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Preface

In Bayesian statistics sampling w.r.t. a posterior distribution, which is given through a
prior and a likelihood function, is a challenging task. The generation of exact samples
is in general quite difficult, since the posterior distribution is often known only up to
a normalizing constant. A standard way to approach this problem is a Markov chain
Monte Carlo (MCMC) algorithm for approximate sampling w.r.t. the target distribution.
In this cumulative dissertation geometric convergence guarantees are given for two
different MCMC methods: simple slice sampling and elliptical slice sampling.

First, for the simple slice sampler we show Wasserstein contraction and a lower bound
of the spectral gap, depending on certain properties of the density of the target distri-
bution. This leads to an explicit upper bound of the total variation distance between
the distribution of the n-th step of the Markov chain and a limit distribution, which in
particular yields quantitative geometric convergence guarantees. Furthermore, we show
that our estimates cannot be improved in general.

Second, for the elliptical slice sampler under weak assumptions on the density of the
target distribution we show geometric ergodicity of the corresponding Markov chain
in terms of total variation distance. Moreover, we discuss limitations of our result and
provide a “tail-shift” modification for scenarios where our assumptions are not satisfied.

This cumulative dissertation is based on two publications: [Natarovskii et al., 2021b] and
[Natarovskii et al., 2021a], which are listed in the addenda at the end of this document.
The first article, which can be found in Chapter A, addresses the aforementioned results
concerning simple slice sampling, whereas the second paper (see Chapter B) provides
geometric convergence guarantees for the elliptical slice sampling.

The outline of this dissertation is as following: We start with a broad overview over
general slice sampling algorithms in Chapter 1. Afterwards, in Chapter 2, we present
paper A, where we firstly discuss existing results in the literature concerning simple slice
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sampling in Section 2.1. Then we summarize the main results of paper A in Section 2.2.
In Section 2.3 we discuss those results and suggest possible future research. Finally, a
discussion about my own contribution to paper A is given in Section 2.4. Thereafter,
in Chapter 3, we present paper B. First, we provide a literature review on elliptical
slice sampling in Section 3.1 as well as a brief summary of the main results of paper B
in Section 3.2. We discuss these results, suggest some possible ways for the future
research in Section 3.3 and present the results concerning reversibility of elliptical slice
sampling on Hilbert spaces that have not yet been published in Section 3.3.1. Finally, a
statement about my own contribution to paper B is given in Section 3.4.
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CHAPTER 1

Introduction

In Bayesian statistics extracting knowledge from the posterior distribution through
sampling is a common task. Generation of exact samples is usually difficult due
to several facts, such as for example that the density of the posterior distribution
is often known only up to a normalizing constant. Let (Ω,F ,P) be a probability
space and (G,B(G)) be a measurable space for some G ⊆ Rd. Suppose in addition
that % : G → [0,∞) is an unnormalized density function of the posterior (or target)
distribution µ on G w.r.t. a σ-finite probability measure µ0, which we call prior or
reference measure, that is

µ(A) =

∫
A
%(x)µ0(dx)∫

Rd %(x)µ0(dx)
, A ∈ B(G).

The standard approach for approximate sampling w.r.t. µ is Markov chain Monte
Carlo, abbreviated as MCMC. In these methods a Markov chain is constructed such
that the distribution of the n-th step of the chain converges in some sense to the target
distribution µ when n goes to∞. For measuring the error of an MCMC algorithm we
use in this dissertation the total variation distance between two probability measures ν1

and ν2 on G, which can be defined as

‖ν1(·) − ν2(·)‖tv := sup
A∈B(G)

|ν1(A) − ν2(A)|.

Let the MCMC method be determined by a Markov chain (Xn)n∈N and an initial distri-
bution ν on G, that is X1 ∼ ν, then the error of the MCMC algorithm in terms of total
variation distance is given by

‖P(Xn ∈ · | X1 ∼ ν) − µ(·)‖tv ,
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where P(Xn ∈ · | X1 ∼ ν) denotes the distribution of the n-th step of the Markov chain
with initial distribution ν.

The Metropolis-Hastings algorithm [Metropolis et al., 1953; Hastings, 1970] is the most
famous transition mechanism which leads to an MCMC method. We introduce here its
simple version with the symmetric Gaussian proposal, which is also often called random
walk Metropolis (RWM). Suppose µ0 = λd is the d-dimensional Lebesgue measure and
letN(x, σ2Id) be the symmetric d-dimensional Gaussian distribution centered in x ∈ Rd

for some fixed parameter σ > 0. Then the transition of the random walk Metropolis is
defined in the following way:

Algorithm 1.0.1 Random walk Metropolis
For the reference measure µ0 = λd the transition from the current state Xn = x to the
next state Xn+1 is given by:

1: draw a proposal Y ∼ N(x, σ2Id), call the result y;
2: calculate the acceptance probability α← min

{
1, %(y)

%(x)

}
;

3: draw U uniformly on [0, 1], call the result u;
4: if u ≤ α then
5: accept and set Xn+1 ← y;
6: else
7: reject and set Xn+1 ← x;
8: end if

It is known that under weak regularity assumptions the random walk Metropolis con-
verges to the target distribution for any σ (see e.g. [Roberts and Tweedie, 1996]).
However, in practice it is very important to pick a good step-size parameter. The
intuition behind this is that if the variance of the proposal is too big, then the Markov
chain will converge slowly, since it will change its position very rarely. On the other
hand, if σ is too small, then almost all proposals will be accepted, but the Markov
chain will then be very unlikely to leave a small neighborhood around the starting point,
and therefore again will converge slowly to the target distribution. This means that
every time Algorithm 1.0.1 is used, its step-size must be tuned to achieve the optimal
performance. For this in practice usually one has to find a σ, such that empirical
expected acceptance ratio, which is defined as the number of accepted proposals divided
by the number of all proposals through one run of the Markov chain, is close to 0.234.
This number comes from the paper [Gelman et al., 1997], where the authors show that
if the target distribution is a high dimensional Gaussian, then the step-size parameter
that is optimal in some sense corresponds to the value 0.234 of the empirical expected
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acceptance ratio. The first disadvantage of this approach is that the optimality of the
value was shown only for the Gaussian case. But even if we suppose that for other
posterior distributions the same value of the acceptance ratio should be targeted, then
the tuning procedure can still be computationally very expensive, since it requires to
run the algorithm multiple times to find the optimal proposal variance.

Therefore, slice sampling [Neal, 2003], which originates to auxiliary variables methods
[Edwards and Sokal, 1988; Besag and Green, 1993; Damlen et al., 1999], is of great
interest, since it does not usually require anything to be tuned in contrast to Metropolis-
Hastings. We start here with the definition of the ideal slice sampler. For that let
G(t) := {x ∈ G | %(x) ≥ t} be the level set of the density % for any t ∈ (0, ‖%‖∞) and µ0,t

denote the reference measure restricted to the level set G(t), that is

µ0,t(A) :=
µ0(A ∩G(t))
µ0(G(t))

, A ∈ B(G).

Then the ideal slice sampler can be defined in the following way:

Algorithm 1.0.2 Ideal slice sampling
For reference measure µ0 the transition from the current state Xn = x to the next one
Xn+1 is given by:

1: draw Tn uniformly on [0, %(x)], call the result t;
2: draw Xn+1 from the distribution µ0,t.

In general the last step of the ideal slice sampling algorithm can be very difficult to
implement. Therefore, several so-called hybrid slice samplers were proposed, where
the second step is replaced by running one step of some Markov chain, which is
implementable and whose Markov kernel Ht(x, ·) on G(t), where x is the current state
and t is the chosen level, is reversible w.r.t. µ0,t, that is,∫

A
Ht(x, B) µ0,t(dx) =

∫
B

Ht(x, A) µ0,t(dx), ∀A, B ∈ B(G), t ∈ (0, ‖%‖)∞.

Examples of these algorithms are hybrid slice sampling with the stepping-out and
shrinkage procedure [Neal, 2003], elliptical slice sampling [Murray et al., 2010] and
also latent slice sampling introduced in the recent work of [Li and Walker, 2020].
Algorithmically hybrid slice sampler can be described in the following way:
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Algorithm 1.0.3 Hybrid slice sampling
For reference measure µ0 the transition from the current state Xn = x to the next one
Xn+1 is given by:

1: draw Tn uniformly on [0, %(x)], call the result t;
2: draw Xn+1 from the distribution Ht(x, ·).

Intuitively it is clear that the performance of the hybrid algorithm cannot be better
in comparison to the ideal slice sampling since the auxiliary Markov chain for the
last step of the algorithm samples w.r.t. µ0,t only approximately (for more details see
[Łatuszyński and Rudolf, 2014]). For this reason it is still very important to analyze
the convergence of the ideal slice sampling, since this will allow us to understand the
limitations of the performance of more practical hybrid slice sampling methods.

In the first half of this dissertation, and in particular in paper A, we focus on the simple

slice sampler, which corresponds to Algorithm 1.0.2 with µ0 = λd being a d-dimensional
Lebesgue measure. More precisely, it can be described algorithmically in the following
way:

Algorithm 1.0.4 Simple slice sampling
For the reference measure µ0 = λd the transition from the current state Xn = x to the
next one Xn+1 is given by:

1: draw Tn uniformly on [0, %(x)], call the result t;
2: draw Xn+1 uniformly on the level set G(t).

In this case µ0,t becomes a uniform distribution on the level set G(t), and we assume that
direct sampling w.r.t. this distribution is possible for any t > 0. Under a boundedness
condition of % the uniform ergodicity of simple slice sampler was shown in [Mira and
Tierney, 2002] and also qualitative and quantitative results about geometric ergodicity
were proven in [Roberts and Rosenthal, 1999]. In paper A, which is summarized in
Chapter 2, under weak assumptions on the function % we provide an explicit lower
bound of the spectral gap of simple slice sampling, which in particular leads to the
quantitative geometric convergence result in terms of total variation distance. Moreover,
we show Wasserstein contraction for a class of rotational invariant log-concave densities.

Another big class of slice sampling algorithms are the ones with non-Lebesgue reference
measure. Examples of them are: polar slice sampler [Roberts and Rosenthal, 2002] and
elliptical slice sampling [Murray et al., 2010]. The second half of this dissertation is
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concentrated on the latter algorithm. Elliptical slice sampler corresponds to the hybrid
slice sampling algorithm for the reference measure µ0 = N(0,C) being a d-dimensional
Gaussian distribution centered in 0 for some non-degenerate covariance matrix C and
the Markov chain on the level set G(t), which can be defined algorithmically in the
following way:

Algorithm 1.0.5 Elliptical slice sampling
For the reference measure µ0 = N(0,C) the transition from the current state Xn = x to
the next one Xn+1 is given by:

1: draw Tn uniformly on [0, %(x)], call the result t;
2: draw W ∼ µ0 = N(0,C), call the result w;
3: draw Θ uniformly on [0, 2π], call the result θ;
4: θmin ← θ − 2π;
5: θmax ← θ;
6: while %(cos(θ)x + sin(θ)w) < t do
7: if θ < 0 then
8: θmin ← θ;
9: else

10: θmax ← θ;
11: end if
12: draw Θ uniformly on [θmin, θmax], set the result to θ;
13: end while
14: Xn+1 ← cos(θ)x + sin(θ)w.

In [Murray et al., 2010] numerical experiments have shown good performance in several
scenarios, however, to our knowledge there were no geometric convergence guarantees.
In paper B, which is summarized in Chapter 3, under weak assumptions on the density %
we provide qualitative geometric convergence result in terms of total variation distance
for elliptical slice sampling.
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CHAPTER 2

Quantitative spectral gap estimate and Wasser-
stein contraction of simple slice sampling

Paper A is presented in this chapter. It provides a literature review on simple slice
sampling in Section 2.1 as well as a brief summary of the main results of paper A in
Section 2.2. We discuss those results and present an outlook for future research in
Section 2.3. Finally, a statement about my own contribution to paper A is given in
Section 2.4.

2.1 Literature review

In this section we provide a brief review of the literature concerning simple slice
sampling, its convergence properties as well as the connection between spectral gap and
Wasserstein distance, which is the main topic of paper A.

The simple slice sampler described in Chapter 1 is a Markov chain Monte Carlo algo-
rithm for approximate sampling w.r.t. some probability distribution, which originates
in the auxiliary variables methods [Edwards and Sokal, 1988; Besag and Green, 1993;
Damlen et al., 1999]. Several modifications of the algorithm (which we call hybrid
slice sampling in Chapter 1) were built upon the simple slice sampler, such as e.g.
slice sampling with stepping-out and shrinkage procedure [Neal, 2003], hit-and-run
slice sampling [Rudolf and Ullrich, 2018], slice sampling particle belief propagation
[Muller et al., 2013], factor slice sampler [Tibbits et al., 2014] and even parallel multi-
variate slice sampling [Tibbits et al., 2011], which benefits hugely from simultaneous
evaluations on different processor units. Intuitively it is clear that any hybrid slice
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sampler cannot perform better than the simple slice sampler, since it only simulates the
ideal uniform distribution on the slice. Therefore, it is of big importance to investigate
the convergence of simple slice sampling for a better understanding of the limitations
of the hybrid slice sampling. Indeed, uniform convergence of simple slice sampling
is shown in [Mira and Tierney, 2002] and qualitative and quantitative results about
geometric convergence are provided in [Roberts and Rosenthal, 1999]. However, before
we wrote paper A little was known about the spectral gap of the algorithm. In particular,
apart from general implications from uniform and geometric ergodicity from [Mira
and Tierney, 2002; Roberts and Rosenthal, 1999] there were no explicit estimate of
the spectral gap for simple slice sampler. It is an important spectral characteristic of
any algorithm, since a lower bound of the spectral gap together with reversibility leads
for example to geometric ergodicity [Roberts and Rosenthal, 1997], to central limit
theorem [Kipnis and Varadhan, 1986] and also to estimation of the asymptotic variance
[Flegal and Jones, 2010]. Moreover, an explicit lower bound of the spectral gap, which
we provide in paper A, implies an explicit upper bound of the total variation distance
between the n-th step of the algorithm and the target distribution [Novak and Rudolf,
2014] and an explicit upper bound of the sample average [Rudolf, 2012]. In addition
to that, as it was shown in [Łatuszyński and Rudolf, 2014], a spectral gap estimate of
simple slice sampling leads to a lower and an upper bound of spectral gap of certain
hybrid slice samplers. Finally, Wasserstein contraction of simple slice sampling is alone
of interest, but for us, it deserves additional attention, since an explicit estimate of the
Wasserstein contraction coefficient implies an explicit lower bound of the spectral gap
[Ollivier, 2009].

2.2 Main results

In this section we provide necessary notation and a brief summary over the main results
in paper A. For more details we refer to A/Section 1 (Introduction).

In paper A geometric convergence guarantees are given for the simple slice sampler as
well as an explicit lower bound of the spectral gap. First, the Wasserstein contraction
of the simple slice sampling with the contraction coefficient of at most d

d+1 , where d

denotes the dimension, is shown for log-concave rotational invariant densities, which
also implies an explicit lower bound of 1

d+1 of the spectral gap. Afterwards we proved
the fact that the spectral gaps for two different densities coincide, if the volumes of level
sets, or level-set functions, are equal. This led to the definition of the classes Λk (for
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any k ∈ N) of appropriate level-set functions, where one can use the already proven
Wasserstein contraction and achieve a lower bound of 1

k+1 of the spectral gap. Finally, in
one example we show that the Wasserstein contraction coefficient is equal to d

d+1 , which
means that our estimate cannot be improved in general. To formulate the main results
more formally, we need to define some notation. For convenience of the reader we use
the notation from paper A here, which slightly differs from the one used in Chapter 1.

Suppose G ⊆ Rd and % : G → (0,∞) is an unnormalized density of the probability
distribution π w.r.t. the Lebesgue measure, that is

π(A) =

∫
A
%(x) dx∫

G
%(x) dx

, A ∈ B(G).

Simple slice sampler, which is a Markov chain Monte Carlo algorithm for approximate
sampling w.r.t. target distribution π, is defined in the following way:

Algorithm 2.2.1 Simple slice sampling
The transition from the current state Xn = x to the next one Xn+1 is given
by:

1: draw Tn uniformly on [0, %(x)], call the result t;
2: draw Xn+1 uniformly on the corresponding level set

G(t) := {x ∈ G | %(x) ≥ t}.

Let U% be the transition kernel of a Markov chain generated by the simple slice sampling
of a distribution π with the unnormalized density %, that is

U%(x, A) := P(X2 ∈ A | X1 = x), x ∈ G, A ∈ B(G).

For the Wasserstein contraction let us define the Wasserstein distance w.r.t. the Euclidean
norm | · | between two measures µ, ν by

W(µ, ν) := inf
γ∈Γ(µ,ν)

∫
G×G
|x − y| dγ(x, y),

where the infimum is taken over all couplings of µ and ν, that is, over all measures on
the product space G ×G with marginals µ and ν. Note that only in paper A and in this
chapter the Euclidean norm is denoted by | · |, whereas in the rest of this dissertation
‖ · ‖ is used.
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Our first main result (A/Theorem 2.1) shows Wasserstein contraction for rotational invari-
ant log-concave unnormalized densities. More formally, for some constant R ∈ (0,∞]
and some strictly increasing and convex function ϕ : [0,R)→ R for the unnormalized
density % : {x ∈ Rd : |x| ≤ R} → (0,∞), defined as

%(x) := exp(−ϕ(|x|)),

holds

W(U%(x, ·),U%(y, ·)) ≤
d

d + 1
|x − y|, ∀x, y ∈ Rd with |x| ≤ R, |y| ≤ R. (2.1)

It is important to notice that we allow R to be equal to∞ here, which corresponds to the
densities defined on the whole Rd.

The second main result (A/Theorem 3.10) is a lower bound of the spectral gap. As it is
common in the literature with the same letter U% we denote the corresponding Markov
operator, that is

U% f (x) :=
∫

G
f (y)U%(x, dy), x ∈ G.

Then the spectral gap of the Markov operator U% is defined by

gapπ(U%) := 1 − ‖U%‖L0
2(π)→L0

2(π),

where L0
2(π) := { f : G → R |

∫
G
| f |2dπ < ∞}. Directly from (2.1) by applying

Theorem 1.5 from [Chen and Wang, 1994] it follows that gapπ(U%) ≥ 1
d+1 under the

same assumptions as in A/Theorem 2.1. Furthermore, we were able to enlarge the
class of distributions where the spectral gap estimate can be achieved by defining an
appropriate class of level-set functions, which is defined as a d-dimensional volume
of the level set. More formally, for a fixed density % we define a level-set function
`% : (0, ‖%‖∞)→ [0,∞) by `%(t) := λd(G(t)). We say that a level-set function `% belongs
to the class Λk for some natural number k, if `% is strictly increasing and the function
g(s) := `−1

% (sk), where `−1
% denotes the inverse function, is log-concave, that is log g is

concave. The idea behind this is that the latter two requirements allow us to construct a
density function on Rk with the same level-set function, which appears to be the crucial
spectral parameter of simple slice sampling, such that all assumptions of A/Theorem 2.1

are satisfied. Thus, for any unnormalized density % with the level-set function `% ∈ Λk

we have that
gapπ(U%) ≥

1
k + 1

.
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2.3 Discussion and outlook

In this section we discuss the results of paper A as well as possible directions of future
research.

Paper A provides an explicit lower bound for the spectral gap of the corresponding
Markov operator, which is in general a crucial characteristic of any algorithm, since it
implies geometric ergodicity and even an explicit estimate for the upper bound of the
total variation distance between the n-th step of the algorithm and the target distribution
π. However, an important assumption of the simple slice sampler is that sampling a
uniform distribution on an arbitrary level set is possible, which can be very challenging
especially in high-dimensional settings. Therefore, other methods, such as e.g. slice
sampling with stepping-out and shrinkage procedure [Neal, 2003] and hit-and-run slice
sampling [Rudolf and Ullrich, 2018], that simulate the uniform distribution on the
slice are usually used in practice. Our estimate also implies explicit lower and upper
bounds of the spectral gap for certain hybrid slice samplers by applying the results from
[Łatuszyński and Rudolf, 2014], where the authors show that the spectral gap of hybrid
slice sampler is smaller than the spectral gap of the simple slice sampler, but not much
smaller. The spectral gap approach can also be used for other slice sampling algorithms,
such as for example the elliptical slice sampler [Murray et al., 2010]. In this particular
case it would be interesting to find some equivalent of the level-set function used in
paper A, such that certain properties would lead to an explicit spectral gap estimate.

2.4 Own contribution

My main contribution to paper A is proving the Wasserstein contraction for rotational
invariant log-concave densities (A/Theorem 2.1) as well as suggesting the classes Λk of
the level-set functions (A/Definition 3.9). Together with Daniel Rudolf we built a theory
for proving the fact that spectral gaps of the corresponding Markov operators are equal
if the level-set functions coincide (A/Corollary 3.7). Furthermore, with Björn Sprungk
we were able to finalize the proof of the spectral gap result (A/Theorem 3.10) and to
formulate the properties of the classes Λk in A/Section 3.2.1 (Properties of the class

Λk). I also came up with the illustrative examples and prepared corresponding pictures.
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CHAPTER 3

Geometric convergence of elliptical slice sam-
pling

In this chapter we present paper B: First, we provide a literature review on elliptical
slice sampling in Section 3.1 as well as a brief summary of the main results of paper B
in Section 3.2. We discuss those results, suggest some ideas for possible directions of
future research in Section 3.3 and present the results concerning reversibility of elliptical
slice sampling on Hilbert spaces that have not yet been published in Section 3.3.1.
Finally, my own contribution to paper B is discussed in Section 3.4.

3.1 Literature review

In this section we provide a brief summary of the literature concerning elliptical slice
sampling and its convergence, which we address in paper B.

The elliptical slice sampler which was described in Chapter 1 is a Markov chain
Monte Carlo method for approximate sampling w.r.t. some probability distribution,
which is given through an unnormalized density w.r.t. a Gaussian reference measure.
The algorithm was introduced in [Murray et al., 2010] and belongs to the hybrid
slice sampling family described in Chapter 1. It is based on the one hand on the
preconditioned Crank-Nicolson (pCN) Metropolis [Neal, 1999; Cotter et al., 2013;
Rudolf and Sprungk, 2018] and on the other hand on the shrinkage procedure firstly
introduced in [Neal, 2003]. In the original paper [Murray et al., 2010] numerical
experiments of elliptical slice sampler were performed on a number of applications,
such as Gaussian regression, Gaussian process classification and Log Gaussian Cox
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process. Moreover, the authors provide arguments for the reversibility of the algorithm.
Elliptical slice sampler is widely used in practice, since in contrast to Metropolis-
Hastings and pCN Metropolis no tuning is required. Many other sampling algorithms
are based upon the elliptical slice sampling, such as elliptical slice sampling with
expectation propagation [Fagan et al., 2016], the boomerang sampler [Bierkens et al.,
2020], pseudo-marginal slice sampling [Murray and Graham, 2016] and generalized
elliptical slice sampling [Nishihara et al., 2014]. Therefore, convergence of elliptical
slice sampling is of great interest. However, apart from reversibility arguments and
good performance in numerical experiments for several specific scenarios provided in
[Murray et al., 2010], there were no geometric convergence guarantees before we wrote
paper B. There under weak assumptions on the density we indeed prove geometric
convergence of elliptical slice sampling in terms of total variation distance between
the n-th step of the algorithm and the target distribution. This was done by deriving a
small set and a Lyapunov function, which led to geometric ergodicity by using standard
theorems for Markov chains [Meyn and Tweedie, 2009; Hairer and Mattingly, 2011].

3.2 Main results

In this section we provide necessary notation and a brief summary over the main results
in paper B. For more details we refer to B.1/Section 1 (Introduction).

In Bayesian statistics the elliptical slice sampler is a Markov chain Monte Carlo method
for approximate sampling of a posterior distribution with Gaussian prior introduced in
[Murray et al., 2010], which is widely used especially since no tuning is required. In our
paper under weak assumptions on the posterior density we show geometric convergence
in terms of total variation distance. For more formal presentation of the main result we
need to provide some notations.

Let % : Rd → (0,∞) be the unnormalized density of the posterior distribution µ w.r.t.
Gaussian prior µ0 = N(0,C) for some non-degenerate covariance matrix C, that is

µ(A) =

∫
A
%(x) µ0(dx)∫

Rd %(x) µ0(dx)
, A ∈ B(Rd).

The elliptical slice sampler is an MCMC method for approximate sampling w.r.t. the
target distribution µ, which works as follows:
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Algorithm 3.2.1 Elliptical slice sampling
The transition from the current state Xn = x to the next one Xn+1 is given
by:

1: draw W ∼ µ0 = N(0,C), call the result w;
2: draw Tx uniformly on [0, %(x)], call the result t;
3: draw Θ uniformly on [0, 2π], call the result θ;
4: θmin ← θ − 2π;
5: θmax ← θ;
6: while %(cos(θ)x + sin(θ)w) < t do
7: if θ < 0 then
8: θmin ← θ;
9: else

10: θmax ← θ;
11: end if
12: draw Θ uniformly on [θmin, θmax], set the result to θ;
13: end while
14: Xn+1 ← cos(θ)x + sin(θ)w.

Under weak assumptions on the unnormalized density %we were able to show geometric
convergence of the elliptical slice sampling. We say that % satisfies B.1/Assumption 2.1

if

• it is bounded away from 0 and∞ on any compact set and

• there exist constants α > 0 and R > 0, such that{
y ∈ Rd : ‖y‖ ≤ α‖x‖

}
⊆
{
y ∈ Rd : %(y) ≥ %(x)

}
, ∀x ∈ Rd with ‖x‖ > R,

where ‖ · ‖ denotes the Euclidean norm.

Our main result of the paper (B.1/Theorem 2.2) is that under B.1/Assumption 2.1

described above there exist constants K > 0 and γ ∈ (0, 1), such that

‖P (Xn+1 ∈ · | X1 = x) − µ(·)‖tv ≤ K(1 + ‖x‖)γn, ∀n ∈ N,∀x ∈ Rd, (3.1)

where ‖ · ‖tv denotes a total variation distance. This provides geometric convergence of
elliptical slice sampling, since the distribution of Xn+1 converges exponentially fast to
µ in terms of total variation distance. Finally, it is important to notice that we do not
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provide explicit estimates of constants K and γ, and therefore we see our main result as
a qualitative convergence result.

Showing that V(x) := ‖x‖ is a Lyapunov function as well as that any compact set is
small led to the geometric convergence of elliptical slice sampling by applying standard
theorems for Markov chains (see for example Chapter 15 in [Meyn and Tweedie, 2009]
or [Hairer and Mattingly, 2011]).

3.3 Discussion and outlook

In this section we discuss the results from paper B and suggest some directions for
possible future research on elliptical slice sampling. At the end, we present the results
concerning reversibility of elliptical slice sampling on Hilbert spaces that have not yet
been published.

In paper B we show geometric convergence of elliptical slice sampling in terms of
total variation distance. However, as we see in B.1/Section 4.3 (Volcano Density and

Limitations of the Result) our assumption is not satisfied for a volcano distribution, since
the density has no tails, but numerical experiments show that elliptical slice sampler
performs well in this case. This suggests that our condition is not necessary and can be
improved. We suppose that the good tail behavior of the target distribution µ and not of
the unnormalized density % is the crucial requirement for the existence of the Lyapunov
function and therefore for the geometric convergence. The second part of the theory,
the small set condition, can also be possibly improved by showing that any compact
set G is small not w.r.t. the measure λG, which is the d-dimensional Lebesgue measure
restricted to G, as it was shown in B.1/Lemma 3.4, but w.r.t. the measure µ0,G, which is
the reference measure µ0 restricted to G, or w.r.t. µG, which is the target distribution µ
restricted to G. Both improvements could lead to a less restrictive assumption on the
density %.

In B.2/Section 3 (“Tail-Shift” Modification) of the supplementary material we propose
a modification where a small part of the prior is shifted to the density function, which
in the case of volcano distribution and for logistic regression introduces exponential
tails and allows us to apply our main theorem. Nonetheless, proving geometric conver-
gence of the unmodified setting for scenarios where our assumption is not satisfied but
numerical experiments show good performance of the elliptical slice sampling would
be interesting.
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As we already emphasized, big advantage of elliptical slice sampling is that no tuning
is required. However, the price for this is the need of evaluating the density function
multiple times within one step of the Markov chain. In our numerical experiments
for volcano distribution the density function was evaluated on average 1.5 times per
iteration of elliptical slice sampler, and the runtime of the program was approximately
1.5 times longer for elliptical slice sampling than for the similarly performing pCN
Metropolis, which had to be tuned firstly. This seems to be a good price, but nonetheless
it would be interesting to find some theoretical estimates of the average number of
density evaluations in general cases.

Another fact which we experienced in the numerical experiments for the volcano
distribution (and also for some other rotational invariant distributions with exponential
tails which did not appear in the paper) is that the performance of the elliptical slice
sampling in terms of effective sample size appears to be dimension-independent (see
B.1/Figure 2). This is very promising, since then one might be able to apply the
technique similar to the one used in [Hairer et al., 2014] and in [Rudolf and Sprungk,
2018] and extend elliptical slice sampling to infinite-dimensional Hilbert spaces. For
that one would have to derive a dimension-independent upper bound of the total variation
distance. Unfortunately, the constants in the bound provided in paper B are neither
tractable due to limitations of the proof technique nor are they dimension-independent.
Therefore, to achieve a dimension-independent upper bound of the total variation
distance one could try to apply a technique similar to the one used in paper A, namely
providing a lower bound of the spectral gap by showing Wasserstein contraction. The
most challenging part in this approach is that one needs to come up with a suitable
coupling. Unfortunately, we managed to do this only for one trivial scenario, where
the target distribution is Gaussian. It is also important to deal with reversibility of the
algorithm on infinite dimensional spaces. Since the arguments for reversibility are only
sketched in [Murray et al., 2010], it is not clear whether they can be extended to an
infinite-dimensional setting. Therefore, we finish the discussion section by suggesting a
proof of reversibility of the extended algorithm on general Hilbert spaces.

3.3.1 On reversibility of elliptical slice sampling in Hilbert spaces

Checking reversibility is an important step towards verifying theoretical convergence
of any algorithm. In this section under certain assumptions on the density we show
reversibility of the elliptical slice sampler on a possibly infinite-dimensional Hilbert
space. Before presenting the main result we define the setting.
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LetH be a separable Hilbert space. Consider the measurable space (H ,B(H)), where
B(H) denotes the corresponding Borel σ-algebra. Let µ0 = N(0,C) be a Gaussian
measure on (H ,B(H)), where C : H → H is a nonsingular covariance operator on
H . (That is, C is a linear bounded, self-adjoint and positive trace class operator with
ker C = {0}.) Let µ be a probability measure of interest on (H ,B(H)) and assume that
% : H → [0,∞) satisfies

dµ
dµ0

(x) =
%(x)∫

H
%(y)µ0(dy)

, x ∈ H ,

that is, % is the unnormalized density of µ w.r.t. µ0. For t ≥ 0 let

H(t) := {x ∈ H : %(x) ≥ t}

be the (super-) level set of % w.r.t. level t and for x, y ∈ H define the ellipse

E(x, y) := {x cos θ + y sin θ : θ ∈ [0, 2π)} ⊂ H .

We extend the elliptical slice sampling to Hilbert spaces by simply performing exactly
the same steps as in Algorithm 3.2.1. The main result of this section is formulated in
the following theorem.

Theorem 3.3.1. Suppose that density % satisfies that for any x, y ∈ H and for any

t ∈ [0, ‖%‖∞] the set E(x, y)∩H(t) is a disjoint union of finitely many continuous curves

onH . Then the transition kernel of the elliptical slice sampler is reversible w.r.t. µ.

Before we prove the main theorem we provide some technical lemmas. In the following
we work with random variables usually mapping from a probability space (Ω,F ,P)
either to (H ,B(H)) or (R,B(R)). Furthermore, I : H → H denotes the identity. We
start with a simple technical lemma.

Lemma 3.3.2. Let X and Y be independent random variables each distributed ac-

cording to µ0 = N(0,C). For any θ ∈ [0, 2π) let Tθ : H × H → H × H be given

by

Tθ(x, y) = (x cos θ + y sin θ, x sin θ − y cos θ).

Then

E(F(X,Y)) = E(F(Tθ(X,Y))) (3.2)

for any measurable function F : H ×H → R for which one of the expectations exists.

Proof. By the fact that X,Y ∼ µ0 = N(0,C) are independent, we have that the random
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vector

XY
 onH ×H is distributed according to N

00
 , C 0

0 C

 . Note that

Tθ(x, y)t =

cos θI sin θI

sin θI − cos θI

 xy
 .

Thus, by the linear transformation theorem for Gaussian measures, see Proposition 1.2.3
in [Da Prato and Zabczyk, 2002], we obtain that the vector Tθ(X,Y)t is distributed
according to

N

cos θI sin θI

sin θI − cos θI

 00
 , cos θI sin θI

sin θI − cos θI

 C 0
0 C

 cos θI sin θI

sin θI − cos θI


= N

00
 , C 0

0 C

 .
Hence, the distributions of (X,Y) and Tθ(X,Y) coincide, such that (3.2) holds. �

By λ1 we denote the 1-dimensional Lebesgue measure. We define a probability measure
Ut,E(x,y) : B(H) → [0, 1] which can be interpreted as a distribution on the ellipse
intersected with the level set. It is given as the uniform distribution on the angle
parametrized intersection of ellipse and level set, that is,

Ut,E(x,y)(A) :=
λ1 ({θ ∈ [0, 2π) : x cos θ + y sin θ ∈ A ∩H(t)})
λ1 ({θ ∈ [0, 2π) : x cos θ + y sin θ ∈ H(t)})

, A ∈ B(H).

Note that there is a one-to-one correspondence between [0, 2π) and E(x, y). (This leads
to the fact that Ut,E(x,y) depends only on x, y through the ellipse E(x, y).) To simplify the
notation, the denominator of Ut,E(x,y) is denoted by ct(x, y), such that we can write

Ut,E(x,y)(A) =
1

ct(x, y)

∫ 2π

0
1A∩H(t)(x cos θ + y sin θ) dθ.

Note that Ut,E(x,y) is not the uniform distribution on E(x, y) ∩H(t). Let us add here two
simple observations which are useful later.

Lemma 3.3.3. For any x, y ∈ H and any θ ∈ [0, 2π) we have E(x, y) = E(Tθ(x, y)).
Furthermore, for any t ≥ 0 we have ct(x, y) = ct(Tθ(x, y)).

Proof. Note that the function θ′ 7→ x cos θ′ + y sin θ′ is 2π-periodic. Using this and the
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angle sum identities of trigonometric functions gives

E(Tθ(x, y)) = {x cos(θ − θ′) + y sin(θ − θ′) : θ′ ∈ [0, 2π)} = E(x, y).

Again by the aforementioned periodicity we have for any b ∈ R that

ct(x, y) =

∫ b+2π

b
1H(t)(x cos θ′ + y sin θ′) dθ′.

With b = θ − 2π and the angle sum identities of trigonometric functions we obtain

ct(Tθ(x, y)) =

∫ 2π

0
1H(t)(x cos(θ − θ′) + y sin(θ − θ′)) dθ′

=

∫ θ

θ−2π
1H(t)(x cos θ′ + y sin θ′) dθ′ = ct(x, y). �

Let (Ht,E(x,y))x,y∈H ,t>0 be a family of transition kernels, where Ht,E(x,y) is a transition
kernel on E(x, y) ∩H(t), which corresponds to the steps 3-14 of Algorithm 3.2.1. For
convenience, we extend the definition of the transition kernel Ht,E(x,y) on (H ,B(H)).
We set

Ht,E(x,y)(z, A) =

0 z < E(x, y) ∩H(t),

Ht,E(x,y)(z, A ∩H(t) ∩ E(x, y)) z ∈ E(x, y) ∩H(t)
.

In the following we write Ht,E(x,y) for Ht,E(x,y) and consider Ht,E(x,y) as extension on
(H ,B(H)).

Now the transition kernel of the elliptical slice sampler based on (Ht,E(x,y))x,y∈H ,t>0 is
given as

H(x, A) :=
1
%(x)

∫ %(x)

0

∫
H

Ht,E(x,y)(x, A)µ0( dy) dt, x ∈ H , A ∈ B(H).

We provide a criterion for H being reversible w.r.t. µ.

Lemma 3.3.4. Suppose that for any x, y ∈ H and t > 0 the transition kernel Ht,E(x,y) is

reversible w.r.t. Ut,E(x,y), that is, for all A, B ∈ H we have∫
A

Ht,E(x,y)(z, B)Ut,E(x,y)( dz) =

∫
B

Ht,E(x,y)(z, A)Ut,E(x,y)( dz). (3.3)

Then transition kernel H is reversible w.r.t. µ.
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Proof. The goal is to show that for any A, B ∈ H holds∫
A

H(x, B)%(x)µ0( dx) =

∫
B

H(x, A)%(x)µ0( dx). (3.4)

We start with the left-hand side and by using that ct(x, y) =
∫ 2π

0
1H(t)(x cos θ + y sin θ) dθ

we obtain∫
A

H(x, B)%(x)µ0( dx) =

∫ ∞

0

∫
H

∫
H

1H(t)∩A(x)Ht,E(x,y)(x, B)µ0( dx)µ0( dy) dt

=

∫ ∞

0

∫ 2π

0

∫
H

∫
H

1H(t)(x cos θ + y sin θ)1H(t)∩A(x)Ht,E(x,y)(x, B)
ct(x, y)

µ0( dx)µ0( dy) dθ dt

=

∫ ∞

0

∫ 2π

0
E(Ft,θ(X,Y)) dθ dt,

where X,Y are independent µ0-distributed random variables and

Ft,θ(x, y) =
1H(t)(x cos θ + y sin θ)1H(t)∩A(x)Ht,E(x,y)(x, B)

ct(x, y)
.

By using (3.2) and

Ft,θ(Tθ(x, y)) =
1H(t)(x)1H(t)∩A(x cos θ + y sin θ)Ht,E(Tθ(x,y))(x, B)

ct(Tθ(x, y))
,

with the fact from Lemma 3.3.3 that E(Tθ(x, y)) = E(x, y) as well as ct(Tθ(x, y)) = ct(x, y)
we have∫ 2π

0
E(Ft,θ(Tθ(X,Y))) dθ

=

∫ 2π

0

∫
H

∫
H(t)

1H(t)∩A(x cos θ + y sin θ)Ht,E(x,y)(x cos θ + y sin θ, B)
ct(x, y)

µ0(dx)µ0(dy) dθ

=

∫
H

∫
H(t)

∫
A

Ht,E(x,y)(z, B)Ut,E(x,y)( dz)µ0(dx)µ0(dy).

Altogether we obtain∫
A

H(x, B)%(x)µ0( dx) =

∫ ∞

0

∫
H

∫
H(t)

∫
A

Ht,E(x,y)(z, B)Ut,E(x,y)( dz)µ0(dx)µ0(dy) dt

(3.5)

Hence, by (3.3) arguing backwards by the same arguments as for deriving (3.5) we
obtain the reversibility identity (3.4). �
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Now for some a, b ∈ R, a < b and I ⊆ [a, b] we introduce an auxiliary Markov chain
(Yn)n∈N on I with transition kernel QI

[a,b], which is a generalization of the steps 3–13
of Algorithm 3.2.1, where one imitates the uniform distribution on I. One step of this
Markov chain, which we call shrinkage procedure, is defined algorithmically as follows:

Algorithm 3.3.1 Shrinkage procedure
The transition from the current state Yn = θ0 ∈ I to the next state Yn+1 is given
by:

1: draw Θ uniformly on [θ0, θ0 + (b − a)], call the result θ;
2: define an interval [θmin, θmax] := [θ − (b − a), θ];
3: while θ < I and θ + b − a < I and θ − b + a < I do
4: if θ < θ0 then
5: θmin ← θ;
6: else
7: θmax ← θ;
8: end if
9: draw Θ uniformly on [θmin, θmax], set the result to θ;

10: end while
11: Yn+1 ← θ + (b − a)1{θ<a} − (b − a)1{θ>b}.

Notice that thanks to the last step the returning value of the algorithm is always in I.

We require some further notation. Namely, for x, y ∈ H and t > 0 let

It(x, y) := {θ ∈ [0, 2π) : x cos θ + y sin θ ∈ H(t)} .

For convenience of the reader we provide the transition mechanism of the elliptical
slice sampler for given x, y ∈ H and t > 0 on E(x, y) ∩H(t), determined by a transition
kernel Ht,E(x,y) as follows:

Algorithm 3.3.2 Shrinkage procedure of elliptical slice sampling
Let Z0 ∈ E(x, y) ∩ H(t) be the current state, which in particular means that there
exists a unique θ0 ∈ [0, 2π), such that Z0 = x cos θ0 + y sin θ0. Then, the next state
Z1 ∈ E(x, y) ∩H(t) is chosen by

1: draw Θ according to the transition kernel QIt(x,y)
[0,2π](θ0, ·), call the result θ;

2: Z1 ← x cos θ + y sin θ.

Firstly, we need a following auxiliary Lemma.
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Lemma 3.3.5. Let a, b ∈ R, such that a < b, and assume that I = I1 ∪ · · · ∪ Ik ⊆ [a, b]
consists of k ∈ N disjoint intervals I j = [a j, b j] for j = 1, . . . , k with

a ≤ a1 < b1 ≤ · · · ≤ ak < bk ≤ b.

Then there exists a number n ∈ N as well as constants αi ∈ [0,∞) and sets S i ⊆ I for

i = 1, . . . , n such that the transition kernel QI
[a,b] described in Algorithm 3.3.1 can be

represented as

QI
[a,b](θ0, A) =

n∑
i=1

αi1S i(θ0)US i(A), θ0 ∈ I, A ⊆ [a, b], (3.6)

where 1S i denotes the indicator function of S i and

US (A) :=
λ1(S ∩ A)
λ1(S )

, A, S ⊆ [a, b].

Proof. We perform the proof using induction by k.

First, let k = 1, which means that there is only one interval I = I1. Then (3.6) holds for
n = 1, α1 = 1, S 1 = I1.

Now suppose, that for any number j < k and for any real numbers a < b the statement
(3.6) holds and consider the case with exactly k intervals. For further steps set J2, . . . , Jk

to be the intervals between I1, . . . , Ik, that is

J2 := (b1, a2), . . . , Jk := (bk−1, ak),

and define J1 := (a, a1) ∪ (bk, b) to be the union of the left and right remaining parts.
Notice that J1 may be empty. By performing one step w.r.t. transition kernel QI

[a,b](θ0, ·)
we distinguish two cases: sample according to the whole set, i.e. w.r.t UI , or according
to some subsets of I, when at least one of the intervals I1, . . . , Ik is cut off within steps
3–10 of Algorithm 3.3.1.

1. Sampling w.r.t. the whole set is possible, if either I is reached right at the first
trial, which happens with probability λ1(I)

b−a , or if one Jl for some l ∈ {1, . . . , k} is
explored before reaching I, which occurs with probability λ1(Jl)

b−a ·
λ1(I)

b−a−λ1(Jl)
. Thus,

with probability

p :=
λ1(I)
b − a

+

k∑
l=1

λ1(Jl)
b − a

·
λ1(I)

b − a − λ1(Jl)
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one samples w.r.t. UI .

2. Now suppose that we explore Jl and Jm for some l ∈ {1, . . . , k} and some m ∈

{l + 1, . . . , k}, which means that at least one interval is cut off. This occurs with
probability

pl,m :=
λ1(Jl)
b − a

·
λ1(Jm)

b − a − λ1(Jl)
+
λ1(Jm)
b − a

·
λ1(Jl)

b − a − λ1(Jm)
.

If θ0 ∈ Il ∪ · · · ∪ Im−1, then we cut off [a, al] ∪ [bm−1, b] and proceed with the
algorithm on the truncated interval [al, bm−1]. Thus, for any θ0 ∈ Il ∪ · · · ∪ Im−1

with probability pl,m one samples w.r.t. QIl∪···∪Im−1
[al,bm−1] .

If on the other hand θ0 ∈ I1 ∪ . . . Il−1 ∪ Im ∪ · · · ∪ Ik, then we cut off the interval
[bl−1, am] and proceed with the algorithm on the truncated interval [a, b − δl,m],
where δl,m := am − bl−1. Here the points on [bl−1, am] of the original interval are
collapsed into one point bl−1 and points on [am, b] are shifted to the left by δl,m.
Thus, for any θ0 ∈ I1 ∪ . . . Il−1 ∪ Im ∪ · · · ∪ Ik with probability pl,m one samples
w.r.t. QI1∪...Il−1∪Im−δl,m∪···∪Ik−δl,m

[a,b−δl,m] .

Putting everything together we get

QI
[a,b](θ0, A) = p · UI(A)

+

k∑
l=1

k∑
m=l+1

pl,m1Il∪···∪Im−1(θ0)QIl∪···∪Im−1
[al,bm−1] (θ0, A ∩ [al, bm−1])

+

k∑
l=1

k∑
m=l+1

pl,m1I1∪...Il−1∪Im∪···∪Ik(θ0)QI1∪...Il−1∪Im−δl,m∪···∪Ik−δl,m
[a,b−δl,m] (rl,m(θ0),Rl,m(A)),

where

rl,m(θ) :=


θ, θ ≤ bl−1

bl−1, θ ∈ (bl−1, am]

θ − δl,m, θ > am

and Rl,m(A) := {rl,m(θ) | θ ∈ A}.

Finally, notice that in both cases, where we cut off at least one segment, we have less
than k intervals, and therefore by using the induction hypothesis we can represent both
Q kernels as in (3.6). This, together with the fact that the inverse function r−1

l,m exists for
θ0 ∈ I1∪. . . Il−1∪Im∪· · ·∪Ik and the inverse function R−1

l,m exists for A ⊆ [a, bl−1]∪(am, b),
clearly leads to the existence of n ∈ N as well as constants αi ∈ [0,∞) and sets S i ⊆ I for
i = 1, . . . , n such that (3.6) holds for QI

[a,b], where I consists of exactly k intervals. �
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Now we are ready to prove the statement of the main theorem:

Proof of Theorem 3.3.1. The transition kernel of the elliptical slice sampler is given by

H(x, B) =
1
%(x)

∫ %(x)

0

∫
H

Ht,E(x,y)(x, B)µ0( dy) dt.

Therefore, it is sufficient to check (3.3). First, notice that due to the assumption of the
theorem we always have a finite number of intervals in the intersectionH(t) ∩ E(x, y).
Therefore, we can apply Lemma 3.3.5 and get that for any x, y ∈ H and t > 0
there exists a number nt(x, y) ∈ N as well as constants αi,t(x, y) ∈ (0,∞) and sets
S i,t(x, y) ∈ B(H(t) ∩ E(x, y)) for i = 1, . . . , n such that the transition kernel Ht,E(x,y)

described in Algorithm 3.3.2 with z ∈ H(t) ∩ E(x, y) and A ∈ B(H) can be represented
as

Ht,E(x,y)(z, A) =

n∑
i=1

αi,t(x, y)1S i,t(x,y)(z)ŨS i,t(x,y)(A), (3.7)

where
ŨS i,t(x,y)(A) :=

λ1({θ ∈ [0, 2π) : x cos θ + y sin θ ∈ S i,t(x, y) ∩ A})
λ1({θ ∈ [0, 2π) : x cos θ + y sin θ ∈ S i,t(x, y)})

.

Then after setting

ci,t(x, y) := λ1({θ ∈ [0, 2π) : x cos θ + y sin θ ∈ S i,t(x, y)})

with i = 1, . . . , n we have∫
A

Ht,E(x,y)(z, B)Ut,E(x,y)( dz)

=
1

ct(x, y)

∫ 2π

0
1A(x cos θ + y sin θ)Ht,E(x,y)(x cos θ + y sin θ, B) dθ

=

n∑
i=1

αi,t(x, y)
ct(x, y)

∫ 2π

0
1A(x cos θ + y sin θ)1S i,t(x,y)(x cos θ + y sin θ)ŨS i,t(x,y)(B) dθ

=

n∑
i=1

αi,t(x, y)
ct(x, y)

ci,t(x, y)ŨS i,t(x,y)(A)ŨS i,t(x,y)(B),

which is symmetric in A and B. Thus, by arguing backwards one obtains the desired
equation (3.3). �
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3.4 Own contribution

My main contribution to paper B is the idea of the proof of the existence of the small
set in B.1/Section 3.3 (Small Set), which was successfully applied together with Daniel
Rudolf. Furthermore, I proved the technical B.1/Lemma 3.3, which shows the existence
of a Lyapunov function, which together with the small set condition implied the main
geometric convergence result. Moreover, I showed that the main assumption is satisfied
in most examples described in B.1/Section 4 (Illustrative Examples) and B.2/Section 2

(Further Example from the Exponential Family) from the supplementary material.
Finally, I wrote a Python code for numerical experiments described in B.1/Section 4.3

(Volcano Density and Limitations of the Result) and prepared all pictures.
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Addenda

Here we provide two published articles: [Natarovskii et al., 2021b] in A and [Natarovskii
et al., 2021a] in B. Notice that due to specific format restrictions of the journal the
second paper is presented here in two parts: the article itself (B.1) and the supplementary
material (B.2). A summary of the articles is given in the following.

• Quantitative spectral gap estimate and Wasserstein contraction of simple
slice sampling
Viacheslav Natarovskii, Daniel Rudolf and Björn Sprungk
The Annals of Applied Probability

Vol. 31, No. 2, 806–825
2021

Abstract: We prove Wasserstein contraction of simple slice sampling for ap-
proximate sampling w.r.t. distributions with log-concave and rotational invariant
Lebesgue densities. This yields, in particular, an explicit quantitative lower bound
of the spectral gap of simple slice sampling. Moreover, this lower bound carries
over to more general target distributions depending only on the volume of the
(super-)level sets of their unnormalized density.

• Geometric convergence of elliptical slice sampling
Viacheslav Natarovskii, Daniel Rudolf and Björn Sprungk
Proceedings of the 38th International Conference on Machine Learning

Volume 139 of Proceedings of Machine Learning Research, pages 7969-7978
2021

Abstract: For Bayesian learning, given likelihood function and Gaussian prior,
the elliptical slice sampler, introduced by Murray, Adams and MacKay 2010,
provides a tool for the construction of a Markov chain for approximate sampling
of the underlying posterior distribution. Besides of its wide applicability and



34 Addenda

simplicity its main feature is that no tuning is required. Under weak regularity as-
sumptions on the posterior density we show that the corresponding Markov chain
is geometrically ergodic and therefore yield qualitative convergence guarantees.
We illustrate our result for Gaussian posteriors as they appear in Gaussian process
regression, as well as in a setting of a multi-modal distribution. Remarkably,
our numerical experiments indicate a dimension-independent performance of
elliptical slice sampling even in situations where our ergodicity result does not
apply.
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Quantitative spectral gap estimate and Wasser-
stein contraction of simple slice sampling
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QUANTITATIVE SPECTRAL GAP ESTIMATE AND WASSERSTEIN
CONTRACTION OF SIMPLE SLICE SAMPLING

BY VIACHESLAV NATAROVSKII1,*, DANIEL RUDOLF1,† AND BJÖRN SPRUNGK2
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†daniel.rudolf@uni-goettingen.de
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We prove Wasserstein contraction of simple slice sampling for approx-
imate sampling w.r.t. distributions with log-concave and rotational invariant
Lebesgue densities. This yields, in particular, an explicit quantitative lower
bound of the spectral gap of simple slice sampling. Moreover, this lower
bound carries over to more general target distributions depending only on
the volume of the (super-)level sets of their unnormalized density.

1. Introduction. A challenging problem in Bayesian statistics and computational sci-
ence is sampling w.r.t. distributions which are only known up to a normalizing constant.
Assume that G ⊆ Rd and ρ : G → (0,∞) is integrable w.r.t. to the Lebesgue measure. The
goal is to sample w.r.t. the distribution determined by ρ, say π , that is,

π(A) =
∫
A ρ(x)dx∫
G ρ(x)dx

, A ∈ B(G).

Here B(G) denotes the Borel σ -algebra. In most cases this can only be done approximately
and the idea is to construct a (time-homogeneous) Markov chain (Xn)n∈N which has π as
limit distribution, that is, for increasing n the distribution of Xn converges to π . Slice sam-
pling methods provide auxiliary variable Markov chains for doing this and several different
versions have been proposed and investigated [2, 7, 10–12, 14, 15, 20, 21]. In particular also
Metropolis–Hastings algorithms can be considered as such methods; see [7, 25]. In the un-
derlying work we investigate simple slice sampling which works as follows:1

ALGORITHM 1.1. Given the current state Xn = x ∈ G the simple slice sampling algo-
rithm generates the next Markov chain instance Xn+1 by the following two steps:

1. Draw Tn uniformly distributed in [0, ρ(x)], call the result t .
2. Draw Xn+1 uniformly distributed on

G(t) := {
x ∈ G | ρ(x) ≥ t

}
,

the (super-) level set of ρ at t .

The charm of this algorithmic approach lies certainly in the empirically attestable and intu-
itively reasonable well-behaving convergence properties of the corresponding Markov chain.
Indeed, robust convergence properties are also established theoretically. Mira and Tierney in
[12] prove uniform ergodicity under boundedness conditions on G and ρ. Roberts and Rosen-
thal [20] provide qualitative statements about geometric ergodicity under weak assumptions

Received March 2019; revised March 2020.
MSC2020 subject classifications. Primary 65C40; secondary 60J22, 62D99, 65C05.
Key words and phrases. Slice sampling, spectral gap, Wasserstein contraction.

1It is straightforward to verify that π is a stationary distribution of the simple slice sampler.
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as well as prove quantitative estimates of the total variation distance of the difference of the
distribution of Xn and π under a condition on the initial state. However, less is known about
the spectral gap. Namely, beyond the general implications [19, 22] from uniform and geomet-
ric ergodicity of the results of [12, 20] there is, to our knowledge, no explicit estimate of the
spectral gap of simple slice sampling available. Let Uρ be the transition operator/kernel of
a Markov chain generated by simple slice sampling of a distribution π with (unnormalized)
density ρ. The spectral gap is defined by

gapπ(Uρ) := 1 − ‖Uρ‖L0
2(π)→L0

2(π),

where L0
2(π) is the space of functions f : G → R with zero mean and finite variance (i.e.,

Eπ(f ) := ∫
G f dπ = 0; ‖f ‖2

2,π := ∫
G |f |2 dπ < ∞). A spectral gap, that is, gapπ(Uρ) >

0, leads to desirable robustness and convergence properties. For example, it is well known
that a spectral gap implies geometric ergodicity [9, 19], and since Uρ is reversible, it also
implies a central limit theorem (CLT) for all f ∈ L2(π); see [8]. In addition to that it allows
the estimation of the CLT asymptotic variance [6]. In particular, an explicit lower bound of
gapπ(Uρ) leads to quantitative estimates of the total variation distance and a mean squared
error bound of Markov chain Monte Carlo. More precisely, it is well known (see, for instance,
[17], Lemma 2) that

∥∥νUn
ρ − π

∥∥
tv ≤ (

1 − gapπ(Uρ)
)n∥∥∥∥ dν

dπ
− 1

∥∥∥∥
2,π

,

where ‖ν − μ‖tv := supA∈B(G) |ν(A) − μ(A)| denotes the total variation distance, ν = PX1

and νUn
ρ = PXn+1 . Moreover, in [22] it is shown for the sample average that

E
∣∣∣∣∣1

n

n∑
j=1

f (Xj ) − Eπ(f )

∣∣∣∣∣
2

≤ 2

n · gapπ(Uρ)
+ cp‖ dν

dπ
− 1‖∞

n2 · gapπ(Uρ)
,

for any p > 2 and any f : G → R with ‖f ‖p
p = ∫

G |f |p dπ ≤ 1, where cp is an explicit
constant which depends only on p.

The crucial drawback of simple slice sampling is that the second step in the algorithm
is difficult to perform, in particular, in high-dimensional scenarios. However, in [15] and
the more recent papers [13, 14, 16, 26, 27] efficient slice sampling algorithms are designed,
which mimic (to some extent) simple slice sampling. Already [15] constructs a number of
algorithms which perform a single Markov chain step on the chosen level set instead of
sampling the uniform distribution. We call those methods hybrid slice sampler. For us the
motivation to study simple slice sampling is twofold:

1. There is to our knowledge no quantitative statement about the spectral gap available and
for simple slice sampling one would expect particularly good dependence on the dimension
which we to some extent verify.

2. In the recent work of [10] it is proven that certain hybrid slice sampler, in terms of
spectral gap, are, on the one hand, worse than simple slice sampling but on the other hand
not much worse. Hence knowledge of the spectral gap of simple slice sampling might carry
over to estimates of the spectral gap of hybrid slice samplers, in particular to those suggested
in [15].

Now let us explain the main results of the underlying work. For this let the Wasserstein
distance w.r.t. the Euclidean norm | · | of probability measures ν, μ on (G,B(G)) be given by

W(μ,ν) := inf
γ∈�(μ,ν)

∫
G×G

|x − y|dγ (x, y),
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where �(μ, ν) is the set of all couplings of μ and ν. The set of couplings is defined by all
measures on G × G with marginals μ and ν.

First main result (Theorem 2.1): For a rotational invariant and log-concave (unnormal-
ized) density ρ defined either on Euclidean balls or the whole Rd we show in Theorem 2.1
Wasserstein contraction of simple slice sampling, that is, for all x, y ∈ G ⊆ Rd we have

W
(
Uρ(x, ·),Uρ(y, ·)) ≤

(
1 − 1

d + 1

)
|x − y|.

This has a number of useful consequences. It is well known (see, for instance, [23], Section 2)
that this implies

(1) W
(
νUn

ρ ,π
) ≤

(
1 − 1

d + 1

)n

W(ν,π)

for any initial distribution ν on G. In addition to that by [4], Theorem 1.5 (see also [18],
Proposition 30), it implies gapπ(Uρ) ≥ 1/(d +1). Two simple examples which satisfy the as-
sumptions of Theorem 2.1 are given by ρ(x) = exp(−|x|) and ρ(x) = exp(−|x|2/2) where
G = Rd . For the former one Roberts and Rosenthal in [21] argue with empirical experi-
ments that simple slice sampling “does not mix rapidly in higher dimensions”. Indeed, we
observe theoretically that for increasing dimension the performance of simple slice sampling
gets worse, however, we disagree to some extent to their statement, since the dependence on
the dimension is moderate. Namely, from (1) we obtain for any initial distribution that for
W(νUn

ρ ,π) ≤ ε with ε ∈ (0,1) we need

n ≥ (d + 1) log
(
ε−1W(ν,π)

)
,

which increases only linearly in d .
Second main result (Theorem 3.10): Based on the fact that in the second step of Algo-

rithm 1.1 we sample w.r.t. the uniform distribution on the (super-)level set G(t), one can con-
jecture that its geometric shape does not matter. However, its “size” or volume should matter.2

To this end, we define the level-set function 	ρ : (0,∞) → [0,∞) of ρ : G → (0,∞), with
G ⊆ Rd , by 	ρ(t) := λd(G(t)) for t ∈ (0,∞), where λd denotes the d-dimensional Lebesgue
measure. The idea is now, to identify certain “nice” properties of 	ρ which lead to spectral
gap estimates. Here, we propose classes �k , with k ∈ N, of level-set functions containing all
continuous 	 : (0,∞) → [0,∞) satisfying, that:

• 	 is strictly decreasing on the open interval

supp	 := (
0, sup

{
t ∈ (0,∞) | 	(t) > 0

})
(which implies the existence of the inverse 	−1 on (0,‖	‖∞) with ‖	‖∞ :=
sups∈(0,∞) 	(s)), and

• the function g : (0,‖	‖1/k∞ ) → supp 	, given by g(s) = 	−1(sk) is log-concave (i.e., logg

is concave).

In Theorem 3.10 we then show that, if for an unnormalized density ρ : G → (0,∞) we have
	ρ ∈ �k for a k ∈ N, then

(2) gapπ(Uρ) ≥ 1

k + 1
.

A crucial tool in the proof of Theorem 3.10 is the equality of the spectral gap of Uρ and the
spectral gap of the transition operator of the “level Markov chain” (Tn)n∈N defined within

2This is already observed in [20, 21].
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Algorithm 1.1. This statement is provided in Lemma 3.3. Observe, that in the formulation
of the second main result we did not impose any uni-modality, log-concavity or rotational
invariance assumption on ρ. It is allowed that the d-variate function ρ has more than one
mode, the only requirement is that the corresponding level-set function belongs to �k . In
many cases, for k = d this is satisfied, however, also k < d is possible; see Example 3.15.
It contains the special case where ρ is assumed to be the density of the d-variate standard
normal distribution, which leads to 	ρ ∈ �	d/2
. In that case for large d the lower bound
from (2) improves the spectral gap estimate of Theorem 2.1 roughly by a factor of 2. We also
consider a d-variate “volcano density”, where we show that this leads to a level-set function
in �1, such that the corresponding spectral gap of simple slice sampling is independent of
the dimension satisfying the lower bound 1/2.

The outline of the paper is as follows. In the next section we provide basic notation and
prove our main result w.r.t. the Wasserstein contractivity. Then, in Section 3 we state and
discuss the necessary operator theoretic definitions and investigate the important relation
between the Markov chains (Xn)n∈N and (Tn)n∈N generated by the simple slice sampling
algorithm. There we also prove the main theorem about the lower bound of the spectral gap
and illustrate the result after a discussion about the sets �k by examples.

2. Wasserstein contraction. Let (�,F,P) be the common probability space on which
all random variables are defined. The sequence of random variables (Xn)n∈N determined by
Algorithm 1.1 provides a Markov chain on G, that is, for all A ∈ B(G) it satisfies (almost
surely)

P(Xn+1 ∈ A | X1, . . . ,Xn) = Uρ(Xn,A),

where the transition kernel of simple slice sampling Uρ : G × B(G) → [0,1] is given by

Uρ(x,A) = 1

ρ(x)

∫ ρ(x)

0
Ut(A)dt.

Here Ut denotes the uniform distribution on the level set

G(t) := {
x ∈ Rd | ρ(x) ≥ t

}
,

thus, Ut(A) = λd(A∩G(t)
λd(G(t))

for t > 0. Note that by construction the transition kernel Uρ is re-
versible w.r.t. π , that is,∫

B
Uρ(x,A)π(dx) =

∫
A

Uρ(x,B)π(dx), A,B ∈ B(G).

In particular, this implies that π is a stationary distribution of Uρ . Further, by B
(d)
R we de-

note the d-dimensional closed Euclidean ball with radius R > 0 around zero and by B̊
(d)
R its

interior. For log-concave rotational invariant unnormalized densities we formulate now our
Wasserstein contraction result of the simple slice sampler.

THEOREM 2.1. For R ∈ (0,∞] let ϕ : [0,R) → R be a strictly increasing and con-
vex function on [0,R). Define ρ : B̊

(d)
R → (0,∞) by ρ(x) := exp(−ϕ(|x|)). Then, for any

x, y ∈ B̊
(d)
R we have

(3) W
(
Uρ(x, ·),Uρ(y, ·)) ≤

(
1 − 1

d + 1

)∣∣|x| − |y|∣∣.
Before we prove the result let us provide some comments on it.
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REMARK 2.2. Let us emphasize here that we allow R = ∞, which leads to B̊R = Rd .
Moreover, we remark that since on the right-hand side of (3) we have the absolute value of
the difference of the Euclidean norm of x and y an immediate consequence by the triangle
inequality is

W
(
Uρ(x, ·),Uρ(y, ·)) ≤

(
1 − 1

d + 1

)
|x − y|.

EXAMPLE 2.3. Let ϕ : [0,∞) → R be given as ϕ(s) = s2/2. This gives ρ(x) =
exp(−|x|2/2) which leads to π being a multivariate standard normal density. With R = ∞
and the convexity of ϕ we obtain (3).

For the proof of Theorem 2.1 we need the following auxiliary result.

LEMMA 2.4. With G = B̊
(d)
R let ρ : G → (0,∞) be given as in Theorem 2.1. Then, for

any x, y ∈ G we have

W
(
Uρ(x, ·),Uρ(y, ·)) ≤ d

d + 1
· 1

λd(B
(d)
1 )1/d

∫ 1

0

∣∣	ρ

(
rρ(x)

)1/d − 	ρ

(
rρ(y)

)1/d ∣∣ dr,

where 	ρ : (0,∞) → [0,∞) is the level-set function defined by 	ρ(t) := λd(G(t)).

PROOF. Since ϕ is strictly increasing and convex it is continuous and thus injective.
Moreover, note that the image of ϕ satisfies ϕ([0,R)) = [− log‖ρ‖∞,− log infρ). Here
‖ρ‖∞ := sup

x∈B̊
(d)
R

ρ(x) and infρ is an abbreviation of inf
x∈B̊

(d)
R

ρ(x) with the convention

log 0 := −∞. Hence, there exists the inverse

ϕ−1 : [− log‖ρ‖∞,− log infρ
) → [0,R).

In the case infρ = 0 the inverse ϕ−1 is defined on [− log‖ρ‖∞,∞). In the case infρ > 0 we
extend the inverse ϕ−1 to [− log‖ρ‖∞,∞) by setting

ϕ−1(t) := sup
{
s ∈ [0,R) : ϕ(s) ≤ t

}
, t ∈ [− log‖ρ‖∞,∞)

.

Note that by this extension we do not change ϕ−1 in [− log‖ρ‖∞,− log infρ) and obtain

ϕ−1(t) = R ∀t ≥ − log infρ.

For simplicity of the notation we write 	 for 	ρ . Observe that

G(t) = {
x ∈ B̊

(d)
R | |x| ≤ ϕ−1(

log t−1)} = B
(d)

(	(t)/λd(B
(d)
1 ))1/d

, t ∈ (
0,‖ρ‖∞

)
,

since 	(t) = λd(G(t)) = ϕ−1(log t−1)dλd(B
(d)
1 ). Thus, Ut denotes the uniform distribution

on the Euclidean ball around the origin with radius (	(t)/λd(B
(d)
1 ))1/d . Now it is straightfor-

ward to verify that ut,s : B(G2) → [0,1] determined by

ut,s(A × B) := 1

λd(B
(d)
1 )

∫
B

(d)
1

1A

((
	(t)

λd(B
(d)
1 )

)1/d

z

)
1B

((
	(s)

λd(B
(d)
1 )

)1/d

z

)
dz,

where A,B ∈ B(G), is a coupling of Ut and Us . For example, we have

ut,s(A × G) = 1

λd(B
(d)
1 )

∫
B

(d)
1

1A

((
	(t)

λd(B
(d)
1 )

)1/d

z

)
dz

= 1

	(t)

∫
G(t)

1A(y)dy = Ut(A).

40
Quantitative spectral gap estimate and Wasserstein contraction of simple slice

sampling



SPECTRAL GAP AND WASSERSTEIN CONTRACTION OF SIMPLE SLICE SAMPLER 811

Further, note that c : G2 × B(G2) → [0,1] determined by

c(x, y,A × B) :=
∫ 1

0
urρ(x),rρ(y)(A × B)dr

is a Markovian coupling of Uρ(x, ·) and Uρ(y, ·), that is, c(x, y,A × G) = Uρ(x,A) and
c(x, y,G × B) = Uρ(y,B) for all x, y ∈ G and A,B ∈ B(G). Indeed, since

ut,s(A × G) = Ut(A), ut,s(G × B) = Us(B)

we get, for example,

c(x, y,A × G) =
∫ 1

0
Urρ(x)(A)dr = 1

ρ(x)

∫ ρ(x)

0
Ut(A)dt = Uρ(x,A).

Summarized, for arbitrary x, x̃ ∈ G and A,B ∈ B(G) we obtain

c(x, x̃,A × B) = 1

λd(B
(d)
1 )

∫ 1

0

∫
B

(d)
1

1A

((
	(rρ(x))

λd(B
(d)
1 )

)1/d

z

)
1B

((
	(rρ(x̃))

λd(B
(d)
1 )

)1/d

z

)
dz dr.

Using the Markovian coupling we obtain for arbitrary x, x̃ ∈ G that

W
(
Uρ(x, ·),Uρ(x̃, ·)) ≤

∫
G2

|y − ỹ|c(x, x̃, dy dỹ)

= 1

λd(B
(d)
1 )

∫ 1

0

∫
B

(d)
1

∣∣∣∣
(

	(rρ(x))

λd(B
(d)
1 )

)1/d

−
(

	(rρ(x̃))

λd(B
(d)
1 )

)1/d ∣∣∣∣|z|dz dr

= λd(B
(d)
1 )

λd(B
(d)
1 )1+1/d

· d

d + 1

∫ 1

0

∣∣	(
rρ(x̃)

)1/d − 	
(
rρ(x)

)1/d ∣∣dr,

which finishes the proof. �

REMARK 2.5. In the previous proof we used the coupling ut,s ∈ �(Ut ,Us) for s, t ∈
(0,‖ρ‖∞). In the setting of Lemma 2.4 observe that for d = 1 it is related to the optimal
Hoeffding–Fréchet coupling. This optimality property also holds for arbitrary d > 1, which
is justified as follows. We derive an upper bound for W(Ut ,Us) by ut,s ,

W(Ut ,Us) ≤
∫
G×G

|x − y|dut,s(x, y)

=
∣∣∣∣
(

	(t)

λd(B
(d)
1 )

)1/d

−
(

	(s)

λd(B
(d)
1 )

)1/d ∣∣∣∣
∫
B

(d)
1

|z| dz

λd(B
(d)
1 )

=
∣∣∣∣
(

	(t)

λd(B
(d)
1 )

)1/d

−
(

	(s)

λd(B
(d)
1 )

)1/d ∣∣∣∣ d

d + 1
,

where we used
∫
B

(d)
1

|z|dz = d
d+1λd(B

(d)
1 ). To derive a lower bound of W(Ut,Us) we ap-

ply the Kantorovich–Rubinstein duality formula of the Wasserstein distance (see, e.g., [29],
Chapter 1.2,) w.r.t. Ut and Us . It is given by

W(Ut ,Us) = sup
‖g‖Lip≤1

∣∣∣∣
∫
G

g(z)
(
Ut(dz) − Us(dz)

)∣∣∣∣,
where ‖g‖Lip := supx,y∈G

|g(x)−g(y)|
|x−y| for g : G → R. (The supremum is taken over Lipschitz

continuous functions with Lipschitz constant less or equal to 1.) Considering h(z) := |z| and
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noting ‖h‖Lip ≤ 1 as well as∫
G

|z|Ut(dz) =
(

	(t)

λd(B
(d)
1 )

)1/d ∫
B

(d)
1

|z| dz

λd(B
(d)
1 )

=
(

	(t)

λd(B
(d)
1 )

)1/d d

d + 1

then yields

W(Ut ,Us) ≥
∣∣∣∣
∫
G

h(z)
(
Ut(dz)

) − Us(dz))

∣∣∣∣ =
∣∣∣∣
(

	(t)

λd(B
(d)
1 )

)1/d

−
(

	(s)

λd(B
(d)
1 )

)1/d ∣∣∣∣ d

d + 1
.

Hence

W(Ut,Us) =
∣∣∣∣
(

	(t)

λd(B
(d)
1 )

)1/d

−
(

	(s)

λd(B
(d)
1 )

)1/d ∣∣∣∣ d

d + 1
,

which implies that ut,s is an optimal coupling.

Now we provide the proof of Theorem 2.1.

PROOF OF THEOREM 2.1. Again, for 	ρ we write 	. To verify the claim of the theorem
by Lemma 2.4 it is sufficient to show that

1

λd(B
(d)
1 )1/d

∫ 1

0

∣∣	(
rρ(x)

)1/d − 	
(
rρ(y)

)1/d ∣∣dr ≤ ∣∣|x| − |y|∣∣ ∀x, y ∈ B̊
(d)
R .

Then, by the extended inverse ϕ−1 derived in the proof of Lemma 2.4 we have

(4) 	(t) = λd

(
B

(d)
1

)(
ϕ−1(− log t)

)d
, t ∈ (

0,‖ρ‖∞
]
.

Here also note that by the definition of ρ we have ϕ(0) = − log‖ρ‖∞. The representation (4)
yields for any r ∈ (0,1] and x ∈ B̊

(d)
R that

	
(
rρ(x)

)1/d = λd

(
B

(d)
1

)1/d
ϕ−1(

ϕ
(|x|) − log r

)
,

which leads to

λd

(
B

(d)
1

)−1/d
∫ 1

0

∣∣	(
rρ(x)

)1/d − 	
(
rρ(y)

)1/d ∣∣ dr

=
∫ 1

0

∣∣ϕ−1(
ϕ

(|x|) − log r
) − ϕ−1(

ϕ
(|y|) − log r

)∣∣ dr.

We now show that for any r ∈ (0,1] and any s, s̃ ∈ [0,R) we have∣∣ϕ−1(
ϕ(s) − log r

) − ϕ−1(
ϕ(̃s) − log r

)∣∣ ≤ |s − s̃|,
which immediately yields the assertion of the theorem.

For this let s, s̃ ∈ [0,R) and assume without loss of generality that s ≤ s̃. Define for arbi-
trary fixed s ∈ [0,R) the value rmin(s) by

ϕ(s) − log rmin(s) = − log infρ.

Hence

ϕ−1(
ϕ(s) − log r

) = R ∀r ≤ rmin(s).

Moreover, we set

s′(r) := ϕ−1(
ϕ(s) − log r

) ∈ [0,R) ∀r > rmin(s)
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and since ϕ is continuous and increasing we have

ϕ
(
s′(r)

) = ϕ(s) − log r ≥ ϕ(s), s ≤ s′(r).

The same arguments lead to

ϕ−1(
ϕ(̃s) − log r

) = R ∀r ≤ rmin(̃s)

and

ϕ
(̃
s′(r)

) = ϕ(̃s) − log r ≥ ϕ(̃s), s̃ ≤ s̃′(r)

for

s̃′(r) := ϕ−1(
ϕ(̃s) − log r

) ∈ [0,R) ∀r > rmin(̃s).

Note, that due to s ≤ s̃ we have ϕ(s) ≤ ϕ(̃s) and, thus, rmin(̃s) ≤ rmin(s). We distinguish three
cases w.r.t. r ∈ (0,1]:

1. Assume r ≤ rmin(̃s): Here ϕ−1(ϕ(s) − log r) = ϕ−1(ϕ(̃s) − log r) = R and

0 = ∣∣ϕ−1(
ϕ(s) − log r

) − ϕ−1(
ϕ(̃s) − log r

)∣∣ ≤ |s − s̃|.
2. Assume r > rmin(s): Here∣∣ϕ−1(

ϕ(s) − log r
) − ϕ−1(

ϕ(̃s) − log r
)∣∣ = ∣∣s′(r) − s̃′(r)

∣∣
with s′(r), s̃′(r) ∈ [0,R). We now exploit the convexity of ϕ on [0,R) which is equivalent to

Rϕ(u, v) := ϕ(u) − ϕ(v)

u − v
, u, v ∈ [0,R),

being increasing in u for fixed v and vice versa (since Rϕ is symmetric).
Hence, since s ≤ s′(r) and s̃ ≤ s̃′(r), we obtain

ϕ(s′(r)) − ϕ(̃s′(r))
s′(r) − s̃′(r)

≥ ϕ(s) − ϕ(̃s)

s − s̃

= (ϕ(s) − log r) − (ϕ(̃s) − log r)

s − s̃
= ϕ(s ′(r)) − ϕ(̃s′(r))

s − s̃

which implies

(5)
∣∣s′(r) − s̃′(r)

∣∣ ≤ |s − s̃|.
3. Assume rmin(̃s) ≤ r < rmin(s): Here3∣∣ϕ−1(

ϕ(s) − log r
) − ϕ−1(

ϕ(̃s) − log r
)∣∣ = ∣∣̃s′(r) − R

∣∣.
By the fact that ϕ is increasing and convex it is continuous, such that there exists an ŝ ∈ [0,R)

with s ≤ ŝ ≤ s̃ satisfying

− log infρ = ϕ(ŝ) − log r

and, hence, ŝ′(r) = R. By employing the same reasoning as in (5) using the convexity of ϕ

we have that ∣∣̃s′(r) − R
∣∣ ≤ |̃s − ŝ| ≤ |s − s̃|.

This finishes the proof. �

3This case only occurs if limt↑R ϕ(t) = − log infρ < ∞. In that situation define ϕ(R) := − log infρ and ob-
serve that with this extension ϕ is increasing and convex on [0,R].
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It is fair to ask whether the estimate can be improved. The following example answers
this question. Namely, in any dimension we find a parameterized family of unnormalized
densities for which (3) holds with equality.

EXAMPLE 2.6. Let α > 0 be an arbitrary parameter. With the notation of Theorem 2.1 set
R = ∞ and ϕ(s) = αs on [0,∞). The function ϕ is strictly increasing and concave on [0,∞).
Hence, for ρ : Rd → (0,∞) with ρ(x) = exp(−α|x|) the estimate of (3) is true. Further
observe that G(t) = B

(d)

(log t−1)/α
. For x, y ∈ Rd we use again the Kantorovich–Rubinstein

duality formula of the Wasserstein distance w.r.t. Uρ(x, ·) and Uρ(y, ·), that is,

W
(
Uρ(x, ·),Uρ(y, ·)) = sup

‖g‖Lip≤1

∣∣∣∣
∫

Rd
g(z)

(
Uρ(x,dz) − Uρ(y,dz)

)∣∣∣∣,(6)

where ‖g‖Lip := supx,y∈Rd
|g(x)−g(y)|

|x−y| for g : Rd → R. We argue as in Remark 2.5 and set
h(z) = |z|. Note that this function satisfies ‖h‖Lip ≤ 1 as well as∫

Rd
h(z)Uρ(x,dz) = 1

ρ(x)

∫ ρ(x)

0

∫
B

(d)

(log t−1)/α

|z| dz

λd(B
(d)

(log t−1)/α
)

dt

= 1

ρ(x)

∫ ρ(x)

0

∫
B

(d)
1

log t−1

α
· |z| dz

λd(B
(d)
1 )

dt

= d

(d + 1)α
· 1

ρ(x)

∫ ρ(x)

0
log t−1 dt = d

(d + 1)α

(− logρ(x) − 1
)

= d

(d + 1)α

(
α|x| − 1

)
,

where we again used the fact that
∫
B

(d)
1

|z|dz = d
d+1λd(B

(d)
1 ). Hence, by (6), employing the

function h we get a lower bound of W(Uρ(x, ·),Uρ(y, ·)), which coincides with the upper
bound (3). Thus, the Markovian coupling c(x, y, ·) ∈ �(Uρ(x, ·),Uρ(y, ·)) constructed in
Lemma 2.4 is in this scenario optimal and

W
(
Uρ(x, ·),Uρ(y, ·)) =

(
1 − 1

d + 1

)∣∣|x| − |y|∣∣, x, y ∈ Rd .

This establishes that the inequality stated in Theorem 2.1 can, in general, not be improved.

3. Spectral gap estimate. In this section we investigate spectral gap properties of the
Markov operator induced by the transition kernel Uρ of the Markov chain (Xn)n∈N. For this
we need further definitions. By L2(π) we denote the Hilbert space of functions f : G →
R with finite norm ‖f ‖2,π := (

∫
G |f |2 dπ)1/2. By the reversibility of Uρ we have that π

is a stationary distribution. The transition kernel Uρ can be extended to a linear operator
Uρ : L2(π) → L2(π) defined by

Uρf (x) :=
∫
G

f (y)Uρ(x,dy), x ∈ G.

It is well known that a general Markov operator is self-adjoint on L2(π) iff the corresponding
transition kernel is reversible w.r.t. π ; see, for example, [22], Lemma 3.9. We denote the
(mean) functional Eπ : L2(π) → R by Eπ(f ) := ∫

G f dπ and note that this can be extended
to a bounded linear operator Eπ : L2(π) → L2(π) with Eπ(f ) ≡ ∫

G f dπ . With this notation
the spectral gap of Uρ is determined by the operator norm of Uρ − Eπ , that is, it is given by

gapπ(Uρ) := 1 − ‖Uρ − Eπ‖L2(π)→L2(π).
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Further let L0
2(π) be the set of functions f ∈ L2(π) with Eπ(f ) = 0. Using the normed

linear space L0
2(π) it is well known that ‖Uρ‖L0

2(π)→L0
2(π) = ‖Uρ − Eπ‖L2(π)→L2(π) (see,

e.g., [22], Lemma 3.16) such that

gapπ(Uρ) = 1 − ‖Uρ‖L0
2(π)→L0

2(π).

An immediate consequence of Theorem 2.1, for example, by applying [18], Proposition 30,
is the following.

COROLLARY 3.1. Assume that ϕ satisfies the conditions formulated in Theorem 2.1 and
ρ(x) = exp(−ϕ(|x|)). Then

gapπ(Uρ) ≥ 1

d + 1
.

The aim of this section is to extend and improve the previous estimate to a larger class of
density functions which are not necessarily log-concave and rotational invariant.

For this, in addition to the Markov chain (Xn)n∈N, the auxiliary variable Markov chain
(Tn)n∈N also determined by Algorithm 1.1 is useful. In the next section we introduce the
corresponding transition kernel, provide a relation to Uρ and investigate further properties of
(Tn)n∈N.

3.1. Auxiliary variable Markov chain. The sequence of auxiliary random variables
(Tn)n∈N from Algorithm 1.1 provides also a Markov chain. In contrast to (Xn)n∈N the Markov
chain (Tn)n∈N is defined on (R+,B(R+)), with R+ := (0,∞) and the transition kernel is
given by

Qρ(t,B) = 1

λd(G(t))

∫
G(t)

λ1(B ∩ [0, ρ(x)])
ρ(x)

dx, B ∈ B(
R+)

.

Recall that the level-set function of ρ is given by 	ρ(t) = λd(G(t)) and define a probability
measure μ on (R+,B(R+)) by

μ(B) :=
∫
B 	ρ(t)dt∫ ∞

0 	ρ(r)dr
, B ∈ B(

R+)
.

From [10], Lemma 1, it follows that the transition kernel Qρ is reversible w.r.t. μ. For the
convenience of the reader we prove this fact in our setting.

LEMMA 3.2. The transition kernel Qρ on (R+,B(R+)) is reversible w.r.t. μ.

PROOF. For any A,B ∈ B(R+) we have∫
B

Qρ(t,A)μ(dt) =
∫
B

1

λd(G(t))

∫
G(t)

λ1(A ∩ [0, ρ(x)])
ρ(x)

dx
	ρ(t)dt∫ ∞

0 	ρ(r)dr

=
∫ ∞

0
1B(t)

∫
G

1G(t)(x)

ρ(x)

∫ ∞
0

1A(s)1[0,ρ(x)](s)ds
dx dt∫ ∞

0 λd(G(r))dr
.

Using the fact that 1G(s)(x) = 1[0,ρ(x)](s) we have∫
B

Qρ(t,A)μ(dt) =
∫ ∞

0

∫
G

∫ ∞
0

1A(s)1B(t)
1G(t)(x)1G(s)(x)

ρ(x)

ds dx dt∫ ∞
0 λd(G(r))dr

.
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Note that the right-hand side of the previous equation is symmetric in A and B , such that we
can change their roles and argue backwards. This leads to∫

B
Qρ(t,A)μ(dt) =

∫
A

Qρ(t,B)μ(dt),

which finishes the proof. �

Now we present a relation of the spectral gap of Uρ to the spectral gap of Qρ . Here
we need the Hilbert space L2(μ), which consists of functions h : R+ → R with finite
‖h‖2,μ := (

∫
R+ |h|2μ(dt))1/2. To state the spectral gap of Qρ let Eμ : L2(μ) → R be the

(mean) functional given by Eμh := ∫
R+ hdμ, which we consider as linear operator mapping

L2(μ) functions to constant ones. Then, the spectral gap of Qρ is given by the operator norm

gapμ(Qρ) := 1 − ‖Qρ − Eμ‖L2(μ)→L2(μ),

where the transition kernel Qρ is extended to the self-adjoint Markov operator Qρ : L2(μ) →
L2(μ) defined by

Qρh(t) :=
∫

R+
h(s)Qρ(t,ds), t ∈ R+.

Note that the self-adjointness here comes (again as for Uρ ) by the fact that Qρ is reversible.
With this notation we obtain:

LEMMA 3.3. The spectral gaps of Qρ and Uρ coincide, that is, gapπ(Uρ) = gapμ(Qρ).

PROOF. Define the linear operators V : L2(μ) → L2(π) and V ∗ : L2(π) → L2(μ) by

(Vg)(x) := 1

ρ(x)

∫ ρ(x)

0
g(t)dt, g ∈ L2(μ),

(
V ∗f

)
(t) := 1

λd(G(t))

∫
G(t)

f (x)dx, f ∈ L2(π).

Now we show that V ∗ is the adjoint operator of V , that is, 〈Vg,f 〉π = 〈g,V ∗f 〉μ, where
〈·, ·〉π and 〈·, ·〉μ are the inner products of L2(π) and L2(μ), respectively. We have

〈Vg,f 〉π =
∫
G
(Vg)(x)f (x)π(dx) =

∫
G

1

ρ(x)

∫ ρ(x)

0
g(t)dtf (x)

ρ(x)∫
G ρ(y)dy

dx

=
∫
G

∫ ∞
0

1[0,ρ(x)](t)g(t)f (x)dt
dx∫

G ρ(y)dy
.

Further we use the fact that 1[0,ρ(x)](t) = 1G(t)(x), that
∫
G ρ(y)dy = ∫ ∞

0 	ρ(r)dr and change
the order of the integrals. Finally, we have

〈Vg,f 〉π =
∫ ∞

0
g(t)

∫
G

f (x)1G(t)(x)dx
dt∫ ∞

0 	ρ(r)dr

=
∫ ∞

0
g(t)

1

λd(G(t))

∫
G(t)

f (x)dx
	ρ(t)dt∫ ∞

0 	ρ(r)dr

=
∫ ∞

0
g(t)

(
V ∗f

)
(t)μ(dt) = 〈

g,V ∗f
〉
μ.
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Furthermore, we have Uρ = V V ∗ and Qρ = V ∗V . Now, define S : L2(μ) → L2(π) and
S∗ : L2(π) → L2(μ) by

S(g) :=
∫ ∞

0
g(t)μ(dt), g ∈ L2(μ),

S∗(f ) :=
∫
G

f (x)π(dx), f ∈ L2(π).

Also, note here that S∗ is the adjoint operator of S, as well as, Eπ = SS∗ and Eμ = S∗S.
Define R := V − S and the adjoint R∗ = V ∗ − S∗. By the fact that also Eπ = SV ∗ = V S∗
we have

RR∗ = (V − S)
(
V ∗ − S∗) = V V ∗ − Eπ = Uρ − Eπ .

Similarly, by Eμ = V ∗S = S∗V we obtain R∗R = Qρ − Eμ. Now using the well-known fact
(see, e.g., [5], Proposition 2.7) that

‖R‖L2(μ)→L2(π) = ∥∥R∗∥∥
L2(π)→L2(μ)

the statement of the lemma follows by

∥∥RR∗∥∥
L2(π)→L2(π) = ‖R‖2

L2(μ)→L2(π) = ∥∥R∗∥∥2
L2(π)→L2(μ) = ∥∥R∗R

∥∥
L2(μ)→L2(μ)

and the definition of the spectral gap. �

REMARK 3.4. Similar arguments as in the previous proof have been used in [28], Sec-
tion 4.2, in a finite state space setting as well as in [10, 24, 25].

Now we argue that the transition kernel Qρ (and therefore also the Markov operator) only
depends on ρ via its level-set function 	ρ .

LEMMA 3.5. For an unnormalized density ρ : G → R+ we have for any t ∈ R+ that

Qρ(t,B) = 1

	ρ(t)

∫ ∞
t

λ1(B ∩ [0, r])
r

d(−	ρ)(r), B ∈ B(
R+)

,

where on the right-hand side we use the Lebesgue–Stieltjes integral w.r.t. −	ρ .

PROOF. Let g : (t, 	ρ(0)) → R+ with g(r) = λ1(B ∩ [0, r])/r and note that the pushfor-
ward measure ρ∗λd on R+ is defined by

ρ∗λd(B) := λd ◦ ρ−1(B) = λd

(
ρ−1(B)

)
, B ∈ B(

R+)
.

Hence for any r, s ∈ R+ with r < s we have

ρ∗λd((r, s]) = λd

({
x ∈ G(t) : r < ρ(x) ≤ s

})
= λd

({
x ∈ G(t) : r < ρ(x)

}) − λd

({
x ∈ G(t) : s < ρ(x)

})
= −(

	ρ(s+) − 	ρ(r+)
)
,

where 	ρ(t+) denotes the right limit at t ∈ R+ of the left-continuous level-set function. Thus,
ρ∗λd is the Lebesgue–Stieltjes measure associated to the monotone nondecreasing function
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−	ρ : R+ → (−∞,0] (see, e.g., [1], Section 1.3.2), and we obtain with a change of variable
(see [3], Theorem 3.6.1, page 190) that

Qρ(t,B) = 1

	ρ(t)

∫
G(t)

λ1(B ∩ [0, ρ(x)])
ρ(x)

dx

= 1

	ρ(t)

∫
G(t)

g
(
ρ(x)

)
λd(dx)

= 1

	ρ(t)

∫ 	ρ(0)

t
g(r)ρ∗λd(dr)

= 1

	ρ(t)

∫ ∞
t

λ1(B ∩ [0, r])
r

d(−	ρ)(r). �

REMARK 3.6. For a given ρ : G → R+ with continuously differentiable level-set func-
tion 	ρ the previous result can be stated as

Qρ(t,B) = − 1

	ρ(t)

∫ ∞
t

λ1(B ∩ [0, r])
r

	′
ρ(r)dr, B ∈ B(

R+)
.

An immediate consequence of Lemma 3.3 and Lemma 3.5 is the following important
result.

COROLLARY 3.7. Let d, d̃ ∈ N and G ⊆ Rd as well as G̃ ⊆ Rd̃ . Further let ρ : G → R+
and ρ̃ : G̃ → R+ satisfying 	ρ(t) = 	ρ̃(t) for all t ∈ R+. Then

Qρ(t,B) = Qρ̃(t,B), t ∈ R+,B ∈ B(
R+)

,

and

gapπ(Uρ) = gapμ(Qρ) = gapμ(Qρ̃) = gapπ̃ (Uρ̃),

where π̃ denotes the distribution induced by ρ̃.

Thus, the above corollary tells us that the spectral gap of simple slice sampling is entirely
determined by the level-set function 	ρ : R+ → [0,∞) of the (unnormalized) target density
ρ and does, for instance, not necessarily depend on the dimension of G. In particular, Corol-
lary 3.7 allows us to extend the spectral gap result of Corollary 3.1 to much larger classes of
target distributions as we explain in detail in the next subsection.

3.2. Spectral gap result. Corollary 3.7 implies that the lower bound for the spectral gap
of simple slice sampling of rotational invariant and log-concave (unnormalized) target den-
sities also holds for other target densities which share the same level-set function. Thus, our
idea is to identify convenient classes of target densities ρ : G → [0,∞), with G ⊆ Rd , which
possess the same level-set function as a rotational invariant and log-concave unnormalized
density ρ̃ : G̃ → [0,∞), with G̃ ⊆ Rd̃ . We illustrate this approach first by an example and
formalize it rigorously afterwards.

EXAMPLE 3.8. We consider a bimodal distribution π on the set

G = (
m0 + B̊

(d)√
log 16

) ∪ B̊
(d)√

log 4
⊂ Rd

with m0 = (5,0, . . . ,0) ∈ Rd given by the unnormalized density

ρ(x) = max
{

exp
(
−1

2
|x|2

)
, exp

(
−1

4
|x − m0|2

)}
− 1

2
.
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FIG. 1. Plot of ρ from Example 3.8 for d = 2.

Notice that ρ is positive on G. Here it is worth mentioning that in particular in such scenarios
an efficient implementation of simple slice sampling is challenging and we are at this point
merely interested in theoretical properties. By construction, the level sets of ρ consist of two
disjoint balls, that is, we have

G(t) = (
m0 + B̊

(d)√
log(1/2+t)−4

) ∪ B̊
(d)√

log(1/2+t)−2
, t ∈ [0,1/2).

This leads to

	ρ(t) = (
2d/2 + 4d/2)

λd

(
B

(d)
1

)(
log(1/2 + t)−1)d/2

, t ∈ [0,1/2).

In Figure 1 and Figure 2 we provide an illustration of ρ and 	ρ for d = 2. Straightforwardly
one obtains the inverse of 	ρ given by 	−1

ρ : (0, 	ρ(0)) → (0,1/2) with

	−1
ρ (s) = exp

(
−

(
s

(2d/2 + 2d)λd(B
(d)
1 )

)2/d)
− 1/2.

Now, for k ∈ N we can define rotational invariant unnormalized densities

ρ̃(k) : B
(k)

(	ρ(0)/λk(B
(k)
1 ))1/k

→ (0,∞)

by

ρ̃(k)(y) := 	−1
ρ

(
λk

(
B

(k)
1

)|y|k)
which have the same level-set function as ρ, that is, 	ρ(t) = 	ρ̃(k)(t) for all t ∈ (0,1/2). Note
that the dimension of the domain of ρ̃(k) is k, whereas for ρ it is d and d does not need to

FIG. 2. Plot of 	ρ of Example 3.8 for d = 2.
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FIG. 3. Plot of ρ̃(1).

coincide with k. In Figure 3 and Figure 4 we display ρ̃(k) for k = 1, k = 2 and d = 2. By
Corollary 3.7 we can conclude that the spectral gaps of Uρ and Uρ̃(k) are the same. Moreover,
the auxiliary densities ρ̃(k) are of the form ρ̃(k)(x) = exp(−ϕk(|x|)) on their domain, where

ϕk(s) := − log	−1(
sk) = − log

(
exp

(
−

(
sk

(2d/2 + 2d)λd(B
(d)
1 )

)2/d)
− 1/2

)

for all s ∈ [0, (	ρ(0)/λk(B
(k)
1 )1/k). Thus, for k ≥ �d

2 � the function ϕk is strictly increasing
and convex, that is, the unnormalized density ρ̃(k) satisfies the assumptions of Theorem 2.1
and Corollary 3.1, respectively. Hence, we can conclude that simple slice sampling of the
bimodal target π on Rd given by ρ has a spectral gap of at least

gapπ(Uρ) ≥ 1

�d
2 � + 1

.

The previous example suggests the definition of the following classes of level-set func-
tions.

DEFINITION 3.9. A continuous function 	 : (0,∞) → [0,∞] belongs to the class �k

with k ∈ N if:

1. 	 is strictly decreasing on its open support

supp 	 := (
0, sup

{
t ∈ (0,∞) | 	(t) > 0

})
,

FIG. 4. Plot of ρ̃(2).
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which implies the existence of the inverse 	−1 on 	(supp 	) = (0,‖	‖∞) with

‖	‖∞ := sup
s∈(0,∞)

= lim
t→0+	(t) = 	(0+),

2. the function g : (0,‖	‖1/k∞ ) → supp 	 given by g(s) := 	−1(sk) is log-concave, that is,
logg is concave.

The main result of this section is then as follows.

THEOREM 3.10. For an unnormalized density ρ : G → R+ assume that its level-set
function 	ρ ∈ �k for k ∈ N. Then

gapπ(Uρ) ≥ 1

k + 1
.

PROOF. The idea here is to construct an unnormalized density ρ̃(k) : Rk → R+ such
that 	ρ = 	ρ̃(k) and ρ̃(k) satisfies the assumptions of Theorem 2.1. The statement then fol-

lows by Corollary 3.1 and Corollary 3.7. To this end, we define ρ̃(k) : B̊
(k)
Rk

→ R+ with

Rk := (‖	ρ‖∞/λk(B
(k)
1 ))1/k by

ρ̃(k)(x) := 	−1
ρ

(
λk

(
B

(k)
1

)|x|k), |x| < Rk.

By construction we have for any t ∈ (0,∞)

	ρ̃(k)(t) = λk

({
x ∈ Rk : ρ̃(k)(x) ≥ t

}) = 	ρ(t).

Next, we observe that ρ̃(k)(x) = exp(−ϕk(|x|)) for |x| < Rk with

ϕk(s) := − log	−1
ρ

(
λk

(
B

(k)
1

)
sk), s ∈ [0,Rk).

Since 	ρ belongs to �k , we know that s �→ log	−1
ρ (sk) is concave. This yields the con-

vexity of ϕk on [0,Rk). Moreover, 	ρ ∈ �k implies that also 	−1
ρ is strictly decreasing on

[0,‖	ρ‖∞). Thus, the mapping s �→ log	−1
ρ (sk) is strictly decreasing and, therefore, ϕk is

strictly increasing. Hence, the unnormalized density ρ̃(k) satisfies the assumptions of Theo-
rem 2.1 which finishes the proof. �

Notice that the lower the number k of the class �k the larger the lower bound of the spectral
gap. Subsequently, we provide some (sufficient) characterizations of the classes �k .

3.2.1. Properties of the class �k . The requirements of a level-set function to belong to
the class �k are not easy to check. We provide some auxiliary tools. The following is a trivial
consequence of the definition of �k .

PROPOSITION 3.11. If 	 ∈ �k for k ∈ N and c > 0, then c · 	 ∈ �k .

Now a sufficient condition for being in �1 is stated.

PROPOSITION 3.12. If 	 : (0,∞) → [0,∞) is strictly decreasing and concave, then 	 ∈
�1.
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PROOF. Since 	 is strictly decreasing and concave we have that 	−1 is concave. Then
log	−1 is log-concave and 	 ∈ �1. �

Assuming smoothness of 	 the previous result can be extended and provides a characteri-
sation of �k .

PROPOSITION 3.13. Let 	 : (0,∞) → [0,∞) be continuously differentiable on its open
support supp 	 with 	′(t) < 0. Define the function ψ : supp	 → [0,∞) by ψ(t) := t	′(t)

	(t)1−1/k

for k ∈ N. Then

	 ∈ �k ⇐⇒ ψ is decreasing.

PROOF. The function 	 is strictly decreasing on supp 	, since 	′(t) < 0 on that interval.
This implies that the inverse 	−1 : [0,‖	‖∞) → supp 	 exists and is strictly decreasing. Define
the function ϕk : [0,‖	‖1/k∞ ) → R with ϕk(s) := − log	−1(sk). Observe that ϕk is strictly
increasing and by the inverse mapping theorem continuously differentiable on supp	. We
have

ϕ′
k(s) = − d

ds
log	−1(

sk) = − 1

	−1(sk)

(
d

ds
	−1(

sk)) = − 1

	−1(sk)

ksk−1

	′(	−1(sk))
.

Given the assumptions we have that 	 ∈ �k if and only if ϕk is convex. The latter is equivalent
to ϕ′

k being increasing. Note that for s ∈ [0,‖	‖1/k∞ )

ksk−1

	′(	−1(sk))
= k

sk

s	′(	−1(sk))
= k

	(	−1(sk))

s	′(	−1(sk))
= k

	(	−1(sk))

(	(	−1(sk)))1/k	′(	−1(sk))

= k
(	(	−1(sk)))1−1/k

	′(	−1(sk))
.

Hence, with h(t) := − 	1−1/k(t)
t	′(t) we obtain ϕ′

k(s) = k · h(	−1(sk)), which leads to the fact that

ϕ′
k increasing ⇐⇒ h decreasing.

However, the latter is equivalent to the fact that the mapping t �→ t	′(t)
	(t)1−1/k is decreasing, since

	(t)1−1/k

t	′(t) < 0 on supp	. �

REMARK 3.14. Roberts and Rosenthal [20] derived convergence results of simple slice
sampling given the assumption that t �→ t	′(t) is decreasing which corresponds to the suffi-
cient condition for 	 ∈ �1. In particular, they write “However, it is surprising that this same
bound4 applies to any density ρ such that t	′(t) is nonincreasing”.5 We also observe this sur-
prising fact, but w.r.t. the spectral gap. In contrast to their result, in general, we do not require
the existence of the first derivative from the level-set function. Moreover, our result for �k

with k > 1 has no analogues in the work of Roberts and Rosenthal. To emphasize this we
consider in Section 3.2.2 an example of a level-set function which is in �2 but not in �1.

4They provide a quantitative bound of ‖Un
ρ (x, ·) − π(·)‖tv for any continuously differentiable 	 as in Proposi-

tion 3.13.
5For the formulas we adapted their statement to our notation, namely in their work our ρ is π and our 	 is

denoted by Q.
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3.2.2. Further examples. We illustrate in two more examples the advantages of Theo-
rem 3.10 compared to Theorem 2.1.

EXAMPLE 3.15. For α > 0 and γ > 0 let ρ(d) : Rd → R+ be given by ρ(d)(x) =
exp(−α|x|γ ). By Proposition 3.11 it is sufficient to consider

	(t) :=
(

log t−1

α

)d/γ

= c1	ρ(d)(t), t ∈ (0,∞),

with c1 = λd(B
(d)
1 ). The function 	 is strictly decreasing and log 	−1(sk) = −αsγ k

d . Thus,
for any γ ≥ 1 and k = d it is concave on (0,∞), such that for this parameters 	 ∈ �d and by
Theorem 3.10

gap(Uρ(d)) ≥ 1

d + 1
.

However, we notice that log	−1(sk) = −αsγ k/d is concave for k ≥ �d/γ �. Otherwise, for
k < �d/γ � it is convex. Thus, we have that 	ρ ∈ ��d/γ � but if d < γ , then 	ρ /∈ ��d/γ �−1.
For instance, for γ = d/2 we have that 	ρ ∈ �2 and 	ρ /∈ �1. Hence, Theorem 3.10 tells us
that for this class of target densities

gap(Uρ(d)) ≥ 1

�d/γ � + 1
≥ 1

d + 1
.

In the following we consider a “volcano” density.

EXAMPLE 3.16. Let ρ(d) : Rd → R+ be given by ρ(d)(x) = e−|x|2d+2|x|d . In contrast
to Example 3.15 here we have more than a single peak. For d = 2 the density is plotted
in Figure 5. It is easy to see that 	ρ(d) is proportional to the strictly decreasing function
	 : (0,∞) → [0,∞) given by

	(t) :=
⎧⎨
⎩1 +

√
1 + log t−1, 0 < t ≤ 1,

2
√

1 + log t−1, 1 < t ≤ e,

such that by Proposition 3.11 it is sufficient to consider 	. This leads to

	−1(s) =
⎧⎨
⎩e1− s2

4 , 0 ≤ s < 2,

e−s2+2s, s ≥ 2,

FIG. 5. Plot of ρ(2)(x) = e−|x|4+2|x|2 .
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FIG. 6. Plot of log	−1(s) from Example 3.16.

and we have that log 	−1(s) is concave; see also Figure 6. Hence 	 ∈ �1 for arbitrary d and
Theorem 3.10 implies

gapπ(Uρ(d)) ≥ 1

2
.
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CHAPTER B

Geometric convergence of elliptical slice sam-
pling

Notice that due to specific format restrictions of the journal this paper is presented here
in two parts: the article itself (B.1) and the supplementary material (B.2).

B.1 The article



Geometric Convergence of Elliptical Slice Sampling

Viacheslav Natarovskii 1 Daniel Rudolf 1 Björn Sprungk 2

Abstract
For Bayesian learning, given likelihood function
and Gaussian prior, the elliptical slice sampler,
introduced by Murray, Adams and MacKay 2010,
provides a tool for the construction of a Markov
chain for approximate sampling of the underlying
posterior distribution. Besides of its wide appli-
cability and simplicity its main feature is that no
tuning is required. Under weak regularity assump-
tions on the posterior density we show that the
corresponding Markov chain is geometrically er-
godic and therefore yield qualitative convergence
guarantees. We illustrate our result for Gaussian
posteriors as they appear in Gaussian process re-
gression, as well as in a setting of a multi-modal
distribution. Remarkably, our numerical experi-
ments indicate a dimension-independent perfor-
mance of elliptical slice sampling even in situa-
tions where our ergodicity result does not apply.

1. Introduction
Probabilistic modeling provides a versatile tool in the analy-
sis of data and allows for statistical inference. In particular,
in Bayesian approaches one is able to quantify model and
prediction uncertainty by extracting knowledge from the
posterior distribution through sampling. The generation of
exact samples w.r.t. the posterior distribution is usually quite
difficult, since it is in most scenarios only known up to a
normalizing constant. Let % : Rd → (0,∞) be determined
by a likelihood function given some data (which we omit in
the following for simplicity) as mapping from the parameter
space into the non-negative reals and let µ0 = N (0, C) be
a Gaussian prior distribution on Rd with non-degenerate
covariance matrix C, such that the posterior distribution µ

1Institute for Mathematical Stochastics, Georg-August-
Universität Göttingen, Göttingen, Germany 2Faculty of
Mathematics and Computer Science, Technische Universität
Bergakademie Freiberg, Germany. Correspondence to: Vi-
acheslav Natarovskii <vnataro@uni-goettingen.de>, Daniel
Rudolf <daniel.rudolf@uni-goettingen.de>, Björn Sprungk
<bjoern.sprungk@math.tu-freiberg.de>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

on Rd takes the form

µ(dx) =
%(x)

Z
µ0(dx), Z :=

∫

Rd
%(x) µ0(dx). (1)

For convenience, we abbreviate the former relation be-
tween the measures µ(dx) and %(x)µ0(dx) as µ(dx) ∝
%(x)µ0(dx).

A standard approach for generating approximate samples
w.r.t. µ is given by Markov chain Monte Carlo. The idea is
to construct a Markov chain, which has µ as its stationary
and limit distribution1. For this purpose in machine learn-
ing (and computational statistics in general) Metropolis-
Hastings algorithms and slice sampling algorithms (which
include Gibbs sampling) are classical tools, see, e.g., (Neal,
1993; Andrieu et al., 2003; Neal, 2003).

Murray, Adams and MacKay in (Murray et al., 2010) in-
troduced the elliptical slice sampler. On the one hand it
is based on a Metropolis-Hastings method suggested by
Neal (Neal, 1999) (nowadays also known as preconditioned
Crank-Nicolson Metropolis (Cotter et al., 2013; Rudolf &
Sprungk, 2018)) and on the other hand it is a modification
of slice sampling with stepping-out and shrinkage (Neal,
2003). Elliptical slice sampling is illustrated in (Murray
et al., 2010) on a number of applications, such as Gaus-
sian regression, Gaussian process classification and a Log
Gaussian Cox process. Apart from its simplicity and wide
applicability the main advantage of the suggested algorithm
is that it performs well in practice and no tuning is necessary.
In addition to that in many scenarios it appears as a build-
ing block and/or influenced methodological development of
sampling approaches (Fagan et al., 2016; Hahn et al., 2019;
Bierkens et al., 2020; Murray & Graham, 2016; Nishihara
et al., 2014).

However, despite the arguments for being reversible w.r.t.
the desired posterior in (Murray et al., 2010) there is, to
our knowledge, no theory guaranteeing indeed convergence
of the corresponding Markov chain. Under a tail and a
weak boundedness assumption on % we derive a small set
and Lyapunov function which imply geometric ergodicity
by standard theorems for Markov chains on general state
spaces, see e.g. chapter 15 in (Meyn & Tweedie, 2009)

1Limit distribution in the sense that for n→∞ the distribution
of the nth random variable of the Markov chain converges to µ.
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and/or (Hairer & Mattingly, 2011).

Before we state our ergodicity result in Section 2 we provide
the algorithm and introduce notation as well as basic facts.
Afterwards we state the detailed analysis, in particular, the
strategy of proof as well as verify the two crucial condi-
tions of having a Lyapunov function and a sufficiently large
small set. In Section 4 we illustrate the applicability of our
theoretical result in a fully Gaussian and multi-modal sce-
nario. Additionally, we compare elliptical with simple slice
sampling and different Metropolis-Hastings algorithms nu-
merically. The experiments indicate dimension-independent
statistical efficiency of elliptical slice sampling which will
be the content of future research.

2. Convergence of Elliptical Slice Sampling
We start with stating the transition mechanism/kernel of
elliptical slice sampling in algorithmic form and provide our
notation. Let (Ω,F ,P) be the underlying probability space
of all subsequently used random variables. For a, b ∈ R
with a < b let U [a, b] be the uniform distribution on [a, b]
and let B(Rd) be the Borel σ-algebra of Rd. Furthermore,
the Euclidean ball with radius R > 0 around x ∈ Rd is
denoted by BR(x) and the Euclidean norm is given by ‖ · ‖.

2.1. Transition Mechanism

We use the function p : Rd×Rd× [0, 2π]→ Rd defined as

p(x,w, θ) := cos(θ) x+ sin(θ) w, (2)

where, for fixed x,w ∈ Rd, the map θ 7→ p(x,w, θ) de-
scribes an ellipse in Rd with conjugate diameters x,w. Fur-
thermore, for t ≥ 0 let

Gt := {x ∈ Rd : %(x) ≥ t},

be the (super-)level set of % w.r.t. t. Using this notation a
single transition of elliptical slice sampling from x ∈ Rd to
y is presented in Algorithm 1. Here y ∈ Rd is considered
as a realization of a random variable Yx. Let us denote
the transition kernel which corresponds to elliptical slice
sampling by E : Rd × B(Rd)→ [0, 1] and for A ∈ B(Rd)
observe that

E(x,A) =
1

%(x)

∫ %(x)

0

∫

Rd
Ex,w,t(A) µ0(dw)dt,

where

Ex,w,t(A) := P(Yx ∈ A |W = w, Tx = t) (3)

is determined by steps 3-14 of Algorithm 1. These steps
of the algorithm determine the sampling mechanism on Gt
intersected with the ellipse by using a suitable adaptation
of the shrinkage procedure, see (Neal, 2003; Murray et al.,

Algorithm 1 Elliptical Slice Sampler
input current state x ∈ Rd
output next state y as realization of a random variable Yx

1: draw W ∼ µ0, call the result w;
2: draw Tx ∼ U [0, %(x)], call the result t;
3: draw Θ ∼ U [0, 2π], call the result θ;
4: θmin ← θ − 2π
5: θmax ← θ
6: while p(x,w, θ) 6∈ Gt do
7: if θ < 0 then
8: θmin ← θ
9: else

10: θmax ← θ
11: end if
12: draw Θ ∼ U [θmin, θmax], set the result to θ;
13: end while
14: y ← p(x,w, θ)

2010). Let (Xn)n∈N be a Markov chain generated by Algo-
rithm 1, that is, a Markov chain on Rd with transition kernel
E. Then, for any n ∈ N, A ∈ B(Rd) and x ∈ Rd we have

P(Xn+1 ∈ A | X1 = x) = En(x,A), (4)

where En is iteratively defined as

En+1(x,A) =

∫

Rd
En(z,A)E(x, dz), (5)

with E0(x,A) = 1A(x) denoting the indicator function of
the set A.

2.2. Main Result

Before we formulate the theorem, we state the assumptions
which eventually imply the convergence result.

Assumption 2.1. The function % : Rd → (0,∞) satisfies
the following properties:

1. It is bounded away from 0 and∞ on any compact set.

2. There exists an α > 0 and R > 0, such that

Bα‖x‖(0) ⊆ G%(x) for ‖x‖ > R.

The boundedness condition from below and above of %
on compact sets is relatively weak and appears frequently
in qualitative proofs for geometric ergodicity of Markov
chain algorithms, see e.g. (Roberts & Tweedie, 1996). The
second condition tells us that % has a sufficiently nice tail
behavior. It is satisfied if the tails are rotational invariant and
monotone decreasing, e.g., like exp(−κ‖x‖) for arbitrary
κ > 0. For examples of % which satisfy Assumption 2.1 we
refer to Section 4.
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For stating the geometric ergodicity of elliptical slice sam-
pling we introduce the total variation distance of two proba-
bility measures π, ν on Rd as

‖π − ν‖tv := sup
‖f‖∞≤1

∣∣∣∣
∫

Rd
f(x)(π(dx)− ν(dx))

∣∣∣∣ ,

where ‖f‖∞ := supx∈Rd |f(x)| for f : Rd → R.

Theorem 2.2. For elliptical slice sampling under Assump-
tion 2.1 there exist constants C > 0 and γ ∈ (0, 1), such
that

‖En(x, ·)− µ‖tv ≤ C(1 + ‖x‖)γn, ∀n ∈ N,∀x ∈ Rd.
(6)

Remark 2.3. A transition kernel which satisfies an inequal-
ity as in (6) is called geometrically ergodic, since the dis-
tribution of Xn+1, given that the initial state X1 = x, con-
verges exponentially/geometrically fast to µ. Here, the right-
hand side depends on x only via the term 1 + ‖x‖. We view
this result as a qualitative statement telling us about expo-
nential convergence of the Markov chain whereas we do not
care too much about the constants C > 0 and γ ∈ (0, 1).
The main reason behind this is, that the employed technique
of proof does usually not provide sharp bounds on γ and C,
particularly regarding their dependence on the dimension d.

3. Detailed Analysis
For proving geometric ergodicity for Markov chains on
general state spaces we employ a standard strategy, which
consists of the verification of a suitable small set as well
as a drift or Lyapunov condition, see e.g. chapter 15 in
(Meyn & Tweedie, 2009) or (Hairer & Mattingly, 2011).
More precisely we use a consequence of the Harris ergodic
theorem as formulated in (Hairer & Mattingly, 2011), which
provides a relatively concise introduction and proof of a
geometric ergodicity result for Markov chains.

3.1. Strategy of Proof

To formulate the convergence theorem we need the notion
of a Lyapunov function and a small set. For this let P : Rd×
B(Rd)→ [0, 1] be a generic transition kernel.

We call a function V : Rd → [0,∞) Lyapunov function of
P with δ ∈ [0, 1) and L ∈ [0,∞) if for all x ∈ Rd holds

PV (x) :=

∫

Rd
V (y) P (x, dy) ≤ δV (x) + L. (7)

Furthermore, a set S ∈ B(Rd) is a small set w.r.t. P and a
non-zero finite measure ν on Rd, if

P (x,A) ≥ ν(A), ∀x ∈ S,A ∈ B(Rd).

With this terminology we can state a consequence of Theo-
rem 1.2 in (Hairer & Mattingly, 2011), which we justify for
the convenience of the reader in the supplementary material.

Proposition 3.1. Suppose that for a transition kernel P
there is a Lyapunov function V : Rd → [0,∞) with δ ∈
[0, 1) and L ∈ [0,∞) ((7) is satisfied). Additionally, for
some constant R > 2L/(1− δ) let

SR := {x ∈ Rd : V (x) ≤ R} (8)

be a small set w.r.t. P and a non-zero measure ν on Rd.
Then, there is a unique stationary distribution µ? on Rd,
that is, for all A ∈ B(Rd)

µ?P (A) :=

∫

Rd
P (x,A)µ?(dx) = µ?(A),

and there exist constants γ ∈ (0, 1) as well as C <∞ such
that

‖Pn(x, ·)−µ?‖tv ≤ C(1+V (x))γn, ∀n ∈ N,∀x ∈ Rd.

(Here Pn is the n-step transition kernel defined as in (5).)

From the arguments of reversibility of elliptical slice sam-
pling w.r.t. µ derived in (Murray et al., 2010) we know
already that µ is a stationary distribution w.r.t. the transi-
tion kernel E. The idea is now to first detect a suitable
Lyapunov function V of E satisfying (7) for P = E and a
δ ∈ [0, 1) and L ∈ [0,∞) and, having this, proving that the
corresponding set SR from (8) is a small set w.r.t. E and a
suitable measure ν.

3.2. Lyapunov Function

Besides the usefulness of a Lyapunov function in the context
of geometric convergence of Markov chains as in Proposi-
tion 3.1 it arises to derive certain stability properties, e.g.,
it crucially appears in the perturbation theory of Markov
chains in measuring the difference of transition kernels
(Rudolf & Schweizer, 2018; Medina-Aguayo et al., 2020).

We start with the following abstract proposition inspired by
Lemma 3.2 in (Hairer et al., 2014), see also Proposition 3
in (Hosseini & Johndrow, 2018).

Proposition 3.2. Let P be a transition kernel on Rd such
that for Yx ∼ P (x, ·), x ∈ Rd, there exists a random
variable Wx with E‖Wx‖ ≤ K for a constant K < ∞
independent of x and

‖Yx‖ ≤ ‖x‖+ ‖Wx‖ almost surely. (9)

Additionally, assume that there exists a radius R > 0,
constants ` ∈ (0, 1] and ˜̀ ∈ [0, 1) such that for all
x ∈ BR(0)c := {x ∈ Rd : ‖x‖ > R} there is a set
Dx ∈ B(Rd) satisfying
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(a) P (x,Dx) ≥ `,

(b) supy∈Dx ‖y‖ ≤ ˜̀‖x‖.

Then V (x) := ‖x‖ is a Lyapunov function for P with L :=

R+K <∞ and δ := 1− (1− ˜̀)` < 1.

Proof. We distinguish whether x ∈ BR(0) or x ∈ BR(0)c.
Consider the case x ∈ BR(0): By assumption we have a.s.
V (Yx) ≤ V (x) + V (Wx), such that

PV (x) = EV (Yx) ≤ V (x) + E‖Wx‖ ≤ R+K

≤ δV (x) +R+K.

Consider the case x ∈ BR(0)c: We have

PV (x) =

∫

Dx

V (y) P (x, dy) +

∫

Dcx

V (y) P (x,dy).

For the first term we obtain
∫

Dx

V (y) P (x,dy) ≤
(b)
˜̀V (x) P (x,Dx).

To bound the second term observe that
∫

Dcx

V (y) P (x, dy) = E(1Dcx(Yx)V (Yx))

≤
(9)
V (x)P(Yx ∈ Dc

x) + E‖Wx‖.

We have

P(Yx ∈ Dc
x) = 1− P(Yx ∈ Dx) = 1− P (x,Dx)

and combining both estimates above yields

PV (x) ≤ ˜̀V (x) P (x,Dx) + (1− P (x,Dx))V (x) + L

= [1− P (x,Dx) + ˜̀P (x,Dx)]V (x) + L.

By the fact that 1 − (1 − ˜̀)P (x,Dx) ≤ δ the assertion is
proven.

We apply this proposition in the context of elliptical slice
sampling and obtain the following result.

Lemma 3.3. Assume that there exists an α ∈ (0, 1/
√

2] and
R > 0, such that Bα‖x‖(0) ⊆ G%(x) for all x ∈ BR(0)c.
Then, the function V (x) := ‖x‖ is a Lyapunov function for
E with some δ ∈ [0, 1) and L ∈ [0,∞).

Proof. From (2) we have for all x,w ∈ Rd and any θ ∈
[0, 2π] that

‖p(x,w, θ)‖ ≤ ‖x‖+ ‖w‖. (10)

Thus, condition (9) is satisfied for the transition kernel E
with Wx ∼ µ0 being the random variable W in line 1 of

Algorithm 1. Next, we show that for any x ∈ BR(0)c and
Dx := Bα‖x‖(0) the assumptions (a) and (b) of Proposi-
tion 3.2 are satisfied for an ` ∈ (0, 1] and an ˜̀ ∈ [0, 1).
Obviously, supy∈Dx ‖y‖ ≤ ˜̀‖x‖ for ˜̀= 1√

2
< 1 even for

all x ∈ Rd. Thus, it is sufficient to find a number ` ∈ (0, 1]
such that

E(x,Dx) ≥ `, ∀x ∈ BR(0)c.

For this notice that the probability to move to a set A ∈
B(Rd) after all trials described in the lines 6–13 of Algo-
rithm 1 is larger than the probability to move to A after
exactly one iteration of the loop. Thus, for any x,w ∈ Rd,
t ∈ [0, %(x)] and A ∈ B(Rd) we have

Ex,w,t(A) ≥ 1

2π

∫ 2π

0

1A∩Gt(p(x,w, θ)) dθ, (11)

with Ex,w,t as given in (3). Further, notice that for any
x ∈ BR(0)c and any t ∈ [0, %(x)] we have

Dx = Bα‖x‖(0) ⊆ G%(x) ⊆ Gt.

Defining Θ̃ to be a [0, 2π]-uniformly distributed random
variable and using (11) we have for any x ∈ BR(0)c, w ∈
Rd and t ∈ [0, %(x)] that

Ex,w,t(Dx) ≥ 1

2π

∫ 2π

0

1Dx(p(x,w, θ))dθ

= P
(
p(x,w, Θ̃) ∈ Dx

)
.

Additionally, let W ∼ µ0 be independent of Θ̃. Then we
have for all x ∈ BR(0)c

E(x,Dx) ≥ P
(
p(x,W, Θ̃) ∈ Dx

)
. (12)

Hence, we need to study the event
{
p(x,W, Θ̃) ∈ Dx

}
in

more detail. We have

p(x,W, Θ̃) ∈ Dx ⇐⇒ ‖p(x,W, Θ̃)‖ ≤ α‖x‖,

which is equivalent to

‖p(x,W, Θ̃)‖2 = ‖x‖2 cos2(Θ̃) + ‖W‖2 sin2(Θ̃)

+ 2〈x,W 〉 sin(Θ̃) cos(Θ̃)

≤ α2‖x‖2,

where 〈·, ·〉 denotes the standard inner product on Rd. Defin-
ing

AW := ‖x‖2 − ‖W‖2,
BW := 2〈x,W 〉,
CW := (2α2 − 1)‖x‖2 − ‖W‖2,
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and using the trigonometric identities

cos(2θ) = 2 cos2(θ)− 1 = 1− 2 sin2(θ),

sin(2θ) = 2 cos(θ) sin(θ),

we have that p(x,W, Θ̃) ∈ Dx is equivalent to

AW cos(2Θ̃) +BW sin(2Θ̃) ≤ CW .

Letting ϕW ∈ [0, 2π) be an angle satisfying

cos(ϕW ) =
AW√

A2
W +B2

W

, sin(ϕW ) =
BW√

A2
W +B2

W

,

and using the cosine of sum identity we get

cos(2Θ̃− ϕW ) ≤ CW√
A2
W +B2

W

.

At this point we have

{
p(x,W, Θ̃) ∈ Dx

}
=

{
cos(2Θ̃− ϕW ) ≤ CW√

A2
W +B2

W

}
. (13)

Note that AW , BW , CW , ϕW are all random variables
which depend on W , but are independent of Θ̃. We aim to
condition on the event ‖W‖2 ≤ α2R2

2−α2 . In this case CW < 0
and AW > 0, such that

0 >
CW√

A2
W +B2

W

≥ CW
AW

=
(2α2 − 1)‖x‖2 − ‖W‖2

‖x‖2 − ‖W‖2 .

The last fraction can be rewritten as

(α2 − 1)(‖x‖2 − ‖W‖2) + α2‖x‖2 + (α2 − 2)‖W‖2
‖x‖2 − ‖W‖2

or equivalently as

(α2 − 1) +
α2

‖x‖2 − ‖W‖2
(
‖x‖2 +

α2 − 2

α2
‖W‖2

)
.

The second term is non-negative, therefore, we have

CW√
A2
W +B2

W

≥ α2 − 1 > −1. (14)

With `R := P
(
‖W‖2 ≤ α2R2

2−α2

)
> 0 we have

P
(
p(x,W, Θ̃) ∈ Dx

)
≥

P
(
p(x,W, Θ̃) ∈ Dx

∣∣∣∣‖W‖2 ≤
α2R2

2− α2

)
`R.

Now using (13) and (14) we have that

P
(
p(x,W, Θ̃) ∈ Dx

)
≥

P
(

cos(2Θ̃− ϕW ) ≤ α2 − 1

∣∣∣∣‖W‖2 ≤
α2R2

2− α2

)
`R.

For any random variable ξ independent of Θ̃ we have that the
distribution of cos(2Θ̃−ξ) coincides with the distribution of
cos(2Θ̃), since Θ̃ is uniformly distributed on [0, 2π]. Recall
that ϕW is independent of Θ̃. Therefore, with

εα := P
(

cos(2Θ̃) ≤ α2 − 1
)
> 0

we have

P
(

cos(2Θ̃− ϕW ) ≤ α2 − 1

∣∣∣∣‖W‖2 ≤
α2R2

2− α2

)
= εα.

Putting everything together, we conclude that

E(x,Dx)
(12)
≥ P

(
p(x,W, Θ̃) ∈ Dx

)
≥ εα`R > 0

and all assumptions of Proposition 3.2 are then satisfied
with ` := εα`R.

3.3. Small Set

In this section we show that under suitable assumptions
any compact set is small w.r.t. the transition kernel E of
elliptical slice sampling.

Lemma 3.4. Assume that % is bounded away from 0 and
∞ on any compact set. Then any compact set G ⊂ Rd
is small w.r.t. E and the measure ε · λG, where ε > 0 is
some constant and λG denotes the d-dimensional Lebesgue
measure restricted to G.

Proof. Let x ∈ G be arbitrary and recall that for any A ∈
B(Rd) we have

E(x,A) =
1

%(x)

∫ %(x)

0

∫

Rd
Ex,w,t(A)µ0(dw)dt,

where we argued in (11) that

Ex,w,t(A) ≥ 1

2π

∫ 2π

0

1A∩Gt(p(x,w, θ)) dθ,

for any w ∈ Rd and t ∈ [0, %(x)]. Therefore, we obtain

E(x,A) ≥

1

2π%(x)

%(x)∫

0

∫

Rd

2π∫

0

1A∩Gt(p(x,w, θ))dθµ0(dw)dt.
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Changing the order of integration yields

E(x,A) ≥
1

2π%(x)

∫ %(x)

0

∫ 2π

0

E
(
1A∩Gt(p(x,W, θ))

)
dθdt

for some random vector W ∼ N (0, C). Define the auxil-
iary random vector Zx,θ := p(x,W, θ) with corresponding
distribution νx,θ := N (x cos(θ), sin2(θ)C). Then

E(x,A) ≥ 1

2π%(x)

∫ %(x)

0

∫ 2π

0

E
(
1A∩Gt(Zx,θ)

)
dθdt

=
1

2π%(x)

∫ %(x)

0

∫ 2π

0

∫

A

1Gt(z)νx,θ(dz)dθdt.

Using the fact that 1Gt(z) = 1[0,%(z)](t) we have

E(x,A) ≥
∫ 2π

0

∫

A

1

2π%(x)

∫ %(x)

0

1[0,%(z)](t)dt νx,θ(dz)dθ.

Notice that

1

%(x)

∫ %(x)

0

1[0,%(z)](t)dt =
1

%(x)
min{%(x), %(z)}

= min

{
1,
%(z)

%(x)

}
.

Moreover, for all x, z ∈ G by the boundedness assumption
on % we have

min

{
1,
%(z)

%(x)

}
≥ min

{
1,

infa∈G %(a)

supa∈G %(a)

}
=: β > 0.

Thus,

E(x,A) ≥ β

2π

∫ 2π

0

νx,θ(A ∩G)dθ

≥ β

2π

∫ π
2

π
4

νx,θ(A ∩G)dθ.

SinceG is a compact set, there exists a finite constant κ > 0,
such that

(z − x cos θ)TC−1(z − x cos θ) ≤ κ, ∀x, z ∈ G.

Moreover, for all θ ∈
[
π
4 ,

π
2

]
we have that 1

2 ≤ sin2(θ) ≤
1. Therefore, the factors of the density of the Gaussian
distribution νx,θ satisfy

exp

(
− (z − x cos θ)TC−1(z − x cos θ)

2 sin2(θ)

)
≥ exp(−κ),

and
(
2π sin2(θ)

)− d2 det(C)−
1
2 ≥ (2π)−

d
2 det(C)−

1
2 .

Hence,

νx,θ(A ∩G) ≥ exp(−κ)

(2π)
d
2 det(C)

1
2

λG(A),

such that finally with ε := β
8

exp(−κ)

(2π)
d
2 det(C)

1
2

we have

E(x,A) ≥ ε · λG(A),

which finishes the proof.

Remark 3.5. For a compact set G ⊂ Rd suppose that
% : G→ (0,∞) with 0 < infx∈G %(x) and supx∈G %(x) <
∞. In this setting the same arguments as in the proof of
Lemma 3.4 can be used to verify that the whole state space
G is small w.r.t. elliptical slice sampling. This leads to the
fact that elliptical slice sampling is uniformly ergodic in this
scenario, see for example Theorem 15.3.1 in (Douc et al.,
2018). For a summary of different ergodicity properties
and their relations to each other we refer to Section 3.1 in
(Rudolf, 2012).

3.4. Proof of Theorem 2.2

We apply Proposition 3.1. First, recall that in (Murray et al.,
2010) it is verified that elliptical slice sampling is reversible
w.r.t. µ and therefore µ is a stationary distribution of E.
Hence, it is sufficient to provide a Lyapunov function and
to check the smallness of SR. By Assumption 2.1 part
2. the requirements for Lemma 3.3 are satisfied, such that
V (x) := ‖x‖ is a Lyapunov function with δ ∈ [0, 1) and
L ∈ [0,∞). By Assumption 2.1 part 1. using Lemma 3.4
we obtain that for any R > 2L/(1− δ) the set SR = BR(0)
is compact and therefore small w.r.t. transition kernel E
and some non-trivial finite measure. Therefore, all require-
ments of Proposition 3.1 are satisfied and the statement of
Theorem 2.2 follows.

4. Illustrative Examples
In this section we verify in toy scenarios as well as more
demanding settings the conditions of Assumption 2.1 to
illustrate the applicability of our result. In the supplementary
we provide a discussion in terms of the exponential family.

4.1. Gaussian Posterior

In (Murray et al., 2010) Gaussian regression is considered
as test scenario for elliptical slice sampling, since there the
posterior distribution is again Gaussian. We see covering
that setting as a minimal requirement for our theory: Here,
for some x0 ∈ Rd we have

%(x) = exp

(
−1

2
(x− x0)TΣ−1(x− x0)

)
, x ∈ Rd,

(15)
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that is, % is proportional to a Gaussian density with non-
degenerate covariance matrix Σ. Thus, the matrix Σ ∈
Rd×d is symmetric, positive-definite, and we denote its
eigenvalues by λ1, . . . , λd. Notice that all eigenvalues
are strictly positive and define λmin := mini=1,...,d λi,
λmax := maxi=1,...,d λi. The covariance matrix induces
a norm ‖ · ‖Σ−1 on Rd by

‖x‖2Σ−1 = xTΣ−1x.

It is well-known that the Euclidean and the Σ−1-norm are
equivalent. One has

λ−1
max‖x‖2 ≤ ‖x‖2Σ−1 ≤ λ−1

min‖x‖2, ∀x ∈ Rd. (16)

Now we are able to formulate and prove the following propo-
sition guaranteeing the applicability of Theorem 2.2.

Proposition 4.1. For % defined in (15) Assumption 2.1 is

satisfied with R = 4
√

λmax

λmin
‖x0‖ and α = 1

2

√
λmin

λmax
.

Proof. Observe that % is continuous, bounded by 1 and
strictly larger than 0 everywhere, such that part 1. of As-
sumption 2.1 is true. By exploiting both inequalities in (16)
we show part 2. of Assumption 2.1, that is, we verify for
all x ∈ B

4
√
λmax
λmin

‖x0‖
(0)c holdsB

1
2

√
λmin
λmax

‖x‖
(0) ⊆ G%(x).

For this fix x ∈ B
4
√
λmax
λmin

‖x0‖
(0)c. Therefore, we have

‖x‖ ≥ 4

√
λmax

λmin
‖x0‖. (17)

Now let y ∈ B
1
2

√
λmin
λmax

‖x‖
(0). Therefore, we have

‖y‖ ≤ 1

2

√
λmin

λmax
‖x‖, (18)

and one might observe that

G%(x) = {y ∈ Rd : ‖y − x0‖Σ−1 ≤ ‖x− x0‖Σ−1}.

With this we obtain

‖y − x0‖Σ−1 ≤ ‖y‖Σ−1 + ‖x0‖Σ−1 ≤
(16)

‖y‖
λ

1/2
min

+ ‖x0‖Σ−1

≤
(18)

‖x‖
2λ

1/2
max

+ ‖x0‖Σ−1 ≤
(16)

‖x‖Σ−1

2
+ ‖x0‖Σ−1

= ‖x‖Σ−1 − ‖x0‖Σ−1 − ‖x‖Σ−1

2
+ 2‖x0‖Σ−1

≤
(16)
‖x− x0‖Σ−1 − ‖x‖

2λ
1/2
max

+ 2‖x0‖Σ−1

≤
(17)
‖x− x0‖Σ−1 − 2‖x0‖

λ
1/2
min

+ 2‖x0‖Σ−1 ≤
(16)
‖x− x0‖Σ−1

which provides the desired result.

In Gaussian process regression as well as Bayesian inverse
problems with linear forward maps the resulting posterior
distribution has again a Gaussian density % with respect to
the Gaussian prior µ0. However, in these applications the
corresponding covariance matrix of % is typically positive
semi-definite, and we have to replace Σ−1 in (15) by its
pseudo-inverse Σ†. We emphasize that also in this more
general situation Assumption 2.1 is satisfied, since % is then
simply constant on the null space of Σ and on its orthogonal
complement we can apply Proposition 4.1.

4.2. Multi-modality

In the previous section we considered the setting of a Gaus-
sian posterior distribution µ. In particular, % had just a single
peak. It seems that such a requirement is not necessary to
verify the crucial Assumption 2.1. Here we introduce a class
of density functions which might behave almost arbitrarily
in their “center” (the central part of the state space) and
exhibit a certain tail behavior. For formulating the result, let
| · | be a norm on Rd which is equivalent to the Euclidean
norm ‖ · ‖, that is, there exist constants c1, c2 ∈ (0,∞) such
that

c1‖x‖ ≤ |x| ≤ c2‖x‖, ∀x ∈ Rd. (19)

Proposition 4.2. For some R′ > 0 and some x0 ∈
Rd let %R′ : BR′(x0) → (0,∞) be continuous and let
r : [R′,∞) → (0,∞) be decreasing. Furthermore, sup-
pose that

inf
z∈BR′ (x0)

%R′(z) ≥ sup
t≥R′

r(t). (20)

Then, the function

%(x) :=

{
%R′(x) x ∈ BR′(x0)

r(|x− x0|) x ∈ BR′(x0)c,

satisfies Assumption 2.1 with R = max{R′, 4 c2c1 ‖x0‖} and
α = c1

2c2
.

Proof. By the continuity of %R′ and the fact that r is strictly
positive as well as decreasing part 1. of Assumption 2.1 is
satisfied. For part 2. let x ∈ BR(0)c, i.e., ‖x‖ > R′ and
‖x‖ > 4 c2c1 ‖x0‖. Hence, we have by (20) and the decreasing
property of r that

G%(x) = BR′(x0)∪{y ∈ BR′(x0)c : |y−x0| ≤ |x−x0|}.

Now let y ∈ Bα‖x‖(0) and distinguish two cases:

1. For y ∈ BR′(x0) we immediately have y ∈ G%(x), and
we are done.
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Figure 1. Plot of the function x 7→ exp(‖x‖ − 1
2
‖x‖2) for d = 2.

2. For y ∈ BR′(x0)c∩Bα‖x‖(0) we obtain due to ‖y‖ ≤
c1
2c2
‖x‖ that

|y − x0| ≤ |y|+ |x0| ≤
(19)

1

2
|x|+ |x0|

and, furthermore, by exploiting ‖x‖ > 4 c2c1 ‖x0‖ that

1

2
|x|+ |x0| = |x| − |x0| −

1

2
|x|+ 2|x0|

≤
(19)
|x− x0| − 2|x0|+ 2|x0| = |x− x0|,

which leads again to y ∈ G%(x).

Both cases combined yield the statement.

To state an example which satisfies the assumption of Propo-
sition 4.2 we consider the following “volcano density”.

Example 4.3. Set %(x) := exp(‖x‖ − 1
2‖x‖2). Let | · | =

‖ · ‖, x0 = 0, R′ = 2, r(t) := exp(t − t2/2) and %R′
be the restriction of % to B2(0). It is easily checked that
for this choice of parameters all required properties are
satisfied. One can argue that the function % is highly multi-
modal, since its maximum is attained on a d−1-dimensional
manifold (a sphere). For illustration, it is plotted in Figure 1.

4.3. Volcano Density and Limitations of the Result

In the last section we showed the applicability of Theo-
rem 2.2 for a “volcano density”. Here we use this density
differently. Namely, µ(dx) ∝ exp

(
‖x‖ − 1

2‖x‖2
)

dx, that
is, the Lebesgue density of µ is proportional to the function
plotted in Figure 1. Setting µ0 = N (0, I) with identity
matrix I , we obtain

%(x) = exp(‖x‖), x ∈ Rd. (21)

Observe that in this setting for any x ∈ Rd we have

G%(x) = {y ∈ Rd : ‖y‖ ≥ ‖x‖} = B‖x‖(0)c,

such that G%(x) never completely contains a ball around the
origin and Assumption 2.1 cannot be satisfied. For this sce-
nario we conduct numerical experiments in various dimen-
sions, namely, d = 10, 30, 100, 300, 1000. Although, our
sufficient Assumption 2.1 is not satisfied2, we still observe
a good performance of the elliptical slice sampler. In partic-
ular, its statistical efficiency in terms of the effective sample
size (ESS) seems to be independent of the dimension, see
Figure 2. To check whether this “dimension-independent”
behavior is inherently due to the particular setting or not,
we also consider other Markov chain based sampling algo-
rithms.

For estimating the ESS we use an empirical proxy of the
autocorrelation function

γf (k) := Corr(f(Xn0), f(Xn0+k)),

of the underlying Markov chain (Xk)k∈N for a chosen quan-
tity of interest f : Rd → R where n0 denotes a burn-in
parameter. Since the ESS takes the form

ESS(n, f, (Xk)k∈N) = n

(
1 + 2

∞∑

k=0

γf (k)

)−1

,

where n ∈ N denotes the chosen sample size, we approxi-
mate it by using the empirical proxy of γf (k) and truncating
the summation at k = 104.

In Figure 2 we display estimates of the ESS for four dif-
ferent Markov chain Monte Carlo algorithms. Namely, the
random walk Metropolis algorithm (RWM), the precondi-
tioned Crank-Nicolson Metropolis (pCN), the simple slice
sampler and the elliptical one. For each algorithm we set
the initial state to be 0 ∈ Rd and compute the ESS for
f(x) := log(1 + ‖x‖), n0 := 105 and n := 106. Both
Metropolis algorithms (the RWM and the pCN Metropolis)
were tuned to an averaged acceptance probability of approx-
imately 0.25. We clearly see in Figure 2 the dimension-
dependence of the ESS for the simple slice sampler3 and
the RWM. In contrast to that, the results for the elliptical
slice sampler and the pCN Metropolis indicate a dimension-
independent efficiency. Let us remark that elliptical slice
sampling does not need to be tuned in comparison to the
pCN Metropolis, which performs similarly. However, the
price for this is the requirement of evaluating the function %

2In the supplementary material we provide further discussions
how Assumption 2.1 can be satisfied in this scenario by taking a
modification into account.

3In the light of (Natarovskii et al., 2021) the dimension-
dependent behavior for simple slice sampling is not surprising.
There, for a certain class of % a spectral gap of size 1/d is proven.
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Figure 2. Proxies for ESS for different MCMC algorithms depend-
ing on the dimension of the space.

more often within a single transition. Here the function %
was evaluated on average 1.5 times in each iteration of the el-
liptical slice sampler. Intuitively, the example of this section
is not covered by our theorem, since the tail behavior of % is
“bad”. Namely, for ‖x‖ → ∞ we have %(x)→∞. It seems
that for convergence only the tail behavior of likelihood
times prior considered as Lebesgue density matters.

Let us briefly comment on different approaches how to ver-
ify the numerically observed dimension-independence. Sim-
ilarly to the strategy employed in (Hairer et al., 2014; Rudolf
& Sprungk, 2018) for the pCN Metropolis one might be able
to extend elliptical slice sampling on infinite-dimensional
Hilbert spaces. If one proves the existence of an absolute
spectral gap of the correspondent transition kernel, then this
directly gives bounds of the total variation distance of the
nth step distribution to the stationary one. Due to the infinite-
dimensional setting one might argue that the estimate must
be independent of the dimension. Another approach is to
prove dimension-free Wasserstein contraction rates, as, for
example, has been done in (Eberle, 2016; Eberle et al., 2019;
De Bortoli & Durmus, 2019) for diffusion processes.

4.4. Logistic Regression

Suppose data (ξi, yi)i=1,...,N with ξi ∈ Rd and yi ∈
{−1, 1} for i = 1, . . . , N is given. For logistic regression
the function % : Rd → (0,∞) takes the form

%(x) =

N∏

i=1

1

1 + exp(−yixT ξi)
, x ∈ Rd. (22)

Moreover, assume we have a Gaussian prior distribution
µ0 on Rd with µ0 = N (0, I). Thus, the distribution of
interest, i.e., the posterior distribution µ is determined by
µ(dx) ∝ %(x)µ0(dx). The function % does not satisfy As-

sumption 2.1, since it has no vanishing tails. For example for
d = N = ξ1 = y1 = 1 we have %(x) = (1 + exp(−x))−1,
which is increasing with G%(x) = [x,∞) for all ∀x ∈ R.
Thus, % cannot satisfy Assumption 2.1. In the general setting
the phenomena is the same and the arguments are similar.

Therefore, our theory for elliptical slice sampling seems not
to be applicable. However, with a “tail-shift” modification
we can satisfy Assumption 2.1. The idea is to take a “small”
part of the Gaussian prior and shift it to the likelihood func-
tion, such that it gets sufficiently nice tail behavior.

For arbitrary ε ∈ (0, 1) set µ̃0 := N (0, (1− ε)−1I) and

%̃(x) := %(x) exp
(
−ε‖x‖2/2

)
. (23)

Observe that %̃ has, in contrast to %, exponential tails. More-
over, note that µ0(dx) ∝ exp(−ε‖x‖2/2)µ̃0(dx) and there-
fore

µ(dx) ∝ %(x)µ0(dx) ∝ %̃(x)µ̃0(dx).

Now considering µ as given through %̃ and µ̃0 our main
theorem is applicable. In the supplementary material we
prove the following result and provide a discussion of the
“tail-shift” modification.

Proposition 4.4. For ε ∈ (0, 1) the function %̃ given in
(23) satisfies Assumption 2.1 for α = ε/2 and R =
4N mini=1,...,N ‖ξi‖/ε.

Finally, note that for having the guarantee of geometric
ergodicity of elliptical slice sampling one can choose ε ∈
(0, 1) arbitrarily small, whereas for ε = 0 our theory does
not apply.

5. Conclusion
In this paper we provide a mild sufficient condition for the
geometric ergodicity of the elliptical slice sampler in finite
dimensions. In particular, it is satisfied if the density of the
target measure with respect to a Gaussian measure µ0 is
continuous, strictly positive and has a sufficiently nice tail
behavior. Besides that our numerical results indicate that
(a) our condition is not necessary and (b) the elliptical slice
sampler shows a dimension-independent efficiency. Both
issues will be addressed in future research.
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Supplementary Material to
“Geometric Convergence of Elliptical Slice Sampling”

Viacheslav Natarovskii 1 Daniel Rudolf 1 Björn Sprungk 2

1. Derivation of Proposition 3.1
We comment on deriving Proposition 3.1 (formulated in
the article) from the results in (Hairer & Mattingly, 2011).
For stating the Harris ergodic theorem shown in (Hairer
& Mattingly, 2011) we need to introduce the following
weighted supremum norm. For a chosen weight function
V : Rd → [0,∞) and for ϕ : Rd → R define

‖ϕ‖V := sup
x∈Rd

|ϕ(x)|
1 + V (x)

.

One may think of V as the Lyapunov function of a generic
transition kernel P . Now we state Theorem 1.2 from (Hairer
& Mattingly, 2011) on Rd.

Theorem 1.1. Let P be a transition kernel on Rd. Assume
that V : Rd → [0,∞) is a Lyapunov function of P with
δ ∈ [0, 1) and L ∈ [0, 1). Additionally, for some constant
R > 2L/(1− δ) let

SR := {x ∈ Rd : V (x) ≤ R}

be a small set w.r.t. P and a non-zero measure ν on Rd.
Then, there is a unique stationary distribution µ? of P on
Rd and there exist constants γ ∈ (0, 1) as well as C <∞
such that

‖Pnϕ− µ?(ϕ)‖V ≤ Cγn‖ϕ− µ?(ϕ)‖V , (1)

where Pnϕ(x) :=
∫
Rd ϕ(y)Pn(x,dy) and µ?(ϕ) :=∫

Rd ϕ(y)µ?(dy) for any x ∈ Rd as well as any n ∈ N.

Let us assume that all requirements of the previous theorem

1Institute for Mathematical Stochastics, Georg-August-
Universität Göttingen, Göttingen, Germany 2Faculty of
Mathematics and Computer Science, Technische Universität
Bergakademie Freiberg, Germany. Correspondence to: Vi-
acheslav Natarovskii <vnataro@uni-goettingen.de>, Daniel
Rudolf <daniel.rudolf@uni-goettingen.de>, Björn Sprungk
<bjoern.sprungk@math.tu-freiberg.de>.

Proceedings of the 38 th International Conference on Machine
Learning, PMLR 139, 2021. Copyright 2021 by the author(s).

are satisfied. Then, for any x ∈ Rd we have

‖Pn(x, ·)− µ?‖tv = sup
‖f‖∞≤1

|Pnf(x)− µ?(f)|

≤ sup
‖ϕ‖V ≤1

|Pnϕ(x)− µ?(ϕ)|

= (1 + V (x)) sup
‖ϕ‖V ≤1

|Pnϕ(x)− µ?(ϕ)|
1 + V (x)

≤ (1 + V (x)) sup
‖ϕ‖V ≤1

‖Pnϕ− µ?(ϕ)‖V

≤ (1 + V (x))Cγn sup
‖ϕ‖V ≤1

‖ϕ− µ?(ϕ)‖V

≤ 2(1 + V (x))Cγn,

which shows that the statement of Proposition 3.1 is a con-
sequence of Theorem 1.1.

2. Further Example from the Exponential
Family

We formulate a consequence of Proposition 4.2 (stated in the
article) in terms of properties of the exponential family and
provide examples which eventually satisfy our regularity
condition. For the convenience of the reader we repeat the
assumption which guarantees the applicability of the main
theorem.

Assumption 2.1. The function % : Rd → (0,∞) satisfies
the following properties:

1. It is bounded away from 0 and∞ on any compact set.

2. There exists an α > 0 and R > 0, such that

Bα‖x‖(0) ⊆ G%(x) for ‖x‖ > R.

It is clear that regularity properties for members of the ex-
ponential family are required, since already by part 1. of
the former assumption we need that % has full support. For
example, % coming from the exponential distribution does
not work, since then it is not bounded away from 0 on any
compact set where % is equal to 0.

Let |·| be a norm on Rd, which is equivalent to the Euclidean
norm ‖ · ‖, that is, there exist constants c1, c2 ∈ (0,∞) such
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that

c1‖x‖ ≤ |x| ≤ c2‖x‖, ∀x ∈ Rd. (2)

We obtain the following result:
Corollary 2.2. Let % be proportional to the mapping

x 7→ exp(η(x)Tµ−A(x)), x ∈ Rd,

for some η : Rd → Rk, µ ∈ Rk and A : Rd → R with
k ∈ N. Assume that there exists an increasing function
ϕ : [0,∞)→ R as well as a point x0 ∈ Rd, such that

η(x)Tµ−A(x) = −ϕ(|x− x0|), ∀x ∈ Rd,

or equivalently, such that % is proportional to the mapping

x 7→ exp(−ϕ(|x− x0|)), x ∈ Rd.

Then % satisfies Assumption 2.1 with R = 4 c2c1 ‖x0‖ and
α = c1

2c2
.

Proof. Apply Proposition 4.2 from the article with arbi-
trary R′ > 0, function r(t) := exp(−ϕ(t)) and %R′(x) =
exp(−ϕ(|x− x0|)) defined on BR′(x0).

Now we illustrate how to use the former corollary.

2.1. Gaussian density

Despite having the Gaussian setting already covered in Sec-
tion 4.1 of the article, we show that this canonical member
of the exponential family can also be treated with Corol-
lary 2.2.

For any x0 ∈ Rd and any symmetric, positive-definite ma-
trix Σ ∈ Rd×d the classical Gaussian setting, where

%(x) = exp

(
−1

2
(x− x0)TΣ−1(x− x0)

)
, x ∈ Rd,

corresponds to a member of the exponential family with
k = 1, µ = −1, A(x) = 0 and

η(x) =
1

2
(x− x0)TΣ−1(x− x0).

It can be rewritten as

%(x) = exp(−ϕ(‖x− x0‖Σ−1)), x ∈ Rd,

with the continuous increasing function ϕ(t) = t and a
norm | · | = ‖ · ‖Σ−1 , defined by

‖x‖Σ−1 := xTΣ−1x. (3)

Note that the norm is equivalent to the Euclidean one since

λ−1
max‖x‖2 ≤ ‖x‖2Σ−1 ≤ λ−1

min‖x‖2, ∀x ∈ Rd, (4)

where λmin is the smallest and λmax is the largest eigen-
value of the symmetric, positive-definite matrix Σ. Thus,
all requirements of Corollary 2.2 are satisfied and therefore
Assumption 2.1 is fulfilled.

2.2. Multivariate t-distribution

For any ν > 1, x0 ∈ Rd and any symmetric, positive-
definite matrix Σ we have

%(x) =

(
1 +

1

ν
(x− x0)TΣ−1(x− x0)

)−(ν+d)/2

,

for x ∈ Rd. This corresponds to a member of the exponen-
tial family with k = 1, µ = −1, A(x) = 0 and

η(x) =
ν + d

2
log

(
1 +

1

ν
(x− x0)TΣ−1(x− x0)

)
.

Using | · | = ‖ · ‖Σ−1 as defined in (3) and the fact that
ϕ : [0,∞)→ R, given by

ϕ(t) :=
ν + d

2
log

(
1 +

1

ν
t

)
, t ≥ 0,

is increasing we can apply Corollary 2.2 and therefore As-
sumption 2.1 is satisfied.

3. “Tail-Shift” Modification
If % : Rd → (0,∞) has “poor” tail behavior and therefore
does not satisfy Assumption 2.1, as e.g. in the scenario of
the “volcano density” or logistic regression considered in
the article, then a “tail-shift” modification might help. The
idea is to take a small part of the Gaussian prior and shift it
to % to get sufficiently “nice” tails.

Assume that the distribution of interest µ is determined by
% : Rd → (0,∞) and prior distribution µ0 = N (0, C), that
is,

µ(dx) ∝ %(x)µ0(dx).

For arbitrary ε ∈ (0, 1) set

f(x) := exp
(
−ε

2
xTC−1x

)
, x ∈ Rd,

and µ̃0 := N (0, (1− ε)−1C)). Note that

µ0(dx) ∝ f(x)µ̃0(dx). (5)

The function f represents the part of µ0 which we shift from
the prior to %. For doing this rigorously we define

%̃(x) := %(x)f(x), x ∈ Rd, (6)

and obtain an alternative representation of µ. Namely,

µ(dx) ∝ %(x)µ0(dx) ∝
(5)
%(x)f(x)µ̃0(dx) =

(6)
%̃(x)µ̃0(dx).

Using the representation of µ in terms of %̃ and µ̃0 it might
be possible to satisfy Assumption 2.1 for %̃ as the following
example shows.
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Example 3.1. We apply the “tail-shift” modification to the
“volcano density” considered in Section 4.3 in the article.
Recall that

%(x) = exp(‖x‖), x ∈ Rd,

and µ0 = N (0, I). For ε ∈ (0, 1) after setting

f(x) := exp
(
−ε

2
‖x‖2

)
,

we obtain µ0(dx) ∝ f(x)µ̃0(dx) with µ̃0 = N (0, (1 −
ε)−1I) and

%̃(x) = exp
(
‖x‖ − ε

2
‖x‖2

)
.

By applying Proposition 4.2 from the article with | · | =
‖ · ‖, x0 = 0, R′ = 2ε−1 and r(t) := exp(t − εt2/2) as
well as %R′ being the restriction of %̃ to BR′(0) we get that
Assumption 2.1 is satisfied.

We want to emphasize here that different representations of
µ lead, eventually, to different algorithms. Observe that one
can choose ε ∈ (0, 1) arbitrarily small and the requirements
for the main theorem are satisfied, whereas for ε = 0 our
theory does not apply. Unfortunately it is not always easy
to verify Assumption 2.1 in the modified setting.

In the following, we provide another tool for showing As-
sumption 2.1. Independent of the “tail-shift” modification
it can be used to prove that for certain % : Rd → (0,∞) the
main theorem is applicable.
Proposition 3.2. For % : Rd → (0,∞) and some R > 0
suppose that there are continuous functions %` : Rd →
(0,∞) and %u : Rd → (0,∞), such that

%`(x) ≤ %(x) ≤ %u(x), ∀x ∈ Rd. (7)

Furthermore, assume that for some α > 0 we have

Ax := {y ∈ Rd : %`(y) ≥ %u(x)} ⊇ Bα‖x‖(0) (8)

for any x ∈ BR(0)c. Then % satisfies Assumption 2.1 with
constants R and α.

Proof. Obviously, % is bounded away from 0 and ∞ on
any compact set, since %` and %u are strictly positive and
continuous. Therefore, part 1. of Assumption 2.1 is satisfied.
For part 2. notice that for all x ∈ BcR(0) holdsG%(x) ⊇ Ax,
since, if y ∈ Ax, then %`(y) ≥ %u(x) and therefore

%(y) ≥
(7)
%`(y) ≥ %u(x) ≥

(7)
%(x).

Thus,

G%(x) ⊇ Ax ⊇ Bα‖x‖(0), ∀x ∈ BR(0)c,

which finishes the proof.

We apply the former proposition to the logistic regression
example and therefore prove Proposition 4.4 from the arti-
cle.

3.1. Logistic Regression

For some data (ξi, yi)i=1,...,N with ξi ∈ Rd and yi ∈
{−1, 1} for i = 1, . . . , N let

%(x) =

N∏

i=1

1

1 + exp(−yixT ξi)
, x ∈ Rd. (9)

In this case % does not satisfy Assumption 2.1, see Sec-
tion 4.4 in the main article. Using the “tail-shift” modifica-
tion changes the picture.

Let µ0 = N (0, I) and note that for arbitrary ε ∈ (0, 1),
with

f(x) := exp(−ε‖x‖2/2), θ ∈ Rd,

the measure µ0 can be expressed as

µ0(dx) ∝ f(x)µ̃0(dx)

with µ̃0 := N (0, (1− ε)−1I). Therefore, %̃ from (6) takes
the form

%̃(x) = exp(−ε‖x‖2/2)

N∏

i=1

1

1 + exp(−yixT ξi)
.

Observe that %̃ has, in contrast to %, exponential tails. To
apply Proposition 3.2 to %̃ we need to find suitable lower
and upper bounds which satisfy the conditions formulated
in (7) and (8). For any x ∈ Rd we have by applying the
Cauchy-Schwarz inequality that

exp(−β‖x‖) ≤ %(x) ≤ 1,

where β := 2N min
i=1,...,N

‖ξi‖. Taking this into account, with

%`(x) := exp(−ε‖x‖2/2) exp(−β‖x‖),
%u(x) := exp(−ε‖x‖2/2),

we have the desired lower and upper bound for %̃. For Ax
defined in (8) (based on %` and %u) we show that

Ax ⊇
{
z ∈ Rd : ‖z‖ ≤ ε

2
‖x‖
}

(10)

for all x ∈ Rd with ‖x‖ ≥ 2β/ε. For this notice that

Ax =
{
z ∈ Rd : − β‖z‖ − ε‖z‖2/2 ≥ −ε‖x‖2/2

}

=
{
z ∈ Rd : ε‖z‖2 + 2β‖z‖ − ε‖x‖2 ≤ 0

}

=
{
z ∈ Rd : ‖z‖ ≤ −β +

√
β2 + ε2‖x‖2

}

⊇
{
z ∈ Rd : ‖z‖ ≤ ε‖x‖ − β

}
,

where the inclusion is due to the fact that
√
β2 + ε2‖x‖2 ≥

ε‖x‖. We conclude that for any x ∈ Rd with ‖x‖ ≥ 2β/ε,
or equivalently, β ≤ ε‖x‖/2, condition (10) holds true.
Thus, all requirements of Proposition 3.2 are fulfilled for
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α = ε/2 and R = 2β/ε and therefore %̃ satisfies Assump-
tion 2.1.

We summarize that the application of the main theorem,
which gives geometric ergodicity of elliptical slice sampling,
depends on the representation of µ. As pointed out for

µ(dx) ∝ %(x)µ0(dx),

with % : Rd → (0,∞) and µ0 = N (0, C), it might be
possible that Assumption 2.1 is not satisfied. Therefore, for
elliptical slice sampling with this representation of µ we do
not provide any ergodicity guarantee. However, by using
the “tail-shift” modification it is likely that one can find
%̃ : Rd → (0,∞) and a Gaussian measure µ̃0 with

µ(dx) ∝ %̃(x)µ̃0(dx),

such that for %̃ Assumption 2.1 is satisfied and the geometric
ergodicity theorem for elliptical slice sampling is applicable
for %̃ and µ̃0.
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