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“The significance of a fact is relative to [the general body of scientific] 

knowledge. To say that a fact is significant in science, is to say that it helps to 

establish or refute some general law; for science, though it starts from observation 

of the particular, is not concerned essentially with the particular, but with the 

general. A fact, in science, is not a mere fact, but an instance. In this the scientist 

differs from the artist, who, if he designs to notice facts at all, is likely to notice 

them in all their particularity.” 

Bertrand Russell, 1931 – Book ‘The Scientific Outlook’ 

 

 

 

 

 

 

 

 

 

 

“Eu prefiro ser essa metamorfose ambulante 

do que ter aquela velha opinião formada sobre tudo.” 

Raul Seixas  
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I. Abbreviations  

A   leaf CO2 assimilation 

AUDPC  area under the disease progress curve 

AUMGC  area under the mycelium growth curve 

Ca   air CO2 concentration 

CBE   chlorazol black E staining 

Cfa temperate climate, no dry season and a hot summer (climate 

classification according to Köppen and Geiger) 

Cfb temperate climate, without dry season and warm summer (climate 

classification according to Köppen and Geiger) 

Ci intercellular CO2 concentration 

Cwa temperate climate with dry winter and hot summer (climate 

classification according to Köppen and Geiger) 

DA   discriminant analysis 

DAB   3,3-diaminobenzidin 

DON   deoxynivalenol (mycotoxin of trichotecenes B group) 

3-ADON  3-aceytil-deoxynivalenol (mycotoxin of trichotecenes B group) 

15-ADON  15-aceytil-deoxynivalenol (mycotoxin of trichotecenes B group) 

dpi   days post inoculation 

DA   discriminant analysis 

Da   dry weight of the aerial biomass (stem and leaves) 

Dax/Dao  relative dry weight of the aerial biomass (stem and leaves) 

Dr   dry weight of root biomass 

Drx/Dro  relative dry weight of root biomass  

Dfb cold climate without dry season with warm summer (climate 

classification according to Köppen and Geiger) 

E transpiration 

Ex/Eo relative transpiration 

ETI effector-triggered immunity 

ETS effector-triggered susceptibility 

FB1, FB2, FB3, FB4 Fumonisins of the B series 

FER   Fusarium ear rot or pink ear rot  

FGSC   Fusarium graminearum species complex 

FFSC   Fusarium fujikuroi species complex 

Fm   maximal fluorescence emissions by light adapted tissues 

Fs   steady-state fluorescence emissions by light adapted tissues 
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Fv fluorescence increment due to the transition from a dark-adapted 

state with all-open reaction centers to an all-closed state during a 

saturating flash of light 

GDU   growing degree units 

GER   Gibberella ear rot or red ear rot 

gs   stomatal conductance 

gsx/gso  relative stomatal conductance 

H2O2   hydroxide peroxide 

HR   hypersensitive response  

K   grain maize 

k   instantaneous carboxylation efficiency (A/Ci) 

kx/ko   relative instantaneous carboxylation efficiency 

LA   leaf area 

LAx/Lao  relative leaf area 

MAMPs/PAMPs microbial- or pathogen associated molecular patterns 

MCE   mesophyll colonization efficiency 

NB-LRR  nucleotide binding and leucine rich repeat domains 

NBT   nitroblue tetrazolium 

NCLB   northern corn leaf blight  

NIV   nivalenol (mycotoxin of trichotecenes B group) 

nPQ   non-photochemical quenching relaxing in the dark 

O2
-   superoxide 

PAR   photosynthetic active radiation 

PCA   principal component analysis 

PCD   programmed cell death 

POX   peroxidase 

PRR proteins  pattern recognition receptors 

PTI   PAMP-triggered immunity 

Px/Po   relative CO2 assimilation 

QTL   quantitative trait loci 

ROS   reactive oxygen species 

QY   effective quantum efficiency of photosystem II 

S   silage maize 

T max   maximum temperature 

T min   minimum temperature 

TCA   trichloroacetic acid 

VCA   variance component analysis 
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XCE   xylem colonization efficiency 

XPE   xylem penetration efficiency 

Ya   average or actual yield 

Yg   yield gap 

Yo    mean values evaluated in healthy plants 

Yp   yield potential  

Yx    variable values collected from inoculated plants 

ZEA   zearalenone 

 

 



 

 

II. General introduction 

A. Maize (Zea mays) domestication and production  

Maize (Zea mays L.), a member of the family Poaceae, was domesticated in Central 

America around 7000 years ago (Miedaner, 2010). Its name comes from the Taíno-

Arawakan word mahiz, which means “life-giver”, and it is result of a single domestication 

from the wild grass teosinte (Zea mays ssp. parviglumis) by pre-Hispanic civilizations 

(Staller, 2010). Molecular studies show high similarities with the Zea mays ssp. parviglumis 

population of Balsas River valley, south-western Mexico, indicating that this geographic 

region might be the center of domestication (Doebley, 1990; Wang et al., 1999; Matsuoka 

et al., 2002). Archaeological research discovered fossils from maize pollen grains in dry 

caves in the semi-arid highlands of Mexico, confirming that domestication began about 5100 

B.C. (Pope et al., 2001). The domestication by artificial selection promoted rapid changes 

in phenotype (Wright et al., 2005), especially addressing larger seed sizes and vigor 

(Dermastia et al., 2009).  

Maize was developed into an attractive crop by selecting plants with big ears and seeds. It 

is a flexible crop as it can be grown for grain or silage production (Miedaner, 2010). Grain 

maize is mainly produced for human and animal consumption, as well as for ethanol 

production (Bennetzen, 2009). Silage is used for animal feeding or energy production in 

biogas systems (Miedaner, 2010). In the least 60 years, global maize production has 

increased by around six times, reaching 1.14 billion tons in 2018 (Figure 1). Maize 

production in Europe and South America was about 110 and 130 million tons in 2018, 

respectively (FAO, 2020). In the least 10 years (2008-2018), the main maize producing 

countries were the United States with 345 million tones, followed by China (216 million tons), 

Brazil (71 million tons), Argentina (30 million tons) and Mexico (23 million tons) (FAO, 2020).  

Maize breeding in the US Corn Belt evolves two races named northern flint (Zea mays var. 

indurata) and southern dent (Zea mays var. indentata). Northern flint was introduced by 

Native Americans and was found in northern regions of North America (Troyer, 2001; 

Hufford, 2016). Southern dent was introduced later from Mexico by the Spanish, after the 

arrival of Columbus (Troyer, 2001; Hufford, 2016). In general, flint maize has a lower yield 

(Tamagno et al., 2015), shorter cycle, kernels that are thicker, harder and have a vitreous 

outer layer. Conversely, dent has a higher yield, longer cycle, kernels that are indented and 

have higher soft starch content (Troyer, 2001; Unterseer et al., 2016). Additionally, husk 

leaves (which involve the ear) in dent maize are wider, tighter, greater in number and have 

a bottleneck (Troyer, 2001).  
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Figure 1. Maize production in the world and per continent from 1961 to 2018 (FAO, 2020). 

Estimates show that around two thirds of the maize-producing areas are cultivated with 

temperate maize and one third with tropical maize (Troyer, 2001). Typically, temperate 

zones have a more variable and stressful climate compared to tropical zones (Troyer, 

2001). Thus, breeding maize for temperate zones requires special attention, such as 

adaptation within maturity and high yield during a short season (Lee and Tracy, 2009). 

Besides the maturity and high yield, other agronomical traits need to be considered during 

selection, such as a good plant architecture which allows mechanical harvest. In this case, 

the plant must be resistance to lodging factors or dropped ears, such as drought and/or 

fungal diseases (Lee and Tracy, 2009).  

Maize varieties are classified according to the maturity group which consist on the 

adaptation to particular environments (Lee and Tracy, 2009). A suitable hybrid should 

maximize full growth during the season. Plants need to flower at the right time, allowing 

grains to reach the stage of physiological maturity (Lee and Tracy, 2009). In general, maize 

flowering is affected by the response to day length being triggered close to the equinox, 

when the day length is short. Therefore, cultivation of tropical maize in temperate zones will 

promote tall plants, due to the longer days during summer (Troyer, 2001). Commonly, late 

maturity hybrids have higher yields compared to early maturity hybrids, where the duration 

of season is limited (Troyer, 2001). The maturity rating designated by the FAO is based on 

accumulated growing degree units (GDU) during frost-free periods: 
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GDU =
T max + T min 

2
− T min 

where 𝑇 𝑚𝑎𝑥 is the maximum temperature, 𝑇 𝑚𝑖𝑛 is the minimum temperature base for 

maize. If the daily T max is higher than 30°C, the T max will be considered as 30°C in the 

calculation. If the minimum temperature is lower than 10°C, the T min will be considered as 

10°C in the calculation (adapted from Troyer, 2001). In Brazil, GDU are calculated from the 

date of sowing until female flowering (Zucareli et al., 2010). In Germany, as well as in other 

countries in Europe, T min is considered as 8°C (Troyer, 2001; DMK, 2020). Maturity groups 

for maize hybrids cultivated in Germany and Brazil are shown in Table 1.  

Table 1. Maize maturity groups for producing silage or grain in Germany, and for producing 

grain Brazil (Zucareli et al., 2010; DMK, 2020).  

 Growing degree units (GDU) 

Maturity group Germany Brazil 

Early S: 170 or K: 220 K: < 830  

Middle-early S: 230 or K: 250 K: 831-899 

Middle-late S: 260 or K: 290 - 

Late S: 300 or K: 350 K: > 900 

S – Silage maize; K – grain maize 

The cultivation of maize hybrids from a maturity group that is suitable to the environment 

allows a maximum benefit of genetic capacity of a crop. A yield resulted from selection of 

suitable genetic material for a region with optimum water and nutrients supply, and under 

controlled biotic stresses is defined as yield potential (Yp) (Oerke, 2006; van Ittersum et al., 

2013). In fact, the yield achieved on the field of farmers is influenced by many other factors, 

so it is called the average or actual yield (Ya). Biotic and abiotic stresses, such as pests, 

pathogen attacks and weed competition strongly affect Ya. A good crop management 

system aims to reduce the yield gap (Yg) between the Yp and Ya (van Ittersum et al., 2013). 

Overall, yield losses on arable crops caused by weeds are estimated by 34%, followed by 

pests and pathogens with 18% and 16%, respectively (Oerke, 2006). Indeed, weeds 

compete with maize for light, water, and nutrients such as nitrogen (Affholder et al., 2003). 

Additionally, Savary et al. (2019) estimated that 22.5% (19.5 - 41.1%) of yield losses are 

caused by pests and pathogens on maize. Yield losses strictly caused by pathogens on 

maize represent 8% of all losses (Oerke, 2006). Therefore, some important ear and leaf 

diseases in maize, with potential to cause yield loss, will be addressed in the following 

topics. 
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B. Northern corn leaf blight (Exserohilum turcicum) 

NCLB was first described in Italy by Passerini in 1876, who named the pathogen 

Helminthosporium turcicum. Later, Alcorn (1988) divided the genera Helminthosporium into 

three: Drechslera, Bipolaris and Exserohilum. Exserohilum is segregated into a single 

genus as conidia are characterized by a protuberant hilum (Leonard and Suggs, 1974). The 

teleomorph was first described by Luttrell (1958) as Trichometasphaeria turcica, and more 

recently renamed Setosphaeria turcica (Luttrell) by Leonard and Suggs (1974). Besides the 

pathogen nomenclature, the disease also received new denomination during the 1950s. 

The disease was named NCLB to distinguish it from another corn blight, Southern corn leaf 

blight (SCLB), which is caused by Cochliobolus heterostrophus (teleomorph Bipolaris 

maydis). NCLB is prevalent in northern regions of the United States, whereas SCLB is 

prevalent in southern regions where higher humidity and temperature are more frequent 

(Roberts, 1953). 

NCLB has been reported worldwide, in all maize-producing areas, from tropical to 

temperate zones (CABI, 2019). Typical symptoms of NCLB are characterized by elliptical 

grey-green lesions (Figure 2A), while symptoms of resistance phenotype in plants bearing 

qualitative resistance, called Ht genes (Ht for Helminthosporium turcicum), are mainly 

characterized by the presence of chlorosis (Figure 2B) (Galiano-Carneiro and Miedaner, 

2017). Yield losses caused by NCLB are related to the level of host resistance, disease 

severity, plant phenological growth stage during infection, and position of the infected 

leaves (Levy and Pataky, 1992). Higher levels of resistance have been observed for hybrids 

containing quantitative and qualitative resistance when compared to hybrids bearing only 

one type of resistance (Perkins and Pedersen, 1987). Necrotic lesions can reduce CO2 

assimilation by up to 90% at 7 days post-inoculation (dpi), leading to low photosynthetic 

efficiency (Levy and Leonard, 1990); and consequently reducing seed size (Bowen and 

Paxton, 1988). The top, middle and bottom thirds of maize plants contributes to 

photosynthesis in a ratio of 10:5:1. Additionally, yield losses may be increased if the leaf at 

the ear node shows high disease severity (Levy and Leonard, 1990). High disease severity 

during reproductive stage, such as two to three weeks after pollination, provoke yield losses 

between 40% and 70% (Levy and Pataky, 1992). Furthermore, disease severities between 

52% and 100% during the full dent stage decrease yields by up to 44% (Bowen and Paxton, 

1988). On a global scale, estimates of NCLB yield losses are around 2.5% (Savary et al., 

2019).  
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Figure 2. Symptoms of northern corn leaf blight (NCLB) on maize plants in the field. NCLB 

is characterized by elliptical grey-green lesions (A), whereas symptoms of resistant reaction 

by plants bearing qualitative resistance are defined by chlorosis (B). 

Favorable weather conditions for NCLB development are long dew periods and moderate 

temperatures, as observed at mid-altitude in tropical regions (Welz and Geiger, 2000). The 

pathogen can survive on maize debris and overwinter in the form of chlamydospores 

(Figure 3A) (Boosalis et al., 1967; Levy, 1984, 1995). The formation of chlamydospores is 

induced by successive nights with relatively low temperatures (<10°C) (Leach et al., 1977). 

Recently, conidia have been shown to germinate under favorable weather conditions during 

the successive seasons or as secondary inoculum, and penetrate directly through leaf 

epidermis (Figure 3B) (Hilu and Hooker, 1964). The pathogen forms a vesicle, colonizing 

adjacent cell, and posteriorly xylem vessels (Knox-Davies, 1964). A successful colonization 

(Figure 3C) enables conidiophore formation, sporulation (Figure 3D) (Kotze et al., 2019), 

and secondary spread (Figure 3E). As E. turcicum is heterothallic, sexual reproduction will 

occur only in the presence of organisms from different mating types. The occurrence of 

sexual reproduction in the field was recently reported in Thailand (Bunkoed et al., 2014). 

E. turcicum spends most of its life cycle as a haploid organism. The pathogen has a short 

diploid phase from sexual recombination until meiosis, which results in segregation for 

ascospores formation. Dissemination occurs by wind and rain splash (Hooda et al., 2017). 

Moreover, migration on a regional scale is possible via the long-distance dispersal of conidia 

(Human et al., 2016). E. turcicum can survive between crop seasons and be disseminated 
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by other secondary hosts, such as sorghum (Sorghum bicolor) (Ramathani et al., 2011), 

Johnson grass (Sorghum halepense) (Levy, 1984; Levy and Pataky, 1992), and Sudan 

grass (Sorghum sudanenses) (Wathaneeyawech et al., 2015). However, there are reports 

of host specialization for Indian (Rejeshwar Reddy et al., 2013) and Brazilian isolates (Cota 

et al., 2010). Thus, the importance of secondary hosts on NCLB epidemics is not well 

known.  

 

Pictures from Bunkoed et al. (2014)1, Raphael Campos2, and Bunkoed et al. (2014)3. Other pictures: own 

source.  

Figure 3. Northern corn leaf blight cycle. E. turcicum survives on maize debris and can 

overwinter as chlamydospore (A). Infection occurs by spore germination and direct 

penetration on the leaf epidermis (B). Colonization into the xylem vessel and mesophyll 

allows reproduction (D). Asexual reproduction occurs by conidiophore formation and conidia 

spread through stomata. Sexual reproduction is only possible when both mating types are 

available. Then sexual fruiting body (pseudothecium) is formed. Bitunicate ascus evolves 

ascospores until release. Ascospores and conidia disseminates by rain and/or wind (E). 

NCLB control is based upon fungicide application, cultural practices, and the cultivation of 

resistant hybrids (Welz, 1998). The success of fungicide application on increasing yield is 

more related to the timing of application. Applications between the mid-stem elongation 

stage and the flowering stage showed significant increase in production compared to the 

untreated control (Blandino et al., 2012). In regard to cultural practices, ‘green revolution’ 

changed many cropping systems, as did the adoption of no-till practices in Brazil and USA 

in order to reduce soil erosion (Welz, 1998). No-till increases soil humidity and organic 
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matter and, slows down maize decomposition, maintaining an inoculum source of 

pathogens (Ono et al., 2011), which consequently may increase disease levels (Cota et al., 

2013). Additionally, the plant density had no effect NCLB on fields and disease severity is 

significantly correlated with the distance to the inoculum source (Adipala et al., 1995). In 

general, host resistance carried by commercial hybrids against E. turcicum is based on 

qualitative and quantitative resistance (Galiano-Carneiro and Miedaner, 2017). 

Furthermore, differences in maturity groups and source of resistance may have a 

contribution to hybrid resistance. An early-maturing hybrid bearing both resistances has 

shown high resistance levels compared to late-maturing, with yield losses varying from 17% 

to 43% for the intermediate-maturing group (bearing quantitative resistance) and 63% for 

the susceptible late-maturing hybrid (Raymundo and Hooker, 1982; Levy and Pataky, 

1992). Early-maturing hybrids usually develop fewer secondary cycles of disease (Welz, 

1998). A qualitative resistance suppresses sporulation and quantitative resistance reduces 

the number of lesions caused by E. turcicum (Raymundo and Hooker, 1982). Therefore, it 

is recommended to combine both qualitative and quantitative resistance for NCLB control 

(Raymundo and Hooker, 1982; Perkins and Pedersen, 1987).  

C. Gibberella and Fusarium ear rot  

Two types of maize ear rot caused by Fusarium spp. are known: Gibberella ear rot (GER 

or red ear rot) and Fusarium ear rot (FER or pink ear rot). GER is mainly caused by 

Fusarium spp. from the discolor section, or F. graminearum species complex (FGSC), 

which includes F. graminearum, F. culmorum, and F. cerealis. FER is caused by 

Fusarium spp. from the liseola section or F. fujikuroi species complex (FFGC), represented 

by F. verticillioides (syn. F. moniliforme), F. proliferatum and F. subglutinans (Munkvold, 

2003b; White, 2010). GER symptoms are usually red or pink mold, which covers large areas 

of the ear (Figure 4A), whereas FER symptoms are usually white to light pink mold in 

random kernels, also known as “starburst” (Figure 4B) (Munkvold, 2003b). Sometimes, FER 

colonization can be symptomless. FER also has the ability to colonize maize plants 

systematically (Munkvold, 2003b; Gai et al., 2018). GER is usually predominant in areas 

with cooler temperatures and higher precipitation during the crop season. High humidity 

during flowering (more precise silking) favors fungus infection. Colonization is stimulated by 

moderate temperatures and high levels of precipitations during maturity (Munkvold, 2003b). 

Conversely, FER is observed in warm and dry areas, especially when weather conditions 

are dry during the grain-filling stage (Munkvold, 2003b; Oldenburg et al., 2017).  
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Figure 4. Symptoms of Gibberella ear rot (GER or red ear rot) (A), and Fusarium ear rot 

(FER or pink ear rot) (B). GER symptoms are gray to pink mold that usually covers large 

areas of the ear, whereas FER symptoms are usually white mold in random kernels.  

In addition to ear rots, Fusarium spp. can also attack different maize organs causing stalk, 

root, and seed rots (White, 2010; Oldenburg et al., 2017). GER infections usually start in 

the female flowering (Reid et al., 1999). Colonization of further kernels occurs through 

rachis connection. Conversely, FER infections seem to be more frequent through wounds 

caused by bird, and insects, such as thrips, earworms, and the European corn borer 

(Ostrinia nubilalis) (Oldenburg et al., 2017; Blacutt et al., 2018). Fusarium spp. infections 

can also occur systemically through the infection of rudimentary ears. Rudimentary ears are 

a disturbance caused by a fertilization deficiency that stimulates the growth of immature 

ears below the main harvestable ear. As leaf sheaths and husks are enclosed, high humidity 

is maintained, which favors spore germination and infection (Oldenburg et al., 2017). 

Systemic infection may also originate from stalk infections. Stalk rot is related to loading 

and stalk breakage. Yield losses caused by stalk rot were up to 35% are reported in the 

second season (winter season or ‘safrinha’ – in Portuguese) in Brazil (Costa et al., 2019). 

During the winter season, the maize crop is more vulnerable to other abiotic stress, such 

as water availability, especially in the central regions of the country (Brazilian tropical 

savanna, ‘cerrado’ – in Portuguese) (Costa et al., 2019), which may increase stalk 
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susceptibility (Dodd, 1980). Seed infection by Fusarium spp. can present disturbances in 

germination and emergence leading to weaker seedlings or damping-off (Sartori et al., 

2004; Machado et al., 2013; Oldenburg et al., 2017). The main symptoms are roots and 

coleoptile showing brownish to black discoloration (White, 2010). Shoots show physiological 

alterations when inoculated in the seed stage, due to the acceleration of lignin deposition 

and modifications of chloroplast orientations in young leaves (Yates et al., 1997). Most 

seedling infections are caused by inoculum that survived in the soil or residual crops (Bacon 

and Hinton, 1996; White, 2010).  

In summary, Fusarium spp. infect distinct maize organs, leading to a complex disease cycle 

(Figure 5) (Blacutt et al., 2018). The primary inoculum usually comes from the soil 

(Figure 5A) or is brought from other infested fields by wind and rain in the form of spores 

(Figure 5C,F). Fusarium spp. usually survive in crop residuals in the form of mycelia, conidia 

or chlamydospores (Khonga and Sutton, 1988). These fungal structures are able to infect 

seedlings causing seedling blight, or to infect roots causing root rots. Fusarium spp. can 

colonize roots (Yates et al., 1997), cause damping-off, or colonize the plant endophytically 

(Figure 5B) (White, 2010b; Oldenburg et al., 2017; Gai et al., 2018). The main source of 

inoculum in stalk and ear infections is brought by wind or by other insects such as 

caterpillars (European corn borer) (Figure 5C,E). In addition, direct penetration through leaf 

stomata and trichomes by appressoria-like structures has been reported (Nguyen et al., 

2016a, 2016b). However, the main infections occur via silk channels (Munkvold et al., 1997) 

or via wounded tissue, especially provoked due to insects feeding, (Figure 5C-E) (Blacutt 

et al., 2018), as susceptibility increases in wounded plant tissue (Schaafsma et al., 1993). 
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Figure 5. Disease cycle of Fusarium spp. in maize (Blacutt et al., 2018). Seedling blight is 

caused by Fusarium spp. infections prevenient mainly from the crop residual or from the 

soil (A). In some cases, Fusarium spp. can colonize endophytically (B). Stalk infections are 

caused by feeding insect or by mechanical wounds (C). Ear infections are provoked by 

infections via the silk channel during flowering (D) or by insect feeding (E). The pathogen 

can sporulate on crop residuals (F) and inoculum is usually dispersed by rain, wind or by 

insects. 

As GER and FER can be caused by many Fusarium spp., the species identification can 

follow different criteria: morphological, biological and phylogenetical (Leslie and Summerell, 

2006; Summerell et al., 2010). The morphological criterion is based on macroscopic and 

microscopic characters (Leslie and Summerell, 2006). The biological criterion is based on 

the capacity and potential to share the genetic pool; the exchange of genetic material can 

occur by sexual reproduction or by cross-fertilization. F. verticillioides is heterothallic, 

therefore sexual reproduction is only possible when there are individuals from different 

mating-types (MAT A-1 and MAT A-2), while F. graminearum is homothallic, not requiring 

individuals from different mating types (Leslie and Summerell, 2006; Blacutt et al., 2018). 

The same is valid for cross-fertilization; the exchange of genetic material is possible only by 
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individuals from the same vegetative compatibility group (VCG) (Huang et al., 1997). In this 

case, two hyphae anastomose (fuse) and form a stable heterokaryon (Kedara et al., 1994; 

Leslie and Summerell, 2006). Most recently, with the advance of molecular tools, 

phylogenetic analyses are being applied to avoid the misinterpretation of morphological and 

biological methods. Phylogenetic methods apply molecular markers and are based on DNA 

sequences (Leslie and Summerell, 2006). Macroscopic characters are evaluated based on 

colony characteristics grown on potato-dextrose-agar (PDA) plates, such as color and 

mycelia features (Figure 6). Microscopic characters are focused on the presence or 

absence of macroconidia, microconidia, and chlamydospores, and are evaluated from 

colonies grown in synthetic low nutrition agar (SNA). Important macroconidia features are 

size, shape, apical and foot cell. For microconidia, the most important features to distinguish 

Fusarium spp. are the size, shape and the phialide (conidiogenous cells) (Leslie and 

Summerell, 2006). 

 

Figure 6. Fusarium species identification based on morphological characters. 

Macroscopically characters evaluated on potato-dextrose-agar (PDA) plates are colony 

color and mycelia feature. Microscopically characters were evaluated on synthetic low 

nutrition agar (SNA) plates. 

Fusarium spp. distribution is usually related to climate conditions suitable to its host 

(Summerell et al., 2010). Assessments worldwide shows a broad species spectrum 

infecting maize ears (Table 2). Fusarium spp. monitoring is usually correlated with 

mycotoxin production, as the chemotype of Fusarium populations may vary. 

F. verticillioides, as with other species from the FFSC, usually producing fumonisins (B 

series FB1, FB2, FB3 and FB4) (van der Lee et al., 2015; Blacutt et al., 2018). Conversely, 

F. graminearum and FGSC are producers of type B trichotecenes and Zearalenone (ZEA). 

Nivalenol (NIV), Deoxynivalenol (DON), 3-acetyl- and 15-aceytil-deoxynivalenol (3-ADON 
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and 15-ADON) are all mycotoxins belonging to the trichotecenes (Logrieco et al., 2002; van 

der Lee et al., 2015). Fumonisins and trichothecenes can be correlated to the geographic 

region and weather condition observed for Fusarium spp. distribution (Reid et al., 1999; 

Summerell et al., 2010). Brazilian samples are mainly contaminated with fumonisins (FB1, 

FB2, FB3) (Almeida et al., 2002; Ottoni, 2008; Lanza et al., 2014), and the same is observed 

in Tanzania, where the most predominant mycotoxins detected are fumonisins, followed by 

DON (Degraeve et al., 2016). In Germany, the most commonly detected mycotoxins are 

DON and ZEA (Goertz et al., 2010). Fusarium populations are dynamic, as observed in 

Canada, with 3-ADON strains being substituted by 15-ADON (van der Lee et al., 2015).  

In general, it is difficult to establish a correlation with climate by analyzing chemotypes within 

FGSC strains. For instance, 15-ADON producers are mostly prevalent in colder regions, 

such as North China, while NIV and 3-ADON strains are more common in warmer regions, 

such as South China (Zhou et al., 2018). In South Brazil, FGSC strains presenting NIV 

genotype and 3-ADON genotypes (F. coraderiae) are more prevalent in areas with high 

altitude, which are usually colder. Conversely, 15-ADON producer (F. meriodionale) are 

more frequent in lower (warmer) regions (Kuhnem et al., 2016). In South Africa, all FGSC 

strains isolated from maize are from the trichothecene chemotype 15-ADON (Boutigny et 

al., 2011). In France, the predominant thichothecene chemotype is 15-ADON (Boutigny et 

al., 2014). 
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Table 2. Prevalence of Fusarium spp. isolated from ears showing symptoms of GER (Gibberella ear rot) and/or FER (Fusarium ear rot) worldwide.  

Region Country 
Disease 

prevalence 
Species prevalence Reference 

South Europe - FER Fusarium fujikuroi species complex (FFSC) Dorn et al., 2009 

South Europe France - 1 F. graminearum, F. boothii  Boutigny et al., 2017 

South Europe France - 2 F. temperatum Boutigny et al., 2017 

North Europe Switzerland GER 
F. verticillioides, F. graminearum, F. proliferatum, 
F. subglutinans, F.  cerealis (syn. F. crookwellens) 

Dorn et al., 2010 

North Europe Germany GER F graminearum, F. verticillioides, F. temperatum Pfordt et al., 2020 

North Europe United Kingdom GER F. graminearum, F. culmorum  Basler, 2016 

North America USA GER F. verticillioides Munkvold, 2003b 

North America Canada GER F. graminearum, F. subglutinans  Sutton, 1982; Xue et al., 2005 

South America - FER F. verticillioides 
Silva et al., 2007; Iglesias et al., 2010; 
Stumpf et al., 2013; Lanza et al., 2014 

South America Ecuador FER F. verticillioides, F. subglutinans, F. graminearum  Silva et al., 2007 

South America Mexico FER 
F. subglutinans, F. verticillioides, F. chlamydosporum, 
F. poae, F. pseudonygamai, F. napiforme, F. solani  

Morales-Rodríguez et al., 2007 

South America Brazil - 1 F. meridionale, F. graminearum, F. cortaderiae Kuhnem et al., 2016 

South America Argentina - 1 F. meridionale, F. boothii Sampietro et al., 2011 

Africa Tanzania GER F. verticillioides, F. graminearum, F. poae  Degraeve et al., 2016 

Africa South Africa GER F. boothii  Boutigny et al., 2011 

Asia - GER F. asiaticum  Ndoye et al., 2012 

Asia north China GER F. asiaticum, F. graminearum Ndoye et al., 2012 

Asia south China FER F. verticillioides, F. proliferatum, F. meridionale Zhou et al., 2018 

Asia South Korea - 1 F. graminearum, F. asiaticum, F. boothii  Lee et al., 2012 

Oceania New Zealand GER F. graminearum  Hussein et al., 2002 
1 Studies conducted only on GER (Fusarium graminearum species complex - FGSC), 2 Studies conducted only on FER (FFSC) 
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Besides the frequency and distribution of Fusarium chemotypes, the epidemic parameters 

and toxicology can vary between species. In general, 15-ADON strains produces more 

perithecia in maize than other chemotype groups such as NIV and 3-ADON (Nicolli et al., 

2018). Additionally, a high sexual reproduction corroborates with high a prevalence of 15-

ADON in most regions worldwide (Boutigny et al., 2011; Boutigny et al., 2014; Zhou et al., 

2018). Moreover, 15-ADON strains are twice more aggressive in wheat than strains from 

NIV and 3-ADON chemotypes (Kuhnem et al., 2016). Regarding toxicology, NIV is more 

toxic than DON for humans and animals, as the limit established by the European Scientific 

Committee for Food for tolerable daily intake is 0.7 µg kg-1 body weight and 1 µg kg-1, 

respectively (van der Lee et al., 2015). Limits permitted by Food and Agriculture 

Organization (FAO) for DON are 750 µg kg-1 per commercialized product, and 1000 µg kg-

1 for fumonisin B1 (Tola and Kebede, 2016). Since mycotoxins can be a risk to human and 

animal health, GER and FER control are fundamental to maintaining food security (Savary 

et al., 2019). In general, diseases caused by Fusarium ssp. on maize can lead to yield 

losses of between 10 and 30% (Logrieco et al., 2002a), especially when considering 

qualitative yield losses due to mycotoxin contamination (Hallmann and Tiedemann, 2019). 

Globally, quantitative yield losses caused by stalk and ear rots are estimated as 5% and 

2.5%, respectively (Savary et al., 2019). Chemical, cultural and genetic control methods are 

the most commonly applied methods for GER and FER control. However, the chemical 

control of Fusarium spp. is shown to be inefficient (Munkvold, 2003b; Lanza et al., 2016; 

Blacutt et al., 2018) and agronomical practices are not strongly correlated to a reduction in 

disease incidence or severity (Stefanello et al., 2012; Degraeve et al., 2016; Costa et al., 

2019; Pfordt et al., 2020). Therefore, host resistance is the most reliable method for FER 

and GER control (Munkvold, 2003b). Sources of qualitative resistance are almost absent 

(Reid et al., 1994), thus commercial hybrids bear quantitative resistance (Munkvold, 2003a).  

D. Host resistance to plant pathogens  

Resistance is the host capacity to avoid pathogen attack or slow down colonization 

(Miedaner, 2011). In normal conditions, plant pathologists affirm that disease is the 

‘exception’; therefore all plants apply mechanisms of basal resistance to avoid the attack of 

most microorganisms. When the pathogen can break such mechanisms of basal resistance, 

the disease occurs and the plants turn into hosts (Camargo, 2011b). Host resistance can 

be divided into two types of resistance: qualitative and quantitative (Camargo, 2011b). 

Qualitative resistance is a synonym for vertical resistance from the epidemiological 

perspective being described as discontinuous variation in disease phenotype. Conversely, 

quantitative resistance, also known as horizontal resistance, is defined by the continuous 

variation in resistance levels (Vanderplank, 1968). The genotype of qualitative resistance 
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involves a major gene, the R gene, and is known as monogenic resistance. All of these 

terms are related to the fact that pathogen recognition is coordinated by one or a few genes 

(in this case, oligogenic resistance). A race-specific resistance usually has shorter durability 

of resistance. Conversely, quantitative resistance is known as polygenic, race unspecific or 

field resistance, because it is best expressed in the field (Table 3) (Miedaner, 2010; 

Hallmann and Tiedemann, 2019).  

Table 3. Differences between vertical and horizontal resistance (Vanderplank, 1968; 

Miedaner, 2010; Hallmann and Tiedemann, 2019) 

Trait 
Qualitative resistance/ Quantitative resistance/ 

Vertical resistance Horizontal resistance 

Resistance effect 
yes or no additive effect 

complete incomplete  

Genotype 
monogenic/ oligogenic polygenic  

(major gene or R gene) (minor gene) 

Specificity Race specific Non-race specific 

Durability temporary durable 

Correspondent genes  yes uncertain 

between host and 
pathogen 

(gene-for-gene concept)   

Epidemiological effect 

reduces primary inoculum 
(Q) 

reduces apparent infection rate 
(r)  

delay the start of epidemic delay the increase of epidemic 

Environmental effect small high 

The invasion of plant pathogens is recognized by the plant immune system, as described 

in the “zig-zag model” (Jones and Dangl, 2006). Transmembrane pattern recognition 

receptors (PRR proteins) recognize microbial- or pathogen associated molecular patterns 

(MAMPs/PAMPs) in a process known as PAMP-triggered immunity (PTI), which is related 

to basal resistance. When the pathogen releases effectors (in this example can be also 

called elicitors, when molecules are released by the pathogen), also known as virulence 

factor, the process results in the process known as effector-triggered susceptibility (ETS). 

If pathogen recognition stops at ETS, the pathogen will be able to colonize the tissue. 

Conversely, if pathogen effectors are specifically recognized by PRR-proteins, the result is 

effector-triggered immunity (ETI). In the case of Htn1 resistance gene to E. turcicum, the 

PRR-proteins are encoded in the genome at nucleotide binding and leucine rich repeat 

domains (NB-LRR) (Hurni et al., 2015). At ETI, the induction of a hypersensitive response 

(HR) may occur (Jones and Dangl, 2006). In cases of qualitative resistance, the 

incompatible interaction is expressed when the pathogen has an avirulent gene (Avr gene) 

and the host has a resistance gene (R gene). The opposite is a compatible interaction, when 

the pathogen has no avirulent gene (avr gene), or the host has no R gene. Therefore, the 
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pathogen cannot be recognized by the host, following the gene-for-gene concept (Flor, 

1971). A mutation in avirulent genes of a pathogen may suppress several resistance 

mechanisms. The suppression of a single gene may change the signaling cascade, altering 

the expression of several genes that might be related to the phenotypical expression of 

resistance (Camargo, 2011a). Conversely, in cultivars with quantitative resistance, the 

effect of a single mutation in the pathogen may have small effect on disease levels 

(Vanderplank, 1968). 

The recognition of PAMPs by PRR proteins results in the accumulation of reactive oxygen 

species (ROS) (Malinovsky et al., 2014). At PTI, ROS can activate protein kinase (MAPK) 

cascades and transcriptomes will be reprogrammed (Kachroo et al., 2017). Moreover, ROS 

can play a role in HR. The accumulation of toxic substances such as hydroxide peroxide 

(H2O2) and superoxide (O2
-) occurs first in the apoplast causing HR. Later, H2O2 and O2

- 

accumulates in the chloroplasts. Many effectors target electron transport chains in an 

attempt to stop ROS production. ROS may cause stomatal closure due to their 

accumulation in guard cells. The damage during photosynthesis process can be observed 

in resistant plants (Waszczak et al., 2018). The imbalance between ROS production and its 

detoxification (reduction in the activity of ROS scavenging enzymes) may increase ROS 

concentration in the host tissue causing programmed cell death (PCD), avoiding pathogen 

colonization (Apel and Hirt, 2004).  

Molecular mechanisms involved in quantitative resistance seems to be poorly understood. 

Genetically, the quantitative resistance is associated to a quantitative trait locus (QTL) and 

could be related to several resistance mechanisms (Poland et al., 2009). Resistance 

mechanism encoded by quantitative resistance can be related to morphology and/or to 

stages of host development. Another type of resistance could be related with mutation of 

alleles involved on basal resistance. PRR receptors acting on basal resistance could trigger 

resistance in distinct stage of pathogen infection and colonization. The third resistance 

mechanism associated to quantitative resistance is related to biochemical defense 

processes, such as phytotoxins detoxification and the production of phytoalexins (Poland 

et al., 2009). The accumulation of callose and phenolic compounds at the penetration sites 

of E. turcicum by maize plants bearing QTLs are another example. QTL could be involved 

in the defense signal transduction. The regulation of the phytohormones salicylic acid, 

jasmonic acid and ethylene and on their signaling pathways may vary on resistance levels. 

The quantitative resistance may be a weaker “form” of the R genes, conferring less effective 

resistance (Poland et al., 2009). Effectors released by the pathogen can trigger resistance 

mechanisms encoded by many resistance genes altering how the plant recognizes the 

pathogen in order to suppress host resistance (Niks et al., 2011, Cowin and Klinberstein, 
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2017). Thus, quantitative resistance was called minor-gene-for-minor-gene interaction by 

Parlevliet and Zadoks (1977). The last hypothesis of resistance mechanisms involved on 

quantitative resistance is related to classes of genes that were not previously reported to 

have function on resistance. An example is the proline-rich gene, which does not show 

similarities to the already known defense-related genes, but could trigger pathways 

indirectly related to resistance (Poland et al., 2009).  

The durability of resistance is important from the practical perspective, especially for 

breeding programs (Galiano-Carneiro and Miedaner, 2017); however, its estimation 

dependent on other factors. The extensive use of quantitative resistance in large areas, 

during long periods and under conducive environmental conditions for disease occurrence 

may affect its durability (Parlevliet, 2002). In general, qualitative resistance triggering 

mechanisms of hypersensitive reaction is not durable (Parlevliet, 2002). The most durable 

resistance is based on the additive effect (Table 3) of many genes with small influence on 

resistance. This characteristic is conferred by resistance of quantitative nature (Parlevliet, 

2002). Therefore, erosion of quantitative resistance seems to be difficult being not reported 

yet. Generally, resistance genes targeted by essential pathogen effectors in the quantitative 

resistance might confer more durable resistance than resistance genes targeted by non-

essential effectors (Pilet-Nayel et al., 2017). Essential pathogen effectors are encoded by 

genes that are also responsible for other functions of plant development. An example is the 

PthXo1 effector excreted by Xanthomonas oryzae pv. Oryzae; this effector activates a host 

resistance gene called Xa13 in rice. However, its allele xa13 (also named Os-8N3), is 

fundamental for pollen development. Therefore, the presence of xa13 / Os-8N3, which is 

fundamental for some physiological processes, automatically confers susceptibility in this 

case (Dangl et al., 2013).  

In the host-pathogen interaction between F graminearum and maize, effectors are 

associated with cell wall and membrane degrading enzymes, such as cellulases, pectinase, 

proteases, xylanases and lipases (Taheri, 2018). Moreover, cutinase and lipase were 

shown to play a role in the infection of F. graminearum (Voigt et al., 2005). ROS can also 

signal further defense mechanisms, such as lignification and callose deposition (Taheri, 

2018). Lignin enforces cell wall resistance against cell wall degrading enzymes and prevent 

dispersal of phytotoxins in the plant tissue (Vance et al., 1980). In general, mycotoxins may 

not be considered virulence factors (Desjandins et al., 1995). In vitro experiments 

demonstrate that F. proliferatum produces ten times more fumonisins when compared to 

F. verticillioides in maize seedlings (Zhou et al., 2018). Curiously, the most predominant 

species in the world is F. verticillioides (Munkvold, 2003), confirming that highly aggressive 
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strains are disfavored by natural selection. Thus, less aggressive strains may be favored by 

arable crops (Iglesias et al., 2010). 

E. Aim of the thesis 

The introduction of resistance sources obtained from tropical material into the temperate 

breeding lines is a challenge for breeding programs (Lee and Tracy, 2009). As tropical 

populations are genetically distantly related to temperate populations, selection for 

resistance, yield, and maturity is laborious (Miedaner, 2010). Moreover, pathogen 

populations vary between regions (Miedaner et al., 2010; Hanekamp, 2016), which may 

influence the efficacy of resistance. The main objective of this work was to compare the 

pathogen population and host resistance to NCLB, GER and FER in Europe and in South 

America. Therefore, the aggressiveness, the race distribution from E. turcicum and the 

species frequency of Fusarium spp. were compared between regions. Besides studies with 

pathogen populations, pathogen colonization, host physiology and some epidemiological 

parameters were characterized for maize plants bearing the Ht1, Ht2, Ht3 and Htn1 

resistance genes.  

In the first chapter, the objective was to characterize the race spectrum and frequency from 

E. turcicum isolates from Argentina and Brazil. Data of race distribution permit an indirect 

inference of resistance genes introduced in the cultivated maize hybrids. Information about 

the race frequency may guide breeding programs in these countries.  

In the second chapter, once the E. turcicum collection of South American isolates was 

established, the aggressiveness between European and South American isolates was 

compared under different temperatures. The influence of temperature on pathogen 

development was demonstrated by in vitro and in vivo experiments.  

In the third, fourth and fifth chapters, the focuses were on host-pathogen interactions in 

maize plants bearing Ht genes. In the third chapter, the pathogen colonization was 

compared between compatible and incompatible interactions by the quantification of E. 

turcicum DNA and by histological studies. Pathogen colonization was described at five 

different time points: penetration, first infection stage, late infection stage, first symptom 

expression, and symptom differentiation.  

In the fourth chapter, the physiological and biochemical responses of resistance genes Ht1, 

Ht2, Ht3 and Htn1 to E. turcicum infection were characterized for the incompatible 

interaction. Photosynthetic variables and biochemical responses were characterized in the 

incompatible interaction of resistant maize lines and E. turcicum. The epidemiological 

components number of lesions, lesion length and sporulation were quantified.  
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During the investigation on host-pathogen interaction, a different pattern for pathogen 

colonization and for the epidemiological parameters was observed for plants bearing the 

Ht2 gene. Additionally, changes in phenotype were reported for resistant plants maintained 

under different environmental conditions. In the fifth chapter, our objective was to assess 

the influence of pre-inoculation temperature on the efficacy of Ht2-resistance to E. turcicum. 

For this proposal, disease severity and fungus DNA content were compared between plants 

susceptible and resistant plants exposed to warm (30/25°C) and moderate (20/15°C) 

temperature regimes before inoculation.  

In the sixth chapter, studies were conducted to compare GER and FER in European and in 

South America. Therefore, pathogen aggressiveness between isolates collected in 

Germany and in Brazil and the resistance of European (temperate) and South American 

(tropical) maize lines were compared under greenhouse conditions. Finally, the effect of 

pre-inoculation temperatures on resistance of tropical lines was demonstrated for two 

conditions: warm (30/25°C) and moderate (20/15°C) day/night temperature regimes.  
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Abstract  

Northern corn leaf blight (NCLB) is one of the most important diseases in maize worldwide. 

It is caused by the fungus Exserohilum turcicum, which exhibits a high genetic variability for 

virulence, and hence physiological races have been reported. Disease control is based 

mainly on fungicide application and host resistance. Qualitative resistance has been widely 

used to control NCLB through the deployment of Ht genes. Known pathogen races are 

designated according to their virulence to the corresponding Ht gene. Knowledge about of 

E. turcicum race distribution in maize-producing areas is essential to develop and exploit 

resistant genotypes. Maize leaves showing distinct elliptical grey-green lesions were 

collected from maize-producing areas of Argentina and Brazil, and 184 monosporic 

E. turcicum isolates were obtained. A total of 66 isolates were collected from Argentina 

during 2015, 2018 and 2019, while 118 isolates from Brazil were collected during 2017, 

2018 and 2019. All isolates were screened on maize differential lines containing Ht1, Ht2, 

Ht3 and Htn1 resistance genes. In greenhouse experiments, inoculated maize plants were 

evaluated at 14 days after inoculation. Resistance reaction was characterized by chlorosis, 

and susceptibility was defined by necrosis in the absence of chlorosis. The most frequent 

race was 0 in both Argentina (83%) and Brazil (65%). Frequencies of race 1 (6% and 24%) 

and race 23N (5% and 10%) were very low in Argentina and Brazil, respectively. The high 

frequency of race 0 isolates provides evidence that qualitative resistance based on the 

tested Ht genes is not being used extensively in Argentina and Brazil to control NCLB. This 

information may be relevant for growers and breeding programs as the incidence of NCLB 

is increasing in both countries. 
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Introduction 

Northern corn leaf blight (NCLB) on maize (Zea mays) is caused by the heterothallic 

ascomycete Exserohilum turcicum (Pass.) K.J. Leonard & Suggs (teleomorph Setosphaeria 

turcica). NCLB has spread from tropical to temperate regions in maize producing areas 

worldwide and is one of the most important foliar diseases of this crop (CABI, 2019; Savary 

et al., 2019). Long dew periods and moderate temperatures favour disease establishment 

and development (Welz and Geiger 2000; Galiano-Carneiro and Miedaner 2017). 

Therefore, regions with favourable environmental conditions usually present high levels of 

NCLB inoculum (Galiano-Carneiro and Miedaner, 2017). Likewise, the cultivation of 

susceptible host genotypes, as well as the adoption of new crop management strategies 

such as shifted sowing dates, irrigation and no-tillage systems, can affect the pathogen life 

cycle and, consequently, disease severity (Carvalho et al., 2016; Juroszek and von 

Tiedemann, 2013). In some countries, yield losses up to 40% have been reported, when 

the host is infected by the fungus within 2 to 3 weeks after pollination (Levy and Pataky, 

1992). The main methods of controlling NCLB are host resistance and fungicide application 

(Galiano-Carneiro and Miedaner, 2017). 

Sources of host resistance against E. turcicum are quantitative or qualitative. Quantitative 

resistance is controlled by several race non-specific genes with small to moderate effects, 

conferring usually an incomplete durable resistance (Parlevliet, 2002; Pilet-Nayel et al., 

2017). However, quantitative resistance is more difficult to introgress into breeding lines 

(Galiano-Carneiro and Miedaner, 2017). Conversely, qualitative resistance is typically race-

specific and controlled by Ht genes, also termed major or R genes (Galiano-Carneiro and 

Miedaner, 2017). Usually, qualitative resistance provokes localized cell death, known as a 

hypersensitive response (HR), which can lead to suppression of pathogen colonization and 

reproduction (Parlevliet, 2002). 

Several Ht genes have been identified from different genetic backgrounds and used in 

breeding programs to improve NCLB resistance (Ferguson and Carson, 2007). The first Ht 

gene reported in the literature was Ht1. This gene was found in the maize lines ‘Ladyfinger’ 

popcorn and ‘GE440’ from Peru and the USA, respectively. The resistance reaction 

expressed by Ht1 is described as chlorosis, delay in necrosis and inhibition of sporulation 

(Hooker, 1963). Ht2 was the second major resistance gene described for E. turcicum. It was 

found in the Australian maize line ‘NN14B’ and expresses chlorosis as the resistant 

phenotype. However, Ht2 was described as having a lower resistance level compared to 
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Ht1 (Hooker, 1977; Navarro et al., 2020). Apart from Ht1 and Ht2, there is Ht3, which was 

introgressed from a tropical grass, Tripsacum floridanum, and expresses chlorosis as the 

resistant phenotype (Hooker, 1981). Htn1 is another resistance gene used in breeding 

programs and was discovered in the Mexican maize variety ‘Pepitilla’. The resistance 

phenotype described for this gene differs from those previously mentioned, as the 

resistance mechanism is based on a longer latent period (Gevers, 1975). In addition to Ht1, 

Ht2, Ht3 and Htn1, other dominant genes have been identified and incorporated into maize 

hybrids. The gene Htm1 was discovered in the variety ‘Mayorbela’ from Puerto Rico and 

confers resistance by expression of chlorotic lesions (Robbins and Warren, 1993). In Brazil, 

the resistance gene HtP was found in the inbred line ‘L30R’, which may also confer a 

chlorotic phenotype or the absence of symptoms, known as full resistance (Ogliari et al., 

2005). Another gene conferring full resistance was found in the Indonesian variety ‘Bramadi’ 

and is called HtNB (Wang et al., 2012). Furthermore, two recessive resistance genes, ht4 

and rt, have been reported. The ht4 gene confers a chlorotic halo and was discovered in 

the US maize inbred line 357 (BS19) (Carson, 1995). The rt gene was found in the Brazilian 

maize line L40 and confers chlorosis or full resistance (Ogliari et al., 2005). 

Physiological races of E. turcicum are determined according to virulence to the host Ht 

genes. Studies on the frequency of races are conducted by evaluating the disease 

phenotype of differential lines carrying a single Ht gene inoculated with different isolates. 

Race 0 isolates are avirulent in plants carrying Ht resistance genes. Isolates designated as 

race 1 are virulent to the Ht1 gene and race 23N is virulent to the Ht2, Ht3 and Htn1 genes 

(Leonard et al., 1989). Following the gene-for-gene concept, each major gene has one 

corresponding avirulence gene that confers resistance (Flor, 1971). E. turcicum excretes 

protein effectors (virulence factors) that interact with the host resistance proteins, which 

activate the plant immune system, leading to resistance or susceptibility (Jones and Dangl, 

2006). A recent study identified in E. turcicum an avirulence gene AVRHt1 corresponding 

to the resistance gene Ht1 (Mideros et al., 2018). AVRHt1 was expressed in planta by a 

race 23N isolate (Human et al., 2020). Gene effector candidates encoded a hybrid 

polyketide synthase:nonribosomal peptide synthetase (PKS:NRPS) enzyme (Wu et al., 

2015), virulence-associated peptidases leupeptin-inhibiting protein 1 and fungalysin, which 

represent proteins involved in the biosynthesis of secondary metabolites and cell wall 

degradation (Human et al., 2020). Moreover, the Ecp6 and SIX13-like protein effectors 

discovered for E. turcicum are similar to the effectors secreted in the xylem by Fusarium 

oxysporum (Human et al., 2020). 

Besides the high complexity involved in E. turcicum virulence, which instigates the 

development of molecular studies, monitoring of the distribution of E. turcicum physiological 
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races has been conducted worldwide. A high frequency of race 0 isolates has been 

observed in most maize producing regions around the world (Abadi et al., 1989; Hanekamp 

et al., 2014). However, with the introduction of Ht genes in commercial hybrids, the 

frequency of isolates virulent to Ht1 has increased over the last few decades in the USA 

and China (Ferguson and Carson, 2007; Dong et al., 2008; Weems and Bradley, 2018; Li 

et al. 2019). Moreover, some regions in Europe (namely the Netherlands and northern 

Germany) have presented a high frequency of isolates overcoming Ht3 (Hanekamp et al., 

2014). In Brazil, studies conducted with a few isolates have demonstrated that race 0 was 

the most frequent. In addition, races 1N, 12N and 123N were also identified (Gianasi et al., 

1996; Ogliari et al., 2005). For Argentina, there are no reports on E. turcicum race diversity. 

Despite the reports about the frequency of E. turcicum races around the world, there is a 

lack of information about the presence of Ht resistance genes in maize hybrids cultivated in 

Argentina and Brazil. Information about the race distribution in E. turcicum populations may 

indirectly reveal which are the most cultivated Ht genes in these regions. Therefore, race 

assessment of E. turcicum isolates from Argentina and Brazil was conducted to guide 

breeding programs in these countries. 

Material and Methods 

Samples collection, isolation and preservation  

Maize leaves showing lesions similar to NCLB were collected in maize-producing areas of 

Argentina and Brazil. Dry leaf pieces were cut from the area between the lesion and the 

green leaf tissue and disinfected in 2% sodium hypochlorite solution for 30 s. The samples 

were washed with sterilized distilled water and incubated in the dark at room temperature 

(24 °C) in petri dishes containing moistened filter paper for 2 to 3 days until grey mycelia 

were visible. The samples were analysed under a stereomicroscope and single spores were 

transferred to plates containing synthetic nutrient-poor agar (SNA) medium using a needle. 

The SNA plates were incubated for 5 days at room temperature until the first mycelia were 

visible. Then, a young monosporic colony was transferred to a plate containing V8 medium 

(eight vegetable juice agar) and incubated in the dark at 24 °C. After 14 days, spores were 

harvested by washing the plate with 25% glycerol solution. The spore suspension was 

stored at − 20 °C for further experiments. 

E. turcicum isolates were grouped according to the country and location of origin. Since 

temperature and light intensity may influence pathogen development and the phenotype 

expressed by some Ht genes (Thakur et al., 1989a, 1989b; Leath et al., 1990), the climate 

in the sampled area was considered in order to separate isolates according to their region. 
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Information about the climate was based on the classification proposed by Köppen and 

Geiger (Peel et al., 2007) and adapted according to climatic information available in national 

institutions from those countries (IBGE, 2002; ANIDA, 2020). Symptomatic maize leaves 

were sampled in three climatic regions: 

1. Temperate or pampeano climate (Cfa): no dry season and with hot summers—Average 

minimum temperature between 0 and 18 °C and average maximum temperature higher 

than 22 °C, annual precipitation around 1200 mm. 

2. Sub-tropical from altitute climate (Cfb): no dry season and with warm summers—Average 

minimum temperature between 0 and 18 °C, with less than 4 months with minimum 

temperature lower than 10 °C and average maximum temperature lower than 22 °C, annual 

precipitation around 1500 mm. 

3. Tropical climate (Cwa): with dry winter and hot summer—average maximum temperature 

is higher than 22 °C, annual precipitation around 1200 mm. 

In Argentina, leaf samples were collected from regions with a Cfa (temperate or pampeano) 

or Cwa (Sub-tropical) climate (Figure 1). In Brazil, samples were collected from regions with 

a Cfa (temperate), Cfb (sub-tropical from altitude) or Cwa (tropical) climate (Figure 1). In 

both countries, maize breeding programs have developed hybrids adapted to different 

agroecological regions where maize is produced (Kulka, 2019 – personal communication). 

The map was drawn using the package ggplot2 and sf in R software 3.6.0 (Core Team, 

2020). 
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Figure 1. Map of South America with locations were symptomatic leaf samples of northern 

corn leaf blight were collected for Exserohilum turcicum isolation. Symptomatic maize 

leaves were collected in 2015, 2017, 2018 and 2019 from maize producing areas in Brazil 

(dashed lines) and Argentina (dotted lines), according to the Köppen-Gerger climate 

classification (Peel et al. 2007), adapted using information from Argentinian and Brazilian 

Institutions (ANIDA 2020; INMET 2020): Argentina—Cfa (temperate or pampeano), 

Argentina—Cwa (sub-tropical), Brazil—Cfa (temperate), Brazil—Cfb (sub-tropical from 

altitude) or Cwa (tropical). 



Chapter 1. Physiological races of E. turcicum 

 

45 
 

Plant material, inoculation and race determination  

Maize near isogenic lines derived from the recurrent parent B37 carrying Ht1, Ht2, Ht3 and 

Htn1 genes and without Ht resistance genes (positive control) were used as differential set. 

Plants were cultivated in a greenhouse (22 ± 6 °C, 70% air humidity, day/night light regime 

14/10 h, light intensity of 100 ± 20 μmol m−2 s−1). Two seeds per pot (11 × 11 × 10 cm3) were 

sown in a soil mixture of compost, clay and sand (3:3:1). Seeds from the differential set 

were provided by KWS Saat SE (Einbeck, Germany). When the fifth leaf of the maize 

seedlings unfolded, 1 month after sowing, four plants per isoline were inoculated using a 

sprayer. Approximately 7 ml of spore suspension adjusted to 3*103 spores ml−1 and 

containing 125 ppm of the surfactant Silwet Gold (Certis Europe B.V., Hamburg) was 

inoculated per plant. After inoculation, all plants were maintained in a humidity chamber for 

24 h and then moved back to the greenhouse. Disease phenotyping was done at 14 and 21 

days post-inoculation (dpi), and was based on a diagrammatic ordinal scale used to classify 

virulence according to the presence or absence of chlorotic and/or necrotic symptoms 

(Figure 2) (Bigirwa et al., 1993; Hanekamp et al., 2014). The incompatible interaction is 

predominantly characterized by the presence of chlorosis, whereas compatible interactions 

consist of necrosis. However, both symptoms are observed in high intensity in the 

incompatible interaction of Ht1. Graphs were plotted using Microsoft Excel 2016. 

 

Figure 2. Diagrammatic scale for race phenotyping of northern corn leaf blight caused by 

Exserohilum turcicum, based on Bigirwa et al., (1993) and modified by Hanekamp et al., 

(2014). Score 1 defines symptoms of chlorotic spots, score 2 describes chlorosis with 

delimitated necrosis, score 3 represents symptoms of necrotic lesions surrounded by 

chlorosis, score 4 represents grey elongated lesions, score 5 describes elongated green-

grey lesions with necrosis and score 6 is a dead leaf. The absence of chlorosis (> score 4) 

characterizes a compatible interaction where the pathogen is considered virulent and the 

host susceptible. 
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Race diversity indices 

The virulence index (Iv) was calculated based on the frequency of isolates and the race 

complexity using the formula:  

𝐼v =  ∑( 
𝑝𝑖 ∗ rc 

𝑛
) 

where pi is the frequency of the ith phenotypic race, rc is the race complexity of the ith 

phenotypic race and n is the number of isolates in the region (Andrivon and Vallavieille-

Pope, 1995). Race complexity (rc) denotes the number of differential lines for which a 

specific isolate is virulent.  

The simple index (Is) is the simplest diversity index, expressed by the equation:  

𝐼s =  
𝑟

𝑛
 

where r is the phenotypic race, and n is the total number of isolates sampled in the region 

(Weems and Bradley, 2018). The Gleason index (Ig), another diversity index less sensitive 

to sample size, was calculated by: 

𝐼g =  
(𝑟 − 1)

ln(𝑛)
 

where r is the phenotypic race, and n is the total number of isolates sampled in the region. 

The Shannon index (Iw) represents the evenness of race distribution and is calculated by:  

𝐼𝑤 =  − ∑ 𝑝𝑖 ln(𝑝𝑖)  

where pi is the frequency of the ith phenotypic race (Groth and Roelfs, 1987). Analysis of 

correlation between indices was performed using Statistica 13.0 software (Statsoft, Tulsa, 

USA).  

Results 

Geographic distribution and frequency of E. turcicum races 

A total of 184 isolates were obtained from maize fields in Argentina and Brazil between 

2015 and 2019 (Table 1). In Argentina, maize leaves were sampled in 2015, 2018 and 2019; 

a total of 66 isolates were obtained. In Brazil, 118 isolates were obtained from the summer 

seasons of 2017, 2018 and 2019. Based on the phenotype expressed in the differential set, 

isolates were categorized into seven physiological races (0, 1, 2, 3, 23N, 3N and 13N). 

Chlorotic lesions characterized the resistance response. In a susceptible reaction, only 

necrosis was observed (Figure 2). In total, 132 isolates (71.7%) were avirulent in plants 
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carrying Ht resistance genes, and therefore designated race 0. Race 1 isolates represented 

17.4% of the total screened isolates. Fifteen isolates (8.2%) were classified as race 23N. 

The races 2, 3, 3N and 13N were identified in low frequencies of 1.1%, 0.5%, 0.5% 0.5% 

and 0.5%, respectively. In Argentina, the highest number of screened isolates was from 

2015, and consequently this was the year with the highest number of races. In general, 

regions with a pampeano/temperate climate (Cfa) exhibited a higher number of races and 

isolates. In Brazil, most screened isolates were from regions with a subtropical altitude 

climate (Cfb). It is noteworthy that isolates collected in subtropical and tropical regions (Cwa 

climate) were mostly race 23N. In Argentina, the vast majority of isolates were race 0, with 

an isolate frequency of 83.3%, followed by race 1 (6.2%), race 23N (3.5%), race 2 (1.5%), 

race 3 (1.5%), race 3N (1.5%) and race 13N (1.5%) (Figure 3A). Results were similar in 

Brazil where 65.3% of the isolates belonged to race 0. However, the frequency of race 1 

(23.7%) and race 23N (10.2%) was higher than in Argentina (Figure 3B). Additionally, a 

race 2 isolate was identified in Brazil, with a frequency of 0.8%. 

Table 1. Distribution of Exserohilum turcicum isolates according to race assignment by 

screening on the differential set based on line B37 bearing resistance genes Ht1, Ht2, Ht3 

and Htn1. 

    Races    

Country Climate 0 1 2 3 23N 3N 13N Total 

Argentina 

Cfa 
44 

(86.1%) 
1  

(2%) 
1 

(2%) 
1  

(2%) 
3 

(5.9%) - 
1 

(2%) 51 

Cwa 
11 

(73.3%) 
3 

(20.0%) - - - 
1 

(6.7%) - 15 

total 
55 

(83.3%) 
4 

(6.2%) 
1 

(1.5%) 
1 

(1.5%) 
3 

(3.5%) 
1 

(1.5%) 
1 

(1.5%) 66 

Brazil 

Cfa 
29 

(61.7%) 
14 

(29.8%) 
1 

(2.1%) - 
3 

(6.4%) - - 47 

Cfb 
44 

(72.1%) 
14 

(23.0%) - - 
3 

(4.9%) - - 61 

Cwa 
4 

(40.0%) - - - 
6 

 (60%) - - 10 

total 
77 

(65.3%) 
28 

(23.7%) 
1 

(0.8%) - 
12 

(10.2%) - - 118 

Total   
132 

(71.7%) 
32 

(17.4%) 
2 

(1.1%) 
1 

(0.5%) 
15 

(8.2%) 
1 

(0.5%) 
1 

(0.5%) 184 

For climate regions (Cfa, Cwa, Cfb), see text. 
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Figure 3. Race frequency of Exserohilum turcicum isolates originating from Argentinian 

samples from 2015, 2018 and 2019 (A) and Brazilian samples from 2017, 2018 and 2019 

(B).  

Frequency of isolates virulent to a specific Ht gene and race complexity  

The frequency of virulence to a specific Ht gene was compared for all 184 isolates. In 

general, most screened isolates were avirulent in plants carrying Ht resistance genes (race 

0), varying from 55 to 75% depending on the year (Figure 4, Supplementary Table 1). An 

increase in the number of isolates virulent on plants carrying Ht2, Ht3 and Htn1 resistance 

genes was observed in 2018. In 2019, the decrease in the frequency of avirulent isolates 

was due to an increase in the frequency of isolates virulent in plants with the Ht1 gene. 

Race complexity (rc) for the tested isolates was low, since more than 50% of the isolates 

were avirulent. The only exception was the region with a Cwa climate in Brazil (tropical), 

where 60% of the isolates were rc 3 (Figure 5). In the other regions of Brazil, between 22 

and 33% of the isolates were rc 1. In Argentina, less than 10% of the isolates were rc 1, 

1.5% were rc 2 and 6% were rc 3 (Figure 5). 
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Figure 4. Percentage of Exserohilum turcicum isolates virulent to the Ht resistance genes 

Ht1, Ht2, Ht3 and Htn1 collected in Argentina in 2015, 2018, and 2019 and Brazil in 2017, 

2018, and 2019.  

 

Figure 5. Race complexity of Exserohilum turcicum isolates (as a percentage) by country 

and climatic region based on isolates collected between 2015 and 2019. Race complexity 

(rc) denotes the number of differential lines for which a specific isolate is virulent 

(Iv= ∑( (pi × rc )/n)), rc 1 = race complexity 1, rc 2 = race complexity 2 and rc 3 = race 

complexity 3.  
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Virulence and diversity indices 

The virulence and diversity indices are shown in Table 2. The highest number of races was 

identified in the region of Argentina with a pampeano climate (Cfa). The virulence index was 

higher for the region with a tropical climate in Brazil (Cwa). The region with a subtropical 

climate in Argentina (Cwa) presented the highest simple diversity index (Is) (ratio between 

races and number of isolates), and between countries, Argentina had the highest Is. Higher 

values of Is are observed in regions with lower number of samples, as observed in both 

mentioned cases. In addition, the correlation between Is and the number of samples was 

negatively significant (Table 3). Conversely, the Gleason index (Ig) was strongly correlated 

with the number of races and therefore less influenced by the sample size. Argentina had 

a higher Ig than Brazil at the country level, and the Argentinean region with a pampeano 

climate (Cfa) had the highest value at the regional level. This indicates a greater diversity 

of races in these areas (Table 2). Ig is less sensitive to sample size in comparison with Is, 

reflected by a strong significant correlation between Ig and the number of races (Table 3). 

Furthermore, the highest Shannon index (Iw) was observed in Brazil for the region with a 

temperate climate (Cfa), which indicates the degree to which race distribution within a 

particular region is equal to that in its respective country. Although the Shannon index 

represented the uniformity of races, it was not correlated with the other variables and indices 

(Table 3). 

Table 2. Number of isolates, number of races, and virulence and diversity indices for the 

phenotype of Exserohilum turcicum isolates collected in Brazil and Argentina between 2015 

and 2019.  

Country Climate n r Iv  Is  Ig 
 Iw 

 

Argentina Cfa - pampeano 51 6 0,005 0,11 1,26 0,29 

  Cwa – subtropical 15 3 0,030 0,23 0,78 0,79 

 
Cfa – temperate  47 4 0,011 0,09 0,78 0,83 

Brazil Cfb – subtropical from altitude 61 3 0,006 0,05 0,49 0,57 

  Cwa – tropical  10 2 0,180 0,20 0,43 0,57 

Argentina   66 7 0,005 0,11 1,43 0,32 

Brazil   118 4 0,005 0,03 0,63 0,85 

Total   184 7 0,003 0,04 1,15 0,75 

For climate regions (Cfa, Cwa, Cfb), see text 

n = number of isolates, r = number of races, Iv = virulence index, Is = simple index, Ig = Gleason 

index, Iw = Shannon index  
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Table 3. Correlation coefficients between number of isolates, number of races, and 

virulence and diversity indices.  

 Indices n r I
v 
 I

s 
 I

g 
 I

w 
 

n  1 0.62 -0.49 -0.78* 0.33 0.24 

r    1 -0.58 -0.44 0.93*** -0.40 

Iv      1 0.61 -0.51 -0.04 

Is        1 -0.14 -0.11 

Ig 
         1 -0.53 

Iw 
           1 

n = number of isolates, r = number of races, Iv = virulence index, Is = simple index, Ig = Gleason 

index, Iw = Shannon index 

Significant coefficients are represented by *** p-value ≤ 0.001 and * p-value ≤ 0.05. 

Discussion  

The race monitoring in Argentina and Brazil revealed a quite homogeneous composition of 

races across the monitored geographic regions. This indicates that most maize hybrids 

commercialized in these countries do not carry Ht genes and, therefore, virulent isolates 

are not being selected. It is important to highlight that samples for monitoring of 

physiological races should be collected from maize hybrids or lines without Ht genes 

(susceptible cultivars). However, breeders are reluctant to share this information for most 

cultivated hybrids. 

Our study indicates that a different race occurrence and distribution can be observed in 

Argentina and Brazil for the tested isolates, compared to race monitoring data worldwide. 

For example, in the USA, the frequency of race 0 isolates has decreased from 83% in 1974 

to around 50% by the 1990s (Ferguson and Carson, 2007) and to 20% by the 2010s 

(Weems and Bradley, 2018). The latter study showed that only 26% of isolates were race 1. 

However, in recent years, the frequency of isolates able to overcome the Ht1 gene in the 

country was reported to be 64% (Weems and Bradley, 2018). In Ontario, Canada, the 

frequency of isolates overcoming Ht1 was even higher than in the USA, at around 80% from 

the samples collected between 2012 and 2016. Remarkably, 64% of the isolates were 

virulent to Htn1 (Jindal et al., 2019). The increase in frequency of isolates virulent to Ht1 is 

a consequence of selection pressure exerted by the widespread cultivation of commercial 

maize hybrids bearing Ht1 resistance in the USA (Jordan et al., 1983; Ferguson and Carson 

2007). It is well known that extensive cultivation of hybrids carrying the same resistance 

gene enhances the rise of virulent pathogen populations (Mizubuti and Ceresini, 2018). 
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More recently, the Htm1 resistance gene was added to the race screening of E. turcicum in 

North America (Weems and Bradley, 2018; Jindal et al., 2019). Surprisingly, 64% of 

Canadian isolates (Jindal et al., 2019) and 32% of US-tested isolates (Weems and Bradley, 

2018) were virulent to Htm1. Screening of race M isolates was not easy, due to a limited 

availability of seeds (Weems and Bradley, 2018). Therefore, these studies used multiple 

lines, which showed differences in phenotypes for the same resistance gene. For example, 

although host responses provided by Ht1, Ht2 and Ht3 usually appeared as chlorosis, as 

mentioned in the literature (Hooker, 1963, 1977, 1981), strong necrosis was also observed 

in the line B37Ht1 (Weems and Bradley, 2018). In line A619, the same authors observed a 

strong necrosis in plants bearing Ht2 and Ht3 genes. Therefore, symptoms of resistance 

reaction may differ according to the maize line background. 

The situation in Europe is different, with 32% of isolates virulent to Ht3 and 24% to Ht1 

(Hanekamp et al., 2014). Thus, some European hybrids must carry the Ht3 resistance gene. 

However, it is important to note that in Europe, the selection pressure exerted by the 

cultivation of hybrids bearing Ht genes is higher than in South America. In Turkey, 68% of 

isolates were avirulent to Ht genes and 16% to the Ht1 gene (Turgay et al., 2020). 

Nonetheless, a study from the 1980s reported only race 0 in Israel (Abadi et al., 1989). In 

China, the first study reported a frequency of 40% for race 0, while 41% of isolates were 

virulent to Ht1 (Dong et al., 2008). Ten years later, a study with Chinese samples showed 

that the percentage of isolates from the most frequent races has remained the same (Li et 

al., 2019). In Brazil, a slight increase in the frequency of isolates virulent to Ht1 in South 

America was observed in 2019. In the early 1990s, the most frequent race was 0; however, 

other races able to overcome Ht1 were also reported, such as races 1N, 12N and 123N 

(Gianasi et al., 1996; Ogliari et al., 2005). Conversely, in most tropical countries, the 

frequency of isolates virulent to Ht1 seems to be low, or even absent in some cases. In 

Kenya, 45% of isolates were virulent to Ht2 and 29% were identified as race 0 (Muiru et al., 

2010). Although race assessments were conducted in Ecuador, Mexico and Zambia, 

information regarding E. turcicum races in these regions is not published in peer-reviewed 

journals. 

Interestingly, in tropical regions, the frequency of isolates virulent to Ht2, Ht3 and Htn1 was 

much higher compared to temperate regions. However, qualitative resistance is less used 

in tropical regions, due to the higher risk of major gene resistance breakdown (Galiano-

Carneiro and Miedaner, 2017). As genetic diversity of tropical E. turcicum populations is 

higher than that of temperate populations (Borchardt et al., 1998), the pathogen can easily 

adapt to the Ht genes (Galiano-Carneiro and Miedaner, 2017). 
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The formation of pseudothecia on grasses, such as Johnson grass, has also been 

observed, indicating that the fungus has the ability to recombine sexually in other hosts 

(Fallah Moghaddam and Pataky, 1994). However, secondary hosts may also exert selection 

pressure (Fallah Moghaddam and Pataky, 1994). For instance, Ht3 is known to be 

introgressed in maize from the grass Tripsacum floridanum (Hooker, 1981) and may be a 

homologue to Ht2 in maize (Simcox and Bennetzen, 1993; Fallah Moghaddam and Pataky, 

1994). In Uganda, a study with E. turcicum strains isolated from sorghum found that 95% 

of isolates were avirulent on maize (line A619 without Ht gene). However, 22% were virulent 

on plants carrying Ht1, 11% were virulent on plants carrying Ht2 and 5% were virulent on 

plants carrying Ht3 (Ramathani et al., 2011). 

The unexpected susceptibility of maize plants carrying Ht genes, especially to sorghum 

isolates that are avirulent in maize plants without Ht genes, indicates that selective pressure 

by Ht2, Ht3 and Htn1 might not be exerted only by maize but also by other grasses or 

alternative hosts in tropical regions (Fallah Moghaddam and Pataky, 1994). In general, the 

main sources of fungal genetic diversity are mutations and recombinations (Taylor et al., 

1999, 2017). Mutations from avirulence to virulence are usually rare; thus, mutation rates 

are low (McDonald and Linde, 2002). Sexual recombinations may be the source of 

E. turcicum population diversity in the tropics (Borchardt et al., 1998). However, somatic 

recombinations may also be a source of genetic variability in E. turcicum populations, 

especially in temperate regions (Taylor et al., 1999). In the literature, parasexuality has been 

described for another ascomycete, Magnaporthe grisea, which parasitizes grasses and 

causes blast disease in rice (Zeigler et al., 1997). However, more studies are necessary to 

prove whether E. turcicum has parasexuality, and to identify the contribution of mixed 

reproduction to E. turcicum race diversity. 

Qualitative resistance usually leads to a high level of resistance, particularly when the most 

frequent isolates are avirulent, as observed for Argentina and Brazil. The risk of resistance 

breakdown due to high genetic flow in populations with mixed reproduction, and the 

instability of resistance expression due to changes in environmental conditions discourage 

the use of Ht genes in maize breeding programs for tropical regions (Galiano-Carneiro and 

Miedaner, 2017). Therefore, the use of qualitative and quantitative resistance in tropical and 

subtropical breeding programs should be accompanied by regular race monitoring to verify 

if the major genes are still effective in these regions (Perkins and Pedersen, 1987). The 

introduction of qualitative resistance by recurrent backcrossings is easier and faster for 

breeders (Pilet-Nayel et al., 2017). Even if qualitative resistance has the disadvantage of 

shorter durability when compared to quantitative resistance, the introduction of quantitative 

resistance is more laborious (Galiano-Carneiro and Miedaner, 2017). It is expected that the 
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durability of major genes is prolonged by pyramiding several major genes in the same 

cultivars (Pilet-Nayel et al., 2017). The information about the race spectrum of E. turcicum 

can support breeders in deciding on the best source of resistance for each region. 

Moreover, studies on the gene flow between populations from Argentina and Brazil might 

be conducted to increase knowledge of avirulence to virulence shifts in E. tucicum 

populations, and consequently, the durability of resistance (McDonald and Linde, 2002). 

The high frequency of race 0 isolates in Argentina and Brazil leads to the conclusion that 

most commercialized maize hybrids in these countries do not bear the tested Ht resistance 

genes. This may be due to the fact that most breeding programs have shifted to the use of 

quantitative resistance after virulence to Ht genes had been observed in the 1970s and 

1980s (Welz and Geiger, 2000). Therefore, qualitative resistance can be a source of 

resistance in these countries and, if combined with quantitative resistance, highly effective 

against NCLB epidemics. 
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Supplementary Material 

Supplementary table 1. Origin by country, climatic region and sampling year.  

            Races          

Year Country Climate 0 1 2 3 23N 3N 13N Total 

2015   Cfa - pampeano 31 1 1 1 3 - - 37 

  
  

Cwa - sub-

tropical 1 - - - - - - 1 

2018 Argentina Cfa - pampeano 5 - - - - - - 5 

  
  

Cwa - sub-

tropical 8 1 - - - - - 9 

2019   Cfa - pampeano 8 - - - - - 1 9 

  
  

Cwa - sub-

tropical 2 2 - - - 1 - 5 

    Cfa - temperate  - - - - - - - - 

2017 
 

 Cfb - subtropical 

from altitude 12 1 - - 1 - - 14 

    Cwa - tropical  - - - - - - - - 

    Cfa - temperate 13 - 1 - 1 - - 15 

2018 

 

Brazil 

 

 Cfb - subtropical 

from altitude - - - - - - - - 

    Cwa - tropical  4 - - - 6 - - 10 

    Cfa - temperate 16 14 - - 2 - - 32 

2019 
 

 Cfb - subtropical 

from altitude 32 13 2 - - - - 47 

    Cwa - tropical  - - - - - - - - 

all Total    

132 

(71.7%) 

32 

(17.4%) 

2 

(1.1%) 1 (0.5%) 

15 

(8.2

%) 

1 

(0.5%) 

1 

(0.5%) 184 
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Supplementary table 2. List of isolates tested on the race assessment. 

Isolate Year Country Region City Race 

A1-1 2015 Argentina Buenos Aires Los Hornos  0 

A1-2 2015 Argentina Buenos Aires Los Hornos  0 

A1-3 2015 Argentina Buenos Aires Los Hornos  0 

A2-2 2015 Argentina Buenos Aires 
Bartolomé Bavio (General 

Mansilla) 0 

A3-1 2015 Argentina Buenos Aires Don Joaquín (Magdalena) 0 

A3-1 2015 Argentina Buenos Aires Don Joaquín (Magdalena) 0 

A3-2 2015 Argentina Buenos Aires Don Joaquín (Magdalena) 0 

A3-3 2015 Argentina Buenos Aires Don Joaquín (Magdalena) 0 

A3-4 2015 Argentina Buenos Aires Don Joaquín (Magdalena) 0 

A3-5 2015 Argentina Buenos Aires Don Joaquín (Magdalena) 0 

A4-1 2015 Argentina Santa Fe Santa Isabel 0 

A6-1 2015 Argentina Buenos Aires Junin 0 

A9-1 2015 Argentina Buenos Aires San Pedro 0 

A10-1 2015 Argentina Buenos Aires San Pedro 0 

A10-2 2015 Argentina Buenos Aires San Pedro 0 

A10-3 2015 Argentina Buenos Aires San Pedro 0 

A10-4 2015 Argentina Buenos Aires San Pedro 0 

A11-6 2015 Argentina Buenos Aires Pergamino  3 

A13-1 2015 Argentina Entre Ríos  La Paz (South) 0 

A15-1 2015 Argentina Entre Ríos  Villaguay  0 

A15-2 2015 Argentina Entre Ríos  Villaguay  0 

A15-4 2015 Argentina Entre Ríos  Villaguay  0 

A16-1 2015 Argentina Entre Ríos  Rosario del Tala 0 

A16-2 2015 Argentina Entre Ríos  Rosario del Tala 2 

A16-3 2015 Argentina Entre Ríos  Rosario del Tala 0 

A16-4 2015 Argentina Entre Ríos  Rosario del Tala 0 

A17-1 2015 Argentina Entre Ríos  Rincón de Nogoyá 0 

A17-2 2015 Argentina Entre Ríos  Rincón de Nogoyá 0 

A17-3 2015 Argentina Entre Ríos  Rincón de Nogoyá 0 

A17-4 2015 Argentina Entre Ríos  Rincón de Nogoyá 0 

A18-1 2015 Argentina Entre Ríos  Victoria  1 

A19-1 2015 Argentina Entre Ríos  Diamante  23N 

A19-2 2015 Argentina Entre Ríos  Diamante  23N 

A20-2 2015 Argentina Entre Ríos  Paraná  23N 

A20-3 2015 Argentina Entre Ríos  Paraná  0 

A22-1 2015 Argentina Entre Ríos  Paraná  0 

A22-2 2015 Argentina Entre Ríos  Paraná  0 

A22-3 2015 Argentina Entre Ríos  Paraná  0 
 

Cont. 
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Isolate Year Country Region City Race 

A30  2018 Argentina Buenos Aires Pergamino 0 

A31 2018 Argentina Buenos Aires Pergamino 0 

A33 2018 Argentina Buenos Aires Pergamino 0 

A34 2018 Argentina Tucumán  Santa Rosa de Leales 0 

A35 2018 Argentina Tucumán  Santa Rosa de Leales 0 

A36 2018 Argentina Tucumán  Santa Rosa de Leales 0 

A37 2018 Argentina Tucumán  Santa Rosa de Leales 0 

A38 2018 Argentina Tucumán  Santa Rosa de Leales 0 

A41 2018 Argentina Tucumán  Santa Rosa de Leales 0 

A42 2018 Argentina Tucumán  Santa Rosa de Leales 0 

A43 2018 Argentina Buenos Aires Pergamino 0 

A44 2018 Argentina Buenos Aires Pergamino 0 

A46 2018 Argentina Tucumán  Santa Rosa de Leales 1 

A47 2018 Argentina Tucumán  Santa Rosa de Leales 0 

A50 2019 Argentina Buenos Aires Junin 0 

A51 2019 Argentina Córdoba Córdoba 1 

A52 2019 Argentina Córdoba Oncativo  0 

A53 2019 Argentina Córdoba Pozo del Molle  0 

A54 2019 Argentina Entre Ríos Herrera 0 

A55 2019 Argentina Buenos Aires Pergamino 0 

A56 2019 Argentina Buenos Aires Pergamino 0 

A58 2019 Argentina Buenos Aires Pergamino 0 

A62 2019 Argentina Córdoba Manfredi 3N 

A65 2019 Argentina Chaco Chaco 0 

A66 2019 Argentina Entre Ríos Parana 0 

A67 2019 Argentina Entre Ríos Parana 13N 

A68 2019 Argentina Formosa Laguna Blanca  0 

A69 2019 Argentina Salta Valle de Lorna 1 

B1-1 2017 Brazil Paraná Campo Largo 0 

B1-2 2017 Brazil Paraná Campo Largo 23N 

B1-4 2017 Brazil Paraná Campo Largo 0 

B1-5 2017 Brazil Paraná Campo Largo 1 

B2-1 2017 Brazil Paraná Campo Largo 0 

B2-2 2017 Brazil Paraná Campo Largo 0 

B2-3 2017 Brazil Paraná Campo Largo 0 

B2-4 2017 Brazil Paraná Campo Largo 0 

B2-5 2017 Brazil Paraná Campo Largo 0 

B3-1 2017 Brazil Paraná Castro 0 

B3-2 2017 Brazil Paraná Castro 0 

B3-3 2017 Brazil Paraná Castro 0 

B3-4 2017 Brazil Paraná Castro 0 

B3-5 2017 Brazil Paraná Castro 0 
 

Cont.  
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Isolate Year Country Region City Race 

B7-1 2018 Brazil Minas Gerais Sete Lagoas 23N 

B7-2 2018 Brazil Minas Gerais Sete Lagoas 23N 

B7-3 2018 Brazil Minas Gerais Sete Lagoas 23N 

B7-4 2018 Brazil Minas Gerais Sete Lagoas 23N 

B9-1 2018 Brazil Rio Grande do Sul Tenente Portela 0 

B9-3 2018 Brazil Rio Grande do Sul Tenente Portela 0 

B10-1 2018 Brazil Minas Gerais Florestal 23N 

B10-2 2018 Brazil Minas Gerais Florestal 0 

B10-3 2018 Brazil Minas Gerais Florestal 0 

B12-1 2018 Brazil Minas Gerais Estiva 0 

B12-2 2018 Brazil Minas Gerais Estiva 0 

B12-3 2018 Brazil Minas Gerais Estiva 23N 

B21-1 2018 Brazil Paraná Tibagi 0 

B21-2 2018 Brazil Paraná Tibagi 0 

B21-3 2018 Brazil Paraná Tibagi 0 

B29-2 2018 Brazil Rio Grande do Sul Tenente Portela 0 

B29-3 2018 Brazil Rio Grande do Sul Tenente Portela 0 

B30-1 2018 Brazil Rio Grande do Sul Palmeira das Missões 0 

B30-2 2018 Brazil Rio Grande do Sul Palmeira das Missões 23N 

B30-3 2018 Brazil Rio Grande do Sul Palmeira das Missões 0 

B30-4 2018 Brazil Rio Grande do Sul Palmeira das Missões 2 

B31-1 2018 Brazil Rio Grande do Sul Horizontina 0 

B31-2 2018 Brazil Rio Grande do Sul Horizontina 0 

B31-3 2018 Brazil Rio Grande do Sul Horizontina 0 

B31-4 2018 Brazil Rio Grande do Sul Horizontina 0 

B34-2 2019 Brazil Paraná Ponta Grossa  1 

B34-3 2019 Brazil Paraná Ponta Grossa  1 

B36-1 2019 Brazil Paraná Ponta Grossa  23N 

B36-2b 2019 Brazil Paraná Ponta Grossa  0 

B37-1a 2019 Brazil Paraná Ponta Grossa  0 

B37-1b 2019 Brazil Paraná Ponta Grossa  0 

B38-1 2019 Brazil Paraná Ponta Grossa  0 

B38-2 2019 Brazil Paraná Ponta Grossa  0 

B38-3a 2019 Brazil Paraná Ponta Grossa  0 

B38-3b 2019 Brazil Paraná Ponta Grossa  0 

B38-4 2019 Brazil Paraná Ponta Grossa  0 

B40-2 2019 Brazil Paraná Tibagi 1 

B40-2 2019 Brazil Paraná Tibagi 1 

B40-3 2019 Brazil Paraná Tibagi 0 

B40-4a 2019 Brazil Paraná Tibagi 1 

B41-2 2019 Brazil Rio Grande do Sul Dr. Maurício Cardoso 23N 

B41-3 2019 Brazil Rio Grande do Sul Dr. Maurício Cardoso 0 
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Isolate Year Country Region City Race 

B41-4 2019 Brazil Rio Grande do Sul Dr. Maurício Cardoso 0 

B41-5 2019 Brazil Rio Grande do Sul Dr. Maurício Cardoso 0 

B42-1 2019 Brazil Rio Grande do Sul Santa Rosa 0 

B42-2 2019 Brazil Rio Grande do Sul Santa Rosa 0 

B42-3 2019 Brazil Rio Grande do Sul Santa Rosa 0 

B43-1 2019 Brazil Santa Catarina Iporã 0 

B43-2 2019 Brazil Santa Catarina Iporã 0 

B43-3 2019 Brazil Santa Catarina Iporã 0 

B44-1 2019 Brazil Rio Grande do Sul Rio Grande do Sul 1 

B44-2 2019 Brazil Rio Grande do Sul Rio Grande do Sul 1 

B44-3 2019 Brazil Rio Grande do Sul Rio Grande do Sul 1 

B44-4 2019 Brazil Rio Grande do Sul Rio Grande do Sul 1 

B45-1 2019 Brazil Rio Grande do Sul Tenente Portela  1 

B45-3 2019 Brazil Rio Grande do Sul Tenente Portela  1 

B45-4 2019 Brazil Rio Grande do Sul Tenente Portela  1 

B46-1 2019 Brazil Santa Catarina Iporã do Oeste 1 

B46-2 2019 Brazil Santa Catarina Iporã do Oeste 0 

B47-1 2019 Brazil Santa Catarina Iporã 1 

B47-2 2019 Brazil Santa Catarina Iporã 1 

B47-3 2019 Brazil Santa Catarina Iporã 1 

B47-4 2019 Brazil Santa Catarina Iporã 0 

B49-1 2019 Brazil Rio Grande do Sul São Luiz Gonzaga 1 

B49-2 2019 Brazil Rio Grande do Sul São Luiz Gonzaga 1 

B49-3 2019 Brazil Rio Grande do Sul São Luiz Gonzaga 1 

B49-4 2019 Brazil Rio Grande do Sul São Luiz Gonzaga 0 

B50-1 2019 Brazil Paraná Castro/Guantela 1 

B50-2 2019 Brazil Paraná Castro/Guantela 1 

B50-3 2019 Brazil Paraná Castro/Guantela 1 

B52-1 2019 Brazil Paraná Ventania 0 

B52-2 2019 Brazil Paraná Ventania 0 

B52-3 2019 Brazil Paraná Ventania 0 

B52-4 2019 Brazil Paraná Ventania 0 

B53-1 2019 Brazil Paraná Guantela/Tibagi 0 

B53-2 2019 Brazil Paraná Guantela/Tibagi 0 

B53-3 2019 Brazil Paraná Guantela/Tibagi 0 

B53-4 2019 Brazil Paraná Guantela/Tibagi 0 

B54-1 2019 Brazil Paraná Ventania/Sapopema 0 

B54-2 2019 Brazil Paraná Ventania/Sapopema 0 

B54-3 2019 Brazil Paraná Ventania/Sapopema 0 

B54-4 2019 Brazil Paraná Ventania/Sapopema 1 

B56-1 2019 Brazil Paraná Ponta Grossa  0 

B56-2 2019 Brazil Paraná Ponta Grossa  0 
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Isolate Year Country Region City Race 

B56-3 2019 Brazil Paraná Ponta Grossa  0 

B58-1 2019 Brazil Paraná Castrolanda/Castro 1 

B58-2 2019 Brazil Paraná Castrolanda/Castro 1 

B58-3 2019 Brazil Paraná Castrolanda/Castro 1 

B58-4 2019 Brazil Paraná Castrolanda/Castro 1 

B59-1 2019 Brazil Paraná Londrina 0 

B59-2 2019 Brazil Paraná Londrina 0 

B59-3 2019 Brazil Paraná Londrina 0 

B59-4 2019 Brazil Paraná Londrina 0 

B59-5 2019 Brazil Paraná Londrina 23N 

B60-1 2019 Brazil Paraná Ventania 0 

B60-2 2019 Brazil Paraná Ventania 0 

B60-3 2019 Brazil Paraná Ventania 23N 

B60-4 2019 Brazil Paraná Ventania 0 

B61-1 2019 Brazil Paraná Guantela 0 

B61-2 2019 Brazil Paraná Guantela 0 

B62-1 2019 Brazil Paraná Carambei 0 

B62-2 2019 Brazil Paraná Carambei 0 

B62-3 2019 Brazil Paraná Carambei 0 

B62-4 2019 Brazil Paraná Carambei 0 
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Abstract 

Northern Corn Leaf Blight (NCLB) is a fungal leaf disease in maize caused by Exserohilum 

turcicum. NCLB occurs worldwide, from tropical to temperate zones raising the question about 

plasticity of temperature adaptation of local isolates of the pathogen. Seven isolates of 

E. turcicum originating from South America and seven from Europe were compared for their 

response to temperature variations in vitro and in vivo between 15 and 30 °C. In vitro, isolates 

originating from Europe and South America significantly differed in mycelial growth rate at 30 

°C and in sporulation at 25 °C and 30 °C. Aggressiveness of E. turcicum isolates was evaluated 

on three susceptible maize cultivars (maize lines B37, Sus1 and the German hybrid Niklas) 

under different day/night temperature regimes (15/10 °C, 20/15 °C, 25/20 °C, or 30/25 °C) with 

a photoperiod of 14 h. Aggressiveness, recorded as area under the disease progress curve 

(AUDPC), of South American isolates was higher than for European isolates at 15 °C, 20 °C 

and 25 °C, and for sporulation in vivo in all temperatures. In general, aggressiveness 

components were most influenced by temperature. Therefore, multivariate analysis was 

performed with aggressiveness component data at 30 °C, which expressed the highest number 

of variables with significant differences between isolate origins. According to their 

aggressiveness, European and South American isolates can be grouped separately, 

demonstrating that South American isolates are better adapted to higher temperatures and 

display a higher level of aggressiveness under similar conditions than European isolates from 

a cool climate. It is concluded that plasticity of temperature adaptation in E. turcicum 

populations is relatively large and allowed E. turcicum to follow the recent expansion of maize 

cultivation into cool climate zones in Europe. However, our data suggest that adaptation to 

higher temperature is likely to increase aggressiveness of NCLB on maize in cooler climate 

zones when experiencing further climate warming. This plasticity in adaptation to 
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environmental conditions of E. turcicum may also hamper the success of breeding programs 

as it may decrease the durability of resistance. 

Keywords: Setosphaeria turcica, aggressiveness, leaf disease, climate warming 

Introduction 

Exserohilum turcicum, the causal agent of Northern Corn Leaf Blight (NCLB), occurs in all 

maize-producing regions, from tropical to temperate zones (CABI, 2019). The ascomycete 

E. turcicum (teleomorph Setosphaeria turcica) causes cigar-shaped green-grey lesions on 

leaves, which become necrotic in later infection stages and may evolve to blight symptoms, 

leading to high yield losses in maize. Yield losses caused by NCLB are correlated with host 

phenological stage, insertion of the infected leaves and host resistance. Infections that occur 

from 2 to 3 weeks after pollination cause yield losses of up to 40% (Levy and Pataky, 1992). 

In the vegetative stage, young seedlings usually present higher NCLB susceptibility when 

compared to 2-month-old plants (Levy and Cohen, 1983a). Lesions on the leaf closest to the 

cob show a high contribution to yield reduction (Levy and Leonard, 1990). 

Maize yield losses caused by E. turcicum are up to 40% in South America (Rossi et al., 2010; 

Cota et al., 2013). In Germany, E. turcicum causes yield losses from 10 to 30% in maize 

production, depending on the host resistance levels (BVL, 2020). Maize-producing regions in 

South America are classified as Cfa (temperate climate without dry season and with hot 

summer), Cfb (temperate climate without dry season, with warm summer) or Cwa (temperate 

climate with dry winter and with hot summer) according to the Köppen-Geiger climate 

classification (Peel et al., 2007). In Europe, maize-producing regions have a mild climate, Cfb, 

or Dfb (cold climate without dry season, with warm summer) (Peel et al., 2007). Furthermore, 

control methods and cropping systems differ between the regions. Disease control in South 

America is mainly based on fungicide sprays and resistant cultivars. In Brazil, 28 fungicides 

are registered for NCLB control (MAPA, 2020). Nonetheless, the cultivation of susceptible 

genotypes in areas with weather conditions favorable for disease development and the use of 

no-till practices have increased disease pressure in some regions of South America (Cota et 

al., 2013). In Germany, the cultivation of resistant cultivars is recommended for NCLB control. 

In this country, fungicide sprays are unusual, and only one fungicide was registered for NCLB 

control in 2020 (BVL, 2020). 

The range of E. turcicum races in Europe seems to be different from that in South America. In 

2011 and 2012, 10 races were reported in Europe: 0, 1, 3, 3N, 13, 23, 123, 2, 12, 13N, and 1N 

(Hanekamp, 2016). In contrast, race 0 is predominant in South America (Navarro et al., 2021). 
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However, isolates capable of overcoming the resistance conferred by Ht gene (races 1N, 12N, 

123N, 123, 23) were also detected in maize plants during 1993, 1994 and 2005 in Brazil 

(Gianisi et al., 1996; Ogliari et al., 2005). 

Environmental conditions favorable for the occurrence of NCLB in the field are long dew 

periods and moderate temperatures (Welz and Geiger, 2000). Conidia can germinate from 10 

to 35 °C and reach 100% germination from 20 to 25 °C after 2 h of dew (Levy and Cohen, 

1983a). As E. turcicum penetrates directly through the epidermis (Hilu and Hooker, 1964), the 

optimal temperature is also required for appressorium formation. Infections occur from 15 to 

30 °C, and the optimal temperature is 20 °C. A minimum dew period of 5 h is required for lesion 

formation. In addition, the minimum dew period required for spore production is 9 h, which is 

longer than that necessary for infection (Levy and Cohen, 1983a,b). Optimal weather 

conditions described for disease development are observed in mid-altitude regions in the 

tropics (Welz and Geiger, 2000). Accordingly, it is hypothesized that the E. turcicum center of 

origin is in the tropical regions, which is also supported by the higher genetic diversity found in 

those areas (Bochardt et al., 1998). If the pathogen co-evolved with maize (Zea mays), the 

center of origin should be Central America. If it co-evolved with sorghum (Sorghum bicolor) 

and later jumped to maize, the center of origin should be East Africa (Welz, 1998). 

Aggressiveness designates the amount of disease caused by one pathogen isolate on a 

susceptible host (Vanderplank, 1968). The aggressiveness level is related to the pathogen, 

but also to the host quantitative resistance and the environmental conditions (Andrivon, 1993). 

Resistant hosts tend to select more aggressive isolates than susceptible hosts (Delmas et al., 

2016). The interaction between host resistance and pathogen genotype plays an important 

role in the durability of quantitative resistance (Lannou et al., 2012). Pathogen populations with 

a fast response to selection pressure may erode resistance more rapidly (Delmas et al., 2012).  

Aggressiveness is quantified by the evaluation of components related to the disease cycle 

(Kranz, 2003), such as incubation period, disease severity, and sporulation (Pariaud et al., 

2009). These disease components allow quantitative comparisons between pathogen isolates 

from tropical and temperate climate zones. In tropical regions, high temperatures and short 

dew periods are unfavorable to conidium survival and germination. As weather conditions in 

tropical regions are not always favorable for disease spread, tropical pathogens usually have 

an alternative source of propagation by lesion expansion (Bergamin Filho and Amorim, 1996). 

Therefore, pathogen development continues by leaf tissue colonization (autoinfection) instead 

of conidial propagation expansion (Bergamin Filho and Amorim, 1996). Such a strategy is 

observed for E. turcicum, as lesion expansion has been proven to contribute in NCLB 

epidemics (Vitti et al., 1995, Carson, 2006). However, comparisons between pathogen 
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populations originating from areas with different environmental conditions are scarce in the 

literature (Uloth et al., 2015). 

Assuming co-evolution with either maize or sorghum (Welz, 1998), E. turcicum should be 

adapted to tropical temperature levels. However, maize production has expanded substantially 

into cooler climate zones like Germany in the last three decades, exposing potential pathogens 

to cooler temperature regimes. This raises the question as to whether and how adaptation to 

cooler temperatures has affected the aggressiveness of E. turcicum on maize. A study of 

aggressiveness with E. turcicum isolates from Europe and Africa carried out on detached 

maize leaves, however, did not confirm different aggressiveness levels according to the isolate 

origin (Muiru et al., 2010). In the present study, a comprehensive comparison of the 

aggressiveness of E. turcicum isolates under different temperature conditions was performed. 

Experiments were carried out to verify the effect of temperature on pathogen and disease 

development, to better understand temperature adaptation of E. turcicum isolates originating 

from tropical and temperate climate zones. The effect of temperature was evaluated on 

mycelium growth and spore production in vitro and on incubation period, disease severity, and 

pathogen sporulation on maize plants in vivo. 

Material and Methods 

Exserohilum turcicum isolates  

Isolates selected for aggressiveness comparisons were chosen according to their provenance 

and race. Isolates were selected in order to have at least one isolate for each race complexity, 

from a single country. Isolates were obtained from race assessments conducted in Europe (n 

= 645) (Hanekamp, 2016) and in South America (n = 184) (Navarro et al., 2021). Races were 

determined according to previous works (Hanekamp, 2016; Navarro et al., 2021). Briefly, the 

race determination was conducted by inoculating a differential set of the maize line B37 without 

resistance genes (control) and B37 carrying the resistance genes Ht1, Ht2, Ht3 and Htn1, as 

no molecular methods are established to determine the physiological race of E. turcicum. 

Maize plants were cultivated in a greenhouse (22 ± 6 °C, 70% air humidity, day/night light 

regime 14/10 h, light intensity 100 ± 20 µmol m−2 s−1). The race is determined based on the 

phenotype 14 days post inoculation. Plants displaying strong chlorosis are classified as 

resistant, whereas plants showing strong necrosis are susceptible (Bigirwa et al., 1993). 

Finally, 14 isolates (seven isolates from Europe and seven from South America) were selected 

for in vitro and in vivo tests. Race complexity is based on the number of Ht resistance genes 

which an isolate is able to overcome and cause disease (Table 1) (Weems and Bradley, 2018). 

  



Chapter 2. In vitro and in planta studies on temperature adaptation 

69 
 

Table 1. Exserohilum turcicum isolates used for in vitro and in vivo tests.  

Isolate Continent Country Region County Race Rc1 Climate2 

D6-1 Europe Germany Bayern Regensburg Race 0 0 Dfb 

HH138-1 Europe France  Oberhein Region Fessenheim Race 1  1 Cfb 

HH80 Europe Belgium East Flanders Beervelde Race 2 1 Cfb 

D10-1 Europe Germany Niedersachsen Meppen Race 3 1 Dfb 

D10-3 Europe Germany Niedersachsen Meppen Race 3N 2 Dfb 

D3-3 Europe Germany Bayern Regensburg Race 123 3 Dfb 

HH123-2 Europe Turkey Adana Adana Race 23N 3 Csa 

B3-2 South America Brazil Paraná Castro Race 0 0 Cfb 

A18-1 South America Argentina Entre Ríos  Victoria  Race 1  1 Cfa 

B31-2 South America Brazil Rio Grande do Sul Horizontina Race 2 1 Cfa 

A11-6 South America Argentina Missiones  Pergamino  Race 3 1 Cfa 

B1-5 South America Brazil Paraná Campo Largo Race 12 2 Cfb 

B10-1 South America Brazil Minas Gerais Florestal Race 23N 3 Cwa 

B7-1 South America Brazil Minas Gerais Sete Lagoas Race 23N 3 Cwa 

1 Race complexity (Rc) denotes the number of differential lines for which a specific isolate is virulent; rc1 = race 

complexity 1; rc2 = race complexity 2; rc3 = race complexity 3. 

2 The climate from the region where each isolate was collected was classified as Cfa (temperate climate without 

dry season, with hot summer), Cfb (temperate climate without dry season, with warm summer), Cwa (temperate 

climate with dry winter and with hot summer), Dfb (cold climate without dry season with warm summer), or Csa 

(temperate climate with dry summer, with hot summer), according to the climate classification of Köppen-Geiger 

(Peel et al., 2007). 

In vitro tests 

The in vitro experiments were performed for each isolate (Table 1) in order to observe the 

development of the pathogen under different temperatures. Mycelium growth and spore 

production were evaluated. All isolates, stored in fresh glycerine (25%) at −20 °C (up to 60 

days), were transferred to Petri dishes containing V8 medium (75 mL V8 vegetable juice; 1.5 

g CaCO3, 10 g agar-agar). After 28 days, mycelial plugs (3 mm-diameter) were transferred to 

V8 plates and grown under four temperatures (15 °C, 20 °C, 25 °C, or 30 °C) in the dark for 

14 days. Each treatment was replicated four times (4 plates per isolate at each temperature). 

On each day after inoculation perpendicular measurements of the colony radius were taken 

from each plate. Finally, the AUMGC was calculated by trapezoidal integration adapted from 

Berger (1988), according to the following formula: 

AUMGC = ∑ (
 𝑥𝑖 + 𝑥𝑖+1

2
) (𝑡𝑖+1 − 𝑡𝑖)

𝑛−1

1
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where  𝑥𝑖 is the colony diameter for the measurement number 𝑖, 𝑡𝑖 is the corresponding number 

of days of this observation, and 𝑛 is the number of measurements. AUMGC was calculated 

until the first plates were totally covered with mycelium, at 7 days post inoculation (dpi). At 

15 dpi, conidia were harvested from each plate, by washing with 10 ml of sterile distilled water 

and stored in falcon tubes at -20°C. Three aliquots from each spore suspension were counted 

using a hemocytometer; and the conidia production was calculated per plate. Experiments in 

vitro were conducted four times.  

In vivo tests  

Maize plants from the near isogenic line (NIL) B37 (reference line used in race monitoring), 

Sus1 (highly susceptible line provided by breeders as a positive control), and the hybrid line 

Niklas® (widely cultivated in Germany) were sown to test the aggressiveness of E. turcicum 

isolates (Table 1). Seeds were provided by KWS Saat SE (Einbeck, Germany). Two seeds per 

pot (11 × 11 × 10 cm3) were sown in a mixture of soil with proportions of 3:3:1 (clay: compost: 

sand). The plants were cultivated in a greenhouse at 24 ± 3 °C, 70% of air humidity, and a 

light/dark photoperiod of 14/10 h. Maize plants were inoculated about 30 days after sowing 

when the fifth and sixth leaves were unfolded. In order to prepare the conidia suspension, five 

plates of each isolate were inoculated and incubated at 25 °C in the dark for 21 days until 

conidia have developed. Conidia were collected using an aqueous solution containing 125 

ppm of the surfactant Silwet Gold® (Certis Europe B.V., Hamburg, Germany), and the 

suspension was adjusted to 1500 conidia mL−1 with a hemocytometer. Approximately 7 mL of 

conidia suspension were sprayed per plant that were maintained in a humidity chamber for 24 

h. All plants were transferred to climate chambers (RUMED® Rubbarth Apparate GmbH, 

Laatzen, Germany) under the following day/night temperature conditions: 30/25 °C, 25/20 °C, 

20/15 °C, and 15/10 °C, with a light/dark photoperiod of 14/10 h, light intensity of 120 ± 10 

µmol m−2 s−1 and relative air humidity of 70%. For each isolate, temperature and maize host, 

four replicated plants were inoculated. The in vivo experiments were repeated two times using 

four plants as technical replicates. 

The comparisons of aggressiveness among isolates were based on the incubation period, 

disease severity, AUDPC and sporulation. The incubation period was evaluated when the plant 

showed the first lesion. Disease severity was evaluated every 3 days based on a diagrammatic 

scale ranging from 2 to 90% (Pataky, 1992). The final disease severity was obtained at 26 dpi. 

AUDPC was estimated by trapezoidal integration (Berger, 1988) according to the following 

formula:  
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AUDPC = ∑ (
 𝑦𝑖 + 𝑦𝑖+1

2
) (𝑡𝑖+1 − 𝑡𝑖)

𝑛𝑖−1

𝑖=1

 

where  𝑦𝑖 is the disease severity at the 𝑖 evaluation, 𝑡𝑖 is time in days post inoculation at the ith 

evaluation, and n is the total number of evaluations.  

Sporulation was measured on line B37 plants at 26 dpi. Symptomatic leaf samples of 6 cm2 (3 

cm × 2 cm) from the fifth unfolded leaf were collected at the transition between green and 

necrotic areas. Samples of the four inoculated plants per treatment were placed on moistened 

filter paper (Munktell Ahlstrom) to maintain high humidity and stimulate conidia production. 

Pictures were taken of each sample to quantify the diseased area using Image J1.52a software 

(Wayne Rasband, National Institute of Health, Bethesda, MD, USA). The disease severity (%) 

of each sample was estimated using Assess 2.0 software (Lakhdar Lamari, 2008, APS, St. 

Paul, MN, USA). After 3 days, each sample was placed individually in a Falcon tube containing 

4 mL of sterile distilled water amended with 125 ppm of the surfactant Silwet Gold®. Falcon 

tubes were frozen at −20 °C for further procedures. After mixing of the sample, sporulation 

was estimated using a haemocytometer. Three aliquots per sample were evaluated, 

sporulation was estimated from the average of these aliquots and divided by the diseased 

area, obtaining values of spores×cm−2. 

Data analysis  

Data analysis of in vitro experiments was performed applying mixed models and estimations 

by the restricted maximum likelihood method using the lmer package of R 3.6.0 software (R 

Core Team, 2019). The in vitro experiments were completely randomized within the 

temperature treatments. Data of conidia production in vitro were analyzed with Box Cox 

transformation. Data were compared by ANOVA and multiple comparison applying Tukey test 

between isolates for each temperature (p-value ≤ 0.05). 

In the in vivo experiments, a variance component analysis (VCA) was performed for the 

variables incubation period and AUDPC in order to assess the effect of the factors temperature, 

isolate origin and host genotype. Variance was estimated by the restricted maximum likelihood 

method and performed using the package VCA in R 3.6.0 software (R Core Team, 2019). 

Multivariate analysis of variance (MANOVA) was performed for the transformed data using the 

package car in R 3.6.0 software (R Core Team, 2019). MANOVA was applied to verify the 

effect of three factors in the three in vivo variables together listed in the VCA analysis. Partial 

eta squared values (η2) were calculated to obtain the effect of factor on the percentage of total 

variance. An additional ANOVA was conducted for data of AUDPC and Box-Cox transformed 
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data of sporulation in vivo with the race complexity as main effect and experiment replications 

was considered as random effect. As the factor temperature was showing the highest 

percentage of the total variance, an ANOVA was conducted per each temperature considering 

isolate origin as main effect and experiment replication and host genotypes as random effects. 

A second ANOVA was conducted per each temperature considering each single isolate as 

main effect and experiment replication and host genotypes as random effects. In addition, 

isolates were compared by multiple comparison applying the Tukey test (p-value ≤ 0.05). Data 

of incubation period and sporulation in vivo were analyzed after Box Cox transformation. As 

the host genotype was contributing to the variance, the effect of host genotype on AUDPC was 

compared between isolates origin and isolates for each temperature performing an ANOVA 

with experiment replication as random effect. Another ANOVA was conducted per each 

temperature considering each single isolate as main effect and experiment replication as 

random effects. In addition, isolates were compared by multiple comparison applying Tukey 

test (p-value ≤ 0.05). 

Further analyzes were performed using data from the 30 °C experiment; data for the in vivo 

variables were chosen for the reference line B37 at 30/25 °C. The mean of each variable was 

calculated for each isolate. The relationships between variables were assessed by Spearman’s 

rank correlation between all pairs of variables car in R 3.6.0 software (R Core Team, 2019). A 

principal component analysis (PCA) was used to explore the associations between variables. 

Cluster analysis with all variables was performed to identify and to group isolates according to 

their similarity of aggressiveness. The standardized Euclidean distance was used as a 

measure of dissimilarity. The following agglomerative hierarchical methods were applied: 

single linkage, complete linkage, average linkage (also called the unweighted pair groups 

method using arithmetic average – UPGMA), centroid and Ward (Quinn and Keough, 2002). 

The method that best fitted to the data was chosen by visual analysis of the grouping pattern. 

A dendrogram was obtained to visualize the isolates within groups. Cluster analysis was 

performed using the function hclust in R 3.6.0 software (R Core Team, 2019). Furthermore, 

stepwise discriminant analysis (DA) was performed to identify which variables contributed most 

to differences between the two groups of isolates originating from Europe and South America. 

DA was performed with Statistica 13.0 software (Statsoft, Tulsa, OK, USA) by the forward 

method. Additionally, a PCA was performed with variables selected by the DA to show isolates 

position. 
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Results 

Effect of temperature and isolate origin on pathogen development in vitro  

Independent of the isolate origin, the optimal temperature for the pathogen growth was 25 °C, 

followed by the temperatures 20 °C, 30 °C and 15 °C in this order, according to the area under 

the mycelium growth curve (AUMGC) data (Table 2, Figure 1). Mycelium growth statistically 

(p-value ≤ 0.05) differed between isolates originating from Europe and South America at 30 °C. 

At 15 days post inoculation, the optimal temperature for spore production in vitro was 20 °C, 

with a mean of 156,631 conidia per plate, while at 25 °C and 30 °C, the average conidia 

production was 123,292 and 61,248 conidia per plate. South American isolates sporulated at 

a higher rate than European isolates at 25 °C and 30 °C (p-value ≤ 0.05) (Figure 1). 

Considering all temperatures, the average sporulation for South American isolates was 

110,064 conidia per plate and for European isolates 105,485 conidia per plate. At 25 °C and 

30 °C, the mean sporulation for South American isolates was 126,433 and 73,586 conidia per 

plate, whereas for European isolates mean values of 120,151 and 48,909 conidia per plate 

were observed, respectively. 

 

Table 2. Effect of isolate origin, temperature, and their interactions on the area under the 

mycelium growth curve (AUMGC) and Box-Cox transformed data of sporulation in vitro based 

on a mixed model analysis of variance.  

In vitro test     AUMGC 
Sporulation in vitro 

(Box-Cox 
transformed) 

 Effect dfn
1 dfd

2 F-value p-value F-value p-value 

Isolate origin  1 892 8.295 0.004 23.986 < 0.001 

Temperature 3 892 396.562 < 0.001 42.731 < 0.001 

Isolate origin x 
temperature 

3 892 3.031 0.028 0.419 0.739 

1 Numerator degrees of freedom (dfn), 2 denominator degrees of freedom (dfd); degrees of freedom 

calculated using the Satterthwaite formula for a mixed model; F-value for testing effect and probability 

(significance) level of F -value (p-value). 
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Figure 1. Area under the mycelium growth curve (AUMGC) (a,c,e,g) and spore production in 

vitro (conidia production per plate at 15 days post inoculation–dpi) (b,d,f,h) for isolates of 

Exserohilum turcicum originating from Europe and South America. Light grey bars represent 

European isolates, dark bars represent South American isolates. Means sharing the same 

letter are not significantly different for Tukey test (p-value ≤ 0.05). Graphs labelled with an 

asterisk (*) indicate that values for the respective variable were significantly higher for South 

American isolates than European isolates for the analysis of variance (ANOVA, p-value ≤ 

0.05). Bars indicate standard errors. Data are pooled from four replicated plates for each 

isolate which was repeated four times (n = 16 plates per isolate). 

 

Effect of isolate origin, temperature and host genotype on the incubation period, disease 

severity and sporulation 

The effects of temperature, isolate origin, and host were explained for incubation period, and 

area under the disease progress curve (AUDPC), evaluated in the in vivo experiments. These 

variables showed the highest variance for the factor temperature. The temperature explained 

48.6% and 43.7% of the total variance for incubation period, and AUDPC, respectively. All 

other factors explained less than 5% of the total variance (Figure 2). The effects of temperature 

and host on incubation period, AUDPC, and disease severity were significant (temperature: 

Pillai’s trace = 1.027, p-value ≤ 0.001; host: Pillai’s trace = 0.027, p-value ≤ 0.01; isolate origin: 

Pillai’s trace = 0.004, p-value = 0.14,) for MANOVA with an F-value of 199.7, and degrees of 

freedom of 24 and 1257. The estimation of the partial eta squared value (η2) showed that 

temperature explained 34% of the variance (Supplementary table 1).  
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(a)            (b) 

Figure 2. Effect of temperature, isolate origin and host genotype on total variance of incubation 

period (a), and area under the disease progress curve (AUDPC) (b), evaluated in the in vivo 

experiments in the greenhouse with three maize cultivars. The axis indicates the percentage 

share of total variance. Variance component analysis (VCA) was estimated by the restricted 

maximum likelihood method. 

 

The incubation period was longer at the coldest temperature 15/10 °C, with a mean of 15.4 

days (Figure 3). At 20/15 °C, 25/20 °C and 30/25 °C, the average incubation periods were 

12.7, 11.3, and 11.1 days, respectively. There was no significant difference in incubation 

periods between isolates originating from Europe and South America (Table 3, p-value = 

0.072). (Figure 3), showing mean values of 12.5 and 12.7 days, respectively. The AUDPC of 

South American isolates was significantly higher at 15/10 °C, 20/15 °C and 25/20 °C (Figure 

3). In general, South American isolates displayed higher mean AUDPC, when compared to 

European isolates. The sporulation in vivo of South American isolates was higher than of 

European isolates at all tested temperatures (Table 4, Figure 3), with means of 8768.09 

conidia×cm−2 vs. 5898.67 conidia×cm−2, respectively. 
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Table 3. Effect of isolate origin, temperature, host and their interactions on Box-Cox 

transformed data of incubation period and the area under the disease progress curve (AUDPC) 

and based on a mixed model analyses of variance. 

In vivo test     
Incubation period 

(Box-Cox 
transformed) 

AUDPC 

 Effect dfn
1 dfd

2 F-value p-value F-value p-value 

Isolate origin  1 1299 3229 0.072 42843 < 0.001 

Temperature 3 1299 356673 < 0.001 288871 < 0.001 

Host  2 1299 52307 < 0.001 42015 < 0.001 

Isolate origin x 
temperature  

3 1299 1184 0.314 2522 0.056 

Isolate origin x host 2 1299 1938 0.144 6948 < 0.001 

Temperature x host 6 1299 13185 < 0.001 3987 < 0.001 

Isolate origin x 
temperature x host 

6 1299 1550 0.158 1628 0.135 

1 Numerator degrees of freedom (dfn), 2 denominator degrees of freedom (dfd); degrees of freedom 

calculated using the Satterthwaite formula for a mixed model; F-value for testing effect and probability 

(significance) level of F -value (p-value).  

 

 

Table 4. Effect of isolate origin, temperature, and their interactions on the Box-Cox 

transformed data of sporulation in vivo based on a mixed model analysis of variance. 

In vivo test 
Sporulation in vivo (Box-Cox 

transformed) 

 Effect dfn
1 dfd

2 F-value p-value 

Isolate origin  1 385.16 316.930 < 0.001 

Temperature 3 385.14 67.993 < 0.001 

Isolate origin x temperature 3 385.05 0.1316 0.941 

1 Numerator degrees of freedom (dfn), 2 denominator degrees of freedom (dfd); degrees of freedom 

calculated using the Satterthwaite formula for a mixed model; F-value for testing effect and probability 

(significance) level of F -value (p-value). 
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Figure 3. Incubation period (a,d,g,j), area under the disease progress curve (b,e,h,k) and 

conidia production in vivo [conidia×cm−2 of diseased leaf area] (c,f,i,l) for isolates of 

Exserohilum turcicum originating from Europe and South America. Light grey bars represent 

European isolates, dark bars represent South American isolates. Means sharing the same 

letter are not significantly different following Tukey test (p-value ≤ 0.05). Graphs labelled with 

an asterisk (*) indicate that values of the respective variable for South American isolates were 

significantly higher than for European isolates (p-value ≤ 0.05). Bars indicate standard errors 

(n = 24 plants). Each experiment was replicated two times. 

 

For the interaction of isolate origin × host genotype, differences in AUDPC between European 

and South American isolates were observed on the maize line B37 (p-value ≤ 0.01) and the 

German hybrid line Niklas (p-value ≤ 0.001). With regard to the temperature, higher AUDPC 

values were recorded for South American isolates at 15/10 °C, and at 20/15 °C for the maize 

lines B37 and Sus1 (Figure 4, Supplementary figure 1). On the maize hybrid line Niklas, South 

American isolates caused high AUPDC values under all tested temperatures. 
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Figure 4. Area under the disease progress curve (AUDPC) of Exserohilum turcicum isolates 

originating from Europe and South America. Effect of host genotypesB37–standard line for 

race monitoring (a,d,g,j), Niklas®–susceptible hybrid cultivated in Germany (b,e,h,k), and 

Sus1–susceptible breeding line (c,f,i,l). Light grey bars represent European isolates, dark bars 

represent South American isolates. Means sharing the same letter are not significantly different 

following Tukey test (p-value ≤ 0.05). Graphs labelled with an asterisk (*) indicate that values 

for the respective variable of South American isolates were significantly higher than for 

European isolates (p-value ≤ 0.05). Bars indicate standard errors (n = 8 plants). Each 

experiment was replicated two times. 

Relation between aggressiveness components and isolate groups 

Further analysis of effects of isolate origin were performed with data of the AUMGC, 

sporulation in vitro, incubation period, AUDPC, sporulation in vivo, disease severity at 19 dpi 

and disease severity at 26 dpi from the reference line B37 maintained at 30/25 °C (30 °C for 

the experiment in vitro) to exclude the effect of host genotype and temperature. The most 

correlated aggressiveness components were disease severity at 19 dpi and AUDPC (r = 0.88; 

p-value ≤ 0.001). Disease severity at 26 dpi was positively correlated with AUDPC (r = 0.69; 

p-value ≤ 0.05), and disease severities at 19 and 26 dpi were positively correlated with each 

other (r = 0.56; p-value ≤ 0.05). The variables AUMGC and spore production in vitro, were 

correlated to each other (r = 0.68; p-value ≤ 0.01) (Figure 5).  

 

   *: p-value < 0.05; **: p-value < 0.01, ***: p-value < 0.001.  

Figure 5. Spearman correlation coefficients (ρ) for the relation between the means of 

measured pathogenic traits incubation period (incub), disease severity at 19 dpi (sev19dpi), 

disease severity at 26 dpi (sev26dpi), area under the disease progress curve (AUDPC), 

sporulation in vivo at 28 dpi (spore.vivo), area under the mycelium growth curve (AUMGC) and 

spore production in vitro (spore.vitro) at 30°C. 
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A cluster analysis was performed with all variables and the isolates were clustered in five 

groups by the Ward method. Similarities between isolates from the same group were observed 

for isolate origin but not for race or race complexity within groups (Figure 6). Additionally, a 

discriminant analysis (DA) was performed to select the variables that were most contributing 

to distinguish isolates according to their origin. DA retained the variables incubation period, 

disease severity at 19 dpi, sporulation in vivo, and spore production in vitro for isolate 

discrimination according to their origin. However, even performing DA with the selected 

variables, the DA misclassified the South American isolate A11-6, which was also observed in 

the principal component analysis (PCA) conducted with these four DA selected variables 

(Figure 7). According to the PCA analysis, the components PC1 and PC2 explained 74.14% 

of the total variability. Except for the South American isolate A11-6, a clear distinction between 

South American and European isolates was observed. 

 

 

Figure 6. Dendrogram for Exserohilum turcicum isolates clustered in five groups according to 

their aggressiveness level based on standardized Euclidean distance by the Ward method. 

Cluster analysis was performed using the variables incubation period, severity at 19 dpi, 

severity at 26 dpi, area under the disease progress curve (AUDPC), sporulation in vivo, area 

under the mycelium growth curve (AUMGC) and spore production in vitro with data for the 

maize line B37 at 30°C. 
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Figure 7. Principal component analysis (PCA) of the variables selected in the discriminant 

analysis (DA): disease severity at 19 days post inoculation–dpi (sev19dpi), sporulation in vivo 

(spore.vivo), spore production in vitro (spore.vitro), and incubation period (incub). Fourteen 

isolates of Exserohilum turcicum originating from Europe and South America were included in 

the analysis. Variable loadings and isolates scores are represented for the reference line B37 

at 30 °C. 

Discussion  

The underlying concept of this study follows the ‘disease triangle’ (Agrios, 2005; Scholthof, 

2007) considering the factors of temperature, host genotype and isolate aggressiveness 

putatively determined by the origin. Under controlled conditions, fungal vigor and disease 

components were most influenced by temperature, which was responsible for the highest 

variance. In most pathosystems, an increase in temperature is positively associated with 

aggressiveness (Santini and Ghelardini, 2015; Chen et al., 2017). As environmental conditions 

and host genotype usually strongly correlate with disease (Mariette et al., 2018), the host 

genotype factor with three levels (reference line B37, susceptible line Sus1, and the hybrid 

Niklas®) was included in the experimental design. Interestingly, an interaction between isolate 

origin and host genotype was observed for the variable AUDPC. Disease severity was higher 

when South American isolates were inoculated in the hybrid Niklas than European isolates 

(Figure 4, Supplementary Figure 1). It is probable that European hybrids have been selected 
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by breeding programs according to their responses to European pathogen populations. 

However, all isolates were virulent in all tested host genotypes, indicating that the tested lines 

and hybrid do not harbor any known Ht genes. Usually, a pathogen population is more 

aggressive to a host population from the same region (Pariaud et al., 2009), or even more 

aggressive in cultivars that they were isolated from in the field (Mundt, 2014), indicating 

adaptive shifts. Thus, aggressiveness can be correlated with genetic background and may 

have some specificity to the host genotype (Lannou, 2012; Pariaud et al., 2009). 

Data for mycelium growth represent the effect of temperature on pathogen vigor. The 

interaction between temperature and isolate origin was significant for the variable AUMGC 

(Figure 1). South American isolates showed higher mycelium growth at 30 °C indicating that 

they might be more adapted to higher temperatures than European isolates. A study carried 

out with Sclerotinia sclerotiorum isolates showed a similar result. Isolates collected from 

warmer areas were better adapted to higher temperatures, and isolates from colder areas were 

more adapted to colder temperatures (Uloth et al., 2015). In general, plant pathogens adapt to 

changes in environmental conditions by phenotypic plasticity, migration to areas with more 

favorable climatic conditions or mutations in their genomes, which all favor pathogen survival. 

Plasticity consists of the ability to adapt without the need for mutation. Plasticity might be 

correlated to a population with higher genetic diversity, as tropical E. turcicum populations are 

genetically more diverse (Santini and Ghelardini, 2015; Loladze et al., 2014). As reported for 

most plant pathogens, it is difficult to explain how adaptations occurred in E. turcicum. 

However, it is known that the influence of weather conditions decreases when E. turcicum 

populations are more aggressive (Levy, 1989). 

The DA selected the variables incubation period, disease severity at 19 dpi, sporulation in vivo, 

and spore production in vitro for classification of isolates according to their origin. DA only 

misclassified the Argentinian isolates A11-6, leading to the conclusion that the aggressiveness 

of this isolate is similar to that of European isolates. Climate data from the last 50 years show 

that Pergamino in Argentina (origin of A11-6) has temperate and very humid weather. Mean 

precipitation is above 1000 mm per year and the average temperature is 16 °C (Aliaga et al., 

2017). In Southeast Brazil, climate data from the last 30 years show average precipitation of 

around 1500 mm per year and an average temperature close to 21 °C (INMET, 2020). The 

adaptation to mild temperatures of this Argentinian isolate may, therefore, explain why it was 

positioned with European isolates. 

The increase in disease severity over time is probably due to lesion expansion (Vitti et al., 

1995; Carson, 2006), since controlled conditions were not favorable to sporulation, and 

consequently not favorable to secondary infections. Interestingly, in average sporulation in vivo 
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was higher with South American isolates than for European isolates in all temperatures, while 

average spore production of South American isolates in vitro was higher only at 25 and 30 °C. 

The more vigorous sporulation of South American isolates provides evidence that they are 

more effectively propagating at higher temperatures than European isolates. Higher 

sporulation under high temperatures is usually not expected in nature, since higher 

temperatures are not favorable for spore survival and germination (Bergamin Filho and 

Amorim, 1996). However, under high temperature the plant may be affected by heat stress 

and its defense thus weakened. Therefore, infection and host colonization, and consequently, 

sporulation might be favored under these conditions (Garrett et al., 2006). A further factor 

involved might be an increased phytotoxin production, such as monocerin (Robson and 

Strobel, 1982) and HT-toxin (Wang et al., 2010) by the pathogen, which may suppress host 

resistance at higher temperatures (Coakley et al., 1999; Tagle et al., 2015). A potential 

mechanism is dysfunction in the detoxification process under such conditions (Pedras et al., 

2001). Unfortunately, the effect of high temperature on host resistance in the presence of the 

pathogen is difficult to analyze under experimental conditions and, therefore, heat stress was 

neglected in our experiments. 

A shorter incubation period is usually correlated to higher aggressiveness. Magnaporthe 

oryzae isolates which showed a shorter incubation period had higher values in other 

aggressiveness components. Therefore, for this pathosystem, isolates which start epidemics 

early are more aggressive (Ghatak et al., 2013). In the present study, a strong correlation was 

observed between AUMGC and spore production in vitro (Figure 5). However, no correlation 

was established between the in vitro and in vivo variables. In the in vivo experiment, the factor 

host genotype was added. As distinct host genotypes have distinct resistance backgrounds, 

the response to the environment and pathogen isolate can be different (Lannou, 2012). 

However, maize lines and hybrids used in this study had similar levels of susceptibility. Thus, 

the host genotype effect was weak, as observed in the VCA.  

Cluster analysis of all variables describes aggressiveness grouped isolates in five sub-clusters 

aggregated under two main clusters, which were strongly associated to the isolate origin in 

Europe and South America. However, there were no similarities according to race or race 

complexity (Figure 6). Race complexity reflects the number of different resistance genes that 

one isolate can overcome (Zhan et al., 2012). In nature, the emergence of complex races is 

unlikely to occur, unless there is a selection for more virulent populations by the cultivation of 

multi-resistant varieties. However, isolates bearing more virulence genes may not always be 

the most aggressive (Pariaud et al., 2009), and may or may not have fitness costs (Zhan et 

al., 2012). Nonetheless, it is not possible to make the same association for maize–E. turcicum, 
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as aggressiveness is not correlated with pathogen fitness. A high sporulation rate does not 

imply a higher survival rate (Pariaud et al., 2009). Cochliobolus carbonum and 

C. heterostrophus are pathogens that represent a trade-off between aggressiveness and 

fitness. Low aggressiveness levels and high survival ability were observed for C. carbonum 

which was the opposite of what has been observed for C. heterostrophus (Pariaud et al., 2009). 

In the PCA, 86% of the European isolates were positioned together in the upper part of the 

graph and South American isolates were more spread out (Figure 7). The PCA result can be 

related to the genetic diversity of temperate and tropical E. turcicum populations (Borchardt et 

al., 1998). Populations from temperate zones were less genotypically diverse than populations 

from tropical zones, potentially because sexual reproduction in temperate zones is rare. In 

addition, the European population might come from Central American isolates, as the genetic 

distance between European and Mexican populations is relatively small (Borchardt et al., 

1998). According to their aggressiveness, European isolates were positioned closely to each 

other, whereas South American isolates were spread (Figure 7), supporting this theory 

(Borchardt et al., 1998).  

Overall, our study provides evidence for a strong impact of temperature regimes on vigor and 

aggressiveness of E. turcicum which in turn was related to the origin of isolates from a warmer 

or cooler climate. Isolates from warmer climates, corresponding to the optimal conditions for 

the host plant, when tested under equal conditions and on similar host genotypes, grew and 

sporulated more vigorously in vitro and were more aggressive on their host plant. This may 

indicate a longer and thus more successful adaptation to their host plants in warmer than in 

cooler conditions corresponding to the history of maize cultivation in tropical and moderate 

climates. Such adaptive shift to more aggressive fungal isolates may imply that maize 

cultivation in cooler climates will face more aggressive isolates under continued climate 

warming. 

Conclusions 

South American E. turcicum isolates grew more vigorously and were more aggressive than 

European isolates, since the values of most of the tested aggressiveness components 

(AUDPC, sporulation in vivo, AUMGC and spore production in vitro) were higher for South 

American isolates, especially at higher temperatures. The fact that E. turcicum isolates 

originating from regions with warmer temperatures are more aggressive than those from 

regions with milder temperatures implies a putative effect of longer co-evolution of pathogen 

and host under warmer conditions promoting adaptive shifts to more aggressiveness. 

Accordingly, temperature was the factor with the greatest influence on pathogen 



Chapter 2. In vitro and in planta studies on temperature adaptation 

87 
 

aggressiveness, since the tested temperature range was broad, from 15 to 30 °C. Although 

the host genotype is known to have a large effect on aggressiveness (Pariaud et al., 2009), in 

our study, the host genotype did not explain the variance because all three hosts were 

moderately susceptible to E. turcicum. The results from in vitro and in vivo experiments indicate 

that E. turcicum populations display considerable plasticity (Santini and Ghelardini, 2015) and 

may adapt to the environmental conditions they are exposed to (Delmas et al., 2016). 

Adaptability to environmental conditions is an advantage for pathogen populations, in case of 

temperature increases due to climate warming or range expansion of the host crop. The latter 

has happened with maize in the last few decades when expanding to cooler climates in Europe 

where a warming climate may thus induce pathogen populations with increased 

aggressiveness. 
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Supplementary Material 

Supplementary table 1. MANOVA of in vivo variables, incubation period, severity (AUDPC) 

and disease severity at 26 dpi according to temperature, isolate origin and host. 

MANOVA Pillai's trace approx. F-value Df. p-value   partial ɳ
2
 

Temperature 1.0270 163.59 12, 3771 <0.001 *** 0.3423 

Isolate origin 0.0043 1.82 3, 1255 0.14   0.0043 

Host 0.0272 5.77 6, 2512 0.005 *** 0.0135 

Temperature x isolate origin 0.0059 0.82 9, 3771 0.58   0.0019 

Temperature x host 0.0440 3.12 18, 3771 0.009 *** 0.0014 

Isolate origin x host 0.0015 0.32 6, 2512 0.92   0.0007 

Temperature x isolate origin x host 0.0171 1.20 18, 3771 0.25   0.0056 
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Supplementary figure 1. Disease severity of Exserohilum turcicum isolates from Europe and South America inoculated on three different 

maize hosts: B37–standard line for race monitoring (A–D), Niklas®–susceptible hybrid cultivated in Germany (E–H), and Sus1–susceptible 

maize line in breeding programs (I–L), and maintained under different day/night temperatures after inoculation: 30/25 °C (A,E,I), 25/20 °C 

(B,F,J), 20/15 °C (C,G,K), and 15/10 °C (D,H,L). Graphs represent the standard error of seven isolates in two experiments (n = 56). 
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Abstract 

Northern corn leaf blight (NCLB) is an important leaf disease in maize (Zea mays) worldwide 

and is spreading into new areas with expanding maize cultivation, like Germany. 

Exserohilum turcicum, causal agent of NCLB, infects and colonizes leaf tissue and induces 

elongated necrotic lesions. Disease control is based on fungicide application and resistant 

cultivars displaying monogenic resistance. Symptom expression and resistance 

mechanisms differ in plants carrying different resistance genes. Therefore, histological 

studies and DNA quantification were performed to compare the pathogenesis of E. turcicum 

races in maize lines exhibiting compatible or incompatible interactions. Maize plants from 

the differential line B37 with and without resistance genes Ht1, Ht2, Ht3 and Htn1 were 

inoculated with either incompatible or compatible races (race 0, race 1 and race 23N) of 

E. turcicum. Leaf segments from healthy and inoculated plants were collected at five 

different stages of infection and disease development from penetration (0-1 days post 

inoculation - dpi), until full symptom expression (14-18 dpi). Symptoms of resistance 

responses conveyed by the different Ht genes considerably differed between Ht1 (necrotic 

lesions with chlorosis), Ht2 (chlorosis and small lesions), Ht3 (chlorotic spots) and Htn1 (no 

lesions or wilt-type lesions). In incompatible interactions, fungal DNA was only detected in 

very low amounts. At 10 dpi, DNA content was elevated in all compatible interactions. 

Histological studies with Chlorazol Black E staining indicated that E. turcicum formed 

appressoria and penetrated the leaf surface directly in both types of interaction. In contrast 

to incompatible interactions, however, the pathogen was able to penetrate into xylem 

vessels at 6 dpi in compatible interactions and strongly colonized the mesophyll at 12 dpi, 

which is considered the crucial process differentiating susceptible from resistant 

interactions. Following the distinct symptom expressions, resistance mechanisms conferred 

by Ht1, Ht2, Ht3 and Htn1 genes apparently are different. Lower disease levels and a 
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delayed progress of infection in compatible interactions with resistant lines imply that maize 

R genes to E. turcicum are associated with or confer additional quantitative resistance.  

Keywords: R genes, Setosphaeria turcica, northern corn leaf blight, qualitative resistance, 

histology 

Introduction 

Northern corn leaf blight (NCLB) caused by the ascomycete Exserohilum turcicum [(Pass.) 

Leonard and Suggs], synonym Setosphaeria turcica [(Luttrel) Leonard and Suggs] has 

spread worldwide into regions where maize is cultivated. Yield losses up to 44% were 

recorded in susceptible hybrids at high disease severity levels between 52 and 100% during 

the full dent stage (Bowen and Paxton, 1988). Yield losses depend on the level of host 

resistance, disease severity, plant phenological growth stage during infection, and position 

of the infected leaves (Levy and Pataky, 1992). Two to 3 weeks after pollination, high levels 

of disease severity caused yield losses between 40 and 70% (Levy and Pataky, 1992). In 

addition, high disease severity of the leaf at the ear node is correlated with high yield losses 

(Levy and Leonard, 1990). 

The pathogen can survive as chlamydospore in plant debris (Levy, 1995) and inoculum can 

be spread by rain and wind (Galiano-Carneiro and Miedaner, 2017). Under conditions of 

high humidity, conidia are able to germinate after one-hour in a broad temperature range 

(20–30 °C) (Levy and Cohen, 1983). Conidia germination is bipolar and an appressorium is 

usually formed at the end of germ tubes (Jennings and Ullstrup, 1957). Appressoria 

formation starts about 3 h after inoculation (Levy and Cohen, 1983). Infection by E. turcicum 

is usually initiated by direct penetration through the cuticle and epidermis. Penetration 

through stomata has been observed at 10% of penetration sites (Hilu and Hooker, 1964). 

As a hemibiotroph, after penetration of the epidermis, hyphae invaginate the membrane in 

the first stages of infection and a spherical intracytoplasmic vesicle is formed (Hilu and 

Hooker, 1964; Knox-Davies, 1974). After the primary stage of infection, hyphae start 

colonization of adjacent cells in the mesophyll (Knox-Davies, 1974) until xylem vessels are 

reached (Muiru et al., 2008; Kotze et al., 2019). In later stages of infection, the pathogen 

may leave the xylem, colonize mesophyll cells, and form conidiophores on the leaf surface, 

which will disperse the conidia (Kotze et al., 2019). The sexual stage was first reported in 

fields in Thailand. Sexual reproduction only occurs in populations with both mating types. 

Moreover, perithecia induction and maturation requires specific climatic conditions 

(Bunkoed et al., 2014). 

Typical symptoms of NCLB are gray-green elongated necrotic lesions (Galiano-Carneiro 

and Miedaner, 2017). Disease levels may range from small lesions to necrosis of whole 
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leaves (Welz and Geiger, 2000). Seedlings are more susceptible to disease than young 

plants (Levy and Cohen, 1983). Fungicide application and host resistance are typically 

applied for NCLB control (Galiano-Carneiro and Miedaner, 2017). However, resistant 

cultivars are more frequently used in maize fields worldwide. Host resistance is based on 

qualitative and/or quantitative resistance. In breeding programs, qualitative resistance can 

be a faster strategy to improve resistance on new hybrids (Galiano-Carneiro and Miedaner, 

2017). Resistance mechanisms and, consequently, phenotypes might differ in plants 

bearing different resistance genes. The resistance phenotype typically expressed by the 

resistance genes Ht1, Ht2, and Ht3 is a chlorosis while the resistance mechanism described 

for plants harboring Htn1 is an extended latent period (Levy and Pataky, 1992). 

Ht1 was first found in two lines, “GE440,” from the United States, and “Ladyfinger,” a 

popcorn variety from Peru (Hooker, 1963). The reaction on hybrids bearing this resistance 

gene are characterized by chlorotic lesions, a delay in necrosis, and inhibition of fungal 

sporulation. Ht2 was discovered in a line from Australia, “NN14B,” which displayed chlorotic 

lesions (Hooker, 1977). In the first description of the Ht2 gene, lower resistance levels were 

mentioned when compared to the Ht1 gene. The third R gene (Ht3) described for 

E. turcicum also expressed resistance by chlorotic lesions and was introgressed from a 

grass, Tripsacum floridanum, native to Cuba and Florida (Hooker, 1981). Another 

resistance gene used in breeding programs is known as Htn1 and is derived from the 

Mexican maize variety “Pepitilla” and the resistance mechanism described is a delay in 

infection (Gevers, 1975). 

The introduction of qualitative resistance in commercial hybrids may promote the selection 

of new physiological races. The race nomenclature for E. turcicum in maize is based on the 

resistance gene(s) which the isolate can overcome (Leonard et al., 1989). Race 0 only 

infects plants without any resistance genes. Conversely, race 23N isolates are virulent on 

plants carrying resistance genes Ht2, Ht3, and Htn1. Several race monitoring studies using 

E. turcicum populations from different regions of the world have identified races that have 

overcome all major resistance genes. In the United States, the frequency of isolates virulent 

on maize lines containing Ht1 was higher than the frequency of race 0 isolates due to 

widespread cultivation of commercial hybrids with the Ht1 resistance gene in recent years 

(Ferguson and Carson, 2007; Weems and Bradley, 2018). 

Ht resistance genes have been widely used in breeding programs (Welz and Geiger, 2000; 

Galiano-Carneiro and Miedaner, 2017). It has been hypothesized that fungal colonization, 

especially xylem penetration may differ between compatible and incompatible interactions. 

In an incompatible interaction, hyphae are restricted to xylem vessels (Muiru et al., 2008; 
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Kotze et al., 2019). Therefore, the aim of this work was to characterize and quantify fungal 

colonization in plants carrying the resistance genes Ht1, Ht2, Ht3, and Htn1 with isolates 

displaying compatible and incompatible interactions. The in situ characterization of fungal 

growth in host tissue was based on five different time points from initial penetration through 

symptom differentiation between interactions. Fungal DNA quantification and histological 

studies were performed with the differential set of near isogenic inbred lines of the recurrent 

parent B37 without resistance genes and near isogenic lines harboring different Ht 

resistance genes. 

Material and Methods 

Plant material, fungal strains and inoculation 

Maize plants from the differential set based on near isogenic inbred lines of the recurrent 

parent B37 with no qualitative resistance gene and with resistance genes Ht1, Ht2, Ht3, and 

Htn1 were cultivated in the greenhouse at 24 ± 3°C, 70% relative humidity, a day/night light 

regime of 14/10 hours and light intensity of 120 ±10 µmol m-2 s-1. Two seeds per pot (11 cm 

x 11 cm x 10 cm) were sown in a mixture of compost, clay, and sand in the proportion 3:3:1. 

Seeds were provided from KWS Saat SE (Einbeck, Germany). Maize plants were 

inoculated using a sprayer when the fifth and sixth leaves were unfolded, about 30 days 

after sowing. Incompatible interactions were induced by inoculating race 0 on near isogenic 

lines B37Ht1, B37Ht2, B37Ht3 and B37Htn1, whereas the compatible interaction was 

studied by inoculating the same race 0 isolate on B37 without resistance genes. 

Furthermore, compatible interactions were analyzed by inoculating race 1 on B37Ht1, and 

race 23N on B37Ht2, B37Ht3, and B37Htn1 lines (Supplementary table 1). The origin of 

isolates and race determination were described previously (Hanekamp, 2016). Each plant 

received seven ml of a conidia suspension at a concentration of 3,000 conidia ml-1 and was 

maintained in a humidity chamber for 24 h.  

Fourteen days post inoculation (dpi), four plants per treatment were evaluated to confirm 

compatible and incompatible interactions between the differential lines and isolates 

(Supplementary table 1). Leaf samples were collected from the inoculated area with visual 

symptoms. Disease phenotyping, disease rating, fungal DNA quantification, and 

microscopic studies on fungal colonization were based on five different time points: 

penetration (0–1 days post inoculation, dpi), first stages of infection (2–4 dpi), pre-

symptomatic disease stage (5–7 dpi), first symptom expression (10–12 dpi), and 

occurrence of symptoms distinguished between interactions (14–18 dpi). Before sampling 

at the last time point, disease severity was evaluated in ten plants based on a diagrammatic 
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scale (Pataky, 1992). Disease severity of the replicated experiment is presented in 

Supplementary figure 1. 

DNA quantification of Exserohilum turcicum in infected leaves  

Leaf samples for DNA quantification were harvested right after inoculation (0 dpi), and three, 

six, ten, and fourteen-days post inoculation (dpi). Nine plants were harvested per treatment 

and timepoint. The fourth and fifth leaves from three plants were harvested and pooled 

together in one biological replicate. Three biological replicates were used per treatment and 

timepoint. For the DNA standard curve, the race 0 isolate was grown in liquid Czapek Dox 

Medium at 22°C in the dark. The mycelial culture was shaken at 100 rpm for 14 days and 

then filtered by vacuum suction. The mycelium was frozen, lyophilized, ground, and 

homogenized with a mixer mill (Retsch® MM400, Haan, Germany). Genomic DNA (gDNA) 

extraction was performed with the CTAB method (Brandfass and Karlovsky, 2008), where 

1 ml of CTAB-buffer (20 mM Na-EDTA, 0.13 M sorbitol, 30 mM N-laurylsarcosine, 20 mM 

CTAB, 0.8 M NaCl, 10 mM Tris – pH 8.0 adjusted with NaOH) were added to 50 mg ground 

leaf sample. Proteinase K (1 µl from 20 mg ml-1 stock solution) was added to each sample. 

The mixture was treated in an ultrasonic bath for 5 s then incubated for 10 min at 42°C and 

10 min at 65°C (tubes were shaken during incubation). After incubation, 800 µl of 

chloroform-isoamyl alcohol (24:1) were added and tubes were shaken. Samples were 

incubated for 10 min on ice, then centrifuged at 13,000 × g for 10 min (Hettich Zentrifugen 

Mikro 220R, Germany). The supernatant was transferred to another tube with 200 µl of 30% 

(w/v) PEG and 100 µl 5 M NaCl. The pellet was washed with 70% (v/v) ethanol, then dried 

at room temperature. The dry pellet was dissolved in 100 µl TE buffer pH 8.0 (0.1 M Tris, 

EDTA 10 mM) and stored at -20°C. After DNA extraction, 1 μl of each sample was placed 

in an agarose gel (1%) and electrophoresis was performed to verify the DNA extraction 

procedure.  

The amount of DNA was measured by electrophoresis in an agarose gel (1%) and 

compared with known DNA concentrations of bacteriophage Lambda. Samples with a high 

genomic DNA (gDNA) concentration were diluted 1:10. The dilution factor was considered 

in further calculations. A standard curve was obtained by diluting fungal DNA from 1,000 to 

0.01 pg µl-1 (1,000, 100, 10, 1, 0.1, 0.01 pg µl-1) to quantify the target sequence by qPCR. 

The calibration curve was based on a linear regression of the quantification cycle value 

versus the logarithmic values of known gDNA. Data were analyzed with the software 

BioRad CFX Maestro 1.1 (Fa. Bio-Rad). 

Quantitative polymerase chain reaction (qPCR) analysis was performed with a primer pair 

designed to amplify the pathogen specific internal transcribed spacer (ITS) region (Beck 



Chapter 3. Expression types by Ht genes 

98 
 

1998). The primer pair used was (forward) JB 586 (5’-TGGCAATCAGTGCTCTGCTG-3’) 

and (reverse) JB 595 (5’-TCCGAGGTCAAAATGTGAGAG-3’), resulting in an amplicon size 

of 485 base pairs. PCR reactions were performed with 5 µl of the premix qPCR BIO 

SyGreen Mix Lo-ROX (PCR Biosystems, London, United Kingdom) with a primer 

concentration of 0.4 μM and 1 µl from the DNA sample. The final volume of the reaction 

was 10 μl. The optimal thermal cycling conditions (CFX384 Thermocycler - Biorad, 

Rüdigheim, Germany) were 94°C for 3 min, followed by 40 cycles of 94°C for 5 s 

(denaturation), 63.5°C for 15 s (annealing), 72°C for 15 s (elongation), and 72°C for 5 min 

for final elongation. Three technical replicates were performed for each biological replicate.  

Fungal DNA contents were compared between lines in the compatible interaction within 

every timepoint, for 10 dpi and 14 dpi by analysis of variance (ANOVA) and multiple 

comparison applying post hoc Tukey test (p-value ≤ 0.05) performed in the R software 3.6.0 

(Core Team 2019) and graphics were generated in the software Microsoft Excel 2016. Data 

of the replicated experiment is presented in Supplementary figure 2. 

Histological studies  

Leaf segments for the histological studies were collected at 1, 3, 6, 12 and 18 dpi. The fourth 

and fifth leaves from two plants were collected, resulting in four biological replicates per 

treatment and sampling time point. For every sampled leaf, six square centimeter (2 x 

3 cm2) leaf segments were cut and fixed in FAA-solution (90 ml of ethanol 70%, 5 ml 

formaldehyde 36%, and 5 ml acetic acid 99%) and stored at room temperature. Leaf 

pigments were removed in two subsequent steps. First, they were incubated in 70% ethanol 

for two hours at room temperature and then washed with water. This step was followed by 

incubation in a water bath at 90°Cfor 2.5 h in closed flask containing 2 M potassium 

hydroxide (KOH) in a 90°C water bath for 2.5 hours. After bleaching, samples were washed 

with tap water and stained with Chlorazol Black E (CBE) (Sigma Aldrich) solution (0.03% 

[w/v] chlorazol black E; lactic acid, glycerin, distilled water in the proportion 1:1:1) at 60°C 

in a water bath overnight (adapted from Wilcox and Marsh, 1964). After staining with CBE, 

leaf segments were transferred in 50% glycerin and analyzed with light microscopy within 

the next 48 h. 

Samples were analyzed using 50% glycerin as mounting fluid. Three parameters were 

evaluated during light microscopy analysis: xylem penetration efficiency (XPE), xylem 

colonization efficiency (XCE), and mesophyll colonization efficiency (MCE). Effective xylem 

penetration was considered when hyphae were able to penetrate the xylem vessel 

(Figure 1A-B). Xylem colonization occurred when two or more hyphae were visible inside 

the xylem vessel (Figure 1C). Mesophyll colonization was considered when hyphae left the 
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xylem and colonized mesophyll tissue in a region different from the penetration site 

(Figure 1D-F). Ten penetration sites were evaluated per sample, resulting in forty 

penetration sites being studied per treatment and time point. XPE, XCE and MCE were 

calculated by dividing the number of successful penetrations or colonizations to the number 

of evaluated penetration sites and transformed to percentage. Data were analyzed with the 

software Microsoft Excel 2016 and Statistica 13.0 (Statsoft, Tulsa, US). Data from each 

resistant line were compared with B37 using a Chi-square test (* p-value ≤ 0.05, ** p-

value ≤ 0.01, *** p-value ≤ 0.001). Fungal colonization was illustrated using the Corel Draw 

graphics suite X8 software (Corel Corporation, Ottawa, Canada).  
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Figure 1. Maize leaves infected with Exserohilum turcicum after staining with Chlorazol 

Black E (CBE). Light microscopical images of the mesophyll. Appressorium-like structures 

formed from hyphae in the mesophyll. Hyphae originating from a germinated spore 

penetrate the epidermis and colonize the mesophyll (A). One hypha colonizing a xylem 

vessel (B). Hyphae growing in a xylem vessel (C). Mesophyll penetration/colonization takes 

place at a different location than initial penetration (D). Appressorium-like structure formed 

from hyphae inside a xylem vessel (E). Xylem vessels and mesophyll colonized by the 

fungus (F). B37Ht2 incompatible interaction at 6 days post inoculation (dpi) (A), B37 at 6 dpi 

(B, C, E), B37 at 12 dpi (D), and B37 at 18 dpi (F). Hyphae (hy), xylem (xy), appressoria 

(ap), and spore (s). 
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Results 

Symptomology  

Disease symptoms in incompatible interactions were mostly characterized by chlorosis, 

while chlorosis was absent in compatible interactions. In the compatible interaction, 

symptoms of necrosis developed and were characterized by strong leaf blight. At 1 dpi, 

most plants showed no symptoms (Figure 2A). It was possible to observe slightly water-

soaked spots on some leaves when illuminated from the backside. The first chlorotic spots 

were found in both interactions at 3 dpi (Figure 2B). Six-days post inoculation, all plants and 

interactions still presented chlorotic spots, except for the incompatible interaction B37Ht1, 

where yellow spots had developed into elongated soaked lesions (Figure 2E). Ten-days 

post inoculation, the first grey necrotic lesions were observed in compatible interactions 

(Figure 2C). Differences in symptoms between compatible and incompatible interactions 

were clearly distinguishable in almost all plants at 14 dpi (Figure 2D,F-J). 

Fourteen days post inoculation, B37 presented typical grey necrotic lesions (Figure 2D) and 

sometimes the leaf was completely dried (Figure 2L). In the incompatible interaction, each 

Ht-resistance gene expressed different symptoms of resistance indicating differences in the 

underlying resistance mechanisms. B37Ht1 presented chlorosis with strong necrosis and 

developed a completely dry leaf (Figure 2F). In B37Ht2, a distinction between compatible 

and incompatible interaction based on chlorosis and necrosis was not clear (Figure 2G,H). 

Some plants expressed chlorosis, while others expressed small grey lesions, even in 

inoculations with the same isolate and in the same experiment. In contrast, symptom 

expression by B37Ht3 was quite uniform compared to the other resistant lines. B37Ht3 

consistently formed yellow spots at penetration sites (Figure 2I). Older leaves from B37Htn1 

developed small wilt-type spots, independent of the kind of inoculation (Figure 2K). 

Furthermore, the disease levels in the compatible interactions varied between B37 and 

differential lines with resistance genes. B37Ht1 showed higher disease severity than B37, 

with an average of 63% and 43%, respectively. Lines B37Ht2, B37Ht3, and B37Htn1 

displayed fewer symptoms than B37. In the incompatible interaction, B37Ht3 and B37Htn1 

did not develop any necrosis, in contrast to B37Ht1 which showed strong necrosis, resulting 

in an average disease severity of 42%. In the incompatible interaction, B37Ht2 some leaves 

showed small grey lesions, but disease severity was lower than 5% (Figure 3). 
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Figure 2. Symptomology of Exserohilum turcicum leaf infection on maize differential lines 

B37 without resistance genes and with the resistance genes Ht1, Ht2, Ht3, and Htn1. 

Symptom development in a compatible interaction (race 1 or race 23N) one day post 

inoculation (dpi) (A), 3 dpi (B), 10 dpi (C), and 14 dpi (D). In the incompatible interaction 

(race 0 isolate), B37Ht1 small soaked lesions are present at 6 dpi (E) and strong necrosis 

surrounded by chlorosis occurs at 14 dpi (F). Symptoms of an incompatible interaction at 

14 dpi on B37Ht2 (G, H), B37Ht3 (I), and B37Htn1 (J). Healthy plants of B37Htn1 display 

yellow spots on older leaves (K). Strong necrosis with brownish lesions was observed in the 

compatible interaction with B37Htn1 (L). 

 

DNA quantification of Exserohilum turcicum 

Fungal DNA was detected for both interactions in all inoculated samples at 3, 6, 10, and 

14 dpi. DNA content increased over time until the last sampling time points at 10 and 14 dpi. 

The compatible interaction displayed a higher fungal DNA content after 10 dpi compared to 

the incompatible interaction at a time point where first symptoms became visible. Moreover, 

at 14 dpi, B37 presented the highest amount of fungal DNA, followed by the compatible 

interaction on B37Ht1. The compatible interaction of B37Ht1 (inoculated with race 1) 

presented a higher DNA content at 10 dpi, due to early symptom expression and higher 

disease severity (Figure 3), when compared to the other lines. At 14 dpi, high fungal DNA 

contents were recorded in all compatible interactions, ranging from 700 to 

3100 ηg DNA/g dry weight. In the compatible interaction, B37Htn1 showed lower fungal 

DNA-content compared to the other resistant lines, which was in correspondence with 

disease severity (Figures 3 and 4).  
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Figure 3. Disease severity and standard error for compatible and incompatible interactions 

between Exserohilum turcicum and the maize lines B37 without resistance genes and with 

resistance genes Ht1, Ht2, Ht3, and Htn1. Disease severity was evaluated 14 days post 

inoculation (dpi). Ten plants were evaluated per treatment (n = 10 plants). Data from the 

first replication experiment are presented in the graph. Data from each line with resistance 

genes was compared with B37 by Mann–Whitney-U test (*p-value ≤ 0.05, **p-value ≤ 0.01, 

and ***p- value ≤ 0.001). 
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Figure 4. DNA-contents with standard errors for compatible and incompatible interactions 

between Exserohilum turcicum and the maize lines B37 without resistance genes and with 

the resistance genes Ht1, Ht2, Ht3, and Htn1. Samples for qPCR analysis were collected 

0, 3, 6 10, and 14 days post inoculation (dpi). The DNA content is presented in ηg DNA/g 

leaf dry weight. The fourth and fifth leaves from three plants were pooled in one biological 

replicate. In total, nine plants were harvest per treatment and timepoint (n = 3 biological 

replicates). Data from the first replication experiment are presented in the graph. Lowercase 

letters indicate significant differences between treatments at 10 dpi. Uppercase letters 

indicate significant differences between treatments at 14 dpi. Means sharing the same letter 

were not significantly different following Tukey-adjusted comparisons for data with a log-

transformation (p-value ≤ 0.05). 
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Histological studies  

Penetration through the epidermis and into the xylem were observed in both compatible 

and incompatible interactions (Figure 5). However, in the compatible interaction, the fungus 

was able to substantially colonize the xylem tissue resulting in the pathogen hyphae growing 

through the xylem and into the mesophyll. Mesophyll colonization was primarily observed 

at greater distance from the penetration site. Under favorable environmental conditions, 

particularly under high humidity, the pathogen developed reproductive structures (Figure 

5A).  

Xylem penetration efficiency in the incompatible interactions was between 20 and 40% for 

the lines bearing resistance genes (Figure 5C). However, in the compatible interaction XPE 

increased for all lines over time (Figure 5D). The XPE in B37Ht1 and B37Ht3 was similar to 

that of B37. At 3 dpi, XPE was lower in B37Ht2 and B37Htn1 than in B37. The XCE was 

evaluated starting at 6 dpi. For the incompatible interaction, the average XCE was around 

10% for B37Ht1 and B37Ht2 (Figure 5E). In the compatible interaction, XCE was similar to 

XPE, since they increase with time after inoculation (Figure 5F).  

The MCE was evaluated starting at 12 dpi. The MCE for incompatible and compatible 

interaction was similar to XCE; all incompatible interactions had less than 5% MCE (Figure 

5G). In the compatible interactions, the MCE increased over time. B37Ht2 and B37Htn1 

presented a lower MCE than B37Ht1 and B37Ht3 (Figure 5H). The experiments were 

repeated and the results obtained in the first run were confirmed by the second run 

(Supplementary figures 1,2 and 3). 
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Figure 5. Schematic representation of compatible and incompatible interactions of 

maize leaves with Exserohilum turcicum. Appressorium-like structures are formed from 

hyphae in the mesophyll with the objective to penetrate into the xylem vessel. The hyphae 

derive from a germinated spore and penetrate into the epidermis and colonize the 

mesophyll (A,B). Colonization of the xylem vessel and spread to a new area of the 

mesophyll with conidiophore formation through the stomata, characterizing a compatible 

interaction (A). The effect of resistance genes Ht1, Ht2, Ht3, and Htn1 in the respective B37 

maize lines on xylem penetration efficiency (XPE), xylem colonization efficiency (XCE), and 

mesophyll colonization efficiency (MCE) of E. turcicum compared between compatible 

(A,C,E,G) and incompatible (B,D,F,H) interactions. Four samples were collected 1, 3, 6, 12, 

and 18 days post inoculation (dpi) per isolate and interaction (n = 4). Data represent the 10 

penetration sites evaluated per biological replicate. Data from each line with Ht resistance 

genes was compared with B37 by Chi-square test (*p-value ≤ 0.05, **p-value ≤ 0.01, and 

***p-value ≤ 0.001). Bars indicate standard error. Symbols indicate: c, conidium; a, 

appressorium; st, stomata; ep, epidermis; me, mesophyll; xy, xylem vessel; ap, 

appressorium-like structure; hy, hyphae; cp, conidiophore. 

Discussion  

Symptoms of Exserohilum turcicum infection in maize leaves had a differential pattern 

according to the Ht resistance gene (Figure 2). In general, chlorosis was associated with 

resistance, and therefore classified as incompatible interaction, whereas gray-green 

necrotic lesions were typically observed in compatible interactions. However, lesion size or 

number of lesions per leaf differed between compatible responses of lines (Abadi et al., 

1989). B37, B37Ht1 and B37Ht3 usually had higher disease severity and larger lesions than 

B37Ht2 (Figure 3, Supplementary figure 1). In the incompatible interaction, the phenotype 

of infected plants differed according to the Ht resistance gene (Figure 2). The phenotype of 

plants bearing the Ht1 gene was always characterized by longer necrotic lesions 

surrounded by chlorosis (Hilu and Hooker, 1963). Typically, water-soaked lesions 

developed into brownish lesions in the incompatible interaction. Interestingly, the phenotype 

observed in the incompatible interaction with B37Ht2 switched between chlorosis and small 

lesions. The resistance conferred by Ht2 was characterized by a lower resistance level, as 

described by (Hooker, 1977). Conversely, the resistance phenotype expressed conferred 

by Ht3 was uniform. Resistant plants always developed chlorotic spots (Hooker, 1981). As 

described previously, plants bearing the Htn1 gene switched between lesion-free plants 

(Gevers, 1975) and plants showing a few wilt-type lesions, similar to small soak spots 

(Figure 2K). However, plants displaying extended latent period were also observed, as 

mentioned in the literature (Gevers, 1975).  
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Molecular studies identified three candidate genes in the Htn1 locus, which encode wall 

associated receptor-like kinases (RLKs). These resistance genes produce proteins that are 

able to recognize pathogen invasion and cell wall disruption (Hurni et al., 2015). 

Consequently, lower levels of disease severity and fungal colonization in the compatible 

interaction may be related to this resistance mechanism. The average disease severity on 

B37Htn1 was 9.5%, which was low compared to compatible interactions in the other lines 

(Figure 3). In the qPCR studies, B37Htn1 inoculated with race 23N (compatible interaction) 

displayed the lowest fungal DNA content (Figure 4, Supplementary figure 2) and XCE and 

MCE were also delayed, increasing only slowly over time (Figure 5). Therefore, the low 

fungal DNA content and disease severity observed in the compatible interaction of B37Htn1 

may be related to the resistance mechanism of an extended latent period (Figure 4). The 

different patterns in hyphal colonization and DNA content confirm that the Htn1 gene does 

not offer a completely effective barrier against fungal infection (Gevers, 1975). This supports 

the molecular analysis that the Htn1-gene locus confers a polygenic quantitative resistance 

against NCLB (Hurni et al., 2015).  

Chlorazol Black E (CBE) staining has not been used before to analyze the in situ interaction 

of E. turcicum on maize. Regardless of the type of interaction, line, or the staining used to 

perform the analysis, a stained halo surrounding the infection site was visible at the 

penetration sites (Hilu and Hooker, 1964). The histological analysis performed with CBE 

allowed a clear identification of the cell wall. The black color provided by the staining 

conferred optimum contrast of plant and fungal cell walls for microscopic analysis. An 

alternative staining technique with calcofluor and distaining with cellulase was previously 

described for hyphae detection in plant tissue (Trese and Loschke, 1990). However, the 

hyphal growth could not be clearly observed and, consequently quantified using calcofluor 

staining. Conversely, CBE staining enabled to visualize and measure XCE and XME, thus 

differences between interactions could be identified. Before staining, the clearing of 

specimens was performed by the use of KOH. In contrast to staining with calcofluor (Trese 

and Loschke, 1990), CBE provides better distinction between xylem and mesophyll tissue 

due to its affinity for lignified tissue, such as tracheary elements. Moreover, CBE also 

stained the fungal cell wall, due to its affinity for chitin. CBE has been previously used for 

staining mycorrhizae (Brundrett et al., 1984). However, CBE staining, as other light 

microscopy techniques, is not sufficient for a higher level of detail e.g. the identification of 

cell wall or cell membrane modifications. Therefore, other techniques enabling a higher 

resolution, such as transmission electron microscopy, are necessary to identify 

ultrastructural resistance mechanisms like cell wall thickening (Berliner et al., 1969). 
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Exserohilum turcicum is a hemibiotroph characterized by a sequence of biotrophic and 

necrotrophic phases of infection. The biotrophic phase includes xylem penetration and 

colonization. The necrotrophic phase starts when the hyphae leave the xylem vessel and 

provoke plasmolysis of the mesophyll cells until the conidiophores are formed through the 

stomata (Kotze et al., 2019). Even in the incompatible interaction, the pathogen 

demonstrated the ability to penetrate into the xylem vessels (Muiru et al., 2008). In the 

compatible interaction, however, hyphae grew and spread into vascular bundle sheath cells. 

In all Ht-resistant lines tested in this study (Ht1, Ht2, Ht3 and Htn1), the resistance 

expressed at the time point of xylem colonization was crucial for further steps in the 

pathogenesis. Our quantitative analysis of the infection progress suggests that between 3 

and 6 dpi is the critical time, during which the resistance mechanism becomes effective to 

avoid further xylem colonization. Therefore, alterations in the integrity of xylem tissue may 

be recognized by the host (Bellincampi et al., 2014) between the establishment of infection 

and the pre-symptomatic state (5-7 dpi).  

Differences in symptom expression and fungal colonization, which were observed for each 

resistant line, strongly suggest that each Ht resistance gene encode for distinct resistance 

mechanisms. In the early infection stages, the Ht1 resistance displays big necrotic lesions 

surrounded by chlorosis. However, necrosis observed in the incompatible interaction was 

not caused by pathogen colonization, since the fungal DNA content was not high. Disease 

severity was around 50%, but the efficiency of fungal colonization in the mesophyll was low 

and did not correlate with symptom expression. Therefore, the necrosis observed in B37Ht1 

is considered a strong resistance reaction expressed by Ht1. Conversely, Ht2 represented 

an unstable phenotype, which was confirmed by lower rates of mesophyll colonization and 

lower fungal DNA content. The necrosis observed in B37Ht2 was caused by fungal 

colonization. In this case, resistance is expressed by chlorosis or by smaller lesions and a 

low number of lesions. Instability of the Ht2 resistance phenotype may be related to the 

influence of temperature and to the presence of the inhibitor gene Sht1. Sht1 is epistatic to 

Ht2 (Ceballos and Gracen, 1989). Therefore, resistance conferred by Ht2 is considered 

oligogenic (Hooker, 1977). The Ht3 phenotype can be easily identified by chlorotic spots. 

The Ht3-gene was introgressed from Tripsacum floridanum (Hooker, 1981), which is not an 

alternative host for E. turcicum. This implies, that the stability of the Ht3 resistance 

phenotype might be related to a mechanism similar to non-host resistance. As an exception, 

the resistance conferred by Htn1 is characterized as quantitative resistance (Hurni et al., 

2015). 

Similar to B37Htn1, B37Ht2 also presented a low average disease severity (17.4%). In the 

histological studies, XCE and MCE were even lower for B37Ht2 than B37Htn1 (Figure 5, 
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Supplementary figure 3). However, B37Ht2 presented a similar fungal DNA content as the 

other lines. Differences in the average DNA content between the first and the second 

experiment can be correlated to differences in the level of disease severity (Figure 2G-H), 

as the race 23N isolate used in these experiments was able to overcome resistance 

provided by the Ht2 gene. Even in the compatible interaction, the disease severity was not 

high which was in agreement with the low XPE, XCE, and XME observed in the histological 

studies. Therefore, the resistance mechanism underlying Ht2 may be related to suppression 

of aggressiveness factors. 

Exserohilum turcicum produces a non-host specific phytotoxin known as monocerin 

(Robeson and Strobel, 1982), which may be an aggressiveness factor. In addition to 

monocerin, a host-specific toxin, HT-toxin, has been described to inhibit chlorophyll 

formation, which might be the main cause of chlorosis and increase on lesion size (Bashan 

and Levy, 1992; Bashan et al., 1995, Wang et al., 2010; Li et al., 2016). Ht2 may either 

encode a mechanism of phytotoxin detoxification (Pedras et al., 2001) and/or synthesis of 

phytoalexins (Lim et al., 1970), such as a cyclic hydroxamic acid named DIMBOA (2,4-

dihydroxy-7-methoxy-1,4-benzoxazin-3-one) (Mace, 1973). Interestingly, some resistance 

genes appeared to be also effective in reducing disease severity and fungal colonization in 

the compatible interaction. This supports the hypothesis that qualitative resistance may 

affect infection also through an underlying quantitative resistance in the maize-E. turcicum 

pathosystem, as mechanisms of phytotoxin detoxification or the production of phytoalexins 

may be also related to quantitative resistance (Poland et al., 2009). 

From the genetic perspective, E. turcicum interacts with maize following the gene-for-gene 

concept (Mideros et al., 2018). In such case, each Ht-gene should have a corresponding 

fungal avirulence gene. The first avirulence gene identified for E. turcicum AVRHt1 

corresponds to the Ht1-resistance gene (Mideros et al., 2018). AVRHt1 was expressed in 

planta by a race 23N isolate at 5 and 7 dpi (Hurni et al., 2015), when xylem colonization 

started (Kotze et al., 2019). Moreover, gene effector candidates encoded a hybrid 

polyketide synthase:nonribosomal peptide synthetase (PKS:NRPS) (Wu et al., 2015), and 

virulence-associated peptidases leupeptin-inhibiting protein 1 fungalysin involved in the 

biosynthesis of secondary metabolites and cell wall degradation (Human et al., 2020). The 

increase in XPE and XCE from 3 to 6 dpi indicates that between these time points, the 

pathogen is releasing virulence effectors. Transcriptional profiles showed that Ecp6 and 

SIX13-like proteins, similar to the secreted xylem effectors of Fusarium oxysporum, were 

overexpressed at 5 and 7 dpi (Human et al., 2020), which correlates to our findings in the 

histological studies and indicates that virulence effectors are being released at the time 

point before symptom expression (5-7 dpi). 
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The resistance phenotypes expressed by the Ht genes are diverse, as the Ht1 gene 

expressed necrosis and chlorosis, Ht2 was characterized by chlorosis and small lesions, 

Ht3 showed chlorotic spots and Htn1 conferred no lesions or wilt-type lesions. These lesions 

types reflect pathogen colonization, as plants displaying strong necrosis had the complete 

mesophyll colonized; instead of plants expressing chlorosis, where the xylem and 

mesophyll were weakly or not colonized. Besides differences on the resistance phenotype, 

the fungal DNA content was low in the compatible interaction. Indeed, a low fungal DNA 

content in plants carrying the Ht genes even in the compatible interaction shows that these 

genes have quantitative effect. In fact, Htn1 was denominated as a source of quantitative 

resistance. Therefore, Ht genes may be associated with or confer additional quantitative 

resistance.  
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Supplementary Material  

Supplementary table 1. Results from race phenotyping of plants used for Exserohilum 

turcicum DNA quantification and histological studies. 

Isolate Race B37Ht1 B37Ht2 B37Ht3 B37Htn1 

172-4 0 A A A A 

138-1 1 V A A A 

123-3 23N A V V V 

A – avirulent and V - virulent. 
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Supplementary figure 1. Disease severity and standard error for compatible and 

incompatible interactions between Exserohilum turcicum and the maize lines B37 without 

Ht-resistance genes and those with resistance genes Ht1, Ht2, Ht3, and Htn1. Disease 

severity was evaluated 14 days post inoculation (dpi). The graph presents data from the 

second replication. Data from each line with Ht-resistance genes was compared with B37 

by Mann-Whitney-U test (* p-value ≤ 0.05, ** p-value  ≤ 0.01, *** p-value  ≤ 0.001). 
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Supplementary figure 2. DNA-contents with standard errors for compatible and 

incompatible interactions between Exserohilum turcicum and the maize lines B37 without 

Ht-resistance genes and those with resistance genes Ht1, Ht2, Ht3, and Htn1. Samples for 

qPCR-analysis were collected 0, 3, 6, 10 and 14 days post inoculation (dpi). The DNA 

content is presented in ηg DNA / g leaf dry weight. Only data from the second replication 

experiment are shown in the graph. Lowercase letters indicate significant differences 

between treatments at 10 dpi. Uppercase letters indicate significant differences between 

treatments at 14 dpi. Means sharing the same letter were not significantly different following 

Tukey-adjusted comparisons for data with a log-transformation (p-value ≤ 0.05). 
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Supplementary figure 3. Data from the second repetition for the effect of resistance genes 

Ht1, Ht2, Ht3, and Htn1 in the maize line B37 on xylem penetration efficiency (XPE), xylem 

colonization efficiency (XCE), and mesophyll colonization efficiency (MCE) of Exserohilum 

turcicum compared between compatible (A,C,E) and incompatible (B,D,F) interactions. 

Samples were collected 1, 3, 6, 12, and 18 days after inoculation (dpi) with one isolate for 

each interaction. Data is from 10 penetration sites in four leaf segments (n=40). Data from 

each line with Ht resistance genes was compared with B37 by Chi-square test (* p-

value ≤ 0.05, ** p-value ≤ 0.01, *** p-value  ≤ 0.001). Bars indicate the standard error. 
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Abstract 

Northern corn leaf blight (NCLB) is an important maize disease of worldwide importance, 

that is caused by the ascomycete Exserohilum turcicum. One of the main methods applied 

for NCLB control is the cultivation of resistant hybrids. Resistance derives from qualitative 

resistance genes in maize lines, the so called Ht genes. Maize lines carrying Ht1 display 

necrotic lesions with chlorosis, Ht2 displays chlorosis and small lesions, Ht3 displays 

chlorotic spots and Htn1 may not show any lesions or display wilt-type lesions. The objective 

of this study was to phenotypically characterize the differential resistance responses 

conferred by Ht1, Ht2, Ht3 and Htn1 and to evaluate effects on biomass yield under 

controlled conditions. In addition, physiological, biochemical and epidemiological 

parameters were studied in the differential set of line B37 carrying individual Ht resistance 

genes and for a commercial hybrid, which carries Ht1. Plants were inoculated with a race 0 

isolate of E. turcicum conferring compatible interaction with B37 and incompatible 

interaction with plants carrying an Ht resistance gene. Five days post inoculation (dpi), the 

resistant lines displayed a reduction in CO2 assimilation of 66 to 84% compared to healthy 

plants. At 14 dpi, line B37Ht1 showed a decrease in CO2 assimilation of 81%, similar to 

B37. Under controlled conditions and low disease severity (< 15% diseased leaf area), no 

reduction in dry weight of the above-ground biomass was detected for any of the lines 

(including the compatible interaction with B37) at 28 dpi. The healthy tissue seems to 

compensate for photosynthetic costs associated with the activation of resistance 

mechanisms in the incompatible interaction, as observed for B37Ht2, B37Ht3, B37Htn1 and 

Scorpion. The extensive chlorosis combined with necrosis expressed in B37Ht1 explains 

the low photosynthetic activity demonstrated in this line. At 6 dpi, low H2O2 detection and 

high peroxidase activity were observed in B37Ht1, in contrast to B37, indicating that this 

resistant line has different responses to pathogen infection when compared to the 

susceptible line. In addition, resistance in B37Ht1, B37Ht2 and B37Htn1 lead to a 

sporulation rate decreased by ~90%, whereas in B37Ht2 this effect was associated with a 
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lower number of lesions. Our study confirms that resistance mechanisms of different Ht 

genes are distinct from each other resulting in different physiological responses of the plant. 

It is therefore worth conducting further studies to elucidate the defence mechanisms 

conferred by Ht genes. 

Keywords: chlorophyll fluorescence, chlorophyll degradation, epidemiological parameters, 

gas exchange, northern corn leaf blight, peroxidase activity, plant-pathogen interactions, 

R genes, Setosphaeria turcica 

Introduction 

Northern corn leaf blight (NCLB), caused by the ascomycete Exserohilum turcicum 

(teleomorph Setosphaeria turcica), is one of the main foliar diseases in maize (Zea mays), 

(Galiano-Carneiro and Miedaner, 2017) and spread across maize-producing regions 

worldwide (CABI, 2019). The disease can be controlled by fungicide application or 

cultivation of resistant cultivars (Hooda et al., 2017). Yield losses caused by E. turcicum in 

maize vary greatly according to the host developmental stage at which the infection occurs, 

the disease control strategies applied and the environmental conditions (Pataky et al., 1988; 

Adipala et al., 1993). When infection occurs before silking (flowering stage) and the cob leaf 

is affected, high yield losses caused are observed (Fajemisin and Hooker, 1974; Raymundo 

and Hooker, 1982; Welz, 1998; Ding et al., 2015; Galiano-Carneiro and Miedaner, 2017). 

E. turcicum can cause yield reductions in resistant cultivars and susceptible cultivars of up 

to 17% and 63%, respectively (Raymundo and Hooker, 1982). In addition, E. turcicum 

causes higher yield losses in hybrids carrying qualitative resistance than in hybrids carrying 

quantitative resistance (Ullstrup, 1970). Leaf infection caused by E. turcicum is favored by 

moderate temperatures between 15 and 25°C, and frequent dew periods of at least 4 h and 

90–100% relative humidity (Levy and Cohen, 1983b; Bentolila et al., 1991; Ogliari et al., 

2005; Galiano-Carneiro and Miedaner, 2017). Under these conditions, maize yield losses 

caused by E. turcicum of up to 70% have been reported (Ullstrup and Miles, 1957).  

Infection by E. tucicum in maize leaves begins with the pathogen conidia landing on the leaf 

surface and subsequent germination. Appressorium formation can usually be observed at 

the end of the germ tube 3 hours after conidia have attached to the leaf in the presence of 

high relative humidity (>95% RH) (Levy and Cohen, 1983a). Due to pressure exerted by the 

appressorium and secretion of lytic enzymes, the pathogen is able to penetrate directly 

through the epidermis (Knox-Davies, 1974; Kotze et al., 2019). In the mesophyll, the hypha 

invaginates the membrane and forms an intracellular vesicle (Hilu and Hooker, 1964). This 

fungal structure is responsible for nutrient assimilation in the initial phases of infection (Hilu 
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and Hooker, 1964; Knox-Davies, 1974).Thus, the adjacent cells (vascular bundle sheath 

cells) are colonized until the hypha reaches the xylem vessel  (Muiru et al., 2008; Kotze et 

al., 2019) and secretes monocerin (Robeson and Strobel, 1982; Cuq et al., 1993) and HT-

toxin (from Helminthosporium turcicum) (Bashan et al., 1995; Li et al., 2016). Monocerin is 

a non host-specific toxin that causes necrosis in maize, Johnson grass and cucumber, and 

is produced during compatible and incompatible interaction. Monocerin induces mortality of 

cells and protoplasts (Robeson and Strobel, 1982; Cuq et al., 1993). The HT-toxin is host-

specific and known to inhibit chlorophyll formation (chlorosis), to disturb the permeability of 

cell membrane, to increase lesion size and to overexpress a QM-like protein, which is 

related to stress response pathways (Bashan and Levy, 1992; Bashan et al., 1995; Dong 

and Li, 1996; Dong et al., 2001; Wang et al., 2010).  

Once inside the xylem vessel, hyphae grow and the pathogen starts colonizing the 

mesophyll. At this stage, the pathogen forms reproductive structures, which are important 

for disease spread over the field and the start of a new disease cycle (Kotze et al., 2019). 

The incubation period of NCLB is 12‒14 days and typical NCLB symptoms are long (up to 

30 cm) elliptical grey lesions, which become necrotic in later disease stages when these 

lesions can coalesce and the entire leaf becomes blighted. Under high relative humidity, 

necrotic lesions sporulate and conidia are dispersed by rain and wind (Hooda et al., 2017). 

E. turcicum survives in maize debris and can form chlamydospores as survival structures 

(Boosalis et al., 1967).  

Several genes that confer resistance in maize to E. turcicum are known (Hooker, 1963; 

Gevers, 1975; Hooker, 1977, 1981) and these genes have been extensively used by maize 

breeding programs worldwide. In general, maize lines carrying the resistant gene Ht1 show 

necrotic lesions with chlorosis, lines carrying the Ht2 gene display chlorosis and small 

lesions, lines carrying the Ht3 have only chlorotic spots, and lines with Htn1 show no lesions 

or wilt-type lesions when inoculated with E. turcicum (Hooker, 1963; Gevers, 1975; Hooker, 

1981; Navarro et al., 2020). In addition, molecular studies demonstrate that Htn1 encodes 

wall associated receptor-like kinases (RLKs) and, is therefore able to recognize pathogen 

invasion and cell wall disruption (Hurni et al., 2015). 

Plant pathogen invasion is recognized by the plant immune system in incompatible 

interactions (Jones and Dangl, 2006). The recognition of microbial- or pathogen-associated 

molecular patterns (MAMPs or PAMPs) by transmembrane pattern recognition receptors 

(PRR proteins) results in accumulation of reactive oxygen species (ROS) (Malinovsky et 

al., 2014), which will reprogram transcriptomes (Kachroo et al., 2017). The accumulation of 

toxic substances, such as hydroxide peroxide (H2O2) and superoxide (O2
-) leads to a 
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hypersensitive response (HR). Under higher concentrations of H2O2 and O2
- in the host 

tissue, ROS may provoke programmed cell death (PCD) and hinder pathogen colonization 

in the infected tissue (Apel and Hirt, 2004). The imbalance between ROS production and 

ROS detoxification may cause PCD, and PCD is only effective if ROS scavenging enzymes, 

such as peroxidase, superoxide dismutase, catalase and glycolate oxidase, are suppressed 

in the apoplast (Apel and Hirt, 2004). In susceptible maize plants inoculated with E. 

turcicum, the content of H2O2 was higher at 15 and 20 dpi (Silveira et al., 2019). In addition, 

the peroxidase activity was higher for resistant plants carrying the Htn1 gene at 3 and 6 dpi 

(Shimoni et al., 1991). Moreover, an increase in gene expression and activity of superoxide 

dismutase, catalase, ascorbate peroxidase, peroxidase, glutathione reductase, glutathione-

S-transferase, transferase and glutathione peroxidase, enzymes related to antioxidant 

metabolism, was observed in susceptible plants (Shi et al., 2018; Silveira et al., 2019). 

Pathogen invasion can lead to changes in several physiological processes in plants, such 

as photosynthesis, sugar translocation, and accumulation of carbohydrates (Berger et al., 

2007). Among these processes, photosynthesis is one of the first plant physiological 

processes affected by pathogen infection. The necrosis symptoms on leaves caused by 

pathogen colonization or strong plant defense responses decreases the radiation use 

efficiency on leaves and reduce the leaf net photosynthetic rate (Boote et al., 1983). 

However, pathogens can cause disturbances in plant leaves that go beyond the necrotic 

area and affect the green tissue surrounding the lesions (Bastiaans, 1991). In these areas, 

the diffusive pathways of CO2 are affected by stomatal closure or by reduction of CO2 

diffusion in plant cell mesophyll (Shtienberg, 1992; Bassanezi et al., 2001; Nogueira Júnior 

et al., 2017). Water vapor exchange is also affected since the stomatal processes are 

disturbed. The production of pathogen toxins impairs photochemical and biochemical 

processes in photosynthesis of green leaves by reducing the efficiency of the photosynthetic 

pigments or reducing the activity of photosynthesis enzymes such as Rubisco (Bassanezi 

et al., 2001). However, the effect of pathogens on the photosynthesis of green areas 

surrounding lesions is not always negative. Some pathogens, such as rusts, can modify the 

metabolism of regions near pustules and increase CO2 assimilation in so-called “green 

islands” (Walters et al., 2008). Fungal diseases change the movement of assimilates 

according to the trophic interactions between pathogens and plants. In the biotrophic phase, 

fungi manipulate plant carbohydrate metabolism, redirecting plant sugars for their own 

needs, by inducing a physiological sink for assimilates (Zadoks and Schein, 1979). In the 

necrotrophic phase, pathogens infect living tissues, but mainly derive their nutrients from 

tissue killed, usually by toxins, in the course of colonization (Whipps and Lewis, 1981). Fungi 

of both trophic patterns can cause a decrease in the export of photoassimilates from 
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infected leaves, but biotrophic/hemibiotrophic pathogens generally increase the import of 

photosynthetic products to the infected tissues (Whipps and Lewis, 1981; Owera et al., 

1983; Nogueira Júnior et al., 2017). The sum of the effects of pathogens on light 

interception, CO2 diffusion and assimilation, carbohydrate metabolism and transport will 

eventually affect the plant growth and yield build-up (Boote et al., 1983). Impairments on 

photosynthesis were observed in susceptible maize plants infected by E. turcicum. 

Photosynthetic efficiency is reduced in the course of disease development (Silveira et al., 

2019). The reduction is not restricted to the necrotic leaf tissue in lesions, but also in leaf 

tissue adjacent to the lesions. E. turcicum also affects the translocation of photosynthates 

causing the import of photoassimilates from healthy leaf tissue into lesions. This further 

reduces the pool of photosynthates available for dry matter increment (Levy and Leonard, 

1990).  

Damage to leaf photosynthesis during the first stages of infection is also observed in 

incompatible interactions and may be considered as metabolic costs of resistance (Berger 

et al., 2007). In the incompatible interaction between tobacco and Phytophthora nicotianae, 

plant defense mechanisms against pathogens induce changes in carbohydrate metabolism, 

such as decrease on sucrose efflux. This shift in plant metabolism is related to increases in 

apoplastic invertase activity and an early blockage of intercellular sugar transport by callose 

deposition (Scharte et al., 2005). Grapevine cultivars resistant to Plasmopara viticola 

showed high reductions in the photosynthetic rate and stomatal conductance a few hours 

after the pathogen inoculation. Damage to photosynthesis was associated with plant 

responses to pathogen infection such as the oxidative burst (Nogueira Júnior et al., 2020). 

A similar pattern has been observed in the incompatible interaction between barley and 

Erysiphe graminis f. sp. hordei, where pathogen recognition occurs during haustoria 

development in host cells. After recognition, several histochemical and biochemical 

alterations are induced in hosts and those responses may cause damage to photosynthesis 

of resistant cultivars faster than in susceptible cultivars (Smedegaard-Petersen and 

Tolstrup, 1985). 

The resistance expressed by Ht genes has been not well described at physiological, 

biochemical and epidemiological levels. Distinct resistance reactions on the maize line B37 

may cause different effects on plant host physiology. Therefore, the main objective of this 

study was to compare physiological and biochemical responses in the maize line B37 

carrying Ht1, Ht2, Ht3 and Htn1 resistance genes, in order to better understand resistance 

responses conferred by these genes. For this purpose, experiments were conducted under 

controlled conditions, and gas exchange, chlorophyll fluorescence and peroxidase activity 

were measured in non-inoculated and E. turcicum-challenged plants. In addition, the effect 
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of resistance genes on epidemiological components, such as the number of lesions, lesion 

length and sporulation, was investigated. Moreover, plant biomass was assessed to 

elucidate whether the respective plant-pathogen interaction not only influences plant 

physiology directly but also the attainable biomass yield. To further ensure the general 

validity of the present study, a commercially available maize hybrid, “ES Scorpion”, carrying 

Ht1 resistance was included in the studies.  

Material and Methods 

Plant material and inoculation  

Maize plants from the differential set of the line B37 without a qualitative resistance gene 

and with the resistance genes Ht1, Ht2, Ht3, Htn1, and the hybrid cultivar Scorpion, which 

carries the Ht1 gene (see supplementary material), were cultivated in the greenhouse at 

24 ± 3°C, 70% air humidity and a day/night light regime of 14/10 h. Two seeds per pot 

(11 cm x 11 cm x 10 cm) were sown in a mixture of substrate, compost and sand (3:3:1). 

Seeds were provided by KWS Saat SE (Einbeck, Germany). The E. turcicum isolates used 

for inoculation are from the collection of the Institute of Plant Pathology and Crop Protection 

of the University of Göttingen. All isolates had been race determined in previous works 

(Hanekamp, 2016; Navarro et al., 2021) and conidia were stored in fresh glycerin (25%) 

cultures. Glycerin cultures were preserved for up to two years until they were transferred to 

Petri dishes containing V8 medium (75 ml V8 vegetable juice, 1.5 g CaCO3). The plates 

were kept at 24°C in the dark for at least 21 days. Conidia were harvested by washing the 

plates and inoculum suspensions were prepared in concentrations of 750 to 

3,000 spores ml-1, according to the experiment. Maize plants were inoculated when the fifth 

and sixth leaves were unfolded, around 30 days after sowing, using a sprayer. Each plant 

received around 7 ml of the conidia suspension until the point of run-off was reached, and 

control plants were sprayed with water. After inoculation, all plants were maintained in high-

humidity conditions (> 95°C) for 24 hours. The lines B37Ht1, B37Ht2, B37Ht3 and B37Htn1 

were inoculated with a race 0 isolate, which is avirulent on these resistance lines, and leads 

to an incompatible interaction. The same isolate race 0 was inoculated in B37 without 

resistance genes, resulting in a compatible interaction. The hybrid Scorpion was inoculated 

with both an avirulent (race 0) and virulent (race 1) isolate. This procedure was applied in 

all experiments (gas exchange, biochemical responses, epidemiology and biomass).  

Leaf gas exchange and chlorophyll fluorescence  

Three experiments were performed to assess the effect of resistance responses conferred 

by Ht genes on E. turcicum on gas exchange and chlorophyll fluorescence of maize plants 



Chapter 4. Physiological and biochemical responses of Ht genes 

125 

from the differential set of B37 and the maize hybrid Scorpion. In Experiment 1, gas 

exchange variables were measured in three healthy and three inoculated plants (n = 3 

biological replicates) from each line and evaluation date. The inoculum concentration used 

in the gas exchange experiment was set to 1,500 spores ml-1. After inoculation, plants were 

maintained in a climate chamber under controlled conditions. The day/night regime was 

14 h light/10 h dark, a light intensity of 120 ± 10 µmol m-2 s-1, a temperature of 25/20°C 

day/night and air humidity of 70%. Gas exchange measurements were performed at 5 and 

14 days post inoculation (dpi). Measurements of leaf CO2 assimilation (A), stomatal 

conductance (gs), transpiration (E) and intercellular CO2 concentration (Ci) were performed 

using a portable infrared gas analyzer (GFS-3000, Heinz Walz GmbH, Germany) equipped 

with a fluorometer (3010-S, Heinz Walz GmbH, Germany). The cuvette size was 4 cm2. The 

measurements were performed with an air CO2 concentration (Ca) of 400 ppm CO2, 60% 

relative humidity, and photosynthetic active radiation (PAR) of 1000 μmol m− 2 s− 1. 

Measurements were performed between 9:00 h and 16:00 h. The instantaneous 

carboxylation efficiency (k) was calculated as A/Ci (Machado et al., 2005). The percentage 

of disease severity was quantified in the area covered by the portable infrared gas analyzer 

chamber. The diseased area was estimated by the software Assess 2.0 (Lakhdar Lamari, 

2008, APS, USA). The relative values of A, gs, E and k, were calculated by considering the 

ratio of the variable values collected from inoculated plants (Yx) and to the mean values of 

healthy plants (Yo), in each B37 line, in order to compare the effect of E. turcicum between 

the lines, obtaining the following variables: relative photosynthesis (Px/Po), relative 

transpiration (Ex/Eo), relative stomatal conductance (gsx/gso) and relative instantaneous 

carboxylation efficiency (kx/ko). The experiment was replicated once.  

In Experiment 2, chlorophyll fluorescence variables were measured in three healthy and 

three inoculated plants (n = 3 biological replicates) from each line and evaluation date. 

Chlorophyll fluorescence measurements were performed at 5 and 14 days post inoculation 

(dpi) using a fluorimeter (FluorCam 2.0, Photon Systems Instruments, Czech Republic) and 

applying the “quenching” protocol. The quantum yield of photosystem II (QY = Fv / Fm), 

where Fv is the fluorescence increment due to the transition from a dark-adapted state with 

all-open reaction centers to an all-closed state during a saturating flash of light, and Fm is 

the maximum fluorescence in the dark-adapted state, and the non-photochemical 

quenching relaxing in the dark (nPQ), which is the conversion of excitation energy into 

thermal energy, were measured on the symptomatic area in inoculated plants. Plants were 

pre-adapted to dark conditions for at least 2 h before realizing the chlorophyll fluorescence 

measurements. The relative values of QY and nPQ were calculated by considering the ratio 

of the variable values collected from inoculated plants (Yx) and to the mean values of 
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healthy plants (Yo), in each B37 line, obtaining the following variables: relative quantum 

yield (QYx/QYo) and relative non-photochemical quenching (nPQx/nPQo). The experiment 

was replicated once. 

An additional experiment (Experiment 3) was performed with the commercial maize hybrid 

Scorpion. Plants were inoculated with the isolate race 0 (incompatible interaction) and with 

the isolate race 1 (compatible interaction). Plants sprayed with water served as control 

plants (n = 3 biological replicates). The inoculum concentration was 1,500 spores ml-1. After 

inoculation, the plants were maintained in a climate chamber under controlled conditions as 

described above. Gas exchange measurements were performed at 5 and 14  dpi and the 

variables A, gs, E, Ci and k were obtained as in the experiment with the differential set B37.  

Peroxide (H2O2) detection and peroxidase activity (POX) 

One experiment was performed to investigate the histochemical detection of peroxide 

(H2O2) and superoxide (O2
-), using light microscopy, and a second experiment was 

conducted to measure the biochemical peroxidase activity (POX) in maize plants from the 

differential set B37 inoculated with E. turcicum. In the experiment conducted to detect H2O2 

and O2
-, three healthy and three inoculated plants (n = 3 biological replicates) from each 

line were evaluated. The plants were inoculated with 3,000 spores ml-1 and samples were 

collected at 1, 3, and 6 dpi. Two leaf segments of 6 cm2 per plant were cut from the fifth 

unfolded leaf. One segment was placed in a solution of 10 mM phosphate buffer (pH 3.8 – 

adjusted with HCl) and 0.1% DAB (3,3-diaminobenzidin) and the second leaf segment was 

placed in a solution of 10 mM phosphate buffer (pH 7.8) and 0.01% NBT (nitroblue 

tetrazolium). After one hour in the dark, leaf segments were washed with demineralized 

water and maintained under direct light for one hour. In the next step, the leaf segments 

were transferred into a destaining solution of 0.15% trichloroacetic acid (TCA) and 

ethanol:chloroform (4:1). Microscope analysis was realized using 50% glycerin as the 

mounting media. A positive peroxide localization was considered when the penetration site 

was a dark showing brownish color (Figure 1) and a positive superoxide localization was 

considered when it showed a blue color (Hückelhoven et al., 2000). The percentage of H2O2 

and O2
- detection was calculated by considering the ratio of the number of stained 

penetration sites to the number of total penetration sites visualized on each leaf segment 

(biological replicate). The experiment was replicated once. 
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Figure 1. Peroxide detection (H2O2) by histochemical staining with DAB (3,3-

diaminobenzidin). The infection was considered when the spore (s) presented a germinate 

tube (g) and an appressorium (a) (A). Peroxide detection was considered when a brownish 

color was observed surrounding the appressorium (B). 

A second experiment was performed to measure peroxidase (POX) activity in maize plants 

from the differential B37 set inoculated with E. turcicum. Three healthy and three inoculated 

plants (n = 3 biological replicates) from each line were evaluated. The plant were inoculated 

with 3,000 spores ml-1 and the fourth and fifth leaf of each plant were harvested and then 

pooled into one biological replicate. Three plants were harvested per treatment (n = 3 

biological replicates), making a total of 90 harvested plants per experiment. The samples 

were collected at 1, 3, and 6 dpi. Leaf segments were harvested and directly frozen in liquid 

nitrogen. The samples were ground with a mortar and pestle and then stored at -80°C. The 

extract was prepared with 50 mg of leaf sample in addition to 500 μl of cold 15 mM sodium 

phosphate buffer (pH 6.0). After centrifugation (10000 g, 10 min, 4°C), 100 μl of the 

supernatant was added to a cuvette and mixed with 1500 μl of assay mix. The assay mix 

was composed of 15 nM sodium phosphate buffer, pH 6.0, 0.0066% of hydrogen peroxide 

(1100 μl l-1 of 30% H2O2) and 0.0066% (660 μl l-1) of O-methoxyphenol (guaiacol) (Shimoni 

et al., 1991). The assay mix was prepared every two hours. The oxidative reaction between 

guaiacol and H2O2 was catalyzed by peroxidase and produced the brownish tetraguaiacol 

(Schopfer, 1989). The increase in absorbance was recorded at 470 nm for 4 min 

(2 measurements s-1) using a spectrophotometer (Specord 40 – Analitik Jena, Germany). 

The protein content was measured using the Bradford assay (Bradford, 1976). One aliquot 

of 50 μl from sample extract was pipetted onto a 96-well plate and 200 μl of Bradford 

solution was added (Roti® -Quant solution – Carl ROTH®, Karlsruhe, Germany). The 



Chapter 4. Physiological and biochemical responses of Ht genes 

128 

Bradford solution was composed of 0.01% (w/v) Coomassie Brilliant Blue G-250 dissolved 

in 4.7% (w/v) ethanol, and 8.5% (w/v) phosphoric acid. The Coomassie Brilliant Blue dye 

bonded to the protein and the protein-dye complex was dispersed in the solution. After 

15 min of reaction, the absorbance was measured at 595 nm by a photometer (μQuant 

BioTek Instruments, INC). The standard curve was prepared with bovine serum albumin in 

concentrations of 10, 20, 40, 60, 80 and 100 µg mL-1. The protein content was measured in 

mg protein ml-1.  

The enzyme activity was calculated by the Beer-Lambert law: Absλ = ελ c l; where Absλ is 

the absorbance or optical density, ελ is the extinction coefficient (for tetraguaiacol: ελ=470nm 

= 2.66 107 cm2 mol-1) (Chance and Mahehly, 1955), c is the concentration of the reaction 

product in the solution, in this case the enzyme activity (mol ml-1 min-1 – expressed by 

nKatal ml-1), and l is the optical path length (calculations can be followed in Appendix 2). 

The enzyme activity was divided by the protein content and expressed in 

nkat*mg protein fresh weight-1 (Schaffrath et al., 1995). The experiment was replicated 

once. 

Epidemiological components 

Epidemiological components in maize plants from the differential set of the line B37 

inoculated with E. turcicum were measured in two experiments. One experiment was 

conducted to estimate pathogen sporulation and the other to estimate the number of lesions 

and lesion growth. In order to reduce the effect of pathogen aggressiveness, three isolates 

were inoculated per line. Eight plants were sampled per treatment (line x isolate), giving 24 

sampled plants per line (n = 8 biological replicates). The inoculum concentration was set to 

750 spores ml-1 for the experiment to evaluate the number of lesions and lesion length, and 

to 1,500 spores ml-1 for the experiment to determine sporulation. The sporulation 

experiment was repeated once. The number of lesions was counted on the third, fourth, fifth 

and sixth leaves at 13 dpi. The length of three lesions per leaf was measured in the fourth 

and fifth leaves at 15 dpi. Leaf pieces of 6 cm2 (3 cm x 2 cm) from the fifth leaf of the eight 

inoculated plants were sampled at 14 dpi to estimate sporulation. The transition between 

green and chlorotic/necrotic areas was chosen as the sampling area. Leaf samples were 

placed in a humid chamber, i. e. plastic boxes containing moistened filter paper to maintain 

high humidity and stimulate conidia production. Pictures of the sampled area were used for 

quantification of the diseased area. Leaf pieces were measured using the software Image 

J1.52a (Wayne, Rasband, National Institute of Health, USA) and the percentage of 

diseased area was estimated using the software Assess 2.0 (Lakhdar Lamari, 2008, APS, 

USA). After three days under high-humidity conditions, each leaf piece was placed in a 
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Falcon tube containing 4 ml of distilled water and the surfactant Silwet Gold® at 125 ppm. 

The Falcon tubes were frozen at -20°C for further procedures. Sporulation was measured 

after mixing the sample and placing one aliquot of 50 μl from the spore suspension in a 

Fuchs-Rosenthal chamber. The spore concentration was calculated by the average of the 

three aliquots and divided by the diseased area.  

Leaf area and plant biomass estimation  

Two experiments were performed, one with the differential set of the line B37 and the other 

with the commercial maize hybrid Scorpion, to estimate leaf area and plant biomass of 

healthy and E. turcicum inoculated plants at 14 and 28 dpi. In the experiment using the 

differential set of the line B37, two plants were pooled in one biological replicate, making a 

total of four biological replicates per line, treatment and time (n = 4 biological replicates). In 

total, 160 plants were sampled per experiment. The experiment was replicated once. The 

inoculum concentration was set to 1,500 spores ml-1. After inoculation, plants were 

maintained in the greenhouse under conditions of 16 h light/8 h dark, a light intensity of 

600 ± 200 µmol m-2 s-1 and a temperature of 25±5°C. Before sampling, the disease severity 

of all leaves was evaluated based on a diagrammatic scale (Pataky, 1992). The disease 

severity for each plant was calculated by the average of all leaves. The leaf area (LA) was 

measured using an area meter (LI3100C, LI-COR Biosciences, US). The dry weights of the 

aerial (Da) and root (Dr) biomass were measured. The relative Da, Dr, and LA were 

calculated by the ratio of the variable values collected from inoculated plants (Yx) and to 

the mean values of healthy plants (Yo), obtaining the following parameters: relative aerial 

biomass (Dax/Dro), relative root biomass (Drx/Dro) and relative leaf area (LAx/LAo).  

In the experiment using the commercial maize hybrid Scorpion, eight plants were inoculated 

with the isolate race 0 (incompatible interaction), eight plants were inoculated with the 

isolate race 1 (compatible interaction) and eight plants were sprayed with water to serve as 

control plants. Two plants were pooled in one biological replicate, resulting in four biological 

replicates per line, treatment and time (n = 4 biological replicates). The inoculum 

concentration was 1,500 spores ml-1. After inoculation, plants were maintained in the 

greenhouse under conditions of 16 h light/8 h dark, a light intensity of 600 ± 200 µmol m-2 s-

1, and a temperature of 25±5°C. Before sampling, the disease severity of all leaves was 

evaluated based on a diagrammatic scale (Pataky, 1992). The disease severity for each 

plant was calculated by the average of all leaves. The leaf area (LA) was measured using 

area meter (LI3100C, LI-COR Biosciences, US). The dry weights from the aerial (Da) and 

root (Dr) biomass were measured as in the experiment with the differential set of the line 

B37.  
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Data analysis 

Data analysis was performed using R (version 3.6.0) (R core team 2019). Mixed model 

analysis was performed using the package lmer. Data from the relative values measured 

by gas exchange (Px/Po, Ex/Eo, gsx/gso, kx/ko) for each time point (5 and 14 dpi) were 

fitted to a mixed model with maize line as the fixed factor and experiment replication as the 

random effect. Data regarding disease severity at 14 dpi from both experimental replicates 

had homogeneity of variance applying the Bartlett’s test and therefore were combined in 

the analysis. Maize lines were compared by analysis of variance (ANOVA) and by multiple 

comparison applying Tukey’s test (p-value ≤ 0.05). For the maize hybrid Scorpion, the 

absolute values A, E, gs, and k were compared between treatments (healthy plants, 

compatible interaction, and incompatible interaction) by analysis of variance (ANOVA) and 

by multiple comparison applying Tukey’s test (p-value ≤ 0.05). 

Data on the percentage of penetration sites with H2O2 localization and POX activity were 

compared between lines for each time point (1, 3 and 6 dpi). Data of the percentage on 

penetration sites with H2O2 detection were fitted to a mixed model with line as the fixed 

factor and experiment replication as the random effect. An analysis of variance (ANOVA) 

was performed and lines were compared by multiple comparison applying Tukey’s test (p-

value ≤ 0.05).  

Data on the number of lesions, lesion length and sporulation from all three inoculated 

isolates were combined for the analysis to verify the effect of the line on the epidemiological 

components. The number of lesions and lesion length were analyzed using the non-

parametric Kruskal-Wallis test and Dunn’s test for multiple comparisons (p-value ≤ 0.05). 

Data on sporulation were Box-Cox transformed and fitted to a linear mixed model, with line 

as fixed factor and experiment replications as random effect compared by multiple 

comparison using Tukey’s test (p-value ≤ 0.05). 

Data from the relative values of leaf area, plant biomass (Dax/Dao, Drx/Dro, Lax/LAo) and 

disease severity for each time point (14 and 28 dpi) were fitted to a mixed model with line 

as fixed factor and experiment replication as random effect. Maize lines were compared by 

analysis of variance (ANOVA) and by multiple comparison applying Tukey’s test (p-

value ≤ 0.05). For the maize hybrid Scorpion, absolute values of dry weight from the aerial 

(Da) and leaf area (LA) and the disease severity were compared between treatments by 

analysis of variance (ANOVA) and by multiple comparison applying Tukey’s test (p-

value ≤ 0.05). Experiments with the hybrid Scorpion were conducted once. 
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Results  

Leaf photosynthesis impairments and chlorophyll fluorescence  

In general, the lines B37, B37Ht1, B37Ht2, B37Ht3 and B37Htn1 showed distinct symptoms 

for each incompatible interaction (Figure 2). Maize lines carrying the Ht1 gene showed 

strong necrotic lesions surrounded by chlorosis, Ht2 showed chlorosis and small lesions, 

Ht3 showed chlorotic spots and Htn1 showed no lesions or wilt-type lesions in some plants. 

Disease severity in the measured area was higher for B37 and B37Ht1 with an average of 

33% and 24%, respectively (Figure 3). For the lines B37Ht2 and B37Ht3, the disease 

severity was lower than 1%. The line B37Htn1 showed an average of 3% of disease severity 

in the leaf area were gas exchange was measured. Differences in values of CO2 assimilation 

(A) were also observed in healthy plants, and the lines B37Ht3 and B37Htn1 had the lowest 

values of A on both evaluated days (5 and 14 dpi) in both experiment replicates, with 

average values of A of 10.4 and 11.2 µmol CO2 m-2 s-1, respectively. Healthy plants from 

B37 and B37Ht2 lines showed the highest A with average values of 16.4 and 17.2 

µmol CO2 m-2 s-1, respectively. The average value of A for the healthy plants of the line 

B37Ht1 was 12.7 µmol CO2 m-2 s-1, demonstrating no significant differences from the other 

lines (Supplementary figure 1).   
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Figure 2. Maize lines B37 (A), B37Ht1 (B), B37Ht2 (C), B37Ht3 (D), and B37Htn1 (E) 

inoculated with Exserohilum turcicum at 14 days post inoculation. All plants were inoculated 

with a race 0, which confers a compatible interaction with the line B37 and an incompatible 

interaction with B37Ht1, B37Ht2, B37Ht3 and B37Htn1. Disease severity of the leaf area 

used of gas exchange measurements measured at 14 days post inoculation (F). The lower 

quantile represents 0.25 and the upper quantile 0.75 of the data range. Data from both 

experiments are combined (n = 6 biological replicates). Samples were compared by 

analysis of variance (ANOVA) followed by Tukey’s test (p-value ≤ 0.05) as a multiple 

comparisons test. Lines that differ between letters are not statistically significant using 

Tukey’s test (p-value ≤ 0.05). Dots above the boxes are outliers calculated by the package 

ggplot2 in R. 
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In addition, differences in relative net photosynthetic rate (Px/Po), transpiration (Ex/Eo), 

stomatal conductance (gsx/gso), and carboxylation efficiency (kx/ko) between lines were 

observed (Figure 4). At 5 dpi, the average reduction of A values in inoculated plants of the 

compatible interaction (susceptible) of B37 was 38%, whereas reductions of 66 to 71% were 

recorded in inoculated plants bearing Ht genes (incompatible interactions). At 14 dpi, when 

fungal colonization is typically established, the values of A in the susceptible line were 

reduced by 84% in the inoculated plants compared to the healthy plants of B37. Inoculated 

plants from the resistant line B37Ht1 demonstrated a similar reduction when compared to 

the susceptible line with an A value of 81% lower than the healthy plants. The line B37Htn1 

showed a 57% reduction in A, again similar to the susceptible line and to B37Ht1 and 

B37Ht2. The net photosynthetic rate of B37Ht2 (27% reduction) was similar to the values 

obtained in the line B37Ht3 (+7%), where no reduction of A was verified in inoculated plants.  

At 5 dpi, the average values of Ex/Eo were not significantly different between lines, varying 

from 38% to 56% reduction. At 14 dpi, B37Ht3 demonstrated a 32% higher E than healthy 

plants, whereas the other lines exhibited reductions ranging from 25 to 61%. (Figure 4). The 

average values of gsx/gso were reduced by 40% to 58%, although they displayed no 

differences between the lines at 5 dpi. When symptoms were already established (at 14 

dpi), B37Ht3 displayed values of gsx/gso 32% higher than healthy plants. The average 

values of B37, B37Ht1, B37Ht2 and B37Htn1 were reduced by 25% to 60%.  

In the early stage of colonization (5 dpi), the kx/ko observed in inoculated plants was 0.33, 

0.29 and 0.32 for the lines carrying Ht1, Ht3 and Htn1, respectively. These values are 45%, 

54% and 49% lower than those displayed by the inoculated susceptible line B37, which 

showed a kx/ko of 0.62 (Figure 3). At 14 dpi, the average values of kx/ko were reduced to 

89 and 85% for B37 and B37Ht1 respectively. The line B37Htn1 demonstrated a 58% 

reduction of k in inoculated plants compared to healthy plants from the same line. Inoculated 

plants from the lines B37Ht2 and B37Ht3 displayed the highest values of k. Average values 

of k were reduced to 29% and 19%, respectively (Figure 4).  

Chlorophyll fluorescence measurements showed chlorophyll degradation in the necrotic 

areas and small damage in the area surrounding the necrosis and yellow sites (data not 

shown). At 5 dpi, the QY of inoculated plants was close to 1, and therefore similar to healthy 

plants. However, at 14 dpi, the line B37Ht1 showed the lowest value of QY compared to the 

other lines (Figure 5). At 5 dpi, the highest values of nPQx/nPQo were observed for the 

resistant lines, between -28% and +28% when compared to healthy plants. Inoculated 

plants of the susceptible line B37 showed nPQ values 46% lower than healthy plants. At 14 

dpi, B37 showed the highest value of nPQx/nPQo (+89%), followed by B47Htn1 (+56%). 
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Values for B37Ht1, B37Ht2 and B37Ht3 varied from -7% to +16%. However, the maize lines 

were not statistically different for nPQx/nPQo at 14 dpi.  

 

Figure 4. Relative leaf CO2 assimilation [Px/Po] (A,B), relative transpiration [Ex/Eo] (C,D), 

relative stomatal conductance [gsx/gso] (E,F), and relative instantaneous carboxylation 

efficiency [kx/ko] (G,H) in inoculated plants of the line B37 without resistance genes and 

with resistance genes Ht1, Ht2, Ht3 and Htn1. Px/Po, Ex/Eo, gsx/gso and kx/ko were 

calculated by considering the ratio of the variable values collected from inoculated plants to 

the mean values of healthy plants in each B37 line. Disease plants were inoculated with 

one race 0 isolate, which presented compatible interaction with the line (B37) without a 

resistance gene, represented by the black bar, and incompatible interaction with all 

resistance genes, represented by gray bars. Gas exchange measurements were realized 

at 5 (A,C,E,G) and 14 days post inoculation (dpi) (B,D,F,H). Data were fitted to a linear 

mixed model applying experiment replications as random effect. Data were analyzed by 

multiple comparison applying Tukey’s test. Means sharing the same letter are non-

significantly different, n.s. means not significant differences between lines (p-value ≤ 0.05). 

Bars indicate standard error (n = 3 biological replicate).  
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Figure 5. Relative quantum yield of photosystem II [QYx/QYo] (A,B), and the non-

photochemical quenching [nPQx/ nPQo] (C,D) of inoculated plants of the line B37 without 

resistance genes and with resistance genes Ht1, Ht2, Ht3, and Htn1. Disease plants were 

inoculated with one race 0 isolate, which presented compatible interaction with the line 

(B37) without a resistance gene, represented by the black bar, and incompatible interaction 

with all resistance genes, represented by gray bars. Chlorophyll fluorescence 

measurements were realized at 5 (A,C) and 14 days post inoculation (dpi) (B,D). Data were 

fitted to a linear mixed model applying experiment replications as random effect. Data were 

analyzed by multiple comparison applying Tukey’s test. Means sharing the same letter are 

not significantly different, n.s. means non-significant differences between lines (p-

value ≤ 0.05). Bars indicate standard error (n = 3 biological replicates).  
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Plants from the cultivar Scorpion displaying compatible interaction showed higher variation 

in disease severity, with average values of 36% (Figure 6). The resistance reaction 

(incompatible interaction) shown by the hybrid Scorpion was characterized by necrosis 

surrounded by chlorosis, and the disease severity recorded was 14%. Absolute values of 

A, E, gs and k for the hybrid Scorpion showed a reduction in the incompatible interaction 

only at 5 dpi, while for the compatible interaction, reductions were observed at 5 and 14 dpi 

(Figure 7). At 5 dpi, the incompatible interaction demonstrated a reduction in A of 45% 

compared to the control, whereas a reduction of 58% was conferred by the compatible 

interaction. At 14 dpi, the A values for plants showing the incompatible interaction (21 

µmol CO2 m-2 s-1) showed no significant differences when compared to healthy plants (17 

µmol CO2 m-2 s-1). However, in the compatible interaction, A values were reduced by 45%. 

At 5 dpi, the E values were reduced by 46% in the incompatible interaction. In contrast, a 

reduction of only 28% for E values was measured for the compatible interaction. However, 

in the late stages, at 14 dpi, the compatible interaction (1.47 mmol m-2 s-1) showed lower 

values of E when compared to the incompatible interaction (1.73 mmol m-2 s-1). At 5 dpi, the 

gs values were reduced by 29% for the compatible interaction and by 47% for the 

incompatible interaction. At 14 dpi, a reduction of 23% of reduction was observed for the 

compatible interaction, whereas for the incompatible interaction the gs was reduced by 

10%. At 5 dpi, the k was reduced by 60% and by 40% for incompatible and compatible 

interactions, respectively. At 14 dpi, the incompatible interaction showed no significant 

differences in the values of k compared with control plants. However, the average value of 

k in the compatible interaction was reduced to 29% (Figure 7).  
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Figure 6. Disease severity of the maize hybrid Scorpion on a healthy plant (A), with a 

resistant reaction (incompatible interaction) displaying necrosis and chlorosis (B) and with 

necrosis, indicating susceptibility (compatible interaction) (C). The boxplot distribution 

represents the mean disease severity of the area in which gas exchange was measured in 

control plants (healthy plants), incompatible interaction (inoculated with isolate race 0) and 

compatible interactions (inoculated with isolate race 1). The lower quantile represents 0.25 

and upper quantile 0.75 from the samples (n = 3 biological replicates). 
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Figure 7. Leaf CO2 assimilation [A] (A,B), transpiration [E] (C,D), stomatal conductance [gs] 

(E,F) and instantaneous carboxylation efficiency [k] (G,H) in healthy plants (control), and E. 

turcicum inoculated maize plants of the hybrid cultivar Scorpion, which carry the Ht1 gene. 

Diseased plants were inoculated with race 0 (avirulent; incompatible interaction), and race 

1 (virulent, compatible interaction). Gas exchange measurements were realized at 5 

(A,C,E,G) and 14 days post inoculation (dpi) (B,D,F,H). Means sharing same letter are not 

significantly different according to Tukey-adjusted comparisons (p-value 0≤ 0.05). Bars 

indicate the standard error (n = 3 plants). Arrows indicate significant reduction when 

compared to control plants. 
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Peroxide detection and increase in peroxidase activity  

In general, the percentage of penetration sites with peroxide (H2O2) detection and 

peroxidase activity (POX) increased over time (Figure 8). At 1 dpi, no significant differences 

in peroxide detection and peroxidase activity were observed between the lines. At 3 dpi, the 

line B37 exhibited a high percentage of penetration sites displaying peroxide positive 

reactions, whereas the POX was low. The highest percentages of penetration sites showing 

peroxide detection at 3 dpi were observed for B37 and B37Htn1. For POX, B37Ht3 

demonstrated higher activity than B37 and B37Ht1. At 6dpi, B37Ht2 and B37Htn1 differed 

from B37Ht1 in the percentage of H2O2 localization, whereas for POX B37Htn1 differed from 

B37. In addition, B37Htn1 showed high values of both variables at 6 dpi. No DAB staining 

was observed in control plants and no superoxide (O2
-) could be detected using NBT stain. 

 

 

Figure 8. Percentage of penetration sites showing peroxide (H2O2) positive reactions by 

histochemical reaction with DAB (3,3-diaminobenzidin) (A-C) and peroxidase activity 

(nktal*mg protein-1) (D-F) on the maize line B37 without resistance genes and with 

resistance genes Ht1, Ht2, Ht3, and Htn1 inoculated with one race 0 isolate. Leaf samples 

were collected from three plants per treatment at 1, 3, and 6 days post inoculation (dpi). 

Data were fitted to a linear mixed model applying experiment replications as random effect. 

Data were analysed by multiple comparison applying Tukey’s test. Means sharing the same 

letter are non-significantly different, n.s. means not significant differences between lines (p-

value ≤ 0.05). Bars indicate standard error (n = 3 biological replicates). 
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Reduction in number of lesions per leaf, lesion length, and sporulation 

The number of lesions per leaf was higher for the incompatible interaction with B37 followed 

by B37Ht1 due to strong chlorosis and necrosis (Figure 9). B37Ht2 displayed some lesions, 

whereas B37Ht3 and B37Htn1 showed only one small lesion in one or a maximum of two 

leaves. The largest lesions were observed for B37, followed by B37Ht1 and B37Ht2. B37 

and B37Ht2 showed the highest sporulation of E. turcicum per disease area. B37Ht3 and 

B37Htn1 showed high variation due to the few samples displaying lesions. In B37Htn1 only 

two lesions were observed in all plants. In B37Ht1, B37Ht3 and B37Htn1, observed 

symptoms were always related to chlorosis in the incompatible interaction.  

 

Figure 9. Number of lesions per leaf, lesion length and sporulation (spores cm-2 of diseased 

area) by Exserohilum turcicum infection at 14 days post inoculation on B37, B37Ht1, 

B37Ht2, B37Ht3 and B37Htn1. All lines were inoculated with three race 0 isolates conferring 

compatible interaction with B37 and incompatible interaction with the other lines. Bars 

indicate the standard error. Data on the number of lesions and lesion length were analyzed 

the using non-parametric Kruskal-Wallis test. Means sharing same letter are not 

significantly different for Dunn’s multiple comparisons test (p -value ≤ 0.05). Data on the 

sporulation were Box-Cox transformed and fitted to the linear mixed model, with replications 

as random effect. Means sharing same letter are not significantly different for Tukey-

adjusted comparisons (p-value ≤ 0.05).  

Leaf area and plant biomass estimation  

No reduction in shoot (Figure 10) or root (data not shown) biomass was observed for 

inoculated plants at 14 dpi (data not shown) or at 28 dpi. However, a slight decrease in leaf 

area was observed for the susceptible line, being only significantly different for B37Ht2. In 

general, values of disease severity were lower than 10% in the biomass experiments. The 

exception was B37Ht1, which presented the highest values of disease severity (average of 
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11.72%). For the hybrid Scorpion, there were no differences in shoot biomass or leaf area 

between treatments. In addition, no differences in disease severity were observed between 

compatible and incompatible interactions (Figure 11).  

 

Figure 10. Relative ratio of dry weight of the shoot biomass (stem and leaves) [Dax/Dao] 

(A), leaf area [LAx/LAo] (B) and disease severity (C) between inoculated plants (Yx) and 

healthy plants (Yo) of the maize line B37 without resistance genes and with resistance 

genes Ht1, Ht2, Ht3, and Htn1 from plant harvest at 28 days post inoculation (dpi). Diseased 

plants were inoculated with one race 0 isolate, which represented a compatible interaction, 

with the line (B37) without a resistance gene represented by the black bar, and incompatible 

interaction with all resistance genes, represented by gray bars. Data were fitted to a linear 

mixed model applying experiment replications as random effect. Data were analyzed by 

multiple comparison applying Tukey’s test. Means sharing the same letter are not 

significantly different, n.s. means non-significant differences between lines (p-value ≤ 0.05). 

Bars indicate standard error (n = 4 biological replicates).  
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Figure 11. Dry weight of the shoot biomass (stem and leaves) [Da] (A), leaf area [LA] (B), 

and disease severity (C) of inoculated maize plants of the hybrid cultivar Scorpion, which 

bears the Ht1 gene, harvested at 28 days post inoculation (dpi). Diseased plants were 

inoculated with one race 0 isolate, which was avirulent to Scorpion (incompatible 

interaction), and one race 1 isolate, which was virulent to Scorpion (compatible interaction). 

Data were fitted to a linear mixed model applying experiment replications as random effect. 

Data were analyzed by multiple comparison applying Tukey’s test. Means sharing the same 

letter are not significantly different, n.s. means non-significant differences between lines (p-

value ≤ 0.05). Bars indicate standard error (n = 4 biological replicates). 
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Discussion  

The resistance responses of Ht genes against E. turcicum distinctly affected gas exchange, 

chlorophyll fluorescence, and oxidative burst in maize, as demonstrated by the experiments 

conducted in this study. The incompatible interaction of plants carrying the Ht1 gene and 

inoculated with E. turcicum caused reductions in physiological activities similar to the 

compatible interaction. The visual severity of the resistance response in a plant bearing  Ht1 

is similar to, or even higher than the disease severity caused by the pathogen in a 

compatible host (Figures 3 and 5). Conversely, the resistance response to E. turcicum 

expressed by Ht3 did not affect most of the gas exchange and chlorophyll fluorescence 

variables, as no damaged leaf tissue could be observed in the incompatible interaction 

(Figure 4).  

The lines carrying Ht genes decreased the carboxylation efficiency a few days after infection 

by E. turcicum and no effect was observed in water vapor diffusion variables (transpiration 

and stomatal conductance) after 5 dpi. Reductions in carboxylation efficiency caused by 

pathogens are usually related to biochemical limitations in the photosynthetic process 

(Navarro et al., 2019). However, decreased carboxylation efficiency was not observed for 

the susceptible line B37 (compatible interaction) with E. turcicum at 5 dpi. At 14 dpi, the 

resistant line B37Ht3 recovered in its photosynthetic activity. In contrast, the resistant line 

B37Ht1 demonstrated drastic reductions in several gas exchange variables and in 

carboxylation efficiency, similarly to the compatible interaction of line B37.  

In plant-pathogen compatible interactions the photosynthetic rate usually remains unaltered 

during the first stages of the interaction, as observed for the compatible interaction on B37 

(susceptible line). In other pathosystems, photosynthesis is not reduced in the compatible 

interaction with biotrophs up to 6 dpi, as observed for powdery mildew (Blumeria graminis) 

on barley (Swarbrick et al., 2006) and downy mildew (Plasmopara viticola) on grapevine 

(Nogueira Júnior et al., 2020). However, photosynthesis of susceptible plants is usually 

progressively reduced up to 60% compared with healthy leaves after 7 dpi (Swarbrick et al., 

2006; Nascimento et al., 2019; Nogueira Júnior et al., 2020), similar to B37 and B37Ht1 in 

the present work. After 5 dpi, a reduction in carboxylation efficiency was observed for maize 

in the incompatible interaction with E. turcicum, as demonstrated for incompatible 

interactions between Blumeria graminis f. sp. hordei and barley (Swarbrick et al., 2006), 

and Plasmopara viticola and grapevine (Nogueira Júnior et al., 2020).  

Commonly, histochemical and biochemical alterations expressed during plant defense 

responses against pathogen infection in the incompatible interactions enhance 

carbohydrate hydrolysis and represses photosynthesis-associated proteins. These 
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impairments in the photosynthesis might be reversible, as for Austropuccinia psidii in 

Eucalyptus (Alves et al., 2011), or not, as for Plasmopara viticola in resistant grapevine and 

E. turcicum and the maize line B37Ht1, according to the type of resistance response 

expressed by the resistance genes.  

Resistance mechanisms of maize against E. turcicum can be related to morphological or 

biochemical alterations. Morphological alterations associated with resistance are thicker 

vessel walls (Hilu and Hooker, 1964), which may reduce hyphal penetration into xylem 

vessels (Navarro et al., 2020). Necrosis was verified when the pathogen reached the xylem 

vessel (Kotze et al., 2019) and necrotic symptoms are associated with cell death, which is 

provoked by the release of phytotoxins (Kotze et al., 2019). In addition to the morphological 

alterations, the release of antibiotic substances can be involved in maize defense. A cyclic 

hydroxamic acid called DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one) 

inhibited E. turcicum spore germination, decreasing the number of lesions in higher 

concentrations (Couture et al., 1971). DIMBOA was found in maize and in many plants from 

the family Poaceae (Niemeyer, 1988) and also inhibited insect pests such as the European 

corn borer, Ostrinia nibilalis (Frey et al., 1997), and beet armyworm, Spodopotera exigua 

(Rostás, 2007). The release of DIMBOA occurred following an increase in β-glucosidase 

activity, however, β-glucosidase was localized close to the small vascular bundles in 

E. turcicum inoculated and non-inoculated leaves (Mace, 1973). Besides DIMBOA, the 

production of phenolic phytoalexins has been shown to be induced by isolates that are 

pathogenic on maize (Lim et al., 1970; Obi et al., 1980). Phytoalexins have been shown to 

correlate with chlorosis expressed in the resistant phenotype (Calub et al., 1973; Lim et al., 

1968; Obi et al., 1980).The increase in phytoalexin production was related to more 

aggressive isolates (Lim et al., 1970) and to homozygous plants (Ht/Ht) for the resistance 

gene (Calub et al., 1973).  

In addition to phytoalexins, other substances such as compounds involved in the oxidative 

burst and hormones may play a role in resistance. ROS can act in signaling in the first 

stages of infection. However, the percentage of penetration sites, at 1 dpi, where H2O2 and 

O2
- could be detected was small or missing, respectively (Figure 8). These molecules were 

probably produced in low quantities, undetectable by the applied methods. Nonetheless, 

ROS are also known to act on defense signaling by salicylic acid (SA) (Lamb and Dixon, 

1997). which was also reported from the maize - E. turcicum pathosystem (Wu et al., 2015). 

In the present study, H2O2 was detected in more than 50% of the penetration sites at 3 and 

6 dpi, corroborating the high H2O2 production in susceptible plants at 15 dpi (Silveira et al., 

2019). H2O2 accumulation in the late infection stages may be related to vascular 

colonization, as after 6 dpi E. turcicum is able to penetrate into the xylem (Navarro et al., 
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2020). Wheat infected with the hemibiotroph Zymoseptoria tritici (teleomorph: 

Mycosphaerella graminicola) has shown high H2O2 accumulation during pathogen 

reproduction, at the necrotrophic stage (Shetty et al., 2007). In our experiments, the 

peroxidase activity was higher in inoculated plants at 6 dpi (Figure 8). The highest values 

of POX activity were observed for B37Htn1, differing from the susceptible line B37. Similar 

results for POX activity were obtained for the line B73 (Shimoni et al., 1991). The lowest 

percentage of penetration sites with H2O2 detection was observed in the line B37Ht1. 

However, the low detection of H2O2 might be related to cell death, as high disease severity 

was detected for this line (Figures 2 and 3). The resistance phenotype conferred by Htn1 

described in the literature was not related to chlorosis but to an extended latent period and 

to quantitative resistance (Hurni et al., 2015). After six to eight weeks, healthy plants were 

showing yellow spots (Navarro et al., 2020). These symptoms were observed in the lower 

leaves and were described as wilt-type lesions (Gevers, 1975). Wilt-type lesions, also called 

“lesion-mimics”, might have an inappropriate resistance mechanism like hypersensitive 

response (HR), which demands energy (Balint-Kurti, 2019), corroborating the low values of 

CO2 assimilation in healthy plants (Supplementary figure 1). Wilt-type lesions could explain 

the higher percentages of H2O2 detection and high peroxidase activity in plants carrying the 

Htn1 gene.  

A proteomic study realized at 3 dpi with the incompatible interaction between the line 

A619Ht2 and a race 13 isolate identified up-regulation of 50 proteins with multiple functions. 

Proteins related to energy metabolism, such as proteins related to ATP synthesis, 

represented 46% of the up-regulated proteins. ATP is important for phytotoxin detoxification 

and cell apoptosis (Zhang et al., 2014). The apoptosis leads to the detachment of the 

plasma membrane from the cell wall, which preserves its integrity and permits de novo 

synthesis of proteins (Veloso and van Kan, 2018), and consequently avoids the use of 

nutrients by pathogens during the necrotrophic phase and during the biotrophic phase by 

PCD. The proteins related to defense against pathogens represented 18% of up-regulated 

proteins, and were identified as β-glucosidase, superoxide dismutase, and polyamine 

oxidase. Enzymes that act on the oxidative burst are related to the accumulation of ROS 

(Zhang et al., 2014) and disease signaling (Apel and Hirt, 2004). Our results obtained in the 

gas exchange and chlorophyll fluorescence experiments confirmed that photosynthesis was 

affected in the initial stages of infection in the incompatible interactions. These data 

correlate with the decrease in Rubisco activity observed in the proteomic study (Zhang et 

al., 2014). The up-regulation of genes from the family of laccase-like multicopper oxidases 

(LMCO), which are released by the pathogen during early stages of infection, indicates that 

those genes play an important role in pathogenesis. LMCO genes increase laccase activity, 
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which is important for lignin degradation, detoxification of phenolic substances and 

lignocellulose degradation (Liu et al., 2019). 

The resistance response of Ht1 displays an extensive chlorosis combined with necrosis 

(Figures 2 and 6) which explains the low photosynthetic activity, as observed for chlorophyll 

fluorescence, which causes impairments in the photosynthetic process at 14 dpi (Figures 

4, 5 and 6). Chlorosis can be associated with loss of cell membrane integrity and 

accumulation of water in the apoplast of the infected tissue (Lindenthal et al., 2005). 

Chlorosis is caused by reduction in chlorophyll fluorescence and is usually associated with 

damage to chloroplasts (Buchanan et al., 1981). Fungal infection can cause reduction in 

photophosphorylation due to decrease in the rate of non-cyclic electron transport, which 

has water as an electron donor (Buchanan et al., 1981). Host resistance responses might 

modify guard cell regulation of the stomatal apertures (Grimmer et al., 2012). Consequently, 

water loss promotes cell death and desiccation of healthy tissue (Lindenthal et al., 2005), 

leading to necrosis. At 5 dpi, a reduction in instantaneous carboxylation efficiency (k) 

indicates that the resistance genes have an earlier response to fungal infection, whereas 

for the susceptible line k is not reduced. The increase in nPQ indicates that energy is being 

transferred to other non-photosynthetic processes. Some resistance mechanisms might be 

involved in electron transport by changing the cell membrane and through chlorophyll 

disintegration (Lindenthal et al., 2005). At 14 dpi, the healthy tissue seems to compensate 

for photosynthetic costs associated with the activation of resistance mechanisms in the 

incompatible interaction, as observed for Scorpion (Figure 9).  

The expression of resistance mechanisms conferred by Ht genes affected some 

epidemiological components, such as sporulation (Abadi et al., 1989). The suppression of 

sporulation reduces the disease secondary cycle and may affect the apparent infection rate 

(r) (Parlevliet, 1979). Instead of suppression of sporulation, the Ht2 gene reduced the 

number of lesions and lesion size (Figure 9). Even in the compatible interaction, the line 

B37Htn1 was able to decrease the sporulation by 64% compared to the line without 

resistance genes (Figure 9). A delay in disease development and a slow disease growth 

rate are important breeding goals (Sigulas et al., 1988). Indeed, it is more laborious to 

measure lesion length than latent period and therefore the former is less suitable as 

screening parameter in breeding selection for resistance to E. turcicum (Carson, 2006). 

However, lesion expansion is an important epidemiological component for secondary 

infection (Berger et al., 1997), especially for tropical pathosystems (Bergamin Filho and 

Amorim, 1996).  

Previous studies with Arabidopsis thaliana carrying the resistance gene RPM1+, which 

confers resistance against Pseudomonas syringae pv. maculicola, showed that plants were 
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smaller, had lower reproductive fitness and presented 9% fewer seeds than rpm1 plants 

(Brown, 2003). In maize, plants carrying qualitative resistance presented a 8.45 to 13.2% 

yield reduction, when compared to susceptible plants (Ullstrup, 1970). However, in our 

experiments, we were not able to detect a reduction in the shoot biomass (Dax/Dao) at 28 

dpi for the lines (Figure 10) or for the hybrid (Figure 11), most likely due to the low level of 

disease severity (Figures 3 and 7). Thus, low disease severity does not necessarily suggest 

that the inoculation procedure was unsatisfactory but rather that maize growth is fast, 

especially during stem elongation and formation of the upper leaves. The experiments 

regarding biomass production presented in this work were conducted in the greenhouse 

under controlled conditions. However, field experiments should be conducted to investigate 

the effect of resistance genes on plant biomass (silage maize) and/or grain yield (grain 

maize) in practical conditions. Commonly, a reduction in energy production might affect 

yield formation. The presence of the Ht1 resistance gene demands energy from the host 

(Ullstrup, 1970). By conducting a three-year field trial, Ullstrup (1970) was able to show that 

NCLB led to a yield reduction of about 40% when susceptible cultivars were infected. 

Qualitative resistance through the use of Ht1, on the other hand, led to a yield reduction of 

only 19%. Quantitative resistance however resulted in the lowest yield reduction of only 5%. 

Another study showed that hybrids carrying the Ht1 gene had a 6 to 18% yield loss, which 

was less than those hybrids without resistance genes (6 to 51 % yield loss) (Pataky, 1994). 

Resistance costs were correlated with chlorotic-type lesions (Ullstrup, 1970; Pataky, 1994; 

Lipps et al., 1997). In line with its extremely susceptible background, the Ht1 gene 

expresses extensive chlorosis (Ullstrup, 1970).  

A recent study has shown that Ht2 and Ht3 are identical and allelic to the Htn1 gene. The 

allele Ht2/Ht3 differ from Htn1 by multiple amino acid polymorphisms that may affect an 

extracellular domain, consequently leading to changes in triggered resistance mechanisms 

(Yang et al., 2021). Additionally, Yang et al. (2021) identified extremely high genetic 

variation between B37 and the line B37Ht1, B37Ht2, B37Ht3 and B37Hnt1 (from 8 to 61%) 

that were supposed to be near isogenic lines. The same authors suppose that differences 

in the phenotype between Ht2 and Ht3 are due to distinct genetic background. In fact, the 

genetic background seems to have a much stronger effect on the phenotype, especially 

when accounting for resistance, as differences on the physiological responses to the 

pathogen infection and the pattern of epidemics could be clearly observed between the line 

B37Ht2 and B37Ht3 (which are actually the same allele). In the pathosystem Magnaporthe 

oryzae - rice, the genes Pi35 and Pish are allelic and multiple functional polymorphisms 

increase resistance (Fukuoka et al., 2014). Additionally, Fukuoka et al. (2015) identified that 

an amino acid residue of Pi35 is associated with quantitative resistance.  
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It is known that Ht resistance genes can cause physiological and biochemical alterations, 

which may subsequently influence biomass production. Indeed, the Ht genes have reduced 

disease severity and have led to a delayed progress of infection in compatible interactions, 

which suggests that maize R genes against E. turcicum are associated with, or confer, 

additional quantitative resistance (Navarro et al., 2020). Such increase in the level of 

resistance suggests that this might be a residual effect of “defeated” Ht genes, which confer 

additional quantitative resistance (Navarro et al., 2020). The pathogen is in constant co-

evolution with the host, which explains why the pathogen can overcome some resistance 

mechanisms (Brown, 2003). As hypothesized by Poland et al. (2009), some Ht genes may 

condition incomplete resistance, which can be a weaker form of an R-gene, leading to 

minor-gene-for-minor-gene interaction (Parlevliet and Zadoks, 1977). As observed on this 

study, the reduction on net photosynthetic rate ranged from 0% to 94%, which demonstrates 

that not only the resistance gene, but the genetic background is responsible for distinct 

phenotype reactions and consequently on photosynthetic processes. The advance of 

molecular methods may help to better understand coevolution between host and pathogen 

(Thrall et al., 2012). Candidate effectors involved as avirulence factors in interactions with 

resistance response factors have previously been studied showing that these effector 

candidates of the Ht1 gene are involved in the biosynthesis of secondary metabolites and 

cell wall degradation (Wu et al., 2015; Human et al., 2020). Nonetheless, more studies are 

needed to identify virulence factors involved in host-pathogen interactions and resistance 

mechanisms involved in resistance conferred by the Ht genes.  
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Supplementary Material 

Appendix 1. The German commercial hybrid ES Scorpion was inoculated with six 

E. turcicum isolates of different races (race 0, 1,2,3, 3N and 23N). Inoculations were 

performed by spraying an average 7 ml of an inoculum suspension of 3000 spores ml-1 for 

each plant until the point of run-off. Four plants were inoculated per isolate. Disease 

phenotype (Bigirwa et al., 1993; Hanekamp, 2016) and disease severity (Levy and Pataky, 

1992) were evaluated 14 days post inoculation following diagrammatic scales. The disease 

phenotyping basically describes plants as susceptible when showing green-grey lesions, 

and as resistant when chlorotic lesions are visualized. Data of disease severity were 

compared between hybrids by analysis of variance (two-way ANOVA) and by multiple 

comparison applying Tukey test (p-value ≤ 0.05) using R software 3.6.0 (Core Team 2019). 

ES Scorpion showed similar phenotype and high disease severity, as observed for the line 

B37Ht1. Average values of disease severity were high displaying 62%.  
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Supplementary table 1. Disease phenotype for 3 maize hybrids commercialized in 

Germany. Each hybrid was inoculated with Exserohilum turcicum isolates from 6 different 

races (race 0, 1, 2, 3, 3N and 23N). Disease phenotype was evaluated at 14 days post 

inoculation.  

Isolates Mize hybrid ES Scorpion 

Race 0 R 

Race 1 S 

Race 2 R 

Race 3 R 

Race 3N R 

Race 23N R 

S – plants showing susceptible phenotype, R – plants showing resistant phenotype 

 

 

Supplementary figure 1. Leaf CO2 assimilation [A] for healthy plants (control) of the line 

B37 without resistance genes and with resistance genes Ht1, Ht2, Ht3 and Htn1 for both 

experiments replicates. Means sharing same letter are not significantly different for Tukey-

adjusted comparisons (p-value ≤ 0.05). Data from both replications are presented in the 

graphics. Bars indicate the standard error. 
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Supplementary figure 2. Leaf CO2 assimilation [A] (A,B), stomatal conductance [gs] (C,D), 

transpiration [E] (E,F) and instantaneous carboxylation efficiency [k] (G,H) in healthy plants 

(control - represented by light grey bars) and inoculated plants with one race 0 isolate, which 

presented compatible interaction with the line B37 by the black bar, and incompatible 

interaction with all resistance genes, represented by gray bars. Leaf samples were 

measured at 5 (A,C,E), and 14 (B,D,F) days post inoculation (dpi). Bars indicate standard 

error (n = 4 biological replicate). Data were compared by anaysis of variance, and values of 

healthy plants were compared with inoculated plants by T-test ( * p-value ≤ 0.05). Graphs 

show data of the first repetition. 
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Appendix 2. Calculation of the peroxidase activity 

 Absolute peroxidase activity  

 

1) A linear regression was plotted with data of absorbance per time and the slope was 

calculated (time unit in second).  

 

2) Beer-Lambert Law: Absλ = ελ c l   

 

c = abs / ε l 

c = slope * 60 / 2.66 107 cm2 mol -1 * 1cm  

c = slope * 22,55 *10-7  mol ml-1 min-1 

c = slope * 22,55 *10-7  * 106 µmol min-1 ml-1 

 

3) Transformation in nKatal  

c = slope * 2,255 * 16.67 nkat ml-1 

 

4) Enzyme activity in the sample extract  

c = slope * 37,6 / reaction volume  

c = slope * 37,6 * volume sample extract / reaction 

volume  nkat in 1 ml sample extract  

 

 

 Protein content  

 

Calculation with the calibration curve.  

Final unit is mg protein ml-1 

 

 

 

 Peroxidase activity (nktal*mg protein-1) = absolute peroxidase activity (nkat) / 

protein content (mg protein ml-1) 

 

 

 

Beer-Lambert Law:Absλ = ελ c l 

Absλ    absorbance or optical 

density 

 

ελ   extinction coefficient 

[for guaiacol and peroxidase: 

ελ=470nm = 2.66 107 cm2 mol -1] 

(Chance and Mahehly, 1955) 

 

c   concentration of the 

reaction product in the solution, 

in this case the enzyme activity 

(mol ml-1 min-1 – expressed by 

nKatal ml-1)  

 

l  optical path length.  

Enzyme units: 

1 katal – kat = 1 mol s-1 

1U (enzyme unit) = µmol min-1 = 

16.67 nkat 



 

 

Chapter 5. The efficacy of Ht2-resistance to Exserohilum turcicum in maize is not 

related to the pre-inoculation temperature 

Abstract  

Northern corn leaf blight (NLCB) is an important leaf disease caused by the ascomycete 

Exserohilum turcicum. NCLB control is based on host resistance, and more specifically on 

qualitative genes called Ht genes. The resistance phenotype conferred by to E. turcicum 

can differ depending on environmental conditions. In the literature, there are reports about 

the susceptibility of maize plants bearing the Ht2 gene when maintained under low post-

inoculation temperature (22/18°C) and low light intensity (324 - 162 µmol m-2 s-1), however 

it is not clear which factor (host resistance or pathogen virulence) is mostly affected by 

temperature. Our objective was to assess the influence of pre-inoculation temperature on 

the efficacy of Ht2-resistance to E. turcicum. Maize plants from the line B37 with no 

resistance gene and for the line B37Ht2 (with the Ht2 gene) were pre-disposed to warm 

(30/25°C) and moderate (20/15°C) temperature regimes for 10 days. Spray inoculations 

were performed with three Brazilian and three German isolates. After inoculations, all plants 

were maintained under the same temperature regime (25/20°C). The disease severity and 

DNA content of E. turcicum were evaluated 21 days post inoculation (dpi). No significant 

differences in disease severity and E. turcicum DNA content were observed between plants 

maintained at different pre-inoculation temperatures. There was no influence of pre-

inoculation temperature on the expression of resistance in the maize line bearing the Ht2 

gene. The resistance conferred by the Ht2 was confirmed by quantifying low amounts of 

fungal DNA in the line B37Ht2 at 21 dpi. Changes in resistance levels of maize plants 

bearing the Ht2 gene reported in the literature for plants exposed to different post-

inoculation temperatures might be related to the influence of temperature on pathogen 

aggressiveness factors. Further studies are necessary to determine how expression of the 

Ht2 gene is up- and down-regulated, and consequently what pathways are being activated 

to trigger resistance.  

Keywords: disease resistance, R gene, qPCR, Setosphaeria turcica, Zea mays 
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Introduction 

Changes in environmental conditions, such as the increase in temperature can modify 

cropping systems (Velásquez et al., 2018), which may lead to changes in disease 

epidemics. The dynamic of diseases can be affected by the amount of primary inoculum, 

the rate of disease progress, and the potential duration of the epidemic (Juroszek and 

Tiedemann, 2013). Environmental conditions are the main drivers of these variables, 

affecting pathogen aggressiveness and the efficacy of resistance genes (Agrios, 2005). 

Pathogen reproduction, survival, germination and the expression of virulence factors, such 

as virulence proteins or toxin production, may change under different weather conditions 

(Velásquez et al., 2018). Conversely, host physiology is strongly affected by abiotic factors, 

such as heat and drought stress or low nutrients availability increasing plant susceptibility 

to pathogens (Coakley et al., 1999).  

The increase in temperature may inactivate or enhance the efficacy of resistance genes 

according to the pathosystem and resistance gene (Vanderplank, 1968; Coakley et al., 

1999; Onaga et al., 2017). For instance, the resistance promoted by the Pg3 and Pg4 genes 

in oats against Puccinia graminis f. sp. avenae is inactivated with increase in temperature 

(Vanderplank, 1968; Coakley et al., 1999). The same tendency was observed for the 

resistance genes Lr20 and Sr15 in wheat against Puccinia recondita and Puccinia striiformis 

f.sp. tritici. Wheat plants exposed to a high pre-inoculation temperature (30°C) were 

susceptible to leaf and stem rust (Ramage and Sutherland, 1995). Interestingly, Triticum 

dicoccum bearing the Rmg7 gene, which confers resistance to Magnaporthe oryzae 

pathotype Triticum, lost its resistance under warm temperature conditions (25°C), 

compared to plants exposed to pre-inoculation temperatures of 20 and 22°C. In this case, 

only the virulent isolate was able to infect under 25°C (Tagle et al., 2015). The resistance 

conferred by Rmg7 was stable when plants were inoculated with an avirulent isolate 

carrying the AvrRmg7 gene (Tagle et al., 2015; Anh et al., 2018). Conversely, high pre-

inoculation temperatures increased the expression of the Pi54 gene (R gene) against 

Pyricularia oryzae in japonica rice. The japonica background of rice cultivars increases the 

expression of resistance of Pi54 gene (Onaga et al., 2017). The increase in resistance in 

rice plants exposed to high pre-inoculation temperatures is due to an increase in callose 

deposition (Onaga et al., 2017). An increase in resistance with the increase of temperature 

is also observed in wheat and barley varieties infected by Puccinia striiformis (Sharp, 1962). 

For instance, high temperatures increase cell wall lignification in grasses, which enhances 

resistance to fungal pathogens (Coakley et al., 1999). Moreover, temperature and light 

intensity may affect the resistance function of some Ht genes for the pathosystem maize-

Exserohilum turcicum (Thakur et al., 1989a; Thakur et al., 1989b; Leath et al., 1990). 
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Northern corn leaf blight (NCLB), an important maize disease worldwide, is caused by the 

ascomycete E. turcicum (teleomorph Setosphaeria turcica). One of the main disease control 

methods is the cultivation of resistant varieties (Galiano-Carneiro and Miedaner, 2017). 

Several qualitative resistance genes were reported to confer resistance against NCLB. The 

resistance phenotype conferred by Ht1, Ht2, and Ht3 genes is related to chlorosis (Hooker, 

1963, 1977, 1981). Instead of chlorotic lesions, the Htn1 confers a longer latent period 

(Gevers, 1975). However, the resistance phenotype of some Ht genes may not be 

expressed under low post-inoculation temperatures and low light intensity (Thakur et al., 

1989a; Thakur et al., 1989; Leath et al., 1990). A loss in resistance function of the Ht1 gene 

under high post-inoculation temperatures (26/22°C) was observed in the B37 line. However, 

the same observations were not noticed the H4460 line, indicating that genetic background 

may influence the function of the resistance gene Ht1 under high temperatures (Thakur et 

al., 1989). Conversely, the Ht2 gene did not express resistance phenotype neither in B37 

nor in H4460 lines when exposed to low pre- and post-inoculation temperatures of 22/18°C, 

and low light intensities of 324 and 162 µmol m-2 s-1. Nonetheless, the Ht3 gene led to a 

resistant phenotype in the B37Ht3 and H4460Ht3 lines when these lines were inoculated 

with a virulent isolate and maintained under high pre- and post-inoculation temperature 

regimes (26/22°C) and full light intensity (647 µmol m-2 s-1) (Thakur et al., 1989a; Leath et 

al., 1990). In general, the genes Ht1 and Htn1 conferred stable phenotypes in the B37 line 

when compared to Ht2 and Ht3, when inoculated with virulent and avirulent isolates, 

maintained under low light intensity (155 µmol m-2 s-1), and exposed to distinct post-

inoculation temperatures (15/10°C, 20/15°C, 25/20°C and 30/25°C) (Hanekamp, 2016).  

The resistance conferred by the Ht2 gene is most sensitive to changes in environmental 

conditions compared to other Ht genes. This gene is located on chromosome 8 in the maize 

genome and is associated with the position bin 8.06 (Chung et al., 2010). The Ht2 gene is 

race-specific (Chung et al., 2010), and confers small chlorotic lesions as a resistance 

phenotype. Chlorotic lesions can persist for some days without necrosis (Hooker, 1977), 

and decrease the lesion area (Abadi et al., 1989). Moreover, the delay in lesion formation 

by about 2.6 – 6.8 days and reduction in diseased leaf area by about 12 – 22% were 

observed for the maize hybrid DK888 bearing the Ht2 (Chung et al., 2010). In general, the 

resistance associated with the Ht2 suggests a lower level of resistance when compared to 

the Ht1 (Hooker, 1977; Cota et al., 2013). Moreover, maize plants bearing the Ht2 did not 

show reduced pathogen sporulation (Navarro et al., 2021a).  

In a proteomic study analyzing defense responses conferred by the Ht2 gene in the line 

A619Ht2, in an incompatible interaction with a race 13 isolate, differences on proteins 

expression were identified. Of the 87 up-regulated proteins, 18% were responsible for 
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disease defense (Zhang et al., 2014). Moreover, ATP synthesis was suppressed in 

susceptible hosts by phytotoxins, resulting in the suppression of resistance mechanisms 

(Zhang et al., 2014). E. turcicum produces monocerin, a non-specific phytotoxin, which was 

shown to be phytotoxic to Johnson-grass and cucumber (Robeson and Strobel, 1982). 

Moreover, another study showed that E. turcicum produces the host-specific HT-toxin, 

referring to Helminthosporium turcicum (syn. E. turcicum) (Dong and Li, 1996). Maize plants 

HZSHt2 infiltrated with HT-toxin prevented phytotoxin damage by up-regulating energy 

metabolism and signaling pathogen invasion (Wang et al., 2010). Resistance mechanisms 

for the detoxification of the HT-toxin, conferred by the Ht2 gene, might involve a translation 

elongation factor or an upregulated QM-like protein. The QM-protein is related to stress 

response pathways, which mediates proline levels in the plant (Zhang et al., 2014). Proline 

is an amino acid that acts as an osmolyte, playing an important role as a metal chelator, 

anti-oxidative defense molecule and signaling molecule (Hayat et al., 2012). Moreover, 

resistance mechanisms associated with the Ht2 gene, such as HT-toxin detoxification, are 

not well explained.  

Post-inoculation temperatures affect plant resistance responses, pathogen growth and 

disease development. Low post-inoculation temperatures and low light intensities seems to 

affect the NCLB development probably by changes on expression of resistance phenotype 

conferred by Ht2 (Thakur et al., 1989a; Leath et al., 1990). However, the effect of pre-

inoculation temperatures (i.e. the pre-exposition of plants to different temperatures before 

pathogen inoculation), which may affect only plant responses to the pathogen infection, has 

not been described yet in the interaction between the maize lines carrying the Ht2 and 

E. turcicum. The objective of this study was to prove the efficacy of the Ht2-resistance gene 

against E. turcicum by applying different pre-inoculation temperatures. Therefore, the 

disease severity and the content of E. turcicum DNA were measured in susceptible maize 

plants of the line B37 (without resistance genes), and in resistant plants (B37Ht2) exposed 

to warm (30/25°C) and moderate (20/15°C) pre-inoculation temperatures.  

Material and Methods 

Plant material, inoculation and disease assessment 

Maize plants from the differential set of the line B37, without resistance genes, and from the 

line B37Ht2, with the resistance gene, were cultivated in a soil mixture containing compost, 

clay and sand in proportions of 3:3:1, respectively. Two seeds of each line were sown per 

pot, totaling four pots per treatment (11 cm x 11 cm x 10 cm). Seeds from the differential 

set were provided by KWS Saat SE (Einbeck, Germany). All plants were cultivated in the 

greenhouse for 30 days (Figure 1). In order to exclude the influence of temperature on 
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pathogen development, maize plants were exposed to different pre-inoculation temperature 

regimes. Therefore, when the fifth leaves were unfolded, every eighth plant was moved to 

a climate chamber set to warm temperature conditions of 30/25°C, and moderate 

temperature conditions of 20/15°C. Both chambers (RUMED® Rubarth Apparate GmbH, 

Germany) were exposed to a light/dark photoperiod of 14/10 h with light intensity of 

120 ±10 µmol m-2 s-1, and relative air humidity of 70%.  

After 10 days under different temperature conditions, plants were inoculated with one of the 

three avirulent (race 0) isolates of E. turcicum from a warm region in south Brazil (isolates 

B38-1, B42-2, and B53-3) or one of the three avirulent (race 0) isolates from a region with 

mild temperatures in Germany (isolates: D6-4, H151, Nes18-4); characterized in previous 

works (Hanekamp, 2016; Navarro et al., 2021b). Following the nomenclature proposed by 

Leonard et al. (1989), isolates named race 0 are able to infect and cause disease only in 

maize plant bearing no Ht resistance genes. Each plant received 7 ml of conidia suspension 

and was maintained in under high relative air humidity (>95%) for 24 h. After inoculation, all 

plants were maintained under day/night temperature conditions of 25/20°C, with a light/dark 

photoperiod of 14/10 h, relative air humidity of 70%, and light intensity of 120 ±10 µmol m-

2 s-1. The experiment was replicated once. The disease severity was evaluated visually 

based on diagram assessment (Pataky, 1992), considering necrosis, at 14 and 21 days 

post inoculation (dpi).  

 

Figure 1. Outline of temperature conditions during the experimental procedure comparing 

the disease severity and fungal DNA content caused by different Exserohilum turcicum 

isolates on the maize lines B37 and B37Ht2. RH relative air humidity; dpi – days post-

inoculation. 

Fungal DNA quantification in planta  

Exserohilum turcicum DNA was isolated from eight infected leaves sampled at 21 dpi. The 

fifth leaf from two plants of the same line cultivated in the same pot were pooled and frozen 

at -20°C, totaling four replications. Three technical replicates were performed for each 

biological replicate. Additionally, the race 0 isolate B38-1 was cultivated in liquid Czapek 
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Dox Medium at 22°C in the dark in order to obtain a DNA standard. The mycelial culture 

was shaken at 100 rpm for 14 days. Then, it was filtered by vacuum suction. Mycelia were 

frozen at -20°C, lyophilized (Zimbus technology, Germany), and ground with a swing mill 

(Retsch® MM400, Germany). Genomic DNA (gDNA) was extracted using a 

cetyltrimethylammonium bromide (CTAB)-based method. Therefore, 1 ml of CTAB-buffer 

(20 mM Na- ethylenediaminetetraacetic acid (EDTA), 0.13 M sorbitol, 30 mM N-

laurylsarcosine, 20 mM CTAB, 0.8 M NaCl, 10 nM Tris – pH 8.0 adjusted with NaOH) was 

added to 50 mg ground leaf sample. Each sample received 0.6 U of proteinase K (Roth®, 

Germany). The samples were treated in an ultrasonic bath for 5 s prior to10 min incubation 

at 42°C and a 10 min incubation at 65°C (tubes were shaken three times during the 

incubation). After incubation, 800 µl of chloroform-isoamyl alcohol (24:1) was added and 

tubes were shaken. Samples were incubated for 10 min on ice, and then centrifuged at 

13 000 g for 10 min (Hettich Zentrifugen Mikro 220R, Germany). The supernatant was 

transferred to another tube with 200 µl of 30% (w/v) polyethylene glycol (PEG) and 100 µl 

5 M NaCl. The pellet was washed with 70% (v/v) ethanol, and then dried at room 

temperature for 60 min. The dry pellet was dissolved in 100 µl Tris-EDTA buffer pH 8.0 

(0.1 M Tris, EDTA 10 mM) and stored at -20°C.  

The DNA concentration was quantified using gel electrophoresis. As the DNA concentration 

was higher than 10 ng µl-1, all samples were diluted 1:10. The dilution factor was considered 

in further calculations. A standard curve was obtained by diluting the extracted fungal DNA 

from 1000 to 0.01 pg µl-1 (1000, 100, 10, 1, 0.1, 0.01 pg µl-1) to quantify the target gene by 

qPCR. Data were analyzed using the software BioRad CFX Maestro 1.1 (Bio-Rad, USA). 

The DNA content of E. turcicum was determined by quantitative polymerase chain reaction 

(qPCR) amplification of the internal transcribed spacer (ITS1 and ITS2) regions (Beck 

1998). Therefore, the forward primer JB 586 (5’-TGGCAATCAGTGCTCTGCTG-3’) and the 

reverse primer JB 595 (5’-TCCGAGGTCAAAATGTGAGAG-3’) were used resulting in an 

amplicon size of 485 base pairs. qPCR reactions were performed with 5 µl of the premix 

qPCR BIO SyGreen Mix Lo-ROX (PCR Biosystems, London, UK) with a primer 

concentration of 0.4 μM and 1 µl of the DNA sample in the CFX384 Thermocycler (Biorad, 

Rüdigheim, Germany) in 384 well microplates (SARSTEDT AG and Co. KG, Nümbrecht, 

Germany). The final volume of the reaction was 10 μl. The qPCR was performed starting 

with an initial denaturation step at 94°C for 3 min, followed by 40 cycles of 94°C for 5 s , 

63.5°C for 15 s, and 72°C for 15 s, with a final elongation of 5 min at 72°C. Data analysis 

was performed with the software BioRad CFX Maestro 1.1 (Bio-Rad, USA).  
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Data analysis 

Data of disease severity and fungal DNA content were analyzed with software 

Statistica 13.0 (Statsoft, Tulsa, USA), and graphs were plotted with the software 

Microsoft Excel 2016. Data of disease severity and fungal DNA content were transformed 

for Box-Cox and fitted to a linear mixed model, with maize lines and temperature as fixed 

factors and replications and isolates as random effects (p-value ≤ 0.05) provided in the 

package lme4 from the R software 3.6.0 (Core Team 2019).The homogeneity of variance 

for transformed data of disease severity between repetitions was analyzed by Bartlett’s test 

(p-value ≤ 0.05). Correlations between fungal DNA and disease severity were fitted to the 

exponential model for each maize.  

Results  

Disease symptoms in the susceptible line B37 kept at moderate and warm temperatures 

before inoculation were characterized by strong necrosis or dead leaves, with an average 

of 66.8% for plants kept at moderate temperatures and 70.0% for plants kept at warm 

temperatures (Figure 2). However, there were no significant differences in the disease 

severity between plants of the line B37 maintained under different pre-inoculation 

temperatures (Table 1, Figure 3A). The fungal DNA content in plants of the line B37 was in 

average 5943.62 ηg DNA/ g DW for plants kept at moderate temperatures and 

5570.89 ηg DNA/ g DW for plants kept at warm temperatures (Figure 3B). As observed for 

disease severity, no significant differences were observed in the DNA content of E. turcicum 

in plants of the line B37 maintained under different pre-inoculation temperatures (Table 1). 

The variance in DNA content was explained by the exponential relationship with disease 

severity for the susceptible line B37. The exponential model was fitted (p-value ≤ 0.01) to 

data of fungal DNA content as a function of disease severity for B37 (r2 = 0.31) (Figure 4A). 

The resistance phenotype in the line B37Ht2 were characterized by chlorosis and necrosis 

for plants kept at moderate and warm temperatures before E. turcicum inoculation (Figure 

2). No significant differences were observed between the pre-inoculation temperatures for 

the data of disease severity of the line B37Ht2 (Table 1). The average disease severity of 

B37Ht2 was 4.9% for plants kept at moderate temperatures and 15.4% for plants kept at 

warm temperatures before inoculation of E. turcicum (Figure 3A). No significant differences 

were observed in the DNA content of E. turcicum for plants of the line B37Ht2 maintained 

under different pre-inoculation temperatures (Table 1). The fungal DNA content in plants of 

the line B37Ht2 was in average 93.59 ηg DNA/ g DW for plants kept at moderate 

temperatures and 138.58 ηg DNA/ g DW for plants kept at warm temperatures (Figure 3B). 
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No relationship was observed between the data of fungal DNA content and disease severity 

in the resistant line B37Ht2 (Figure 4B). 

The disease severity and the fungal DNA content were higher for the line B37 when 

compare to the line B37Ht2 (p-value ≤ 0.001) (Table 1). However, there was no significant 

differences between the pre-inoculation temperatures for data of disease severity (p-value 

= 0.19) and for the data of fungal DNA content (p-value = 0.65). The interaction between 

pre-inoculation temperatures and maize lines was not significant different for the data of 

disease severity and fungal DNA content. 

 

 

Figure 2. Symptoms of E. turcicum on the maize lines B37 and B37Ht2 maintained during 

10 days at different pre-inoculation temperatures (day/night regimes of 20/15°C and 

30/25°C), and followed by inoculation with Brazilian isolate B38-1. 
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Table 2. Effect of pre-inoculation temperature, maize lines and their interactions on the Box-

Cox transformed data of disease severity and on the Box-Cox transformed data of fungal 

DNA content based on a mixed model analysis of variance.  

  
Disease severity (Box-Cox 

transformed) 

Fungal DNA content (Box-Cox 

transformed) 

 Effect dfn
1 dfd

2 F-value p-value dfn
1 dfd

2 F-value p-value 

Temperature 1 381.19 1.69 0.1937 1 182.02 0.20 0.65 

Line 1 381.22 768.13 < 0.001 1 182.04 871.02 < 0.001 

Temperature 

x Line 
1 381.05 2.74 0.0990 1 182.04 0.91 0.34 

1 Numerator degrees of freedom (dfn), 2 denominator degrees of freedom (dfd); degrees of 

freedom calculated using the Satterthwaite formula for a mixed model; F-value for testing 

effect and probability (significance) level of F -value (p-value). 

 

 

Figure 3. NCLB severity (n = 8 plants) in percentage (A) according to the diagrammatic 

scale of Pataky (1992), and Exserohilum turcicum DNA content per dry weight 

(ηg DNA/ g DW) (n = 4 pools of two leaves from two different plants) (B) in maize plants 

maintained under different pre inoculation temperature regimes (day/night temperatures of 

20/15°C and 30/25°C) 10 days before inoculation with 3 E. turcicum isolates from Brazil 

(B38-1, B42-2, B53-1) and 3 E. turcicum isolates from Germany (D6-4, H151, NES18-4). 

The asterisk represent significant differences between lines for the evaluated parameters 

(*: p-value ≤ 0.05). Bars indicate standard error. 
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Figure 4. DNA content of Exserohilum turcicum per dry weight (ηg DNA/ g DW) in function 

to NCLB severity (%) in maize plants from the susceptible line B37 (A) and for the resistant 

line B37Ht2 maintained under different pre inoculation temperature regimes 

(day/night temperatures of 20/15°C and 30/25°C) 10 days before inoculation with 3 

Exserohilum turcicum isolates from Brazil (B38-1, B42-2, B53-1) and 3 E. turcicum isolates 

from Germany (D6-4, H151, NES18-4). Black points represent the first experimental 

repetition and grey points represent the second experimental repetition.  

Discussion 

In our experiments, pre-inoculation temperatures (Figure 1) had no effect on the disease 

severity of NCLB, or on E. turcicum DNA content in planta (Figure 3). Therefore, pre-

inoculation temperature did not influence the efficacy of resistance promoted by the Ht2 

gene. A correlation was established between the fungal DNA content and disease severity 

in the compatible interaction. In susceptible plants, fungal DNA content increased 

exponentially with the increase in disease severity. However, no correlation was observed 

between the fungal DNA content and the disease severity in the line B37Ht2. The disease 

severity was only assessed by estimating the necrotic area as observed in the diagrammatic 

scale from Pataky (1992), while chlorosis was not considered in the disease quantification. 

The necrosis is usually correlated to phytotoxin production (Robeson and Strobel, 1982), 

whereas chlorosis has been described as mostly related to resistance (Bigirwa et al., 1993; 

Hanekamp, 2016). The necrosis observed at 30/25°C on B37Ht2 might be related to a 

resistance reaction or heat stress, as a low content of fungal DNA was quantified for those 

samples (Figure 2).  

Pathogen virulence to the Ht2 gene is difficult to characterize by disease phenotyping. 

Navarro et al. (2020) reported chlorosis and small necrotic lesions in avirulent isolates 

B37
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inoculated on B37Ht2 (incompatible interaction). The assessment of disease phenotype is 

described by a categorical scale of different symptoms, or infection types (Bigirwa et al., 

1993; Hanekamp, 2016). Pathogen virulence or avirulence are characterized according to 

the given score from this categorical scale (Navarro et al. 2021b). In this scale, when a plant 

reaction is classified in the scores 1, 2 and 3, the isolate is designated as avirulent 

(incompatible interaction), whereas in a plant reaction that is classified in the scores 4, 5 

and 6, the isolates will be designated as virulent (compatible interaction). Thus, categorical 

data (scale from 1-6) are transformed into binary data (avirulent/virulent), and information 

regarding host and/or pathogen fitness are not taken in consideration (Kosman et al., 2019). 

The methodology for data analysis considering the infection type, which was proposed by 

Kosman et al. (2019) may improve disease phenotyping, especially for the line B37Ht2, by 

avoiding misinterpretations between incompatible and compatible interactions. The 

incompatible interaction with B37Ht2 can be confused as this line displays small necrotic 

lesions and chlorosis.  

The DNA quantification was suitable for distinguishing between resistant and susceptible 

lines, as observed for Colletotrichum graminicola in maize (Weihmann et al., 2016). 

However, fungal DNA content is not necessarily positively correlated with disease 

symptoms, and disease severity (necrosis) (Mahlein, 2016; Nutter Jr, 2001). Additionally, 

the diagnosis by qPCR is destructive, more laborious and requires skills in molecular 

biology (Mahlein, 2016). Recently, hyperspectral sensors have been studied for the 

identification of resistant plants. The screening for resistance requires a hyperspectral 

microscopic approach that is able to detect early and marginal changes in the host tissue. 

However, multiple observations during the crop cycle are required to evaluate barley 

resistance types to Blumeria graminis f. sp. hordei (Mahlein, 2016; Kuska et al., 2015), 

which demonstrate that the method need improvements. With the advance of new 

technologies, hyperspectral sensors to detect diseased plants may be improved. These 

approaches might be tested for hemibiotrophic pathogens, such as E. turcicum, especially 

for improving the assessment of physiological races.  

Lower levels of resistance reported for the Ht2 gene (Hooker, 1977; Cota et al., 2010; 

Navarro et al., 2021a) might be due to the suppression of resistance expression of the Ht2 

gene by the Sht1 gene, and/or by incomplete dominance of the Ht2, as described by 

Ceballos and Gracen (1989) and Chung et al. (2010), respectively. The incomplete 

dominance of the Ht2 gene can be associated with a gene dosage effect (Chung et al., 

2010). In homozygous individuals, the higher expression of resistance genes confers higher 

resistance levels, due to the more effective perception of pathogen invasion and activation 

of host resistance responses (Chung et al., 2010). Maize plants homozygous for the Hm2 
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resistance gene (Hm2/Hm2) to Cochliobolus carbonum, which encodes a HC-toxin 

reductase, presented higher levels of resistance and Hm2 transcript levels when compared 

to heterozygous plants (Hm2/hm2) (Chintamanani et al., 2008). Curiously, heterozygous 

plants (Ht1/ht1) for the dominant resistant gene Ht1 were less resistant than homozygous 

plants (Ht1/Ht1) (Dunn and Namm, 1970). The decrease on spore germination was 

observed for homozygous plants due to increase on phytoalexin production (Calub et al., 

1973). These reports about the gene dosage effect by Ht1, basically exclude the hypothesis 

of lower levels of resistance for Ht2 due to seed contamination, as postulated by Weems 

and Bradley (2018). 

The influence of different environmental conditions, such as post-inoculation temperatures 

and/or light intensity, is often reported in the pathosystem maize-E. turcicum (Thakur et al., 

1989a; Leath et al., 1990; Carson and van Dyke, 1994). High temperatures can increase 

the production of aggressiveness factors, such as phytotoxins, increasing the damage 

caused by the pathogen in the host tissue (Cuq et al., 1993). The increase on phytotoxins 

concentration resulted on an increase on lesion size and infection efficiency (Bashan et al., 

1992). Moreover, temperature can also affect host physiology by altering plant resistance 

mechanisms, such as the detoxification of phytotoxins (Pedras et al., 2001). Lastly, 

E. turcicum has been described as more aggressive as post-inoculation temperatures 

increase (Navarro et al., 2021). However, our experiments prove that variations in pre-

inoculation temperatures do not influence the efficacy of resistance carried by the Ht2 gene 

against E. turcicum. Besides methodological advances in isolate screening and/or 

resistance phenotyping, more studies are necessary to describe how expression of the Ht2 

gene is up- and down-regulated, and consequently what pathways are activated to trigger 

resistance. The recognition of pathogen invasion, which is activated by signaling cascades, 

is not well understood. Moreover, studies regarding the expression of avirulence genes, 

phytotoxin production and detoxification might be conducted to elucidate the role of 

pathogen under higher temperatures. Weaker resistance levels might be correlated to the 

presence of the dominant gene Sht1, and to the incomplete dominance of the Ht2 gene. 

Therefore, the epistatic effect promoted by the Sht1 gene and the Ht2 gene dosage effect 

needs to be elucidated in more detail.  
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Chapter 6. Fusarium spp. causing maize ear rot in Germany and Brazil: a comparison 

of pathogen aggressiveness and host resistance  

Abstract 

Diseases caused by Fusarium spp. infecting maize ears can be classified in two main 

groups: Gibberella ear rot (GER) and Fusarium ear rot (FER). GER is mainly caused by 

F. graminearum species complex, while FER is caused by species from the F. fujikuroi 

species complex. GER is prevalent in regions with colder temperatures and high 

precipitation, especially during the flowering period. FER occurs at a higher frequency in 

warm and dry areas, especially with dry conditions during grain-filling. The prevalence of 

Fusarium spp. in Germany and Brazil can be strongly related to diverse weather conditions. 

In Germany, the most prevalent species is F. graminearum and the most commonly 

detected mycotoxins are DON and ZEA. Conversely, the most prevalent species in Brazil 

is F. verticillioides, with samples being contaminated with high levels of fumonisins. The 

main objective this study was to compare GER and FER in regard to European and South 

American maize production conditions. For this purpose, (1) the aggressiveness levels of 

German and Brazilian isolates were compared by inoculating two reference lines (Dent 21 

and Dent 4); (2) the resistance of European (temperate: A12, A3, A5 and A8) and South 

American (tropical: T3 and T4) maize lines was tested under greenhouse conditions; and 

(3) the resistance of tropical lines (T3 and T4) were tested for two pre-inoculation 

temperature regimes: warm (30/25°C) and mild (20/15°C). The resistance of temperate and 

tropical maize lines; and the effect of the pre-inoculation temperature to the tropical lines 

were tested for F. graminearum and F. verticillioides isolates originating in both countries. 

Inoculations were performed by the method of silk-channel injection, and the disease 

severity was estimated in the stage of full maturity. In general, F. graminearum was more 

aggressive than F. verticillioides. The German F. culmorum and F. graminearum were more 

aggressive than were the respective Brazilian strains. German isolates were more 

aggressive than Brazilian isolates when inoculated in the tropical lines. It is essential to 

preselect highly aggressive strains before starting to select for resistance. In addition, plants 

pre-exposed to higher temperatures presented higher disease severity when compared to 

plants exposed to mild temperatures.  

Keywords: Gibberella ear rot, Fusarium ear rot, Fusarium graminearum, Fusarium 

verticillioides, pre-inoculation temperature, tropical and temperate lines  
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Introduction  

Fusarium spp. are soilborne pathogens that are spread worldwide, mostly due to their broad 

host range (Miedaner et al., 2001). Besides the large number of hosts, Fusarium spp. can 

infect distinct plant organs. For instance, Fusarium spp. can cause symptoms on maize 

roots, seedlings, stalks and ears (White, 2010; Oldenburg et al., 2017). Yield losses caused 

by Fusarium spp. infecting maize ears and stubbles are estimated to be between 10 and 

30% (Logrieco et al., 2002), especially when considering qualitative yield losses due to 

mycotoxin contamination. The consumption of maize products with a high mycotoxin 

content can be poisonous to humans and animals leading to several diseases (Blacutt et 

al., 2018). Fusarium spp. can cause two different ear rots: Gibberella ear rot (GER or red 

ear rot) and Fusarium ear rot (FER or pink ear rot). GER symptoms are usually 

characterized by a red or pink mold, which covers large areas of the ear, whereas FER 

symptoms are usually white to light pink mold in random kernels (Munkvold, 2003b). The 

colonization of maize kernels by FER can sometimes be symptomless. Besides 

asymptomatic kernels, FER can have systemic colonization of the entire maize plant 

(Munkvold, 2003d; Gai et al., 2018). Additionally, GER is caused by F. graminearum 

species complex (FGSC), while FER is mainly caused by F. fujikuroi species complex 

(FFSC) (Munkvold, 2003b; White, 2010; van der Lee et al., 2015).  

Fusarium spp. populations can also vary according to their chemotypes. FGSC produces 

deoxynivalenol (DON), 3-acetyl- and 15-aceytil-deoxynivalenol (3-ADON and 15-ADON), 

Nivalenol (NIV), which are toxins for the type B trichotecenes, and Zearalenone (ZEA) 

(Logrieco et al., 2002; van der Lee et al., 2015). FFSC are fumonisin producers, which 

includes B series fumonisins (FB1, FB2, FB3 and FB4) (van der Lee et al., 2015; Blacutt et 

al., 2018). The frequency of FGSC and FFSC can vary according to the location and 

environment (Reid et al., 1999). FGSC usually is predominant in areas with colder 

temperatures and higher precipitation during the crop season. High humidity levels during 

flowering (more precise silking) favors fungal infection (Munkvold, 2003b). Moreover, 

species prevalence may change according to the weather conditions of different seasons 

(Miedaner et al., 2010; Goertz et al., 2010; Pfordt et al., 2020). Colonization is stimulated 

by moderate temperatures and high levels of precipitation during maturity (Munkvold, 

2003b). Conversely, FER is observed in warm and dry areas, especially with drier weather 

during the grain-filling stage (Munkvold, 2003b; Oldenburg et al., 2017). The detection of 

distinct mycotoxins reinforces the incidence of distinct Fusarium spp., according to weather 

conditions. In Germany, the most prevalent Fusarium spp. in maize samples are 

F graminearum, F. verticillioides and F. temperatum (Pfordt et al., 2020), and the most 

commonly detected mycotoxins are DON and ZEA (Goertz et al., 2010). In Brazil, the most 
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prevalent Fusarium spp. detected in maize kernels are F. verticillioides, and 

F. graminearum species (Ottoni, 2008; Stumpf et al., 2013) and the samples are mostly 

contaminated with fumonisins (FB1, FB2, FB3) (Almeida et al., 2002; Ottoni, 2008; Lanza 

et al., 2014). Furthermore, a molecular analysis of Brazilian F. verticillioides isolates 

demonstrated that the Fusarium spp. population can be genetically diverse (Silva et al., 

2017) within the same species complex. In southern Brazil, F. meriodionale presenting the 

NIV genotype was the most frequently detected, followed by F. graminearum with 15-

ADON, and F. coraderiae presenting NIV and 3-ADON genotypes (Kuhnem et al., 2016). 

Moreover, F. corderiae is most frequent in elevated areas (>800 metres above sea level – 

m.a.s.l.), which have mild temperatures, whereas F. meridionale is more frequent in lower 

regions (<800 m.a.s.l.) (Kuhnem et al., 2016). Therefore, Fusarium spp. and mycotoxin 

production may vary not only depending on the weather conditions of every season but also 

according to the location. 

The main control practices applied for GER and FER are based on chemical control, cultural 

practices and host resistance. Chemical control consists of the application of fungicides, 

however, fungicide sprays are not very effective at controlling Fusarium spp. (Munkvold, 

2003a; Lanza et al., 2016), since the efficacy is related to the timing of the application. The 

best timing is during mid-flowering (Andriolli et al., 2016), when infections through sink-

channels may occur (Reid et al., 1999). Besides fungicide applications, cultural practices, 

such as low fertilization, low irrigation (water availability), late planting date, tillage, crop 

rotation (Munkvold, 2003a), and insect control (Degraeve et al., 2016), may affect disease 

incidence and mycotoxin production. Nitrogen fertilization, for example, is negatively 

correlated to fumonisin levels (Ono et al., 2011). Water stress in the early season is related 

to the increase in stalk rot (Sumner and Hook, 1985). In Brazil, the increased risk of water 

deficit, especially during the second season (winter season or “safrinha”), may increase the 

susceptibility to Fusarium spp. infections (Stefanello et al., 2012; Costa et al., 2019). 

Moreover, tillage has a slight influence on Fusarium spp. stalk and ear rot in South Africa 

(Flett and Wehner, 1991; Flett et al., 1998) and in Tanzania (Degraeve et al., 2016). In 

Germany, ploughed fields have less ear rot infection by F. graminearum when compared to 

reduced tillage (Pfordt et al., 2020). Furthermore, crop rotation apparently has no effect on 

Fusarium infections. In Germany, maize, wheat and sugar beet as previous or pre-crops 

show no differences on ear infection of F. graminearum and F. temperatum (Pfordt et al., 

2020). In Brazil, maize or soybean do not increase the risk of Fusarium head blight in wheat 

(Spolti et al., 2015). Conversely, oats as the previous crops followed by no-till maize 

increased the levels of fumonisins (Ono et al., 2011). However, when comparing tillage 

systems, no significant differences are observed between conventional and no-till systems 
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(Ono et al., 2011). Briefly, tillage and previous crops have little influence on ear infection in 

Germany (Pfordt et al., 2020), and in Brazilian fields (Ono et al., 2011). Lastly, insect control 

may have an important effect on Fusarium infection, and, consequently on mycotoxin 

content (Degraeve et al., 2016). Caterpillars can spread the pathogen and provoke wounds, 

which increase ear and stalk susceptibility (Munkvold, 2003b). In Europe, the European 

corn borer (Ostrinia nubilatis) has an important role in disease incidence and spread 

(Oldenburg et al., 2017; Blacutt et al., 2018). Furthermore, insecticide sprays reduce insect 

damage, and consequently, levels of fumonisins decrease for some treatments (Curtis et 

al., 2011). 

In addition to insecticide spraying, transgenic resistance is also associated with insect 

control, and consequently, host resistance against Fusarium spp. (Munkvold, 2003a). 

Transgenic maize hybrids (Bt maize) consist of the introduction of cry genes originating in 

Bacillus thuringiensis. The expression of cry genes results in the production of insecticidal 

crystalline proteins in the maize plant. Bt-maize plants confer some level of resistance to 

feeding by the European corn borer, so a consequent decrease in Fumonisin levels is 

observed (Munkvold et al., 1999). Besides transgenic maize hybrids, host resistance plays 

an important role in GER and FER disease control. Susceptible maize hybrids, showing 

moderate levels of GER disease severity, showed up to 48% of yield losses (Vigier et al., 

2001). As Fusarium spp. have a broad range of hosts (Nicolli et al., 2018), sources of 

qualitative resistance (major genes) are scarce. In vitro tests demonstrated that a dominant 

gene conferred resistance to infection via silk. However, the resistance was not effective 

under field conditions (Reid et al., 1994). Thus, quantitative resistance is used in 

commercial hybrids (Munkvold, 2003a).  

The quantitative resistance against Fusarium ear infection is classified into distinct types 

according to the resistance mechanism: silk-channel resistance and kernel resistance 

(Mesterházy et al., 2012). The silk-channel resistance is correlated to a closed stylar canal, 

which avoids the conidia to achieve the pericarp (Reid et al., 1992b; Duncan and Howard, 

2010). Silk resistance can be tested by spraying a conidia suspension on the silk, or by 

injecting the inoculum through silk-channels using a syringe (Mesterházy et al., 2012). The 

silk-channel injection permit to test for resistance in other plant tissues besides the silk-

channels, such as husk leaves and kernel pericarp (Mesterházy et al., 2012). In general, 

tighter husk leaves may increase moisture, which favors pathogen infection, and 

consequently the disease levels (Mesterházy et al., 2012). Fusarium spp. are able to 

penetrate maize leaves through the stomata, trichomes and directly by forming an 

appressoria-like structure. The penetration usually occurs in the corner of cell walls (Nguyen 

et al., 2016a, 2016b). In addition, pericarp resistance was shown by a thicker wax layer and 
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probably by its composition (presence of phenolic compounds) (Sampietro et al., 2009; 

Lanubile et al., 2017). The silk-channel injection method showed the best correlation 

between disease severity and mycotoxin concentration (Clements et al., 2003; Mesterházy 

et al., 2012). Lastly, kernel resistance was tested by wounding 3-4 kernels in the center of 

the ear with pins that were previously immersed on a conidia suspension (Reid and 

Hamilton, 1996). This method simulated transmission and infection through wounds caused 

by insects feeding (earworms) (Blacutt et al., 2018).  

As Fusarium spp. are known to cause important maize diseases in Germany and Brazil, the 

objective of this work was to compare GER and FER in a European and South American 

maize production scenario. Pathogen aggressiveness was compared between isolates 

collected in Germany and in Brazil. Moreover, the host resistance may influence disease 

intensity, thus the resistance of European (temperate) and South American (tropical) maize 

lines was compared under greenhouse conditions. The resistance of temperate and tropical 

maize lines was tested for F. graminearum and Fusarium verticillioides isolates originating 

from Germany and Brazil. Finally, the resistance of tropical lines was tested in warm 

(30/25°C) and mild (20/15°C) temperatures before inoculation. The effect of temperature in 

the resistance of tropical lines was also tested for F. graminearum and Fusarium 

verticillioides isolates originating in both countries. 

Materials and Methods  

Isolation and species identification  

Samples from maize stalks and ears showing symptoms similar to stalk and ear rot were 

collected from fields in Regensburg, Bernberg, Gondelsheim (Germany) and Moncelice 

(Italy) in 2017 in Europe. In South America, samples were collected from maize-producing 

areas in Argentina (Pergamino) in 2015 and Brazil (States of Paraná, São Paulo and Minas 

Gerais) in 2017/2018. In total, 42 strains from Fusarium ssp. were isolated from Argentinian 

and Brazilian samples. The amount of sampling material from Europe was higher, as 716 

strains were isolated from European material in total. Stalks were divided into three sub-

samples: ower nodium, internodium and upper nodium; cobs were divided into three 

regions; upper, middle and lower. Each region was cut into 3 sub-pieces, totalling 9 

subsamples per stalk and per cob. In addition, 30 kernels were randomly selected from 

each cob. All pieces and kernels were surface-sterilised for 10 min in a solution of 0.1% 

silver nitrate (AgNO3) (Pfordt et al., 2020). After surface-sterilisation, the material was 

washed with sterile water, dried in sterile filter paper and incubated on potato-dextrose-agar 

(PDA) containing two antibiotics, 200 ppm streptomycin and 40 ppm rifampicin (dissolved 

in methanol 100% and diluted in sterile water 1:1). After two to three days, when it was 
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possible to visualize some mycelia growth, a small piece of the colony was transferred to 

PDA plates and to synthetic low nutrition agar (SNA) for Fusarium species identifications. 

Single-spore cultures were produced from the selected isolates. Moreover, a spore 

suspension was prepared in a low concentration 6.25*104 spores ml-1 to produce single 

spore colonies. A drop of 50 ml of the diluted spore suspension was transferred to a new 

PDA plate and distributed using a Drigalski spatula. After two days of incubation, small 

colonies were transferred to new PDA plates. Single-spore isolates were stored in SNA 

plates at 4°C for further experiments.  

The Fusarium spp. complex was identified by analysing macroscopic characters, such as 

the colour and mycelia texture of PDA colonies, and microscopic characters such as macro- 

and/or microconidia production, conidiophores morphology, the presence or absence of 

chlamydospores, and fruiting bodies (sporodochia) (Leslie and Summerell, 2006). Macro- 

and microscopic characters were analyzed on 14 days-old PDA and SNA colonies 

(Figure 1). To distinguish Fusarium at the species level, it is necessary to conduct some 

molecular analysis to identify strains (O'Donnell et al., 2004); therefore, in this work 

F. graminearum is referred to as FGSC (Figure 1A-B) and F. verticillioides is referred to as 

FFSC (Figure 1C-D). Further isolates tested in the aggressiveness experiments were 

indentified in the species levels according to the morphological criterion.  



Chapter 6. Fusarium spp. causing ear rot in Germany and Brazil 

 

182 
 

 

Figure 1. PDA plate (A,C), and conidia produced in SNA plate (B,D) by isolates of Fusarium 

graminearum species complex (A-B) and Fusarium verticillioides species complex (C-D) 

from 21 days-old colonies. F. graminearum produces fruting bodies, named sporodochia, 

which is represented by the white arrow (B). F. verticillioides conidiophores forms conidia 

in chains (D). 

Cultivation of plant material, inoculation and disease assessment 

Plants were sown in pots (18 cm x 18 cm x 18 cm) with soil mixtures with the following 

proportions: 3x compost, 3x substrate, 1x sand, and fertiliser Osmocote® Exact – Stander 

3-4M (16% N, 9% P2O5, 12% K2O, 2% MgO+TE) mixed in a concentration of 3 g l-1. Seeds 

were provided by B. Kessel (KWS, Einbeck, Germany). Two ventilators were set-up in the 

greenhouse to simulate wind and allow pollination. The Fusarium spp. used in the 

experiments were chosen based on the most prevalent species in Germany (Pfordt et al., 

2020) and in Brazil (Ottoni, 2008; Stumpf et al., 2013; Lanza et al., 2014). As the main 

interest was to simulate natural conditions for Fusarium spp. infection in both conditions 

(cold and warm weather conditions as observed in Germany and Brazil, respectively), and 

to test silk-channel resistance, the inoculation method performed in our experiments was 
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silk-channel injection (Papst et al., 2007; Nerbass et al., 2015; Nerbass et al., 2016). The 

first cob was inoculated with 1 ml of spore suspension (spore concentration of 

1.5 104 spores ml-1) at flowering stage (BBCH 63-65), when silk-channels were apparent 

(Landcashire et al., 1991). Disease assessment was based on a diagrammatic scale (EPPO 

Guidelines, 2015).  

Aggressiveness between isolates from Germany and Brazil 

The aggressiveness of German and Brazilian isolates was tested for the species 

F. culmorum, F. equiseti, F. graminearum, F. tricinctum and F. verticillioides. Fusarium spp. 

were chosen based on the presence of isolates from South America, as a smaller number 

of strains, and consequently Fusarium spp. were available. All isolates were inoculated in 

two reference lines: Dent-4, and Dent-21. In previews experiments conducted by breeders, 

Dent-4 and Dent-21 showed a disease intensity by Fusarium spp. of 5% (resistant line) and 

44% (moderate susceptible line), respectively. The maize plants were cultivated in the 

greenhouse (temperature 21 ± 6°C, 65%± 15 air humidity, day/night light regime 14/10 h 

with light intensity of 600 ± 200 µmol m-2 s-1). The experiment was performed twice (in 2018 

and 2019).  

Host resistance of temperate and tropical maize lines  

The host resistance from four temperate (A12, A3, A5, and A8) and two tropical (T3, and 

T4) maize lines was tested by inoculating the two most frequent Fusarium spp. complex in 

Germany and Brazil: F. graminearum and F. verticillioides. Maize plants were cultivated in 

the greenhouse (temperature 21 ± 6°C, 65%± 15 air humidity, day/night light regime 

14/10 h during with light intensity of 600 ± 200 µmol m-2 s-1). Two experiments were 

conducted for the temperate lines. Difficulties with cob formation enabled only one 

experimental replication for the tropical lines. Therefore, all tropical lines were maintained 

in a growth chamber (day/night temperature regime of 28/24°C, day/night light regime 

14/10 h, 70% air humidity, with light intensity of 115 ± 10 µmol m-2 s-1) for the first 45 days. 

After this period, they were moved to the greenhouse under the same conditions as the 

temperate lines. 

 

Influence of pre-inoculation temperatures on the efficacy of resistance in tropical lines  

The effect of temperature on the resistance of tropical lines was tested by maintaining maize 

plants under different temperature regimes before inoculation (Figure 2). Maize plants were 

maintained in the greenhouse (temperature 21 ± 6°C, 65%± 15 air humidity, with a 

day/night light regime of 14/10 h and light intensity of 600 ± 200 µmol m-2 s-1) for 45 days 
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after sowing, until they had the seven unfolded leaves (BBCH 17/32). In the growth 

chamber, all plants were submitted to the same environmental conditions (day night 

temperature regime 25/20°C, 70% air humidity, day/night light regime 12/12 h during with 

light intensity of 150 ± 50 µmol m-2 s-1) until the first silk channels was visible (BBCH 63). 

As the plants were not flowering homogeneously, every plant was moved to a different 

chamber when its silk channel was visible. The warm temperature chamber was set to a 

day/night temperature regime of 30/25°C, and the chamber with moderate temperatures 

were set to 20/15°C. All plants were maintained in different chambers for 10 days. Before 

moving all plants back to the previous conditions (day night temperature regime 25/20°C, 

70% air humidity, day/night light regime 12/12 h during with light intensity of 

115 ± 10 µmol m-2 s-1), plants were inoculated with strains of F. graminearum or 

F. verticillioides species complex from Germany or Brazil. After inoculations, all plants were 

maintained under the same environmental conditions until they reached full maturity (BBCH 

99).  

Data analysis 

In the experiment to measure aggressivenes and host resistance of the temperate lines, 

data of disease severity were fitted to a linear mixed model, with replications as the random 

effect. The disease severity was compared by multiple comparison using the Tukey test (p-

value ≤ 0.05) provided in the package lme4 from the R software 3.6.0 (Core Team 2019). 

For the tropical lines, in both experiments of host resistance and influence of temperature 

an analysis of variance (ANOVA) was conducted. Fusarium spp. or lines were compared 

by multiple comparisons applying Tukey’s test (p-value ≤ 0.05). Additionally, the 

aggressiveness or resistance to German and Brazilian isolates was compared within the 

same Fusarium ssp. (p-value ≤ 0.05).  
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Figure 2. Scheme for the experimental conduction under different temperature regimes. 

Plant development was conducted in the greenhouse for 45 days. Plants were moved to 

the climate chamber under a day/night temperature regime of 25/20°C. When plants were 

showing the first silk channels, they were maintained under warm (30/25°C) and moderate 

(20/15°C) temperature regimes. After inoculation, all plants were moved back to the 

previous temperature regime (25/20°C) until harvest. Maize figures retract BBCH stages 

(Uwe Meier, 2001). 

Results  

Aggressiveness between isolates from Brazil and Germany  

Higher disease severities among all tested Fusarium spp. were observed for the Brazilian 

Fusarium equiseti isolate and the German F. culmorum and F. graminearum isolates 

(Figure 3). Moreover, differences between Brazilian and German isolates were observed 

for F. culmorum and F. graminearum. The German isolates showed higher disease severity 

for both species: F. culmorum and F. graminearum. Moreover, the reference lines Dent-21 

and Dent-4 showed significant differences in disease severity (p-value ≤ 0.001), confirming 

their distinct levels of resistance to Fusarium infections. There were no significant 

differences between German and Brazilian strains of F. equiseti, F. tricinctum and 

F. verticillioides.  
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Figure 3. Comparison of aggressiveness between Fusarium culmorum, F. equiseti, 

F. graminearum, F. tricinctum, and F. verticillioides isolates originated from Germany and 

Brazil. One isolate per species and per country was inoculated in cobs from two maize 

reference lines Dent-21 (moderate susceptible line, and Dent-4 (resistant line). Cobs were 

inoculated by silk-channel injection in a spore concentration of 1.5*104 spores ml-1. Data of 

disease severity were fitted to a linear mixed model, with experiment replications as random 

effect. Means sharing same letter are not significantly different using Tukey-adjusted 

comparisons (p-value ≤ 0.05). Fusarium spp. showing an asterisk represent significant 

differences on aggressiveness between isolates from Germany and Brazil (*: p-

value ≤ 0.05). Bars indicate standard error (n = 3 plants). 

Host resistance of temperate and tropical maize lines  

Temperate lines showed differences in resistance levels regarding F. graminearum and 

F. verticillioides (p-value ≤ 0.001) (Table 1). In general, F. graminearum presented higher 

disease severity than F. verticillioides (Figure 4). The resistance to Brazilian and German 

isolates was different between the temperate lines (p-value ≤ 0.001) (Table 1). For 

F. graminearum, lines A12 and A5 showed different resistance levels against German and 

Brazilian isolates (Figure 4A). Moreover, disease severity in the A12 line inoculated with the 

German F. graminearum isolate was higher than disease severities in lines A5 and A8 

inoculated with the Brazilian isolate. For F. verticillioides, line A3 was more susceptible than 

the A12 and A5 line (Figure 4B). Moreover, within temperate lines, only line A8 showed 

differences at the level of disease severity between strains from Germany and Brazil.  
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Table 1. Effect of temperate maize lines inoculated with F. graminearum and 

F. verticillioides, obtained from maize samples in Germany and Brazil and their interactions 

on data of disease severity based on a mixed model analysis of variance.  

  Disease severity 

 Effect dfn
1 dfd

2 F-value p-value 

Temperate lines (A12, A3, A5 and A8) 3 267 201.14 <0.001 

Fusarium spp. (F. graminearum x F. verticillioides) 1 267 211.61 <0.001 

Country (German isolates x Brazilian isolates) 1 267 260.84 <0.001 

Line x Fusarium spp. 3 267 35.57 0.014 

Line x country 3 267 0.99 0.396 

Fusarium spp. x country 1 267 106.49 0.001 

Line x Fusarium spp. x country 3 267 51.54 0.001 

1 Numerator degrees of freedom (dfn), 2 denominator degrees of freedom (dfd); degrees of 

freedom calculated using the Satterthwaite formula for a mixed model; F-value for testing 

effect and probability (significance) level of F -value (p-value). 

 

Figure 4. Comparison of resistance between 4 maize lines (A12, A3, A5, and A8) inoculated 

with Fusarium graminearum (A) and F. verticillioides (B) isolates originated from Germany 

(light grey) and Brazil (dark grey). One isolate per species and per country was inoculated 

in cobs by silk-channel injection in a spore concentration of 1.5*104 spores ml-1. Data of 

disease severity were fitted to a linear mixed model, with experiment replications as random 

effect. Means sharing same letter are not significantly different using the Tukey-adjusted 

comparisons (p-value ≤ 0.05). Maize lines showing an asterisk represent significant 

differences in resistance against Fusarium spp. isolates from Germany and Brazil (p-

value ≤ 0.05). Bars indicate standard error (n = 3 plants). 
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As the tropical lines grew under different environmental conditions at the beginning of the 

development, tropical lines were only compared with each other. Differences in resistance 

levels were observed between the tropical lines T3 and T4 (p-value ≤ 0.01) (Table 1), 

presenting an average of 34% and 70% disease severity, respectively (Figure 5A). 

Moreover, tropical lines were more resistant to Brazilian isolates when compared to German 

isolates (p-value ≤ 0.01), showing 36 and 70% of disease severity respectively(Figure 5B). 

No significant differences in resistance levels were observed between tropical lines 

inoculated with F. graminearum and F. verticillioides (p-value = 0.45) (Table 2). 

Table 2. Analysis of variance (ANOVA) for tropical lines T3 and T4 inoculated with two 

Fusarium spp., F. graminearum and F. verticillioides, collected from maize samples in 

Germany and Brazil.  

Factor p-value 

Tropical line (T3 x T4) 0.002** 

Fusarium spp. (F. graminearum x F. verticillioides) 0.448 

Country (German isolates x Brazilian isolates) 0.002** 

Line x Fusarium spp. 0.887 

Line x country 0.966 

Fusarium spp. x country 0.231 

Line x Fusarium spp. x country 0.968 

 

 

Figure 5. Comparison of resistance between tropical maize lines (T3 and T4) inoculated 

with Fusarium graminearum and F. verticillioides isolates originated from Germany (light 

grey) and Brazil (dark grey). One isolate per species and per country was inoculated in cobs 

by silk-channel injection in a spore concentration of 1.5*104 spores ml-1. Graphs showing 

an asterisk represent significant differences in resistance against Fusarium spp. isolates for 

maize lines or country of origin (p-value ≤ 0.05). Bars indicate standard error (n = 3 plants). 
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Effect of pre-inoculation temperatures on the efficacy of resistance in tropical lines  

The tropical lines showed differences in resistance to Fusarium spp. when plants were 

maintained under different pre-inoculation temperature regimes. Plants pre-disposed to the 

higher temperature regime (30/25°C) showed a higher disease severity when compared to 

plants maintained under moderate temperatures (20/15°C) (Figure 6A). In this experiment, 

there were no differences in resistance levels between the tropical lines T3 and T4 (p-value 

= 0.23); therefore, data of both tropical lines were combined. Moreover, the German 

F. graminearum isolate showed a high disease severity compared to the Brazilian isolates 

(Figure 6B). No significant differences were observed between German and Brazilian 

F. verticillioides isolates.  

 

 

Figure 6. Disease severity of two tropical maize lines (T3 and T4) inoculated with Fusarium 

graminearum and F. verticillioides isolates originated from Germany (light grey) and Brazil 

(dark grey). One isolate per species and per country was inoculated in cobs (n = 3 cobs) by 

silk-channel injection in a spore concentration of 1.5*104 spores ml-1. Analysis of variance 

(ANOVA) was performed with the data of disease severity. Differences in host resistance 

to Fusarium spp. between tropical maize lines pre-disposed to two different temperature 

regimes (30/25°C) and (20/15°C) before inoculation are represented by asterisk (*p-

value ≤ 0.05) (A). Means sharing the same letter are not significantly different using Tukey-

adjusted comparisons (p-value ≤ 0.05) (B). Bars indicate standard error (n = 3 plants). 
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Discussion 

Differences in the importance of GER and FER in Germany and Brazil are strongly related 

to climate conditions, and consequently to the prevalence of Fusarium spp. and mycotoxins 

(Munkvold, 2003b). In Germany, the most prevalent species are from the FGSC (Goertz et 

al., 2010; Pfordt et al., 2020), whereas species with the highest prevalent in Brazil are for 

FFSC (Stumpf et al., 2013a; Lanza et al., 2014). Moreover, the prevalent FGSC chemotype 

in Germany is DON (Goertz et al., 2010), while in Brazil it is NIV (Kuhnem et al., 2016). 

Additionally, the cropping system of maize differs in many points between both countries. 

In Germany, maize is cultivated in ploughed soil or with reduced tillage, and previous crops 

are mainly wheat, maize and sugar beet (Pfordt et al., 2020). In Brazil, however, no-till is 

vastly practiced due to its better soil conservation. No-till reduces erosion, increases organic 

matter, soil moisture retention and, promotes a slow decomposition (Ono et al., 2011). 

Furthermore, Brazilian weather conditions allow two cultivating seasons per year. Areas of 

soybean production in the main season can be succeed by maize production in the second 

season (safrinha). Moreover, other succession crops can be wheat or oats (Spolti et al., 

2015). Even if tillage and previous crops may not have a strong influence on the prevalence 

of Fusarium spp. (Ono et al., 2011; Spolti et al., 2015; Pfordt et al., 2020), the cultivation of 

Bt-transgenic maize can significantly reduce Fusarium infections by earworms (Munkvold 

et al., 1999), such as Spodoptera frugiperda, in Brazil. Impressively, transgenic maize 

represents 92% of the area of maize production in Brazil (ISAAA, 2018).  

Besides the two cropping systems, the Fusarium spp. populations can differ regarding their 

aggressiveness levels (Jardine and Leslie, 1999). In our experiments, the high disease 

severity of German F. graminearum and F. culmorum strains compared to the Brazilian 

strains can be related to the high prevalence of FGSC in Germany. In general, 

F. graminearum and F. culmorum are usually more aggressive than other Fusarium spp. 

(Schaafsma et al., 1993; Iglesias et al., 2010; Miedaner et al., 2010). In addition, the 

Brazilian F. verticillioides strain did not show high disease severity because FFSC colonize 

maize plants asymptomatically (Gai et al., 2018; Blacutt et al., 2018). A symptomless 

colonization makes correlation between disease severity and mycotoxin production difficult, 

as shown for F. verticillioides, where the disease severity does not reflect the fumonisin 

production (Iglesias et al., 2010). However, for F. graminearum, weaker correlations 

between disease severity and mycotoxin levels can be established (Mesterházy et al., 

2012). Therefore, resistance to F. graminearum might be easily detected (Presello et al., 

2006), whereas this might not be the case for F. verticillioides. However, tested temperate 

lines showed differences in resistance levels between F. graminearum and F. verticillioides. 
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Therefore, it is strongly recommended include a strain of F. verticillioides on breeding 

programs in order to test for resistance to this species.  

In our experiments, some temperate lines and tropical lines showed higher disease 

severities when inoculated with the German F. graminearum isolate in comparison to the 

Brazilian isolates (Tables 1 and 2, Figures 4 and 5). The high aggressiveness of the German 

isolate was also observed for F. graminearum strains in the aggressiveness experiment 

(Figure 3), and for the experiment testing two pre-inoculation temperatures (Figure 6). In 

Germany, breeding programs select resistant hybrids by inoculating a highly aggressive 

F. graminearum isolate (for example the strain IFA66 obtained from Hohenheim University, 

data not shown). Regarding the pathogen, a better screening to select highly aggressive 

strains from Brazil is recommended, in order to allow better comparisons of resistance 

between tropical and temperate maize lines. Silk-channel resistance can be better detected 

with highly aggressive F. graminearum isolates (Reid et al., 1993; Miedaner et al., 2010). 

The pin inoculation has classified most of the tested Brazilian hybrids as susceptible and 

moderate susceptible to GER (Nerbass et al., 2016), difficulting the detection of resistant 

plants. Thus, selection for resistance to Fusarium spp. may be focused on silk-channel 

resistance by performing the inoculation method of silk-channel injection (Nerbass et al., 

2015; Nerbass et al., 2016). Under natural conditions, selection may favor less aggressive 

strains (Iglesias et al., 2010). Thus, a pre-selection of isolates regarding their 

aggressiveness levels is fundamental (Mesterházy et al., 2012), in order to find the best 

strain for inoculations in breeding programs. 

The selection for resistance with strains originating from different regions showed that 

resistance has low specificity to the pathogen population (Presello et al., 2006; Miedaner et 

al., 2010). F. graminearum strains from the USA, Italy and South Africa showed 

considerable levels of disease severity and were therefore suitable for the selection of host 

resistance in German fields (Miedaner et al., 2010). Similar results were observed for maize 

genotypes tested in Argentina and Canada; the resistance had low specificity towards 

Fusarium strains and location (Presello et al., 2006). Therefore, the resistance carried by 

the tropical lines might be durable under European conditions. To confirm the efficacy of 

resistance under European conditions, tropical lines should be preferably tested by 

inoculating German strains under field conditions. In general, it is strongly recommended to 

conduct experiments in the field, especially when it is necessary to grow plants to full 

maturity, such as for the evaluation of GER and FER. The evaluation of mature plants 

provides more reliable data (Blacutt et al., 2018). However, the environmental conditions in 

Germany (especially long day light during summer) do not allow cob formation of the tropical 

genotypes. 
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Silk-channels have shown ontogenic resistance to Fusarium spp. The susceptibility to 

Fusarium spp. infections is correlated to silk age. Reid et al., (1992a) has shown that the 

susceptility of silks to Fusarium spp. infection is decreased with an increase in silk age. 

However, no correlation was detected between the increase in the maturity group and the 

increase on susceptibility to Fusarium spp. (Reid and Sinha, 1998). A study of European 

lines from the early maturity group shows that flint lines are more susceptible to 

F. graminearum and F. verticillioides (Löffler et al., 2010). The increased susceptibility of 

flint maize compare to dent might be correlated to the early flowering time (Löffler et al., 

2010). The early flowering time and a high tolerance to cold contributed to its introduction 

in temperate regions (Hufford, 2016). In addition, Mesterházy et al. (2012) mentioned that 

correlations between flint and susceptibility can be ambiguous according to the population 

studied. Han et al. (2018) detected two quantitative trait loci (QTL) for DON in the pool of 

dent lines and six QTL in the pool of flint lines from European breeding programs. 

Morphologically, flint kernels are thicker, harder and have a vitreous outer layer, whereas 

dent shows a higher soft starch content and has characteristic indented kernels (Unterseer 

et al., 2016). Moreover, flint has a narrower, looser and lower number of husk leaves, 

whereas husk leaves from dent are wider, tighter, greater in number and have a bottleneck 

(Troyer, 2001), which may increase humidity and favor infections (Oldenburg et al., 2017). 

The cultivation of flint maize seems to be common in South America (Brown et al., 1985; 

Tamagno et al., 2015), corroborating the fact that tropical/subtropical lines shows a high 

allele frequency for resistance to FER when compared to temperate breeding pools (Zila et 

al., 2013). 

In our experiment, the increase in pre-inoculation temperature had a negative effect on the 

resistance carried by the tropical lines (Figure 6). However, quantitative resistance was 

shown to be more stable in other crops. The increase in post-inoculation temperature had 

no effect on the quantitative resistance of Canadian canola cultivars against blackleg 

(Hubbard and Peng, 2018). Further experiments should be conducted to better understand 

the effect of pre- and post-inoculation temperature on the quantitative resistance, and 

especially for GER and FER. The species prevalence and aggressiveness has shown 

differences between both countries. GER is more prevalent in Germany, whereas FER is 

more prevalent in Brazil. In general, FGSC are more aggressive than FFSC, and the 

German strain were more aggressive than the Brazilian strain. Therefore, temperate and 

tropical lines were more effective to Brazilian isolates. Besides the resistance, levels of 

different mycotoxins can vary between samples from both countries. Levels of fumonisins 

in Germany ranged from 25 to 20,690 ηg/g (Goertz et al., 2010), whereas levels of fumonins 

ranged from of 5,000 to 2,390,000 ηg/g in Brazil (Lanza et al., 2014). As mycotoxins have 
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different levels of toxicity (van der Lee et al., 2015), studies monitoring the prevalence of 

species and a pre-selection of highly aggressive strains should be conducted in order to 

better select for resistance to GER and FER.  
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III. General discussion 

Maize production in tropical regions differs from that in temperate regions in several 

agricultural aspects, mainly because of distinct environmental conditions (Velásquez et al., 

2018). In recent decades, no-till practices have been increased in tropical regions. No-till 

practices increase organic matter, prevent surface sealing caused by heavy rain, and 

consequently reduce erosion (Cerri et al., 2007). Besides cultural practices, the pathogen 

population and the cultivation of susceptible hybrids contribute to diseases epidemics in 

maize. Therefore, the main methods applied for disease control are related to changes in 

crop management, pesticides application and resistant hosts. Tropical maize is a good 

source of disease resistance as it has been shown to have a wealth of resistance alleles 

(Zila et al., 2013). The advancement of modern breeding practices has allowed the 

introduction of new sources of resistance from tropical maize germplasm into temperate 

breeding programs. However, this process is still laborious and slow (Pollak et al., 1991). 

Studies comparing pathogen populations and their aggressiveness from different regions 

add information that may help in the estimation of the effectiveness of maize resistance to 

diseases and breeding, as demonstrated for northern corn leaf blight (NCLB), Gibberella 

ear rot (GER) and Fusarium ear rot (FER). Differences in Exserohilum turcicum and 

Fusarium spp. populations and their aggressiveness were compared between European 

and South American isolates (Table 1). Additionally, host resistance from tropical and 

temperate lines was tested for Fusarium spp.. Lastly, sources of qualitative resistance to 

E. turcicum were compared according to their resistance responses, pathogen colonization, 

disease epidemiology, photosynthesis impairments and biochemical disorders (Table 2, 

Figure 1).  
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Table 1. Comparison of pathogens and resistance related to northern corn leaf blight 

(NCLB), Gibberella ear rot (GER) and Fusarium ear rot (FER) in Europe and South America. 

Exserohilum turcicum and Fusarium spp. populations and their aggressiveness were 

compared between regions. Host resistance to E. turcicum was compared between 

European and South American commercial hybrids, and the resistance of tropical and 

temperate lines was tested for F. graminearum and F. verticillioides isolates originating from 

Germany and Brazil. 

 Disease NCLB GER / FER 

Trait Europe 
South 

America 
Germany Brazil 

Pathogen 
populations 

high race 
diversity 

low race 
diversity 

GER prevalent FER prevalent 

Pathogen 
aggressiveness 

less 
aggressive 

more 
aggressive 

GER is more 
aggressive  

GER isolates less 
aggressive 

Host resistance 

Cultivated 
hybrids carry 

qualitative 
resistance 

Cultivated 
hybrids may 

carry 
quantitative 
resistance 

Resistance on 
temperate lines is 
more effective for 
Brazilian isolates  

Tropical lines are 
more resistance to 
Brazilian isolates 

A. Northern corn leaf blight (NCLB) 

Assessments of physiological races of Exserohilum turcicum in Argentina and Brazil was 

conducted by inoculating the maize line B37 with the genes Ht1, Ht2, Ht3 and Htn1. The 

race assessment identified a high frequency of race 0 isolates indicating that Ht genes are 

not widely introduced in cultivated commercial hybrids in South America (Table 1). Thus, 

resistance to E. turcicum present in Argentinian and Brazilian hybrids is probably from 

quantitative sources. In Europe, race monitoring demonstrated that 32% of the screened 

isolates were virulent to plants bearing the Ht3 gene, a source of qualitative resistance 

(Hanekamp, 2016). Therefore, a large proportion of the hybrids cultivated in Europe may 

carry the Ht3 gene. As quantitative resistance is more durable (Pilet-Nayel et al., 2017), and 

it is advantageous to introgress the resistance from tropical lines in the European breeding 

programs (Galiano-Carneiro et al., 2020). Additionally, information about the frequency of 

races may guide breeders regarding which Ht genes to breed into new cultivars. 

Consequently, a better management of resistant cultivars can be recommended specifically 

for each region according to the pathogen population, in order to increase the durability of 

resistance.  

In addition to the frequency of races, information about population aggressiveness 

contributes to estimating the progress of disease epidemics and the effectiveness of 
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resistance. In our experiments, South American isolates were more aggressive than 

European ones (Table 1), showing that E. turcicum has some plasticity, and may adapt to 

changes in the environment, such as warmer seasons or cropping systems. In general, 

disease severities were higher and incubation periods were lower at higher post-inoculation 

temperatures (day/night temperature of 30°C/25°C), indicating that high temperatures favor 

pathogen colonization. The increase in post-inoculation temperatures may favor the 

pathogen by increase in the concentration of aggressiveness factors, such as phytotoxins. 

Non-host-specific toxins may inhibit active defense processes disfavoring the host (Buiatti 

and Ingram, 1991), such as the non-host-specific phytotoxin monocerin, which is known to 

be produced by E. turcicum (Robeson and Strobel, 1982). Monocerin was shown to reduce 

fluorescence intensity in cells, and to induce protoplast and cell mortality, which leads to 

necrosis (Cuq et al., 1993). Other phytotoxic compounds isolated from E. turcicum culture 

filtrates inhibited chlorophyll formation, which provokes chlorosis in maize plants (Bashan 

and Levy, 1992; Bashan et al., 1995), disturbed cell membrane permeability (Dong et al., 

2001), and increased lesion size (Bashan and Levy, 1992). Additionally, a host-specific 

toxin named HT-toxin was shown to be a virulence factor (Dong and Li, 1996) and it 

provoked overexpression of QM protein, a protein related to stress responses pathways, in 

plants carrying Ht2 gene (Wang et al., 2010). In our in vitro experiments, E. turcicum 

showed higher mycelium growth under 25°C. However, high diseases severities were 

observed at day/night temperatures of 30°C/25°C. At high post-inoculation temperatures, 

host defenses may be suppressed, and the pathogen may release more phytotoxins, 

especially South American isolates, which indicate that these isolates are more aggressive 

than European isolates.  

High temperatures may contribute to plant susceptibility or they may induce defense for 

different pathosystems (Garrett et al., 2006). The increase in disease severities under high 

post-inoculation temperatures might be related to negative effects of heat stress during the 

activation of host defenses for the pathosystem maize-E. turcicum. Furthermore, pre-

inoculation temperatures were shown to have no effect on host resistance. Consequently, 

a reduction of the detoxification process may lead to high disease intensities. Studies 

regarding phytotoxin production under high temperatures should be conducted to identify 

the effect of toxins on disease severity under high temperatures. High temperatures may 

also reduce the activity of enzymes responsible for the detoxification process. Studies on 

up- and down-regulation of resistance genes under different temperatures may indirectly 

elucidate the role of aggressiveness factors by suppressing resistance mechanisms.  
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B. Gibberella and Fusarium ear rot (GER and FER) 

Differences in species prevalence in Germany and Brazil (Table 1) contribute to a better 

understanding of different mycotoxins contamination in maize. For instance, F. proliferatum 

was shown to produce 10 times more fumonisins than F. verticillioides (Zhou et al., 2018). 

F. graminearum producing 15-aceytil-deoxynivalenol formed a higher number of perithecia 

in maize when compared to nivalenol and 3-aceytil-deoxynivalenol producers (Nicolli et al., 

2018), which may contribute to pathogen variability and dispersion. Generally, mycotoxins 

are not virulence factors (Desjandins et al., 1995); however, these substances may 

influence pathogen aggressiveness and consequently the effectiveness of resistance. It is 

expected that resistance carried by temperate lines is more efficient in regard to isolates of 

the Fusarium graminearum species complex (FGSC). As these species are prevalent in 

cold and humid regions (Munkvold, 2003), the selection of resistant lines is mainly focused 

on the FGSC, while the resistance carried by tropical lines could be more efficient for the 

Fusarium fujikuroi species complex (FFSC), as its prevalence is higher in warmer and drier 

areas (Blacutt et al., 2018). However, tropical lines did not show differences in resistance 

levels between F. graminearum and F. verticillioides, and temperate lines showed higher 

levels of resistance for F. verticillioides. In general, F. verticillioides has lower levels of 

severity than F. graminearum (Miedaner et al., 2010), due to its asymptomatic colonization 

(Blacutt et al., 2018). Levels of disease severity are not always correlated to levels of 

mycotoxins (Presello et al., 2006). Thus, the resistance for F. verticillioides should be tested 

not only by disease rating but also by other methods, such as measuring the amount of 

fungal DNA content or mycotoxin production (Schnerr et al., 2002; Atoui et al., 2012; Preiser 

et al., 2015).  

Fusarium verticillioides can also infect via silk and colonize systemically, as typical 

symptoms are infections in random kernels (Blacutt et al., 2018), which is distinct to the 

symptoms of GER caused by F. graminearum. Therefore, it is strongly recommended to 

test for resistance for FER, apart from the trails for GER, as resistance mechanisms 

involved in silk infection may differ from those in kernel infection (Mesterházy et al., 2012). 

A pre-selection of highly aggressive isolates should also be applied to F. verticillioides 

isolates from Germany and Brazil, as highly aggressive isolates were shown to be more 

effective in selecting for resistance to F. graminearum (Miedaner et al., 2010). Furthermore, 

a comparison of a larger number of isolates is recommended in order to obtain a robust 

comparison of aggressiveness between pathogen populations.  

Experiments aimed at identifying new resistant lines have been conducted in several 

locations for several years (Miedaner, 2011), as quantitative resistance is sensitive and may 
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change in line with environmental conditions (Pilet-Nayel et al., 2017; Galiano-Carneiro et 

al., 2020). Variations in quantitative resistance, which are expressed by loci, may be difficult 

to detect under strong variations in environmental conditions (Weinig and Schmitt, 2004). 

However, genotypes that are able to adapt to different weather conditions and present some 

fitness to advantages are referred as “phenotypically plastic” (Weinig and Schmitt, 2004). 

In our experiment, the resistance to GER expressed by the tropical lines under moderate 

temperatures (20°C /15°C) may be an evidence of phenotypical plasticity, as these lines 

are more adapted to moderate temperatures. However, the efficiency of resistance under 

field conditions should be confirmed by field experiments in several locations.  

C. Ht-resistance genes to Exserohilum turcicum 

The symptomology demonstrates that resistance reactions differ among the resistance 

genes Ht1, Ht2, Ht3 and Htn1. In order to identify differences between the resistance 

mechanisms conferred by each Ht gene, pathogen colonization, fungal and plant biomass, 

and epidemiological, physiological and biochemical traits were characterized in several 

experiments. A compilation of all variables evaluated for the susceptible line B37 

(compatible interaction) and for the resistance reaction (incompatible interaction) with the 

lines B37Ht1, B37Ht2, B37Ht3 and B37Htn1 is exhibited in Table 2.  

The susceptible line B37 revealed necrosis, high values of disease severity, xylem 

penetration efficiency (XPE), xylem colonization efficiency (XCE), mesophyll colonization 

efficiency (MCE), E. turcicum DNA content, pathogen sporulation, number of lesions and 

lesion length, as expected for a compatible interaction. All evaluated photosynthetic 

variables, CO2 assimilation (A), transpiration (E), stomatal conductance (gs) and the 

instantaneous carboxylation efficiency (k), were strongly reduced in the susceptible line. As 

regards the biochemical parameters, a high percentage of penetration sites accumulated 

peroxide (H2O2) at 6 dpi, which resulted in high peroxidase activity (POX). Additionally, a 

decrease in leaf area was recorded for this line at 28 dpi. There was no reduction on aerial 

and root biomass due to evaluation at early timepoints after infection (14 and 28 dpi) and to 

low levels of disease severity (<12%) in this experiment. A strong reduction on 

photosynthetic leaf area caused by necrosis reduces drastically the radiation use efficiency 

by plants and may lead to biomass reduction and yield losses.  

A severe resistance reaction was observed in the line B37Ht1. Symptoms were 

characterized by strong chlorosis and necrosis (Hooker, 1963), which conferred high 

disease severity for this line, especially in young plants. Disease severity was usually as 

high as that observed for the susceptible line B37. However, data on pathogen colonization 

confirmed that necrosis was caused by resistance reaction, as the XPE, XCE, MCE were 
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low and, consequently, fungal DNA was detected in low levels. In addition, pathogen 

sporulation decreased by 90% in the line B37Ht1 compared to B37. The reduction on DNA 

demonstrate that chlorosis and necrosis were provoked by host resistance reactions, which 

reduced sporulation expressively. The resistance mechanism triggered by Ht1 might be 

related to antifungal compounds (phytoalexins) and to a high H2O2 production causing 

chlorophyll degradation.  

The incompatible interaction between E. turcicum and Ht2 was characterized by chlorosis 

(Hooker, 1977) and small necrotic lesions. Thus, it was difficult to distinguish the 

incompatible interaction with Ht2 from the compatible interaction for some traits, especially 

during experiments to assess physiological races of E. turcicum isolates. The disease 

severity was reduced in this line when compared to B37 (susceptible line), due to a 

reduction in the number and size of lesions. A reduced pathogen colonization was also 

observed by the low values of XPE, XCE, MCE and fungal DNA content. As the resistance 

reaction conferred by Ht2 was related to chlorosis and necrosis, a slight decrease in the 

photosynthetic variables A, E, gs and k was observed for this line. At early stages of disease 

development, high H2O2 was accumulated in most penetration sites, however POX activity 

was high. In general, the resistance mechanism triggered by Ht2 caused low damage to 

plant physiology. However, as small necrotic lesions are observed in the incompatible 

interaction, this resistance mechanism might be related to a delay on the activity of 

detoxicating enzymes. The resistance on maize to Cochliobolus carbonum race 1 occurs 

by the detoxification of HC-toxin (Walton and Panaccione, 1993). The breakdown of 

phytotoxin may also account for symptom expression (Bashan et al., 1996). The mechanism 

regulating the resistance of Ht2 to the HT-toxin involves the upregulation of QM-like protein, 

which is component of several stress response pathways (Wang et al., 2010). 

The gene Htn1 can confer distinct resistance reactions and leads to an extended disease 

latent period (Gevers, 1975). Htn1 confers quantitative resistance (Hurni et al., 2015), and 

its resistant effect could also be verified in the compatible interaction by slowing down 

pathogen colonization and reduced fungal DNA content, as demonstrated in the chapter 3 

of this present study. In the incompatible interaction (Table 2), no disease severity, XCE 

and MCE were observed. In addition, the Htn1 gene reduced pathogen XPE. A slight 

decrease in the photosynthetic variables A, E, gs and k was observed for Htn1. Pathogen 

sporulation was only observed in few small lesions. Resistance mechanisms of Htn1 extent 

the disease latent period (Gevers, 1975) and may consequently slow down NCLB 

epidemics. An extended latent period usually affects the apparent infection rate, which 

confirm its quantitative background of resistance (Hurni et al., 2015). Molecular studies 

demonstrated that Htn1 is in a locus on the chromossom 8 and recognizes pathogen 
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invasion and cell wall disruption encoding some unusual wall-associated receptor-like 

kinases (RLK) (Hurni et al., 2015). Thus, resistance mechanisms triggered by Htn1 are 

related to the recognition of cell wall alterations and signaling to the cytoskeleton (Diener 

and Ausubel, 2005). In addition, the line carrying Htn1 demonstrated the highest percentage 

of penetration sites with H2O2 accumulation and the highest values for POX activity (Shimoni 

et al., 1991). High ROS can be correlated to yellow spots observed in lower leaves, which 

are described as wilt-type lesions (Gevers, 1975). Wilt-type lesions, also called “lesion-

mimics”, might have an inappropriate activation of resistance mechanisms like 

hypersensitive response (HR), which demands energy (Balint-Kurti, 2019), corroborating 

the low values of CO2 assimilation in healthy plants. Wilt-type lesions could explain the 

higher percentages of H2O2 detection and high peroxidase activity in plants carrying the 

Htn1 gene.  

The resistance reaction conferred by Ht3 is related to chlorotic spots (Hooker, 1981). No 

necrotic lesions were observed in this line. Fungal DNA content was very low and pathogen 

colonization was restricted to the xylem (values of MCE were null). B37Ht3 reveled low 

H2O2 accumulation and POX activity, similar to the susceptible line B37. As no necrosis was 

observed in this line, there were no reductions in the photosynthetic variables A, E, gs, and 

k for the line B37Ht3. It seems that the resistance mechanism triggered by Ht3 confers a 

strong barrier, preventing pathogen colonization in xylem vessels and avoiding colonization 

from the sieve cells. Ht3 may recognize pathogen invasion earlier than the other genes. Ht3 

was introgressed from Tripsacum floridanum (Hooker, 1981), which is not an alternative 

host for E. turcicum. Chlorotic spots conferred by Ht3 might be related to a resistance 

mechanism similar to non-host resistance.  
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Table 2. Traits and parameters/variables evaluated for northern corn leaf blight (NCLB) in the interaction with the maize line B37 and Ht1, Ht2, 
Ht3 and Htn1 resistance genes.  
 

Trait Parameter / Variable B37 (no Ht-gene) B37Ht1 B37Ht2 B37Ht3 B37Htn1 

Symptomology 
phenotype necrosis  

strong 
chlorosis and 

necrosis 

chlorosis or 
small 

lesions 

chlorotic 
spots 

no lesions or  
wilt-type lesions, 
extended latency 

disease severity ++ ++ + 0 0 

 Pathogen 
colonization 

  

xylem penetration efficiency +++ ++ ++ + + 

xylem colonization efficiency +++ + + 0 0 

mesophyll colonization efficiency +++ + + 0 0 

E. turcicum DNA content +++ + + + + 

Epidemiology 

number of lesions +++ ++ + 0 0 

lesion length +++ ++ ++ 0 + 

sporulation +++ + +++ + + 

Physiology 

CO2 assimilation +++ +++ + 0 ++ 

transpiration ++ ++ ++ 0 ++ 

stomatal conductance ++ ++ ++ 0 ++ 

instantaneous carboxylation efficiency +++ ++ + 0 ++ 

chlorophyll fluorescence 0 ++ 0 0 0 

Biochemistry 
H2O2 localization ++ + +++ ++ +++ 

peroxidase activity + ++ ++ ++ +++ 

 
Biomass 

aerial biomass 0 0 0 0 0 

root biomass 0 0 0 0 0 

leaf area - 0 0 0 0 

0: 0%, +: 1-30%, ++: 31-60%, +++: 61-100% disease / strong reduction 
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A principal component analysis (PCA) was conducted to identify patterns among the 

resistance responses of Ht genes using selected variables related to the host (host 

variables) and to the pathogen colonization and epidemiology (pathogen variables) 

obtained from experiments conducted in the present study (Table 2). Two cluster analysis 

were performed to identify similarities between the lines according to host variables and to 

pathogen variables (Figure 1). More details regarding statistical approach for this extra 

analysis are described in the supplementary material.  

The susceptible line B37 was clustered in distinct groups for the analyses with host variables 

and with pathogen variables (Figure 1). The cluster analysis for host variables clustered the 

line B37Ht1 and B37Htn1 as both lines showed some reduction in the photosynthetic 

variables. In contrast, the lines B37Ht2 and B37Ht3 did not exhibit high decrease on 

photosynthetic variables and formed a distinct cluster. Photosynthetic costs of resistance 

are low or almost absent for B37Ht2 and B37Ht3, whereas photosynthetic activity of the line 

B37Ht1 was not recovered in the late stages of disease development (Figure 1A).  

In the analysis of pathogen variables, pathogen growth was almost absent in the lines 

B37Ht3 and B37Htn1 (Figure 1B). The xylem and mesophyll colonization were absent and 

values of DNA content, number of lesions and sporulation were strongly reduced in these 

lines. Thus, it is strongly purported that resistance mechanisms are acting in earlier stages 

of infection for these lines were compared to B37Ht1 and B37Ht2, which were clustered in 

a distinct group. Conversely, resistance mechanisms triggered by B37Ht1 and B37Ht2 were 

not so efficient in reducing pathogen colonization. The most effective resistance mechanism 

has shown to be triggered by Ht3, as pathogen colonization and damage to photosynthetic 

apparatus was reduced for this line. The plant can compensate for photosynthetic costs 

associated with resistance mechanisms and might recover faster from pathogen infection. 

In contrast, the highest values of pathogen variables were observed for Ht1. This gene was 

not so efficient on prevent pathogen colonization, and beyond that, B37Ht1 plants did not 

recovered from pathogen infection at 14 dpi. In general, it has been demonstrated that Ht 

genes trigger several resistance mechanisms, which leads to a complex host-pathogen 

interaction.  
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Figure 1. Dendrograms for the maize lines B37, B37Ht1, B37Ht2, B37Ht3 and B37Htn1, 

which were inoculated with a race 0 isolate of Exserohilum turcicum, clustered in groups 

according to variables related to the host (A) and to pathogen colonization and epidemiology 

(B) based on standardized Euclidean distance by the average method. Cluster analyses 

were performed for the host variables aerial biomass (Dax/Dao), leaf area (Lax/Lao), H2O2 

localization (H2O2), peroxidase activity (POX), CO2 assimilation (Px/Po), transpiration 

(Ex/Eo), stomatal conductance (gsx/gso) and instantaneous carboxylation efficiency 

(kx/ko), and for the pathogen variables xylem penetration efficiency (XPE), xylem 

colonization efficiency (XCE), mesophyll colonization efficiency (MCE), disease severity 

(sev), fungal DNA content (DNA), number of lesions (n.les), lesion length (les.lngth), and 

sporulation. 

The cultivation of breeding materials bearing Ht genes remains a good strategy for NCLB 

control. Pathogen colonization and sporulation was strongly reduced in the incompatible 

interactions. Additionally, the delay in infection progress in compatible interactions with 

some resistant lines implies that Ht genes may be associated with, or can confer, additional 

quantitative resistance to E. turcicum, as observed for Htn1 (Hurni et al., 2015). However, 

Htn1 may no display any lesions, which leads to a misclassification as a source of qualitative 

resistance. Ht1 and Ht2 are still classified as qualitative forms of resistance, however, Ht2 

may be classified as a source of quantitative resistance, since the number and size of 

lesions are reduced. Ht1 reduced sporulation and therefore, could be classified as 

quantitative resistance based on epidemiological approach (sensu Vanderplank 1968). 

Additionally, Ht genes have been shown to reduce fungal DNA content in the compatible 

interaction. For the genetic trait, the resistance triggered by Ht genes is governed by few 

genes. In fact, the genetic background leads to confusion for most resistance genes, as 

qualitative sources of resistance can be oligogenic (Hallmann and Tiedemann, 2019). 
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Nevertheless, it is important to point out that all related genes may have a gene-for-gene 

interaction with E. turcicum (Flor, 1971, Parlevliet and Zadoks, 1977) and a weaker gene-

for-gene interaction might be classified as a mechanism of quantitative resistance (Poland 

et al., 2009). Based on the hypothesis of resistance mechanisms triggered by the 

quantitative resistance, the Ht genes might be evolving into weaker forms of R genes, as 

xylem penetration is not completely blocked by the resistance mechanisms and the 

pathogen is able to reach the vascular tissue.  

D. Conclusions 

Pathogen populations have been proven to be different between regions in several aspects. 

The prevalence of species or the frequency of races affects the efficiency of resistance and 

consequently disease control. The main conclusions obtained in each chapter of the present 

work are expressed below. 

 The race assessment in Argentina and Brazil demonstrated that qualitative 

resistance to Exserohilum turcicum is not being widely introduced in commercial 

hybrids and might be combined with sources of quantitative resistance though 

breeding programs in those countries. 

 The plasticity of Brazilian E. turcicum isolates in adapting to high temperatures 

indicates that the durability of resistance may be decreased.  

 The diversity of resistant phenotypes conferred by Ht genes is reflected in pathogen 

colonization due to distinct resistance mechanisms. The reduction in disease levels 

in the compatible interaction indicates that these genes may be associated with, or 

confer, additional quantitative resistance.  

 Physiological, biochemical and epidemiological studies confirmed and emphasized 

that resistance mechanisms triggered by Ht genes are phenotypically different 

leading to distinct plant resistance responses.  

 The resistance conferred by the Ht2 gene is not affected by changes in the pre-

inoculation temperature. Changes in resistance phenotypes under distinct post-

inoculation temperatures might be related to the influence of temperature on the 

activity of detoxicating enzymes, which may increase necrosis due to high 

phytotoxins concentrations.  

 In general, the German Fusarium graminearum was more aggressive than the 

Brazilian strain in both the temperate and tropical lines. This finding indicates that a 

pre-selection of highly aggressive Fusarium verticillioides strains is required to 

select maize lines for resistance. Moreover, low pre-inoculation temperatures 
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decreased disease severity in tropical lines, indicating that tropical lines have 

phenotypical plasticity.  

Resistance mechanisms involved in the reduction of the number of lesions, lesion size and 

sporulation may decrease epidemics in the field, especially by decreasing secondary 

inoculum. The cultivation of resistant hybrids remains a successful strategy for controlling 

NCLB. The same strategy is strongly recommended for controlling GER and FER, and 

consequently decreasing mycotoxin levels, as the timing of fungicide applications for an 

efficient control of GER and FER is still difficult to predict (Munkvold, 2003; Lanza et al., 

2016). In general, estimations demonstrated that methods applied for disease control 

reduced yield losses by 32% (Oerke, 2006). Nevertheless, it is important to improve the 

efficiency of disease control methods, especially the increase in the durability of resistance, 

in order to reduce yield gap and optimize maize production.  
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Supplementary Material 

In the multivariate analysis was conducted with all evaluated variables in order to 

demonstrate the correlations between phenotypical similarities triggered by the Ht genes. 

Data represented in Table 2 for the traits symptomology, pathogen colonization, 

epidemiology and physiology were collected at 14 dpi, and the biochemical and biomass 

traits were quantified at 6 and 28 dpi, respectively. The selected host variables were 

peroxidase activity (POX), H2O2 localization (H2O2), instantaneous carboxylation efficiency 

(kx/ko), stomatal conductance (gsx/gso), transpiration (Ex/Eo), CO2 assimilation (Px/Po), 

leaf area (Lax/Lao), and aerial biomass (Dax/Dao); and the pathogen variables were 

mesophyll colonization efficiency (MCE), xylem colonization efficiency (XCE), xylem 

penetration efficiency (XPE), fungal DNA content (DNA), disease severity (sev), sporulation 

(spore), lesion length (les.lngth), and number of lesions (n.les). A spearman correlation was 
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conducted to check for correlations between the evaluated traits (Supplementary figure 1). 

To obtain a balanced sample size for all variables, the correlations coefficients and the PCA 

were conducted with the average, maximum and minimum values of each variable. The 

cluster analysis was conducted only with average values of each variable (further 

information regarding the analysis can be found in the supplementary material). The 

principal component analysis demonstrated that host variables were positioned on the right-

hand side and the variables related to the pathogen variables were positioned in the upper 

part of the graph (Supplementary figure 2). The photosynthetic variables were negatively 

correlated to the variables related to the pathogen (sev, DNA and MCE). In this 

pathosystem, the increase in disease severity caused a reduction in photosynthesis. 

Biochemical and biomass parameters correlated better to variables related to the host and 

therefore they were added to the cluster analysis for host variables (Supplementary figures 

1 and 2).  

 

Supplementary figure 1. Spearman correlation coefficients (ρ) for the variables mesophyll 

colonization efficiency (MCE), xylem colonization efficiency (XCE), xylem penetration 

efficiency (XPE), fungal DNA content (DNA), disease severity (sev), sporulation (spore), 

lesion length (les.leng), number of lesions (n.les), peroxidase activity (POX), H2O2 

localization (H2O2), instantaneous carboxylation efficiency (kx/ko), stomatal conductance 

(gsx/gso), transpiration (Ex/Eo), CO2 assimilation (Px/Po), leaf area (Lax/Lao), and aerial 

biomass (Dax/Dao) for the maize lines B37, B37Ht1, B37Ht2, B37Ht3 and B37Htn1 

inoculated with a race 0 isolate of Exserohilum turcicum, which has incompatible interaction 

with lines carrying Ht genes.  
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Supplementary figure 2. Principal component analysis for the variables xylem penetration 

efficiency (XPE), xylem colonization efficiency (XCE), mesophyll colonization efficiency 

(MCE), disease severity (sev), fungal DNA content (DNA, number of lesions (n.les), lesion 

length (les.lngth), sporulation, aerial biomass (Dax/Dao), leaf area (Lax/Lao), H2O2 

localization (H2O2), peroxidase activity (POX), CO2 assimilation (Px/Po), transpiration 

(Ex/Eo), stomatal conductance (gsx/gso) and instantaneous carboxylation efficiency (kx/ko) 

measured on the maize lines B37, B37Ht1, B37Ht2, B37Ht3 and B37Htn1 inoculated with 

a race 0 isolate of Exserohilum turcicum, which has incompatible interaction with lines 

carrying Ht genes. 

For the cluster analysis, the standardized Euclidean distance was used as a measure of 

dissimilarity. The following agglomerative hierarchical methods were applied: single linkage, 

complete linkage, average linkage (also called the “unweighted pair groups method using 

arithmetic average” – UPGMA), centroid and Ward’s method. The method that best fitted to 

the data was chosen using Gower’s distance. The number of clusters was selected using 

the silhouette method and visual analysis of the grouping patterns (Quinn and Keough, 

2002). Two dendrograms were obtained to visualize the lines within groups (Figure 2). 

Cluster analysis was performed using the function hclust in R 3.6.0 software (R Core Team, 

2019). 
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IV. Outlook and future studies  

Our studies demonstrated that Exserohilum turcicum races and the aggressiveness of 

European isolates are different from South American isolates. Further molecular studies 

could be conducted in order to compare the genetic diversity between both populations and 

check for mixed reproduction modes. Information about genetic diversity and the 

reproduction system may provide clarity about pathogen plasticity, and consequently the 

durability of resistance introduced to these areas.  

The resistance to E. turcicum was conferred by preventing xylem and mesophyll 

colonization. Additionally, epidemiological, physiological and biochemical studies 

demonstrated that resistance mechanisms triggered may differ according to the Ht genes. 

Further studies are necessary to identify virulence factors (effectors) and understand the 

mechanisms involved in resistance, such as transcriptomic studies or expression of 

resistance and/or avirulent genes.  

Other microscopy techniques such as transmission electron microscopy and/or 

fluorescence microscopy could be applied to identify structural resistance mechanisms. 

Moreover, mechanisms of detoxification could be investigated, as they might be involved 

on resistance. The effect of phytotoxin under high temperatures remain to be investigated, 

in order to explain the role of aggressiveness factors under high post-inoculation 

temperatures. The mechanisms behind the detoxification of phytotoxins produced by 

E. turcicum remain to be studied. 

The resistance gene Ht2 was not influenced by the pre-inoculation temperatures. The 

reasons for the weak resistance of the Ht2 gene are speculative. The location and sequence 

of the Sht1 gene, which has epistatic effect to Ht2, remains to be identified. Moreover, the 

incomplete dominance of Ht2, and its gene dosage effect remain to be elucidated in more 

detail.  

The number of Fusarium spp. isolates used in this study was restricted. An analysis with 

a larger number of isolates is suggested to draw conclusions regarding the aggressiveness 

of Fusarium spp. populations in Brazil and Germany. Moreover, experiments conducing 

plants until full stage are extremely laborious under greenhouse conditions. In general, field 

experiments provide more trustful results. The conduction of experiments in Germany and 

Brazil would allow broader comparisons regarding GER and FER epidemics in both 

countries. 
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V. Summary 

In the last 60 years, maize production has increased worldwide, reaching 1.14 billion tons 

in 2018. Maize production in Europe and South America was about 110 and 130 million 

tons in 2018, respectively. The demand for highly productive maize is observed in both 

tropical and temperate zones. Thus, the selection of plants from different maturity groups 

and high yield production are required from breeding programs. Besides highly productive 

plants, other agronomical traits such as resistance to pest and diseases needs to be 

considered during selection. Globally, some of the most important diseases affecting maize 

are northern corn leaf blight (NCLB), and Gibberella and Fusarium ear rot (GER and FER, 

respectively). Host resistance to E. turcicum is based on qualitative or quantitative sources, 

while for GER and FER only quantitative resistance is available in commercial hybrids. The 

quantitative resistance is more durable; however, it is more laborious to introgress into 

breeding lines. 

Northern corn leaf blight (NCLB) is an important disease in maize-producing areas 

worldwide. The symptoms of NCLB, whose causal agent is the ascomycete Exserohilum 

turcicum (teleomorph Setosphaeria turcica), are characterized by elliptical grey-green 

lesions. High disease severity can cause yield losses up to 40% (Levy und Pataky 1992). 

The main control methods applied for NCLB control are fungicide applications and the 

cultivation of resistant hybrids. Qualitative resistance has been widely used to control NCLB 

in many countries through the deployment of Ht genes. The race assessment from isolates 

collected in Argentina and Brazil during 2017, 2018 and 2019 revealed a high frequency of 

race 0 isolates (83% and 65% in Argentina and Brazil, respectively). In those countries, Ht 

genes are not being used extensively to control NCLB. This information is important for 

breeding programs and may help with disease management. 

Favorable weather conditions for NCLB development are long dewy periods and moderate 

temperatures. These optimum conditions for disease development can be observed in 

temperate regions as well as in mid-altitude regions in the tropics. The comparison of 

E. turcicum isolates in response to temperatures varied in vitro and in vivo between 15 and 

30°C demonstrating that the aggressiveness of South American isolates was higher than 

that of European isolates. The multivariate analysis confirmed that South American isolates 

are better adapted to higher temperatures by grouping them separately. In conclusion, 

E. turcicum populations may adapt quickly to environmental changes. The plasticity in 

adapting to environmental conditions of E. turcicum may decrease the durability of 

resistance. 
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Studies on the pathogenesis of E. turcicum in the differential maize line B37 with and without 

the resistance genes Ht1, Ht2, Ht3 and Htn1 were conducted for different stages of infection 

and disease development from penetration (0-1 dpi), until full symptom expression (14-18 

dpi). Symptomological analysis demonstrated that Ht1 expressed necrotic lesions with 

chlorosis, Ht2 displayed chlorosis and small lesions, Ht3 resulted in chlorotic spots and Htn1 

express wilt-type lesions. Histological studies conducted with Chlorazol Black E staining 

indicated that the pathogen was able to penetrate xylem vessels at 6 dpi in compatible 

interactions and strongly colonized the mesophyll at 12 dpi, which is considered the crucial 

process differentiating susceptibility from resistance. Additionally, lower disease levels, low 

fungal DNA content at 10 and 14 dpi, and the delayed progress of infection in compatible 

interactions with resistant lines imply that the Ht genes are associated with or confer 

additional quantitative resistance. Physiological studies showed a reduction in the 

photosynthetic rate, transpiration, stomatal conductance and instantaneous carboxylation 

efficiency in the incompatible interaction at 5 dpi. At 14 dpi, the strong necrosis displayed in 

the resistance reaction by B37Ht1 resulted in the reduction of photosynthesis as observed 

for B37. However, leaf area, aerial and root dry biomass were not reduced in inoculated 

plants at 28 dpi. Additionally, high rates of peroxide localization were observed in inoculated 

plants at 3 and 6 dpi, corroborating data on peroxidase activity. In fact, Ht1, Ht3 and Htn1 

reduced pathogen sporulation whereas Ht2 reduced the number and size of lesions. All 

phenotypical studies demonstrated that Ht genes confer distinct resistance mechanisms. 

The resistance phenotype expressed by Ht2 may change according to environmental 

conditions. There are reports on the influence of low post-inoculation temperature (22/18°C) 

and low light intensity (324 and 162 µmol m-2 s-1) on resistance expressed by this gene. Our 

objective was to prove that temperature has no influence on the resistance conferred by the 

Ht2-gene against E. turcicum. Therefore, maize plants were pre-exposed to warm 

(30/25°C) and moderate (20/15°C) temperature regimes for 10 days before inoculation. 

There was no influence of pre-inoculation temperature on the expression of resistance by 

Ht2. The resistance conferred by the Ht2 gene was confirmed by quantifying the fungal DNA 

in planta at 21 dpi. Changes in resistance phenotypes may be related to pathogen 

aggressiveness factors.  

GER and FER can cause qualitative yield losses due to mycotoxin production. GER is 

mainly caused by Fusarium graminearum and FER by F. verticillioides. GER is more 

frequent in regions with colder temperatures and high precipitation, and is more prevalent 

in Germany, while FER occurrence is favored by warm and dry weather conditions and is 

more prevalent in Brazil. In general, F. graminearum was more aggressive than 

F. verticillioides, which support affirmations about systemic colonization by F. verticillioides. 
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With regard to tropical and temperate hosts, the German isolates were more aggressive 

than the Brazilian isolates when inoculated in the tropical lines. Additionally, tropical lines 

pre-exposed to higher temperatures presented higher disease severity when compared to 

plants exposed to mild temperatures. In general, the cultivation of resistant hybrids remains 

a successful strategy for controlling NCLB, GER and FER. The optimization of resistance 

resources is fundamental for maintaining the durability of resistance.  
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