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Abstract

Auxin is a major plant growth regulator whose interaction with cell wall properties is
central to its role. Efflux carriers of this phytohormone of the PIN-FORMED family (PIN)
respond to the mechanical state of the tissue. As patterns of auxin and of its transport
are at the onset of plant morphogenesis, the work herein focuses on how mechanical
cues contribute to the auxin flows underlying developmental patterning. We approach
this task by developing a vertex model mathematical description of an epithelial tissue
and build biophysical models of plant tissue upon it. The mechanical state is perturbed
by mechanical property changes induced by auxin, which in turn feeds back onto auxin
through the binding of its carriers induced by mechanical stresses within the tissue.

In an abstract setting the model predicts sharper auxin spot patterns and higher PIN
polarity, a phenomenon mediated by stress patterns arising from auxin-dependent stiffness
gradients. Moreover, we find a more robust distinction of auxin-dependent cell-fate. We
show, under this hypothesis, that auxin maxima can exist in cell turgor minima, revealing
developmental history to be just as important for predicting auxin maxima. Form these
findings we highlight how plant mechanical responses have the potential to strengthen
already existing signals.

We then move to lateral root formation as a model system for studying the interactions
of auxin flows and mechanics under this hypothesis. We show how cell wall remodelling
of endodermal cells alone can potentiate founder cell swelling by implementing a cell
wall growth model. By predicting mechanical perturbation effects on auxin of founder
cells prior to swelling we found longitudinal stress of walls parallel to the root surface to
be crucial for auxin accumulation, highlighting the role of endodermal auxin reflux. By
coupling growth and auxin transport, we argue what mechanical state founder cells have
to exhibit in order for growth to induce a PIN polarity shift towards the endodermis.

With this work, not only have we highlighted how mechanical auxin transport regula-
tion can positively impact different developmental patterning processes, but we also have
made predictions on the lateral root formation system that inspire new approaches, both
theoretical and empirical, to test this hypothesis.
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List of Figures

1.1 Schematic representation of the shoot and root systems of Arabidopsis
thaliana, as well as auxin patterning examples found therein. (A) The
plant can be roughly subdivided into its aerial part, the shoot, and its root
system. Developmental phenomena happen in both systems throughout
the life of the organism. (B) The shoot apical meristem (only the first two
layers, L1 and L2, are depicted) is characterised by high auxin response
in the central zone, and auxin spots in the peripheral zone which give rise
to leaf and flower primordia. (C) Auxin accumulates in the root meristem
allowing for growth, despite the fountain-like auxin flow patterns. (D) Lat-
eral root founder cell identity is triggered by high auxin concentration in
the pericycle (p). (E) As the founder cells divide and grow a new auxin
gradient is established inside the lateral root primordium. The overlay-
ing layers, endodermis (ed), cortex (c), and epidermis (ep), show auxin
response at different stages enabling the mechanical remodelling necessary
for the lateral root to emerge. . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Schematic summary of the interactions of tissue mechanics, cell growth,
and auxin signalling. Notably, the plant cell water transport module and
the PIN canalisation hypothesis are omitted. Among these interactions
the most speculative ones are, arguably, auxin signalling affecting turgor
through aquaporin regulation, auxin signalling affecting PIN polarity in a
different mode, for example via monopteros, and the mechanical regulation
of PIN polarity. The feedback represented by the blue closed path has
been shown to result in auxin spot patterns and will be explored in depth
in Chapter 4. As we move to the root (in Chapter 5) we include the
interactions in orange, by modelling growth and, for convenience, auxin
apolar importers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
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2.1 Schematic representation of the mathematical structure upon which we
build the vertex model. (top left) Tissue representation as a connected
graph with the topology of a spherical surface. Vertices (labeled with Latin
indices) and the connections between them, which define the faces of the
polyhedron (labeled with Greek indices), fully define the tissue geometry.
(top right) Quad-edge representation of the tissue used as the basis for all
tissue operations of tessellation and transversal. A directed edge (blue)
belongs to a structure called quad-edge (purple) containing the directed
edges pertaining to the primal graph and its dual. Each directed edge
contains information about its origin vertex (or face in the dual version)
and the next edge CCW around its origin (green). We can now easily de-
fine iterators that traverse the outgoing edges around a vertex (pink) and
CCW around a face (orange). (bottom left) A planar tissue can be rep-
resented in the same way. To be easier to express geometrical quantities,
we will introduce the sets of vertices and faces around a specific face (V↵

and N↵ respectively), as well as faces around a specific vertex (Ni). All
these set definitions follow immediately from the defined quad-edge itera-
tors. (bottom right) It will be very useful, for more delicate quantities, to
introduce a triangulated mesh generated from the initial tissue. Promoting
the centroid of each face to a vertex of its own, we can treat the tissue
composed of individual triangles. We also find it useful to introduce the
set of triangulated vertices, cell centers or tissue vertices, around a specific
triangulated vertex ordered CCW (Ti). In this instance, we will use Latin
indices exclusively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2 Schematic pertaining to the computation of the centroid herein defined.
For each point along the path (at t), a fan triangulation is performed. The
centroid of the generated triangles, each of which with area Aij (t) (in blue)
and centroid Cij (t), is computed. We then average the obtained centroid
along the path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Geometrical quantities of a sample tissue resulting from a Voronoi tessela-
tion of a spherical surface of radius equal to one unit. Here we display edges
colored by their length, and faces of the polyhedron coloured according to
their area. Credit to Mathias Höfler for the Voronoi tessellation. . . . . . . 25
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2.4 (left) Schematic representation of the mixed regions assigned to each tri-
angulated vertex. Ideally, each of these region are the set of points closest
to the corresponding triangulated vertex. The arrow shows an example
where the mixed region area for an obtuse triangle was employed to fa-
cilitate computation of the region in question. (center and right) Triangle
obtained via triangulation of the tissue split into the mixed regions for each
of its vertices. (center) In the case of an acute triangle, the Voronoi region
is used and the circumcenter lies within the triangle itself. (right) An ob-
tuse triangle will be split as if the circumcenter now lies at the half-way
point of the segment opposite to the obtuse angle. Note that all triangles
shown in the decomposition of the obtuse triangle have the same area. . . . 27

2.5 Mean curvature for each mixed region in the previously shown sample tis-
sue. The sample tissue was obtained via voronoi tessellation of a spherical
surface with radius equal to one unit. Note that the triangulated vertices
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of the tissue. Credit to Mathias Höfler for the initial tissue geometry. . . . 29

2.6 For each face of the sample tissue we assign a local projected reference frame
which we can use to compute quantities more conveniently expressed in two
dimensions. The basis of the reference frame assigned to cell ↵ is given by
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Chapter 1

Introduction

Morphogenesis is the process by which living beings are shaped. The emergence of tissue
shape from a small set of initial cells is a result of cell-cell communication and external
cues. Coupling the resulting tissue shape with a pattern of cell differentiation is what en-
ables the complex behaviour responsible for the observed function of living tissues. This
joint process, along with a proper growth control so as to maintain an organism’s propor-
tions, gives rise to organs, a process often called organogenesis. As a crucial component
of developmental biology, a thorough study of morphogenesis is required to reach an un-
derstanding of the process known as life, as well as the potential for application of such
knowledge. In terms of application, understanding the mechanisms behind morphogenesis
can provide insight into several challenges in modern medicine and into a plethora of other
emergent phenomena.

Naturally, the regulation of morphogenesis can range from being fine tuned to an
extreme degree, with a predictable output due to its criticality, to having the output
constrained within a wider, yet acceptable, range for survival. Regulatory defects of mor-
phogenesis during development, therefore, can impact an organism from a minor nuisance
up to the failiure to live. Aside from its developmental impact, morphogenesis can also
occur to repair damaged tissues, a process often denoted as wound healing [1]. In spite
of being necessary for organisms to acquire and maintain their form, morphogenesis can
also manifest as a pathology, for instance, as the abnormal growth and shape observed
in cancer [2]. Understanding the capacity of specific chemical and physical mechanisms
to affect tissue shape is the key to learning how to wield morphogenesis to our benefit.
This is, in fact, already the case in the rapidly evolving fields of tissue engineering and
regenerative medicine [3–6]. Moreover, succeeding in replicating tissue development in
vitro would help biophysical research by offering a controllable testing environment closer
to the target [7].

The variety of tissue shapes is, by necessity, a product of the spatiotemporal depen-
dence with which cells divide and grow. Patterns of oriented cell divisions give rise to
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predictable shape [8], for instance, if a cell layer at the surface of a tissue divides perpen-
dicular to it then all cell daughters will belong to the same layer. Regions with different
growth rates have the potential to bend the tissue, whether it is a faster patch of growing
cells at the tissue surface without anywhere to grow but outwards, or two layers of a tis-
sue having a different growth rate causing the tissue to bend towards the slower growing
region. Growth can also be anisotropic, giving rise to tissues of elongated cells. Moreover,
external constraints may also play a factor in which shapes a tissue can have. Tissue
shape diversity is expanded even further when accounting for modulation due to varia-
tions of mechanical properties. Understanding morphogenesis, therefore, includes figuring
out how cells can read relative or absolute positional information, be it form external cues
or from one another. The origin of differences in behaviour between cells include genetic
regulation and, hence, the spatiotemporal dependence often arises via pre-patterning of
molecules involved in regulating gene activation or inhibition.

Reaction-diffusion models for different chemical species are famous for their capability
of forming spatial patterns of concentration of said molecules. Effectively, the resulting
chemical patterns have been proposed as a basis for morphogenesis in the famous article by
Alan Turing [9]. A cell capable of distinguishing different states based on the concentration
of such interacting chemicals are, therefore, able to distinguish themselves from cells with
a different position. Transport models with pattern formation capabilities are not limited
to the reaction-diffusion kind. Accounting for active transport of molecules, for instance
due to membrane-bound carriers, severely impacts the diversity of ways in which pattern
formation can occur. Active matter, in general, offers a plethora of ways phenomena
in this category can emerge. For example, motility-induced phase separation can be
observed in self-propelled particles by simply assuming a decrease in mobility caused by
crowding [10]. To study morphogenesis, therefore, not only includes revealing the cues
which tissue cells read, but also how is their transport regulated or, equivalently, how
they are communicated.

The current understanding of morphogenesis includes tissue mechanics as another pos-
sible environmental cue [11–14]. If cells are able to read and respond to strain or stress,
because these two fields depend on tissue shape, then tissue shape is itself information
used in its own development. Albeit relatively simple in its conception, its execution is
a promising source of shape complexity. This is because, in addition to the already es-
tablished geometrical dependence, cell division and growth (isotropic or otherwise) would
also contribute to mechanical patterning of the tissue. Adopting mechanical cues such as
strain or stress, therefore, invites necessarily intertwined feedback mechanisms of largely
unknown potential. The study of tissue self-organisation via mechanical cues is an exciting
avenue along which to push the field of morphogenesis forward.

Plant tissue is an example of such mechanical coupling, since growth itself is turgor-
pressure-driven. Auxin is a phytohormone that plays a major role in coordinating plant
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responses [15–18], namely cell growth. This molecule is implicated in other processes such
as phototropism, gravitropism, and cell differentiation. Plant organ primoridia correlate
with increased auxin response factors [19–21]. Auxin patterns, therefore, are currently
understood to be the onset of phyllotactic patterning, the ordered arrangement of plant
organs [22–24]. High degrees of auxin signalling have also been found to establish the
lateral root primordium [25]. In plants, although passive transport of auxin is present,
polar auxin flows are mediated by membrane-bound carrier proteins [24, 26, 27]. Patterns
of auxin concentration are, therefore, a result of patterns of polar auxin flow, by which
we mean patterns of polarity of auxin carriers [22–24]. Uncovering how auxin polar flows
are established is critical to understand how to affect auxin patterns and, by extension,
plant shape.

To be able to control plant growth and shape is an attractive prospect in regards to the
efficiency of agriculture. Mastery of developmental patterning in plants has the potential
for controlling yield, by manipulating flower primordia density or size, or quality, by opti-
misation of foliage structure for sunlight absorption or root structure for nutrient intake.
Another approach would be to include the mechanical aspects of plant morphogenesis
in already existing auxin treatments [28] so as to improve their efficacy. Furthermore,
understanding the factors implicated in plant morphogenesis will enable us to predict
changes of plant morphology under different environmental conditions. This is of special
importance today in order to better predict the impact of global warming on different
ecosystems and on agriculture alike [29]. Lastly, similarly to how chemical patterning
inspired mechanisms for auxin pattern generation, study of the mechanisms underlying
plant tissue morphogenesis can help inspire and motivate similar mechanisms in other
systems.

Several factors contribute to the plant system being an extraordinarily interesting
system from a mechanical point of view. Plant cells are capable of generating and with-
standing high turgor pressure, regulated by the transport of ions and water between cells
[30, 31]. Auxin promotes growth by modulation of cell wall mechanical properties [32].
By interacting with cell wall constituents, it facilitates cell wall’s fibres to flow along its
length, as to extend it upon constant remodelling, in response to turgor generated wall
stress. As it stands, the degree of complexity of mechanical feedback is extraordinary
[20, 21, 33]. Due to the heavy impact of mechanics in plant systems, plant development
is still puzzling and requires an interdisciplinary approach. Moreover, the hypothesis of
mechanically-regulated auxin flows [34, 35], subject to study herein, ties morphogenesis
to itself once more resulting in an unknown potential for dynamical behaviour.
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1.1 Biophysical role of plant cell constituents

Being eukaryotic, plant cells share organelles with cells from the animal kingdom, includ-
ing a nucleus, rough and smooth endoplasmatic reticulum, Golgi apparatus, mitochondria,
cytoskeletal filaments, and plasma membrane. In addition, plant cells have structures
unique to them, namely vacuoles, plastids, and a cell wall composed of cellulose fibres.
Chloroplasts are plastids responsible for the photosynthetic capabilities which plants are
famous for. The cell wall and the vacuole, however, play a more prominent role in the
context of causing, and be subject to, physical cues.

At the expense of mobility, the existence of a cell wall offers structural stability and
protection [36, 37], in addition to it being an interface for cell-cell communication. Trans-
port through the cell wall can occur via the apoplastic pathway, freely diffusing around
adjacent walls outside the plasma membrane, or via the symplastic way, from cytoplasm to
cytoplasm through openings in the cell wall called plasmodesmata. The plasma membrane
plays a major role by bridging communication between the cell wall and the intracellular
space. The structural integrity of the cell wall derives from how its constituents interact.
Cross-linked cellulose microfibrils confer the cell wall with the capacity to endure large
turgor and hydrostatic pressures. Hemicellulose and pectin are key players in the cross-
linking of cellulose microfibrils. In fact, pectin is a well-known gelling agent responsible
for the consistency of jams and marmalade.

The cross-linking present in the cell wall is critical to defining its mechanical properties
and, therefore, is involved closely with plant cell elongation [38, 39]. Cell wall growth
implies a balance between the rupture of old cross-linking bonds, cellulose synthesis, and
the formation of new cross-links. Factors, both chemical and mechanical, that affect
cross-linking molecule binding and unbinding rates contribute to cell wall remodelling
and, hence, affect cell wall growth [38]. An interesting feature of plants is that cell
turgor pressure positively contributes to cell wall growth by straining the cross-link bonds.
Models for turgor-driven cell wall growth have been proposed for quite some time [40–
42]. Also, necessarily, chemical agents that act to break cellulose cross-links change the
mechanical properties of the tissue to some extent [38]. A specific example of such is
auxin [43, 44], whose mechanical consequences are explored throughout this work.

To complicate the matter further, cellulose fibres have been shown to have some degree
of polarity in regards to their orientation [38, 39, 45]. Therefore, the stiffness of the
cell wall is, in general, anisotropic. In plants, cortical microtubules are located at the
intracellular side of the plasma membrane and define the orientation of cellulose deposition
on the wall [38, 39, 45]. Because strain is implicated in cell wall growth, stiffness anisotropy
results in growth anisotropy. Ablation experiments indicate the capacity for microtubules
to respond to mechanical stress [46] making cell growth, and by extension plant tissue
morphogenesis, even more convoluted. The sheer potential for regulation of plant tissue
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growth with mechanical factors alone is astounding.

Turgor pressure refers to the hydrostatic pressure generated by water flows caused
by osmotic potentials. The existence of open plasmodesmata between cells allow water
to flow through the symplastic pathway. Maintaining the plant cell in a turgid state is
what allows the plasmatic membrane to remain in contact with, and push against, the
cell wall [30]. In this context, the cell wall is also vital to prevent lysis due to the pressure
generated. High turgor is required for cell growth, for communicating with neighbouring
cells, and for maintaining plants upright, and, therefore, it is the typical and healthy state
of plant cells. Maintaining homeostasis, therefore, requires regulation of turgor pressure.
Plant cell membranes are equipped with aquaporins, membrane-bound proteins with the
function to actively regulate water flows directly [47]. Active ion channels, bound to the
plasma membrane play a complementary role in osmoregulation. This is, however, not
the end of how plant cells achieve turgor regulation.

The vacuole, aside from its storage and waste disposal functions, plays a key role in
regulating turgor pressure. Although deceptively simple, the importance of this mostly
water-filled large vesicle hinges on the functionality of its membrane. Namely, aquaporins
and ion channels also exist on the membrane of the vacuole [47, 48]. By regulating ion
intake, it pressurises the cell through osmotic potential and regulates water uptake by
the cell [49]. This organelle is also responsible for maintaining the pH inside the cell at
homeostatic levels, affecting the transport of protons through the plasma membrane [48].
One such example is the plant hormone, auxin [50].

Growth, water transport, and mechanics are capable of feedback leading to different
topological features of the tissue [31, 51, 52]. The richness of biophysical processes feeding
off each other contribute to plant morphogenesis being poorly understood, demanding the
careful study of how the processes discussed in this section interact.

1.2 Auxins are plant growth regulators

Auxins are a specific class of plant hormones primarily responsible for promoting cell
growth. The most common auxin is indole-3-acetic acid (IAA) [18]. In fact, exogenous
application of auxin has been observed to induce flower primordia at the shoot apical
meristem [53]. This set of messenger molecules are ubiquitous in all processes related
to plant development, for instance many genes involved in the cell cycle are induced by
auxin [16]. So much so that auxin is often said to do everything, conveyed with varying
degrees of negative emotion. Many plant hormones exist, yet auxin seems unique in that
it not only behaves as an hormone, but also as a target of hormonal response [16]. It is
also seemingly capable of having tissue-specific action and trigger different types of cell
identity [25]. Perhaps, an insightful way to summarise the significance of auxin is that it
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acts as currency at the cellular level, an analogy entertained by [15, 16]. The full range
of auxin action is massive, yet what ultimately happens depends on the entities involved
in the transaction and under what circumstances it takes place.

Growth and developmental processes also play a role in coordinating plant responses,
for instance plants exhibit tropism as a way to adapt to their environment [54]. Pho-
totropism is the process by which plants reorient their growth in order to optimise sunlight
absorption. In fact, auxin was first discovered in this context as the main contributor to
the growth heterogeneity causing the plant meristem to bend in response to light [55].
Auxin has also been shown to play a role in gravitropism [56], the bending of roots in
response to gravity. Plant development, in contrast to animals, is as much a means for a
plant to shape itself and establish the function of its tissues as it is a means of exhibiting
behaviour in the course of its life.

The main way auxin can affect cell behaviour is through changes in gene transcription
[15, 16, 18]. The main auxin signal transduction pathway is deceptively short. The
family of repressors Aux/IAA inhibit the action of transcription factors from the auxin
response factor (ARF) family [57]. Together with proteins from the family TIR1/AFB,
auxin marks Aux/IAA proteins for degradation [58]. The diversity of auxin response
arises because different ARFs activate or repress different genes [59]. Part of the cell
type specificity of auxin action is a consequence of ARFs present and in which proportion
[15, 16]. Furthermore, because several types of Aux/IAA and AFB proteins exist with
different auxin sensitivity and binding affinities [58], different cell types have the potential
of perceiving auxin differently. Besides being extremely tuneable, the pathway being short
allows for auxin transcriptional response to be detected within a few minutes [60, 61].
Another proposed auxin signalling pathway is via the membrane-bound-auxin-binding
protein-1 (ABP1) [62]. The ABP1 pathway has been shown to affect cell growth and
is auxin-dependent [63], yet evidence for its physiological significance is controversial
[15].

Interestingly enough, responses to auxin of the order of seconds were measured [64],
implying auxin signaling is not limited to its transcriptional pathways. There is also
evidence for nontranscriptional auxin-induced influx of Ca2+ ions by membrane-bound
gates affecting growth [15]. A categorically different reason for the assumption of non-
transcriptional auxin response is the polarity of its transporters during phyllotaxis. Even
if pattern formation is possible by passive transport alone, exclusive transcription regu-
lation of auxin transport lacks symmetry breaking features required for the polarity of
auxin flows seen as the cause for patterning [15].

Auxin transcriptional and non-transcriptional action modulates cell wall mechanical
properties. As mentioned previously, cell wall composition and remodelling plays a central
role in cell growth and elongation. Expression of expansin via ARF7 has been shown to
play an important role in promoting cell elongation via its wall loosening capabilities [32].
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The acidic pH of auxin contributes to the activation of these specific proteins, as well
as pectin demethylesterification which has been shown to alter the mechanical properties
of the cell wall drastically [43, 44]. This process of cell elongation via lowering pH is
often termed acid growth. Auxin, via TIR1/AFB machinery, promotes the activation of
membrane-bound proton channels to further induce acidification of the cell wall. The
expression of genes encoding the proteins of proton and potassium channels are also
affected by auxin. Balancing the wall loosening effect of auxin with the biosynthesis
of wall components is the key to elongating the cell wall without rupture [32, 38, 39].
Lastly, auxin has been shown to regulate aquaporin activity during lateral root emergence
[65].

Auxin maxima are, therefore, regions of fast cell growth that define the placement of
organ primordia in plants and inform cell fate. Our current understanding of how these
auxin patterns occur is by self-organisation of auxin transport [22, 26, 27]. Understanding
how auxin transport is regulated is paramount to uncovering the organ placement and,
hence, plant morphogenesis (Fig. 1.1).

1.3 Auxin transport mechanisms

Passive diffusion of auxin into the cytoplasm is a passive process. Auxin is a small
molecule and, as such, diffuses rapidly inside the cell. Auxin inside the cell is usually in
its anionic form due to the pH of the medium and, as such, is unable to passively bypass
the plasma membrane [50]. Outside the plasma membrane, because the medium is acid,
the anion form and protonated form coexist. The protonated form can bypass the plasma
membrane due to being small and apolar. In order for an auxin flow to be established,
cells require membrane-bound auxin carriers. For instant, proteins of the AUX1 family
are a major membrane-bound importer of anionic auxin [66]. Another set of influx carriers
relevant in the root system are members of the LAX family, particularly important during
development of lateral roots [67].

These importers, however, are usually apolar and and do not contribute to polar auxin
flows. In contrast, the PIN-FORMED (PIN) family are efflux auxin carriers [68] and have
been shown to have a polar distribution around plant cells [69]. Patterns of PIN polarity
at the shoot apical meristem have been shown to converge on primordia, where DR5
response spikes, an indirect measure of auxin levels [70]. Another layer of complexity is
added when we take into account that the gene expression of all transporters mentioned so
far is auxin-dependent [23, 59]. The connection between PIN transporters, auxin flows and
auxin concentration patterns can be observed throughout most developmental processes
of plants [27].
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Figure 1.1: Schematic representation of the shoot and root systems of Arabidopsis
thaliana, as well as auxin patterning examples found therein. (A) The plant can be
roughly subdivided into its aerial part, the shoot, and its root system. Developmental
phenomena happen in both systems throughout the life of the organism. (B) The shoot
apical meristem (only the first two layers, L1 and L2, are depicted) is characterised by
high auxin response in the central zone, and auxin spots in the peripheral zone which
give rise to leaf and flower primordia. (C) Auxin accumulates in the root meristem al-
lowing for growth, despite the fountain-like auxin flow patterns. (D) Lateral root founder
cell identity is triggered by high auxin concentration in the pericycle (p). (E) As the
founder cells divide and grow a new auxin gradient is established inside the lateral root
primordium. The overlaying layers, endodermis (ed), cortex (c), and epidermis (ep), show
auxin response at different stages enabling the mechanical remodelling necessary for the
lateral root to emerge.

1.3.1 Polar auxin transport

The shoot apical meristem (SAM) of the Arabidopsis thaliana pin1-1 mutant, a mutant
showing a sharp decrease in polar auxin transport, as well as an auxin-transport-inhibitor-
treated vegetative tomato shoot apical meristem, have a meristematic tissue void of pri-
mordia [53]. Moreover, exogenous application of auxin in both cases was able to rescue
a primordium at the application site. Another interesting result in the same study is,
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after prolonged exposure to a medium with auxin transport inhibitor, after transferring
to a inhibitor-free medium these meristems manifested different phyllotactic patterns.
These data show how critical polar auxin transport is to auxin pattern emergence pre-
ceding organogenesis and suggest that the process by which PIN polarity is established is
self-organised [53, 71].

For self-organisation of auxin transport to occur, we require some sort of auxin flow
self-reinforcement. Recently, ARF5, also called monopteros, has been shown to be required
for the convergence of PIN patterns in the SAM and, hence, localised organogenesis [72].
Furthermore, in the same study, monopteros was shown that it acts as a polarising cue
for PIN of neighbouring cells. Unfortunately, besides being a result of the TIR1 signalling
pathway and its involvement with development, how this response translates into the
actual cell-cell communication mechanism is still far from understood. Notwithstanding,
auxin-concentration-mediated PIN polarity regulation is an organising principle with the
capacity for auxin pattern emergence [73, 74].

Intracellular auxin gradients have been found to determine the position of emerging
root hairs in epidermal cells [15]. This alludes to a mechanism of intracellular auxin
gradient perception by the plant. In the root epidermis, PIN2 binds to the anticlinal walls
of these elongated root cells and, depending on the exact parameters for influx and efflux,
an auxin gradient can be established within the cell, with auxin being depleted towards
to the efflux carrier high density region. This observation opens up the possibility of PIN
molecules being regulated by the internal auxin gradients generated by their own efflux
activity. An hypothesis for auxin transport in line with this observation, proposed in the
context of formation of vascular tissue upon wound healing [75], is the canalisation model
for auxin pattern formation [74], relying on the assumption of auxin flow feeding back on
itself. Alternative explanations for this mode of auxin transport include a self-reinforced
accumulation of PIN molecules at the plasma membrane modulated by extracellular auxin
and ABP1 [76], or through inhibiting endocytosis of PIN molecules [77]. Nevertheless,
these hypothetical organising principles underlying PIN regulation have yet to be proven,
and evidence for them relies in the observed emerging PIN polarity pattern properties
that they share.

Two large classes of auxin transport models emerged while studying this system in
detail. Auxin concentration feedback models, with the characteristic behaviour of up-
the-gradient auxin flows, and auxin flow feedback models whose patterns exhibit a PIN
polarisation with-the-flux [74]. While auxin concentration models capture the auxin spot
arrangement typical of developmental patterning in the SAM [71, 73, 78–80], canalisation
models have a better track record at describing auxin transport behaviour tied to vascular
tissues [81–85]. In this context, understanding morphogenesis requires an in-depth study
of how PIN is regulated in order to unify both models, or explain why they cannot be
unified. Some attempts have been made to unify these models from a theoretical point
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of view [84, 86–89]. Although successful to some extent, they requires a lot of layer and
tissue specific tuning. Fountain-like patterns during primordia emergence are especially
difficult to generate since both up-the-gradient and down-the-gradient auxin flows exist
simultaneously. The search for an organisational principle capable of manifesting the
whole range of PIN polarity patterns is currently at full throttle.

1.3.2 Mechanical regulation of PIN transporters

The hypothesis here explored is the mechanical regulation of auxin transport. This choice
is oozing with potential given the already established link of auxin, mechanics, and growth.
Different patterns of strain and stress could explain different PIN flow polarity in different
tissues by virtue only of their geometry and architecture. Besides tissue morphology, the
capacity for cell wall loosening of auxin offers another way for growth to feedback on itself.
The mechanism by which plant cells are capable of perceiving mechanical strain or stress
is still being uncovered.

An insightful study in this regard shows evidence for microtubule orientation being
regulated by mechanical stress in the SAM. It correlates the observed microtubule orien-
tation with stress patterns predicted solely by geometry [46]. In the same study, ablation
experiments show that microtubules orient according to simulated stress patterns of the
same experiment, suggesting a causal relationship. There is evidence to suggest that plant
cells do indeed read mechanical cues [90]. Curiously, microtubules have been proposed to
mediate plant cell mechano-transduction [91]. The microtubule orientation dependence
on stress is fascinating in its own right since microtubule orientation defines the orienta-
tion of cellulose deposition. This results in a mechanical feedback of stress and anisotropic
growth capable of shaping cells around faster growing regions around primordia in the
SAM and promoting organ outgrowth [92, 93].

A subsequent study observed PIN polarity patterns and how they correlate with mi-
crotubule orientation on a similar setup [34]. PIN molecules were observed to bind to
the plasma membrane parallel to microtubule orientation. The same study showed PIN
polarity was affected very little when microtubules were disrupted by means of an oryza-
lin treatment. Furthermore, the kinase PINOID, a known regulator of PIN polarity [94],
has been shown to be required for this alignment. By modifying mechanical loads on the
shoot apical meristem, mechanical strain and/or stress has been shown to regulate PIN
polarity [35]. Not only did this study changed turgor pressure and applied mechanical
forces, but also the resulting effects were rescued by each other and via modulation of the
mechanical properties of the plasma membrane. This reinforces the idea that the plasma
membrane acts as a mediator for the cell. By itself, this new concept for PIN regulation
already offers the capacity of growth feedback by cell expansion contributing to auxin
transport.
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The capacity of auxin modulating cell wall mechanical properties suggests another
layer of complexity to this feedback. By softening the cell wall, auxin shifts mechanical
stress to the adjacent cell wall of its neighbour. This enables a plant cell a mechanism by
which to sense the auxin concentration of its neighbours via stress. The impact of auxin
on mechanics and, consequently, PIN polarity has been shown to be sufficient for auxin
patterns to emerge [34, 95]. This new model for auxin transport is still in its infancy and,
because of its intimate tie to tissue mechanics and shape, has great potential to describe
different type of patterns. It might very well be a necessary piece of the auxin transport
unification puzzle.

Evidence of this type of PIN regulation is difficult to come by due to its apparent
redundancy with other up-the-gradient models, at least in the SAM. Using this model, it
is possible to make predictions about auxin pattern formation behaviour in different tissues
and subject to different conditions. This allows us to motivate new experiments in order to
understand which components of the auxin transport mechanism are indeed mechanically
governed. Unfortunately, the techniques necessary to measure mechanics on different
tissues, and in tandem with PIN polarity measurements, are still under development.

1.4 Objective and scope

We propose to study the degree to which resulting PIN polarity is affected when con-
sidering mechanical regulation, as opposed to other regulatory hypotheses. In line with
the aforementioned opportunity, we aim to predict the consequences of the mechanical
regulatory hypothesis for PIN polarity. Because of the strong link between auxin trans-
port and growth, to ascertain the morphogenic potential of this model we will consider
both. Caution must be taken in this regard, since establishing cause is as difficult as
the complexity of the model used. As such, we will first try to draw as much informa-
tion from the mechanically-regulated auxin transport model alone, and add new pieces as
necessary.

The current understanding PIN polarity implies a great degree of interacting compo-
nents [33], described throughout this chapter (Fig 1.2), whose mechanisms elude us. Even
if mechanical regulation is a part of the explanation, or even if it is a considerable one, it
is certainly not all of it. One could model all known components of the PIN polarity in
hopes of a good description of auxin transport and morphogenesis. Our purpose, however,
is arguably the exact opposite, for it is to be able to tell them apart. With this in mind,
we opt to limit our scope to mechanically-regulated PIN polarity alone.

Our first task is to build a flexible enough mathematical framework to allow us to
describe and model different types of plant tissue. By flexible enough here refers to
being able to model different tissues, as well as to be extended to describe biological
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Figure 1.2: Schematic summary of the interactions of tissue mechanics, cell growth, and
auxin signalling. Notably, the plant cell water transport module and the PIN canalisa-
tion hypothesis are omitted. Among these interactions the most speculative ones are,
arguably, auxin signalling affecting turgor through aquaporin regulation, auxin signalling
affecting PIN polarity in a different mode, for example via monopteros, and the mechani-
cal regulation of PIN polarity. The feedback represented by the blue closed path has been
shown to result in auxin spot patterns and will be explored in depth in Chapter 4. As
we move to the root (in Chapter 5) we include the interactions in orange, by modelling
growth and, for convenience, auxin apolar importers.

processes that follow logically from this work such as cell division. It should also not
be constrained to two dimensions since, because of the heavy influence of mechanics in
plant morphogenesis, the dimensionality of the problem might be a deciding factor. This
will require a careful mathematical descriptions of the tissue as a geometrical, mechanical
and biological entity. The description used that combines most of the features we deem
worthy of tracking is a vertex model description [96]. On top of the mechanical vertex
model, we will adapt the mechanically-regulated auxin transport model from previously
established ones [34, 73]. We dedicate Chapter 2 to describe and develop the geometrical
basis of the model we intend to use. The chapter after that one, Chapter 3, describes how
we introduce mechanical models and auxin transport models in some detail.

In our first deep dive into the model, we cannot help but wonder about the extent to
which plant cells benefit from auxin transport mechanical feedback. The explanation for
two adjacent cells sharing a single wall is straightforward and has been proposed by [34].
It is less obvious, however, predicting what happens when the whole tissue is considered.
Just how much more efficient, or robust, is auxin pattern formation when accounting for
mechanics? We will attempt to pose this question more concretely and to come up with
an answer to it in Chapter 4. The setting used for this will be more abstract so as to
improve the range of applicability of our prediction.
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Lateral root formation (LRF) of Arabidopsis thaliana is a system whose mechanical
signalling has been shown to drive its development from initiation until emergence [97–
99]. The richness of mechanical involvement in this system makes it a prime target for
a mechanically-regulated auxin transport hypothesis. With our current understanding
of the mechanical implications during this process, can we predict auxin flows in this
system? Or, conversely, what is mechanically required to happen for auxin flows to be
what we observe? These predictions will help us rule out, or corroborate, mechanical PIN
regulation in this specific tissue once a protocol for measuring the used observables, or
good enough proxies, is established.

Even before the first cell division round of the lateral root primordium (LRP), LRF
is filled to the brim with mechanical remodelling and dynamical PIN polarisation. Auxin
accumulation in the lateral root founder cells (FCs) has been observed to involve auxin
flows from the underlying vasculature as well as reflux from the overlaying cell layers
[100]. Being in-line with the up-the-gradient setup, auxin reflux from the endodermis to
the FCs might not seem too confusing. The presence of auxin in the endodermis, the layer
overlaying the FCs, being required for the signalling cascade that kickstarts lateral root
emergence [101], however, is. It might be due to a higher expression of auxin, expression
of auxin importers, or simply diffusion. Nevertheless, perhaps we do not need any new
assumptions and, therefore, we will tackle this system in Chapter 5. Is mechanically-
regulated PIN regulation enough to explain endodermal auxin? What happens to PIN
polarity patterns when we include growth? What needs to happen mechanically to the
endodermis for FCs to pursue swelling, initiating lateral root emergence? Or, conversely,
why do FCs not grow until SHY2 response happens? More details regarding LRF will be
outlined when we shift our focus exclusively to that system, in Chapter 5.
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Chapter 2

Mathematical description of the
tissue

Any mechanical description or integration method relies upon a mathematical description
of the tissue. In this section we go through assumptions about tissue topology, the process
of describing the tissue, and how to infer geometrical data from the tissue state.

Mathematical tissue modelling has been done in a myriad of ways [102]. One main
class of models are those that rely on a lattice underlying the tissue. Depending on the
scale, we can have each unit cell of the lattice be a single cell of the tissue, or we could
use the lattice for integrating vector and scalar fields be it at a mesoscale or a sub-cellular
scale. We could take into account the shape of each cell by tracking the set of lattice
elements belonging to each cell and how they evolve. Examples of these types of models
include, but not limited to, compartment models [73, 86, 89], cellular automata models
[103, 104], phase-field models [105–107], cellular Potts models [108–111].

In contrast, off-lattice models do not require an underlying grid to evolve the system or
infer the spatial dependence of quantities ascribed to cells in the tissue. It usually entails
integrating forces acting on points representing cells, or parts thereof, in order to evolve
the trajectory over time. For instance, cell-center-based models [112, 113] regard cells as
points and consider cell-cell interaction potentials, the sub-cellular element method [114,
115] regards a cell as a collection of points interacting with intracellular and extracellular
interaction potentials, and vertex models [12, 13, 96, 116–118] that represent the tissue by
cell junctions and the connection between between them, representing cell-cell interfaces,
and write the mechanical energy of the system as a function of junction coordinates.

In general, tissue modelling need not be spatial, for an interaction network could suffice
depending on the target phenomenon. Since we are interested in the evolution of tissue
shape, however, we need to concern ourselves with a spatial description. The approach in
this work is that of a vertex model and, therefore, we use a polygonal mesh to describe
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the tissue (Fig. 2.1 top left). This mesh consists of a set of vertices, faces, and edges
which correspond to cell junctions, cells, and cell walls, respectively. The tissue state is
uniquely defined by vertex positions and any type of mathematical object from which we
can infer which vertices are connected by an edge.

2.1 Topology

As novel as it might be to model biological systems in the surface of a Klein bottle, it would
be a far more insightful exercise in the field of Mathematics than in the field of Biology
and, as such, we restrict our tissues to be an orientable closed two-dimensional manifold
embedded in three-dimensional Euclidian space with genus 0. In short, we assume the
topology of a spherical surface.

By using a Quad-Edge data structure we ensure that all operations for lattice tessel-
lation preserve the topology of the tissue. The Quad-Edge data structure was described
by Guibas and Stolfi [119], where for each edge we save both directed edges and the
two directed edges representing the dual edges (Fig. 2.1 top right) Furthermore, for each
directed edge we save the origin vertex and the next counter-clockwise edge with the
same origin. By composing these movement operations we can traverse the whole surface.
Interestingly, iterating around the edges of a single vertex or around the edges of a poly-
gon are trivial to implement. Moreover, Euler operators on vertices and faces are trivial
(O(1)) operations and correspond to topological transitions of the tissue, for instance cell
division, and vertex merging or splitting.

For objects part of the tissue we reserve lower indexing for labelling faces and vertices,
and upper indices for components (Fig. 2.1 top left). Furthermore, lower latin indices
refer to junctions of the tissue whereas lower greek indices refer to cells of the tissue. At
some point in time we will have N vertices and M faces, meaning the indices i and ↵ can
take the values i = 1, . . . , N and ↵ = 1, . . . ,M .

In the course of describing the tissue, we will make heavy use of summations around
cells and junctions (Fig. 2.1 bottom left). We will denote

P
�2N↵

as a sum over the edges
around cell ↵ where � is the label of the neighbouring cell. Note that if a cell shares
more than one wall with a neighbor, two different terms will appear in the summation,
yet refer to the same cell. In this context, we will refer to � as a neighbouring region of ↵.
The summation is always ordered counter-clockwise (CCW) and has an arbitrary starting
edge. Also, �+1 refers to the next CCW edge and ��1 refer to the previous CCW edge.
Another recurring summation setup is to focus on the vertices around a polygon. We will
adopt a very similar convention as above but for vertices,

P
i2V↵

. In the same way, this
sum has an arbitrary starting point and i + 1 refers to the next CCW vertex and i � 1

refer to the previous CCW vertex. Since we are intimately linked with the tissue’s dual,
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we can just as easily define sums around vertices. Let
P

�2Ni
represent a sum around

all polyhedron faces around junction i in the same CCW fashion. Analogously, we could
define Vi as the CCW ordered set of vertices connected to vertex i, yet we found no
need to in the description herein. All presented sums go over each vertex/edge exactly
once.

Even though it is somewhat useful to iterate over vertices connected to a specific one
we will only need such a sum in the context of a triangulated surface. For this reason
we would also like to introduce one last sum,

P
j2Ti

. This will represent a sum over the
vertices of a triangulated surface connected to a vertex i of the same triangulated surface.
By triangulated surface we mean any surface composed of only triangles fitted to the
geometry of the tissue. In our case, we generate the triangulation by taking the centroid
of each face, promoting it to a vertex, and connect it to all vertices surrounding each face
(Fig. 2.1 bottom right). We use both latin indices in the lower argument of the sum to
distinguish from the previous sums, and can assume immediately that i and j are vertices
of the triangulated surface.

2.2 Geometry

The variables that define the state of the tissue are the junction positions which we denote
by xi. All geometrical quantities will be defined from these position vectors. Most of the
time we will end up writing the mechanical energy of the system with only the geometrical
quantities involved. This also means that if one were to compute forces by which junctions
move, we need to differentiate the geometric quantities defined herein.

2.2.1 Geometrical quantities

Cell perimeter

We define lij to be the length of a segment that connects junction j to junction i. It is
simply the Euclidean distance between two points. In a similar way, we could define edge
length as l↵�, � 2 N↵, as the length of the edge that separates face ↵ from neighbouring
region �. The perimeter is, therefore,

L↵ =
X

�2N↵

l↵� =
X

i2V↵

li+1i, lij = kxi � xjk , (2.1)

where k·k represents the Euclidean norm of a vector.
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Figure 2.1: Schematic representation of the mathematical structure upon which we build
the vertex model. (top left) Tissue representation as a connected graph with the topology
of a spherical surface. Vertices (labeled with Latin indices) and the connections between
them, which define the faces of the polyhedron (labeled with Greek indices), fully define
the tissue geometry. (top right) Quad-edge representation of the tissue used as the basis
for all tissue operations of tessellation and transversal. A directed edge (blue) belongs to a
structure called quad-edge (purple) containing the directed edges pertaining to the primal
graph and its dual. Each directed edge contains information about its origin vertex (or
face in the dual version) and the next edge CCW around its origin (green). We can now
easily define iterators that traverse the outgoing edges around a vertex (pink) and CCW
around a face (orange). (bottom left) A planar tissue can be represented in the same way.
To be easier to express geometrical quantities, we will introduce the sets of vertices and
faces around a specific face (V↵ and N↵ respectively), as well as faces around a specific
vertex (Ni). All these set definitions follow immediately from the defined quad-edge
iterators. (bottom right) It will be very useful, for more delicate quantities, to introduce
a triangulated mesh generated from the initial tissue. Promoting the centroid of each face
to a vertex of its own, we can treat the tissue composed of individual triangles. We also
find it useful to introduce the set of triangulated vertices, cell centers or tissue vertices,
around a specific triangulated vertex ordered CCW (Ti). In this instance, we will use
Latin indices exclusively.
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Figure 2.2: Schematic pertaining to the
computation of the centroid herein defined.
For each point along the path (at t), a fan
triangulation is performed. The centroid of
the generated triangles, each of which with
area Aij (t) (in blue) and centroid Cij (t), is
computed. We then average the obtained
centroid along the path.

Cell centroid

If the polygon were planar, we could in principle use the formula for the centroid presented
in Appendix A. In general, the polygon that makes up a cell is not planar. Therefore,
the question of assigning it a centroid is not well posed in general. We will ground our
answer in four different properties we make sure to enforce:

1. The point in space that represents the centroid should not be dependent on the
choice of basis used to describe positions of junctions.

2. Resulting position should not depend on arbitrary choices which a computation
procedure might allow, for instance an initial state of an iterative procedure or a
choice of triangulation.

3. The expression has to yield the known result if the polygon is planar.

4. Junctions that do not affect the polygon shape should not affect the position of the
centroid. This means any junction, i, that can be written as xi = (1� t)xi�1 +

txi+1, t 2 ]0, 1[, ought not change the resulting centroid.

Our pick for computing the centroid is the average of all centroids obtained by fan
triangulations from any point along the path of the polygon (Fig. 2.2). A fan triangulation
is a procedure to separate a polygon into triangles by taking a vertex and creating an
edge from it to all other vertices. We extend this definition to work starting on any point
along the path of the polygon. This definition results in the expression

X↵ =

P
i2V↵

li+1i

´
1

�1
Ci (t) dt

2L↵
, Ci (t) =

P
j2V↵

Aij (t)Cij (t)P
j2V↵

Aij (t)
, (2.2)

Aij (t) =
1

2
kuji (t)⇥ uj+1i (t)k , Cij (t) =

xi (t) + xj + xj+1

3
, (2.3)

uji (t) = xj � xi (t) , xi (t) =
xi+1 + xi

2
+ t

xi+1 � xi

2
, (2.4)

where t 2 ]�1, 1[, and i, j 2 V↵.

Note that writing the same expressions for the transformed coordinates, x0
i = xi �R

where R is a constant displacement vector, x0
i (t) = xi (t)�R, u0

ji (t) = uji (t), C 0
ij (t) =
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Cij (t) � R, A0
ij (t) = Aij (t), C 0

i (t) = Cij (t) � R, l0i+1i = li+1i, L0
↵ = L↵, and – finally

– X 0
↵ = X↵ � R. The centroid formula as presented follows the same displacement as

the junctions and, hence, fulfils property 1. Even if the choice of parametrisation can be
arbitrary, the value of the integral itself is the same, and so property 2 is verified. If the
polygon is planar, Ci (t) is the same for all choices of t and i 2 N↵, and is the actual
centroid for a two-dimensional polygon, giving the correct result, X↵ = Ci (t) , 8i 2
V↵, t 2 ]�1, 1[, ensuring property 3. The formulation of the path integral ensures we
go over each point in the path only once. Property 4 follows by construction of this
quantity as a path integral. Another way to verify it is when partitioning a segment to
artificially create more junctions all generated triangles lie on the same plane and do not
overlap which, by the definition of centroid, is equivalent to using the centroid and area
of the triangle before breaking it apart. We will perform the integration using a six point
Gaussian quadrature. The high precision here is needed since this error will inevitably
propagate to other quantities.

Cell area

Equipped with a uniquely defined centroid, we can define a unique area for each polygon
by triangulating from the centroid yielding

A↵ =
X

i2N↵

ai, ai =
1

2
k(xi �X↵)⇥ (xi+1 �X↵)k . (2.5)

Had we not made the assumption that our tissue was embedded in three-dimensional
space, we would be able to simplify the expressions for cell area and centroid significantly.
In the aforementioned case we would use the shoelace formula presented in Appendix A.
An illustration of the resulting geometrical quantifications can be found in Fig. 2.3, namely
for face polygon area and segment length.

Cell normal unit vector

Since the surface is orientable, we can define a normal unit vector perpendicular to the
cell, !↵. The definition used in this description is,

w↵ =
N↵

kN↵k
, N↵ =

X

i2V↵

ni =
X

i2V↵

(xi �X↵)⇥ (xi+1 �X↵) =
X

i2V↵

(xi ⇥ xi+1) , (2.6)

24



Figure 2.3: Geometrical quantities of a sample tissue resulting from a Voronoi tesselation
of a spherical surface of radius equal to one unit. Here we display edges colored by their
length, and faces of the polyhedron coloured according to their area. Credit to Mathias
Höfler for the Voronoi tessellation.

where we defined the quantities ni, useful later on, even if it is not necessary for the
computation of w↵

1. Suppose we are triangulating the polygon from the centroid, then
expression Eq 2.6 is the equivalent to a weighted average of the normal of the triangles
that compose the polygon, since knik = 2ai.

Tissue volume

Using the centroid to triangulate the surface, computing the volume enclosed by the
surface is rather straightforward. We simply add all triangular pyramids whose base is a
triangle of the surface and the opposing vertex is some reference point. By using a signed
volume, the reference point can be anywhere, including the origin. This can be expressed
as,

V =
MX

↵=1

v↵, v↵ =
X

i2V↵

1

6
X↵ · ni =

1

6
X↵ ·N↵. (2.7)

1The proof relies on the fact that the polygons are closed. Distributing the cross product in Eq. 2.6
implies,

N↵ =
X

i2V↵

(xi ⇥ xi+1 �X↵ ⇥ (xi+1 � xi)) =
X

i2V↵

(xi ⇥ xi+1)�X↵ ⇥
X

i2V↵

(xi+1 � xi) ,

where the last term vanishes since we can manipulate the index of the sum because the starting position
is arbitrary. Equivalently, the last term sums vectors corresponding to the edges of the polygon and,
therefore, always ends where it starts.
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This expression is analogous to the shoelace formula for computing the area of a two-
dimensional polygon in three dimensions. The independence of the pyramid vertex posi-
tion is a result for the tissue surface being closed2.

Mixed Voronoi regions

It is useful to be able to assign a region or an area to a vertex. This is essential when
modelling curvature, but is useful for other applications, for instance, assigning inertia to
a junction in hopes of modelling dynamics. In short, it is useful for surface integration of
any kind of quantity defined at junctions and at polygon centroids.

We base our approach on the Voronoi region of each triangle surrounding each vertex,
and each centroid made vertex, during triangulation. The notation will now treat faces as
vertices with a lower latin index, as well as the set Ti will refer to the vertices surrounding
vertex at xi in the triangulated surface, whether they are junctions of centroids of cells.
The Voronoi regions are the output of the process called Voronoi tessellation: given a
set of points, return the regions in space closest to each of the input points. Note that
this definition admits several possible topologies and metrics. Because integration over
the surface requires each surface element to be represented equally, we require that any
subdivision we choose needs to tile the same surface we had initially. This poses a problem
for the Voronoi region of polygons which have obtuse angles, in which the typical formula
for the Voronoi area admits portions outside the triangle itself. The concept itself remains
well-defined inside the manifold that is the surface, yet becomes difficult to compute.

In order to overcome this difficulty, we will split the area formula into the Voronoi
formula for acute triangles and we will assume that the point where the three regions
meet will be at most at half-way through the hypotenuse. This results in what is called
the mixed Voronoi region [120, 121], which we exemplify in Fig. 2.4 left. For a triangle
with vertices at xi, xj, and xk the area of the mixed region we assign to vertex at xi

2Consider Eq. 2.7 expanded to include a reference point, with position R, to be

v↵ =
X

i2V↵

1

6
(X↵ �R) · ni, V =

1

6

MX

↵=1

X↵ ·N↵ � 1

6
R ·

MX

↵=1

N↵.

It is not diffcult to see that the second term is zero for a closed surface if we focus on a single edge.
Suppose xi and xj are connected by an edge, then we have two adjacent polygons corresponding to two
terms in the sum, i.e.,

MX

↵=1

N↵ = · · ·+ [· · ·+ xi ⇥ xj + . . . ]
| {z }
polygon left of edge i ! j

+ · · ·+ [· · ·+ xj ⇥ xi + . . . ]
| {z }

polygon right of edge i ! j

+ · · · = 0,

since they will always show up reversed due to the counter clockwise cyclic sums. Because the surface is
closed, all edges have two surrouding polygons and all terms cancel.
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Figure 2.4: (left) Schematic representation of the mixed regions assigned to each triangu-
lated vertex. Ideally, each of these region are the set of points closest to the corresponding
triangulated vertex. The arrow shows an example where the mixed region area for an ob-
tuse triangle was employed to facilitate computation of the region in question. (center
and right) Triangle obtained via triangulation of the tissue split into the mixed regions
for each of its vertices. (center) In the case of an acute triangle, the Voronoi region is
used and the circumcenter lies within the triangle itself. (right) An obtuse triangle will be
split as if the circumcenter now lies at the half-way point of the segment opposite to the
obtuse angle. Note that all triangles shown in the decomposition of the obtuse triangle
have the same area.

is

Amixed
ijk =

8
>>>>>><

>>>>>>:

kuji ⇥ ukik
4

, (uji · uki)  0,

kuji ⇥ ukik
8

, (ukj · uij) (uik · ujk)  0,

kukik2 cot (✓ijk) + kujik2 cot (✓jki)
8

, otherwise,

uji = xj � xi, (2.8)

where ✓ijk = \ijk, i.e., the internal angle at j of the triangle formed by vertices i, j, k.
The first two expressions correspond to the case where the triangle is obtuse, where the
expression of the area is given through triangle resemblance arguments (Fig. 2.4 left).
The first expression is used when the triangle has the obtuse angle at vertex i, and
the second otherwise. Note that we do not need to compute the angle directly, since
cot (✓ijk) = ukj · uij/ kukj ⇥ uijk. The third expression is the Voronoi area [120] which
is used for an acute triangle (Fig.2.4 center). The total area around a vertex of the
triangulated surface is, therefore,

Amixed
i =

X

j2Ti

Amixed
ijj+1

. (2.9)
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We also intend to compute the path around the mixed region of each triangulated
vertex. For this we need to find out the position of all mixed region intersections. Not
only this will enable us to plot these regions, but also to assign a normal vector to it in
much the same way we do for each cell. We know the mixed Voronoi region of i, of the
triangle i, j, k, has to cross each side of the triangle at the half-way point, (xi + xj) /2

and (xi + xk) /2, by the definition of Voronoi region (Fig. 2.4 center and right). If the
triangle is obtuse we assign the intersection of the three regions to always be half-way
through the hypotenuse, i.e., at (xj + xk) /2. If the triangle is acute the regions will meet
at the circumcenter3 of the triangle,

xcircumcenter
ijk = xi +

✓
uji ⇥ uki

kuji ⇥ ukik

◆
⇥ kukik2 uji � kujik2 uki

2 kuji ⇥ ukik
, (2.10)

since it is the point equidistant to all the triangle vertices belonging to the same plane
(Fig. 2.4 center).

Triangulated surface normal unit vectors

We previously defined the normal to a polygon. If the surface is triangulated, we can
define for each vertex a normal vector, regardless of it representing a junction or a cell.
We can used the same formula as Eq. 2.6 considering the mixed Voronoi region boundaries
instead of edges around a polygon. Note that the normal of the mixed Voronoi region of the
triangulated vertex of a cell ought to be similar to the cell normal computed with Eq. 2.6,
due to how the centroid is computed. We will admit this approximation for triangulated
vertices assigned to cells, wi ⇡ w↵, and we will use same scheme as in Eq. 2.6 adapted
for the mixed Voronoi regions of triangulated vertices assigned to junctions, wi.

3It corresponds to the intersection of the perpendicular bisectors of two of the sides of the triangle.
Let m = (uji ⇥ uki) / kuji ⇥ ukik. Then the intersection can be written as

xcircumcenter
ijk = xi +

uji

2
+ ↵m⇥ uji = xi +

uki

2
� �m⇥ uki

= xi +m⇥
✓
↵uji �

m⇥ uji

2

◆
= xi +m⇥

✓
��uki �

m⇥ uki

2

◆
,

where we used uji = �m⇥ (m⇥ uji) and uki = �m⇥ (m⇥ uki). The equality holds if and only if

↵uji �
m⇥ uji

2
= ��uki �

m⇥ uki

2

uji⇥) � =
kujik2 � uji · uki

2 kuji ⇥ ukik
.

Also, note that

m⇥ uki =
(uji · uki)uki � kukik2 uji

kuji ⇥ ukik
.

Plugging the value of � and m⇥ uki back in xcircumcenter
ijk yields the result in Eq. 2.10
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Figure 2.5: Mean curvature for each mixed region in the previously shown sample tissue.
The sample tissue was obtained via voronoi tessellation of a spherical surface with radius
equal to one unit. Note that the triangulated vertices belonging to the faces of the
polyhedron have very low mean curvature, indicating that our centroid at least succeeds
in keeping the expected shape of the tissue. Credit to Mathias Höfler for the initial tissue
geometry.

Tissue curvature

Consider a point in a surface embedded in R3. We can inspect the curves resulting from
the intersection of planes which contain the normal unit vector at that point and the
surface itself. At this point, for each plane we fit a circle and compute the inverse of the
radius. Principal curvatures, 1 and 2, at this particular point are the maximum and
minimum values the inverse of the radius of all circles fitted this way. This approach,
however, is quite cumbersome numerically. Hence we will look in particular at Gaussian
curvature, K = 12, and mean curvature, H = (1 + 2) /2. These two quantities can
be computed without having to solve an optimisation problem.

The Gauss-Bonnet theorem ensures that the integral of Gaussian curvature over the
surface is constant and equal to 4⇡. Descartes’ theorem on total angular defect of poly-
hedron states that, if the polyhedron has the topology we are using for the tissue in this
work, then the sum of angular defects is always equal to 4⇡. The second theorem can
be regarded as a special case of the first, yet it is stated in a discretized form from the
outset. By angle defect we mean the angle remaining after flattening the vertex. In other
words,

4⇡ =
N+MX

i=1

 
2⇡ �

X

j2Ti

✓j+1ij

!
⇡

N+MX

i=1

Amixed
i K (xi) ) K (xi) ⇡

2⇡ �
P

j2Ti
✓j+1ij

Amixed
i

. (2.11)
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Figure 2.6: For each face of the sample tissue we assign a local projected reference frame
which we can use to compute quantities more conveniently expressed in two dimensions.
The basis of the reference frame assigned to cell ↵ is given by u↵ (red) and v↵ (green).
The normal vector, w↵, (blue) is also represented and can be used if we need to keep the
same span between the original and the local reference frames.

In this case we have to use inverse trigonometric functions (such as arccot) to recover
angles ✓j+1ij.

Mean curvature requires a bit more effort than its Gaussian counterpart. Mean cur-
vature can be written as [121],

H (xi) =
1

2
(�Sxi) ·wi, (2.12)

where �S is the Laplace-Beltrami operator. The Laplace-Beltrami operator is the gen-
eralisation of the Laplacian for functions defined on sub-manifolds, such as our two-
dimensional spherical surface embedded in three-dimensional Euclidean space. The ex-
pression above is true for all points of the surface, not just at the triangulated vertices.
We become tethered to the triangulation when we discretize �S. In this case, we use

�Sf (xi) ⇡
P

j2Ti
(cot (✓ij�1j) + cot (✓jj+1i)) (f (xi)� f (xj))

Amixed
i

, (2.13)

as outlined in [120]. We can now apply the Laplace-Beltrami to each component of
the position vector xi to obtain the vector needed to find the mean curvature with
Eq. 2.12. We show an example of mean curvature computation for the same sample
tissue in Fig. 2.5.
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2.2.2 Projected coordinates

We do not want to constrain our physical models of the cell to three dimensions, where
a two-dimensional model would suffice. In order to be able to do this, however, we need
to assign each polygon, representing each cell in the tissue, with an intrinsic set of two-
dimensional coordinates resulting from a projection onto a best fitting plane.

We deem that the centroid and normal vector of each polygon define a good enough
plane to carry out the projection. We just need to establish a vector basis inside the
plane to project numerically. We proceed to find a new basis vector by means of a Gram-
Schmidt orthonormalisation. We will generally start with the unit vector êx, one of our
original basis vectors, and compute

u↵ =
u⇤

↵

ku⇤
↵k

, u⇤
↵ = êx � (êx ·w↵)w↵, (2.14)

also called the rejection of êx on w↵, which is then normalised. If w↵ = êx, then we use
êy for generating u↵ instead. We can now easily compute the last basis vector with

v↵ = w↵ ⇥ u↵. (2.15)

We can now write the same position vectors, but in terms of this new rotated basis
(Fig. 2.6). Because the basis is orthogonal and normalised we can rewrite the same vector
as

xi = (u↵ · xi)u↵ + (v↵ · xi)v↵ + (w↵ · xi)w↵. (2.16)

Projecting is now as simple as ignoring the last term,

xproj
i = (u↵ · xi)u↵ + (v↵ · xi)v↵ = (u↵ · xi,v↵ · xi) =

⇣
xproj
i , yproj

i

⌘
, (2.17)

where we have represented the vector as an ordered pair (x, y) of the new basis.

Finally, we will also center the polygon at the origin. We need, therefore, to compute
the centroid of the projected coordinates. For a two-dimensional polygon, the centroid is
given by

Cproj
↵ =

1

6Aproj

X

i2V↵

⇣
xproj
i yproj

i+1
� xproj

i+1
yproj
i

⌘⇣
xproj
i + xproj

i+1

⌘
, (2.18)

where the projected area, Aproj, is given by the shoelace formula

Aproj =
1

2

X

i2V↵

⇣
xproj
i yproj

i+1
� xproj

i+1
yproj
i

⌘
. (2.19)

These two formulas can be derived by converting the surface integral inside the polygon
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Figure 2.7: Average absolute deviation of the gradient computed analytically versus using
forward difference scheme with different numerical step sizes (precision) for three different
scalar test functions:

P
↵ L↵ (solid),

P
↵ A↵ (dashed),

P
↵

P
i2V↵

�
x0
i
2 + y0

i
2
�

(dotted). The
average absolute difference drops until it reaches a difference within 10�7 which is enough
precision for most purposes.

to a line integral around it as shown in Appendix A. We use a different letter for the
centroid of the projected polygon in order not to conflate with the projection of X↵. For
each junction, for each cell surrounding the junction, we will keep track of the components

x0
i = xproj

i �Cproj
↵ =

⇣
x1

0

i , x
2
0

i

⌘
= (x0

i, y
0
i) . (2.20)

2.2.3 Differentiating all of the above

As mentioned before, in general, one might want to compute forces acting on junctions.
If the mechanical energy is written in terms of these geometrical quantities, the gradient
of those is needed. One approach would be to use a simple finite difference scheme and
change, ever so slightly, the position of each vertex individually. Numerically, this is not
optimal since it means computing all previously mentioned geometric quantities 3N times
per evaluation. Ideally we would like the analytical expressions for the gradient.

Looking ahead, we will need to integrate auxin transport over time, which would entail
a global optimisation procedure at each time step. This is unfeasible since the complexity
of a global optimisation can vary up to NP-hard. We can also take advantage of the
fact that if we admit we are in a minimum at some point in time, in the next time step
we should be close to the minimum already (phase transitions aside), making a local
optimisation a better approach. In order to perform a local optimisation, we need to
compute the gradient of energy at a specific point in the configuration space. This means
that even if in principle someone could reproduce the experiments of this thesis with only
the global optimisation, we cannot guarantee that those simulations will be finished in
a reasonable amount of time. Since reproducibility is essential, we deem necessary to
include the computed gradients in this work. We provide the gradient expressions for all
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quantities and proofs in Appendix B.

For brevity we will only show a test of the analytical result against a forward finite
difference scheme for varying degrees of accuracy (Fig. 2.7). We tested the gradient of
the sum of all perimeters, gradient of the sum of all areas, and gradient of the sum of
a potential r2 for each vertex around the centroid of each polygon in local projected
coordinates. The numerical result and the analytical one continue to approach each other
until an average absolute deviation of the order 10�7. Since this value is still above machine
precision, we are safe in assuming that the remnant deviation is due to the compounding
round-off errors and errors from Gaussian quadrature for the centroid computation.

2.3 Implementation

A tissue description of this nature is useful especially for studies of epithelial tissue mor-
phogenesis and development. We set our sights in providing an implementation which,
not only will it allow us to extend the results of our work and pursue new experiments,
but also help just as well in describing tissue mechanics of other biological systems. For
instance, the description used here would be very helpful in the context of studying the
mechanics of epithelial tissue, especially when considering topological transitions and cell
division. The three-dimensional nature of it is necessary to study out-of-plane mechanical
instabilities, which are often proposed to be the cause of morphogenesis.

We adopted the Quad-Edge library implemented by Paul Heckbert [122]. It contains
all basic functionality as well as iterators and an input/output protocol with the aid of
Wavefront .obj files. By wrapping it with the use of Simplified Wrapper and Interface
Generator (SWIG) we compiled the C++ source into a python package, allowing us to
benefit from the performance of C++ and the potential syntax clarity we can achieve
with Python 3. It also allows us to integrate Python software packages seamlessly with
the simulations if need be. For instance, plotting will be exclusively dealt with by the
Matplotlib package [123].

On top of the Quad-Edge package, we developed surface geometry analysis tools con-
taining all calculations herein as well as the implied required logistics. Being written
in C++, the package has decent performance and has been wrapped with SWIG in the
same way. A notable feature is the reconciliation of vertex linked-list-like data structure
with a contiguous block of adaptable size of all vertex position coordinates. Not only is
cell-division already taken into account, it is always ready to be fed to routines for opti-
misation and solving. To visualise the polygonal mesh we implemented specific routines
invoking the Matplotlib package.

Another addition for this package is optimisation tools, since the protocol for accessing
vertex coordinate components is already in place. Optimisation procedures are set to
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be done with the NLopt C++ package [124] with both local and global optimisation
algorithms. One can also access coordinate components using the Numpy package [125]
in Python 3, in case Python is preferred for coordinate optimisation.

Equipped with the mathematical concept, the formalism, and the numerical imple-
mentation of our tissue surface, we are ready to endow it with physical and biological
phenomena we propose to study.
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Chapter 3

Modelling mechanically regulated auxin
transport

Equipped with the geometrical description of the tissue we will, in this chapter, develop
mechanical models for the tissue and auxin transport model between cells of the tissue.
Depending on the system we intend to model, we might need to make some extra assump-
tions. In our case, because we intend to model planar systems only, we will designate one
cell to be virtual such that we can close the planar graph representation of the tissue. We
will call this cell the boundary cell.

The bridge between the geometrical and the biological will be done by mapping tissue
surface faces to plant cells, and edges to cell walls. Note that we will always assume each
edge contains two cell wall compartments, one facing a different cell. Note that the Quad-
Edge data structure is particularly suited for holding this correspondence, since it implies
a complete directed graph. We can define that the cell wall data stored in a directed edge
pertains to the compartment adjacent to the cell whose face is on the left of the current
edge (any side works, so long as we do it consistently).

Plant mechanics is often modelled with the Finite Element Method [34, 46, 126, 127],
using mass-spring models [127], or by evolving the system according to a model for me-
chanical energy [127, 128]. The approach most suitable for the vertex model described
in the last chapter is to model each physical phenomenon with a mechanical energy term
as a function of tissue coordinates. In the next section we focus on describing how we
can use the mechanical energy to arrive at a tissue configuration, and then we will write
down, term by term, the mechanical energy of the physical phenomena we want to take
into account throughout this work.

By virtue of the cell wall, auxin transport has been successfully modelled with the use
of compartment models [34, 73, 78, 89]. These models are based on subdividing space into
different compartments with different rules for transport of molecules or other particles
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between compartments of, typically, spatially homogenous concentration.

3.1 Plant cell mechanical description

In order to model mechanics using a vertex model we are required to, first and foremost,
write down the mechanical energy of the tissue. The ground state of the tissue can be
obtained by minimisation of this mechanical energy. We will assume this approach to be
enough given the difference in typical response time of auxin signaling and the propagation
of (over-dampened) mechanical waves. This is reasonable, since auxin metabolism and
PIN binding take place in the order of minutes [35].

Although not developed here, an alternative approach is to compute the gradient of
energy in order to compute the conservative forces acting on each junction. By endow-
ing the system with a typical response time and inertia to each junction, one could in
principle simulate dynamics by integrating the equations of motion of each vertex. In
this framework, dissipative forces could be included as an addition to the forces at each
junction.

There are two main mechanical phenomena we want to capture with the vertex model.
The first is tissue elasticity, and the second is cell turgor. In this category, we could also
take into account tissue curvature, junction bending stiffness, gravitic potential, surface
tension, cell line tension, or even other external force fields, for instance, as a proxy for
simulating application of stress by contact.

Our aim, therefore, is to find the position vectors

x⇤
i 2 argmin

{xi}
H ({xi}) , (3.1)

where H denotes the Hamiltonian, and {xi} refers to the set of positional vectors that
define the geometry of the tissue. We will omit the kinetic terms in the Hamiltonian,
since we simply want the state in which the resulting forces vanish. This implies a static
that we are dealing with a quasi-static regime [96, 129], the time between successive
optimisations is not well defined. The tissue deformation timescale is, therefore, defined
by how mechanical parameters vary over time. In the remainder of this section we will
describe the terms we choose to include in the Hamiltonian that we will use to describe
plant tissue.

3.1.1 Cell-based elastic description

One approach to include elasticity is to confer to each cell domain an energy density
based on the shape of the cell. In this case it is much easier to perform the description
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in the projected local two-dimensional coordinate system. A staple of biological systems
is to consider a parabola in the domain of cell area around a target. It works well when
we consider a cell membrane where the membrane itself is relatively easy to deform in
comparison to compressing the cytoplasm. A phenomenological approach such as this one
is more powerful than it might appear at first glance.

In short, the behaviour of observables of a system in stable equilibrium can be com-
pared to an harmonic oscillator for small enough perturbations. In the above description,
we used area as an observable around which we Taylor expand an elastic potential, leav-
ing us with two parameters: the equilibrium value of the observable (target area), and
the concavity of the potential (bulk modulus). This idea can be generalised to a myriad
number of observables.

The advantage of this approach is that one can describe a system around a stable
equilibrium point without knowing the exact underlying mechanisms responsible for its
stability. After choosing observables, one has only to fit the resulting parameters to
empirical data to be able to predict system behaviour. On the other hand, we can only
predict the behaviour for small perturbations to the system. Another issue is that the act
of choosing observables can be considered a transformation of state space variables and,
as such, we have no guarantee of it spanning the whole state space, let alone of it being
invertible.

In this system, we need to take into account that it is harder for a plant cell to deform
at all due to the existence of cell walls. Instead of choosing cell area as an observable, we
base our choice in higher moments of area distribution, specifically in the second moment
of area. We focus on the quantity

Mµ0⌫0

↵ =

¨
S↵

xµ0
x⌫0dS↵, (3.2)

where S↵ denotes the projected cell region. Note the expression is written in local pro-
jected coordinates and, therefore, centered at the centroid. Note also that µ0 and ⌫ 0 can
take two values each, and Mµ0⌫0

↵ is a symmetric matrix. We will henceforth call the second
moment of area with respect to the centroid the shape matrix of the cell. This observable
has been used before in a similar context [93].

Much like the shoelace area formula for a two-dimensional polygon, or the similar
expression for the centroid, Green’s theorem can be used to perform the surface integral
as a line integral around the polygon. This simplifies the computation and discretisation
necessary for computing Eq. 3.2. With the help of Green’s theorem, we are able to write
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the shape matrix components of cell ↵,

Mx0x0

↵ =
1

12

X

i2V↵

�
x0
iy

0
i+1

� x0
i+1

y0
i

� ⇣
x0
i
2 + x0

ix
0
i+1

+ x0
i+1

2

⌘
, (3.3)

My0y0

↵ =
1

12

X

i2V↵

�
x0
iy

0
i+1

� x0
i+1

y0
i

� ⇣
y0
i
2 + y0

iy
0
i+1

+ y0
i+1

2

⌘
, (3.4)

Mx0y0

↵ = My0x0

↵ =
1

24

X

i2V↵

�
x0
iy

0
i+1

� x0
i+1

y0
i

� �
x0
iy

0
i+1

+ 2x0
iy

0
i + 2x0

i+1
y0
i+1

+ x0
i+1

y0
i

�
. (3.5)

The proof of these expressions can be found in Appendix A. If the cell is not strained, this
matrix would be the target shape matrix, M0

µ0⌫0

↵ . Ultimately, the target shape matrix is
simply three adjustable parameters.

We will keep the matrix component representation since it emphasises the underlying
two-dimensional coordinate system. We will also normalise the difference with the trace of
the target shape matrix, such that multiplying by a scalar does not affect energy density.
Total mechanical energy is already different when the system is scaled, since the implied
domain of integration of energy density is different for the scaled case. With this in mind,
the relative deviation from the unperturbed configuration,

"̃µ
0⌫0

↵ =
Mµ0⌫0

↵ �M0

µ0⌫0

↵

M0

µ0µ0
↵

, (3.6)

is our choice of observables.

We will now proceed to write down energy density. With the power to choose any set
of observables, we have already forfeited the guarantee of physically meaningful higher
order terms. In general, since we have three observables, we would have up to six terms in
the potential energy density, one for each possible combination, which we can compactly
write down as

 elastic
↵ =

1

2
Cµ0⌫0⇠0⌘0

↵ "̃µ
0⌫0

↵ "̃⇠
0⌘0

↵ . (3.7)

Because we have no higher order terms, we are limited to linear elastic behaviour. Note
that the fourth rank tensor introduced to capture all possible constants has symmetry
properties leaving us with the aforementioned number of independent components. An-
other assumption we conjure is homogeneity, which simply results in the independence of
Cµ0⌫0⇠0⌘0

↵ from the coordinates at which we evaluate energy. Lastly, a perhaps more severe
assumption is that of isotropy. Taking the general isotropic fourth rank tensor1, replacing

1A fourth rank tensor of the form

C
↵�µ⌫ = ↵�

↵�
�
µ⌫ + ��

↵µ
�
�⌫ + ��

↵⌫
�
�µ

is invariant under any rotation, i.e, isotropic.
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it in the expression for elastic energy density, and using the symmetry of the matrix "̃µ0⌫0
↵

2,
we are left with only two terms,

 elastic
↵ = c1↵"̃

µ0⌫0

↵ "̃µ
0⌫0

↵ +
c2↵
2
"̃µ

0µ0

↵ "̃⌫
0⌫0

↵ . (3.8)

Since we assume an isotropic material at this point, this energy density is unable to
capture the mechanical effect of microtubule orientation and polar cellulose deposition.
The factor of 1/2 exists solely for the energy density expression to be a direct parallel to
the typical expression for the linear elastic homogenous isotropic material.

Being an energy density, we obtain total energy via integration of the projected region
and multiply by the height of each cell. Note that not one object in Eq. 3.8 is posi-
tion dependent, resulting in simply a factor accounting for the volume of the cell. The
Hamiltonian term for cell-based elasticity is, therefore,

Helastic =
MX

↵=1

Aproj
↵ h

"
c1↵

kM↵ �M0↵k2F
Tr2 (M0↵)

+
c2↵
2

Tr2 (M↵ �M0↵)

Tr2 (M0↵)

#
, (3.9)

where Aproj
↵ is the projected area of the cell, h its height, k·kF is the Frobenius norm

of a matrix, and Tr (·) represents the trace of the matrix. Here we have dropped the
index notation in favor of matrix notation. Note that this expression is written in terms
of projected local coordinates. This implies that in order to compute the gradient of
mechanical energy, we make use of the gradient transformation explored in Appendix B.
We derive the gradient of the previous expression with regards to the local projected
coordinate system in Appendix C.

In order to compare our model with already studied material models, we would like
to map our constants c1↵ and c2↵ to the moduli generally employed for linear elasticity
written in terms of components of the infinitesimal strain tensor. This mapping is explored
in Appendix D, where we confirm c1 to be Lamé’s second parameter (µ), also called shear
modulus (G), and

c2 =
�� 3µ

4
, � = 3c1 + 4c2, (3.10)

where � is Lamé’s first parameter. We can transform back and forth to Young’s modulus

2Note that
1

2
C

↵�µ⌫
"̃
↵�
"̃
µ⌫

,

when replacing C
↵�µ⌫ , becomes

↵

2
"̃
↵↵
"̃
�� +

�

2
"̃
↵�
"̃
↵� +

�

2
"̃
↵�
"̃
�↵ =

↵

2
"̃
↵↵
"̃
�� +

� + �

2
"̃
↵�
"̃
↵�

,

because "̃↵� = "̃
�↵.
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and Poisson’s ratio with

c1 =
E

2 (1 + ⌫)
, c2 =

E (⌫ � 3/8)

(1 + ⌫) (1� 2⌫)
, (3.11)

E = c1

✓
3� 1

4

c1
c2 + c1

◆
, ⌫ =

1

2

✓
1� 1

4

c1
c2 + c1

◆
. (3.12)

Note that these relations are valid only if the target shape is proportional to the identity
matrix. It also requires small strains, yet we are already under this assumption.

After minimisation of the energy with respect to junction coordinates, we intend to
access mechanical quantities such as strain and stress. However, we have only the target
shape matrices as a proxy for the rest configuration of the cell. Had we the initial vertex
positions, we could, in principle, triangulate the cell and calculate the displacement gra-
dient of each triangle and possibly average it. Stress is also not directly accessible since
it is obtained by computing the derivative of energy with respect to strain. We require a
reconstruction of strain as a function of the current and target shape matrices. Presented
also in Appendix D reconstructed strain for an isotropic rest shape is given by

"↵ =
M↵ �M0↵

Tr (M0↵)
� 1

4
I
Tr (M �M0↵)

Tr (M0↵)
, (3.13)

where I is the identity matrix. Having strain and the correspondence between mechanical
parameters, we need only to use the constitutive relations for a linear elastic isotropic
material,

�↵ = 2µ"↵ + �ITr ("↵) . (3.14)

Note we are using our strain approximation and the Lamé parameters. In the course of
this work we will set c2 to zero. This implies a Poisson ratio of ⌫ = 3/8, which is relatively
close to the incompressible regime (⌫ = 1/2).

Since the aim is to model mechanical regulation of membrane-bound carriers, we aim to
compute strain and stress of specific walls. As it stands, we can compute average strain
and stress acting on the whole cell. We compute wall strain by interpolating between
adjacent cells. As a first order approximation, we compute the average strain of the two
cells surrounding a specific wall. Projecting this tensor along the wall yields longitudinal
strain, which we can use to compute wall stress. If we know the constitutive relations
for the cell wall we can compute stress directly via strain. Here we will assume that the
mechanical properties of all wall compartments surrounding cell ↵ will have mechanical
parameters c1↵ and c2↵ (or rather, the resulting E↵ and ⌫↵). This is quite the blunt
approximation, yet it allows us not to introduce more parameters, and we can neatly
write it in terms of projected coordinates, since the corresponding edge lies near the
intersection of the two projection planes in question.
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3.1.2 Wall-based description

Another possible realisation of elasticity is to consider the walls themselves as one-
dimensional rigid rods with wall width, w, and layer height, h. In a simplified scenario
such as this, we can frame the elastic energy directly in the infinitesimal deformation
framework. With this description, we would need the Young’s modulus, E↵, and Pois-
son ratio, ⌫↵. We assume all cell wall compartments surrounding a cell have the same
mechanical properties.

Let lij = lji be the length of the wall compartments that connect vertices i and j. If
we assume that there are no residual stresses in the system, then it follows that the rest
lengths these two wall compartments are the same, l0ij = l0ji. Then, we can assign to
both compartments the same longitudinal infinitesimal strain,

"ij = "ji =
lij � l0ij

l0ij
. (3.15)

We will neglect all other strain components, since we made the assumption of the wall
being akin to a rigid rod. This implies we are neglecting the Poisson ratio for each
individual wall. Although seemingly drastic, the deformation of the cross-section of the
wall is negligible as we are professedly trying to capture the deformation of the cell as a
whole. Even if it does affect the strain on walls quantitatively, the qualitative behaviour
is the same.

The elastic energy density of a wall compartment adjacent to cell ↵ is simply3,

 elastic
↵� =

1

2
E↵

✓
l↵� � l0↵�

l0↵�

◆2

, � 2 N↵, (3.16)

where we made use of the face-based edge indexing. Here ↵� stands for the edge separating
face ↵ and a neighbouring region �. Being an energy density, we are required to integrate
over the whole volume in order to obtain the total elastic energy. We will opt for width,
w, to be that of a single compartment. Then we can write the respective Hamiltionian
term as

Helastic =
1

2

MX

↵=1

E↵

X

�2N↵

whl0↵�

✓
l↵� � l0↵�

l0↵�

◆2

. (3.17)

This elastic description is very similar to that of [130]. After optimising geometry, we can

3Here we invoke the linear elastic isotropic homogeneous material energy density,

 = µ"
↵�
"
↵� +

�

2
("↵↵)2 ,

where, for ⌫ = 0, � = 0 and µ = E/2, and the only non-zero component of "↵� is tangent to the wall.
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infer wall stress in either compartment via the consitutive relation,

�↵� = E↵"↵� 6= E�"�↵ = ��↵. (3.18)

Note that with just this term we cannot assign a general rest cell shape. This becomes
a problem when looking at high anisotropic cell shapes present in the lateral root system.
If we use only this elastic term and turgor pressure, there is no rest state whose configu-
ration resembles empirical root structure observations (for biological values of turgor and
stiffness). Because cell growth is wall-specific in the systems we want to probe, we require
a wall-based model for mechanics. In order to keep the structure of the root we have,
at this point, two options. Either we reduce turgor pressure, relative to wall stiffness,
drastically, or we model bending energy at the junctions, in order for the structure to
withstand the turgor pressures we want to achieve. We choose the latter, for we cannot
rely on the results of the former for long-term dynamical behaviour.

We want to assign a mechanical energy value to the angle between anticlinal walls.
Each face in the surface represents a cell of height, h, which we assume to be a prism
whose bases are given by the shape of the face. The walls we want to assign bending
energy can be, therefore, considered as a shell of the prism that is the cell. We will
assume a vanishing cell wall width and disregard walls parallel to the surface. Because
the cell is a prism, then curvature does not depend on the height at which it is computed.
The Canham-Helfrich bending energy surface density [131] is

'bending (xi) =
k1
2
(H (xi)�H0 (xi))

2 + k2K (xi) . (3.19)

For our particular cell wall surface shape we have curvatures 1 6= 0 around the cell and
2 = 0 along the cell height. Because H = (1 + 2) /2 and K = 12, H = 1/2 and
K = 0. Curvatures 1 will be solely defined at the vertices around a particular cell.
The discretisation of a surface integral requires that we assign an area to each vertex to
perform the integral. We use h (li�1i + lii+1) /2 since it is essentially the Voronoi area
around each vertex in the considered manifold. We now have a polygon for which we
want to compute curvature at each vertex.

Curvature of a planar curve at point P is usually defined as 1/R where R is the radius
of a circumference passing through point P and whose tangent at that point is equal to
the tangent of the curve at P . An equivalent definition of curvature, yet more useful for
our particular application, is the derivative of the tangent angle of the curve with respect
to arclength. The variation of arclength with respect to vertex i is simply (li�1i + lii+1) /2,
the size of the Voronoi region assigned to i. The variation of tangent angle at vertex i is
simply the exterior angle of the polygon at i. Hence, a discrete curvature for a vertex of
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the polygon is given by
i =

2✓i
li�1i + lii+1

, (3.20)

where ✓i is the external angle at vertex i [132]. We consider that there is a rest angle ✓0i,
such that i � 0i = 2 (✓i � ✓0i) / (li�1i + lii+1). These formulas were not included in the
previous chapter since they are only meaningful on cells of a planar lattice. Using this
value to compute mean curvature, plugging it into the energy surface density previously
defined yields

'bending (xi) =
kb
2

✓
✓i � ✓0i

li�1i + lii+1

◆2

, (3.21)

where kb is the bending constant of this model. We note that a bending modulus such as
kb is often proportional to Young’s modulus, for instance, in the bending of beams [133].
If we assume small angle deflections4, then after summing for all cells and integrating over
the surface the Hamiltonian bending term we consider is

Hbending =
1

2

MX

↵=1

kb↵h
X

i2V↵

1� cos (✓i � ✓0i)

lii�1 + li+1i
. (3.22)

One can also express the same quantity in terms of tangent vectors ti+1i = ui+1i/li+1i,

Hbending =
1

4

MX

↵=1

kb↵h
X

i2V↵

(ti+1i � t0i+1i)
2

lii�1 + li+1i
, (3.23)

where t0i+1i = cos (✓0) tii�1 + sin (✓0)Ri (⇡/2) tii�1, where Ri (✓) is the rotation matrix
that rotates a vector by ✓ radians around the normal to the plane that contains the
vectors ti+1i and tii�1

5. Note that we consider a three-dimensional system, despite the
representation being two-dimensional. This can be ascertained by the presence of height,

4Using Taylor series, the cosine can be approximated as cos (✓ � ✓0) ⇡ 1� 1
2 (✓ � ✓0)

2.
5Note that expanding ti+1i in the same basis as t0i+1i, yields

ti+1i = cos (✓) tii�1 + sin (✓)Ri (⇡/2) tii�1,

meaning that

(ti+1i � t0i+1i)
2 = 2� 2ti+1i · t0i+1i = 2 (1� (cos (✓) cos (✓0) + sin (✓) sin (✓0))) = 2 (1� cos (✓ � ✓0)) .

In two-dimensions Ri (⇡/2) would be the matrix
�

0 �1
1 0

�
. In three-dimensions, we need to rotate it around

the unit vector,
ki =

tii�1 ⇥ ti+1i

ktii�1 ⇥ ti+1ik
,

the normal to the plane of the two cell wall tangents in question. Using Rodrigues’ formula, the rotation
matrix Ri (⇡/2) is given by
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h, in the expressions and the factor of 1

4
, since, in the three dimensional case, mean

curvature being an average over two different curvatures. Both expressions (Eq. 3.22 and
Eq. 3.23) are often employed to model semi-flexible discrete polymer chain mechanics
[134–136].

One would expect that the expression for 0i should contain rest lengths, however,
we have shown above how helpful this approximation is for writing down the bending
energy. If one considers 0i = 2✓0i/ (l0ii�1 + l0i+1i) instead, the rest angle at a vertex
would change based on wall strain of the two adjacent walls. This deflection angle would
mean much more had we considered wall bending in each segment. Since the polygon has
to remain closed and walls are kept straight, this effect is hampered by the effect of all
other vertices also prone to the same angle deflection. Provided wall strain is of the same
order of magnitude in all walls surrounding a cell, therefore, if we dismiss bending along
wall segments, the approximation 0i = 2✓0i/ (lii�1 + li+1i) is not without merit.

Since the elastic and bending terms for the wall-based model, are written in the original
coordinate system, the gradient we compute to aid in energy optimisation does not have
to be transformed.

3.1.3 Turgor and internal pressure

Having the energy of the material deformations, whether it is cell-based or wall-based, we
will also include the turgor pressure as the source of force which knocks our system off of
the equilibrium established by the parabolic shapes of the above terms.

The final term we will consider for the mechanical energy is, therefore, the work done
by turgor pressure inside each individual cell. This term arrives directly via standard
thermodynamics where the change in internal energy is

Hturgor = �
MX

↵=1

T↵A↵h, (3.24)

where T↵ is the turgor of cell ↵. Almost all energetic models of plant tissue include a
term analogous to this one, for instance, [127, 130]. Similarly, we could model internal
pressure of the tissue, �, by using ��V . In the systems here studied through this work
we will only use the turgor pressure term.

Note that all terms, regardless of the elastic model chosen, are proportional to height
h, so we can remove it from the target function for optimisation.
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3.2 Auxin transport compartment model

Equipped with geometric and physical description of the tissue, we are now in position to
include the biological features we are interested in and how they interact. Before tackling
the expressions for how auxin and PIN evolve, we will describe the representation we opt
for and the assumptions therein.

We will assign to each polygonal cell, face of the polyhedron that is the whole tissue,
an auxin concentration, a↵. We consider the value of a↵ to be a comparison to a basal
value and, therefore, adimensional. Using just a single concentration value implies that
we are not regarding intracellular auxin gradients [137]. Auxin is a small molecule and,
as such, an assumption of immediate mixing is a reasonable one provided cells are not
too large. This assumption, however, is brought to its limit in the case of very elongated
cells of the root, where one of the dimensions differs from the other two by an order of
magnitude. This poses a potential problem in the interpretation of the results of the
section of this work performed on the root system, yet will be taken into account when
discussing its results.

The auxin field will not be extended to take into account intracellular distribution,
nevertheless we will briefly allude to how one could do so. One could discretise the
auxin field inside the cell, for instance, by assigning each vertex a cell-specific local auxin
concentration, as well as a central value at the cell’s centroid. Triangulating the cell from
the centroid would yield a lattice and, similar to the setup of a Finite Element Method,
write the evolution of auxin using interpolation functions inside each triangle. One would,
however, have to distinguish between intracellular diffusion constant and its intercellular
counterpart, which ought to be related.

By assuming auxin in the cell compartment only, we are neglecting auxin diffusion
between cell walls, as well as the membrane permeability of auxin and protonated auxin
[50]. The approach of considering only intercellular auxin and auxin transport from cell
to cell has been shown to be sufficient to model empirically observed auxin patterns [70,
73, 78]. Furthermore, a discussion on the importance of apoplastic diffusion of auxin
concludes that the presence of influx carriers, and a large cell-cell interface in comparison
with apoplast width, decrease the importance of apoplastic diffusion [26]. We will assume,
therefore, that our cell-cell interfaces are large enough to neglect apoplastic diffusion of
auxin.

The membrane-bound carriers of the PIN family, as the name suggests, bind to the
cell membrane and facilitate auxin efflux to its neighbour. We will assign to the wall
compartment between cells ↵ and �, in contact with cell ↵, a PIN density p↵� which
pumps auxin molecules out of cell ↵ in the direction of cell �. Note that p↵� is normalised
to some typical value of PIN wall density and, as such, is adimensional as well. It also
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means we do not take into account the distribution of PIN density along each wall, opting
instead to average over each wall segment.

We will present the models we will be using for auxin transport and PIN binding. Fur-
ther assumptions, derivation details, equation adimensionalisation and used parameters
can be found in Appendix E, the supplementary material to the article presented in the
next chapter.

3.2.1 Auxin rate of change

The model for auxin transport we will be using in this work is based on similar models in
literature [34, 73, 78, 95]. We will take into account auxin metabolism, since plant cells
produce auxin. Auxin decays with some amount of time and, therefore, in the absence of
transport, auxin evolves towards a specific value, the basal auxin concentration. We can
also choose the units of time such that the auxin decay rate is one per unit time. Auxin
diffuses from cell to cell, prompting us to take into account passive transport of auxin.
We will simply adapt Fick’s law to our current setting. Since PIN works as an auxin
efflux carrier, we take active transport into account by a reaction term of auxin with PIN
molecules with Michaels-Menten kinetics. We will use units of length L, of the order of
the length of a cell wall as observed for the L1 layer of the shoot apical meristem.

The model we use is, under these assumptions,

ȧ↵ = 1� a↵ +D
X

�2N↵

l↵�
A↵

(a� � a↵) + P
X

�2N↵

l↵�
A↵

✓
p�↵

a�
K + a�

� p↵�
a↵

K + a↵

◆
, (3.25)

where D translates into the magnitude of diffusion as compared to auxin metabolism, P
similarly defines the strength of active transport, and K is a scaled Michaelis constant.
We emphasise that both numbers P and D depend on the length scale of the system.

Note that whenever we perform an optimisation of the mechanical energy and cell areas
change, so do auxin concentrations. Before optimising geometry we save the quantity
a↵A↵, and get the new auxin concentration by dividing with the new area of cell ↵.

3.2.2 PIN binding model

We will base our approach using a simple binding/unbinding reaction for PIN molecules.
At this point we will make no assumption for how the binding rates are regulated. We
will, however, assume the number of PIN molecules is conserved. If we have a single value
of PIN molecules for all cells, there will be a correlation of auxin concentration and cell
perimeter. Since it is unknown exactly how PIN production is regulated, we will choose
to scale the conserved number of PIN molecules with the perimeter of the cell. Note that
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with this setup it only makes sense to call PIN molecule number a conserved quantity
when disregarding the geometric changes brought upon by optimisation of mechanical
energy.

Furthermore, we will assume a time scale separation between PIN binding and auxin
transport such that we can use the steady-state solution of PIN density. This assumption
is a risky one, given that osmotic treatment experiments show a full recovery time within
30 minutes [35], which, even if faster, would be on a similar time scale as that of auxin
transport, in the order of an hour [138]. In the next chapter where we look at the static
pattern formation, this effect might influence the trajectory through phase space, yet
the pattern characteristics should be largely unaffected. When discussing the dynamical
behaviour, however, the abscense of the phase difference between auxin transport and
PIN binding will probably result in PIN localisation being a bit more fickle and the
accompanying auxin pattern less stable.

Under these assumptions, the adimensional PIN density, p↵�, bound to the cell wall
of ↵, pumping auxin into cell �, is given by

p↵� =
f↵�

1 +
P

�2N↵

l↵�

L↵
f↵�

, � 2 N↵, (3.26)

where f↵� is the ratio between the binding and unbinding rates to a specific wall. If all
binding rates are the same, then p↵� = p̄ = f̄/

�
1 + f̄

�
, implying a↵ = 1 8↵ being a

fixed point of Eq. 3.25. Had we chosen to scale the amount of PIN molecules differently,
this fixed point would take into account the geometry of the cell. Though it might be
interesting to probe how patterns might be affected by such bias on its own, because of
the lack of information in this regard, we opt here for scaling available PIN molecules
with perimeter due to its simplicity.

To clarify, p↵� = 1 is the density of bound PIN molecules a cell would have if all
PIN were bound and all walls had the same binding and unbinding rates. In fact,
P

�2N↵
l↵�p↵�/L↵ is the fraction of bound PIN molecules for cell ↵. This means that

in a wall of length l↵�, p↵� can go up to L↵/l↵�, when all PIN molecules are bound to this
specific wall.

3.2.3 Boundary conditions

Here we discuss boundary condition details we need to take into account when modelling
a fully planar tissue. Note that the topology of the tissue requires it to be a closed surface
and, therefore, the domain we intend to simulate on has to be enclosed by what we call
boundary faces.

In the case the tissue is embedded in three dimensions without a face of the polyhedron
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acting as a boundary, then there are no boundary conditions for auxin transport to worry
about. All cells have neighbours in all directions and auxin and PIN density rates of
change are all well-defined.

However, in this work, the approach is to flatten the tissue with one or more faces
serving as the boundary face of the tissue. How we deal with neighbours of these boundary
faces is what defines the boundary conditions. We use reflective boundary conditions, such
that auxin flowing into neighbours of a boundary face is then repurposed as the auxin
flowing in to the same neighbour through the same wall. Mechanically, we assume this
cell has no stiffness, no turgor and, hence, no mechanical energy.

We attempt to discern the bulk behaviour of the model from boundary effects by
simulating large enough systems. In the lateral root, however, one has to contend with
the limited amount of layers the system can have. Therefore, in order to interpret the
results in a meaningful matter, we need to be wary of the potential impact of boundary
effects on the resulting data.

3.3 Interaction of mechanics and auxin transport

Our aim, ultimately, requires us to model mechanical regulated PIN binding and auxin-
mediated cell wall softening. We are looking to probe the pattern formation mechanism
further, as well as to predicting what might occur in other tissues of the plant, or under
different conditions. The connective models here described are taken from [34], wherein
it is proven they allow for pattern formation capabilities.

3.3.1 Mechanical regulation of PIN binding

In accordance with our working hypothesis, we will modulate binding and unbinding rates
such that the ratio, f↵�, is promoted to a function of wall compartment stress, �↵�. As
has been observed by [35], strain and/or stress seem to upregulate PIN binding and, thus,
we use a power law for positive stress,

f↵� = f (�↵�) =

(
⌘�n

↵�, �↵� > 0,

0, �↵�  0.
, � 2 N↵. (3.27)

After mechanical energy optimisation, one can compute stress acting on each wall and,
thereafter, compute binding rate ratios. We remark once more that wall stress computa-
tion differs slightly depending on the model used. Specifically, in the cell-based model,
we compute average strain between two cells and project onto their shared wall to ob-
tain its longitudinal strain. Then, wall compartment stress computed via the constitutive
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relations.

One could easily come up with an analogous model for wall strain by replacing stress
with strain in the previous expression. The two formulations were compared in [95] where
it was shown that, in general, both models predict very similar qualitative behaviours,
provided the mechanical properties of the tissue are isotropic. As mentioned for the
mechanical models in this chapter, we focus exclusively on isotropic materials and, as
such, we are under a similar regime. One notable exception is the correlation of auxin
concentration and PIN polarity.

In the shoot apical meristem, observations show PIN polarity to be correlated with
auxin concentration [86, 139], which resembles the results of the strain-based model.
Taking into account that PIN expression is positively affected by auxin activity [23], the
choice of model is not as clear cut. Moreover, there is evidence of plant cells, in the
context of microtubule alignment, being able to read stress in settings where predicted
strain and stress directions differ [46, 140].

Bearing in mind the shortcomings of each model, we opt for modelling PIN binding
as regulated by stress, as opposed to strain-mediated regulation. Our argument is that
it seems less likely that plant cells, at a regulatory level, can distinguish between stress
and strain. In Appendix E we compare and discuss the effect of adopting a strain-based
approach during pattern formation.

3.3.2 Auxin-mediated cell wall softening

The final piece of the pattern formation puzzle is how auxin affects the perceived stiffness
of the cell wall. External application of auxin has been shown to affect cell wall stiffness
[43, 44]. In order to capture this phenomenon, we model the Youngs modulus, E, as a
function of auxin concentration using the Hill function for a repressor,

E (a↵) = Emin +
Emax � Emin

1 + am↵
, (3.28)

where Emin and Emax are the minimum and maximum stiffness, and m is the Hill exponent.
It is useful to rewrite this expression as

E (a↵) = E0

✓
1 + r

1� am↵
1 + am↵

◆
, (3.29)

where we use the value of Young’s modulus for the basal value of auxin, E0, and the
parameter r = (Emax � Emin) / (Emax + Emin). The preference for this form stems from
linear stability analysis, where E0 has no bearing on pattern formation threshold, whereas
r 2 [0, 1[ encapsulates how disparate are the limit values of stiffness.
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Note that, when setting c2 = 0 in the cell-based mechanical model (Poisson’s ratio,
⌫ = 3/8), c1 = 11E/4 / E. This implies that r would be the same for E and the
corresponding c1 parameter. Similarly, this means that the expression for c1/c10 is the
same as the one for E/E0. We will, henceforth, use stiffness E to refer to c1 or Young’s
modulus depending on the model being used. We will take into account the scaling factor
of 11/4 when discussing results obtained with the cell-based model.

3.4 Implementation

We implement the model in a partner package to the developed surface analysis tools. In
the same way, it is programmed in C++ and then wrapped in Python 3 with SWIG for
easy scripting of experimental setups. It uses the geometry optimisation tools established
previously, which use the NLopt package.

In order to run the mechanical model in tandem with auxin transport, we perform
a time step of a specific time �t for the auxin transport equation, knocking our system
off of equilibrium. This implies that at each auxin time-step an optimisation procedure
has to be done. This reinforces the importance of having the gradient computations such
that a local – much faster – optimisation can be performed within a reasonable amount
of time. After computing the current geometry of the tissue, strain can be measured and
used to compute stress and PIN density.

There is no a priori way to measure how areas change with a change in auxin con-
centration, leaving us to correct auxin concentration a posteriori, by scaling the resulting
auxin as previously mentioned, as an approximation. This approximation can be valid
if the area change is relatively small. Therefore, a sufficiently stiff tissue validates this
approximation. Later in this work, we model growth in the lateral root system by using
the wall-based model for mechanics. Even if one admits the same approximation for auxin
affecting area, the same is harder to argue for rest lengths l0, when these are promoted
to time dependent variables. We attempt to solve this by considering smaller time-steps
than we would otherwise.

When not considering growth, we will evolve all time-dependent variables using the
Runge–Kutta–Fehlberg method (commonly known as RKF45), available in the GNU Sci-
entific Library (GSL) package [141]. We consider geometry fixed between t and t+�t and
integrate accordingly. We allow ourselves to do this only because we regard a stiff enough
tissue, such that area changes mediated by auxin-mediated cell wall loosening introduce a
much smaller contribution to auxin transport than stress-mediated active transport.

Considering mechanically-mediated growth, however, poses a significant problem since
assuming a fixed geometry between t and t+�t is antithetical to modelling growth. Multi-
ple evaluations of the rate of change of l0 in a single time step, without a new optimisation,
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introduce a systematic bias since, as l0 grows, wall strain and stress necessarily decrease if
we do not allow l to change. For instance, suppose a minimal system composed of one wall
being stressed by a fixed value of �ext undergoes growth. Regardless of the exact stress-
or-strain-dependent growth equation, any evaluation at time t will imply a stress/strain
release even when we know it ought to remain the same6. Any higher order term imple-
mented naïvely (by taking intermediate steps in l0 without updating l), therefore, prove
to be a correction for the evolution of l0 to a system other than our own. The amount
of optimisations necessary skyrocket and makes the simulation unfeasible. Ultimately, we
are cornered into using an explicit Euler method when modelling growth.

After evolving all time-dependent quantities until t+�t, we can now update the values
of stiffness due to cell wall loosening and, in case of a growing tissue, use the new rest
configuration parameters for the next optimisation. We then rinse and repeat until a
certain amount of time as passed.

6The wall length that minimises the mechanical energy,

H =
1

2
Ehwl0

✓
l � l0

l0

◆2

� hwl0�ext
l � l0

l0
,

is
dH
dl

= 0 ) l : �ext = E
l � l0

l0
= constant, 8E, l0.

In this case we know what l ought to be given an l0. In order to know this in general, an optimisation
of mechanical energy has to be made and, therefore, given l and l0 at time t we cannot estimate l for
intermediate steps without further optimisations, limiting us to first order terms.
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Chapter 4

Implications of mechanically-regulated
PIN regulation

The pattern formation mechanism via mechanically-regulated PIN is as follows. Suppose
we have a cell wall composed of two compartments, that share a rest length, we can solve
for the stress acting on each compartment as a function of the mechanical properties of
each compartment and the average stress acting on the wall (Appendix E). This stress load
division implies that the softer cell wall compartment, facing the cell with greater auxin
concentration, will be under a lesser amount of stress than the opposite compartment.
This effectively allows for an auxin feedback to occur up-the-gradient as shown in [34].
This simple model however does not regard cell geometry, turgor pressure, or any other
mechanical input. Herein lies the basis of our exploration. We intend to find out if
and what other factors are missing from the stress-load division auxin pattern emergence
mechanism.

Turgor pressure generates stress which, under our hypothesis, regulates PIN binding
rates. If we consider plasmodesmata to be open we can assume that a turgor pressure
difference will decay as a result of water transport. We will, therefore, assume homogenous
turgor pressure in the tissue. We note that, for the particular case of homogenous turgor
pressure, homogenous mechanical properties, and symmetric tissue architecture, all cell
walls will be stressed by the same amount.

A cell in isolation under internal pressure would expand according to its elastic proper-
ties. The geometry would be that which optimises the mechanical energy (sum of Eqs. 3.9
and 3.24) for a single cell. In general, the deformed state is different than the isolated
case. Even in the simple case of a regular hexagonal lattice this is only the case if all
mechanical properties are the same. For instance, stiffness heterogeneities for this lat-
tice imply that not all cells can achieve their optimal configuration simultaneously. If
we consider auxin-mediated softening of the mechanical properties of the cell, then auxin
patterns will necessarily introduce stiffness heterogeneity. In this chapter we tackle if
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auxin heterogeneity feedback via modulation of mechanical properties helps, or hinders,
auxin pattern formation, in addition to its positive feedback of stress-load division.

We introduce the uncoupled tissue approximation, where we assume an average stress
acting on all walls, as a null hypothesis to compare to the auxin transport vertex model
described in Chapters 2 and 3. This is analogous to considering the state of the each cell
in an isolated context. Cell-cell communication in this setting is purely via stress load
division between cell wall compartments. We use the parameters in the table presented
in Appendix E.

We first take a look at the mechanical patterning caused by an ablation experiment
in order to make sure it captures the general behaviour observed in [34, 46]. We observe
a circumferential pattern around the ablated cell, as well as the same tendency of PIN to
bind along the same direction. Even if this experiment and result is straightforward, it
helps validate the mechanical model being used since it agrees with previously established
results [34, 46].

The aproximation requires tuning in regards to the average wall stress. We performed
the linear stability analysis of the uncoupled tissue approximation in order to obtain the
most unstable wavelengths as well as the conditions for pattern formation (see Appendix E
for the derivation). By checking that the formation threshold matches between both
models, we validate the fairness of this comparison.

As argued previously, the interpretation of the approximation, the absence of the im-
pact of stiffness variations on the tissue, makes this comparison insightful. PIN polarity
measures and auxin spot concentration between the two models varies drastically and
consistently. We observe PIN polarity increases drastically if the impact of auxin medi-
ated cell wall loosening is high. When considering tissue-wide mechanical patterns, PIN
polarity saturates earlier for the parameter which effectively translates to preception of
stress. Furthermore, the wavelength of the auxin pattern is reduced in when considering
tissue-wide stress patterning. All these factors result in stronger auxin flows and higher
degrees of auxin depletion and accumulation, contributing, we speculate, to a easier estab-
lishment of cell fate. We then focus on characterising the emerging mechanical patterns
and how they relate to the emerging auxin patterns.

Quantification of stress and auxin pattern features shows that the mechanical modu-
lation not only drives auxin into the auxin spots through stress load division between wall
compartments, but also via stress patterning similar to that of the ablation patterns. We
observe the tendency for stress to align perpendicular to auxin gradients (around auxin
spots) and for cells at the interface of auxin spots to be more stressed than they would
otherwise be. We also observe a lower isotropic stress component inside auxin spots due
to being constrained.

The effect of noise in mechanical properties was also tested in order to show that
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introducing mechanical PIN regulation helps further discern cell identity. We decide to
promote the parameter base stiffness to a random variable sampled at the beginning of
the simulation. We show in Appendix E that this parameter is particularly disruptive
to pattern formation, by comparing to a similar variation of the active transport mag-
nitude. We quantify how discernible auxin patterns are by using entropy of the auxin
concentration distribution. We observe that, as we increase noise in reference stiffness,
entropy increases by a lesser degree when considering tissue-wide patterning than in the
approximation. This suggests that the mechanical patterning of the tissue contributes to
the robustness of the pattern emergence mechanism.

Lastly, due to its relevance in the current discourse of growth, auxin signalling, and
water transport, [51, 52] we tested how auxin correlates with turgor pressure, under differ-
ent initial conditions. Our model predicts that even if high turgor consistently correlates
with auxin concentration, the reverse is not always the case. Turgor decrease cannot
necessarily overwrite already existing auxin maxima. Experimentally, this implies that
one cannot easily draw conclusions about turgor and, hence, growth rate from the degree
of auxin signalling alone.

Our model predicts that a mechanical regulation of auxin transport brings forth the
potential for an enhanced mechanical feedback resulting from auxin-mediated stiffness
heterogeneity of plant cells in a tissue. This mechanism differs from that of stress load
division alone since its effect depends on cell turgor. The same stiffness variation of an
auxin spot would result in radial stress patterns under hypertonic conditions.

To make sure the auxin flow enhancement phenomenon observed in this work was not
exclusive to the stress-based model, we show in Appendix E the auxin spot characteristics
with an analogous strain-based model.

We predict an abrupt pattern emergence where the perception of stress need not be as
high than when considering stress-load division alone in order to achieve relatively high
values of PIN polarity and auxin concentration. Besides being more efficient under this
hypothesis, these patterns are also more robust. We also predict an auxin spot wavelength
decrease in all simulated cases.

It is interesting to observe that the stress patterns around auxin spots are the same
as predicted by [46] around emerging primordia. This suggests that microtubules may
have their orientation pre-patterned by auxin, and then reinforced by tissue shape as
growth takes place. Furthermore, the mechanical feedback on growth anisotropy promot-
ing primordium outgrowth is based on the same stress pattern configuration [93]. The
predicted mechanical patterns suggest that auxin patterning contributes via growth rate
and mechanical patterning alike to the aforementioned feedback mechanisms.

The introduced approximation can also serve as a stand-in for an analogous auxin-
concentration-regulated PIN model. It is interesting to observe how prevalent and impact-

55



ful tissue mechanics are in this setting. We show the increase in efficiency and robustness
via communication through mechanics to be quite remarkable. The work here done can
be used to corroborate why some plant developmental mechanisms hinge on mechanical
communication, instead of using molecular mediators.
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Abstract New plant organs form by local accumulation of auxin, which is transported by
PIN proteins that localize following mechanical stresses. As auxin itself modifies tissue
mechanics, a feedback loop between tissue mechanics and auxin patterning unfolds—yet the
impact of tissue-wide mechanical coupling on auxin pattern emergence remains unclear. Here,
we use a model composed of a vertex model for plant tissue mechanics and a compartment
model for auxin transport to explore the collective mechanical response of the tissue to auxin
patterns and how it feeds back onto auxin transport. We compare a model accounting for a
tissue-wide mechanical integration to a model that regards cells as mechanically isolated. We
show that tissue-wide mechanical coupling not only leads to more focused auxin spots via
stress redistribution, but that it also mitigates the disruption to patterning when considering
noise in the mechanical properties of each cell of the tissue. We find that this mechanism
predicts that a local turgor increase correlates with auxin concentration, and yet auxin spots
can exist regardless of the exact local turgor distribution.

1 Introduction

Formation of organs entails an effective coordination of local cell growth typically initiated
by patterns of one or more morphogenic factors. Understanding how these patterns of mor-
phogenic agents robustly emerge is fundamental for predicting organ morphogenesis. Plants
organ formation is interesting from a physical perspective due to the strong mechanical cou-
pling between plant cells, and the fact that growth is driven by changes in the mechanical
properties of the cell wall and internal pressure [1–5]. Evidence indicates that the mor-
phogenic factors such as the plant hormone auxin change the mechanics of the tissue [6,7],
with implications for the shaping of organs [8,9]. Interestingly, the transporters of auxin
respond to mechanical cues [10,11], leading to an intertwining of chemical and mechanical
cues.

The phytohormone auxin, Indole-3-Acetic Acid, is the key morphogenic agent in plants.
Auxin accumulation drives a wide range of plant developmental processes including, but
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not limited to initiation of cell growth, cell division, and cell differentiation [12–14]. Estab-
lishment of auxin patterns is ubiquitous in plant organ morphogenesis [15]. The best char-
acterized example is the regular patterns of auxin spots in the outmost epidermal cell layer
at the tip of the shoot that prefigures the regular disposition of organs called phyllotactic
pattern [16–21]. These auxin accumulation spots mark the location of emerging primordia
of new aerial plant organs. Auxin patterns result from the polar distribution of auxin efflux
carriers called PIN-FORMED (PINs) [15,16,20,22–24]. Because of its prevalence in plant
development, understanding how these auxin patterns emerge has been intensively studied
and mathematically modelled. Auxin concentration feedback models [25–29], organize their
flow up-the-gradient of auxin concentration, reinforcing auxin maxima. Canalization models,
or flux-based models, [30–36] reinforce already existing flows, and, as such, both up-the-
gradient and down-the-gradient flows can exist. Some attempts at unifying both mechanisms
have been made [35,37–39], yet many conditions have to be imposed to explain, for instance,
the fountain-like patterns arising during root development [35,40].

Tissue mechanics has emerged as a potent regulator of plant development [5,41–44]. Plant
cells are able to read mechanical stress and respond accordingly, rearranging their micro-
tubules along the main direction of mechanical stresses [41]. Furthermore, PIN1 polarity
and microtubules alignment at the shoot apical meristem are correlated [10], suggesting
the possibility of PIN localisation being mechanically regulated. This hypothetical coupling
between PIN localisation and mechanical cues is theoretically able to predict PIN polarity
and density for a wide range of cell wall stress and membrane tension [11]. Such coupling
is also supported by several other observations: the physical connection of PINs to the cell
wall [45], the change in polarity induced by cell curvature [46], and disorganization of PIN
polarity by modification of the cell wall mechanical properties [7].

Auxin can induce remodelling of the cell wall and thus modify its mechanical properties
[4,6,7,47]. This may in turn influence PIN localisation and therefore have consequences on
the pattern of auxin. Modelling of this feedback in a tissue showed that mechanical stresses
can lead to the emergence of a regular phyllotactic auxin pattern by regulating PIN localisation
[10]. Although this result shows the importance of local mechanical coupling (Fig. 1) for
emergence of auxin patterns, the full extent of the impact of mechanical coupling on pattern
emergence remains unclear.

In fact, cell strain is a compromise between its mechanical properties and the restrictions
placed upon its shape by the surrounding cells given the condition that the tissue remains
connected. In other words, stiffness variations contribute additional terms to tissue strain. In
order to explore the effect of the latter, we adapt the model for auxin transport introduced in
[10] to a vertex model mechanical description of the tissue, a tissue-wide mechanical model
and compare it to a uncoupled tissue approximation with the same auxin transport model but
where we prescribe an average stress acting on all cells (Fig. 2).

By comparing both models, we find that due to stress fields arising from mechanical
feedback the magnitude of auxin spots is larger for lower stress-PIN coupling, indicating a
more efficient transition between low and high auxin regimes and the subsequent potential cell
behaviour response. Furthermore, we explore the information content of auxin distributions
when noise is considered and show that tissue-wide mechanical coupling improves robustness
of auxin patterns.
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Fig. 1 Schematic representation of the cell–cell feedback mechanism between cell wall loosening via auxin
and mechanical control of PIN. (a) Auxin is transported to neighbouring cells via bound PIN efflux carriers.
(b) Auxin interacts with the mechanical properties of the cell wall reducing its stiffness. (c) Increasing stiffness
of a particular wall component shifts the stress load from the component of its neighbour to itself. (d) Wall
stress promotes PIN binding. A difference in auxin, therefore, induces a stress difference between the two
compartments separating both cells. This stress difference is such that PIN binds preferentially in the cell with
lower auxin concentration, increasing the flow of auxin into the cell with higher auxin concentration

Fig. 2 Schematic difference between the tissue-wide mechanical model (left) and the uncoupled tissue approx-
imation (right). In the tissue-wide mechanical model, turgor pressure, T , and stiffness determine the vertex
positions that minimize mechanical energy. Wall strain and stress are then inferred from the mechanical config-
uration. In the approximation, we prescribe average wall stress, σ̄ , with a static geometry. This approximation
disregards the effect of stiffness variations on strain. The prescription of stress in the approximation renders
the mechanical interaction to be only between nearest neighbours and uncoupled from all other cells. In the
tissue-wide mechanical model, the mechanical state is a function of all cells in the tissue

2 Methods

In order to investigate the interaction between auxin cell wall softening and collective tissue
mechanics, we use a vertex model to describe the mechanical behaviour of the tissue and a
compartment model to express auxin concentration and transport between adjacent cells.
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Fig. 3 Vertex model description of a cell as a geometrical, mechanical, and biologically active entity. (top
left) A cell α surrounded by its cell walls with centroid Xα , area Aα and perimeter Lα . Vertices i and j
have positions xi and x j and the distance between them is li j = l j i . (top right) Set of surrounding regions,
one for each wall, Nα , and set surrounding vertices, Vα , used in the equations of the model. (bottom left)
Mechanically, cell α is under turgor pressure Tα , the surrounding wall compartments have stiffness Eα . Mα is
the second moment of area of cell α, whereas M(0)

α is that same quantity when the cell is at rest. σi j refers to
the longitudinal stress acting on the compartment of the wall. (bottom right) Cell α has an auxin concentration
aα which is expressed, degraded and transported, both passively and actively. The active component of auxin
transport relies on the density of membrane-bound efflux auxin carriers facing a particular wall compartment,
pi j

2.1 Geometrical set-up of the tissue

The tissue is described by a tiling of two-dimensional space into M cells surrounded by
their cell walls. Walls are represented as edges connecting two vertices each, positioned at
xi = (xi , yi ) , i ∈ [1, N ]. Here, we reserve Latin indices for vertex numbering and Greek
ones for cells. Each cell wall segment has two compartments, one facing each cell. Therefore,
we represent each cell wall with two edges of opposite direction, one for each compartment.
The position of tissue vertices fully define geometrical quantities such as cell areas, Aα , cell
perimeters, Lα , wall lengths, li j = l j i , and cell centroids, Xα (Fig. 3 top left). To simplify
notation significantly, we also define for each cell the cyclically ordered set of all vertices
around that cell, Vα , arranged counterclockwise (ccw). Hence, we use

∑
i∈Vα

to signify the
sum over all vertices surrounding cell α with an arbitrary start, where i + 1 and i − 1 mean,
respectively, the next and previous ccw vertex. Similarly, we introduce Nα as the cyclically
ordered (counterclockwise) set of all neighbouring regions around cell α, one for each edge
of α (Fig. 3 top right).
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2.2 Tissue mechanics–tissue-wide coupling

Vertex models are a widely employed theoretical approach to describe mechanics of epithelial
tissues and morphogenesis [9,48–53]. The essence of vertex models is that cell geometry
within a tissue is given as the mechanical equilibrium of the tissue. In the case of plant cells,
the shape of a cell is a competition between the turgor pressure, Tα , all cells exert on each
other and the cell’s resistance to deformation with stiffness, Eα . Strain acting on each cell
will be described using the second moment of area of the corresponding cell in reference to
its centroid, Mα , whose components are

Mαxx =
∑

i∈Vα

ni
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i + x ′

i x
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where the primed coordinates represent the translation transformation, x′
i =

(
x ′
i , y

′
i

)
=

xi − Xα , and ni = x ′
i y

′
i+1 − x ′

i+1y
′
i , i ∈ Vα . Given a rest shape matrix, M (0)

α , we define cell
strain as the normalized difference between both matrices,

εα = Mα − M (0)
α

Tr
(
M (0)

α

) , (4)

and stress with σα = Eαεα . Having described the tissue mechanically (Fig. 3 bottom left),
we define the energy for a single cell as the sum of work done by turgor pressure and elastic
deformation energy, resulting in the tissue mechanical energy,

H =
M∑

α=1

⎡
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∣∣∣
∣∣∣Mα − M (0)
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∣∣∣
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2

2

Tr2
(
M (0)

α

) − AαTα

⎤

⎥⎦ . (5)

Using this model, we obtain the shape of the tissue by minimizing H with respect to vertex
positions.

After minimizing (Eq. 5), we quantify the stress acting on each wall through the average
strain acting on each cell given by (Eq. 4). Assuming that cell wall rest length is the same
between two adjacent wall compartments then it follows that they are under the same longi-
tudinal strain, which is, to first approximation, the average between the two cells surrounding
them. Therefore, longitudinal average strain acting on a specific wall used here is

ε̄αβ = ε̄βα ∼ t̂Tαβ

εα + εβ

2
t̂αβ , (6)

where tαβ is a unit vector along the wall separating cellα and cellβ. Note that this interpolation
assumes a continuous strain field. Then the stresses acting on each compartment are by the
constitutive equation of a linear elastic isotropic material with Poisson ratio ν = 0,

σαβ = Eαε̄αβ ̸= σβα = Eβ ε̄βα. (7)

Note that we are only considering the longitudinal components with regards to the cell wall,
which means that ε̄αβ and σαβ are scalar quantities. More details on the mechanical model
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used can be found in the supporting text. As argued in the supporting material, our choice of
ν = 0 does not impact the qualitative behaviour studied here.

2.3 Tissue mechanics–uncoupled tissue approximation

To assess the impact of collective mechanical behaviour within a tissue on auxin pattern self-
organization, we approximate the tissue-wide mechanical model to a static tissue geometry
where we approximate the effects of turgor pressure of each individual cells in the static tissue
by a constant average stress σ̄ acting on it [10]. Again assuming that both wall compartments
have the same rest length, we infer that the stress acting on a particular wall depends only on
σ̄ and the stiffness of the adjacent cells. Effectively, the average longitudinal strain acting on
a wall surrounded by cells α and β would simply be

ε̄αβ = ε̄βα = 2σ̄/
(
Eα + Eβ

)
. (8)

This way, instead of minimizing the full mechanical model (Eq. 5) given a set of turgor
pressures Tα and rest shape matrices M (0)

α we can, in the static tissue, immediately compute
stress with Eq. 7 yielding,

σαβ = 2Eασ̄

Eα + Eβ
. (9)

Interestingly, Eq. 9 is valid for ν ̸= 0 as demonstrated in the supporting material.
In order to compare the two models, we choose the value of σ̄ to be the same as the stress

obtained through minimisation of (Eq. 5), for a given set of Tα and M (0)
α , with the constraint

of the same end geometry.
Note that not only can this approximation be interpreted as the tissue being mechanically

coupled only to the nearest neighbours, disregarding the rest of the tissue, (Fig. 2), but also
as an analogous non-mechanical auxin concentration feedback model.

2.4 Auxin transport–compartment model

Compartment models for auxin transport are well adapted to the context of plant development,
since the prerequisite of a boundary of a plant cell is particularly well defined by courtesy of
the cell wall.

Although passive diffusion occurs across cell walls, the dominant players in auxin transport
are membrane-bound carriers [22,24]. Namely, efflux transporters of the PIN family are
important due to their anisotropic positioning around a cell [16], which leads to a net auxin
flow from one cell to the next. Let aα denote an non-dimensional and normalized average
auxin concentration inside cell α. Following the model by [10], which is similar to previous
mathematical models [25,26,29], auxin evolves according to auxin metabolism in the cell,
passive diffusion between cells and active transport across cell walls via PIN,

daα

dt
= γ ∗ − δ∗aα + D

∑

β∈Nα

Wαβ

(
aβ − aα

)

+P
∑

β∈Nα

Wαβ

(
pβα

aβ

K + aβ
− pαβ

aα

K + aα

)
, (10)

where γ ∗ is the auxin production rate, δ∗ is the auxin decay rate, Wαβ = lαβ/Aα , with K ,
P , and D as adjustable parameters. D is the passive permeability of plant cells, whereas P is
permeability of the cell wall due to PIN-mediated transport of auxin, and K is the Michaelis–
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Menten constant for the efflux of auxin. More information on how this expression is derived
can be found in the supporting text. Although this description ignores the auxin present within
the extracellular domain and inside the cell wall, it has been shown that under physiological
assumptions, this is a valid approximation [29]. The active transport term depends on the
amount of bound PIN in each cell wall,

pαβ = fαβ

1 + ∑
γ∈Nα

lαγ

Lα
fαγ

,β ∈ Nα, (11)

where fαβ ,β ∈ Nα expresses the ratio between binding and unbinding rates of a particular
wall (Fig. 3 bottom right). Note that pαβ is different from wall to wall and from cell to cell.
This means that in general, pαβ ̸= pβα , or equivalently, pi j ̸= p ji . This is consistent with the
fact that there are two compartments to a cell wall shared by two adjacent cells. Expression
(Eq. 11) is based on the assumption that cell walls around a particular cell compete for the
same pool of PIN molecules and that the amount of PIN scales with cell perimeter. This
competition has been shown to be important in the polarization of PIN [29]. Alternatively,
one could also scale the amount of PIN with cell size or not scale it at all. In the former case,
smaller cells would be slightly preferred for auxin accumulation, whereas in the latter, larger
cells would be preferred instead. Since we want to study the impact of stress patterns on the
tissue, we want to decouple it from this effect as much as possible, choosing instead to scale
the amount of PIN with perimeter.

The trivial fixed point of these dynamical equations is given by aα = µ∗/δ∗, ∀α, which
also results in equal PIN density across all walls, provided turgor pressure Tα and stiffness
Eα are the same across the tissue.

The feedback between tissue mechanics and auxin pattern unfolds as auxin transport
affects tissue mechanics due to auxin, aα , controlling cell wall stiffness, Eα , and in reverse
tissue stress, σα , affects auxin transport by regulating PIN binding rates, fαβ , as hypothesized
by [10,11].

2.5 Mechanical regulation of PIN binding

According to the hypothesis presented by [10,11], mechanical cues up-regulate PIN binding.
The distinction between whether these mechanical cues are strain or stress has been studied
recently by [54], yet the exact nature remains unclear. Following the model presented by
[10], we model the binding-unbinding ratio, fαβ , as being a power law on positive stress,

fαβ = f
(
σαβ

)
=

{
η

(
σαβ

)n
, σαβ > 0,

0, σαβ ≤ 0,
(12)

where the stresses, σαβ , follow from tissue mechanics after minimization of the full mechan-
ical model (Eq. 5), or, in the averaged stress approximation, it is the stress load on that
particular compartment given by (Eq. 9). Furthermore, n is the exponent of this power law,
and η captures the coupling between stress and PIN. Effectively, this mechanical coupling to
PIN parameter corresponds to the sensing and subsequent response to stress, loosely trans-
lating into how much resources the cell needs to spend for processing stress cues.

2.6 Auxin-mediated cell wall softening

Auxin affects the mechanical properties of a cell wall via methyl esterification of pectin
[6,7], resulting in a decrease of the stiffness of the cell wall. We assume that all cell wall
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Fig. 4 Schematic representation of the time evolution of the model. From mechanical relaxation of the
mechanical model, we calculate PIN densities on each wall via stress. Then we integrate auxin dynamics for a
time step and update the stiffness of each cell. This process knocks the system out of the previous mechanical
energy minimum, and it has to be relaxed again. Alternatively, we can shortcut energy minimization using the
averaged stress approximation for a static tissue. This procedure is repeated until t = tmax. The parameters r ,
wall loosening effect, and η, stress coupling, interface both models and are, therefore, of critical importance
to the mechanism studied

compartments surrounding cell α share the same stiffness, Eα . To capture this effect, we
model stiffness with a Hill function [10],

Eα = E (aα) = E0

(
1 + r

1 − amα
1 + amα

)
, (13)

where r ∈ [0, 1[ which we define as the cell wall loosening effect, m is the Hill exponent
of this interaction, and E0 is the stiffness of the cell walls when its auxin concentration is
aα = 1. At low values of auxin, Eα approaches the value (1 + r) E0, whereas at high auxin
concentration, Eα approaches (1 − r) E0. Given a distribution of auxin, we can compute
the wall stiffness in (Eq. 5) from (Eq. 13), or the stress acting on a specific compartment in
(Eq. 9) for the approximated model.

2.7 Integrating auxin transport and tissue mechanics

At each time step, ∆t , starting from an auxin distribution, we compute the stiffness of each
cell according to (Eq. 13). Then, with the input of all turgor pressures, we minimize (Eq. 5)
to obtain tissue geometry and stresses acting on each wall. Auxin concentration in each cell
will evolve according to (Eq. 10), where the active transport term will be regulated by stress
according to (Eq. 12) via (Eq. 11). A new auxin distribution will result at the end of this
iteration, and we will be ready to take another time step (Fig. 4). We repeat this process until
t = tmax.

2.8 Implementation

We implemented this model with C++ programming language, where we have used the
Quad-Edge data structure for geometry and topology of the tissue [55], implemented in
the library Quad-Edge [56]. In order to minimize the mechanical energy of the tissue, we
have used a limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm (L-BFGS) [57,
58], implemented in the library NLopt [59]. For solving the set of ODEs presented in the
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compartment model, we used the explicit embedded Runge–Kutta–Fehlberg method (often
referred to as RKF45) implemented in the GNU Scientific Library (GSL) [60]. We wrapped
the resulting classes into a python module with SWIG. For additional details regarding
the parameters used for the simulations of the following section, consult Table S1 in the
supporting material.

2.9 Observables

In order to quantify the existence of auxin patterns, we compute the difference between an
emerging auxin concentration pattern and the trivial steady state of uniform auxin concentra-
tion pattern defined as aα = γ ∗/δ∗, ∀α. To account for a large range of orders of magnitude
of auxin concentration, we consider as an order parameter,

ϕ =
〈
ln2 (aα)

〉
M

δ2 +
〈
ln2 (aα)

〉
M

, (14)

where ⟨·⟩M denotes an average over all cells within the tissue. This way, ϕ ≈ 0 means that
there are no discernible patterns, whereas ϕ ≈ 1 implies prominent auxin patterning. The
term δ2 defines the sensitivity of this measure, such that an average deviation of δ yields
ϕ ≈ 1/2 (for small δ). We will choose δ = 0.1, i. e. , a 10% deviation from the trivial steady
state.

We also keep track of the average of auxin above basal levels in order to gauge the potential
degree of modulation of auxin-mediated cell behaviour.

Furthermore, to characterize cells with regards to PIN localization we introduce the mag-
nitude of the average PIN efflux direction,

Fα =

∣∣∣∣∣∣

∣∣∣∣∣∣

∑

i∈Vα

lii+1

Lα
pii+1n̂i i+1

∣∣∣∣∣∣

∣∣∣∣∣∣
, (15)

where n̂i i+1 is the unit vector normal to the wall pointing outwards from α.
Aside from a global measure of auxin patterning, it is also important to locally relate

auxin to tissue mechanics. Namely, for auxin we are interested in auxin concentration, aα ,
and auxin local gradient, obtained by interpolation,

∇aα = 1
2A∗

α

∑

γ∈Nα

(
Y ′

γ+1 −Y ′
γ

−X ′
γ+1 X ′

γ

) (
aγ − aα

aγ+1 − aα

)
, (16)

where X′
γ =

(
X ′

γ , Y
′
γ

)
= Xγ − Xα and

A∗
α = 1

2

∑

γ∈Nα

(
X ′

γ Y
′
γ+1 − Y ′

γ X
′
γ+1

)
. (17)

In fact, the quantity |∇aα| can be used as an indicator of whether there is an interface between
auxin spots and the rest of the tissue.

With regards to tissue mechanics, the local quantities we quantify are the isotropic com-
ponent of stress,

Pα = 1
2

Tr (σα) , (18)
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and the stress deviator tensor projected along the direction of the auxin gradient,

Dα = ∇aTα σ ′
α∇aα

|∇aα|2
, (19)

where σ ′
α = σα − I Pα , and I is the identity matrix. Therefore, Pα is a measure if a cell is

being compressed (Pα < 0), or pulled apart (Pα > 0), and Dα translates into if a cell is
more compressed along the auxin gradient than perpendicular to it (Dα < 0), or vice-versa
(Dα > 0).

Finally, to measure the disruption of an auxin pattern we approximate entropy by means
of a Riemann sum,

S [Π] = −
∞∑

i=−∞
Π (i∆a)∆a ln (Π (i∆a)∆a) , (20)

where Π (a) is the probability density function of auxin and ∆a the partition size. Note that
it is only meaningful to compare entropy measures obtained with the same partition size
∆a. Here, the probability density function of auxin concentration is obtained by applying a
kernel density estimation on the resulting tissue auxin values. Note that Π (a) is a continuous
function. In order to infer it from simulation data, for each auxin value in the tissue, aα , we
add Kernel functions Kw(a), obeying

∫ ∞
−∞ Kw(a)da = 1 and Kw(a) = Kw(−a). Then we

can estimate

Π (a) ∼ 1
M

M∑

α=1

Kw(a − aα), (21)

where w is a smoothing parameter defining the width of the Kernel, this parameter is some-
times called bandwidth. This statistical tool is called kernel density estimation (KDE) [61].
We use the Epanechnikov kernel because it is bounded and we can force Π (a) = 0, a ≤ 0.

3 Results

3.1 The tissue-wide mechanical model captures stress patterns after ablation

First we verify that the tissue-wide mechanical model captures the expected mechanical
behaviour and auxin patterning when a cell is ablated. To model ablation, we set the stiffness
of the ablated cell walls to E0 = 0, block all auxin transport to and from it, block PIN
transporters of adjacent cells from binding to the shared wall with the ablated cell, and,
finally, we lower the turgor pressure to only 10% of the original value. This remnant of
pressure represents the surface tension emerging from pressure of the inner layers of the shoot
apical meristem acting on a curved surface, as required by the Young–Laplace equation. This
is necessary since the model only simulates the epidermal layer in a plane.

We observe that the region neighbouring the ablation site gets depleted of auxin due to
PIN binding preferentially to the walls circumferentially aligned around the ablated cell in
accordance with the stress principal directions (Fig. 5a). This stress pattern is in agreement
with calculations performed by [41] in this setting and PIN aligns according to the ablation
experiments in [10].

We also simulated different wound shapes. The resulting stress patterns are shown the
supporting material. Stress directions align along the shape of the ablation wound.
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Fig. 5 Tissue-wide mechanical model captures expected stress patterns as well as auxin and PIN distribution
after ablation. Green lines represent the magnitude and direction of principal stress, measured γ = λ+−λ−

λ++λ− ,
where λ± are the largest and lowest eigenvalues of the stress tensor. The ablation perturbs auxin patterning by
redirecting PIN. This PIN reorientation coincides with the circumferential stress patterns around the ablation
site, as seen in experiments and simulations [10,41].r = 0.65 and η = 1.5

Fig. 6 Simulation results of the order parameter ϕ, indicator for the existence of auxin patterns, as a function
of r ∈ [0.30, 0.95] and η ∈ [1.0, 10.0] for a model with tissue-wide stress patterning. The simulated tissue is
composed of 2977 initially hexagonal cells. The blue line represents the analytically predicted instability for
the uncoupled tissue approximation (Eq. 22)

Thus our mechanical model faithfully capture the typical tissue behaviour upon ablation
with regards to stress, auxin and PIN transporter patterns.

3.2 Conditions for auxin patterns emergence

The uncoupled tissue approximation allows to analytically compute the conditions for spon-
taneous auxin pattern emergence in a general regular lattice (Fig. 6). Effectively, for a regular
grid, the condition for pattern formation is,

M >
K + 1
WP

[

1 +
√

1 + 2W
(

PK

(K + 1)2 + D
p0

)]2

, (22)
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where M = nmr , W = 4/
√

3 is a geometrical factor specific to the used grid, and p0 =
f (σ̄ ) /(1+ f (σ̄ )) (see supporting material for the linear stability analysis details). Equation
22 is the closed form of more general expressions presented by [10,29] tailored to our system
and parameters.

To quantify the existence of auxin patterns in the model with tissue-wide stress patterning,
we computed the order parameter ϕ defined in Eq. 14 for simulations with different values of
wall loosening effect r and stress coupling η (Fig. 6). These two parameters are conceptually
important since the former is the cause for stiffness inhomogeneity of the tissue, and the
latter represents a plant cell’s sensitivity to mechanical cues.

We observe a very good agreement between the conditions for pattern emergence (Eq. 22)
analytically predicted in the case of the uncoupled tissue approximation and the transition
of ϕ in the case of tissue-wide stress patterning (Fig. 6). This means that at the onset of
patterns emergence the auxin concentrations are similar enough to make the assumption that
the effect of turgor pressure is simply an isotropic stress across the entire tissue, validating
the approximation near the transition. This observation is in agreement with the auxin pattern
emergence mechanism hypothesis by [10] (Fig. 1). The agreement between the two models
does not necessarily apply after patterns emerge. This poses the question of the role of
mechanics in potentially enhancing or hindering auxin flows.

3.3 Global mechanical response reinforces PIN polarity

To understand the role of tissue-wide stress patterning on the emergence of PIN-driven auxin
patterns, we quantify how PIN rearranges in the model with tissue-wide stress patterning
versus the uncoupled tissue approximation.

We compute the average PIN efflux direction, i.e., average PIN polarity for each combina-
tion of the parameters r (auxin-induced cell wall loosening) and η (coupling of PIN to stress)
under the approximated (Fig. 7 top left) and tissue-wide (Fig. 7 top right) stress coupling
regimes.

We observe an overall increase in PIN polarity in the tissue-wide stress coupling regime
compared with the uncoupled tissue approximation. PIN polarity also becomes more sen-
sitive to r . For very low values of r , tissue stress patterns are slightly detrimental to auxin
patterning. These data show that saturation of PIN polarity happens earlier with respect to η

for intermediate values of r . For high values of r , we observe a non-monotonic dependence
of polarity on η, effectively translating into an optimal value of η.

Visual inspection of the simulations results reveals higher PIN density in proximity of
auxin spots and an increase in magnitude of these auxin peaks upon tissue-wide stress pat-
terning (Fig. 7a–d). Moreover, we observe a severe alteration of pattern size and wavelength
between both models (Fig. 7 bottom left).

These results show that tissue-wide stress patterning reinforces PIN polarity and that auxin
spots are sharper. Next we will quantify how much sharper these auxin spots become.

3.4 Tissue-wide coupling induces efficient emergence of auxin spots

Auxin levels in the shoot apical meristem have been shown to affect cell fate reliably [20],
even if the flexibility of the auxin signalling mechanism allows for many potential outcomes
[62]. We explore auxin spot concentration achieved by both models in order to gauge the
impact of tissue-wide stress patterns on the distinguishability of primordium cells.

For this, we first characterize quantitatively the auxin spot average concentration measured
for each simulation of the uncoupled tissue approximation (Fig. 8 left) and tissue-wide
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Fig. 7 Quantification of PIN polarity in both models reveals more focused auxin spots due to tissue-wide
integration via mechanical coupling. (top) Average magnitude of PIN polarity, ⟨Fα⟩M , as a function of stress-
PIN coupling, η, and wall loosening effect, r , for (top left) the uncoupled tissue approximation and (top right)
for the tissue-wide stress patterning. PIN polarity magnitude increases when considering the mechanics of
the whole tissue, with a particularly strong dependence on the wall loosening affect r of auxin. The labels
represent the parameters plotted for (a, b, c, d) comparison between example results of auxin concentration
and PIN density of simulations using the uncoupled tissue approximation (a, c) and the tissue-wide stress
patterning (b, d), for the same value of η = 5.5, and r = 0.65 (bottom left) or r = 0.90 (bottom right). In both
instances, we observe that PIN polarity and auxin concentration are higher upon tissue-wide stress patterning
(b, d)

Fig. 8 Characterization of auxin spot concentration reveals more focused auxin spots due to tissue-wide
integration via mechanical coupling. Average auxin concentration for cells above basal auxin concentration
(aα > 1), for the uncoupled tissue approximation (left), and upon tissue-wide stress patterning (right), as a
function of stress-PIN coupling, η, and wall loosening effect, r . Spot auxin concentration increases with both
η and r in (left); however, in (right), it increases predominantly with r . For medium to high values of r , auxin
concentration jumps to several times immediately after emergence

stress coupling (Fig. 8 right) regimes. We use, as a proxy, the average of cells with auxin
concentration aα > 1 to identify auxin spots.

We observe that the dependence on the parameter r recognized for PIN polarity translates
into auxin spot concentration. For medium to high values of r , auxin concentration is several
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Fig. 9 Map of auxin distribution and PIN density aligns with stress direction. Green lines represent principal
direction of stress, measured as γ = λ+−λ−

λ++λ− , where λ± are the largest and lowest eigenvalues of the stress
tensor. We observe that stress directions in part congruent with auxin spots. r = 0.90 and η = 5.5

times higher when accounting for tissue-wide behaviour than when considering the uncoupled
tissue approximation.

Additionally, at the onset of pattern formation for medium to high values of r , we observe
a considerable jump in average auxin spot concentration for a small change in η. This increase
in sensitivity to a change in η of the system, under the aforementioned conditions, implies a
boost in mechanosensing capabilities when considering tissue-wide stress patterning.

Our results point to stress patterns being responsible for the enhancement of auxin spot
concentration and flows. In order to make sure we understand why, we decided to observe
and quantify stress patterns and their connection to auxin distribution.

3.5 Part of wall stress within spots is borne by walls at the interface

In order to analyse tissue-wide stress patterns, we choose an example that has simple auxin
patterns that allow for a straightforward interpretation. Under this condition, we choose the
parameters r = 0.90 and η = 5.5 already presented in Fig. 7d, for which we plot on it a
measure of anisotropy along the largest principal stress direction (Fig. 9). Here it becomes
apparent that stress patterns are related, even if not absolutely, to auxin spot patterns.

To explore this further, we quantify several local quantities, such as auxin concentration,
aα , auxin gradient norm (Eq. 16), |∇aα|, isotropic stress component (Eq. 18), Pα , and deviator
stress tensor projection onto auxin gradient (Eq. 19), Dα . For the example mentioned above,
we record the histograms of the simultaneous occurrence of the pairs (aα, Pα) (Fig. 10 top
left) and (|∇aα| , Dα) (Fig. 10 top right).

We can section the results according to high or low auxin concentration (Fig. 10 bottom
left), and high or low auxin gradient (Fig. 10 bottom right). Here, high auxin cells are a proxy
for auxin spot cells, and high auxin gradient cells are a proxy for cells neighbouring auxin
spots. Taking into account that in the uncoupled tissue approximation Pα = σ̄ and Dα = 0
by construction, we can get a better picture of tissue-wide stress patterns.

We observe from data (Fig. 10 bottom left) that Pα in cells of auxin spots is lower than
in the uncoupled tissue approximation and accompanied by a slight shift in the opposite
direction of the Pα of the remaining cells. Additionally, we register a noticeable shift towards
negative Dα for high auxin gradient cells (Fig. 10 bottom right).
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Fig. 10 Stress pattern self-organization concomitant with auxin patterns. Probability density functions
(P.D.F.s) of (top left) auxin concentration and isotropic stress component and (top right) auxin gradient magni-
tude and deviator stress tensor projection onto auxin gradient. In each case, we can identify two populations of
cells: high and low auxin concentration (bottom left), and high and low auxin gradient (bottom right). (bottom
left), since Pα = σ̄ signifies the stress that would be expected in the uncoupled tissue approximation, high
auxin concentration cell expansion is constrained by the remaining cells which are, in turn, under a larger
amount of stress. On the other hand (bottom right) we observe that the auxin spot neighbours have, on average,
negative values of Dα , indicating that the largest principal stress direction is perpendicular to auxin gradients,
i.e., circumferentially aligned around auxin spots, as suggested by Fig. 9. r = 0.90 and η = 5.5

Taken together, these data suggests that cell walls at the interface of a spot are under a
larger amount of stress whereas the cells within auxin spots have decreased stress. This leads
to reinforced polar auxin transport towards the spot and hence higher auxin concentration.
The lower isotropic stress component inside the auxin spot suggests that the diffusive term
inside auxin spots increases in importance relative to the active transport term.

3.6 Tissue-wide stress coupling mitigates disruption by noise

Up until now, our simulations were performed on hexagonal tissues in the absence of noise.
This also raises the question of how tissue-wide stress patterns impact pattern emergence
robustness against noise.

In plant tissue as any biological entity, noise prevails. As such cells within a tissue differ
in their mechanical parameters. In order to inspect how parameter noise disrupts pattern
emergence, we choose to sample reference stiffness, E0, from a normal distribution for each
cell. As outlined in the supplementary material, we expect this parameter to be the most
disruptive to the active term and it is reasonable to assume it changes from cell to cell. We
then simulate the resulting tissue with the uncoupled tissue approximation and tissue-wide
stress coupling.

We simulate tissues with r = 0.65 and η = 5.5 for both models by promoting E0 to a
random variable sampled from Gaussian distribution with mean Ē0 = 300 MPa and standard
deviation of α Ē0, α ∈ {0.03, 0.06, 0.09, 0.12, 0.15}, where α is the noise strength. For each
value of α, five simulations were performed per model. We fit the resulting auxin distributions
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Fig. 11 Impact of noise in reference stiffness in the auxin concentration distributions for the uncoupled
tissue approximation and upon tissue-wide coupling reveals robustness of auxin patterns due to tissue-wide
integration. For a given noise strength, auxin concentration probability density functions (P.D.F.s) are extracted
from simulation results by means of a kernel density estimation for the uncoupled tissue approximation (top
left) and when considering tissue-wide stress patterns (top right). The simulated tissues have r = 0.65 and
η = 5.5. For both models, we observe broadening of the distributions when considering noise. In each instance,
the fit appears to be adequate for describing the resulting auxin concentration. (bottom left) Examples of the
resulting patterns in the uncoupled tissue approximation (a) and in the case of tissue-wide stress patterns (b)
for a noise strength of 9%. Even though patterns are heavily disrupted, we can still discern more clearly high
auxin concentration spikes upon tissue-wide coupling. (bottom right) Entropy difference between the resulting
distributions for a given noise strength and in the absence of noise. In the presence of tissue-wide stress patterns
disruption of tissue patterning is consistently lower than in the uncoupled tissue approximation

to a probability density function (Fig. 11 top left and top right). We observe that noise in
reference stiffness impacts the patterning behaviour in a severe manner (Fig. 11 bottom left).
Yet, with tissue-wide stress coupling spots of noticeable auxin accumulation are preserved.

In order to quantify the disruption, we compute the entropy (Eq. 20) of a fitted auxin
probability density function by means of a kernel density estimation on the resulting auxin
distributions. The kernel used for all fits was the Epanechnikov kernel with a bandwidth
of about 0.202. This number arises in the rule-of-thumb estimate for the Gaussian kernel
for the sample size and dimension of this system. The partition size used for the numerical
approximation of the entropy is the same for all instances. Afterwards, we measure the entropy
difference between the expected auxin distribution for each value of α, of each model and for
all simulations (Fig. 11 bottom right). The reference entropy is taken to be the average of the
uncoupled tissue approximation at α = 0. We can infer from these results that tissue-wide
coupling helps to rescue auxin accumulation spots despite its heavy disruption in comparison
to the uncoupled tissue approximation.

3.7 High turgor preferred but not required for sustaining auxin maxima

It is of interest to the experimental community at this point in time how auxin spots
and turgor pressure correlates [63,64]. To explore how the the tissue-wide mechanical model
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Fig. 12 Simulations of auxin patterning with the tissue-wide mechanical model when considering a local
turgor increase (right column), decrease (left column), or constant (middle column), and a prior high (bottom
row), low (top row), or constant (middle row) initial auxin concentration. Units of ∆T are MPa. We used
η = 10 and r = 0.65 for all simulations. Even if high turgor predicts an auxin maximum, it becomes unclear
what might happen with low turgor. The tissue-wide mechanical model seems to preserve already existing
auxin maxima

responds to local turgor variations, we probe what happens when patterns emerge with a local
increase or decrease in turgor. Since stress is tied to active auxin flow, the results are prone to be
affected by prior auxin concentration distribution. Hence, we test the several turgor scenarios

as well as initial auxin concentration. We added a contribution to turgor of ∆T e− x2+y2
2σ , where

∆T ∈ {−0.2, 0.0, 0.2} MPa and σ = 2L . For initial auxin concentration, we used the same
form with the same σ , yet the largest deviations are ∆a ∈ {−0.99, 0.00, 5.00}. To be sure
we are well within the pattern formation regime of the model for low pressure, we used the
stress-PIN coupling value of η = 10 and r = 0.65.

Regardless of initial auxin concentration, for high turgor, we observe an auxin maximum
predictably emerges correlated with a turgor maximum (Fig. 12 right column). Nevertheless,
if an initial auxin concentration exists, we also predict that the spot remains regardless of
whether this position is a turgor minimum or not (Fig. 12 bottom row). Low turgor regions
can still exhibit patterns adding to the complexity of this simple measure (Fig. 12 middle
row, left).

From these data, we can conclude is that developmental history is as important as turgor
pressure for predicting auxin maxima positioning. We can predict high turgor leads to auxin
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accumulation, yet low turgor gives us little insight on auxin distribution. We can also predict
that a high auxin concentration region.

4 Discussion

Here, we used a model composed of a vertex model for plant tissue mechanics, and a com-
partment model for auxin transport to uncover the role of tissue-wide mechanical coupling
on auxin redistribution. We first verified that the tissue-wide mechanical model successfully
captures the behaviour of plant tissue upon ablation experiments and the conditions for emer-
gence of auxin patterns. We then compared the behaviour of our model featuring tissue-wide
mechanical coupling to an approximation which regards cells as mechanically isolated. We
observe the emergence of focused auxin spots with high auxin concentration when tissue-
wide mechanical coupling is implemented. Notably, depending on the parameters of the
tissue-wide stress model, auxin spot concentration is more sensitive to stress than what could
be predicted from the approximation. We observe that tissue-wide mechanical effects unac-
counted for by the approximation have a positive impact on PIN polarity. Furthermore, we
show that stress patterning of the tissue mitigates the disruption caused by noise, increas-
ing robustness of the system. Finally, we observe auxin concentration correlating with high
local turgor pressure. This behaviour coexists with the possibility of having auxin maxima
anti-correlating with turgor.

The auxin-induced cell wall loosening effect (r parameter in this work) is an important
determinant of the feedback of auxin on tissue mechanics. The range of values of r for
which substantial pattern focusing occurs is around r ∼ 0.60 and above in our model. This
translates into a variation of stiffness from a minimum value Emin up to Emax = 4Emin
(see supplementary material). Although high, this range is within biological expectation and
supported by AFM measurements on auxin treated tissues [7] and comparable to previous
simulations of this mechanism [10] where Emax/Emin = 5 which translates into r = 2/3.

Comparison of the tissue-wide stress patterning case to the uncoupled tissue approximation
reveals that auxin spot concentration has a very steep transition in the former case (Fig. 8).
This results in a several-fold increase in auxin concentration at values of η close to the
threshold for pattern formation. What was once a relatively subtle graded response of auxin
spot concentration on stress behaves now as an on-off switch by virtue of tissue mechanical
relaxation. Since the mechanical perturbations being highlighted through the comparison are
purely passive, this improvement in sensing comes at no additional cost for the plant and
therefore has the potential to increase efficiency.

In the present work, we explored the parameter space (η, r) exclusively. We observe
consistently that pattern wavelengths shorten from the uncoupled tissue approximation and
the tissue-wide coupling model. It would be interesting to systematically probe the diversity
of patterns and how they change upon tissue-wide mechanical coupling. For our simulations,
we used the parameters n,m, K from [10], parameters on which we have little empirical
information. Yet, the sensitivity analysis from [29] suggests that n and K especially should
affect patterning the most. We speculate the parameter m, specific to wall loosening, to be of
similar importance. We expect that a study focusing on these three parameters would yield
more interesting patterns shapes.

This work focused exclusively in the hypothesis that PIN is mechanically regulated. How-
ever, competing chemical feedback mechanisms have been proposed. Recently, mechanics
and ARF-mediated PIN expression have been modelled together by [40] and show promising
pattern formation capabilities. Other factors we have not taken into account is the family of
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auxin importers of the AUX family, which have been shown to be present in the epidermal
layer of the shoot apical meristem [16]. Auxin binding proteins have also been hypothesized
to promote auxin flow polarization [65]. Another observed interaction is cytokinin action
controlling PIN polarity during lateral root formation [66].

The PIN regulation used in the auxin transport compartment model was specifically stress-
based. In the supplementary text, we show results using strain-based PIN binding instead.
We observe the same overall auxin spot focusing behaviour. It is still unclear whether the PIN
density change due to mechanics is a result of strain or stress [11]. In fact, this question has
been tackled recently by [54] concluding that in most simulated experiments both strain and
stress-based models behave similarly. A notable exception is the experimentally observed
correlation of PIN polarity and auxin concentration [37,67]. On one hand, this observation is
not captured by the stress-based PIN binding model. On the other hand, available experimental
data and simulations suggest stress sensing being easier to explain [54]. Furthermore, the
polarity difference could be rescued by the observation that ARF-mediated PIN expression
is higher at the tip of the primordium [68].

The specific distribution of emergent stress patterns is remarkable in the sense that it coin-
cides with the shape-induced stress patterns, as indicated by microtubule orientation, around
the tip of the primordium as it emerges from the meristem [41]. Therefore, tissue-wide stress
patterning sets the stage for primordium outgrowth by focusing efficiently auxin, forming
local circumferential stress that in turn may re-orient microtubules and prefigure the shape of
the primordium. This process could, in turn, be capable of reinforcing auxin transport to the
tip of the newly forming organ. Yet, quantifying this requires further modelling. Therefore,
it would be interesting to include auxin transport in already existing models for primordium
outgrowth [8,9].

Even though the analysed numerical simulations were limited to noise in the parameter
E0, it showcases the power of the aforementioned auxin peak focusing that happens upon
tissue-wide mechanical coupling. In this instance, we show here the power of tissue-wide
stress patterns to mitigate the information loss due to noise by inspecting entropy of auxin
concentration distribution. This result, especially when paired with the increase in sensitivity
mentioned above, is indeed remarkable. This is due to the fact that in a wide range of optimized
systems, biological or otherwise, robustness and efficiency are thought to be in opposition to
each other, as illustrated, for example, by [69]. This is because robustness is usually brought
upon by additional systems which would be considered clutter by a system geared towards
efficiency. This opens a novel line of argumentation in the discourse of the evolution of
mechanical signalling in multicellular organisms.

Lastly, we probed the behaviour of the used tissue-wide mechanical model when faced
with local turgor variations. Our results indicate that once established auxin spots can endure
low turgor scenarios, even if they would prefer high turgor regions all else being equal.
Maintaining a turgor pressure difference for so long, however, might not be feasible for the
plant. To answer how this setting could be achieved would require modelling water transport
between plant cells along the lines of [63]. Nevertheless, our model can explain, at least in
part, why these two quantities do not correlate in a straightforward manner.

5 Conclusion

Even though the mechanisms by which PIN preferentially associate with stressed cell walls
is unclear, here we show that there are substantial advantages by intertwining tissue-wide
mechanics and auxin patterning. Even if auxin patterning is possible by chemical processes
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and local mechanical coupling, tissue-wide mechanics may provide a way for patterning
to still occur at a lower energy cost for the tissue. Moreover, this process can also provide
robustness to the patterning, factoring in tissue-wide stress pattern, a sort of proprioceptive
mechanism.
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Chapter 5

From lateral root founder cell identity
to a primordium proper

We have peered into the complexity of mechanical regulation of PIN in an abstracted
setting. There, we have documented how mechanical regulation of PIN binding modulates
the auxin patterning mechanism via the interaction of tissue turgidity and auxin-mediated
mechanical heterogeneities. We are, at this point, equipped with a powerful description
of plant tissue mechanics and mechanically-regulated auxin transport. We will try, in the
course of this chapter, to apply this model in a novel setting, namely the lateral root
formation (LRF). This will enable us to judge how feasible this regulatory mechanism is
or in which way it fails to capture empirical observations.

First we will introduce the biological processes underpinning formation of the lateral
root, emphasising the initial stages. We focus our attention to the LRF system from
founder cell (FC) identity establishment until the first anticlinal cell division. Next we
will discuss how we adapt our current formulation of plant mechanics and auxin transport,
as well as how to include growth. Afterwards, we will discuss the consequences of growth,
assuming a constant auxin distribution. We will also discuss what factors we observe
to contribute to the maintenance of auxin in the primed pericycle (founder) cells, in the
absence of growth. Lastly, we will include all processes at once in order to observe how
these interact with each other dynamically, as well as the consequence for lateral root
formation during this stage. We will discuss results following their exposition in the
course of this chapter.

5.1 Biological overview of lateral root formation

The whole process of lateral root formation is characterised by an extraordinary degree
of mechanical interactions between cells [97, 142]. Pericycle cells are primed to initiate
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Figure 5.1: Schematic of the auxin concentration and flows during LRF from the (A)
pericycle cell priming, in which the affected cells will develop into FCs, until (B) before
the first round of cell divisions. Auxin accumulates in the primed cells due to auxin flows
from the vasculature, endodermal reflux and high auxin influx carrier expression. After a
while endodermal auxin response unleashes the SHY2 mechanism leading to intense cell
wall remodelling of the endodermis, after which the FCs swell outwards. The represented
layers are vasculature layers, the pericycle (p), the endodermis (ed), the cortex (c) and
the epidermis (ep). To the left of the represented region is the center of the root and to
the right we have its surface.

the lateral root primordium (LRP) when displaying high degree of auxin response [22,
25] (Fig. 5.1 A). After mechanical remodelling of the overlaying layer by endodermal
auxin response, the founder cells are allowed to pursue growth [101] (Fig. 5.1 B). After
FC swelling, FCs start dividing marking the lateral root initiation (LRI). Cell division
and growth takes place in the newly formed LRP. A new auxin gradient is established
within the primordium towards the outer layers [22]. The LRP continues to grow and
divide traversing layer after layer until it emerges as a new functional lateral root [97,
142].

As already established throughout Chapter 1, auxin patterns preceding plant mor-
phogenesis, and organogenesis thereafter, are a result of auxin transport. This system,
LRF, is remarkable for the dynamic rearrangement of auxin flows. As a first example we
have carrier-mediated auxin accumulation in the lateral root FCs resembling auxin spot
patterns [100, 143]. At later stages, as cell division takes place, the established auxin
gradient implies a PIN polarity shift towards the LRP tip [22]. Later still, the LRP auxin
transport route resembles that of the root meristem with fountain-like polar auxin flows
[22]. Therefore, not only is LRF an interesting system to study auxin transport in general,
but also, due to its close coupling to mechanics, a prime system to test the hypothesis of
mechanically-regulated auxin transport.

Related to how the LRP is initiated in the pericycle layer and needs to traverse several
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layers until it emerges, this specific system has a myriad of specific geometrical and
mechanical characteristics. In the differentiation zone of the root tissue, where FC identity
is acquired [144], plant cells are highly anisotropic. Root cell aspect ratio can easily reach
the order of 10 to 1 [145]. This anisotropy is a result of the strong microtubule polarity
present in stems [45, 46].

Plant cell stiffness is different from layer to layer. The internal layers are in general
stiffer as indicated by recent measurements using Brillouin microscopy complemented by
atomic force microscopy comparisons [146]. There is some debate about what exactly
Brillouin microscopy measures [147, 148], namely if it conflates cell wall stiffness with
water content of plant cells. Vasculature cells being stiffer is also in line with the obser-
vation that xylem cell walls contain lignin [149], a class of polymers contributing to the
structural stability of wood. From these data we can have a rough picture of how cell
wall stiffness changes from xylem cells up to the epidermis, even if there are measurement
details which are not entirely clear.

Another important factor to take note of is water transport in the root during LRF. As
the LRP develops, the symplastic connections between LRP and the surrounding tissue
are progressively impaired [150]. Blocking water transport from the LRP helps maintain
cell turgor difference between the inside and outside the primordium. A higher turgor
pressure inside the LRP would explain the direction of growth when taking into account
the difference in stiffness between layers. Before the first round of cell-divisions, however,
FCs seem to still be symplastically connected to their neighbours. Furthermore, aquaporin
expression, both in the LRP and the overlaying tissue, has been shown to be regulated
by auxin via ARF7 and critical to lateral root emergence [65]. The capacity for FCs to
sustain turgor differences with their neighbourhood seems unlikely, yet the possibility of
transient turgor differences is still within expectation.

Our scope lies within the timeframe after lateral root FCs have been primed to start
LRF up to the first round of cell divisions. We will cover the factors underpinning FC
selection as well as the necessary FC swelling that happens right before the first anticli-
nal cell divisions. This choice is precipitated by the mechanical remodelling and auxin
patterns exhibited during this time, as we will shortly describe.

5.1.1 Founder cell selection

Founder cells are the cells whose lineage comprises the whole LRP after initiation takes
place. FC identity is tied to strong auxin response [22, 25, 151], suggesting high auxin
concentration. Specifically, degradation of the Aux/IAA family member IAA14, and
subsequent ARF7 and ARF19 function, has been shown to be necessary for LRF [152].
Another hint that suggests very high auxin concentration is the high expression of the
AUX1 auxin importers [143, 151]. We can observe some consistent features of LRF, such
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as FCs emerge in the pericycle layer, LRPs appear to inhibit presence of others around
it, and LRPs usually initiate on the convex side of a curved root [98, 145, 153]. There
is evidence to suggest that similarly to phyllotaxis, LRP spacing is a result of emergent
auxin maxima [144, 154]. Modelling of auxin transport has been widely employed in
predicting LRI positioning [144].

The mechanical aspects of this process, however, should not go understated. Auxin
accumulation and LRI has been induced by manual bending alone [151]. This work also
tracked PIN localisation, finding it to play a role in directing auxin flow towards the
LRI site upon bending, gravitropic or manual. Furthermore, polar auxin flows from the
endodermis to the FCs has been shown to aid LRF [100]. The hypothesis of mechanically-
regulated PIN binding seems to have the potential to seamlessly combine the LRI curva-
ture preference observation with the auxin patterning framework.

5.1.2 Founder cell swelling

After FC specification by high auxin signalling, these cells start swelling towards the
endodermis, acquiring a somewhat trapezoidal shape. The growth direction implied is
very different from the typical continued elongation of cells in the root system. Curiously,
this growth is localised towards the center of the lateral root FCs. This different growth
direction suggests a mechanical alteration of the LRI region which we will proceed to
explore.

Endodermal auxin response has been shown to be critical to successful LRF [67, 101,
155]. The SHORT HYPOCOTYL 2 (SHY2) gene encodes IAA3, from the Aux/IAA
family, and shown to affect multiple auxin-dependent responses [155]. Exploration of
auxin sources during LRF showed a prominent role of the auxin influx carrier LAX3,
itself auxin-inducible, during lateral root emergence [67]. Although LAX3 is expressed
in the cortical and epidermal layers at a later stage, it was also shown that endodermal
auxin-dependent SHY2 response affects expression of several cell wall remodelling genes.
Afterwards, SHY2 was shown to be crucial for LRF [101]. Not only was it shown that the
absence of SHY2 response blocked FC swelling completely, but it also made it impossible
to execute the first round of cell divisions. Auxin-mediated aquaporin expression [65]
could also contribute to differences in mechanical behaviour by the endodermis at this
stage, namely the shrinkage of the endodermis upon FC swelling [101]. It is still unclear
if the transport mechanism of auxin from the FCs to the endodermis is simply diffusion,
or if it is carrier-mediated.

The placement of the first round of cell division is tightly regulated to be asymmet-
ric. Disruption of cytoskeleton elements, including microtubules, affects the placement
of divisions and the morphology of the primordium [156]. Curiously, before division FC
microtubules are aligned along the root instead of perpendicular to it. After the first
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cell division of FCs, microtubules align perpendicular to the root, albeit slightly more
disorganised in the central region of the LRP. This same cell division has been shown to
be dependent on EXPANSIN A1 (EXPA1), a cell wall remodelling enzyme [157]. Lower
levels of EXPA1 resulted in overall wider percicycle width. The loss of localised pericycle
radial growth disrupted cell division patterns. This reinforces, once again the tight link
between morphology and growth. Also, this implies that the radial growth of the shared
interface between founder cells is no coincidence.

During LRF, the traversal of the endodermis is a major milestone of LRF. The Cas-
parian strip is strengthened barrier intersecting half-way through the endodermis [158]. It
almost seems to merge all endodermal cell walls severely limiting apoplastic transport. It
suggests that endodermal mechanical remodelling is extremely severe. When comparing
the surface view of the emerging primordium [101], the endodermal layer is deformed such
that it tightly constrains the LRP whereas some gaps might exist during the emergence
from the epidermal layer.

5.2 Adapting the mechanically-regulated auxin trans-

port to LRI

As we intend to model LRF after establishment of FC identity up to right before the
first round of cell divisions, we will want to implement some of the features described
earlier in this chapter. First we will go over some assumptions on the model as estab-
lished in Chapter 3. Next we will introduce a cell wall growth model and have it be
explicitly auxin-dependent, as auxin is a major growth hormone. Finally we will discuss
the implementation of influx carriers.

Layer dependent stiffness will have an impact in the direction of auxin efflux. The
xylem cells, given their composition and measurements, are noticeably stiffer than the
remaining outer layers. It would be somewhat reasonable to assume a radial decay of
stiffness, or, at the very least, a drop from the xylem to the surrounding pericycle layer.
This drop in base stiffness will taken into account by having the parameter E0 be layer
dependent. Note that, depending on the value of the wall loosening parameter, r, auxin
reflux from the endodermis to the pericycle layer may become extremely hard due to
how stress load division between compartments behaves. We note that layer-dependent
stiffness implies some degree of PIN polarity bias.

We will assume that FC identity is already established. Although we will characterise
what mechanical signals would help PIN to stabilise auxin accumulation in the FCs, we
will model auxin influx carriers to have degree of realistic robustness to the FC stability.
Modelling of FC selection should take into account the auxin flows from the root meristem.
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Although it falls outside our scope, this has been done by, for instance, [159]. We will
single out two adjacent pericycle cells and assume expression of AUX1 carriers in only
those FCs. This also raises the question if the description of mechanically-regulated
auxin transport should be above or below criticality of pattern formation. We will curb
the pattern formation capabilities of the model until an auxin maximum in the FCs is
stable, and interpret our results as perturbations to the already present auxin flows from
the root to the shoot.

Since we intend on growing individual walls, we will use a cell wall based mechanical
description. We will use cell turgor of 0.65MPa [160] and a wall with of w = 0.08 (L).
Above the epidermis we will guess the pressure to be around atmospheric pressure, ⇠
0.1MPa. A simple mechanical relaxation with only the elasticity model yields unrealistic
cell geometries unless extreme boundary conditions are used. Cells expand isotropically
resulting in a tendency of junction angles as close to 2⇡/3 as enabled by the remaining
structure. These geometries resemble soap froth, yet we know the root system has a
very well defined cell anisotropy. Interestingly, it also resembles cell geometries resulting
from oryzalin treatments to depolymerise microtubules [130]. Therefore, we also use
the cell wall bending model so as to keep geometries realistic. We also note that the
bending modulus of a material is proportional to its Young’s modulus. We will, however
treat these as independent parameters since our justification for using this model in this
tissue is phenomenological, and we already suspect different microscopic phenomena to
contribute to these two effective parameters in different ways.

5.2.1 Modelling cell wall growth

Plant cell growth models emerged as being rate equations on cell volume for elongating
cells [40–42]. These early models write down relative volume change as being proportional
to the combined contribution of hydrostatic pressure and osmotic pressure [40–42], what
we denote as cell turgor. It was also introduced a yield value of turgor below which no
growth would take place to account for an elastic and a plastic regime [41]. We also
note that there is a necessary dependence of volume change, hydrostatic pressure, and
solute concentration. It becomes even more complex when considering neighbouring cells
where differences in hydrostatic pressure result in water transport feeding back to all of
the above. As a general behaviour as growth takes place cell turgor tends to decrease
[42].

Our tissue description, however, is not particularly well-suited for evolving a rate
of change in volume since our optimisation variables are vertex positions. One option,
without resorting to other models, could be computing what volume each cell should have
in the next step based on these models and introduce an Hamiltonian term punishing
deviations from the expected volume change. Our approach, is to try to translate these
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models into rates of change of rest cell wall rest length, l0. We require that this model
fulfils the general observed features of plant growth – a yield value of strain or stress and
growth, or relative growth, proportional to strain or stress.

Our approach to describing cell wall rheology will be similar to those of [51, 130]. We
will model the wall as a Maxwell material such that growth is stress driven. As in [130],
we develop a model based on the behaviour of a Maxwell material and focus on the rate
of change of the relative irreversible (rest) wall length as proportional to wall stress. We
will use ' as the extensibility of this cell wall element as the reciprocal of viscosity. Then,
we introduce a yield value of strain as is the case in [51]. Given a wall of length l, rest
length l0, stiffness E, extensibility ', and yield strain Y , at time t, we evolve rest length
l0 as

l̇0
l0

=

8
>><

>>:

E'

✓
l � l0
l0

� Y

◆
,

l � l0
l0

> Y,

0,
l � l0
l0

 Y.

(5.1)

We note, however, that we are using a single value of stiffness and extensibility, yet
we have two compartments, one facing each cell, with different mechanical properties
(Fig. 5.2). We have to decide on how to couple the two adjacent Maxwell material
compartments. We have implicitly assumed Y to be the same between two adjacent
compartments. Another detail is that auxin is also a growth hormone in more ways
than simple stiffness modulation, hence we expect extensibility to be a function of auxin
concentration in the surrounding cells. For the growth simulations in this chapter we will
keep Y = 0.05.

We first assume that the value of rest length is shared between compartments. Recall
this as the same assumption underlying stress-load division. Differences in rest length
between compartments would retain residual amounts of stress. It might be interesting
to understand how auxin mechanical modulation affects memory formation by residual
stresses in this setting, yet we will avoid breaking the rest length assumption. We will
model both compartments connected in parallel yet the viscous elements will both be in
parallel with a single plastic element such that irreversible length remains well-defined and
the same between compartments. Luckily, this assumption allows us to treat the overall
wall by an equivalent Maxwell element. All we have to do is find how extensibility is
coupled in such a model. Stress would couple in exactly the same way. Taking into account
wall compartment cross-section we need only to average stiffness between compartments
as we did to find out stress load division in Appendix E. Above threshold, the viscous
elements are in parallel with each other, yet in series with the parallel springs. As we did
with the equivalent elastic element, we deduce the equivalent viscous element1. We will

1Let a viscous element have extensibility '
⇤ and be under stress �. Its strain rate is given by

"̇ = '
⇤
�. Now consider two parallel compartments of half the cross section with different extensibilities

'1 and '2. Stress is divided as � = (�1 + �2)/2 when accounting for cross-section difference between
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Figure 5.2: Rheological models allowing for growth and how to couple them across two
adjacent cell wall compartments. (A) A typical Maxwell material with elastic modulus
E and 1/' viscosity, where we refer to ' as extensibility. (B) One can create a plastic
yield such that above such of a value Y of strain (or stress) the irreversible length starts
extending. Below this threshold, the material behaves as elastic. (C) Parallel coupling
between two simple viscoelastoplastic materials can be used to represent how stress relaxes
in each compartment of the cell wall with a single value of length, l. Unfortunately, this
model is quite complicated as is and stress load division is already under the assumption
of a single rest length. Here we cannot as readily assign a single irreversible length
to the whole wall without time integration of the viscoelastoplastic ODEs. (D) Our
approximation assumes a single plastic element. The joining of the two branches here
means we can separate the elastic behaviour from the viscous one and, therefore, the
whole wall behaves as an element of B with equivalent elasticity modulus and equivalent
extensibility.

use for walls between cells ↵ and �,

Ē↵� =
E↵ + E�

2
'̄↵� =

2'↵'�

'↵ + '�
, (5.2)

where E↵ is the auxin-dependent stiffness of compartment facing cell ↵ and, similarly, '↵

is the extensibility of cell walls around cell ↵. We will use a linear relationship between
extensibility and auxin with proportionality constant g. Auxin is always positive and so
is extensibility.

each compartment and the wall as a whole. Strain rate is the same in each parallel viscous element,
"̇ = �1'1 = �2'2. This implies � = (1 + '1/'2)�1/2, since �2 = '1�1/'2. Substituting "̇ = '1�1 back
in the equivalent extensibility expression yields, '⇤ (1 + '1/'2)�1/2 = '1�1. The equality is verified
when '⇤ = 2'1'2/ ('1 + '2).
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5.2.2 Maintenance of auxin and PIN patterns

As previously established, we intend to model LRF from the establishment of FC identity.
We will select two adjacent pericycle cells as LRP FCs at the start of each simulation.
These cells will have high initial auxin concentration. Perturbations to mechanically-
regulated auxin transport, however, have the potential to drain the FC cells of auxin
entirely. In line with empirical observations we will implement auxin-dependent influx
carrier expression and transport.

We will adopt the AUX1 carrier expression model similar to [145],

q↵ =
a↵4

1 + a↵4
. (5.3)

Note again that we consider AUX1 expression in the selected FCs only. Using the half
value at a = 1 is in line with the previously used value for the cell wall loosening expression,
as both are a result of auxin signalling [32, 161]. Even though we know that ARF and
Aux/IAA content may imply different auxin perception for different response types, we
have no reason to make any assumption in any which way. Note that these carriers have
been observed to bind isotropically around the cell. We can, therefore, assume that the
density of bound carriers at the wall to be proportional to q↵. Just as in the case of PIN,
we also have to consider the volume and surface area of the cell. Consistent with this
formulation, in the LRP FCs we add a new term to the auxin transport equation,

ȧ(FC)
↵ = ȧ↵ +Q

X

�2N↵

l↵�
A↵

✓
q↵

a�
KAUX1 + a�

� q�
a↵

KAUX1 + a↵

◆
, (5.4)

where we assume Michaelis-Menten kinetics, implying a saturation of activity of influx
carriers. We choose KAUX1 = 1, as we did for PIN-mediated efflux. The parameter Q
denotes the magnitude of auxin influx permeability when compared to auxin turnover
rate. We use a permeability of Q = 10P to ensure influx dominates. Note that even
at this high level of influx, we observe that, depending on stress patterns, PIN can still
override this effect (not shown). This expression is also a particular case of the transport
equation used in [73].

We also expect the mechanically-regulated PIN binding to help accumulate auxin in
the FCs due to its up-the-gradient typical behaviour. Many mechanical perturbations
to FCs will inadvertently help auxin accumulation, such as turgor pressure, tension in
periclinal walls, softening of FCs. In a later section we will explore which perturbations
we expect to help auxin accumulation in LRP FCs. The main disruptive factor in keeping
FCs filled with auxin, initially at least, is the stress patterns of the specific architecture
of the tissue, diffusion, and auxin turnover rate.
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5.3 Lateral root founder cell swelling

In this section we will concern ourselves with localised growth characteristic of lateral
root FC swelling. Namely, we will focus on answering if localised growth happens, under
what conditions is it possible to happen, and if the model we have is enough to capture
that LRP shapes empirically observed.

Since we already assume lateral root FC phenotype of two initial pericycle cells, we
already expect high auxin content and signalling during growth and auxin-dependent
mechanical remodelling of the endodermis. In a first approach, we can take advantage of
this by not simulating auxin transport and keeping high auxin concentration in the LRP
FCs.

The mechanical and growth models are already complex enough to warrant exploration
on their own. In fact, the rheological assumptions made when conceptualising the model
already gives us some insight into the early stage LRF system itself, namely that we
already expect growth to be localised in the FC shared wall.

Next, we will examine the impact of mechanical variables on growth rate, as well as
analyse the shape of the growing FCs. We find that bending modulus has a dispropor-
tionate impact and that a drop in endodermal bending modulus can be enough to unleash
FC swelling.

5.3.1 Rheological assumptions imply FC localised growth

We will first take a few steps back and reinterpret the result for extensibility coupling in
the context of lateral root FC swelling. As FCs display high auxin signalling, we assume
a higher extensibility than the surrounding cells, showing little auxin signalling. The
assumption 'FC � 'non-FC implies three different cell wall growth rates based on each
possible interface. They are '̄FC/FC = 'FC, '̄FC/non-FC = 2'non-FC, and '̄non-FC/non-FC =

'non-FC. We expect that, if growth takes place it will be necessarily localised to the FC
shared walls, since '̄FC/FC � '̄non-FC/any.

This behaviour is also encouraging for the validity of the growth model since it can
also explain the necessity of a FC/FC cell interface for any morphological change to take
place. Throughout the study of LRI, a commonly observed feature is that of multiple
pericycle FCs, implying the existance of such interface, involved in LRI [25, 97–99, 162–
164].

This mechanism for localised growth makes it noteworthy to recall the observation
that loss of EXPA1 activity results in a wider overall pericycle layer width and disrupts
the localised swelling preceding the first round of cell divisions [157]. Our results suggest
auxin response could be to repress the activity of EXPA1 in the pericycle layer, directly
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or otherwise. Then again, competition with other redundant processes might be involved
in this pericycle expansion, or lack thereof, rendering our remarks as an hypothesis to be
tested rather than evidence of any kind.

Next we will probe how growth is affected by mechanical parameters of the lat-
tice.

5.3.2 Bending stiffness poses a severe obstacle to growth

Since we are waiving the auxin transport simulation for now, we can run the growth model
for a long time without too much effort. We are going to tackle how growth is affected by
cell turgor and cell wall mechanical properties. Specifically, we are looking for clues as to
what may be happening mechanically upon endodermal auxin response via SHY2.

In this first approach we will affect the entire lattice we use to represent the root.
During these simulations, pericycle cells we choose to be FCs will have auxin a = 10

throughout the simulation, and the remaining cells will have auxin at a fixed value close
to zero (10�12). We will keep track of the rest length and current length of the shared
wall between adjacent pericycle FCs, as this is the only wall capable of growing due to
how extensibility couples.

We will use a control simulation with E0 = 300MPa, kb = 600MPa, and T =

0.65MPa. The final rest length of the shared wall by the FCs seems to be decreased
by lattice stiffness (Fig. 5.3 top). Cell turgor increases the final length linearly (Fig. 5.3
center). The range of values of length and rest length permitted by a change in bending
modulus is much broader (Fig. 5.3 bottom). For low values of bending modulus, rest
length increases drastically. At high values, however, the wall can barely manage to grow
at all.

A decrease in base stiffness, E0, seems to ever so slightly help growth in the long-term.
Our results suggest that an endodermal drop in stiffness can only barely help FC swelling.
We note that the different values of initial rest length for different stiffness are a result
of setting a base isotropic stress in the lattice. This base stress is needed to represent
the stress acting on the periclinal walls which would, otherwise, have near zero (or even
negative) stress due to the constraints of boundary conditions. We add a base stress
�0 = 20MPa to all walls which, for E = 300MPa, is just above yield strain.

Cell turgor increases the final length of the FC shared wall linearly. We note that
we are affecting the whole lattice and, as such, we expect the effect of exclusive turgor
increase in the lateral root FCs to yield a more pronounced growth than presented here,
as the remaining cells would not be pushing back as strongly. Nevertheless, knowing that
the FCs are not symplastically isolated from the rest of the tissue at this point, a sustained
value of FC turgor around 150% of base cell turgor is very unlikely as water transport
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Figure 5.3: Growth of the wall shared by FCs depends on the mechanical properties of
the lattice. Namely, (top) stiffness, (middle) cell turgor, and (bottom) bending modulus.
Simulation results for (left) rest length as a function of time and for different mechanical
properties and (right) final length of the FC shared wall as a function of mechanical
properties. Only one parameter was varied at one time keeping all other parameters at
the default values of E0 = 300MPa, T = 0.65MPa, and kb = 600MPa.

would quickly ensue. Unfortunately, it is extremely difficult to measure cell turgor for
cells not at the surface of the plant (where one could in principle use AFM). Because of
the ever changing mechanical properties of the tissue during this stage, predicting turgor
based on cell shape may be just as difficult.

The severe endodermal cell shape deformities observed when traversing this specific
layer [101] suggest stiffness and bending modulus to be a main contributing factor to this
process. Here we confirm the suspicions of bending modulus, as this parameter stands
out as being a major determinant of growth. Recall that, even if we are varying bending
modulus and stiffness independently, bending modulus is proportional to stiffness. A
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Figure 5.4: Simulated length of the FC shared wall over time and for different values of
bending modulus of the FCs and overlaying endodermis. High values of bending modulus
cluster at relatively low values of length. As bending modulus increases, the end values
of length increase non-linearly.

sharp decrease in this parameter has the potential to explain a sudden swelling of the
lateral root FCs. We note, however, that these results were obtained by affecting the
whole lattice. In the next section we will try to uncover if and how the bending modulus
findings translate into a local perturbation at the FCs and overlaying endodermis, and if
this perturbation is capable of unleashing FC swelling.

5.3.3 Turgor difference is not required for FC swelling

In this section, we focus back onto the mechanical properties of the lateral root FCs and
the overlaying endodermal cells. We will use a default value of kb = 600MPa for the
lattice and for FCs and the overlaying endodermal cells we will assign a varying value
kb = kSHY2

b . We will also consider auxin concentration to be a = 1 in the endodermal cells
overlaying the lateral root FCs.

We will focus on the current length of the wall shared between FCs as this observable
can be measured empirically. We can still observe a non-linear effect of bending modulus
on the final length of the shared anticlinal wall (Fig. 5.4). The final values, in this case,
are much lower than when we affect the whole lattice, as would be expected.

Even though growth happens in all cases, the final shape of the FCs is quite different
between different values of kSHY2

b (Fig. 5.5). At high values, FC shape remains close to
the initial one and no directed growth towards the endodermis is predicted. For low
values, the FCs acquire a trapezoid shape, where localised growth happens towards the
endodermis.

We also measured the area of the overlaying endodermis and FCs before and after
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Figure 5.5: Simulation results of lateral root FC swelling morphology, cell area, and wall
stress, for different values of kSHY2

b . Lateral root FCs (marked with ⇤) and overlaying
endodermal cells (marked with N) have their bending modulus affected. As bending
modulus decreases, FCs acquire different morphologies.

the simulation as a function of bending stiffness of the FCs and overlaying endodermis
(Fig. 5.6). We found that endodermal cells and founder cells do not decrease in volume
during growth. Because the lattice can freely expand towards the outer layers, the endo-
dermis does not need to shrink in order for the swelling to take place. Observations of
endodermal shrinkage may, therefore, point towards turgor playing a role at this stage,
even if here we have shown it is not strictly required for lateral root FC swelling.

From these data we infer that it is possible to obtain the swelled FC shape by manip-
ulating mechanical properties of the FCs and overlaying endodermal cells. Strikingly, by
introducing the bending energy term we are able to explain why no growth takes place
despite there being enough cell turgor. In fact, the case where the bending modulus does
not change (kSHY2

b = 600MPa) can be understood as a proxy for the shy2 mutant that
displays little to no mechanical remodelling, at least under the current understanding of
this process. Our results predict no localised growth of this mutant in agreement with
experiments [101].

We note also that wall stress, measured with � = E(l � l0)/l0, is heavily dependent
on the architecture of the tissue in question. Walls perpendicular to the surface have
generally higher stress. Since we show stress after growth takes place, the strain acting
on the wall between the FCs drops until 5%, the value of yield strain, as stress is released
through growth. Furthermore, we note that tissue geometry for kb = 600MPa to be
somewhat aberrant, especially in the cortex and epidermis. For the next section, we will
ramp up the default value of kb = 1050MPa to combat the high turgor. We expect that
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Figure 5.6: Final cell area relative to initial cell area of FCs (blue), the endodermal cells
overlaying the FCs (orange), and just the middle endodermal cell (green), as a fuction of
bending modulus of these cells. We observe than no shrinking occurred since all values
are greater than 1.0. We note that experimental results suggest endodermal shrinkage
during lateral root founder swelling [101].

using this default value of bending modulus in this particular experiment would simply
make growth differences more pronounced.

Finally, our results show endodermal deformation but not shrinkage during the studied
process. Because we allow the lattice to expand outwards, growth simply pushes the
overlaying layers ever so slightly. Even though a stiffer plant surface has the potential to
explain how the endodermis can shrink at this stage, it is not possible to ascertain its effect
without further numerical modelling. This is because, even if it may provide a barrier
that forces the endodermis to shrink upon FC swelling, it also affects FC growth and so
this explanation becomes harder to parse. Another possible explanation for endodermal
shrinkage is the hypothesis that turgor is decreased in the overlaying endodermis. Not only
could this explain the shrinkage, but also enhance swelling. Nevertheless, as is a recurring
motif throughout this chapter, cell turgor differences are hard to justify before symplastic
isolation of the LRP at later stages. In this case, however, we have an expanding cell
underneath which we set to have constant turgor. This constant turgor can only happen
if water is flowing into the FCs as they expand. The high degree of mechanical remodelling
combined with water flowing out of the endodermis also has the potential to explain a
volume change such as the endodermal shrinkage proposed by [101]. Further modelling of
water transport in this setting may help elucidate exactly how the endodermal shrinkage
may occur.

So long as the auxin concentration is maintained high in the FCs and, at a certain
point, exists in the endodermis for a long enough time to trigger SHY2 response impact-
ing mechanical properties of the endodermis, we predict lateral root FC swelling takes
place.
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5.4 Mechanical PIN regulation during LRF

Having elucidated the requirements for lateral root founder swelling, we now reintroduce
auxin transport. Before committing to a full-fledged LRI model we first take a look at
the auxin transport model in isolation, with the newly included auxin importers. Af-
ter checking out how mechanics would affect auxin accumulation in FCs, we will then
proceed to investigate whether the addition of growth potentiates any new auxin flow
behaviour.

As we set out to test the hypothesis of mechanical regulation of auxin flows, we intend
now to explore how auxin concentration in lateral root FCs responds to different mechan-
ical perturbations. We expect to find parameter regions where mechanically-regulated
PIN aids accumulation if only because of its usual up-the-gradient behaviour.

Because of high cell anisotropy and pressure boundary conditions, the discrepancy
between stress of the short walls in the same layer and the longer walls in between layers
is wide (Fig. 5.5). Since empirically we observe auxin flows across layers [100, 151], to
explore how these can arise with the hypothesis highlighted in this work we will also
explore the impact of the amount of stress acting on walls parallel to the surface.

The difference of stress from layer to layer implies that patterning will most likely
occur in the cortex and epidermis. Since no auxin-response is observed in these three
layers at this stage, and PIN patterning herein found is better captured with canalisation
models, we choose to increase diffusion of auxin in these two layers enough such that no
patterns can develop. To couple diffusivity of two cell walls of each of those cells, we
use a wall-specific diffusion strength D↵� = 2D↵D�/ (D↵ +D�) , � 2 N↵ in the transport
equation. This expression captures some of the expected behaviour, such as if auxin
cannot diffuse through one of the compartments, then there is no diffusion across cells
possible. Another option would be to freeze auxin concentration at low levels in those
two layers. It seems reasonable from a biological perspective that these layers act as a
sink, yet dismissing a significant portion of cells in an already small lattice (along one
of its dimensions) is concerning regarding boundary effects. Furthermore, auxin is still
flowing through those cells and PIN can, in principle at least, redirect that flow into the
simulated region of the tissue. Short of simulating the flows from the root meristem to
the shoot apical meristem, there is little room for avoiding such drastic measures. To
ensure no patterns emerge we increase diffusion strength of auxin tenfold in the cortex
and epidermis.
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5.4.1 Mechanically-regulated PIN binding can explain response
to curvature

In this section we will go over a relatively simple experiment. We run the auxin transport
model while affecting the lattice or FCs of some perturbations. We will change cell turgor,
FC PIN availability, and stress of cell walls parallel to the surface. By comparing with
a control simulation with only auxin importers, we will be able to predict the impact o
efflux mediated transport in this system.

For these simulations, we pick the value of stress-PIN coupling ⌘ = 0.0001. In the
context of the parameter exploration of Chapter 4 this value would be comparable to 6.4.
This comparison is not entirely fair due to the variations in stress from wall to wall, but
gives us a rough estimate where to explore. This value can be obtained by taking base
wall stress used in previous simulations of about �0 = 20MPa and comparing it with the
computed value in the table of Appendix E of about �̄ ⇡ 0.5MPa, taking into account
the power-law with exponent n = 3. Pattern formation threshold is also different due to
changes in cell geometry where the ratio of area to perimeter is vastly different than that
of the regular hexagonal lattice.

By comparing with a control experiment with only auxin importers, we will be able
to gather some insight into which perturbations we expect to increase FC auxin levels,
helping auxin accumulation, and by how much relative to each other. We will, for now,
disable cell wall growth and focus solely on auxin accumulation. We start by simulating
auxin accumulation with only auxin influx carriers until t = 0.10 (which, with the param-
eters from the table in Appendix E would be 6min). We note that the high parameter for
influx carrier active transport requires us to decrease time step and so simulations become
more expensive. Being a compromise between precision and computational cost, we found
it to be enough time to draw conclusions about impact on accumulation (Fig. 5.7 A). This
will, at least, allow us to get a rough idea of the relative impact of each perturbation.
Initially, auxin concentration of FCs is at a = 15, which is subject to change due to the
initial geometry optimisation procedure. We will denote āFC

0
as the value of average FC

auxin concentration at t = 0.1 when considering auxin influx alone.

Now, we include mechanically-regulated PIN binding, vary mechanical quantities, and
measure the resulting auxin concentration at the same time point (Fig. 5.7 B). Instead of
adding an isotropic stress to all walls, we set initial rest lengths of the tissue such that the
average stress on walls is tT

� �0 0

0 �̄p

�
t where t is a tangent to some wall (the x-axis here

lies towards the surface and the y-axis along the root). Because the root architecture has
a high impact on wall stress of walls normal to the surface, we quantified stress in order
to account for any potential bias in the interpretation of the results (Fig.5.7 C).

Via simulating auxin transport of the tissue, we find that the parameter �̄p alters
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Figure 5.7: Simulation setup details and examples. (A) Average FC auxin concentration
for a simulation where we deactivated active auxin efflux. We observe that the total time
of the simulation is enough to estimate auxin concentration levels in the FCs. (B) Example
simulations at t = 0.1 when activating PIN-mediated auxin flux. From left to right: no
extra perturbation, increase in FC turgor pressure to T = 1.0MPa, and �̄p = 30MPa.
(C) Cell wall stress on the tissue when all cells have auxin a = 1. The FCs selected are
marked with ⇤. We can see a slight bias in wall stress in one of the walls of the FC and
an adjacent pericycle cell. This effect is also visible in B where the pericycle cell below
has always larger PIN density.

drastically the effect of mechanically-regulated PIN on auxin accumulation (Fig. 5.8 Left).
Surprisingly, mechanical regulation of PIN binding can have a detrimental effect if �̄p is
not high enough. If mechanical regulation of PIN binding is prevalent in this system,
then flows from the endodermis and the inner vasculature seem to play an important role
in maintaining FC fate. Auxin reflux from the endodermis as observed by [100] can be
explained via this mechanism alone, though it is to be expected from the up-the-gradient
nature of the auxin transport model in this setting.

We also decided to test other perturbations to FCs. We altered added turgor as it is
still unclear if there are transient turgor differences between FCs than their non-primed
neighbours. As auxin is accumulating in the FCs, we cannot dismiss the possibility that
cell turgor is increasing faster than water is able to flow out. We find that FC turgor
contributes positively to accumulation and it is even capable of rescuing, in part, the
negative effects of low �̄p (Fig. 5.8 Right). This is expected as the cell walls surrounding
the FCs are more strained and therefore flows are higher, but also stress on the shared
wall increases driving auxin flows from one FC to the other instead of out from the auxin
maxima, because of competition for a shared PIN pool. Continuous increase in turgor
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Figure 5.8: Effect of mechanically-regulated PIN binding relative to the case without
auxin exporters for different mechanical perturbations by simulating auxin transport until
t = 0.1. (Left) Changing initial stress on walls parallel to the surface, �̄p, is a major factor
in the effectiveness of auxin accumulation in the FCs. (Right) Effects of perturbation to
FC turgor, T , and FC PIN availability. The white bars represent the absence of other
perturbations (same results as on the left) for side-by-side comparison.

leads to very significant increases in FC auxin accumulation.

Next we decided to change the availability of PIN in the FCs. Reducing the number
of efflux carriers exporting auxin out of the FCs necessarily contributes to accumulation.
The question, however, is by how much, relatively speaking. In the low �̄p regime, the
effect of reducing the amount of available PIN to only 20% of its initial value is negligible
(Fig. 5.8 Right). At �̄p, however, it becomes of the same order of a ⇠ 50% increase in
turgor. We then combined the effects of increasing turgor and decreasing PIN to see
if these two perturbations compounded on each other significantly. From these data, it
seems they do not.

The strong dependence on stress of walls parallel to the surface is intriguing. As
mentioned, mechanically-regulated PIN binding emphasises the role of the endodermis in
auxin reflux as well as auxin flows from the vasculature. In fact, if low enough, the plant
would be better off not including mechanical cues into its efflux carrier polarity regulation,
when considering only their role in accumulation. Considering the two extremes of a
negilgible value and an infinite value, we have the �̄p parameter controls where PIN is
bound. A shift in PIN polarity from walls perpendicular to the surface to the LRP tip
was shown to happen to LRF during latter stages and is tied to the presence of cytokinin
in the LRP [165]. It would be interesting to reexamine the mechanical state of the lateral
root in those experiments via segmentation, and check if there is a significant correlation
between strain or stress and how PIN polarity is shifting. It would also be interesting to
revisit lateral root FC swelling upon changes of �̄p.

Another reason why the dependence on �̄p is fascinating, is what it predicts about
curvature. Some models have shown the impact of curvature on positioning of FCs based
on geometry [145]. It is shown experimentally that the convex side of the root is correlated
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with FC positioning [151, 153]. Bending a beam slightly is to imply a positive strain
along the beam axis on the convex side and a negative strain on the concave one. If
we assume we are on the convex side of the root bend, we expect larger stresses along
the root provided no variation of mechanical properties. This comparison becomes a bit
less straightforward when we consider the individual walls and turgor as opposed to a
beam composed of a single material, but the argument remains the same. We expect
an increase in curvature, therefore, to increase �̄p on the convex side and consequently
help FC auxin accumulation. This behaviour is inline with experimental observations.
The concave side would be affected by a contraction implying auxin efflux between layers
to be heavily impaired. Having predicted what happens upon a manual bending of an
unbent root, the mechanical state of the walls might change if walls are allowed to relax
through growth. It would be insightful to model the stress distribution resulting from
cell turgor across a curved portion of the root that is no longer growing. Nevertheless,
FC selection happens relatively early and the assumption that the tissue is fully mature
is not entirely applicable regardless. Note that curvature would imply a gradient of this
directional stress towards the surface. Even if one considers mechanically regulated PIN
binding in the cortex and epidermis, due to the highly stressed walls perpendicular to the
surface, the effect of this stress gradient would be less noticeable.

Turgor was increased by an almost unreasonable amount and only then were the effects
on the same scale as �̄p. It is very unlikely that biologically, cell turgor will be as high as
this in the FCs. All perturbations presented have the potential of having larger effects if
we reduce auxin active influx strength, of which we are uncertain. These results however,
allows us to observe how strong these responses are relative to each other. We note also
that we found that lowering auxin influx strength, Q can result in the auxin maxima to
either form elsewhere due to architecture or simply fail to maintain itself and fading out.
In both cases, the assumed auxin maxima vanishes over time. Then again, the value was
picked precisely on the assumption that it does not. Nevertheless, another promising way
to expand this study is in trying to figure out the shape of the curve defining the threshold
for auxin maxima sustenance in the parameter space (Q, T, �̄p).

Because architecture influences stress heavily, as seen by simulations of growth, it
will be insightful to study mechanical regulation of PIN binding in the context of FC
selection, namely if FC positioning correlates with pericycle wall strain as necessitated
by root architecture. To do that, it would be useful to include the root meristem and a
layer specific auxin transport properties in accordance with other models attempting the
same [144]. Because we want to impose the least amount of layer-specific constraints, so
as to test the impact of mechanics on auxin flows in different tissues, we will forego this
undertaking.

Even though these results would benefit from refinement, we are confident that are
representative of the ones we would obtain by running the program for a longer time, and
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Figure 5.9: Approximate polarity shift towards endodermis after stress relaxation of FC
shared wall (Eq. 5.6) as a function of stress of the wall facing the adjacent pericycle cell,
�0
q, and stress of the wall shared with the endodermis, �0

p. We used � = 10 and �0
sw = 5.

of the trends we would observe by improving parameter resolution. We have shown that
stress of walls parallel to the surface plays a defining role in the impact of mechanically-
regulated PIN binding during auxin accumulation. Introducing the dynamic element of
cell wall growth brings a different way to perturb the system mechanically.

5.4.2 PIN-growth dynamics can explain endodermal auxin pres-
ence

We intend to predict what happens to auxin transport if the shared cell wall grows as
is the case with the growth model we introduced. As observed for the growth model,
the shared wall will relax its stress while growing. If the stress of the shared wall is
dominating PIN binding, then auxin flows happen from FC to FC and do not hinder
auxin accumulation. If this wall were to undergo stress relaxation, then FC PIN carriers
can redirect to another wall. Flows back to the vasculature are unlikely especially since
we used stiffer walls for the vasculature by default and, by stress load division, are biased
one-way.

Upon stress relaxation of the FC shared wall, what happens to PIN polarity depends
on the stress distribution around the FC. In order to estimate how PIN reacts, we will
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compute the PIN polarity measure,

F =
X

�2NFC

lFC�

LFC
pFC�nFC�, (5.5)

where the basis is defined with the x-axis towards the surface and the y-axis towards the
neighbouring FC, nFC� is the normal to the wall separating the FC and cell � and it
points outwards from the FC. If bending modulus is high enough, we can approximate
the cell by a rectangle. Let � be the aspect ratio of the cell � > 1. Then we have l/L

can have the values (2(� + 1))�1 or �(2(� + 1))�1. We define �ref = E0(1 � r)Y , the
value of expected stress after full relaxation of the shared FC wall. Let �p denote the
stress of the wall compartment of FC adjacent to the endodermis, �q the stress on the FC
wall facing its non-FC percicycle layer neighbour, and �sw be the stress of the shared FC
wall. We will neglect stress towards the vasculature. Let �0

p = �p/�ref, �0
q = �q/�ref, and

�0
sw = �sw/�ref. We also assume all PIN is bound, which is effectively the limit ⌘ ! 1.

If we start with an initial stress �sw in the shared wall and it relaxes until it reaches the
threshold at �ref, then we can compute the endodermal component of the polarity shift
as
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where we made use of Eq. 3.26 and Eq.3.27. The condition �Fendo > 0, meaning an
increase in polarity towards the endodermis, is fulfilled when �0

sw > 1. In other words, as
long as growth happens we expect endodermal PIN polarity to shift towards the endoder-
mis. Of course this expression is an approximation that relies on stresses on other walls
to not change as much as the growing FC shared wall. This expression can be visualised
in Fig. 5.9 for values of �0

p and �0
q below the initial stress of the shared wall, such that PIN

is initially directed from one FC to the other. We observe that there is a region where
PIN polarity changes substantially. As the shared wall stress and �0

q approach each other
this polarity shift continues to drop. There is also an optimal value of �0

p above which
the endodermal polarity shift starts decreasing, meaning we cannot simply increase �̄p
indefinitely.

In regards to determining stress, for now �̄p, and by extensions �0
p, is a free parameter

and we do not know what value it should take unless we model mechanics more thoroughly.
The influence of architecture on FC selection definitely comes into play as it directly
determines stress of walls perpendicular to the surface. Our guess is that FCs would
select for high shared wall stress as it would have the least efflux-mediated leakage, under
the mechanically-regulated PIN binding hypothesis. Without explicit modelling of FC
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emergence, we cannot be certain of the relationship between the two. When we account for
auxin-mediated cell wall loosening, the stress of the shared wall can decrease drastically
depending on the value of r. On the other hand, auxin depletion in the neighbouring
pericycle cell would imply low stress in the same wall facing the FC via stress-load division.
Note that FC turgor favours stress in the shared FC walls.

If there is no high shared wall stress, then cell wall growth and, by extension, stress
relaxation predict no changes to PIN polarity. If there is high shared wall stress, then
stress relaxation via cell wall growth can bind towards the endodermis as seen in the
analytical approach. In our lattice and for our choice of FCs, we have higher wall stress
between one FC and an adjacent pericycle cell (Fig. 5.7 C). In order to be able to observe
a growth-related PIN polarity shift towards the endodermis, we will have to increase FC
turgor so as to increase the difference between �0

sw and �0
q.

As a proof of principle that this is the case we will simulate PIN polarity shift towards
the endodermis. To ensure the shared wall is stressed and dominates PIN binding we
chose T = 1.0MPa. We can then increase �̄p until it is lower than the shared wall stress
yet higher than the cell walls between FCs and the adjacent pericycle cells. We chose
a value of �̄p = 60MPa which, after stress load division roughly translates to �0

p = 4

(E0 = 300MPa, r = 2/3, and Y = 0.05). Unfortunately, the value of �0
p has to be this

high to distinguish PIN density in the wall shared with the endodermis and the wall
shared with the adjacent pericycle. Increasing bending modulus to kb = 1500MPa helps
clarify how cell turgor will impact cell wall stress2. To make PIN polarity shifts drastic
we bump stress-PIN coupling all the way up to ⌘ = 5.0.

We show that it is possible to find parameter regions where growth induces a PIN
polarity shift toward the endodermis is possible via simulation (Fig. 5.10). Because higher
cell turgor would result in aberrant cell shapes (as it overpowers the bending term), the
PIN reorientation observed was unfortunately minimal. These results may benefit from

2If the cell cannot bend as much, we can approximate the anisotropic root cells by a rectangle.
Consider a rectangle with sides p and q, p > q. The Hamiltonian, disregarding the bending term since
✓ = ✓0 for all angles of the polygon, can be written as

H = Ewp0

✓
p � p0

p0

◆2

+ Ewq0

✓
q � q0

q0

◆2

� Tpq.

The we find that a variation of energy upon a change of @p or @q, and setting it to zero so as to search
for an energy minimum, imply,

2Ew
p � p0

p0
= Tq 2Ew

q � q0

q0
= Tp,

i.e.
�p = E

p � p0

p0
=

Tq

2w
<

Tp

2w
= E

q � q0

q0
= �q.

Meaning stress on the shorter walls generated by turgor is larger than on longer walls in rectangles. This
is also explains why pressurising a rectangle would deform it into a square. Furthermore, we expect the
shared wall to have a higher tension as there is a contribution from each of the surrounding cells.
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Figure 5.10: Growth can change FC PIN polarity orientation towards the endodermis.
Simulation results for a simulation with kb = 1500MPa, T = 1.0 in FCs, ⌘ = 5.0,
and �̄p = 60MPa. By inspecting the simulation at different time points, we observe
that the shared FC wall is the FC wall with largest PIN density initially. By t = 1.0
we already observe that growth causes relaxation of that wall and, depending on the
stress distribution, what before was a flow from a FC to another is now from FCs to
the endodermis. Because auxin is not zero in all cells that are not FCs, there is growth
throughout the rest of the lattice.

choose FCs whose shared wall has highest stress. Assuming cell turgor cannot change
in FCs, then we can only answer if this is feasible from a biological perspective once we
analyse mechanically-regulated FC selection and its correlation with shared wall stress.
As it stands we can only state that this is a possibility arising from this hypothesis and
motivate the a new experiment. A FC PIN polarity shift towards the endodermis has not
been observed experimentally. It may very well be that it is impossible for biologically
relevant parameters and its absence tells us little about the overall mechanism. Although
there is a slight increase in endodermal auxin overlaying the FCs, we also have to take
into account for the likely overestimation of influx carriers derived from how the value of
parameter Q was set.

It may also be the case that a drop in FC influx carriers can explain a transient
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increase in endodermal auxin by diffusion, which could also explain the SHY2 response.
There might be endodermal influx carriers yet to be discovered which could also explain
this phenomenon. PIN carriers at the cortex might also play a role in endodermal auxin
presence.

It is also a concern that experimentally, auxin concentration is not what is usually
tracked but rather auxin response (DR5). Their relationship is assumed nonlinear, and it
was recently shown to be as such [166]. Therefore, the whole section on auxin transport
of this chapter has to be filtered through the possibility that auxin concentration changes
might ultimately not be empirically perceivable.

To summarise, the stress-coupling PIN hypothesis opens up the possibility of stress
relaxation of the shared wall, when swelling has yet to take place, to be able to redirect
auxin flows from the FCs to the endodermis, which could, in turn, unleash the auxin-
dependent endodermal SHY2 response.
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Chapter 6

Conclusion and outlook

As it stands, mechanisms underlying plant development can only be unveiled by the inclu-
sive consideration of mechanics. In this work, we inspect the hypothesis that mechanical
forces acting on plant tissue impact auxin flows during developmental patterning of dif-
ferent plant organs. Namely, we study unique features of the patterning mechanism this
hypothesis allows for, as well as predict the impact of the same interaction during the
development of the lateral root.

In order to accomplish this, we set forth a mathematical description of plant tissue
with a vertex model. We were able to conceptualise and develop analytical and compu-
tational tools to perform geometrical analysis of the tissue. The developed package is
not strictly for plant tissue and can be adapted to many other contexts in developmen-
tal biology as it is readily extendible. This package also includes differentiation so as to
improve geometrical optimisation of the tissue, and as a stepping stone towards simulat-
ing dynamics. We adopted a quasi-static approach to modelling cell elasticity and cell
turgor using the established framework. Furthermore, we also included a bending energy
description to accompany a simple wall-based elastic model. Having described mechanics,
we adopted and adapted previous auxin transport models to our particular mathematical
description of the tissue. Lastly, the interactions between auxin transport and mechanics
were introduced – auxin-mediated cell wall softening and mechanically-regulated auxin
efflux carrier binding.

The mechanism for auxin pattern formation of this hypothesis is sufficiently explained
[34], yet it does not account for seemingly subtle effects we found to be understated.
Namely, the interaction of turgor and stiffness gradients generates mechanical patterns
from auxin patterns with the capacity for enhancing the already accounted for feedback
based on cell wall rheology. Not only did auxin patterns become sharper, but also more
robust to noise in the parameter defining cell stiffness at basal auxin levels. Lastly,
considering the puzzling nature of spatial correlations of cell turgor, cell growth, and auxin
response, we predict that, even if turgor correlates with auxin maxima, the reciprocal is
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not necessarily verified.

Next we turn our attention to the system of LRF, specifically to the events after FC
establishment and leading up to the first round of cell divisions. The specificity demands
that we adapt the model to this setting. In this work, we chose to account for growth
and auxin influx carriers in addition to what was previously modeled. The addition of,
effectively, two models is quite cumbersome as the number of parameters we are required
to choose increases with it. The growth model, in particular, brought with it enough
complexity to warrant an analysis on its own. Using the wall-based elasticity model and
bending energy term along with growth of rest lengths proved insightful as to the nature
of, and the mechanical requirements for, lateral root FC swelling. By studying the auxin
transport model in this setting, and without growth, we explored how auxin accumulation
in the FCs is affected by several different perturbations. Most interesting of which is the
disproportionate effect of tension of periclinal walls due in part to its potential role in
endodermal auxin reflux. Based on these data, we speculate a mechanism for explaining
endodermal auxin reponses which we argue analytically and provide a proof of concept
for via numerics.

The mechanism by which developmental patterns in plants emerge is still far from
understood. Although computer models can help filter hypotheses before they set off
to the chopping block that is empirical testing, this process relies on quantification of
observables and validation of assumptions. In regards to auxin, a major obstacle to over-
come is to experimentally distinguish auxin concentration from auxin response. There is,
however, some encouraging developments in regards to methods for detecting auxin [166,
167]. Quantification of auxin spatio-temporal distribution at the shoot apical meristem
was recently obtained [166] and will, certainly, contribute to refinement of auxin trans-
port models. Furthermore, new insights regarding effects of auxin in PIN endocytosis are
challenging a portion of existing auxin transport models [168].

Measurement of mechanical properties and cell turgor continues to be a challenge,
which is prone to cause issues in verification of predictions herein made. Knowing the
mechanical state of the tissue generally requires aid from computer models and, even good
mechanical descriptions fall into the pitfall of having to assume cell turgor. Some recent
efforts have been done in order to attempt to model plant tissue development taking
into account water transport of the tissue [51, 52]. The falsification of growth and auxin
transport models may very well require precise measurements of such quantities. Recent
efforts in image segmentation improvements [169] inspire hope that, perhaps at some
point, changes in mechanical states can be inferred with enough precision to validate, or
falsify, assumptions made throughout all of plant development models.

From a theoretical point of view, it may be interesting to continue exploring the diver-
sity of patterns possible with the mechanical PIN binding mechanism tested throughout
this work. Specifically, it would be insightful to check what happens when changing the
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exponents associated with wall loosening and relative PIN binding rates, as well as the
Michaelis constant for active auxin efflux. Power law exponents, Hill coefficients, and
auxin concentration at half the response in feedback and transport have been shown to
be particularly sensitive parameters [73]. It would also be interesting to see how differ-
ent patterns respond to tissue-wide stress patterns. Just as we have observed shorter
wavelengths in auxin spots, different patterns might respond differently to tissue-wide
stress patterns or even, in extreme cases, cease to be stable altogether. Another question
that is worth tackling is what conditions have to be met for the mechanically-regulated
auxin transport model to behave as a canalisation model. Even if a stress gradient can
in principle explain it, it will be worth exploring if such a setting is reasonably found
in the relevant plant tissues. Another candidate is the existance of internal auxin gra-
dients which may help carve the mechanical property distribution required for such a
behaviour. Another promising, yet often overlooked, feature of auxin transport is the
apoplastic diffusion of auxin. By introducing both transcriptional and nontranscriptional
auxin responses in this setup it could be possible to understand which is more likely to
be involved in mechanically-regulated auxin transport.

As foreshadowed by the choice of a three-dimensional mathematical description and
the inclusion of curvature computations, a direction to take this work forward could be
outside the plane. Specifically, since the auxin spots are a characteristic of shoot apical
meristematic tissue, modelling the L1 layer embedded in three dimensions might bring
consequences to auxin spot size and pattern wavelength which were not taken into ac-
count. In keeping with the tight link of auxin, cell growth, and mechanical properties,
it would also be extremely interesting to probe how primordium outgrowth would affect
the surrounding auxin patterns. Namely, if the hypothesis we have is sufficient for proper
organ placement. With access to spatio-temporal auxin distributions opens up the possi-
bility to test the same models in regards to primordium outgrowth timing. Interestingly,
a very recent study manages to change shoot apical meristem cell size [170] and could, in
principle, provide an interesting test case for the studied mechanism.

On the subject of growth and auxin transport, implementation of cell division and
cell cycle might be required for comparable spatio-temporal patterning conditions. Plant
development of tissue in different geometrical settings might necessitate the inclusion of
stress dependent microtubule orientation and anisotropic growth. Microtubule orientation
will inevitably introduce anisotropy in mechanical properties of the cells. The analysis
done on the infinitesimal strain tensor estimation from the second moment of area (Ap-
pendix D) enables us to approximate anisotropic rest shape stress and build anisotropic
constitutive relations to that end. Including mechanical feedback of microtubule orienta-
tions has the potential to dramatically change what we might predict from auxin transport
models. Primordium outgrowth timing will almost surely change [93].

Another avenue along which to travel could be in trying to implement a water transport
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model alongside the auxin transport model and mechanical PIN binding model. Differ-
ences in concentration of solute and geometry will inherently affect turgor and might
result in phenomena not yet accounted for. With water flow and turgor, we can also tie
it back to cell growth and, effectively, extend the approach taken by, for instance, [51]
to include auxin transport and PIN binding. In the immediate future, however, it may
be rash to start including too many effects as the dimensions of the parameter space one
would have to search increases disproportionately.

Just as we have tried to approach the system of LRF, because most plant developmen-
tal systems are auxin-dependent [22], modelling different tissues could help testing auxin
transport models and PIN regulatory models. Numerical simulations of these systems may
help inform if some shared feature between systems has to be revised or, alternatively,
what components of the model are more likely to be tissue specific. Furthermore, tissues
of elongated cells will most likely benefit from the modelling of internal auxin gradients as
it may be crucial for determining the auxin transport mechanism. Since other hormones
interfere with auxin signaling, it may prove insightful to include, for instance, cytokinin
in models as this hormone has been shown to affect PIN polarity during LRF [165].

Following through with LRF and emergence might be another worthwhile endeavour.
Namely, understanding what mechanical constraints are required for the mechanically-
regulated PIN binding hypothesis resulting in the emergence of fountain-like patterns.
Another curious phenomenon is the robust establishment of an auxin gradient towards
the tip of the LRP. Alternatively, instead of continuing forward with the LRF stages, one
could also turn to the emergence of primed pericycle cells via auxin transport. Despite
having to model the root meristem, modelling mechanical regulation of PIN would prove
insightful as mechanics play a major role in FC positioning [151]. Another major issue it
would address is in clarifying the role of plant tissue architecture and how it relates to the
emerging founder cells. This particular insight is of such importance that it may affect
how to interpret the results we obtained in the previous chapter.

In order to corroborate the findings regarding lateral root FC swelling, it would be
interesting to probe the details of the remodelling triggered by auxin via SHY2. Namely,
to find out if and how FC swelling can be rescued by altering endodermal mechanics or
cell wall composition. Another key insight necessary for this particular clarification is
the relation between the several cell wall components to the bending modulus parameter
used here. This connection would be best expressed in the scope of statistical mechanics
of cross-linking filaments and would necessarily call for a completely different approach.
An effective rheological behaviour of the wall could, in principle, be achieved by doing
so and, by the same token, validation of the assumptions made when modelling growth
could be tested.

Although theoretical and numerical data was provided to show how the ingredients
explored in this work are suficient to explain endodermal auxin responses, it is still un-
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clear if the phenomenon described is possible in the LRF system. Evidently, as more
empirical data becomes available we can narrow down the window of uncertainty. The
results presented in this work still require a great deal of polish in order to ascertain this
mechanism’s likelyhood. If possible to prove it at least unlikely, then the lack of evidence
for it will not falsify mechanically-regulated auxin transport in this setting. On a more
positive note, we have an hypothesis to test.

Although the geometrical description was fully realised, computations of derivatives
of differential geometric quantities are still to be implemented in code. Namely, we still
have to implement derivatives of curvatures, mixed Voronoi region area, and normals,
with respect to vertex positions. Since it is not a focus of our particular work, and since
all systems we have dealt with are described as planar, it is also not a main concern
here. The structure used, however, is particularly suited for modelling two-dimensional
apical tissue surfaces embedded in three-dimensions. If accounting for cell divisions and
topological transitions of the tissue, we can promptly adapt a vertex model to many animal
systems, for instance drosophilla embryogenesis. Hence, we have a strong incentive to
implement and distribute the polygonal mesh analysis code, which we already took steps
to make it a python package and, therefore, straightforward to distribute. Specifically,
the computation of gradients is of particular usefulness for inspecting dynamics of such
systems.

The concept of mechanical regulation of tissue shape posited when introducing plant
development is not only true, but also ubiquitous to the extent that there is seemingly
no seam along which to tear its composing mechanisms apart. The move away from
an abstracted setting elucidated this by providing more questions than answers. Plant
development remains a fascinating example of coordinated growth responses to mechanical
cues with capacity to generate a large range of shape diversity. Just as interesting is the
key role auxin plays at the center of it all. The sheer amount of processes auxin is involved
in renders any attempt at quantifying its effects lacking in some way. Mechanically-
regulated auxin transport hypothesis remains a contender, yet the behaviour overlap with
other models make it extremely difficult to distinguish and, ultimately, to quantify its
prevalence.
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Appendix A

Shoelace formulas

Here we will provide a small overview of how to derive the expressions used for area, cen-
troid, and second moment of area of a two-dimensional polygon. The idea is to use Green’s
theorem in order turn surface integrals into line integrals. We will concern ourselves with
cases where the integration surface region is a simply connected one. By definition, the
three quantities we want are

A↵ =

¨
S↵

dS↵, Cµ
↵ =

1

A

¨
S↵

xµdS↵, Mµ⌫
↵ =

¨
S↵

xµx⌫dS↵. (A.1)

Because we are dealing with a polygon, the curve around it, @S↵, is discretised by
default and easy to parametrise. This means that a line integral of the form

˛
@S↵

F (x) · dl =
X

i2V↵

t|xi(t)=xi+1ˆ

t|xi(t)=xi

F (t) · dxi (t)

dt
dt. (A.2)

The parametrisation chosen here is

xi =
xi+1 + xi

2
+ t

xi+1 � xi

2
, t 2 [�1, 1[ , (A.3)

and hence the line integral above becomes,

˛
@S↵

F (x) · dl = 1

2

X

i2V↵

1ˆ
�1

F (t) · (xi+1 � xi) dt. (A.4)

Green’s theorem states
˛
@S

F · dl =
¨
S

✓
@F y

@x
� @F x

@y

◆
dS, (A.5)
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where F x and F y are the x and y components of vector field F . The question now
becomes, for each of the quantities we set out to compute, what is the vector field we use
such that we are performing the correct surface integral.

Area

For area we will choose the field F x = �y/2 and F y = x/2. This choice ensures the
integrand of the surface integral to be equal to 1. The integral, therefore, is

A↵ =
1

4

X

i2V↵

1ˆ
�1


�
✓
yi+1 + yi

2
+ t

yi+1 � yi
2

◆
(xi+1 � xi)+

✓
xi+1 + xi

2
+ t

xi+1 � xi

2

◆
(yi+1 � yi)

�
dt, (A.6)

Note that all odd powers of t integrated in the bounds [�1, 1[ vanish by symmetry. Re-
arranging the remaining terms, we get

A↵ =
1

8

X

i2V↵

1ˆ
�1

[2xiyi+1 � 2xi+1yi] dt =
1

2

X

i2V↵

[xiyi+1 � xi+1yi] . (A.7)

This is often called the shoelace formula.

Centroid

We will use F x = 0 and F y = x2/2 for computing the x component of Cµ
↵ . Hence,
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16A
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where the term x2

i yi is the same as x2

i+1
yi+1, since our sum is cyclic and has an arbitrary

starting point. To find the y component we can use F x = 0 and F y = xy instead. We
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get

Cy
↵ =

1

8A

X

i2V↵

1ˆ
�1

(xi+1 + xi + t (xi+1 � xi)) (yi+1 + yi + t (yi+1 � yi)) (yi+1 � yi) dt

=
1

12A

X

i2V↵

⇥
3 (xi+1 + xi)

�
y2i+1

� y2i
�
+ (xi+1 � xi)

�
y2i+1

� 2yiyi+1 + y2i
�⇤

=
1

6A

X

i2V↵

[xiyi+1 � xi+1yi] (yi+1 + yi) . (A.9)

Second moment of area

Lastly, we will have to compute the three independent components of the second moment
of area. Starting with the xx component, we use F x = 0 and F y = x3/3. Then, we can
write

Mxx
↵ =

1

48

X

i2V↵

1ˆ
�1

(xi+1 + xi + t (xi+1 � xi))
3 (yi+1 � yi) dt

=
1

24

X

i2V↵

(yi+1 � yi) (xi+1 + xi)
⇥
(xi+1 + xi)

2 + (xi+1 � xi)
2
⇤

=
1

12

X

i2V↵

(yi+1 � yi)
�
x3

i+1
+ x2

i+1
xi + xi+1x

2

i + x3

i

�

=
1

12

X

i2V↵

[xiyi+1 � xi+1yi]
�
x2

i+1
+ xi+1xi + x2

i

�
. (A.10)

With F x = �y3/3 and F y = 0 instead, we can simply swap x with y and flip the sign,
yielding

Myy
↵ = � 1

48

X

i2V↵

1ˆ
�1

(yi+1 + yi + t (yi+1 � yi))
3 (xi+1 � xi) dt

=
1

12

X

i2V↵

[xiyi+1 � xi+1yi]
�
y2i+1

+ yi+1yi + y2i
�
. (A.11)

For the last independent component, we can use F x = 0 and F y = x2y/2. We can
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write

Mxy
↵ =

1

32

X

i2V↵

1ˆ
�1

(xi+1 + xi + t (xi+1 � xi))
2 (yi+1 + yi + t (yi+1 � yi)) (yi+1 � yi) dt

=
1

24

X

i2V↵

⇥
2
�
y2i+1

� y2i
� �

x2

i+1
+ x2

i + xi+1xi

�
+
�
x2

i+1
� x2

i

� �
y2i+1

� 2yi+1yi + y2i
�⇤

=
1

24

X

i2V↵

[xiyi+1 (xiyi+1 + 2xiyi + 2xi+1yi+1)� xi+1yi (xi+1yi + 2xiyi + 2xi+1yi+1)]

=
1

24

X

i2V↵

[xiyi+1 � xi+1yi] (xiyi+1 + 2xiyi + 2xi+1yi+1 + xi+1yi) , (A.12)

where to obtain the last expression we added and subtracted the term xiyixi+1yi+1.
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Appendix B

Differentiation of geometrical
features

In this section we will derive and express the gradient of geometrical features presented
in chapter 2 with respect to vertex coordinates. These formulas are crucial for fast local
optimisation, extensively used throughout this work. Also, during this exercise extensive
use will be made of Einstein summation convention on upper indices. Sums on lower
indices will be made explicit, since these refer to faces or vertices. Upper indices will have
values 1, 2, 3 representing each component in three-dimensional space.

We will introduce the Kronecker delta for components,

�↵� =

(
1, ↵ = �,

0, ↵ 6= �,
(B.1)

as well as an analogous Kronecker delta for junctions, �ij. This will be useful as all
gradients eventually boil down to expressions containing,

@x↵
i

@x�
j

= �↵��ij. (B.2)

Another useful tool we will not shy away from using is the Levi-Civita symbol,

"�µ⌫ =

8
>><

>>:

1, (�, µ, ⌫) is a cyclic permutation of (1, 2, 3),

�1, (�, µ, ⌫) is an anticyclic permutation of (1, 2, 3),

0, � = µ, µ = ⌫, or ⌫ = �,

(B.3)

which will helps us describe cross products component-wise as

(a⇥ b)� = "�µ⌫aµb⌫ . (B.4)
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Other properties include, but are not limited to,

"�µ⌫ = "µ⌫� = "⌫�µ = �"�⌫µ = �"⌫µ� = �"µ�⌫ , (B.5)

and
"�µ⌫"⌫↵� = �↵���µ � �↵µ���. (B.6)

Furthermore, two recurring patterns which will be useful to call upon is the gradient
of the norm of a vector,

@ kuk
@x�

j

=
@
�p

u↵u↵
�

@x�
j

=
u↵

p
u�u�

@u↵

@x�
j

, (B.7)

and the gradient of a normalisation procedure,

@ũ

@x�
j

=
@ (u/ kuk)

@x�
j

=
@
�
u↵/

p
u�u�

�

@x�
j

=
1p
u�u�

 
@u↵

@x�
j

� ũ↵ũ�@u
�

@x�
j

!
. (B.8)

Lastly, a quantity which appears recurrently is the norm of the cross-product. First
we note that any cross-product can be written as a product of a matrix and a vector, as
such,

"�µ⌫aµb⌫ = K�⌫b⌫ . (B.9)

The matrix K is often called the cross product matrix. When differentiating the norm,
we get a term such as,

@ ka⇥ bk =
a⇥ b

ka⇥ bk · @ (a⇥ b) =
"�µ⌫aµb⌫

ka⇥ bk "
�⇠⌘
�
b⌘@a⇠ + a⇠@b⌘

�
. (B.10)

If we identify the first factor as a normal unit vector k to the plane spanned by a and b,
then we can write,

@ ka⇥ bk = "⌘�⇠k�
�
b⌘@a⇠ + a⇠@b⌘

�
= K⌘⇠

�
b⌘@a⇠ + a⇠@b⌘

�
. (B.11)

Adapting to our geometrical setup we will define for vertices,

Kµ⌫
ijk =

"��⇢
�
x�
j � x�

i

�
(x⇢

k � x⇢
i ) "

µ�⌫

k(xj � xi)⇥ (xk � xi)k
, (B.12)

as well as with respect to a centroid, X↵,

Kµ⌫
↵ii+1

=
"��⇢

�
x�
i �X�

↵

� �
x⇢
i+1

�X⇢
↵

�
"µ�⌫

k(xi �X↵)⇥ (xi+1 �X↵)k
= "µ�⌫

n�
i

2ai
, (B.13)
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B.1 Geometrical quantities

We will go through most quantities defined in Section 2.2. Unfortunately, curvature
and mixed Voronoi region area, circumcenter, and normal unit vector become difficult to
compute and implement. Since we are not dealing with these quantities in the results of
this work, we were not compelled to derive them at this point in time. It will be useful
to get these ones down when moving to three-dimensions and is, therefore, an immediate
goal for the outlook of this work.

Segment length and polygon perimeter

Since,
lij = kxi � xjk =

q�
x↵
i � x↵

j

� �
x↵
i � x↵

j

�
, (B.14)

by differentiating with respect to x�
k , we obtain,

@lij

@x�
k

=
x↵
i � x↵

j

lij

 
@x↵

i

@x�
k

�
@x↵

j

@x�
k

!
=

x�
i � x�

j

lij
(�ik � �jk) . (B.15)

Furthermore, the gradient of the perimeter of cell ↵ is given by

L↵ =
X

i2V↵

li+1i, (B.16)

which when differentiating yields

@L↵

@x�
j

=
X

i2V↵

@li+1i

@x�
j

=
X

i2V↵

x�
i+1

� x�
i

li+1i
(�i+1j � �ij) =

x�
j � x�

j�1

ljj�1

�
x�
j+1

� x�
j

lj+1j
, (B.17)

if j 2 V↵, otherwise it would be null. In order to avoid repeating this caveat over and
over again, we will assume henceforth that the differentiation is only done with respect
to vertices pertaining to the particular quantity being differentiated.

Centroid

This is where we pay the price for the restrictions we placed upon ourselves when attempt-
ing to define a centroid of a polygon embedded in three-dimensional space. Starting from,

X↵ =

P
i2V↵

li+1i

´
1

�1
Ci (t) dt

2L↵
, (B.18)
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by differentiation, becomes

@X�
↵

@x�
j

=

P
i2V↵

li+1i

´
1

�1

@C�
i (t)

@x�
j
dt

2L↵
+

P
i2V↵

@li+1i

@x�
j

´
1

�1
C�

i (t) dt

2L↵
� X�

↵

L↵

@L↵

@x�
j

=

P
i2V↵

li+1i

´
1

�1

@C�
i (t)

@x�
j
dt

2L↵
+

1

2L↵

8
<

:
x�
j � x�

j�1

ljj�1

1ˆ
�1

h
C�

j�1
(t)�X�

↵

i
dt

�
x�
j+1

� x�
j

lj+1j

1ˆ
�1

h
C�

j (t)�X�
↵

i
dt

9
=

; , (B.19)

where we notice that @li+1i/@x
�
j inside the sum selects for the same terms as @L↵/@x

�
j .

For the first term, we need to go back to the definition

C�
i (t) =

P
j2V↵

Aij (t)C
�
ij (t)P

j2V↵
Aij (t)

, (B.20)

and differentiate in a similar fashion to before,

@C�
i (t)

@x�
k

=

P
j2V↵

Aij (t)
@C�

ij(t)

@x�
kP

j2V↵
Aij (t)

+

P
j2V↵

@Aij(t)
@x�

k

h
C�

ij (t)� C�
i (t)

i

P
j2V↵

Aij (t)
. (B.21)

The similarity between both expressions arises due to both being averages. Now we
tackle,

C�
ij (t) =

x�
i (t) + x�

j + x�
j+1

3
, Aij (t) =

1

2

q
⇠�ij (t) ⇠

�
ij (t), (B.22)

⇠�ij (t) = "�µ⌫
�
xµ
j � xµ

i (t)
� �

x⌫
j+1

� x⌫
i (t)

�
x�
i (t) =

x�
i+1

+ x�
i

2
+ t

x�
i+1

� x�
i

2
, (B.23)

from which we will start proverbially hitting chain rule bedrock.

Since Aij (t) is simply one half the norm of ⇠�ij (t),

@Aij (t)

@x�
k

=
⇠�ij (t)

4Aij (t)

@⇠�ij (t)

@x�
k

. (B.24)

We now proceed from the bottom up,

@x�
i (t)

@x�
k

= ���
✓
1 + t

2
�i+1k +

1� t

2
�ik

◆
, (B.25)
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@⇠�ij (t)

@x�
k

= "�µ⌫
✓
�µ�

�jk �

1 + t

2
�i+1k �

1� t

2
�ik

� ⇥
x⌫
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� x⌫
i (t)

⇤

+�⌫�
⇥
xµ
j � xµ

i (t)
⇤ 
�j+1k �

1 + t

2
�i+1k �

1� t

2
�ik

�◆
,

where we can now make use of the antisymmetry of the Levi-Civita symbol to contract
the Kronecker deltas, rename dummy indices, and rewrite

@⇠�ij (t)

@x�
k

= "��⌫
✓
�jk
⇥
x⌫
j+1

� x⌫
i (t)

⇤
� �j+1k

⇥
x⌫
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i (t)
⇤

�

1 + t

2
�i+1k +

1� t

2
�ik

� ⇥
x⌫
j+1

� x⌫
j

⇤◆
. (B.26)

To complete the expression of @Aij (t) /@x
�
k, it will facilitate writing if we reintroduce

u⌫
ji (t) = x⌫

j � x⌫
i (t) , u⌫

kj = x⌫
k � x⌫

j . (B.27)

The expression becomes,

@Aij (t)

@x�
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=
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4Aij (t)

✓
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◆
⇠�ij (t) . (B.28)

We will use the cross product with a unit vector shorthand, K�⌫
ijj+1

(t) = "��⌫⇠�ij (t) / (2Aij (t)),
in the expressions to follow.

The gradient of the centroids Cij (t) is much simpler,
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���
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. (B.29)

We can now go back to C�
i (t),
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(B.30)

Albeit hectic, we would now replace this expression in the centroid. We first note that we
will use Gaussian quadrature on all non-immediate integrals in the resulting expression.
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This means that we prefer the sum in i to be inside the integral, and all Kronecker deltas
resolved. Then we will be left with several integrand functions of polygon geometry which
can be evaluated at any t in order to perform the quadrature. The difference between
each C�

ij (t) and the average value C�
i (t) shows up quite a bit, as well as in its analogous

expression regarding C�
i (t) and X�

↵ . We will abbreviate this difference with �Cij (t)
�

and �Ci (t)
�, respectivelly. Hopefully we can simplify it ever so slightly. We will proceed

term by term in @C�
i (t) /@x�

k. For the first term, the corresponding term in @X�
↵/@x

�
j

becomes
���

6L↵
(ljj�1 + lj+1j) ,

since the integral is immediate and the Kronecker delta makes short work of the summa-
tion in i. The second term is

���

6L↵

1ˆ
�1

X

i2V↵

lii+1

Aij (t) + Aij�1 (t)P
k2V↵

Aik (t)
dt.

In the next term, we end up swapping one sum for another, yielding

1

8L↵

1ˆ
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0X
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h
1 + (�1)l t
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P
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Aj+l k (t)

X

i2V↵

K�µ
j+l ii+1

(t) uµ
i+1i�C�

j+l i (t) dt,

where we renamed dummy indices and introduced a new sum to encapsulate both terms.We
will do the same with the next and final terms, resulting in

1
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Finally, going back to the centroid gradient expression, we can rewrite it as
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Area

Having the centroid defined, and now the centroid gradient, it becomes quite straight-
forward to compute area gradient. Starting from the expressions of area, now written
component-wise as

A↵ =
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q
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i n
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i n�
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x⌫
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�X⌫
↵

�
, (B.32)

we first note that it is just a norm of a vector and write
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As for n�
i , we make use of the fact we know the centroid gradient and use the chain

rule,
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Replacing back onto @A↵/@x
�
j yields
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This expression can be rewritten in a more compact form when using the matrix K as
defined earlier. Hence, we can also write,
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Normal unit vector

The expression for the normal unit vector,
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can be differentiated by invoking the derivative of a normalisation procedure, as well as
comparing the terms of the sum in N�

↵ with that of vectors n�
i . We have,
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and
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Volume

The expression for the volume gradient becomes relatively simple when using the results
above, since volume is computed with,

V =
MX

↵=1

v↵, v↵ =
1

6
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↵X
�
↵. (B.40)

We start by working the terms v↵,
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For the total volume gradient with respect to vertex j we then have to sum these contri-
butions for each of the surrounding faces, i.e.,

dV

dx�
j

=
X

↵2Nj

@v↵

@x�
j

. (B.42)

We could perform a similar operation in regards to obtain total surface area gradient from
face area, A↵.

Mixed Voronoi Area

From this section onwards we will consider the triangulated surface only. A useful quantity
to track is the cross product between two of the sides of the triangle ijk,

m�
ijk = "�µ⌫uµ

jiu
⌫
ki, (B.43)
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i.e., the cross product of position of j with position of k, relative to i. Note that the
vectors m�

ijk are the same upon a cyclic permutation of the indices, since they refer to the
same direction and area. The cotangent of an angle can be rewritten, using the inner and
cross products, as

cot (✓ijk) =
u�
kju

�
ijq

mµ
jkim

µ
jki

=
kukjk kuijk cos (✓ijk)
kukjk kuijk sin (✓ijk)

(B.44)

Recall the mixed Voronoi area of a triangle is
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ijk =

8
>>>>>>><

>>>>>>>:

q
m�
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�
ijk

4
, uµ
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µ
ki  0,

q
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8
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kju
µ
iju

⌫
iku

⌫
jk  0,

AVoronoi
ijk , otherwise,

(B.45)

where the three expressions correspond to the area of the mixed region assigned to an
obtuse angle, an acute angle of an obtuse triangle, and any angle of an acute triangle,
respectively. The Voronoi region area in the third expression is,

AVoronoi
ijk =

uµ
kiu

µ
kicot (✓ijk) + uµ

jiu
µ
jicot (✓jki)

8
(B.46)

For each triangulated vertex, we then sum over all triangles around it,

Amixed
i =

X

j2Ti

Amixed
ijj+1

. (B.47)

We will make extensive use of the area of the whole triangle ijk, Aijk. We have

Akij = Ajki = Aijk =
1

2

q
m�

ijkm
�
ijk, (B.48)

since the area is the same regardless where at which vertex we center the cross product.
The gradient of the area is,
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l

=
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µ
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µ
ik + �klu

µ
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�
, (B.49)

where in the last line we used the definition of the cross product matrix K. Note that
K�µ

ijk has the same symmetry properties as m�
ijk does. In the above expression we can

combine any cyclic permutation in the indexation of K with any other cyclic permutation
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of the indices of A to suit a particular situation. With this, the obtuse triangle case is
essentially done. Furthermore, the gradient of the cotangent is

@cot (✓ijk)

@x�
l

=
1

2Aijk

 
(�kl � �jl) u

�
ij + (�il � �jl) u

�
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!
(B.50)

We can now differentiate the Voronoi region area,
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. (B.51)

We note the last term contains the Voronoi region area once again. We unfold the first
two contangents an rearrange terms, yielding
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, (B.52)

where we made liberal use of u↵
jk = u↵

ji + u↵
ik and u↵

ji = �u↵
ij. The total mixed region

area gradient for vertex i can be done by summing over the adjacent triangles. Since the
expression for the area of each triangle may vary, we cannot assume a general form for
the summation.

Mixed Voronoi region intersection point

As stated in the main text, it is useful to determine exactly where the perpendicular
bisectors of a triangle intersect, so that we can give shape to the mixed region. This will
be required to differentiate the vertex normals. The intersection coordinates, x⇤�, depend
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on if the triangle is obtuse or not, and is

x⇤�
ijk =

8
>>>>>>>>><

>>>>>>>>>:

x�
j + x�
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2
, uµ
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�
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(B.53)

where xcirc
ijk

� is the circumcenter of the triangle ijk given by,
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ijk
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ijk
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This form emphasises the position of vertex i. We can get a more symmetric form for it
by asserting that the intersection point would be the same regardless of which vertex we
use for computing the expression above. Therefore,
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, (B.55)

leading to
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where we identify the centroid of the triangle,

Cijk
� =

x�
i + x�

j + x�
k

3
, (B.57)

and we will define the vector

Bµ
ijk = uµ

kiu
�
kiu

�
ki + uµ

iju
�
iju

�
ij + uµ

jku
�
jku

�
jk, (B.58)

which will be helpful later and is symmetric upon cyclic permutation of vertices.

The obtuse case is immediate and, hence, we will only worry about differentiating
xcirc�

ijk. Recall

K�µ
ijk =

"�⌫µm⌫
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2Aijk
, Aijk =

1

2
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⌘
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These expressions were heavily used in the last section. We just need the gradient of K�µ
ijk.
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To summarize, because
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we have

@Kµ⌫
ijk

@x�
l

=
"µ�⌫

2Aijk

 
@m�

ijk

@x�
l

�
m�

ijk

Aijk

@Aijk

@x�
l

!

=
1

2Aijk

⇣
��⌫�µ⌘ � ��µ�⌫⌘ �Kµ⌫

ijkK
�⌘
ijk

⌘ �
�ilu

⌘
jk + �jlu

⌘
ki + �klu

⌘
ij

�
. (B.61)

We can write
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The second term contains a diagonal term and one with the derivative of area. We
distribute K�µ

ijk in the last term. We group what we can, leading to
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Vertex normal unit vector

As described in Chapter 2, we now use the path around the mixed region of a vertex
with the same equation used for each face. We need to keep in mind that for each
neighbouring triangulated vertex, we can potentially have one more point to worry about,
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the circumcenter. With this in mind, we write the expression,

M�
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Note that if the triangle is obtuse at j or j + 1, one of the term disappears since the
positions merge. Since the expression ultimately depends on the case at hand, we are
limited on how much we can simplify.

The gradient is,
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What we need, however, is the normalised quantity
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. (B.66)

For this we just have to apply the derivative of a normalised quantity defined at the
beginning of this appendix,
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Tissue curvature

In a way, the last three sections are building up to be able to differentiate curvature. We
start by writing down Gaussian curvature,

K (xi) = Ki =
2⇡ �

P
j2Ti

✓j+1ij

Amixed
i

. (B.68)

We note that we can write

✓j+1ij = arccot (cot (✓j+1ij)) , (B.69)

145



where the cotangent was extensively used in computing the Voronoi region area and its
gradient. Using the chain rule, we have
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Therefore,
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If one assumes l to be either i or 2 Ti, we can separate between the term in �il and 1� �il
for the terms relating to �jl and �j+1l. This procedure results in
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As for mean curvature,
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We can separate terms just as above and substitute all quantities we need, resulting
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in
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Where we would only have
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left to compute.

B.2 Projected coordinate system gradient transforma-

tion

This section will focus on figuring out the gradient of a function of projected coordinates
in the original reference frame. Recall we performed two transformations consecutively.
The first is a rotation to the reference frame where the normal unit vector to a face, wµ

↵,
defines the êz0 direction. The second was a translation to the projected centroid, Cproj

↵
µ0

.
In short, we intend to compute for each face,
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We will start by differentiating
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Starting with,
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we then proceed to differentiating the centroid,
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Notice that these expression can be written in terms of the local projected coordinate
system. Thus they can be written as
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and
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All that is left is the transformation itself,
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hence,
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Now we consider the rotation from the original reference frame to the one where the
fitted plane to a particular face lies on the x00Oy00 plane. We have
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where � is the index of the chosen basis unit vector used to start the Gram-Schimdt
orthonormalisation (usually � = 1). Note that we already explored the expresison and
gradient of the face normal unit vector, wµ

↵. It is relatively straightforward to obtain
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@xproj
i
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where some simplifications took place because the three basis vectors are orthogonal.
We can merge both expressions if we construct the matrix L such that L1⌫

↵ = u⌫
↵ and

L2⌫
↵ = v⌫↵ (and even L3⌫

↵ = w⌫
↵ if one desires to store the z-coordinate after rotation,

instead of projecting immediately). We can rewrite the expressions above as
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. (B.101)

Going back to the gradient transformation, using this matrix leaves us with
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. (B.102)

Now, given a function of local projected coordinates of face ↵, we can translate the
gradient of that function with respect to the local projected coordinates to the gradient
with respect to the actual vertex coordinates. We also note that all terms can be com-
puted with access only to the initial frame of reference and the projected coordinates
after translation to the projected centroid. The intermediate coordinates need not be
stored.
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Appendix C

Conservative mechanical forces

In this chapter we will derive the gradient of all mechanical energy terms introduced in
Section 3.1. This is effectively computing conservative mechanical forces (save for a minus
sign) acting on the tissue. We will proceed term by term. We will make heavy use of the
notation and results presented in Appendix B.

Cell-based elastic energy

Since we are setting c2 = 0, the expression of elastic energy for cell ↵ is

Helastic
↵ = Aproj

↵ hc1↵
kM↵ �M0↵k2F
Tr2 (M0↵)

. (C.1)

We will differentiate with respect to the local projected coordinate system and transform
back with Eq. B.102. Then, for each vertex, we have to sum all contributions to this term
from all adjacent cells,

dHelastic

dx�
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=
X

↵2Nj
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j

. (C.2)

Written component-wise, the partial derivative in the local projected frame of reference
is
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. (C.3)

The first term can be immediately computed, since we have access to the projected area
gradient through Eq. B.87.

We can rewrite the shape matrix in terms of components of local projected coordinates,
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where
Sµ0⌫0

i = xµ0

i x
⌫0
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The cross product differentiation is
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The remaining factor becomes
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Using the derivative of the product, the shape matrix gradient is
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Although the previous expression encapsulates all terms, we will unpack all six (Mµ0⌫0
↵

is symmetric) relevant expressions,
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Wall-based elastic energy

In comparison, the wall-based elastic term is much simpler and requires no transformation.
Since stiffness might be cell dependent, we will derive the gradient of elastic energy of cell
walls surrounding cell ↵,
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Note that here we are using vertex-based indexing for cell walls. After differentiation, it
becomes
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where "i+1i is longitudinal wall strain and we introduce the wall unit tangent vectors
tµji = uµ

ji/lji which will be useful for the bending energy term. All that is left is to add,
for each junction, all contributions from the surrounding cells,

dHelastic
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Wall-based bending energy

Recall the bending energy for cell ↵,

Hbending
↵ =

1

4
kb↵E↵h

X

i2V↵

(ti+1i � t0i+1i)
2

li+1i + lii�1

, (C.18)

153



where we used the version with wall tangents to avoid using inverse trigonometric functions
later on. Note that t0i+1i = t0i+1i (✓0), and is expressed as

t0
µ
i+1i = cos (✓0) t

µ
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2
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where Ri is the rotation matrix,
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around the unit vector,
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If ti+1i and tii�1 are colinear we continue to previous edges, for instance, ti�1i�2, until we
find another edge that, along with ti+1i, spans a plane for which we can compute k�

i . For
most cases, considering the previous edge is sufficient, and so we will assume k�

i is always
well-defined. We can rewrite the rotation matrix simply as,
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by contracting the Levi-Civita symbols in the third term. Because k⌫
i is normal to t⌫ii�1

,
it follows that
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Up until now, this description is valid for any collection of cell walls in three-dimensional
space. Another possible approach is to use the cell normal unit vector wµ

↵ instead of kµ
i ,

effectively treating the bending term in the projected coordinate system. As mentioned
before, we are interested in using the bending term exclusively for planar systems. In the
plane, the vector kµ

i is simply the unit vector normal to the plane and is kept constant
and is the same for all vertices, for all faces.

We will require
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The derivative of the target tangent is,
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Now,
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which we can rewrite as,
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where, to simplify notation we used li = li+1i, tµi = tµi+1i, and �tµi = tµi+1i � t0
µ
i+1i.

Turgor and internal pressure gradients

Having the expressions for the area and volume gradients, these derivatives are quite
straightforward. For turgor,

Hturgor
↵ = �T↵A↵h, (C.28)

the total derivative with respect to one of the junctions becomes,
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where we have already computed the area gradient in Eq. B.36.

The expression for a volume term of the form �PV would use the gradient of the
volume instead (Eq.B.42).
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Appendix D

Rheology of the cell-based elastic
model

In accordance to the model presented in Section 3.1.1 the elastic energy density is given
by

 = c1
Mµ⌫ �Mµ⌫

0

M↵↵
0

Mµ⌫ �Mµ⌫
0

M��
0

+
c2
2

Mµµ �Mµµ
0

M ⌫⌫
0

M↵↵ �M↵↵
0

M��
0

, (D.1)

where the upper indices signify components and we use Einstein notation of implicitly
summing over repeated indices. The matrices two-dimensional matrices M and M0 cor-
respond to the second moment of area of the projection of a cell on plane fitted to the
cell’s three-dimensional representation, and its target value. With this setup, we will have
access only to the current configuration, from which we can compute the shape matrix,
M , and its target value, M0. In this section we attempt to answer how, from M and M0

we can retrieve average strain acting on the cell, the corresponding stress (the constitu-
tive relation), and how can we compare c1 and c2 to other typical mechanical parameters
such as the Lamé parameters, or the more commonly used Young’s modulus and Poisson
ratio.

The infinitesimal strain tensor, as it is defined, is the symmetric part of the gradient
of the displacement vector field describing the difference in position between each volume
element of a rest configuration and its current position in the deformed configuration.
We make note, at this point, that having only M and M0 prohibits us from uniquely
defining a rotation and a strain simultaneously, in general. For example, if we let M0

be diagonal and anisotropic, and obtain M by rotating it ⇡/2 radians, we could obtain
the same end shape matrix, M , by appropriately contracting and stretching space along
the cartesian axes. By using the infinitesimal strain theory to describe deformations, we
already concede to the assumption of small strains and to the assumption that M and
M0 are not connected by a rotation.

A strain of "µ⌫ implies that the material being deformed, apart from rotation and
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translation, is locally under the effect of the linear transformation ⇤µ⌫ = �µ⌫ + "µ⌫1. Now,
we turn our focus to the shape matrix, which is simply the second moment of area of a
polygon whose centroid coincides with the origin,

Mµ⌫ =

¨
S

xµx⌫dxµdx⌫ , (D.3)

where S here represents the points inside the cell. Under a linear transformation, xµ0
=

⇤µ0⌫x⌫ ,
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We make the assumption that an average strain is acting on the polygon such that
M0 transforms into M , implying

Mµ⌫ = det (I + ") (�µ↵ + "µ↵)
�
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�
M↵�

0
, (D.5)

where I is the identity matrix. Note that det (I + ") = 1 + Tr (") + det ("). Under the
small strain assumption we will discard terms of order O ("2) and higher, resulting in the
equation,
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To aid this computation we introduce the transformation of symmetric 2⇥2 matrices
to vectors in R3
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Although we have the freedom to assert that the new basis is orthonormal, i.e., hei, eji =
�ij, this has implications on if and how the inner product rule, h·, ·i, can be represented in
the initial cartesian coordinate basis. It turns out we can easily find a bilinear operation
in the initial cartesian coordinates which accomplishes the intended orthogonality rule.
Let hA,Bi =

P
i

P
j A

ijBij. This rule ensures hei, eji = �ij and, because of this fact, we

1From the Taylor expansion of displacement vector, u = x0 � x, around x0,
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can write hei, Ai = Ai. Hence, transforming back and forth is straightforward,
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We also want to rewrite typical matrix operators for these types of objects, namely,
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We are now in position of applying the one-form hei, ·i to both sides of Eq. D.6, yielding
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where �M = M �M0. For each basis vector we have,

e1 :
p
2 ("x↵M↵x

0
+ "y↵M↵y

0
) =

p
2

2

��
"1 + "2

� �
M1

0
+M2

0

�

+
�
"1 � "2

� �
M1

0
�M2

0

�
+ 2"3M3

0

�
=

p
2
�
"1M1

0
+ "2M2

0
+ "3M3

0

�
, (D.13)

e2 :
p
2 ("x↵M↵x

0
� "y↵M↵y

0
) =

p
2 ("xxMxx

0
� "yyMyy

0
) =

p
2

2

��
"1 + "2

� �
M1

0
+M2

0

�

+
�
"1 � "2

� �
M1

0
�M2

0

��
=

p
2
�
"1M2

0
+ "2M1

0

�
, (D.14)

e3 :
p
2 ("x↵M↵y

0
+ "y↵M↵x

0
) =

p
2

2

��
"1 + "2

�
M3

0
+ "3

�
M1

0
+M2

0

�

+"3
�
M1

0
�M2

0

�
+
�
"1 � "2

�
M3

0

�
=

p
2
�
"3M1

0
+ "1M3

0

�
. (D.15)

In this new basis, the same set of equations can therefore be written as
p
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The determinant of this linear system of equations is
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If M0 was indeed computed from a polygon with Eq. D.3, then M0 is symmetric and
positive-definite2, and the previous linear system of equations has the solution,
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We can express the result in terms of the 2⇥2 cartesian matrices as
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For an isotropic rest shape we replace M0 = m0I, Tr (M0) = 2m0, det (M0) = m2

0
, and

M0 : A = m0Tr (A), and get
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We can also rewrite the energy density, yielding
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We simply have to differentiate to obtain stress, �, by definition. By using Eq. D.16, the

2Let y
µ be a any two-dimensional unit vector and the region of integration, S, not be a single line or

point, then

yT
My = y

µ

¨
S

x
µ
x
⌫dSy

⌫ =

¨
S
(xµ

y
µ)2 dS > 0.
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components are simply3,
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or, in matrix notation,

� = 2c1
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For an isotropic rest shape matrix, we get

� = 2c1
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. (D.28)

Lastly, the constitutive relation,

�i = C ij"j, (D.29)

is obtained by differentiation once again, C ij = @�i/@"j. Note that Schwartz’s theorem
ensures C ij is symmetric. Proceeding in the same way as for the stress components, the
components of C ij are, therefore,
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3Note that, using the chain rule,
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For an isotropic rest shape, M2

0
= M3

0
= 0, the stiffness matrix is diagonal with compo-

nents,

C11 = 8 (c1 + c2) , C22 = 2c1, C33 = 2c1. (D.33)

The energy density for a linear elastic isotropic material is

' = µ"µ⌫"µ⌫ +
�

2
("µµ)2 , (D.34)

where � and µ are the first and second Lamé parameters of the material under strain ".
Using the representation developed here, we could equivalently write

' = (µ+ �)
�
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+ µ
�
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+ µ
�
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�2

. (D.35)

For a linear elastic isotropic material, therefore, the stiffness matrix is diagonal and can
be written as

C 011 = 2 (µ+ �) , C 022 = 2µ, C 033 = 2µ. (D.36)

Since the stiffness matrix of the second moment of area model is not diagonal, we cannot
generally find a mapping between the constants c1, c2, µ, and �. Nevertheless, for an
isotropic rest shape matrix we can find c1 and c2 as a function of µ and �, and vice-versa.
The result of the linear system of equations C ij = C 0ij is

c1 = µ, c2 =
�� 3µ

4
, � = 3c1 + 4c2, (D.37)

or in terms of Young’s modulus, E, and Poisson’s ratio, ⌫,
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During this work we have exclusively used isotropic rest shape matrices. We note here
that, in this specific case, the eigenvectors of (M �M0) /Tr (M0) are the same as the ones
of strain and stress.
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Derivation of Auxin Transport Model
Geometrically, we consider the epithelial tissue to be composed of cells shaped as right prisms with the same height
h. Effectively, under this assumption we can reduce the dimensionality of the system by considering just the shape of
the base of the cells. We will also assume that the thickness of the walls is thin enough such that the volume of the
cell is approximately hA↵, where A↵ is the area of the base of the cell. Let ⇢ denote auxin concentration. Assuming
auxin gets expressed at a rate � per unit time and unit volume, and each auxin molecule decays at a rate � per unit
time, we can write the continuity equation inside any cell as

⇢̇+r · J = � � �⇢. (1)

where J is local current density of auxin.
Focusing on cell ↵, we can integrate inside the cell to obtain,

Ṅ↵ +

"
S↵

J · n̂dS = hA↵� � �N↵, (2)

where we assume the volume V↵ does not change over time, S↵ is the surface enclosing volume V↵, and N↵ represents
the number of auxin molecules inside cell ↵. Another assumption we make is that the flux of J across the bases of
the cell is zero, resulting in just flux across neighbours within the same layer.
To simplify notation we define N↵ as the set of all regions on the other side of each wall surrounding cell ↵. This set
will contain the neighbouring cells. Note that with this definition there can be multiple occurrences of the same cell
within the set, yet referred to as different regions. We can now uniquely refer to wall compartments around a cell
with ↵� or �↵, � 2 N↵.
If we let the wall between cells ↵ and � 2 N↵ be of length l↵� with normal vector n̂↵� pointing from ↵ to �, then
we can replace the surface integral by a sum of line integrals,

Ṅ↵ + h

X

�2N↵

ˆ
l↵�

J (r) · n̂↵�dl = hA↵� � �N↵. (3)

Assuming auxin diffuses quickly inside each cell, we can assume auxin concentration is the same everywhere inside
the cell, ⇢↵ = N↵/(hA↵). This approximation is justified, since auxin is a very small molecule. Now, with a constant
auxin concentration within a cell, we can write the passive transport with Fick’s law, i.e., J = Jpass + Jact, with
Jpass = �Dr⇢ and interpolating auxin concentration inside the cell wall. Therefore, the current density of auxin
through wall l↵� from cell ↵ to region � is

Jpass↵!�
· n̂↵� = �D

⇢� � ⇢↵

T
, (4)

where T is the thickness of the wall. We can also continue to simplify assuming that the active auxin flow is constant
along the wall. Again, assuming that the area A↵ does not change,
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⇢̇↵ = � � �⇢↵ +
D

T

X

�2N↵

l↵�

A↵
(⇢� � ⇢↵) +

X

�2N↵

l↵�

A↵

⇥
Jact�!↵ � Jact↵!�

⇤
, (5)

where Jact↵!� is the amount of auxin transported per unit area, per unit time, from ↵ to �.
Let P↵� be the density of auxin efflux carriers on the compartment of the wall facing cell ↵, pumping auxin into �.
We model active auxin transport with

Jact↵!� = AP↵�
⇢↵

KM + ⇢↵
, (6)

with A being the maximum activity of the carrier and KM the Michaelis-Menten constant of the reaction. This
results in

⇢̇↵ = � � �⇢↵ +
D

T

X

�2N↵

l↵�

A↵
(⇢� � ⇢↵) +A

X
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l↵�

A↵


P�↵

⇢�

KM + ⇢�
� P↵�

⇢↵

KM + ⇢↵

�
. (7)

We now need to model PIN molecule binding and unbinding. Let the number of internalized PIN molecules be M↵.
Let the number of PIN molecules bound to wall l↵� of cell ↵ pumping auxin into region � by M↵� . Also, we define
the binding and unbinding constants, kb and kub. The rate equations for bound PIN molecules are

Ṁ↵� = kb
l↵�

L↵
M↵ � kubM↵� , (8)

where L↵ =
P
�2N↵

l↵� is the perimeter of the cell. If kb takes into account how many PIN molecules are close
enough to the walls of the cell, the factor l↵�

L↵
is necessary since it is the probability of being close to that particular

wall. In terms of PIN density P↵� and concentration P↵ instead of PIN number,

Ṗ↵� = kb
A↵

L↵
P↵ � kubP↵� , (9)

We will consider the dynamics of PIN to be much faster than that of auxin, such that we can decouple the time
scales of both processes. As such, we assume that between auxin time steps there is enough time for PIN to reach
its steady state. The steady state of this equation is

P
⇤
↵� =

kb

kub

A↵

L↵
P

⇤
↵ = f↵�

A↵

L↵
P

⇤
↵, (10)

where the binding and unbinding rates are a function of the features of the wall, f↵� = kb/kub.
Assuming all cells are competing for the same amount of PIN molecules, M0, we have

A↵P
⇤
↵ +

X

�2N↵

l↵�P
⇤
↵� = M0, (11)

which, using P
⇤
↵� from the previous expression, can be be solved for P

⇤
↵, yielding

P
⇤
↵ =

M0

A↵

1

1 +
P
�2N↵

l↵�

L↵
f↵�

, (12)

and for P
⇤
↵� ,

P
⇤
↵� =

M0

L↵

f↵�

1 +
P
⇠2N↵

l↵⇠

L↵
f↵⇠

=
M0

L↵
p↵� . (13)

Note that if we replace P
⇤
↵� for P↵� in auxin concentration rate equation with M0 being a constant, when solving

for steady state, we obtain that the steady state concentration of auxin is dependent on the geometry of the cell,
namely its perimeter.
There are three choices we can make, in regards to how plant cells scale PIN. We can simply not scale resulting in a
constant M0, we can scale according to cell area, i.e., M0 = A↵C0, or scale according to perimeter, M0 = L↵D0. To
minimise the impact of this effect on auxin patterning, we opt for a scaling according to perimeter, resulting in the
density

P↵� = D0p↵� . (14)

By replacing in the auxin concentration rate equation we finally get
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where,

p↵� =
f↵�

1 +
P
⇠2N↵

l↵⇠

L↵
f↵⇠

(16)

We adimensionalize the equation by choosing a characteristic length L and a characteristic time 1/f . We can then
replace, ⇢ = ⇢

⇤
/L

3, dt = dt
⇤
/f , l = Ll

⇤, K = K
⇤
/L

3 and A = A
⇤
L
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#
. (17)

Note that the auxin concentration in steady state, when all pin densities p↵� are the same, is ⇢⇤
0 = L

3
�/�. If we

normalize the previous expression by choosing ⇢⇤
0 as our unit of auxin concentration and �/f as our unit of time, we

obtain

da↵
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=

f

L3�

d⇢
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dt⇤
= 1� a↵ +

D

L�T
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l
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p�↵

a�

K + a�
� p↵�

a↵

K + a↵

�
, (18)

where a↵ = ⇢
⇤
↵/⇢

⇤
0, d⌧ = dtf/� and K = K

⇤
/⇢

⇤
0. The combination of parameters relevant for this process are

P = AD0
L� and D = D

L�T . If the thickness of the wall is also adimensional, then D = D
L2�T⇤ . These two numbers are

essentially a comparison between passive or active transport and auxin turnover rate. We can also have a stochastic
production rate in order to break symmetry and to make the system closer to a biological one. Finally,

da↵

d⌧
= �

⇤ � �
⇤
a↵ +D

X

�2N↵

l
⇤
↵�

A⇤
↵

(a� � a↵) + P
X

�2N↵

l
⇤
↵�

A⇤
↵


p�↵

a�

K + a�
� p↵�

a↵

K + a↵

�
, (19)

where �⇤ = 1 and �⇤ = 1 are kept to reinforce that these are production and decay rates, and

p↵� =
f↵�

1 +
P
⇠2N↵

l↵⇠

L↵
f↵⇠

. (20)

The connection of this model to tissue mechanics happens with modeling binding rates f↵� as a function of wall
stress and modeling auxin-mediated cell wall loosening, by changing stiffness E↵.
Suppose stress �↵� is the longitudinal component of stress acting on the wall between cell ↵ and region � 2 N↵,
specifically in the wall compartment facing cell ↵. In accordance with [1], we model f↵� as a power-law,

f↵� = f (�↵�) =

(
⌘�

n
↵� , �↵� > 0,

0, �↵�  0.
(21)

Finally, we look at cell wall loosening. We consider that all compartments surrounding a specific cell have the same
stiffness. We model auxin-mediated cell wall loosening with a hill function similarly to [1],

E↵ = E (a↵) = Emax � (Emax � Emin)
a
m
↵

1 + am
↵

, (22)

where m is the Hill exponent, a↵ = 1 (⇢↵ = ⇢0) being the value of auxin where the stiffness is (Emax + Emin) /2,
and Emin and Emax the minimum and maximum values stiffness in this system. It is also useful for linear stability
analysis to rewrite this expression in terms of the parameters

E0 = (Emax + Emin) /2, r =
Emax � Emin

Emax + Emin
. (23)

Inverting this transformation we get,

Emax = E0 (1 + r) , Emin = E0 (1� r) , (24)

and the final expression for cell wall loosening becomes

E↵ = E (a↵) = E0

✓
1 + r

1� a
m
↵

1 + am
↵

◆
. (25)
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Mechanical model details
We assign a mechanical energy to the tissue as a function of vertex positions. We can then minimise the mechanical
energy with respect to vertex positions to find the current tissue configuration. To simplify notation, let V↵ be a set
of vertices around the polygon representing cell ↵, ordered counter-clockwise. We will also have the set be cyclic,
i.e., if the cell has V vertices, then i 2 V↵, i = 1, 2, . . . , V implies xi+1 = x1 when i = V and xi�1 = xV when i = 1.
This way we can uniquely define a wall compartment between two vertices.
The two main terms we are going to focus on is the work of the turgor pressure T↵, given by �

´
V↵

T↵dV↵ = �T↵A↵h,
and the elastic energy

´
V↵
 ↵dV↵, where  ↵ is the elastic energy density 1

2"↵ : �↵, where the : represents the element-
wise contraction of matrices. We will use form matrices M↵ to write down a proxy to strain as

"↵ =
M↵ � M

(0)
↵

Tr
⇣
M

(0)
↵

⌘ , (26)

where M
(0)
↵ is a target shape matrix and where these shape matrices are given by,
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, (28)

M↵xy = M↵yx =
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iy
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iy
0
i
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0
i

�
, (29)

where the primed coordinates represent the translation transformation, x0
i = (x0

i, y
0
i) = xi �X↵, and ni = x

0
iy

0
i+1 �

x
0
i+1y

0
i, i 2 V↵. Also, we can easily compute the area with

A↵ =
1

2

X

i2V↵

ni. (30)

We make the approximation that the material is linear, isotropic, and uniform, which means that the constitutive
equation is given by the ususal shape This means that stress under these assumptions has two free parameters, the
Lamé constants µ and �, and is given by

�↵ = 2µ"↵ + �ITr ("↵) . (31)
Another assumption that we make is that the Poisson ratio is small enough to disregard the second term of this
expression. The factor 2µ is the auxin-dependent stiffness, yielding

�↵ ⇡ E (a↵) "↵. (32)

Now we can write the energy density as E (a↵) ||"↵||2, where ||A||2 = A : A. Integrating over the volume of the cell
and summing the elastic term and turgor pressure for all cells, we arrive at the Hamiltonian

H =
X

↵

H↵ =
X

↵

2

64
1

2
A↵E (a↵)

���
���M↵ � M

(0)
↵

���
���
2

Tr2
⇣
M

(0)
↵

⌘ � A↵T↵

3

75 , (33)

where we factored out the cell height h since the minimum of this expression becomes independent from it. What
remains is how to extract a longitudinal stress acting on each cell wall compartment.
Consider a composite wall of length l and cross section S made from two compartments A and B in parallel with
different stiffness, EA and EB , under the same strain ". The sum of the elastic energy in both compartments is
lSEA"

2
/4 + lSEB"

2
/4 = lS�̄"/2, i.e. " = 2�̄/ (EA + EB). Therefore, �A = EA" = 2EA�̄/ (EA + EB). A more

rigorous derivation of the stress load division expression can be found in the last section of this supporting material.
Note that we can approximate the turgor pressure by prescribing a value of stress, �̄, and bypass mechanical relaxation
of the tissue. We will call this the uncoupled tissue approximation. Nevertheless, the pattern formation mechanism
hinges on the assumption that the strain is the same on both compartments of the cell wall, meaning that we still
have to estimate the strain a wall is under from average cell strain. In order to estimate that value, we interpolate
strain between the two adjacent cells and project that value onto the wall to get the average longitudinal strain
acting on that specific wall. Then, we can simply use the constitutive equation to get the longitudinal stress of each
compartment based on their stiffness.
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Table S1: Table of simulation parameters, their meaning and value or range. The parameters M
(0)
↵ were fitted such

that the initial shape of the tissue (without auxin patterns) corresponds to a regular hexagonal lattice of side 1,
M

init
↵ . From this initial stress configuration we can also extract �̄. Although we are interested in varying r, [2]

suggests to be around r = 2/3 at the shoot apical meristem. Although not shown in the table, we chose to count
auxin molecules such that a↵ = 1 corresponds to a concentration of 0.1µM. Due to numerical complexity difference,
tmax = 2 was used for the tissue-wide stress coupling model and tmax = 6 for the disconnected tissue approximation.
I is the 2⇥ 2 identity matrix.

symbol meaning value or range (a.u.) Reference or means of determining

L length unit 2.5µm arbitrated
⌧ time unit 1hr arbitrated
�

⇤ normalized auxin production rate 1 [3]
�

⇤ normalized auxin decay rate 1 [3]
D diffusion magnitude 720 [4]
P active transport strength 3600 [4]
K Michaelis-Menten constant 1 guess taken from [1]
⌘ stress-PIN coupling constant [1.0, 10.0] –
n stress-PIN coupling power 3 guess taken from [1]
r wall loosening effect [.30, .95] –

m wall loosening power 2 guess taken from [1]
E0 reference stiffness 300MPa [5]
T↵ turgor pressure 1MPa 8↵ [6]

M
(0)
↵ rest shape matrix ⇠ 0.53585I, 8↵ initial fit
�̄ normalized average stress ⇠ 0.49674MPa computed from initial fit
�t simulation time step 10�4hr –

tmax total simulation time 2hr or 6hr –

Algorithm and implementation details
The tissue geometry used was an hexagonal lattice in units such that the each side of each hexagon is of length 1L.
First we need the tissue in the vertex model and in the approximated model to have the same shape in the absence of
auxin patterns, M

init
↵ , in order for the results between both approaches to be comparable. We minimise the difference

between the end geometry and the current one with respect to M
(0)
↵ , 8↵, for the given T↵. After obtaining M

(0)
↵ , we

can then compute the stress acting currently on each wall. This stress value is what we will use as �̄.
We assume very different timescales for auxin transport and mechanical cue propagation through the tissue. This
means that there is enough time for the tissue to relax to a local minimum in between auxin transport time steps,
�t. To simulate this model, we start by computing wall stress in the current configuration, calculate PIN density
on all cell walls with (20), take a step �t in the set of ODEs (19), with new auxin concentrations compute stiffness
with (25), and, finally, minimise mechanical energy (33). This is done until the maximum simulation time tmax has
been reached. The simulation parameters used can be found in Table S1.
Computationally the minimization procedure is the performance bottleneck. In order to overcome that, we used a
gradient-based minimisation method (L-BFGS) and computed the gradient of (33), which is straightforward, albeit
tedious.
Regarding boundary conditions, the outer vertices are free to expand due to turgor pressure and the boundary is
considered to have null pressure. In regards to the auxin transport model, every flux across the boundary is set to
zero (reflective boundary conditions). Also, to mitigate the influence of PIN competition in the boundary walls, we
consider these compartments in contact with a compartment with the same mechanical properties.

Linear Stability Analysis
The auxin transport model in use is

da↵

d⌧
= 1� a↵ +D

X

�2N↵

l
⇤
↵�

A⇤
↵

(a� � a↵) + P
X

�2N↵

l
⇤
↵�

A⇤
↵


p�↵

a�

K + a�
� p↵�

a↵

K + a↵

�
, (34)
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where
p↵� =

f↵�

1 +
P
⇠2N↵

l↵⇠

L↵
f↵⇠

, (35)

f↵� = f (�↵�) =

(
⌘�

n
↵� , �↵� > 0,

0, �↵�  0,
(36)

and,

E↵ = E (a↵) = E0

✓
1 + r

1� a
m
↵

1 + am
↵

◆
(37)

Consider the case when all cells have the same auxin concentration a↵ = 1. All stiffnesses are the same and therefore
we can regard the effect of turgor pressure as a constant stress of magnitude �̄ acting on all walls. As previously
mentioned, two compartments of a strained wall will be under different stresses according to their stiffness difference.
The stress acting on wall compartment between cells ↵ and � 2 N↵, facing cell ↵ is

�↵� =
2�̄E↵

E↵ + E�
. (38)

Therefore, all stiffnesses being the same, so are all stresses and, consequently, PIN densities. With these assumptions
and conditions, a↵ = 1, 8↵ is the trivial steady state of the system and no deformations other than pure inflation are
present. This also means that for the specific case of a regular lattice, l↵�/L↵ is simply 1/R, where R is the number
of neighbours. Considering a regular lattice we can also factor out W = L

⇤
↵/A

⇤
↵ = (LL↵)/A↵ as a lattice geometry

dependent constant. For an hexagonal lattice of side L, R = 6 and W = 4/
p
3.

We can now expand auxin concentration around that state considering small perturbations to auxin "↵, meaning we
transform the system into a↵ = 1+ "↵ and, since "↵ is small, neglect higher order terms. The time evolution of this
perturbation is

da↵

d⌧
=

d"↵

d⌧
= �"↵ +

DW

R

X

�2N↵

("� � "↵) +
PW

R

X

�2N↵


p�↵

1 + "�

K + 1 + "�
� p↵�

1 + "↵

K + 1 + "↵

�
, (39)

where we have yet to linearize the last term.
Expanding in Taylor series around "↵ = 0 we can rewrite

1 + "↵

K + 1 + "↵
=

1

K + 1
+

K

(K + 1)2
"↵ + O

�
"
2
�
. (40)

The term p↵� is slightly less straightforward since it depends not only in the stress applied to the corresponding wall,
but also on every other wall of cell ↵. Therefore, the Taylor expansion of p↵� becomes

p↵� =

"
f (�↵�)

1 + 1
R

P
�2N↵

f (�↵�)

�����
{"}=0

+
@p↵�

@"↵

����
{"=0}

"↵ +
X

�2N↵

@p↵�

@"�

����
{"=0}

"� + O("2). (41)

The first term is simply

p0 =
f (�̄)

1 + f (�̄)
, (42)

given that at steady state all stresses are equal to �̄. For the second and third terms we need the quantity

@p↵�

@"�
=

@f↵�

@"�

1 + 1
R

P
2N↵

f↵
� 1

R

X

2N↵

f↵�
@f↵

@"��
1 + 1

R

P
�2N↵

f↵�

�2 , (43)

where, since stress will be always positive under these assumptions,

@f↵�

@"�
= n⌘�

n�1
↵�

@�↵�

@"�
, (44)

@�↵�

@"�
=

2�̄

(E↵ + E�)
2

✓
E�

@E↵

@"�
� E↵

@E�

@"�

◆
, (45)

6



and
@E↵

@"�
= E0r�↵�

�2m (1 + "�)
m�1

(1 + (1 + "�)
m)

2 , (46)

where �↵� is the Kronecker delta (�↵� = 1 when ↵ = �, 0 otherwise). Since these derivatives are evaluated in steady
state, we have

@E↵

@"�

����
{"=0}

= �1

2
E0mr�↵� , (47)

,
@�↵�

@"�

����
{"=0}

=
�̄mr

4
(��� � �↵�) , (48)

and,
@f↵�

@"�

����
{"=0}

= f (�̄)
nmr

4
(��� � �↵�) =

1

4
f (�̄)M (��� � �↵�) , (49)

where M = nmr contains just parameters related to the feedback between mechanics and PIN. Finally,

@p↵�

@"�

����
{"=0}

=
1

4
p0M

"
��� � �↵� �

p0

R

X

2N↵

(�� � �↵�)

#
=

1

4
p0M

h
��� � �↵� + p0�↵� �

p0

R
(1� �↵�)

i
, (50)

where we simplified
P

k2N↵
�� = 1��↵� , since it is equal to 1 for � 2 N↵ or 0 for � /2 N↵ and we are only interested

in the two cases � = ↵ or � 2 N↵.
Now, substituting in (41), we get

p↵� = p0

2

41 + 1

4
M

0

@("� � "↵) + p0"↵ � p0

R

X

�2N↵

"�

1

A

3

5+ O("2). (51)

The active transport term is

PWp0

R (K + 1)

✓
K

K + 1
� M

2

⇣
1� p0

2

⌘◆ X

�2N↵

("� � "↵)�
PMWp

2
0

4R2 (K + 1)

X

�2N↵

2

4
X

2N�

" �
X

2N↵

"

3

5+ O
�
"
2
�
. (52)

Finally, the linear approximation of the time evolution of the perturbation is

d"↵

d⌧
= �"↵ +

W

R


D +

Pp0

K + 1

✓
K

K + 1
� M

2

⇣
1� p0

2

⌘◆� X

�2N↵

("� � "↵)�
PMWp

2
0

4R2 (K + 1)

X

�2N↵

2

4
X

2N�

" �
X

2N↵

"

3

5 ,

(53)
where

W =
L

⇤

A⇤ , p0 =
f (�̄)

1 + f (�̄)
, M = nmr. (54)

In this form the equation system resembles the class of ODEs studied in appendix A of [7], which we will closely
follow. Now we expand "↵ in a Fourier series, exchanging the position of the center of cell ↵, X↵, with wave vectors
k,

"k =
1

2⇡

X

↵

"↵e
�ik·X↵ . (55)

Let the vectors ep denote the vectors from the center of cell ↵ to its p = 1, 2, . . . , R neighbour. We can define the
lattice form factor as

S (k) =
1

R

RX

p=1

e
ik·ep =

1

R

RX

p=1

e
�ik·ep =

2

R

R/2X

p=1

cos (k · ep) , (56)

where the second and third equalities follows from considering a regular grid where for each direction p there is
another directly opposed to it. This quantity is characteristic of the grid alone and we can rewrite it as

S (k) =
1

R

X

�2N↵

e
ik·(X��X↵) =

1

R

X

�2N↵

e
�ik·(X��X↵)

. (57)
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The temporal evolution of the quantity "k is

d"k

d⌧
=

1

2⇡

X

↵

e
�ik·X↵

d"↵

d⌧
, (58)

where we know d"↵/d⌧ . We will treat the three terms in (53) separately. The first term is straightforward,

1

2⇡

X

↵

e
�ik·X↵ (�"↵) = �"k. (59)

The second is1

1

2⇡

X

↵

e
�ik·X↵A

X

�2N↵

("� � "↵) =
A
2⇡

2

4
X

↵

X

�2N↵

e
�ik·X�e

ik·(X��X↵)
"� � R"k

3

5 = AR (S (k)� 1) "k, (60)

with A = W
R

h
D + Pp0

K+1

⇣
K

K+1 � M
2

�
1� p0

2

�⌘i
.

The third one is2

1

2⇡

X

↵

e
�ik·X↵B

X

�2N↵

2

4
X

2N�

" �
X

2N↵

"

3

5 =
B
2⇡

2

4
X

↵

X

�2N↵

X

2N�

e
�ik·Xe

ik·(X�X�)
e
ik·(X��X↵)

" � R
2
S (k)

3

5

= BR
2
S (k) (S (k)� 1) "k, (61)

where B = � PMWp2
0

4R2(K+1) . Therefore, adding these three terms together and rearranging we get

d"k

d⌧
=


�1 + W (S (k)� 1)

✓
D +

Pp0

K + 1


K

K + 1
� M

2

⇣
1 +

p0

2
(S (k)� 1)

⌘�◆�
"k. (62)

Therefore, the characteristic equation for a given k is simply an exponential growth or decay with coefficients

�k = �1 + W (S (k)� 1)

✓
D +

Pp0

K + 1


K

K + 1
� M

2

⇣
1 +

p0

2
(S (k)� 1)

⌘�◆
, (63)

or equivalently, the characteristic equation is the eigenvalue problem d/d⌧ ("k) = �k"k with eigenvalues �k.
Since only S is a function of k and all other quantities are parameters, we can find what is the value of S that
maximizes �k, i.e. the value of S for the most unstable wave vector k⇤. This wave vector is the one which grows
faster or decays slower meaning that at long times it will be the one that dominates the system. The value of
S

⇤ = S (k⇤) obeys
d�k

dS

����
k=k⇤

= W


D +

Pp0

K + 1

✓
K

K + 1
� M

2
(1 + p0 (S

⇤ � 1))

◆�
= 0, (64)

or, since in this case the eigenvalues are degenerate due to lattice symmetry, belonging to the set

⌦ =

(
k|S (k) = 1�

M� 2K
K+1 � 2D(K+1)

Pp0

Mp0

)
. (65)

A condition for patterns to exist is that |S (k)|  1 (by definition of S) , i.e.,

M� 2K

K + 1
� 2D (K + 1)

Pp0
� 0, (66)

1Where we can write
X

↵

X

�2N↵

e�ik·X� eik·(X��X↵)"� =

X

�

"�e
�ik·X�

X

↵2N�

eik·(X��X↵) = RS (k) "k.

This amounts to reordering the terms being summed over on the condition the tissue is infinite.
2Where we rewrite,

X

↵

X

�2N↵

X

2N�

e�ik·Xeik·(X�X�)eik·(X��X↵)" =

X



"e
�ik·X

X

�2N

eik·(X�X�)
X

↵2N�

eik·(X��X↵) = R2S2
(k) "k,

which also amounts to reordering terms.
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since Mp0 > 0.
Another crucial condition is that the wave vector coefficient has to grow in order for the system to adopt the
corresponding wave pattern, i.e., when the eigenvalue corresponding to the largest wave vector becomes positive, the
fixed point we are expanding on becomes unstable and patterns form. Since we know what S should be for these
wave vectors, the condition for pattern formation is

�k⇤ = � (S⇤) = �1 +
PW

4 (K + 1)M


M� 2K

K + 1
� 2D (K + 1)

Pp0

�2
> 0, (67)

or rearranging, 
M� 2K

K + 1
� 2D (K + 1)

Pp0

�2
>

4 (K + 1)M
PW

> 0. (68)

Thus, both conditions merge into just one,

M�
r

4 (K + 1)

PW

p
M� 2K

K + 1
� 2D (K + 1)

Pp0
> 0, (69)

where we always discard conditions where our parameters are negative. We can now solve for
p
M since it is just a

second order polynomial. We take the only solution which yields
p
M > 0 and square the result to obtain

M >
K + 1

PW

2

41 +

vuut1 + 2W

 
PK

(K + 1)2
+

D
p0

!3

5

2

. (70)

Strain-based PIN regulation shows auxin spot focusing
With the stress-based PIN regulation assumption we were able to observe that patterns are more focused. In this
section we show results that indicate that the same organising principle happens if we use a strain-based model
instead. Consider the power law similar to Eq. 21 where, for positive strain,

f↵� = f ("↵�) = ⌘E
n
0 "

n
↵� . (71)

Note that factoring out E0 in this expression allows us to preserve the order of magnitude and units of ⌘. Notice also
that strain, in this case, is the same between compartments of the same wall. If we use this expression instead of
the stress-based regulation of exocytosis/endocytosis ratio, we can model strain-based PIN regulation. Furthermore,
the same approximation would now involve the computation of wall strain via "̄ = 2�̄/(E↵ + E�) for each wall.
Unfortunately, the range of values for which auxin patterns emerge differs from the stress-based one. We can compute
this by following the same procedure of linear stability analysis for the stress-based model. The only difference arises
in the expression (49), which changes to

@f↵�

@"�

����
{"=0}

= f

✓
�̄

E0

◆
M (��� + �↵�) . (72)

This change ends up changing the pattern formation condition and most unstable wave vectors. The most unstable
wave vectors belong to the set

⌦ =

(
k|S (k) = 1�

Mp0 � 2K
K+1 � 2D(K+1)

Pp0

Mp0

)
, (73)

and the condition for pattern formation is for the strain-based model,
✓
Mp0 �

2K

K + 1
� 2D (K + 1)

Pp0

◆2

>
4 (K + 1)M

PW
> 0, (74)

which, solved for M yields

M >
K + 1

PWp2
0

2

41 +

vuut1 + 2W

 
PKp0

(K + 1)2
+D

!3

5

2

. (75)
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Figure S1: Simulations of the strain-based model (top) for the equivalent uncoupled tissue approximation (top left)
and the tissue-wide mechanical model (top right). We quantified the same features as in the main text for the
strain-based model as well as the stress-based model for comparison (bottom). Those are average PIN polarity
(bottom left) and average auxin spot concentration (bottom right). Here we also observe auxin spot focusing and an
enhancement of auxin flows when considering the tissue-wide model. The wavelength is also noticeably smaller even
if spots are similar in size. Auxin concentrations, for the strain-based model, do not change much when considering
tissue-wide mechanics.

Notably, we are able to explain why the wavelength of the stress-based PIN model is always lower than in the
strain-based PIN model, a question raised in [8]. Comparing both expressions, since 0  p0  1, the term M in the
stress-based cased is replaced by Mp0  M. Therefore, their relationship is the same for all parameter choices.
We performed simulations of the strain-based model and the corresponding approximation. We used ⌘ = 15 and
r = 0.85. For this value of r, the threshold value of ⌘ for pattern formation for this model and parameters is
around ⌘ = 12.5. We computed the PIN polarity and average auxin spot concentration as in the main text for the
stress-based model. We show in Fig. S1 the results of the strain-based model simulations (Fig. S1 top) as well as
PIN polarity and average auxin spot concentration for strain-based and stress-based models (Fig. S1 bottom) for the
same r (we picked ⌘ = 10 for the stress-based case, the highest value of ⌘ in our data set). This is done to compare
the qualitative behaviour change (from the approximated model to the tissue-wide model) between stress-based and
strain-based models.
In accordance with the stress-based model, we observe for the strain-based model a higher PIN polarity when
considering emerging strain patterns, as well as more focused spots and a lower pattern wavelength. In contrast,
however, auxin spot sizes remain similar for the strain-based model and have similar levels of auxin on average.
Yet, even though auxin levels are similar in the strain-based model the auxin spots themselves are again more
distinguishable for the tissue-wide model like in the stress-based model.
It is also of note that even if the auxin levels are similar, the region near the threshold for this model remains
unexplored and, as such, the sensitivity of auxin patterns to strain remains unknown for the strain-based model.
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Figure S2: Ablation simulations for different wound sizes. Tissue-wide mechanical model predicts stress directions
following the shape of the wound as shown by the ablation of two cells (top right). Green lines represent the
magnitude and direction of principal stress, measured � = �+���

�++��
, where �± are the largest and lowest eigenvalues

of the stress tensor. The ablation perturbs auxin patterning by redirecting PIN. stress anisotropy increases slightly
with wound size.

Stress follows ablation wound shape
We performed simulation for two, three and seven cells for the exact same parameters in the ablation simulation in
the main text. We observe that the stress pattern follows the shape of the ablation wound closely (Fig. S2). It also
shows a slight increase of stress anisotropy with wound size.

Noise in reference stiffness, E0, is highly disruptive
The expression for total active auxin transport current is

�Jact↵!� = Jact↵!� � Jact�!↵ = �P↵p↵�
a↵

K + a↵
+ P�p�↵

a�

K + a�
, (76)

where we have considered possible different active transport strengths, P↵ and P� . Note that K is less likely to be
cell specific. The first thing we note is that a difference in turgor would change wall strain and stress. Since this
would affect both walls, if no auxin difference exists, there would be zeroth bias. Hence, we will focus on the prefactor
P and reference stiffness E0. Both of these introduce a zeroth bias. We compare the sensitivity of �Jact↵!� to a
change of �PP and a change of �E0

E0
in one of the cells (i.e., P↵ = P�+�P = P+�P and E0↵ = E0� +�E0 = E0+�E0).

If one carries this computation out, we get the expression, for auxin close to basal levels,

E0
@�Jact↵!�

@�E0

���
a↵=a�=1

P @�Jact↵!�

@�P

���
a↵=a�=1

⇡ n

2

✓
1� 1

6

⌘�̄
n

1 + ⌘�̄n

◆
. (77)

For the used parameters, this ratio is greater than 1 for all ⌘�̄n. This means that a relative change in stiffness implies
a change in active current larger than a relative change in PIN content.
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A derivation of wall stress load division including Poisson ratio
Consider the general constitutive equation for a linear elastic isotropic material and its inverse, in Einstein notation,

�ij =
E

1 + ⌫
"ij +

⌫E

(1 + ⌫) (1� 2⌫)
"kk�ij , (78)

and
"ij =

1

E
((1 + ⌫)�ij � ⌫�kk�ij) , (79)

respectively. Here we are using i, j = 1, 2, 3 to be indices relating to three dimensions space. E is the Young’s
modulus and ⌫ the Poisson ratio.
Consider now a wall of length l, height h and width w, composed of two compartments split equally along its length.
Suppose these two compartments have different Young’s modulus, E↵ and E� . If we assume that each compartment
can be at rest simultaneously, then we have to assume that the strain is the same for either compartment, i.e.,
"ij↵ = "ij� = "ij . The elastic energy of such a system is,

 =

ˆ
wall

1

2
�ij"ijdV =

hwl

4
�ij↵"ij +

hwl

4
�ij�"ij . (80)

Substituting we can rewrite energy as

 =
hwl

2

"
E↵+E�

2

1 + ⌫
"ij"ij +

⌫
E↵+E�

2

(1 + ⌫) (1� 2⌫)
"kk"ll

#
, (81)

which can be identified as the energy of an equivalent wall of with average stiffness. Since stress is by definition @ 
@"ij

(where  is energy density), we get exactly the same form for the constitutive relation for the wall as a whole is

�
0
ij =

E↵+E�

2

1 + ⌫
"ij +

⌫
E↵+E�

2

(1 + ⌫) (1� 2⌫)
"kk�ij . (82)

Inverting it yields, predictably
"ij =

2

E↵ + E�

�
(1 + ⌫)�0

ij � ⌫�
0
kk�ij

�
. (83)

Note that "kk = 2(1�2⌫)
E↵+E�

�
0
kk. Consider wall face cell ↵. Its stress is, therefore,

�ij↵ =
E↵

1 + ⌫
"ij +

⌫E

(1 + ⌫) (1� 2⌫)
"kk�ij , (84)

which, substituting wall strain (both "ij and "kk expressions), results in

�ij↵ =
E↵

1 + ⌫

2

E↵ + E�

⇥
(1 + ⌫)�0

ij � ⌫�
0
kk�ij

⇤
+

⌫E↵

(1 + ⌫) (1� 2⌫)

2 (1� 2⌫)

E↵ + E�
�

0
kk�ij , (85)

where the only remaining term is

�ij↵ =
2E↵�0

ij

E↵ + E�
. (86)

Therefore, for compartments of different stiffness, given an average wall stress we can compute how stress divides
between compartments. This also validates the uncoupled tissue approximation even in the case of nonzero ⌫.
Note that for nonzero ⌫, even if strains are lower (as implied by the expression of "kk), a mismatch between neighbours
still occurs. A local variation in stiffness, therefore would yield a strain field with the same organising principle and
hence, stress patterns. Even if the Poisson ratio affects the relative magnitude of the auxin spot focusing and PIN
polarity increase observed and discussed in the main text, it would always be present and aiding auxin pattern
formation. We chose to set ⌫ = 0 to highlight these effects.
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