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Abstract

The collision–coalescence of droplets in turbulence is responsible for the fast
growth of cloud droplets from 15µm to 40µm in radius, but how exactly it
causes this quick growth is not understood. The growth of cloud droplets
through collision–coalescence is governed by two quantities: the radial dis-
tribution function (RDF), which is a measure for the degree of clustering the
droplets exhibit, and the radial relative velocity (RRV), which is a measure for
the velocity difference between nearby droplets.

In this thesis an in-situ experiment is described, that is designed to simul-
taneously measure all aspects relevant to turbulent collision–coalescence of
cloud droplets: droplet motions, droplet sizes, and properties of the turbu-
lent carrier flow. The experiment is located in the German Alps, on top of
the environmental research station Schneefernerhaus, at an altitude of 2650 m
where clouds naturally occur. Droplet motions are measured using a particle
tracking setup; turbulence statistics are measured with a sonic anemometer
that is mounted close by.

Droplet sizes are measured using a novel technique that relies only on
the droplet intensities as recorded by the particle tracking experiment. A
complete derivation of the technique based on Lorentz-Mie scattering theory
is given. Droplet sizes measured with this approach are compared to those
obtained with a holographic instrument.

The experiment is used to measure droplet rms accelerations and the
radial distribution function conditioned on (pairs of) Stokes numbers. Both
qualitatively agree with literature values, but further research is needed to see
why there is no quantitative agreement.
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Chapter 1

Introduction

This thesis is concerned with rain formation. Rain forms in four phases:
activation, condensation, turbulent collision–coalescence, and finally gravita-
tional collision–coalescence. Each of these phases acts on droplets of a certain
size. In particular condensation is effective for droplet radii . 15µm, whereas
gravitational collision–coalescence is effective for radii & 40µm. The size gap
in between these two phases is bridged by turbulent collision–coalescence;
this phase is responsible for colliding small droplets with each other, causing
them to coalesce and quickly grow in size [14, 24].

How exactly turbulence causes this quick growth of droplets, is not under-
stood. Two popular theories are preferential concentration, and the slingshot
effect. Preferential concentration means that droplets prefer to concentrate
in certain areas in a turbulent flow [5]. This causes the local droplet density
to be higher than the average, which could increase the collision rate. How-
ever, droplet velocities in this case are correlated to that of the underlaying
turbulent flow, and hence to each other, which would prevent collisions. Fur-
thermore, as a result of preferential concentration, they also preferentially
sample certain parts of the flow, which, in turn, biases their dynamics.

The slingshot effect describes droplets that are slung from one region of
the flow into another. The velocity of such a droplet is not correlated to that
of the underlaying flow, and therefore will be dissimilar from the velocities of
droplets in its immediate surroundings. As a result the chance that it collides
with another droplet can increase, which in turn could, again, increase the
collision rate [16].

The idea that differential velocities could increase the collision rate was
studied by Saffman and Turner [55]. Using basic knowledge from turbulence
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10 CHAPTER 1. INTRODUCTION

theory and simple geometry, they derived an expression for the collision
rate. Their collision rates depend heavily on the two droplet sizes under
consideration (assuming binary collisions) and the turbulent dissipation rate,
a measure for the intensity of the turbulence. Indeed they show that as the
turbulent dissipation rate increases, the collision rate also increases.

To compute the collision rate two ingredients are needed: (1) the chance
that two droplets can be found at near-touching range; and (2) the relative
velocity of these droplets. The first of these is given by the radial distribution
function, or RDF, which measures the relative probability to find a droplet
at certain distance from another droplet. The second is given by the radial
relative velocity, or RRV.

The goal of studying turbulent collision–coalescence is twofold: most im-
portantly, improving our understanding of this process in clouds, helps us
to improve weather and climate forecasting. Collision–coalescence is not
resolved in weather models, and is modelled instead. Such microphysical
processes are a source of uncertainty for weather models [24]. Better data,
whether they come from idealised direct numerical simulations (DNS) or
experiments, can be used to improve these models [14].

It is difficult to study cloud droplet growth numerically. Direct numerical
simulations (DNS) cannot be performed at Reynolds numbers that are rep-
resentative of cloud turbulence. They are nevertheless useful tools to study
smaller, idealised systems, because in such simulations the entire velocity
field is known exactly, and these therefore allow for very elaborate studies
[14]. Much larger Reynolds number flows can be simulated using large-eddy
simulations (LES). However, in LES only the large scales are resolved, while
the smaller scales are modelled [48, ch. 13], and as a result it not possible to
study the effects of the smaller scales on the droplets.

It is equally difficult to study cloud droplet growth using laboratory exper-
iments, because they cannot correctly reproduce all of the parameters relevant
to collision–coalescence. To reach sufficiently highReynolds numbers, either a
very large experiment must be constructed, which is prohibitively expensive,
or the dissipation rate must be increased. The result of that, however, is that
the Froude number Fr 5 = (�/�3)1/4/6, which is a non-dimensional measure
for the importance of gravity, changes. Furthermore, the Kolmogorov length
scale � = (�3/&)1/4 decreases, whichmaymake it difficult to observe processes
occuring at this scale. A good example of this are the experiments done in the
Max-Planck Variable Density Turbulence Tunnel in Göttingen [8], in which
Taylor Reynolds numbers of up to 5000 are reached. At such high Reynolds
numbers the Kolmogorov length scale � is only 9µm, which is 3 to 5 times
shorter than the hot-wire probes used to measure the flow [34].
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At present the only way to study cloud droplet growth in representative
conditions, is by means of in-situ experiments. These experiments typically
make use of aircraft or aerostats to get the instruments into the clouds. While
such experiments have the freedom to choose both cloud type (marine vs.
continental) and cloud region (core vs. boundary), they are constrained by
either spatial resolution (in case of aircraft) or by weight (in case of aerostats).
The HALOHolo, a holographic instrument that is designed to be carried on
aircraft, records up to 6 holograms per second. If it is carried by an aircraft
travelling at 40 m s−1, it acquires one hologram every 6 metres. An example of
an aerostat is the The Max-Planck CloudKite (MPCK); this is a large aerostat
(250 m3 of helium) that can carry a scientific payload of up to 60 kg [3, 62].

In this thesis an in-situ experiment is described, that is designed to simul-
taneously measure all aspects relevant to turbulent collision–coalescence of
cloud droplets: droplet motions, droplet sizes, and properties of the turbulent
carrier flow. The experiment is located in the GermanAlps, on top of the envi-
ronmental research station Schneefernerhaus. Due to the local topography the
wind tends to come from either east orwest. Furthermore, at the experiment’s
altitude of 2650 m, clouds naturally occur. This makes the measurement site
suitable for the application of techniques that are commonly used in wind
tunnel experiments. Droplet motions are measured using a particle tracking
setup that is housed in a rigid, weather-proof box. The difficulty with field
experiments like the one presented here, is that neither the droplet sizes nor
the turbulent flow can be controlled. A technique is developed to measure
the size of individual droplets based on their intensity as observed by the
particle tracking experiment. The turbulent statistics are measured using a
sonic anemometer that is installed close to the particle tracking setup. The
experiment is finally used tomeasure droplet rms accelerations and the radial
distribution function, conditioned on the Stokes number.

This thesis is organised as follows: first, an overview of the relevant theory
(chapter 2) and of the experimental setup (chapter 3) are given. Then, in
chapters 4–6, the particle tracking experiment, the droplet sizingmethod, and
the turbulence statistics are discussed. Finally, in chapter 7, a case study is
presented, in which the rms accelerations and radial distribution functions on
three different days are measured.

It must be noted the experiment that is presented here has the ability to
compensate for the mean wind, but this ability is not exploited in this work.
For more details, the reader is referred to appendix D.
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Chapter 2

Theory

Part of this chapter has been adapted from the author’s previous work [6].

2.1 Turbulence
This section is based on Nieuwstadt [47] and Pope [48].

All incompressible Newtonian flows, including turbulence, are described by
the Navier-Stokes equations:

%[
%C
+ ([ · ∇)[︸    ︷︷    ︸

II

= − 1
�
∇? + �∇2[︸︷︷︸

IV

, (2.1)

with[ the velocity at point x in space, ? the pressure, and � and � the density
and the kinematic viscosity of the fluid. Incompressibility is expressed as
∇ ·[ = 0.

Whether or not aflowbecomes turbulent depends on theReynolds number
Re. This is a dimensionless number that is the ratio between the inertial forces
and the viscous forces, and can be estimated from the corresponding terms in
the Navier-Stokes equations, terms II and IV in equation (2.1). The Reynolds
number is usually expressed as

Re = Uℒ
�

, (2.2)
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Table 2.1: The Kolmogorov scales for three typical dissipation rates found in
cloud turbulence [65]. These values were computed using a kinematic viscosity
of 1.83 × 10−5 m2 s−1; this value is appropriate for the Zugspitze, where, due to the
altitude, the air pressure and density are only 75 % of those at sea level.

& [m2 s−3] � [mm] �� [ms] D� [cm s−1]
0.001 1.57 135 1.2
0.01 0.88 43 2.1
0.1 0.49 14 3.7

withU a typical velocity andℒ a typical length. LowReynolds-number flows
(Re < 1) are dominated by viscosity and are laminar, while high Reynolds-
number flows (Re � 1) exhibit strong non-linearity and are chaotic.

Turbulence is often described as a chaotic flow that is composed of eddies
(vortices) of many different sizes, all of which interact with each other. Energy
is put in at the largest scales, in the so-called energy-containing range. It then
cascades to the smaller scales, which it can do as long as the inertial forces
dominate the viscous forces. This defines the inertial subrange. As energy
cascades to the smaller scales, the viscous forces get ever more important. At
the smallest scale, the dissipative scale, the viscous forces finally dominate and
energy is dissipated. This energy cascade was first described by Richardson
[50].

At the large scale, energy is put into the cascade by interaction of the flow
with its domain boundaries or by some volume stirring mechanism. At this
scale the flow geometry has direct effect on the large scale motions of the
flow. As energy cascades down to smaller scales, this information is lost. As a
result amathematical description of the smallest scales can only depend on the
kinematic viscosity � (unit: m2 s−1) and the rate atwhich energy flows through
the cascade and finally dissipates, the dissipation rate & (unit: m2 s−3). This is
Kolmogorov’s first similarity hypothesis. With only � and & three quantities
can be formed that have units of length, time, and velocity:

� = (�3/&)1/4 (2.3a)

�� = (�/&)1/2 (2.3b)

D� = (�&)1/4 (2.3c)

These are the Kolmogorovmicroscales [33] and they define the smallest scales
present in turbulence. The Reynolds number at the Kolmogorov scale is
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D��/� = 1, which shows that the eddies at that scale dissipate quickly due to
viscous effects. Typical values for the Kolmogorov scales in cloud turbulence
can be found in table 2.1.

Scales within the inertial subrange are small enough that they are not
affected by the boundaries of the flow, but are still too large to be affected by
viscosity. As a result, the mathematical description of these scales can only
depend on the dissipation rate & and the size of the eddies of interest. This is
Kolmogorov’s second similarity hypothesis.

2.1.1 Reynolds equations
Turbulence is described by the Navier-Stokes equations (2.1), but very little
can be proved directly from these equations, not even the boundedness of
its solution [44]. Turbulence is a stochastic phenomenon that must be de-
scribed by statistical quantities. It is not possible to derive effective equations
for these statistical quantities starting from the Navier-Stokes equations; this
circumstance signifies the turbulence problem.

Themost basic statistical quantity is themean velocity field ū = 〈[〉, which
is governed by the Reynolds equations. These are obtained by averaging the
Navier-Stokes equations. They are

%D̄8
%C
+ (ū · ∇)D̄8 = −

1
�

%

%G8
?̄ + �∇2D̄8 −

%

%G 9

〈
D8D9

〉
︸       ︷︷       ︸

V

, (2.4)

with D8 = *8 − D̄8 the fluctuating part of the velocity, ?̄ the mean pressure, and
subscripts 8 and 9 indexing components of a vector. The Reynolds equations
are similar to the Navier-Stokes equations (2.1), except for the Reynolds stress
term (term V). This term introduces extra unknowns and for this reason the
Reynolds equations cannot be solved directly. This is a manifestation of the
turbulence problem.

The turbulent kinetic energy : is defined as

: ≡ 1
2 〈u · u〉 . (2.5)

Pope [48, §5.3] gives an evolution equation for :, from which the definition
for the dissipation rate & can be obtained:

& ≡ �

〈
%D8
%G 9

%D8
%G 9

〉
= 15�

〈(
%D1
%G1

)2
〉
, (2.6)
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where the latter equality holds for isotropic turbulence.
The rms velocity D′

8
is the root-mean-square of the velocity fluctuations D8 .

In isotropic turbulence D′1 = D
′
2 = D

′
3 = D

′, and the turbulent kinetic energy is
: = 1

2 (D′21 + D′22 + D′23 ) =
3
2D
′2.

2.1.2 Structure functions
Another statistical quantity is the structure function. Explicit expressions
for the structure functions can be found based on theoretical considerations.
They can easily be measured in experiments and are often used to verify that
a given flow is in fact turbulent. Furthermore they can be used to estimate the
dissipation rate.

The second-order structure functions are defined as:

�8 9(r , C) ≡
〈
[D8(x + r , C) − D8(x , C)] [D9(x + r , C) − D9(x , C)]

〉
. (2.7)

In isotropic turbulence the structure functions �8 9 can be written in terms of
the longitudinal structure function �!! and the transverse structure function
�## :

�8 9(r , C) = �## (A, C)�8 9 + [�!!(A, C) − �## (A, C)]
A8A 9

A
. (2.8)

According to Kolmogorov’s second similarity hypothesis, for separations A in
the inertial subrange, the form of the structure function can only be a function
of & and A. The only dimensionally correct combination that can be formed is

�!!(A, C) = �2(&A)2/3 , (2.9)

with �2 = 2.12 an empirically determined, universal constant. For the trans-
verse structure function, it can be shown that in the inertial subrange

�## (A, C) = 4
3�!!(A, C). (2.10)

An example of second-order structure functions measured in wind tunnel
turbulence is shown in figure 2.1. These structure functions are compensated,
i.e. scaled by (&A)2/3, so that they show a plateau in the inertial subrange. The
second-order structure functions can be used to determine the dissipation rate
of a turbulent flow. This is done by first scaling the structure functions with
A2/3, so that the inertial-subrange plateau appears. The dissipation rate is then
determined from the height of the plateau. This method is used in chapter 6.
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Figure 2.1: Second-order structure functions from wind tunnel experiments. The
horizontal axis is scaled by the Kolmogorov length scale. These structure functions
are compensated, i.e. the vertical axis is scaled by the inertial range energy (&A)2/3.
The plateaus correspond to the inertial range. (Source: Saddoughi and Veeravalli [54,
fig. 18].)
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r

f
1

λ f

Figure 2.2: A sketch of the longitudinal velocity autocorrelation function showing
the definition of the Taylor mircroscale � 5 . (Source: Pope [48, figure 6.7].)

2.1.3 Two-point velocity autocorrelation
A third statistical quantity is the velocity autocorrelation function. The ve-
locity spectra (see next section) and a number of length and time scales are
computed from this quantity. The two-point velocity autocorrelation func-
tions are generally defined as:

'8 9(r , C) ≡ 〈D8(x + r , C)D8(x , C)〉 . (2.11)

In isotropic turbulence this function can again be written in terms of a longi-
tudinal ( 5 ) and transverse (6) autocorrelation function:

'8 9(r , C) = D′2
(
6(A, C)�8 9 + [ 5 (A, C) − 6(A, C)]

A8A 9

A

)
, (2.12)

A typical longitudinal autocorrelation function is sketched in figure 2.2. From
the autocorrelation functions two length scales can be computed. The first is
the integral length scale !. It is computed as the integral of the autocorrelation
function:

!11 =

∫ ∞

0
5 (A, C)dA. (2.13)

This is the longitudinal integral length scale; its transverse counterparts !22
and !33 are computed from 6, and in isotropic turbulence they are equal to
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half of !11. The integral length scale is the characteristic length scale of the
large eddies.

The second length scale that can be computed is the Taylor length scale
�. It is computed from the zero-crossing of the parabola that osculates the
autocorrelation’s peak. This is shown in figure 2.2. Two Taylor length scales
can be computed: � 5 based on 5 and �6 based on 6. The Taylor length scale
is intermediate in size between � and !. It does not have a clear physical
interpretation, but is very well-defined and is often used, in particular in the
Taylor Reynolds number,

Re� ≡
D′�6

�
, (2.14)

which is traditionally used to characterise grid turbulence. The Taylor scale
is related to the dissipation rate, �2

6 = 15�D′2/&, so that the Taylor Reynolds
number can be written as

Re� =
√

15D′4
&�

. (2.15)

The velocity autocorrelation functions are related to the second-order
structure functions as follows:

�88(A, C) = 2['88(0, C) − '88(A, C)] (2.16)

2.1.4 Velocity spectra
The three-dimensional energy spectrum �(�) measures the kinetic energy at
a wavenumber �. In experiments it is difficult to measure, because it requires
knowledge of the entire velocity field. The one-dimensional spectra �88(�1)
are much more accessible; they are defined as

�88(�1) ≡
1
�

∫ ∞

−∞
'88(e1A1)4−8�1A1dA1 (2.17)

In the inertial subrange, �88 can only be a function of & and �1. The only
dimensionally correct combination of these is

�11 = �1&
2/3�−5/3

1 , (2.18)

with �1 ≈ 0.5 an experimentally determined constant. This is the famous
Kolmogorov − 5

3 spectrum.
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∝ �−
5
3

Figure 2.3: 1-D energy spectra from several experiments. The axes are scaled by
the Kolmogorov length scale � and the dissipative scale energy (&�5)1/4. The inertial
subrange, in which the Kolmogorov − 5

3 law holds, can readily be identified. (Source:
Saddoughi and Veeravalli [54, figure 9].)
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A number of 1-D longitudinal (8 = 9 = 1) energy spectra are shown in
figure 2.3. The horizontal axis is scaled by the Kolmogorov length scale
�; the vertical axis is scaled by the dissipative scale energy (&�5)1/4. The
spectra clearly show the inertial subrange, in which the Kolmogorov − 5

3 law
holds. Furthermore the dissipative scale, in which the energy decreases much
faster than �−5/3, can be seen for �1� & 0.1. Due to the scaling the inertial
subranges collapse, as do the dissipative ranges; this shows the universality
of the Kolmogorov scales and the Kolmorogorov − 5

3 spectrum. Finally the
energy containing range can also be seen; it is where each curve levels off at
the left hand side of the graph.

2.2 Droplet kinematics
For particle-laden flows the Navier-Stokes equations must be augmented by
an equation of motion for the discrete particles. Furthermore terms must be
added that account for the interplay between the fluid velocity field and the
particle motion. For very dilute suspensions of point-like particles, the effect
of particles on the fluid may be omitted (called one-way coupling), whereas for
dense suspensions or large particles, the motion of the particle fraction reacts
back on the fluid, (called two-way coupling). Evenhigher number densitiesmay
introduce particle-particle interactions, a regime known as four-way coupling.
In clouds the number density is low, and one-way coupling can be assumed.

Maxey and Riley [41] derive the equations of motion for a small rigid
sphere in a flow:

<?
dE8
dC = (<? − < 5 )68

(I)
+ < 5

DD8
DC

����(II)
y(C)

− 1
2< 5

d
dC

{
E8(C) − D8[y(C), C] − 1

10 0
2∇2D8 |y(C)

}(III)
− 6�0�{E8(C) − D8[y(C), C]

(IV)
− 1

6 0
2∇2D8 |y(C)

(V)
}

− 6�02�

∫ C

0
d�

(
d/d�{E8(�) − D8[y(�), �] − 1

6 0
2∇2D8 |y(�)}

[��(C − �)]1/2

)(VI)
.

(2.19)

Here <? is the particle mass, < 5 is the displaced fluid mass, 0 is the particle
radius, y is the particle position, v is the particle velocity, u is the undisturbed
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flow velocity, � is the fluid’s dynamic viscosity, and 68 is the gravitational
acceleration. The numbered terms are:

I buoyancy,
II local fluid acceleration,
III added mass term,
IV Stokes drag,
V the Faxén correction term, and
VI the Basset history term.

Several of these terms can be neglected. Since this study concerns droplets in
air the particle density �? is much larger than the fluid density � 5 , and hence
<? � < 5 . Consequently terms II and III can be neglected.

The Faxén correction term (term V) accounts for forcing due to velocity
gradients along the surface of the spehere. When the sphere is much smaller
than typical scales in the flow, the Kolmogorov length scale � in this case, this
term can be neglected. In this study typical particle diameters are 40µm and
� = 700µm, so this term is neglected.

The Basset history term (term VI) accounts for the changing boundary
layer around the sphere in an unsteady flow. Such boundary layers need time
to develop, hence this term is called the history term. It has an 02 prefactor,
which is very small given typical particle diameters in this study and therefore
this term can also be neglected. Equation (2.19) now reduces to:

<?
dE8
dC = (<? − < 5 )68 − 6�0�

{
E8(C) − D8[y(C), C]

}
(2.20)

Taking into account that <? � < 5 , this can be rewritten as follows:

dE8
dC = 68 −

1
�?

{
E8(C) − D8[y(C), C]

}
, �? =

<?

6�0� , (2.21)

with �? the particle relaxation time. Whether or not the buoyancy term (term
I) can be neglected, depends on the ratio of the settling velocity and turbulent
fluctuations. The settling velocity E) can be found from the above equation
by setting dE8/dC = 0 and D8 = 0. This gives

E) = �? 6, (2.22)

Typical cloud droplets have a radius 0 of approximately 20µm. For these
droplets �? = 5 ms, so the settling velocity is at most 5 cm s−1, which is less
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than 5 % of the typical rms velocity D′. Therefore the buoyancy term can also
be neglected.

The particle mass can be expressed in terms of particle density �? and
diameter 3? , and substituted in the equation for �? :

�? =
�?32

?

18� . (2.23)

Since �? and � are constant �? only depends on the particle diameter.
The dimensionless number �?/�� is called the Stokes number (St). It

determines how fast a particle responds to changes in the surrounding flow.
A low Stokes number, St � 1, means the particle responds immediately, and
hence follows the flow exactly. Such particles are also called tracer particles or
simply tracers. Particles with Stokes number ∼ 1 or larger lag behind the flow
field.

2.3 Cloud droplet growth
This section is based on review articles by Shaw [60], Devenish et al. [14] and
Grabowski and Wang [24], and on the books by Wallace and Hobbs [67] and Prup-
pacher and Klett [49].

The formation and growth of cloud droplets is divided into three phases:
activation, condensational growth, and collision–coalescence. The first phase,
activation, starts when moisture in a supersaturated patch of air condenses
onto solid, sub-micron aerosol particles (cloud condensation nuclei, or CCN),
creating miniscule droplets. The growth rate of these droplets is a balancing
act between the air’s supersaturation, the concentration of dissolvedmaterials,
and the droplets’ current size. Larger droplets have lower concentrations of
salts, which causes growth to slow down or even stall. On the other hand,
larger droplets have lower surface curvature, so their growth is less hindered
by surface tension. Once droplets reach a certain critical size, the latter effect
becomes dominant, and further growth becomes a runaway process. At this
point the CCN is said to be activated.

As long as the air is supersaturated, humidity condenses onto the droplets
and keeps adding to their volume. The rate at which this happens is inversely
proportional to the drop’s size, i.e. 0−1, and hence is less effective for larger
droplets. For droplets with radii larger than 15µm, condensational growth is
deemed ineffective [14].



24 CHAPTER 2. THEORY

Finally, once the droplets get large enough to be sufficiently affected
by their inertia and/or by gravity, they further grow through collision–
coalescence with other droplets.

The combined effect of these three phases is described by the evolution
equation for the droplet size distribution. Let 5 (0) be the number density of
droplets with radii between 0 and 0 + d0, then

% 5 (0)
%C

= �(0) −
%[ ¤0 5 (0)]

%0

−
∫ ∞

0
 12(0, 0′) 5 (0) 5 (0′)d0′

+ 1
2

∫ 0

0

02

0′′2
 12(0′′, 0′) 5 (0′′) 5 (0′)d0′.

(2.24)

The first term on the right side is a source term that models activation. The
second term corresponds to condensational growth, with ¤0 the growth rate.
The third and fourth term represent collision–coalescence. The third term
models the decrease in number density of drops of radius 0 due to collision–
coalescence with drops of radius 0′, while the fourth termmodels the increase
in number density as a result of collisions between smaller droplets of radii
0′ and 0′′ = (03 − 0′3)1/3. The factor 1/2 accounts for the fact that the integral
counts collisions twice: once between drops with radii 0′ and 0′′, and once
more with those radii swapped.  12 is the collection kernel; it describes how
many collision–coalescences per unit volume occur between droplets of radii
01 and 02.

For two droplets to collide and coalesce, three things need to happen: (1)
they need to undergo a geometric collision, (2) the hydrodynamic interactions
must allow the droplets to truly collide, and (3) the surface properties must
allowcoalescence to occur. The exactmeaningof eachof these is best described
by considering the case of twodroplets, with radii 01 > 02, settling in quiescent
air, as is done below. It must be noted, though, that these concepts also apply
to turbulent collision–coalescence.

Settling droplets are said to undergo a geometric collision if their horizontal
distance is less than ' = 01+ 02. The corresponding geometric collision cross-
section is�'2. This is shown in the left of figure 2.4. The proportion of droplet
pairs that undergo geometric collisions is given by the collision kernel Γ12, so
that

〈N12〉 = 〈=1〉 〈=2〉 Γ12 , (2.25)
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E)1

E)2

A2 = 01 + 02 H2

�A2
2 �H2

2

Figure 2.4: Twodropletswith radii 01 > 02 settling in quiescent air. In both figures the
droplets will undergo a grazing collision. Left: without hydrodynamical interactions;
the droplets are said to undergo a geometrical collision. The geometrical collision
cross-section is �'2, with ' = 01 + 02. Right: with hydrodynamic interactions. The
larger droplet will push the smaller one aside, and as a result the effective collision
cross-section�H2

2 is smaller. Figure inspired byPruppacher andKlett [49, figure 14.1].
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with 〈N12〉 the average collision rate per unit volume, and 〈=1〉 and 〈=2〉 the
average number densities of droplets with radii 01 and 02.

Each droplet produces a disturbance flow, whichwill generally repel other
droplets coming near it; this is called hydrodynamic interaction (HI). As a result
of the hydrodynamic interaction, two droplets that undergo a geometric col-
lision, might not in fact truly collide. For them to truly collide, the horizontal
distance between them needs to be at most H2 , with H2 < '. The effective
collision radius �H2

2 is therefore smaller than the geometric collision radius
�'2. The ratio of these is the collision efficiency �12 = H2

2/'2. The effect of
hydrodynamic interaction on two settling droplets is sketched in the right of
figure 2.4.

Finally, if the droplets collide, a thin layer of air might get trapped between
the two surfaces, preventing coalescence. This process is characterised by
a coalescence efficiency �′12, which is better than 0.9 for cloud droplets [67,
fig. 6.22]. It is difficult to experimentally distuingish between the collision
efficiency and the coalescence efficiency. Therefore, and because �′12 ∼ 1 for
cloud droplets, the coalescence efficiency will not be considered any further
in this work.

Given the collision kernel Γ12 and the collision efficiency �12, the collection
kernel  12 can be computed,

 12 = Γ12�12 , (2.26)

so if accurate expressions for Γ12 and �12 were available, equation (2.24) could
be used to predict the cloud droplet growth rate and the onset of precipitation.
The aim of this thesis is provide experimental data on the collision kernel Γ12.

2.3.1 The collision kernel
The collision kernel for droplets settling in a quiescent flow, is easy to deter-
mine. Consider a single droplet of radius 01 that is settling in a collection of
dropswith radius 02 < 01 and average number density 〈=2〉. In this paragraph
“droplet” refers to a droplet with radius 01, while “drop” refers a droplet with
radius 02. Their respective settling velocities are E)1 and E)2. In a short period
of time dC, the droplet will collide with all drops present in the volume that
is swept by the droplet in that time. The swept volume equals the collision
cross-section �'2 times the differential settling distance |E)1 − E)2 |dC. This is
the shaded volume in figure 2.5. The number of drops in that volume is thus
〈=2〉�'2 |E)1 − E)2 |dC. Up till now only a single droplet was considered. If
there are many droplets with average number density 〈=1〉, then the collision
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|E)1 − E)2 |dC

01

A2 = 01 + 02

�A2
2 |E)1 − E)2 |dC

Figure 2.5: A droplet of radius 01 settles in a collection of droplets of radius 02 < 01.
Their respective settling velocities are E)1 and E)2. The collision cross-section is �'2,
with ' = 01 + 02. All droplets of radius 02 that are present in the shaded volume will
collide with the droplet of radius 01 within a short period of time dC.

rateN12 per unit volume is given by

N12 = 〈=1〉 〈=2〉 �'2 |E)1 − E)2 |, (2.27)

so that the collision kernel is Γ12 = �'2 |E)1 − E)2 |.
The collision kernel for two populations of droplets in a turbulent flow can

be found following a similar approach [68]. The resulting collision kernel is

Γ12 = 2�'2 〈|FA(A = ')|〉 612(A = '), (2.28)

with FA the radial relative velocity (RRV), which is a measure for the speed at
which droplets approach each other, and 612 the radial distribution function
(RDF), which measures the clustering of droplets. The radial relative velocity
FA of a pair of droplets is given byw · r̂ , withw = v2 −v1 the relative velocity,
and r̂ the unit vector corresponding to the separation vector r = x2 − x1.

The radial distribution function is defined as

612(A) ≡
#12,A/Δ+A
#/+ , (2.29)

with #12,A the number of pairs of droplets with radii 01 and 02 separated by a
distance A,+A the volume of a spherical shell with radius A, # the total number
of pairs in the system, and + the system’s volume [57]. In other words, it is
the ratio of the actual number of pairs of droplets separated by a distance A,
to what it would have been in a uniform suspension.
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To evaluate the collision kernel (2.28), the RDF and the RRV must be eval-
uated at droplet-touching distance A = '. While this is possible in numerical
simulations, in experiments it is difficult to resolve droplets at this distance.
The usual approach is therefore to assume some functional form for 612, that
can be fitted to experimental data for A � ' and extrapolated to A = ' [24].
This is the approach that is followed in chapter 7.



Chapter 3

Setup

Part of this chapter will be submitted as part of an article to Review of Scientific
Instruments.

An overview of the experiment is shown in figure 3.1. In this chapter each
of the main features of the experiment are briefly discussed, starting with its
location (section 3.1). Then the seesaw is instroduced: this is the rail system
that allows compensating for the mean wind, called seesaw for its ability to
tilt. The camera box forms the heart of the particle tracking setup; it is not
discussed here, but in chapter 4, which is devoted to the particle tracking setup
and method. In section 3.3 the control and data acquisition are discussed.
Finally, in section 3.4, some of the other instruments that are available to us
are introduced.

3.1 Location
The experiment is situated on top of the environmental research station
Schneefernerhaus, at a height of 2650 m in the German Alps. Fig. 3.2 shows
the topography of its immediate surroundings, while the inset of Fig. 3.1
shows the location of the experiment on top of the Schneefernerhaus. The
Schneefernerhaus is located on a southern slope immediately south-west of
Mt. Zugspitze. It looks over a relatively flat area, that is bordered to the north,
south, andwest by amountain ridge. Directly to the west of the Schneeferner-
haus the mountain ridge has a low spot due to wind erosion, which is called
the wind hole. To the east the landscape slopes down into a valley. The wind

29
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Camera box

Laser beam expander

Rails and permanent magnets

Table and electromagnets

Seesaw

Support structure

Lockable, telescoping cylinder

Emergency shock absorbers

Pivot

G, westH, south

I

Figure 3.1: Top: A computer render of the experiment. The seesaw supports a pair
of 6.5 m long rails, along which slides an aluminium table that supports the camera
box. The seesaw, rails, and table together form a linear motor that can be used to make
the LPT setup move with the mean wind. In case of failure of the motor or motor
controller, shock absorbers at either end of the rails prevent damage to the apparatus.
The seesaw can tilt by ±15°, and can be locked in place using two pairs of stiff,
lockable, telescoping cylinders. Bottom: A photo of the experiment. When this photo
was taken, the seesaw was not in use. To protect it from unnecessary exposure to the
elements, most of it was covered. Bottom inset: Location of the experiment on the
Schneefernerhaus. This photo is taken from the East.
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Wind hole

Descent
Into valley

W N

ES

Mt. Zugspitze

Figure 3.2: Topography near the Schneefernerhaus. The Schneefernerhaus is located
in the German Alps, immediately south-west of Mt. Zugspitze, and looks over a
large, flat area, that is bordered to the north, south, and west by a mountain ridge.
Immediately to the west of the Schneefernerhaus the mountain ridge has a low spot,
called the wind hole. To the east the landscape descends into a valley. Image credit:
map: Google ©2021, GeoBasis-DE/BKG (©2009), Inst. Geogr. Nacional; aerial:
https://www.alpinforum.com/forum/viewtopic.php?f=7&t=19048&start=50.

https://www.alpinforum.com/forum/viewtopic.php?f=7&t=19048&start=50
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hole and the valley determine the typical wind direction at the Schneefern-
erhaus: either easterly or westerly, but always blowing in between the wind
hole and the valley.

Risius et al. [52] investigated suitability of this location for cloud turbulence
research. Based on data of the German Weather Service (DWD) from 2000–
2012, they found the wind is indeed predominantly easterly or westerly. They
furthermore found that clouds are likely to be present more than 25 % of
the time in summer (April–September), with a peak of 30 % in July. Finally
they measured turbulence statistics using five sonic anemometers. Typical
dissipation rates obtainedwere 1 cm2 s−3 to 100 cm2 s−3, themode of the Taylor
Reynolds number was ∼ 3000, and in terms of isotropy the flow was found to
be similar to laboratory flows. Siebert et al. [61] did further measurements to
characterise the cloud–turbulence interaction at the Schneefernerhaus. They
again found that the small-scale turbulence is close to homogeneous and
isotropic, and the cloud–turbulence interactions are comparable to those in
free-atmospheric clouds under continental conditions. They concluded that,
together with the results of Risius et al. [52], the Schneefernerhaus is a suitable
location for Langrangian measurements of cloud droplets in turbulence.

3.2 Seesaw and vibration damping
The seesaw allows us to compensate for the mean wind. It supports the rails
on which the table slides; see Fig. 3.1. It has been designed for velocities up
to 7.5 m s−1 and accelerations up to 28 m s−2. It also withstands emergency
stops, which occur for instance if the linear motor fails and the table runs into
the endstops; in such events the deceleration can reach up to 230 m s−2.

A sliding table is mounted on a pair of rails on the seesaw. It is driven
with a linear motor that is part of the Bosch-Rexroth IndraDyn L series, a
series of industrial three-phase synchronous motors. The motor is controlled
by a Bosch-Rexroth IndraDrive C series controller, which is installed in a
cabinet in the laboratory, two floors below the experiment. At its heart it has
a set of cascaded PID controllers that control the motor position by setting
the motor current, taking maximum velocity, acceleration, and jerk (third
derivative of the position with respect to time) into account. The IndraDrive
controller allows automated, real-time control, either by loading a motion
control programme into it, or through a real-time bus such as CANopen.

Moving the LPT setup over rails causes vibrations that are detrimental
to the particle tracking. To prevent these vibrations from reaching the cam-
era box, the box is suspended from four extension springs Z-195I made by
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Figure 3.3: The camera box’s suspension and buffers. Left: the buffers are adjusted,
so when accelerating or decelerating, they push the box at the height of its centre of
mass. Middle: overview of the springs and buffers; this viewing angle is comparable
to the one in Fig. 3.1. Right: the camera box is suspended with extension springs.
The springs are adjusted so that the camera box is level, and the spring attachment
points are level with the box’s centre of mass.

Gutekunst Federn with spring constant 6.07 N/mm and unstressed length
149 mm. The height of the spring attachments to the box can be adjusted to
be at the height of the box centre of mass, which prevents the box from tilting
during acceleration and deceleration. To limit the amplitude of the swing
of the camera box during the acceleration and deceleration phase, the box is
further constrained by six pairs of rubber buffers (see Fig. 3.3). The buffers’
height can be adjusted so that they are level with the box’s centre of mass.

The seesaw has not been used for the results presented in this thesis. A
further discussion of the seesaw and some of the effort that went into it is
therefore omitted here, but can be found in appendix D.

3.3 Control and data acquisition
The experiment is controlled by a small computer cluster that is installed in
a laboratory two floors below the apparatus. It consists of a main node, 6
compute nodes, and 2 storage nodes, each of which is connected to 10 Gbit
Ethernet switches, and contains 35 TB of storage. The cameras are also con-
nected to the 10 Gbit network, through which they are controlled and read
out. The main node runs a Python code that controls and triggers the cam-
eras, controls the box’s window shutters, monitors the box’s environmental
parameters, and controls the laser. After an experiment the compute nodes
download videos from the cameras to their internal hard drives. This takes
approximately 40 seconds, which is the limiting factor for the experiment’s
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repetition rate. The videos are then copied to both storage nodes. After a
measurement campaign the disks from the second storage node are taken out
and transported to Göttingen, where data analysis takes place.

3.4 Other instruments
• Trumpf Laser. This fibre-coupled laser is used to illuminate the mea-

surement volume. It is controlled by a Python code running on the
cluster’s main node, using OPC-UA [20] over Ethernet.

• Thies Clima 3D sonic anemometer. This sonic anemometer provides
high resolution wind velocity measurements. It is used in chapter 6 to
determine the turbulence statistics.

• Lufft WS500-UMB compact weather station. This weather station mea-
sureswind speed and direction, temperature, and humidity, all ofwhich
is logged at a very low temporal resolution (0.1 Hz). Data from this
weather station is used to asses the weather conditions. The Lufft
weather station is interrogated by a Python code running on the cluster’s
main node, using a binary protocol over RS-485.

• Artium PDI-FPDR PDI probe. This PDI probe measures droplet size
and a single velocity component. The probe has been used on all mea-
surement campaigns. During the last measurement campaign it was
noticed that its windows tend to get wet, and as a result the data quality
is not reliably high. Furthermore the probe’s software is painful to work
with. Data from this probe was meant as a reference for the droplet
sizing method that is developed in chapter 5, but for aforementioned
reasons was not used.



Chapter 4

Particle tracking

Part of this chapter will be submitted as part of an article to Review of Scientific
Instruments.

4.1 Setup

4.1.1 Camera Box

The camera box is a custom-built, vibration-damped aluminium box hous-
ing the high-speed cameras used for the Lagrangian particle tracking (see
Fig. 4.1). The box has been designed in such a way to minimize its total
weight and cross-sectional area exposed to the wind, while at the same time
being extremely rigid and able to fit three Vision Research v2511 cameras
with their corresponding optics. Further streamlining of the box would have
added a lot of complexity in terms of fabrication, usability, and serviceabil-
ity, but if the current shape of the box proves to be problematic, lightweight
streamlining elements, made out of e.g. styrofoam, can be added. The box’s
main components are 24 aluminium parts providing the rigid skeleton, 3
window sub-assemblies through which the cameras observe the measure-
ment volume, and 6 transparent polycarbonate plates that provide visual and
manual access to the box in case of malfunction. Its external dimensions are
930 mm × 720 mm × 360 mm and internally the box is subdivided into three
upper sections containing one camera each, and three lower sections which
contain the camera power supplies, Ethernet and trigger cables, cooling hoses,
Arduino control unit, and temperature, humidity, and acceleration sensors.

35
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Figure 4.1: Rendering of the camera box and laser beam expander. The top compart-
ment of the box houses the three cameras, optics, mirrors, and window sub-assemblies;
it is completely made of aluminium to provide stiffness. The bottom compartment
houses power supplies and control electronics; it has acrylic glass windows that pro-
vide visual access and can easily be removed for manual access.

The maximum weight of the camera box is in principle limited by the
maximum payload that can be moved by the seesaw motor. However, more
restrictive practical limits were imposed by the need to carry the box up to
the roof manually through a narrow staircase which allowed only two people
to carry the box at a time. For this reason, the weight of the box without
cameras or beam expander (see below) was kept below 60 kg. Even so, should
the movable table crash into the emergency shock absorbers, very large forces
would be generated both at the braces keeping the box above the table, and at
the pillars fixing the seesaw to the roof. This lead to the current orientation
of the box with its longest side parallel to the direction of motion. It was
also considered to have the box stand upright, with its longest side vertical,
however in such an orientation the torque applied on the table during a crash
into the emergency shock absorberswould put a too large strain on the system.

The disadvantage of the current box orientation is that the optical access
windows, which separate the inside and outside of the camera box, are more
exposed to the effects of precipitation. A two-tier mechanism was designed
to lower the risk of a water droplet residing in the optical path and thus
deteriorating the quality of the images obtained. Each window is mounted at
the lower end of a short tube (see Fig. 4.2), with the inner diameter of 24 mm
just large enough to not interferewith any of the light rays between the camera
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Figure 4.2: Side view of the camera objective held in place by the two holders, the
adjustable mirror assembly and the optical access assembly. The top of the optical
access assembly is closed off with a motorised movable lid. Inset: a section of the
bottom of the optical access assembly. The window is located at the bottom of this
assembly.

apertures and themeasurement volume. The tubes are oriented along the line
of sight of the cameras, that is at 30° with respect to the vertical. Their upper
ends are cut vertically to decrease the chance of a raindrop entering the tube,
and are capped by movable lids. The lids open only for the duration of each
video capture and close during the much longer duration of the data transfer.
Moreover, a powerful streamof air is injected at the higher endof eachwindow
to remove any droplets that might still make their way through the tube. On
the lower end of each window the air and any liquid collecting there is sucked
out and removed from the camera box. To aid the water removal process, the
windows are coated with a hydrophobic coating.

The box is supplied with a steady small stream of dry air to prevent
water condensation on the underside of the windows. Currently the box
is not temperature controlled. On a typical cloudy day when data can be
taken, the outside temperature is between 0 ◦C to 5 ◦C and the temperature
within the box equilibrates to 30 ◦C to 45 ◦C after a few hours of operation,
depending on the mean wind speed. These temperatures are within the
operation range of the cameras, which is from −10 ◦C to 50 ◦C, as is the typical
minimum inside temperature at dawn, so no cooling or heating is required
for operation. It is possible that on a warm day with low wind speed the
inside temperature could get too close to the upper operational limit, so there
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Figure 4.3: Measurement volume of the particle tracking setup, defined as the set of
points visible by all three cameras, as seen from (a) the top, (b) the front (west), (c)
the side (north) and (d) a general direction. The lines have the same colours between
all figures; this might help in interpreting the various views.

are cooling channels running through the camera base plates which can help
bring the inside temperature down; however the use of this cooling systemhas
not been necessary so far. The temperature fluctuations do affect the camera
calibration, but the changes are small enough to be removed by self-calibration
without any adverse effects on the data quality.

4.1.2 Optics
The ideal particles for particle tracking are so small, that each of the multiple
glare points that a single particle has, overlap on the camera sensors. The
distance between the glare points is proportional to magnification × particle
size, and since the size of the cloud droplets cannot be controlled, an optical
system with a small magnification should be used. But to see droplet pairs
at distances where they nearly touch each other, a large magnification is
required. The present experiment has a magnification of 28µm px−1, which
means that if diffraction effects are ignored, a typical cloud droplet is of the
order of 1 px on the sensor. To provide the desired level of magnification,
each camera is equipped with two 2× teleconverters and a Nikon 200 mm
objective. To prevent sagging and any lateral motion of the objectives during
box movement, each objective is supported on one end by a finely adjustable
clamp ring and on the other end by three plastic adjustment screws. The
cameras are also firmly bolted to the base plates underneath them.

Toadjust theviewingangle of the cameras, eachupper section also contains
an 85 mm × 60 mm mirror housed within a custom-built mirror holder (see
Fig. 4.2). The holder can be rotated along a vertical axis and the mirror tilt can
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be finely adjusted using a fine-threaded adjustment screw. Once the desired
rotation and tilt of the mirror is reached, this orientation can be kept in place
by tightening a set of fixing bolts. The disadvantage of this holder design is
that all adjustments need to be performed manually before the box is closed
off.

The resulting measurement volume is diamond-shaped and measures
about 16.6 cm3; see Fig. 4.3. If one allows particles to be triangulated by
less than 3 cameras, the usable volume is much larger, however in a large
portion of it the particles are so much out of focus that they are hard to detect
and their positions are obtained with large uncertainty.

4.1.3 Illumination
The requirement of a typical particle residence time on the order of a Kol-
mogorov time, with its most likely value of 30 ms, and typical fluctuating
velocity of roughly 2 m s−1, led to a choice of a rather large measurement
volume with the largest horizontal diameter of around 35 mm.

Achieving adepth of field comparablewith thedimensions of themeasure-
ment volume, while simultaneously maintaining acceptable levels of signal to
noise ratio even at the lower end of the droplet size range of interest across
the measurement volume, requires a very powerful source of light. We use a
Trumpf TruMicro 7240 laser with a wavelength of 515 nm, a maximum pulse
energy of 7.5 mJ, and a pulse length of 300 ns. Although at higher repeti-
tion rates the laser can achieve a light power output of 300 W, at the lower
repetition rates it is limited by the maximum pulse energy and thus for our
purposes (i.e. sampling rate of 10 kHz) the light power output is effectively
75 W.

The beam coming out of the laser head first passes through a diverging
lens in order to reach the desired beam diameter within the small amount of
space available in the beam expander. It then passes through a converging
lens which makes it nearly parallel with diameter of approximately 39 mm.
The beam finally passes through an optical diffuser, the function of which is
to smooth the dependence of the intensity of scattered light on the scattering
angle, and thus simplify the process by which the droplet size is deduced. As
the beam leaves the beam expander, it is clipped from both sides so it becomes
narrower in the G-direction. By doing so it fits the shape of the measurement
volume better; in particular the volume that is illuminated but not seen by all
cameras, is reduced. The beam’s profile at the measurement volume is shown
in Fig. 4.4. There, the relative light intensity within the laser beam is plotted
as a function of the position within its cross-section. The intensity data were
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Figure 4.4: Dependence of the relative laser beam intensity on the location within its
cross-section. The maximum extent of the measurement volume is indicated by the
dashed line.

obtained from the tracking data by comparing instantaneous particle intensity
with its mean value over its whole trajectory. Thus, data are available only for
positions within view of at least two cameras, where triangulation is possible.
The profile is nearly flat, with a slight asymmetry most likely due to a slight
offset of the laser head from the optical axis of the other optics, and a smooth
decrease of intensity at the edges due to the diffuser.

4.1.4 Camera positions and viewing angles
The amount of light is still a major limiting factor, so the geometry of the
camera orientations with respect to the laser beam was adjusted to obtain
the most favourable image quality whilst keeping the camera aperture di-
ameter constant. The decisive parameter that sets the limits on maximum
tractable seeding density and the uncertainty of the triangulated particles’
three-dimensional position, is the mean variance of the positioning error of
particle images on the sensor, �2

2D. For a given image, �2
2D ∼ �2

#
/ℐ2, where

�2
#

is the total variance of camera thermal and shot noise and ℐ is the total
intensity of the given particle image on the sensor. In this experiment, the
dominant source of noise is usually the shot noise, so �2

#
∼ ℐ. Thus, for fixed
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aperture size and camera orientation, �2
2� ∼ 1/ℐ.

The image intensity is sensitively dependent on the scattering angle, that is
the angle between the laser beam direction and the camera viewing axis. Al-
though the dependence is non-monotonic for water droplets due to construc-
tive and destructive interference between the refracted and reflected beams
that reach the aperture, due to the use of a diffuser and a finite aperture size,
these variations are mostly smoothed out. The dependence of the scattered
light intensity on the scattering angle � can then roughly bemodelled as expo-
nential: ℐ (�) ∼ exp (−2��) with 2� ≈ 3.55 rad−1 so that the intensity roughly
halves with increase of � by 11°. The rate constant 2� was obtained from a fit
to Lorentz-Mie scattering curves.

While making the scattering angle as small as possible will generally keep
the particle image intensities large, it is not optimal for minimising the trian-
gulation error due to the resulting geometry of the camera orientations: when
all camera view axes are at a small angle with respect to the beam, they are
necessarily also at a small angle to each other, and a small change in the parti-
cle image position on a given sensor can lead to a large shift in the component
of the triangulated 3D-position along the laser beam direction. This geomet-
ric effect can be modelled by assuming the cameras are placed symmetrically
with respect to the laser beam, at equal distances from the measurement vol-
ume, so that the angle between the view axes of any camera pair is the same,
and that each camera view axis is at an angle of � to the laser beam. It can be
shown that the components of the three-dimensional particle position error
variance are �2

G = �2
H ∼ 2

3�
2
2�/

(
1 + cos2 �

)
and �2

I ∼ 1
3�

2
2�/sin2 �. Here, the

I-direction points along the laser beam. Thus, while small � decrease the
variance of the position error components perpendicular to the laser beam, in
the direction along the beam small � lead to a catastrophic amplification of
the error.

Combining the effects of camera orientation geometry and the scattering
light intensity yields

�2
G = �2

H ∼ 2 exp(2��)/(1 + cos2 �);
�2
I ∼ exp(2��)/sin2 �.

Optimising the total variance �2
G+�2

H+�2
I leads to an optimal angle of� = 22.6°.

In order to accurately measure settling effects and the vertically-condi-
tioned radial distribution function, a high accuracy in the vertical direction is
needed. As the laser beam is pointing nearly vertically, �2

I can be optimised,
which leads to an optimal angle of � = 29.4°. The geometry of the camera
box is designed for intended camera view axes at 30° to the vertical. In reality,
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due to a slightly asymmetric placement of the measurement volume above
the camera box, the actual view axes are at (30.4 ± 0.4)° to the vertical.

It should be noted that the considerations of position error variance apply
only to the particles with image intensity low enough to not saturate the
sensor pixels. In our case, the smallest drop which can possibly lead to
saturation (grayscale level of near 4096) when perfectly in focus has diameter
of approximately 23µm. This number was obtained using the droplet sizing
method described in chapter 5, combined with a model for a droplet’s point
spread function. For larger droplets, the optimum angle would be closer to
the one obtained by geometric considerations only, which is 54.7° (cameras
view axes perpendicular to each other).

4.2 Method
During the winter the camera box and cameras are in Göttingen. For the
measurement season, that typically runs from May till September, they are
transported to the Schneefernerhaus. At the beginning of the season the
camera box is assembled and put on the roof of the Schneefernerhaus. It is
removed and partly disassembled at the end of the season. Calibration is
done regularly, typically once every measurement campaign, so that if the
optics lose alignment, whatever the reason may be, it is discovered early. Box
assembly, calibration, and the procedure for a single experiment are described
below.

4.2.1 Start of season
1. In the laboratory at Schneefernerhaus: put cameras, objectives, mirrors

in the camera box and secure everything. Install the calibration rig.
Focus the cameras, and align the mirrors. Once satisfactory alignment
is reached, remove the cameras and objectives. This last step reduces
the weight of the box, so it can be carried up the stairs to the roof.

2. Carry the box to the roof, and put it on the seesaw.

3. Put the cameras and objectives in the box and secure them. Connect the
cameras to 10 Gbit Ethernet, BNC trigger cable, BNC frame sync cable,
BNC time code cable, and power. The frame sync cable goes to the
laboratory, so the cameras can be synchronised with the Trumpf laser.

4. Connect Arduino. The Arduino triggers the cameras. It is controlled
via a USB-extender from the laboratory.
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5. Calibrate (see below).

6. Put the top plates and acryllic side panels on the camera box. Seal all
seems with duct tape.

7. Start flow of clean, compressed air into the box. A small amount of
airflow keeps the humidity in the box low. The box is not sealed well
enough for pressure to build up.

4.2.2 Calibration
Calibration is typically a two-person job. One person is in the lab to control
the cameras; the other is on the roof to move the calibration plate.

The calibration plate is a custom plate made of milky-white acrylic. One
side of the plate is coated in a few layers of black spray paint, after which a
hole pattern is drilled through the paint layer with a CNC milling machine.
The plate is backlit with either an LED flashlight, sunlight, or the Trumpf
laser. The milky-white acrylic causes the markers to be perfectly diffuse. The
layers of black paint allow barely any light through. The resulting calibration
images are patterns of very high contrast, white-on-black circular markers,
with barely any structure in the markers.

The calibration proceeds as follows:

1. On the roof: install the calibration rig. Move the calibration plate to
500 mm above the camera box.

2. In the laboratory: connect the frame sync cable to a signal generator
set to 100 Hz. Configure the exposure time of each camera so that the
resulting images have a high contrast.

3. Record calibration images in increments of 2 mm. Images are taken at
all positions at which all three central (fiducial) markers are visible on
all cameras.

A Python script helps to take the calibration images and save them with the
correct filenames.

4.2.3 Single experiment
1. In the lab: ensure the frame sync cable is connected to the Trumpf laser.



44 CHAPTER 4. PARTICLE TRACKING

2. Switch the laser on. Without this, the laser is not guaranteed to produce
a frame sync signal, and the cameras will not be able to perform a black
reference.

3. Black-reference the cameras. This “learns” each camera what the black
level is. The sensors’ dark currents can change as a result of changing
camera box temperature. This step takes about 1 second.

4. Trigger the cameras, and wait for them to fill their buffers. This step
takes between 2 and 4 seconds, depending on camera frame rate.

5. Switch the laser off, and instruct the cluster compute nodes to download
the camera images. This step takes about 40 seconds.

6. If so desired, repeat from step 2.

Typically many experiments in a row are performed. To this end the above
process is fully automated using a Python script.

4.3 Data analysis
A particle tracking code’s aim is to find for each particle its position as a
function of time. Most particle tracking codes approach this problem as
follows:

1. Per frame, per camera: find 2-D positions of particle images. This
is done by first finding the local intensity maxima, and then fitting
two Gaussians to pinpoint the centre of the particle image with sub-
pixel accuracy. One Gaussian is fitted to the central pixel and its two
horizontal neighbours, and the other to the central pixel and its two
vertical neighbours. This can be done analytically, i.e. no iteration is
needed, and is therefore very fast. This typically yields an accuracy of
0.1 pixel.

2. Per frame: stereomatching, i.e. given the 2-D positions of all particle
images on all cameras, find the particles’ 3-D positions. To do so, for
each particle image on the first camera a corresponding line of sight
is cast. Then, on the second camera, all particle images that are close
to this line are added to a list of candidates. For each candidate a 3-
D position can now be computed, and information from the third and
fourth camera (if these are present) is used to seewhich of the candidates
corresponds to a real particle.
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3. Per frame: tracking, i.e. given the 3-D positions of all particles, link each
particle to the sameparticle in theprevious frameor frames. Information
from previous frames is used to predict where a particle is most likely
to be at in the current frame. Sometimes two particles are found at the
predicted position, in which case a tie-breaker method is needed.

(Source: [64, p. 789–792].)
While the above explanation is an oversimplification, it serves well to

highlight two main issues. First, it is assumed in step 1 that particles appear
on the camera sensors as compact, Gaussian spots. “Compact”, here, means
that they are at most a few pixels in diameter. In reality in-focus particles are
imagedasAirydiscs, the centres ofwhich arewell approximatedasGaussians.
However, as soon as the particles get too far out of focus, they may appear as
hollow rings, i.e. the intensity in the centre is lower than at the edges. The
position of such particle images cannot be found by simple methods such as
the one described in step 1 above.

The second issue is related to the seedingdensity. For lowseedingdensities
the above algorithm works well. However, for increasing seeding densities,
the particle images start to overlap. This has many implications: first of all, if
two particle images overlap, only one will be found in step 1. Secondly, step 2
must now be made to tolerate missing particle images. As a result the chance
to find a particle where there isn’t any increases, leading to ghost particles.
Finally, step 3 must be modified to identify and discard these ghost particles.

An improvement is offered by the Shake-The-Box algorithm [58]. For
particles that are known to the algorithm, the order of operations above is
reversed: first, information from previous frames is used to predict particle
positions. The predicted positions are then used as input to a “shaking” step:
all predicted positions are used to create a simulated image for each camera.
These are compared to what is recorded by the cameras, and the predicted
positions are wiggled around (“shaken”) to minimise the difference. After
this is done for all particles, the simulated images are subtracted from what
the cameras recorded; the result should contain only particle images of new
particles, which are far fewer in number.

The advantage of using simulated images, is that overlapping particle im-
ages appear as brighter spots than non-overlapping particle images. The use
of brightness information in the shaking step allows the Shake-The-Box algo-
rithm to correctly deal with overlapping particle images. However, to create
simulated images, the optical transfer function (OTF) or point-spread function
(PSF) of the optical system must be known.

Due to largemeasurement volumeused in this experiment, there can be up
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to 104 tracked particles in themeasurement volume at a single time. Although
104 particles, which translates to 0.01 particles per pixel, a standardmeasure of
tracking feasibility, is not very high by modern standards, the actual number
of tracked images on each sensor is up to 2.5 times as high due to the shallow
view angle with respect to the laser beam. Furthermore, due to the short
depth of field compared to the size of the measurement volume, an inevitable
consequence of working with the given amount of illumination, many of the
images are badly out of focus. Thus the total area of all the tracked images
may be several times higher than the total sensor area.

Due to the high seeding density and the badly focused particle images, a
conventional particle tracking code is not suitable for analysing the particle
videos from this experiment. Instead, a new code is used, called Low Light
LPT (L3PT), that is currently being developed by Dr. Moláček. The code
is inspired by the Shake-The-Box algorithm. The largest similarity is in the
use of a shaking step, but it differs in that much more computational cost is
expended to increase both accuracy and yield. Specifically, particular care is
taken to extract as many particle images as possible, even if they belong to
particles outside the measurement volume, since this improves the accuracy
of determining the location and intensity of overlapping particle images.

4.4 Verification
The particle tracking code is verified by analysing synthetic data. To this end,
first a kinematic simulation is used to generate synthetic particle trajectories.
These trajectories are then used to generate synthetic videos. Finally, the
videos are processed with L3PT, and the resulting trajectories are compared
with the synthetic trajectories.

The author generated the synthetic trajectories; the verification itself was
performed by Dr. Moláček and is not documented here.

4.4.1 Kinematic simulation
The synthetic trajectories are generated with a kinematic simulation (KS; see
e.g. [22, 45, 46]). A kinematic simulation was chosen, because it has low
computational cost, and yet reproduces some of the features of turbulent
flows, such as particle clustering. The latter is important, because one of the
aims of this thesis is to quantify droplet clustering in clouds by means of
the radial distribution function, and the synthetic data should mirror this as
closely as possible.
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Most KS are done on a non-periodic domain. The problem with that is
that particles will bleed out of the region of interest, and over time the particle
concentration decreases. This can be remedied in two ways: by seeding
particles in a much larger region than the region of interest, or by using a
domain with periodic boundary conditions. The downside of the former is
that many more particles need to be simulated, than are within the region of
interest at any given time. The downside of the latter is that the periodicity
might bevisible in theparticlemotions, especially on the large scale. Here both
solutions are applied: the kinematic simulation is done on a cubic domain
with sides ℒ twice the size of the largest dimension of the particle tracking
measurement volume, i.e. ℒ = 150 mm.

Velocity field

The velocity field is composed of # Fourier modes. Each of these is charac-
terised by a wave vector += , frequency $= , and Fourier coefficients a= and b= .
The velocity field is then given by

u(x , C) =
#∑
==1

a= cos(+= · x + $=C) + b= sin(+= · x + $=C). (4.1)

The wave vectors and coefficients are chosen such that the resulting veloc-
ity field is triply periodic, incompressible, and exhibits a prescribed energy
spectrum. Incompressibility (∇ · u = 0) implies that

a= · += = 0 and b= · += = 0 (4.2)

For the velocity field to be periodic, it is convenient to first non-dimensionalise
the spatial coordinates, such that they are on a cubic domain of size (2�)3, i.e.
x̃/2� = x/ℒ. Then, the components of each wave vector += must be integers.
A given energy spectrum �(�) finally gives the magnitudes of the Fourier
coefficients:

|a= |2 = |b= |2 = 2�(�=)Δ�= (4.3)

with � = |+ |. Δ�= is given by

Δ�= =


1
2 (:2 − :1) if = = 1
1
2 (:=+1 − :=−1) if 1 < = < #
1
2 (:# − :#−1) if = = #

(4.4)
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For the energy spectrum the model spectrum by Pope [48] is used:

�(�) = �&2/3�−5/3 5!(�!) 5�(��) (Pope 6.246)

5�(��) = exp{−�{[(��)4 + 24
�]1/4 − 2�}} (Pope 6.248)

with � = 1.5 and � = 5.2 empirically determined constants, and 2� = 0.40
from turbulence theory. Here 5! = 1, becauseℒ ismuch smaller than the large
scales in atmospheric turbulence, and therefore wouldn’t be visible anyway.

The parameters of the simulation are chosen as follows. Let :2 be the
largest wave number in the simulation.

1. Pick randomwavevectors+= , such that they are ongeometrically-spaced
spherical shells in wave vector space, i.e. �= = :(=−1)/(#−1)

2 .

2. Round the components of each k= to the nearest integer.

3. As a result of the previous step, some wave vectors may end up having
the same length, and equation (4.4) cannot directly be used to compute
Δ�= . To remedy this, Δ�= is computed using the first lower and first
higher wave number. Example: if � = (1, 1, 2, 3, 4, 4, 5), then Δ� =
1
2 (1, 1, 2, 2, 2, 2, 1).

4. For each wave vector, count the total number of wave vectors that
are in the same shell, and call this <= . In the above example < =

(2, 2, 1, 1, 2, 2, 1).

5. Pick random â= and b̂= , compute such that â= · := = 0 and b̂= · := = 0,
and they are of unit length.

6. Set the magnitudes of the a= and b= to 2�(�=)Δ�/<= . The division by
<= is to split the energy within a wave number shell over the (possibly)
multiple wave vectors that are in it.

7. Set $= = &1/3�2/3
= [22], and pick a random sign for each $= .

A single set of parameters is used for the simulations performed here.
These are summarised in table 4.1. The parameters are chosen such that the
small scales are representative of cloud turbulence. The rms velocity and
Taylor Reynolds number are much lower than in cloud turbulence, due to the
absence of scales larger than 150 mm.
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Table 4.1: Parameters used for the kinematic simulation. The rms velocity and Taylor
Reynolds number are much lower than in cloud turbulence, due to the absence of scales
larger than 150 mm.

Parameter Symbol Value

Dissipation rate & 0.024 m2 s−3

Kinematic viscosity � 1.82 × 10−5 m2 s−1

Kolmogorov length scale � 0.69 mm
Kolmogorov time scale �� 28 ms
RMS velocity D′ 0.09 m s−1

Taylor-Reynolds number Re� 50
Number of modes # 108
Cut-off wave number �2 4524 m−1

Integration time step ΔC 0.2 ms
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Figure 4.5: Particles in the kinematic simulation for St = 1. Shown is a 2 mm thick
slice of the simulation domain. The particles are clearly clustering.
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Particles

Two cases are simulated: one with tracer particles (St = 0) and one with
strongly inertial particles (St = 1). The inertial particles are only affected by
Stokes drag, so their velocities can be computed with equation (2.21) with
g = 0. The particle positions and velocities (for St ≠ 0) are integrated using
the Runge-Kutta 4 scheme. The time step is chosen to be equal to the frame
time used for most experiments presented in this thesis, i.e. 0.2 ms, which
corresponds to a frame rate of 5 kHz. The highest expected number density
= in clouds at the Schneefernerhaus is 500 cm−3, so that = × ℒ3 ≈ ∼1.7 × 106

particles must be tracked. Figure 4.5 shows the particle positions within a
2 mm thick slice of the simulation domain.



Chapter 5

Droplet sizing

5.1 Introduction
As discussed in chapter 2, the size of a droplet affects its behaviour in a
turbulent flow both through the Stokes number St, which is a measure for its
inertia, and through its settling velocity.

The aim of this chapter is to develop a method to measure the size of each
droplet that the particle tracking experiment sees. The method should be
implemented on top the existing setup, so all constraints that apply to that
setup, also apply to the droplet sizing method. This means that there is only
little space for extra light sources and/or cameras, and methods that can do
without are preferred. One such method is an intensity-based method, i.e.
droplet sizes are inferred only from the intensity of scattered light, which is
already measured by the LPT experiment.

This chapter is organised as follows: first an overview of existing droplet
sizing techniques is given. Then Lorentz-Mie scattering will be introduced
and will be used to predict the intensity as observed by the LPT cameras (sec-
tion 5.3). After that a droplet-sizing method will be proposed and calibrated
(sections 5.4 and 5.5). Themethod is finally applied to fielddata and compared
to droplet sizes obtained using a holographic instrument (section 5.6).

5.2 Techniques
A short review of existing particle sizing techniques is given here. For each
technique its applicability to the Zugspitse experiment is assessed.

51
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Optical particle counters (OPCs) [23, 28, 31, 32, 35] These devices illuminate
a small measurement volume using white light or a laser beam, and collect
scattered light with large lenses or curved mirrors, which is then directed
onto one or more photodetectors. The particle or droplet size is calculated
using only the measured light intensity. The collection angle is typically quite
large: between 20° and 120° degrees. Such a large collection angle has two
effects: first, it allows these devices to collect as much light as possible, so
that even particles of only 0.1µm in diameter can be measured. Second, a
large collection angle helps averaging over the oscillations that are typical for
Lorentz-Mie scattering.

Altough OPCs perform single-point measurements, the technique can be
implemented in higher dimensions using cameras. Within the Zugspitze
project this can be done with the existing particle tracking setup, so no extra
cameras are needed, but the oscillations in the Lorentz-Mie scattering would
need to be dealt with somehow.

Phase Doppler anemometry (PDA) [42] In PDA two coherent laser beams
are used to illuminate a smallmeasurement volume from two slightly different
directions, and scattered light is collected using a number of photodetectors
that are set up around the measurement volume. When a droplet moves
through the measurement volume, it will show two glare points, one per
laser beam, due to refraction of each beam. The light of the two glare points
interferes and creates a fringe pattern in the far field, the angular frequency
of which is proportional to the droplet’s size. As the droplet moves through
the measurement volume, the fringe pattern moves with it, and is recorded
by the photodetectors as a Doppler burst. The phase difference between the
bursts as measured by the various detectors is proportional to the droplet’s
size.

PDA is a single-pointmeasurement technique, and is therefore not suitable
for application at Zugspitze. It has been extended to multiple dimensions,
using laser sheets, which is described next.

Global phase Doppler (GPD) [13] GPD is an extension of PDA to multiple
dimensions. It uses two coplanar, coherent laser sheets to illuminate a rela-
tively large measurement volume. Each droplet’s fringe pattern is recorded
using a defocused camera.

Interferometric particle imaging (IPI) [7, 13] IPI is similar to GPD, but uses
only a single laser sheet. The two glare points that are needed to create the
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fringepattern, are not due to refractionof two laser sheets, but due to refraction
and reflection of a single laser sheet. The two glare points should be of similar
intensity for IPI towork, but since refraction and reflection respond differently
to variation of the scattering angle, this puts constraints on where the camera
can be placed.

Using IPI or GPD with the Zuspitze experiment would require an extra
camera, which is undesirable. Furthermore, due to the high number densities
in clouds, the defocused particle images would dramatically overlap, which
makes the analysis difficult if not impossible.

Holography [42, 59] Schlenczek [59] summarises holography well: “A holo-
gram is made when a reference wave interferes with an object wave and the
interference pattern is captured on film (analog) or on an image sensor (dig-
ital).” In holography one does not capture an image of an object, but the
wavefront as it is scattered by that object. The recorded wavefront can later
be used to reconstruct the wavefront at various distances from the sensor. By
reconstructing the wavefront at the position of a droplet, the droplet’s size
can be determined.

To implement holography within the Zugspitze experiment, an extra laser
and an extra camera are needed, which is undesirable.

Shadowgraphy [36] In shadowgraphy a collection of droplets it backlit by a
diffuse light source. A camera is aimed directly at the light source, so that the
droplets cast shadows onto the camera sensor. The size of droplets that are
in focus, can be determined by simply counting pixels. Methods exist to get
reliable size information for defocused droplets as well.

To implement shadowgraphy within the Zugspitze experiment, an extra
laser and an extra camera are needed, which is undesirable.

5.3 Theory

5.3.1 Lorentz-Mie scattering
This section is based on Bohren and Huffman [9].

The scattering of electromagneticwaves, such as light, by a sphere is described
by the Lorentz-Mie equations. The equations are summarised here; for a
derivation the reader is referred to e.g. Bohren and Huffman [9].
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Figure 5.1: An EM wave travelling in the +I direction is incident upon a sphere
with radius 0. The scattered fields are computed at r = (A, �, )). The scattering
plane is determined by êI and êG . The three unit vectors êI , ê‖8 , and ê⊥8 form an
orthogonal basis. The three unit vectors êA , ê‖B , and ê⊥B form an orthogonal basis as
well. Unit vectors with subscript ‖ are parallel to the scattering plane; unit vectors
with subscript ⊥ are perpendicular to the scattering plane.
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Consider the system shown in figure 5.1. A sphere is of radius 0 is located
at the origin. It has a complex index of refraction #1, while the medium
around it has a real index of refraction # ; the relative refractive index is
< = #1/# . The imaginary part of #1 (and hence of <) can be nonzero,
which means that the sphere’s material is absorbing at that wavelength. A
plane EM wave with wave number : in the medium is travelling in the +I
direction, and is incident upon the sphere. The size parameter G is given by
: 0. The aim is to compute the irradiance �B of the scattered radiation at a
point (A, �, )), given the irradiance �8 of the incident light. The vectors êI
and r define the scattering plane, which in turn is used to define the various
unit vectors parallel and perpendicular to it. In the following only the electric
field will be considered. The corresponding magnetic field can be obtained
through the Maxwell equations, and given both fields the irradiance can be
computed through the Poynting vector.

The electric field part of the incident wave can be split in two components,

K8 = (�‖8 ê‖8 + �⊥8 ê⊥8), (5.1)

one parallel to the scattering plane and one perpendicular to it. Far away from
the droplet the scattered field can be decomposed similarly:

KB = (�‖B ê‖B + �⊥B ê⊥B). (BH3.11)

The relation between the incident field and the scattered field can then be
written as [

�‖B
�⊥B

]
=
4 8:(A−I)

−8:A

[
(2 (3
(4 (1

] [
�‖8
�⊥8

]
, (BH3.12)

with (8 the elements of the amplitude scattering matrix. For scattering by a
sphere (3 = (4 = 0, and

(1 =
∑
=

2= + 1
=(= + 1) (0=�= + 1=�=),

(2 =
∑
=

2= + 1
=(= + 1) (0=�= + 1=�=),

(BH4.74)

with �= and �= defined as

�= =
%1
=(cos�)
sin�

,

�= =
d%1

=(cos�)
d� ,

(BH4.46)
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with %1
= the first derivative of the Legendre polynomial of order =. 0= and 1=

are the scattering coefficients, and are given by

0= =
<#=(<G)#′=(G) − #=(G)#′=(<G)
<#=(<G)�′=(G) − �=(G)#′=(<G)

, (BH4.56)

1= =
#=(<G)#′=(G) − <#=(G)#′=(<G)
#=(<G)�′=(G) − <�=(G)#′=(<G)

, (BH4.57)

with the Riccati-Bessel functions #=(�) = �9=(�) and �=(�) = �ℎ(1)= (�), where
9= is the spherical Bessel function and ℎ

(1)
= is the spherical Hankel function

(both of the first kind), and a prime indicating differentiation.
In practice the complex scattering amplitudes (1 , . . . , (4 are difficult to

work with, because they related not only the magnitude, but also the phase of
the scattered field to the incident field, and are therefore difficult to measure.
Instead the Stokes parameters �, &, * , and + are used. These parameters
are defined in terms of how they are measured, which is by putting various
polarisers in front of a detector that by itself measures only irradiance. In
particular:

• � is measured without any polarisers;

• & is the difference between the irradiances measured with a horizontal
polariser, and with vertical polariser;

• * is as &, but with 45° and −45° polarisers; and
• + is as &, but with left-handed and right-handed circular polarisers.

For a scattering by a sphere, the Stokes parameters of the scattered field can
be related to those of the incident field as follows:

�B
&B

*B

+B

 =
1
:2A2


(11 (12 0 0
(12 (11 0 0
0 0 (33 (34
0 0 −(34 (33



�8
&8

*8

+8

 , (BH4.77)

with the scattering matrix elements

(11 =
1
2 (|(2 |2 + |(1 |2),

(12 =
1
2 (|(2 |2 − |(1 |2),

(33 =
1
2 ((
∗
2(1 + (2(

∗
1),

(34 =
8
2 ((
∗
2(1 − (2(

∗
1).

(5.2)
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Unpolarised light has & = * = + = 0, so if that hits a droplet, the scattered
irradiance is given by

�B =
1
:2A2 (11(�′) �8 . (5.3)

Various codes have beenwritten to compute the scatteringmatrix elements
(8 9 for a spherical particle numerically [19]. Here the popular BHMIE code [10]
is used to compute scattering matrix element (11, which represents scattering
of unpolarised light, for various droplet diameters and scattering angles. The
result is plotted in figure 5.2. As can be seen in the top graph, (11 grows
proportional to 32

? , but also oscillates strongly and has a fine structure. The
intensity ratio between peaks and valleys is about 2.5, as can be estimated
from the inset. The most important thing to note in the bottom graph, is that
even though in general (11 is a very irregular function of �, in the range from
25° to 35° it is slightly better behaved: it decreases more or less exponentially,
and “only” oscillates strongly.

5.3.2 Integration of scattered intensity
The theory presented in the previous section provides a way to compute the
scattered irradiance at a single point in space. In practice the camera objectives
have an aperture with a finite diameter, over which the scattered irradiance
must be integrated. This will prove to be beneficial, because to some extent it
helps averaging out the oscillations in the Lorentz-Mie scattering patterns. In
fact, the oscillations can be suppressed even further by putting a diffuser in
the laser beam, as will be shown here.

The scattered intensity �$ that a camera would observe is given by the
following equation:

�$ =

∬
�

d�(x′0)
∬

4�
F3 dΩ(l̂′) �B(A′, �′). (5.4)

The first integral is over the aperture �. The second is over a sphere, but is
weighted by F3, a two-dimensional Gaussian that represents the diffuser’s
angular spread. Lastly, �′ is the local scattering angle, which depends on the
droplet position, the position x′? of the aperture surface infinitesimal, and the
local laser direction l̂′.

Equation (5.4) could be evaluated directly, but since it contains two two-
dimensional integrals this would be rather time-consuming, even more so
if one considers that it should be done for many droplet sizes and many
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Figure 5.2: Scattering matrix element (11, which represents scattering of unpolarised
light, as a function of droplet diameter (top), and as a function of scattering angle
(bottom).
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scattering angles. However, if the aperture subtends a sufficiently small angle,
the FWHM of the diffuser is sufficient small, and the scattering angle is large
enough, then thedimension of thedouble integrals that is perpendicular to the
scattering plane can be evaluated immediately, yielding two single integrals.
After a change of variables one of these integrals can again be evaluated
immediately, which gives the following:

�$ =

∫ ∞

−∞
d� �B(� + �) ℎ(�). (5.5)

with � the central scattering angle, that is the angle between the droplet–
aperture vector r and the laser beam’s axis l̂, and ℎ a function that represents
the geometry of the droplet, the aperture and the diffuser. The full derivation
can be found in appendix A.

The apertures of the objectives used in the LPT setup subtend angles
of 1°, the beam expander is equipped with a 1° FWHM diffuser, and the
central scattering angle varies between 25° and 35°. Given these numbers,
equation (5.5) can safely be used.

To see what the effect of the aperture and the diffuser on the observed
intensity is, equation (5.5) is evaluated for many droplet sizes, both without
and with the diffuser, and is compared with Lorentz-Mie scattering cf. equa-
tion (5.3). The result is shown in figure 5.3. As can be seen, the aperture
by itself reduces the oscillations to some extent: they practically disappear at
55µm, but come back for larger sizes, although there they are not as strong.
Adding the diffuser reduces the oscillations even further: they disappear at
35µm, and do not return. It is likely that the diffuser is more effective at
reducing oscillations than the aperture is, because the diffuser has smooth
edges due to its Gaussian character, whereas the aperture has sharp edges.

So, for large droplets it should be possible to compute their size from their
observed intensity as 3? ∝

√
�$ .

In figure 5.4 the same quantities are plotted, but now as a function of
(central) scattering angle �. As can be seen the aperture and diffuser to-
gether are very effective at averaging out the oscillation for droplets of 30µm.
Also shown is a exponential fit of the observed intensity with diffuser, �$ ∼
exp(�/2�), with 2� = −15.7°.

5.4 Method
The theory presented in previous section should now be turned into a droplet
sizingmethod. For droplets larger than 35 mm this is simple: 3? = 20

√
�, with
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Figure 5.3: Comparison of the observed intensity �$ , both without and with diffuser,
with Lorentz-Mie scattering. The observed intensity is calculated by integrating
Lorentz-Mie scattering over the diffuser and over the camera’s aperture. The top
and bottom graphs shows the same data, but on different scales, and with different
normalisation. The curves are have been offset, so they do not overlap. The scattering
angle is 30°.
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Figure 5.4: Comparison of the observed intensity �$ , both without and with diffuser,
with Lorentz-Mie scattering. The observed intensity is calculated by integrating
Lorentz-Mie scattering over the diffuser and over the camera’s aperture. Also shown
is an exponential function exp(�/2�), with 2� = −15.7°, that was fitted to �$ for the
case with diffuser.
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20 some calibration constant. This is simple and fast, and is therefore attractive
to also apply to the smaller droplets. But for this to work for smaller droplets,
the remaining Lorentz-Mie oscillations need to be dealt with. Furthermore a
scheme is needed combine all of a droplet’s observed intensities �8 9 , with 8 a
point along a droplet’s trajectory and 9 a camera, into a single intensity.

For the LPT setup presented in the previous chapter both problems can
be solved by averaging over all of a droplet’s observed intensities �8 9 . Of
course averaging only makes sense if these intensities come from the same
distribution, which techically speaking they donot. However, given that (1) all
camera views are under similar angles to the laser beam’s axis, (2) all apertures
are of similar size, and (3) all objectives are similarly far away from the origin,
it can be argued that the observed intensities come from distributions that are
at least similar to each other. The distributions can be made more similar by
applying the following corrections, each of which corrects for changes that
result from changes in a droplet’s positions:

Droplet–aperture distance. If the droplet–aperture distance A changes, then
this effectively changes the aperture’s subtended solid angle, and hence
the part of the Lorentz-Mie scattering pattern that is integrated over.
The subtended solid angle is proportional to A2, so this can be corrected
for by dividing by (A/A0)2), with A0 some reference distance.

Scattering angle. In theprevious section itwas shown that the intensity scales
with an exponential function, exp(�/2�). To correct for changes in scat-
tering angle, the intensity can be divided by exp[(� − �0)/2�], with �0
some reference scattering angle.

Laser beam intensity. The profile of the laser beam is known (see chapter 4),
and equation (5.5) is linear in the intensity of the incident light �8 , so
given the droplet’s position, the local laser beam intensity can simply be
divided out.

The corrections for droplet–aperture distance and scattering angle can also be
seen as a first-order expansion of the integrals in equation 5.4 around some
reference droplet position x? .

Averaging a droplet’s observed intensity over the three cameras, and over
all points in a trajectory, is not just valid, but it even helps to reduce Lorentz-
Mie oscillations. Because the camera views are under similar, but slightly
different angles, averaging the intensitites over the three cameras effectively
increases the aperture size and hence reduces Lorentz-Mie oscillations. Fur-
thermore, as a dropletmoves through themeasurement volume, the scattering
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angle � also changes, which again helps to average out the Lorentz-Mie oscil-
lations. As a reminder, the camera view angles �0 are 28.1°, 30.5°, and 33.0°
(see chapter 3).

Considering all of the above, the following droplet-sizing method is pro-
posed:

Given a droplet’s observed intensities �8 9 , with 8 a point along the
droplet’s trajectory, and 9 a camera, do the following:

1. Apply the corrections for droplet–aperture distance, scatter-
ing angle, and laser beam intensity, as described above. This
yields the corrected intensities �8 9 ,2 .

2. Compute the average intensity � =
〈
�8 9 ,2

〉
.

3. Compute the droplet size 3? = 20
√
�, with 20 a calibration

constant.

The droplet size uncertainty is computed by first computing the
intensity variance �2

�
, and then the relative droplet size uncertainty

�3?
3?

=
1
2
��
�
, (5.6)

which is obtained using standard propagation of uncertainty.

Interally the various codes use the logarithm of the intensity, ln(�8 9), so instead
of computing arithmetic means, in practice geometric means are computed.
The droplet size uncertainty is computed differently, too:

�3?
3?

= sinh( 12��), (5.7)

with �� the logarithm of the geometric standard deviation.
One could argue that instead of the sample variance �2

�
, the variance

�2
�
/# of the mean, with # the number of points in the track, should be used

to compute the droplet size uncertainty. That isn’t done here, because for
small particle sizes the oscillations in the predicted intensity �$ still cause
ambiguity that isn’t dealt with. Hence, while for larger droplets using the
sample variance leads to an overestimate of the uncertainty, using the variance
of the mean would lead to an underestimate, which arguably is a worse
mistake to make.
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Figure 5.5: Histrograms of square-root-droplet-intensity
√
� for droplets produced

with a calibrated aerosol generator. For each target diameter that the aerosol generator
was set up for, a corresponding histogram is shown in here. Each histogram has
been offset vertically by its corresponding target droplet diameter. The dashed line is
3? = 20

√
�, with the calibration constant 20 = 0.774.

5.5 Calibration
Before the droplet-sizing method can be applied to data from field experi-
ments, the calibration constant 20 must be determined. To do this, a number
of LPT experiments is performed in the laboratory, using droplets generated
with a calibrated aerosol generator. Droplets are used instead of glass beads
to avoid any problems that could arise due to the sensitivity of Lorentz-Mie
scattering to non-sphericity and changes in the refractive index. The droplets
are generated with a TSI FMAG Model 1520, a commercial aerosol generator,
that is calibrated using a shadowgraphy experiment (see appendix C).

The aerosol generator is set up to generate droplet diameters 3? = 20, 30,
. . . , 120µm. For each droplet diameter, the following steps are taken:

1. Particle videos are recorded at different laser powers, and are analysed
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using L3PT.

2. For each droplet the average intensity � is computed as per the previous
section.

3. A histogram of
√
� is made.

Thehistograms are plotted infigure 5.5. They are offset by their corresponding
droplet diameters, so that the peaks’ bases should lie on a line, which they
indeed do. The slope of this line is the calibration constant 20, and was found
to be 0.774, which was determined using only the location of the peak value
of the 120µm histogram.

During the experiments it was noticed that the aerosol generator some-
times produced a secondary jet. This suggests that it was not correctly set up,
which could explain the extra peaks in the histograms.

5.6 Results

The droplet sizing method is applied to data collected at the Zugspitze on
25-9-2020. To get some sense for its performance, droplet size PDFs are com-
pared with (preliminary) droplet size PDFs obtained using the HALOHolo
holography instrument [59]. The HALOHolo was installed a few centimetres
downwind of the LPT measurement volume, to ensure that it would measure
the same flow as the LPT experiment did. Droplet size PDFs for various
half-hour-long periods are shown in figure 5.6. As can be seen they follow the
same trends, but do not agree completely. The latter could be remediated by
doing a more careful analysis of the HALOHolo data.

One noteworthy aspect of the droplet size PDFs obtained with the intensi-
ty-based method, are the oscillations for small droplet sizes, i.e. 3? . 15µm.
These are most likely the result of the remaining oscillations in observed
intensity, as is shown in figure 5.3

Cumulative distributions of droplet size and relative uncertainty �3?/3?
are shown in figure 5.7. Note that these distributions show %(�3?/3? > -),
i.e. the probability that the relative uncertainty is larger than a certain value,
and therefore decrease instead of increase. In general, the relative uncertainty
decreases with increasing drop size. The median relative uncertainty is ap-
proximately 0.05. For droplets larger than 10µm in diameter, the relative
uncertainty tends to exceed 0.1 in no more than 1 % of cases.
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Figure 5.6: Droplet size PDFs inferred with the intensity-based method (—), and as
measured by the HALOHolo (- -). The data were collected at the Zugspitze during
various half-hour-long periods on 25-9-2019. Times are UTC. The HALOHolo data
shown here are the result of a preliminary analysis.
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Figure 5.7: CDFs of relative uncertainty for various ranges of droplet sizes. The data
were collected at the Zugspitze during various half-hour-long periods on 25-9-2019.
Times are UTC. Note that these are reversed CDFs, i.e. the quantity shown is the
probability that the uncertainty is larger than a certain value.
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5.7 Conclusion
Using Lorentz-Mie theory the intensity scattered by a droplet into a camera
is predicted, taking both the camera’s aperture and the diffusivity of the light
source into account. It is shown that the camera’s aperture averages out the
oscillations in the scattering pattern to some extent, and that the addition of a
diffuser helps to further reduce the oscillations.

For theZugspitze experiment a diffuserwith a diffusion angle of 1° FWHM
is chosen, because larger angles would negatively affect the particle tracking
performance, or would require a redesign the laser beam expander. With
this diffuser the oscillations in the scattering pattern disappear for droplet
diameters >35µm. When a droplet moves through the measurement volume
the scattering angle changes, so by averaging a droplet’s observed intensity
over its trajectory, the remaining oscillations in the scattering pattern can be
averaged out to some extent.

The proposed droplet sizing method works as follows: first, the measured
intensities are corrected for droplet–aperture distance and scattering angle.
Then the average intensity � of the corrected intensities is computed. Finally
the droplet size is computed as 3? = 20

√
�, with 20 a calibration constant that

is determined in the laboratory.
The method is applied to data collected with the particle tracking setup

discussed in the previous chapter, and is comparedwith data from theHALO-
Holo. Based on the results shown here, it is fairly safe to say that the method
works, but to gain more confidence in the method, it must be compared with
HALOHolo data taken on different days. The median relative uncertainty is
∼5 %, which should be sufficient for analysing cloud droplet behaviour.

5.8 Outlook
For application atZugspitze thedroplet sizingmethodwouldprobably benefit
from an even larger diffusion angle. The theory developed in section 5.3 can
be used see if this indeed has the desired effect. If this is the case, the beam
expander will need to be redesigned using a larger lens at the exit.

If the particle tracking post-processing code is extended to compute the
droplet number density, absolute droplet size spectra (unit: 1/µm/cm3) could
be computed, which could then be compared with other instruments. This
would help to verify the droplet sizingmethod, which in turn could be used to
asses the performance of the particle tracking setup for various droplet sizes.

To make this chapter suitable for publication, the effect of having multiple
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apertures at slightly different scattering angles should be analysed thoroughly.
Furthermore it would be useful to extend the theory to white light. Finally the
droplet sizing method should be demonstrated to work reliably for a range of
smaller droplet sizes, e.g. from 5µm to 30µm.

Preliminary work was done to develop a method that directly uses the
scattered intensity �$ to perform Bayesian inference on observed intensities.
Although this method has the potential to give more accurate droplet sizes
for small droplets, it is much more sensitive to the exact geometry of the
experiment, and is also very slow. This work is documented in appendix B.



Chapter 6

Turbulence statistics

In all turbulence experiments some basic flow parameters must be known.
These are, for example, the mean velocity * (if present), the rms velocity D′,
and the dissipation rate &. For the experiments presented in this thesis, the
dissipation rate is of key importance, because it directly influences the cloud
droplets’ Stokes numbers.

In laboratory experiments these quantities are typically measured using
either of three techniques: hot-wire anemometry, PIV, or PTV. However non
of these is suitable for measuring atmospheric flows. Hot-wire probes are del-
icate devices, that can easily break if a too large particle (e.g. sand) is blown
into it. PIV is rather cumbersome, in that it requires a second weather-proof
optical setup. The LPT experiment that is at the heart of this thesis can’t be
used either: cloud droplets are inertial particles, i.e. they aren’t tracer parti-
cles, and hence don’t probe the Kolmorogorov scales reliably. Furthermore a
typical experiment lasts for only 3.3 s, which is too short to sufficiently probe
the inertial subrange.

Atmospheric flows are typically measured with sonic anemometers [64,
ch. 17]. These instruments put two ultrasonic transducers opposite each other,
typically separated by 5 cm to 20 cm. By sending ultrasound pulses between
the two transducers, and measuring the travel time in each direction, the ve-
locity of the medium through which the pulses propagate can be determined.
In this work a 3D sonic is used: it has three pairs of transducers, so that it can
measure all three components of the velocity.

A sonic anemometer measures the flow velocity u(C) at a single point in
space, as a function of time C. Turbulence, however, is described in terms of
the velocity field, i.e. u(x) at a single time, as a function of spatial coordinate

71
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x. To get spatial data from the sonic anemometer, Taylor’s frozen turbulence
approximation [63] is used. This approximation assumes that the velocity
field is frozen in space, and is merely carried past the sonic by some mean
velocity[ , so that u(x) = u([ C).

In reality the velocity field is not frozen; larger scales convect the smaller
scales with the rms velocity D′ [39], so for Taylor’s approximation to work, the
turbulent intensity � = D′/* should be sufficiently small. The interpretation of
“sufficiently small” varies between publications: many articles refer to Willis
and Deardorff [69], who found that Taylor’s approximation breaks down for
� > 0.5. Risius [53] requires that � < 0.25, which is based on results of Favre
et al. [17]. One way to ensure that � is sufficiently small, is to cut the time
series into short segments. The length of the segments limits the size of the
largest scale that can contribute to D′, so shorter segments yield a smaller D′.
Furthermore, after segmenting the time series, segments with a too large � can
be rejected. The latter was done in the work by Risius et al. [52]; they used
segments of between 1 and 2 minutes long, selected such that � < 0.25.

In this chapter a sonic anemometer is used to measure the flow close to
the particle tracking experiment. Risius’ method for computing turbulence
statistics [52] is implemented, and is used to compute the dissipation rate &
and the Taylor Reynolds number Re�. The method is applied to data col-
lected between 1-8-2019 and 1-10-2019, and as an example the evolution of the
dissipation rate and Taylor Reynolds on 25-9-2019 is plotted.

It is speculated here, that by selecting segments with a limited �, the
flow conditions for which turbulence statistics are computed are biased, and
therefore the resulting statistics might be biased. To see how strong this effect
is, the results of Risius’ method are superficially compared to results obtained
with an alternative method, that does not condition on �.

6.1 Setup
The instantaneous flow is measured using a 3D sonic anemometer. It is
mounted on a post approximately 1.5 m to the South of the LPTmeasurement
volume. This way it is located close to the LPT measurement volume, yet
doesn’t disturb the flow through the volume. The sonic used here is an
“UltrasonicAnemometer 3D” (part no. 4.3830.20.340, ThiesClima, Göttingen),
shown in figure 6.1.

The sonic’s three acoustic paths are located symmetrically around a central
post, and are separated by 20 cm. Due to this arrangement, the sonicmeasures
the components of the instantaneous velocity in different locations, and as a
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(a) North view
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Figure 6.1: Thies Clima 3D sonic anemometer, part number 4.3830.20.340. The
sonic consists of three pairs of ultrasonic transducers, that measure wind speed along
the* ,+ , and, directions. They are located around a central support structure. The
acoustic paths are 20 cm away from each other. The transducers pulse in the order
indicated by the numbers. In the photo, transducer no. 1 is marked with red tape (grey
in print). Photo and drawing from Thies Clima.
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resultmisrepresents flow features that are of the size of the sonic. For example,
if a vortex of ∼30 cm diameter would be centred on the sonic, then instead of
measuring zero velocity, which would be the correct average, the sonic would
report flow either up or down, depending on the vortex’s direction of rotation.

Even though the sonic outputs velocities along the G, H, and I directions,
these can be rotated back into the sonic’s native *+, coordinate system.
By doing so, one essentially trades a single 3D measurement for three 1D
measurements. The latter, however, are more localised in space, and might
be more suitable for computing e.g. structure functions. Many turbulence
statistics are computed either along themean flowdirection, or perpendicular
to it, by applying a suitable transformation. But since the coordinate system
*+, is fixed to the sonic, the only way to change this coordinate system
is to physically reorient the sonic. Since the wind at the Schneefernerhaus
mostly comes from either East or West, the sonic was mounted with its U
path perpendicular to this direction, i.e. with its North indicator pointing
West. This allows for computing transversal structure functions using only
the sonic’s * velocity component. The relation between velocities in the GHI
and*+, coordinate systems is given by

©­«
DG
DH
DI

ª®¬ = 1√
6
©­«

2 −1 −1
0 −

√
3
√

3√
2
√

2
√

2

ª®¬ ©­«
D*
D+
D,

ª®¬ . (6.1)

The rotation matrix was derived by assuming* , + , and, are perpendicular
to each other and rotationally symmetric around the I axis.

The sonic communicates using a text-based protocol over RS-485. This is
used both to configure the sonic and to acquire velocity data. The sonic is
configured to output its internal millisecond counter (29 bits, wraps around
every 6 days), and DG , DH , and DI , as often as it can. In practice this means that
it measures at ∼250 Hz.

The master computer runs a Python code that receives telegrams from the
sonic, interpretes these, and saves the counter value and velocity values to a
CSV file. The code saves at most one million telegrams to a CSV file; after one
million telegrams it creates a new file, the name of which is the current date
and time in ISO 8601 format. An excerpt of such a file is shown in listing 6.1.

In some cases the sonic fails to output correct values, afterwhich it stutters,
and themeasurement frequency temporarily reduces to ∼30 Hz; a typical case
is shown in listing 6.2. In other cases the sonic measures a spike, which
could be caused by a drop hitting on of the transducers. A typical example
of this is shown in table 6.1. By rotating the results back into the sonic’s
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Listing 6.1: Typical output of the sonic. The first column is an internal millisecond
counter, that wraps back to zero every 229 ms, or 6 days. The following three columns
are the components of the instantaneous velocity in m s−1.

8912582 1.33 0.10 0.49
8912586 1.33 0.13 0.48
8912590 1.33 0.17 0.45
8912594 1.35 0.22 0.46
8912598 1.38 0.24 0.49
8912602 1.39 0.24 0.49
8912606 1.41 0.24 0.50
8912610 1.42 0.23 0.49
8912614 1.38 0.23 0.48
8912618 1.36 0.23 0.47

Listing 6.2: Typical occurence of the sonic stuttering. The sonic outputs invalid
values, which the data logging code stores in raw form as a comment. After that the
sonic needs some time to recover. Note how the counter value doesn’t increment by 3
or 4, as is normal, but by 57 or 58 for the next three lines.

10131104 -3.70 -2.36 -1.61
10131108 -3.55 -2.59 -1.67
10131112 -3.70 -2.58 -1.53
# invalid input: b’\x020010131116???.?????.?????.??28\r’
10131169 -3.45 -2.57 -1.53
10131227 -3.42 -2.35 -1.42
10131284 -3.52 -2.20 -1.56
10131288 -3.28 -2.50 -1.77
10131292 -3.33 -2.39 -1.67
10131296 -3.37 -2.25 -1.58
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Table 6.1: Typical occurence of a spike, shown in both the GHI coordinate system, and
the sonic’s native*+, coordinate system. The spike mostly affects just one acoustic
path; the* path in this case.

Counter DG DH DI D* D+ D,

10943781 -4.18 -5.07 -0.48 -3.69 5.01 -2.16
10943785 -4.19 -4.74 -0.39 -3.65 4.84 -1.87
10943789 -4.28 -4.56 -0.27 -3.65 4.82 -1.63
10943793 42.61 -2.19 30.72 52.53 1.89 -1.21
10943797 -4.94 -4.54 -0.44 -4.29 4.97 -1.45
10943802 -4.99 -5.03 -0.75 -4.51 5.16 -1.95
10943806 -5.45 -4.51 -0.41 -4.69 5.18 -1.20

native coordinate system UVW, it can be seen that the spike is mostly, but
not completely, limited to just one component of the velocity. That it is not
completely limited a single component, could mean that the assumption that
* , + , and, are perpendicalar is incorrect.

Finally it must be mentioned that the sonic’s sampling rate isn’t constant:
in warmer air sound travels faster, hence the sonic measures faster. A temper-
ature increase of 25 ◦C causes the sonic to measure 1 % faster.

6.2 Data analysis
The data analysis is comprised of a few steps:

1. Make an index of sections of continuous measurements, and unwrap
the counter value.

2. Preprocess the data to remove spikes, detect gaps, and ensure a constant
sampling rate.

3. Cut the data into segments, and group similar segments together.

4. Compute ', �88 , and & within each group.

5. Create daily graphs from group statistics.

Risius enforced the requirement that � < 0.25 in step 3. In this work his
approach will be followed, as well as an alternative method that does not
condition on the turbulent intensity. Note that the only difference between
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Risius’ approach and the alternative method, is in step 3. Each of the steps is
described in more detail below.

6.2.1 Indexing
A period of continuous measuring yields a series of CSV files with steadily
increasing counter values. It is assumed that whenever the sonic resets, the
Python code is restarted too, such that discontinuities in the counter value
never occur within one CSV file; only between CSV files. The questions that
should be answered in this section, then, are:

• Which sequences of files correspond to a continuous measurement?

• How do the counter values in each sequence relate to the actual time?

To answer these questions a Python code was written, that reads the CSV files
and creates an index into them. Later, the index is used to, given a date and
time, determine in which file to look, and what the corresponding counter
value is. The index is built as follows:

1. Start with a sorted list of CSV files.

2. Create a sequence, currently without any files, and set this sequence’s
counts-per-second, or cps, to 1000.

3. Take the first CSV file, and add it to the sequence. Set the sequence’s
starting time to the CSV file’s file name. Set the sequence’s starting
counter value to that in the file’s first line.

4. Take the next CSV file, and compute the time difference ΔC between
this file’s starting time, as encoded in the filename, and the sequence’s
starting time. Predict this file’s first counter value with cps · ΔC.

5. Read the counter value of the file’s first line. If it is less than the first
counter value of the previous file, it must have wrapped, so unwrap
it as needed. Compare the unwrapped counter value to the predicted
counter value; if the difference is smaller than 5000 counts, append this
file to the sequence and continue to the next step. Otherwise, use this
file to start a new sequence, and go to step 3.

6. Compute the number of counts Δ2 since the start of the sequence, and
update this sequence’s cps: cps = Δ2/ΔC. Go to step 4.
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Finally, for each sequence also compute its end time. This is done by reading
the sequence’s last file’s last counter value, unwrapping it, and multiplying it
with the sequence’s cps.

6.2.2 Preprocessing
Once the index is built, the data can be preprocessed. The aim of this step is to
remove spikes, detect gaps (as happens when the sonic stutters; see listing 6.2,
and resample the data onto an equidistant temporal grid.

The final sampling rate is 10 Hz. This is much lower than the sonic’s sam-
pling rate, however due to the size of the sonic, and the distance between the
acoustic paths, one can argue that the high sampling rate does not represent
the data rate. At a typical mean wind speed of 4 m s−1, an eddy of 30 cm,
which is the size of the sonic, needs 0.075 s to pass. Hence, the Nyquist fre-
quency shouldn’t be any higher than ∼13 Hz. Risius obtained good results
with 10 Hz, so that sampling frequency is used here too.

The preprocessing proceeds as follows:

1. Spikes are detected and replaced with NaNs. To do this, each sample
is compared to the median of itself, its previous three neighbours, and
its next three neighbours. If the current sample deviates by more than
1 m s−1, it is considered to be an spike. This threshold was obtained
from a histogram.
Note that this approach is technically not quite right: if the current
sample borders on a gap, the median computation will span the gap,
and hence might be skewed. In such a case up to 20 ms of data would
be lost, which is not worth the effort of saving.

2. Gaps are detected and marked. A gap is detected whenever two subse-
quent samples are more than 6 ms apart. Each gap is then filled with a
series of NaNs at the average sampling rate.

3. The data is interpolated onto a 1 kHz grid. Because the data is upsam-
pled by a factor 4, very unsophisticated interpolation schemes suffice:
here linear interpolation is used.

4. A low-pass filter is applied to the data, to prevent aliasing in the next
step. The low-pass filter used here is a 201-point Hann window. It falls
off strongly at 5 Hz. Since applying a window function is essentially the
same as computing a weighted average, NaNs can simply be left out.
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At least 80 % of the surface under the Hann window is required to be
present, otherwise a NaN is output.

5. Thedata is downsampled, by simply taking every 100thpoint and throw-
ing the rest out. This yields a sampling rate of 10 Hz.

6.2.3 Segmentation
In order to deal with the non-stationarity of the flow, the data is cut into
segments, and similar segments are grouped together, or “binned”. For each
segment, Risius required that the turbulent intensity � < 0.25. This method
might favour certain flow conditions over others and bias the resulting tur-
bulence statistics. To see if this is the case, Risius’ method is compared to an
alternative method that does not condition on �.

Segmentation is done as follows:

• Risius’ method:

1. Start with a window that spans the first minute of data.
2. Compute the turbulence intensity � within the window. If � < 0.25,

repeatedly extend the window by a data point until � becomes too
large, or the window is 2 minutes long. Use that window to cut
out a segment. Define a new 1-minute-longwindow, starting at the
end of the current window, and repeat this step.

3. If, initially, � was too large already, then move the start and end of
the window by one data point. Repeat this until � < 0.25. At that
point, go to step 2.

• Fixed 2-minute segments: all segments are 2 minutes long and overlap
by 75 %. One hour of data yields 120 segments.

Each segment is required to have no more than 10 % NaNs, otherwise it is
discarded.

The code is currently dealing with individual segments, and at some point
per-segment statistics need to be computed, so that might as well be done
now. Each segment is processed as follows:

1. The mean velocity[ (1) is computed and subtracted, so that the segment
has zeromean velocity. The superscript indicates that this value pertains
to a single segment.
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Figure 6.2: Definition of � and ) used for the mean wind direction. Note that � and
) indicate where the wind is coming from, as is common in meteorology.

2. Based on themean velocity vector a new coordinate system is computed,
such that ê1 points along the mean velocity [ (1), ê2 is perpendicular to
ê1 and êI , and ê3 is normal to both previous vectors. The segment is
rotated into this new coordinate system.

3. The correlation functions '(1)
88

are computed. For the moment these
are treated as functions of time delay �, and not as functions of spatial
increment A. They are computed for � < 30 s, so that only half to a
quarter of the storage is needed.

Per segment the following quantities are saved: [ (1), '(1)
88
, and the segments’s

time. The rms velocity is not stored, because it can be obtained from '
(1)
88
(0).

6.2.4 Binning
For each segment the mean velocity vector and turbulence intensity are com-
puted. The mean velocity vector is decomposed into magnitude * (1) and
angles � and ) as defined in figure 6.2. Each segment is then assigned to a
bin in a 4D * (1)-�-)-� histogram. For Risius’ method so few segments are
available, that it was decided to do no binning for ). This should help the
averages in each bin converge better. The binning used for each method is
described in table 6.2.

6.2.5 Computing turbulence statistics
Within each bin the turbulence statistics are computed as follows:



6.2. DATA ANALYSIS 81

Table 6.2: All segments with similar turbulence statistics are grouped by assigning
them to bins of a 4D histogram on * (1), �, ), and �. The minumum and maximum
values, as well as the bin sizes, are shown here. For Risius’ method no binning for )
is done, which essentially enlarges the bins, which helps statistical convergence.

Quantity Range Bin size Unit
Risius segments

* (1) 0–10 0.1 m s−1

� 0–360 30 °
) (no binning)
� 0–0.25 0.025 –

Fixed-length segments
* (1) 0–10 0.1 m s−1

� 0–360 30 °
) 0–90 20 °
� 0–2 0.1 –

1. The following averages are computed: the mean velocity * =
〈
* (1)

〉
and the correlation function '88(�) =

〈
'
(1)
88
(�)

〉
, where the averages run

over all segments in this bin.

2. Taylor’s frozen-turbulence approximation is applied by setting A = � ·* .

3. The 2nd-order structure functions are computed from the average cor-
relations functions as follows: �88(A) = 2['88(0) − '88(A)].

4. For each�88 , with 8 = 1, 2, 3, the maximum of�88/A2/3 is found and used
to obtain three dissipation rates &8 .

5. The dissipation rate & is computed as the average of &1, &2, and &3.

6. The Reynolds number is computed as Re! = :2

&� , with : = 1
2 〈u · u〉 the

turbulent kinetic energy. The Taylor Reynolds number is computed as
Re� =

√
20/3 · Re!.

7. The integral times are computed using two different methods:

• by fitting exp(−�/)88) to '88(�)/'88(0); and
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• by integrating '88(�)/'88(0) from 0 to the first zero-crossing, or, if
there is no zero-crossing, to the largest � for which ' has been
computed.

These methods give )88 ,fit and )88 ,int.

8. The integral lengths !88 are computed as )88 ,int · * . The )88 ,int are used,
because they capture non-exponential behaviour of the correlation func-
tions better than the )88 ,fit do.

9. The spectra �88(�) are computed as the type-I discrete cosine transform
of '88(A)/'88(0).

6.2.6 Creating daily graphs
By assuming that the statistics computedwithin each bin, apply not just to the
bin, but also to each of the segments within it, the turbulence statistics can be
graphed as a function of time. An example is shown in the next section.

6.3 Results

6.3.1 Segmentation and binning
Data was collected between 1 August 2019 and 1 October 2019, and was
processed as described in the previous section. Risius’ method yielded a total
of 18565 segments, which averages to one segment every 4.7 minutes. This
means that only 1

5 to 2
5 of the data satisfies � < 0.25; the rest is not used in this

analysis. Risius does not mention how much of his data he had to reject due
to this requirement, so it is not possible to make a comparison.

The fixed-length methods yielded ∼170 000 segments.

6.3.2 Per-bin statistics
An example of the correlation functions, compensated second-order structure
functions, and energy spectra is shown in figure 6.3. The quantities shown
are computed for the most populated bin in Risius’ method; in that bin * is
between 3.3 m s−1 to 3.4 m s−1, � is between 255° to 285°, � is between 0.225 to
0.250, and it contains 115 segments. The dissipation rate is estimated to be
0.034 m2 s−3.
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Figure 6.3: Correlation functions (top), compensated second-order structure func-
tions (middle), and energy spectra (top) computed within the most populated bin.
This bin contains 115 segments in total; its edges are described in the top graph. The
dissipation rate is estimated to be 0.034 m2 s−3. D1 is in the direction of the mean
wind; D2 is in the horizontal plane and perpendicular to D1; D3 is perpendicular to
both.
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The integral lengths in this bin are !11 = 13 m, !22 = 12 m, and !33 = 9 m.
In isoptropic turbulence 1

2!11 = !22 = !33, which is not quite the case here and
suggests that the flow is not isotropic.

The compensated structure functions should show plateaus that corre-
spond to the inertial range. Here, �11 shows a plateau, albeit only half a
decade wide. In isotropic turbulence the plateau of �11 should lie at 3

4 of the
height of the plateaus of �22 and �33, however �22 and �33 do not show clear
plateaus, and their peaks lie below the plateau of �11. This could again be
attributed to anisotropy.

The longitudinal energy spectrum �11 tends to �−5/3 over approximately
one-and-a-half decade. The transversal energy spectra �22 and �33 seem to
have a slightly less negative exponent.

6.3.3 Daily graphs
The evolution of the dissipation rate on 25-9-2019 is shown in the top two
graphs of figure 6.4. The top graph shows the values obtained using Risius’
method, while the middle graph shows values obtained with fixed-length
segments. The shaded area indicates when the particle tracking experiment
was running. Some trends can be seen, which may be related to changes in
the weather. Other than that, the dissipation rate fluctuates strongly.

In order to compute Stokes numbers in chapter 7, a dissipation rate must
be determined for each individual particle tracking experiment. This can be
done in various ways:

• The simplest way is to take the dissipation rate from the segment closest
in time to the LPT experiment of interest. However, Risius’ method does
not guarantee that segments are produced at regular intervals, so the
time difference between an LPT experiment and the closest segment can
be arbitrarily large. As a result, dissipation rates determined this way
may not be representative of the flow at the time of the LPT experiment.

• Another method would be to interpolate the dissipation rate between
segments.

• The method used here, is to fit a piecewise linear function to the dissi-
pation rate. To handle the irregular intervals between the segments
in Risius’ method, each segment 8 gets assigned a weight F8 equal
to half time difference between its two neighbouring segments, i.e.
F8 = (C8+1 − C8−1)/2.
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Figure 6.4: Evolution of the dissipation rate on 25-9-2019, computed with Risius’
method (top) and fixed-length segments (middle), as well as the ratio between these
(bottom). The solid line in the top and middle graph is a piecewise linear fit to ln(&).
The bottom graph is the ratio between the fits. The shaded area indicates when the
particle tracking experiment was running.
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Figure 6.5: Evolution of the Taylor Reynolds number on 25-9-2019, computed with
Risius’ method (top) and fixed-length segments (bottom). The shaded area indicates
when the particle tracking experiment was running.

Since the dissipation rate is expected to be log-normally distributed, the fits
are fits to ln(&). The resulting fits for 29-5-2019 are shown in figure 6.4.

The fits allow for convenient comparison between the dissipation rates
obtained with both methods. The bottom graph of figure 6.4 shows the
ratio &2min,fit/&Risius,fit, and as can be seen the 2-minute method yields larger
dissipation rates. This is not surprising: not conditioning on � means that
larger rms velocities D′ are admissible, and since & ∝ D′3/!, larger dissipation
rates should be expected too.

The evolution of the Taylor Reynolds number on 25-9-2019 is shown in
figure 6.5. The exact value of the Taylor Reynolds number is not as important,
so fits to these data have not been made. The Taylor Reynolds number during
the particle tracking experiments on 25-9-2019 can be estimated to be between
2 × 103 and 6 × 103.
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6.4 Conclusion
Asonic anemometer is used tomeasure theflowat the Schneefernerhaus, close
to the particle tracking experiment. In order to deal with non-stationarity and
to limit the turbulent intensity, the data is cut into short segments using two
different methods: one introduced by Risius et al. [52], that requires � < 0.25,
and one that doesn’t condition on �. Similar segments are then grouped
together (binned), and the dissipation rate and Taylor Reynolds number for
each bin are computed and mapped back onto the contributing segments.

The resultingdissipation ratesmay showtrends that correspond to changes
in the weather, but otherwise fluctuate strongly. These fluctuations are
smoothed out using piecewise linear fits, that will be used in chapter 7 to
compute an effective dissipation rate for each particle tracking experiment.

Initially only Risius’methodwas to be used tomeasure the dissipation rate
and the Taylor Reynolds number. But, as is discussed in the next chapter, in
section 7.1.3, the dissipation rates measured with Risius’ method are so low,
that the droplet acceleration statistics siginificantly deviate from literature
values. Furthermore, because & ∝ D′3/! = (�*)3/!, it can be argued that dis-
carding data with large turbulent intensities biases the results towards lower
dissipation rates. Therefore, it was decided to include statistics computed
from segments that are not conditioned on turbulent intensity. It must be
noted, though, that these statistics are plagued by high turbulent intensities,
and should be considered preliminary.

The effect of a high turbulent intensity on the applicability of Taylor’s
approximation has been studied extensively; see e.g. [18, 30, 37, 39, 70]. Both
Lumley [39] and Hill [30] give corrections, but these corrections go in the
wrong direction: given the true spatial dependency of some quantity &(A, 0),
they predict the temporal dependency &(0, �) as it would be measured. A
literature study must be done to see if the proposed corrections have been
applied to measurements in atmospheric flows already. If not, it would be
interesting to do so, or to understand why it cannot be done.

Risius was mostly interested in the distributions of various turbulence
statistics, and for that reason it was natural for him to segment and bin the
data, and to compute the statistics per bin. While this method can be used
to obtain instantaneous values for the turbulence statistics, it is perhaps less
effort and/or more reliable to compute instantaneous turbulence parameters
directly, as is done in e.g. [61].

Instead of using a single sonic anemometer, the turbulence statistics could
also be measured with an array of sonic anemometers. This way the instante-
nous velocity field can bemeasured directly, without having to invoke Taylor’s
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approximation. Using e.g. 4 sonic anemometers, the transverse second-order
structure function can be measured for 6 different separations A. The idea
behind this is not new, and has been applied to wind tunnels using hot-wire
probes before [11, 27].



Chapter 7

Droplet dynamics

In this chapter the elements of all three previous chapter come together:
various analysiswill beperformedon thedroplet trajectories, taking their sizes
into account through the Stokes number, and taking the turbulence statistics
into account, in particular the dissipation rate. The quantities studied here
are the droplet accelerations (section 7.1) and the radial distribution function
(section 7.2). Even though measured data for the radial relative velocities are
available, due to time constraints an analysis of the RRV remains to be done,
and the RRV is not presented in this thesis.

The quantities presented here are studied for three days: 25-9-2019, 26-9-
2019, and 28-9-2019. Plots of the dissipation rate and Taylor Reynolds on these
days can be found in section E.1; for the reader’s convenience approximate
values are shown in table 7.1. The dissipation rate in particular is a time-
dependent quantity; many of the analysis presented here are therefore done
per experiment, with the average dissipation rate at the time of the experiment

Table 7.1: Approximate dissipation rates and Taylor Reynolds numbers for the three
days studied here. These numbers are approximate, and are provided for the reader’s
convenience; precise values can be found in the graphs in section E.1.

Date & [m2 s−3] Re�
25-9-2019 0.01–0.1 4000
26-9-2019 0.05–0.1 8000
28-9-2019 0.04 3000

89
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obtained from piecewise linear fits (chapter 6).

7.1 Accelerations
7.1.1 Theory
Tracer particles, i.e. particles with St = 0, follow the flow exactly. As a result,
the distribution of their accelerations is equal to that of the fluid,

02
rms =

1
3 〈a · a〉 =

〈(
DD
DC

)2
〉
, (7.1)

with a the particle accelerations and 〈(DD/DC)2〉 the single-component rms
acceleration of fluid parcels. As the particles get heavier, i.e. as their Stokes
number increases, they will preferentially probe regions of the flow with
low vorticity. These regions are associated with low accelerations, which is
reflected in the particle accelerations. If they get even heavier, their response
time �? becomes so large, that they essentially can’t keep up with the fluid
accelerations. Bec et al. [4] relate the particle rms accelerations to that of
tracers as follows:

02
rms(St) = 02

rms(St = 0) + � exp[−(�/St)�], (7.2)

with � and � undetermined parameters. The exponent � = 2/3�, with
� = 0.41 given by Voth et al. [66]. Some expressions for the single-component
rms accelerations of tracers can be found in literature:

02
0 =

1
3 (2.5Re0.25

� + 0.08Re0.11
� ) Hill [29, eq. (4.2)] (7.3)

02
0 =

11 + 7 Re�
205 + Re�

Ayala et al. [2, eq. (26)] (7.4)

Here 02
0 = 〈(DD/DC)2〉/02

�, with 0� = �/�2
� = (&3/�)1/4 the Kolmogorov accel-

eration. For Re� = 3000, which is the mode of the Taylor Reynolds number
at the Schneefernerhaus, these yield 00 = 2.5 and 00 = 2.6, respectively. For
comparison, Bec et al. [4] measured 02

0 = 3.09 (00 = 1.76) at Re� = 185 in their
numerical simulation.

In this section equation (7.2) is fitted to the measured rms droplet acceler-
ation. First, the equation is non-dimensionalised as follows:

02
rms(St)
02
�

= 02
0{1 − � exp[−(�/St)�]}, (7.5)
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with 00 the non-dimensional single-component rms acceleration of tracers.
Furthermore the sign of the exponential term is flipped; this is a purely
cosmetical change that helps to emphasise that the rms acceleration decreases
as a function of increasing Stokes number. The fit parameters are 00, �, and
�.

7.1.2 Method
The following steps are taken:

1. Per experiment: bin droplets by size. The bin edges range from 4µm
to 52µm in steps of 4µm. Bins with less than 104 droplets in it are
discarded. Compute the dissipation rate at the time of the experiment
using the piecewise linear fits from chapter 6.

2. Per experiment, per size bin: compute the Stokes number from the bin
centre. Compute 0̃(St) = 0rms/0�, with 0rms = ( 13 〈a · a〉)1/2. In the next
section it is shown that the measured accelerations are isotropic, so that
the component average can be computed.

3. Per experiment: fit equation (7.5) to 0̃(St). This yields a per-experiment
value for 00.

4. Fit equation (7.5) to all of 0̃(St)/00, where 00 are the per-experiment
values obtained in the previous step. This gives � and �.

Ideally the fits in the last two stepswould be done only once, to all experiments
simultaneously. But, as will be shown in the next section, 00 various strongly
between experiments, so the fitmust be computed twice: once per experiment
to obtain 00, and once for all experiments to obtain � and �.

7.1.3 Results
The per-component rms accelerations on a single day are shown in figure 7.1;
plots for days can be found in section E.2. The accelerations are averaged over
batches of 30 experiments; each colour corresponds to a batch. As can be seen,
the G, H, and I components are almost equal. This shows that the small scales
are isotropic, and that the components can be averaged over.

Furthermore, all of the curves of 25-9-2019 have 0rms/0� between 6 and 20
at the lowest Stokes numbers. However, as was discussed previously these
curves should go to 00 ∼ 2.5 as the Stokes number decreases. Say, for the
sake of argument, that on average 0rms/0� = 12 for the lowest Stokes numbers,
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Figure 7.2: Single-component rms accelerations as a function of Stokes number, as
measured on 25-9-2019. Each marker corresponds to a specific Stokes number in a
specific experiment. The line is fit of equation (7.5) to the data, where 00 is allowed to
on a different value for each experiment.

then, to get this value down to 2.5, the dissipation rate must be increased by
a factor of (12/2.5)4/3 ≈ 8.

Finally, these curves show an extremely large spread. Each data point
in these plots corresponds to 30 experiments, totalling 100 s of experimental
data. This might be too short to get sufficient statistical convergence, but more
study is needed to confirm this.

Figure 7.2 shows a fit of equation (7.5) to the single-component rms accel-
erations, as computed in the last step described in the previous section. Fits
for all days can be found in section E.3. The fit parameters for each day are
shown in table 7.2. As can be seen, the model equation fits the data well, but
a comparison with literature values is difficult, on account of the differences
between the model equation used here, and the one published by Bec et al..
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Table 7.2: Model parameters of equation (7.5) obtained from fits to data from three
different days.

Date � �

25-9-2019 0.5375 0.0457
26-9-2019 0.4517 0.1167
28-9-2019 0.7304 0.0132

7.2 Radial distribution function

7.2.1 Theory
As mentioned in section 2.3.1 most experiments cannot resolve the radial
distribution function at droplet-touching distance A = ', and the experiment
presented here is no exception. Instead, a functional form for the RDF is
assumed and fitted to experimental data at A � '. Chun et al. [12] proposed
the following form for the bidisperse RDF:

612(A) = 20

[
�2 + A2

2

A2 + A2
2

] 21/2
, (Chun 2.77)

with 20 an unspecified proportionality constant, 21 the clustering exponent,
and A2 a cross-over length given by

A2

�
≈ 5.0 |St1 − St2 | . (Chun 2.80)

Two regimes can be identified:

A � A2 ⇒ 612 ≈ 20

[
1 +

�2

A2
2

] 21/2
; (7.6a)

A � A2 ⇒ 612 ≈ 20(�2 + A2
2 )21/2

(
1
A

) 21

. (7.6b)

The transition between these regimes is at A = A2 .
It must be noted that the functional form given by Chun et al. [12] does

not hold for A � � or A � A2 : for such A the RDF should go to 1, and not to 0.
To remedy this, the functional form proposed by Chun et al. [12] is modified
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to have an additional asymptotic regime for A � �:

612(A) =
[
A2 + A2

2 + �2

A2 + A2
2

] 21/2
. (7.7)

Assuming that A2 � �, the following regimes can be identified:

A � A2 ⇒ 612 ≈
(
�

A2

) 21

; (7.8a)

A2 � A � � ⇒ 612 ≈
(
�

A

) 21

; (7.8b)

A � � ⇒ 612 ≈ 1. (7.8c)

The transitions between these regimes are at A = A2 and A = �.
Themodel presented here differs from the one by Chun et al. [12]: firstly, it

contains no proportionality constant 20; if it did, it would not asymptotically
go to 1 in the last regime. Second, for the models to be equal in the first
two regimes, i.e. subequations (a) and (b), either �2 = �2, or �2 = �2 + A2

2 ,
which cannot be satisfied simultaneously. Below, the model will be fitted
to measured RDFs, with 21, A2 , and � fit parameters, the aim of which is
verify the prefactor in equation (Chun 2.80). However, because of the differ-
ences between equations (Chun 2.80) and (7.7), one should be cautious when
comparing the fits presented here with literature values.

The model above is not complete without an expression for the cluster-
ing coefficient 21. Chun et al. [12] obtained an expression for 21 based on
theoretical considerations. Their resulting expression for 21 is a function of
St1, St2, and the average fluid rates of strain and rotation as sampled by the
particles. The latter quantity is available in numerical simulations, which they
performed, but not in the experiments presented here.

Ayala et al. [2] used an empirical expression for 21,

21 =
−0.1988St4 + 1.5275St3 − 4.2942St2 + 5.3406St

Fr 51(Re�)
f

, (7.9)

with 51 a function that tends to 0.1886 for large Re�, and Frf = D�/6�� the fluid
Froude number. They do not attempt to justify these expressions.

Here, the following expression is used:

21(St1 , St2) = 211

[√
St1St2 − 212 |St1 − St2 |

]
, (7.10)
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with 211 and 212 model parameters that are to be determined. For A2 the
following expression is used:

A2

�
≈  |St1 − St2 | , (7.11)

with  a model parameter that is to be determined.

7.2.2 Method
The following steps are taken:

1. Per experiment: bin droplets by size. The bin edges range from 4µm to
52µm in steps of 4µm.

2. Per batch of 30 consecutive experiments: determine the average dissipa-
tion rate for these experiments from the piecewise linear fits computed
in chapter 6. Use this to compute the Stokes numbers for the centres of
the droplet size bins.

3. Per experiment, per size bin pair: compute the RDF. This is done for
all possible combinations of bin pairs within an experiment. Bins pairs
that cannot form at least 106 droplet pair, are skipped.

4. Fit equation (7.7) to the RDFs. In this step 21 is a per-RDF fit parameter,
and � and  are kept at fixed values. This step is repeated for various
combinations of � and  , and the combination that yields the best fits
for all RDFs is kept.

5. Per day: fit equation (7.10) to all 21 obtained in the previous step to
determine the parameters 211 and 212.

For a single particle tracking experiment, given two size bins 3?1 and 3?2, the
RDF 612 is computed as follows:

1. For each frame: compute the histogram of pair separations for all #1#2
droplet pairs that can be formed between the two bins.
If a monodisperse RDF is requested, i.e. if bin no. 1 and bin no. 2 are the
same bin, then #1 = #2 = # , and only #(# − 1) unique pairs can be
formed.

2. Sum all histograms made in the previous step. The resulting histogram
is the unnormalised RDF 6(D)12 .
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3. For each of both bins: discard the temporal info (frame numbers). The
result is a collection of homogeneously spreaddroplets, i.e.without clus-
tering. To limit computational cost required in the next step, randomly
select 32768 droplets from each collection, and discard the rest.

If a monodisperse RDF is requested, both collections are identical.

4. Compute the homogeneous, unnormalised RDF of the two droplet col-
lections formed in the previous step. The computation is the same as
in step 1. The resulting histogram is the homogeneous, unnormalised
RDF 6(ℎ)12 .

5. Compute the RDF 612(A) = 6
(D)
12 (A)/
 6

(ℎ)
12 (A), with 
 some scaling factor

to account for the limited number of droplets that was used to compute
the RDF in the previous step.

Computing the RDF requires one to normalise the number of droplet pairs
by the volume of a spherical shell with radius A (see equation (2.29)). In the
particle tracking experiment, part of the spherical shell may lie outside of the
measurement volume, and hence may not be counted. This makes computing
the normalisation factors in equation (2.29)) difficult; muchmore difficult than
computing an (unnormalised) RDF of homogeneously spread droplets, as is
done steps 3–5 above.

7.2.3 Results

An example of a number ofmeasuredRDFs is shown in figure 7.3. For the case
shown in the figure, St1 = 0.105 and St2 varies. The steep drop in the RDFs
at A < 0.2 mm for St2 = 0.04 and St2 = 0.07 is the result of the droplets’ close
proximity and the low brightness of the second drop: the particle tracking
experiment cannot reliably resolve both droplets in such pairs.

Also shown in figure 7.3 are fits of the model equation, equation (7.7), to
the measured RDFs. The overall best model parameters are � = 4 mm and
 = 5. The latter is in line with what was found by Chun et al. [12].

Figure 7.4 shows a fit of equation (7.11) to all clustering coefficients 21
measured on 25-9-2019. The fit parameters are 211 = 1.4 and 212 = 0.3. Fit
parameters for all days are shown in table 7.3; the corresponding fits can be
found in section E.4.
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Figure 7.3: Radial distribution functions measured for bidisperse droplets. Here
St1 = 0.105 and St2 varies. The solid lines are fits using themodel RDF, equation (7.7).

Table 7.3: Fit parameters of equation (7.10) obtained from fits to data from three
different days.

Date 211 212

25-9-2019 1.40 0.3
26-9-2019 1.04 0.3
28-9-2019 0.96 0.3
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7.3 Conclusion
In this chapter two quantities are computed from measured droplet trajecto-
ries: the rms acceleration as a function of the Stokes number, and the radial
distribution function. Each of these is fitted with a model from literature, or
a variation thereof, and there is general agreement between the data and the
models. It must noted though, that all results presented here are preliminary.
In particular the dissipation rate needs more scrutiny, because of the much
too large rms accelerations.

Many more analyses are left for future work:

• Uncertaintiesmust be computed for all analyses that are performedhere.

• There are many more models in literature that could be fitted to the
experimental data presented here. Good starting points are Gustavsson
and Mehlig [25] and Ayala et al. [2], and references therein.

• There is evidence that clustering occurs mostly in the horizontal plane
[21]. This could be verified by conditioning the RDFs on the angle
between the separation vector r and the vertical.

• The radial relative velocities. A good starting point are the studies by
Saffman and Turner [55], Wang et al. [68] and Ayala et al. [2].



Chapter 8

Conclusion

In this thesis a unique, in-situ cloud droplet tracking experiment is pre-
sented. The experiment is situated on top of the environmental research
station Schneefernerhaus, at an altitude of 2650 m in the German Alps. At
this altitude clouds occur naturally. The experiment is augmented with a
novel technique to measure cloud droplet sizes, as well as an instrument to
measure properties of the turbulent carrier flow, and is used to determine the
acceleration statistics and radial distribution functions of cloud droplets.

The particle tracking experiment was described in chapter 4. It is quite
conventional in terms of scientific instruments used. What sets the LPT exper-
iment apart from other experiments, is that it is used in-situ. For this reason
it is housed in a weather-proof box that is exposed to the environment for
several months each year.

The particle videos were analysed with a novel code, called Low-Light
LPT (L3PT), that is currently under development by Dr. Moláček. L3PT is
inspired by the Shake-The-Box algorithm, and is suitable for tracking badly
defocused droplets in a densely seeded flow—abilities that are a necessity for
the experiment presented here. In addition to particles seen by two or more
cameras, L3PT also tracks particles seen by only one camera. These cannot be
triangulated, but tracking these helps to increase the overall accuracy of the
code. Compared to the Shake-The-Box algorithm, L3PT expends much more
computational cost, but gets higher yield and higher accuracy.

In chapter 6 the turbulence statistics were measured using a method ini-
tially developedbyRisius et al. [52]. Although themethodworks andprovides
plausible dissipation rates, there are reasons to believe that it underestimates
the turbulent dissipation rate. Further study should show whether this is the

101



102 CHAPTER 8. CONCLUSION

case.
Then, in chapter 5, a novel droplet sizing technique was developed, that

relates the droplet’s intensities as observed by the LPT experiment, to their
sizes. Results obtained with the technique agree well with those obtained
with the HALOHolo. The technique is not limited to the LPT experiment
presented here; it can be applied to any LPT experiment that has spherical
particles, and a diffuse light source and/or large camera apertures.

Finally, in chapter 7, all ingredients came together: various analyses were
performed on droplet trajectories conditioned on Stokes number. The Stokes
numbers, in turn, were computed from the droplet sizes and the turbulent
statistics. First, droplet accelerations as a function of Stokes number were
compared with literature values, and were found to qualitatively agree, but
were far too large in magnitude. This might be caused by an ovestimate of the
turbulent dissipation rate, but further investigation is needed to determine
the cause.

The second analysis performed was to determine the radial distribution
functions. Again, qualitative agreement with literature was found, but more
work is needed to determine the uncertainties on the measured clustering
coefficients, and to quantitatively compare the RDFs to theoretical models
and literature values.

The Zugspitze experiment is not perfect. One issue that requires attention
is the effect of the building on the flow. Risius et al. did measurements at
a height of 6 metres above the roof of the Schneefernerhaus, and found that
the flow is quite isotropic. The measurements presented in this thesis were
conducted only 2 metres above the roof, and the results presented in chapter 6
warrant a closer look at the flow’s isotropy. However, a simple solution might
be to place the experiment either higher, or closer to the edge of the building.
It could also be put on a sort of balcony, so that it extends away from the
building.

The experiment has been built to be able to compensate for the mean
wind. This is done by moving the LPT experiment over a set of rails using a
linear motor. However, as was discussed in appendix D, it is difficult to deal
with the vibrations this introduces. Furthermore, due to the large turbulence
intensities (chapter 6) the large eddies sweep particles in and out of the LPT
measurement volume about as quickly as themeanwind does. As a result the
mean wind compensation is not expected to have large benefits, and therefore
it should be carefully considered whether further development is worth the
effort.

The Zugspitze experiment has been in development for about ten years
now, and in the last four years it has been pushed to a level where it is finally
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able to produce scientific results. It is reasonable to expect that in a few years
from now it can reliably produce measurements of the radial distribution
function and the radial relative velocities. These results should prove useful
to assess the accuracy of theoretical models for the RDF and the RRV at high
Taylor Reynolds numbers. They could furthermore be used to improve the
empirical models for cloud droplet growth and rain formation that are used
in numerical weather prediction models.

There is evidence that both electric fields and droplet charge affect the
collision–coalescence rate [1, 38, 49]—a topic that has not been discussed in
this thesis. It would be interesting to add to the experiment an instrument
that can measure these properties.
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Appendix A

Integration of scattered
irradiance

A droplet’s observed intensity �$ is the total irradiance that is scattered by
a droplet into a camera’s aperture. It can be computed by evaluating equa-
tion (5.4), which is repeated here:

�$ =

∬
�

d�(x′0)
∬

4�
F3 dΩ(l̂′) �B(A′, �′). (A.1)

The symbols used are defined in figure A.1. The first integral is over the
camera’s aperture �. If a diffuser is placed in the laser beam, light will
be incident on the droplet from various directions; this is accounted for by
the second integral. The diffuser’s characteristic function F3(l̂′) is a two-
dimensional Gaussian that describes the diffuser’s angular spread.

Equation (A.1) could be evaluated directly, but since it contains two two-
dimensional integrals, this could be rather time-consuming, even more so if
one considers that it should be done for many droplet sizes and many angles
�. Luckily though, two approximations can be made: 1) each of the two two-
dimensional integrals can be approximated by a one-dimensional integral,
and 2) one of the resulting integrals can be evaluated immediately, yielding
only a single integral. Let us now consider each of these approximations
individually, and see why they can be done.

The first integral in equation (A.1) reads∫
�

d�(x′0), (A.2)
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Figure A.1: Symbols used for solving equation (A.1). A laser beam travelling in
direction l̂ is incident on a droplet at position x. Part of the light is scattered into
the aperature, which has its centre at x0 , and which for integration is split up into
infinitesimals d�(x′0). If a diffuser is in use, light incident on the droplet will not
come from a single direction l̂, but from many directions l̂′, which for integration are
again split into infinitesimals dΩ(l̂′). r is the vector from the droplet’s position to
the aperture’s centre, and � is the angle between r and the laser beam’s axis l̂. The
symbols with a prime have similar meanings, but relate to the infinitesimals.

Strips of constant θ′ Approximated

r′dθ′

2r′
√

α2 − (θ′ − θ)2

Figure A.2: To integrate Lorentz-Mie scattering over the camera’s aperture, it is
natural to split the aperture in thin strips of constant �′ (left). To make the integration
itself easier, these strips can be approximated by thin rectangular strips, the length
of which is easily calculated (right). The curvature of the strips in the left figure is
strongly exaggerated.
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where the integrand, �B , has been omitted for the sake of clarity. Note that
the only variable that is relevant to computing �B (see equation (5.3)), is �′;
the other parameters, A′ and x, are constant. It is therefore natural to express
integral (A.2) in spherical coordinates A′, �′, )′, as follows:∫

�

d�(x′0) =
∫ �+


�−

A′ d�′

∫
A′ sin(�′) d)′, (A.3)

with � approximately 30°, and 
 half the angle subtended by the aperture, so

 ≈ 0.5°. The integral over)′ canbe replacedbymultiplicationwith anumber,
equal to the length of the thin strip of constant �′ that is subtended by the
aperture; see the left-hand side of figure A.2 for a graphical representation.
Since the aperture is small and is sufficiently far away from both � = 0° and
� = 180°, the strips of constant �′ can be approximated with thin rectangles,
as is shown in the right of figure A.2. The length of these rectangles is given
by 2A′

√

2 − (�′ − �), so the double integral can be written as:∫

�

d�(x′0) =
∫ �+


�−

d�′ A′2 2

√

2 − (�′ − �)2. (A.4)

For the sake of clarity it is beneficial to get rid of �′ by substituting �′−�with
�1: ∫

�

d�(x′0) =
∫ 


−

d�1 A

′2 2
√

2 − �2

1 (A.5)

=

∫ 


−

d�1 5 (�1). (A.6)

The remaining integral cannot be evaluatednow, because the integrand,which
was omitted for the sake of clarity, depends on �′, which in turn depends �1.

A similar approximation can be applied to the second integral in equa-
tion (A.1). This integral reads ∫

4�
F3 dΩ�(l̂′), (A.7)

where the integrand has again been omitted for the sake of clarity. Instead of
integrating over a circular region, this integral is over all directions, i.e. over a
solid angle of 4�. The diffuser’s weight function is

F3(l̂′) = �3 exp

(
−(l̂
′ − l̂)2

2�2
3

)
, (A.8)
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with �3 the diffusion angle, and �3 a constant so that F3 integrates to 1. The
diffusion angle �3 is small, so F3 is sharply peaked around the laser beam’s
axis l̂. Because F3 is so sharply peaked, this integral can be approximated in
much the same way as the integral over the aperture. The result is:∫

4�
F3 dΩ�(l̂′) =

∫ ∞

−∞
d�2

1
�3
√

2�
exp

(
−
�2

2

2�2
3

)
(A.9)

=

∫ ∞

−∞
d�2 6(�2). (A.10)

Equations (A.6) and (A.10) can nowbe substituted in equation (A.1), which
gives:

�$ =

∫ 


−

d�1

∫ ∞

−∞
d�2 5 (�1) 6(�2) �B(�′). (A.11)

Note that �′ has not formally been substituted here as was done before, but it
can easily be seen that �′ = � + �1 + �2. Whether the signs are plus or minus
signs doesn’t really matter, because 5 and 6 are even functions. Substituting
�1 + �2 = � finally yields:

�$ =

∫ ∞

−∞
d� �B(� + �)

∫ 


−

d�1 5 (�1) 6(� − �2) (A.12)

=

∫ ∞

−∞
d� �B(� + �) ℎ(�). (A.13)

The function ℎ depends on the droplet–aperture distance A, the aperture’s
subtended half-angle 
, and the diffuser’s characteristic function F3, and, if
these parameters do not change, needs to be computed only once.



Appendix B

Bayesian inference of droplet
size

This appendix summarises the results of a hurried attempt at using Bayesian
inference to determine droplet sizes. The potential advantage of this method,
is that it correctly deals with oscillations in the scattered intensity.

B.1 Bayesian inference
Bayes’ theorem (e.g. [40]) states that

%(� | �) = %(� | �) %(�)
%(�) , (B.1)

with

• %(�) and %(�) the probabilities that � and � are true, respectively;

• %(� | �) is the probability that � is true given that � is true; and

• %(� | �) is the probability that � is true given that � is true.

In the Bayesian interpretation of probability, these probabilities are degrees
of belief, i.e. %(�) is the degree of belief that � is true. In the context of an
experiment, %(�) is called the prior, that is the degree of belief that � is true,
prior to having seen the evidence �. That makes %(� | �) the posterior, and
Bayesian inference is the process of determining it.
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B.2 Bayesian droplet sizing
Let O be a vector of intensities observed along a trajectory. Bayes’ theorem
states that the probability that these specific intensities are caused by a droplet
of diameter 3? , is

%(3? | O) =
%(O | 3?) %(3?)

%(O) . (B.2)

The prior %(3?) can be taken to be constant, i.e. all droplet sizes are equally
probable. The denominator is a constant of which the exact value doesn’t
matter, because the posterior can be normalised such that it integrates to 1.
Equation (B.2) then becomes

%(3? | O) ∝ %(O | 3?). (B.3)

The expected value operator �[-] is:

�[-] =
∫ ∞

0
- %(O | 3?) d3? =

∫ ∞
0 - %(3? | O) d3?∫ ∞

0 %(3? | O) d3?
. (B.4)

With this the droplet size �3? and uncertainty �3? can be computed as follows:
1

�3? = �[3?], (B.5)

�2
3?
= �[(3? − �3? )2], (B.6)

which are the usual definitions of the mean and the standard deviation.
Before equations (B.5) and (B.6) canbeput touse, an expression for%(O | 3?)

is needed. If it is assumed that

• observed intensities are independent, and normally distributed around
their expected values; and

• expected intensities can be computed with equation (5.5),

then

%(O | 3?) =
∏
9

∏
:

%# (� 9: | �9: , �9:), (B.7)

1In other chapters the droplet size is simply 3? . In this appendix that is used as a variable of
integration, and instead �3? is used as the measured droplet size.
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with %# the normal PDF, �9: the expected intensity, and �9: the intensity
standard deviation. Here, and in the rest of this appendix, the following
subscripts are used: 8 for a droplet trajectory, 9 for a point along a trajectory,
and : for a camera. Depending on context some subscripts might be omitted;
in this section, for instance, a single droplet trajectory is considered, so the
index 8 is omitted.

Finally, an expression for �9: is needed. Here it is assumed that

�9: = 20�
21
9:
, (B.8)

with 20 and 21 model parameters that are to be determined. Dr. Moláček
suggested that the standard deviation should also depend on distance A − A0
to the camera’s focus plane:

�9: = 20 �
21
9:
[1 + 22(A − A0)2]23 , (B.9)

with A0 and 23 additional model parameters.

B.3 Model parameters
B.3.1 Estimate from histograms
Initial estimates for the model parameters are obtained from histograms of
the error in the measured intensities. The true intensities are not known, so
the errors must be approximated. To do so, it is assumed that neighbouring
true intensities are approximately equal, so that the error is

48 9: ≈ �8 9: − �8 , 9−1,: . (B.10)

If the intensities come from normal distributions, then so do the errors 4.
Technically it is not possible to compute the standard deviation of 4, since
each of these comes from a different normal distribution. However, if Lorentz-
Mie scattering and variation due to the laser beam profile are ignored, then
�8 9: = �8: and �8 9: = �8: , and

�2
8:
= 1

2

〈
42
8 9:

〉
9
, (B.11)

with the average running over each point 9 in the trajectory. These are com-
pared to the trajectory-averaged intensities

�8: =
〈
�8 9:

〉
9
. (B.12)
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Instead of the average squared error
〈
42〉, the variance of �8 9: could have been

used. The former, however, acknowledges that the intensity is not constant
throughout a trajectory, and should give a slightly smaller value for �8: than
Var(�8 9:)9 does. To get the distribution of relative errors, 48 9: could also be
compared to <8 9: = �8 9: + �8 , 9−1,: , i.e. 48 9:/<8 9: . This would give more accurate
results, but itmight be difficult to relate the distribution of these relative errors
to �8: .

2D histograms of (ln(�8:), �8:/�8:) are plotted in figure B.1 for two cases.
Case #1 is a low seeding density case (experiment 146 on 25-9-2019), and
case #2 is a high seeding density case (experiment 367 on the same day). The
relative error is approximately 0.1, although it seems to differ slightly between
the cases. The model parameters should therefore be determined again for
each experiment. All histograms show an increase in relative error for fainter
droplets. This suggests that 21 < 1. The histograms for case #1 also show an
increase for brighter droplets, which suggests that 21 > 1.

Histograms were also made for different I slices, but no notable difference
was seen.

B.3.2 Maximum likelihood estimation
In this section the model parameters are determined using maximum likeli-
hood estimation, orMLE. This will be done for each camera individually, so :
is constant and will be omitted. The likelihood ℒ is given by

ℒ(20 , 21 , �1 , �2 , . . . , �# ) =
∏
8

∏
9

%# (�8 9 | �8 9 , �2
8 9). (B.13)

Lorentz-Mie scattering is ignored, but the laser beam profile is taken into
account. The mean and standard deviation of the normal distributions are
then given by

�8 9: = �
(0)
8 9
· �8: , (B.14)

�8 9: = 20�
21
9:
, (B.15)

with �(0)
8 9

the laser beam intensity at the droplet’s position 9, and �8 9: conform
equation (B.8). By maximising ℒ, values for 20 and 21 can be found. As a
side-effect, optimal values for �1 etc. will also be found, but these will be
discarded. In practice it is easier and numerically more stable to work with
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Figure B.1: Histograms of relative errors, computed per trajectory. The rows corre-
spond to the three cameras, while the columns respond to cases. Case #1 has a low
seeding density (experiment 146 on 25-9-2019); case #2 has a high seeding density
(experiment 367 on the same day).
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the log-likelihood:

ℓ (20 , 21 , �1 , �2 , . . . , �# ) = ln(ℒ) =
∑
8

∑
9

ln[%# (�8 9 | �8 9 , �8 9)]. (B.16)

The log-likelihood is optimised for all experiments on 25-9-2019 using
a Python code. The SciPy package comes with a number of optimisation
routines; here the Newton conjugate gradient method (“newton-cg”) is used,
because it is suitable for large problems, i.e. problems with a large Hessian.
The problem at hand is large: case #2 has 1 117 329 trajectories, for each of
which the mean intensity will be found; the entire Hessian is a 106 × 106

matrix. The gradient and Hessian of (B.16) are specified explicitly, and are
verified by comparing them to numerical derivatives of (B.16). The Hessian
is sparse, so computing it explicitly is much faster than numerical derivation.
Another advantage of using explicit derivatives, is that they aremore accurate
than numerical approximations, and hence the optimisation is more accurate.
Finally, to speed things up, the Numba package is used, which is essentially a
just-in-time compiler for certain kinds of Python code.

The MLE is run per experiment and per camera, for all experiments on
25-9-2019. To see if there is any dependence on initial guess for 20 and 21,
all combinations of 20 ∈ {0.3, 0.4, 0.5} and 21 ∈ {0.8, 0.9, 1.0} are tried. His-
tograms of all optimised 20 and 21 are shown in figure B.2. The optimal
parameters appear in 9 groups, each of which corresponds to an initial guess.
The optimal parameters should not depend on the initial guess; that they
do, suggests that the optimisation ends up in a local maximum, or does not
converge at all.

The author speculates that non-convergence is likely. To see why, consider
the form of the gradient:

∇ℓ =
(
%ℓ

%20
,
%ℓ

%21
,
%ℓ

%�1
,
%ℓ

%�2
, . . . ,

%ℓ

%�#
,

)
. (B.17)

The first two terms have contributions from all trajectories, while the rest only
has contributions from single trajectories. The first two terms are therefore
much larger than the rest. This might pose a problem for the optimisation
routines used here. A solution could be to split the problem in two, i.e. to
alternate between optimising 20 and 21, and optimising the �8 . The theoretical
basis for this is the generalised expectation–maximisation algorithm [26, 43].
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Figure B.2: Histograms of model parameters, computed for all particle tracking
experiments on 25-9-2019.



116 APPENDIX B. BAYESIAN INFERENCE OF DROPLET SIZE

B.4 Droplet sizing
Droplet sizes can be determined by evaluating equation (B.5). To do so, the
integrals in equation (B.4) are first discretised, i.e. replaced with a sum over a
finite number of droplet sizes. Then, a lookup table of expected intensities � is
computed using equation (5.5) for various droplet sizes, for various scattering
angles, and for each camera. Here 9901 droplet sizes in the range 1µm to
100µm, and ∼ 1700 central scattering angles in the range 20° to 40° are used.
Then, for each trajectory, the following steps are taken:

1. The central scattering angles �9: are computed, and the corresponding
expected intensities �9: are looked up using the table created earlier.

2. The laser beam intensity �(0)
9

at each point along the trajectory is looked
up, and is factored into the expected intensities.

3. The intensity standarddeviations �9: are computedusing equation (B.8).

4. The logarithm of equation (B.7) is evaluated.

5. Equations (B.5) and (B.6) are evaluated.
This method is applied to case #2. The resulting droplet size histogram is

shown in the top graph of figure B.3. The bottom graph shows CDFs of the
relative droplet size uncertainty for three ranges of droplet sizes. As can be
seen, for only 1 % of all trajectories, the relative uncertainty exceeds 0.08. This
is twice as accurate as the droplet sizing method presented in chapter 5 (see
figure 5.7).

The CDFs also show that for half of all trajectories the relative uncertainty
is < 0.01. This is unrealistic, given that this method depends very sensitively
on accurate knowledge of amongst others the direction of the laser beam, the
aperture sizes, and the camera sensitivity (i.e. counts-per-photon).

To better understand how this method works, PDFs computed with equa-
tion (B.7) using data from the field experiment, are plotted in figure B.4 for
three different trajectories. The product in equation (B.7) has not been applied
yet, i.e. these are per-camera droplet size PDFs. Interpretation of these plots
is left for later work.

B.5 Conclusion
While Bayesian-inferencedroplet sizinghas thepotential to dealwith intensity
oscillations due to Lorentz-Mie scattering, the method has a big downside:
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it is slow. With the discretisation chosen here, for a 20-point trajectory a
total of 3 × 20 × 9901 ≈ 6 × 105 normal distributions must be evaluated. The
computational cost is hence much larger than that of the method presented
in chapter 5, which is essentially taking a square root. It must be questioned
whether it is worth the extra effort.

The first step in further developing this method, should be to determine
various properties of the experimental setupmore accurately. In particular the
laser beam angle, the aperture diameters, and the sensitivity of the cameras
(counts-per-photon) should be known accurately.

Furthermore, amore accuratemodel for the intensityuncertainty is needed,
as this directly influences the computed droplet size uncertainties cf. equa-
tion B.6. Depending on the model, a better strategy to optimise its parameters
(section B.3) may also be needed.
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Appendix C

Calibration of the FMAG
aerosol generator

C.1 The FMAG aerosol generator
Droplets are produced with the TSI FMAG Model 1520. The principle of
this aerosol generator was first published in an article titled: “Generation
of monodisperse aerosols by combining aerodynamic flow-focusing and me-
chanical perturbation” [15]. Flow focusing refers to the use of two concentric
nozzles, the inner of which ejects liquid, and the outer ejects gas. The outer
gas jet accelerates the inner fluid jet, thinning it, and thereby allowing it to
produce droplets that are much smaller than the orifice from which it came.
The diameter 3 9 of the inner jet is given by

3 9 =

(
8�;

�2Δ%6

)1/4
&1/2 , (C.1)

with �; the liquid density,Δ%6 the gas pressure drop, and& the liquid volume
flow. The FMAG uses a piezo-electric element to impose a periodic perturba-
tion on the liquid jet. The perturbation grows due to the Rayleigh instability,
and causes the jet to break up into droplets with a diameter 3? given by

3? =

(
6&
� 5

)1/3
, (C.2)
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Figure C.1: Diagram of the shadowgraphy setup.

with 5 the piezo driving frequency. The wavelength � of the perturbation is

� =
4&
�32

9
5
. (C.3)

For the jet to break up into monodisperse droplets, � should ideally be 4.53 9 ,
but values between 3.53 9 and 73 9 are known to work as well.

The the gas pressure drop Δ%6 , the liquid volume flow &, and the driving
frequency 5 can be set using knobs on the device. A combination of these
parameters constitutes a recipe. The aim of this chapter is to find recipes that
can be used to reliably produce monodisperse droplet size distributions. To
this end a shadowgraph is first built, calibrated, and tested. The shadowgraph
is used tomeasure the droplet size distributions resulting fromvarious recipes
under test, and the recipes are iteratively improved upon.

C.2 Shadowgraphy
C.2.1 Setup
Out of the box the FMAGcanproduce droplets ranging from17µmto 39µmin
diameter, but by taking the nozzle out and inverting it, it can produce droplets
of up to 150µm in diameter. Droplets larger than 72µm were measured with
a commercial PDA probe (Artium PDI-FPDR) at Zugspitze, so the inverted
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Figure C.2: A typical shadowgraphy image.

configuration is used to generate droplets. The FMAG’s manual does not
provide values for &, 5 , and Δ%6 for this configuration, so an experiment is
needed to find the right values. To this end a shadowgraph was built using
the following components:

• Thorlabs M455L3 high power LED, 455 nm, >900 mW

• Thorlabs ACL50832U-A condenser lens, 5 = 32 mm, 2 in diam.

• Questar QM100 Maksutov-Cassegrain long distance miscroscope objec-
tive

• Phantom VEO 4K 990L high speed camera, 4096 px × 2304 px

A diagram of the setup is shown in figure C.1. The shadowgraph is calibrated
using calibration mask with a 0.2 mm × 0.2 mm marker grid, and is found to
have a magnification of 0.49µm px−1, so its field of view is 2.0 mm × 1.1 mm.
Tominimisemotionblur the exposure timewas set to 5µs,which is the shortest
the camera can do. A typical shadowgraphy image is shown in figure C.2.

C.2.2 Data analysis
The shadowgraphy images are analysed using a robust method developed by
Legrand et al. [36], that works as follows:
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1. Divide the image by a background (white) image, to correct for inho-
mogeneities in the illumination. The pixel values are now in the range
[0, 1].

2. Identify particle shadows by looking for groups of pixels that are suffi-
ciently dark, i.e. at least 400 pixels with values < 0.5.

3. For each shadow:

(a) Count the number of pixels that are < 0.5, and call this #1. Com-
pute an approximate diameter �G = 2

√
#1/�.

(b) Isolate the shadow: cut out a square region centred on the shadow,
that is 2.25�G on each side.

(c) Rescale the shadow’s pixel values, so that they are in the range
[0, 1].

(d) Count the number of pixel values < 0.7 and call this#0.7. Compute
an approximate diameter �0.7 = 2

√
#0.7/�.

(e) Count the number of pixel values < 0.3 and call this#0.3. Compute
an approximate diameter �0.3 = 2

√
#0.3/�.

(f) Reject the shadow if �0.7/�0.3 > 1.2; this indicates the shadow is
too much out of focus. Legrand et al. [36] use a less strict threshold
of 2.5.

(g) Compute the particle diameter from�0.3 and�0.7. This boils down
to evaluating a few polynomial functions; for details the reader is
referred to Legrand et al. [36].

This method was implemented in Python using OpenCV, and was verified
using shadowgraphy images taken of 80µm polystyrene beads (Dynoseeds
TS 80-50).

C.3 Results
The equations and conditions given in section C.1 were used to generate an
initial set of recipes for various droplet sizes. Each of these recipes was tested
using the shadowgraph. In many cases the droplet size distribution was not
monodisperse: some recipes yielded a very broad droplet size distribution,
others yielded multiple peaks, and yet others did not yield the target droplet
size at all. In such cases the recipe was tweaked until it gave a satisfactory
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Table C.1: FMAG recipes for various droplet diameters.

3? [µm] & [ml h−1] 5 [kHz] Δ%6 [psi]
20 2.0 132.6 2.20
30 3.5 70.1 1.50
40 6.0 51.3 1.50
50 9.5 39.0 1.50
60 15.0 36.8 1.90
70 12.9 20.0 0.75
80 19.3 20.0 0.90
90 27.0 19.8 1.30

100 27.5 14.6 0.80
110 42.0 16.8 1.30
120 50.0 15.4 1.20
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Figure C.3: Distributions of droplet sizes generated with the recipes listed in table C.1.
The vertical offsets correspond to the target droplet diameter.
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droplet size distribution. The resulting recipes were tested at least twice,
to ensure repeatability. Table C.1 lists the final recipes. For each size the
corresponding droplet size distribution is shown in figure C.3

C.4 Notes
• This is by far not an exhaustive performance test of the FMAG aerosol

generator, and it was never intended to be. The FMAG was only cali-
brated in as far as was needed for it to be usable as a calibrated droplet
source.

• A pulsed laser would have provided more light than the LED does, and
would also have eliminated all motion blur.
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Appendix D

Mean-wind compensation

The Schneefernerhaus and wind tunnel experiments have in common that
there is a mean wind. Depending on the quantity of interest this mean
wind can be a problem. If one wishes to observe two-particle dispersion in
the Richardson-Obukhov regime [56], one needs to be able to see the same
particle pair for an extended period of time. The mean wind prevents this,
because it will blow the particle pair out of the measurement volume before
Richardson-Obukhov dispersion sets in.

Whether the presence of a mean wind is preferred or not also depends on
the experimental technique that is used. For some experimental techniques
(e.g. hot-wire anemometry and laser-Doppler velocimetry) the presence of
a mean wind is vital. For other experimental techniques it either doesn’t
matter (e.g. sonic anemometry, PIV), or can even be detrimental (e.g. particle
tracking). In the case of particle tracking, the mean wind is a complicating
factor for the following two reasons:

• The mean wind causes a larger particle displacement from frame to
frame. As a result, particle tracking codes need to use a larger search
radius to track a particle fromone frame to the next, in particular for new
particles, for which no mean velocity is known yet. For high seeding
densities this might lead to many false trajectories. It can be remedied
by increasing the frame rate, which comes at the expense of shorter
experiments and/or more expensive cameras and lasers.

• The mean wind causes particles to remain in the measurement volume
for a shorter time. This results in shorter particle trajectories, which
means that less smoothing can be done. Smoothing particle trajectories

129
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is beneficial when computing particle velocities and accelerations, as
these temporal derivatives amplify the particle position noise.

To compensate for the mean wind at the Schneefernerhaus the seesawwas
built. The seesaw consists of a pair of rails over which the particle tracking
setup slides. It is introduced in the next section. The sliding introduces
vibrations, that are detrimental to the particle tracking, and therefore must be
damped. This is further discussed in section D.2.

D.1 Seesaw
This section will be submitted as part of an article to Review of Scientific Instruments.

The seesaw allows us to compensate for the mean wind. It supports the rails
on which the table slides; see figure 3.1. It has been designed for velocities
up to 7.5 m s−1 and accelerations up to 28 m s−2. It also withstands emergency
stops, which occur for instance if the linear motor fails and the table runs into
the endstops; in such events the deceleration can reach up to 230 m s−2.

The highest frame rate we typically record at is 10 kHz; at this frame rate
we can record up to 1.6 s of data before exhausting the camera buffers. During
this time the table should be moving at a constant speed. We normally limit
the acceleration and deceleration to 10 m s−2, to prevent the box from shaking
too much. Given that the maximum travel is 5.3 m, this gives a maximum
constant velocity of 2.8 m s−1, which is in our experience sufficiently high
most of the time.

Risius [51] found that the inclination of the mean wind varies between
−15° and 15°. The seesaw is built to account for this: using a hand crank it
can pivot around an axis close to the centre of the rail. To give the structure
sufficient stiffness two lockable, telescoping cylinders have been added on
either side of the axis.

The seesaw and its supporting structure weigh approximately 4400 kg.
The table and camera box may weigh up to 300 kg. If, due to motor or motor
controller failure, they run into the shock absorbers, this could exert a force of
up to 140 kN. To account for these forces, mounting points poured in concrete
have been installed on the roof of the Schneefernerhaus.

A sliding table is mounted on a pair of rails on the seesaw. It is drivenwith
a linear motor that is part of the Bosch-Rexroth IndraDyn L series, a series of
industrial three-phase synchronous motors. In particular we are using a kit
motor, which means that the stator and rotor are delivered separately, and the
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buyer is responsible for making a complete motor out of them. In our case
the stator consists of plates of permanent magnets that are mounted on the
seesaw in between the rails. The rotor consists of two sets of electromagnets
that are mounted on the bottom side of the table.

The actual position of the table is measured using the Bosch-Rexroth Inte-
grated Measuring System (IMS), which integrates a magnetic grating with a
period of 40µm in the side of one of the rails, and an inductive sensor head
in one of the carriages. Initially, a more precise optical grating was used to
measure position, however during the environmental conditions most suit-
able for our experiments it was found to be extremely unreliable. Cloud
droplets would stick to the grating and collect into a larger drop as the sensor
head would travel over it, disrupting the functionality of the optical sensor
head. The magnetic system on the other hand is completely unaffected by the
presence of water on the grating.

The motor is controlled by a Bosch-Rexroth IndraDrive C series controller,
which is installed in a cabinet in the laboratory, two floors below the experi-
ment. At its heart it has a set of cascaded PID controllers that control themotor
position by setting the motor current, taking maximum velocity, acceleration,
and jerk (third derivative of the position with respect to time) into account.
The IndraDrive controller allows automated, real-time control, either by load-
ing a motion control programme into it, or through a real-time bus such as
CANopen, but at present we control it by hand, using software provided by
Bosch-Rexroth.

D.2 Vibration damping
The seesaw introduces vibrations via two mechanisms:

• The linear motor stator has a magnetic pole every 2.5 cm. As the table
travels the rotor repeatedly aligns and misaligns with the stator, and
as a result its attraction to the stator becomes a function of position.
This effect is called cogging torque, and as a result, the table vibrates
as it travels. The motor controller has functionality to compensate the
cogging torque, but it proveddifficult to tune this correctly, and therefore
wasn’t used here.

• The camera box and its mounting hardware form a forced mass–spring
system, with the forcing coming from the motion of the table. While
this mass–spring system helps to damp the vibrations due to cogging
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Table D.1: RMS acceleration of the prototype seesaw’s table for various velocities. G
is along the direction of travel; I is parallel to gravity.

Velocity RMS acceleration [m s−2]
[m s−1] G H I

Motor off 0.005 0.005 0.005
Standstill 0.040 0.040 0.025

0.5 0.5 0.1 0.2
1.0 1.2 0.3 0.3
1.5 1.6 0.2 0.4
2.0 2.2 0.3 0.5
2.5 2.8 0.4 0.5
3.0 3.4 0.4 0.5

torque, it may start oscillating due to large-scale motions, i.e. when the
table is accelerated from standstill to the mean wind speed.

In the following subsections the vibrations are quantified first. Then two
different approaches are explored to damp the vibrations: a passive approach,
in which the camera box becomes part of a mass–spring system, and an active
approach, inwhich the stiffness of themass–spring system is increased during
acceleration and deceleration of the box.

All experiments are done using a prototype of the seesaw in a laboratory
in Göttingen. The prototype has shorter rails than the seesaw itself; it allows
for 2250 mm of travel.

D.2.1 Table vibration
The vibrations of the table are measured using a Silicon Designs SDI-2470-005
triaxial acceleratometer. It is mounted such that its G-direction is along the
direction of travel and I is vertical. It is connected to a LabJack T7 Pro, which
samples the accelerometer’s output at 1 kHz.

The motor is controlled using the Bosch-Rexroth software running in easy
startup mode. In this mode, the motor can only execute simple motion profiles.
In particular, velocity changes follow a linear profile (i.e. constant acceler-
ation), and jerk limiting (jerk = ¤0 = ¥E) is not available. Any mode other
than easy startup mode requires some form of real-time control, which is a
challenge in itself and is tackled in section D.2.3.
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Springs & rubber rings

Foam×2

Foam×1

Rosta elements

Figure D.1: The different suspensions and buffers that are considered in this section.
There is a fifth combination not pictured here, which is using the Rosta elements and
foam×1 simultaneously.

The rms acceleration is measured for 6 different velocities, as well as for
standstill, both with the motor turned on and turned off. The latter allows
for estimating the measurement noise. The rms accelerations are shown in
tableD.1. As can be seen already for 0.5 m s−1, the rms acceleration is 0.5 m s−2,
which is equal to the Kolmogorov acceleration for a moderate dissipation rate
of 0.01 m2 s−3. Hence, in order to measure droplet accelerations while the
seesaw is running, the vibrations must be damped.

The frequencyof the vibrations 5 = E ·80 m−1. Theproportionality constant
80 m−1 equals (1.25 cm)−1, with 1.25 cm equal to 1/6 of the motor’s pole-pair
distance.

D.2.2 Passive damping
The first approach taken is to passively damp the vibrations. To do so, the
camera box is made part of a forced mass–spring system, where the camera
box takes on the role of the mass, and the performance of various different
springs is evaluated. Each spring consists of an element that suspends the box,
i.e. that counteracts the box’s weight, and an element that buffers the table’s
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horizontal acceleration. The tested springs1 are: 1) springs and rubber rings;
2) springs and foam×2; 3) springs and foam×1; 4) Rosta ESL 18 elements;
and 5) Rosta ESL 18 elements and foam×1. An overview of these is shown in
figure D.1).

Method

Before evaluating a spring, the height of the suspension is adjusted so that
the buffers are level with the box’s centre of mass. That way no torque is
generated, and the box won’t start to rotate during the acceleration phase. To
do this, the box is fitted with an inertial measurement unit (IMU, InvenSense
MPU-6050), the gyroscope of which is used to measure the box’s rotation
rate. The motor is then commanded to move forth and back along the rails
once, and depending on the measured rotation rate, the suspension’s height
is adjusted. This procedure is repeated until the resulting maximum rotation
rate is sufficiently low.

Then, to evaluate a spring, the motor is again commanded to move forth
and back, but now with the SDI accelerometers as well as the high-speed
cameras active. The data from the accelerometers is used to analyse the
camera box vibration. Reference measurements with the motor switched off
are done as well.

All experiments discussed here, are performed with the high-speed cam-
eras, optics, and other components installed in the camera box, so that itsmass
and mass distribution are representative of normal conditions.

Analysis

It is possible to model the box and spring as a mass–spring system, the pa-
rameters of which can bemeasured, and can be used to simulate how it would
respond to certain acceleration profiles etc. However, here a more pragmatic
approach is taken: the only two parameters of interest are

• ΔC3, the time needed for the box’s vibrations due to acceleration or
deceleration, to decay to below a certain threshold; and

• 08 ,rms, the rms of the box’ vibrations during the constant velocity phase,
measured after the acceleration vibrations have decayed.

Here the threshold for vibrations to decay to is chosen to be |0G | < 0.1 m s−2,
with 0G the box’s acceleration in the direction of travel. This threshold is

1Throughout this section “spring” refers to a combination of suspension and buffers.
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Figure D.2: Example of the analysis of the box’s acceleration 0G for a single experiment.
The green region is the acceleration phase, the red region is the deceleration phase,
and the blue region indicates where 0rms is computed. In this experiment the box was
buffered using foam×2, E = 2.0 m s−1, 0 = 8.0 m s−2, and the resulting ΔC3 = 0.40 s
and 0rms = 0.18 m s−2.
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approximately equal to 0.10�, with 0� the Kolmogorov acceleration, ameasure
for the typical particle acceleration. The acceleration data is analysed as
follows:

1. Load 08(C) (with 8 = G, H, I) and subtract the acceleration zero reference.

2. Find the acceleration phase’s start time C0; this is the earliest time for
which 0G ≥ 0.2.

3. Given the experiment’s programmedvelocity and acceleration, compute
the acceleration phase’s end time C1, and the deceleration phase’s start
and end times C2 and C3.

4. Assuming that the vibrations decay after the deceleration phase as they
do after the acceleration phase, it is easiest to fit them after the decel-
eration phase, because the motor isn’t moving and doesn’t introduce
cogging torque. The fit equation is

0G = 00 exp[−(C − C3)/�] cos($C + )0).

The time is offset by the deceleration phase’s end time C3.

5. Find ΔC3: this is given by

00 exp[−ΔC3/�] = 0.1 m s−2.

6. If C1 + ΔC3 < C2, then compute 08 ,rms = rms(08) between these two points
in time.

An example of this analysis is shown in figure D.2. Only the G-component of
the acceleration is shown.

Results

Results of the above analysis are shown in table D.2. The best combination of
suspension and buffers seems to be springs and foam×1. This combination
has a low ΔC3, which makes the period during which LPT measurements can
be done the longest. Furthermore it has low 08 ,rms, always below 0.2 m s−2 and
often also below 0.1 m s−2, so that absolute acceleration measurements can be
done. A good second candidate is foam×2, which has smallerΔC3, and smaller
rms accelerations in the H and I-direction, but larger rms acceleration in the
G-direction. It can be seen that in general 0G,rms < 0H,rms and 0G,rms < 0I,rms.
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Table D.2: Results of the vibration analysis for various combinations of suspension
and buffers, and at various translation speeds E.

Suspension Buffers E [m s−1] ΔC3 [s]
08 ,rms [m s−2]
G H I

springs rubber rings 1.0 3.44 —
2.0 5.05 —

springs foam×2
0.5 0.48 0.57 0.03 0.05
1.0 0.43 0.12 0.05 0.08
2.0 0.40 0.18 0.07 0.12

springs foam×1
0.5 0.65 0.16 0.07 0.09
1.0 0.59 0.06 0.07 0.09
2.0 0.59 0.11 0.08 0.11

Rosta el. —
0.5 1.98 0.18 0.02 0.09
1.0 2.01 0.22 0.04 0.03
2.0 1.47 —

Rosta el. foam×1
0.5 0.42 0.14 0.02 0.16
1.0 0.50 0.24 0.03 0.06
2.0 0.47 0.17 0.08 0.12
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D.2.3 Active damping
The second approach is an actively damped approach. The box is still part
of a mass–spring system, and a spring still consists of suspension of buffers,
but the buffers now have variable, controllable stiffness. The stiffness is set
high during acceleration and deceleration, so that the box closely follows the
table’s motion. During the constant velocity phase the stiffness is set low, so
that the motor’s cogging torque isn’t transferred into the box.

The suspension used here are the springs that were also used for the
passive damping approach; see figure D.1. The buffers are replaced by
foam-padded pistons, that are actuated using solenoids. Three pistons and
solenoids are mounted on either side of the box. One such side is shown on
the next page. The height of each trio of pistons is adjusted, so that they clamp
onto the box at the height of its centre of mass, and no torque is generated.
Furthermore, the length of each piston is adjusted, such that when all pistons
are actuated, the box isn’t moved or rotated away from its resting position.

The solenoids are of typeGTCA070X20A02 (Magnet-SchultzGmbH,Mem-
mingen, Germany). Each solenoid is coupled to a piston through a 2:1 lever.
The maximum force exerted by a set of three pistons ranges from 516 N to
1458 N, depending on the position in the solenoids’ strokes. The maximum
acceleration is set by the force the pistons can hold and the weight of the cam-
era box. The pistons are spring-loaded, and move away from the box when
they are not actuated. A side view of a piston and solenoid is shown in the
inset on the next page.

The solenoids are controlled using a programme that runs on the In-
draDrive’s programmable logic controller (PLC). It actuates the solenoids
slightly before the acceleration/deceleration phases start, and releases them
at the end of these phases.

The PLC is furthermore used to impose a jerk-limited motion profile on
the table. By using such a profile, the box will hopefully have no motion w.r.t.
to the table, and will be at its resting position, at the beginning of the constant
velocity phase. This way the box should not start swinging when the pistons
are released. The chosen acceleration profile is an inverted parabola, so that
acceleration is zero at the beginning and end of the acceleration phase.

For the purposes of these tests the PLC is given full control over the motor.
The PLC, in turn, is controlled by setting the PLC registers through the Bosch-
Rexroth software.

A number of experiments are conducted to see how well the system per-
forms. The maximum acceleration is set to either 4, 6, or 8 m s−2, and the
velocity is set to either 1.0, 1.5, 2.0, or 2.5 m s−1. The solenoids are actuated





140 APPENDIX D. MEAN-WIND COMPENSATION

Table D.3: Results of the vibration analysis for various combinations of table velocity
E and acceleration 0. The vibrations are quantified by means of the RMS acceleration
of the camera box, measured during the period in which the box is free, i.e. when the
pistons are not touching the box. The length of the free period )free is shown as well.
For some combinations of velocity and acceleration there was no such period, which is
indicated by dashes.

Velocity Max. accel. )free RMS acceleration [m s−2]
[m s−1] [m s−2] [s] G H I

1.0 4.0 1.14 0.07 0.04 0.33
1.0 6.0 1.26 0.07 0.04 0.30
1.0 8.0 1.32 0.09 0.05 0.35
1.5 4.0 0.12 0.10 0.05 0.55
1.5 6.0 0.31 0.10 0.06 0.46
1.5 8.0 0.40 0.13 0.06 0.48
2.0 4.0 — — — —
2.0 6.0 — — — —
2.0 8.0 — — — —
2.5 8.0 — — — —

0.3 s before acceleration starts, and again 0.2 s before deceleration starts. The
SDI accelerometers are again used to measure the table’s and box’s accelera-
tion. An example of the measured acceleration is shown in figure D.3. Based
on these experiments, the following observations can be made:

• In the current setup, the pistons cannot be moved far enough down, to
the height of the box’s centre of mass. As a result they exert torque on
the box during the acceleration phase, and the box starts rotating.

• The pistons release the box too slowly. According to the datasheet, the
solenoids have a release time of 95 ms, however in practice it seems to
take at least 0.7 s for the pistons to move away from the box.
It is currently not known whether only the pistons, or both the pistons
and the solenoids move too slowly. If the solenoids are too slow, this
could possibly be remedied by using a solenoid driver instead of a relay.
Such a driver could help the magnetic flux in the solenoids to build up
and decay quicker.

Despite the above observations, it is possible to get some figures on the
performance of the active damping. To do so, the box’s rms accelerations are
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Figure D.3: Example of the box’s accelerations 08 for a single experiment. The
green region is the acceleration phase, the red region is the deceleration phase. The
blue region is the free period, during which the pistons should not be touching the
box. The dashed lines indicate when the solenoids were actuated. The solenoids were
released again at the end of the acceleration/deceleration phases. In this experiment
E = 1.5 m s−1, and 0max = 8.0 m s−2.
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computed between 0.8 s after the start of the constant velocity phase, and 0.02 s
before the solenoids activate for the deceleration phase. This is the free period,
during which the box should be undisturbed by the pistons; it is shaded blue
in figure D.3. The results are shown in table D.3.

It is noteworthy that the rms acceleration in the I-direction is large com-
pared to the other directions, too large to measure absolute droplet acceler-
ations. This was generally not the case with the passive damping, and the
cause of it is not known.

These results presented in table D.3 must be interpreted with caution,
because of the aforementioned caveats, and because the behaviour of the
active-damping system is not sufficiently understood yet. In particular the
large rms accelerations in the I-direction should not be taken as a reason to
dismiss the active damping system; further investigation is needed to improve
its performance.

Finally, it should be mentioned that acceleration measurements from the
camera box can be fed back to the motor’s PLC, which can then correct the
table’s position to minimise the vibrations in real-time. The development of
such a system would require a large amount of technical expertise, however.

D.3 Conclusion
The passive damping system is very promising, however it has not been tested
in the field yet. It should be possible to take the current implementation and
deploy it at the Schneefernerhaus as-is.

The active damping system is promising as well, but another iteration in
the laboratory should be done, before it is taken to the Schneefernerhaus.
By employing an active feedback system, it might be able to dampen the
vibrations more effectively than the passive damping system can.

The use of the mean wind compensation comes with a large caveat: the
time during which the camera box has a constant velocity can be rather short,
in particular for high mean wind speeds. This restricts the amount of time
during which useful particle tracking data can be acquired.

Finally, it should be noted that the development of both systems took a lot
of effort, and is not finished yet. Whether the benefits of further development
outweigh the drawbacks of the distraction that it poses, should require careful
consideration, and should depend on the necessity of having mean wind
compensation for the scientific question at hand.
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Graphs

E.1 Turbulent statistics
The shaded areas in these graphs indicates when the particle tracking exper-
iment was running.
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E.2 Droplet accelerations
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E.4 Clustering exponent fits
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