VLCFA-lipids lysoPC 26:0 and SM26:0, as well as 

a reduction in SM 24:1, similar to ZSS, being in accordance with another lipidomics study 

(Herzog et al., 2018a) in fibroblasts. Additionally, we also found a slight decrease in the 

ether-lipid PC ae 36:4, which was not as strong as the decrease in ZSS. 

4.3.5 Summary of results in peroxisomal disorders. 

Using the commercial kit, we were able to generate metabolomics data in a fast, 

reproducible manner. We were able to show separate metabolomic profiles for X-ALD and 

ZSS while gaining the first insights into biomarkers for D-BPIII. Especially the ability to 

determine the ether-phospholipid marker PC ae C36:4 from plasma instead of erythrocyte 

membranes using FIA-MS may be beneficial for further research.  

 C16:0-diacetal  

(ratio to 16:0 FA) 

C18:0-diacetal  

(ratio to 18:0 FA)  

PC ae 36:4 (µM) 

Patient  Subject Reference 

range 

Subject Reference 

range 

Subject 95% 

confidence 

DBIII_1 4.3 6.8-11.9 6.3 10.6-24.9 5.32 7.24-11.32 

DBIII_2 12.8 6.8-11.9 15.0 10.6-24.9 2.82 7.24-11.32 
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4.4 Discussion: Commercial metabolomics platform may simplify peroxisomal disorder 

research 

Recently, multiple milder or atypical cases of peroxisomal disorders with no or minor 

biochemical abnormalities using classical clinical laboratory markers were documented 

(Bacino et al., 2015; Mignarri et al., 2012; Zeharia et al., 2007). This underlines the need 

for additional biomarkers that also complement the use of modern genetics.  

In the last years, untargeted metabolomics was used more commonly to study peroxisomal 

disorders in further detail. While successfully identifying potentially interesting biomarkers, 

resources such as equipment and human resources are limited in clinical laboratories. The 

establishment of untargeted metabolomics pipelines in those is thus rather difficult. To 

overcome this, we selected a commercially available metabolomics method called the 

AbsoluteIDQ p180-kit, enabling the user to quantify up to 187 metabolites. This kit requires 

knowledge of mass spectrometry but provides all methods and reagents so that in-depth 

knowledge is not necessary to generate targeted metabolomics data. We evaluated the kit 

for its suitability to peroxisomal disorders research, using samples from patients that were 

already genetically diagnosed to be affected with the peroxisomal disorders ZSS, X-ALD, 

and D-BPIII. Here we successfully were able to separate patients with ZSS and patients 

with X-ALD from controls and between each other. Especially in the case of ZSS, it is 

unsurprising that the reduction of peroxisomes leads to severe alterations in many 

pathways. 

When inspecting the deregulated metabolites more closely, we find that especially 

(polyunsaturated) ether-phosphatidylcholines (PC ae) were decreased in the ZSS patients 

compared to controls. A lack of ether-phospholipids was also found by another study by 

Herzog et. Al (Herzog et al., 2016). Ether-lipids and especially plasmalogens have been 

long used as vital markers for the differentiation of peroxisomal disorders. These can also 

be seen in comparison to X-ALD, another peroxisomal disorder, that did not show a 

reduction in ether-phospholipids. Ether-lipid biosynthesis starts in the peroxisome by the 

action of alkyldihydroxyacetonphosphate synthase (ADHAPS), generating an 

alkyldihydroxyacetonphosphate (alkyl-DHAP) from an acyldihydroxyacetonphosphate 

(acyl-DHAP). Thus, an absence or dysfunction of peroxisomes alters ether-phospholipid 

levels (Hajra and Das, 1996; Wanders, 2004). 

Interestingly, due to their lower plasma levels, plasmalogens are generally determined with 

GC-MS only from erythrocyte membranes (Björkhem et al., 1986). However, whole blood 

cannot be stored for more than a few days and is not stored in biobanks. Erythrocyte 

membranes thus always need to be prepared freshly from non-hemolyzed blood. This 

significantly hinders the retrospective analysis of older samples, for diagnostics but also 

research purposes. As the incidences of peroxisomal disorders are low (Suzuki et al., 1996), 

samples need to be stored for long periods to gain sufficient sample sizes for research. 

Our analysis also found that in four of the 17 ZSS patients, the classical GC-MS 

plasmalogen markers C18 diacetal were within the reference range. In 3 patients even the 

other plasmalogen marker C16 diacetal was also normal. This hints at a significant number 

of misdiagnoses using these GC-MS markers alone.   
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Albeit the GC-MS marker were unchanged, we found that the ether-phospholipid marker 

PC ae 36:4 was able to differentiate patients still as affected. This marker can be analyzed 

using faster methods and without the perilous derivatization methods needed for GC-MS.  

We also found a majority of sphingomyelins decreased in ZSS (SM 16:0, SM 16:1, SM 18:0, 

SM 18:1, SM 24:0 and SM 24:1) but not in X-ALD. This effect also has been studied by 

previous untargeted lipidomics studies (Herzog et al., 2016; Wangler et al., 2018). Even 

though these sphingomyelins are decreased in patients, the very long fatty acid chain SM 

26:0 is increased in ZSS as well as X-ALD. These concur with the increase in lysoPC 26:0 

that we found. The rise of lysoPC 26:0 in peroxisomal disorders is well documented in 

literature (Hubbard et al., 2006) and is even used in the newborn screen of X-ALD (Vogel 

et al., 2015). A possible explanation for both phenomena would be the relative 

overrepresentation of VLFCA in those cells. As the peroxisomal oxidation of cerotic acid 

(FA 26:0) decreases, cerotic acid becomes severely overrepresented in the cells. Enzymes 

attaching/exchanging fatty acids to lipids, may therefore face a changed equilibrium, forcing 

more cerotic acid into these lipids. However, not much is known about the specificity of 

these enzymes. Examples for enzymes partaking in this equilibrium shift may be 

glycerolphosphate-acyltransferases (GPAT), responsible for the attachment of the acyl-

group to phospholipids in the ER (Takeuchi and Reue, 2009) or lysophospholipid 

acyltransferases (LPLAT) in Land´s Cycle (Lands, 1958). 

Additionally, using this targeted metabolomics method, we were able to gain first insights 

into another single enzyme disorder, D-bifunctional protein deficiency type III (D-BPIII). Due 

to its very low prevalence, we were only able to include two patients in the study. Using this 

targeted assay, we found similar changes in lipids relating to impaired VLCFA metabolism. 

Similar to X-ALD and ZSS, we saw increases in lysoPC 26:0 as well as SM 26:0. The 

alteration of VLCFA lipids was also reported by other groups and is consistent with the lower 

activity of a main enzyme in the peroxisomal VLFCA metabolism, such as the D-bifunctional 

protein. Counterintuitively, we also found a drop of the plasmalogen markers C16:0-diacetal 

and C18:0-diacetal using the routine GC-MS diagnostics, which would be only expected 

from diseases such as ZSS affecting the ether-lipid metabolism or the peroxisome as a 

whole, but not of D-BPIII. We also found a decrease of PC ae 36:4, an ether lipid from the 

targeted metabolomics kit. However, this alteration was minor and less potent compared to 

ZSS. Patients of D-BPIII may therefore be well separated from ZSS patients. Due to their 

low incidence, the sample size with only 2 patients is meager. We theorized that the drop 

of ether lipids in D-BPIII might originate from a general disturbance of peroxisomal 

metabolism. While not described in serum so far, this effect has been described at least in 

patient fibroblasts (Herzog et al., 2018a). 

X-ALD showed a considerably less altered lipid profile than ZSS, relating to less affected 

pathways. When we use the proposed set of markers and especially lysoPC 26:0 and SM 

26:0, we are well able to detect X-ALD patients and differentiate them from controls. SM 

24:1 and PC ae 36:4 are normal, differentiating X-ALD patients from ZSS patients. When 

analyzing lysoPC 26:0, we see a considerable overlap between controls and patients, 

typically not seen in the LC-MS-based analysis of lysoPC 26:0 in newborn screening 

(Hubbard et al., 2006). The loss of discriminative power may originate from mild drawbacks 

in the flow injection mass spectrometry (FIA-MS) method used for phospholipid analysis.   
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It has been described that the actual concentrations are slightly overestimated, especially 

in measurements at the lower concentration end (Natarajan et al., 2019). This may lead to 

impaired discrimination of controls and patients with slightly decreased (but still abnormally 

high) lysoPC 26:0 levels. Factors influencing here may be residual (lipid-) contamination in 

the mass spectrometer or isobaric compounds (compounds with the same mass/charge 

ratio) with very low intensities playing a role. As we mainly established this commercial kit 

as a quantitative screening method and we plan specific measurements of metabolites 

using e.g., LC-MS, this does not display a significant problem for our purposes. 

To summarize, using the AbsoluteIDQ p180-kit for targeted metabolomics, we were quickly 

able to reproduce findings of critical diagnostic metabolites in peroxisomal disorders and 

even found new biomarkers for these disorders. One of those was the ether-lipid PC ae 

36:4, which can be analyzed quickly from serum without long, laborious, and perilous GC-

MS derivatization. Due to its ability to be analyzed from serum, long-term stored biobanking 

samples may now be analyzed.  

Hence, this kit may be applied for extended screens for patients with unclear peroxisomal 

disorders. In case of an atypical finding, an in-depth metabolomic and genetic study may 

be well justified.  
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5.0 Applications: Targeted metabolomics in X-

ALD  
This work originates from an intra-institute collaboration with Dr. Matthias Kettwig. Parts of this work have been published as 

Kettwig M, Klemp H, Nessler S, Streit F, Krätzner R, Rosewich H, Gärtner J. Targeted metabolomics revealed changes in 

phospholipids during the development of neuroinflammation in Abcd1tm1Kds mice and X-linked adrenoleukodystrophy 

patients. J Inherit Metab Dis. 2021 Apr 14. doi: 10.1002/jimd.12389. 

5.1. Introduction to Targeted metabolomics in X-ALD 

X-linked adrenoleukodystrophy (X-ALD) is the most common peroxisomal disorder 

(Bezman and Moser, 1998). X-ALD most commonly leads to neuroinflammatory 

demyelination in the central and peripheral nervous systems (cerebral ALD, cALD; Berger 

and Gärtner, 2006). Other tissues such as the testis and adrenal gland are also affected 

and lead to an Addison-like phenotype. Molecularly, X-ALD originates from a mutation in 

the peroxisomal ATP cassette transporter 1 (ABCD1), most likely responsible for importing 

very long chain fatty acids in this organelle (Mosser et al., 1994). 

Curiously, while almost all affected children develop adrenal dysfunctions, far from all 

develop cerebral symptoms, the inflammatory lesions cause is unknown (Berger et al., 

2014). Also, the onset age of cALD varies widely. Hematopoietic stem cell therapy is the 

only treatment option after the onset of cALD, but treatment success heavily relies on early 

diagnosis as destroyed neural tissue mostly continues affecting the patient throughout life 

(Raymond et al., 2019). Due to the invasiveness, strong side effects, and low availability of 

donors, stem cell therapy is not considered without indications of cALD development.  

X-ALD is part of the biochemical newborn screen (acyl-carnitine 26:0 or lysoPC 26:0; Vogel 

et al., 2015) and is diagnosed genetically. However, the only reliable diagnostic options for 

an outbreak of the cerebral form are regular MRI scans to find leukodystrophic lesions 

(Melhem et al., 2000). Even though biochemical markers can have near-perfect sensitivity 

for detecting the genotype (especially lysoPC 26:0; Hubbard et al., 2006), there is no 

correlation between cALD and concentration in known biomarkers. MRI scans, however, 

can be traumatic, may require anesthesia, as well as lead to deposits of MRI contrast 

agents, and can thus only be done with broad timeframes between measurements (Guo et 

al., 2018). Hence new biomarkers are severely needed, and multiple studies have tried to 

find alterations using genomics and lipidomics analysis (Hama et al., 2018; Richmond et 

al., 2020). Very recently neurofilament light chain (Nfl), a marker for neuronal damage, has 

also been found elevated in cALD patients, however many questions remain (Weinhofer et 

al., 2021).Even though these studies provided more profound insights into the general 

pathophysiology, a promising predictive marker (or marker combination) was not found.  

As shown in the previous analysis of different peroxisomal disorders (chapter 4.0, p. 88), 

the AbsoluteIDQ p180-kit is a commercial kit-based approach for the study of up to 187 

metabolites in a reproducible, fast assay. As we showed previously, the kit can be used for 

the characterization of peroxisomal disorders. Thus, it may also be applied to study 

biomarkers for disease progression in X-ALD.   
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To understand X-ALD disease progression better, an ABCD1-mutant mouse line 

(Abcd1tm1Kds) was kindly provided by Dr. Kirby Smith. As Abcd1tm1Kds mice do not develop a 

neuroinflammatory phenotype, experimental autoimmune encephalitis (EAE) was induced 

in some mice to simulate lesions typical to cALD.  

Then we studied biomarkers of the unstimulated, as well as the EAE dependent phenotype 

in Abcd1tm1Kds and wild type (C57BL/6) mice serum. We also analyzed brain tissue of the 

corresponding mice. Based on these results, we tried to identify whether some of the 

alterations may be reproduced in human patients.   
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5.2 Additional methods in X-ALD 

Experiments involving mice and collecting clinical data from patients were kindly provided 

by Dr. Matthias Kettwig and are described in detail in our published article (Kettwig et al., 

2021).  

5.2.1 Generation of mice samples 

Briefly, C57BL/6 mice were obtained by Charles River laboratories, Abcd1tm1Kds mice were 

kindly provided by Dr. Kirby Smith (Lu et al., 1997). Mice were housed under SPF conditions 

in an animal facility of the Georg-August University of Göttingen, and experiments were 

performed according to the German animal protection law and permission by the necessary 

authorities. Due to the localization on the X-chromosome and predominantly male affected 

human patients, only male mice were used for analysis. 

For the generation of experimental autoimmune encephalitis, 20-30 weeks old male mice 

were immunized with a peptide of myelin oligodendrocyte glycoprotein (MOG35-55) in 

emulsion with complete Freund's adjuvant, substituted with M. tuberculosis strain H37Ra, 

mice then also received pertussis toxin (Nessler et al., 2007). 

After the onset of EAE, serum for metabolomics analysis was collected. The terminally 

anesthetized animals were perfused transcardially with PBS and brain tissue removed. 

Brains were dissected into smaller pieces, accurately weighed, and homogenized in 

ethanol/phosphate buffer (85%/15%) using 6 µl buffer for 1 mg tissue. Debris was removed 

by centrifugation and supernatant stored for metabolomics analysis. 

5.2.2 Human patient cohort 

Human serum samples were collected from genetically confirmed X-ALD patients during a 

biannual routine MRI monitoring session. Samples were collected after written, informed 

consent and according to the Helsinki declaration and the local ethics board. Cerebral 

adrenoleukodystrophy was diagnosed by assessing white matter lesions using MRI (Loes 

et al., 1994). 15 patients with an absence of neurological symptoms (Addison only), 4 

patients that developed neurological symptoms within 12 months after diagnosis (prior 

cALD), and 21 patients with cALD symptoms during the time of blood draw (cALD) were 

used. Additionally, we were able to include samples of all stages from 3 patients. Further 

clinical characteristics can be found in Table 15. 

Table 15 Clinical characteristics of X-ALD patients with confirmed ABCD1 mutation. 

 

 

Compound Addison only Prior cALD cALD 

Number of samples 15 4 21 

Age (years) 11.7 (5.1-18.3) 5.5 (4.4-7.3) 8.3 (5.1-20.6) 

Time after MRI changes (months)   4.1 (0.2-11.0) 

LOES-Score   12.4 (1-24) 
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5.3. Results of targeted metabolomics in X-ALD 

5.3.1 Abcd1tm1Kds mice show changes in lipid metabolism of very long chain fatty 

acids 

Currently, there are no described biomarkers for the detection of the onset of cerebral 

symptoms in X-ALD. Thus, this project aims to gain first insights into possible biomarkers 

of cALD onset using a mice-based emulation of the cALD phenotype and assess potential 

candidates in human patients further.  

Firstly, we assessed the basal changes between the Abcd1tm1Kds and wild-type mice without 

experimental autoimmune encephalitis to gain information on whether the metabolic profile 

of mice matches the profile of humans as described in the previous chapter (chapter 4.0, p. 

88).  

Similarly, as in humans, we especially found accumulations of very long chain fatty acid 

(VLCFA) containing membrane lipids such as lysoPC 26:0 and 26:1, as well as SM 26:0 

and PC aa C42:2 (Figure 46, Table 16). PC aa C42:2 may represent either of the VLCFA-

lipids PC aa 18:2_24:0 or PC aa 16:2_26:0 but cannot be determined further due to 

analytical specifications of the kit. 

 

Figure 46 Volcano plot reveals accumulations of VLCFA lipids in Abcd1tm1Kds mice compared to 

controls. Volcano plot showing the log2 fold changes between n=19 Abcd1tm1Kds and n=19 control mice 

serum of all 187 metabolites from the commercial kit, versus the -log10 transformed adjusted p-value from 

Student’s T-test. 
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As mentioned in previous sections, the alteration of VLFCA containing lipids is not 

unexpected due to their centrality of the ABCD1 transporter in peroxisomal VLCFA 

degradation. We also found an alteration of the biogenic amine alpha-amino adipic acid 

(alpha-AAA) in mice serum, which was not detected in our human studies.  

Table 16 Significant changes of serum metabolites in Abcd1tm1Kds mice comapred to controls. n=19 

Abcd1tm1Kds and n=19 control mice serum using metabolomics analysis of the commercial kit, versus the -

log10 transformed adjusted p-value from Student’s T-test. 

 

 

 

 

 

 

 

 

As there is insufficient information about the lipidome in brain tissue of Abcd1tm1Kds mice, we 

analyzed brain tissue as well and found increases of lysoPC 26:0. However, SM C26:0 was 

not altered as for instance in the serum of mice or humans (Table 17). Additionally, we 

found lysoPC 24:0 and PC aa C42:1 to be altered. The slightly changed lipid profile may be 

caused by basal differences of brain and blood metabolome or by the brain lipid extraction 

process.  

Table 17 Significant changes of metabolites in brain tissue of Abcd1tm1Kds mice compared to controls. 

n=14 Abcd1tm1Kds and n=14 control mice brain tissue using metabolomics analysis of the commercial kit, 

versus the -log10 transformed adjusted p-value from Student´s T-test. 

 

 

 

 

 

 

 

The results of lysoPC 26:0 are especially relevant as this lipid is extensively used in 

newborn screening for X-ALD in humans (Vogel et al., 2015). In the previous chapter, we 

have also shown that lysoPC 26:0 can be analyzed by this metabolomics kit.  

Compound Raw fold change Log2 fold change Log10 p-value 

lysoPC 26:0 2.381 1.252 9.632 

lysoPC 26:1 2.097 1.068 7.636 

PC aa C42:2 2.028 1.020 6.740 

SM C26:0 2.393 1.259 4.450 

PC aa C36:5 0.475 -1.075 2.337 

alpha-AAA 0.395 -1.339 1.895 

PC aa C34:4 0.476 -1.071 1.746 

Compound Raw fold change Log2 fold change Log10 p-value 

PC ae C36:3 0.655 -0.611 1.359 

PC ae C38:3 0.661 -0.596 1.427 

PC ae C38:2 0.662 -0.595 1.359 

lysoPC a C24:0 1.444 0.530 1.476 

lysoPC a C26:0 1.661 0.732 1.575 

PC aa C42:1 1.932 0.950 1.779 
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Even though the lysoPC 26:0 concentrations are significantly altered (Figure 47), contrary 

to previous studies in humans, we detected a slight overlap of wild type and Abcd1tm1Kds 

mice. In brain tissue, this overlap is stronger than in serum, most likely due to minor errors 

introduced during the more extensive sample preparation.  
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Figure 47 LysoPC 26:0 is increased in serum and brain tissue of Abcd1tm1Kds mice. Analysis of serum or 

brain tissue using the commercial metabolomics kit. For serum n=19 Abcd1tm1Kds and n=19 control mice and 

for brain tissue .n=14 Abcd1tm1Kds and n=14 control mice were used. P-values of Student´s T-test are 

displayed as **: p<0.01 and ***: p<0.001. 

5.3.2 Metabolomics of Abcd1tm1Kds mice reveals differences between symptomatic 

and asymptomatic EAE animals. 

Undesirably, Abcd1tm1Kds mice do not develop spontaneous cALD-like white matter lesions. 

To introduce neuroinflammation, we used the experimental autoimmune encephalitis model 

(EAE). While there is no spontaneous onset of cALD in mice, we did find an earlier onset of 

EAE symptoms in Abcd1tm1Kds mice (8 days versus 13 days after EAE) and a higher diseiase 

score (3.4 versus 2.1) compared to wild type mice. Moreover, Abcd1tm1Kds showed 

encephalopathic symptoms and higher mortality uncommon for wild-type EAE mice. The 

results may indicate a more fulminant and more substantial inflammation in Abcd1tm1Kds 

mice. Interestingly, in both groups, Abcd1tm1Kds and wild-type mice, some did not develop 

EAE symptoms.  
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Next, we studied whether the Abcd1tm1Kds mice show metabolome changes after stimulation 

by EAE and if animals that did not develop EAE symptoms are different from either group.  

Using heatmap clustering analysis, we discovered that all three groups of Abcd1tm1Kds mice 

(non-treated NT, treated without symptoms Tr-NS and treated with symptoms Tr-S) can be 

separated (Figure 48).  

 

Figure 48 Abcd1tm1Kds mice can be clustered based on different reactions to EAE. Heatmap clustering of 

the three different disease conditions in mice: not treated (NT, n=4), treated non- sick (Tr-NS, n=6), and 

treated sick (Tr-S, n=9) after determining the metabolome using the AbsoluteIDQ p180 kit. Using 

MetaboAnalyst, data were normalized with cube-root transform and auto-scaling. The 65 metabolites with the 

lowest ANOVA p-values were then clustered using Euclidian distance and ward algorithm. 

Samples from animals without treatment and treatment but without symptoms clustered 

closely together, and symptomatic animals show a distinct grouping. A wide range of 

different metabolites, including lysoPC, carnitines, and sphingomyelins were dysregulated 

between these groups.  

  



5.0 Applications: Targeted metabolomics in X-ALD  

106 
 

As some of the animals were treated but asymptomatic, we sought to look more closely at 

the difference between those and the symptomatic animals, as these might display 

metabolites valuable for monitoring disease progression. Thus, we selected a volcano plot 

to further assess markers in this 2-group comparison.  

 

Figure 49 Volcano plot reveals metabolome differences in serum of symptomatic compared to 

asymptomatic Abcd1tm1Kds EAE animals. Serum of treated non- sick (Tr-NS, n=6) and treated sick (Tr-S, 

n=9) were analyzed using the AbsoluteIDQ p180 kit. Using MetaboAnalyst, data was normalized with cube-

root transform and auto-scaling, and log2 fold change, as well as log10 p-value after Student’s T-test, was 

plotted. Arrow marks the severely deregulated lipid lysoPC 20:3.  

We found alterations of different metabolites, especially amines, carnitines, and (lyso-) 

phosphatidylcholines (Figure 49). While especially changes in amine concentration may 

reflect general health disturbances in affected mice, very curious was the decrease of the 

lysophosphatidylcholine lysoPC 20:3 (marked with an arrow in Figure 49).  

The attached fatty acid 20:3 may represent mead acid or dihomogammalinolenic acid, both 

20 carbon fatty acids, only differing positions of the three double bonds. Both fatty acids are 

essential metabolites in the eicosanoid metabolism, critical mediators of inflammation 

reactions (Sergeant et al., 2016). Given the changes in lysoPC 20:3, we were also 

interested if the lysoPC with the other important eicosanoid fatty acid, lysoPC 20:4, is also 

altered.  

Indeed, we found both lysoPC 20:3 and 20:3 to be severely decreased in symptomatic EAE 

mice (Tr-S; Figure 50).  
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Figure 50 Two polyunsaturated fatty acid-containing lysophosphatidylcholines are reduced in 

symptomatic EAE Abcd1tm1Kds mice. Abcd1tm1Kds were either not treated (NT; n=4), treated with EAE and 

displayed no symptoms (Tr-NS; n=6) or treated with EAE and displayed symptoms (Tr-S; n=9). P-values of 

Student´s T-test are displayed as **: p<0.01 and ***: p<0.001. 
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Interestingly, similar changes were also observed in wild type mice (Figure 51), which may 

point to the role of lysoPC 20:3 and 20:4 as markers for general (neuro-)inflammation, 

independent of the genotype, although the decrease in wild type mice was less severe as 

in symptomatic Abcd1tm1Kds mice. 
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Figure 51 Two polyunsaturated fatty acid-containing lysophosphatidylcholines are reduced in 

symptomatic wild-type mice. Wild type was either not treated (NT; n=4), treated with EAE and displayed no 

symptoms (Tr-NS; n=6), or treated with EAE and displayed symptoms (Tr-S; n=9). P-values of Student´s T-

test are displayed as **: p<0.01 and ***: p<0.001. 

Unfortunately, we were not able to show a correlation of lysoPC 20:3 with the EAE scores, 

but lysoPC 20:4 did correlate acceptably with the EAE scores, and even a linear regression 

was possible (R2=0.647; Figure 52). A further evaluation in a study with a larger group size 

and a continuous and more quantitative marker than the EAE score should be done. 
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Figure 52 Linear regression of lysoPC 20:4 serum concentration to phenotypical EAE scores in EAE 

Abcd1tm1Kds mice hints at a potential connection between lysoPC concentration and disease strenght. 

The serum concentration of lysoPC 20:4 was plotted against the phenotypical EAE score of symptomatic 

Abcd1tm1Kds EAE mice (n=8). The EAE score is a phenotypical multiparameter score for assesing the strenght 

of EAE symptoms. Then linear regression was calculated: black line.  

Even though the small group size prohibits further assumptions, this may further show that 

there might be a strong relationship between lysoPC 20:4 and cALD symptoms.   
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5.3.3 Alterations of lysoPC 20:3 and lysoPC 20:4 in human X-ALD patients 

Based on the data of mice, we were interested in whether lysoPC 20:3 and 20:4 might also 

provide some insights into the inflammatory reactions in human cerebral X-ALD patients. 

Thus, we applied the metabolomics kit to three patient groups. Firstly, patients who did not 

display cALD symptoms and did not develop X-ALD in less than 12 months after the blood 

draw and only had mild adrenal/Addison-like deficiencies (Addison only). Secondly, patients 

that developed a cALD approximately up to 12 months after the blood draw (prior cALD). 

Thirdly, patients that presented with an active cALD at the time of blood draw (cALD). 
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Figure 53 LysoPC 20:3 and 20:4 are decreased in human patients before and after cALD beginning. 

Human X-ALD patient serum from patients without cALD (Addison only; n= 15), patients 6-12 months before 

begin of cALD (prior cALD;n= 4), and after beginning of cALD (cALD; n=21) was analyzed using the 

commercial kit. ). P-values of Student´s T-test are displayed as *: p<0.05 and **: p<0.01.  

In the human X-ALD patients, we saw the strongest decrease of both lipids in the patients 

prior to cALD (Figure 53). We were also able to observe a decrease between cALD patients 

and Addison-only patients in lysoPC 20:3. However, in 20:4, the effect was not significant. 

Interestingly, the concentration of those lipids seems to initially decrease in the patients 

before cALD and then increase again. In 3 cases, we were able to acquire data from each 

time point and saw a similar pattern of an initial decrease and long-term increase. LysoPC 

20:3 or 20:4 do not appear to be linearly correlated to either the age of the patient (lysoPC 

20:3 R2= 0.149; lysoPC 20:4 R2=0.127) or to the age of the sample (lysoPC 20:3 R2= 0.014; 

lysoPC 20:4 R2=0.010).   
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5.4. Discussion of targeted metabolomics in X-ALD 

Unfortunately, despite multiple efforts with multi-omics techniques, no reliable prognostic 

biomarker for the onset of cerebral X-ALD (cALD) symptoms has been found (Hama et al., 

2018; Richmond et al., 2020). The early detection of the onset of cALD onset is critical for 

starting the only therapy option (hematopoietic stem cell transplantation) before permanent 

neurological damage (Raymond et al., 2019).  

Our project aimed to identify promising biomarker candidates in first-time use of the 

Biocrates AbsoluteIDQ p180-kit on a murine model of X-ALD before then transitioning to 

human patient samples.  

Firstly, we decided to characterize the murine X-ALD model (Abcd1tm1Kds mice). We tried to 

identify if the model recapitulated basal metabolomic patterns that we found in humans in 

our previous studies (chapter 4.0, p. 88). Here we chiefly found accumulations of very long 

chain fatty acids (VLCFA) containing lipids such as lysoPC 26:0. As established in previous 

sections, lysoPC 26:0 is an important marker, even used extensively in newborn screening. 

It possibly relates to the impaired VLCFA degradation by a peroxisomal import decrease to 

a defunct ABCD1 transporter (Mosser et al., 1994). The recapitulation of the metabolic 

changes speaks for at least some degree in the similarity of primary VLFCA metabolism in 

humans and the mouse model.  

Unfortunately, the murine model does not show the same kind of white matter lesions as 

human patients with cALD. This curious phenotypic difference makes the study of cALD 

notoriously tricky. We decided to use the well-established model of experimental 

autoimmune encephalitis to at least partly simulate the reaction of X-ALD mice to a 

neuroimmunological stressor. Due to its artificialness, the EAE remains one of the most 

discussed protocols (Constantinescu et al., 2011). However, keeping the pitfalls in mind 

and with careful interpretation, it still may be used to study the cALD phenotype in mice 

partly. Interestingly in our project, Abcd1tm1Kds mice were indeed more severely affected by 

EAE than wild-type mice, speaking for the validity of its use in X-ALD.  

When comparing Abcd1tm1Kds mice that were not affected and mice that were affected by 

EAE we curiously found the two 20-carbon lysophosphatidylcholines (lysoPC) with either 3 

or 4 double bonds (lysoPC 20:3 and 20:4) severely decreased. In a preliminary analysis, 

the decrease of lysoPC 20:3 could even be linearly regressed to the EAE score, pointing to 

a potential connection to the disease strength. Later we proceeded to study whether these 

parameters are also altered in human X-ALD patients. Here, both lipids were especially 

decreased between the group without cALD and up to one year before cALD. The group of 

cALD patients displayed a slight increase of the lipids compared to the prior-cALD group 

but was lower than the non cALD group. This may indicate a change of the lipids with the 

start of pathomechanisms while later stabilizing after the strong onset of the symptoms. 

Commonly patients after cALD show symptom worsening compared to their previous state, 

yet they show an increase of both lipids. Their-increase may also point out that the 2 lipids 

are not simply altered by altered nutrition or health status. 

However, some comparisons lack to be significant, and the sample size for the group before 

cALD is unfortunately very low, making definite conclusions difficult. Additionally, the 

timepoint of blood draw after symptom onset in mice and humans strongly deviated.   
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While in mice, symptom progression was observed daily, and three days after symptom 

appearance blood was directly taken, the sampling point in human strongly varied. Due to 

the long term toxicity of contrast agents and psychological stress, MRI was done biannually 

and blood was only taken in this session to relate to the MRI scans directly. To properly 

assess whether lysoPC 20:3 and 20:4 may be markers that allow for monitoring or even 

predict progressing symptoms, a shorter time interval between neurologic/neuroradiologic 

measurements is necessary.  

Not much is known about the pathophysiological relevance and metabolism of lysoPC 20:3 

and 20:4, including the decrease of these metabolites. In blood, the largest amount of 

lysoPC is formed by the action of lecithin cholesterol acyltransferase and phospholipase A2 

from phosphatidylcholine (Steinman and Zamvil, 2005). The underrepresentation of fatty 

acids 20:3 and 20:4 may originate from their increased uptake by tissues/cells. 

Phospholipids containing those fatty acids are decreased and as a consequence also 

lysoPCs are reduced as well. The use of arachidonic acid from cellular phospholipids is 

widely known, and the remodeling from PC and lysoPC have been shown as well (Okuno 

et al., 2018; Weller, 2016). While different models for fatty acid transport in tissues exist 

(such as the flip/flop models or others (Dhopeshwarkar and Mead, 1973; Hamilton and 

Brunaldi, 2007; Pifferi et al., 2021) details especially regarding transport in metabolically 

restricted regions such as the brain, remain unclear. Interestingly transporters such as 

Mfsd2a were shown to contribute majorly to the transport of polyunsaturated fatty acids 

esterified as lysoPC (Chan et al., 2018; Wong and Silver, 2020). 

No matter the exact process, the decrease of lysoPCs may relate strongly to the decline of 

their corresponding fatty acid. The reduction of the fatty acid may then be caused by either 

limited uptake/production or more substantial use of the fatty acid. 

Unfortunately, the analytical specifications using flow injection mass spectrometry do not 

allow us to gain information on the specific position of the double bonds. In turn, this does 

not allow us directly to identify the corresponding fatty acid. However, there is a wealth of 

knowledge on both fatty acids 20:3 and 20:4. No matter the exact position, both are 

polyunsaturated fatty acids and eicosanoic acids, taking part in different reactions in the 

eicosanoid metabolism (Hanna and Hafez, 2018; Sergeant et al., 2016). Eicosanoids are 

potent cytokines that are primarily pro-inflammatory but can also be anti-inflammatory. 

Belonging to this are import mediators such as prostaglandins, thromboxanes and 

hydroxyeicosatetraenoic acids (HETE).  

Potential isomers represented by 20:3 could be mead acid or dihomo-γ linolenic acid. 

Dihomo-γ linolenic acid is an elongation product of γ linolenic acid and generally leads to 

the production of anti-inflammatory mediators (Hsu et al., 2013; Johnson et al., 1997). 

Though dihomo-γ linolenic acid is usually very low in serum, its detection and relevance are 

improbable. More probable would be mead acid as an isomer of 20:3, being a fatty acid 

used to synthesize inflammatory mediators (Ichi et al., 2014). Interestingly mead acid is 

preferentially used when there is a relative insufficiency of arachidonic acid, a potential 

isomer of 20:4. There is another positional isomer of arachidonic acid. However, it is 

comparatively very low and does not partake in reactions. Arachidonic acid is the main 

crucial fatty acid in eicosanoid metabolism.   
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Curiously, the mainly described source of arachidonic acid in cells for eicosanoid production 

is phospholipase A2, and this enzyme is even involved in the regulation of eicosanoid 

production (Clark et al., 1991; Hanna and Hafez, 2018; Murphy and Folco, 2019). 

In turn, these inflammatory mediators may then mediate the activity of immunologically 

active cells and steer neuroinflammation. This described process should not be unique to 

X-ALD but may be relevant to more neuroinflammatory diseases. Interestingly the 

connection of peroxisomal dysfunction increased PLA2, an increase of arachidonic acid in 

tissue has already been shown to lead to axonal loss and even neuroinflammation 

(Kassmann and Nave, 2008; Kassmann et al., 2007). Eicosanoids such as Leukotrienes 

have already been found to be increased in cerebrospinal fluid (Mayatepek et al., 2003). 

More compelling arguments are also provided by Ruiz et al. that discovered alteration of 

glycerophospholipids and PLA2 in Abcd1 deficient mouse spinal cord that was associated 

with increases in the proinflammatory cytokines IL6 and IL8 (Ruiz et al., 2015) 

Unfortunately, eicosanoids themselves are unstable molecules mostly acting as cytokines 

in the local environment (Hanna and Hafez, 2018). Thus, asserting long-term changes in 

the blood are not measurable. One previously not studied possibility may be the monitoring 

of eicosanoid metabolites (such as glucuronidated markers) in urine, which may provide a 

long-term overview of eicosanoid metabolism.  

In summary, using a targeted metabolomics assay, we were successfully able to identify 

lysoPC 20:3 and 20:4 as neuroinflammatory serum biomarkers in an EAE X-ALD mouse 

model. We were also able to show that these biomarkers are altered in humans and may 

provide further insight into pathophysiology. 
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6.0 Applications: A human patient with an 

ELOVL1-mutation 
This work originates from an intra-institute collaboration with Dr. Keit Men Wong and is part of a larger study of ELOVL1.  

6.1 Introduction to a patient with a mutation in the ELOVL1 gene 

One of the main reasons for developing a metabolomics platform was to understand further 

and optimize the diagnosis of rare neuropediatric disorders. Apart from characterizing our 

pipeline from a pure methodological point of view, we are intensely interested in which 

diseases can be studied with our untargeted metabolomics platform. After introducing 

metabolomics analysis using the AbsoluteIDQ p180-kit, we expanded our projects to use 

the untargeted lipidomics platform. In rare neurometabolic disorders, correctly diagnosing 

single-patient case studies is an integral part of the aims. Here we would like to present one 

specific patient case.  

A pediatric patient was presented to Prof. Dr. med P. Huppke in the university medical 

center Göttingen with a neurologic and dermatologic phenotype including a primary 

developmental delay, mental retardation, extrapyramidal movement disorder, 

hypomyelination, and ichthyosis. Using whole-genome sequencing, the patient was found 

to have a mutation in introducing a premature stop-codon in exon 6 (p.Trp154*) in the very 

long fatty acid elongase gene 1 (ELOVL1), leading to losing a significant protein part. The 

only commercial antibody, which is directed against the c-terminal, does not detect the 

shortened protein in the western blot. Furthermore, the symptoms were similar to an 

ELOVL1 patient case study previously described by the group of Professor Płoski 

(Kutkowska-Kaźmierczak et al., 2018). In this study, both patients were found to have a 

heterozygous p.Ser165Phe mutation in ELOVL1. Using gas chromatography mass 

spectrometry in patient fibroblasts as well as a transfected HEK293 cell line with the 

mutation, ELOVL1 mutants were shown to have a strong reduction of the very long chain 

fatty acid (VLFCA) cerotic acid (fatty acid, FA 26:0). Reductions of other VLFCAs FA 24:0-

28:0 were found, however, to a milder extent. The serum VLFCA of the patients were 

normal, but the 24:0/22:0-ratio was decreased. In an in vitro-assay, reduced ELOVL1 

function was then shown as well (Mueller et al., 2019). 

 

Figure 54 Very long chain fatty acid elongation cycle and ELOVL specificity. Created with BioRender.com 
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The endproducts of de-novo synthesis of fatty acids using fatty acid synthase are primarily 

palmitate (16:0) and stearate (18:0) (Heil et al., 2019; Smith, 1994). However, longer fatty 

acids have to be synthesized using the fatty acid elongation cycle (Figure 54). The very 

long fatty acid elongase enzymes or 3-keto acyl-CoA synthases (ELOVL) are enzymes of 

the endoplasmatic reticulum/microsome (Jakobsson et al., 2006). Overall in every passing 

of the cycle 2 carbon-atoms are added by condensing one molecule of malonyl-CoA to an 

acyl-CoA (Leonard et al., 2004). The initial step of this reaction is catalyzed by the action of 

the ELOVL enzymes, leading to the generation of a 3-keto-acyl-CoA elongated by two 

carbon atoms and generation of CO2. In the following reactions, the keto group is then 

removed by reduction, dehydration, and reduction of the formed enoyl-CoA. The process is 

similar to the fatty acid synthase. However, each reaction is carried out by separate 

enzymes (Ikeda et al., 2008; Moon and Horton, 2003). There are seven described ELOVL 

enzymes (ELOVL 1-7). Each of them shows separate specificities, but they are partly 

overlapping (Ohno et al., 2010; Wang et al., 2005). Not all enzymes are expressed in all 

tissues, and some are restricted to a specific tissue.  

ELOVL1 is ubiquitously expressed, though, in most tissues, it is supplemented by ELOVL3 

(Westerberg et al., 2004) or ELOVL4 (Hopiavuori et al., 2019; Vasireddy et al., 2007). The 

fatty acid elongation by ELOVL1 starts at C18:0, but mostly C22:0, C24:0, C26:0 are 

catalyzed (Ohno et al., 2010). The same work by Ohno et al. also showed that lipids 

containing VLFCA, especially 24:0-ceramides, were markedly reduced. An ELOVL1-mutant 

(ELOVL1-Mt) knockout mouse model showed increased epidermal permeability and a 

reduction of VLFCA (>26:0)-ceramides (Cer) and of VLFCA sphingomyelins (>24:0) in mice 

skin (Sassa et al., 2013). In the same mouse model, a reduction of brain VLFCA 

sphingolipids was found, including sphingomyelins, ceramide, galactosyl-ceramide, 

sulfatides, and others (Isokawa et al., 2019). These mice experienced difficulties in the 

balance beam test, speaking for motor dysfunction, mild hypomyelination was seen by MRI, 

and less reaction in the acoustic startle test, pointing to hearing defects. 

The patient of Prof. Huppke indeed experienced a similar skin phenotype and motor 

alterations. Combined with the shortening of the ELOVL1 protein, there is compelling 

evidence that this may indeed be disease-causing. However, to ascertain a direct link, a 

biochemical profiling technique such as metabolomics should be used.  

In order to further validate this and to further understand the phenotype of this disorder, we 

applied our untargeted lipidomics pipeline. While there have been some patient studies on 

ELOV1 already, using this project, we also hope to demonstrate the usefulness of our 

platform further.  
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6.2 Methods and cohorts 

For analysis of the metabolome of an affected pediatric patient, we collected EDTA-plasma, 

as well as a skin biopsy for the generation of a primary fibroblast cell line. As a control group 

we collected EDTA-plasma from 3 family members without a metabolic phenotype. Written 

informed consent from patient and family members was confirmed, and all procedures were 

performed according to the Helsinki declaration and the local ethics board. Patient-derived 

samples were kindly provided by Prof. Dr. Huppke. 

6.2.1 Cell culture methods 

Dr. Keit Men Wong kindly provided cell culture experiments and samples. Briefly, primary 

fibroblast cell culture was obtained from a skin biopsy. Due to the invasiveness of the skin 

biopsy, for controls two established primary cell lines were used that did not display an 

metabolically altered phenotype. Cells were cultured at 37°C with 5% CO2 in DMEM with 1 

g/l glucose and 10% FCS. For experiments, 1x106 cells were seeded in 150 mm plates and 

grown for at least 3 days. In FCS-withdrawal experiments, after seeding cells in 150 mm 

plates, cells were cultured 5 days in DMEM without FCS. Cells were lysed as described in 

the method section (chapter 2.2.3, p. 23) and all samples extracted and measured using 

the CortecsT3 lipidomics pipeline (chapter 2.2.10, p. 27).  
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6.3. Results of a human patient with an ELOVL1 mutation 

6.3.1 Analysis of ELOVL1 patient plasma shows decreased VLFCA-SM 

First, to get an overview of the alterations in the human patient, we analyzed EDTA-plasma 

using our untargeted lipidomics method. As an unbiased overview, we selected a 

presentation similar to the one seen in chapter 3.4.5 (p. 54). Here we found that if we 

present lipid signals as a plot of mass/charge-ratio to retention time, lipids can be structured 

based on their class, acyl-chain-length, and desaturation. ELOVL1 is an enzyme 

responsible for the elongation of very long chain fatty acids. Thus, a dysfunction should lead 

to a global reduction of lipids containing very long chain fatty acids (VLCFA). As, on 

average, longer chain lipids have a higher retention time and mass, reducing this lipid class 

should lead to a decrease in this specific region.  

In patient plasma, we found a decrease of signals, especially in the range of 21-24 mins 

and a mass higher than 800 Da (Figure 55). However, also increases in a similar region 

are detectable. Given their retention time, they may also contain triglycerides that commonly 

also have a high mass and a late retention time given their three acyl groups. While certain 

effects of the ELOVL-1 mutation may be visible, they may be smaller due to compensatory 

impacts and nutrition. Unfortunately, to our knowledge previous patient studies have not 

analyzed the blood lipidome of ELOVL1-Mt patients so far, but only the fatty acid profile with 

GC-MS (Kutkowska-Kaźmierczak et al., 2018; Mueller et al., 2019). This group did not find 

any absolute alteration by GC-MS fatty acid profiling, only of the 24:0/22:0 ratio. 

 

Figure 55 An overview of the plasma lipidome of a patient with an ELOVL1-mutation shows decreased 

signals in the high retention time and mass region. EDTA plasma of controls (3 family members without a 

metabolic disorder) and a patient with an ELOVL1 mutation (3 technical replicates) were analyzed using the 

CortecsT3 lipidomics method. Data were normalized using LOESS normalization and fold changes, and p-

value by Student’s T-test were calculated and corrected using Welsch correction. Then signals (features) were 

separated into groups of increased in patients (fold change>1) and decreased (fold changes<1) and 

normalized separately. Then metabolites are displayed at their specific retention time and mass/charge-ratio. 

Signals with an increased FC are represented in red, decreased signals in blue; the size of the circle depicts 

the negative decadic logarithm of the p-value (larger circles represent smaller p-values).  
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We then identified corresponding lipids using fragmentation data and an untargeted 

lipidomics library (internal to MS Dial) to overview certain lipid classes that are more 

involved in the phenotype and if specific lipids are even more severely decreased.  

Using a volcano-plot we were able to find certain lipids that were most aberrant regarding 

their log2 fold change and their p-value (Figure 56). Among the reduced lipid classes were 

mostly sphingomyelins, ether-phosphatidylcholines, lysophosphatidylcholines, and 

diacylglycerols. Given their high importance in myelin and epithelia, a decrease in very long 

chain sphingomyelin may lead to severe complications. The reduction of VLFCA 

sphingomyelins was found by the group of Prof. Kihara in tissue of (brain/skin-) tissue, but 

was not studied in blood (Isokawa et al., 2019; Sassa et al., 2013). 

 

Figure 56 Volcano-Plot comparing ELOVL1-Mt patient to controls in plasma shows decreased 

membrane lipids. EDTA plasma of controls (3 family members without a metabolic disorder) and a patient 

with an ELOVL1 mutation (3 technical replicates) were analyzed using the CortecsT3 lipidomics method. 

Lipids were identified using mass and fragment mass and lipids without fragmentation information were 

excluded. Then fold change and p-value were calculated using Students´s T-test with Welsch correction.  
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One of the dysregulated sphingomyelins was SM C24:1 (Figure 57). The sphingomyelin 

that is associated with the 24-carbon fatty acid nervonic acid is of high interest, as nervonic 

acid is highly abundant among VLFCA-membrane lipids (Bourre et al., 1986). Therefore, 

alterations in this lipid may be a good marker for the ELOVL1 deficient phenotype.  

WT MT

0

200000

400000

600000

800000

1000000

SM C24:1

N
o

rm
a
li
s
e
d

 A
b

u
n

d
a
n

c
e
, 
[a

.u
.]

✱✱

 

Figure 57 SM C24:1 is decreased in ELOVL1-Mt patient plasma. EDTA plasma of controls (WT; 3 family 

members without a metabolic disorder) and a patient with an ELOVL1 mutation (MT; 3 technical replicates) 

were analyzed using the CortecsT3 lipidomics method. Lipids were identified using mass and fragment mass 

and lipids without fragmentation information excluded. P-values of Student’s T-test are displayed as **: 

p<0.01.  

6.3.2 Analysis of ELOV1 patient plasma using the targeted metabolomics kit confirms 

reduction of membrane lipid species 

Our untargeted lipidomics method is a semiquantitative method and is expected to have 

less linearity than targeted mass spectrometry approaches. Thus, we aimed to compare our 

lipidomic method with the international ring-trial validated Absolute IDQ p180-kit. As 

mentioned in previous chapters, this kit can analyze up to 187 metabolites in a targeted and 

quantitative fashion. In this analysis, we used the same samples as in trials before.

 

Figure 58 Volcano-Plot comparing ELOVL1-Mt patient plasma to controls using the targeted 

metabolomics kit reveals mostly reduction in tested membrane lipids. EDTA plasma of controls (3 family 

members without a metabolic disorder) and a patient with an ELOVL1 mutation (3 technical replicates) were 

analyzed using the Biocrates AbsoluteIDQ p180-kit. Then fold change and p-value were calculated using 

Student´s T-test with Welsch correction.  



6.0 Applications: A human patient with an ELOVL1-mutation  

118 
 

When using the kit, we similarly found alterations in various lipids, including 

phosphatidylcholines (PC aa), ether-phosphatidylcholines (PC ae), and chiefly a decrease 

in various sphingomyelins (SM; Figure 58). One of the strongly decreased sphingomyelins 

was SM C24:1 (Figure 59), confirming the results from the untargeted lipidomics study. In 

regard to SM C24:1 the fold changes with 0.24 (untargeted method) and 0.34 (targeted 

method) are quite similar. Only the variation (standard deviation in % mean) are higher in 

the untargeted method with 18.5 % (controls) than in the targeted method 8.4 % (controls). 
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Figure 59 SM C24:1 is altered in patient ELOVL1-deficient patient plasma. EDTA plasma of controls (3 

family members without a metabolic disorder) and a patient with an ELOVL1 mutation (3 technical replicates) 

were analysed using the Biocrates AbsoluteIDQ p180-kit. P-values of Student’s t-test are displayed as and ***: 

p<0.001  

Additionally, to the long-chain sphingomyelins, several other sphingomyelins are also 

decreased in the patient, including SM 16:0 (Figure 60). We did not find those metabolites 

dysregulated using the untargeted method, possibly due to a lower overall sensitivity and 

higher variation. This is an unfortunate but well-known side effect of untargeted screening 

approaches (Roberts et al., 2012). However, the targeted method by Isokawa et al. also did 

not find this reduction in tissue. Tissue phenotype often does not match blood phenotype 

as seen, e.g., in the Abcd1Kds mice brains in the previous chapter (chapter 5.3.1, p. 102). 
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Figure 60 Sphingomyelin SM C16:0 is found decreased in ELOVL1-Mt plasma using the p180-kit but 

not using the untargeted lipidomics method. EDTA plasma of controls (WT; 3 family members without a 

metabolic disorder) and a patient with an ELOVL1 mutation (MT; 3 technical replicates) were analyzed using 

the Biocrates AbsoluteIDQ p180-kit and the CortecsT3 Lipidomics method. P-values of Student´s T-test are 

displayed as and ***: p<0.001.   
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6.3.3 ELOVL1 patient fibroblasts lipid profile reacts to external fatty acid withdrawal 

To further analyze the patient phenotype in a controlled environment and study the effect 

of different conditions, including possible supplementations or treatments, we generated a 

primary fibroblast cell model of this patient. Like the blood plasma study, we studied the 

global lipidomic changes using the mass/charge to retention time graph (Figure 61).  

 

Figure 61 Overview of ELOVL1-Mt patient fibroblast lipidome compared to controls under standard 

culture conditions shows mildly decreased signals in the high retention time and high mass region. 

Fibroblast cell lysate of controls (2 patients without a metabolic disorder with 3 cell culture replicates each) 

and a patient with an ELOVL1 mutation (3 cell culture replicates) were analyzed using the CortecsT3 

lipidomics method. Data were normalized using LOESS normalization and fold changes, as well as p-value by 

Student’s T test, were calculated and corrected using Welsch correction. Then signals (features) were 

separated into groups of increased in patients (fold change>1) and decreased (fold changes<1) and 

normalized separately. Then metabolites are displayed at their specific retention time and mass/charge ratio. 

Signals with an increased FC are represented in red, decreased signals in blue, the size of the circle depicts 

the negative decadic logarithm of the p-value (larger circles represent smaller p-values).  

In the patient-derived fibroblast cell lysates, we were able to show a more fulminant 

decrease of signals in the high mass and high retention time region.   



6.0 Applications: A human patient with an ELOVL1-mutation  

120 
 

This can be increased even more when challenging the cell line with fetal calf serum (FCS) 

removal for three days (Figure 62).  

 

Figure 62 Overview of ELOVL1-Mt patient fibroblast lipidome compared to controls under FCS 

withdrawal reveals strongly decreased signals in the high retention time and high mass region 

Fibroblast cell lysate of controls (2 patients without a metabolic disorder with 3 cell culture replicates each) 

and a patient with an ELOVL1 mutation (3 cell culture replicates) were treated by removal of FCS for 3 days 

and analyzed using the CortecsT3 lipidomics method. Data were normalized using LOESS normalization and 

fold changes, as well as p-values by Student’s t test, were calculated and corrected using Welsch correction. 

Then signals were separated into groups of increased in patients (fold change>1) and decreased (fold 

changes<1) and normalized separately. Then metabolites are displayed at their specific retention time and 

mass/charge ratio. Signals with an increased FC are represented in red, decreased signals in blue, the size of 

the circle depicts the negative decadic logarithm of the p-value (larger circles represent smaller p-values). 

When removing the FCS for a short time period, we can see a clear decrease of signals in 

the high mass/ high retention time region compared to controls. Additionally, signals in the 

lower mass/ lower retention time region are increased. In cell culture, FCS is the source of 

(esterified) fatty acids (Bailey et al., 1972), including very long chain fatty acids. Thus, 

challenging the cells by removing their main source for fatty acids, they have to be relying 

on their own fatty acid synthesis and elongation (Yao et al., 2016b). Additionally, starving 

the cells of fatty acids also reduces the content of stored triglycerides that may have 

represented other signals in the high mass range.   
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Given the results from the analysis of patient plasma, we were particularly interested, 

whether the very long chain sphingomyelin SM 24:1 was also altered in fibroblasts (Figure 

63).  
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Figure 63 SM C24:1 deficient phenotype in ELOVL1-deficient cells can be exacerbated by FCS-

challenge. Fibroblast cell lysate of controls (2 patients without a metabolic disorder with 3 cell culture 

replicates each) and a patient with an ELOVL1 mutation (3 cell culture replicates) were analyzed using the 

CortecsT3 Lipidomics method. Data were normalized using LOESS normalization and fold changes, as well 

as p-values by Student’s T test, were calculated and corrected using Welsch correction. P-values of the 

Student´s T-test are displayed as *: p<0.05. For better display of data, normalized abundances are presented 

on a decadic logarithmic axis. 

While under standard cell culture conditions, SM 24:1 in ELOVL1-Mt fibroblasts is slightly 

decreased compared to controls, the difference lacks to be significant. This may be related 

to some remaining esterified very long chain fatty acids inside the FCS. However, when 

challenging the cells by removing FCS, a dramatic decrease is visible.  

In summary, using the CortecsT3 lipidomics method, we showed a decrease of high mass/ 

high retention time signals in ELOVL1-deficient patient plasma and a patient-generated cell 

line. Withdrawing the patient-derived cells of a source of lipids (FCS) increased the effect 

strongly. Also, a reduction in VLFCA sphingomyelins was shown in patient plasma and 

fibroblasts. Altogether, these results point to an alteration of VLFCA metabolism as 

expected by a fatty acid elongation enzyme deficiency.  

Concerning the metabolomics platform, we were able to show that the untargeted lipidomics 

platform can produce results matching with the results of other researchers. Additionally, 

the untargeted method can produce similar results as the quantitative, validated commercial 

kit approach.  
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6.4 Discussion: A mutation in the ELOVL1 gene leads to changes in the lipid profile 

of a human patient 

The main goal of establishing this method platform is the ability to diagnose and understand 

neuropediatric diseases better. While we extensively characterized the methodological 

capacities of the method before (chapter 3.4.7, p. 61), a patient case enables us to show 

whether we achieved this goal.  

In this project, we generated an untargeted metabolomic profile of a neuropediatric patient 

with a nonsense mutation in the very long fatty acid elongase 1 gene (Elovl1). Elovl1 is 

ubiquitously expressed and mainly responsible for synthesizing very long chain fatty acids 

such as 24:0, 24:1, and 26:0 (Ohno et al., 2010).  

First, we analyzed the lipidome of patient plasma. In an unbiased overview, we first plotted 

liquid chromatography mass spectrometry (LC-MS) features based on their retention time 

and mass/charge ratio, as well as fold change and significance. Here we were able to 

identify a small but distinct cluster of downregulated metabolic features in the high mass 

and high retention time range. Lipids with very-long-chain fatty acids would be expected to 

be decreased in the patient due to the missing action of ELOVL1 (Isokawa et al., 2019; 

Sassa et al., 2013).  

Those lipids (based on the experiments in previous chapters) are expected to be in the high 

mass and high retention time range. This may point to some form of alteration. However, 

apart from the down-regulated cluster, also other signals in a similar retention time range 

can be found. These may not represent VLFCA-lipids, but rather triacylglycerides, which 

due to their less polar head group and 3 acyl-groups (instead of 2 in phospholipids), have 

an increased retention time and mass (also compared to the characterization of the 

lipidomics method in chapter 3.4.5.1, p. 54). Another drawback of this analysis is the 

suitability of the control group, where we were only able to use plasma from 3 family 

members of different ages and sex. Due to the invasiveness of a blood draw, it can only 

occur in children if there is a medical necessity. Other groups have shown clear correlation 

between age (after adulthood), sex and lipidome (Slade et al., 2021). Although the 

correlation with age (at least after adulthood) is negligible and effects with appropriate size 

may still be interpretable, the accessibility of a proper control group is a common problem 

in pediatric research.  

Using an untargeted library, we then identified the lipids bases on their mass/charge ratio 

and their fragments (where possible). In the two-group comparison, we found a variety of 

different lipids altered. This included sphingomyelins (SM), (Ether)-phosphatidylcholines 

(PC), Carnitines (Car) and others. Most curiously, we also found a decrease of SM 24:1, 

most likely nervonyl-sphingomyelin, in ELOVL1-Mt patient plasma. Interestingly FA 24:1 is 

one of the most abundant VLCFAs in cells, especially in myelin (Bourre et al., 1986). Fatty 

acid 24:1, nervonic acid, is synthesized by the elongation of fatty acid 22:1 (erucic acid) with 

Elovl1, thus making SM24:1 decreases a likely result upon deactivation of Elovl1. 

SM 24:1 also has been found by another study to be one of the most severely altered 

metabolites (Isokawa et al., 2019). Apart from SM 24:1, we did not detect further altered 

VLCFA-lipids.   
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VLFCA-lipids are primarily found in nervous tissue and skin (Sassa and Kihara, 2014), 

usually leaving only marginal concentrations of VLFCA-lipids in plasma (Moser et al., 1999). 

Due to their low concentration, it is reasonable to assume that we were not able to detect 

further alterations.  

The type of mass spectrometers used by our untargeted metabolomics platform is optimized 

for screening, using a quadrupole time of flight mass spectrometer (QToF). In our specific 

setup, all ions leaving the liquid chromatography column enter the mass spectrometer 

detector at very similar times. Due to the high abundance of ions, also higher background 

noise forms, the lower signal/noise ratio then affects detection and linearity in the lower 

intensity range (Chindarkar et al., 2015). Thus, making lower intensity ions less likely to 

appear in our untargeted analysis. Targeted metabolomics typically uses a different mass 

spectrometer, which is able to select an (often predefined) ion and filters out the rest, so 

that only one ion with a distinct mass/charge-ratio enters the detector. As described before, 

for this, a triple-quadrupole mass spectrometer is typically used (see in chapter 1.3.2.3, p. 

15 or applied in the targeted metabolomics kit method e.g., chapter 3.3, p. 47). Filtering out 

single ions, the signal/noise ratio increases and thus better linearity even for lower intensity 

compounds is reached. While modern mass spectrometers are able to scan hundreds of 

mass/charge ratios every second, however they still are biased und never truly untargeted. 

SM 24:1 is a curious biomarker that we also found to be altered in the previous section in 

Zellweger syndrome patients upon dysfunction of the peroxisome using the AbsoluteIDQ 

p180-kit (chapter 4.2.3, p. 92). The origin of SM24:1 decreases in both disorders has 

different reasons. However, it demonstrates the possibility of also analyzing Elovl1 patient 

plasma with this targeted and quantitative metabolomics method. A parallel analysis of the 

same samples with the targeted metabolomics kit also may show us parallels in findings of 

the methods and might also validate our findings of SM 24:1. Using a two-group comparison 

of Elovl1 patient and controls, we found a variety of different lipids changed. Among those 

most prominently were SM but also ether-phosphatidylcholines (PC ae) and our main 

compound of interest, SM 24:1. Unfortunately, the control group in the first targeted 

metabolomics assay was measured in serum, prohibiting a direct comparison with the 

Elovl1-Mt patient plasma.  

PC ae and SM were also found to be altered in the untargeted lipidomics method, but the 

downregulation in these classes appeared to be milder. In the targeted screen, we could 

also identify most SM to decrease, especially one other most prominent lipid, SM 16:0, was 

dropped compared to controls. The same SM was not changed in the untargeted method, 

possibly due to a slightly lower linearity of the method. Overall, the results of both methods 

were not opposing, but rather adding to each other, proving the suitability of the untargeted 

method, but also showing additional explanatory power when using the targeted method. 

Unfortunately, in the previously published patient studies, the plasma lipidome was not 

studied (Kutkowska-Kaźmierczak et al., 2018; Mueller et al., 2019). The classical GC-MS 

fatty acid profile did not show any absolute alteration in these patients. As seen in chapter 

4.0 (p. 88), metabolomics can provide deeper insights into the pathophysiology and able to 

find more relevant biomarkers.  
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Analysis of patient plasma is a way to observe a patient's direct health status; however, 

patient plasma also gets influenced by a variety of other factors than just pure genotype. 

Among those are nutrition, general physical status and even the circadian rhythm, where 

most factors are hard to control and may even strongly vary in the control group, impairing 

the ability to find alterations (Johnson and Gonzalez, 2012). Also, plasma may be a pool of 

the most common lipid classes of the human body, but some lipids are strongly restricted 

to certain tissues (Harayama and Riezman, 2018; Raghu, 2020).  

In this project, we additionally decided to generate a patient-derived fibroblast cell culture 

model, where we were able to control more parameters in detail. 

First, we used the less biased retention time/mass overview graph for untargeted analyses, 

which we also used in plasma analysis in chapter 3.4.5.1 (p. 54). Under standard cell culture 

conditions, we were already able to find significant changes in the lipidome of the ELOVL1 

patient. More strongly than in the plasma, we found decreased lipidomic features in the 

higher mass/higher retention time range (upper right corner) compared to controls. This 

effect even became more apparent when removing fetal calf serum (FCS), the principal 

source of (esterified) fatty acids, including VLCFA (Bailey et al., 1972). With the decrease 

of signals in the upper right corner, we can now detect increases in the lower mass/lower 

retention time region (lower left corner). In the basal state other metabolites such as the 

previously mentioned triglycerides may overlay decreases in the upper left corner, while 

also VLCFA fatty acids from the cell culture medium may compensate for lower endogenous 

production. Thus, upon withdrawing exogenous fatty acid sources, firstly, endogenously 

stored TG are depleted, but also the cells have to be more reliant on the synthesis of 

VLCFA. This also becomes very evident when looking at SM 24:1 in fibroblasts. In the basal 

state, the Elovl1-Mt is barely different to the controls, while when removing FCS, the 

abundance of SM 24:1 strongly decreases while in the controls stays the same. In other cell 

types, the basal conditions may be more affected. In the publication of Sassa et al. different 

differentiation stages in keratinocytes showed altered fatty acid accumulation patterns. 

Fibroblasts are a very common cell culture model of pediatric research, as they can be 

patient derived using a simple skin biopsy, are low maintenance and long-lived cells 

(Fernandes et al., 2016). Being cells of the connective tissue, they only replicate the basic 

metabolism of cells, but often do not show many similarities to very specialized cells such 

as oligodendrocytes, neurons or keratinocytes. It is also known that, the metabolism of 

VLFCA-lipids is different between fibroblast and these cells, as myelin and epithelial skin 

barrier synthesis require higher amounts of VLFCA. Thus, additionally to fibroblasts, other 

groups in Elovl1 research have also used keratinocytes (Isokawa et al., 2019; Sassa et al., 

2013). In these cells, they could also find more altered lipids such as hydroxy-ceramides 

and others decreased, even under basal conditions. Given these cell types higher VLFCA 

use, a missing production of those also affects the prevalence of this lipids stronger. 

While the fibroblast cell model is not an ideal model, a cell culture model would allow for the 

test of potential treatment options. Here a treatment of the cells using VLFCA fatty acids 

might be a possibility to study basic biochemical changes of cells. However when using a 

neuronal/glial call culture model, even the study of in vitro myelination would be possible 

(Kerman et al., 2015). This would require generation of iPSC neurons and oligodendrocytes.   
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Possibly a murine model would be more appropriate. Interestingly ELOVL1 also has been 

in the interest of researchers in X-Adrenoleukodystrophy, where a reduction of its activity 

was proposed to ameliorate the effects of VLFCA accumulation (Ofman et al., 2010), 

showing a potential connection between this type of disorders. 

In summary, we successfully found lipidomic alterations in an Elovl1-Mt patient using our 

untargeted metabolomics platform. This changes chiefly included the decrease of various 

sphingolipids, were we most strongly detected a lowering of SM 24:1. We were also able to 

validate those results using the targeted AbsoluteIDQ p180-kit.  
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7.0 Applications: Use of the ZIC-HILIC method to 

study species differences in the organic cation 

transporter 1 
This work originates from a collaboration with the Institute of clinical pharmacology, UMG, with Mr. Ole Jensen. This work is 

part of larger publication dealing with the role of OCT1and has been published as: Jensen O, Matthaei J, Klemp HG, Meyer 

MJ, Brockmöller J, Tzvetkov MV. Isobutyrylcarnitine as a Biomarker of OCT1 Activity and Interspecies Differences in its 

Membrane Transport. Front Pharmacol. 2021 May 10;12:674559. doi: 10.3389/fphar.2021.674559. 

7.1 Introduction to the analysis of species differences in the organic cation transporter 1 

Small organic molecule transporters are an important cause of neuropediatric disorders 

(Hediger et al., 2013). One of those disorders is X-Adrenoleukodystrophy (X-ALD), a 

dysfunction of an ABC-transporter probably transporting very long chain fatty acids into 

peroxisomes (ABCD1; Mosser et al., 1994), which we also analyzed in a previous section 

(chapter 5.0, p. 99). Another significant rare disorder is primary systemic carnitine 

deficiency, a disorder caused by mutations in a Na+-dependent organic cation transporter 

(OCTN2, SLC22A5, Longo et al., 2006). Symptoms include myopathy, arrhythmias, 

hypoglycemia, hepatic encephalopathies, and sudden death (especially in infants). 

Compensating the low blood carnitine by replacing it with external carnitine generally 

improves symptoms (Magoulas and El-Hattab, 2012). Therefore, it seems evident that, 

transporter deficiencies play a substantial role in our neuropediatric research.  

Organic cation transporter 1 (OCT1) is a membrane transporter (Koepsell, 2013) that is 

known to be chiefly responsible for the transport of the xenobiotics Fenoterol (Tzvetkov et 

al., 2018), Metformin and Sumatriptan (Matthaei et al., 2016). The gene encoding OCT1, 

SLC22A1, is very diverse in humans, and loss of function mutations are common in the 

European population (Kerb et al., 2002; Seitz et al., 2015; Shu et al., 2003). While these 

mutations lead to severe pharmacokinetic consequences for the described xenobiotics, 

affected humans do not develop any other symptoms. An exclusive endogenous substrate 

of human OCT1 was not proven. Apart from its function in the physiological state, finding 

endogenous substrates may also be used as biomarkers for OCT1 activity. For instance 

tetradecanedioate was identified as a biomarker for OAT1, a transporter for many 

nonsteroidal anti-inflammatory drugs (Yee et al., 2016). Genome-wide association studies 

(GWAS) have found OCT1 variant activity to be associated with plasma levels of isobutyryl-

carnitine (IBC) a metabolite of valine (Luo et al., 2020; Suhre et al., 2011). A transporter 

study showed the transporter activity of the murine isoform (m)OCT1 for acyl-carnitines, 

including IBC (Kim et al., 2017). However, more recent analyses have already shown that 

human (h)OCT1 and mOCT1 have different specificities for multiple compounds (Meyer et 

al., 2020). Thus, it stands to question if the association of IBC blood concentrations and 

OCT1 transport activity is caused by direct transporter effects or by other mechanisms.  

To elucidate the mechanism further and study whether other biomarkers specific for hOCT1 

can be found, the institute of clinical pharmacology contacted us to elaborate the 

mechanism using metabolomics. We applied our untargeted metabolomics method for 

hydrophilic metabolites to study differential efflux of the murine and human OCT1 

transporter in a HEK293 cell culture assay in a small cooperation study. 
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7.2 Specialized method for analyzing the interspecies difference in OCT1 

Cell culture experiments were carried out by Ole Jensen (Institute for Clinical 

Pharmacology, UMG), and details can be found in the corresponding publication (Jensen 

et al., 2021). Briefly, murine OCT1 (mOCT1) isoform, human OCT1 (hOCT1) isoform, and 

an empty vector (pcDNA5) were used for overexpression of OCT1 in HEK293 cells. Cells 

were plated in 12-well plates, the cell culture medium was removed, and cells were 

incubated with fresh-frozen pooled human plasma for 5 minutes. Then the supernatant was 

aliquoted, and cells were washed and mechanically detached into cell lysis buffer. After cell 

lysis, the lysate was normalized to protein concentration (accord. to chapter 2.2.3 and 2.2.4, 

p. 23). Hydrophilic metabolites of supernatant and cell lysate were then extracted using the 

ZIC-SPE method. Metabolites were then analyzed using the ZIC-HILIC-MS method in 

positive ionization mode (chapter 2.2.9, p. 26). Analysis of this data set was done using 

Progenesis QI software, using automatic processing under the settings recommended by 

the manufacturer. Certain metabolites were identified using our in-house metabolite 

identification library (according to chapter 2.2.11, p. 28).   
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7.3 Results: mOCT1 but not hOCT1 shows increased accumulation of acyl-carnitines in cell 

supernatant 

The organic cation transporter 1 (OCT1) is a known transporter of many xenobiotic 

compounds such as different drugs (Koepsell, 2013). Albeit not such much is known of the 

endogenous target of OCT1, it is even less clear whether this transporter transports the 

same compounds in different species (Meyer et al., 2020). Based on experiments with the 

murine OCT1 isoform (mOCT1) and GWAS studies in humans, isobutyryl-carnitine has 

been implied as a biomarker of OCT1 function in humans (Kim et al., 2017; Luo et al., 2020; 

Suhre et al., 2011). 

This project aimed to compare the murine and human isoforms of OCT1 (mOCT1, hOCT1) 

cloned into HEK cells using untargeted metabolomics. In order to assess the transporter 

activity, we first treated the cells with human plasma to load cells with compounds typically 

found in plasma in a more unbiased manner. Then plasma, as well as a cell lysate, was 

used for metabolomics measurements. To primarily focus on metabolites deregulated 

between the plasma and cell culture lysate, we decided to use the intensity ratio of plasma 

to the cell lysate. As OCT1 is mainly expected to transport small positively charged 

compounds, we used the untargeted metabolomics ZIC-HILIC method in positive ionization 

mode.  
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Using the 65 metabolites with the highest ANOVA p-value, a stringent clustering of the 

OCT1 respective isoforms was found (Figure 64). We found alterations of multiple 

metabolic features between the human (hOCT1) and mouse (mOCT1) isoform. Especially, 

among the identified metabolites, it seemed evident that the hOCT1-overexpressing cells 

did not show a different profile compared to empty-vector controls. 

 

Figure 64 Several metabolites are deregulated between plasma and cell lysate in OCT1 isoforms. Murine 
and human isoform OCT1 were overexpressed in Hek293 cells and compared to empty vector (pcDNA5) control, 
n=4. Cell lysates were standardized using protein concentration, lysate and cell supernatant were used to extract 
hydrophilic metabolites using ZIC-HILIC-SPE. Metabolites were then analyzed using ZIC-HILIC-MS in positive 
mode. The intensity ratio between plasma and lysate was calculated and features partly identified using the in-
house library and progenesis software. Unidentified metabolites are displayed with their retention time and mass 
to charge ratio as the identifiers. 

Interestingly among the altered metabolites were also different acyl-carnitine species. Acyl-

carnitine transport in the mOCT1 isoform was mentioned by others (Kim et al., 2017).   
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Especially acetyl-carnitine, but to a milder extent also free carnitine and hydroxybutyryl-

carnitine were increased in mOCT1 compared to the empty vector and hOCT1 cells (Figure 

65). In the works by Kim et al., free carnitine was also altered, acetyl-carnitine very mildly 

modified, and hydroxybutyryl-carnitine not reported.  

However, regarding the carnitines and a wealth of other molecules, overexpression of the 

human isoform did not increase the efflux of any detected metabolites in an exclusive way. 

Other metabolites increased in hOCT1 compared to mOCT1, were also increased in the 

empty-vector control pcDNA5.  
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Figure 65 Deregulated (Acyl-)Carnitine in different OCT1 isoforms. Murine and human isoform OCT1 were 
overexpressed in Hek293 cells and compared to empty vector (pcDNA5) control, n=4. Cell lysates were 
standardized using protein concentration, lysate, and cell supernatant were used to extract hydrophilic 
metabolites using ZIC-HILIC-SPE. Metabolites were then analyzed using ZIC-HILIC-MS in positive mode. The 
intensity ratio between plasma and lysate was calculated and features identified using the in-house library. 

ANOVA p-value: ***: p<0.001 

To summarize, even though a specific metabolite transported by hOCT1 was not found, we 

were able to show that murine OCT1 expression leads to a strongly different metabolite 

pattern compared to cellular expression of the human isoform. Additionally, we showed that 

our metabolomics pipeline was able to reproduce the acyl-carnitine findings of mOCT1 by 

Kim et al. (Kim et al., 2017).   
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7.4 Discussion: Untargeted metabolomics pointed to the transport acyl-carnitines by murine 

but not the human OCT1 isoform 

The organic cation transporter 1 (OCT1) is a membrane transporter that so far is not well 

understood. While specific xenobiotic targets of OCT1 are known (Matthaei et al., 2016; 

Tzvetkov et al., 2018), exclusive endogenous metabolites were not found so far. In one 

study isobutyryl-carnitine (IBC) efflux activity of OCT1 was shown in the murine isoform 

mOCT1 (Kim et al., 2017). However, more recent results have demonstrated that mOCT 

activity deviates from the human (hOCT1) isoform (Meyer et al., 2020). Even though GWAS 

studies showed associations of hOCT1 with the IBC, a direct transporter activity with hOCT1 

remains to be proven (Luo et al., 2020; Suhre et al., 2011).  

To compare the potential efflux activity of both transporters, Ole Jensen first overexpressed 

the transporters hOCT1 and mOCT1 in a HEK293 cell culture model. Then he incubated 

the cells with pooled human patient plasma. Subsequently, we used our untargeted 

metabolomics method to determine differentially transported metabolites by analyzing the 

differential metabolome of cell supernatant and cell lysate.  

Using heatmap-clustering, we identified a striking difference in the differential metabolome 

of mOCT1 and hOCT1 cells. The mOCT1 cells showed a particular clustering; the hOCT1 

samples clustered similarly to the empty-vector control. Among the most changed 

metabolites were especially (acyl-)carnitines, as small cationic organic molecules. The 

highest supernatant/lysate-ratio was found for acetyl-carnitine, followed by hydroxybutyryl-

carnitine and carnitine. In our analysis, a high supernatant/lysate ratio may indicate a higher 

efflux in the mOCT1 overexpressing cells. Efflux activity for acyl-carnitines in mice was 

shown previously (Kim et al., 2017). 

Interestingly, in our analysis we did not find any metabolite that was uniquely increased in 

hOCT1 cells but not in the empty vector cells. To address this further, Ole Jensen then 

added deuterium-labeled acyl-carnitines and also observed transport only by mOCT1 

(Jensen et al., 2021). 

Here it is important to note that the overexpression of mOCT1 and hOCT1 compared to the 

pcDNA5 was validated previously by RT-PCR, as well as using a functional transport assay 

of 4-(4-(dimethylamino)styryl)-N-methylpyridinium (Saadatmand et al., 2012). Therefore, it 

is unlikely that the missing difference between the pcDNA5 and hOCT1 is caused by 

background activity of endogenous OCT1 in pcDNA5 HEK293 cells.  

It is possible that the origin of the differential concentrations in human blood lies not in the 

cellular influx or efflux but is possibly caused by general alterations in cellular metabolism 

or even altered intracellular transport between organelles. hOCT1 could be a regulated 

transporter as well, requiring activation by another factor that might not be expressed in 

HEK239 cells. A regulation might depend on the metabolic state, leading to a difference in 

transport to facilitate a switch between the usage of the upstream metabolite valine from 

protein biosynthesis to energy generation or refueling succinyl-CoA in the citrate cycle. 

While OCT1 shows the highest expression in the liver, this theory might suggest some 

muscle participation as an important site for valine catabolism (Holeček, 2018).   
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Further analyses are needed to delineate the proper function of this enigmatic transporter. 

In summary, in cooperation with the Institute of Clinical Pharmacology, we demonstrated 

the use of our untargeted ZIC-HILIC-MS pipeline for hydrophilic metabolites to study 

differential transport in a cell culture model. We then used the identification possibilities from 

our in-house retention time library and were able to identify 3 (acyl-)carnitines that were 

differentially transported by murine OCT1. These were then confirmed using further studies 

as well as by researchers from other groups. Thus, we showed the ability of our ZIC-HILIC-

MS method to produce relevant results in the study of membrane transporters.  

Many rare neuropediatric disorders are caused by transporter deficiencies. Consequently, 

showing the ability to study cellular transport deficiencies with our metabolomics platform is 

highly beneficial for our research. 
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8.0 General discussion, conclusion, and 

perspectives 
Rare disorders are a group of highly diverse disorders that are typically hard to diagnose 

(Ferreira, 2019). However, the diagnosis is of key importance for the development of 

potential therapies. A large proportion of rare disorders are inherited metabolism disorders 

(IMD), especially neurometabolic disorders (Filiano, 2006; Rath et al., 2010; Willemsen et 

al., 2016). While the introduction of newborn screening has increased the speed of 

diagnosis for the most common neurometabolic disorders, a large variety is still not 

diagnosed. Consequently, many patients still spend a long time reaching an accurate 

diagnosis, hindering proper treatment and decreasing the chance to stop symptom 

progression.  

8.1 Metabolomics can help characterize rare disorders together with genomics methods 

Next-generation sequencing has led to a great leap forward for the detection of rare 

diseases (Turro et al., 2020; Vinkšel et al., 2021; Wright et al., 2018). Here, techniques such 

as whole-genome sequencing or whole exome sequencing have led to better sensitivity for 

rare disorder diagnosis and screen for thousands of different disorders using 

comprehensive databases. These genomics techniques are successful, albeit they still 

leave some white spots, offering a typical diagnostic rate of 42 % (Wright et al., 2018). 

Genomic variants that are not clearly pathogen but also not documented (variants of 

unknown significance, VUS) cannot be judged for their relevance in the disease origin. 

Based on the natural variability of the human genome, the occurrence of VUS is common 

(~10-20, typically up to 4 if filtering by inherited mutations), and genomics techniques will 

yield multiple different possible causes of this disorder. Even when the variant is known as 

pathogenic, the disease outbreak or disease strength often does not depend on the 

accurate genotype. We saw an example of this phenomenon in chapter 5.0 (p. 99) about 

X-ALD, a peroxisomal neurometabolic disorder, where there is no known correlation 

between the genotype and the disease outbreak or severity.  

One way to investigate the relevance of VUS would be the use of comprehensive functional 

biomarkers directly relating to the phenotype. This may be fulfilled by the holistic study of 

metabolites, metabolomics. 

The metabolome is linked to both the genotype as well as the phenotype and can 

dynamically react to changes in the environment (Fiehn, 2002). While there are multiple 

techniques for approaching metabolomics, liquid chromatography mass spectrometry (LC-

MS) typically has a supreme sensitivity, linear range, and a high range of metabolites that 

it can analyze without the need for derivatization (Dettmer et al., 2007). Consequently, we 

aimed to create an LC-MS-based metabolomics platform to characterize rare 

neurometabolic disorders in this thesis. Secondly, we sought to apply this platform to a 

selected set of neurometabolic diseases to show the platform's utility.  
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8.2 We successfully created a metabolomics platform based on untargeted and targeted 

metabolomics 

We decided to create a methodic platform based on two pillars: Untargeted metabolomics 

with an in-house method and secondly targeted metabolomics starting with the commercial 

AbsoluteIDQ p180 kit. While we could generate valuable data with the targeted 

metabolomics kit, the untargeted metabolomics methods had to be developed first.  

A wide array of untargeted metabolomics methods exist and most methods are very diverse, 

using different devices and protocols as well as only a few deeply analyze the methodic 

capacities of their assays (Almontashiri et al., 2020; Breier et al., 2014; Naz et al., 2017). 

This underlines the necessity to develop in-house methods tailored to the specifications of 

the institute's research. Unfortunately, untargeted metabolomics methods intensely suffer 

from misidentifications of metabolites, reducing the scientific output (Xiao et al., 2012). More 

information on the metabolites, such as retention time and experimental fragmentation data, 

are needed to reduce misidentifications. Our approach was to directly create a library 

containing the necessary information of up to 408 metabolites. Using this identification 

information, we were also able to study essential parameters for method validation on a 

broader scale than typically seen in metabolomics pipelines. The acquisition of untargeted 

metabolomics data allows us to identify metabolites of interest even retrospectively. While 

the compound identification library grows with every new project, every project can also 

improve the identification of the projects before.  

Our untargeted pipeline consisted of a method for hydrophilic compounds and a method for 

lipophilic compounds, a separation that is often seen in metabolomics (Contrepois et al., 

2015; Naz et al., 2017; Wernisch and Pennathur, 2016). In the field of rare disorder 

detection with LC-MS, the groups of Coene et al. and Bonte et al. have immensely 

contributed by creating their method pipelines (Bonte et al., 2019; Coene et al., 2018). 

Curiously, both platforms use only reversed phase chromatography (RPLC) as their primary 

analysis method. Albeit RPLC is a very robust technique, these techniques cannot analyze 

a large variety of metabolites potentially crucial in diseases. Thus, we expect to cover a 

wider range of different disorders using our combined methods for hydrophilic metabolites 

and lipids. 

Subsequently, using the targeted metabolomics kit and our untargeted method pipeline, we 

successfully characterized multiple different diseases and for numerous purposes; this 

included: 

• Finding new biomarkers for different peroxisomal disorders (chapter 4.0, p. 88) 

• Finding biomarkers for disease progression of the same disease (chapter 5.0, p. 99) 

• Proving the cause of a neurometabolic disorder in a single patient (chapter 6.0, p. 

112) 

• Finding markers for a membrane transporter (chapter 7.0, p.126) 
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8.3 The metabolomics platform still faces challenges ahead 

At the example of these varied types of studies, we were able to show the utility of our 

metabolomics platform. To further prove the utility of the platform, further research is 

needed. Extended research and optimization should include four critical areas:  

• the generation of better control cohorts  

• the selection of a suitable study matrix 

• the collection of more rare disorders  

• optimization of statistical data analysis.  

8.3.1 The access to appropriate control groups is challenging 

As mentioned in the introduction, inadept control groups are among the main problems in 

pediatric research (chapter 1.1.2, p. 5). Due to ethics regulations, medical procedures (such 

as blood draws) can only be done if there is a medical indication. Subsequently, most blood 

or tissue samples in pediatric care can only be acquired from unhealthy patients. This 

severely limits the sensitivity of diagnostics. Currently, in our institute, most control blood 

originates from patients of phenylketonuria, where a balanced diet resulted in a 

normalization of phenylalanine levels. While these may be used (with caution) for the 

analysis of peroxisomal disorders, it is not recommended for many others. Possible ways 

to acquire the blood of healthy patients include removing blood from routine blood screens 

either before planned operations (no extensive inflammation or crushing syndrome should 

be present) or during the regular checkups of young children of different ages (e.g., the 

german pediatric examinations U1-J2). However, at neither of those, it is absolutely 

necessary to draw blood. Thus, the number of samples generated is expected to be fewer 

as well. Additionally, the use of inconspicuous samples from blood draws of children with 

psychosomatic symptoms (e.g., diffuse abdominal pain) would be a possibility. 

Similarly, for experiments in cell culture, control cohorts are missing. Possible ways to 

alleviate this would be the collection during routine operations, as well. Collection of material 

for primary fibroblast cultures would be imaginable during procedures such as circumcision 

or tooth extractions. For example, the ATCC fibroblast cell line BJ is generated from foreskin 

fibroblasts (https://www.atcc.org/products/crl-2522, accessed 09.06.2021). However, their 

applicability should be further studied, as fibroblasts from different tissues may have 

different growth and metabolome profiles (Lynch and Watt, 2018).  

Therefore, the generation of a sufficiently sized control cohort requires the collection over 

more extended periods and possibly from different study centers. Unfortunately, this 

exceeds the scope of this doctoral thesis, but the generation of a valid control remains a 

further goal in this institute. Albeit, even using a suboptimal control cohort, we were still able 

to characterize various disorders based on their strong effect. 

8.3.2 The selection of a proper study matrix is challenging 

The selection of an appropriate study matrix (e.g., plasma, fibroblasts, CSF, or urine) can 

significantly influence the detection of different disorders. Based on their function, certain 

cells (fibroblasts) will not show a metabolome as impacted as other cell types (neurons) 

might. Thus, specific metabolic aberrations may not be detected. Similarly, blood-derived 

metabolic profiles present a pool of effects from an extensive range of different cell types. 

That can offer the advantage that strong aberrations of all cell types can be found, but 

smaller abnormalities from single tissues may not be found. Also, nutrition can interfere.  

https://www.atcc.org/products/crl-2522
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Our example of the single patient study of an ELOVL1 defect (chapter 6.0, p. 112) observed 

similar effects. While we could detect slight aberrations in the plasma and the fibroblast 

metabolome, they were very mild. Only upon withdrawal of the fatty acid-containing FCS 

could we see more substantial effects in the fibroblasts (compare to nutrition effects). Other 

groups have shown that the most significant change in the fatty acid profile was found in 

myeline and the epidermis, fitting to the phenotype of the patients (Isokawa et al., 2019; 

Kutkowska-Kaźmierczak et al., 2018; Sassa et al., 2013). While the culture of epidermal 

keratinocytes would be possible, generating primary patient-derived oligodendrocytes or, 

neuron cell culture is typically not possible. Generating these cell types from patient-derived 

induced pluripotent stem cells (iPSC) would be a possibility to study these disorders 

(Dolmetsch and Geschwind, 2011). This would allow access to a significant number of study 

materials (tissues and cell types) and offer the opportunity to research therapy trials in vitro. 

New protocols of iPSC generation have enabled researchers to produce cells faster and in 

larger numbers than ever before, proposing the generation of neuronal stem cells even 

directly from blood (Chen et al., 2020; Gunhanlar et al., 2018; Sheng et al., 2018). 

Regrettably, IPSC generation remains expensive, very labor-intensive, and the stability of 

differentiations may be questionable, making more extensive studies with patients 

complicated (Doss and Sachinidis, 2019).  

Another strategy that could enable better disease detection would be the use of liquid biopsy 

approaches using extracellular vesicles (EVs). EVs originate from specific cell types that 

often also carry cell-specific surface proteins and incapsulate cytoplasm from the original 

cell (Kalra et al., 2016). Using antibody-affinity purification, microvesicles from specific 

tissue types may be yielded in insufficient purity. This has been shown feasible for genomics 

and transcriptomics already, and biomarker potential in neurological disorders such as 

Alzheimer’s disease has been shown as well (Badhwar and Haqqani, 2020). As only a low 

percentage (typically below 1% for brain tissue) of the vesicles have the targeted tissue type 

(Li et al., 2020), a higher sensitivity for metabolomics studies would be necessary. 

Especially with targeted metabolomics, this is within the realm of possibility. Curiously, the 

lipidomic profiling of cell culture-derived EV already resulted in compelling results (Wang et 

al., 2012), albeit blood-derived tissue-specific EVs were not analyzed using metabolomics 

methods. Yet, this would indeed be a fascinating application. 

8.3.3 The diversity and scarcity of rare disorders is challenging 

As rare disorders are rare by definition, acquiring patient samples of a higher number of 

disorders is a long-term goal and will increase over a long time frame. This also is important 

to compare the approaches of our pipeline to the other platforms in the field (Bonte et al., 

2019; Coene et al., 2018). 

However, as the pipeline showed alterations in diverse phenotypes, even including 

transporter studies (OCT1) and effects by ferroptosis (APP- project), we are confident that 

this platform may detect a large variety of disorders.  
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8.3.4 The conception of bioinformatics pipelines is challenging 

The fourth complex is the necessity to improve bioinformatics pipelines. Most clinical 

applications of metabolomics use a minimal set of statistical evaluations, mostly using 

multiple Student’s T-tests, ANOVA, Heatmaps, and principal component analysis 

(Lamichhane et al., 2018). While we successfully applied these methods also to our 

pipeline, more advanced techniques may give superior results.  

As established in the earlier sections, the metabolism is a complex and emergent system, 

where the relationships between metabolites are not linear. However, the linearity of 

relationships between metabolites is exactly one assumption of most of these techniques 

(Gromski et al., 2015; Hotelling, 1933; Mosconi et al., 2008). Additionally, methods to 

combine metabolomics with other -omics data should be implemented to further understand 

disorders more holistically, as proposed by Graham et al. (Graham et al., 2018).  

New advancements from the application of other omics techniques such as artificial neural 

networks may be able to analyze metabolomics data even in a more sensitive manner 

(Brougham et al., 2010; Mendez et al., 2019; Pomyen et al., 2020). Artificial neuronal 

networks can classify between multiple groups, even if the data behind the classification is 

nonlinear. However, this comes with the drawback that many patients are needed in the 

most straightforward setups, as stated by other authors in metabolomics (Alakwaa et al., 

2018). Unfortunately, this is not achievable for many rare disorders due to their low 

prevalence. 

Fortunately, other approaches exist as well. From bank fraud detection and noise removal, 

a technique called autoencoder has been developed that was even applied to medical 

image analysis (Chen et al., 2017; Hosny et al., 2018; Jo et al., 2019). An autoencoder is a 

typically unsupervised neuronal network that has a range of input variables. Over 

intermediated layers, it compresses the number of variables to a lower number of features 

before it then uses the same amount of layers (symmetrically) to (re-)predict the input (Bank 

et al., 2021). These neuronal networks may be trained with data from a normal state. Then 

a test state (such as a bank fraud case or a single patient) may be predicted. For each of 

the variables (here: metabolites), the error between the input and predicted value may be 

calculated. An actual interference may then cause strong prediction errors due to disease. 

Thus, using a sufficiently sized control group, even single patients may be identified. The 

application of autoencoders for disease detection with metabolomics data in single patients 

has not been shown yet but may present a promising target for future research.  
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8.4 Summary of discussion 

The detection of rare disorders in a fast manner is key to enable proper treatment. To enable 

better and faster diagnosis in cooperation with genomics, we successfully developed a LC-

MS based platform for metabolomics analysis of rare disorders. Additionally, we were able 

to study different research question in the neuropediatric field using our pipeline and thus 

fulfilled the objective of this thesis project. Further challenges such as optimizing control 

groups and improving bioinformatic analyses still lie ahead. Steadily including more 

metabolites into our retention database, increasing our quantification abilities by acquiring 

other mass spectrometers and optimizations of analytical pipelines will lead to a consistent 

long-term improvement of our platform. 

Especially in combination with other omics techniques, metabolomics will certainly provide 

deeper insights into rare neuropediatric disorders than ever before.  
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10.0 Supplemental material 
10.1 Glossary of mass spectrometry terms 

Abundance/signal abundance/signal intensity: Semiquantitative, arbitrary unit, measuring 

the number of ions detected by the MS detector. The unit can broadly relate to the 

concentration of analytes in a sample but is dependent on the mass spectrometer and 

ionization efficiency of the analyte in the particular sample  

Chromatogram: A graph of mass spectrometry signal intensity, plotted versus time 

Collision cell: A compartment in a mass spectrometer that is used to purposefully fragment 

molecular ions 

Continuous acquisition mode: Data acquisition mode in mass spectrometry, where 

mass/charge ratios are recorded continuously.  

Electrospray ionization/ESI: ESI is a soft ionization method that uses a high-voltage charged 

metal capillary that can produce a spray of charged ions from analytes. 

Extracted mass chromatogram/XIC: A chromatogram of mass spectrometry intensity 

signals summed over a certain mass range (mass tolerance)  

InChlKey: International chemical identifier key; an up to 27 ASCII-character long unique 

structural chemical identifier developed by NIST 

Internal standard/ISTD: a substance added in the same amount into the samples, 

commonly used to control the quality of measurement or to normalize interferences in the 

analysis. In mass spectrometry, internal standards are mostly using stable isotopes such 

as deuterium or Carbon-13. 

Ionization efficiency: Degree of how well analytes molecules form molecular ions in an 

ionization source. May be estimated from the matrix factor. 

Ionization source: Compartment of the mass spectrometer, which is responsible for the 

formation of ions from analytes. In LC-MS, mostly ESI is used. 

Ion suppression: Reduction of signal intensity in mass spectrometers, based on the 

reduction of ionization efficiency, especially caused by compounds such as phospholipids 

in ionization sources 

Isobaric compound: A compound with its molecular ion that has the same mass/charge ratio 

as another compound within a certain mass tolerance. 

Liquid chromatography: Analysis method that uses a hollow column most often filled with a 

chemically modified silica gel for the separation of analytes dissolved in a liquid mobile 

phase. 

Lockmass/Lockspray: A method for the intra-run mass correction using an additional 

capillary and infusing a stable compound of a known mass (such as leucine-encephalin) 

LOESS algorithm: Locally weighted scatter-plot smoother; A method for the intensity 

normalization of metabolomics data, based on quality control samples.  
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logP: decadic logarithm of water octanol partition coefficient, a measure for lipophilicity 

(positive values) or hydrophilicity (negative value). 

Mass spectrometer: An analytic device able to determine the mass/charge ratio composition 

of an analytical mixture. A mass spectrometer typically consists at least of an ionization 

source, a mass analyzer, and a detector; some possess a collision cell or an additional 

mass analyzer. 

Mass tolerance: range of mass/charge ratio, within mass spectrometry signals, are 

extracted to generate an extracted mass chromatogram (XIC) 

(Sample) Matrix, matrices: Solution, mixture or solid that contains an analyte (e.g., blood, 

tissue, cells, methanol). Confounds matrix effects, by contributing to ion suppression. 

MSe/All ion fragmentation: Acquisition of data from fragmented analyte ions by 

unselectively fragmenting all incoming molecular ions at the same time 

Quadrupole time of flight mass spectrometer/ QToF: a mass spectrometer type with a 

quadrupole mass analyzer, followed typically by a collision cell and completed with a time 

of flight mass analyzer. 

(Triple) Quadrupole mass analyzer: A mass analyzer, based on four metal rods applying 

alternate electromagnetic fields that can either let an ion of a certain mass range pass or 

not pass. Mostly used as arrangement of a first quadrupole, a sequential collision cell (which 

is a quadrupole) and a third quadrupole. Commonly used for quantification including 

targeted metabolomics. This mass analyzer typically has lower mass resolution.  

SMILES: Simplified molecular input line entry specification; an ASCII-character based 

unique molecular identifier predating the InChlKey. 

Time of flight mass analyzer/Tof: A mass analyzer that measures mass/charge ratios of ions 

by measuring their flight time in an evacuated tube. Commonly used for fast high-resolution 

measurements with higher resolution than quadrupole analyzers, but lower signal/noise 

ratio, mostly used for untargeted metabolomics. 

Total ion chromatogram/TIC: A chromatogram of mass spectrometry intensity signals 

summed over all masses. 
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10.2 Lipid nomenclature 

Lipids are structured biomolecules that commonly consist of a linker molecule (mostly 

glycerol), a lipid class defining headgroup, and varying acyl-chains (fatty acids) that are 

either esterified to the linker (acyl-bond, a), bound by an ether-bond (ethyl-bond, e) or bound 

by an amide-bond (e.g., in sphingolipids). In some cases, ether-bonds are indicated by “-O-

”. 

An overview of different lipid structures can be found in Figure 66. Lipids that have less 

acyl groups than typical for their lipid class carry the prefix “lyso”.  

 

Figure 66 Scheme of typical lipid structures. Created with BioRender.com.  

Shorthand lipid nomenclature starts with the class abbreviation (e.g., PC), then follows by 

the number of carbon atoms in the fatty acid separated by “:” from the number of double 

bonds in the respective chain (e.g., Dipalmitoyl-phosphatidylcholine=PC 16:0_16:0). In 

some cases (e.g., in the Biocrates AbsoluteIDQ p180-kit), the sum over all carbon atoms 

and double bonds is used (where a lipid e.g., PC 16:0_16:0 equals to a shorthand notation 

of PC aa 32:0). 

Modifications by hydroxy groups can be indicated by attaching a “-OH”. 
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Common abbreviation for lipids can be found in Table 18. 

Table 18 Common abbreviations of lipids 

 

 

 

 

 

 

 

 

 

 

 

  

Abbreviation  Name of lipid class 

CAR/C Acyl-carnitines 

CE Cholesteryl-ester 

DG/DAG Diacylglyceride 

LPC Lysophosphatidycholine 

LPE Lysophosphatidylethanolamine 

MG/MAG Monoacylglyceride 

PA Phosphatidylglyceride 

PC Phosphatidycholine 

PE Phosphatidylethanolamine 

SM Sphingomyeline 

TG/TAG Triacylglyceride 
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10.3 Supplementary Data  

10.3.1 Human metabolite mass and retention time library  

As described in chapter 2.2.9 (p. 26) this human metabolite library was acquired using 

human metabolite reference standards from MetaSci. The method used a Waters I-Class 

UPLC with an G2-S QToF mass spectrometer with an ESI ion source. As mobile phases 

were used: A: 90% 30mM ammonium acetate pH 7.0 in water, 10% acetonitrile; B: 10% 

30mM ammonium acetate pH 7.0 in water, 90% acetonitrile. Mass spectrometry data was 

acquired using positive and negative ionization sensitivity mode in separate runs from 100 

Da to 800 Da in continuous MSe acquisition mode. Thus, fragments were generated by 

alternating acquisitions of unfragmented ions to fragmenting all incoming ions by ramping 

fragmentation energy between 10-40 V (MSe mode). Chromatograms, as well as 

fragmentation spectra, are available inside a Waters UNIFI database, but important 

identifiers for further use (e.g., in other, open source-based programs) are displayed here. 

Only metabolites that are detectable in at least the reference standards using our method 

are displayed here. Metabolites that cannot be distinguished by the method, are displayed 

as one position in the database. Other data formats such as MSP are available upon 

request.  
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Table 19 Human metabolite compound library in ZIC-HILIC positive ionization mode. Human metabolite reference standards from MetaSci in a concentration of 100 µM were 

acquired using the ZIC-HILIC-MS method in positive ionization mode. Only [M+H]+ molecular ions were used for identification. The table shows an exempt from the UNIFI-

Database and only metabolites detected in reference standards are shown. Other dataformats (such as MSP) are also available.  

NAME Ontology PRECURSORMZ FORMULA INCHIKEY RETENTIONTIME Fragmentlist 

1-Methyl Adenosine Purine nucleosides 282.1202 C11H15N5O4 
GFYLSDSUCHVORB-
JOLDIKRXSA-N 11.22 130.05029,150.077 

2-Amino-4-methylsulfonimidoyl butanoic acid Amino acids and derivatives 181.0647 C5H12N2O3S 
SXTAYKAGBXMACB-
UHFFFAOYSA-N 11.26  

2-Hydroxycaproic acid/2-Hydroxyisocaproic acid/2-Ethyl-2-
Hydroxybutyric acid Medium-chain fatty acids 133.0865 C6H12O3 

NYHNVHGFPZAZGA-
UHFFFAOYSA-N 4.35  

2-Methylbutyrylglycine Amino acids and derivatives 160.0974 C7H13NO3 
HOACIBQKYRHBOW-
UHFFFAOYSA-N 4.21  

2-Methylsuccinic acid Branched fatty acids 133.0501 C5H8O4 
WXUAQHNMJWJLTG-
UHFFFAOYSA-N 10.50  

3-Aminoisobutanoic acid Amino acids and derivatives 104.0712 C4H9NO2 
QCHPKSFMDHPSNR-
UHFFFAOYSA-N 9.99  

3-Chlorotyrosine Amino acids and derivatives 216.0428 C9H10ClNO3 
ACWBBAGYTKWBCD-
UHFFFAOYSA-N 7.94 170.03628,199.01518 

3-Hydroxy-3-methylglutaric acid Hydroxy fatty acids 163.0607 C6H10O5 
NPOAOTPXWNWTSH-
UHFFFAOYSA-N 2.39  

3-Indolebutyric acid 3-alkylindoles 204.1025 C12H13NO2 
JTEDVYBZBROSJT-
UHFFFAOYSA-N 2.78 130.06513,186.09134,117.0573,89.05971,144.08078 

3-Methoxytyramine Methoxyphenols 168.1025 C9H13NO2 
DIVQKHQLANKJQO-
UHFFFAOYSA-N 9.26 151.07536,123.08037 

3-Methyl-L-histidine Amino acids and derivatives 170.0930 C7H11N3O2 
JDHILDINMRGULE-
LURJTMIESA-N 13.21 95.06037,81.04472 

3-Methylxanthine Xanthines 167.0569 C6H6N4O2 
GMSNIKWWOQHZGF-
UHFFFAOYSA-N 4.18 124.05054,96.05562 

3-Nitro-L- tyrosine Amino acids and derivatives 227.0668 C9H10N2O5 
FBTSQILOGYXGMD-
LURJTMIESA-N 8.03 181.06118 

3-Phenylpropionylglycine Ketones 208.0974 C11H13NO3 
XHSURMJJKAFELI-
UHFFFAOYSA-N 4.14 91.05366,105.06938 

4-Aminobutylacetamide Carboximidic acids 131.1185 C6H14N2O 
KLZGKIDSEJWEDW-
UHFFFAOYSA-N 15.32 114.09075,72.08044 

4-Guanidinobutyric acid Amino acids and derivatives 146.0924  C5H11N3O2 
TUHVEAJXIMEOSA-
UHFFFAOYSA-N 11.40 86.06004,69.03355,128.08166 

4-Pyridoxic acid Pyridinecarboxylic acids 184.0604  C8H9NO4 
HXACOUQIXZGNBF-
UHFFFAOYSA-N 2.68 148.03902 

5-Aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside 
Imidazole ribonucleosides 
and ribonucleotides 259.1043 C9H14N4O5 

RTRQQBHATOEIAF-
UUOKFMHZSA-N 6.81 110.03414,127.06144,152.04545,82.04132 

5-Aminolevulinic acid Amino acids and derivatives 132.0661 C5H9NO3 
ZGXJTSGNIOSYLO-
UHFFFAOYSA-N 12.51 114.05542,86.0606 

5-Aminopentylacetamide Carboxylic acid amides 145.1341 C7H16N2O 
RMOIHHAKNOFHOE-
UHFFFAOYSA-N 11.85 128.1077,69.07066,86.09713 

5-Hydroxy-3-indoleacetic acid 
Indole-3-acetic acid 
derivatives 192.0655  C10H9NO3 

DUUGKQCEGZLZNO-
UHFFFAOYSA-N 8.47 146.06026,174.05529 

5-Methoxytryptamine Tryptamines and derivatives 191.1179  C11H14N2O 
JTEJPPKMYBDEMY-
UHFFFAOYSA-N 7.34 174.09135,143.07272 

5-Methoxy-tryptophan Serotonins 235.1083 C12H14N2O3 
KVNPSKDDJARYKK-
JTQLQIEISA-N 7.16 218.08085,133.05176 

5-Methylcytosine Hydroxypyrimidines 126.0668 C5H7N3O 
LRSASMSXMSNRBT-
UHFFFAOYSA-N 6.19 83.05958 

5-Methyluridine Pyrimidine nucleosides 259.0930 C10H14N2O6 
DWRXFEITVBNRMK-
JXOAFFINSA-N 4.7 134.06094 
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5-Pregnenolone 
Gluco/mineralocorticoids, 
progestogins and derivatives 317.2481 C21H32O2 

JERGUCIJOXJXHF-
TVWVXWENSA-N 2.25 139.11174,109.10118,125.09609,151.11174,147.11683 

Acetyl-5-hydroxytryptamine Hydroxyindoles 219.1128  C12H14N2O2 
MVAWJSIDNICKHF-
UHFFFAOYSA-N 2.9 160.07472,142.0642 

Acetylcholine Cholines 146.1181 C7H15NO2 
OIPILFWXSMYKGL-
UHFFFAOYSA-N 10.64  

Acetyl-D-mannosamine Aminosaccharides 222.0978 C8H15NO6 
OVRNDRQMDRJTHS-
ZTVVOAFPSA-N 8.44 135.03148,133.04954 

Acetylglucosamine Aminosaccharides 222.0978 C8H15NO6 
OVRNDRQMDRJTHS-
DMHSOCPYSA-N 8.06 89.05912,133.08527,138.05495 

Acetylglutamic acid Amino acids and derivatives 190.0716 C7H11NO5 
RFMMMVDNIPUKGG-
UHFFFAOYSA-N 9.99 84.04439 

Acetyl-L-arginine Amino acids and derivatives 217.1301 C8H16N4O3 
SNEIUMQYRCDYCH-
LURJTMIESA-N 11.04 70.06513,158.08117,116.07061,71.0478 

Acetyl-L-carnitine Acyl carnitines 204.1236 C9H17NO4 
RDHQFKQIGNGIED-
UHFFFAOYSA-N 10.64 145.04915,85.0278 

Acetyl-L-methionine Amino acids and derivatives 192.0695 C7H13NO3S 
XUYPXLNMDZIRQH-
UHFFFAOYSA-N 4.62  

Acetyl-L-ornithine Amino acids and derivatives 175.1083 C7H14N2O3 
JRLGPAXAGHMNOL-
LURJTMIESA-N 11.39 70.06513 

Acetyl-L-Proline Amino acids and derivatives 158.0817 C7H11NO3 
GNMSLDIYJOSUSW-
LURJTMIESA-N 7.45 70.06513,85.07252 

Acetyl-L-tyrosine Amino acids and derivatives 224.0923 C11H13NO4 
CAHKINHBCWCHCF-
JTQLQIEISA-N 6.05 95.04914,147.04406 

Acetylneuraminic acid Sugar acids and derivatives 310.1138 C11H19NO9 
SQVRNKJHWKZAKO-
PFQGKNLYSA-N 9.61 208.08156 

Adenine 6-aminopurines 136.0618  C5H5N5 
GFFGJBXGBJISGV-
UHFFFAOYSA-N 4.93 119.03522 

Adenosine Purine nucleosides 268.1046 C10H13N5O4 
OIRDTQYFTABQOQ-
KQYNXXCUSA-N 4.93 136.06227 

Adenosine diphosphate 
Purine ribonucleoside 
diphosphates 428.0373 C10H15N5O10P2 

XTWYTFMLZFPYCI-
KQYNXXCUSA-N 10.23 136.06141,410.02613 

Adenosine monophosphate 
Purine ribonucleoside 
monophosphates 348.0709 C10H14N5O7P 

UDMBCSSLTHHNCD-
KQYNXXCUSA-N 10.07 97.02774,136.06124,232.08216 

Adenosine triphosphate 
Purine ribonucleoside 
triphosphates 508.0036 C10H16N5O13P3 

ZKHQWZAMYRWXGA-
KQYNXXCUSA-N 10.42 97.02274,136.06124 

All trans-Retinal Retinoids 285.2219 C20H28O 
NCYCYZXNIZJOKI-
OVSJKPMPSA-N 2.18 123.11683,135.08044,175.14813,135.11683,161.09609 

Allantoic acid Amino acids and derivatives 177.0618  C4H8N4O4 
NUCLJNSWZCHRKL-
UHFFFAOYSA-N 10.18  

alpha-Acetyl-L-glutamine Amino acids and derivatives 189.0875 C7H12N2O4 
KSMRODHGGIIXDV-
UHFFFAOYSA-N 8.25  

alpha-Acetyl-L-lysine Amino acids and derivatives 189.1239 C8H16N2O3 
VEYYWZRYIYDQJM-
UHFFFAOYSA-N 9.70 84.08001,175.10772,126.09134 

Androsterone Androgens and derivatives 291.2324 C19H30O2 
QGXBDMJGAMFCBF-
XYQQMQERSA-N 2.27 109.10118,123.11683,107.08553,121.10118,95.08553 

Arginine Amino acids and derivatives 175.1195 C6H14N4O2 
ODKSFYDXXFIFQN-
BYPYZUCNSA-N 19.22 70.0642,116.07061,133.09715 

Asparagine Amino acids and derivatives 133.0613 C4H8N2O3 
DCXYFEDJOCDNAF-
REOHCLBHSA-N 11.22 85.02841,74.02365 

Bilirubin Bilirubins 585.2713 C33H36N4O6 
BPYKTIZUTYGOLE-
IFADSCNNSA-N 3.99 299.13902 

Biotin Biotin and derivatives 245.0960 C10H16N2O3S 
YBJHBAHKTGYVGT-
ZKWXMUAHSA-N 6.44 97.04014,227.08527 
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Caffeine Xanthines 195.0877  C8H10N4O2 
RYYVLZVUVIJVGH-
UHFFFAOYSA-N 2.75 123.04271 

Calciferol Vitamin D and derivatives 397.3471 C28H44O 
MECHNRXZTMCUDQ-
RKHKHRCZSA-N 2.23 119.08553,91.05243,105.06988,109.10118,145.10118 

Capryloyl glycine Amino acids and derivatives 202.1443 C10H19NO3 
SAVLIIGUQOSOEP-
UHFFFAOYSA-N 4.16 76.0393,158.08117,112.07569,114.05495,98.06004 

Carbamazepine Dibenzazepines 237.1022  C15H12N2O 
FFGPTBGBLSHEPO-
UHFFFAOYSA-N 2.57 195.06787,197.08352 

Carnitine Carnitines 162.1130 C7H15NO3 
PHIQHXFUZVPYII-
LURJTMIESA-N 12.50  

Carnosine Hybrid peptides 227.1144 C9H14N4O3 
CQOVPNPJLQNMDC-
ZETCQYMHSA-N 14.42 83.05965 

Cholesterol 3-Sulfate Cholesterols and derivatives 467.3195 C27H46O4S 
BHYOQNUELFTYRT-
DPAQBDIFSA-N 2.33 109.10118,145.10118 

Choline Cholines 104.1064  C5H14NO 
OEYIOHPDSNJKLS-
UHFFFAOYSA-N 15.48  

cis-Aconitic acid 
Tricarboxylic acids and 
derivatives 175.0243 C6H6O6 

GTZCVFVGUGFEME-
IWQZZHSRSA-N 11.13  

Citicoline 
Pyrimidine ribonucleoside 
diphosphates 489.1152 C14H26N4O11P2 

RZZPDXZPRHQOCG-
OJAKKHQRSA-N 11.35 184.07296,264.03915 

Citrulline Amino acids and derivatives 176.1035 C6H13N3O3 
RHGKLRLOHDJJDR-
BYPYZUCNSA-N 11.22 82.03915 

Corticosterone 21-hydroxysteroids 347.2222 C21H30O4 
OMFXVFTZEKFJBZ-
HJTSIMOOSA-N 2.60 207.13796,163.11174 

Cortisone 21-hydroxysteroids 361.2015 C21H28O5 
MFYSYFVPBJMHGN-
ZPOLXVRWSA-N 2.52 179.07027,197.08084,165.12739,207.13796 

Creatine Amino acids and derivatives 132.0768  C4H9N3O2 
CVSVTCORWBXHQV-
UHFFFAOYSA-N 10.89 90.05495 

Creatine phosphate Amino acids and derivatives 212.0436 C4H10N3O5P 
DRBBFCLWYRJSJZ-
UHFFFAOYSA-N 11.10 78.95939,110.03579,134.04687,177.0978,135.03179 

Creatinine Amino acids and derivatives 114.0662  C4H7N3O 
DDRJAANPRJIHGJ-
UHFFFAOYSA-N 6.64 69.04472 

Cyclic Adenosine monophosphate 3',5'-cyclic purine nucleotides 330.0604 C10H12N5O6P 
IVOMOUWHDPKRLL-
KQYNXXCUSA-N 6.93 136.0613,89.05906 

Cystathionine Amino acids and derivatives 223.0753 C7H14N2O4S 
ILRYLPWNYFXEMH-
WHFBIAKZSA-N 12.83  

Cysteic acid Amino acids and derivatives 170.0123 C3H7NO5S 
XVOYSCVBGLVSOL-
UHFFFAOYSA-N 10.10 124.00562 

Cysteine Amino acids and derivatives 122.0276 C3H7NO2S 
XUJNEKJLAYXESH-
REOHCLBHSA-N 10.50 74.02384,88.093,105.00048 

Cystine Amino acids and derivatives 241.0317 C6H12N2O4S2 
LEVWYRKDKASIDU-
IMJSIDKUSA-N 13.45 206.02085,224.03127,222.01383,204.00327,132.94628 

Cytidine Pyrimidine nucleosides 244.0934 C9H13N3O5 
UHDGCWIWMRVCDJ-
XVFCMESISA-N 7.74 112.05008 

Cytidine triphosphate Monosaccharides 483.9924 C9H16N3O14P3 
PCDQPRRSZKQHHS-
XVFCMESISA-N 11.00 97.02787 

Cytosine Pyrimidones 112.0505  C4H5N3O 
OPTASPLRGRRNAP-
UHFFFAOYSA-N 7.71 95.02399,69.04386 

Dehydroprogesterone 20-oxosteroids 313.2168 C21H28O2 
VRRHHTISESGZFN-
RKFFNLMFSA-N 2.32 163.11174,191.14304,269.18999 

Deoxyadenosine 
Purine 2'-
deoxyribonucleosides 252.1097 C10H13N5O3 

OLXZPDWKRNYJJZ-
RRKCRQDMSA-N 4.38 136.06177,119.03592,73.02841 
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Deoxycytidine 
Pyrimidine 2'-
deoxyribonucleosides 228.0984 C9H13N3O4 

CKTSBUTUHBMZGZ-
SHYZEUOFSA-N 6.70 112.05008,117.05462 

Deoxyguanosine 
Purine 2'-
deoxyribonucleosides 268.1046 C10H13N5O4 

YKBGVTZYEHREMT-
KVQBGUIXSA-N 6.97 152.05573,135.02923 

Deoxyguanosine monophosphate 
Purine deoxyribonucleoside 
monophosphates 348.0709 C10H14N5O7P 

LTFMZDNNPPEQNG-
KVQBGUIXSA-N 10.76 135.02932,152.05591 

Deoxyinosine 
Purine 2'-
deoxyribonucleosides 253.0937 C10H12N4O4 

VGONTNSXDCQUGY-
RRKCRQDMSA-N 5.61 137.04579,117.05462,225.07441 

Deoxyuridine 
Pyrimidine 2'-
deoxyribonucleosides 229.0825 C9H12N2O5 

MXHRCPNRJAMMIM-
SHYZEUOFSA-N 4.42 73.02841,87.04406 

Dimethylbenzimidazole Benzimidazoles 147.0917  C9H10N2 
LJUQGASMPRMWIW-
UHFFFAOYSA-N 2.55 131.06037,132.0682 

Dimyristoyl-glycero-3-phosphoethanolamine Phosphatidylethanolamines 636.4604 C33H66NO8P 
NEZDNQCXEZDCBI-
WJOKGBTCSA-N 4.43 184.07332,447.25062,495.44079,488.27717 

Diosmin Flavonoid O-glycosides 609.1820 C28H32O15 
GZSOSUNBTXMUFQ-
UHFFFAOYSA-N 4.11 301.06982,119.0346,94.03921 

Estradiol Estrogens and derivatives 273.1855 C18H24O2 
VOXZDWNPVJITMN-
ZBRFXRBCSA-N 2.34 121.06479,107.04914,147.08044,151.11174,93.06988 

Estriol Estrogens and derivatives 289.1804 C18H24O3 
PROQIPRRNZUXQM-
ZXXIGWHRSA-N 2.44  

Flavin Adenine Dinucleotide Flavin nucleotides 786.1650 C27H33N9O15P2 
VWWQXMAJTJZDQX-
UYBVJOGSSA-N 8.40 439.10089,136.06139,348.06967 

Flavone Flavones 223.0759 C15H10O2 
VHBFFQKBGNRLFZ-
UHFFFAOYSA-N 2.33 129.03349,77.03858,147.04406,93.03349,79.05423 

Folic acid Amino acids and derivatives 442.1475 C19H19N7O6 
OVBPIULPVIDEAO-
LBPRGKRZSA-N 10.34 295.0938 

Folinic acid 
Tetrahydropteroic acids and 
derivatives 474.1737 C20H23N7O7 

VVIAGPKUTFNRDU-
UHFFFAOYSA-N 9.99 327.11935,299.12448 

Fructosebiphosphate Monosaccharides 341.0039 C6H14O12P2 
WSMBXSQDFPTODV-
JGWLITMVSA-N 11.50 97.02841,151.0601 

Glucosamine Monosaccharides 180.0872 C6H13NO5 
MSWZFWKMSRAUBD-
HOWGCPQDSA-N 13.94 99.044006 

Glucosamine 6-phosphate Monosaccharides 260.0535 C6H14NO8P 
XHMJOUIAFHJHBW-
UKFBFLRUSA-N 13.05 126.05449,89.05971,206.02129 

Glucose 1-phosphate/Fructose-6-phosphate/Glucose 6-
phosphate/Galactose-1-phosphate Monosaccharides 261.0376 C6H13O9P 

HXXFSFRBOHSIMQ-
GASJEMHNSA-N 10.95 85.02793,145.04893,97.02841,109.02841 

Glutamic acid Amino acids and derivatives 148.0610 C5H9NO4 
WHUUTDBJXJRKMK-
VKHMYHEASA-N 10.56 97.024841,130.04987,132.04171 

Glutamine Amino acids and derivatives 147.0770 C5H10N2O3 
ZDXPYRJPNDTMRX-
VKHMYHEASA-N 11.26  

Glutaryl-Carnitine Acyl carnitines 277.1526 C12H22NO6 
NXJAXUYOQLTISD-
VIFPVBQESA-N 11.47 85.02841,87.04406,187.09649,218.13868,144.10191 

Glutathione Peptides 308.0916 C10H17N3O6S 
RWSXRVCMGQZWBV-
WDSKDSINSA-N 10.19 97.02841,232.08761 

Glutathione oxidized Peptides 613.1598 C20H32N6O12S2 
YPZRWBKMTBYPTK-
UHFFFAOYSA-N 11.07 152.05803,231.0434 

Glycero-3-Phosphocholine Glycerophosphocholines 258.1107 C8H20NO6P 
SUHOQUVVVLNYQR-
QMMMGPOBSA-N 11.91 104.10699,124.99982,184.07332 

Glycerol Tridecanoate Triacylglycerols 555.4625 C33H62O6 
LADGBHLMCUINGV-
UHFFFAOYSA-N 2.2 383.31559,155.14304 

Glycerol Trihexanoate Triacylglycerols 387.2747 C21H38O6 
MAYCICSNZYXLHB-
UHFFFAOYSA-N 2.14  
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Glycerol Tri-octanoate Triacylglycerols 471.3686 C27H50O6 
VLPFTAMPNXLGLX-
UHFFFAOYSA-N 2.08 127.11174,327.25299 

Glycerophosphoric acid/Glycerol 3-Phosphate Glycerophosphates 173.0215 C3H9O6P 
AWUCVROLDVIAJX-
GSVOUGTGSA-N 10.53 98.98417 

Glycocholic acid 
Glycinated bile acids and 
derivatives 466.3169 C26H43NO6 

RFDAIACWWDREDC-
FRVQLJSFSA-N 4.98 414.30027,412.28462,430.29519,337.25259,448.30575 

Glycoursodeoxycholic acid 
Glycinated bile acids and 
derivatives 450.3220 C26H43NO5 

GHCZAUBVMUEKKP-
XROMFQGDSA-N 4.47 424.30027,357.27881,339.26824,107.08553 

Guanine 
Purines and purine 
derivatives 152.0567  C5H5N5O 

UYTPUPDQBNUYGX-
UHFFFAOYSA-N 7.39  

Guanosine Purine nucleosides 284.0995 C10H13N5O5 
NYHBQMYGNKIUIF-
UUOKFMHZSA-N 7.97 243.08497,152.05623,250.09347 

Guanosine 5-monophosphate 
Purine ribonucleoside 
monophosphates 364.0658 C10H14N5O8P 

RQFCJASXJCIDSX-
UUOKFMHZSA-N 11.06 97.02841,208.0829,177.03247,152.05669 

Guanosine triphosphate 
Purine ribonucleoside 
triphosphates 523.9985 C10H16N5O14P3 

XKMLYUALXHKNFT-
UUOKFMHZSA-N 11.06 85.02841,152.05669 

Histamine Primary amines 112.0869  C5H9N3 
NTYJJOPFIAHURM-
UHFFFAOYSA-N 22.00 95.05971,83.06037 

Histidine Amino acids and derivatives 156.0773 C6H9N3O2 
HNDVDQJCIGZPNO-
YFKPBYRVSA-N 11.85 83.05962 

Histidinol Aralkylamines 142.0981 C6H11N3O 
ZQISRDCJNBUVMM-
YFKPBYRVSA-N 17.85 82.05286,124.0862,107.02071 

Homoarginine Amino acids and derivatives 189.1352 C7H16N4O2 
QUOGESRFPZDMMT-
YFKPBYRVSA-N 18.44 84.08078 

Homocitrulline Amino acids and derivatives 190.1192 C7H15N3O3 
XIGSAGMEBXLVJJ-
YFKPBYRVSA-N 10.88 173.09207 

Homocystine Amino acids and derivatives 269.0630 C8H16N2O4S2 
ZTVZLYBCZNMWCF-
UHFFFAOYSA-N 12.03 88.02155 

Homoserine Amino acids and derivatives 120.0661 C4H9NO3 
UKAUYVFTDYCKQA-
VKHMYHEASA-N 10.80 74.05959 

Hydrocortisone 21-hydroxysteroids 363.2172 C21H30O5 
JYGXADMDTFJGBT-
VWUMJDOOSA-N 2.51 121.06479,135.08044,123.08044,107.04914 

Hydroxylysine Amino acids and derivatives 163.1083 C6H14N2O3 
YSMODUONRAFBET-
UHNVWZDZSA-N 18.88 89.05866,128.06977,145.09668 

Hydroxyprogesterone 
Gluco/mineralocorticoids, 
progestogins and derivatives 331.2273 C21H30O3 

DBPWSSGDRRHUNT-
CEGNMAFCSA-N 2.33 163.11174,121.06479 

Hydroxyproline/cis-4-Hydroxy-proline Amino acids and derivatives 132.0661 C5H9NO3 
PMMYEEVYMWASQN-
DMTCNVIQSA-N 11.00  

Hydroxytryptophan Serotonins 221.0926 C11H12N2O3 
LDCYZAJDBXYCGN-
UHFFFAOYSA-N 9.44 204.0648,134.05925 

Hypotaurine Sulfinic acids 110.0276 C2H7NO2S 
VVIUBCNYACGLLV-
UHFFFAOYSA-N 10.68  

 Hypoxanthine Purinones 137.0458  C5H4N4O 
FDGQSTZJBFJUBT-
UHFFFAOYSA-N 5.72 119.03557 

Imidazole acetic acid Substituted imidazoles 127.0508 C5H6N2O2 
PRJKNHOMHKJCEJ-
UHFFFAOYSA-N 10.65 61.02841,81.04472 

Indole Indoles 118.0657 C8H7N 
SIKJAQJRHWYJAI-
UHFFFAOYSA-N 2.42  

 Indolelactic acid 
Indolyl carboxylic acids and 
derivatives 206.0817 C11H11NO3 

XGILAAMKEQUXLS-
UHFFFAOYSA-N 4.69 130.06536 

Inosine Purine nucleosides 269.0886 C10H12N4O5 
UGQMRVRMYYASKQ-
KQYNXXCUSA-N 6.85 137.04579 

Inosine triphosphate 
Purine ribonucleoside 
triphosphates 508.9876 C10H15N4O14P3 

HAEJPQIATWHALX-
KQYNXXCUSA-N 10.65 97.02848,137.04583 
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Isoleucine/Leucine/allo-Isoleucine Amino acids and derivatives 132.1025 C6H13NO2 
AGPKZVBTJJNPAG-
WHFBIAKZSA-N 8.40 89.05912,56.09643,86.09643,102.09134,81.03349 

Isovaleryl-Carnitine Acyl carnitines 247.1784 C12H24NO4 
IGQBPDJNUXPEMT-
UHFFFAOYSA-N 8.21 85.02841,144.10191,85.05222,87.04406,84.08078 

Isoxanthopterin Pterins and derivatives 180.0516  C6H5N5O2 
GLKCOBIIZKYKFN-
UHFFFAOYSA-N 7.5 110.03489 

 Kynurenic acid Quinoline carboxylic acids 190.0499  C10H7NO3 
HCZHHEIFKROPDY-
UHFFFAOYSA-N 4.72 144.04369 

Kynurenine Ketones 209.0926 C10H12N2O3 
YGPSJZOEDVAXAB-
QMMMGPOBSA-N 7.22 192.06545,94.0651 

Lactose/Maltose 
Fatty acyl glycosides of 
mono- and disaccharides 343.1241 C12H22O11 

DKXNBNKWCZZMJT-
JVCRWLNRSA-N 10.80 163.0601,85.02841,145.04951 

L-Dopa Amino acids and derivatives 198.0766 C9H11NO4 
WTDRDQBEARUVNC-
LURJTMIESA-N 10.30  

Levulinic acid 
Gamma-keto acids and 
derivatives 117.0552 C5H8O3 

JOOXCMJARBKPKM-
UHFFFAOYSA-N 6.52  

Lithocholic acid 
Hydroxy bile acids, alcohols 
and derivatives 377.3056 C24H40O3 

SMEROWZSTRWXGI-
WFVDQZAMSA-N 2.27 165.12739,109.10118,123.11683 

Luteolin Flavones 287.0556 C15H10O6 
IQPNAANSBPBGFQ-
UHFFFAOYSA-N 2.51 161.02332,269.04445,179.03389,109.02841,125.02332 

Lysine Amino acids and derivatives 147.1134 C6H14N2O2 
KDXKERNSBIXSRK-
YFKPBYRVSA-N 19.71 84.08078,130.08626 

Maltotriose Oligosaccharides 505.1769 C18H32O16 
FYGDTMLNYKFZSV-
DZOUCCHMSA-N 5.62 253.09325,89.05971 

Melibiose Glycosyl compounds 343.1241 C12H22O11 
DLRVVLDZNNYCBX-
ABXHMFFYSA-N 11.09 85.02841,99.04406 

Menadione Naphthoquinones 173.0603 C11H8O2 
MJVAVZPDRWSRRC-
UHFFFAOYSA-N 2.24 79.05423,77.03858,159.04406,99.04406,97.02841 

Methionine Amino acids and derivatives 150.0589 C5H11NO2S 
FFEARJCKVFRZRR-
BYPYZUCNSA-N 8.58 86.06001,104.05285 

Methyladenine 6-aminopurines 150.0780 C6H7N5 
FSASIHFSFGAIJM-
UHFFFAOYSA-N 5.77 108.04305 

Methyl-D-aspartic acid Amino acids and derivatives 148.0610 C5H9NO4 
HOKKHZGPKSLGJE-
GSVOUGTGSA-N 10.28  

Methyl-L-glutamic acid/Aminoadipic acid Amino acids and derivatives 162.0766 C6H11NO4 
OYIFNHCXNCRBQI-
BYPYZUCNSA-N 10.30 97.02841,99.04406 

Methyltyramine 
Amphetamines and 
derivatives 152.1076 C9H13NO 

GIKNHHRFLCDOEU-
UHFFFAOYSA-N 7.44 121.06479,136.07569 

m-Hydroxyhippuric Acid Benzamides 196.0610 C9H9NO4 
XDOFWFNMYJRHEW-
UHFFFAOYSA-N 5.98  

NAD (5'->5')-dinucleotides 664.1170 C21H27N7O14P2 
BAWFJGJZGIEFAR-
NNYOXOHSSA-O 10.42  

NADH (5'->5')-dinucleotides 666.1326 C21H29N7O14P2 
BAWFJGJZGIEFAR-
NNYOXOHSSA-O 9.61 302.0421,514.051,400.01931,320.05298,649.1055 

NADP (5'->5')-dinucleotides 744.0833 C21H28N7O17P3 
XJLXINKUBYWONI-
NNYOXOHSSA-O 10.88 136.06141,428.03618,508.0031 

Nicotine Pyrrolidinylpyridines 163.1235 C10H14N2 
SNICXCGAKADSCV-
JTQLQIEISA-N 9.71 117.0573,106.06513 

Nicotinic acid Pyridinecarboxylic acids 124.0393  C6H5NO2 
PVNIIMVLHYAWGP-
UHFFFAOYSA-N 6.30 80.04975,108.04439,77.026 

Nicotinoylglycine Amino acids and derivatives 181.0608  C8H8N2O3 
ZBSGKPYXQINNGF-
UHFFFAOYSA-N 7.52 135.05443,79.04122 
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Norleucine Amino acids and derivatives 132.1025 C6H13NO2 
LRQKBLKVPFOOQJ-
YFKPBYRVSA-N 7.75 86.09732 

Octanoyl-Carnitine Acyl carnitines 289.2253 C15H30NO4 
CXTATJFJDMJMIY-
CYBMUJFWSA-N 6.00 85.02841,144.10191,246.16998,229.14344,85.05222 

Oleic acid Long-chain fatty acids 283.2637 C18H34O2 
ZQPPMHVWECSIRJ-
KTKRTIGZSA-N 2.19 95.08553,109.10118,81.06988,123.11683,125.09608 

Ornithine Amino acids and derivatives 133.0977 C5H12N2O2 
AHLPHDHHMVZTML-
BYPYZUCNSA-N 19.30 70.06513,89.05912,116.07061 

Palmitoyl-Carnitine Acyl carnitines 401.3505 C23H46NO4 
XOMRRQXKHMYMOC-
OAQYLSRUSA-N 4.00 85.02841,288.21693,144.10191,246.16998,229.14344 

Pantothenic acid Amino acids and derivatives 220.1185 C9H17NO5 
GHOKWGTUZJEAQD-
UHFFFAOYSA-N 6.84  

 Phenylacetylglycine Amino acids and derivatives 194.0812  C10H11NO3 
UTYVDVLMYQPLQB-
UHFFFAOYSA-N 4.50 91.05355,84.04439 

Phenylalanine Amino acids and derivatives 166.0868 C9H11NO2 
COLNVLDHVKWLRT-
QMMMGPOBSA-N 7.27 120.08078,77.03858,93.06988,79.05423 

 Phosphocholine Cholines 184.0728  C5H15NO4P 
YHHSONZFOIEMCP-
UHFFFAOYSA-O 15.32  

Phosphoenolpyruvic acid Phosphate esters 168.9897  C3H5O6P 
DTBNBXWJWCWCIK-
UHFFFAOYSA-N 10.98 122.9843,150.97946 

Phosphoethanolamine Phosphoethanolamines 142.0264  C2H8NO4P 
SUHOOTKUPISOBE-
UHFFFAOYSA-N 12.96 98.98417,109.02768,106.98926 

Pipecolinic acid Amino acids and derivatives 130.0868 C6H11NO2 
HXEACLLIILLPRG-
UHFFFAOYSA-N 9.73 84.08124 

Progesterone 
Gluco/mineralocorticoids, 
progestogins and derivatives 315.2324 C21H30O2 

RJKFOVLPORLFTN-
LEKSSAKUSA-N 2.28 109.06479,135.08044 

Proline Amino acids and derivatives 116.0712 C5H9NO2 
ONIBWKKTOPOVIA-
BYPYZUCNSA-N 10.11 70.065 

Propionyl-Carnitine Acyl carnitines 219.1471 C10H20NO4 
UFAHZIUFPNSHSL-
UHFFFAOYSA-N 9.90 85.02841,85.05222,87.04406,84.08078,129.07843 

Pyridoxal Pyridoxals and derivatives 168.0661 C8H9NO3 
RADKZDMFGJYCBB-
UHFFFAOYSA-N 4.89 150.05434,122.06004 

Pyridoxal-5-phosphate Pyridoxals and derivatives 248.0319  C8H10NO6P 
NGVDGCNFYWLIFO-
UHFFFAOYSA-N 9.34 120.04393,137.04713,153.04204 

Pyridoxamine Pyridoxamine 5'-phosphates 169.0972  C8H12N2O2 
NHZMQXZHNVQTQA-
UHFFFAOYSA-N 17.25 134.06056,152.07061,124.07569 

Pyridoxine Pyridoxines 170.0812  C8H11NO3 
LXNHXLLTXMVWPM-
UHFFFAOYSA-N 4.8 134.06094 

Quinaldic acid Quinoline carboxylic acids 174.0555 C10H7NO2 
LOAUVZALPPNFOQ-
UHFFFAOYSA-N 4.16 156.04439,128.04948 

Reserpine Yohimbine alkaloids 609.2812 C33H40N2O9 
QEVHRUUCFGRFIF-
MDEJGZGSSA-N 2.59 195.06519,448.19659,174.09134,397.21218,365.18597 

Retinoic Acid Retinoids 301.2168 C20H28O2 
SHGAZHPCJJPHSC-
YCNIQYBTSA-N 2.23 123.11683,135.08044,175.14813,135.11683,161.09609 

Riboflavin Flavins 377.1461 C17H20N4O6 
AUNGANRZJHBGPY-
SCRDCRAPSA-N 4.50 198.0658,243.08715 

Riboflavin monophosphate Flavin nucleotides 457.1125 C17H21N4O9P 
FVTCRASFADXXNN-
SCRDCRAPSA-N 9.00 359.13432,439.10089,243.08722 

Ribose 5-phosphate Monosaccharides 231.0270 C5H11O8P 
KTVPXOYAKDPRHY-
SOOFDHNKSA-N 10.75  
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Sarcosine Amino acids and derivatives 90.0550  C3H7NO2 
FSYKKLYZXJSNPZ-
UHFFFAOYSA-N 11.00 57.03349 

Serotonin Serotonins 177.1022  C10H12N2O 
QZAYGJVTTNCVMB-
UHFFFAOYSA-N 10.28 160.07508,146.06004,143.07295,133.05222 

Sorbitol/Galactitol Sugar alcohols 183.0869 C6H14O6 
FBPFZTCFMRRESA-
JGWLITMVSA-N 9.40 110.03623,85.02841 

Tamoxifen Stilbenes 372.2328 C26H29NO 
NKANXQFJJICGDU-
QPLCGJKRSA-N 2.71 72.08078,129.06988,178.0777,128.06205,107.04914 

Taurine Organosulfonic acids 126.0219  C2H7NO3S 
XOAAWQZATWQOTB-
UHFFFAOYSA-N 10.60 111.01104,96.99539 

Taurochenodeoxycholic acid 
Taurinated bile acids and 
derivatives 500.3046 C26H45NO6S 

BHTRKEVKTKCXOH-
BJLOMENOSA-N 2.42 126.02113,464.28287 

Taurodeoxycholic acid 
Taurinated bile acids and 
derivatives 500.3046 C26H45NO6S 

AWDRATDZQPNJFN-
VAYUFCLWSA-N 2.4 464.28256,126.02143,339.26724 

Tauroursodeoxycholic acid 
Taurinated bile acids and 
derivatives 500.3046 C26H45NO6S 

BHTRKEVKTKCXOH-
VSHSPWMTSA-N 2.4 126.02199,464.28244 

Theophylline Xanthines 181.0720  C7H8N4O2 
ZFXYFBGIUFBOJW-
UHFFFAOYSA-N 2.8  

Thiamine Thiamines 265.1123 C12H16N4OS 
JZRWCGZRTZMZEH-
UHFFFAOYSA-N 16.24 122.07068,144.04711 

Thiamine monophosphate Thiamines 345.0787 C12H17N4O4PS 
HZSAJDVWZRBGIF-
UHFFFAOYSA-N 14.44  

Thiamine pyrophosphate Thiamines 425.0450 C12H18N4O7P2S 
AYEKOFBPNLCAJY-
UHFFFAOYSA-O 13.50  

Thioctamide Lipoamides 206.0673 C8H15NOS2 
FCCDDURTIIUXBY-
UHFFFAOYSA-N 2.49 119.0889,91.0576,105.07325,95.08553,81.06988 

Threonine Amino acids and derivatives 120.0661 C4H9NO3 
AYFVYJQAPQTCCC-
GBXIJSLDSA-N 10.60 102.05495 

Thymidine 
Pyrimidine 2'-
deoxyribonucleosides 243.0981 C10H14N2O5 

IQFYYKKMVGJFEH-
XLPZGREQSA-N 4.16 89.05917,127.0502 

Thymine Hydroxypyrimidines 127.0508 C5H6N2O2 
RWQNBRDOKXIBIV-
UHFFFAOYSA-N 4.12 69.03253,113.043,71.04914 

Tiglylglycine Amino acids and derivatives 158.0817 C7H11NO3 
WRUSVQOKJIDBLP-
HWKANZROSA-N 4.76  

Tocopherol Vitamin E compounds 431.3889 C29H50O2 
QUEDXNHFTDJVIY-
UHFFFAOYSA-N 2.15 165.09101,81.06988,95.08553 

trans-2-Methyl-2-pentenoic acid Branched fatty acids 115.0759 C6H10O2 
JJYWRQLLQAKNAD-
SNAWJCMRSA-N 9.00  

Trihydroxyisoflavone Isoflavones 271.0601  C15H10O5 
TZBJGXHYKVUXJN-
UHFFFAOYSA-N 2.39 253.04954 

Triiodo-L-thyronine Amino acids and derivatives 651.7979 C15H12I3NO4 
AUYYCJSJGJYCDS-
LBPRGKRZSA-N 4.10 605.79232,507.86625 

Tryptophan 
Indolyl carboxylic acids and 
derivatives 205.0977 C11H12N2O2 

QIVBCDIJIAJPQS-
VIFPVBQESA-N 7.55 188.07061,118.06513,159.09167 

Tyramine Phenethylamines 138.0913  C8H11NO 
DZGWFCGJZKJUFP-
UHFFFAOYSA-N 9.05 121.06534,95.04962 

Tyrosine Amino acids and derivatives 182.0817 C9H11NO3 
OUYCCCASQSFEME-
QMMMGPOBSA-N 8.91 107.04914 

UDP Glucose Pyrimidine nucleotide sugars 567.0629 C15H24N2O17P2 
HSCJRCZFDFQWRP-
LPTOLDDLSA-N 10.07 97.02787,177.2947 

UPD-alpha-D-Galactose Pyrimidine nucleotide sugars 567.0629 C15H24N2O17P2 
HSCJRCZFDFQWRP-
ABVWGUQPSA-N 10.30 97.02274 

Uracil Pyrimidones 113.0346  C4H4N2O2 
ISAKRJDGNUQOIC-
UHFFFAOYSA-N 4.33 57.03368,72.04439 

Ureidosuccinic acid Amino acids and derivatives 177.0512 C5H8N2O5 
HLKXYZVTANABHZ-
REOHCLBHSA-N 10.61 88.0395 
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Uric acid Xanthines 169.0362 C5H4N4O3 
LEHOTFFKMJEONL-
UHFFFAOYSA-N 8.09 127.04904,156.04037 

Uridine Pyrimidine nucleosides 245.0774 C9H12N2O6 
DRTQHJPVMGBUCF-
XVFCMESISA-N 5.7  

Uridine diphosphate 
Pyrimidine ribonucleoside 
diphosphates 405.0100 C9H14N2O12P2 

XCCTYIAWTASOJW-
XVFCMESISA-N 10.49 97.02841 

 Uridine monophosphate 
Pyrimidine ribonucleoside 
monophosphates 325.0437 C9H13N2O9P 

DJJCXFVJDGTHFX-
XVFCMESISA-N 10.52 97.02841 

Urocanic acid Substituted imidazoles 139.0508 C6H6N2O2 
LOIYMIARKYCTBW-
OWOJBTEDSA-N 8.13 121.03935,133.04954,124.99982,259.04783 

Vitamin D3 Vitamin D and derivatives 385.3471 C27H44O 
QYSXJUFSXHHAJI-
QWSSABAFSA-N 2.24 91.05423,195.40118,107.08553,105.06988,95.08553 

Vitamin K1 Vitamin K compounds 451.3576 C31H46O2 
MBWXNTAXLNYFJB-
LKUDQCMESA-N 2.56 109.10118,187.07536,123.11683,225.09101,95.08553 

Xanthine Xanthines 153.0413 C5H4N4O2 
LRFVTYWOQMYALW-
UHFFFAOYSA-N 5.9 110.03489 

Xanthosine Purine nucleosides 285.0835 C10H12N4O6 
UBORTCNDUKBEOP-
UUOKFMHZSA-N 7.95 89.0598,153.0407 

Xanthurenic acid Quinoline carboxylic acids 206.0453 C10H7NO4 
FBZONXHGGPHHIY-
UHFFFAOYSA-N 6.76 160.0393,188.03422 

 

Table 20 Human metabolite compound library in ZIC-HILIC negative ionization mode. Human metabolite reference standards from MetaSci in a concentration of 100 µM were 
acquired using the ZIC-HILIC-MS method in negative ionization mode. Only [M-H]- molecular ions were used for identification. The table shows an exempt from the UNIFI-Database 

and only metabolites detected in reference standards are shown. Other dataformats (such as MSP) are also available. 

NAME Ontology PRECURSORMZ FORMULA INCHIKEY RETENTIONTIME Fragmentlist 

10-Hydroxydecanoic acid 
Medium-chain hydroxy acids and 
derivatives 187.1334 C10H20O3 

FYSSBMZUBSBFJL-
SECBINFHSA-N 2.75  

1-Methyl Adenosine Purine nucleosides 280.1046 C11H15N5O4 
GFYLSDSUCHVORB-
JOLDIKRXSA-N 11.22 148.06287 

2-Amino-4-methylsulfonimidoyl-butanoic acid Amino acids and derivatives 179.0490 C5H12N2O3S 
SXTAYKAGBXMACB-
UHFFFAOYSA-N 11.26 78.00191 

2-Aminoisobutyric acid Amino acids and derivatives 102.0555 C4H9NO2 
FUOOLUPWFVMBKG-
UHFFFAOYSA-N 10.03 85.02863,67.01894 

2-Deoxyadenosine Purine 2'-deoxyribonucleosides 250.0940 C10H13N5O3 
OLXZPDWKRNYJJZ-
RRKCRQDMSA-N 4.36 160.06287 

2-Deoxycytidine Pyrimidine 2'-deoxyribonucleosides 226.0828 C9H13N3O4 
CKTSBUTUHBMZGZ-
SHYZEUOFSA-N 6.70 134.04948 

2-Deoxyuridine Pyrimidine 2'-deoxyribonucleosides 227.0668 C9H12N2O5 
MXHRCPNRJAMMIM-
SHYZEUOFSA-N 4.42 211.04862 

2-Hydroxy-3-methylbutyric acid Hydroxy fatty acids 117.0552 C5H10O3 
NGEWQZIDQIYUNV-
UHFFFAOYSA-N 4.72 99.04515,83.05024,71.05024,85.0295,101.02442 

2-Hydroxybutyric acid 
Alpha hydroxy acids and 
derivatives 103.0395 C4H8O3 

AFENDNXGAFYKQO-
UHFFFAOYSA-N 6.17 85.0295,71.01385 
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2-Hydroxycaproic acid/2-Ethyl-2-Hydroxybutyric acid/2-
Hydroxyisocaproic acid Medium-chain fatty acids 131.0708 C6H12O3 

NYHNVHGFPZAZGA-
UHFFFAOYSA-N 4.35 85.06589,113.0608,59.01385 

2-Hydroxyoctanoic acid Medium-chain fatty acids 159.1021 C8H16O3 
JKRDADVRIYVCCY-
UHFFFAOYSA-N 2.58  

2-Isopropylmalic acid Hydroxy fatty acids 175.0606 C7H12O5 
BITYXLXUCSKTJS-
ZETCQYMHSA-N 7.05 115.04007,85.06589 

2-Methylbutyrylglycine Amino acids and derivatives 158.0817 C7H13NO3 
HOACIBQKYRHBOW-
UHFFFAOYSA-N 4.25 74.02475,128.03532 

2-Methylglutaric acid Branched fatty acids 145.0501 C6H10O4 
AQYCMVICBNBXNA-
UHFFFAOYSA-N 10.11 101.0608,83.05024 

2-Methylhippuric acid Benzamides 192.0661 C10H11NO3 
YOEBAVRJHRCKRE-
UHFFFAOYSA-N 3.66 148.07679,174.05605 

2-Methylsuccinic acid Branched fatty acids 131.0344 C5H8O4 
WXUAQHNMJWJLTG-
UHFFFAOYSA-N 10.50 87.04515 

2-Octenoic acid Medium-chain fatty acids 141.0915 C8H14O2 
CWMPPVPFLSZGCY-
SREVYHEPSA-N 3.14  

2-Oxoadipic acid 
Medium-chain keto acids and 
derivatives 159.0293 C6H8O5 

FGSBNBBHOZHUBO-
UHFFFAOYSA-N 9.92 115.04007 

2-Picolinic acid Pyridinecarboxylic acids 122.0242 C6H5NO2 
SIOXPEMLGUPBBT-
UHFFFAOYSA-N 4.80 107.03766 

2-Propanamidoacetic acid Amino acids and derivatives 130.0510  C5H9NO3 
WOMAZEJKVZLLFE-
UHFFFAOYSA-N 7.20 74.02475,86.06114 

3-Chloro-Tyrosine Amino acids and derivatives 214.0271 C9H10ClNO3 
ACWBBAGYTKWBCD-
UHFFFAOYSA-N 7.94 72.0091 

3-Hydroxy-3-methylglutaric acid Hydroxy fatty acids 161.0455  C6H10O5 
NPOAOTPXWNWTSH-
UHFFFAOYSA-N 2.39 103.03967,146.05846,116.04789,118.04789 

3-Hydroxybutanoic acid/3-hydroxybutyric acid Beta hydroxy acids and derivatives 103.0395 C4H8O3 
WHBMMWSBFZVSSR-
GSVOUGTGSA-N 7.60  

3-Hydroxymandelic acid 
1-hydroxy-4-unsubstituted 
benzenoids 167.0344 C8H8O4 

OLSDAJRAVOVKLG-
UHFFFAOYSA-N 6.84 121.0295,123.04515,93.03459,92.02676,149.02442 

3-Hydroxyphenylacetic acid 
1-hydroxy-4-unsubstituted 
benzenoids 151.0401  C8H8O3 

FVMDYYGIDFPZAX-
UHFFFAOYSA-N 5.97 119.04989,59.01472,107.05024,92.02676,106.04241 

3-Indolebutyric acid 3-alkylindoles 202.0868 C12H13NO2 
JTEDVYBZBROSJT-
UHFFFAOYSA-N 2.79 116.05057,158.09752,156.08187,184.07679 

3-Indolepropionic acid 
Indolyl carboxylic acids and 
derivatives 188.0717  C11H11NO2 

GOLXRNDWAUTYKT-
UHFFFAOYSA-N 4.13 59.01429,116.05043,129.0571,142.06622,144.08187 

3-Methyl-L-histidine Amino acids and derivatives 168.0773 C7H11N3O2 
JDHILDINMRGULE-
LURJTMIESA-N 13.21 101.06115,72.0091,151.0513 

3-Methylthio propionic acid Straight chain fatty acids 119.0167 C4H8O2S 
CAOMCZAIALVUPA-
UHFFFAOYSA-N 5.03  

3-Methylxanthine Xanthines 165.0412 C6H6N4O2 
GMSNIKWWOQHZGF-
UHFFFAOYSA-N 4.18 122.0346 

3-Nitro-tyrosine Amino acids and derivatives 225.0511 C9H10N2O5 
FBTSQILOGYXGMD-
LURJTMIESA-N 8.03 163.05004,136.03923 

3-Phenyllactic acid Phenylpropanoic acids 165.0552 C9H10O3 
VOXXWSYKYCBWHO-
UHFFFAOYSA-N 3.54 147.04515,119.05024 
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4-Acetamidobutyric acid Amino acids and derivatives 144.0666  C6H11NO3 
UZTFMUBKZQVKLK-
UHFFFAOYSA-N 8.42 102.05656,126.05673 

4-Guanidinobutyric acid Amino acids and derivatives 144.0779  C5H11N3O2 
TUHVEAJXIMEOSA-
UHFFFAOYSA-N 11.40 102.05573,127.05089 

4-Hydroxyphenylpyruvic acid Phenylpyruvic acid derivatives 179.0350  C9H8O4 
KKADPXVIOXHVKN-
UHFFFAOYSA-N 5.52 107.04956,106.04241 

4-Methyl-2-oxovaleric Acid 
Short-chain keto acids and 
derivatives 129.0557  C6H10O3 

BKAJNAXTPSGJCU-
UHFFFAOYSA-N 3.50 72.99312,85.06589 

4-Methylvaleric acid Branched fatty acids 115.0759 C6H12O2 
FGKJLKRYENPLQH-
UHFFFAOYSA-N 3.21 97.06589,71.01385 

4-Pyridoxic acid Pyridinecarboxylic acids 182.0459  C8H9NO4 
HXACOUQIXZGNBF-
UHFFFAOYSA-N 2.68 108.04785,138.05863 

5-Aminolevulinic acid Amino acids and derivatives 130.0504 C5H9NO3 
ZGXJTSGNIOSYLO-
UHFFFAOYSA-N 12.51 112.0404,99.04515 

5-Hydroxy-3-indoleacetic acid Indole-3-acetic acid derivatives 190.0510  C10H9NO3 
DUUGKQCEGZLZNO-
UHFFFAOYSA-N 8.47 144.04789,131.03974 

5-Hydroxylysine Amino acids and derivatives 161.0926 C6H14N2O3 
YSMODUONRAFBET-
UHNVWZDZSA-N 18.88 115.08769,125.07204 

5-Hydroxymethyl uracil Pyrimidones 141.0300 C5H6N2O3 
JDBGXEHEIRGOBU-
UHFFFAOYSA-N 5.80 123.02 

5-Hydroxymethyl-2-furancarboxylic acid Furoic acids 141.0188 C6H6O4 
PCSKKIUURRTAEM-
UHFFFAOYSA-N 7.09 97.0295 

5-Hydroxytryptophan Serotonins 219.0770 C11H12N2O3 
LDCYZAJDBXYCGN-
UHFFFAOYSA-N 9.44 132.04549,72.0091,175.08769 

5-Methoxy-tryptophan Serotonins 233.0926 C12H14N2O3 
KVNPSKDDJARYKK-
JTQLQIEISA-N 7.16 158.06114,174.07944 

5-Methylcytosine Hydroxypyrimidines 124.0511 C5H7N3O 
LRSASMSXMSNRBT-
UHFFFAOYSA-N 6.19  

5-Methyluridine Pyrimidine nucleosides 257.0773 C10H14N2O6 
DWRXFEITVBNRMK-
JXOAFFINSA-N 4.70 190.05693,142.05287 

Aconitic acid Tricarboxylic acids and derivatives 173.0086 C6H6O6 
GTZCVFVGUGFEME-
IWQZZHSRSA-N 11.13 129.01933,141.0158,154.9986 

Adenosine 5-diphosphate Purine ribonucleoside diphosphates 426.0216 C10H15N5O10P2 
XTWYTFMLZFPYCI-
KQYNXXCUSA-N 10.23 158.92771,96.97414 

Adenosine 5-triphosphate Purine ribonucleoside triphosphates 505.9879 C10H16N5O13P3 
ZKHQWZAMYRWXGA-
KQYNXXCUSA-N 10.42 158.9277 

Adenosine-5-monophosphate 
Purine ribonucleoside 
monophosphates 346.0552 C10H14N5O7P 

UDMBCSSLTHHNCD-
KQYNXXCUSA-N 10.07 96.97152,78.96091 

Alanine/Sarcosine Amino acids and derivatives 88.0398 C3H7NO2 
QNAYBMKLOCPYGJ-
REOHCLBHSA-N 10.90 57.03533,58.02984 

Allantoic acid Amino acids and derivatives 175.0473  C4H8N4O4 
NUCLJNSWZCHRKL-
UHFFFAOYSA-N 10.18 89.03565,132.04146 

Allantoin Imidazoles 157.0362 C4H6N4O3 
POJWUDADGALRAB-
UHFFFAOYSA-N 8.49 97.00435 

alpha-Hydroxyhippuric acid Benzamides 194.0453 C9H9NO4 
XDOFWFNMYJRHEW-
UHFFFAOYSA-N 4.81 72.99312,120.04549 

alpha-Lipoic acid Lipoic acids and derivatives 205.0357 C8H14O2S2 
AGBQKNBQESQNJD-
SSDOTTSWSA-N 3.83  
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Aminoadipic acid Amino acids and derivatives 160.0610 C6H11NO4 
OYIFNHCXNCRBQI-
UHFFFAOYSA-N 10.65 67.01932,85.02931,85.0295,71.01385,142.05097 

Androsterone Androgens and derivatives 289.2167 C19H30O2 
QGXBDMJGAMFCBF-
HLUDHZFRSA-N 2.53  

Anhydro-d-Glucitol Monosaccharides 163.0606 C6H12O5 
MPCAJMNYNOGXPB-
SLPGGIOYSA-N 7.79 87.00899,71.05024,99.04515,133.05063,134.05907 

Arabinose Monosaccharides 149.0450 C5H10O5 
SRBFZHDQGSBBOR-
HWQSCIPKSA-N 16.82 121.05063 

Arabitol Amino acids and derivatives 151.0606 C5H12O5 
CKLJMWTZIZZHCS-
REOHCLBHSA-N 9.01 71.01425 

Arachidic acid Long-chain fatty acids 311.2956  C20H40O2 
VKOBVWXKNCXXDE-
UHFFFAOYSA-N 2.18 269.2486,255.23295 

Arachidonic acid Long-chain fatty acids 303.2324 C20H32O2 
YZXBAPSDXZZRGB-
DOFZRALJSA-N 2.18  

Arginine Amino acids and derivatives 173.1038 C6H14N4O2 
ODKSFYDXXFIFQN-
BYPYZUCNSA-N 19.22 131.08455 

Ascorbic acid Furanones 175.0242 C6H8O6 
TYQCGQRIZGCHNB-
MVHIGOERSA-N 9.48 87.00763,115.00229,76.96005 

Asparagine Amino acids and derivatives 131.0457 C4H8N2O3 
DCXYFEDJOCDNAF-
REOHCLBHSA-N 11.22 72.0091 

Aspartic acid Amino acids and derivatives 132.0297 C4H7NO4 
CKLJMWTZIZZHCS-
REOHCLBHSA-N 10.60 72.0091,86.02475 

Azelaic acid Medium-chain fatty acids 187.0970 C9H16O4 
BDJRBEYXGGNYIS-
UHFFFAOYSA-N 9.58 125.09719,141.0921,97.06589,123.08154 

beta-Alanine/Sarcosine Amino acids and derivatives 88.0398 C3H7NO2 
UCMIRNVEIXFBKS-
UHFFFAOYSA-N 11.10 57.0353,71.0385,59.01477 

beta-Glycerophosphoric acid/n-Glycerol 3-Phosphate Glycerophosphates 171.0058 C3H9O6P 
DHCLVCXQIBBOPH-
UHFFFAOYSA-N 10.53 78.95847,152.99436,96.97039 

beta-hydroxyisobutyrate Beta hydroxy acids and derivatives 103.0395 C4H8O3 
DBXBTMSZEOQQDU-
VKHMYHEASA-N 8.33 73.0295 

beta-Hydroxyisovaleric acid Hydroxy fatty acids 117.0557  C5H10O3 
AXFYFNCPONWUHW-
UHFFFAOYSA-N 5.55 59.01496 

Bilirubin Bilirubins 583.2556 C33H36N4O6 
BPYKTIZUTYGOLE-
IFADSCNNSA-N 3.95 285.1247,391.2263,253.13464,213.10334 

Biotin Biotin and derivatives 243.0803 C10H16N2O3S 
YBJHBAHKTGYVGT-
ZKWXMUAHSA-N 6.44 199.09389 

Capryloyl glycine Amino acids and derivatives 200.1287 C10H19NO3 
SAVLIIGUQOSOEP-
UHFFFAOYSA-N 4.17 74.02475 

Carnosine Hybrid peptides 225.0988 C9H14N4O3 
CQOVPNPJLQNMDC-
ZETCQYMHSA-N 14.42 110.07363,154.06413 

Chenodeoxycholic acid 
Hydroxy bile acids, alcohols and 
derivatives 391.2848 C24H40O4 

RUDATBOHQWOJDD-
BSWAIDMHSA-N 2.58 373.27482 

Cholesterol 3-Sulfate Cholesterols and derivatives 465.3038 C27H46O4S 
BHYOQNUELFTYRT-
DPAQBDIFSA-N 2.23 96.9601 

Cholic acid 
Hydroxy bile acids, alcohols and 
derivatives 407.2797 C24H40O5 

BHQCQFFYRZLCQQ-
OELDTZBJSA-N 2.66 343.26425,289.2173 
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cis-4-Hydroxy-D-proline/L-Hydroxyproline Amino acids and derivatives 130.0504 C5H9NO3 
PMMYEEVYMWASQN-
QWWZWVQMSA-N 11.00 112.0404,85.0295,71.01385 

Citicoline 
Pyrimidine ribonucleoside 
diphosphates 487.0995 C14H26N4O11P2 

RZZPDXZPRHQOCG-
OJAKKHQRSA-N 11.35 78.96081 

Citrulline Amino acids and derivatives 174.0879 C6H13N3O3 
RHGKLRLOHDJJDR-
BYPYZUCNSA-N 11.22 131.0826 

Corticosterone 21-hydroxysteroids 345.2066 C21H30O4 
OMFXVFTZEKFJBZ-
HJTSIMOOSA-N 2.49 329.17589,301.18092,137.0608,311.16527 

Cortisone 21-hydroxysteroids 359.1858 C21H28O5 
MFYSYFVPBJMHGN-
ZPOLXVRWSA-N 2.51 329.17583,301.18092,137.0608,311.16527 

Creatine Amino acids and derivatives 130.0616 C4H9N3O2 
CVSVTCORWBXHQV-
UHFFFAOYSA-N 10.89 88.0404 

Cystathionine Amino acids and derivatives 221.0596 C7H14N2O4S 
ILRYLPWNYFXEMH-
WHFBIAKZSA-N 12.83 134.02812,120.01247 

Cysteic acid Amino acids and derivatives 167.9967 C3H7NO5S 
XVOYSCVBGLVSOL-
UHFFFAOYSA-N 10.10 80.96519,94.98084,79.95736,71.01385 

Cysteine Amino acids and derivatives 120.0119 C3H7NO2S 
XUJNEKJLAYXESH-
REOHCLBHSA-N 10.50 71.01385,86.02475 

Cystine Amino acids and derivatives 239.0160 C6H12N2O4S2 
LEVWYRKDKASIDU-
IMJSIDKUSA-N 13.45 222.01383,204.00327,132.94628 

Cytidine Pyrimidine nucleosides 242.0777 C9H13N3O5 
UHDGCWIWMRVCDJ-
XVFCMESISA-N 7.74  

Cytidine 5-monophosphate 
Pyrimidine ribonucleoside 
monophosphates 322.0440 C9H14N3O8P 

IERHLVCPSMICTF-
XVFCMESISA-N 11.04 78.9594,96.96969 

Cytidine 5-triphosphate Monosaccharides 481.9767 C9H16N3O14P3 
PCDQPRRSZKQHHS-
XVFCMESISA-N 11.21 78.9594,96.96969,158.9248 

Deoxyguanosine-5-monophosphate 
Purine deoxyribonucleoside 
monophosphates 346.0552 C10H14N5O7P 

LTFMZDNNPPEQNG-
KVQBGUIXSA-N 10.76 78.96001 

Deoxyinosine Purine 2'-deoxyribonucleosides 251.0780 C10H12N4O4 
VGONTNSXDCQUGY-
RRKCRQDMSA-N 5.61 108.02217,135.03333 

Dihydroxyacetone phosphate Monosaccharides 168.9907  C3H7O6P 
GNGACRATGGDKBX-
UHFFFAOYSA-N 11.06 78.95905,96.96962,150.98018,138.98018,73.0295 

Dihydroxybenzoic acid Hydroxybenzoic acid derivatives 153.0188 C7H6O4 
UYEMGAFJOZZIFP-
UHFFFAOYSA-N 8.40 109.0295,121.0295 

Dimethylglutaric acid Branched fatty acids 159.0657 C7H12O4 
DUHQIGLHYXLKAE-
UHFFFAOYSA-N 3.57 115.07645 

Diosmin Flavonoid O-glycosides 607.1663 C28H32O15 
GZSOSUNBTXMUFQ-
YFAPSIMESA-N 4.11  

Dioxoheptanoic acid 
Medium-chain keto acids and 
derivatives 157.0501 C7H10O4 

WYEPBHZLDUPIOD-
UHFFFAOYSA-N 4.47 116.04949,142.06493 

Dodecanedioic acid Medium-chain fatty acids 229.1440 C12H22O4 
TVIDDXQYHWJXFK-
UHFFFAOYSA-N 3.98 143.10775,123.08154,129.0921,181.15979,109.06589 

Dopa Amino acids and derivatives 196.0610 C9H11NO4 
WTDRDQBEARUVNC-
LURJTMIESA-N 10.3 72.0091,122.03733,109.0295 
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Eicosatrienoic acid Long-chain fatty acids 305.2480 C20H34O2 
HOBAELRKJCKHQD-
QNEBEIHSSA-N 2.18 135.08154,123.08154,109.06589,95.05024 

Estradiol Estrogens and derivatives 271.1698 C18H24O2 
VOXZDWNPVJITMN-
ZBRFXRBCSA-N 2.35 95.05024,109.06589,107.05024,113.09719,121.06589 

Estriol Estrogens and derivatives 287.1647 C18H24O3 
PROQIPRRNZUXQM-
ZXXIGWHRSA-N 2.47  

Estrone Estrogens and derivatives 269.1541 C18H22O2 
DNXHEGUUPJUMQT-
CBZIJGRNSA-N 2.40 125.09719,163.11284,97.06589,123.08154,109.06589 

Ethosuximide Pyrrolidine-2-ones 140.0711 C7H11NO2 
HAPOVYFOVVWLRS-
UHFFFAOYSA-N 2.52  

Flavin Adenine Dinucleotide Flavin nucleotides 784.1493 C27H33N9O15P2 
VWWQXMAJTJZDQX-
UYBVJOGSSA-N 8.40 439.10089,366.139,346.05581,437.08677 

Flavone Flavones 221.0602 C15H10O2 
VHBFFQKBGNRLFZ-
UHFFFAOYSA-N 4.30  

Folic acid Amino acids and derivatives 440.1318 C19H19N7O6 
OVBPIULPVIDEAO-
LBPRGKRZSA-N 10.34 175.04958 

Folinic acid 
Tetrahydropteroic acids and 
derivatives 472.1581 C20H23N7O7 

VVIAGPKUTFNRDU-
UHFFFAOYSA-N 9.99 308.1072,128.0351,272.1153 

Formononetine 4'-O-methylated isoflavonoids 267.0663  C16H12O4 
HKQYGTCOTHHOMP-
UHFFFAOYSA-N 2.31 251.03498,91.01894,107.05024,159.04515 

Fructose/Mannose Glycosyl compounds 179.0555 C6H12O6 
RFSUNEUAIZKAJO-
ARQDHWQXSA-N 9.22 59.01385,71.01385,99.04515 

Fructose-biphosphate Monosaccharides 338.9882 C6H14O12P2 
WSMBXSQDFPTODV-
JGWLITMVSA-N 11.50 72.95905,96.96962,211.00131,241.01146,150.97976 

Fucose Monosaccharides 163.0606 C6H12O5 
SHZGCJCMOBCMKK-
DHVFOXMCSA-N 3.24 118.06354 

Fumaric acid Dicarboxylic acids and derivatives 115.0031 C4H4O4 
VZCYOOQTPOCHFL-
OWOJBTEDSA-N 10.72 71.01385 

Galactonic acid 
Medium-chain hydroxy acids and 
derivatives 195.0505 C6H12O7 

RGHNJXZEOKUKBD-
MGCNEYSASA-N 10.04 75.0089 

Galactose Monosaccharides 179.0555 C6H12O6 
WQZGKKKJIJFFOK-
PHYPRBDBSA-N 6.04  

Glucosamine 6-phosphate Monosaccharides 258.0379 C6H14NO8P 
XHMJOUIAFHJHBW-
UKFBFLRUSA-N 13.05 78.96089,96.96962,240.02749 

Glucose 1-phosphate/Galactose-1-phosphate/D-Fructose-6-
phosphate/D-Glucose 6-phosphate Monosaccharides 259.0219 C6H13O9P 

HXXFSFRBOHSIMQ-
GASJEMHNSA-N 11.00 78.95809,96.9693,183.01041,241.0148 

Glucuro-3-6-lactone Isosorbides 175.0242 C6H8O6 
OGLCQHRZUSEXNB-
WHDMSYDLSA-N 6.44 113.02442,85.0295 

Glucuronic acid Sugar acids and derivatives 193.0348 C6H10O7 
AEMOLEFTQBMNLQ-
AQKNRBDQSA-N 10.34 132.04281 

Glutamic acid Amino acids and derivatives 146.0453 C5H9NO4 
WHUUTDBJXJRKMK-
VKHMYHEASA-N 10.56  

Glutamine Amino acids and derivatives 145.0613 C5H10N2O3 
ZDXPYRJPNDTMRX-
VKHMYHEASA-N 11.26 111.00877,67.01968,85.03,97.02976 
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Glyceric acid Sugar acids and derivatives 105.0188 C3H6O4 
RBNPOMFGQQGHHO-
UWTATZPHSA-N 8.49 75.00877,72.99312 

Glycerol Tributyrate Triacylglycerols 301.1651 C15H26O6 
UYXTWWCETRIEDR-
UHFFFAOYSA-N 2.52  

Glycerol Tridecanoate Triacylglycerols 553.4468 C33H62O6 
LADGBHLMCUINGV-
UHFFFAOYSA-N 2.25 243.16018,211.13397 

Glycocholic acid 
Glycinated bile acids and 
derivatives 464.3012 C26H43NO6 

RFDAIACWWDREDC-
MZMBZMQMSA-N 4.96 74.02475,402.30137,400.28572,382.27515,446.2912 

Glycodeoxycholic acid/Glycochenodeoxycholic acid 
Glycinated bile acids and 
derivatives 448.3063 C26H43NO5 

WVULKSPCQVQLCU-
ZMBDPXIHSA-N 2.74 125.09719,74.02475,329.23603,402.30137,137.09691 

Glycoursodeoxycholic acid 
Glycinated bile acids and 
derivatives 448.3063 C26H43NO5 

GHCZAUBVMUEKKP-
XROMFQGDSA-N 4.36 74.02475,386.30645 

Guanidinoacetic acid Amino acids and derivatives 116.0466  C3H7N3O2 
BPMFZUMJYQTVII-
UHFFFAOYSA-N 11.06 74.02475 

Guanine Purines and purine derivatives 150.0421  C5H5N5O 
UYTPUPDQBNUYGX-
UHFFFAOYSA-N 7.39 133.01558 

Guanosine Purine nucleosides 282.0838 C10H13N5O5 
NYHBQMYGNKIUIF-
UUOKFMHZSA-N 7.97 241.07258,150.04213,133.01523 

Guanosine 5-monophosphate 
Purine ribonucleoside 
monophosphates 362.0502 C10H14N5O8P 

RQFCJASXJCIDSX-
UUOKFMHZSA-N 11.06 96.97141,78.96081,306.07347,179.05745 

Guanosine 5-triphosphat Purine ribonucleoside triphosphates 521.9828 C10H16N5O14P3 
XKMLYUALXHKNFT-
UUOKFMHZSA-N 11.06 158.92771,272.96138,96.9714 

Heneicosanoic acid Long-chain fatty acids 325.3112  C21H42O2 
CKDDRHZIAZRDBW-
UHFFFAOYSA-N 2.18 253.21678 

Heptadecanoic acid Long-chain fatty acids 269.2480 C17H34O2 
KEMQGTRYUADPNZ-
UHFFFAOYSA-N 2.23 255.23295,85.0295,151.11284 

Heptanoic acid Medium-chain fatty acids 129.0915 C7H14O2 
MNWFXJYAOYHMED-
UHFFFAOYSA-N 3.05  

Hippuric acid Benzamides 178.0504 C9H9NO3 
QIAFMBKCNZACKA-
UHFFFAOYSA-N 4.18 134.06114 

Histidine Amino acids and derivatives 154.0616 C6H9N3O2 
HNDVDQJCIGZPNO-
YFKPBYRVSA-N 11.85 136.05164 

Histidinol Aralkylamines 140.0824 C6H11N3O 
ZQISRDCJNBUVMM-
YFKPBYRVSA-N 17.85  

Homoarginine Amino acids and derivatives 187.1195 C7H16N4O2 
QUOGESRFPZDMMT-
YFKPBYRVSA-N 18.44 145.09825,170.0935,128.0717 

Homocitrulline Amino acids and derivatives 188.1035 C7H15N3O3 
XIGSAGMEBXLVJJ-
YFKPBYRVSA-N 10.88 145.09825 

Homocystine Amino acids and derivatives 267.0473 C8H16N2O4S2 
ZTVZLYBCZNMWCF-
UHFFFAOYSA-N 11.92 72.00985,132.0123,179.04559,114.9867 

Homogentisic acid 2(hydroxyphenyl)acetic acids 167.0350  C8H8O4 
IGMNYECMUMZDDF-
UHFFFAOYSA-N 5.31 123.04482,121.0295,108.02166 

Homoserine Amino acids and derivatives 118.0504 C4H9NO3 
UKAUYVFTDYCKQA-
VKHMYHEASA-N 10.80 100.04066 

Homovanillic acid Methoxyphenols 181.0506  C9H10O4 
QRMZSPFSDQBLIX-
UHFFFAOYSA-N 6.50 137.0608,122.03733,151.04007,163.04007,148.01487 
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Hydrocortisone 21-hydroxysteroids 361.2015 C21H30O5 
JYGXADMDTFJGBT-
VWUMJDOOSA-N 2.83 331.19148,297.14962,315.16018,189.091,135.08154 

Hydroxy-3-methoxymandelic acid Methoxyphenols 197.0450 C9H10O5 
CGQCWMIAEPEHNQ-
QMMMGPOBSA-N 6.44 179.0376,137.02603 

Hydroxyglutaric acid 
Short-chain hydroxy acids and 
derivatives 147.0293 C5H8O5 

HWXBTNAVRSUOJR-
GSVOUGTGSA-N 10.22 87.01507,129.01933,85.0295,103.04007 

Hydroxyphenyllactic acid Phenylpropanoic acids 181.0501 C9H10O4 
JVGVDSSUAVXRDY-
UHFFFAOYSA-N 6.10 87.00926,163.04017,135.04525 

Hypotaurine Sulfinic acids 108.0119 C2H7NO2S 
VVIUBCNYACGLLV-
UHFFFAOYSA-N 10.68  

Imidazole-acetic Acid Substituted imidazoles 125.0351 C5H6N2O2 
PRJKNHOMHKJCEJ-
UHFFFAOYSA-N 10.65 81.04582 

Indole-2-carboxylic acid/Indole-3-carboxylic acid 
Indolecarboxylic acids and 
derivatives 160.0398 C9H7NO2 

HCUARRIEZVDMPT-
UHFFFAOYSA-N 3.50 116.05057 

Indole-3-lactic acid 
Indolyl carboxylic acids and 
derivatives 204.0661 C11H11NO3 

XGILAAMKEQUXLS-
UHFFFAOYSA-N 4.69 158.0624,116.05154 

Indole-3-propionic acid 
Indolyl carboxylic acids and 
derivatives 188.0717  C11H11NO2 

GOLXRNDWAUTYKT-
UHFFFAOYSA-N 4.13 59.01429,116.05043,129.0571,142.06622,144.08187 

Indoxyl sulfate Arylsulfates 212.0023  C8H7NO4S 
BXFFHSIDQOFMLE-
UHFFFAOYSA-N 3.80 79.95659,132.04433,80.96519 

Inosine Purine nucleosides 267.0729 C10H12N4O5 
UGQMRVRMYYASKQ-
KQYNXXCUSA-N 6.85 135.03375,108.02034 

Inosine 5-triphosphate Purine ribonucleoside triphosphates 506.9719 C10H15N4O14P3 
HAEJPQIATWHALX-
KQYNXXCUSA-N 10.65 158.92629 

Isocitric acid Tricarboxylic acids and derivatives 191.0192 C6H8O7 
ODBLHEXUDAPZAU-
VVJJHMBFSA-N 11.16 111.00877,173.00916,73.0295,85.0295 

Isoxanthopterin Pterins and derivatives 178.0370  C6H5N5O2 
GLKCOBIIZKYKFN-
UHFFFAOYSA-N 7.50 136.01525,161.0105 

Ketoleucine 
Short-chain keto acids and 
derivatives 129.0557  C6H10O3 

BKAJNAXTPSGJCU-
UHFFFAOYSA-N 3.50 72.99312,85.06589 

Kynurenic acid Quinoline carboxylic acids 188.0353  C10H7NO3 
HCZHHEIFKROPDY-
UHFFFAOYSA-N 4.72 144.04549,142.02984 

Kynurenine Ketones 207.0770 C10H12N2O3 
YGPSJZOEDVAXAB-
QMMMGPOBSA-N 7.22 190.0536,92.0513 

Lactate 
Alpha hydroxy acids and 
derivatives 89.0239 C3H6O3 

JVTAAEKCZFNVCJ-
REOHCLBHSA-N 7.69 71.01385 

Lauric acid Medium-chain fatty acids 199.1704  C12H24O2 
POULHZVOKOAJMA-
UHFFFAOYSA-N 2.28 95.05024,109.06589,99.04515,81.03459,85.0295 

Levulinic acid Gamma-keto acids and derivatives 115.0395 C5H8O3 
JOOXCMJARBKPKM-
UHFFFAOYSA-N 6.52 85.0295,99.04647,73.0295,97.0295 

Linoleic acid Lineolic acids and derivatives 279.2324 C18H32O2 
OYHQOLUKZRVURQ-
HZJYTTRNSA-N 2.54 125.09719,137.09719,113.09719,155.10775,163.11284 

Linolenic Acid Lineolic acids and derivatives 277.2167 C18H30O2 
DTOSIQBPPRVQHS-
PDBXOOCHSA-N 2.33 163.11184,181.15979 

L-Isoleucine/L-Leucine/L-allo-Isoleucine Amino acids and derivatives 130.0868 C6H13NO2 
AGPKZVBTJJNPAG-
WHFBIAKZSA-N 8.5 74.02475,83.05024,113.0608,100.0404 
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Lithocholic acid 
Hydroxy bile acids, alcohols and 
derivatives 375.2899 C24H40O3 

SMEROWZSTRWXGI-
YPLGJCPNSA-N 2.37 143.10775 

Luteolin Flavones 285.0399 C15H10O6 
IQPNAANSBPBGFQ-
UHFFFAOYSA-N 2.56 107.01385,163.03975,267.02945,109.02942,177.01908 

Malic acid Beta hydroxy acids and derivatives 133.0137 C4H6O5 
BJEPYKJPYRNKOW-
UHFFFAOYSA-N 11.75 115.00368,71.01385 

Maltotriose Oligosaccharides 503.1612 C18H32O16 
FYGDTMLNYKFZSV-
DZOUCCHMSA-N 5.62 108.02024,161.04643,251.07807 

Melatonin 3-alkylindoles 231.1139  C13H16N2O2 
DRLFMBDRBRZALE-
UHFFFAOYSA-N 2.50 144.0469,157.05475 

Melibiose Glycosyl compounds 341.1084 C12H22O11 
DLRVVLDZNNYCBX-
ABXHMFFYSA-N 11.09 179.05611,221.0675 

Methionine Amino acids and derivatives 148.0432 C5H11NO2S 
FFEARJCKVFRZRR-
BYPYZUCNSA-N 8.58  

m-Hydroxyhippuric Acid Benzamides 194.0453 C9H9NO4 
XDOFWFNMYJRHEW-
UHFFFAOYSA-N 5.98 93.03541,150.0575 

Myoinositol Secondary alcohols 179.0555 C6H12O6 
CDAISMWEOUEBRE-
GPIVLXJGSA-N 11.16 71.01484,87.00877,99.00877 

Myristic acid Long-chain fatty acids 227.2011 C14H28O2 
TUNFSRHWOTWDNC-
UHFFFAOYSA-N 2.25 157.1234,113.0608,155.10775 

N-Acetyl-5-hydroxytryptamine Hydroxyindoles 217.0983  C12H14N2O2 
MVAWJSIDNICKHF-
UHFFFAOYSA-N 2.90 58.02967,131.03647,144.04438 

N-Acetyl-D-mannosamine Aminosaccharides 220.0821 C8H15NO6 
OVRNDRQMDRJTHS-
ZTVVOAFPSA-N 8.44 87.00877,170.04588 

N-Acetylglucosamine Aminosaccharides 220.0821 C8H15NO6 
OVRNDRQMDRJTHS-
FMDGEEDCSA-N 8.06  

N-Acetylglutamic acid Amino acids and derivatives 188.0559 C7H11NO5 
RFMMMVDNIPUKGG-
UHFFFAOYSA-N 9.99 128.03595 

N-Acetylglycine Amino acids and derivatives 116.0353  C4H7NO3 
OKJIRPAQVSHGFK-
UHFFFAOYSA-N 9.00 74.02475,59.01385 

N-Acetyl-L-alanine Amino acids and derivatives 130.0504 C5H9NO3 
KTHDTJVBEPMMGL-
VKHMYHEASA-N 7.67 88.04092 

N-Acetyl-L-arginine Amino acids and derivatives 215.1144 C8H16N4O3 
SNEIUMQYRCDYCH-
LURJTMIESA-N 10.99 173.09317,131.0826,129.10334 

N-Acetyl-L-aspartic acid Amino acids and derivatives 174.0402 C6H9NO5 
OTCCIMWXFLJLIA-
BYPYZUCNSA-N 10.11 156.03256,88.0404,130.05097 

N-Acetyl-Leucine Amino acids and derivatives 172.0974 C8H15NO3 
WXNXCEHXYPACJF-
ZETCQYMHSA-N 4.21 130.08735 

N-Acetyl-L-methionine Amino acids and derivatives 190.0538 C7H13NO3S 
XUYPXLNMDZIRQH-
UHFFFAOYSA-N 4.62 148.04575,142.05097,98.06114,84.04549 

N-Acetyl-L-ornithine Amino acids and derivatives 173.0926 C7H14N2O3 
JRLGPAXAGHMNOL-
LURJTMIESA-N 11.39 131.0826 

N-Acetyl-L-tyrosine Amino acids and derivatives 222.0766 C11H13NO4 
CAHKINHBCWCHCF-
JTQLQIEISA-N 6.05 180.0693,107.052 

N-Acetylneuraminic acid Sugar acids and derivatives 308.0981 C11H19NO9 
SQVRNKJHWKZAKO-
PFQGKNLYSA-N 9.61 170.04588,87.00877 

N-Acetylserotonin Hydroxyindoles 217.0983  C12H14N2O2 
MVAWJSIDNICKHF-
UHFFFAOYSA-N 2.90 58.02967,131.03647,144.04438 

NAD (5'->5')-dinucleotides 662.1013 C21H27N7O14P2 
BAWFJGJZGIEFAR-
NNYOXOHSSA-O 10.42  
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NADH (5'->5')-dinucleotides 664.1169 C21H29N7O14P2 
BOPGDPNILDQYTO-
UHFFFAOYSA-N 9.87 346.0558,408.0116,158.9253,397.0207,78.9591 

NADP (5'->5')-dinucleotides 742.0676 C21H28N7O17P3 
XJLXINKUBYWONI-
NNYOXOHSSA-O 10.88 158.92771,408.01782,620.02016,158.92538 

Nicotinic acid Pyridinecarboxylic acids 122.0248  C6H5NO2 
PVNIIMVLHYAWGP-
UHFFFAOYSA-N 6.30 78.03942 

Nicotinoylglycine Amino acids and derivatives 179.0462  C8H8N2O3 
ZBSGKPYXQINNGF-
UHFFFAOYSA-N 7.52 78.03492,135.05552,133.04074 

N-Isovalerylglycine Amino acids and derivatives 158.0823  C7H13NO3 
ZRQXMKMBBMNNQC-
UHFFFAOYSA-N 5.43 74.02475,114.09244,98.06114 

N-Methyl-D-aspartic acid Amino acids and derivatives 146.0453 C5H9NO4 
HOKKHZGPKSLGJE-
GSVOUGTGSA-N 10.28 115.00368 

N-Methyl-L-glutamic acid Amino acids and derivatives 160.0610 C6H11NO4 
XLBVNMSMFQMKEY-
BYPYZUCNSA-N 10.15 128.03532,71.01385,146.04588 

Nonadecanoic acid Long-chain fatty acids 297.2793 C19H38O2 
ISYWECDDZWTKFF-
UHFFFAOYSA-N 2.50 155.10775,139.11284 

Norleucine Amino acids and derivatives 130.0868 C6H13NO2 
LRQKBLKVPFOOQJ-
YFKPBYRVSA-N 7.75  

N-Tiglylglycine Amino acids and derivatives 156.0661 C7H11NO3 
WRUSVQOKJIDBLP-
HWKANZROSA-N 4.76 112.07876,74.0264 

N-α-Acetyl-L-glutamine Amino acids and derivatives 187.0719 C7H12N2O4 
KSMRODHGGIIXDV-
UHFFFAOYSA-N 8.25 127.05201,145.06277,169.06325 

Oleic acid Long-chain fatty acids 281.2480 C18H34O2 
ZQPPMHVWECSIRJ-
KTKRTIGZSA-N 2.45 129.0921,141.0921,195.17544,111.08154,99.08154 

O-Phosphoethanolamine Phosphoethanolamines 140.0118  C2H8NO4P 
SUHOOTKUPISOBE-
UHFFFAOYSA-N 12.96 78.95943,96.96962 

Ornithine Amino acids and derivatives 131.0820 C5H12N2O2 
AHLPHDHHMVZTML-
BYPYZUCNSA-N 19.30 114.05605 

Orotic acid 
Pyrimidinecarboxylic acids and 
derivatives 155.0098  C5H4N2O4 

PXQPEWDEAKTCGB-
UHFFFAOYSA-N 6.80 111.01883 

Oxoglutaric acid/3-Methylglutaric acid/Adipic 
acid/Acetonedicarboxylic acid Gamma-keto acids and derivatives 145.0137 C5H6O5 

KPGXRSRHYNQIFN-
UHFFFAOYSA-N 10.60 83.01385,101.02419 

Palmitoleic Acid Long-chain fatty acids 253.2167 C16H30O2 
SECPZKHBENQXJG-
FPLPWBNLSA-N 2.26 81.03476,125.09698,113.09711,155.10751 

Pantothenic acid Amino acids and derivatives 218.1028 C9H17NO5 
GHOKWGTUZJEAQD-
UHFFFAOYSA-N 6.83 88.04074,71.051 

Pentadecanoic acid Long-chain fatty acids 241.2167 C15H30O2 
WQEPLUUGTLDZJY-
UHFFFAOYSA-N 2.32 141.0921,195.17544,114.08154 

Phenylalanine Amino acids and derivatives 164.0711 C9H11NO2 
COLNVLDHVKWLRT-
QMMMGPOBSA-N 7.27 74.02475,72.0091,91.05532,147.04515 

Phosphoenolpyruvic acid Phosphate esters 166.9751  C3H5O6P 
DTBNBXWJWCWCIK-
UHFFFAOYSA-N 10.98 78.96077,148.96671 

Pimelic acid Medium-chain fatty acids 159.0663  C7H12O4 
WLJVNTCWHIRURA-
UHFFFAOYSA-N 10.52 97.06589,85.02981 

Pipecolinic acid Amino acids and derivatives 128.0711 C6H11NO2 
HXEACLLIILLPRG-
UHFFFAOYSA-N 9.73  

Progesterone 
Gluco/mineralocorticoids, 
progestogins and derivatives 313.2167 C21H30O2 

RJKFOVLPORLFTN-
LEKSSAKUSA-N 2.35 135.08154,123.08154,109.6589,107.05024,121.06589 
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Proline Amino acids and derivatives 114.0555 C5H9NO2 
ONIBWKKTOPOVIA-
BYPYZUCNSA-N 10.11  

Pyridoxal Pyridoxals and derivatives 166.0504 C8H9NO3 
RADKZDMFGJYCBB-
UHFFFAOYSA-N 4.89 108.04746,138.05841 

Pyridoxamine Pyridoxamine 5'-phosphates 167.0826  C8H12N2O2 
NHZMQXZHNVQTQA-
UHFFFAOYSA-N 16.82 108.04549,121.05531,150.05605 

Pyridoxine Pyridoxines 168.0666  C8H11NO3 
LXNHXLLTXMVWPM-
UHFFFAOYSA-N 4.80 122.06114 

Pyroglutamic acid Amino acids and derivatives 128.0348 C5H7NO3 
ODHCTXKNWHHXJC-
VKHMYHEASA-N 9.20 82.02984 

Quinaldic acid Quinoline carboxylic acids 172.0398 C10H7NO2 
LOAUVZALPPNFOQ-
UHFFFAOYSA-N 4.20  

Quinic acid Cyclic alcohols and derivatives 191.0555 C7H12O6 
AAWZDTNXLSGCEK-
RKGSPJAZSA-N 10.54 85.0295,93.03459,127.04007 

Quinolinic acid Pyridinecarboxylic acids 166.0146  C7H5NO4 
GJAWHXHKYYXBSV-
UHFFFAOYSA-N 12.47 122.02475,78.01927 

Reserpine Yohimbine alkaloids 607.2655 C33H40N2O9 
QEVHRUUCFGRFIF-
MDEJGZGSSA-N 2.75 592.24263,577.21915 

Retinoic Acid Retinoids 299.2011 C20H28O2 
SHGAZHPCJJPHSC-
YCNIQYBTSA-N 2.27 255.21182,111.04515,149.0608,85.0295,123.04515 

Riboflavin Flavins 375.1304 C17H20N4O6 
AUNGANRZJHBGPY-
SCRDCRAPSA-N 4.50 255.0933,255.08875,212.08294 

Riboflavin 5-Monophosphate Flavin nucleotides 455.0968 C17H21N4O9P 
FVTCRASFADXXNN-
SCRDCRAPSA-N 9.00 96.97139,183.0064,315.12245 

Ribose 5-phosphate Monosaccharides 229.0113 C5H11O8P 
KTVPXOYAKDPRHY-
SOOFDHNKSA-N 10.75 96.96822,78.9578,183.01094 

Sebacic acid Medium-chain fatty acids 201.1127 C10H18O4 
CXMXRPHRNRROMY-
UHFFFAOYSA-N 8.29 95.05024 

sn-glycero-3-Phosphocholine Glycerophosphocholines 256.0950 C8H20NO6P 
SUHOQUVVVLNYQR-
QMMMGPOBSA-N 11.91 152.9984,197.02205 

Sorbitol/Galactitol Sugar alcohols 181.0712 C6H14O6 
FBPFZTCFMRRESA-
JGWLITMVSA-N 9.32 71.01385,101.02442,85.0295,119.03498,89.02442 

Stearic acid Long-chain fatty acids 283.2643  C18H36O2 
QIQXTHQIDYTFRH-
UHFFFAOYSA-N 2.25 157.1234,227.20165,155.10775 

Suberic acid Medium-chain fatty acids 173.0814 C8H14O4 
TYFQFVWCELRYAO-
UHFFFAOYSA-N 8.91  

Succinic acid Dicarboxylic acids and derivatives 117.0193  C4H6O4 
KDYFGRWQOYBRFD-
UHFFFAOYSA-N 10.73 73.0295 

Sucrose Glycosyl compounds 341.1084 C12H22O11 
CZMRCDWAGMRECN-
UGDNZRGBSA-N 10.07 179.05611,161.04555 

Taurine Organosulfonic acids 124.0074  C2H7NO3S 
XOAAWQZATWQOTB-
UHFFFAOYSA-N 10.60 79.95781 

Taurochenodeoxycholate/Taurodeoxycholic 
acid/Tauroursodeoxycholic acid 

Taurinated bile acids and 
derivatives 498.2889 C26H45NO6S 

BHTRKEVKTKCXOH-
BJLOMENOSA-N 2.42 124.00739,106.98084 

Tetradecanedioic acid Long-chain fatty acids 257.1753 C14H26O4 
HQHCYKULIHKCEB-
UHFFFAOYSA-N 3.81 195.17544,239.16527 

Theophylline Xanthines 179.0574  C7H8N4O2 
ZFXYFBGIUFBOJW-
UHFFFAOYSA-N 2.80 122.03569,94.04127,164.03324 

Thiamine Thiamines 263.0966 C12H16N4OS 
JZRWCGZRTZMZEH-
UHFFFAOYSA-N 16.24  
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Thiamine pyrophosphate Thiamines 423.0293 C12H18N4O7P2S 
AYEKOFBPNLCAJY-
UHFFFAOYSA-O 10.04 176.93595,158.92538 

Threonine Amino acids and derivatives 118.0504 C4H9NO3 
AYFVYJQAPQTCCC-
GBXIJSLDSA-N 10.60  

Thymidine Pyrimidine 2'-deoxyribonucleosides 241.0824 C10H14N2O5 
IQFYYKKMVGJFEH-
XLPZGREQSA-N 4.16 225.06156,125.03565,83.05024,162.05605 

Thymine Hydroxypyrimidines 125.0351 C5H6N2O2 
RWQNBRDOKXIBIV-
UHFFFAOYSA-N 4.14  

Tocopherol Vitamin E compounds 429.3732 C29H50O2 
GVJHHUAWPYXKBD-
IEOSBIPESA-N 2.11 189.6921,327.23295,163.07645,149.0608,151.07645 

trans-2-Butene-dicarboxylic acid Medium-chain fatty acids 143.0344 C6H8O4 
YHGNXQAFNHCBTK-
OWOJBTEDSA-N 10.16  

Traumatic acid Medium-chain fatty acids 227.1283 C12H20O4 
MAZWDMBCPDUFDJ-
VQHVLOKHSA-N 6.19 183.13905,165.12849 

Tricarballylic acid Tricarboxylic acids and derivatives 175.0242 C6H8O6 
KQTIIICEAUMSDG-
UHFFFAOYSA-N 11.18 157.01231,69.03397 

Tridecanoic acid Long-chain fatty acids 213.1854 C13H26O2 
SZHOJFHSIKHZHA-
UHFFFAOYSA-N 2.28 255.23295,337.3112,143.10775,123.08154 

Trihydroxyisoflavone Isoflavones 269.0455  C15H10O5 
TZBJGXHYKVUXJN-
UHFFFAOYSA-N 2.43 91.01894,93.03459 

Triiodo-thyronine Amino acids and derivatives 649.7822 C15H12I3NO4 
AUYYCJSJGJYCDS-
LBPRGKRZSA-N 4.10 507.86625,632.75621,576.76638,522.87829 

Tryptophan 
Indolyl carboxylic acids and 
derivatives 203.0820 C11H12N2O2 

QIVBCDIJIAJPQS-
VIFPVBQESA-N 7.55 159.09255,130.06607,74.02535 

UDP Glucose/UPDGalactose Pyrimidine nucleotide sugars 565.0472 C15H24N2O17P2 
HSCJRCZFDFQWRP-
LPTOLDDLSA-N 10.20 408.01782,158.92771,323.02859,272.95708,158.92538,96.96962 

Undecanedicarboxylic acid Long-chain fatty acids 243.1596 C13H24O4 
DXNCZXXFRKPEPY-
UHFFFAOYSA-N 3.98 225.14962 

Undecanoic acid Medium-chain fatty acids 185.1541 C11H22O2 
ZDPHROOEEOARMN-
UHFFFAOYSA-N 2.90  

Uracil Pyrimidones 111.0200  C4H4N2O2 
ISAKRJDGNUQOIC-
UHFFFAOYSA-N 4.33 98.02383,70.02902 

Ureidosuccinic acid Amino acids and derivatives 175.0355 C5H8N2O5 
HLKXYZVTANABHZ-
REOHCLBHSA-N 10.61 132.03004,73.03026,115.00368 

Uric acid Xanthines 167.0205 C5H4N4O3 
LEHOTFFKMJEONL-
UHFFFAOYSA-N 8.09 124.01525,151.00234 

Uridine Pyrimidine nucleosides 243.0617 C9H12N2O6 
DRTQHJPVMGBUCF-
XVFCMESISA-N 5.70 140.0359,152.0361,200.0582 

Uridine 5-diphosphate 
Pyrimidine ribonucleoside 
diphosphates 402.9944 C9H14N2O12P2 

XCCTYIAWTASOJW-
XVFCMESISA-N 10.49  

Urocanic acid Substituted imidazoles 137.0351 C6H6N2O2 
LOIYMIARKYCTBW-
OWOJBTEDSA-N 8.13 93.04622,71.01489,81.04582 

Valeric acid Straight chain fatty acids 101.0602 C5H10O2 
NQPDZGIKBAWPEJ-
UHFFFAOYSA-N 3.93  

Valproic acid Branched fatty acids 143.1072 C8H16O2 
NIJJYAXOARWZEE-
UHFFFAOYSA-N 2.57  
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Vanillic acid 
Methoxybenzoic acids and 
derivatives 167.0350  C8H8O4 

WKOLLVMJNQIZCI-
UHFFFAOYSA-N 5.94 108.02168,123.04515,152.01151,107.01385 

Vitamin K1 Vitamin K compounds 449.3419 C31H46O2 
MBWXNTAXLNYFJB-
LKUDQCMESA-N 2.24 185.0608,434.31903,171.04515,79.05532,209.0608 

Vitamin K2 Vitamin K compounds 443.2950 C31H40O2 
DKHGMERMDICWDU-
GHDNBGIDSA-N 2.34  

Xanthine Xanthines 151.0256 C5H4N4O2 
LRFVTYWOQMYALW-
UHFFFAOYSA-N 5.90 108.01925 

Xanthosine Purine nucleosides 283.0678 C10H12N4O6 
UBORTCNDUKBEOP-
UUOKFMHZSA-N 7.95 151.02615 

Xanthurenic acid Quinoline carboxylic acids 204.0297 C10H7NO4 
FBZONXHGGPHHIY-
UHFFFAOYSA-N 6.76 158.02475,159.03258,169.0404 
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10.3.2 CortecsT3 fatty acid identification data 

 

Table 21 Identification information for fatty acid RPLC-MS method. Authentic fatty acid reference standards 
in a concentration of 100 µM were measured as [M-H]- precursor ion in negative ionization mode using the fatty 
acid RPLC fatty acid method. 

Compound name Abbreviation Formula Precursor MZ Retention time 

5-Oxo-eicosatetraenoic acid 5-oxo-ETE C20H30O3 317.21166 4.38 

Arachidic acid FA C20:0 C20H40O2 311.29496 8.99 

Arachidonic acid FA C20:4 C20H32O2 303.23236 6.31 

cis-Eicosenoic acid FA C20:1 C20H38O2 309.27936 8.33 

Docosatetraenoic acid FA 22:4 C22H36O2 331.26366 7.20 

Dodecanoic acid FA C12:0 C12H24O2 199.16976 4.63 

Eicosatrienoic acid FA C20:3 C20H34O2 305.24806 6.79 

Erucic acid FA C22:1 C22H42O2 337.31066 8.99 

Hexadecanoic acid FA C16:0 C16H32O2 255.23236 7.14 

Linoleic acid FA C18:2 C18H32O2 279.23236 6.47 

Myristic acid FA C14:0 C14H28O2 227.20106 5.94 

Nervonic acid FA C24:1 C24H46O2 365.34196 9.67 

Octadecanoic acid FA C18:0 C18H36O2 283.26366 8.16 

Oleic acid FA C18:1 C18H34O2 281.24806 7.27 

Palmitic acid-d31 FA 16:0-d31 C16H1D31O2 286.42696 7.14 

Palmitoleic acid FA C16:1 C16H30O2 253.21676 6.13 

Prostaglandin E1 PGE1 C20H34O5 353.23276 1.86 

Tetracosanoic acid-d47 FA C24:0-d7 C24HD47O2 414.65256 10.17 

Tetracosapentaenoic acid FA 24:5 C24H38O2 357.27936 7.43 

Tetracosatetraenoic acid FA 24:4 C24H40O2 359.29496 8.08 

Tetrahexanenoic acid FA 24:6 C24H36O2 355.26366 6.87 
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10.4 List of MetaSci metabolites for metabolite library 

 

Table 22 List of human metabolite reference standards acquired from MetaSci. Authentic metabolite 
reference standards acquired from MetaSci in singular glas vials. Metabolites names are oriented on the 
nomenclature of the supplier. 

(+)-Delta-Tocopherol 2-Methyl-4-pentenoic Acid 5,6-Dihydro Thymine 

(+)-Pantothenic acid, sodium salt 2-Methylbutyrylglycine 5,6-Dimethylbenzimidazole 

(±)-3-Methyl-2-oxovaleric acid sodium salt 2-Methylglutaric acid 
5-Aminoimidazole-4-carboxamide-1-β-D-
ribofuranoside 

(±)-Sodium β-hydroxyisobutyrate 2-Methylheptanoic Acid 5-Aminolevulinic acid hydrochloride 

(±)-α-Lipoic acid 2-Methylhexanoic acid 5-Aminovaleric acid 

(±)-α-Tocopherol 2-Methylhippuric acid 5-Hydroxyindole-3-acetic acid 

(2S)-2-Amino-4-(S-methylsulfonimidoyl)butanoic acid 2-Methylmalonic acid 5-Hydroxymethyl-2-furancarboxylic acid 

(R)-3-Hydroxybutanoic acid 2-Methylsuccinic acid 5-Methoxy-DL-tryptophan 

(R)-Mevalonolactone 2-Octenoic acid 5-Methoxytryptamine 

(S)-(−)-2-Hydroxyisocaproic acid 2-Oxo-3-phenylpropanoic acid 5-Methylcytosine 

1,11-Undecanedicarboxylic acid 2-Oxoadipic acid 5-Methyluridine 

1,2-Dimyristoyl-sn-glycero-3-phosphoethanolamine 2-Phenylethanol 5-Pregnen-3β-ol-20-one 

1,2-Dipalmitoyl-sn-glycero-3-phosphate monosodium salt 2-Picolinic acid 5β-Cholestan-3α-ol 

1,2-Dipalmitoyl-sn-glycero-3-phosphoethanolamine 3-(Methylthio)propionic acid 7-Dehydrocholesterol 

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine 3,3',5-Triiodo-l-thyronine sodium salt hydrate Acetoacetic acid Lithium Salt 

1,3-Acetonedicarboxylic acid 3,3-Dimethylglutaric acid Acetylcholine chloride 

1,3-Diaminopropane 3,4-Dihydroxybenzeneacetic acid Adenine hydrochloride 

1,4-Diaminobutane dihydrochloride 3,5-Dihydroxybenzoic acid Adenosine 

1,5-Anhydro-d-Glucitol 3-Aminoisobutanoic acid hydrate Adenosine 5′-diphosphate sodium salt 

1,5-Diaminopentane dihydrochloride 3-Chloro-L-Tyrosine Adenosine 5'-triphosphate disodium salt 

1,6-anhydro-b-D-Glucose 3-Hydroxy-3-methylglutaric acid Adenosine cyclophosphate 

10-Hydroxydecanoic acid 3-hydroxybutyric acid Adenosine-5'-monophosphate monohydrat 

10-Undecen-1-ol 3-Hydroxyisovaleric acid Adipic acid 

16-Dehydroprogesterone 3-Hydroxymandelic acid Agmatine sulfate 

17a-Ethynylestradiol 3-Hydroxyphenylacetic acid All trans-Retinal 

17-α-Hydroxyprogesterone 3-Hydroxypropionic Acid Sodium Salt Allantoic acid 

1-Hexadecanol 3-Indolebutyric acid Allantoin 

1-Methyl Adenosine 3-Indolepropionic acid Aminoadipic acid 

1-Methylnicotinamide chloride 3-Methoxytyramine HCl Androsterone 

1-Octadecanol 3-Methyl-2-oxobutanoic acid Arachidic acid 

2,3-Pyridinedicarboxylic acid 3-Methyladenine Arachidonic Acid 250 mg in 1mL Ethanol 

2,6-Dihydroxypyridine HCl 3-Methyladipic acid Ascorbic acid 

2′-Deoxyadenosine monohydrate 3-Methylglutaric acid Azelaic acid 

2′-Deoxyguanosine 3-Methyl-L-histidine Betaine 

2-Amino-1-phenylethanol 3-Methylvaleric acid Bilirubin 

2-Aminoisobutyric acid 3-Methylxanthine Biotin 

2'-Deoxycytidine 3-Nitro-L- tyrosine Caffeine 

2-Deoxy-D-ribose 3-Ureidopropionic acid Calciferol 

2'-Deoxyguanosine 5'-monophosphate (sodium salt hydrate) 4-(Acetylamino)butanoic acid Caprylic acid 

2'-Deoxyuridine 4,6-Dioxoheptanoic acid Capryloyl glycine 

2-Ethyl-2-Hydroxybutyric acid 4-Ethyloctanoic acid Carbamazepine 

2-Ethylbutyric Acid 4-Guanidinobutyric acid Chenodeoxycholic acid sodium salt 
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2-Hexanone 
4-Hydroxy-3-methoxyphenylacetic Acid/ 
Homovanillic acid Chitin 

2-Hydroxy-2-methylbutyric acid 4-Hydroxyphenylacetic acid Cholestanol 

2-Hydroxy-3-methylbutyric acid 4-Hydroxyphenylpyruvic acid Cholesterol 

2-Hydroxybutyric acid 4-Methyl-n-octanoic Acid Cholesterol 3-Sulfate Sodium Salt 

2-Hydroxycaproic acid 4-Methylvaleric acid Cholesteryl linoleate 

2-Hydroxyoctanoic acid 4-Pentenoic acid Cholesteryl oleate 

2-Isopropylmalic acid 4-Pyridoxic acid Cholesteryl palmitate 

Cholesteryl stearate DL-4-Hydroxy-3-methoxymandelic acid Glycochenodeoxycholic acid sodium salt 

Cholic acid DL-5-Hydroxylysine hydrochloride Glycocholic acid hydrate 

Choline chloride DL-6,8-Thioctamide Glycodeoxycholic acid sodium salt 

cis-10-Nonadecenoic acid DL-Homocystine Glycolaldehyde dimer 

cis-11-Eicosenoic acid DL-Indole-3-lactic acid Glycoursodeoxycholic acid 

cis-3-Hexen-1-ol DL-Isocitric acid trisodium salt hydrate Guanidine hydrochloride 

cis-4,7,10,13,16,19-Docosahexaenoic acid DL-p-Hydroxyphenyllactic acid Guanidoacetic acid 

cis-4-Hydroxy-D-proline DL-Threitol Guanine 

cis-8,11,14-Eicosatrienoic Acid 1.5 mg EtOH  sln DL-α-Hydroxyglutaric acid disodium salt Guanosine 

cis-Aconitic acid DL-β-Leucine hydrochloride Guanosine 5′-triphosphate sodium salt hydrate 

Citicoline sodium salt D-Mannose Guanosine 5'-monophosphate (disodium salt) 

Citric acid Docosanoic acid Heneicosanoic acid 

Coenzyme Q10 Dodecanedioic acid diammonium salt Heptadecanoic acid 

Corticosterone Dodecanoic acid Heptanoic acid 

Cortisone Dopamine hydrochloride Hexadecanedioic acid 

Creatine monohydrate D-Ribose 5-phosphate disodium salt hydrate Hexadecanoic acid 

Creatinine Elaidic Acid Hexanoic acid 

Crotonic acid Epinephrine Hexanoyl Glycine 

Cyanocobalamin Ergosterol Hippuric acid 

Cystathionine Erucic acid Histamine dihydrochloride 

Cysteamine hydrochloride Estradiol Homogentisic acid 

Cytidine Estriol H-Trp-NH2.HCl 

Cytidine 5′-triphosphate (disodium salt) Estrone Hydrocortisone 

Cytidine 5'-monophosphate Ethanolamine hydrochloride Hyodeoxycholic acid 

Cytosine Ethosuximide Hypotaurine 

D-(−)-Arabinose Ethylmalonic acid Hypoxanthine 

D-(-)-Fructose Farnesyl Acetate (mixture of isomers) Imidazole-4(5)-acetic Acid Hydrochloride 

D-(-)-Quinic acid 
Flavin Adenine Dinucleotide Disodium Salt 
Hydrate Indole 

D-(+)-Galactose Flavone Indole-2-carboxylic acid 

D-(+)-Glyceric acid Hemicalcium salt Folic acid Indole-3-carboxylic acid 

D-(+)-Xylose Folinic acid calcium salt hydrate Indoxyl sulfate potassium salt 

D-3-Phenyllactic acid Formononetin Inosine 

D-Arabitol Fumaric acid Inosine 5′-triphosphate trisodium salt 
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L-Valine N-Propionylglycine Sorbitol 

Malonic acid N-Tiglylglycine Spermidine 

Maltose Monohydrate N-α-Acetyl-L-glutamine Spermine tetrahydrochloride 
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Melatonin O-Acetyl-L-carnitine HCl Suberyl Glycine 
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Tricosanoic acid Valproic acid sodium salt β-Carotene 

Tridecanoic acid Vanillic acid 
β-Glycerophosphoric acid, disodium salt 
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Tryptamine Vitamin D3 β-Lactose 
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