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Tag der mündlichen Prüfung: 15. Oktober 2021



Acknowledgements

First and foremost, I would like to express my sincere gratitude to my supervisor

Prof. Dr. Anja Sturm, who introduced me to the field of interacting particle systems in

evolving random environments. She always had an open ear for all my questions and

doubts and took the time to discuss them with me. I am deeply grateful for all the

encouragement, patience and guidance.

Furthermore, I would like to thank Prof. Dr. Dominic Schuhmacher for being my

second referee. I appreciate that Jun.-Prof. Daniel Rudolf, Prof. Dr. Axel Munk,

Prof. Dr. Dorothea Bahns and Prof. Dr. Russell David Luke kindly agreed to be

members of my thesis committee.

I owe many thanks to my colleague Moritz Wemheuer for carefully proofreading this

thesis with great accuracy and for the many helpful discussions.

There was always a very pleasant and welcoming atmosphere at the Institute of

Mathematical Stochastic. I would like to thank my colleagues for creating such an

great working environment. In particular, thanks to Dr. Carla Tameling, Dr. Miguel
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Chapter 1

Introduction and main results

The field of epidemiological models has been an active field of research for a long time.

An epidemiological model describes and simulates a possible course of an infection,

which spreads through a given population. The question of how to model the spread of

different infections in an realistic manner has brought forth dozens of models. But the

spread of an infection is a highly complex problem. Thus, there are still “real-world

phenomena”, which cannot be adequately explained.

The contact process is a particularly simple example of an epidemiological model. This

process models the spread of an infection over time in a spatially structured population,

where this structure is given through a graph G = (V,E). The vertex set V labels

the individuals and two individuals x, y ∈ V are considered neighbours, i.e. they have

physical contact, if there exists an edge {x, y} ∈ E. If an individual is infected, it

can pass on its infection to its neighbours. The contact process has been around for

almost half a century. Thus, it is not surprising that there exist many variations

of this model, which try to incorporate more realistic assumptions and try to shed

light on different aspects. Nevertheless, certain aspects are still not well understood.

This is something which the current global pandemic, caused by Covid-19, has made

us aware of. For example it has become apparent that with the implementation of

preventive measures such as social distancing the spread of Covid-19 has slowed down

significantly. Strong evidence for these effectiveness of this measures in Germany has,

for example, been provide by Dehning et al. [Deh+20]. Of course the situation vastly

differs between different countries. These phenomena indicate that the spatial structure

of the population has an huge impact on the course of the pandemic.

Of course there have been variations of the contact process, which incorporate random

spatial structures, in order to take into account that one does not exactly know this

structure. This mostly was done in a static setting. By this we mean that even through

1



2 Chapter 1 Introduction and main results

these variations considered for example a random population structures, it is was still

fixed at the beginning and could not change halfway through. This does not appear to

be realistic, since we are not always in contact with the same people. Only recently

have people started to consider models which model infections in dynamical spatial

structures. This means that the spatial structure can change on the same time scale as

the spread of the infection happens. Since theory and knowledge regarding this type of

models is still limited we were motivated to further study the impact of such dynamical

structures on the course of an infection.

Therefore, in this thesis we study a contact process in an evolving random environ-

ment. The model we consider is a variation of the contact process that allows for the

neighbourhood relations to change over time by introducing a time evolving random

environment.

We will assume that our evolving environment will always converge to a unique

equilibrium regardless of its initial state. If we additionally assume convergence

to be fast enough, then the initial state of the environment is inconsequential to the

fact if the infection can persist in the population for all time or eventually dies out. We

will also study the equilibrium states of the system or to be precise the invariant laws.

If we further assume that the environment evolves according to a reversible dynamic

we can determine conditions under which we can fully characterize all invariant laws.

As an application we consider a contact process on top of a dynamical percolation

as random environment and we assume that the underlying graph is a d-dimensional

integer lattice. A dynamical percolation is a stochastic process which assigns to every

edge independently a state of being open or closed, where the infection can only use

open edges. Furthermore, the state of every edges is independently of the other edges

updated with a certain rate. This infection model was first proposed by Linker and

Remenik in [LR20]. We can augment some of their result, and therefore contribute to

a more complete picture of the behaviour of this particular model.

The class of models we consider is defined on a graphs with bounded degrees. This

means that the number of neighbours of a individual is bound uniformly. Of course

in reality nobody can have infinitely many acquaintance or friends, with whom they

interact. But a uniform bound also seems somewhat unnatural. Thus, in the last part

of this thesis we consider an extension of the model proposed in [LR20]. To be precise

we consider a contact process on a dynamical long range percolation and extend some

of the results known in the finite range case to this setting.
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1.1 The contact process in an evolving random

environment

In this section we will formally introduce a contact process in an evolving random

environment, which we abbreviate with CPERE. As already mentioned the spatially

structure of the population will be given through a graph G = (V,E), where V is a

countable set and denotes the vertex set and E the edge set. We will assume throughout

this thesis that G is transitive, connected and has bounded degree. Furthermore, we

assume that G is an infinite graph since otherwise the answer to the question, if a

infection can persist for all time, is always no.

The CPERE (C,B) = (Ct,Bt)t≥0 is a Feller process on P(V ) × P(E), where P(V )

and P(E) are the power sets of V and E. We call the process B the background

process, since it describes the evolving random environment and assume that it is an

autonomous Feller process with values in P(E). On top of this space-time random

environment we define an infection process C with values in P(V ) and transitions

Ct− = C → C ∪ {x} at rate λ ·#{y ∈ C : {x, y} ∈ Bt−} and

Ct− = C → C\{x} at rate r,
(1.1)

where λ > 0 denotes the infection rate and r > 0 the recovery rate. If x ∈ Ct, then we

call x infected at time t. If e ∈ Bt we call e open at time t and closed otherwise.

We equip P(V )×P(E) with the topology which induces the point wise convergence.

This means if
(
(Cn, Bn)

)
n∈N is a sequence in P(V )×P(E), then (Cn, Bn)→ (C,B) as

n→∞ if and only if 1{(x,e)∈(Cn,Bn)} → 1{(x,e)∈(C,B)} as n→∞ for every (x, e) ∈ V ×E.

Furthermore, we denote by “ ⇒ ” the weak convergence of probability measures on

P(V )× P(E).

Remark 1.1.1. Besides P(V )× P(E) we could also choose {0, 1}V × {0, 1}E as the

state space of the CPERE, since we can identify every element (C,B) with the function

1{ · ∈(C,B)} and vice versa. Note that on {0, 1}V × {0, 1}E the product topology induces

the point wise convergence. In the literature both choices of states spaces are common.

We decided to use P(V )× P(E) out of preference and notational convenience.

It is common to add the initial configuration (C,B) as a superscript to the process,

i.e. (CC,B,BB). Sometimes it is more convenient to use the usual notation to indicate
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the initial configuration of a Markov process by adding it to the law as a superscript,

i.e.

P
(C,B)
λ,r

(
(Ct,Bt) ∈ ·

)
= Pλ,r

(
(Ct,Bt) ∈ ·

∣∣(C0,B0) = (C,B)
)
.

We do not only consider deterministic initial configurations. Thus, if we want to

consider an initial distribution µ of (C,B) we write

P
µ
λ,r

(
(Ct,Bt) ∈ ·

)
=

∫
P

(C,B)
λ,r

(
(Ct,Bt) ∈ ·

)
µ
(
d(C,B)

)
.

Note that if µ = δC ⊗ µ2, where µ2 is a probability measure on P(E), then we abuse

the notation slightly and write P
(C,µ2)
λ,r .

The CPERE can be defined for a fairly general class of interacting particles systems,

acting as the background process B. In this thesis we focus on the case where the

background is a spin system on P(E). An interacting particle systems is called a spin

system if it has a generator of the form

ASpinf(B) =
∑
e∈E

q(e, B)
(
f(B 4 {e})− f(B)

)
,

where q(e, B) is the flip rate of e with respect to the “present” configuration B ⊂ E

and 4 is the symmetric difference of sets, i.e. B14B2 = (B1\B2) ∪ (B2\B1).

We additionally equip the edge set E with a spatial structure by considering the line

graph L(G) (see Definition 2.4.9). In the line graph the original edge set E is considered

to be the vertex set and edges e1, e2 ∈ E are defined to be adjacent if they have a

vertex in common, i.e. it exists x ∈ V such that x ∈ e1, e2. Let BLn(e) denote the ball

with centre e ∈ E of radius n with respect to the graph distance of L(G). We assume

that the spin system satisfies the following three properties.

1. It is attractive, i.e. the spin rate q(·, ·) satisfies that if B1 ⊂ B2, then

q(e, B1) ≤ q(e, B2) if e /∈ B2 and q(e, B1) ≥ q(e, B2) if e ∈ B1.

2. It is translation invariant, i.e. if σ is a graph automorphism (see Definition 2.4.3)then

q(e, B) = q(σ(e), σ(B)) for all B ⊂ E.
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3. The spin system is of finite range, i.e. there exists a constant R ∈ N such that

q(e, B) = q(e, B ∩BLR(e))

for all e ∈ E and B ⊂ E. We call such a spin system of range R.

We will now list some examples of spin systems we consider for the background dynamic.

Example 1.1.2. Let N L
e denote the neighbourhood of e in the line graph L(G).

(i) The probably easiest possible non-trivial choice is the dynamical percolation. This

system will be our main example. The dynamical percolation updates every edge

independently from all other edges. Hence, the background B is a Feller process

with transition

Bt− = B → B ∪ {e} at rate α and

Bt− = B → B\{e} at rate β,

where α, β > 0.

(ii) Next we consider a noisy voter model on G = (V,E) with

V = Z and E = {{x, y} ⊂ Z : |x− y| = 1}.

In this case L(G) is again a 1-dimensional nearest neighbour integer lattice just

like G. The background B has transitions

Bt− = B → B ∪ {e} at rate
α

2
+ β|B ∩N L

e | and

Bt− = B → B\{e} at rate
α

2
+ β|Bc ∩N L

e |,

where α, β > 0.

(iii) The last example is the ferromagnetic stochastic Ising model with inverse temper-

ature β > 0. Here, the transitions of B are

Bt− = B → B ∪ {e} at rate 1− tanh
(
β
(
|N L

e | − 2|B ∩N L
e |
))

and

Bt− = B → B\{e} at rate 1− tanh
(
β
(
|N L

e | − 2|Bc ∩N L
e |
))
.

(iv) A trivial example is Bt ≡ E for all t ≥ 0. With this choice we recover the classical

contact process, since all edges are open at all times, and thus the infection
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process C is not affect by B at all. We will abbreviate the classical contact

process with CP.

The CP can be constructed via the so called graphical representation, which is a general

concept to construct an interacting particle system via a graphical approach. In the case

of the CP one draws infection and recovery events according to a Poisson point process,

which are respectively depicted by arrows pointing from an individual x to a neighbour

y and by crosses at a site x. Now if x is infected the arrow causes the infection of

y. On the other hand a cross at x leads to the recovery of x. See Figure 1.1(a) for a

visualization. The CPERE is essentially constructed in the same way as the CP with

the difference that we incorporate the background into the graphical representation as

visualized in Figure 1.1(b).Basically an infection arrow from x to y can only transmit

an infection at a time t if the edge is open, i.e. {x, y} ∈ Bt.

(a) The arrows form sites x to y correspond to a
possible transmission of an infection from x to y
and the crosses correspond to a possible recovery
of the respective site. The red lines indicate the
infection paths.

(b) Grey areas indicate that an edge is closed with
respect to the background. Infection arrows in a
grey area are ignored. The red lines again indicate
the infection paths.

Figure 1.1: Visualization of a graphical representation of the classical contact process
and the contact process in a evolving random environment.

One of the key quantities in infinite systems which model the spread of infections is

the so called survival probability of the infection C, which is defined as follows:

Definition 1.1.3 (Survival probability θ). Let C ⊂ V , B ⊂ E and λ, r > 0. Then

θ(λ, r, C,B) := P
(C,B)
λ,r

(
Ct 6= ∅ ∀t ≥ 0

)
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is called the survival probability (of C).

We often omit some or even all arguments of the survival probability θ to aid the

readability of texts and formulas. We will see that CPERE exhibits a so called phase

transition. This means that the process drastically changes its behaviour with regards

to θ if the parameter of interest (λ, r) crosses a certain critical threshold and thus,

one can divide the parameter set in different phases. This means that if we increase

the infection rate or respectively decrease the recovery rate, the drastic change which

occurs is the possibility for the infection to survive, i.e. θ(λ, r, C,B) > 0.

Definition 1.1.4 (Critical infection rate for survival). Let C ⊂ V be finite, B ⊂ E

and r > 0. We define the critical infection rate for survival by

λc(r, C,B) := inf{λ > 0 : θ(λ, r, C,B) > 0}.

We will show that the survival probability θ is monotone in λ and r, and thus the

infimum attains a unique value. Note that we can analogously define a critical recovery

rate rc(λ,C,B). In this case the infection rate is a variable instead of the recovery rate.

Remark 1.1.5. As already mentioned the dynamical percolation introduced in Exam-

ple 1.1.2 (i) can be considered as our main example for a background process. In this

special case we will call the process (C,B) a contact process on a dynamical percolation,

which we abbreviate with CPDP. In this model we have two additional parameters α

and β corresponding to the rates at which edges open or close. Thus, we denote by

θDP (λ, r, α, β, C,B) = P
(C,B)
λ,r,α,β

(
Ct 6= ∅ ∀t ≥ 0

)
the survival probability of CPDP and by λDP

c (r, α, β, C,B) the critical value of the

contact process on a dynamical percolation, where C ⊂ V non-empty and finite and

B ⊂ E. If it is clear from the context that we consider the dynamical percolation as

background, then we will drop the super/subscript DP.

1.2 History

To the best of our knowledge the CP was first introduced by Harris [Har74]. It is a

Markov process which models the spread of an infection in a structured population via

a contact interaction. This means we consider a collection of individuals and we know
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which of these individuals have physical contact. So if we assume that a number of

these individuals are infected, then with at a certain rate a “sick” individual can infect

a “healthy” one with whom they are in contact. On the other hand, if one individual

is “sick”, it recovers at a certain rate, i.e. after a random amount of time. Now the

dynamics of the spread of the infection is modelled via the CP X. Again, this is a

Markov process with state space P(V ) and transitions

Xt− = A→ A ∪ {x} at rate λ · |{y ∈ A : {x, y} ∈ E}| and

Xt− = A→ A\{x} at rate r,

where λ > 0 is the infection rate and with rate r > 0 a infected person recovers.

Remark 1.2.1. For the CP the survival probability only depends on the fraction λ/r,

since by rescaling the time the problem reduces to the case r = 1. This is not the case

for the CPERE since rescaling time also affects the background B.

Thus, in this section we assume that r = 1 and in the context of the CP we denote the

survival probability by θ(λ,C) = PCλ (Ct 6= ∅ ∀t ≥ 0), where C ⊂ V denotes the set of

initially infected individuals. Since one is mainly interested in whether the survival

probability is non-zero the quantity of interest is again λc = inf{λ ≥ 0 : θ(λ, {x}) > 0},
which is called the critical infection rate of survival. For the CP one can show that for

any two finite and non-empty sets C,C ′ ⊂ V , θ(C) > 0⇔ θ(C ′) > 0. This means that

the critical value λc does not depend on the choice of the initial configuration as long

as at least one and only finitely many individuals are initially infected. Till this day

Liggetts books [Lig12] and [Lig13] are the standard reference for interacting particles

systems and in particular the CP. Thus, for a detailed introduction and description of

the CP and interacting particle in general we refer the reader to these two books.

The above mentioned graphical representation was introduced by Harris [Har78] for

a certain class of Markov processes. Besides its obvious use to construct the CP this

representation turned out to be one of the most powerful tools for studying the CP, since

it enables us to use a wide range of coupling methods. For example, it is immediately

clear by this construction that the survival probability is monotone with respect to an

increase in the infection rate or the initial infections. In a lot of situation it enables one

to couple the CP to a different model which is much easier to study in the particular

situation. For example, Durrett [Dur91] construct a coupling between the CP on the

1-dimensional integer lattice and an oriented percolation on Z+×Z, which allows them

to conclude that λc <∞. This shows in particular that the critical value is finite if the
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graph G is infinite and connected. On the other hand, for graphs with bounded degree

one can show that λc > 0 by a comparison with branching random walk.

A different aspect which was intensively studied were the corresponding invariant laws.

In Markov process theory the invariant distributions are often investigate, since they

determine the asymptotic behaviour as t→∞. A typical question is if there exists a

unique invariant law and if not, if it is possible to classify the infinitely many invariant

laws. Note that δ∅ is obviously an invariant law of the CP. Thus, we can excluded

that no invariant law exists in case of the CP. There has been considerable effort to

study these questions for the CP. Since the CP is a monotone Feller process one can

show quite easily that a so called upper invariant law ν exists, i.e. XV
t ⇒ ν as t→∞,

where the superscript denotes that XV
0 = V . In the subcritical phase, i.e for λ < λc,

clearly Xt ⇒ δ∅ as t→∞, and therefore the process is ergodic, which means ν = δ∅.

In the supercritical phase, i.e. λ > λc, this is not so clear and in fact with the concept

of duality one can show that in this phase ν 6= δ∅, and thus the contact process is not

ergodic.

This motivates the question: How do the invariant laws look in the supercritical phase?

Is it possible to characterize them? On the d-dimensional integer lattices with nearest

neighbour structure, i.e. V = Zd and E =
{
{x, y} ⊂ V : ||x− y||1 = 1

}
, where || · ||1

denotes the 1-norm, Durrett and Griffeath [DG82] managed to formulate equivalent

conditions such that the so called complete convergence holds for the CP, i.e.

XC
t ⇒ [1− θ(λ,C)]δ∅ + θ(λ,C)ν

as t→∞. This means that there exist only two extremal measures, which are δ∅ and

ν and that every other invariant law is only a convex combination of these two.

These conditions are also equivalent to a result which is closely related to complete

convergence, the so called asymptotic shape theorem. Let 0 denote the zero vector in

Zd and set

Ht :=
⋃
s≤t

X{0}s and Kt := XV
t 4X

{0}
t .

The set Ht contains all sites which were at least once infected until time t and Kt is the

coupled region at time t. A very lose interpretation of the coupled region Kt, given in

[DG82], is that X
{0}
t is in its “equilibrium” in this region. Let us set H′t := Ht+

[
−1

2
, 1

2

]d
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and K′t := Kt +
[
−1

2
, 1

2

]d
for all t ≥ 0. Formally the asymptotic shape theorem states

that there exists a compact and convex set U ⊂ Rd such that for every ε > 0

P
(
∃s > 0 : (1− ε)tU ⊂ (K′t ∩H′t) ⊂ H′t ⊂ (1 + ε)tU ∀t ≥ s

∣∣X{0}t 6= ∅ ∀t ≥ 0
)

= 1.

In words this result states that the CP X is a linear growth model. This means that

Ht expands asymptotically linear in time with respect to the spatial distance. The

supplement that (K′t ∩H′t) grows asymptotically linear, means in broad terms that

the area where X
{0}
t is already in its equilibrium expands asymptomatically linear in

time. Such shape theorems seem to be prominent for models defined on integer lattices

with nearest neighbour structure since the graph distance is given through the 1-norm.

Usually Zd is endowed with || · ||1, and thus the graph distance not only describes a

“social” distance but can also seen as a “geographical” distance.

Furthermore, in [DG82] was shown that for λ large enough these equivalent condition

are satisfied. But they and many others believed that these results hold for every λ > λc.

Only years later Bezuidenhout and Grimmett [BG90] developed a technique which

could be used to show that the equivalent conditions stated in [DG82] are satisfied for

λ > λc. At this point we should mention that the techniques developed in [BG90] have

more applications. For example they can be used to show that the CP goes extinct

almost surely at criticality, i.e. θ(λc, C) = 0 for all C ⊂ V finite. We will later come

back to these techniques since we will modify them and apply them to our model.

On other graphs the complete convergence does not always hold true. For example the

CP on the d-regular tree Td exhibits a intermediate phase, where survival is possible,

but there exist infinitely many extremal invariant measures. This can be found in

[Lig12, Chapter I.4]. Salzano and Schonmann have studied in [SS97] and [SS99] the

so-called second lowest extremal invariant measure and with it partial convergence and

complete convergence results of the CP. In [Sal99] Salzano actually provided examples

of trees on which, as the infection parameter increases, complete convergence alternates

between holding and failing infinitely many times. Thus, on general graphs it is near

to impossible to make an exact statement whether complete convergence holds or not.

The results we described until now assume that the graph G is known. This is equivalent

to the assumption that we know the complete spatial structure of the population. In

fact this is a rather unrealistic assumption, since determining the exact structure of a

population is extremely difficult if not impossible. This is one motivation to study the

contact process in a random environment. One of the first works to consider a contact
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process on Z in a random environment was from Bramson, Durrett and Schonmann

[BDS91], where they considered the recovery rates (ri)i∈V to be distributed identical

and independent across sites. There have been others, which additionally choose the

infection rate according to some probability distribution independently for all sites, see

for example [Lig92] and [Kle94]. But, they assume that the infection rates are strictly

positive. Therefore, the underlying graph structure has not changed.

If the random environment is allowed to prevent the transmission of an infection

between two adjacent sites, then this would really change the underlying graph, since

this corresponds to erasing an edge. From a geometric perspective, one could speak of

a contact process on a random graph. One of the first examples for such a model was

considered by Pemantle and Stacey [PS01]. They studied among other things a contact

process on a Galton-Watson tree. There has been a considerable amount of effort to

study such variations of the CP. Maybe one of the most natural choices is to consider

an infection rate randomly chosen between 0 and some constant λ independently for

each edge. This can be seen as a contact process on top of a bond percolation model.

This infection model was for example considered by Xue [Xue14], who investigated

survival of the infection and proposed an upper bound on the critical infection rate.

Another related work was done by Chen and Yao [YC12]. They studied complete

convergence of a contact processes on a percolation clusters of Zd × Z+. Note that

they needed to introduce one oriented spatial direction for their techniques to work.

Certainly closely related to the complete convergence is the asymptotic shape theorem.

Garet and Marchand [GM12] proved such a result for the contact process on Zd in a

rather general random environments. Van Hao Can [Can15] studied the contact process

on a long range percolation cluster. In comparison to the other models we listed here

the resulting underlying graph has no longer bounded degrees. It is only locally finite.

These works all consider contact processes in a static random environment, i.e. the

random environment is random but fixed for the whole time horizon. But in reality,

connections between individuals obviously change over time. Therefore, with the aim in

mind to formulate an infection model closer to reality, people tried to incorporate this

effect. Such models can be called a contact process in a dynamical random environment.

To the best of our knowledge the first to explicitly consider a contact process with

dynamical rates was Broman [Bro07]. In this work they considered a contact process

on top of a vertex dynamical percolation, which affects the recovery rate in such a way

that the recovery rate of a individual alters between two values. Thus, they study a

contact process with varying recovery rates. In [Bro07] they considered general graphs
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and assumed that the dynamical percolation is started stationary. They studied mainly

comparison methods of the critical value with respect to the classical contact process.

[SW08] can be considered as a follow up, since they studied the same model on Zd

and studied the influence of the initial configuration of the dynamical percolation on

the critical value, i.e. it is no longer started stationary, and proved that this variation

of the contact process dies out at criticality. [SW08] considered a multi-type contact

process, where a state of temporary immunization of an individual was introduced.

Hence, individuals in this state cannot be infected, and thus one could say this is closely

related to the asymptotic behaviour of the model introduced by [Bro07], where the

recovery rates alter between r and∞. In [Rem08] they even managed to show complete

convergence of their model. There is a rich literature on multi-type contact process see

for example [DS91], [DM91] and [Kuo16].

The three works [Bro07], [SW08] and [SW08], all studied a contact process with varying

recovery rates. Only recently have people started to study what we would consider

contact processes on dynamical random graphs. For example [JM17] and [JLM19]

studied the contact process on finite and scale free graphs with vertex updates. This

means, that when a vertex x is updated all edges connected to x are removed and

afterwards new edges are randomly added. The first work to consider a dynamical

random environment affecting the infections on an infinite graph was [LR20].

1.3 The contact process on a dynamical percolation

In this section we recapitulate the results of [LR20] in more detail since they can be

considered the starting point for our work. The process considered in [LR20] is a

contact process on a dynamical percolation. This model is a special case of the CPERE

as seen in Example 1.1.2 (i). They considered a particular choice of the rates, namely

r = 1, α = vp and β = v(1 − p) for v > 0 and p ∈ (0, 1). The parameter v can be

understood as the update speed of an edge and p is the probability for an edge to be

open afterwards. Additionally they consider B to be started stationary, i.e its initial

distribution is its unique invariant law which we denote by π.

The main object of [LR20] was to study the existence of a phase transition, i.e if the

critical infection rate

λc(v, p) := inf
{
λ > 0 :

∫
θDP (λ, 1, vp, v(1− p), {x}, B)π(dB) > 0

}
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is non-trivial, where x ∈ V is arbitrary. Note that since the background is started in

its invariant law via the graphical representation, one can easily see that the CPDP is

translation invariant with respect to spatial shifts, which is the reason why λc(v, p) does

not depend on the choice of x. First they showed a weaker version of monotonicity.

Proposition 1.3.1. For every p ∈ [0, 1] the function v 7→ 1
v
λc(v, p) is non-increasing.

This result corresponds to [LR20, Proposition 2.1]. Now they were able to show

existence of a phase which they called the immunization phase, which basically states

that if the background parameters are chosen favourable enough the infection cannot

survive regardless of the infection rate. This phenomenon is not present in the classical

case. The following theorem is a combination of Theorem 2.5 and Theorem 2.6 in

[LR20].

Theorem 1.3.2 (Immunization). Let G = (V,E) be a connected and vertex transitive

graph with bounded degrees. Then

(i) For every v > 0 there exists a p0(v) > 0 such that λc(v, p) = ∞ for every

p < p0(v).

(ii) There exists a p1 ∈ (0, 1) such that for every p > p1, λc(v, p) < ∞ for every

v > 0.

Theorem 1.3.2 shows the existence of a critical curve v 7→ p0(v) such that for every

(v, p) which lies above the curve we have λc(v, p) <∞, i.e. there exists a infection rate

such that survival is possible. On the other hand for every pair (v, p) which lies below it

holds that λc(v, p) =∞, i.e. regardless of the infection rate extinction happens almost

surely. Note that Proposition 1.3.1 states that the critical value can at most grow

linear with respect to v. This yields that the curve v 7→ p0(v) is non-increasing, since if

λ(v, p) <∞ for a v > 0, then Proposition 1.3.1 implies that λ(v′, p) <∞ for all v′ > v.

See Figure 1.2 for a visualization. The next result is a combination of Theorem 2.3 and

Theorem 2.4 in [LR20] and is about the extreme case v → 0 and v →∞.

Theorem 1.3.3 (Asymptotic behaviour). Let G = (V,E) be a connected and vertex

transitive graph with bounded degrees.

(i) For every p ∈ (0, 1), λc(v, p) → λc(G)
p

as v → ∞, where λGc denotes the critical

value of the classical contact process on G.

(ii) For the V = Z and E = {{x, y} ⊂ Z : |x− y| = 1} it holds for every p ∈ (0, 1)

that the critical value λc(v, p)→∞ as v → 0.
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This theorem characterizes the asymptotic behaviour. As one expects for v → ∞,

i.e. fast speed, the critical behaviour is that of CP on G with rescaled infection rate,

i.e. λp. A non-rigorous argument for this is that by letting v tend to ∞ the update

events happen so frequently that it is no different from throwing a coin with success

probability p after encountering a infection event. In particular the immunization phase

shrinks as v →∞ and ceases to exist for v =∞, which means that v → p0(v) decreases

to 0 (see Figure 1.2).

Figure 1.2: This is a sketch of the phase diagram of a CPDP on the 1-dimensional
integer lattice Z. The red curve denotes the critical parameter configuration and the
red area is the immunization phase, i.e. certain extinction regardless of the infection
rate. For parameter in the white area above the red curve there exists a infection rate λ
such that the infection has a positive survival probability. For v = 0 extinction happens
almost surely with exception of p = 1.

On the other hand the asymptotic for slow speed are only fully characterized for the

1-dimensional integer lattice. Theorem 1.3.3 (ii) states that in this case λc(v, p)→∞
for p < 1 as v → 0 (see Figure 1.2), which agrees with the our intuition. One would

expect that the critical behaviour for v → 0 is the same as the contact process on

a percolation cluster. Since on Z no infinite cluster occurs for p < 1, survival is not

possible.

On more general graphs one would expect that the asymptotic behaviour for slow speed

depends on the parameter p, since a percolation cluster of infinite size becomes possible.

Proposition 1.3.1 and Theorem 1.3.2 (i) show that for p small enough λc(v, p) → ∞
as v → 0. But recently Hilário et al. [Hil+21] have studied a robust renormalization

approach for generalized contact process. They call any process that is obtained from



1.3 The contact process on a dynamical percolation 15

a percolative structure of recovery and transmission marks in same way as the contact

process, but the distribution of these marks is given through some other Poisson point.

This renormalization approach allows them to study survival or extinction of processes

in this class. In fact the CPDP is part of this class and also one of the two examples

they treat in [Hil+21]. Thus, they managed to provide some further results on the

asymptotic behaviour of the critical infection rate for slow speed on the d-dimensional

integer lattice.

Theorem 1.3.4. Let V = Zd and E = {{x, y} ⊂ Zd : ||x−y||1 = 1} and pc(d) denotes

the critical probability of an independent percolation model on (Zd, E).

(i) For all p < pc(d) and λ > 0 there exists v0(p, λ, d) > 0 such that for any v ∈ (0, v0)

the infection dies out almost surely.

(ii) For any p > pc(d) we have sup{λc(v, p′) : v ≥ 0, p′ ∈ [p, 1]} <∞.

We illustrated the phase diagram of CPDP on Zd, where d ≥ 0, in Figure 1.3. If we

compare this setting to the behaviour on 1-dimensional lattice we see that there exist

an additional phase where survival is always possible and the critical infection rate

λc(v, p) is uniformly bounded if p > pc(d).

Figure 1.3: This is an illustration of the phase diagram of a CPDP on the d-dimensional
integer lattice Zd. Again the red curve denotes the critical parameter configuration
and the red area is the immunization phase.
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1.4 Summary of the main results

In this section we give an overview of this thesis and at the same time a detailed

summary of the main results. The results are proven in the corresponding chapters

later on.

First we will study the CPERE on graphs with bounded degree. We study the influence

of the initial configuration of the background on the survival probability. Next we focus

on the invariant laws and therefore on the question whether the CPERE is ergodic or

not. The goal here is to derive two conditions which imply complete convergence of

the CPERE. We finish this part by considering the special case of the CPDP. Here, we

formulate a block construction of the CPDP, which enables us to couple this process

with an oriented percolation in the spirit of [BG90]. Among other things this enables

us to show that the two conditions which imply complete convergences are satisfied in

this special case. In the last part we will study a contact process on a dynamical long

range percolation.

First of all in Chapter 2 we introduce some basic notions. We start with a short

introduction of Feller processes, and clarify some notation and definitions which we

need in this thesis. Then we introduce the Poisson point process and with this process

we formulate the graphical representation of a interacting particle system, which is one

of the most essential tools in this thesis. We finish this chapter with the introduction

of some notation and useful results on graphs.

In the first part of this thesis we start to study the CPERE. Thus, we need to clarify the

setting we work in for the next chapters. Let G = (V,E) be a connected and transitive

graph with bounded degree. We denote by ρ the exponential growth of the graph G,

(see Definition 2.4.6), i.e. ρ = limn→∞
1
n

log(|Bn(x)|), where Bn(x) denotes the ball of

radius n with x ∈ V as centre with respect to the graph distance. Note that since G is

transitive ρ does not depend on the choice of x. If ρ = 0 we call G of subexponential

growth. Next we define the coupled region of the background at time t by

Ψt = Ψt(B) := {e ∈ E : e /∈ BB1
t 4BB2

t ∀B1, B2 ⊂ E} (1.2)

and the permanently coupled region at time t through

Ψ′t = Ψ′t(B) := {e ∈ E : e ∈ Ψs∀s ≥ t}, (1.3)

where t ≥ 0. Recall that B is an attractive, translation invariant and finite range spin

system. But we need some further assumption on the background process B.
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Assumption 1.4.1. The background B satisfies the following assumptions:

(i) B is ergodic, i.e there exists a unique invariant law π such that BB
t ⇒ π as

t→∞ for all B ⊂ E.

(ii) There exist constants T,K, κ > 0 such that P(e /∈ Ψ′t) < K exp(−κt) for every

e ∈ E and for all t ≥ T .

(iii) B is a reversible Feller process (see Definition 2.1.7).

Loosely speaking if we assume that B is ergodic, i.e. that (i) is satisfied, then (ii) refers

to the expansion speed of the permanently coupled region. This gives us a rough insight

on how fast the background process convergences to the invariant law π.

Chapter 3 is basically divided in two parts. The first part is dedicated to the

construction of a finite range spin system and the expansion behaviour of its permanently

coupled region. In Section 3.1 we explicitly state one possible graphical representation

for a general finite range spin system. Thus, we show that all spin systems we consider

can be constructed via a graphical representation, which is a useful and important

fact since we heavily rely on coupling methods which use such a representation. In

Section 3.2 we study the expansion speed of the permanently coupled region Ψ′t, t ≥ 0.

As readers familiar with interacting particle systems might know, the question if a spin

systems satisfies (i) or not, is in general not trivial to determine. Hence, it may not be

even harder to additionally show (ii). Thus, the main goal of Section 3.2 is to show

the following result.

Proposition 1.4.2. Suppose that Assumption 1.4.1 (i) is satisfied and there exist

constants S,K ′ > 0 and γ > ρ such that P(e /∈ Ψs) ≤ K ′e−γs for every e ∈ E and

s ≥ S. Then there exist T,K > 0 and κ > 0 such that

P(e /∈ Ψ′t) ≤ Ke−κt

for all t > T and e ∈ E.

With this result we are able to state a sufficient condition such that a spin system

satisfies (i) and (ii) of Assumption 1.4.1, which is based on the so-called M < ε

condition, see [Lig12, Theorem I.4.1]. Recall that N L
e denotes the neighbourhood of e

with respect to the line graph L(G).
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Corollary 1.4.3. Suppose ε−M > ρ, where

M :=
∑
a∈NLe

sup
B⊂E
|q(e, B)− q(e, B 4 {a})| and ε := inf

B⊂E
|q(e, B) + q(e, B 4 {e})|,

then Assumption 1.4.1 (i) and (ii) are satisfied.

The proof of Corollary 1.4.3 can be found in Section 3.2. The definition of both M

and ε do not depend on the choice of e since the background is translation invariant.

M is a measure for the maximal dependence of the transition rates on the state of a

single edge, while ε is a measure for the minimal rate at which the state of a single

edge changes. Note that we simplified the definitions of M and ε in comparison to

[Lig12, Chapter I], since we only consider finite range spin systems.

Remark 1.4.4. The constants M and ε can be explicitly calculated for the three

systems defined in Example 1.1.2. The calculation can be found in Appendix A. Thus,

with Corollary 1.4.3 we can state sufficient conditions on the rates such that these spin

systems satisfy Assumption 1.4.1 (i) and (ii)

1. For the dynamical percolation the two quantities are M = 0 and ε = α + β and

hence α + β > ρ is sufficient.

2. In case of the noisy voter model, M = β|N L
e | and ε = α + β|N L

e |. This implies

that α > ρ suffices.

3. For the ferromagnetic stochastic Ising model the calculation is more lengthy but

can still be carried out in a straightforward manner and the result is that

ε = 2 and M =

|N L
e |

2(e2β−e−2β)
e2β+e−2β+2

if |N L
e | odd

|N L
e | e

2β−e−2β

e2β+e−2β if |N L
e | even,

and therefore 0 ≤ β < 1
4

log
( |NLe |+2−ρ
|NLe |−2+ρ

) is sufficient, where the right hand side is

only positive if ρ < 2. Note that if |N L
e | is odd we are able to obtain a slightly

better bound on β, which can be found at the end of Appendix A.

The second part of Chapter 3 is dedicated to obtaining some basic knowledge about

the CPERE. In Section 3.3 we rigorously formulate the graphical representation of

the CPERE. A direct consequence of this construction is the existence of a Feller

process (C,B) with rates as in (1.1). In Section 3.4 we state some basic properties of

the CPERE, such as some monotonicity properties of the CPERE, additivity of the
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infection process C and more. These properties follow with relatively small effort via

different couplings derived from the graphical representation. We end Chapter 3 with

a comparison result between the CPDP and CPERE. Let (C,B) be a CPERE such

that B is a spin system with rate q(·, ·) and set

αmin := min
F⊂NLe

q(e, F ), βmin := min
F⊂NLe

q(e, F ∪ {e})

αmax := max
F⊂NLe

q(e, F ) and βmax := max
F⊂NLe

q(e, F ∪ {e}).
(1.4)

Recall that θ denotes the survival probability of a CPERE and θDP the survival

probability of a CPDP as mentioned in Remark 1.1.5.

Corollary 1.4.5. Let λ, r > 0 and αmax,αmin, βmax, βmin ≥ 0 as in (1.4). Then

θDP(λ, r, αmax, βmin, C,B) ≥ θ(λ, r, C,B) ≥ θDP(λ, r, αmin, βmax, C,B)

where C ⊂ V and B ⊂ E.

This result is a direct consequence of Proposition 3.4.5.

Example 1.4.6. If we consider the background process B to be a noisy voter model on

Z as defined in Example 1.1.2 (ii) with rates α, β > 0 we obtain the following bounds

on the survival probability of C:

θDP(λ, r, α + β, β, C,B) ≥ θ(λ, r, C,B) ≥ θDP(λ, r, β, α + β, C,B).

In Chapter 4 we study the influence of the initial configuration of the background

process on the chances of survival. In this chapter we will only use Assumption 1.4.1

(i) and (ii). Let us fix the following notation:

Definition 1.4.7 (Survival probability for stationary background). Let C ⊂ V , B ⊂ E

and λ, r > 0. Then

θπ(λ, r, C) := P
(C,π)
λ,r

(
Ct 6= ∅ ∀t ≥ 0

)
is the survival probability of C with B0 ∼ π, i.e. the background being stationary, and

we define the critical infection rate as

λπc (r) := inf{λ > 0 : θπ(λ, r, {x}) > 0}.
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Note that we will show later, in Corollary 4.0.2, that for a stationary background the

definition of the critical infection rate does not depend on the choice of x ∈ V . We

denote by Nx the neighbourhood of x in G. Let c1(λ, ρ) be the unique solution of

cλ− 1− log(cλ|Nx|)) = ρ (1.5)

which satisfies 0 < c1(λ, ρ) ≤ 1
λ
, where λ > 0 and x ∈ V . We will later see, in

Lemma 4.1.2, that c1(λ, ρ) is an upper bound for the maximal growth rate of the set

of all infections. The main goal in this chapter is to show that under an additional

condition, the initial configuration of the background B has no influence on whether

survival of the infection is possible or not.

Theorem 1.4.8. Let λ, r > 0 and C ⊂ V be finite and non-empty. Suppose (i) and

(ii) of Assumption 1.4.1 are satisfied and c1(λ, ρ) > κ−1ρ, then θ(λ, r, C,B1) > 0 if and

only if θ(λ, r, C,B2) > 0 for all B1, B2 ⊂ E.

Note that the statement is obviously true if |C| ∈ {0,∞}, since then the survival

probability θ is either 0 or 1. We will see that if the inequality c1(λ, ρ) > κ−1ρ

holds, then asymptotically the growth speed of the infection C is slower than the

expansion of the permanently coupled region Ψ′, with respect to time. Furthermore,

by Proposition 4.0.1 (iii) if follows that θπ(λ, r, C1) > 0 if and only if θπ(λ, r, C2) > 0

for any two non-empty and finite C1, C2 ⊂ V . Thus, as a direct consequence of

Theorem 1.4.8 we get the following result regarding the critical infection rate.

Corollary 1.4.9. Let r > 0 and suppose Assumption 1.4.1 (i) and (ii) are satis-

fied. If there exists a non-empty and finite set C ′ ⊂ V and a B′ ⊂ E such that

c1(λc(r, C
′, B′), ρ) > κ−1ρ, then it follows that λc(r, C,B) = λπc (r) for all non-empty

and finite C ⊂ V and B ⊂ E. Then we denote the critical infection rate simply by

λc(r).

Note that if we consider graphs with subexponential growth, i.e. ρ = 0, the inequality

c1(λ, ρ) > κ−1ρ is obviously satisfied for all λ > 0. Thus, on graphs with subexponential

growth Theorem 1.4.8 and Corollary 1.4.9 are true as long as Assumption 1.4.1 (i) and

(ii) are satisfied.

Since Corollary 1.4.9 provides us with sufficient conditions to determine if the critical

infection rate λc(r) is independent of the initial conditions, we can naturally extend

Theorem 1.3.2(i) and Theorem 1.3.3, which were proven in [LR20], in the sense that

we drop the assumption of stationarity, i.e. B0 ∼ π. Recall from Remark 1.1.5 that we
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denote the survival probability and the critical infection rate by θDP and λDP
c for the

contact process on a dynamical percolation.

Corollary 1.4.10. Let ρ ≥ 0 be the exponential growth of G.

(i) For every p ∈ (0, 1), λDPc
(
1, vp, v(1− p), C,B

)
→ λGc

p
as v →∞, for all C ⊂ V

non-empty and finite and all B ⊂ E, where λGc denotes the critical infection rate

of the classical contact process with recovery rate 1 on the graph G.

(ii) If G is of subexponential growth, i.e ρ = 0, then for every r > 0 and v > 0 there

exists a p0 = p0(r, v) > 0 such that for every p < p0, λDPc
(
r, vp, v(1− p), C,B

)
=

∞ for all C ⊂ V non-empty and finite and all B ⊂ E.

(iii) If V = Z and E =
{
{x, y} ⊂ Z : |x− y| = 1

}
, i.e. G is the 1-dimensional integer

lattice, then for every r > 0 and p ∈ (0, 1), λDPc
(
r, vp, v(1 − p), C,B

)
→ ∞ as

v → 0, for all C ⊂ V non-empty and finite and all B ⊂ E

In Chapter 5 we study a quite different aspect of the CPERE. In this chapter we will

focus on the connection between survival and non-ergodicity, i.e. that there exists more

than one invariant law. Note that Assumption 1.4.1 (iii) will be pivotal and therefore,

we briefly discuss when this assumption is satisfied.

For a given spin systems it is by no means trivial to see if it is reversible or not. But

the class of stochastic Ising models satisfies reversibility by definition. Therefore, it

seems to be natural to choose our background from this class of spins systems. By the

definition given in [Lig12, Section IV.2] a stochastic Ising model is a spin system which

is reversible with respect to the probability measure

ν(B) ∼ exp
(∑
D⊂E

(−1)|B
c∩D|JD

)
,

where (JD)D⊂E ⊂ R such that
∑

D⊂E |JD| < ∞. Note that the sequence (JD)D⊂E is

called a potential of an Ising model. Hence, Assumption 1.4.1 (iii) is already naturally

satisfied. On the other hand by [Lig12, Theorem IV.2.13] we know that every reversible,

finite range spin system with strictly positive spin rates must already be a stochastic

Ising model. Given a potential (JD)D⊂E there are obviously infinitely many ways to

choose the spin rates q(·, ·). One common choice of the spin rate is

q(e, B) := 1− tanh

(∑
e3D

(−1)|B
c∩D|JD

)
= 2

(
1 + exp

(
2
∑
e3D

(−1)|B
c∩D|JD

))−1

. (1.6)
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Of course, if Assumption 1.4.1 (i) and (ii) are satisfied is a different question and also

not always the case. For example in case of the ferromagnetic Ising model stated in

Example 1.1.2 (iii) if the parameter β is small enough, it satisfy these two assumptions.

But depending on the underlying graph G, this system can exhibit a non-trivial phase

transition between ergodicity and non-ergodicity, i.e. for β large enough there exist

more than one invariant law. See for example [Lig12, Theorem IV.3.14].

Remark 1.4.11. In fact with the choice (1.6) of the spin rates we can show that all

three systems in Example 1.1.2 are part of the class of stochastic Ising models.

1. Let p ∈ (0, 1). We choose JD = 1
2

log
(

p
1−p

)
for |D| = 1 and JD = 0 otherwise.

Next plugging this choice of a potential into the spin rates (1.6) we get that

q(e, B) = p1{e/∈B} + (1 − p)1{e∈B}. Now rescaling time with a constant v > 0

and setting α := vp and β := v(1− p) yields that the dynamical percolation is a

stochastic Ising model for all α, β > 0.

2. To show this for the noisy voter model on the 1-dimensional nearest neighbour

lattice, let γ > 0 and choose JD = 1
4

log(1 + γ−1), for |D| = 2 and JD = 0

otherwise. Inserting this into (1.6) yields that

q(e, B) =
1

2γ + 1

(1

2

(
|B ∩Ne|1{e/∈B} + |Bc ∩Ne|1{e∈B}

)
+ γ
)
.

Again rescaling time with the factor α(2γ+1)
2γ

, where α > 0 and setting β := α
2γ

we

see that the spin rate corresponds to the spin rate of a noisy voter model as given

in Example 1.1.2 (ii).

3. That the ferromagnetic stochastic Ising model introduced in Example 1.1.2 (iii)

is part of this class is quite obvious, but for the sake of completeness we also

state the concrete potential (JD)D⊂E. For β > 0 we choose JD = β if |D| = 2

and D ⊂ N L
e and JD = 0 otherwise. This choice yields

q(e, B) = 1− tanh
(

2β
(
|N L

e | − 2(1{e∈B}|B ∩N L
e |+ 1{e/∈B}|Bc ∩N L

e |
))
.

Remark 1.4.12 (General noisy voter model). One might question why we do not

consider a more general noisy voter model, as for example a process with transitions

Bt− = B → B ∪ {e} at rate α1 + β|B ∩N L
e | and

Bt− = B → B\{e} at rate α2 + β|Bc ∩N L
e |,
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where α1, α2, β > 0. It is not difficult to show that this process satisfies (i) and (ii) of

Assumptions 1.4.1. But we do not know if this process always satisfy (iii) in this general

setting. For example it is not clear if this process is part of the class of stochastic Ising

models, which would imply that (iii) is satisfied.

In Chapter 5, Section 5.1, we start with proving the existence of a so-called upper

invariant law ν = νλ,r. This law has the property that if ν is a invariant law of the

CPERE, then this implies that ν � ν, where � denotes the stochastic order. This

explains why its called upper invariant law. At this point it is not clear if ν differs from

the trivial invariant law δ∅ ⊗ π. The question if ν = δ∅ ⊗ π is equivalent to asking if

this system is ergodic, i.e. if there exists a unique invariant law which is the weak limit

of the process. By monotonicity, we know that if λ1 ≤ λ2, then νλ1,r � νλ2,r and the

reversed order holds for the recovery rate. Thus, we define the following critical value.

Definition 1.4.13 (Critical infection rate for non-triviality of ν). For r > 0 we define

λ′c(r) := inf{λ > 0 : νλ,r 6= δ∅ ⊗ π}.

The first aim is to show that this phase transition corresponds to the already known

phase transition between certain extinction and persistence of the infection in the

population with positive probability. Here we will again need the growth assumption

c1(λ, ρ) > κ−1ρ. Recall that c1(λ, ρ) is the unique solution of (1.5), κ is given through

Assumption 1.4.1 (ii) and ρ is the exponential growth of the graph G.

Proposition 1.4.14. Let r > 0 and suppose Assumptions 1.4.1 (i)-(iii) are satisfied.

Then λ′c(r) = λπc (r). If additionally c1

(
λπc (r), ρ

)
> κ−1ρ, then λ′c(r) = λc(r).

In Section 5.2 we derive the main result of this chapter. We state two conditions which

are equivalent to the so-called complete convergence of the CPERE, i.e. for every initial

configuration C ⊂ V and B ⊂ E

(CC,B
t ,BB

t )⇒ θ(C,B)ν + [1− θ(C,B)](δ∅ ⊗ π). (1.7)

Note that if we know that complete convergence holds true, then we have already

characterized all invariant laws of (C,B). We abuse notation somewhat by writing

{x ∈ Ct i.o.} = {x ∈ Ct for a sequence of times t ↑ ∞},

where i.o. is short for “infinitely often”.
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Theorem 1.4.15. Let λ, r > 0 such that c1(λ, ρ) > κ−1ρ. Furthermore, let Assump-

tions 1.4.1 (i)-(iii) be satisfied. Suppose

P
(C,B)
λ,r (x ∈ Ct i.o.) = θ(λ, r, C,B) (1.8)

for all x ∈ V , C ⊂ V and B ⊂ E and

lim
n→∞

lim sup
t→∞

Pλ,r(C
Bn(x),∅
t ∩Bn(x) 6= ∅) = 1 (1.9)

for any x ∈ V . Then (1.7) is satisfied. Conversely if (1.7) holds and additionally

ν 6= δ∅ ⊗ π, then (1.8) and (1.9) are satisfied.

We finish this chapter with Section 5.3, where we discuss continuity of the survival

probability θ. If |C| ∈ {0,∞}, then θ(·, C,B) is constant, and thus obviously continuous.

Therefore, we will only consider the case where C is non-empty and finite. We define

for such initial configurations (C,B) the region of survival by

S(C,B) := {(λ, r) ∈ (0,∞)2 : θ(λ, r, C,B) > 0}. (1.10)

On the complement
(
S(C,B)

)c
we see that the survival probability is again 0, and

thus obviously again continuous. So the only interesting question is if θ(·, C,B) is

continuous on S(C,B). Unfortunately, on general graphs we are not able to determine

if the survival probability is continuous on the whole survival region. Thus, for technical

reasons, we need to restrict ourselves to the parameter set

Sc1 := {(λ, r) : ∃λ′ ≤ λ s.t. (λ′, r) ∈ S({x}, ∅) and c1(λ′, ρ) > κ−1ρ}, (1.11)

which contains all parameter (λ, r) such that a λ′ ≤ λ exists fo which survival is still

possible and the already known growth condition is satisfied. This is actually equivalent

to assuming that for r > 0, c1

(
λπc (r), ρ

)
> κ−1ρ. Note that by Theorem 1.4.8, the set

Sc1 does not depend on the choice of the initial configurations (C,B) of the CPERE

with C being non-empty and finite. We denote by Ů the interior of a set U ⊂ Rd,

i.e. the largest open set which is contained in U .

Theorem 1.4.16. Let C ⊂ V be finite and non-empty and B ⊂ E. Then the survival

probability θ(·, C,B) is continuous on S̊c1.

Note that on subexponential graphs, i.e. ρ = 0, we know that c1(λ, ρ) > κ−1ρ is always

satisfied and thus Sc1 = S(C,B) for all (C,B) with C being non-empty and finite.
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This means in particular that on subexponential graphs Theorem 1.4.16 shows that the

survival provability is everywhere continuous, except at criticality, i.e. the boundary of

the survival region. With the techniques used in this chapter we are neither able to

prove or disprove continuity at criticality. Such a result is much more involved and

not even know for the CP on every graph G. An exception is for example the CP on

the d-dimensional integer lattice. For this model [BG90] showed that the process goes

almost surely extinct at criticality, which implies continuity on the whole parameter

set. We can use their techniques to show, among other things, continuity of the CPDP

in this setting.

Thus, in Chapter 6 we focus on our main example introduced in Example 1.1.2 (i).

The CPDP on the d-dimensional lattice, i.e.

V = Zd and E = {{x, y} ⊂ Zd : ||x− y||1 = 1},

where ||·||1 denotes the 1-norm. Note that we denote by 0 ∈ Zd the d-dimensional vector

of zeros. Since we consider the concrete case of a dynamical percolation as background

process we have two additional parameters α and β to consider. First of all the d-

dimensional lattice is obviously of subexponential growth, and thus by Remark 1.4.4

the background process B satisfies Assumption 1.4.1 for all α, β > 0. Furthermore,

recall from Remark 1.1.5 that we denote the survival probability by θ(λ, r, α, β, C,B).

Since we only consider the dynamical percolation as background we drop the subscript

DP. As mentioned in the same remark. Since ρ = 0, by Corollary 1.4.9 the critical

infection rate is given through

λc(r, α, β) = inf{λ > 0 : θ(λ, r, α, β, {0}, ∅) > 0}.

Another property of dynamical percolation is that every edge is independent of the

other edges, i.e. if e 6= e′, then {e ∈ Bt} and {e′ ∈ Bt} are independent for every t ≥ 0.

Thus, we can explicitly state the invariant law π = πα,β of the background process.

According to this measure the state of every edge is independently distributed with

respect to a Bernoulli distribution with parameter α
α+β

, i.e. for every e ∈ E

π({B ⊂ E : e ∈ B}) =
α

α + β
and π({B ⊂ E : e /∈ B}) =

β

α + β
.

The main topic of Chapter 6 is to adapt the techniques developed by [BG90] to the

CPDP. The revolutionary aspect of this work was that they managed to formulate
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conditions equivalent to the survival of the CP, which only depend on an arbitrarily large

but finite space-time box. On the other hand the survival of the CP is obviously a event

which depends on the whole space-time path of the CP. Essentially these conditions

state that if we consider a large enough space-time box [−L,L]d × [0, T ] and start with

a smaller fully infected space box [−n, n]d, with high probability we find a spatially

shifted box [−n, n]d + x at the sides or the top of the large box [−L,L]d × [0, T ], which

is again fully infected. With these conditions they managed to formulate a coupling

between an oriented percolation and the CP such that if the percolation model survives,

then the CP survives and vice versa.

In Section 6.1 we start with formulating appropriate finite space-time events for the

CPDP and eventually we prove that if we are in the supercritical phase, i.e that

θ(λ, r, α, β, {0}, ∅) > 0, then these events occur with high probability, which means

that the finite space-time conditions are satisfied. In Section 6.2 we construct the

previously mentioned coupling with an oriented percolation such that if this model

percolates it implies survival of the CPDP and vice versa. This is a powerful tool and

has far reaching consequences, since it enables us to show the following results.

In this case we can again denote the survival by

S := {(λ, r, α, β) ∈ (0,∞)2 : θ
(
λ, r, α, β, {0}, ∅

)
> 0}, (1.12)

where we know by Theorem 1.4.8 that this set does not depend on the intial configuration

of the CPDP as long as the set of initially infected sites C is non-empty and finite. We

also include the two additional parameter.

Theorem 1.4.17. The CPDP goes almost surely extinct at criticality, i.e.

θ
(
λ, r, α, β, {0}, ∅

)
= 0

for all (λ, r, α, β) ∈ (0,∞)4\S̊.

Furthermore, for the parameters α and β we can obtain the same monotonicity and

continuity properties as for the infection and recovery rates λ and r, which we showed

in Section 3.4 and Section 5.3. Therefore, a direct consequence of Theorem 1.4.17 is

the following result:

Corollary 1.4.18. Let C ⊂ V and B ⊂ E. The survival probability is continuous, i.e.

(λ, r, α, β) 7→ θ(λ, r, α, β, C,B)
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is continuous seen as function from (0,∞)4 to [0, 1].

At last we are able to show that complete convergence holds for the CPDP for every

choice of parameters.

Theorem 1.4.19. The CPDP (C,B) satisfies complete convergence, i.e. for every

C ⊂ V and B ⊂ E

(CC,B
t ,BB

t )⇒ [1− θ(C,B)](δ∅ ⊗ π) + θ(C,B)ν as t→∞.

We will end this chapter by showing that for a general CPERE on the d-dimensional

integer lattice, complete convergence holds on a subset of its survival region. To be

precise this subset will be the interior of the survival region of a suitable CPDP, which

lies “below” the CPERE. This CPDP is obtain by Proposition 3.4.5. Here we will

again use the subscript DP since we need to distinguish between a CPERE and a

CPDP, i.e. θ denotes the survival probability of the CPERE and θDP of the CPDP (see

Remark 1.1.5).

Theorem 1.4.20. Let (C,B) be a CPERE on the d-dimensional integers lattice (Zd, E)

with infection rates λ > 0, recovery rate r > 0 and spin rate of the background q(·, ·) and

suppose that (i)-(iii) of Assumption 1.4.1 are satisfied. Let αmin and βmax be defined

as in (1.4). If θDP(λ, r, αmin, βmax, {0}, ∅) > 0 then complete convergence holds, i.e. for

every C ⊂ V and B ⊂ E

(CC,B
t ,BB

t )⇒ [1− θ(λ, r, C,B)](δ∅ ⊗ π) + θ(λ, r, C,B)ν as t→∞.

In Chapter 7 we will consider a contact process on a dynamical long range percolation,

which we abbreviate with CPLDP. The term “long range” refers to the fact that

connections of any length are possible, and therefore we are no longer in the setting of

bounded degrees. To be precise we consider the set

E := {e = {x, y} : x, y ∈ V, x 6= y},

which contains edges between all vertices and not only neighbours, i.e. vertices x, y ∈ V
such that d(x, y) = 1. Recall d(·, ·) is the graph distance induced by the graph

G = (V,E). We define the CPLDP (C,B) on the state space P(V ) × P(E). In this

chapter we adapt the methods developed in [LR20] and extend some of their result,

which we summarize in Section 1.3, to the long range or rather infinite range setting.
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But, let us first state the concrete setting and process. We consider two sequences

(pe)e∈E ⊂ [0, 1] and (ve)e∈E ⊂ (0,∞) of real numbers. Here pe will be the probability

that after an update the edge e is open and ve is the update speed of this particular edge.

Additionally we assume that if {xi, yi} ∈ E for i ∈ {1, 2} with d(x1, y1) = d(x2, y2),

then p{x1,y1} = p{x2,y2} and v{x1,y1} = v{x2,y2}. Thus, edges which are of the same length

according to the graph distance d(·, ·) have the same probability to being open after

an update and the same update speed. We want to remain in a similar setting as the

CPDP, where the behaviour of the background is governed by two parameters. Thus,

let γ > 0 and q ∈ (0, 1) and set

p̂e = p̂e(q) := qpe and v̂e = v̂e(γ) := γve

for all e ∈ E . Note that q and γ have similar interpretations as the parameters p and

v considered in Section 1.3. Now we are ready to define the dynamical long range

percolation process which will be our background process. Thus, B is again a Feller

process on P(E) with transitions

Bt− = B → B ∪ {e} at rate v̂ep̂e and

Bt− = B → B\{e} at rate v̂e(1− p̂e).
(1.13)

Note that we choose B0 ∼ π, where π is the invariant law of B which means that the

events ({e ∈ B0})e∈E are independent and P(e ∈ B0) = p̂e for all e ∈ E .

As usual in a long range setting we need some assumptions regarding the decay of the

flip rates of the background process.

Assumption 1.4.21. Assume that the sequences (pe)e∈E and (ve)e∈E satisfy

(i)
∑

y∈V v{x,y}p{x,y} <∞ for all x ∈ V and

(ii)
∑

y∈V v
−1
{x,y} <∞ for all x ∈ V .

In Section 7.1 we will discuss the construction of this process via a graphical repre-

sentation and prove that is well defined. We need to adjust the construction use for

the CPERE specifically for this case, since (V, E) is no longer a graph with bounded

degree. This is possible since Assumption 1.4.21 implies that v{x,y}p{x,y} → 0 and

v{x,y} →∞ as d(x, y)→∞, this indicates that the probability that a long edge is open,

i.e. an edge connecting two vertices over a long distance, becomes exceedingly unlikely.

Therefore, heuristically speaking a successful infection over a long distance is getting

more unlikely as the distance increases. Since the probability that this particular edge
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is closed in the moment a infection event takes places increases. Simply put, at any

time the percolation cluster will be locally finite graph, and thus the construction still

works out. With Assumption 1.4.21 we are able to show in Lemma 7.1.3 that (C,B) is

a well-defined Markov process, in the sense that |CC
t | <∞ almost surely for all t ≥ 0,

if C ⊂ V is finite. Although we do not show that this process has the Feller property.

As before we again focus on the survival of the CPLDP, and thus for λ, r, γ > 0 and

q ∈ (0, 1) we again denote by

θ(λ, r, γ, q, C) := Pλ,r,γ,q(C
C
t 6= ∅ ∀t ≥ 0)

the survival probability and the critical infection rate for survival by

λc(r, γ, q) := inf{λ ≥ 0 : θ(λ, r, γ, q, {x}) > 0}.

It is not hard to see that the CPLDP is again monotone regarding changes in the

infection rate λ, and thus the infimum takes a unique value. Also note that again the

definition does not depend on the choice of x ∈ V , since we started the background in

its stationary state, and therefore this follows again by translation invariance. Actually,

monotonicity in the rates λ, r and q can be easily concluded by a coupling argument

via the graphical representation, similarly to Lemma 3.4.2 and Lemma 6.3.1 for the

CPDP. Thus, we will not show this again. But as in the setting in [LR20] it is not

clear at all if the survival probability is monotone in γ. Hence, we show at least the

following result.

Proposition 1.4.22. The function γ 7→ γ−1λc(r, γ, q) is monotone decreasing.

Another application of the graphical representation enables us to compare the CPLDP

to a long range version of the contact process. Let us now define this long range version.

Let r > 0 and (ae)e∈E be a sequence of positive real numbers such that a{x,y} = a{x′,y′}

if d(x, y) = d(x′, y′) and ∑
y∈V

a{x,y} <∞

for all x ∈ V , where we again used the convention a{x,x} = 0. Then a Feller process X

on the state space P(V ) with transitions

Xt− = C → C ∪ {x} at rate
∑
y∈C

a{x,y} and

Xt− = C → C\{x} at rate r,



30 Chapter 1 Introduction and main results

is called a long range contact process. For more details on this type of process one may

consult [Swa09].

Proposition 1.4.23 (Comparison with a long range contact process). Let C ⊂ V and

(CC
t ,Bt)t≥0 be a CPLDP with parameter λ, r, γ > 0 and q ∈ (0, 1). Then there exists a

long range contact process (X
C

t )t≥0 with X
C

0 = C, infection rates

ae(λ, γ, q) =
1

2

(
λ+ γve −

√
(λ+ γve)2 − 4vepeλγq

)
.

for all e ∈ E and recovery rate r such that X
C

t ⊂ CC
t for all t ≥ 0.

This result in particular yields that if X
C

survives with positive probability so does

CC . Furthermore, it is not difficult to see that for every e ∈ E

lim
γ→∞

ae(λ, γ, q) = λqpe.

In Section 7.2 we will provide some preliminary ground work for Section 7.3, where we

prove existence of a immunization phase. The techniques applied in these two sections

use among other things a comparison argument between a long range percolation model

and the background process on a finite time interval [nT, (n + 1)T ), where n ∈ N0

and T > 0. Thus, we first state a bound on the probability that an edge e is closed

throughout such a time interval of length T and then, introduce a long range percolation

model and show some results which guarantee absence of infinite connected component

in such a model.

In Section 7.3 we study the critical infection rate λc(r, q, γ) with respect to small q.

For the arguments in this section Assumption 1.4.21 (ii) will be crucial, i.e. that∑
y∈V

v−1
{x,y} <∞

for all x ∈ V . This assumption implies that v{x,y} →∞ as d(x, y)→∞. Heuristically

speaking, this assumption might be interpreted in the following way. Since the updates

of long edges happen very frequently one can assume that before every infection event

an update already took place, and thus an successful transmission of an infection via

a long edges e occurs approximately with rate λp̂e. We show with a strategy similar

to the proof of [LR20, Theorem 2.5] that for the CPLDP there exists a immunization

phase.
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Theorem 1.4.24. Suppose Assumption 1.4.21 is satisfied. Then, for a given r > 0

and γ > 0, there exists q∗ = q∗(r, γ) ∈ (0, 1) such that C dies out almost surely for all

q < q∗, regardless of the choice of λ > 0, i.e. λc(r, γ, q) =∞ for all q < q∗.

In Section 7.4 we will study the asymptotic behaviour of the critical infection rate

λc(r, q, γ) as γ → 0. For general countable vertex sets V a direct consequence of

Proposition 1.4.22 and Theorem 1.4.24 is the following result.

Corollary 1.4.25. Let r > 0. There exists a q∗ = q∗(r) ∈ (0, 1) such that for every

q < q∗, there exists a γ0 = γ0(q) > 0 such that λc(r, γ, q) = ∞ for all γ < γ0. This

implies in particular that limγ→0 λc(r, γ, q) =∞ for every q < q∗.

But if we choose V = Z and E = {{x, y} ⊂ Z : |x − y| = 1}, i.e. G = (V,E) is the

1-dimensional lattice, then we can fully describe the asymptotic behaviour for slow

speed of the CPDLP, i.e. γ → 0, under suitable assumption.

Assumption 1.4.26. Assume that the sequences (pe)e∈E and (ve)e∈E satisfy∑
y∈N

yv−1
{0,y} <∞ and

∑
y∈N

yv{0,y}p{0,y} <∞

This is basically a stronger version of Assumption 1.4.21.

Theorem 1.4.27. Suppose Assumption 1.4.26 is satisfied. Let r > 0, q ∈ (0, 1) and

C ⊂ V be non-empty and finite. Then, for every λ > 0 there exists γ∗(λ) = γ∗ > 0 such

that CC dies out almost surely for all γ ≤ γ∗, i.e. θ(λ, r, γ, q, C) = 0 for all γ ≤ γ∗.

Thus, in particular limγ→0 λc(r, γ, q) =∞.

With this result we have proven that in the regime for which Assumption 1.4.26 is

fulfilled we have a similar overall behaviour as for the contact process on a finite range

dynamical percolation, and thus in this case the phase diagram with respect to the

background parameters should also look as the visualization in Figure 1.2.
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Chapter 2

Basic notions and graphical

representation

2.1 Markov process theory

Here we give a short recap of some results and notation used in (homogenous) Markov

process theory. For a self-contained and detailed introduction to this topic we refer the

reader to [EK09] or [Lig12]. Let (Ω,F ,P, (Ft)t≥0) be a filtered probability space and

(S,B(S)) be a measure space, where we assume that S is a compact Polish space and

B(S) is the Borel σ-algebra.

Definition 2.1.1 (Markov property). We call an (Ft–adapted) stochastic process

(Xt)t≥0 a Markov process if for t ≥ s, Fs is independent of Xt given Xs, i.e.

E[f(Xt)|Fs] = E[f(Xt)|Xs].

for all measurable and bounded functions f : S→ R.

Recall that a Markov process is called (time)-homogeneous if the conditional distribution

of Xt given Xs only depends on the difference t− s, i.e. E[f(Xt)|Xs] = E[f(Xt−s)|X0]

for all measurable and bounded functions f : S→ R. Furthermore, let us denote by

B(S) the set of all bounded and measurable functions and by C(S) the space of all

continuous functions. We equip C(S) with the supremum norm ||f || = supx∈S |f(x)|.

Definition 2.1.2 (Transition semigroup). For t ≥ 0 we call T (t) : C(S)→ B(S) which

maps f 7→
(
x 7→ E[f(Xt)|X0 = x]

)
, the transition operator of X and (T (t))t≥0 its

transition semigroup.

33
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It is easy to see that (T (t))t≥0 has semigroup structure since obviously T (0)f = f

holds for every f ∈ C(S) and by the Markov property we can show that the so called

Chapman-Kolmogorov equation holds, i.e. T (t+ s)f = T (t)T (s)f for every f ∈ C(S).

Note that we denote by DS([0,∞)) the Skorokhod space. This is the function space

which contains all cadlag functions f : [0,∞)→ S, i.e. f is right continuous and has

left limits everywhere. Often we need stronger assumptions on the process X, which

leads us to the notion of a Feller process.

Definition 2.1.3 (Feller process). We call a Markov process X = (Xt)t≥0 a Feller

process if X has almost surely paths in DS([0,∞)) and T (t)f ∈ C(S) for all f ∈ C(S).

Note that the transition semigroup of a Markov process characterizes the finite dimen-

sional marginals and thus, characterizes the distribution of X completely.

Definition 2.1.4 (Markov semigroup). We call a collection (T (t))t≥0 of operators on

C(S), i.e. T (t) : C(S) → C(S) for all t ≥ 0, a Markov semigroup if the following is

satisfied:

1. T (0)f = f for all f ∈ C(S)

2. The mapping t 7→ T (t)f from [0,∞) to C(S) is right continuous for all f ∈ C(S).

3. T (t)T (s) = T (t+ s) for all f ∈ C(S) and all t, s ≥ 0

4. For all t ≥ 0 it holds T (t)1S = 1S.

5. T (t)f ≥ 0 if f ≥ 0 for all t ≥ 0.

It is not difficult show that a transition semigroup of a Markov process is a Markov

semigroup as seen in [Lig12, Proposition 1.3]. More importantly the reverse is also true,

i.e. if (T (t))t≥0 is a Markov semigroup, then there exists a unique Feller process X such

that

T (t)f(x) = E[f(Xt)|X0 = x]

for all x ∈ S, f ∈ C(S) and t ≥ 0. See [Lig12, Theorem 1.5]. The correspondence

between Feller process and Markov semigroup is without doubt of great importance

in the Markov process theory. But in most cases it can be exceedingly difficult or

impossible to explicitly determine a Markov semigroup. Thus, it is more convenient to

work with the so-called generator A.
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Definition 2.1.5 (Generator). Let X be a Markov process and (T (t))t≥0 its corre-

sponding transition semigroup, then we define

Af(x) := lim
t→0

t−1(T (t)f(x)− f(x)).

for all f ∈ D(A) := {f ∈ B(S) : limt→0 t
−1||T (t)f − f ||∞ exists}. We call A the

generator of the semigroup (T (t))t≥0.

The generator is the time derivative of the Markov semigroup at the time point 0, i.e.

d

dt
T (t) = A.

Since (T (t))t≥0 also satisfies the semigroup structure we have two defining properties

of a operator-valued exponential function, and thus T (t) = etA for all t ≥ 0 such that

in turn A determines the Markov semigroup. Of course if S is not a finite set it is by

no means trivial if these objects are well defined. To provide sufficient conditions for

A such that these objects are properly defined, one would need to use the theory for

operator semigroups developed by Hille and Yosida. We will not go further into detail

here and again refer the interested reader to [Lig12, Section 1.2] or to [EK09, Chapter

1], where this is described in a more general setting.

Let us proceed with introducing some further notation and useful results. First of all,

since we don’t always start the Feller process X in a deterministic value x ∈ S but

rather with a initial distribution ν we use the notation

νT (t)f =

∫
T (t)f(x)ν(dx)

for all f ∈ C(S) and the shorthand νT (t).

Definition 2.1.6 (Stationary distribution). Let X be a Feller process with state space

S and (T (t))t≥0 its Markov semigroup. Then a probability measure ν on Ω is called

stationary or invariant if νT (t) = ν for all t ≥ 0.

Note that the definition obviously implies that if X0 ∼ ν, then (Xt+s)t≥0
d
= (Xt)t≥0 for

all s > 0. But this means that if the Feller process is stationary we can easily extend

the definition to the whole negative real line such that (Xt)t∈R is stationary process.

Later in Chapter 5 we need the concept of (time)-reversibility.
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Definition 2.1.7 (Reversible). A Feller process X is said to be reversible with respect

to the probability measure ν if∫
fT (t)gdν =

∫
gT (t)fdν

for all f, g ∈ C(S), where (T (t))t≥0 is the corresponding Markov-semigroup.

Obviously if X is reversible with respect to ν, then ν must be an invariant distribution

of X. This can be obtained by setting g ≡ 1S. An equivalent and maybe somewhat

more intuitive interpretation of reversibility is the following:

Proposition 2.1.8. Let X be Feller process. Then X is reversible with respect to

the probability measure ν if and only if (Xt)t∈R and (X−t)t∈R have the same joint

distributions, where (Xt)t∈R is the stationary process obtained by using the initial

distribution ν and the transition mechanism corresponding to T (t).

Proof. See [Lig12, Proposition II.5.3]

Next we introduce a partial order on the space of all probability measures on S, which

is called the stochastic order. We assume that S is equipped with a partial order ”≤”.

Furthermore with respect to this partial order we call a function f : S→ R increasing

if x ≤ y implies f(x) ≤ f(y), where x, y ∈ S.

Definition 2.1.9 (Stochastic order). Let P1 and P2 be probability measures on

(S,B(S)). Then we say P2 dominates P1 stochastically, which we denote by P1 � P2 if

and only if ∫
fdP1 ≤

∫
fdP2

for all measurable, increasing and bounded functions f : S → R. Let X1 and X2 be

S-valued random variables. We write X1 � X2 if PX1 � PX2 .

Now we are able to introduce the notion of monotonicity for Feller processes.

Definition 2.1.10 (Monotone Feller process). Let µ1, µ2 be two probability measures

on S. We call a Feller process X monotone if µ1 � µ2 implies µ1T (t) � µ2T (t) for all

t ≥ 0.

Definition 2.1.11 (Coupling of probability measures). A coupling of two probability

measure P1 and P2 on (S,B(S)) is any probability measure P̂ on (S2,B(S2)) such that

P̂(A× S) = P1(A) and P̂(S× A) = P2(A) for all A ∈ B(S).
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Another useful result for ordered probability measures is Strassen’s Theorem.

Theorem 2.1.12 (Strassen). Let P1 and P2 be probability measures on (S,B(S)). If

P1 � P2, then there exists a coupling P̂ such that P̂({(x, y) ∈ S2 : x ≤ y}) = 1.

Proof. See [Hol12, Theorem 7.9]

Remark 2.1.13. This result can again be formulated for random variables. Assume

that X1 and X2 are two random variables with values in S and are defined on the same

probability space (Ω,F ,P) with X1 � X2. Then Theorem 2.1.12 implies that there

exists a probability space (Ω̂, F̂ , P̂) and on it copies X̂1
d
= X2 and X̂2

d
= X1 such that

X̂1 ≤ X̂2 holds P̂-almost surely.

2.2 Poisson point processes

In this section we briefly introduce Poisson point processes, since we need them to

formulate the graphical representation of an interacting particle system in the next

section. Let (Ω,A,P) be a probability space and (S, T ) a topological space which is

second countable, Hausdorff and locally compact, i.e. for every x ∈ S there exists a

set U ∈ T with x ∈ U and a compact set C ⊂ S such that U ⊂ C. Recall that by

definition σ(T ) = B(S). First we need to state some general definitions and results

concerning random measures and point processes.

Definition 2.2.1 (Locally finite measures). Let µ be a measure on (S,B(S)). We call

µ locally finite if for every x ∈ S there exists U ∈ B(S) with x ∈ U such that µ(U) <∞.

We denote by M = M(S) the set of all locally finite measures. Furthermore we define

the set of all locally finite counting measures by

N := {µ ∈M : µ(A) ∈ N0 ∪ {∞} for all A ∈ B(S)}.

Definition 2.2.2. A random measure Ξ : Ω→ N is called a point process. We call a

point process simple if P(Ξ({x}) ≤ 1 for all x ∈ S) = 1.

The next result justifies that a point process is seen as a random point cloud in S.

Proposition 2.2.3. Let Ξ be a simple point process, then there exists a N0 ∪ {∞}-
valued random variable N and a sequence of S-valued random variables X0, X1, . . . such

that

Ξ =
N∑
i=0

δXi .
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Proof. See [Kal17, Lemma 1.6]

Now we finally introduce the Poisson point process.

Definition 2.2.4 (Poisson point process). Ξ : Ω→ N is called a Poisson point process

on S with intensity measure ξ : P(S)→ R+ if

1. Ξ(B) ∼ Poi(ξ(B)) for every bounded B ∈ B(S) and

2. Ξ(B1), . . . ,Ξ(Bn) are independent for every n ∈ N and every collection of bounded

disjoint sets B1, . . . , Bn ∈ B(S).

The standard example is S = Rd and ξ chosen as the Lebesgue measure. In this case

the Poisson point process is often described as an ideal gas. We end this section with

a characterization when a Poisson point process is simple, which justifies when the

physical picture of an ideal gas is appropriate.

Proposition 2.2.5. Let Ξ be a Poisson point process with intensity measure ξ. The

Poisson point process Ξ is simple if and only if ξ({x}) = 0 for all x ∈ S

Proof. See [Kal06, Propsition 10.4.]

2.3 Interacting particle systems and their graphical

representation

In this section we introduce a graphical Poisson construction for interacting particle

systems. Interacting particle system are a particular class of Feller processes. In the

literature this term is not really standardized so we will briefly explain what we mean

by it.

Let Λ be a finite or countably infinite set, where the interpretation of the elements

contained in Λ are locations and we assume that on each location sits exactly one

particle. Thus, we can identify each particle with its location x ∈ Λ. Now we want

to assign to each particle a state, which may change over time. We denote by S the

set of all possible states and we assume it to be finite. Now f ∈ SΛ is a configuration

of the states of all particles, i.e. f(x) ∈ S denotes the state of the particle x ∈ Λ.

An interacting particle system is a Feller process with state space SΛ and is specified

via local interaction between particles. With a local interaction we mean that this

particular interaction only depends on the states of a finite number of particles and can
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only affect a finite number of particles, i.e. change their states. A common example for

such a system is an opinion model, i.e. the particles correspond to people which can

have a variety of opinions and S denotes all possible opinions. The local interactions

describe how the opinion of a particular person is affect by another person’s opinion.

For a detailed introduction of interacting particle systems we refer the reader to [Lig12].

We only consider the special case where a particle can assume one of two distinct states,

i.e. S = {0, 1}. This actually allows an alternative interpretation, where the state 1 or 0

describe whether a particle is present at the location x ∈ Λ or not. Since we consider a

infection model this interpretation seems more apt. In this context Λ is the population

of individual and the particles are the infection. Thus, if a particle is present at x ∈ Λ it

means individual x is sick if it is not present the individual is healthy. Out of notational

convenience we work with the power set P(Λ) as state space instead of {0, 1}Λ. Note

that it is not difficult to see that {0, 1}Λ only contains indicator functions, i.e. for every

f ∈ {0, 1}Λ there exist a set A ⊆ Λ such that f ≡ 1A. Hence, it is easy to see that

there exists a one-to-one correspondence between these two sets, i.e. {0, 1}Λ w P(Λ).

The graphical Poisson construction we are about to introduce is often called the

graphical representation. As the name suggests this construction of particle systems

is done with the help of an underlying Poisson point process. The standard reference

for interacting particle system [Lig12] describes this for the case of additive systems.

Besides this standard reference, [Swa17] explains in detail a graphical construction for

a broader class of interacting particle systems. Since we intend to use this approach

here we recapitulate some of the notation and results. Again, for a detailed description

we refer to [Swa17].

For a map m : P(Λ)→ P(Λ) we define the set

D(m) := {x ∈ Λ : ∃A ∈ P(Λ) s.t. x ∈ m(A)4 A}.

This set is the collection of all x ∈ Λ, which can possibly be changed by m. Next

for a given x ∈ Λ we call y ∈ Λ m-relevant if there exist A,B ∈ P(Λ) such that

x ∈ m(A)4m(B) and A4 B = {y}, in words this means that the state of y, i.e. y

being contained in the configuration or not, may affect which state x is in after the

application of m. We define

Rx(m) := {y ∈ Λ : y is m-relevant w.r.t x}.



40 Chapter 2 Basic notions and graphical representation

Definition 2.3.1 (local map). A map m : P(Λ)→ P(Λ) is called a local map if the

following three conditions are fulfilled.

1. D(m) is finite.

2. Rx(m) is finite for all x ∈ Λ.

3. For each x ∈ Λ, if y /∈ A4B for all y ∈ Rx(m), then x /∈ m(A)4m(B).

See [Swa17, Exercise 4.9] for a map which satisfies the first two properties, but not

the last. This map is in fact discontinuous. Just before [Swa17, Exercise 4.9] it is

mentioned that one can show that a map m : P(Λ)→ P(Λ) is continuous if and only if

the second and the third property are satisfied.

Let M be a countable set of local maps and let (rm)m∈M be non-negative constants,

where rm will be the rate corresponding to a map m ∈M. Let Ξ be a Poisson point

process on (M×R,B(M×R)) with intensity measure ξ such that

ξ(M × [s, t)) =
∑
m∈M

rm(t− s),

where M ⊂ M is finite. Note that we fully characterized ξ since {M × [s, t) : s <

t,M ⊂ M finite} is a π-system which generates B(M× R). We use a short hand

notation and write dξ = rmdt as the intensity measure of Ξ. By Proposition 2.2.5 the

Poisson point process is simple and therefore by Proposition 2.2.3 there exist random

variables (m1, t1), (m2, t2), . . . with state space M× R such that Ξ =
∑∞

k=0 δ(mk,tk).

Since Ξ is supported by these random variables and we denote

ω := supp(Ξ) := {(mk, tk) : k ∈ N}.

Furthermore, we set ωs,u := ω ∩M × (s, u] with s < u. Now for every random set

ω̃n := {(m1, t1), . . . , (mn, tn)} ⊂ ωs,u, where we assume that t1 < · · · < tn and n ∈ N
we can define the map Xω̃n

s,u(A) := mn ◦ · · · ◦m1(A) pointwise for A ∈ P(Λ). By [Swa17,

Theorem 4.14] if the rates satisfy

sup
x∈Λ

∑
m∈M,D(m)3x

rm(|Rx(m)|+ 1) <∞, (2.1)

then, for every A ∈ P(Λ) and s ≤ u, the pointwise limit Xs,u(A) := limω̃n↑ωs,u Xω̃n
s,u(A)

exists almost surely and does not depend on the choice of the finite sets ω̃n ↑ ωs,u.
Furthermore [Swa17, Theorem 4.14] states, that if X0 is a P(Λ)-valued random variable,
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independent of ω, then Xt := X0,t(X0), where t ≥ 0, defines a Feller process with

generator

Af(A) =
∑
m∈M

rm(f(m(A))− f(A)).

for all f ∈ C(P(Λ)) and initial state X0 = X0. Recall that this also means that

X has almost surely paths in DP(V )([0,∞)). In case that the initial configuration is

deterministic, i.e. X0 = A ∈ P(Λ), we sometimes add it as a superscript XA = (XA
t )t≥0.

Example 2.3.2 (The classical contact process). As an example for an interacting

particle system constructed via this graphical representation we consider the classical

contact process. For x, y ∈ V such that {x, y} ∈ E one considers the maps

infx,y(A) :=

A ∪ {x} if y ∈ A

A otherwise,

recx(A) := A\{x}

with rates rinfx,y = λ > 0 and rrecx = r > 0 such that by construction the process X

with transitions

Xt− = A→ A ∪ {x} at rate λ · |{y ∈ A : {x, y} ∈ E}| and

Xt− = A→ A\{x} at rate r.

See Figure 2.1 for a visualization. The infx,y map refers to an infection event, which

means that a potential infection is transmitted from individual x to its neighbour y. On

the other hand the recx map refers to a recovery event, which means that individual x

recovers from a potential infection and is healthy afterwards.

2.4 Basic notions of graphs

Let V be a countable set and E ⊂ {e = {x, y} : x, y ∈ V, x 6= y}. We call V the set of

all vertices and E the set of all unoriented edges. We call the tuple G = (V,E) a graph.

Note that by assumption E contains no loops and if there exists an edge between x

and y it is unique. In the literature such graphs are often called simple or strict.

Definition 2.4.1. Let G = (V,E) be a graph. Let x ∈ V and we denote the neigh-

bourhood of x by Nx := {y ∈ V : {x, y} ∈ E} and |Nx| is the degree of x. If

supx∈V |Nx| <∞, we say G is of bounded degree.
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(a) The arrows from x to y correspond to the
infx,y map, which transmits an infection from x
to y if x is infected. The crosses signify a map
recx, which causes x to recover.

(b) The red lines indicates an infection path, i.e. if
a site is red at time t it is infected.

Figure 2.1: Visualization of a graphical representation of a classical contact process.

Definition 2.4.2. We call x, y ∈ V adjacent if {x, y} ∈ E. We call x, y ∈ V connected,

if there exists a finite sequence (vi)0≤i≤n ⊂ V such that x = v0, y = vn and {vi, vi+1} ∈ E
for all 0 ≤ i ≤ n− 1. If all x, y ∈ V are connected, then we call the graph G connected.

With the notion of connectedness we can introduce the so called graph distance d as

follows. Let (vi)0≤i≤n be a sequences with the smallest number of vertices needed to

connect x to y, then set d(x, y) = n. We call the set Bk(x) := {y ∈ V : d(x, y) ≤ k},
the ball of radius k around x ∈ V . See Figure 2.2(a) for a visualization.

Definition 2.4.3. (Graph automorphism) Let σ : V → V be a permutation such that

{x, y} ∈ E if and only if {σ(x), σ(y)} ∈ E. We call such a σ a graph automorphism

and Aut(G) the set of all graph automorphisms.

Remark 2.4.4. Let G = (V,E) be a graph

1. Note that the set Aut(G) of all graph automorphism endowed with the concate-

nation ◦ as operation is a group.

2. Since by assumption {x, y} ∈ E ⇔ {σ(x), σ(y)} ∈ E for any σ ∈ Aut(G),

we slightly abuse notation and for and write σ(e) = {σ(x), σ(y)} for a given

e = {x, y}.

Now we will introduce the notion of transitivity, which basically describes that a graph

looks locally the same everywhere.
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Definition 2.4.5. (Transitivity) We call the graph G = (V,E)

1. vertex transitive if for every x, y ∈ V a σ ∈ Aut(G) exists such that σ(x) = y.

2. edge transitive if for every e1, e2 ∈ E a σ ∈ Aut(G) exists such that σ(e1) = e2.

3. transitive if the graph is vertex and edge transitive

Note that all vertices of a vertex transitive graph G = (V,E) have the same degree,

i.e. |Nx| = |Ny| for all x, y ∈ V . Note that we can describe the growth of a connected

and vertex transitive graph G = (V,E) through the following notion:

Definition 2.4.6 ((Sub-)exponential growth). Let G be a vertex transitive and con-

nected graph. We say G has exponential growth ρ if

lim
n→∞

1

n
log(|Bn(x)|) := ρ.

If ρ = 0 we call G of subexponential growth. The limit does not depend on the choice of

x ∈ V .

Lemma 2.4.7. Let G be a vertex transitive and connected graph with bounded degree.

Then ρ ≤ log(|Nx| − 1), where x ∈ V and hence in particular ρ <∞.

Proof. Let us fix some x ∈ V and let n ≥ 1. Now let y ∈ ∂Bn(x), i.e. d(x, y) = n.

Also there must exist at least one z ∈ Ny such that d(x, z) = n− 1, otherwise y could

not be connected to x which would be a contradiction. Now we see that

|∂Bn+1(x)| ≤
∑

y∈∂Bn(x)

(|Ny| − 1) = (|Nx| − 1)|∂Bn(x)|,

where we used that |Nx| = |Ny| for every y ∈ V . Recursive application implies that

|∂Bn(x)| ≤ (|Nx| − 1)n. Thus, we can conclude that

|Bn(x)| =
n∑
k=1

|∂Bk(x)|+ 1 ≤
n∑
k=0

(|Nx| − 1)n =
(|Nx| − 1)n+1 − 1

|Nx|
.

But with this inequality we see that

1

n
log(|Bn(x)|) ≤ log(|Nx| − 1) +

1

n
log
(
|Nx|−1(|Nx| − 1)

)
.

Hence if we let n→∞ it follows that ρ ≤ log(|Nx| − 1).
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Remark 2.4.8. Note that limn→∞
1
n

log(|Bn(x)|) = ρ and limn→∞ |Bn(x)|e−ρn = 1 are

equivalent statements. Thus, the term exponential growth refers to the growth of the

cardinality of a ball Bn(x) as n tends to infinity. It also makes sense to call the graph

of subexponential growth if ρ = 0, since ρ = 0 implies that limn→∞ |Bn(x)|e−Cn = 0 for

every C > 0. Also Lemma 2.4.7 implies that connected and vertex transitive graphs G

with bounded degree can not have a superexponential growth. As a by-product we get

a upper bound on the constant ρ.

Next we introduce the line graph.

Definition 2.4.9 (Line graph). Let G = (V,E) be a graph, then we call L(G) the

line graph of G. The vertex set of the line graph is the edge set E and two elements

in E are defined to be adjacent if they share a vertex, e.g. e1 and e2 are adjacent if

|e1 ∩ e2| = 1.

We will denote the neighbourhood and ball of radius n around an element e in the line

graph by N L
e and BLn(e). See Figure 2.2(b) for a visualization.

Remark 2.4.10. Note that we can express the neighbourhood of an element {x, y} in

the line graph as N L
e = {a ∈ E : |e ∩ a| = 1} and the balls as

BLn({x, y}) = {{z, z′} ∈ E : z ∈ Bn(x), z′ ∈ Bn(y)}.

(a) Visualization of B2(x) (b) Visualization of BL
2 (e)

Figure 2.2: Here we illustrate the two different types of balls on the lattice Z2. The
blue line indicates the “boundary” of the balls of distance two and the red vertices/edges
are the elements contained in the balls.

Lemma 2.4.11. Let G be a graph and L(G) its corresponding line graph.
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(i) If G is connected, then L(G) is connected.

(ii) If G has bounded degree, then also L(G) has bounded degree.

(iii) If G is edge transitive, then L(G) is vertex transitive.

(iv) Let G be connected and transitive. If G is of exponential growth ρ, then L(G) is

also of exponential growth ρ.

Proof. (i) This is clear by definition

(ii) For any e ∈ E there exist x, y ∈ V such that e = {x, y}. Now we can identify

each edge contained N{x,y} by the vertex which is not equal to x or y and see that

|N{x,y}| = |(Nx ∪Ny)\{x, y}| ≤ |Nx|+ |Ny| <∞

where we used that G is of bounded degree.

(iii) First we prove that σ(Nx) = Nσ(x) for every x ∈ V . Let us assume that

σ(Nx) 6= Nσ(x) then either there exists a y ∈ Nx such that σ(y) /∈ Nσ(x) and

thus {σ(x), σ(y)} /∈ E which is a contradiction to {x, y} ∈ E, or there exists a

z ∈ Nσ(x) with σ−1(z) /∈ Nx, but {σ(x), z} ∈ E implies {σ−1(σ(x)), σ−1(z)} =

{x, σ−1(z)} ∈ E since σ−1 is again a graph automorphism, which is a contradiction.

Now let σ ∈ Aut(G) and recall that for e = {x, y}, σ(e) = {σ(x), σ(y)}. Let

e1, e2 ∈ E if e1 and e2 are adjacent, i.e. they have a vertex x in common, then σ(e1)

and σ(e2) are adjacent as well, since σ(Nx) = Nσ(x). Thus, every σ ∈ Aut(G)

induces a graph automorphism on L(G). In the line graph E has the role of the

set of all vertices. Now it is clear that if G is edge transitive, then L(G) is vertex

transitive.

(iv) Let x, y ∈ V with e = {x, y} ∈ E, then analogously to (ii) we can again uniquely

identify each edge e′ 6= e with a vertex z /∈ {x, y}, which is contained in the union

Bn(x)∪Bn(y). Note that since G is transitive and connected each vertex has the

same number of neighbours, i.e. |Bn(x)| = |Bn(y)| for all x, y ∈ V , and at least

two. Thus, it follows that

|Bn(x)| ≤ |Bn(x) ∪Bn(y)| ≤ |BLn(e)| ≤ 2|Bn(x)|,

Now the claim follows by Remark 2.4.8.
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Chapter 3

Graphical representation and

consequences

3.1 Graphical representation of finite range spin

systems

In this section we show that every finite range spin system can be constructed via the

graphical representation discussed in Section 2.3. We explicitly state a set of maps

M and corresponding rates (rm)m∈M such that the generator of the resulting Feller

process agrees with the generator of a previously specified finite range spin system.

One reason for this effort is that the techniques used in the next section heavily rely on

this representation.

Recall that we assumed that the graph G = (V,E) is transitive, connected and has

bounded degree. Now by Lemma 2.4.11 we know that the line graph L(G) is vertex

transitive, connected and has bounded degree. Therefore, we consider in the current

and next section a slightly more general setting. Let X be an attractive and translation

invariant spin system of range R on some connected and vertex transitive graph

G = (V , E) with bounded degree. This is notationally more convenient, than using the

line graph L(G). Recall that the generator of a spin system is

ASpinf(A) =
∑
x∈V

q(x,A)(f(A4 {x})− f(A)), (3.1)

where f ∈ C(P(V)) and A ⊂ V. The interpretation of a spin system is that at a

site x ∈ V a spin flip takes places with a spin rate q(x,A), which depends on the

configuration A. Such a spin flip can be seen as the action of a map m : A 7→ A4 {x}.

47
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As already mentioned we intend to construct these systems by using the representation

introduced in Section 2.3. Therefore, one issue is that we can not use the set of all spin

flip maps m, since the rates of these maps would need to be q(x,A) and thus depend

on the configuration A. This is not in line with the setting in Section 2.3, where every

rate rm is constant with respect to the configuration A. Hence, we need to choose

different maps.

Since we only consider finite range systems we know that there exists a range R ∈ N
such that q(x,A) = q(x,A ∩ BR(x)) for any A ⊂ V. This means in particular that

q(x, ·) only depends on finitely many elements and thus we can work around this by

just defining separate maps for every relevant configuration in BR(x). We distinguish

between an up or down flip, i.e. if x ∈ A or x /∈ A. Then we consider every possible

configuration of the R-neighbourhood of x, which we denote by Nx(R) := BR(x)\{x}.
This leads to the following maps and rates. For every x ∈ V and F ⊂ Nx(R) we set

upx,F (A) :=

A ∪ {x} if x /∈ A and A ∩Nx(R) = F

A otherwise,

downx,F (A) :=

A\{x} if x ∈ A and A ∩Nx(R) = F

A otherwise,

for A ⊂ V and choose the rates to be

rupx,F = q(x, F ) and rdownx,F = q(x, F ∪ {x}). (3.2)

Note that x /∈ F , since F ⊂ Nx(R). We denote the sets of the two types of maps by

Mup = {upx,F : x ∈ V , F ⊂ Nx(R)} and Mdown = {downx,F : x ∈ V , F ⊂ Nx(R)}

and define the set of all maps as M :=Mup ∪Mdown. Now let Ξq be a Poisson point

process on M×R with rates (rm)m∈M. Obviously (2.1) is satisfied, and thus via the

construction in Section 2.3, we get a Feller process X with the generator

Af(A) =
∑
m∈M

rm(f(m(A))− f(A)).
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Now it suffices to show that this generator is the same as the generator stated in (3.1),

i.e. that Af(A) = ASpinf(A) for all f ∈ C(P(V)) and A ∈ P(V). By plugging in the

maps and rates we get that

Af(A) =
∑
x∈V

∑
F⊂Nx

q(x, F )(f(upx,F (A))− f(A))

+ q(x, F ∪ {x})(f(downx,F (A))− f(A)).

By using that q(x, F ) = q(x, F ∪D) for any D ⊂ V with D ∩BR(x) = ∅, we see that∑
F⊂Nx(R)

q(x, F )(f(upx,F (A))− f(A))

=1{x/∈A}
∑

F⊂Nx(R)

1{A∩Nx(R)=F}q(x,A)(f(A ∪ {x})− f(A))

=1{x/∈A}q(x,A)(f(A ∪ {x})− f(A)).

An analogous calculation to the one just performed for the maps upx,F can also be

formulated for the maps downx,F and therefore,

Af(A) =
∑
x∈V

1{x/∈A}q(x,A)(f(A ∪ {x})− f(A)) + 1{x∈A}q(x,A)(f(A\{x})− f(A))

=
∑
x∈V

q(x,A)(f(A4 {x})− f(A)) = ASpinf(A).

Thus, we constructed a spin system with spin rate q(·, ·).

The first consequence of this representation is that we are able to couple a general finite

range spin system with a dynamical percolation (see Example 1.1.2 (i)). Set

αmin := min
F⊂Nx(R)

rupx,F , βmin := min
F⊂Nx(R)

rdownx,F

αmax := max
F⊂Nx(R)

rupx,F and βmax := max
F⊂Nx(R)

rdownx,F ,
(3.3)

as already seen in (1.4). Note that αmin, βmin, αmax and βmax do not depend on x since

the spin system is translation invariant.

Proposition 3.1.1. Let X be a spin system with spin rate q(·, ·). Furthermore let αmin,

βmin, αmax and βmax be defined as in (3.3). There exists a dynamical percolation Y

with rates αmax and βmin and Y with rates αmin and βmax such that if Y0 = X0 = Y0

then Yt ⊂ Xt ⊂ Yt almost surely for all t > 0.
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Proof. Let X be the spin system obtained via the graphical representation described

above, which uses the maps upx,F and downx,F and the rates defined as in (3.3),

i.e. rupx,F = q(x, F ) and rdownx,F = q(x, F ∪ {x}), where x ∈ V and F ⊂ Nx(R). By

construction we see that X has the spin rate q(·, ·). Now we adjust the construction in

the following way. We use the same maps but choose the rates to be rupx,F = αmin and

rdownx,F
= βmax for any x ∈ V and any F ⊂ Nx(R). This yields a spin system Y with

spin rate

q(x,A) = αmin1{x∈A} + βmax1{x/∈A},

where x ∈ V and A ⊂ V . Thus, Y is a dynamical percolation with rates αmin and βmax.

Analogously by choosing the rates to be rupx,F = αmin and rdownx,F = βmax for any

x ∈ V and any F ⊂ Nx(R) we obtain a dynamical percolation Y with rates αmax and

βmin. Let q(·, ·) denote the spin rate of Y, then by definition of the rates in (3.3) it

follows that
q(x,A) ≤ q(x,A) ≤ q(x,A) if x /∈ A and

q(x,A) ≥ q(x,A) ≥ q(x,A) if x ∈ A.

for any x ∈ V and A ⊂ P(V). Now by [Lig12, Theorem III.1.5] it follows that there

exist a coupling such that if Y0 = X0 = Y0 then Yt ⊂ Xt ⊂ Yt almost surely for all

t > 0.

3.2 Expansion speed of the permanently coupled region

Recall the definition of the coupled and permanently coupled region from (1.2) and

(1.3). On a general graph G for the spin system X the coupled region at time t is

Ψt = Ψt(X) = {x ∈ V : x /∈ XA1
t 4XA2

t ∀A1, A2 ⊂ V}

and the permanently coupled region at time t is

Ψ′t = {x ∈ V : x ∈ Ψs∀s ≥ t},

for t ≥ 0. The main goal of this section is to show Proposition 1.4.2. To be precise we

show that if there exist constants S,K ′ > 0 and γ > ρ such that

P(x /∈ Ψs) ≤ K ′e−γs (3.4)
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for every x ∈ V and s ≥ S. Then there exist constants T,K > 0 and κ > 0 such that

P(x /∈ Ψ′t) ≤ Ke−κt for all t > T and x ∈ V . In particular Proposition 1.4.2 follows for

G = L(G). The strategy is to use the Borel-Cantelli Lemma and the fact that t 7→ Ψ′t

is non-decreasing. We see that

P(∃t ≥ s : x /∈ Ψt) ≤
∞∑

k=bsc

P(Bk(x) 6⊂ Ψk)

+
∞∑

k=bsc

P(Bk(x) ⊂ Ψk, ∃t ∈ [k, k + 1) s.t. x /∈ Ψt).

(3.5)

The idea is that with (3.4) we are able to show that for discrete time points k ≥ bsc
with a high probability Bk(x) is already contained in the coupled region Ψk if s is

large enough. Then we show that on the event that Bk(x) ⊂ Ψk it is unlikely that the

site x is affected by some y ∈ Bck(x) within one unit of time, which is necessary for a

t ∈ [k, k + 1) to exist such that x /∈ Ψt.

We briefly explain why this is the case. We know that Rx(m) ⊂ BR(x) for all x ∈ D(m)

and only finitely many m ∈M exist with x ∈ D(m). Thus, we define the set

Rx :=
⋃

m:x∈D(m)

Rx(m) ⊂ BR(x)

and see that this set is finite. In line with the notion of m-relevance we call Rx the

set of all relevant elements with respect to x, i.e. if y ∈ Rx there exists an m with

x ∈ D(m) such that y is m-relevant with respect to x. Now if Rx ⊂ Ψt− it is impossible

that x /∈ Ψt since all relevant elements with respect to x are contained in the coupled

region. Therefore, x can only “decouple” in the time interval [k, k + 1) if it is affected

by some y /∈ Ψk.

To formalize this, we use so-called paths of potential influence. Recall some notation

from Section 2.3, which are ω = supp(Ξq) and ωs,u = ω ∩M× (s, u], where Ξq is the

Poisson point process used in the graphical representation of X. We took the following

definition from [Swa17].

Definition 3.2.1 (Path of potential influence). Let x, y ∈ V and s < u. A path of

potential influence from (x, s) to (y, u) is a cadlag function γ : [s, u] → V such that

γ(s) = γ(s−) = x and γ(u) = y, and

1. if γ(t−) 6= γ(t) for some t ∈ (s, u], then there exists some m ∈ M such that

(m, t) ∈ ω, γ(t) ∈ D(m) and γ(t−) ∈ Rγ(t)(m),
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2. for each (m, t) ∈ ω with t ∈ (s, u] and γ(t) ∈ D(m), one has γ(t−) ∈ Rγ(t)(m).

We write (x, s) (y, u) if there exists a path of potential influence between (x, s) and

(y, u).

The first property ensures that every jump of a path of potential influence γ corresponds

to a point (t,m) ∈ ω, such that m can actually affect the site γ(t). The second property

guarantees that for any point (m, t) ∈ ωs,u, which could have caused the position γ(t),

i.e. γ(t) ∈ D(m), the “previous” site γ(t−) must have been m-relevant with respect to

the current state, i.e. γ(t−) ∈ Rγ(t)(m). This implies in particular that maps m with

Rγ(t)(m) = ∅ cannot play a role for such a path γ, an example for such a map is the

map recx since obviously Rx(recx) = ∅.

Now let us repeat and reformulate what we described before the definition. Let x ∈ Ψk,

then if there exists an t ∈ [k, k + 1) such that x /∈ Ψt, then there exists a y /∈ Ψk such

that (y, k) (x, t).

Before we continue, we first need to derive a bound on the probability of the sum of

n exponentially distributed random variables with parameter λ. This sum is gamma

distributed with paramter n and λ, which we will denote by Γ(n, λ). Now we show the

following result:

Lemma 3.2.2. Let Tn ∼ Γ(n, λ) with λ > 0 and n ∈ N and let θ be a constant such

that 0 < θ < 1
λ

and θλ− log(θλ)− 1 > 0. Then

P(Tn < θn) ≤ exp
(
− n

(
θλ− log(θλ)− 1

))
.

Proof. Let c > 0, then the generalized Markov inequality yields

e−cθnP(Tn < θn) = e−cθnP(e−cθn < e−cTn) ≤ E[e−cTn ] = λn(λ+ c)−n.

Rearranging and renaming yields P(Tn < θn) ≤ enfθ(c), where

fθ(c) = cθ + log(λ)− log(λ+ c).

For a fixed θ, the function fθ has its minimum at cθ = 1
θ
− λ, which has the function

value fθ(cθ) = 1− θλ+ log(θλ). Note that it is necessary that θ ∈ (0, 1
λ
) since otherwise

cθ ≤ 0. This proves the claim.

Now we define Cmax := supx∈V
∑

m∈M,D(m)3x rm|Rx(m)|. The constant Cmax is an

upper bound on the rate at which a map m is drawn, which could affect the state of
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an arbitrary x ∈ V with |Rx(m)| 6= ∅. Note that 0 < Cmax <∞ by (2.1). Now we are

able to derive the necessary bound. Recall that R denotes the range of the spin system.

Lemma 3.2.3. Let L ≥ 0 and s ≥ 0. Then there exists K ′ > 0, κ′ > L and L′ > Cmax

such that for all x, y ∈ V with d(x, y) > L′,

P(∃u ∈ [s, s+ 1) : (x, s) (y, u)) ≤ K ′e−κ
′dR−1d(x,y)e.

Proof. Let us assume (x, s)  (y, u). Thus, there must exist a path of potential

influence γ from (x, s) to (y, u). The first thing we observe is that Rz(m) ⊂ BR(z)

for all z ∈ V and all m ∈ M, and therefore we conclude that the path γ must at

least jump dR−1d(x, y)e times. Hence, for every path γ there must exist a sequence

{(m1, s1), . . . , (mn, sn)} ⊂ ωs,u with s := s0 < s1 < · · · < sn ≤ u and n ≥ dR−1d(x, y)e
such that the sk correspond to the jump times of γ, γ(sk) ∈ D(mk) and γ(sk−) ∈
Rγ(sk)(mk) for all k ≤ n. Therefore, for every γ there exists a sequence (xk)0≤k≤n ⊂ V
such that γ(t) = xk for t ∈ [sk−1, sk) for all k and x0 = x and xn = y. Note that

1 ≤ d(xk, xk−1) ≤ R. For a given sequence (xk)0≤k≤n ⊂ V we can define the times

Tk := inf{t > Tk−1 : (m, t) ∈ Ξ with xk ∈ D(m) and |Rxk(m)| 6= ∅},

where T0 := 0. Now define γmax : (s, u]→ V such that γmax(t) = xk for all t ∈ [Tk−1, Tk).

By definition it is clear that out of all paths which pass through the points (xk)0≤k≤n

the path γmax is the first to reach y, i.e. Tn ≤ sn for any path of potential influence γ

which passes through (xk)0≤k≤n. Note that by translation invariance the distribution

of Tn ∼ Γ(n,Cmax) is in particular independent of the exact sequence (xk)0≤k≤n.

Furthermore the number of all possible sequences (xk)0≤k≤n which connect x to y

and satisfy 1 ≤ d(xk, xk−1) ≤ R for all k ≤ n is bounded by the number Mn, where

M := |Nx(R)|. This implies that

P(∃u ∈ [s, s+ 1) : (x, s) (y, u) with n jumps) ≤MnP(Tn < 1).

Now we observe that

{∃u ∈ [s, s+ 1) : (x, s) (y, u)}

=
∞⋃

n=dR−1d(x,y)e

{
∃u ∈ [s, s+ 1) : (x, s) (y, u) with n jumps

}
,
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and therefore via σ-additivity of P

P(∃u ∈ [s, s+ 1) : (x, s) (y, u)) ≤
∞∑

n=dR−1d(x,y)e

MnP(Tn < n−1n).

Note that θ 7→ θCmax − log(θCmaxM)− 1 is a continuous function and converges to ∞
as θ → 0. Thus, there exists θ < (RCmax + 1)−1 such that

κ′ := θCmax − log(θCmaxM)− 1 > L. (3.6)

Now we set L′ := θ−1. Note that d(x, y) > L′ implies that dR−1d(x, y)e > L′ > Cmax,

where x, y ∈ V . Since M ≥ 1, (3.6) implies in particular that

θCmax − log(θCmax)− 1 > 0.

Thus, by Lemma 3.2.2 and the fact that we consider n with n−1 ≤ dR−1d(x, y)e−1 < θ

such that P(Tn < n−1n) ≤ P(Tn < θn) we get that

P(∃u ∈ [s, s+ 1) : (x, s) (y, u)) ≤
∑

n=dR−1d(x,y)e

Mn exp
(
− n(θCmax − log(θCmax)− 1)

)
≤

exp
(
− dR−1d(x, y)e(θCmax − log(θCmaxM)− 1)

)
1− exp(1− θCmax + log(θCmaxM))

.

Now we set K ′ :=
(
1− exp(1− θCmax + log(θCmaxM))

)−1
and by (3.6) we know that

K ′ > 0. Therefore, we conclude that

P(∃t ∈ [k, k + 1) : (x, k) (y, t)) ≤ K ′e−κ
′dR−1d(x,y)e.

Now we can finally prove Proposition 1.4.2. Note that we show this result on arbitrary

connected, vertex transitive graphs G with bounded degree. In Section 1.4 these results

are formulated on the line graph L(G) which is only a special case by setting G = L(G).

Proof of Proposition 1.4.2. Recall from (3.4) that we assume that there exist con-

stants S,K ′ > 0 and γ > ρ such that P(x /∈ Ψs) ≤ K ′e−γs for every x ∈ V and s ≥ S.

Furthermore, in (3.5) we saw that

P(x /∈ Ψ′s) ≤
∞∑

k=bsc

P(Bk(x) 6⊂ Ψk) +
∞∑

k=bsc

P(Bk(x) ⊂ Ψk,∃t ∈ [k, k + 1) s.t. x /∈ Ψt).
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We begin with considering the first sum. With (3.4) we can conclude for all D ⊂ V
that

P(D 6⊂ Ψt) = P(∃y ∈ D : y /∈ Ψt) ≤
∑
y∈D

P(y /∈ Ψt) ≤ |D|K ′e−γt.

Thus, by setting t = k and D = Bk(x), we get P(Bk(x) 6⊂ Ψk) ≤ |Bk(x)|K ′e−γk. We

know that |Bk(x)|e−ρk → 1, since G is of exponential growth ρ. We also assumed

that γ − ρ > 0. Hence, there exists a 0 < κ1 < γ − ρ, such that for s large enough

|Bk(x)|e(γ−κ1)k ≤ 1 for all k ≥ bsc, and thus

∞∑
k=bsc

|Bk(x)|K ′e−γk = K ′
∞∑

k=bsc

|Bk(x)|e−(γ−κ1)k︸ ︷︷ ︸
≤1

e−κ1k ≤ K ′
∞∑

k=bsc

e−κ1k = K1e
−κ1bsc,

where K1 = K ′(1− e−κ1)−1. Therefore, the sum convergences to 0 as s→∞ and in

particular we also get an exponential bound. Now it suffices to find a similar bound for

the second sum. Recall that ∂Bk(x) = Bk(x)\Bk−1(x). We see that

∞∑
k=bsc

P(Bk(x) ⊂ Ψk, ∃t ∈ [k, k + 1) s.t. x /∈ Ψt)

≤
∞∑

k=bsc

∞∑
m=k

P(∃y ∈ ∂Bm+1(x) and ∃t ∈ [k, k + 1) s.t. (y, k) (x, t))

≤
∞∑

k=bsc

∞∑
m=k

∑
y∈∂Bm+1(x)

P(∃t ∈ [k, k + 1) s.t. (y, k) (x, t)).

Note that d(x, y) > bsc. Hence, by choosing s large enough such that the conditions of

Lemma 3.2.3 are satisfied, we can conclude that there exists K∗ > 0 and κ∗ > ρ(R+ 1)

such that

∞∑
k=bsc

P(Bk(x) ⊂ Ψk,∃t ∈ [k, k + 1) s.t. x /∈ Ψt) ≤
∞∑

k=bsc

∞∑
m=k

|∂Bm+1(x)|K∗e−κ∗dR−1me.

By using again that the graph is of exponential growth ρ and a comparison with the

geometric sum we get that there exists K2, κ2 > 0 such that

∞∑
k=bsc

P(Bk(x) ⊂ Ψk,∃t ∈ [k, k + 1) s.t. x /∈ Ψt) ≤ K2e
−κ2bsc.
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Thus, we can conclude that P(x ∈ Ψ′s) ≤ K1e
−κ1bsc+K2e

−κ2bsc, which proves the claim

that there exists κ,K > 0 such that P(x ∈ Ψ′s) ≤ Ke−κbsc.

Remark 3.2.4. Taking a close look at the proof of Proposition 1.4.2 we see that κ is

chosen such that γ − κ > ρ, i.e. the exponent is smaller by a value of ρ. Here we want

to emphasize that depending on the concrete spin system, this might not be the best

possible choice. For example in case of the dynamical percolation (see Example 1.1.2

(i)) we know that Ψ′t = Ψt for all t ≥ 0, and therefore one can easily calculate that for

all t ≥ 0,

P(x ∈ Ψt) = P(x ∈ Ψ′t) ≤ e−(α+β)t.

Next we prove Corollary 1.4.3. Note that we again prove this on G, which is the more

general case and the statement follows by considering G = L(G). Let us briefly recall

the statement of Corollary 1.4.3 on G. We consider

M =
∑

y∈Nx(R)

sup
A⊂V
|q(x,A)− q(x,B 4 {y})| and ε = inf

A⊂V
|q(x,A) + q(x,A4 {x})|,

and show that if ε−M > ρ, then it follows that the process X is ergodic and there

exists a T > 0 such that, there exist κ,K > 0 with P(x /∈ Ψ′t) ≤ Ke−κt for all t > T

and x ∈ V .

Proof of Corollary 1.4.3. Since we assumed that ε −M > ρ by [Lig12, Theorem

I.4.1] it follows that the process X is ergodic, i.e. there exists an unique invariant

measure π, and there exists a K > 0 such that

sup
A⊂V
|P(XA

t ∈ D)− π(D)| ≤ K
e−(ε−M)t

ε−M
. (3.7)

for any D ⊂ V. Since X is a monotone Feller process, by Theorem 2.1.12 we find a

version X̃ such that monotonicity holds almost surely, i.e. that X̃A1 ⊂ X̃A2 if A1 ⊂ A2

almost surely, where the superscript indicates the initial condition. Therefore, the

coupled region simplifies to Ψt = X̃Vt 4 X̃∅t , and thus by using monotonicity we get that

P(x ∈ Ψt) = P(x ∈ X̃Vt , x /∈ X̃∅t ) = P(x ∈ X̃Vt )− P(x ∈ X̃∅t ) ≤ 2K
e−(ε−M)t

ε−M
,

where we have used {x ∈ X̃∅t} ⊂ {x ∈ X̃Vt } and the triangle inequlity as well as (3.7).

Finally an application of Proposition 1.4.2 proves the claim.

We end this section with a useful lemma, which we will need in Chapter 5.
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Lemma 3.2.5. Let X be a spin system with spin rate q(·, ·), A ⊂ V and x ∈ A.

Furthermore, let u > 0 and n ∈ N, then for every ε > 0 there exists a k > n such that

for all sets D ⊂ V with A ∩Bk(x) = D ∩Bk(x),

P(XA
t ∩Bn(x) = XD

t ∩Bn(x) ∀t < u) > 1− ε.

Proof. Without loss of generality we can assume that u = 1. Otherwise we rescale

time in an appropriate manner and consider (Xut)t≥0 instead of (Xt)t≥0. Similarly to

the proof of Proposition 1.4.2 we see that, if there exists t ∈ [0, 1) such that XA
t 6= XD

t

on Bn(x), then there must exist y ∈ E\Bk(x), z ∈ Bn(x) and t ∈ [0, 1) such that

(y, 0) (z, t). Therefore,

P
(
∃t < 1 : XA

t ∩Bn(x) 6= XD
t ∩Bn(x)

)
≤

∑
z∈Bn(x)

∞∑
m=k

P
(
∃y ∈ ∂Bm+1(x) and ∃t ∈ [0, 1) s.t. (y, 0) (z, t)

)
≤

∑
z∈Bn(x)

∞∑
m=k

∑
y∈∂Bm+1(x)

P
(
∃t ∈ [0, 1) s.t. (y, 0) (z, t)

)
.

Note that d(z, y) > k − n. Now choose k large enough such that the assumptions of

Lemma 3.2.3 are satisfied and thus, there exists a K ′ > 0 and κ′ > ρ(R + 1) such that

P
(
∃t ∈ [0, 1) s.t. (y, k) (z, t)

)
≤ K ′e−κ

′dR−1d(z,y)e,

where ρ was the exponential growth of G. We get that

P
(
∃t < 1 : XA

t ∩Bn(x) 6= XD
t ∩Bn(x)

)
≤ |Bn(x)|K ′

∞∑
m=k

|∂Bm+1(x)|e−κ′dR−1(m−n)e,

since d(z, y) > m− n for y ∈ ∂Bm+1(x) and z ∈ Bn(x). Note that

(R + 1)dR−1(m− n)e ≥ m− n and sup
m≥0
|∂Bm+1(x)|e−ρm <∞

where we used for the second term that G is of exponential growth ρ. Hence, the sum

on the right hand side convergences, since κ′ > ρ(R + 1). This implies in particular

that the right hand side tends to 0 as k → ∞. Hence, for every ε > 0 there exists

k > n large enough such that the right hand side is smaller than ε, which provides the

claim.
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3.3 Construction of the CPERE via graphical

representation

In this section we explicitly construct the CPERE via the graphical representation

introduced in Section 2.3 on a connected and transitive graph G = (V,E) with bounded

degree. This provides of course existence of the Feller process (C,B) and the graphical

representation is an important tool in a lot of proofs in the subsequent chapters.

We assume that the maps and rates used to construct the (autonomous) background B

via the graphical representation are known, i.e.MBack is a countable set which contains

local maps m : P(E) → P(E) with corresponding rates (rm)m∈MBack
such that the

bound on the rates given in (2.1) is satisfied. For examples see Section 3.1 on the graph

L(G). Then B is a Feller process with generator

ABackf(B) =
∑

m∈MBack

rm(f(m(B))− f(B)).

For the construction we are about to formulate we will use P(V ∪ E) as a state space

of the process. The reason for that is that with this choice we fit into the setting

of Section 2.3. This is of course no issue, since P(V ∪ E) and P(V ) × P(E) can be

easily identified with each other since for every set A ⊂ V ∪ E there exists a C ⊂ V

and B ⊂ E such that A = C ∪ B, and thus A corresponds to (C,B) and vice versa.

Therefore, we first extend the maps m ∈MBack to maps m∗ : P(V ∪ E)→ P(V ∪ E).

As we already mentioned for every set A ⊂ V ∪ E exist C ⊂ V and B ⊂ E such that

A = C ∪B. Then we set m∗(A) := C ∪m(B) for every m ∈MBack. LetM∗
Back denote

the set of all maps m∗ and we use the same rates as before, i.e. rm∗ = rm. Next for

A ⊂ V ∪ E and x, y ∈ V such that {x, y} ∈ E we define

coopx,y(A) :=

A ∪ {y} x ∈ A and {x, y} ∈ A

A otherwise,

recx(A) := A\{x}.

and set the rates to be rcoopx,y = λ and rrecx = r. The map coopx,y is called the

cooperative infection map. The name comes from the fact that for x to successfully

infect y it needs the edge {x, y} to be open. In this sense x and {x, y} must cooperate

such that the infection spreads to y.
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Now define the set of all maps relevant for the infection process to be

MCP := {coopx,y : x, y ∈ V s.t. {x, y} ∈ E}︸ ︷︷ ︸
=Minf

∪{recx : x ∈ V }︸ ︷︷ ︸
=Mrec

.

Let us denote by Ξ = Ξλ,r the Poisson point process with respect toM :=MCP∪M∗
Back

and the corresponding rates (rm)m∈M. Obviously (2.1) is satisfied, and thus there exists

a Feller process X on P(V ∪ E) with generator

Af(A) =
∑
m∈M

rm(f(m(A))− f(A))

=
∑
x∈V

λ
∑

y∈V :{x,y},x∈A

(f(A ∪ {y})− f(A)) +
∑
x∈V

r(f(A\{x})− f(A))

+
∑

m∈MBack

rm(f((A\E) ∪m(A\V ))− f(A)),

where A ⊂ V ∪ E. The process X is a combination of infection process and the

background in one. But, it is far more convenient to treat these two parts as separate

object. Therefore, we switch back to the state space P(V )× P(E), which we achieve

by setting Ct := Xt\E and Bt := Xt\V for all t ≥ 0. With this we obtained the

CPERE as described in Section 1.1, i.e. (C,B) is a Feller process on the state space

P(V )× P(E) and C has jump rates (1.1).

We visualized this construction in Figure 3.1 for the contact process on a dynamical

percolation, i.e. B is a dynamical percolation (see Example 1.1.2 (i)). In this case B

can be constructed via the maps

birthe(B) := B ∪ {e} deathe(B) := B\{e}

for B ⊂ E and rates rbirthe = α and rdeathe = β for all e ∈ E.

Remark 3.3.1. The Poisson point process Ξ used in the graphical representation

can be represented as the sum of three independent Poisson point process. These

are Ξinf on Minf ×R, which are in the graphical representation (see Figure 3.1), the

infection arrows, Ξrec onMrec×R corresponding to the recovery symbols and ΞBack on

M∗
Back ×R which are the maps used to construct the background process. The sum of

these three processes is again Ξ, i.e. Ξ = Ξinf + Ξrec + ΞBack. It is useful to distinguish

the three parts since we will often use couplings based on one or more of these three

point process, while the remaining maps stay the same.
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(a) The two tailed arrows correspond to the coop
maps and the crosses on the sites refer to a rec
maps. These are the infection and recovery events.
The circles and crosses on the edges correspond to
birth or death maps, which respectively cause an
edge to open or to close. The grey area indicates
that the edge is closed.

(b) The vertical red lines indicate when a site is
infected and the vertical purple lines when a edge
is open. An infection path is visualized by a path
of red vertical lines and red arrows, which lead
from a site at time s to a site at time t. Note that
arrows are only red, i.e. transmit the infection, if
the edge is open.

Figure 3.1: Visualization of a graphical representation of a contact process on a
dynamical percolation defined on finite subgraph of the 1-dimensional integer lattice.
In this image we consider V ∪ E as state space and therefore added time lines to the
edges.

3.4 Basic properties of the CPERE

We denote by Pλ,r the probability law associated with the Poisson point process

Ξ = Ξλ,r. Note that we defined the CPERE (C,B) on the same probability space as Ξ.

Furthermore, by construction via the graphical representation it is clear that (C,B) is

a strong Markov process with respect to the filtration (Ft)t≥0, where Ft is generated

by the Poisson point process Ξ up until time t.

Recall that we add superscripts either to the process CC,B,BB or the law P
(C,B)
λ,r to

indicate the initial configuration (C,B). Also recall that we introduced the short

notation µTλ,r(t) in Section 2.1, where (Tλ,r(t))t≥0 is the corresponding semigroup and

µ the initial distribution of the CPERE. We equip P(V ) and P(E) with the inclusion

as a partial order. Furthermore, we equip P(V ) × P(E) with the following partial

order. Let C,C ′ ⊂ V and B,B′ ⊂ E, then (C,B) ⊂ (C ′, B′) if C ⊂ C ′ and B ⊂ B′.

Lemma 3.4.1 (Monotone Feller process). Let (C,B) be a CPERE and (Tλ,r(t))t≥0

its corresponding Feller semigroup. Then (C,B) is a monotone Feller process, i.e. let

µ1 and µ2 be probability measures on P(V ) × P(E), if µ1 � µ2 then this implies

µ1Tλ,r(t) � µ2Tλ,r(t) for all t ≥ 0.
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Proof. Since by assuming that B is an attractive spin system it follows due to

construction in Section 3.3 that (C,B) is also an attractive spin system. Thus, (C,B)

is a monotone Feller process by [Lig12, Theorem III.2.2].

Not only is the CPERE monotone with respect to its initial condition it is also monotone

with respect to the infection and recovery rate.

Lemma 3.4.2 (Monotonicity of CPERE). Let (C,B) be a CPERE with parameter

λ, r > 0. Let λ̂ ≥ λ then there exists an CPERE (Ĉ,B) with infection rate λ̂, the same

initial configuration and recovery rate r such that Ct ⊆ Ĉt for all t ≥ 0. In words C is

monotone increasing in λ. On the other hand C is monotone decreasing in r.

Proof. The two properties follow from a coupling via the graphical representation,

which does not depend on the initial configuration. We only prove monotonicity in λ.

Recall that Minf = {coopx,y : x, y ∈ V with {x, y} ∈ E}. Let λ̂ ≥ λ and consider

a Poisson point process Ξ̂inf on R+ ×Minf with intensity measure (λ̂ − λ)dt, i.e. all

maps m ∈ Minf occur with rate (λ̂− λ). Also let Ξ̂inf be independent of Ξ, which is

the process used in the graphical representation of (C,B) (see Section 3.3). Next we

define Ξ̂ := Ξ + Ξ̂inf. This is again a Poisson point process on R×M, with the only

difference compared to Ξ, that the rates rm = λ̂ for all m ∈Minf. Now let (Ĉ,B) be

the process constructed by the graphical representation where we use Ξ̂ instead of Ξ

and we use the same initial configuration. Since only more infection events can happen

it is obvious that Ct ⊆ Ĉt for all t ≥ 0. Since B is exactly the same process for both

constructions the claim follows. The proof of monotonicity in r follows analogously.

Let us also add that the process CC,B is additive in the following sense:

Lemma 3.4.3 (Additivity). Let t ≥ 0, then CC,B
t ∪CC′,B

t = CC∪C′,B
t for all B ⊆ E

and C,C ′ ⊆ V .

Proof. This follows immediately via the graphical representation in Section 3.3.

Furthermore the probabilities of events where C depends only on a finite time horizon

are continuous with respect to the infection and recovery rate, if we consider finitely

many initially infected sites.
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Lemma 3.4.4 (Continuity for finite times and finite initial infections). Let (C,B) be a

CPERE with initial configuration C ⊂ V and B ⊂ E such that |C| <∞. Furthermore

for t ≥ 0 let A ⊂ DP(V )([0, t]), then

λ 7→ P
(C,B)
λ,r ((Cs)s≤t ∈ A) and r 7→ P

(C,B)
λ,r ((Cs)s≤t ∈ A)

are continuous.

Proof. We will only prove that λ 7→ Pλ,r((Cs)s≤t ∈ A) is continuous the statement

for r follows again analogously. Let (Ĉ,B) be a CPERE with infection rate λ̂ > λ and

the same recovery rate and initial configuration as (C,B). Let (Ĉ,B) be coupled via

the graphical representation to (C,B) such that Ct ⊂ Ĉt for all t > 0 and C0 = Ĉ0.

We already used this coupling in the proof of Lemma 3.4.2. We just introduce more

infection arrows via a Poisson point process Ξ̂inf with intensity measure
(
λ̂− λ

)
dt and

use Ξ̂ = Ξ + Ξ̂inf to construct (Ĉ,B). Now it suffices to show that

P(Cs 6= Ĉs for some s ≤ t)→ 0

as |λ̂ − λ| → 0. Now set Xs(x) := |{y ∈ Cs : {x, y} ∈ Bs}|, which is the number of

infected neighbours of x, which share an open edge with x at time s. Note that any

additional infection paths of Ĉ up until time t must have started through an infection

event (s, coopx,y) ∈ supp
(
Ξ̂inf
)

with {x, y} ∈ Bs. This means that these events happen

with the random intensity

(λ̂− λ)

∫ t

0

∑
x∈V

Xs(x)ds.

It follows immediately that

Eλ,r

[
(λ̂− λ)

∫ t

0

∑
x∈V

Xs(x)ds
]
≤ |Nx|(λ̂− λ)Eλ,r

[ ∫ t

0

|Cs|ds
]
.

Now let C be a classical contact process with infection rate λ constructed via Ξinf and

Ξrec (see Remark 2.3.2), thus Ct ⊆ Ct for all t ≥ 0. We know that

Eλ,r

[ ∫ t

0

|Cs|ds
]
≤ Eλ,r

[ ∫ t

0

|Cs|ds
]
<∞

where the second inequality follows by [Lig13, Chapter I, (1.19)].
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Now we see by conditioning and using independence of Ξ̂inf

P(Cs 6= Ĉs for some s ≤ t) =1− Eλ,r
[

exp
(
− (λ̂− λ)

∫ t

0

∑
x∈V

Xs(x)ds
)]

≤|Nx|(λ̂− λ)Eλ,r

[ ∫ t

0

|Cs|ds
]
,

where we used 1− e−x ≤ x and that |Nx| = |Ny| for all y ∈ V . By letting |λ̂− λ| → 0,

the right hand side convergences to zero, which proves the claim.

We end this chapter with a comparison result between CPERE and CPDP.

Proposition 3.4.5. Let (C,B) be a CPERE with infection and recovery rate λ, r > 0.

Furthermore let αmax,αmin, βmax and βmin be chosen as in (3.3). Then there exists two

CPDP (C,B) and (C,B) with the same infection and recovery rates and the dynamical

percolations B and B with respectively the rates αmax, βmin and αmin, βmax. These

processes have the property that if (C0,B0) = (C0,B0) = (C0,B0) then Ct ⊂ Ct ⊂ Ct

and Bt ⊂ Bt ⊂ Bt for all t > 0 almost surely.

Proof. First of all we can construct analogously as in the proof of Proposition 3.1.1 a

spin system B with spin rate q(·, ·) and two dynamical percolations B and B which

have respectively the rates αmax, βmin and αmin, βmax, where any of the three processes

has values in P(E). Furthermore let q(·, ·) and q(·, ·) denote the spin rates of B and B,

then again by choice of the rates it follows that

q(e, B) ≤ q(e, B) ≤ q(e, B) if e /∈ B and

q(e, B) ≥ q(e, B) ≥ q(e, B) if e ∈ B

for any e ∈ E and any B ⊂ E. Let λ, r > 0, then we define the function

f(x,A) := λ|{y ∈ V : {x, y} ∈ A, y ∈ A}|1{x/∈A} + r1{x∈A},

where x ∈ V and A ⊂ V ∪ E. Next we can construct three process X, X and X via

the graphical representation as described in Section 3.3, which have respectively the

spin rates

qX(z, A) = f(z, A)1{z∈V } + q(z, A\V )1{z∈E},

qX(z, A) = f(z, A)1{z∈V } + q(z, A\V )1{z∈E} and

qX(z, A) = f(z, A)1{z∈V } + q(z, A\V )1{z∈E},
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where z ∈ V ∪ E and A ⊂ V ∪ E. Now it follows immediately that

qX(z, A) ≤ qX(z, A) ≤ qX(z, A) if z /∈ A and

qX(z, A) ≥ qX(z, A) ≥ qX(z, A) if z ∈ A

holds for all z ∈ V ∪E and A ⊂ V ∪E. Thus, we can again use [Lig12, Theorem III.1.5],

which implies that there exist a coupling such that if X0 = X0 = X0 then Xt ⊂ Xt ⊂ Xt

for all t > 0 almost surely. Now we can again use the one to one correspondence

between P(V ∪E) and P(V )×P(E) as we did in the end of the Section 3.3 to obtain

(C,B),(C,B) and (C,B). This proves the claim.



Chapter 4

Influence of the initial state of the

background on survival

The main objective in this chapter is to prove Theorem 1.4.8, i.e. that the chance of

survival does not depend on the initial configuration of the background if a certain

growth condition is satisfied. Recall G is a connected and transitive graph with bounded

degree and is of exponential growth ρ ≥ 0. Additionally in this section we assume that

the background B satisfies Assumption 1.4.1 (i) and (ii).

Before we start we briefly state some properties of the survival probability which follow

from the monotonicity and additivity results shown in Section 3.4.

Proposition 4.0.1 (Monotonicity). Let C ⊂ V be a finite subset B ⊂ E also let

λ, r > 0. The following properties hold.

(i) The survival probabilities θ and θπ are monotone in all arguments separately.

(ii) Assume that x ∈ C then

θ(λ, r, {x}, B) > 0⇒ θ(λ, r, C,B) > 0,

θ(λ, r, C,B) > 0⇒ ∃y ∈ C : θ(λ, r, {y}, B) > 0.

(iii) θπ(λ, r, {x}) = θπ(λ, r, {y}) and θ(λ, r, {x}, B) = θ(λ, r, {y}, B) for all x, y ∈ V
for B ∈ {∅, E}.

Proof. (i) This is a direct consequence of Lemma 3.4.1 and Lemma 3.4.2.

(ii) The first implication is a direct consequence of Lemma 3.4.1. The second impli-

cation follows from additivity (see Lemma 3.4.3).

65
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(iii) This is a direct consequence of the assumption that B is translation invariant,

i.e. Assumption 1.4.1 (ii). This implies that the CPERE is translation invariant.

Therefore, let σ ∈ Aut(G) such that it maps x to y, which exist since G is

transitive. Thus, we can conclude that θ(λ, r, {x}, B) = θ(λ, r, {y}, σ(B)). Now

if B0 ∼ π, by translation invariance it follows that σ(B0) ∼ π and obviously

σ(B) = B for B ∈ {∅, E} for any σ ∈ Aut(G). This yields the claim.

Corollary 4.0.2. Let λ, r > 0, C ⊂ V finite and non-empty. Then, θπ(λ, r, C) > 0

if and only if θπ(λ, r, C ′) > 0 for all C ′ ⊂ V finite and non-empty. This shows in

particular that the Definition 1.4.7 of the critical infection rate λπc (r) does not depend

on the initial condition C ⊂ V as long as the set is non-empty and finite.

Proof. Suppose θπ(λ, r, C) > 0. Then, by Proposition 4.0.1 (ii) we get that there

exists a y ∈ C ′ such that the survival probability θπ(λ, r, {y}) > 0. Furthermore, by

Proposition 4.0.1 (iii) it follows that θπ(λ, r, {y}) = θπ(λ, r, {x}) for all x ∈ V . Thus,

by monotonicity we get that θπ(λ, r, C ′) > 0 for all C ′ ⊂ V non-empty and finite. On

the other hand if θπ(λ, r, C) = 0, then obviously θπ(λ, r, {y}) = 0 for all y ∈ C. But

with Proposition 4.0.1 (iii) it follows that θπ(λ, r, {x}) = 0 for all x ∈ V . Now suppose

that there exists a finite and non-empty C ′ ⊂ V such that θπ(λ, r, C ′) > 0. But then

Proposition 4.0.1 (ii) would imply that there exists a y ∈ C ′ such θπ(λ, r, {y}) > 0.

This is a contradiction, since we already showed that θπ(λ, r, {x}) = 0 for all x ∈ V .

That λπc (r) does not depend on the choice of C as long as it is non-empty and finite is

a obvious consequence.

4.1 Comparison between the expansion speed of the

infection and the permanently coupled region

In this section we study the asymptotic growth speed of the infection process C and the

asymptotic speed at which the state of the edges in the background couple if started in

different initial conditions, i.e. the asymptotic growth speed of the permanently coupled

region Ψ′. At last we will compare these two objects in terms of expansion speed.

The maximal number of infected sites can be represented by a classical contact process

C̃C = (C̃C
t )t≥0 with infection rate λ > 0, recovery rate r = 0 and C̃C

0 = C ⊂ V , which

is coupled with the CPERE (CC,B,BB) such that CC,B
t ⊂ C̃C

t for all t ≥ 0 for any

B ⊂ E. This can be achieved via the graphical representation (see Remark 2.3.2) by
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exchanging the maps coopx,y with the maps infx,y. In words, this means that we

ignore the background B and consider every infection arrow to be valid regardless of

the state of the edge at the time of the transmission. In Figure 4.1(a) we visualized the

spread of the infection C̃{0} on Z and in Figure 4.1(b) the expansion speed of Ψ′t for

the case where B is a dynamical percolation. The comparison suggest that Ψ′ expands

much faster than C̃{0}.

(a) The black lines represent the right and left

most particle of C̃{0} on Z with λ = 2. The red
line has a slope of 1

2 and the blue line 1
3 .

(b) A simulation of the first update times of a
dynamical percolation on Z with speed v = α +
β = 2. The black bars are the waiting times until
the first update. The red dashed line is the right
and left most edge of the connected component of
Ψ′ containing the edge {0, 1}.

Figure 4.1: Simulations on the lattice Z of the infected area C̃{0} on the left and the
first update times of a dynamical percolation and thus Ψ′ on the right.

We start with the set of all infections, i.e. the process C̃C , which is also often called

the simplest growth model or Richardson model. See [Dur88] for a more detailed

description. It is well known that asymptotically the infected area can grow at most at

some linear speed in time. This is also visible in Figure 4.1(a). Next we provide an

explicit upper bound for this linear speed. To be precise, for given infection paramter

λ > 0 this upper bound will be (c1(λ, ρ))−1, where c1(λ, ρ) is a solution of

cλ− 1− log(cλ|Nx|) = ρ. (4.1)

Lemma 4.1.1. Let λ > 0 and x ∈ V . There exists a unique solution 0 < c1(λ, ρ) < λ−1

of (4.1). Furthermore, λ 7→ c1(λ, ρ) is continuous, strictly decreasing, c1(λ, ρ)→∞ as

λ→ 0 and c1(λ, ρ)→ 0 as λ→∞.
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Proof. The solution c1(λ, ρ) can actually be stated explicitly with the help of the

Lambert W -function. It is also called the product logarithm since it is the inverse

function of t 7→ tet. As domain of the function we consider (−e−1,∞) such that

W : (−e−1,∞)→ (−1,∞). This means that W (s)eW (s) = s for all s ∈ (−e−1,∞). Let

us state some properties of W . The function W is continuous and strictly increasing.

Furthermore, W (s) → −1 as s → −e−1, W (s) → ∞ as s → ∞ and W (0) = 0.

Then one can show that c1(λ, ρ) = − 1
λ
W
(
− |Nx|−1e−(1+ρ)

)
, which can be verified by

inserting our guess into (4.1). First wee see that cλ− 1− log(cλ|Nx|) = ρ if and only if

|Nx|−1 exp(−(1 + ρ)) = cλ exp(−cλ). Therefore, inserting our guess in the right-hand

side and using that W is the inverse function of t 7→ tet verifies that this is a solution

of (4.1). Note that

−e−1 < |Nx|−1 exp(−(1 + ρ)) < 0

and −1 < W (s) < 0 for −e−1 < s < 0, and thus it follows that c1(λ, ρ) <
1
λ
. Now for

λ > 0 fixed set gρ(c) := cλ− 1− log(cλ|Nx|))− ρ for all c > 0. Obviously the function

gρ is smooth on (0,∞) and its derivative is g′ρ(c) = λ − 1
c
> 0 for all c < 1

λ
which

implies that gρ is strictly decreasing on (0, 1
λ
), and thus c1(λ, ρ) must be the unique

solution of (4.1) on (0, 1
λ
). At last the two properties follow immediately.

Let us define the first hitting time of y ∈ V for C̃ with initial infections C ⊂ V as

τy(C) := inf{t ≥ 0 : y ∈ C̃C
t }. The special case of following lemma, where V = Zd with

nearest neighbour structure and λ = 1 can be found in [Dur88, Lemma 1.9].

Lemma 4.1.2. Let λ > 0 and set gρ(c) := cλ − 1 − log(cλ|Nx|)) − ρ for all c > 0.

Then for every 0 < c < c1(λ, 0) we have g0(c) > 0 and

P
(
τy({x}) < cd(x, y)

)
≤ exp(−g0(c)d(x, y))

1− exp(−g0(c))
,

where x 6= y. This implies in particular for all c < c1(λ, ρ) that for any x ∈ V

P(∃s ≥ 0 : C̃
{x}
ct ⊂ Bbtc(x) ∀t ≥ s) = 1

To understand this result more clearly let us consider Figure 4.1(a). In this figure we

visualized that the set of all infection expands asymptotically linear in time with some

slope c′ > 0. What Lemma 4.1.2 basically states is that for every slope c < c1(λ, ρ)

from some time point s ≥ 0 onwards the boundary of the set of all infected individuals

will expand with a steeper slope than c, and thus c < c′.
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Proof. Let 0 < c < c1(λ, 0). If τy({x}) < cd(x, y), then the site x must have been

infected before the time point cd(x, y). This means in particular that there exists

a sequence of distinct points x = x0, x1 . . . , xm = y such that (xn−1, xn) ∈ E for

n ∈ {1, . . . ,m}, along which the infection travels. Note that obviously m ≥ d(x, y).

Now we wet T0 := 0 and define Tn := inf{t > Tn−1|(infxn−1,xn , t) ∈ Ξinf} for 1 ≤ n ≤ m.

It is clear from the construction that τy({x}) ≤ Tm. The memorylessness property

implies that Tm ∼ Γ(λ,m). Therefore, the event {τy({x}) < cd(x, y)} is equivalent to

the statement that there exists a sequence (xn, Tn)0≤n≤m with m ≥ d(x, y), x0 = x and

xm = y such that Tm < cd(x, y).

It is easy to see that the number of paths of length m is bounded by Km, where

K := |Nz| for an arbitrary z ∈ V . The number Km is obviously also a bound on the

number of paths of length m connecting x to y. This implies the inequality

P
(
τy({x}) < cd(x, y)

)
≤

∞∑
m=d(x,y)

KmP
(
Tm < cd(x, y)

)
≤

∞∑
m=d(x,y)

KmP(Tm < cm),

where we used that d(x, y) ≤ m. Furthermore by Lemma 3.2.2 we see that

P
(
τy({x}) < cd(x, y)

)
≤

∞∑
m=d(x,y)

Km exp(−m(cλ− 1− log(cλ)))

=
exp

(
− d(x, y)(cλ− 1− log(cλK))

1− exp(1− cλ+ log(cλK)
) .

By Lemma 4.1.1 we have that cλ− 1− log(cλK) > 0 for c < c1(λ, 0), and thus the first

claim follows. For the second claim we conclude that

P
(
C̃
{x}
c(n+1) 6⊆ Bn(x)

)
≤ P

(
∃y ∈ V : d(x, y) = n+ 1, τy({x}) < c(n+ 1)

)
≤

∑
y∈V : d(x,y)=n+1

P
(
τy({x}) < cd(x, y)

)
≤ |∂Bn+1(x)|exp(−g0(c)(n+ 1))

1− exp(−g0(c))
.

Note that if c < c1(λ, ρ), then g0(c) > ρ. Thus,

P
(
C̃
{x}
c(n+1) 6⊆ Bn(x)

)
≤
(supk≥0 |∂Bk+1(x)|e−ρ(k+1)

1− exp(−g0(c))

)
exp(−(g0(c)− ρ︸ ︷︷ ︸

=gρ(c)>0

)(n+ 1))
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and since G is of exponential growth ρ the first factor is finite. Since gρ(c) > 0 by a

comparison with the geometric sum we see that the right hand side is summable. Thus,

applying the Borel-Cantelli Lemma we get that

P
(
∃N ≥ 1 : C̃

{x}
c(n+1) ⊆ Bn(x),∀n ≥ N

)
= 1.

Since C̃
{x}
ct ⊂ C̃

{x}
c(n+1) for all t ∈ (n, n+ 1] it follows that

P
(
∃s ≥ 0 : C̃

{x}
ct ⊆ Bbtc(x),∀t ≥ s

)
= 1.

Next we consider the speed of expansion of the permanently coupled region Ψ′ defined

in (1.3). Recall that BLk (e) denotes the ball of radius k ∈ N around an edge e ∈ E in

the line graph L(G) (see Section 2.4).

Proposition 4.1.3. Let e ∈ E and κ as in Assumption 1.4.1 (ii). If c > κ−1ρ, then

P(∃s ≥ 0 : BLbtc+1(e) ⊂ Ψ′ct ∀t ≥ s) = 1.

Proof. Fix an arbitrary e ∈ E and recall that by Assumption 1.4.1 (ii) there exist

T,K, κ > 0 such that P(e /∈ Ψ′t) ≤ Ke−κt for all t > T . Thus, it follows that

∞∑
n=dT e

P(BLn+1(e) 6⊆ Ψ′cn) ≤ K
∞∑

n=dT e

|BLn+1(e)|e−κcn. (4.2)

By Remark 2.4.8 we see that |BLn+1(e)|e−ρn → 1 as n→∞, if G has exponential growth

ρ > 0. Therefore, K1 := K · supn∈N |BLn+1(e)| exp(−ρn) <∞ and

∞∑
n=dT e

P(BLn+1(e) 6⊆ Ψ′cn) ≤ K
∞∑

n=dT e

|BLn+1(e)|e−ρne(ρ−κc)n ≤ K1

∞∑
n=dT e

e(ρ−κc)n <∞,

where we used κc > ρ. If ρ = 0, we know by Remark 2.4.8 that |BLn+1(e)|e−Cn → 0 as

n → ∞ for all C > 0, and thus the right hand side of (4.2) is finite. Since we know

that the left hand side of (4.2) is summable, the Borel-Cantelli Lemma yields that

P(∃N ≥ 1 : BLn+1(e) ⊆ Ψ′cn,∀n ≥ N) = 1.

Note that Ψ′cn ⊂ Ψ′ct for all t ≥ n, which proves the claim.
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coupled region 71

At the end of this section we use these two results such that we can compare the

asymptotic expansion speed of the infection and the coupled region. Since one process

has values in P(V ) and the other in P(E) we need to introduce the following notation.

We denote by

Φt := {x ∈ V : {x, y} ∈ Ψ′t ∀y ∈ Nx}.

the set of all vertices whose attached edges are already permanently coupled at time t.

Theorem 4.1.4. Let λ > 0, C ⊂ V be non-empty and finite, κ as in Assumption 1.4.1

(ii) and c1(λ, ρ) chosen as in Lemma 4.1.1. If c1(λ, ρ) > κ−1ρ, then

P(∃s ≥ 0 : C̃C
t ⊆ Φt ∀t ≥ s) = 1.

Proof. Let x ∈ V and y ∈ Nx. First we consider C = {x}. Note that we assumed

c1(λ, ρ) > κ−1ρ, and thus there exists a c < c1(λ, ρ) such that cκ > ρ. Since c < c1(λ, ρ)

by Lemma 4.1.2 we get that

P(∃s > 0 : C̃
{x}
ct ⊂ Bbtc(x) ∀t ≥ s) = 1. (4.3)

On the other hand we know that cκ > ρ, and hence Proposition 4.1.3 implies that

P(∃s > 0 : BLbtc+1({x, y}) ⊂ Ψ′ct ∀t > s) = 1.

Since BLbtc+1({x, y}) contains all edges attached to any vertex in Bbtc(x), we see by

definition of the random set Φct that

P(∃s > 0 : Bbtc(x) ⊂ Φct ∀t > s) = 1. (4.4)

By combining (4.3) and (4.4) we get that

P(∃s ≥ 0 : C̃
{x}
t ⊆ Φt ∀t ≥ s) = 1.

Now let C ⊂ V be an arbitrary non-empty and finite subset. Then we see with Lemma

3.4.3 that

P(@s ≥ 0 : C̃C
t ⊆ Φt ∀t ≥ s) ≤

∑
x∈C

P(@s ≥ 0 : C̃
{x}
t ⊆ Φt ∀t ≥ s).

But we already showed that P(@s ≥ 0 : C̃
{x}
t ⊆ Φt ∀t ≥ s) = 0 for all x ∈ V and thus,

the right hand side is already equal to 0. This proves the claim.
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4.2 Proofs of Theorem 1.4.8, Corollary 1.4.9 and

Corollary 1.4.10

We are finally ready to prove the main results of this chapter. We begin with the proof

of Theorem 1.4.8. Let us briefly recapitulate its content. Let λ, r > 0 and C ⊂ V be

finite and non-empty. Suppose that c1(λ, ρ) > κ−1ρ is satisfied, then we show that

θ(λ, r, C,B1) > 0 if and only if θ(λ, r, C,B2) > 0 for all B1, B2 ⊂ E.

Proof of Theorem 1.4.8. Let λ, r > 0. As mentioned at the beginning of this chapter

we assume that Assumptions 1.4.1 (i)-(ii) are satisfied. Additionally we suppose that

c1(λ, ρ) > κ−1ρ holds, where c1(λ, ρ) is the solution of (4.1) and κ as in Assumption 1.4.1

(ii). Furthermore let x ∈ V be fixed. The proof strategy is to use θπ({x}) as a reference,

i.e. B0 ∼ π. Note that we omit the infection and recovery rate as variables since they

are considered constant throughout the whole proof. By Proposition 4.0.1 (i) it suffices

to show that θ(C, ∅) > 0 if and only if θ(C,E) > 0.

Let A ⊂ V be an arbitrary finite non-empty set. Then by Corollary 4.0.2 it follows

that θπ(C) > 0 if and only if θπ(A) > 0. Since also θπ({x}) = θπ({y}) for all y ∈ V it

is enough to show:

a) If θπ({x}) > 0, then θ({x}, ∅) > 0.

b) If θπ({x}) = 0, then θ({x}, E) = 0.

The key idea is that we prove this by coupling the CPERE (C,B) to processes C and

C, which act as a upper and lower bound, i.e. C0 = C0 = C0 and Ct ⊂ Ct ⊂ Ct for

all t > 0. Note that all three infection processes will depend on the same background

process B. Let s > 0, then we define CC,B,s as follows.

1. We set CC,B,s
0 = C. On [0, s] we only consider the recovery symbols caused by

Ξrec and ignore all infection arrows, i.e. coopx,y maps.

2. On (s,∞) we use the same graphical representation as for the CC,B, i.e. the same

infection arrows and recovery symbols generated by Ξinf and Ξrec and the same

background BB.

Next we define C
C,B,s

as follows.

1. We set C
C,B,s

0 = C. On [0, s] we only consider the infection events caused by

Ξinf. This means we ignore all recovery symbols caused by Ξrec and also the

background BB in the sense that we treat all edges as open. Hence, instead of

the maps coopx,y we apply the maps infx,y (see Example 2.3.2).
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2. On (s,∞) we again use the same graphical representation as for CC,B and we

use the same background BB.

See Figure 4.2 for a visualization of C
s
, C and Cs on the same realization of B. Recall

(a) Construction of C via the
Graphical representation.

(b) Construction of Cs via the
Graphical representation.

(c) Construction of C
s

via the
Graphical representation.

Figure 4.2: Here we visualize, how the three process Cs, C and C
s

a constructed by
using the same Poisson point process Ξ.

that C̃C is the classical contact process without recoveries which is coupled to the

CPERE (CC,B,BB) such that CC,B
0 = C̃C

0 = C and CC,B
t ⊂ C̃C

t for all t ≥ 0. By

construction C
C,B,s

t = C̃C
t for all t ≤ s.

We set As(C) := {C̃C
t ⊆ Φt ∀t ≥ s}. Another reason why we consider these two

processes is that by the construction of Cs and C
s

it is clear that

P(As(C) ∩ {CC,∅,s
t 6= ∅ ∀t ≥ 0}) = P(As(C) ∩ {CC,E,s

t 6= ∅ ∀t ≥ 0}), (4.5)

P(As(C) ∩ {CC,∅,s
t 6= ∅ ∀t ≥ 0}) = P(As(C) ∩ {CC,E,s

t 6= ∅ ∀t ≥ 0}), (4.6)

since both processes are independent of the background B on [0, s] and in the time

interval (s,∞) all infection paths stay in the coupled region, i.e. the initial configuration

of the background process has no influence.

We start by proving a). To avoid clutter we set As := As({x}). We see that

θ({x}, ∅) ≥ P(As ∩ {C{x},∅,st 6= ∅ ∀t ≥ 0})

for every s > 0 and by (4.5) we get that

θ({x}, ∅) ≥
∫
P(As({x}) ∩ {C{x},B,st 6= ∅ ∀t ≥ 0})π(dB). (4.7)
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The state ∅ is obviously an absorbing state for the infection. Hence,∫
P(As ∩ {C{x},B,st 6= ∅ ∀t ≥ 0})π(dB)

=

∫
P(As ∩ {C{x},B,st 6= ∅ ∀t ≥ s})π(dB).

(4.8)

Let Cs be a process which is constructed analogously as Cs with the difference that on

[0, s] also no recovery symbols have an effect. Therefore, C is just a delayed CPERE.

By construction it is clear that it is only possible for Cs,{x},B to survive if until time s

the site x is not hit by a recovery symbol, i.e. let T := inf{t > 0 : (recx, t) ∈ Ξrec}, then

Cs,{x},B goes extinct almost surely on the event {T ≤ s}. Note that C{x},B,s = C{x},B,s

on {T > s} and thus,∫
P
(
As ∩ {C{x},B,st 6= ∅ ∀t ≥ s}

)
π(dB)

=

∫
P
(
As ∩ {C{x},B,st

6= ∅ ∀t ≥ s} ∩ {T > s})
)
π(dB).

(4.9)

Furthermore we know that the event {T > s} only depends on Ξrec in the time interval

[0, s]. Since As only depends on Ξinf and the point processes ΞBack and Ξrec have no

impact on the survival of C on [0, s], we get that∫
P
(
As ∩ {C{x},B,st

6= ∅ ∀t ≥ s} ∩ {T > s})
)
π(dB)

=P(T > s)

∫
P
(
As ∩ {C{x},B,st

6= ∅ ∀t ≥ s}
)
π(dB).

(4.10)

By construction it follows that (Cs

t
)t≤s and (Bt)t≤s are independent. Also since π is

the unique invariant law of the background process we see that∫
P
(
C{x},B,s
t

6= ∅ ∀t ≥ 0
)
π(dB) =

∫
P
(
C
{x},B
t 6= ∅ ∀t ≥ 0

)
π(dB) = θπ({x}) > 0,

for every s ≥ 0, where the last inequality follows by assumption. As already mentioned

C is just a delayed CPERE and if it is started stationary the survival probability is

constant in s. By Theorem 4.1.4 for every θπ({x}) > ε > 0 there exists a S > 0 such
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that P(As) > 1− ε for all s > S, where we used that As ⊂ As′ if s ≤ s′. We can use

this to conclude that∣∣∣∣ ∫ P
(
C{x},B,s
t

6= ∅ ∀t ≥ 0
)
π(dB)−

∫
P
(
As ∩ {C{x},B,st

6= ∅ ∀t ≥ s}
)
π(dB)

∣∣∣∣ < ε.

(4.11)

Now using (4.7)-(4.11) successively yields that θ({x}, ∅) ≥ P(T > s)(θπ({x})− ε) > 0,

where we used that P(T > s) > 0 for all s ≥ 0. This proves a).

It remains to show b). Here, it suffices to show that

P(As ∩ {C{x},Et 6= ∅ ∀t ≥ 0}) = 0 (4.12)

for all s > 0. This is because Theorem 4.1.4 yields that

P
( ⋃
n∈N0

An

)
= P(∃s ≥ 0 : C̃C

t ⊆ Φt ∀t ≥ s) = 1,

where we used in the first equality that As ⊂ As′ if s ≤ s′. Hence,

P(C
{x},E
t 6= ∅ ∀t ≥ 0) = P({∃s ≥ 0 : C̃

{x}
t ⊆ Φt ∀t ≥ s} ∩ {C{x},Et 6= ∅ ∀t ≥ 0})

≤
∞∑
n=0

P(An ∩ {C{x},Et 6= ∅ ∀t ≥ 0}),

and therefore (4.12) implies that the right hand side is 0. By constructions of C we see

that

P(As ∩ {C{x},Et 6= ∅ ∀t ≥ 0}) ≤ P(As ∩ {C
{x},E,s
t 6= ∅ ∀t ≥ 0}).

Furthermore by (4.6) it follows that

P(As ∩ {C
{x},E,s
t 6= ∅ ∀t ≥ 0}) =

∫
P(As ∩ {C

{x},B,s
t 6= ∅ ∀t ≥ 0})π(dB)

and since C
{x},B,s
s = C̃

{x}
s for all B ⊂ E we get∫

P(As ∩ {C
{x},B,s
t 6= ∅ ∀t ≥ 0})π(dB) ≤ E{x}[P(C̃s,π)(Ct 6= ∅ ∀t ≥ 0)] = 0,



76 Chapter 4 Influence of the initial state of the background on survival

where we used that by assumption θπ(C) = 0 for all finite C and |C̃{x}s | <∞ almost

surely. Therefore,

P{x},E(As ∩ {C{x},Et 6= ∅ ∀t ≥ 0}) = 0

for all s ≥ 0, which implies θ({x}, E) = 0.

Now we have shown that if c1(λ, ρ) > κ−1ρ holds, then the chance to survive is

independent of the initial configuration of the background. Next we will show as a

corollary that if for a r > 0 there exists a non-empty and finite set C ⊂ V and B ⊂ E

such that c1(λc(r, C,B), ρ) > κ−1ρ, then it follows that λc(r, C,B) = λπc (r) for all

non-empty and finite C ⊂ V and B ⊂ E. This basically means that if for r > 0 there

exists an λ such that survival is possible and additionally c1(λ, ρ) > κ−1ρ then the

critical infection rate is independent of the choice of the initial configuration (C,B) as

long as C ⊂ V is non-empty and finite.

Proof of Proposition 1.4.9. Let r > 0 and suppose there exists a non-empty and

finite C ′ ⊂ V and set B′ ⊂ E such that c1

(
λc(r, C

′, B′), ρ
)
> κ−1ρ. We know by

Lemma 4.1.1 that λ 7→ c1(λ, ρ) is continuous and strictly decreasing. Hence, there

exists an ε > 0 such that all λ < λc(r, C
′, B′) + ε satisfy c1(λ, ρ) > κ−1ρ. Now we

consider λ < λc(r, C
′, B′) + ε. Theorem 1.4.8 implies in particular that

θ(λ, r, C ′, B′) > 0⇔ θπ(λ, r, C ′) > 0. (4.13)

Furthermore, in Corollary 4.0.2 we already showed that

θπ(λ, r, C ′) > 0⇔ θπ(λ, r, C) > 0, (4.14)

for every non-empty and finite C ⊂ V . This, in particular implies that

λc(r, C
′, B′) = λπ(r).

Next we use again that c1(λ, ρ) > κ−1ρ such that Theorem 1.4.8 together with (4.13)

and (4.14) yield that θ(λ, r, C ′, B′) > 0 if and only if θ(λ, r, C,B) > 0 for all non-empty

and finite C ⊂ V and all B ⊂ E. This obviously implies that

λc(r, C
′, B′) = λπc (r) = λc(r, C,B)

for all finite and non-empty C ⊂ V and B ⊂ E.
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We end this chapter by showing an extension of the results concerning the asymptotic

behaviour and the immunization region shown by [LR20].

Proof of Corollary 1.4.10. Recall from Remark 1.1.5 that for a CPDP with param-

eters λ, r, α, β and initial configuration (C,B) we denoted the survival probability by

θDP(λ, r, α, β, C,B) and the critical infection rate by λDP
c (r, α, β, C,B). Let v > 0 and

p ∈ (0, 1), then we set α = vp and β = v(1− p). Since B is a dynamical percolation

we know from Remark 3.2.4 that for the constant κ in Assumption 1.4.1 (ii) it holds

that κ ≥ α+ β = v. From here on throughout the proof we again drop the sub- and

superscript DP out of notational convenience.

Fix some x ∈ V and recall that λGc denotes the critical infection rate of the classical

contact process with recovery rate 1 on the graph G. We first show (i), which states

that for every p ∈ (0, 1], λc
(
1, vp, v(1 − p), C,B

)
→ λGc

p
as v → ∞, for all C ⊂ V

non-empty and finite and all B ⊂ E.

Theorem 1.3.3 (i) implies in particular that for every p ∈ (0, 1), we can choose for every

ε > 0 a v0 > 0 large enough such that

λπc
(
1, vp, v(1− p)

)
<
λGc
p

+ ε

for all v > v0. Thus, next we choose v1 > v0 such that c1(p−1λGc +ε, ρ) > v−1ρ. Because

c1 is monotone deceasing in the first coordinate we see that

c1(λπc
(
1, vp, v(1− p)

)
, ρ) > v−1ρ

for all v > v1. Since we know that κ ≥ v by Corollary 1.4.9 it follows that for all v > v1

the critical infection rate λc
(
1, vp, v(1− p)

)
is independent of the initial configuration,

i.e.

λc
(
1, vp, v(1− p)

)
= λc

(
1, vp, v(1− p), C,B

)
for all C ⊂ V non-empty and finite and all B ⊂ E. So finally, Theorem 1.3.3 (i) yields

that

lim
v→∞

λc
(
1, vp, v(1− p)

)
=
λGc
p
.

Next we show (ii) and (iii). In both cases we consider graphs of subexponential

growth, i.e. ρ = 0. Therefore, the inequality c1(λ, ρ) > κ−1ρ is obviously satisfied, and

thus by Proposition 1.4.9 it follows that the critical infection rate λc(r, vp, v(1− p)) is

independent of the initial configuration for any choice of the parameter.
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Now we first show (ii), which states that for every r > 0 and v > 0 there exists a

p0 = p0(r, v) > 0 such that for every p < p0, λc
(
r, vp, v(1−p)

)
=∞. Now Theorem 1.3.2

(i) yields that for every v > 0 there exists a p0 = p0(v) > 0 such that for every p < p0,

λπc
(
1, vp, v(1 − p)

)
= ∞ Since we showed that the critical value does not depend on

the initial conditions a direct consequence is that λc
(
1, vp, v(1− p)

)
=∞, i.e. for every

λ > 0,

θ
(
λ, 1, vp, v(1− p), C,B

)
= 0.

for every finite C ⊂ V and every B ⊂ E. But, by rescaling time with the factor r we

see that

θ(λ, 1, vp, v(1− p), C,B) = θ
(
λr, r, vrp, vr(1− p), C,B

)
,

and therefore by setting v′ := vr we see that for every λ > 0 the survival probability

θ
(
λ, r, v′p, v′(1 − p), C,B

)
= 0 for all finite C ⊂ V and all B ⊂ E. This proves the

claim.

Claim (iii) follows via a similar argument. Hence, we will now show that for every

p ∈ [0, 1), λc
(
r, vp, v(1 − p)

)
→ ∞ as v → 0. By Theorem 1.3.3 (ii) we know that

λc(1, vp, v(1 − p)) → ∞ as v → 0, i.e. the special case r = 1. Thus, for every λ > 0

there exists a v0 > 0 such that

θ(λ, 1, vp, v(1− p), C,B) = 0

for every C ⊂ V finite, B ⊂ E and for every v < v0. Now again rescaling time by the

fixed factor r and setting λ′ := λr and v′0 := v0r yields that for every λ′ > 0 there

exists a v′0 > 0 such that

θ(λ′, r, vp, v(1− p), C,B) = 0

for every v < v′0, and thus λDP
c

(
r, vp, v(1− p)

)
→∞ as v → 0.
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The CPERE and its invariant laws

In this chapter we mainly study the invariant laws of the CPERE. We assume through

out this whole chapter that the background B satisfies the Assumption 1.4.1 (i)-(iii).

5.1 Upper invariant law and the dual process of C

First we introduce the notion of duality. Let X and Y be two processes on the same

probability space and let the Polish spaces SX and SY denote their respective state

spaces.

Definition 5.1.1 (Duality). Let t ≥ 0. We call (Xu)0≤u≤t and (Yu)0≤u≤t dual with

respect to a function H : SX × SY → R if s 7→ E[H(Xt−s,Ys)] is a constant function

for 0 ≤ s ≤ t.

For the classical contact process X (see Example 2.3.2) one can use the graphical

representation to construct a dual process X̂ such that s 7→ P(Xs ∩ X̂t−s 6= ∅) is a

constant function for s ≤ t and X̂ is again a classical contact process. The process

X̂ which satisfies this “self” duality with respect to function H(A,B) := 1{A∩B 6=∅} is

obtained by the following construction: Consider the graphical representation backwards

in time and reverse the infection arrows. The recovery symbols stay as they are. See

Figure 5.1 for a visualization. In case of the classical contact process X (see Remark

2.3.2), duality is a powerful tool to analyse its invariant laws. It can in particular be

used to provide a connection between the survival probability and the upper invariant

law.

79
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Figure 5.1: The red lines indicate the original infection paths in the construction of X.
The blue lines indicate the infection paths which result from considering the graphical
representation backward in time. The blue paths define the dual process X̂, which also
runs backwards in time.

We are not able to construct a dual process for (C,B) in this manner. But if we first

fix the background B in the time interval [0, t], we can construct a process Ĉ which

satisfies a conditional duality relation with respect to C, i.e.

P(CC,B
t ∩ A 6= ∅|G) = P(CC,B

s ∩ ĈA,B,t
t−s 6= ∅|G) = P(C ∩ ĈA,B,t

t 6= ∅|G) (5.1)

holds almost surely for all s ≤ t, where G := σ(Bs : 0 ≤ s ≤ t) is the σ-algebra

generated from the background process until time t. Obviously Ĉ will in general not

be CPERE, but this process will nevertheless prove useful.

Define B̂B,t
s := BB

(t−s)− , i.e. fix the background, reverse the time flow and start at

some fixed time t > 0. Now we define the dual process (ĈA,B,t
s )0≤s≤t with ĈA,B,t

0 = A

as follows: We define this process analogously to C with the help of the graphical

representation using the same infection and recovery events just backwards in time and

the direction of the infection is reversed, i.e.

(u, coopx,y)→ (t− u, coopy,x) and (u, recx)→ (t− u, recx),

where x, y ∈ V such that {x, y} ∈ E. Note that the superscript B does not denote the

initial configuration of the time reversed background B̂ but of the original B. Now

we just let the infection run backwards in time, starting at time t till time 0. See
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Figure 5.2 for a visualization of the construction. We see that we coupled Ĉ to C in

such a way that (5.1) holds.

Figure 5.2: The arrows and crosses are respectively the infection and recovery events.
The grey areas are the blocked edges. Thus, if an arrow is contained in a grey area
it is not considered. The red lines are the infection paths of the forward-time process
C. The blue lines are the infections backwards in time with respect to the mirrored
arrows, which define the process Ĉ.

Next we show amongst other things that we can recover a self duality in the case where

we assume stationarity of B, i.e. B0 ∼ π.

Proposition 5.1.2 (Distributional duality). Let t ≥ 0, A,C ⊆ V and B,H ⊂ E then

s 7→ P(CC,B
s ∩ ĈA,B,t

t−s 6= ∅,BB
t ∩H 6= ∅) and s 7→ P(CC,B

s ∩ ĈA,B,t
t−s 6= ∅)

are constant functions. If B is reversible this implies in particular that for all t ≥ 0

P(C,π)(Ct ∩ A 6= ∅) = P(A,π)(Ct ∩ C 6= ∅).

Proof. Let t ≥ 0. By using (5.1) we see that

P(CC,B
t ∩ A 6= ∅,BB

t ∩H 6= ∅) = E[P(CC,B
t ∩ A 6= ∅|G)1{BBt ∩H 6=∅}]

= E[P(CC,B
s ∩ ĈA,B,t

t−s 6= ∅|G)1{BBt ∩H 6=∅}]

= P(CC,B
s ∩ ĈA,B,t

t−s 6= ∅,BB
t ∩H 6= ∅)
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for all s ≤ t. The equality P(CC,B
t ∩ A 6= ∅) = P(CC,B

s ∩ ĈA,B,t
t−s 6= ∅) for all s ≤ t

follows by taking expectations in (5.1), which proves the first claim. For the second

claim choose s = 0 and integrate both sides with respect to π, and thus∫
P(C,B)(Ct ∩ A 6= ∅)π(dB) =

∫
P(ĈA,B,t

t ∩ C 6= ∅)π(dB). (5.2)

We assumed that B is reversible with respect to its invariant law π. Let us consider

(Bs)s≤t with B0 ∼ π and as before set B̂π,t
s := B(t−s)− for 0 ≤ s ≤ t, then by

Proposition 2.1.8 it follows that (Bs)s≤t
d
= (B̂π,t

s )s≤t. Again define by the reversed

graphical representation (ĈA,π,t
s )s≤t with respect to the background (B̂π,t

s )s≤t. Now the

process (ĈA,π,t
s , B̂π,t

s )s≤t is again a CPERE with initial distribution δA ⊗ π. Hence, this

fact together with (5.2) yields that

P(C,π)(Ct ∩ A 6= ∅) = P(A,π)(Ct ∩ C 6= ∅).

Now we study the upper invariant law ν of (C,B). We start with the existence of such

a law. Recall that we denoted by T (t) = Tλ,r(t) the Feller semigroup corresponding to

the CPERE (C,B) with parameters λ and r.

Proposition 5.1.3 (Upper invariant law). There exists a probability measure ν such

that (δV ⊗ δE)T (t)⇒ ν as t→∞.

Proof. Obviously it holds that µ := δV ⊗ δE � (δV ⊗ δE)T (t) = µT (t) for all t > 0

and thus by Lemma 3.4.1, µT (s) � µT (t)T (s) = µT (t + s) for all t, s ≥ 0, where we

used the semigroup property. Next let f be an arbitrary bounded, measurable and

monotone increasing function. Then by definition of the stochastic order it holds that

T (s)f(V,E) =

∫
fdµT (s) ≥

∫
fdµT (t+ s) = T (t+ s)f(V,E)

and thus, s 7→ T (s)f(V,E) is non-increasing, real-valued function and obviously

bounded from below. This implies that T (s)f(V,E) convergences as s → ∞. Since

this is the case for any measurable, increasing and bounded function and the set of

these functions is dense in the set of all measurable and bounded functions we get weak

convergence of µT (s), which yields the claim.

Next we show two properties of the upper invariant law ν. The measure ν derives its

name from the first property.



5.1 Upper invariant law and the dual process of C 83

Lemma 5.1.4. Let ν = νλ,r be the upper invariant law of the CPERE (C,B) with

infection rate λ > 0 and recovery rate r > 0. Then we have:

(i) If ν is an invariant law of (C,B), then ν � ν.

(ii) If λ1 ≤ λ2, then νλ1,r � νλ2,r and if r1 ≥ r2 then νλ,r1 � νλ,r2.

Proof. (i) Lemma 3.4.1 states that (C,B) is a monotone Feller process, this implies

that for any invariant law ν holds that ν = νT (t) � (δV ⊗ δE)T (t)⇒ ν as t→∞,

where Proposition 5.1.3 provides the weak convergence.

(ii) Let µ be a probability distribution on P(V )× P(E). By Lemma 3.4.2 it follows

that if λ1 ≤ λ2 then µTλ1,r(t) � µTλ2,r(t) for all t ≥ 0 and if r1 ≥ r2 then

µTλ,r1(t) � µTλ,r2(t). Thus, the claim follows by setting µ = δV ⊗ δE and letting

t→∞ by Proposition 5.1.3.

We do not need to start the background with every edge in the open state, i.e. B0 = E,

to have convergence towards the upper invariant law. As long as the initial distribution

of the background dominates π stochastically, this is enough to ensure convergence

towards ν.

Lemma 5.1.5. Let µ be a probability measure with π � µ then (δV ⊗ µ)T (t)⇒ ν as

t→∞.

Proof. First of all it is clear that δV ⊗ π � δV ⊗ µ, and therefore

lim
t→∞

(δV ⊗ π)T (t) � lim
t→∞

(δV ⊗ µ)T (t).

if the limit exists. So its enough to prove convergence for π = µ. Since π is the invariant

law of the background and the infection process can only occupy fewer sites than all of

V it follows that (δV ⊗π)T (s) � (δV ⊗π) for all s ≥ 0 and by Lemma 3.4.1 we get that

(δV ⊗ π)T (t+ s) � (δV ⊗ π)T (t) for all t, s ≥ 0.

Again using the same procedure as in Proposition 5.1.3 we see that a measure ν ′ exists

such that (δV ⊗ π)T (t) ⇒ ν ′ as t → ∞. By Lemma 5.1.4 (i) we know that ν ′ � ν.

This means that if we can show that ν � ν ′ we are finished. By Assumption 1.4.1 (i)

we know that π is the unique invariant law of B. Thus, the second marginal of any
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invariant law of (C,B) must be π. Therefore it is clear that for every invariant law ν,

ν � δV ⊗ π must hold. Therefore by monotonicity and stationarity we know that

ν = νT (t) � (δV ⊗ π)T (t)⇒ ν ′ as t→∞.

Since this holds for any invariant law ν it also holds for the upper invariant law

ν = ν.

This enables us to uncover a connection between the survival probability θπ of the

infection process C started with stationary background and the upper invariant law ν

in the next result.

Proposition 5.1.6. Let C ⊂ V be finite, then

θπ(C) = P(C,π)(Ct 6= ∅ ∀t ≥ 0) = ν({A ⊂ P(V ) : C ∩ A 6= ∅} × P(E)),

and thus in particular θπ(λ, r, {x}) > 0 if and only if νλ,r 6= δ∅ ⊗ π, where x ∈ V is

arbitrary.

Proof. By the self duality relation from Proposition 5.1.2 we get for C ⊂ V

P(V,π)(Ct ∩ C 6= ∅) = P(C,π)(Ct 6= ∅)→ P(C,π)(Ct 6= ∅ ∀t ≥ 0) as t→∞,

where we used continuity of the probability measure. On the other hand, since C is

finite we get

P(V,π)(Ct ∩ C 6= ∅) =

∫
1{A∩C 6=∅}(δV ⊗ π)T (t)(d(A,B))→

∫
1{A∩C 6=∅}ν(d(A,B))

as t→∞, where we used Lemma 5.1.5. Now we can conclude that

ν({A ⊂ V : A ∩ C 6= ∅} × P(E)) = P(C,π)(Ct 6= ∅ ∀t ≥ 0). (5.3)

which yields the first claim.

Next by Proposition 4.0.1 (iii) we know that θπ({x}) = θπ({y}) for all x, y ∈ V . This

yields in particular that the second claim does not depend on the choice of x. Now

choose C = {x} for some x ∈ V . Suppose that θπ({x}) > 0, then we see by (5.3) that

ν({(A,B) ∈ P(V )× P(E) : x ∈ A}) > 0. (5.4)
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This implies that ν 6= δ∅ ⊗ π. For the converse direction we assume that θπ({x}) = 0,

and hence θπ({y}) = 0 for all y ∈ V . Now we see by (5.3) that

ν({(A,B) ∈ P(V )× P(E) : y ∈ A}) = 0.

for all y ∈ V . Now let us consider the set D := {(A,B) ∈ P(V )×P(E) : A 6= ∅}. By

using σ-subadditivity and (5.4) we see that

ν(D) ≤
∑
y∈V

ν({(A,B) ∈ P(V )× P(E) : y ∈ A}) = 0,

and thus it follows that ν = δ∅ ⊗ π. This provides the second claim.

This connection between the survival probability θπ and the upper invariant law ν

already suggests that the parameter regime where the upper invariant law agrees with

δ∅ ⊗ π is the same as the regime of almost certain extinction. Note that if ν = δ∅ ⊗ π,

then by Lemma 5.1.3 and Lemma 5.1.4(i) follows that the CPERE convergences weakly

towards the measure δ∅ ⊗ π and if ν 6= δ∅ ⊗ π we already know that at least two

distinct invariant laws exist, and therefore there are obviously infinitely many invariant

laws. Thus, if ν is trivial or non-trivival also determines if the system is ergodic or

non-ergodic.

Now we show that the critical value λ′c(r) of the phase transition between triviality and

non-triviality of the upper invariant law indeed agrees with the critical value for survival

λπc (r), where the background is assumed to be stationary. If we additionally assume

that c1

(
λπc (r), ρ

)
> κ−1ρ, then we know that the critical infection rate of survival does

not depend on the initial configuration.

Proof of Corollary 1.4.14. Let r > 0, then as a direct consequence of Proposi-

tion 5.1.6 follows that λ′c(r) = λπc (r). If we assume additionally c1

(
λπc (r), ρ

)
> κ−1ρ by

Corollary 1.4.9 follows that there exists a λc(r) such that λc(r) = λc(r, C,B) for every

C ⊂ V non-empty and finite and every B ⊂ E, and thus in particular λ′c(r) = λc(r).

For the remainder of this section we provide some ground work for the subsequent

sections which consider complete convergence and continuity properties of the survival

probability.

Proposition 5.1.7. The measure ν has the property that ν({∅} × P(E)) ∈ {0, 1}.
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Proof. Let D := {∅} × P(E). If ν(D) = 1 then it follows that ν = δ∅ ⊗ π. Thus, we

assume that ν(Dc) = q ∈ (0, 1]. Recall that the second marginal of ν is π. Now define

ν(·) := ν(·|Dc) and write

ν = qν + (1− q)(δ∅ ⊗ π).

This equality together with the fact that δ∅ ⊗ π and ν are invariant measures implies

that the measure ν is again invariant. Let f : P(V ) × P(E) → R be a bounded,

measurable and monotone increasing function. Then δ∅ ⊗ π � ν implies that∫
fdν = q

∫
fdν + (1− q)

∫
fd(δ∅ ⊗ π) ≤ q

∫
fdν + (1− q)

∫
fdν,

and therefore q
∫
fdν ≤ q

∫
fdν. Since q > 0, this implies that for all such functions∫

fdν ≤
∫
fdν which yields that ν � ν. On the other hand since we know that ν is

the upper invariant law by Lemma 5.1.4 (ii) it follows that ν � ν, and thus ν = ν. But

this implies that ν(Dc) = 1, and therefore ν(D) = 0.

A consequence of this proposition is that if ν 6= δ∅ ⊗ π, then

lim
n→∞

θπ(Bn(x)) = lim
n→∞

ν({A ⊂ V : A ∩Bn(x) 6= ∅} × P(E))

= ν({A ⊂ V : A 6= ∅} × P(E)) = 1,
(5.5)

where we used Proposition 5.1.6 in the first equality and x ∈ V . We want to extend

this result to

lim
n→∞

θ(Bn(x), ∅) = 1.

Recall that B is an autonomous Feller process. Thus, we denote by (S(t))t≥0 the Feller

semigroup associated with the background process. Let s > 0, then we set πs := δ∅S(s)

and

θπs(C) :=

∫
P(CC,B

t 6= ∅ ∀t ≥ 0)πs(dB).

By Assumption 1.4.1 (i) there exists a unique invariant law π of the background process

B such that πs ⇒ π as s→∞. Recall that C̃ denotes a classical contact process with

infection rate λ > 0 without recovery, i.e. only infection arrows are taken into account

and the background as well as recovery symbols are completely ignored.

Lemma 5.1.8. Let t > 0, ε > 0 and A ⊂ V finite. Then there exists a finite

D = D(t, ε, A) ⊂ V such that

P(C̃A
t ⊂ D) > 1− ε.



5.1 Upper invariant law and the dual process of C 87

Proof. Let t > 0 and A ⊂ V finite and fixed. We know that for every finite initial

configuration A the random set |C̃A
t | <∞ almost surely. This implies that for some

x ∈ A,

P
(
∃n ≥ 1 : C̃A

t ⊂ Bn(x)
)

= 1.

Thus, since {C̃A
t ⊂ Bn(x)} ⊂ {C̃A

t ⊂ Bm(x)} if m ≥ n and because of continuity of P,

it follows that for every ε > 0 there exists an N ∈ N such that

P
(
C̃A
t ⊂ Bn(x)

)
> 1− ε

for all n > N , which proves the claim.

Recall that BLn(e) denotes the ball in the line graph L(G) of radius n ∈ N with e ∈ E
as centre.

Lemma 5.1.9. Let e ∈ E and k ∈ N. There exists a probability law µs on P(E2) with

marginals π and πs such that for every ε > 0 there exists a s > 0 such that

µs
(
{(B,D) ∈ E2 : B ∩BLk (e) = D ∩BLk (e)}

)
> 1− ε.

Proof. Let Bπ be the background process such that Bπ
0 ∼ π. Now let Bπ be coupled

to B∅ via the graphical representation. Recall that the coupled region was defined as

follows:

Ψt = {e ∈ E : e /∈ BB1
t 4BB2

t ∀B1, B2 ⊂ E}.

Choose c > 0 such that cκ > ρ. By Theorem 4.1.3 we know that

P(∃s ≥ 0 : BLt+1(e) ⊂ Ψct ∀t ≥ s) = 1.

By continuity of the law P and monotonicity of the event, there exists an s > k such

that P(BLt+1(e) ⊂ Ψct ∀t ≥ s) > 1− ε, which in particular implies that

P(Bπ
cs ∩BLk (e) = B∅cs ∩BLk (e)) > 1− ε.

Now set s′ = cs and let µs′ be the joint probability distribution of (Bπ
s′ ,B

∅
s′). This

distribution satisfies the claim.

With these two lemmas we are able to show the following useful approximation result

of the survival probability. Recall that c1(λ, ρ) is the solution of (1.5), κ is the constant

from Assumption 1.4.1 (ii) and ρ denotes the exponential growth of the graph G.
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Lemma 5.1.10. Let λ, r > 0 and suppose that c1(λ, ρ) > κ−1ρ. Then for any C ⊂ V ,

lim
s→∞

θπs(λ, r, C) = θπ(λ, r, C).

Proof. Note that if |C| =∞ or C = ∅ the statement is trivial, since either both sides

are 1 or 0. Thus, we assume that C is a finite non-empty subset of V . Fix x ∈ C and

y ∈ Nx. Since c1(λ, ρ) > κ−1ρ by Proposition 4.1.4 we know that

P(∃u ≥ 0 : C̃C
t ⊂ Φt ∀t ≥ u) = 1.

Set A1
u(C) := {C̃C

t ⊆ Φt ∀t ≥ u}. We see that for every ε > 0 there exists a T > 0

such that P(A1
u(C)) ≥ 1 − ε for all u ≥ T , where we used that A1

u(C) ⊂ A1
u′(C) for

u ≤ u′ and continuity of the law P. Next we fix u ≥ T and define A2
u,m(C) := {C̃C

t ⊂
Bm(x) ∀t ≤ u} for m ∈ N. By Lemma 5.1.8 we can choose a m = m(u) large enough

such that P(A2
u,m(C)) > 1− ε. Together this yields

θ(C,B) ≤ P
(
A1
u(C) ∩ A2

u,m(C) ∩ {CC,B
t 6= ∅ ∀t ≥ 0}

)
+ 2ε (5.6)

for any B ⊂ E. By Lemma 3.2.5 we can choose a k = k(m) > m+ 1 large enough such

that

P(BB
t ∩BLm+1({x, y}) = BD

t ∩BLm+1({x, y}) ∀t ≤ u) > 1− ε, (5.7)

for any D ⊂ E with B∩BLk ({x, y}) = D∩BLk ({x, y}). Note that BLm+1({x, y}) contains

in particular all edges which are attached to all vertices in Bm(x). Now for notational

convenience define A3
u,m(C) := A1

u(C) ∩ A2
u,m(C). Furthermore set

Am,u(C, (B,D)) :={BB
t ∩BLm+1({x, y}) = BD

t ∩BLm+1({x, y}) ∀t ≤ u} ∩ A3
u,m(C),

Ek(B,D) :={(B,D) ∈ E2 : B ∩BLk ({x, y}) = D ∩BLk ({x, y})}.

By Lemma 5.1.9 there exists a distribution µs on P(E2) with marginals π and πs, such

that for s > 0 large enough

µs
(
Ek(B,D)

)
> 1− ε. (5.8)

Note that by choice of these events

Am,u(C, (B,D)) ∩ {CC,B
t 6= ∅ ∀t ≥ 0}

=Am,u(C, (B,D)) ∩ {CC,D
t 6= ∅ ∀t ≥ 0} ⊂ {CC,D

t 6= ∅ ∀t ≥ 0},
(5.9)



5.1 Upper invariant law and the dual process of C 89

since on the event Am,u(C, (B,D)) the infection stays in Bm(x) until time u and

afterwards only travels along edges already contained in the permanently coupled

region. But, for any of the initial configuration B or D the background does not differ

in the ball BLm+1({x, y}) at any time t ∈ [0, u] and thus, we can interchange B and D

on Am,u(C, (B,D)). Finally we can conclude that∫
P
(
A1
u(C) ∩ A2

u,m(C) ∩ {CC,B
t 6= ∅ ∀t ≥ 0}

)
π(dB)

≤
∫
P
(
Am,u(C, (B,D)) ∩ {CC,B

t 6= ∅ ∀t ≥ 0}
)
1Ek(B,D)µs(d(B,D)) + 2ε

≤
∫
P
(
CC,D
t 6= ∅ ∀t ≥ 0}

)
πs(dD) + 2ε,

(5.10)

where we used (5.7) and (5.8) in the first inequality and in the second the definition of

Ek(B,D) together with (5.9). Hence, by combining (5.6) and (5.10) we obtain

θπ(C) ≤ θπs(C) + 4ε.

On the other hand we have that πs = δ∅S(s). Since B is by assumption a monotone

Feller process we get that πs � π for all s ≥ 0, and thus by monotonicity of the survival

probability it follows that

θπs(C) ≤ θπ(C) ≤ θπs(C) + 4ε,

which proves the claim.

With this approximation result we are able to show the desired result.

Lemma 5.1.11. Let x ∈ V and r > 0. Suppose that c1(λπc (r), ρ) > κ−1ρ, then for all

λ > λc(r) = λπc (r)

lim
n→∞

θ(λ, r,Bn(x), ∅) = 1.

Proof. Let us fix x ∈ V . By Lemma 4.1.1 we know that λ 7→ c1(λ, ρ) is continuous

and strictly decreasing. Thus, if c1(λπ(r), ρ) > κ−1ρ, then there exists an ε′ > 0 such

that c1(λ, ρ) > κ−1ρ for all λ ∈ (λπc (r), λπc (r) + ε′). Note that by Proposition 1.4.14

λπc (r) = λc(r). Let n ≥ 0 and fix λ ∈ (λπc (r), λπc (r) + ε′) by (5.5) we know that for every

ε > 0 there exists n large enough such that θπ(Bn(x)) > 1− ε and by Lemma 5.1.10

we know that for given n and ε there exist s > 0 large enough such that

θπs(Bn(x)) > 1− ε. (5.11)
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Choose a set {xi : i ∈ N} ⊂ V such that d(xi, xj) > 2n for i 6= j. Note that by this

choice the sets (Bn(xi))i∈N are disjoint. Let us consider the event

Asm,n := {∃i ≤ m : (t, recx) /∈ supp(Ξrec) ∀(t, x) ∈ [0, s]×Bn(xi)},

i.e. in words for some i ≤ m no recovery symbols occurs up to time s in Bn(xi). For

given s and n choose m large enough such that

P(Asm,n) > 1− ε. (5.12)

Let k = k(m,n) be large enough such that
⋃m
i=1Bn(xi) ⊂ Bk(x). Now by the choice of

s it follows that

P(C
Bk(x),∅
t 6= ∅ ∀t ≥ 0|Asm,n) ≥ P(Bn(x),πs)(Ct 6= ∅ ∀t ≥ 0) = θπs(Bn(x)) (5.13)

where we used the translation invariance of (C,B) and that Asm,n is independent of the

background. Now by (5.11), (5.12) and (5.13) we get that

θ(Bk(x), ∅) ≥ P(C
Bk(x),∅
t 6= ∅ ∀t ≥ 0|Asm,n)P(Asm,n) ≥ θπs(Bn(x))(1− ε) ≥ (1− ε)2,

which yields that limn→∞ θ(λ, r,Bn(x), ∅) = 1, for all λ ∈ (λc(r), λc(r) + ε). Since

λ 7→ c1(λ, ρ) is strictly decreasing it is possible that there exists λ′ > λ such that

c1(λ
′, ρ) > κ−1ρ is no longer satisfied. In this case we can use monotonicity and see

that

lim
n→∞

θ(λ′, r,Bn(x), ∅) ≥ lim
n→∞

θ(λ, r,Bn(x), ∅) = 1.

This result actually plays a key role for some of the continuity properties concerning

the survival probability with respect to the infection and recovery rate. It seems

appropriate to mention here that there is a different way to prove Lemma 5.1.11

without relying on the duality and hence it would be possible to drop Assumption 1.4.1

(iii), i.e. reversibility of the background, in this particular case. Therefore this might

be relevant for further analysis of the CPERE with a non-reversible background. Of

course this comes with the price of posing some different assumptions on the graph G.

This proof strategy uses ergodicity theory. Hence, we will clarify some notions and

objects. For details we refer the interested reader to [Kal06, Chapter 9]. Let (Ω,F ,P)

be a probability space and S : Ω 7→ Ω be a measure-preserving map, i.e. PS = P. We

denote by I = {A ∈ F : A = S−1(A)} the invariant σ-algebra. We call the 4-tupel
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(Ω,F ,P, S) an ergodic system if I is P-trivial, i.e. if A ∈ I, then P(A) ∈ {0, 1}. Let

X be the identity on Ω, i.e. X(ω) = ω, if (Ω,F ,P, S) is ergodic then we call (X,S)

ergodic. Let f : Ω → R be a measurable function. The mean ergodic theorem of

Birkhoff, see [Kal06, Theorem 9.6], in particular states that if (X,S) is ergodic, then

1

2n

n∑
k=−n

f(S−kX)→ E[f(X)] as n→∞.

Now we will briefly summarize the proof strategy.

Remark 5.1.12. Let us consider the special setting of the 1-dimensional integer lattice,

i.e. V = Z and E = {{x, y} ⊂ V : |x− y| = 1}. Now define Yx := 1{C{x},∅t 6=∅ ∀t≥0} to be

the indicator variable for the event of survival in case the process starts only with site

x being infected and all edges closed.

Recall that we constructed (C,B) via a graphical construction with respect to a Poisson

point proces Ξ. From a different perspective Ξ can be seen as a family of independent

Poisson process (Ξz)z∈V ∪E on R, where Ξx
d
= Ξy for all x, y ∈ V and Ξe

d
= Ξe′ for all

e, e′ ∈ E. Let S be a shift operator which maps ξx → ξx+1 and ξ{x−1,x} → ξ{x,x+1} for

all x ∈ V , where ξ = (ξz)z∈V ∪E is a realization of Ξ. Now it is clear that the shift S is

a measure preserving map with respect to the distribution of this family of Poisson

processes, since it maps vertices to vertices and edges to edges. Furthermore, since the

processes are all independent it follows immediately that (Ξ, S) is ergodic.

Now since (C,B) is constructed via the graphical construction we see that there must

exist a measurable function f from the state space of Ξ to {0, 1} such that

f(S−k(Ξ)) = 1{C{k},∅t 6=∅ ∀t≥0} = Yk

for every k ∈ Z. Note that by translation invariance, P(Y0 = 1) = P(Yx = 1) for all

x ∈ Z. Now if we assume that θπ(λ, r, {0}) > 0 we see that P(Y0 = 1) > 0 by Theorem

1.4.8. Then by Birkhoff’s mean ergodic theorem [Kal06, Theorem 9.6], it follows that

1

2n

n∑
x=−n

Yx =
1

2n

n∑
x=−n

f(S−k(Ξ))→ E[f(Ξ)] = P({0},∅)(Ct 6= ∅ ∀ t ≥ 0) > 0

almost surely. But this implies that almost surely there must exist a y for which Yy = 1.

Moreover, by additivity it follows that the event {CBn(x),∅
t 6= ∅ ∀t ≥ 0} occurs as soon

as the event {Yy = 1} occurs for some site in y ∈ Bn(x) which proves the statement.
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This approach can be adapted for more general graphs G = (V,E). For example if

we assume that V is a finitely generate group and G = (V,E) the Cayley graph of V .

Since V is equipped with a group action we can again define a shift operator Sx, which

maps y 7→ y + x, and thus adjust the proof with a multivariate version of the mean

ergodic theorem. See for example [Kal06, Theorem 9.9]. Note that Cayley graphs are

always vertex transitive, but not necessarily edge transitive.

5.2 Equivalent conditions for complete convergence

This section is dedicated to proving Theorem 1.4.15. Recall that c1(λ, ρ) is the solution

of (1.5), κ is the constant from Assumption 1.4.1 (ii) and ρ denotes the exponential

growth of the graph G. In this section we assume that λ, r > 0 and that the already

familiar growth condition c1(λ, ρ) > κ−1ρ is satisfied.

Therefore, the main goal is to show that the two conditions (1.8) and (1.9), which are

P
(C,B)
λ,r (x ∈ Ct i.o.) = θ(λ, r, C,B) (5.14)

for all x ∈ V , C ⊂ V and B ⊂ E and

lim
n→∞

lim sup
t→∞

Pλ,r(C
Bn(x),∅
t ∩Bn(x) 6= ∅) = 1 (5.15)

for any x ∈ V , are equivalent to complete convergence of the CPERE, i.e.

(CC,B
t ,BB

t )⇒ θ(C,B)ν + [1− θ(C,B)](δ∅ ⊗ π) as t→∞ (5.16)

for all C ⊂ V and B ⊂ E. We first show convergence of the marginals C and B and

then conclude that this already implies that the CPERE (C,B) convergences.

By Assumption 1.4.1 (i) we already know that BB
t ⇒ π as t→∞ for all B ⊂ E. Hence

it remains to show that the two conditions (5.14) and (5.15) imply that the infection

process C convergences weakly as t→∞. We show that for any C ⊂ V and B ⊂ E

Pλ,r(C
C,B
t ∩ C ′ 6= ∅)→ θ(λ, r, C,B)θπ(λ, r, C ′), (5.17)

as t→∞ for every C ′ ⊂ V finite, which suffices to conclude weak convergence of the

infection process C since the function class {1{· ∩C′ 6=∅} : C ′ ⊂ V finite} is convergence

determining. This actually turns out to be the major share of the workload. At last we
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show that the converse holds true as well, which provides that (5.16) implies (5.14) and

(5.15). Once we know that the marginals converge we show that this already implies

the convergence of the joint distribution, i.e. (Ct,Bt) converges weakly as t→∞.

As the readers familiar with the classical contact process might know a similar result

holds in the classical case as well. In fact the proof strategy to derive the equivalence

of the two conditions and convergence of the first marginal is inspired by the proof for

the classical contact process. The idea is basically the same, but since we introduced a

background we lose some important properties for which we need to formulate a work

around. Therefore, we briefly summarize the important points of this approach to give

the reader more intuition before we start with the actual proofs.

As in Remark 2.3.2 we denote by X a classical contact process. In the beginning of

Section 5.1 we already explained how to construct a dual process X̂t+s = (X̂t+s
u )u≤t+s

for X such that s 7→ P
(
Xs∩ X̂t

t−s = ∅
)

is a constant function on [0, t]. It is not difficult

to see that (XC
u )u≤s and the dual process (X̂C′,t+s

u )u≤t are independent, since they are

defined on disjoint sections of the graphical representation. Furthermore, it is also

know that the dual process X̂ has again the dynamics of a classical contact process.

These facts can be used to conclude that

P
(
XC
t+s ∩ C ′ 6= ∅) = P(XC

s ∩ X̂C′,t+s
t 6= ∅

)
=P
(
XC
s 6= ∅, X̂

C′,t+s
t 6= ∅

)
− P

(
XC
s 6= ∅, X̂

C′,t+s
t 6= ∅,XC

s ∩ X̂C′,t+s
t = ∅

)
=P
(
XC
s 6= ∅)P(XC′

t 6= ∅
)
− P

(
XC
s 6= ∅, X̂

C′,t+s
t 6= ∅,XC

s ∩ X̂C′,t+s
t = ∅

)
.

Now obviously P
(
XC
s 6= ∅

)
P
(
XC′
t 6= ∅

)
→ θ(C)θ(C ′) as s, t → 0, where θ(·) denotes

the survival probability of X. Graphically, the event in the last term means that two

independent contact processes which will not go extinct share no infected site after a

long time. If the graph is “nice” enough, it seems reasonable to assume that this gets

more unlikely as s, t grow larger such that

P
(
XC
s 6= ∅, X̂

C′,t+s
t 6= ∅,XC

s ∩ X̂C′,t+s
t = ∅

)
→ 0.

as s, t→∞. Note that this property is somewhat similar to the second condition (5.15)

and hence indicates its necessity.

The two major issues, or rather the two properties we do not have in our setting are:

1. For the CPERE the process (CC,B
u )u≤s and the dual process

(
ĈC′,B,t+s
u

)
u≤t are

not independent, since both processes depend on the background (BB
u )u≤t+s.
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2. For an arbitrary B ⊂ E the process
(
ĈC′,B,t+s
u , B̂B,t+s

u

)
u≤t+s is not necessarily a

CPERE again.

The approach to solve these two problems is to construct a process
(

qC, qB
)

which

satisfies these two properties and does not differ on a finite time horizon from
(
Ĉ, B̂

)
with an arbitrarily high probability. This is possible since we know by Proposition 5.1.2

that if B0 ∼ π, i.e. if we start in its invariant law, then the dual process
(
Ĉ, B̂

)
is

again a CPERE. So in case we do not start stationary, the idea is that we use the fact

that the background couples itself faster than the infection can spread through the

population, i.e.

P
(
∃s ≥ 0 : C̃C

t ⊆ Φt ∀t ≥ s
)

= 1,

where Φt denotes the set of all vertices whose attached edges are already permanently

coupled at time t. This holds by Proposition 4.1.4 since we assumed c1(λ, ρ) > κ−1ρ.

Thus, we can basically wait long enough for B to forget its initial configuration in the

relevant area and restart the process in its invariant law.

Now we start by formulating this in a rigorous manner. For that we first introduce

some shorthand notation to keep the formulas somewhat cleaner. For A ⊂ V we set

AE :=
{
{x, y} ∈ E : x ∈ A

}
,

AN :=
⋃
x∈A

BN(x),

ANE :=
{
{x, y} ∈ E : x ∈ AN

}
,

where BN (x) is the ball with centre x and radius N with respect to the graph distance

of G (see Section 2.4).

Let (qB
s/2
r )r≥s/2 denote a process with same dynamics as the background process B,

which is coupled with the original background in such a way that it starts at time s/2

with an initial distribution π and is assumed to be independent from (BB
r )r<s/2, but

from s/2 onwards it uses the same graphical representation as BB. For a visualization

see Figure 5.3.

Lemma 5.2.1. Let D ⊂ V , B ⊂ E be finite and fixed. Then for every ε > 0 there

exists an S > 0 such that for all s ≥ S

P
(

qBs/2
u ∩DE = BB

u ∩DE ∀u ≥ s
)
> 1− ε.
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Proof. Let x ∈ D. Let c > 0 be chosen such that cκ > ρ, then by Proposition 4.1.3

we know that P(∃s ≥ 0 : Bbc−1tc(x) ⊆ Φt ∀t ≥ s) = 1. Let S ′ > 0 be chosen such that

D ⊂ Bbc−1tc for all t ≥ S ′/2. By continuity of the measure P, for every ε > 0 there

exists a S > S ′ > 0 such that P
(
Bbc−1tc(x) ⊆ Φt,∀t ≥ S

2

)
> 1 − ε then this already

implies that for all s ≥ S

P(qBs/2
u ∩DE = BB

u ∩DE ∀u ≥ s) > 1− ε.

Let t, s > 0 and recall the dual process (ĈA,B,t+s
r )r≤t+s of (CC,B

r )r≤t+s. In the definition

of the dual process we fixed the background (BB
r )r≤t+s, reversed the graphical represen-

tation with respect to the time axis at the time point t+ s and fixed A as the initial

set of infected sites for the dual process.

Now let (qC
A,s/2,t+s
u )u≤t+s/2 be a process coupled to ĈA,B,t+s by using the same time-

reversed infection arrows and recovery symbols, but the background at time s/2 (foward

in time) is reset and independently drawn according to the law π, i.e. we use (qB
s/2
r )r≥s/2

instead of (BB
r )r≥s/2. Again see Figure 5.3 for a illustration.

(a) Visualization of the graphical representation

of (Cu,Bu)u≤t+s and the dual (Ĉt+s
u )u≤t+s.

(b) Visualization of the graphical representation

of (qB
s/2
u )s/2≤u≤t and ( qC

s/2,t+s
u )u≤t+s/2.

Figure 5.3: As usual the arrows and crosses denote the infection and recovery symbols.
The grey area visualize the closed edges according to B (left picture) and the light

green areas the closed edges according to qB (right picture). The red line visualizes the
infection path forward in time, i.e. C, and the blue line the infection path backward in
time, i.e. Ĉ in the left and qC on the right.
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Lemma 5.2.2. Let t > 0, A ⊂ V be finite and B ⊂ E. Then for every ε > 0 there

exists an S > 0 such that for all s > S,

P(ĈA,B,t+s
u = qCA,s/2,t+s

u ∀u ≤ t) > 1− ε.

Proof. First, by Lemma 5.1.8 we know that for every ε1 > 0 there exists a finite

D = D(t, ε1, A) ⊂ V such that

P(ĈA,B,t+s
u , qCA,s/2,t+s

u ⊂ D ∀u ≤ t) > 1− ε1.

Now for D given via Lemma 5.2.1 we obtain that for every ε2 > 0 there exists an S > 0

such that for every s > S

P(qBs/2
u ∩DE = BB

u ∩DE ∀u ≥ s) > 1− ε2.

Recall that DE ⊂ E was the set which contains every edge attached to D. But now we

see that

{ĈA,B,t+s
u , qCA,s/2,t+s

u ⊂ D ∀u ≤ t} ∩ {qBs/2
u ∩DE = BB

u ∩DE ∀u ≥ s}

⊆ {ĈA,B,t+s
u = qCA,s/2,t+s

u ∀u ≤ t}.

But by choosing ε1, ε2 ≤ ε
2

we see that P(ĈA,B,t+s
u 6= qC

A,s/2,t+s
u ∀u ≤ t) ≤ ε, which

yields the claim.

With Lemma 5.2.1 and Lemma 5.2.2 we formalized what we before described loosely

as (qC, qB) not differing from (Ĉ, B̂) with an arbitrarily high probability. Now we can

begin to show the convergence of the first marginal. We will split this in two steps by

first proving an upper bound and in the second step we use (5.14) and (5.15) to show

that this upper bound also acts as a lower bound which provides the desired result.

Proposition 5.2.3. Let t, s > 0, C,C ′ ⊂ V with C ′ being finite and B ⊂ E, then for

every ε > 0 there exist S, T > 0 such that

Pλ,r(C
C,B
s 6= ∅, ĈC′,B,t+s

t 6= ∅) ≤ θ(λ, r, C,B)θπ(λ, r, C ′) + ε

for all s > S, t > T . This implies in particular for any finite C ′ ⊂ V

lim sup
t→∞

Pλ,r(C
C,B
t ∩ C ′ 6= ∅) ≤ θ(λ, r, C,B)θπ(λ, r, C ′).
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Proof. By Proposition 5.1.2 it follows that

P(CC,B
t+s ∩ C ′ 6= ∅) = P(CC,B

s ∩ ĈC′,B,t+s
t 6= ∅) ≤ P(CC,B

s 6= ∅, ĈC′,B,t+s
t 6= ∅).

Thus, it suffices to show that for every ε > 0 there exist S, T > 0 such that

P(CC,B
s 6= ∅, ĈC′,B,t+s

t 6= ∅) ≤ θ(C,B)θπ(C ′) + ε

for all s > S and t > T . We denote the extinction time of the infection process C by

τex = τex(C,B) := inf{t > 0 : CC,B
t = ∅}.

First we observe that for C ′ ⊂ V finite that P(C′,π)(τex > t)→ θπ(C ′) as t→∞. Thus,

for every ε > 0 there exists a T > 0 such that |P(C′,π)(τex > t) − θπ(C ′)| < ε for all

t > T . So we fix t such that this is satisfied. Note that

P(C,B)(u < τex <∞) = 1− P(C,B)(τex ≤ u)− P(C,B)(τex =∞),

and thus it follows that limu→∞P
(C,B)(u < τex < ∞) = 0. Now we can use that

{CC,B
s 6= ∅} = {τex > s} to see that for every ε > 0 there exists an S1 > 0 such that

|P(τex > s/2, ĈC′,B,t+s
t 6= ∅)− P(CC,B

s 6= ∅, ĈC′,B,t+s
t 6= ∅)| ≤ P(s/2 < τex <∞) < ε,

(5.18)

for all s > S1, which implies that

P(CC,B
s 6= ∅, ĈC′,B,t+s

t 6= ∅) ≤ P(τex > s/2, ĈC′,B,t+s
t 6= ∅) + ε.

Applying Lemma 5.2.2 yields that for given ε > 0 there exists S2 > 0 such that

P(ĈC′,B,t+s
u = qCC′,s/2,t+s

u ∀u ≤ t) > 1− ε

for all s > S2, and thus for s > max(S1, S2)

P(CC,B
s 6= ∅, ĈC′,B,t+s

t 6= ∅) ≤ P(τex > s/2, qC
C′,s/2,t+s
t 6= ∅) + 2ε.

Furthermore, we know that for every ε > 0 there exists an S3 > 0 such that

|P(C,B)(τex > s/2)− θ(C,B)| < ε
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for all s > S3. Note that by construction (CC,B
r )r≤s/2 and (qC

C′,s/2,t+s
r )r≤t+s/2 are

independent, and thus

P(τex > s/2, qC
C′,s/2,t+s
t 6= ∅) = P(C,B)(τex > s/2)P(qC

C′,s/2,t+s
t 6= ∅)

= P(C,B)(τex > s/2)P(C′,π)(τex > t),

where we used in the second equality that
(

qC
C′,s/2,t+s
u , qB

s/2
t+s−u

)
u≤t+s/2 is again a CPERE

with intial distribution δC′ ⊗ π. Set κ := 4ε+ ε2. We obtain at last that for any t > T

and s > S := max(S1, S2, S3) (note that S depends on T ) we have

P(CC,B
s 6= ∅, ĈC′,B,t+s

t 6= ∅) ≤ P(C,B)(τex > s/2)P(C′,π)(τex > t) + 2ε

≤ θ(C,B)θπ(C ′) + κ,

which proves the claim.

The next step is to prove a lower bound. For that we need the following stopping time

τA,H(C,B) := inf{t ≥ 0 : (CC,B
t ,BB

t ) ⊃ (A,H)}, (5.19)

which is the first time that at least all sites in A are infected and all edges in H are

open.

Lemma 5.2.4. Let A,C ⊂ V and H,B ⊂ E be non-empty and A and H finite. Let

x ∈ C then

P(C,B)(τA,H <∞) ≥ P(C,B)(x ∈ Ct i.o.)

Proof. Suppose that π 6= δ∅. Otherwise P(C,B)(x ∈ Ct i.o.) = 0, and thus the inequality

is trivially true. First of all note that

{τA,H(C,B) <∞} = {(CC,B
t ,BB

t ) ⊃ (A,H) for some t ≥ 0}. (5.20)

Next we define the stopping times Tk = inf{t > Tk−1 + 1 : x ∈ Ct}, where T0 = 0.

Recall that Ft is the σ-algebra generated from all Poisson point processes used in the

graphical representation until time t. Let us assume that x ∈ C, since π 6= δ∅ and we

know that the background process is translation invariance, we can guarantee that

ε = P({x},∅)(C1 ⊇ A,B1 ⊇ H) > 0. This implies by monotonicity

P(CTk+1 ⊇ A,BTk+1 ⊇ H|FTk) ≥ ε almost surely on {Tk <∞}. (5.21)
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Set Ak := {CTk+1 ⊇ A,BTk+1 ⊇ H} ∈ FTk+1 ⊂ FTk+1
:= Gk+1 and then we see that

∞∑
k=0

P(Ak|Gk) =∞ almost surely on
∞⋂
k=0

{Tk <∞}.

Since Ak ∈ Gk+1 for all k ∈ N we can apply an extension of the Borel-Cantelli Lemma

[Dur19, Theorem 4.3.4] and we get that

{ ∞∑
k=0

P(Ak|Gk) =∞
}

= {Ak i.o.}.

Note that
⋂∞
k=1{Tk <∞} = {x ∈ Ct i.o.}. Hence, by (5.20) and (5.21) we get that

P(C,B)(τA,H <∞) ≥ P(C,B)({Ak i.o.} ∩ {x ∈ Ct i.o.}) = P(C,B)(x ∈ Ct i.o.).

Proposition 5.2.5. Let C ⊂ V and B ⊂ E. Suppose (5.14) and (5.15) are satisfied,

then

lim inf
t→∞

Pλ,r(C
C,B
t ∩ C ′ 6= ∅) ≥ θ(λ, r, C,B)θπ(λ, r, C ′).

for every C ′ ⊂ V finite.

Proof. Let A ⊂ V and H ⊂ E with A and H being finite sets. We can assume that

π 6= δ∅, since if π = δ∅, then θπ(C ′) = 0 for all C ′ ⊂ V finite, and thus the right hand

side is zero. Recall from (5.19) that the first time that at least all sites in A are infected

and all edges in H are open is denoted by τA,H(C,B). Furthermore, set σNA := τA,ANE
and τA := τA,∅. Now we see that

P(C,B)(Ct+s+u ∩ C ′ 6= ∅) ≥ P(C,B)(σNA < s,Ct+u+s ∩ C ′ 6= ∅)

= E(C,B)[1{σNA<s}P(Ct+u+s ∩ C ′ 6= ∅|FσNA )]

= E
[
1{σNA<s}

P
(C

σN
A
,B
σN
A

)
(Ct+u+(s−σNA ) ∩ C ′ 6= ∅

]
≥ P(C,B)(σNA < s) inf

r>t+u
P(A,ANE )(Cr ∩ C ′ 6= ∅),

(5.22)

where we used that (C,B) is a strong Markov process. As already mentioned before

one major issue is that in comparison to the classical case our duality is weaker in the

sense that Ĉ
C′,ANE ,t+u+r
t+u+r is not again a CPERE, and therefore our process is not self dual.

But now we show that the difference is not big if we choose t+ u large enough. Recall
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that Φt was the set of all vertices x such that all edges attached to x are contained in

the coupled region at time t. By Proposition 4.1.4 we know that

P(∃s > 0 : C̃A
t ⊂ Φt ∀t ≥ s) = 1,

and thus for every ε′ > 0 there exists an S > 0 such that

P(C̃A
t ⊂ Φt ∀t ≥ S) > 1− ε′.

As an application of Lemma 5.1.8 we find an N = N(S) ∈ N such that

P(C̃A
t ⊂ AN ∀t ≤ S) > 1− ε′.

Furthermore, by Lemma 3.2.5 there exists an M > N such that

P(B
AME
t = B

AME ∪B
t on ANE for all t ≤ S︸ ︷︷ ︸

:=ES(B,N,M)

) > 1− ε′

where B ⊂ E is chosen arbitrarily and ε′ is independent of the choice of B. Thus, we

can conclude for a given A ⊂ V that for every ε > 0 there exists an S = S(ε) > 0,

N = N(S) ∈ N and M > N such that

P({C̃A
t ⊂ Φt ∀t ≥ S, C̃A

t ⊂ AN ∀t ≤ S} ∩ ES(B,N,M)) > 1− ε

for all B ⊂ E. Note that ε depends on A. On this event the process CA,AME does not

differ from CA,AME ∪B for any B ⊂ E, since on this event the infection paths have either

not yet left AN and the edges in ANE will have the same state open or closed with the

two chosen initial configuration or the infection paths stay in Φ, the area where every

edge attached to an infected site has already been coupled. Thus, we get∣∣∣P(A,AME )(Cr ∩ C ′ 6= ∅)−
∫
P(A,AME ∪B)(Cr ∩ C ′ 6= ∅)π(dB)

∣∣∣ < ε. (5.23)

Furthermore, by monotonicity (see Lemma 3.4.1) it follows that

P(A,AME )(Cr ∩ C ′ 6= ∅) > P(A,π)(Cr ∩ C ′ 6= ∅)− ε.
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Using this and the fact that if the background is started stationary the CPERE is self

dual by Proposition 5.1.2, and therefore we get with (5.22) that

P(C,B)(Ct+s+u ∩ C ′ 6= ∅) ≥ P(C,B)(σNA < s) inf
r>t+u

(
P(C′,π)(A ∩Cr 6= ∅)− ε

)
.

Then, analogously to (5.22) by considering τD with D ⊂ V finite instead of σNA we can

find a similar lower bound for the last probability such that

P(C,B)(Ct+s+u ∩ C ′ 6= ∅) ≥ P(C,B)(σNA < s)P(C′,π)(τD < t) inf
r>u
P(D,∅)(A ∩Cr 6= ∅)− ε.

For A ⊂ V and B ⊂ E finite we know by Lemma 5.2.4 that

P(C,B)(τA,H <∞) ≥ θ(C,B),

and thus by letting s, t, u→∞ we see that

lim inf
t→∞

P(C,B)(Ct ∩ C ′ 6= ∅) ≥ θ(C,B)θπ(C ′) lim inf
t→∞

P(D,∅)(A ∩Ct 6= ∅)− ε.

Now for an arbitrary x ∈ V we choose A = D = Bn(x) and use (5.15) which means that

for all δ > 0 there exists n0 ∈ N such that lim inft→∞P
(Bn(x),∅)(Bn(x)∩Ct 6= ∅) > 1− δ

for all n > n0. Note that ε depends on Bn(x), which means we first need to choose n0

and then the parameter accordingly such that (5.23) holds for ε = δ and such that

lim inf
t→∞

P(C,B)(Ct ∩ C ′ 6= ∅) ≥ θ(C,B)θπ(C ′)− 2δ.

Since this holds for all δ > 0, the claim follows.

We showed one direction of the equivalence. Next we show the converse direction.

Proposition 5.2.6. Suppose (5.17) holds and assume that νλ,r 6= δ∅ ⊗ π, then (5.14)

and (5.15) are satisfied.

Proof. Note that νλ,r 6= δ∅ ⊗ π can only occur if π 6= δ∅. Choose C = C ′ = Bn and

B = ∅, then by (5.17) follows that limt→∞P
(Bn,∅)(Bn ∩ Ct 6= ∅) = θ(Bn, ∅)θπ(Bn).

Using Lemma 5.1.11 yields that the right hand side converges to 1 as n → ∞. This

proves (5.15). Now all what is left to show is (5.14). We see that

{Ct ∩ C ′ 6= ∅ i.o.} =
⋂
n∈N

{Cs ∩ C ′ 6= ∅ for some s ≥ n},
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and thus by continuity of the law P we get that

P(C,B)(Ct ∩ C ′ 6= ∅ i.o.) = lim
n→∞

P(C,B)(Cs ∩ C ′ 6= ∅ for some s ≥ n) ≥ θ(C,B)θπ(C ′),

where we again used (5.17). Now using the fact that P({y},∅)(x ∈ C1) > 0 for all x, y ∈ V
it follows analogously as in the proof of Lemma 5.3.3, that the event {x ∈ CC,B

t i.o.}
almost surely happens on {CC,B

t ∩ C ′ 6= ∅ i.o.}, and thus

P(C,B)(x ∈ Ct i.o.) ≥ θ(C,B)θπ(C ′).

Furthermore, if we choose C ′ = Bn and let n→∞, then Lemma 5.1.11 yields that

P(C,B)(x ∈ Ct i.o.) ≥ θ(C,B)

for all x ∈ V and C ⊂ V . Since the reversed inequality “≤” obviously holds as well,

this provides (5.14).

Since we have shown that the conditions (5.14) and (5.15) are equivalent to the fact

that the two marginal processes converge, the only thing left to show is that convergence

of the marginals already implies convergences of the joint distribution.

Proposition 5.2.7. Suppose that (5.17) holds, then for all C ⊂ V and B ⊂ E it

follows that

P
(C,B)
λ,r (Ct ∩ A 6= ∅,Bt ∩H 6= ∅)

→ θ(C,B)ν({(C ′, B′) : C ′ ∩ A 6= ∅, B′ ∩H 6= ∅})
(5.24)

as t→∞, for every A ⊂ V and H ⊂ E finite.

Proof. Let A,C ⊂ V and B,H ⊂ E be chosen arbitrary with A ⊂ V and H ⊂ E

finite. We consider these sets as fixed. We again exploit the duality relation we derived

in Proposition 5.1.2, which states that

P(CC,B
t+s ∩ A 6= ∅,BB

t+s ∩H 6= ∅) = P(CC,B
s ∩ ĈA,B,t+s

t 6= ∅,BB
t+s ∩H 6= ∅) (5.25)

where t, s > 0. Let τ = τex(C,B) denote the extinction time with initial configuration

C ⊂ V and B ⊂ E.
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Some simple calculations yield that

0 ≤P(CC,B
s ∩ ĈA,B,t+s

t 6= ∅,BB
t+s ∩H 6= ∅)− P(CC,B

s 6= ∅, ĈA,B,t+s
t 6= ∅,BB

t+s ∩H 6= ∅)

=P(CC,B
s 6= ∅, ĈA,B,t+s

t 6= ∅,CC,B
s ∩ ĈA,B,t+s

t = ∅,BB
t+s ∩H 6= ∅)

≤P(CC,B
s 6= ∅, ĈA,B,t+s

t 6= ∅,CC,B
s ∩ ĈA,B,t+s

t = ∅) (5.26)

=P(CC,B
s 6= ∅, ĈA,B,t+s

t 6= ∅)− P(CC,B
s ∩ ĈA,B,t+s

t 6= ∅).

Now we fix an arbitrary ε > 0. Then by a combination of Proposition 5.2.3 and (5.17)

we get that there exists a S1 > 0 and T > 0 such that

∣∣P(CC,B
s 6= ∅, ĈA,B,t+s

t 6= ∅)− P(CC,B
s ∩ ĈA,B,t+s

t 6= ∅)
∣∣ < ε

3

for all s > S1 and t > T . By using the duality relation (5.25) together with (5.26) we

can conclude that

∣∣P(CC,B
t+s ∩ A 6= ∅,BB

t+s ∩H 6= ∅)− P(CC,B
s 6= ∅, ĈA,B,t+s

t 6= ∅,BB
t+s ∩H 6= ∅)

∣∣ < ε

3

for all s > S1 and t > T . Furthermore, there exists an S2 = S2(C,B, ε) > 0 such that

|P(CC,B
s 6= ∅,ĈA,B,t+s

t 6= ∅,BB
t+s ∩H 6= ∅)

− P(τ > s/2, ĈA,B,t+s
t 6= ∅,BB

t+s ∩H 6= ∅)| <
ε

3

for s ≥ S2, which can be shown analogously to (5.18). In the last step we conclude

that there exists an S3 = S3(t, A,H, ε) > 0 such that for s ≥ S3∣∣P(τ > s/2,ĈA,B,t+s
t 6= ∅,BB

t+s ∩H 6= ∅)

− P(τ > s/2, qC
A,s/2,t+s
t 6= ∅, qB

s/2
t+s/2 ∩H 6= ∅)

∣∣ < ε

3
,

which follows as a combination of Lemma 5.2.1 and Lemma 5.2.2. Finally by putting

everything together and using the triangle inequality we get that for every t > T there

exists an S > 0 such that

∣∣P(CC,B
t+s ∩ A 6= ∅,BB

t+s ∩H 6= ∅)− P(τ > s/2, qC
A,s/2,t+s
t 6= ∅, qB

s/2
t+s/2 ∩H 6= ∅)

∣∣ < ε

for every s > S. To be precise one can choose S = max{S1, S2, S3}.
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This means that if we first let s→∞ and then t→∞, the two probabilities converge

to the same limit. So it suffices to show that

P(τ > s/2,qC
A,s/2,t+s
t 6= ∅, qB

s/2
t+s/2 ∩H 6= ∅)

→ θ(C,B)ν({(C,B) : C ∩ A 6= ∅, B ∩H 6= ∅})

as s, t→∞. Recall that we already concluded above that (CC,B
r )r<s/2 is independent

of (qC
A,s/2,t+s
r )r≤t+s/2 and it is also independent of (qB

s/2
r )r≥s/2. Thus, we get that

P(τ > s/2,qC
A,s/2,t+s
t 6= ∅, qB

s/2
t+s/2 ∩H 6= ∅)

=P(τ > s/2)P(qC
A,s/2,t+s
t 6= ∅, qB

s/2
t+s/2 ∩H 6= ∅).

Next we use that (qC
A,s/2,t+s
r , qB

s/2
t+s−r)r≤t is again a CPERE with initial distribution

δA ⊗ π, and thus by duality

P(qC
A,s/2,t+s
t 6= ∅, qB

s/2
t+s/2 ∩H 6= ∅) = P(V,π)(Ct ∩ A 6= ∅,Bt ∩H 6= ∅),

which converges to the desired limit since we have already shown that (δV ⊗π)T (t)⇒ ν

as t → ∞ by Lemma 5.1.5. The claim follows, since P(C,B)(τ > s/2) → θ(C,B) as

s→∞.

Note that analogously as before (5.24) is equivalent to complete convergence, i.e for

every initial configuration C ⊂ V and B ⊂ E

(CC,B
t ,BB

t )⇒ θ(C,B)ν + [1− θ(C,B)](δ∅ ⊗ π),

since the function class {1{ · ∩A 6=∅, ·∩H 6=∅} : C ′ ⊂ V,H ⊂ E finite} is convergence deter-

mining. Now we can conclude the main result of this chapter.

Proof of Theorem 1.4.15. The theorem follows as a combination of the four Propo-

sitions 5.2.3, 5.2.5, 5.2.6 and 5.2.7. To be precise Propositions 5.2.3 and 5.2.5 yield

that (5.14) and (5.15) imply the convergence of the first marginal, i.e. (5.17). But in

Proposition 5.2.7 we already concluded that (5.17) suffices to conclude weak conver-

gence of the CPERE, i.e. (5.24). At last Propostion 5.2.6 provides equivalence of the

conditions and complete convergence.
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5.3 Continuity of the survival probability

In this section we study continuity of the survival probability with respect to the

infection rate λ and recovery rate r. We start with determining on which regions of

the parameter space the functions

λ 7→ θ(λ, r, C,B) and r 7→ θ(λ, r, C,B)

are left or right continuous. Before we proceed we need the following result concerning

the limit of a sequence of monotone and continuous functions.

Lemma 5.3.1. Let f : R+ → [0, 1] and fn : R+ → [0, 1] for every n ≥ 1 with

limn→∞ fn(x) = f(x) for all x ∈ R+. Let fn be a continuous and monotone function for

all n ∈ N, and furthermore fn(x) ≥ fn+1(x) for all x ∈ R+. Then if fn is increasing

for all n ∈ N, it follows that f is right continuous and if fn is decreasing, then f is left

continuous.

Proof. Let (fn)n∈N be a sequence of increasing and continuous functions and let xn ↓ x.

We show that limn→∞ f(xn) = f(x). By our assumptions it is clear that (fn(xn))n∈N is

a decreasing sequence which is bounded from below by f(x), and thus the sequence

converge. Hence, it holds that limn→∞ fn(xn) ≥ f(x).

Suppose limn→∞ fn(xn) > f(x). Since (fn(xn))n∈N converges there must exist y > f(x)

such that limn→∞ fn(xn) = y. Since f is the pointwise limit of (fn)n there must exist

an m ∈ N such that fm(x) < y. Also fm is continuous and xn ↓ x. Thus, there must

exist k ∈ N such that fm(xk) < y. Now let l := max(k,m). Because of monotonicity it

follows fl(xl) < y, which is a contradictions, since (fn(xn))n∈N is strictly decreasing to

y, and therefore limn→∞ fn(xn) = f(x) but since fn(xn) ≥ f(xn) ≥ f(x) for all n ∈ N
it follows limn→∞ f(xn) = f(x). Note that we used here that f is monotone increasing,

which follows by the fact that (fn)n∈N is a sequence of monotone increasing functions,

and therefore the limit function f must also be monotone increasing.

If we assume fn is decreasing instead of increasing with a similar line of arguments

it follows that f must be left continuous, since for every sequence zn ↑ z we see that

(fn(zn))n∈N is a decreasing sequence.

As a direct consequence of this lemma we can conclude right continuity in the following

proposition.
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Proposition 5.3.2. Let C ⊂ V and B ⊂ E. Then, for r > 0 the function

λ 7→ θ(λ, r, C,B),

is right continuous on (0,∞) and for λ > 0 the function r 7→ θ(λ, r, C,B) is left

continuous on (0,∞).

Proof. By Lemma 3.4.4 we know that the function λ 7→ P
(C,B)
λ,r (Ct 6= ∅) is continuous

for any t ≥ 0 and also P
(C,B)
λ,r (Cs 6= ∅) ≥ P(C,B)

λ,r (Ct 6= ∅) if s ≤ t. Thus, we can conclude

that

P
(C,B)
λ,r (Ct 6= ∅) ↓ θ(λ, r, C,B) as t→∞,

by continuity of P. Since P
(C,B)
λ,r (Ct 6= ∅) is increasing with respect to the infection rate

λ, we can use Lemma 5.3.1 to conclude that λ 7→ θ(λ, r, C,B) is right continuous.

Analogously it follows that r 7→ θ(λ, r, C,B) is left continuous since P
(C,B)
λ,r (Ct 6= ∅) is

decreasing with respect to the recovery rate r.

The continuity from the respective other side is more difficult to prove. Before we

proceed with this we need the following somewhat technical result.

Lemma 5.3.3. Let (C,B) be a CPERE, ∅ 6= C ⊂ V be finite and B ⊂ E. Set

Dn,t(C,B) := {∃x ∈ V such that Bn(x) ⊆ CC,B
s for some s ≤ t}

for n ∈ N and t ≥ 0. In words Dn,t(C,B) is the event that for some s ≤ t there exists

a site x such that all sites in the ball Bn(x) with centre x are infected at time s. Then

lim
t→∞

P
(
Dn,t(C,B)

)
≥ θ(C,B) for all n ∈ N.

Proof. We can assume that π 6= δ∅ since otherwise the survival probability is 0

which makes the statement trivial. We omit for most parts of the proof the initial

configuration (C,B) since it remains unchanged throughout this proof. Note that since

Dn,t is increasing in t, it follows that limt→∞P(Dn,t) = P(Dn,∞). The idea of this proof

is that if a site x is infected at time k ∈ N, i.e. x ∈ Ck, the probability that all sites in

a radius of n get infected by time k + 1, i.e. Ck+1 ⊇ Bn(x), is positive for every fixed

n ∈ N. But if we assume that C survives we know that for every t ≥ 0 there exists an

x ∈ V such that x ∈ Ct and this will imply Pλ,r(Dn,∞) ≥ θ(λ, r) for every n ∈ N. In

fact

{Ct 6= ∅ ∀t ≥ 0 } = {∀k ∈ N0, ∃x ∈ V such that x ∈ Ck}
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since ∅ is an absorbing state.

Recall that Fk is the σ-algebra generated from the Poisson point processes Ξ used in

the graphical representation until time k. Then we set

ε = ε(n) = P({x},∅)(C1 ⊇ Bn(x)) > 0.

We see that P(Ck+1 ⊇ Bn(x)|Fk) ≥ ε almost surely on {x ∈ Ck}, where we used

monotonicity with respect to the initial configurations (see Lemma 3.4.1). This yields

that for any x∗ ∈ V

P
( ⋃
x∈V

{Ck+1 ⊇ Bn(x)}
∣∣∣Fk) ≥ P(Ck+1 ⊇ Bn(x∗)|Fk) ≥ ε.

almost surely on {x∗ ∈ Ck}. We set Ank+1 :=
⋃
x∈V {Ck+1 ⊇ Bn(x)} ∈ Fk+1 for k ∈ N0.

We see that

∞∑
k=0

P(Ank+1|Fk) =∞ a.s. on {∀k ∈ N0, ∃x ∈ V such that x ∈ Ck}.

Now analogous to Lemma 5.2.4 we can use the extension of the Borel-Cantelli Lemma,

found in [Dur19, Theorem 4.3.4] and get that

{ ∞∑
k=0

P(Ank+1|Fk) =∞
}

= {Ank i.o.}.

This implies {Ct = ∅ ∀t ≥ 0} ⊂ {Ak i.o.}. Obviously P(C,B)({Ank i.o.}) ≤ θ(C,B), and

thus with what we just shown it follows that actually P(C,B)({Ank i.o.}) = θ(C,B) holds.

This yields for all n > 0

Pλ,r(Dn,∞(C,B)) ≥ P(C,B)
λ,r (Ank i.o.) = θ(λ, r, C,B).

Finally, we are prepared to prove the second continuity property. Recall from (1.11)

that

Sc1 = {(λ, r) : ∃λ′ ≤ λ s.t. (λ′, r) ∈ S({x}, ∅) and c1(λ′, ρ) > κ−1ρ},

where S({x}, ∅) denotes the survival region for the initial configuration ({x}, ∅) defined

in (1.10), i.e. (λ, r) ∈ S({x}, ∅) if and only if θ(λ, r, {x}, ∅) > 0.
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Proposition 5.3.4. Let C ⊂ V , B ⊂ E and x ∈ V .

(i) Let r > 0. Then the function λ 7→ θ(λ, r, C,B) is left continuous, and thus

continuous, on {λ : (λ, r) ∈ S̊c1}.

(ii) Let λ > 0. Then the function r 7→ θ(λ, r, C,B) is right continuous, and thus

continuous, on {r : (λ, r) ∈ S̊c1}.

Proof. We assume that C ⊂ V is finite and non-empty. Otherwise the surival

probability is 0 or 1 and a constant function is obviously continuous. We only show (i)

since (ii) follows analogously, i.e only some minor changes are needed in the proof. We

fix r > 0 and assume that {λ : (λ, r) ∈ S̊c1} 6= ∅. Thus, let (λ, r) ∈ S̊c1 , fix some x ∈ V
and define τ = τn := inf{t ≥ 0 : ∃x ∈ V s.t. Ct ⊇ Bn(x)}, where n ∈ N. We see that

θ(λ) = P(Cs 6= ∅ ∀s ≥ 0) ≥ P({τ < t} ∩ {Cs 6= ∅ ∀s ≥ τ})

= E[1{τ<t}P(Cs 6= ∅ ∀s ≥ τ |Fτ )]

for any t ≥ 0, where we used again that if Ct 6= ∅ for t ≥ τ , then this must also be true

for all t ≤ τ . Now we use the fact that (C,B) is a Feller process, and see that

P(Cs 6= ∅ ∀s ≥ τ |Fτ ) = P
(
Cτ+s 6= ∅ ∀s ≥ 0

∣∣ (Cτ ,Bτ )
)
,

where we used the strong Markov property. From the definition of τ it is clear that

there exists an x ∈ V such that Cτ ⊇ Bn(x). Now we know that

P
(
Cτ+s 6= ∅ ∀s ≥ 0

∣∣ (Cτ ,Bτ )
)
≥ P(Bn(x),∅)(Cs 6= ∅ ∀s ≥ 0

)
,

and by translation invariance the right-hand side is independent of x. Thus we can

omit the site x and write Bn. So we get that

θ(λ) ≥ Pλ(Dn,t)P
(Bn,∅)
λ

(
Cs 6= ∅ ∀s ≥ 0

)
= Pλ(Dn,t)θ(λ,Bn, ∅),

where we used that {τ < t} = Dn,t. The set Dn,t is defined as in Lemma 5.3.3. Now

let λc(r) < λ′′ < λ′ < λ, and thus λ′, λ′′ ∈ {λ : (λ, r) ∈ S̊c1}. Then we see that

θ(λ′) ≥ Pλ′(Dn,t)θ(λ
′,Bn, ∅) ≥ Pλ′(Dn,t)θ(λ

′′,Bn, ∅),

where we used monotonicity which was shown in Lemma 3.4.2. Letting λ′ ↑ λ yields

θ(λ−) ≥ Pλ(Dn,t)θ(λ
′′,Bn, ∅), (5.27)



5.3 Continuity of the survival probability 109

where we used continuity of λ 7→ Pλ(Dn,t) which follows by Lemma 3.4.4. Recall that

(C,B) was the initial value of the CPERE, using Lemma 5.3.3 we get thet

lim
t→∞

Pλ
(
Dn,t(C,B)

)
≥ θ(λ,C,B),

and thus letting t→∞ in (5.27) yields

θ(λ−, C,B) ≥ lim
t→∞

Pλ(Dn,t(C,B))θ(λ′′,Bn, ∅) ≥ θ(λ,C,B)θ(λ′′,Bn, ∅).

Since we know that λ′′ ∈ {λ : (λ, r) ∈ S̊c1}, by Lemma 5.1.11 it follows that

θ(λ′′,Bn, ∅)→ 1 as n→∞.

Putting everything together yields θ(λ−, C,B) ≥ θ(λ,C,B). But since we know that the

function is monotone increasing in λ, this yields left continuity on the parameter set {λ :

(λ, r) ∈ S̊c1}. Right continuity, and therefore continuity follows by Proposition 5.3.2.

We end this section with the following proof:

Proof of Theorem 1.4.16. By Proposition 5.3.2 and Proposition 5.3.4 it follows that

(λ, r) 7→ θ(λ, r, C,B)

is separately continuous on the open set S̊c1 ⊂ R2, which means that the function is

continuous in all variable separately, i.e. λ 7→ θ(λ, r, C,B) and r 7→ θ(λ, r, C,B) are

continuous on {λ : (λ, r) ∈ Sc1} and {r : (λ, r) ∈ Sc1} respectively. Since the survival

probability θ is monotone in the infection rate λ and the recovery rate r it follows that

the function is jointly continuous on S̊c1 , see [KD69, Proposition 2].
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Chapter 6

CPDP on the d-dimenstional integer

lattice Zd

In the previous sections we considered the CPERE in a fairly general setting. In this

section we focus on the main example introduced in Example 1.1.2 (i). The CPDP

on the d-dimensional lattice with nearest neighbour structure. Therefore, V = Zd and

E = {{x, y} ⊂ Zd : ||x − y||1 = 1}, where || · ||1 denotes the 1-norm. Thus, in this

chapter the background B is assumed to be the dynamical percolation. Let us recall

that B is a Feller process with transitions

Bt− = B → B ∪ {e} at rate α and

Bt− = B → B\{e} at rate β,

where α, β > 0. In words this means that with rate α an edge is updated to the state

open and with rate β it is closed.

In Section 3.1 we discussed the graphical representation of spin systems. In case of

the dynamical percolation one can give a simpler choice of maps which yield the same

dynamics, which are

birthe(B) := B ∪ {x} and deathe(B) := B\{x}

for B ⊂ E and rates rbirthe = α and rdeathe = β for all e ∈ E. It is not difficult to

see that the resulting Feller process has the same transition rates as the Feller process

constructed with the maps upx,F and downx,F with respective rates rupx,F = α and

rdownx,F = β for all x ∈ V and F ⊂ Nx. The advantage of this simplification of the

graphical representation is that it is clear that in case of the dynamical percolation

111
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every edge updates independently of all other edges, i.e. the events {e ∈ Bt} and

{e′ ∈ Bt} are independent if e 6= e′. On the other hand from the dynamics it is also

clear that

P(e ∈ BB
t ) = 1{e∈B} exp(−(α + β)t) +

α

α + β
(1− exp(−(α + β)t))→ α

α + β
,

as t→∞. The first summand is the probability that no update event occurred at e,

and thus for e to be open it must already hold that e ∈ B. The second summand is

the probability that the edge is in the state open conditioned on the event that the

edge was already updated at least once. This shows that the invariant law of B is πα,β,

under which the state of every edge is independent and it is open with probability α
α+β

.

Not surprisingly this means that the invariant law π = πα,β depends on the parameters

α and β.

Now we turn our attention to the main objective of this chapter, which is to provide an

oriented site percolation model which is coupled to the CPDP in such a way that the

percolation model survives if and only if the infection process of the CPDP survives.

The strategy of this coupling is not new. We define so called “good” blocks, which satisfy

certain desirable properties guaranteeing survival throughout a large space-time box

and also let the process end in a advantageous state such that it can survive throughout

the next good blocks with high probability. Using these good blocks we construct an

oriented site percolation on a “macroscopic” grid, where the sites correspond to the

space-time boxes.

As already mentioned, this particular block construction was initially developed by

[BG90] for the classical contact process, which they then used to show that the contact

process dies out at criticality. It can also be used to show complete convergence and

an asymptotic shape theorem. We mainly follow [Lig13, Part I.2], since he describes a

version of this construction in a neat and detailed manner. We are not the first ones to

adapt these techniques to a variation of the contact process. This was already done by

several people, for example the already mentioned works [Rem08] and [SW08] did this

for a contact process with varying recovery rates and in [Des14] this was done for a

contact process with ageing.

This chapter is arranged as follows: In Section 6.1 we will introduce two finite space-time

conditions and show that if survival of the CPDP is possible, i.e. a positive survival

probability, this implies already that these conditions are satisfied. We use these results

to construct the oriented site percolation previously mentioned in Section 6.2. The
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so constructed coupling yields the equivalence of the finite space-time condition and

the possibility of survival. At last we use this comparison tool in Section 6.3, where

we prove the equivalent conditions for complete convergence, i.e. that (1.8) and (1.9)

are satisfied. Therefore, we can use Theorem 1.4.15 to conclude that for the CPDP

complete convergence holds. Furthermore, we will also show that the CPDP dies out

at criticality. This enables us to show continuity of the survival probability.

6.1 A finite space-time condition which is equivalent to

survival of the CPDP

In this section we formulate the aforementioned finite space-time conditions, which we

will show to be equivalent to survival of the CPDP. For this, we introduce a truncated

version of the CPDP on a finite space-time box. For an arbitrary but fixed L ∈ N set

VL := Zd ∩ [−L,L]d and EL := {e : e ∩ VL ∈ E}

and denote this truncated version by (LC, LB). This process can again be defined via

a graphical representation with the difference that we only consider the finite graph

GL = (VL, EL) instead of G. Therefore, only flip events influencing edges in EL are

considered and for the infection process we only consider recovery symbols on sites

x ∈ [−L,L]d ∩ Zd and infection events which emanate from a site x ∈ (−L,L)d ∩ Zd.

Remark 6.1.1. Note that we abuse notation slightly in the way that if we say (LC, LB)

has initial configuration C ⊂ V and B ⊂ E, we instead consider C ∩ VL and B ∩ EL
as the initial configuration. Furthermore, we often consider all sites to be initially

infected in a box [−n, n]d ∩ Zd to keep the formulas somewhat “cleaner” we omit the

intersection with Zd and write for example C
[−n,n]d,B
t instead of C

[−n,n]d∩Zd,B
t .

Now we are ready to formulate the above mentioned conditions on the finite space-time

box [−L,L]d × [0, T + 1], where T > 0. For that we need to consider the events

A1 = A1(n, L, T ) :=
{
L+nC

[−n,n]d,∅
T+1 ⊃x+ [−n, n]d for some x ∈ [0, L)d

}
, (6.1)

A2 = A2(n, L, T ) :=
{
L+2nC

[−n,n]d,∅
t+1 ⊃x+ [−n, n]d for some 0 ≤ t < T

and x ∈ {L+ n} × [0, L)d−1
}
. (6.2)
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In words the event A1 states if we start the truncated CPDP the initial configuration

([−n, n]d, ∅) we find a spatial shifted version of the box [−n, n]d at the top of a bigger

space-time box [−(L+ n), L+ n]d × [0, T + 1]. On the other hand the event A2 states

that we instead find a spatial shifted version of the box [−n, n]d at the “right” boundary,

in direction of the first coordinate, of the bigger space-time box. In broad terms one

could say that these events guarantee that throughout this big space-time box the

infections survives at least as “strong” as it started. We illustrate the cross section of

these events in the direction of the first coordinate axis of the two events in Figure 6.1.

Figure 6.1: Illustration of the events in (6.1) and (6.2)

The finite space-time condition, which we will impose are that we can choose the

parameters n, L and T in such a way that these events happen with “high” probability.

Condition 6.1.2. For all ε > 0 there exist n, L ≥ 1 and T > 0 such that

P(A1) > 1− ε and P(A2) > 1− ε.

The goal of this section is to show that if survival is possible, i.e. θ(λ, r, α, β, {0}, ∅) > 0,

then Condition 6.1.2 is satisfied. This takes some effort to prove. We start by showing

an approximation result for the survival probability.

Proposition 6.1.3. For every B ⊂ E, N ≥ 1 and C ⊂ Zd finite

lim
t→∞

lim
L→∞

P(C,B)(| LCt| ≥ N) = P(C,B)(Ct 6= ∅ ∀t ≥ 0).

Proof. Recall that C̃ denotes the classical contact process without recovery. For a

given t ≥ 0, by Lemma 5.1.8 it follows that for any ε > 0 there exists a finite D ⊂ V

such that

P(C̃C
t ⊂ D) > 1− ε
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Recall that DE denotes the set of all edges which are attached to a site in D. Now

let L0 ∈ N be large enough such that D ⊂ VL and DE ⊂ EL for all L ≥ L0. Since we

consider a dynamical percolation as background it follows LBB
s = BB

s on DE for all

s ≥ 0, since edges do not interact with each other. This implies that

P(LCC,B
t = CC,B

t ) > 1− ε

for all L > L0. Therefore, we get that for every ε > 0 there exist an L0 ∈ N such that

|P(C,B)(|Ct| ≥ N)− P(C,B)(| LCt| ≥ N)| < ε

for all L > L0. This implies limL→∞P
(C,B)(| LCt| ≥ N) = P(C,B)(|Ct| ≥ N). Hence, it

remains to show that

lim
t→∞

P(C,B)(|Ct| ≥ N) = P(C,B)(Ct 6= ∅ ∀t ≥ 0).

The idea is to split this up and show for all N ≥ 1,

lim
t→∞

P(C,B)(|Ct| ≥ N,Cs = ∅ for some s > 0) = 0, (6.3)

lim
t→∞

P(C,B)(|Ct| ≥ N,Cs 6= ∅ ∀s > 0) = P(C,B)(Ct 6= ∅ ∀t > 0). (6.4)

Now (6.3) follows immediately by Fatou’s lemma, since we get that

lim sup
t→∞

P(C,B)(|Ct| ≥ N,Cs = ∅ for some s > 0)

≤E(C,B)
[

lim sup
t→∞

1{|Ct|≥N,Cs=∅ for some s>0}

]
= 0.

Note that obviously the integrand convergences to 0 pointwise, as ∅ is an absorbing

state.

Next we see that by the martingale convergence theorem

P(Cs,Bs)(Ct 6= ∅ ∀t ≥ 0) = P(Ct 6= ∅ ∀t ≥ 0|Fs)→ 1{Ct 6=∅ ∀t≥0} (6.5)

as s→∞ almost surely, where the first equation follows by the Markov property and

for the limit we used that the event of survival is a tail event, i.e. measurable by the

terminal σ-algebra.

Let us assume that at time s there are N infected sites. Then the probability that all
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these n sites recover before from any of these N sites an outwards pointing infection

arrow occurs is
(

r
r+2dλ

)N
. This implies due to the Markov property that

P(Cs,Bs)(Ct 6= ∅ ∀t ≥ 0) ≤ 1−
( r

r + 2dλ

)|Cs|
. (6.6)

Now note that to show (6.4) it suffices to show that

lim
t→∞
|Ct| =∞ almost surely on {Ct 6= ∅ ∀t ≥ 0}.

We show this by contradiction by assuming that

P(C,B)
(

lim
t→∞
|Ct| 6=∞, Ct 6= ∅ ∀t ≥ 0

)
> 0. (6.7)

Now for every ω ∈ {limt→∞ |Ct| 6=∞} we find a M(ω) > 0 and a sequence (τn(ω))n∈N

such that τn(ω) ≤ τn+1(ω), τn(ω) → ∞ as n → ∞ and |Cτn(ω)| < M(ω). For every

ω ∈ {limt→∞ |Ct| =∞} set τn(ω) = n. But this yields for ω ∈ {limt→∞ |Ct| 6=∞} that

P(Cτn ,Bτn )(Ct 6= ∅, ∀t ≥ 0)(ω) ≤ 1−
( r

r + 2dλ

)M(ω)

< 1,

for every n ≥ 1. Letting n → ∞ yields together with (6.5) a contradiction to (6.7).

Thus the proof is complete.

Let us recall that a measure µ is said to have positive correlations if∫
fgdµ ≥

∫
fdµ

∫
gdµ (6.8)

for all increasing functions f and g. As already mentioned (LC, LB) is constructed via

a graphical representation, and thus it is also a Feller process. Let

q∗ :
(
P(VL)× P(EL)

)2 → R+

denote the transition rates of (LC, LB). Now we can use [Lig12, Theorem II.2.14].

Preceding this theorem it is nicely described that for interacting particle systems on

finite state spaces this theorem ensures that

q∗((C,B), (C ′, B′)) > 0⇒ (C,B) ⊃ (C ′, B′) or (C,B) ⊂ (C ′, B′)

⇔ µTL(t) has positive correlation whenever µ does,
(6.9)
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where TL denotes the Feller semigroup of (LC, LB). This is easy to check for (LC, LB),

since every event in the graphical representation only affects one site or edge at a time.

Proposition 6.1.4. For every n,N ≥ 1 and L ≥ n,

P([−n,n]d,∅)(| LCt ∩ [0, L)d| ≤ N) ≤
(
P([−n,n]d,∅)(| LCt| ≤ 2dN)

)2−d
.

Proof. Let us define X1 := | LC
[−n,n]d,∅
t ∩ [0, L)d| and X2, . . . , X2d analogously for the

other orthants inRd. ObviouslyX1, . . . , X2d are identically distributed random variables.

Furthermore, as functions of LC
[−n,n]d,∅
t the Xm are increasing functions for every m ∈

{1, . . . , 2d}. Thus, since (6.9) proves that the measure P([−n,n]d,∅)((LCt, LBt) ∈ ·
)

has

positive correlations, (6.8) yields that the events ({Xm ≤ N})m∈{1,...,2d} are positively

correlated. This implies

P
(∣∣

LC
[−n,n]d,∅
t

∣∣ ≤ 2dN
)
≥ P

(
X1 + · · ·+X2d ≤ 2dN

)
≥ P

( 2d⋂
m=1

{Xm ≤ N}
)
≥
(
P(X1 ≤ N)

)2d
.

For L ∈ N and T ≥ 0 we set

S(L, T ) := {(x, t) ∈ Zd × [0, T ] : ||x||∞ = L}.

This is the union of all lateral faces of the space-time box [−L,L]d × [0, T ]. Now we

fix a C ⊂ (−L,L)d ∩ Zd. We want to consider all points in S(L, T ) which can be

reached from C through an ∅-infection path, i.e. an infection path which starts with

the background in state ∅.

Let us define NC
∅ (L, T ) to be the maximal number of points in any D ⊂ S(L, T )∩LCC,∅,

where D has the property that every two points with the same spatial coordinate

(x, t1) ∈ D and (x, t2) ∈ D satisfy |t2 − t1| ≥ 1. Obviously subsets which satisfy this

property exist. Since S(L, T ) is bounded every subset which satisfies this property can

only contain finitely many points, and therefore the maximal number also exists. Of

course there might be more than one subset whose cardinality is equal to the maximal

number of points.

The next result provides us with a connection of the extinction probability and having

“few” infected points at the top and lateral faces of a large space-time box.
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Lemma 6.1.5. Let Lj ↑ ∞ and Tj ↑ ∞. Then for all M,N ≥ 1 and finite C, we have

lim sup
j→∞

P(NC
∅ (Lj, Tj) ≤M)P(C,∅)(| LjCTj | ≤ N) ≤ P(C,∅)(Ct = ∅ for some t ≥ 0)

Proof. Let FL,T be the σ-algebra generated by the Poisson point process Ξ of the

graphical representation restricted to VL × [0, T ] and EL × [0, T ]. Let us assume that

L ≥ 1 is large enough such that C ⊂ (−L,L)d ∩ Zd and we already know that

P(C,∅)(Ct = ∅ for some t > 0|FL,T ) ≥
( r

r + 2dλ

)N
exp(−4dλM) > 0

almost surely on {NC
∅ (L, T ) ≤M, | LCC,∅

T | ≤ N}.
(6.10)

Note that we show (6.10) in the second part of the proof.

Then as in the proof of Proposition 6.1.3 we will make use of the martingale convergence

theorem together with using positive correlations of the appropriate events as in

Proposition 6.1.4. Let us fix arbitrary M,N ≥ 0 and set

G := {CC,∅
t = ∅ for some t > 0}

Hj := {NC
∅ (Lj, Tj) ≤M, | LjC

C,∅
Tj
| ≤ N}

for all j ≥ 0. Then again by the martingale convergence theorem we get that

P(G|FLj ,Tj)→ 1G almost surely as j →∞.

Now equation (6.10) implies that on Hj the conditional probability P(G|FLj ,Tj) is

bounded from below by a positive constant which is independent of j. Thus, 1G =

limj→∞P(G|FLj ,Tj) > 0 on {Hj i.o.}, which implies that {Hj i.o.} ⊂ G and therefore

lim sup
j→∞

P(Hj) ≤ P(G).

Now we only need to use positive correlations again in order to see that

P(NC
∅ (L, T ) ≤M, | LCC,∅

T | ≤ N) ≥ P(NC
∅ (L, T ) ≤M)P(| LCC,∅

T | ≤ N).

Then putting the two pieces together proves the claim.

Now it remains to show (6.10). We consider the infected sites at the “top” of the

space-time box, i.e. the set LCC,∅
T . Then by the same argument used to obtain (6.6) we



6.1 A finite space-time condition which is equivalent to survival of the CPDP 119

can conclude that the probability that all infections originating from LCC,∅
T conditional

on | LCC,∅
T | = N go extinct, is bounded from below by

(
r

r+2dλ

)N
. Here we used that for

x, y ∈ Zd the random sets {t ≥ 0 : (coopx,y, t) ∈ Ξinf} and {t ≥ 0 : (coopy,x, t) ∈ Ξinf}
are independent.

Now let us consider the time lines {x} × [0, T ] above (x, 0), where ||x||∞ = L and let

(x, s1), . . . , (x, sn) ∈ {x} × [0, T ]

be points of a maximal set of points on this time line contained in S(L, T ) ∩ LCC,∅

which satisfy that each pair is separated by at least the distance 1, where n = n(x).

Assume that n ≥ 1 and let

I :=
n⋃
i=1

({x} × (si − 1, si + 1)) ∩ ({x} × [0, T ]).

Now all infected points in {x} × [0, T ] are contained in I, i.e. if x ∈ LCC,∅
s for s ≤ T

then (x, s) ∈ I. Otherwise there would exist a point (x, u) ∈ ({x} × [0, T ]) ∩ LCC,∅

such that |u− si| > 1 for every i ∈ {1, . . . n}, which would violate the assumption of

maximality. The Lebesgue measure of the time coordinate of I is at most 2n. Let us

denote by Ax the event that no infection arrow of x emanates from I towards any of its

2d neighbors. The probability P(Ax) is bounded below by e−4dnλ. On the other hand,

we already concluded that the complement of I with respect to the time line {x}× [0, T ]

can contain no infected space-time point, so that any infection arrow emanating from

it cannot contribute to survival of the infection. Note that the initial set of infections

is contained in the large space-time box.

The events of the Poisson point processes used in the graphical representation which

happen before and after T are independent, since they take place on disjoint parts.

This means that the contributions of the points in LCC,∅
T and the contributions of the

several time lines
⋂
x:||x||∞=LAx are independent. Also note that the events Ax are

independent and
∑

x:||x||∞=L n(x) = NC
∅ (L, T ). Thus, we get that

P(C,∅)(Ct = ∅ for some t > 0|FL,T ) ≥
( r

r + 2dλ

)|LCC,∅T |
exp(−4dλ|NC

∅ (L, T )|),

which implies (6.10). We want to remark here on that
⋂
x:||x||∞=LAx the infection

cannot leave the large space time box before T , i.e. LCC,∅
t = CC,∅

t for t ≤ T . Therefore,

the lower bound on extinction of LCC,∅ is also a lower bound for extinction of CC,∅.
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Set for L ∈ N and T > 0

S+(L, T ) := {(x, s) ∈ Zd × [0, T ] : x1 = +L, xi ≥ 0 for 2 ≤ i ≤ d}.

This is the intersection of one particular lateral face of the box [−L,L]d× [0, T ] with the

first orthant. Let C ⊂ (−L,L)d ∩ Zd. Similar as before let NC
+,∅(L, T ) be the maximal

number of points in any subset D ⊂ S+(L, T ) ∩ LCC,∅ such that the points fulfill the

following property: If (x, t1) ∈ D and (x, t2) ∈ D are any two points with the same

spatial coordinate, then |t2 − t1| ≥ 1.

Proposition 6.1.6. For every n,M ≥ 1 and L ≥ n,

(
P(|N [−n,n]d

+,∅ (L, T )| ≤M)
)d2d ≤ P(|N [−n,n]d

∅ (L, T )| ≤Md2d)

Proof. Note that S(L, T ) consists of 2d-many lateral faces and there exist 2d orthants.

So if we take every non-empty intersection of a lateral faces and an orthants we

decompose S(L, T ) in d2d disjoint hypersurfaces. Next let X1, . . . , Xd2d be the maximal

number of infected points contained in the those hypersurfaces, for example X1 =

NC
+,∅(L, T ). Analogously to Proposition 6.1.4 we obtain that

(
P(|N [−n,n]d

+,∅ (L, T )| ≤M)
)d2d ≤ P

( d2d⋂
k=1

{Xm ≤M}
)
.

Now we know that on the event on the right-hand side each of the d2d many disjoint

parts of the lateral sides cannot contain more than M elements. Thus, if we add all

parts together we know that S(L, T ) cannot contain more than Md2d many infected

space-time points on this event and this implies the claim.

Finally we are able to show the first direction of the desired equivalence.

Theorem 6.1.7. Suppose θ(λ, r, α, β, {0}, ∅) > 0, then Condition 6.1.2 is satisfied.

Proof. The proof consists of three parts. First we derive some bounds on the proba-

bilities of crucial events and then we use these results to derive the first and second

bound of Condition 6.1.2 successively.

Let 0 < δ < 1. We will later on specify how to choose δ exactly. By Lemma 5.1.11 we

know that there exists an n = n(δ) such that

P(C
[−n,n]d,∅
t 6= ∅ ∀t ≥ 0) ≥ 1− δ2. (6.11)
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Given n we can choose N ′ = N ′(n, δ) such that(
1− P

(
n+1C

{0},∅
1 ⊃ [−n, n]d

))N ′
< δ, (6.12)

since P
(
n+1C

{0},∅
1 ⊃ [−n, n]d

)
> 0. In the next step we choose N = N(N ′) large

enough such that for A ⊂ Zd with |A| > N , there exists D = D(A) such that D ⊂ A

with |D| > N ′ and ||x− y||∞ ≥ 2n+ 1 for all x, y ∈ D with x 6= y. In words, N needs

to be large enough such that any subset, of size at least N contains at least N ′ elements

that are all spaced a distance 2n+ 1 apart. Later on we will consider the probability

a := P(there exist ∅-infection paths contained in [0, 2n]× [−n, n]d−1 × [0, 1]

from (0, 0) to every point in [0, 2n]× [−n, n]d−1 × {1}) (6.13)

where it is clear that a > 0. We choose M ′ = M ′(n, δ) such that

(1− a)M
′
< δ. (6.14)

Then choose M = M(M ′) such that if F ⊂ Zd ×R+ is a finite set with |F | ≥M and

the distance of points with the same spatial coordinates is at least one, there exists

an H = H(F ) with H ⊂ F and |H| ≥ M ′ such that for two points (x, t) ∈ H and

(y, s) ∈ H it holds that either

x = y, |t− s| ≥ 1 or ||x− y||∞ ≥ 2n+ 1. (6.15)

Now it obviously holds that 1− δ < 1− δ2 and we know from Proposition 6.1.3 and

(6.11) that

lim
t→∞

lim
L→∞

P([−n,n]d,∅)(| LC
[−n,n]d,∅
t | ≥ 2dN) = P(C

[−n,n]d,∅
t 6= ∅ ∀t ≥ 0) ≥ 1− δ2. (6.16)

Next we will construct two strictly increasing sequences (Tk)k≥0 and (Lk)k≥0 such that

Tk, Lk ↑ ∞ and

P(| LkC
[−n,n]d,∅
Tk

| > 2dN) = 1− δ (6.17)
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for all k ≥ 0. But to construct these sequences we need two more properties. Since

(LCt, LBt) is a Feller process, we know that

t 7→ P(| LC
[−n,n]d,∅
t | > 2dN) is continuous (6.18)

and since the contact process on a finite graph dies out almost surely, and therefore

also a CPDP on a finite graph, we can conclude that

lim
t→∞

P(| LC
[−n,n]d,∅
t | > 2dN) = 0. (6.19)

First by (6.16) there exist a T ′0 > 0 such that

lim
L→∞

P(| LC
[−n,n]d,∅
t | > 2dN) > 1− δ (6.20)

for all t ≥ T ′0. Obviously there exists an L0 ∈ N such that

P(| L0
C

[−n,n]d,∅
T ′0

| > 2dN) > 1− δ.

Now we keep L0 fixed, then by (6.18) and (6.19) it follows that there exists a T0 > T ′0

such that (6.17) holds for k = 0. Now we define the sequences recursively. Now choose

T ′1 > T0 + 1. Since in particular T ′1 > T ′0 by (6.20) it follows that

lim
L→∞

P(| LC
[−n,n]d,∅
T ′1

| > 2dN) > 1− δ.

Again there exists an L′1 such that

P(| L′1C
[−n,n]d,∅
T ′1

| > 2dN) > 1− δ

Now set L1 = max(L′1, L0 + 1), note that by monotonicity the strict inequality still

holds with L1 instead of L′1. Analogously as before by (6.18) and (6.19) we find an

T1 > T ′1 such that (6.17) holds for k = 1. We can repeat this procedure recursively

such that (6.17) holds for all k ≥ 0.

Using this particular choice of Lk and Tk’s together with Lemma 6.1.5 yields that for

some k ≥ 0

δP
(
N

[−n,n]d

∅ (Lk, Tk) ≤Md2d
)

=P
(
N

[−n,n]d

∅ (Lk, Tk) ≤Md2d
)
P
(
| LkC

[−n,n]d,∅
Tk

| ≤ 2dN
)

≤P
(
C

[−n,n]d,∅
t = ∅ for some t ≥ 0

)
+ δ2 < 2δ2,
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where we used (6.11) in the last inequality. Thus,

P
(
N

[−n,n]d

∅ (Lk, Tk) ≤Md2d
)
< 2δ (6.21)

for some k ≥ 0. Now letting T = Tk and L = Lk for this k we get by using Proposition

6.1.4 and 6.1.6 that

P
(
| LC

[−n,n]d,∅
T ∩ [0, L)d| ≤ N

)
≤
(
P
(
| LC

[−n,n]d,∅
T | ≤ 2dN)

)2−d
,

P
(
|N [−n,n]d

+,∅ (L, T )| ≤M
)
≤
(
P
(
|N [−n,n]d

∅ (L, T )| ≤Md2d
))d−12−d

,

which implies due to (6.17) and (6.21) that

P(| LC
[−n,n]d,∅
T ∩ [0, L)d| > N) ≥ 1−

(
P(| LC

[−n,n]d,∅
T | ≤ 2dN)

)2−d
= 1− δ2−d , (6.22)

P(|N [−n,n]d

+,∅ (L, T )| > M) ≥ 1−
(
P(|N [−n,n]d

∅ (L, T )| ≤Md2d)
) 1

d2d > 1− (2δ)
1

d2d . (6.23)

Now we attend to the first inequality in Condition 6.1.2. Let us define for every D ⊂ V

and T > 0,

W T
D = {∃x ∈ D such that there are ∅-infection paths from (x, T ) to every

(y, T + 1) with y ∈ (x+ [−n, n]d) that stay in (x+ [−n, n]d)× (T, T + 1]}.

Now let A ⊂ [0, L)d with |A| > N . Recall that D(A) is a subset of A containing at

least N ′ elements, which are all spaced a distance 2n+ 1 apart. We see that for any

such A

{| LC
[−n,n]d,∅
T ∩ [0, L)d| > N, LC

[−n,n]d,∅
T ∩ [0, L)d = A} ∩W T

D(A)

⊂{L+nC
[−n,n]d,∅
T+1 ⊇ x+ [−n, n]d for some x ∈ [0, L)d}. (6.24)

The inclusion holds since the first event on the left-hand side guarantees that at time

T more than N sites contained in [0, L)d are infected and the second event guarantees

that one of the infected sites x ∈ D(A) infects x + [−n, n]d. Also by the restrictions

imposed in the event it is clear that the paths stay in the space box [−(n+ L), n+ L]d.

Let x1, x2 ∈ D(A) with x1 6= x2. Note that by definition of W T
D(A) and D(A) it follows

that for i = 1, 2 the events that (xi, T ) infect the whole set xi + [−n, n]d at time T + 1
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are independent since the paths must be contained in (xi + [−n, n]d)× (T, T + 1]. Now

for every A ⊂ [0, L)d with |A| > N by choice of D(A) and N ′ with (6.12) we know that

P
(
W T
D(A)

∣∣FT ) = P
(
W T
D(A)

)
> 1−

(
1− P(n+1C

{0},∅
1 ⊃ [−n, n]d)

)N ′
> 1− δ. (6.25)

Thus, P
(
W T
D(A)

∣∣FT ) > 1 − δ. Note that we used that W T
D(A) only depends on the

graphical representation on the time interval (T, T + 1], since disjoint parts of the

graphical representation are independent, W T
D(A) is independent of FT . Obviously we

have that ⋃
A⊆[0,L)d

{| LC
[−n,n]d,∅
T ∩ [0, L)d| > N, LC

[−n,n]d,∅
T ∩ [0, L)d = A}

={| LC
[−n,n]d,∅
T ∩ [0, L)d| > N}.

(6.26)

Now we choose an arbitrary but fixed subset A′ ⊂ [0, L)d with |A′| > N . By using

(6.24), (6.25), (6.26) and the just mentioned independence of disjoint parts of the

graphical representation we obtain

P
(
L+nC

[−n,n]d,∅
T+1 ⊃ x+ [−n, n]d for some x ∈ [0, L)d

)
≥P
( ⋃
A⊆[0,L)d

{| LC
[−n,n]d,∅
T ∩ [0, L)d| > N, LC

[−n,n]d,∅
T ∩ [0, L)d = A} ∩W T

D(A)

)
=

∑
A⊆[0,L)d

E
(
1
{|LC

[−n,n]d,∅
T ∩[0,L)d|>N,LC

[−n,n]d,∅
T ∩[0,L)d=A}

P(W T
D(A)|FT )︸ ︷︷ ︸
>1−δ

)
≥P
(
| LC

[−n,n]d,∅
T ∩ [0, L)d| > N

)
(1− δ).

By using (6.22) we get

P
(
L+nC

[−n,n]d,∅
T+1 ⊃ x+ [−n, n]d for some x ∈ [0, L)d

)
> (1− δ)(1− δ2−d).

By an adequate choice of δ we obtain the first inequality of Condition 6.1.2. Of course

this must be done in accordance with the second inequality, which we attend to next.

First of all let us recall that N
[−n,n]d

+,∅ (L, T ) denotes the maximal number of infected time

points in the intersection of the first orthant and the lateral face with the first space

coordinate being L (see right before Proposition 6.1.6). Let {(xk, tk)}k be one possible

choice of maximal points counted by N
[−n,n]d

+,∅ (L, T ). Next let Ỹk be a variable which

is 1 if (xk, tk) infects all points in (xk + [0, 2n])× [−n, n]d−1 × {tk + 1} via ∅-infection

paths which are contained in (xk + [0, 2n])× [−n, n]d−1 × (tk, tk + 1] and otherwise 0.
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If N
[−n,n]d

+,∅ (L, T ) > M then we can choose M ′ space time points distance 2n+ 1 apart

in space or having the same spatial coordinate and being 1 apart in time by (6.15).

We denote the just defined variables by Yk with 1 ≤ k ≤M ′ for these M ′ points. Let

FL,T be defined as in the proof of Lemma 6.1.5. It is clear that conditioned on FL,T
and restricted to {N [−n,n]d

+,∅ (L, T ) > M}, the M ′ space-time points are determined and

therefore Y1, . . . , YM ′ are independent. Also

P(Yk = 1|FL,T )1
{N [−n,n]d

+,∅ (L,T )>M}
= a1

{N [−n,n]d
+,∅ (L,T )>M}

for every 1 ≤ k ≤M ′ where a was defined in (6.13). A direct conclusion is that

P(Yk = 1 for some k = 1, . . . ,M ′|FL,T ) = 1− (1− a)M
′

on {N [−n,n]d

+,∅ (L, T ) > M}.

Now since

{Yk = 1 for some k = 1, . . . ,M ′} ∩ {N [−n,n]d

+,∅ (L, T ) > M}

⊂{L+2nC
[−n,n]d,∅
t+1 ⊇ x+ [−n, n]d for some 0 ≤ t < T and x ∈ {L+ n} × [0, L)d−1}

we get by using that disjoint parts of the graphical representation are independent,

(6.14) and (6.23) that

P(L+2nC
[−n,n]d,∅
t+1 ⊇ x+ [−n, n]d for some 0 ≤ t < T and x ∈ {L+ n} × [0, L)d−1)

> (1− δ)(1− (2δ)d
−12−d).

By choosing δ accordingly the proof is finished and yields the claim.

6.2 Comparison of CPDP to an oriented site

percolation on a macroscopic grid

In the last section we formulated Condition 6.1.2. The events used in this condition

only depended on the graphical representation in a large space-time box. We also

showed that the possibility of survival of the CPDP implies this condition. The goal of

this section is to prove that equivalence holds, i.e. we show that Condition 6.1.2 implies

survival of the CPDP.
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The strategy is to use Condition 6.1.2 to define so-called good blocks and with that to

construct an oriented percolation model which is coupled to the CPDP in the sense

that if percolation occurs it implies that the CPDP survives. We “stack” the good

blocks in such a way that an ∅–infection path exists which connects (0, 0) to ∞. For

this argument to work at the end of each block (in time direction) one uses the Markov

property to restart the CPDP in an adequate initial state. We will see that every time

we restart, we need to set the background to ∅ as its initial configuration.

But first we need to combine (6.1) and (6.2) into one, since it is more convenient to

have a single condition which a good block has to fulfill. We consider the event

A3 = A3(n, L, T ) :=
{

2L+2nC
[−n,n]d,∅
t ⊃ x+ [−n, n]d for some T ≤ t < 2T

and x ∈ [L+ n, 2L+ n]× [0, 2L)d−1
}
.

(6.27)

Similar as before we illustrate in Figure 6.2 the cross section in direction of the first

coordinate of the event in (6.27). This event states that we start with a space box of

Figure 6.2: Visualization of the events in (6.27). The blue space-time box shows the
area where the infected space box of length 2n will be contained.

infected sites, here [−n, n]d in the worst possible background configuration, then we

find again such a infected space box at some later time shifted at least by L+ n and at

most by 2L+ n to the right along the first spatial coordinate.

Proposition 6.2.1. Suppose Condition 6.1.2 holds. Then for every ε > 0, there are

choices of n, L, T such that P(A3) > 1− ε.



6.2 Comparison of CPDP to an oriented site percolation on a macroscopic grid 127

Proof. For ε > 0 we choose n, T, L such that Condition 6.1.2 is satisfied. Now let τ

be the first hitting time such that

L+2nC
[−n,n]d,∅
τ ⊃ x+ [−n, n]d for some x ∈ {L+ n} × [0, L)d−1. (6.28)

If τ < ∞ we choose y = y(τ) ∈ {L + n} × [0, L)d−1 to be one site such that

L+2nC
[−n,n]d,∅
τ ⊃ y + [−n, n]d. If y is not unique, we choose it minimal with respect to

an arbitrary order on Zd, which we picked beforehand. Out of notational convenience

we set I(L, n) := [L+ n, 2L+ n]× [0, 2L)d−1. We see that

{
2L+2nC

[−n,n]d,∅
t ⊃ x+ [−n, n]d for some T + 1 ≤ t < 2T + 2 and x ∈ I(L, n)

}
⊃{τ ≤ T + 1

}
∩
{

2L+2nC
[−n,n]d,∅
T+τ+1 ⊃ x+ [−n, n]d for some x ∈ I(L, n)

}
, (6.29)

where we used for this inclusion the fact that if the process satisfies the event A2 and

then afterwards, a time and spatially shifted version of A1 it also satisfies the event A3

(see Figure 6.3 for a illustration). Furthermore,

P
(
{τ ≤ T + 1

}
∩
{

2L+2nC
[−n,n]d,∅
T+τ+1 ⊃ x+ [−n, n]d for some x ∈ I(L, n)

})
=E
[
1{τ≤T+1}P

(
2L+2nC

[−n,n]d,∅
T+τ+1 ⊃ x+ [−n, n]d for some x ∈ I(L, n)|Fτ

)]
(6.30)

≥P(τ ≤ T + 1)P
( {

L+nC
[−n,n]d,∅
T+1 ⊃ x+ [−n, n]d for some x ∈ [0, L)d

}︸ ︷︷ ︸
=A1

)
,

where we used in the last inequality (6.28) and the strong Markov property to restart

the process at time τ with (y + [−n, n]d, ∅) as initial state, which yields a lower bound

by monotonicity. This is possible since we are on the event {τ ≤ T + 1}. Note we also

used the spatial invariance to shift the process back to the origin. Furthermore, we

shrank in the last inequality the truncation of the process from [−2(L+ n), 2(L+ n)]d

to [−(L+ n), L+ n]d. This is no problem since by monotonicity the probability only

gets smaller. By Condition 6.1.2 we know that P(τ ≤ T +1) > 1−ε and P(A1) > 1−ε.
This fact together with (6.29) and (6.30) yields that

P

(
2L+2nC

[−n,n]d,∅
t ⊃ x+ [−n, n]d

for some T + 1 ≤ t < 2T + 2

and x ∈ [L+ n, 2L+ n]× [0, 2L)d−1

)
> (1− ε)2.

Now set T ′ := T + 1 and replacing (1− ε)2 by 1− ε yields the claim.
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Figure 6.3: Here it is illustrated how A3 is constructed by first using A2 and then
A1, where we restart the process with only a copy of [−n, n]d being infected and the
background in the state ∅.

Since we finally obtained our key ingredient Proposition 6.2.1, we are ready to start

with the construction. Let us set

Dj,k := [−(1− 2j)a, (1 + 2j)a]× [−a, a]d−1 × [5kb, (5k + 1)b],

where j, k ∈ Z and a, b > 0.

Proposition 6.2.2. Suppose Condition 6.1.2 holds, then for every ε > 0 there are

choices of n, a, b with n < a such that if (x, s) ∈ Dj,k,

P
(
∃(y, t) ∈ Dj+1,k+1 s.t. there are ∅-infection paths that stay in

([−5a, 5a] + 2ja)× [−5a, 5a]d−1 × [0, 6b] and goes from

(x, s) + ([−n, n]d × {0}) to every point in (y, t) + ([−n, n]d × {0})
)
> 1− ε.

Proof. Without loss of generality we will asume that j, k = 0, since we can obtain the

result for arbitrary j, k by shifting the construction which follows below by a suitable

space-time shift. One important fact we need to mention is that even though (6.27) is

formulated in such a way that x is in the the box [L+n, 2L+n]×[0, 2L)d−1 by symmetry

we can replace this box by every box obtained via reflection about a coordinate plane in

Zd (see Figure 6.4). The idea is that we apply the eventA3 repeatedly to move the centre

(x, s) of the initially fully infected hypercube, where x ∈ [−(2L+n), 2L+n]d, in five to

ten steps to a new centre (y, t) with y ∈ [2L+ n, 3(2L+ n)]× [−(2L+ n), (2L+ n)]d−1.
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We visualized the procedure in Figure 6.5. For ε > 0 let n, L, T be chosen such that

(6.27) is satisfied. Let a = 2L+ n and b = 2T . The construction proceeds as follows:

1. Concerning the coordinates 2 ≤ i ≤ d we will use that we can reflect about the

coordinate planes, so if the initial center at any step is (z, r) and zi ≥ 0, then we

will move the box in the negative direction and if zi < 0 in the positive direction

(see Figure 6.5(b)). The centre is moved at most by 2L, so by choice of a we will

never leave [−a, a]d−1 with this procedure.

2. Concerning the first coordinate at the beginning we will move it always in the

positive direction until the center of the infected box is contained in [a, 3a] (see

Figure 6.5(a)). Since we move the centre of the box by at least L+n and at most

2L+ n, by choice of a this is achieved after at most four steps. Then assume that

(k, r) is the centre of the fully infected box. If z1 > 2a we move it towards the

negative direction and if z1 < 2a towards the positive. Again by choice of a the

centre will not leave [a, 3a].

This procedure is carried out until the time coordinate r of the centre of the infected

box (z, r) is contained in [5b, 6b]. By choice of b we see that this happens after five to ten

steps. Note that the construction only uses the graphical representation corresponding

to the sites and edges in [5a, 5a]d and the truncated edge set E5a. Furthermore, the

subsequent steps take place on disjoint time intervals. Analogously as in the proof

of Proposition 6.2.1 after each step we restart the process with (z, r) + [−n, n]d as

initially infected individuals and the background in the state ∅, i.e. all edges closed.

Since disjoint parts of the graphical representation are independent, this yields that we

succeed with at least probability (1−ε)10. Change ε accordingly and we are finished.

Figure 6.4: Here we visualized for d = 2 the space cross-cut at time 0 and t. The
green boxes are the reflections about the coordinate planes. The blue box is the area
where the infected box of side length 2n is contained.



130 Chapter 6 CPDP on the d-dimenstional integer lattice Zd

(a) First coordinate: Start in (x, s) use (6.27) to find
infected box around (z, r) restart at this point and use
successively (6.27).

(b) All other coordinates: Assume xi =
0, while using successively (6.27) reflect
along the coordinate plane if i-th coordinate
changes its sign. Note that after achieving
x1 ∈ [a, 3a] we apply this strategy to the
first coordinate as well until t ∈ [5b, 6b]

Figure 6.5: Visualization of the construction in Proposition 6.2.2

Remark 6.2.3. The proof of Proposition 6.2.2 also yields that a “reflection” of the

statement holds true, i.e. we reflect the whole construction in the direction of the first

coordinate at (2ja, 0, . . . , 0) ∈ Zd such that at the end (y, t) ∈ Dj−1,k+1.

The idea is to switch to the “macroscopic” grid {(j, k) ∈ Z×N0 : j + k even}, where

we identify the points (j, k) with the space-time boxes

Sj,k := [a(12j − 1), a(12j + 1)]× [−a, a]d−1 × [30kb, (30k + 1)b] = D6j,6k.

Heuristically speaking, we will declare (j, k) to be open if we find an appropriate

translation of [−n, n]d in this box, which is completely infected. For a, b > 0 as in

Proposition 6.2.2 let w(j, k) := ((12ja, 0, . . . , 0), 30kb) ∈ Zd ×N0 and set

M±(j, k) :=
( 6⋃
l=0

([−5a, 5a]± 2la)× [−5a, 5a]d−1 × [5l, (5l + 1)b]
)

+ w(j, k).

See the solid boxes in Figure 6.6 for a illustration.
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Next we formulate the events which are fundamental for our construction. For a point

(x, s) ∈ Sk,m we define

B± = B±(j, k, (x, s)) :=
{
∃(y, t) ∈ Sj±1,k+1 and there are

∅ − infection paths that stay in M±(j, k)

and go from (x, s) + ([−n, n]d × {0}) (6.31)

to every point in (y, t) + ([−n, n]d × {0})
}
.

For these events, similarly to Proposition 6.2.2, we show the following lemma.

Lemma 6.2.4. Suppose Condition 6.1.2 holds, then for every ε > 0 there are choices

of n, a, b with n < a such that if (x, s) ∈ Sj,k, P(B±) > 1− ε, where (j, k) ∈ Z×N0.

Proof. This is a direct consequence of Proposition 6.2.2. So if (x, s) ∈ Sj,k = D6j,6k,

then we let for ε > 0, n, a, b be the choice such that we get with a probability larger

than 1 − ε′ that there exists an (z, r) ∈ D6j+1,6k+1 such that there exist ∅-infection

paths from (x, s) + ([−n, n]d×{0}) to all points in (z, r) + ([−n, n]d×{0}). There does

not necessarily exist a unique point (z, r), if there is more than one point, we just take

the earliest and if that does not yield a unique point we minimize the space coordinate

according to an arbitrary order on Zd, which we fixed beforehand. Next we use this

procedure again on (z, r). We repeat this procedure in total six times successively. For

visualization take a look at the solid lined boxes in Figure 6.6. Then, similarly to the

proof of Proposition 6.2.2, by choosing ε′ > 0 correctly we get the statement that for

every ε > 0 there are choices n, a, b such that P(B+) > 1− ε.

The same statement holds for B−, where we want to point out that one can use the

same procedure just with the reflected events, see Remark 6.2.3.

Note that the boxes B± only depend on a finite sector of the graphical representation

and only overlap with the adjacent boxes (see Figure 6.6). At first this last step seems

a bit redundant, since we could very well work with the events defined in Proposition

6.2.2, but with this additional step we made the dependency between the respective

events clearer. Now we are ready to prove the main theorem of this section.

Theorem 6.2.5. Suppose Condition 6.1.2 holds. Then for every q < 1 there are choices

of n, a, b such that if the initial configurations W0 ⊂ 2Z and C0 = C satisfy

j ∈ W0 ⇒ C ⊃ x+ [−n, n]d for some x ∈ [a(12j − 1), a(12j + 1)]× [−a, a]d−1 (6.32)
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then {(Ct,Bt) : t ≥ 0} can be coupled with an oriented site percolation {Wk : k ≥ 0}
with parameter q such that

j ∈ Wk ⇒ Ct ⊃ x+ [−n, n]d for some (x, t) ∈ Sj,k (6.33)

In particular this implies that the CPDP survives.

Figure 6.6: Here we see a visualization of the space-time boxes B± (defined in (6.31)),
where the solid line visualizes the box B+(j, k, ·). We also see that B+(j, k, ·) only
overlaps with B−(j, k, ·) and B−(j+2, k, ·), where the dotted lines visualizes B−(j+2, k, ·)
and the dashed B+(j − 2, k, ·).

Proof. The construction of the oriented site percolation is similar to [Lig13, Theorem

2.23]. The idea is that we construct our percolation model recursively with the help of

Lemma 6.2.4. Thus, let for an arbitrary ε > 0 the numbers n, a, b be the choices done

in the Lemma 6.2.4. Note that since the events we use are not independent we need to

use a comparison of independent and locally dependent Bernoulli random variables to

obtain an independent oriented site percolation in a second step, as we desire.

We will now construct random variables (Xj(k), Yj(k)) with k ≥ 0 and j ∈ Z. These

variables Xj(k) will either be 1 if there exists a (x, s) ∈ Sj,k such that (x, s)+([−n, n]d×
{0}) is infected and otherwise 0. Additionally if such a point exists we set Yj(k) = (x, s)

and if not Yj(k) = †, where † is a designated state such that the state space of these

random variables is {0, 1} ×
(
Zd × [0,∞)

)
∪ {†}.
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Without loss of generality we will assume that W0 = {0}. By assumption (6.32) there

exists an x0 such that (x0, 0) ∈ S0,0 and x0 + [−n, n]d is initially infected. We set

(X0(0), Y0(0)) = (1, (x0, 0)) and (Xj(0), Yj(k)) = (0, †) for all j 6= 0. Now with respect

to k we recursively construct these random variables. Suppose that (Xj(k), Yj(k))j∈Z

are defined for all k ≤ m, then we proceed with the step m→ m+ 1.

1. If Xj−1(m) = 0 and Xj+1(m) = 0 then we set (Xj(m+ 1), Yj(m+ 1)) = (0, †)

2. We set Xj(m+ 1) = 1 if either Xj−1(m) = 1 and the event B+(j − 1,m, Yj−1(m))

occurs and/or Xj+1(m) = 1 and B−(j + 1,m, Yj+1(m)) occurs.

Again the events B+(j−1,m, Yj−1(m)) and B−(j+ 1,m, Yj+1(m)) only guarantee

existence of a point (y, t) ∈ Sj,m+1 such that (z, r)+ ([−n, n]d×{0}) is completely

infected, but there might exist more than one. We set Yj(m+ 1) as the smallest

space-time point (y, t), smallest in the sense that we take the earliest with respect

to time and if that does not yield a unique point we minimize according to an

arbitrary but beforehand specified order on Zd.

By this construction for fixed k ≥ 0 the set {j : Xj(k) = 1} obviously satisfies (6.33).

Next let Gm be σ-algebra generated from all (Xj(k), Yj(k))j∈Z with k ≤ m. By the

choice of n, a, b made at the beginning of the proof we see that

P(Xj(m+ 1) = 1|Gm) > 1− ε on {Xj(m) = 1 or Xj−1(m) = 1}.

Since B± only overlap with their adjacent boxes, by construction the (Xj(m+ 1))j∈Z

are conditional on Gm, 3-dependent family of Bernoulli variables (see Definition B.2.1).

By Theorem B.2.2 we find a families of independent Bernoulli variables such that we

can define a oriented site percolation Wk with parameter q := (1− ε−3)2 which satisfies

(6.32) and (6.33). Since ε was arbitrarily we are finished.

6.3 Consequences of the percolation comparison

In this section we can finally reap the benefits of all work we have done so far in Chapter 6.

First we prove that at criticality, survival is not possible and as direct consequence we

gain continuity of the survival probability. Then, we use Theorem 6.2.5 to show that for

the CPDP the two conditions (1.8) and (1.9) are satisfied such that by Theorem 1.4.15

it follows that complete convergence for the CPDP holds true. Recall that we defined

in (1.12) the survival region as S := {(λ, r, α, β) ∈ (0,∞)2 : θ
(
λ, r, α, β, {0}, ∅

)
> 0}.
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6.3.1 Extinction at criticality and continuity

In Section 3.4 we showed some basic properties of the CPERE. In case of the CPDP

we have two additional parameters α and β for which we can easily deduce similar

monotonicity and continuity properties as for the infection and recovery rate λ and r.

Lemma 6.3.1 (Monotonicity with respect to the background). Let (C,B) be a CPDP

with parameters λ, r, α, β > 0. Let α̂ ≥ α, then there exists a CPDP (Ĉ, B̂) with

parameter λ, r, α̂, β and the same initial configuration such that Ct ⊆ Ĉt and Bt ⊆ B̂t

for all t ≥ 0. In words C is monotone increasing in α. On the other hand C is

monotone decreasing in β.

Proof. This follows with an analogous coupling as in the proof of Lemma 3.4.2. Since if

we consider α̂ ≥ α, then let Ξ̂birth be a Poisson point process on R+×{birthe : e ∈ E}
with intensity measure (α̂ − α)dt, i.e. all maps birthe occur with rate (α̂ − α), and

again let Ξ̂birth be independent of Ξ, where Ξ is the Poisson point process used in the

graphical representation of the original CPDP. Then set Ξ̂ := Ξ + Ξ̂birth and proceed as

in Lemma 3.4.2. The monotonicity in β follows analogously.

Remark 6.3.2. Obviously πα,β � πα̂,β if α ≤ α̂. Thus, if we consider the stationary

case, i.e. that C0 = C ⊂ V and B0 ∼ πα,β, then there exists an CPDP (Ĉ, B̂) with

parameter λ, r, α̂, β and C0 = C ⊂ V and B̂0 ∼ πα̂,β such that Ct ⊆ Ĉt and Bt ⊆ B̂t

for all t ≥ 0. This follows by first coupling the initial state of the background with

Theorem 2.1.12 such that B0 ⊆ B̂0 and then using Lemma 3.4.1 and Lemma 6.3.1.

Lemma 6.3.3 (Continuity for finite times and finite initial infections). Let (C,B) be a

CPDP with initial configuration C0 = C ⊂ V with |C| <∞. Also let A ⊂ DP(V )([0, t])

for t ≥ 0.

1. The maps α 7→ P
(C,B)
λ,r,α,β

(
(Cs)s≤t ∈ A

)
and β 7→ P

(C,B)
λ,r,α,β

(
(Cs)s≤t ∈ A

)
are contin-

uous, where B0 = B.

2. If B0 ∼ πα,β, then α 7→ P
(C,πα,β)

λ,r,α,β

(
(Cs)s≤t ∈ A

)
and β 7→ P

(C,πα,β)

λ,r,α,β

(
(Cs)s≤t ∈ A

)
are continuous.

Proof. 1. The proof for α and β is similar to the proof of Lemma 3.4.4. Again

we will only prove the statement for the function α 7→ Pλ,r,α,β((Cs)s≤t ∈ A),

since the statement follows similarly when varying β as a variable with just a few

obvious changes.
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Let (Ĉ, B̂) be the CPDP that has the same rates and initial configuration as

(C,B) with the exception that the rate α is substituted with α̃ > α. This process

was constructed in the way such that Ct ⊆ Ĉt and Bt ⊆ B̂t for all t ≥ 0 and also

C0 = Ĉ0 and B0 = B̂0. Here again it suffices to show that as α̂→ α it follows

thatP(Cs 6= Ĉs for some s ≤ t)→ 0.

Set Yt(x) := #{y ∈ Cs : {x, y} ∈ B̂s, {x, y} /∈ Bs}, which is the number of

infected neighbors of x at time s that could infect x according to B̂s, but not

with regards to Bs. For the process C and Ĉ to differ, an additional infection

path must have been started by an infection event (s, infx,y) ∈ Ξinf such that

{x, y} ∈ B̂s and {x, y} /∈ Bs. Thus it again holds that

P(Cs 6= Ĉs for some s ≤ t) =1− E
[

exp
(
−
∫ t

0

∑
x∈V

Ys(x)ds
)]
.

Now let C be again the classical contact process with infection rate λ and recovery

rate r constructed via Ξinf and Ξrec (see Remark 2.3.2), thus Ct ⊆ Ct for all t ≥ 0.

Obviously the classical contact process C is independent of B and B̂, and thus

E
[ ∫ t

0

∑
x∈V

Ys(x)ds
]
≤E
[ ∫ t

0

∑
x∈V

∑
{x,y}∈E

(1{{x,y}∈B̂s} − 1{{x,y}∈Bs})1{x∈Cs}ds
]

=
∑
x∈V

∑
{x,y}∈E

∫ t

0

(
P({x, y} ∈ B̂s)− P({x, y} ∈ Bs)

)
P(x ∈ Cs)ds

≤KE
[ ∫ t

0

|Cs|ds
]
<∞.

Since every edge e flips from open to closed and vice versa independently we see

via the coupling that it follows P(e ∈ B̂s)− P(e ∈ Bs) → 0 as |α̂ − α| → 0 for

every e ∈ E and every s ≥ 0. So by the same inequality as in the first part and

by dominated convergence we see that

P(Cs 6= Ĉs for some s ≤ t) ≤ E
[ ∫ t

0

∑
x∈V

Ys(x)ds
]
→ 0

as |α̂− α| → 0.

The proof for continouity of β 7→ Pλ,r,α,β((Cs)s≤t ∈ A) follows analogously.

2. The difference to 1. is that the invariant law depends on α and β, and thus in

this case the initial distribution of the background also changes if we vary α or β.
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So let us assume B0 ∼ πα,β. Recall that every edges e is open with probability
α

α+β
and closed otherwise. Now it holds for

α ≤ α̂⇔ α

α + β
≤ α̂

α̂ + β

Let (Z(e))e∈E be family of independent Bernoulli random variables such that

P(Z(e) = 1) =
α̂

α̂ + β
− α

α + β

Now we set B̂0 := B0 ∪ {e ∈ E : Z(e) = 1}. Obviously B̂0 ∼ πα̂,β and B0 ⊂ B̂0

almost surely. From this point we can proceed as we did before by using the

coupling out from the proof of Lemma 3.4.2 to construct a CPDP (Ĉ, B̂) with the

desired rates and Ct ⊆ Ĉt and Bt ⊆ B̂t for all t ≥ 0. Where we have the slight

difference we have C0 = Ĉ0 and B0 ⊂ B̂0 almost surely instead of equality. Thus

the initial state of the two background process are not the same as before. But

by the coupling we know that we have again that P(e ∈ B̂s)−P(e ∈ Bs)→ 0 as

|α̂− α| → 0 for every e ∈ E and every s ≥ 0. Thus, from here on we can apply

the exact same proof strategy as above.

We are finally ready to show that survival is impossible at criticality.

Proof of Theorem 1.4.17. As we already mentioned at the end of the proof of

Proposition 6.2.2 the “block”-events only depends on a bounded section of the graphical

representation, but by Lemma 3.4.4 and Lemma 6.3.3 we get that Pλ,r,α,β(B±) is

continuous seen as a function of any of the four parameters. Let us take as usual the

infection parameter λ as an example. By Proposition 6.2.2 we know that for every

ε > 0 we find a, b, n such that Pλ(B±) > 1− ε, then because of continuity there must

exist a λ′ < λ such that Pλ′(B±) > 1− ε as well and then by Theorem 6.2.5 it follows

that the CPDP also survives with λ′. This proves the claim.

Recall that we call a function f : Rd ⊂ U → R separately continuous if it is continuous

in each coordinate separately. In comparison to that one calls f jointly continuous if it

is continuous with respect to the Euclidean topology on Rd.

Proposition 6.3.4. Let C ⊂ V with C finite and non-empty and B ⊂ E.

1. The survival probability θ(λ, r, α, β, C,B) is separately right continuous seen as a

function in (λ, r, α, β) on (0,∞)4.
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2. The survival probability θ(λ, r, α, β, C,B) is separately left continuous seen as a

function in (λ, r, α, β) on S̊.

Proof. We already showed right and left continuity in λ and r on the respective

parameter sets in Proposition 5.3.2 and 5.3.4. Right and left continuity in α and β can

be shown by the same approach.

We have seen that Corollary 1.4.17 states that the infection process C cannot survive at

criticality. As a consequence of this fact we can conclude that the survival probability

is jointly continuous with respect to its parameters (λ, r, α, β).

Proof of Corollary 1.4.18. Theorem 6.3.4 shows that the survival probability is

separately left continuous seen as a function in the four parameters (λ, r, α, β) on S
and is separately right continuous on (0,∞)4. Now let us again exemplarily prove

continuity of λ 7→ θ(λ, r, α, β, C,B). The proof is analogous for the remaining three

parameter. By Proposition 6.3.4 it is clear that the function is every continuous expect

at criticality. Now obviously in case of λ the left limit at criticality exists, since we

come from the subcritical parameter region where the survival probability is constant

0. But by Theorem 1.4.17 we know that the CPDP almost surely goes extinct at

criticality, which means that the survival probability is 0. But with that we have

shown that the left limit and the right limit at the critical value are the same since

λ 7→ θ(λ, r, α, β, C,B) is right continuous on (0,∞) by Proposition 6.3.4 and thus, the

function is continuous.

Now we know that the survival probability is separately continuous seen as a function

of the four parameters. But we also know that the function is monotone in each

coordinate, so we can use [KD69, Proposition 2], which states that if a function is

continuous and monotone in each coordinate, then it is jointly continuous.

6.3.2 Complete Convergence of the CPDP

We start by showing that the second condition (1.9) holds true, which is proven by the

next proposition.

Proposition 6.3.5. Suppose (λ, r, α, β) ∈ S, then for every x ∈ Zd,

lim
n→∞

lim inf
t→∞

P
(Bn(x),∅)
λ,r,α,β (Ct ∩Bn(x) 6= ∅) = 1.
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Proof. By translation invariance it suffices to prove the claim for x = 0. For d ≥ 2

the claim follows analogously as in the second part of the proof of [Lig13, Theorem

2.27]. Hence, we only need to consider d = 1.

Again by Theorem 6.2.5 for every 0 < q < 1 there exists n, a, b such that an oriented

site percolation (Wk)k≥0 with parameter q exist, which satisfies (6.32) and (6.33). Now

let us consider the set Dm = (−15am− 2, 15am+ 1). By construction of the oriented

site percolation in the proof of Theorem 6.2.5 (see Figure 6.6 for a visualization) it

follows that for m > 0,

lim inf
t→∞

P(Dm,∅)(Ct ∩Dm 6= ∅) ≥ lim inf
k→∞

P{−m,...,m}(Wk ∩ {−m, . . . ,m} 6= ∅), (6.34)

since the infection is always contained in the blocks B±. By Theorem B.1.2 we get that

the right-hand side in (6.34) convergences to 1 as m→∞.

Now it is left to prove that (1.8) holds true. We will split the prove of this condition in

two parts. First we show that with Theorem 6.2.5 that a positive survival probability

already implies that the probability that a single site is infinitely often infected is

positive as well.

Proposition 6.3.6. Suppose (λ, r, α, β) ∈ S, then P
(C,B)
λ,r,α,β(x ∈ Ct i.o.) > 0 for all

x ∈ V and all non-empty C ⊂ V and B ⊂ E.

Proof. We will now show that if θ({0}, ∅) > 0 then

P(C,B)(x ∈ Ct i.o.) > 0, (6.35)

where C ⊂ V and B ⊂ E. By monotonicity we see that for any y ∈ C,

P(C,B)(x ∈ Ct i.o.) ≥ P({y},∅)(x ∈ Ct i.o.).

Recall that the stopping time τx = τx({y}, ∅) was the first time that at least the site x

is infected with initial configuration ({y}, ∅) (see (5.19)). Since we consider a CPDP,

we know that P({y},∅)(x ∈ Ct) > 0 for all x, y ∈ V , and thus P({y},∅)(τx <∞) > 0. By

the strong Markov property we see that

P({y},∅)(x ∈ Ct i.o.) ≥ P({y},∅)(τx <∞)P({x},∅)(x ∈ Ct i.o.)
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Thus, by translation invariance to show (6.35) it suffices to show

P({0},∅)(0 ∈ Ct i.o.) > 0. (6.36)

Analogously as we just did let τn = τ[−n,n]d({0}, ∅) be the first time that at least all

sites in [−n, n]d are infected with initial configuration ({0}, ∅). We can conclude in the

same manner that P({0},∅)(τn <∞) > 0, and thus by the strong Markov property

P({0},∅)(0 ∈ Ct i.o.) ≥ P({0},∅)(τn <∞)P([−n,n]d,∅)(0 ∈ Ct i.o.).

By Theorem 6.2.5 we know that for every 0 < q < 1 there exist n, a, b and an oriented

percolation (Wk)k≥0 with parameter q such that (6.32) and (6.33) are satisfied. By

choosing q close enough to 1 Theorem B.1.1 (i) shows that infk≥0P
{0}(0 ∈ W2k) > 0.

Now by Fatou’s lemma

P{0}(0 ∈ W2k i.o.) ≥ lim sup
k→∞

P{0}(0 ∈ W2k) > 0.

Thus, by (6.32) and (6.33) with positive probability for infinitely many k

C
[−n,n]d,∅
t ⊃ x+ [−n, n]d for some (x, t) ∈ S0,k.

It is clear that P(x ∈ C
[−n,n]d,∅
t ) > 0 for every x ∈ Zd and that this probability is

continuous in t, since (C,B) is a Feller process, and therefore for any compact set

K ⊂ Zd × [0,∞) we see that

inf
(x,t)∈K

P
(
0 ∈ C

x+[−n,n]d,∅
t

)
= inf

(x,t)∈K
P
(
x ∈ C

[−n,n]d,∅
t

)
> 0,

where we again used translation invariance and symmetry. This implies that every time

a hypercube of side length 2n, which is bounded away from 0, is completely infected,

there is a positive probability that 0 gets infected from this hypercube after a time step

of length 1. Then (6.36) can be shown analogously to Lemma 5.2.4 and 5.3.3, which

means that we utilized a generalized version of the Borel-Cantelli Lemma to show that

the event {0 ∈ C
[−n,n]d,∅
t i.o.} happens almost surely on the event

{C[−n,n]d,∅
t ⊃ x+ [−n, n]d for some (x, t) ∈ S0,k for infinitely many k}.

With this argument we have shown (6.35), i.e. we have shown that θ({0}, ∅) > 0 implies

P(C,B)(x ∈ Ct i.o.) > 0.
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Next we will show that if we have a positive probability that a single site is infinitely

often infected we can already conclude that (1.8) holds true. Note that the following

result actually holds true for general CPERE on the d-dimensional integer lattice.

Proposition 6.3.7. Let (C,B) be a CPERE with infection rate λ > 0 and recovery

rate r > 0 on the d-dimensional integer lattice, i.e. G = (Zd, E). Suppose that

P
(C,B)
λ,r (x ∈ Ct i.o.) > 0 for all x ∈ V , all non-empty C ⊂ V and all B ⊂ E, then

P
(C,B)
λ,r (x ∈ Ct i.o.) = θ(λ, r, C,B).

Proof. First, we observe that {x ∈ Ct i.o.} ⊂ {Ct 6= ∅ ∀t ≥ 0}. Thus, to show the

claim we need to show the converse inclusion. In principle this can be shown analogous

to the first part of the proof of [Lig13, Theorem 2.27]. We will now adapt this prove

to our setting, where we need to take the background into consideration. First we set

A := {0 ∈ Ct i.o.} and show the inequality

P(A|Fs) = P(Cs,Bs)(A) ≥ P({x},∅)(0 ∈ Ct for some t ≥ 0)P({0},∅)(A)1{x∈Cs} (6.37)

for every x ∈ Zd. For that let us consider τ := inf{t ≥ 0 : 0 ∈ Ct}, i.e. the first time 0

got infected. By the Markov property we know that P(A|Fs) = P(Cs,Bs)(A), and thus

we see that

P(Cs,Bs)(A) ≥ P({x},∅)(A) ≥ E[P(A|Fs)1{τ<∞}] on {x ∈ Cs}, (6.38)

where we used monotonicity in the first inequality and the tower property in second.

Now using the strong Markov property, by (6.38) it follows that

P(Cs,Bs)(A) ≥ E[P(Cτ ,Bτ )(A)1{τ<∞}] ≥ E[P({0},∅)(A)1{τ<∞}] on {x ∈ Cs}, (6.39)

where we used, in the second inequality, again that the CPERE is monotone and that

by definition 0 ∈ Cτ . Now we see that (6.37) follows by (6.39).

Since we assumed that PC,B({0 ∈ Ct i.o.}) > 0 for any non empty C ⊂ V and B ⊂ E,

by translation invariance of the background B we know that P({0},∅)(x ∈ Ct) > 0 for

any x ∈ Zd. Thus, by using symmetry of Zd and translation invariance we see that

P({x},∅)(0 ∈ Ct for some t ≥ 0) = P({0},∅)(x ∈ Ct for some t ≥ 0) ≥ P({0},∅)(A),

(6.40)
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where we used Lemma 5.2.4 in the last inequality. Now (6.37) together with (6.40) this

implies that

P(A|Fs) ≥
(
P({0},∅)(A)

)2
1{Cs 6=∅}.

But by assumption we know that P({0},∅)(A) > 0. Furthermore, by the martingale

convergence theorem it follows that P(A|Fs)→ 1A, since A is an element of the tail

σ-algebra. But this implies that {Ct 6= ∅ ∀t ≥ 0} ⊂ {0 ∈ Ct i.o.} almost surely.

Finally we are able prove that complete convergence holds for the CPDP on the whole

parameter set (0,∞)4.

Proof of Theorem 1.4.19. Suppose (λ, r, α, β) ∈ S, then by Proposition 6.3.5, Propo-

sition 6.3.6 and Proposition 6.3.7 we know that (1.8) and (1.9) are satisfied, and thus

by Theorem 1.4.15 it follows that

(CC,B
t ,BB

t )⇒ (1− θ(C,B))(δ∅ ⊗ π) + θ(C,B)ν as t→∞.

On the other hand if (λ, r, α, β) ∈ Sc, then by Proposition 5.1.6 it follows that ν = δ∅⊗π.

Thus, by Proposition 5.1.3 follows that (CV,E
t ,BE

t )⇒ δ∅⊗π as t→∞. By monotonicity

shown in Lemma 3.4.1 we then know that (CC,B
t ,BB

t )⇒ δ∅⊗π as t→∞ for all C ⊂ V

and B ⊂ E, which proves the claim.

We conclude this chapter by showing that for a general CPERE on the d-dimensional

integer lattice, complete convergence holds on a suitable subset of its survival region.

To be precise this subset will be the survival region of a suitable chosen CPDP, which

lies “below” the CPERE. Here we will again use the subscript DP since we need to

distinguish between a CPERE and a CPDP.

Proof of Theorem 1.4.20. Let (C,B) be CPERE with infection rate λ, recovery

rate r and the background process has spin rate q(·, ·), recall from (1.4) the rates

αmin := minF⊂NLe q(e, F ) and βmax := maxF⊂NLe q(e, F ∪ {e}). By Proposition 3.4.5

there exists a CPDP (C,B) with rates αmin, βmax and the same initial configuration as

(C,B), i.e. C0 = C0 and B0 = B0, such that Ct ⊂ Ct and Bt ⊂ Bt for all t ≥ 0. This

implies that

P(x ∈ Ct i.o.) ≤ P(x ∈ Ct i.o.) (6.41)

By assumption θDP(λ, r, αmin, βmax, {0}, ∅) > 0, and thus by Proposition 6.3.6 and (6.41)

it follows that P
(C,B)
λ,r (x ∈ Ct i.o.) > 0 for any finite and non-empty set C ⊂ Zd and
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any B ⊂ E. Furthermore, by Proposition 6.3.7 it follows that the first condition (1.8)

holds. Now it follows analogously by the fact that Ct ⊂ Ct and Bt ⊂ Bt for all t ≥ 0

and Proposition 6.3.5 that (1.9) is satisfied. Since we assumed that (i)-(iii) of Assump-

tion 1.4.1 are satisfied Theorem 1.4.15 implies that if θDP(λ, r, αmin, βmax, {0}, ∅) > 0,

then

(CC,B,BB)⇒ (1− θ(λ, r, C,B))(δ∅ ⊗ π) + θ(λ, r, C,B)ν

for all C ⊂ V and all B ⊂ E.



Chapter 7

Contact process on a dynamical long

range percolation

7.1 Construction of the CPLDP via a graphical

representation and further applications

The CPLDP cannot be constructed in exactly the same way as we constructed the

CPERE on graphs with bounded degrees, where we relied on the graphical representation

as introduced in Section 2.3. The reason for this is that we want to allow transmission

of an infection between each pair of vertices x, y ∈ V if the edge connecting them is

open at the time of transmission. Thus, it is fairly obvious that the rate bound (2.1) is

not satisfied since we would draw maps coopx,y for every x, y ∈ V with x 6= y with a

positive but fixed rate λ.

It is still possible to construct the CPLDP via a graphical representation, if we consider

a setting where most connections {x, y} ∈ E are closed. We basically need to ensure

that |{y ∈ V : {x, y} ∈ Bt−}| <∞ for all t ≥ 0 and all x ∈ V , i.e. all vertices x have

almost surely a finite degree at all times. We will see that Assumption 1.4.21 guarantees

this. Recall that this assumption states that∑
y∈V

v{x,y}p{x,y} <∞ and
∑
y∈V

v−1
{x,y} <∞

for all x ∈ V . Now we start to construct the CPLDP. The long range dynamical

percolation itself can be defined via the graphical representation described in Section

2.3 by considering the maps birthe(B) := B ∪ {e} and deathe(B) := B\{e} with

respective rates rbirthe = v̂ep̂e and rdeathe = v̂e(1− p̂e), where e ∈ E and B ⊂ E . Thus

143
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the set of maps is MDP := {birthe : e ∈ E} ∪ {deathe : e ∈ E} and we denote the

Poisson point process on MDP ×R with the corresponding rates (rm)m∈MDP
by ΞDP .

Obviously Assumption 1.4.21 implies that the rate bound (2.1) is satisfied since for any

e ∈ E only two maps m exist such that e ∈ D(m), and thus we obtain a Feller process

B on the state space P(E) with jump rates (1.13), i.e. the process has transitions

Bt− = B → B ∪ {e} at rate v̂ep̂e and

Bt− = B → B\{e} at rate v̂e(1− p̂e).

Next let {x, y} ∈ E and define the map

inf∗{x,y}(A) :=

A ∪ {x, y} if x ∈ A or y ∈ A

A otherwise ,

where A ⊂ V and recall the recovery map recx from Example 2.3.2 and let the rates

be rinf∗{x,y} = λ > 0 and rrecx = r > 0. Now set

M∗ := {inf∗{x,y} : {x, y} ∈ E}︸ ︷︷ ︸
=M∗inf

∪{recx : x ∈ V }︸ ︷︷ ︸
=Mrec

We denote again by Ξinf∗ the Poisson point process on M∗
inf × R corresponding to

the infection events, where the intensity measure is determined through the rates

(rm)m∈M∗inf and Ξrec on Mrec ×R for the recovery events and the rates are (rm)m∈Mrec .

Remark 7.1.1. The difference between the maps inf∗{x,y} and infx,y from Example 2.3.2

is that the action of inf∗{x,y} causes x to infect y and vice versa. Thus, if either of x or

y is infected afterwards both sites are infected. On the other hand infx,y only causes x

to infect y. It is not difficult to see that we could also use inf∗{x,y} instead of infx,y in

Example 2.3.2 and we would still obtain the classical contact process, see Figure 7.1

for a visualization. We change the maps here only for technical reasons. For some

results in Chapter 6 it was important that we were able to identify in which direction

the infection arrow points. In this section it is more convenient to use the infection

maps inf∗{x,y}. Since this enables us to use the comparison results developed by [Bro07]

in the next section.

Definition 7.1.2 (Infection path). Given space-time points (y, s) and (x, u) with u > s

we say that there is an infection path from (y, s) to (x, u) if there is a sequence of

times s = t0 < t1 < · · · < tn ≤ tn+1 = u and space points y = x0, x1, . . . , xn = x such
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that, (inf∗{xk−1,xk}, tk) ∈ supp(Ξinf∗) and {xk, xk+1} ∈ Btk for all k ∈ {0, . . . , n} and

supp(Ξrec) ∩
(
{recxk} × [tk, tk+1)

)
= ∅ for all k ∈ {0, . . . , n}. We write (y, s)→ (x, u)

if there exists an infection path.

Now we define the infection process by

CC
t := {x ∈ V : ∃y ∈ V such that (y, 0)→ (x, t)}, (7.1)

where t ≥ 0 and we set CC
0 := C ⊂ V . By definition it is not clear yet if this process is

well-defined in the sense that if we start with a finite initial set it stays finite for the

whole time.

Lemma 7.1.3. Suppose Assumption 1.4.21 is satisfied. Let C ⊂ V be finite, then

|CC
t | <∞ almost surely for all t ≥ 0.

Proof. Let us consider B′t :=
⋃
s≤t Bt, which is the set of all e ∈ E , which were open

at least once between time 0 and t. The process B′ = (B′t)t≥0 is again a Feller process

with transition B′t− = B → B ∪ {e} at rate v̂ep̂e. This can be seen by just ignoring

every deathe map in the previous construction. Now one can easily calculate that

E[|{y ∈ V : {x, y} ∈ B′t}|] =
∑
y∈V

P({x, y} ∈ B0) + P({x, y} /∈ B0) (1− e−v̂{x,y}p̂{x,y}t)︸ ︷︷ ︸
≤v̂{x,y}p̂{x,y}t

≤
∑
y∈V

p̂{x,y} + t
∑
y∈V

v̂{x,y}p̂{x,y} <∞,

where we used that the events ({e ∈ B0})e∈E are independent and Assumption 1.4.21

provides that the expression is finite. Now we can conclude that for every fixed t the

graph (V,B′t) is almost surely locally finite. Thus, analogously to Example 2.3.2 we

can define a classical contact process Xt = (Xt
s)s≤t on the graph (V,B′t) such that we

have transitions

Xt
s− = A→ A ∪ {x} at rate λ · |{y ∈ A : {x, y} ∈ B′t}|, and

Xt
s− = A→ A\{x} at rate r,

where Xt
0 = C0 = C. This definition is meant in a quenched sense, i.e. we first fix the

realization of B′t and then define the classical contact process on the graph (V,B′t).

By definition Bt ⊂ B′t for all t ≥ 0. Thus, we see that Cs ⊂ Xt
s for all s ≤ t. But

since we know that (V,B′t) is almost surely finite, we also know that |Cs| ≤ |Xt
s| <∞
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almost surely for all s ≤ t. This is again a direct consequence of the construction in

Example 2.3.2.

We chose the probability of an edge being open after an update to be of the form p̂e = qpe

and the update speed to be v̂e = γve for all e ∈ E , where γ > 0 and q ∈ (0, 1). Thus,

the critical infection rate λc(r, γ, q) can be seen as function of γ, q and the recovery rate.

Now we show, via the graphical representation, that the function γ 7→ γ−1λc(r, q, γ)

is non-increasing. This means that the critical infection rate λc(r, q, γ) can at most

increase with linear growth with respect to γ.

Proof of Proposition 1.4.22. Let (C,B) be a CPLDP with parameter λ, γ, r > 0

and q ∈ (0, 1). Suppose that λ > λc(r, γ, q). If we rescale the time by sending t→ γ′

γ
t,

we get a process (Ĉ, B̂) with transitions

Ĉt = C → C ∪ {x} at rate λγ′

γ
· |{y ∈ Ĉt− : {x, y} ∈ B̂t−}|,

Ĉt = C → C\{x} at rate γ′

γ
r,

B̂t = B → B ∪ {e} at rate γ′vep̂e and

B̂t = B → B\{e} at rate γ′ve(1− p̂e).

Of course the time change has no influence on the survival probability, and thus the

critical value stays the same. If we assume that γ′ > γ, we see that the recovery rate is

bigger than r. Therefore, we can couple (Ĉ, B̂) via the graphical representation with a

CPLDP (C, B̂) with parameter λγ′

γ
, r, γ′ and q such that Ct ≥ Ĉt for all t ≥ 0. Since

λ > λc(r, γ, q) we know that Ĉ has a chance to survive and through the coupling we see

that if Ĉ survives, so does C. This implies that γ′λ
γ
> λc(r, γ

′, q) for all λ > λc(r, γ, q),

and thus 1
γ
λc(r, γ, q) ≥ 1

γ′
λc(r, γ

′, q) for γ′ > γ.

Next we formulate a comparison between a long range contact process and the CPLDP.

We will see that the long range contact process acts as a lower bound with respect to

survival, i.e if the long range contact process survives so does CPLDP.

But first, let us rigorously define a long range contact process. Let r > 0 and (ae)e∈E

be a sequence of positive real numbers such that
∑

y∈V a{x,y} <∞ for all x ∈ V . We

assume translation invariance, i.e. that a{x,y} = a{x′,y′} if d(x, y) = d(x′, y′), and use the

convention that a{x,x} = 0.

We consider the set M∗ := {inf∗e : e ∈ E} ∪ {recx : x ∈ V } as the set of all possible

maps. Furthermore, we set M∗
inf := {inf∗e : e ∈ E} and Mrec := {recx : x ∈ V }. We
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choose the rates to be rinf∗e = ae > 0 and rrecx = r > 0 for all e ∈ E and all x ∈ V .

Note that the bound (2.1) on the rates (rm)m∈M∗ is satified since

sup
x∈V

∑
m∈M,D(m)3x

rm(|Rx(m)|+ 1) ≤ 3 sup
x∈V

(∑
y∈V

a{x,y}

)
+ r <∞, (7.2)

where we used in the first inequality that Rx(inf∗{x,y}) = {x, y} for all y 6= x and that

a{x,y} = a{x′,y′} if d(x, y) = d(x′, y′) to conclude that the supremum of the sums is finite.

Thus, by the construction discussed in Section 2.3 we obtain a Feller process X on the

state space P(V ) and the jump rates are given by

Xt− = C → C ∪ {x} at rate
∑
y∈C

a{x,y} and

Xt− = C → C\{x} at rate r.

Next we show Proposition 1.4.23, which states that we can couple the CPLDP (CC ,B)

with a long range contact process X
C

with transition rates

ae(λ, γ, q) =
1

2

(
λ+ γve −

√
(λ+ γve)2 − 4vepeλγq

)
.

and the same recovery rate r such that X
C

t ⊂ CC
t for all t ≥ 0.

Proof of Proposition 1.4.23. By Definition 7.1.2 we know that we only use potential

infection events (inf∗{x,y}, t) ∈ supp(Ξinf∗) such that {x, y} ∈ Bt in an infection path,

i.e. only infection arrows placed on an open edge are valid. We set for all e ∈ E

Yt(e) := |{s ≤ t : (inf∗e, s) ∈ supp(Ξinf∗) and e ∈ Bs}| and Xt(e) := 1{e∈Bt}.

Now we can identify the transitions and transition rates of the just defined process

(Y,X) quite easily. The state of Yt(e) depends on Xt(e), and thus has transitions

Yt−(e) = n→ n+ 1 at rate λXt− = 1,

The process X(e) is autonomous such that it has transition

Xt−(e) = 0→ 1 at rate v̂ep̂e and

Xt−(e) = 1→ 0 at rate v̂e(1− p̂e).
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Now [Bro07, Theorem 1.4] together with Theorem 2.1.12 yields that there exists an

Poisson process Y t(e) on [0,∞) with rate ae such that Yt(e) ≥ Y t(e) almost surely for

all t ≥ 0. Since e was chosen arbitrarily this holds for every e ∈ E , where

ae =
1

2

(
λ+ v̂e −

√
(λ+ v̂e)2 − 4λv̂ep̂e

)
.

This means we find a Poisson point process Ξinf∗ on M∗
inf ×R with intensity measure

rmdt, where rinf∗e = ae > 0 for e ∈ E such that (inf∗e, t) ∈ supp(Ξinf∗) already implies

that (inf∗e, t) ∈ supp(Ξinf∗) such that e ∈ Bt.

Thus, via the graphical representation we can construct a Feller process X on P(V ) with

respect to the Poisson point process Ξinf∗ + Ξinf such that it has the required transition

rates and XC
t ⊂ CC

t for all t ≥ 0. Now it remains to show that X is well-defined. To

show this it suffices to verify (7.2). We see that

ae =
λ+ v̂e

2

(
1−

√
1− 4v̂ep̂eλ

(λ+v̂e)2

)
≤ 2λv̂ep̂e
λ+ v̂e

,

where we used that 1−x ≤
√

1− x for 0 ≤ x ≤ 1. Since v̂e
λ+v̂e

≤ 1 we see that ae ≤ 2λp̂e.

But by Assumption 1.4.21 the sequence (p̂{x,y})y∈V is summable for every x ∈ V , and

thus (7.2) is satisfied.

Next we show that the rates (ae(λ, γ, q))e∈E chosen in Theorem 1.4.23 converge as

γ →∞ and we provide the exact limit.

Lemma 7.1.4. Let the sequence (ae(λ, γ, q))e∈E be chosen as in Theorem 1.4.23. Then,

it follows that limγ→∞ ae(λ, γ, q) = λqpe for all e ∈ E

Proof. Let us consider the function x 7→
√

1− x for 0 ≤ x ≤ 1. The Taylor expansion

at x = 0 yields that √
1− x = 1− x

2
−O(x2).

Since (λ + v̂e)
2 ≥ 4v̂eλ is equivalent to (λ − v̂e)2 ≥ 0 we know that 4v̂ep̂eλ

(λ+v̂e)2
∈ [0, 1],

where we used that p̂e ∈ [0, 1]. Thus, if we consider γ as variable we see that

1−
√

1− 4γvep̂eλ
(λ+γve)2

=
1

2
4γvep̂eλ

(λ+γve)2
+O(γ−2),

where O(γ−2) is meant with respect to γ →∞. This implies that

ae(γ) =
λ+ γve

2

(
1−

√
1− 4γvep̂eλ

(λ+γve)2

)
= γvep̂eλ

λ+γve
+O(γ−1).
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Now we see that the remainder vanishes and γve
λ+γve

→ 1 as γ →∞. Thus, ae(γ)→ λp̂e

as γ →∞.

7.2 Comparison of a long range percolation model with

the dynamical long range percolation

In this section we will compare the dynamical long range percolation B blockwise to

a long range percolation model. The idea is that we partition the time axis [0,∞) at

each edge e ∈ E into equidistant blocks [nT, (n+ 1)T ), where T > 0 and n ∈ N0. Now

we set

wn(e) :=

1 if e /∈ Bt for all t ∈ [nT, (n+ 1)T )

0 otherwise,
(7.3)

which indicates whether an edge e was closed for the whole time period [nT, (n+ 1)T ).

We will simplify notation and write wn(x, y) instead of wn({x, y}) for {x, y} ∈ E . The

idea is that we accept all infection events (t, inf∗e) with t ∈ [nT, (n + 1)T ) such that

wn(e) = 0. This leads to an infection process, which survives more easily than C, see

also the visualization of the graphical representation for the CPDP in Figure 7.1. These

techniques are not new, they were already used by [LR20] for graphs with bounded

degree. Here we adjust the arguments to graphs with unbounded degrees.

Figure 7.1: Red lines indicate as usual infection paths. On the left hand side we
illustrated the graphical representation with respect to the background B. On the right
hand side we modified the background in such a way that the edges are only closed if
they were closed throughout a whole block of length [nT, (n+ 1)T ).
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Obviously (wn(e))(n,e)∈N0×E is not a family of independent variables. But at least we

know that wn(e) and wm(e′) are independent as long as e 6= e′ for all n,m ∈ N0. So

dependence only occurs along the time line for a fixed edge. A lower bound on the

conditional probability that wn(e) = 1 given all previous states wn−1(e), . . . , w0(e)

already exists and was proven in [LR20].

Proposition 7.2.1. Let T > 0 be fixed, then it holds for all n ∈ N that for every e ∈ E

P(wn(e) = 1|wn−1(e), . . . , w0(e))

≥ (1− p̂e)e−p̂ev̂eT
e−v̂eT + (1− p̂e)(1− e−v̂eT )− e−p̂ev̂eT

1− e−p̂ev̂eT

= (1− p̂e)e−p̂ev̂eT
(

1− p̂e
1− e−v̂eT

1− e−p̂ev̂eT
)

:= δe(γ, q, T ) = δe.

Proof. See [LR20, Proposition 3.8].

Lemma 7.2.2. Let (Xn)n∈N0 be a family of Bernoulli random variables such that

P(Xn = 1|Xn−1, . . . , X0) ≥ q,

where q ∈ (0, 1). Then there exist an independent and identically distributed family of

Bernoulli random variables (X ′n)n∈N0, such that P(X ′n = 1) = q and Xn ≥ X ′n almost

surely for every n ∈ N0.

Proof. First of all we set

pn(xn−1, . . . , x0) := P(Xn = 1|Xn−1 = xn−1, . . . , X0 = x0)

for n ≥ 1 and p0 = P(X0 = 1), where xn−1, . . . x0 ∈ {0, 1}. Let (χn)n≥0 be a family of

independent and identical uniform distributed random variables on [0, 1] which are also

independent of the family (Xn)n≥0.

Next we iteratively define the desired family of random variables (X ′n)n≥0. For that we

need to define a family of auxiliary random variables (Yn)n≥0. First let Y0 := 1{χ0≤q0},

where q0 ∈ [0, 1]. Note that the exact value of q0 is yet to be determined. This will

happen in the next step. Now set X ′0 := X0Y0. We see that X ′0 ≤ X0 and that

P(X ′0 = 1) = P(X0 = 1)P(Y0 = 1) = p0q0.
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Thus, by choosing q0 := q
p0

we see that P(X ′0 = 1) = q. Next suppose that we already

defined X ′n−1, . . . , X
′
0. We set

p′n(xn−1, . . . , x0) := P(Xn = 1|X ′n−1 = xn−1, . . . , X
′
0 = x0),

where xn−1, . . . x0 ∈ {0, 1} and p′0 := p0. Also let qn(·) be a function which maps

{0, 1}n to [0, 1] which is yet to be determined. We set Yn := 1{χn≤qn(X′n−1,...,X
′
0)} and

X ′n := XnYn. It is again immediately clear that X ′n ≤ Xn. Now we see that

P(X ′n = 1|X ′n−1, . . . , X
′
0) = P(Yn = 1, Xn = 1|X ′n−1, . . . , X

′
0)

By choice χn is independent of (X ′k)k≤n−1 and (Xk)k≤n. The random variable Yn is a

function of χn and all (X ′k)k≤n−1 and Xn is a function of all (Xk)k≤n−1. This yields

that Yn and Xn are conditional on (X ′k)k≤n−1 independent, i.e.

P(X ′n = 1|X ′n−1, . . . , X
′
0) =P(Xn = 1|X ′n−1, . . . , X

′
0)P(Yn = 1|X ′n−1, . . . , X

′
0)

=qn(X ′n−1, . . . , X
′
0)p′n(X ′n−1, . . . , X

′
0).

Thus, if we choose qn(X ′n−1, . . . , X
′
0) := q ·

(
p′n(X ′n−1, . . . , X

′
0)
)−1

, we get that

P(X ′n = 1|X ′n−1, . . . , X
′
0) = q.

Since the right hand side is independent of the values of X ′0, . . . , X
′
n−1 it follows that

X ′n is independent of (X ′k)k≤n−1. Furthermore, if we take the expectation of both sides,

we get that P(X ′n = 1) = q. What is left to show is that p′n(X ′n−1, . . . , X
′
0) ≥ q, since

otherwise q′n(X ′n−1, . . . , X
′
0) > 1. By the choice, the family (χn)n≥0 is independent of

the family (Xn)n≥0, and thus we see that

P(Xn = 1|Xn−1, . . . , X0, χn−1, . . . , χ0) = P(Xn = 1|Xn−1, . . . , X0) ≥ q.

But we know that the (X ′k)k≤n−1 are functions of the (Xk)k≤n−1 and (χk)k≤n−1. This

implies that G ′n−1 := σ(X ′k : k ≤ n − 1) ⊂ σ(Xk, χk : k ≤ n − 1), and therefore by

taking the conditional exception with respect to G ′n−1 on both sides it follows that

p′n(X ′n−1, . . . , X
′
0) = P(Xn = 1|X ′n−1, . . . , X

′
0) ≥ q.

This concludes the proof.
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The bounds derived in Proposition 7.2.1 together with Lemma 7.2.2 enable us to

compare (wn(e))n≥0 with a family of independent and identically distributed Bernoulli

random variables.

Corollary 7.2.3. Let T > 0 and (wn(e))(n,e)∈N0×E be defined as in (7.3). Then

there exists a family of independent Bernoulli variables (w′n(e))(n,e)∈N0×E such that

P(w′n(e) = 1) = δe and wn(e) ≥ w′n(e) almost surely for all (n, e) ∈ N0 × E.

Proof. This is a direct consequence of Proposition 7.2.1, Lemma 7.2.2 and the fact

that wn(e) and wm(e′) are independent as long as e 6= e′ for all n,m ∈ N.

Since we want to formulate a comparison with a long range percolation model, we

will now briefly introduce this model and summarize some fact about it. First let us

clarify the notation. Recall that the graph G = (V,E) is transitive, connected and has

bounded degree. Furthermore, we again denote the set of edges of all lengths by

E = {e = {x, y} ⊂ V : x 6= y}.

The long range percolation model is defined on
(⊗

e∈E{0, 1},F , µ
)

where
⊗

e∈E{0, 1}
is the sample space, F is the σ-algebra generated by the finite-dimensional cylinders

and µ :=
∏

e∈E µe with µe({1}) = be ∈ [0, 1]. Now w ∈
⊗

e∈E{0, 1} is a realization

of the long range percolation model. We declare an edge e = {x, y} ∈ E to be open

if w(e) = 1. Then with probability b{x,y} > 0 the edge between x and y is open.

Furthermore we assume for every fixed x ∈ V that
∑

y∈V b{x,y} <∞ to guarantee that(
V,w−1({1})

)
is a locally finite graph, where w−1({1}) = {e ∈ E : w(e) = 1}. Note

that we use the convention b{x,x} = 0 for all x ∈ V . Furthermore, we again assume

translation invariance, i.e. that b{x,y} = b{x′,y′} if d(x, y) = d(x′, y′), where d(·, ·) is the

graph distance induced by G. We denote by C(x) the connected component containing

x ∈ V . The following result provides a sufficient condition for absence of percolation.

Proposition 7.2.4. Let
∑

y∈V b{x,y} < 1 for one and hence every x ∈ V . Then almost

surely there exists no infinite connected component. In this case |C(x)| is also integrable

for all x ∈ V .

Proof. This can be proven via a coupling with a branching process. Since V is countable

we can index all vertices such that V = {x0, x1, . . . }. Recall that w = (w(e))e∈E is

a family of independent random variables such that P(w(e) = 1) = be for all e ∈ E .

Let |C(x0)| be the connected component of x0 with respect to w. Now let wn,m be an
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independent copy of w for all n,m ∈ N0, i.e. P(wn,m(e) = 1) = be for all e ∈ E and all

n,m ∈ N0. Furthermore, this means that w is independent of all wn,m and the copies

wn,m and wn
′,m′ are independent if either n 6= n′ or m 6= m′. We consider the index set

T := {(α0, α1, . . . , αn) ∈ V n+1 : n ∈ N0, α0 = x0 and αi−1 6= αi for all 0 < i ≤ n}.

For α = (α0, α1, . . . , αn) we define the generation of α as |α| = n (so that |(x)| = 0).

Furthermore, we equip T with the lexicographical order with respect to the enumeration

of V .

Now we construct a family of random variables (Xα)α∈T with Xα ∈ {0, 1}, where X(x0) =

1. We will define these random variables iteratively according to the lexicographical

order. For given n,m ∈ N0 we define the set Imn ⊂ E , which contains all edges,

which we at least “observed” once until the offsprings of xm in the n-th generation

are drawn. Suppose we already constructed all Xα with |α| < n and all Xα with

|α| = n such that αn−1 ∈ {x0, . . . , xm−1}. Then, let Imn contain all edges {y, z} ∈ E
such that there exists an α ∈ T with |α| = k < n and αk = y ∈ V or with |α| = n

and αn = y ∈ {x0, . . . , xm−1}, which satisfies Xα = 1. Now, we define Xα for all α ∈ T
with |α| = n and αn−1 = xm by

Xα :=


1 if {xm, αn} /∈ Imn , w({xm, αn}) = 1 and X(α0,...,αn−2,xm) = 1

1 if {xm, αn} ∈ Imn , wn,m({xm, αn}) = 1 and X(α0,...,αn−2,xm) = 1

0 otherwise

In words if we have that X(α0,...,αn−2,xm) = 1 and have not observed {xm, αn} yet,

then we set Xα = 1 if w({xm, αn}) = 1. But if {xm, αn} was previously already

observed, then we already know if the edge is open or closed with respect to w. To

preserve independence between different generations and between the several offspring

of the same generation we use the independent copy wn,m instead of w. Now we set

Zn :=
∑

α∈T :|α|=nXα. Because of translation invariance the offspring distribution is the

same in every step. Thus, we see that Z = (Zn)n∈N0 is a branching process with Z0 = 1

and offspring mean µ :=
∑

y∈V b{x,y}, which is constant over x because of translation

invariance.

If y ∈ C(x0) then there exists a collection of edges {{yi, yi+1} : i ≤ n} such that y0 = x0

and yn = y. But then all edges {yi, yi+1} must have been observed at least once in the

course of the construction of (Xα)α∈T , and thus all yi will be counted by Z eventually,

which implies that |C(x0)| ≤
∑

n∈N Zn := T , where T is the total progeny of the
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branching process. Note that this might not happen in the same order as the original

path {{yi, yi+1} : i ≤ n}, since we might take a shortcut via a resampled edge, which

was originally closed. But, because of the resampling mechanism, it is not possible for

an originally open edge to be closed without being “used” at least once. Thus, the

total progeny T of Z can only be larger than |C(x0)|.

It is well known that for µ < 1 the branching process dies out almost surely which

provides the first claim. It also holds that E[T ] ≤ 1
µ−1

for µ < 1 as for example shown

in [Hof16, Theorem 3.5], which provides integrability of |C(x0)|. Because of translation

invariance this result does not depend on the choice of x0 since |C(x0)| = |C(y)| for all

y ∈ V .

Next we consider the special case V = Z and E = {{x, y} ⊂ Z : |x− y| = 1}. Since we

assumed translation invariance we can simplify notation and set b{n,n+k} = b{0,k} =: bk

for all k ∈ N and all n ∈ Z. In fact only if
∑

k∈N kbk =∞, is it possible for a infinite

component to exists. The reason for this is that if
∑

k∈N kbk <∞ holds, then the long

range percolation is similar to a finite range percolation in the sense that there appear

so-called “cut-points”, see Figure 7.2, which lead to a partition of the integer lattice Z,

which consists of finite connected components. We will briefly show this result for the

long range percolation before we continue with our study of the CPLDP.

Definition 7.2.5. Let V = Z. A cut-point m ∈ Z is a point such that no (unoriented)

edge {x, y} with x ≤ m < y is present in the model, i.e. ω({x, y}) = 0.

Figure 7.2: Visualization of a cut point

In the proof of the following result ergodic theory is used. A brief summary of some of

the important notions can be found right before Remark 5.1.12.

Proposition 7.2.6. Let (bk)k∈N ⊂ [0, 1) with
∑

k∈N kbk <∞, then the following holds:

1. For m ∈ Z the probability P(m is a cut-point) = P(0 is a cut-point) > 0, and as

a consequence there exist almost surely infinitely many cut-points.
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2. The subgraphs induced in the intervals between consecutive cut-points are inde-

pendent and identically distributed. In particular, this implies that the distances

between consecutive cut-points form a sequence of i.i.d. random variables as well.

3. There exists no infinite component.

Proof. By translation invariance we know that

P(m is a cut-point) = P(0 is a cut-point) =
∏

x≤0<y

(1− b{x,y}).

The infinite product on the right hand side is strictly positive, since

∑
x≤0<y

b{x,y} =
∞∑
k=1

k−1∑
l=0

b{−l,−l+k} =
∑
l∈N

kbk <∞,

where we used that b{−l,−l+k} = bk for every l ∈ Z. Thus this yields the first claim.

Next let us define Xm := 1{m is a cut-point}. Let S be a shift operator such that

(ω({x, y})){x,y}∈E 7→ (ω({x+ 1, y + 1})){x,y}∈E .

In words we shift all edge by one vertex to the right. Since (ω(e))e∈E is a family of

independent random variables it is clear that (ω, S) is ergodic. It is not difficult to see

that there must exists a measurble function f : Ω→ {0, 1} such that Xk = f(S−kω)

for all k ∈ Z. Then by Birkhoff’s mean ergodic theorem follows that

1

2n

n∑
k=−n

Xk → E[X0] = P(0 is a cut-point) > 0

almost surely. This implies that infinitely many Xk are equal to 1 almost surely. The

second statement is immediate, since there are no edges between different intervals

between consecutive cut-points. This also means that with probability 1 there cannot

exist an infinitely large component.

7.3 Existence of an immunization phase

Throughout this section we assume that Assumption 1.4.21 is satisfied, which states

that
∑

y∈V v{x,y}p{x,y} <∞ and
∑

y∈V v
−1
{x,y} <∞ for all x ∈ V . In this section we will

show Theorem 1.4.24, which means that we prove that for given r > 0 and γ > 0, there
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exists a q∗ ∈ (0, 1) such that C dies out almost surely for all q < q∗ regardless of the

choice of λ > 0, i.e. λc(r, γ, q) =∞ for all q < q∗.

The idea is that, if q is small enough, then an arbitrary vertex will eventually be isolated

for a long time, and therefore a potential infection cannot spread to another vertex

before the isolated vertex is affected by a recovery event. So it is basically a dead end

for an infection path. To make this formally precise let us define X = (Xe,n)(e,n)∈E×N0

and U = (Ux,n)(x,n)∈V×N0 by

Xe,n :=

1 if e ∈ Bt for some t ∈ [nT, (n+ 1)T )

0 otherwise,

Ux,n :=

1 if supp(Ξrec) ∩ {recx} × [nT, (n+ 1)T ) = ∅

0 otherwise.

Note that Xe,n = 1 − wn(e) from 7.3 for all e ∈ E , where wn(e) is defined in 7.3. If

Ux,n = 0 and
∑

y∈V X{x,y},n = 0, then an infection on site x cannot possibly survive in

the time interval [nT, (n+ 1)T ). This follows since
∑

y∈V X{x,y},n = 0 implies that for

the whole time interval all edges attached to x are closed. Therefore, since Ux,n = 0 we

know that the site x will recover and cannot be reinfected. Furthermore, between time

nT and (n+ 1)T no infection can spread from x. Now we define a random graph G1

with vertex set V ×N0 and add edges according to the following rules.

1. If Ux,n = 1, add an oriented edge from (x, n) to (x, n+ 1).

2. If Xe,n = 1 for e = {x, y}, add edges as if Ux,n = 1, Uy,n = 1 and an unoriented

edge between (x, n) and (y, n).

The rules are visualized in Figure 7.3. Note that all “horizontal” edges are unoriented

such that they can be used in both directions, but all “vertical” edges are oriented and

only point upwards.

Definition 7.3.1. (Valid path) Let G1 be the random graph constructed above and

C ⊂ V be the set of all initially infected individuals. We say that there exists a valid

path from C × {0} to a point (x, n), if there exists sequence x0, x1, . . . , xm = x with

x0 ∈ C and 0 = n0 ≤ n1 ≤ · · · ≤ nm = n such that there exist an edge in G1 from

(xk, nk) to (xk+1, nk+1) for all k ∈ {0, . . . ,m− 1}.

In Figure 7.4 we visualized how a fragment of the graph could look like. Here, the red

path shows a possible valid path. For every n ∈ N we denote by Yn = Yn(U,X), the

set of all points x ∈ V such that there exists a valid path from Y0 × {0} to (x, n).
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Figure 7.3: Illustration of the first and second rule. Solid lines are present edges and
dashed lines indicate absent edges. The numbers in the circles indicate the state of the
U variables and the number of above the horizontal edges the state of the X variables.

Figure 7.4: Visualization of a fragment of G1. The red path indicates a possible valid
path

Lemma 7.3.2. Let T > 0,n ∈ N0 and C ⊂ V . Then x ∈ CC
nT and C = Y0 implies

that x ∈ Yn, and thus in particular if Yn = ∅, then CC
nT = ∅.

Proof. If x ∈ CC
nT then there must at least exist one infection path from C × {0} to

(x, nT ) as defined in Definition 7.1.2. This means that there exists a sequence of times

0 = t0 < t1 < · · · < tn′ < tn′+1 = nT with n′ ≥ n and space points x0, x1, . . . , xn′ = x

with x0 ∈ C such that, (inf∗{xk−1,xk}, tk) ∈ supp(Ξinf∗) and {xk−1, xk} ∈ Btk for all

k ∈ {1, . . . , n′ + 1} and supp(Ξrec) ∩
(
{recxk} × [tk, tk+1)

)
= ∅ for all k ∈ {0, . . . , n′}.

For any such path there must exist a subsequence of sites (xm)m≤n ⊂ (xk)k≤n′ (including

x0 and xn) such that xm ∈ CmT for m ∈ {0, . . . , n}. Now if we can show that

xm−1 ∈ C(m−1)T and xm ∈ CmT imply that xm ∈ Ym the claim follows since x0 ∈ Y0 = C

by assumption.
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So if xm−1 6= xm it means that the infection must have spread from xm−1 to xm in the

time interval [(m− 1)T,mT ). But we already assumed the existence of an infection

path. Thus, we find a sequence of sites xm−1 = ym0 , . . . y
m
l = xm and a sequences

of times (m − 1)T < tm1 < · · · < tml < tml+1 = mT with (ymj )j≤l ⊂ (xk)k≤n′ and

(tmj )j≤l ⊂ (tk)k≤n′+1 such that
(
inf∗{ymk−1,y

m
k }
, tmk
)
∈ Ξinf∗ and {ymk−1, y

m
k } ∈ Btmk

for all

k ∈ {1, . . . , l}. In particular this implies that X{ymk−1,y
m
k },m−1 = 1 for all k ∈ {1, . . . , l},

thus by the second rule xm ∈ Ym.

If xm−1 = xm then either there was no recovery event in the whole time interval[
(m− 1)T,mT

)
, then by the first rule xm ∈ Ym or the infection must have spread to

another site and the site xm got reinfected. Then there must have been a site x′ and a

time t ∈ [(m− 1)T,mT ) such that {xm, x′} ∈ Bt and therefore xm ∈ Ym by the second

rule.

Obviously (Ux,n)(x,n)∈V×N0 is an independent and identically distributed family of

random variables with P(Ux,n = 1) = e−rT . Furthermore by definition it is independent

of the family (Xe,n)(e,n)∈E×N0 . We already mentioned that Xe,n = 1− wn(e), and thus

we get by Corollary 7.2.3 that there exists a family of independent and identically

distributed random variables (X ′e,n)(e,n)∈E×N0 such that P(X ′e,n = 1) = 1 − δe and

Xe,n ≤ X ′e,n almost surely for all (e, n) ∈ E × N0, which are also independent of

(Ux,n)(x,n)∈V×N0 . Analogously to Yn we can now define Y ′n = Y ′n(X ′, U) in the same way

with the difference that we use X ′e,n instead of Xe,n. We see immediately that Yn ⊂ Y ′n

for all n ∈ N0. So whenever (Y ′n)n∈N0 goes extinct, i.e. there exists a k ∈ N0 such that

Y ′k = ∅, so does (Yn)n∈N0 . We will see that Y ′n is much easier to analyse compared to

Yn.

Lemma 7.3.3. Let x ∈ V . If E[|Y ′1 ||Y ′0 = {x}] < 1, then Y ′ goes extinct almost surely

for any finite A ⊂ V as initial state.

Proof. The process Y ′ = (Y ′n)n∈N0 is basically a type of oriented percolation model.

Thus, it is not difficult to see that Y ′ is a Markov process and the state ∅ is an absorbing

state. The idea is to consider Nex := inf{n ≥ 0 : Y ′n := ∅}, which is the extinction time

of Y ′, and set FA(n) := P(Nex ≤ n|Y ′0 = A). Note that since the U and X ′ are all

independent the event

{there exists no valid path from (y, 0) to N0 × {n}}
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is a decreasing event with respect to a product measure for every y ∈ V . So we know

that by the FKG inequality or rather the reverse of it, see [Gri99, Theorem 2.4], that

FA(n) ≥
∏
y∈A

P({there exists no valid path from (y, 0) to N0 × {n}}) = F{x}(n)|A|,

where we used translation invariance. The aim is to show that if E[|Y ′1 ||Y ′0 = {x}] < 1,

then F{x}(n)→ 1 as n→∞. We will not prove this result in detail since the proof is

identical to [LR20, Lemma 3.7].

Now Theorem 1.4.24 follows as a corollary.

Proof of Theorem 1.4.24. Let us fix x ∈ V . We can calculate that

E[|Y ′1 ||Y ′0 = {x}] = E[1{∃y∈V :X′{x,y},0=1}|Y ′1 |] + P
( ⋂
y∈V

{X ′{x,y},0 = 0}
)
E[Ux,0]. (7.4)

Let us choose 0 < ε < 1 arbitrarily but fixed. For the last term, we find a T1 > 1 large

enough such that

E[Ux,0] = e−rT <
ε

3
(7.5)

for all T > T1. For the first term we see that Y ′1 is actually the connected component

containing x formed by a long range percolation model with probabilities (1− δe)e∈E ,
where δe is defined in Proposition 7.2.1. First we note that δe = δe(q, T ) can be

considered as a function of q and T , where we omitted γ since this parameter remains

constant throughout this proof. We see that

1− δe = 1− e−p̂ev̂eT + p̂ee
−p̂ev̂eT + (1− p̂e)p̂e

1− e−v̂eT

ep̂ev̂eT − 1
≤ p̂ev̂eT + p̂e +

1

v̂eT
, (7.6)

for all e ∈ E , where we used that 1− x ≤ e−x and 1 + x ≤ ex for x ≥ 0. Recall that

p̂k = qpk. For the remainder of this proof we choose q = q(T ) := T−2 and see that

1− δe(q(T ), T ) ≤ 1

T
pev̂e +

1

T 2
pe +

1

v̂eT
=: be(T ) (7.7)

for all e ∈ E . We attach T as an index to Y ′1(T ), since by the choice of q the probabilities

(1 − δe)e∈E determining the connected components only depend on the choice of T .

Next we will show that there exists T2 > 0 and an M(ε, T2) = M > 0 such that

E[1{|Y ′1(T )|>M}|Y ′1(T )|] < ε

3
(7.8)
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for all T > T2. For this, let Z(T ) be the connected component containing x formed by

a long range percolation model with probabilities (be(T ))e∈E such that Y ′1(T ) ⊂ Z(T )

for every T > 0. This is possible since (7.7) holds for all e ∈ E . Furthermore, be(T ) is

decreasing in T and be(T )→ 0 as T →∞ for all e ∈ E . We also see that be(T ) ≤ be(1)

for all T ≥ 1 and every e ∈ E . By Assumption 1.4.21 it follows that (b{x,y}(1))y∈V is

summable for all x ∈ V . Therefore, by Lebesgues theorem of dominated convergence

we see that there exists a T2 ≥ T1 large enough such that∑
y∈V

b{x,y}(T ) < 1

for all T ≥ T2. For this choice of T2 the integrability of |Z(T2)| follows by Proposi-

tion 7.2.4, i.e. E[|Z(T2)] <∞. Thus, for every ε > 0 there exist an M(ε, T2) = M > 0

such that

E[1{|Z(T2)|>M}|Z(T2)|] < ε

3
.

Now we see that be(T ) is monotone decreasing in T for all e ∈ E , and thus

E[1{|Z(T )|>M}|Z(T )|] ≤ E[1{|Z(T2)|>M}|Z(T2)|] < ε

3

for all T > T2. Furthermore since by definition Y ′1(T ) ⊂ Z(T ) for all T we see that

E[1{|Y ′1(T )|>M}|Y ′1(T )|] < ε

3
.

for all T > T2. Now we see that

E[1{∃y∈V :X′{x,y},0=1}|Y ′1 |] ≤ E[1{|Y ′1 |>M}|Y
′

1 |] + E[1{|Y ′1 |≤M}1{∃y∈V :X′{x,y},0=1}|Y ′1 |],

and therefore we can use (7.4) and conclude with the bounds (7.5) and (7.8) that

E[|Y ′1 ||Y ′0 = {x}] < ε

3
+M P({∃y ∈ V : X ′{x,y},0 = 1} ∩ {|Y ′1 | ≤M})︸ ︷︷ ︸

≤P(∃y∈V :X′{x,y},0=1)

+
ε

3
(7.9)

for all T > T2. By using subadditivity of the measure P we get that

P(∃y ∈ V : X ′{x,y},0 = 1) = P
( ⋃
y∈V

{X ′{x,y},0 = 1}
)
≤
∑
y∈V

(
1− δ{x,y}(q(T ), T )

)
,

since P(X ′{x,y},0 = 1) = 1− δ{x,y}(q(T ), T ) for every {x, y} ∈ E . Now we can use again

that 1− δ{x,y}(q(T ), T ) ≤ be(1) for all T ≥ 1 and (b{x,y}(1))y∈V is summable for every
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x ∈ V . Together with the fact that 1− δ{x,y}(q(T ), T )→ 0 as T →∞ this implies that

there exists a T3 ≥ T2 such that∑
y∈V

(1− δ{x,y}(q(T ), T )) <
ε

3M
(7.10)

for all T > T3. Now (7.9) and (7.10) imply that there exists a T and q such that

E[|Y ′1 ||Y ′0 = {x}] < ε < 1.

Therefore, by Lemma 7.3.3 we see that Y ′ goes extinct almost surely and since Yn ⊂ Y ′n,

we know that Yn goes extinct almost surely. Finally, we can use Lemma 7.3.2 to

conclude that this already implies that C{x} goes extinct almost surely as well.

But if C{x} goes extinct almost surely, i.e θ({x}) = 0, then by translation invariance it

follows that θ({y}) = 0 for all y ∈ V , and thus if we assume θ(C) > 0 for some finite

C ⊂ V via the graphical representation it would follow that there must exist a z ∈ C
such that θ({z}) > 0 which leads to a contradiction. Thus, CC goes extinct almost

surely for all finite C ⊂ V .

7.4 Extinction for slow background speed for V = Z

On general graphs G = (V,E) Proposition 1.4.22 and Theorem 1.4.24 provide partial

results on the behaviour of the critical infection rate for slow speed of the background

process, which we stated in Corollary 1.4.25. Let us recall the statement of this corollary.

For a given r > 0 there exists a q∗ = q∗(r) > 0 such that limγ→0 λc(r, γ, q) =∞ for all

q < q∗. We prove this result now.

Proof of Corollary 1.4.25. Let r > 0 be fixed. Now Theorem 1.4.24 provides that

for a given γ0 > 0 there exists a q0 = q0(r, γ0) > 0 such λc(r, q, γ0) = ∞ for all

q < q0. But by Proposition 1.4.22 it also follows that λc(r, q, γ) = ∞ for all q < q0

and all γ ≤ γ0. Another consequence of Proposition 1.4.22 is that if γ1 < γ0, then

the q1 = q1(r, γ1) provide by Theorem 1.4.24 for γ1 must be bigger or equal to q0,

i.e. q1 ≥ q0. Like this we can recursively construct an increasing sequence (qn)n∈N0 such

that we can define q∗ := supn∈N qn. Now for every q < q∗ there must exist an n ∈ N0

such that q ≤ qn, and thus λc(r, q, γ) =∞ for all γ ≤ γn. Hence, it follows in particular

that limγ→0 λc(r, q, γ) =∞ for all q < q∗.



162 Chapter 7 Contact process on a dynamical long range percolation

Now we restrict ourselves to the one dimensional integer lattice. Since in this case

we can fully characterize the behaviour of the critical infection rate as γ → 0. Thus,

throughout this section we consider G = (V,E) to be the one dimensional lattice, i.e

V = Z and E = {{x, y} ⊂ Z : |x − y| = 1}, and assume that Assumption 1.4.26 is

satisfied, i.e. ∑
y∈N

yv−1
{0,y} <∞ and

∑
y∈N

yv{0,y}p{0,y} <∞

Obviously this assumption already implies Assumption 1.4.21 and by (7.6) we see that

∑
y∈N

y(1− δ{0,y}) ≤
∑
y∈N

y
(
p̂{0,y}v̂{0,y}T + p̂{0,y} +

1

v̂{0,y}T

)
<∞ (7.11)

for all x ∈ Z, by taking the stronger Assumption 1.4.26 into consideration. The goal of

this section is to show Theorem 1.4.27. We will now modify and adapt the strategy

used in [LR20].

This means that as in the previous section we construct a type of oriented long range

percolation model, which will be coupled to the CPLDP in such a way that if this

model goes extinct so does the CPLDP. Recall that wn(e), which is defined in (7.3), is

the indicator function, that is one if the edge e is closed for the whole time interval

[nT, (n+ 1)T ). By Corollary 7.2.3 we know that there exists a family of independent

Bernoulli random variables (w′n(e)){(n,e)∈N0×E} such that w′n(e) ≤ wn(e) almost surely

and P(w′n(e) = 1) = δe for all n ∈ N0 and all e ∈ E . We define the oriented long range

percolation model right away with respect to the family (w′n(e)){(n,e)∈N0×E}.

One key point of the arguments used in [LR20] was that in an independent percolation

model on Z with p < 1 an infinitely large cluster does not occur, and thus the

percolation almost surely partitions Z into finite connected components. As we saw

in Proposition 7.2.6 the long range percolation exhibits a similar behaviour, as finite

range percolation models on Z, in case that
∑

y∈N y(1−δ{0,y}) <∞, i.e. the percolation

graph is almost surely a union of finite connected components.

Recall from Definition 7.2.5 that a cut-point m is a point such that no edge {x, y}
with x ≤ m < y is present in the model. In comparison to the nearest neighbour case,

one major problem is that the presence of cut points at two different vertices is not

independent. The events ({k is a cut-point})k∈Z are in fact a positively correlated. To
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be precise {k is a cut-point} is a decreasing event, and thus by the FKG inequality, see

[Gri99, Theorem 2.4], for any m ∈ G

P({0 is a cut-point} ∩ {m is a cut-point}) ≥ P(0 is a cut-point)P(m is a cut-point).

So we need to adjust the construction in such a way that we can deal with this

unfavourable correlation.

Definition 7.4.1. Let n,K0 ∈ N and T > 0. We call m ∈ G an (n,K0)-cut if

w′n(x, y) = 1 for all x ≤ m < y with, |x− y| ≤ 2K0.

The event
⋂
x≤m<y:|x−y|≤2K0

{w′n(x, y) = 1} corresponds to m being an (n,K0)-cut. Let

r0 ∈ N and define

Mk := [k(2K0 + r0), (k + 1)(2K0 + r0)− 1] ∩ Z

M left
k := [k(2K0 + r0), k(2K0 + r0) +K0 − 1] ∩ Z

Mmid
k := [k(2K0 + r0) +K0, k(2K0 + r0) +K0 + r0 − 1] ∩ Z

M right
k := [k(2K0 + r0) +K0 + r0, (k + 1)(2K0 + r0)− 1] ∩ Z

The collection (Mk)k∈Z forms a disjoint partition of Z. Furthermore, for every k ∈ Z
the sets Mmid

k ,M left
k and M right

k are disjoint and Mk = Mmid
k ∪M left

k ∪M right
k . We also

want to remark that |Mk| = 2K0 + r0, |Mmid
k | = r0 and |M left

k | = |M right
k | = K0. See

Figure 7.5 for a visualization.

Figure 7.5: Visualization of the sets Mk−1, Mmid
k ,M left

k and M right
k .

Next we define the random variables

Xk,n :=

1 if no (n,K0)-cut lies in Mmid
k

0 otherwise.
(7.12)

If Xk,n = 0, then there exists a barrier in Mmid
k , which the infection cannot overcome

via edges of length shorter than 2K0.
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We will now partition the space-time strip Z× [nT, (n+ 1)T ) for every n, where T > 0,

according to the presence of (n,K0)-cuts. Let ck,n be the right most (n,K0)-cut in

Mmid
k × [nT, (n+ 1)T ) and if none is present, then set it equal to the right boundary of

Mmid
k . Now set Dk,n := [ck−1,n + 1, ck,n] ∩Z. We see that Sk,n := Dk,n × [nT, (n+ 1)T )

is a disjoint space-time partition of Z× [0,∞). See Figure 7.6 for an illustration.

Figure 7.6: A visualization of a possible partition. The thick black lines represent an
(n,K0)-cuts and the blue boxes the resulting partition.

The boxes can only be of bounded size and we see from the construction that

Dk,n ⊃ Dmin
k :=M right

k−1 ∪M
left
k ,

Dk,n ⊂ Dmax
k :=Mmid

k−1 ∪M
right
k−1 ∪M

left
k ∪Mmid

k = Mmid
k−1 ∪Dmin

k ∪Mmid
k

(7.13)

Here Dmin
k is the minimal set, in the sense that Dk,n must at least contain all vertices

contained in Dmin
k and Dmax

k is maximal, i.e Dk,n can at most contain all vertices in

Dmax
k . This provides us with an upper and lower bound on the number of vertices

contained Dk,n, which are 2K0 ≤ |Dk,n| ≤ 2K0 + 2r0. Thus, we can define Smin
k,n :=

Dmin
k × [nT, (n+ 1)T ) and Smax

k,n := Dmax
k × [nT, (n+ 1)T ) as the minimal and maximal

possible space-time box with Smin
k,n ⊂ Sk,n ⊂ Smax

k,n .

Recall that Xk,n provides us with the information whether it is possible for the infection

to traverse Mmid
k via short edges. So if Xk,n = 0 and Xk+1,n = 0, then the boundaries

of Sk,n are (n,K0)-cuts and the infection can only leave this box via long edges. Hence,

we define

W{k,l},n :=


1 if there exists an edge e = {x, y} with |x− y| > 2K0

which connects Sk,n to Sl,n at some t ∈ [nT, (n+ 1)T )

0 otherwise,



7.4 Extinction for slow background speed for V = Z 165

where k 6= l. See Figure 7.7 for a visualization.

Figure 7.7: The thick black lines represent again (0, K0)-cuts and the blue boxes a
part of the resulting partition. Here we visualized the case when W{k,k+1},0 = 1.

These variables provides us with the information whether it is possible for an infection

to travel via long edges at time step n from box k to l. Note that by definition

W{k,l},n = W{l,k},n, and thus we will assume k < l. The idea is that for large K0 a

transmission of the infection via a long edge will be unlikely since they will most likely

not be open. Therefore, we intend to control the survival via short edges in isolated

boxes. Here isolated means that both boundaries of the boxes are (n,K0)-cuts. Hence,

we need a variable which provides us with the information whether the infection can

persist in a box Sk,n for a time period of length T .

We will now define random variables to control the survival in a box Sk,n by

Uk,n :=


1 if there exists an infection path starting at nT that

is ending at (n+ 1)T and is contained in Sk,n,

0 otherwise.

See Figure 7.8 for a illustration. If Uk,n = 0 then an infection contained in an isolated

box Sk,n, i.e. Xk−1,n = 0 and Xk,n = 0, cannot survive via transmission along short

edges only. We denote by BK0
n the σ-algebra containing informations of all w′n(e) of all

short edges in time step n, i.e.

BK0
n := σ

({{
w′n(x, y) = 1

}
: d(x, y) ≤ 2K0

})
. (7.14)

Remark 7.4.2. Let us summarize some properties of the variables we just defined.
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(i) The X variables from (7.12) depend only on edges of maximal length 2K0. Since

the minimal distance d(Mmid
k ,Mmid

l ) > 2K0 for k 6= l we see that Xk,n and Xk′,n′

are independent if k 6= k′ for all n, n′ ∈ N0.

(ii) Uk,n only depends on edges {x, y} with x, y ∈ Dk,n and |x − y| ≤ 2K0. On

the other hand W{k,l},n only depends on edges {x′, y′} such that x′ ∈ Dk,n and

y′ ∈ Dl,n with |x − y| > 2K0. Recall that Dk,n ∩Dl,n = ∅ for k 6= l. Therefore,

Uk′,n′ and W{k,l},n are independent for all k′, k, l ∈ Z and n, n′ ∈ N, where k < l.

(iii) By definition Uk,n and Uk′,n′ are independent if n 6= n′ and only conditionally

independent given BK0
n if n = n′ and k 6= k′.

(iv) Analogously the variables W{l,k},n and W{l′,k′},n′ are independent if n 6= n′ but

are only conditionally independent given BK0
n if n = n′ and {l, k} 6= {l′, k′}.

Note that in (iii) and (iv) conditioning on BK0
n serves the purpose of knowing how the

partition (Sk,n)k∈Z in step n look like.

Figure 7.8: The thick black lines represent again (0, K0)-cuts and the blue boxes a
part of the resulting partition. Here we visualized the case when Uk,0 = 1.

We will again define a random graph G2 with vertex set Z×N0 where the edges are

placed according to the following rules which are visualized in Figure 7.9:

1. If Uk,n = 1 add oriented edges from (k, n) to (k − 1, n + 1), (k, n + 1) and

(k + 1, n+ 1)

2. If Xk,n = 1 add edges as if Uk,n = 1, Uk+1,n = 1 and additionally an unoriented

edge between (k, n) and (k + 1, n).

3. If W{k,l},n = 1 add an edge as if Uk,n = 1, Ul,n = 1 and additionally an unoriented

edge from (k, n) to (l, n).

If Uk,n = 1 then the infection survives through the space-time box Sk,n and it could

possibly spread in at least one of the boxes Sm,n+1 for m ∈ {k− 1, k, k+ 1}. If Xk,n = 1
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then it could possibly spread to its neighbors in the time period [nT, (n + 1)T ). If

W{k,l},n = 1 for any l 6= k the infection could spread to the space-time box Sl,n. So in

this case even if Uk,n = 0 we add the same edges or rather assume that the infection

survives, because it could leave Sk,n to some Sl,n for l > k and return to Sk,n before

(n+ 1)T .

Figure 7.9: Visualization of the three rules. Solid lines are present edges and dashed
lines absent edges.

Definition 7.4.3. (valid path in G2) Let G2 be the above constructed random graph.

Let Z0 ⊂ Z denotes the indices of the boxes which contain the initially infected sites

C. We say that there exists a valid path from Z0 × {0} to a point (k, n) if there exists

a sequence k0, k1, . . . km = k with k ∈ Z0 and 0 = n0 ≤ n1 ≤ · · · ≤ nm = n such that

there exist an edge in G2 between (xk, nk) and (xk+1, nk+1) for all k ∈ {0, . . . ,m− 1}.

Similar as in the previous section we define a process Z = (Zn)n≥0, where for all n ≥ 0

the random set Zn = Zn(U,X,W ) contains all points x ∈ Z for which there exists a

valid path from Z0 × {0} to (x, n) in G2 for n ≥ 1.

Lemma 7.4.4. Let T > 0, n ∈ N0 and C ⊂ V . We choose Z0 such that k ∈ Z0 if

and only if C ∩Dk,0 6= ∅. If x ∈ CC
nT then there exists a k ∈ Z such that x ∈ Sk,n and

k ∈ Zn and thus if Zn = ∅, then CC
nT = ∅.
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Proof. This proof is similar to Lemma 7.3.2. Again if we assume that x ∈ CC
nT then for

some x ∈ C there must exist an infection path from (x, 0) to (y, nT ), and thus we find

a subsequence of sites x = x0, x1, . . . , xn = y such that xm ∈ CC
mT for m ∈ {0, . . . , n}.

Note that these sites are part of the infection path. Also since the (Sk,n)(k,n)∈Z×N0 form

a disjoint partition of Z× [0,∞) for every xm there exists an km = km(xm) such that

(xm,mT ) ∈ Skm,m. Here it again suffices to show that xm ∈ CC
mT and xm+1 ∈ CC

(m+1)T

imply that km+1 ∈ Zm+1. Then, the claim follows immediately, since x ∈ Z0 by

definition of Z0. Now from the way we chose the sequence (xm)m≤n there is an infection

path from (xm,mT ) to (xm+1, (m+ 1)T ) for all m ≤ n− 1. To be precise these paths

are just sections of the original infection path.

1. Let us start with the case that km 6= km+1. Let e1, . . . er be the edges present

in the infection path from (xm,mT ) to (xm+1, (m + 1)T ), where r ∈ N. We

only need to consider the edges which connect vertices in different space-time

boxes. Let em′ = {x′, y′} and t′ ∈ {mT, (m + 1)T} with (x′, t′) ∈ Sk′,mT and

(y′, t′) ∈ Sl′,mT on the infection path. Then again there exists k′, l′ such that

x′ ∈ Sk′,m and y′ ∈ Sl′,m

If |x′ − y′| > 2K0 then W{k′,l′},m = 1, since if (em′ , t
′) is part of the infection path

there must have been an infection event, and thus the edge em′ must have been

open. Thus, by the third rule l′ ∈ Zm+1 if k′ ∈ Zm.

On the other hand if |x′ − y′| ≤ 2K0 then |l′ − k′| = 1. This is because for any

space boxes |Dk,n| ≥ 2K0, so the space time boxes which are connected via em′

must be adjacent. Hence, the boundary between Sk′,m and Sl′,m is no (m,K0)-cut,

since this would prevent an infection to spread via the short edge em′ . This

implies that either Xk′,m = 1 or Xl′,m = 1. Thus, by the second rule l′ ∈ Zm+1 if

k′ ∈ Zm.

Since em′ was chosen arbitrarily from e1, . . . , em, by a combination of the second

and third rule follows that l ∈ Zm+1.

2. Now we consider the case that km = km+1. Now either the infection path is

contained in Sk,mT , this would imply that Uk,m = 1, or it left the box and returns

at a later time. This would mean that either there exist an l ∈ Z such that

W{k,l},m = 1, Xk,m = 1 or Xk−1,m = 1, since the infection left the box, and

therefore an edge connecting two different boxes must have been open. Thus,

km+1 ∈ Zm+1



7.4 Extinction for slow background speed for V = Z 169

We again find ourselves in the situation that Zn is somewhat easier to handle than

the original infection process, but still hides a lot of dependency structure. For the

remaining section we will choose T := 1
γ

and let q ∈ (0, 1) be fixed. Recall the definition

of δe from Lemma 7.2.1. Note that this yields

δe(γ, q, γ
−1) = (1− qpe)e−qpeve

(
1− qpe

1− e−ve
1− e−qpeve

)
, (7.15)

which is now independent of γ.

Let us give a short description of what we do now. Next we show that we can choose

r0, K0 and γ or equivalently T such that the probabilities are small that any of the

X,W or U variables are one. With this we will then show that we can choose r0, K0

and γ∗ in such a way that Zn goes almost surely extinct for all γ < γ∗. For this we

again need the results we derived in Section 7.2.

Bound for the X variables: Let us recall that

{Xk,n = 1} = {no (n,K0)-cut lies in Mmid
k } =

⋂
m∈Mmid

k

⋃
x≤m<y:
|x−y|≤2K0

{w′n(x, y) = 0}. (7.16)

The probability P(Xk,n = 1) does not depend on γ, as already mentioned in (7.15).

This is important since later, in order to find a bound on P(Uk,n = 1), we need to vary

γ. Thus, changing γ will not affect the probability P(Xk,n = 1). If we remove the

restriction |x− y| ≤ 2K0 we obtain with (7.16) that

{Xk,n = 1} ⊂
⋂

m∈Mmid
k

⋃
x≤m<y

{w′n(x, y) = 0}.

Now consider n to be fixed. Since (w′n(e))e∈E is a family of independent Bernoulli

random variables, we can interpret these variables as a long range percolation model

with probabilities bk := (1− δ{0,k}) for all k ∈ Z, where we used that δ{x,y} = δ{x′,y′} if

d(x, y) = d(x′, y′). Therefore, we see that in the terms of the long range percolation

model it holds that⋂
m∈Mmid

k

⋃
x≤m<y

{w′n(x, y) = 0} = {no cut point lies in Mmid
k }.

We set

P(Xk,n = 1) ≤ P
( ⋂
m∈Mmid

k

⋃
i≤m<j

{w′n(x, y) = 0}
)

:= ε1(r0), (7.17)
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where |Mmid
k | = r0. Note that the right hand side only depends on the size of Mmid

k

and not its exact location. Since Xk,n and Xk′,n′ have the same distribution and are

independent if either n 6= n′ or k 6= k′ we see that the right hand side does not depend

on n or k. Now by (7.11) we know that
∑∞

k∈Z kbk =
∑∞

k∈Z k(1− δ{0,k}) <∞. Thus, by

Theorem 7.2.6 there exist almost surely infinitely many cut points. But this means that

ε1(r0)→ 0 as r0 →∞. (7.18)

Note that this bound is independent of the choice of K0. This is important since in

the next step we derive a bound for the probability P(W{k,l},n = 1) by choosing K0

accordingly. But the choice of K0 will depend on the choice of r0.

Bound for the W variables: Next we consider the family describing transmission

along long edges, i.e. {W{k,l},n : k, l ∈ Z, k < l, n ∈ N0}. By definition it holds

W{l,k},n = W{k,l},n, which is why we only need to consider k < l. We see that

{W{k,l},n = 1} =
⋃

x∈Dk,n,y∈Dl,n:
|x−y|>2K0

{w′n(x, y) = 0}

If we now use the sets Dmax
k and Dmax

l defined in (7.13) we see that

{W{k,l},n = 1} ⊂
⋃

x∈Dmax
k ,y∈Dmax

l :
|x−y|>2K0

{w′n(x, y) = 0}.

Note that the right hand side is independent of BK0
n , where BK0

n is defined in 7.14.

Thus, for a r0 given we can conclude that

P(W{k,l},n = 1|BK0
n ) ≤

∑
x∈Dmax

k ,y∈Dmax
l :

|x−y|>2K0

(1− δ{x,y}) := ak,l(K0, r0), (7.19)

where again the right hand side is independent of γ. By subadditivity and (7.19) we

get that

P(∃l 6= k : W{k,l},n = 1|BK0
n ) ≤

∑
l 6=k

ak,l(K0, r0).

Next we take a closer look at Dmax
k defined in (7.13). We see that Dmax

k ∩Dmax
k+1 = Mmid

k

and if l > k + 1 then Dmax
k ∩Dmax

l = ∅. Since |Mmid
k | = r0, the neighbouring maximal

boxes have an overlap of r0 many vertices which we count double in the sum
∑

l 6=k ak,l.

If for a given k we just count every edge of length > 2K0 “leaving” Dmax
k , again the sum
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only gets larger. Also note that |Dmax
k | = 2(r0 +K0). By symmetry and the thoughts

above, we see that∑
l:l 6=k

ak,l(K0, r0) = 2
∑
l:l>k

ak,l(K0, r0) ≤ 4|Dmax
k |

∑
y>2K0

(1− δ{0,y})

= 8(K0 + r0)
∑
y>2K0

(1− δ{0,y}),

where we used translation invariance. Summarizing the whole procedure yields that for

any k ∈ Z,

P(∃l 6= k : W{k,l},n = 1|BK0
n ) ≤ 8(K0 + r0)

∑
y>2K0

(1− δ{0,y}) := ε2(K0, r0). (7.20)

But since we know that
∑

y∈N y(1 − δ{0,y}) < ∞ from (7.11), it is not difficult to

see that also 2N
∑

y>N(1 − δ{0,y}) → 0 as N → ∞ must hold. Hence, for every r0,

ε2(K0, r0)→ 0 as K0 →∞. But in particular if we choose K0 = r0, then we see that

also

ε(r0, r0)→ 0 as r0 →∞ (7.21)

Bound for the U variables: Recall that on every finite graph the classical contact

process dies out. We denote by τ r0,K0
ext the extinction time of a classical contact process

with infection rate and recovery rate as the CPLDP (C,B) on a complete graph with

2(K0 + r0) vertices, where every vertex is initially infected. Since |Dk,n| ≤ 2(K0 + r0)

it holds that

P(Uk,n = 1|BK0
n ) ≤ P(τ r0,K0

ext > γ−1) := ε3(K0, r0, γ). (7.22)

For every ε > 0 we can choose γ∗ > 0 small enough such that P(τ r0,K0
ext > γ−1) < ε for

all γ < γ∗, and thus in particular ε3(K0, r0, γ)→ 0 as γ → 0.

We have now derived upper bounds on the probability that the X, W and U variables

are one. We see that (Xk,n)(k,n)∈Z×N0 are independent random variables and Xk,n

is measurable with respect to BK0
n for all k ∈ Z and all n ∈ N0. But the families

(Uk,n)(k,n)∈Z×N0 and {W{k,l},n : k, l ∈ Z, k < l, n ∈ N0} are only independent in time

direction. In spatial direction they are only independent conditionally on BK0
n , see

Remark 7.4.2. Therefore, the aim now is to construct independent upper bounds of the

W and U variables, which are also independent of the X variables.
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Proposition 7.4.5. Let al,k(K0, r0) and ε3(K0, r0, γ) be chosen as in (7.19) and (7.22)

and r0, K0, γ > 0 large enough such that al,k(K0, r0), ε3(K0, r0, γ) < 1 for all l 6= k and

n ∈ N0. Then there exist independent families

(U ′k,n)(k,n)∈Z×N0 and {W ′
{k,l},n : k, l ∈ Z, k < l, n ∈ N0}

of independent Bernoulli random variables with P(W ′
{l,k},n = 1) = al,k(K0, r0) and

P(U ′k,n = 1) = ε3(K0, r0, γ) for all k 6= l and all n ∈ N0 such that they are independent

of the family (Xk,n)(k,n)∈Z×N0 and such that W{l,k},n ≤ W ′
{k,l},n and Uk,n ≤ U ′k,n almost

surely for all k 6= l and all n ∈ N0.

Proof. Recall from (7.14) that BK0
n = σ

({{
w′n(x, y) = 1

}
: d(x, y) ≤ 2K0

})
. We

will now explicitly construct the U ′ variables. For that we define the random variable

pUk,n := P(Uk,n = 0|BK0
n ) for k ∈ Z and n ∈ Z0. Note that by (7.22) and the assumptions

of this proposition pUk,n ≥ 1− ε3(K0, r0, γ) > 0. Now let (χUk,n)(k,n)∈Z×N0 be family of

independent uniform random variables on [0, 1] and are also independent of the X, U

and W variables. Let sk,n be random variables with values in [0, 1] which are yet to be

determined. Next let (U ′k,n)(k,n)∈Z×N0 be random variables in {0, 1} such that U ′k,n = 0

if and only if Uk,n = 0 and χUk,n ≤ sk,n. By definition it is clear that U ′k,n ≥ Uk,n.

Next we set sk,n := 1−ε3(K0,r0,γ)

pUk,n
and see that

P(U ′k,n = 0) = E[P(Uk,n = 0, χUk,n ≤ sk,n|BK0
n )] = E[pUk,nsk,n] = 1− ε3(K0, r0, γ),

where we used in the second equation conditional independence given BK0
n , which

follows by the same line of arguments as in the proof of Lemma 7.2.2, since we assumed

that (χUk,n)(k,n)∈Z×N0 is independent of (Uk,n)(k,n)∈Z×N0 . Analogously follows that

P(U ′k,n = 0|BK0
n ) = P(Uk,n = 0, χUk,n ≤ sk,n|BK0

n ) = 1− ε3(K0, r0, γ),

The right hand side is not random anymore, and thus it follows that the variable U ′k,n
is independent of BK0

n for all k ∈ Z and n ∈ N0.

We already know that U ′k,n and U ′k′,n′ are independent if n 6= n′. Thus, it suffices to

show that U ′k,n and U ′k′,n are independent if n = n′ and k 6= k′. Let us fix some n and

let k1 6= · · · 6= kl be an arbitrary but finite sequence of integers and u1, . . . ul ∈ {0, 1},
where l ∈ N. Since we fixed n we omit the subscript n in the following. We need to

show that

P(U ′k1 = u1, . . . U
′
kl

= ul) = P(U ′k1 = u1) . . .P(U ′kl = ul).
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For this, it suffices to consider u1 = · · · = ul = 0, since if two events A and B are

independent, then so are A and Bc. Now we see that

P(U ′k1 = 0, . . . U ′kl = 0)

=E[(Uk1 = 0, . . . Ukl = 0, χUk1 ≤ sk1 , . . . , χ
U
kl
≤ skl |BK0)]

=E[(Uk1 = 0, . . . Ukl = 0|BK0)P(χUk1 ≤ sk1 |BK0) . . .P(χUkl ≤ skl |BK0)],

where we again used conditional independence which follows analogously as before.

Thus, we have that

P(U ′k1 = 0, . . . U ′kl = 0) =
(
1− ε3(K0, r0, γ)

)l
E
[
(Uk1 = 0, . . . Ukl = 0|BK0)

l∏
i=1

1

pUki

]
.

But since the U variables are conditional independent given BK0 and P(Uki = 0) = pUki
it follows that

P(U ′k1 = 0, . . . U ′kl = 0) =
(
1− ε3(K0, r0, γ)

)l
= P(U ′k1 = 0) . . .P(U ′kl = 0).

The W ′ variables can be constructed analogously. The only thing we need to mention

is that we must choose the family {χW{k,l},n : k, l ∈ Z, k 6= l, n ∈ N0} to be indepen-

dent of the X, U and W variables and additionally to be independent of the family

(χUk,n)(k,n)∈Z×N0 .

Analogously as in the previous section we define a process (Z ′n)n∈Z with respect to

the random variables X, U ′ and W ′ we obtained in Proposition 7.4.5. It follows that

Zn ⊂ Z ′n for all n ∈ N0. Thus if (Z ′n)n∈Z goes extinct almost surely, then the same

follows for (Zn)n∈Z.

Lemma 7.4.6. If E[|Z ′1||Z ′0 = {0}] < 1, then Z ′ dies out almost surely for any finite

A ⊂ V as initial state.

Proof. Analogously to Lemma 7.3.3.

Now we are ready to show Theorem 1.4.27. Thus, let r > 0, q ∈ (0, 1) and C ⊂ V

non-empty and finite, for a given λ > 0 we show that there exists γ∗ > 0 such that CC

dies out almost surely for all γ ≤ γ∗, i.e. θ(λ, r, γ, q, C) = 0 for all γ ≤ γ∗. This implies

in particular that λc(r, γ, q)→∞ as γ → 0.
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Proof of Theorem 1.4.27. Again it suffices to consider Z ′0 = {0}, since the general

case follows analogously as shown in the proof of Theorem 1.4.24. Thus, we again fix

Z ′0 = {0}. The proof strategy is similar to the proof of Theorem 1.4.24. We see that

|Z ′1| < 3|Z|, where Z is a connected component containing 0 of a long range percolation

model with probabilities given through

b{k,l} = P(W ′
{k,l},n = 1) and b{k,k+1} = P({W ′

{k,k+1},n = 1} ∪ {Xk,n = 1})

for all k, l ∈ Z with |k − l| = 2. Note that the constant 3 comes from the fact that if

any of the X or W ′ variable are 1, three blocks will get infected, see Figure 7.9. We

see that we can again split up the expectation such that

E[|Z|] =E
[
(1{X1,0=1}∪{X−1,0=1}∪{∃j∈Z:W ′{0,j},0=1})|Z ′1|

]
+ E

[
1{X1,0=0}∩{X−1,0=0}∩

⋂
j∈Z{W ′{0,j},0=0}U

′
0,0

]︸ ︷︷ ︸
≤E[U ′0,0]

. (7.23)

We also know that by (7.17) and (7.19)

P(Xk,n = 1) = ε1(r0) and P(W ′
{k,l},n = 1) = ak,l(r0, K0).

Note that by (7.15) we know that b{k,l} is independent of the choice of γ. Thus, the

probabilities b{k,l}(K0, r0) can be seen as functions of the parameters K0 and r0 and we

see that ∑
l 6=k

b{k,l}(K0, r0) ≤ 2ε1(r0) +
∑
l 6=k

ak,l(r0, K0).

From here onwards for the remainder of the proof we choose K0 = r0 such that b{k,l}(r0)

is only a function of r0. Now by (7.18) and (7.21) it follows that∑
l 6=k

b{k,l}(r0) ≤ 2ε1(r0) +
∑
l 6=k

ak,l(r0, r0)→ 0

as r0 → ∞. Thus there exists R1 > 0 such that
∑

l 6=k b{k,l}(r0) < 1 for all r0 ≥ R1.

Thus, by Proposition 7.2.4 we know that |Z| is integrable. We add r0 as an index,

i.e. Z(r0). We can show analogously as in the proof of Theorem 1.4.24 that for every

ε > 0 there exists an M = M(ε, R1) such that

E[|Z(r0)|1{|Z(r0)|>M}] <
ε

3
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for all r0 ≥ R1. Thus, we can conclude that

E[(1{X1,0=1}∪{X−1,0=1}∪{∃j∈Z:W ′{0,j},0=1})|Z(r0)|]

≤E[(1{|Z(r0)|>M})|Z(r0)|] +M
(
P(X1,0 = 1) + P(X−1,0 = 1) +

∑
j∈Z

P(W ′
{0,j},0 = 1)

)
≤ε

3
+M

(
2ε1(r0) +

∑
l 6=k

ak,l(r0, r0)
)
.

Next we again use (7.18) and (7.21) and see there must exists a R2 > R1 such that

M
(
2ε1(r0) +

∑
l 6=k ak,l(r0, r0)

)
< ε

3
for all r0 > R2. By (7.22) we can choose γ∗ > 0

small enough such that E[U0,0] <
ε
3

for all γ < γ∗, then it follows with (7.23) that

E[|Z|] < 3ε. Thus, if we choose ε < 1
3

we see that

E[|Z ′1||Z ′0 = {x}] ≤ 3E[|Z|] < 1.

By Lemma 7.4.6 it follows that (Z ′n)n∈N goes extinct almost surely, which implies that

(Zn)n∈N goes extinct almost certain, since Zn ⊂ Z ′n for all n almost surely. Then by

Lemma 7.4.4 it follows that C{x} goes extinct almost certain, where x ∈ D0,0. Therefore,

it follows that CC goes extinct almost certain for all finite C ⊂ Z and all γ < γ∗. In

formulas this means that θ(λ, r, γ, q) = 0 for all γ < γ∗.

The infection rate λ was chosen to be fixed, but arbitrary in beginning, and therefore

this also implies that limγ→0 λc(r, γ, q) = ∞. Since assuming otherwise would imply

that there must exists a λ0 > 0 and γ0 > 0 such that λc(r, γ, q) ≤ λ0 for all γ ∈ (0, γ0).

But we just showed that there exists a γ∗0 = γ∗0(λ0) such that θ(λ0, r, γ, q) = 0 for all

γ < γ∗0 , and thus the assumption leads to a contradiction.
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Chapter 8

Conclusion and open problems

In this chapter we briefly recapitulate some of the major results and point out some

possible further problems, which might be interesting to tackle. The main focus of

this thesis was on a contact process in an evolving random environment, which we

abbreviated by CPERE, on a graph G = (V,E) with bounded degree and exponential

growth ρ, where the evolving random environment is described by an ergodic and

reversible spin system with finite range interactions. Recall that λ is the infection rate,

r is the recovery rate and κ is chosen as in Assumption 1.4.1 (ii). As usual in this kind

of model we focused mainly on the parameter regime where survival of the infection

process C is possible, which we named the survival region and denoted by

S(C,B) = {(λ, r) ∈ (0,∞)2 : θ(λ, r, C,B) > 0},

where (C,B) are the initial configuration of the CPERE. Note that we only consider C

non-empty and finite, since otherwise the question whether survival is possible or not

is trivial.

We managed to show that if we find a λ > 0 with θ(λ, r, C,B) > 0 for some configuration

(C,B), which satisfies the inequality c1(λ, ρ) > κ−1ρ, then the survival of the infection

process C is independent of the choice of the initial configuration. Recall that c1(λ, ρ)−1

is an upper bound on the asymptotic expansion speed of the set of all possible infections

and κρ−1 is a lower bound on the asymptotic expansion speed of the permanently

coupled region. Furthermore, we were able to show that the survival probability is

continuous on the interior of the subset

Sc1 = {(λ, r) : ∃λ′ ≤ λ s.t. (λ′, r) ∈ S({x}, ∅) and c1(λ′, ρ) > κ−1ρ}.

177
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We also managed to conclude that the phase transition of survival with the background

started stationary, i.e. θπ(λ, r, {x}) = 0 to θπ(λ, r, {x}) > 0, agrees with the phase

transition of non-triviality of the upper invariant law, i.e. ν = δ∅ ⊗ π to ν 6= δ∅ ⊗
π. Thus, if additionally c1(λ

π(r), ρ) > κ−1ρ holds the initial configuration of the

background is of no importance to the question of non-triviality of ν. This in itself is

an interesting observation, but we were also able to derive equivalent conditions for

complete convergence, i.e.

(CC,B
t ,BB

t )⇒ θ(C,B)ν + [1− θ(C,B)](δ∅ ⊗ π)

as t→∞ on the parameter subset

S∗c1 := {(λ, r) ∈ S({x}, ∅) : c1(λ′, ρ) > κ−1ρ}.

Note that if we know that complete convergence holds, then we have also fully charac-

terized all possible invariant laws of the CPERE. We illustrated the survival region

S(C,B) and the two subsets S∗c1 and Sc1 in Figure 8.1. Note that these three param-

eter regions are subsets of each other, i.e. S∗c1 ⊂ Sc1 ⊂ S(C,B). On subexponential

graphs, i.e. ρ = 0, the inequality c1(λ, ρ) > κ−1ρ is trivially satisfied for all λ > 0 since

c1(λ, ρ) > 0 for all λ > 0. Thus, S∗c1 = Sc1 = S(C,B) for all (C,B) with C non-empty

and finite.

Figure 8.1: The solid and dashed red curve indicates the critical infection rate λc(r, ·)
of the CPERE. The solid black curve indicates the critical infection rate of a CP, where
λGc is the critical infection rate for r = 1.

Influence of the initial configuration on the critical infection rate: This brings

us to the first open problem. We already mentioned that the initial configuration (C,B)
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has no influence on the critical infection rate if c1(λc(r, C,B), ρ) > κ−1ρ is satisfied, or

to be precise if the asymptotic expansion speed of the permanently coupled region is

greater than that of the infection. But is this still the case if c1(λ, ρ) ≤ κ−1ρ? Of course

this is only possible if ρ > 0. It seems appropriate to mention here that c1(λ, ρ)−1 and

κρ−1 are only bounds on the asymptotic expansion speeds, but even if we are able to

determine the exact constants it might be possible to choose the parameters of the

background small enough with respect to the infection rate λ and recovery rate r such

that it might happen that the coupled region expands slower than the infection, see for

example the dynamical percolation in Example 1.1.2 (i). For this model α+ β seems

to determine the expansion speed, and thus we can just choose α + β small enough in

comparison to λ and r.

Open problem 1. Let x ∈ V be arbitrary but fixed and suppose ρ > 0. Is the

critical infection rate always independent of the initial conditions? In other words is

λc(r, {x}, ∅) = λc(r, C,B) for all r ≥ 0, C ⊂ V finite and B ⊂ E? Or do r > 0, C ⊂ V

finite and B ⊂ E exists such that λc(r, {x}, ∅) > λc(r, C,B)?

Complete convergence of CPERE on general graphs: If c1(λ, ρ) > κ−1ρ is

satisfied Theorem 1.4.15 states that if the two conditions (1.8) and (1.9) are satisfied,

then we get that complete convergence holds for the CPERE. Hence, again the same

question arises. What if c1(λ, ρ) ≤ κ−1ρ? In the proof of Theorem 1.4.15 we rely

at some crucial steps on the assumption that the asymptotic expansion speed of the

permanently coupled region is greater than that of the infection. Thus, we cannot just

forgo this assumption.

For the CP Salzano and Schonmann studied the property of complete convergence

in [SS97] and [SS99]. Among other things they showed in [SS97, Theorem 1(i)] that

on transitive, connected graphs with bounded degree the complete convergence is

monotone in the sense that if it holds for some infection rate λ it already holds for all

λ′ > λ and if it holds for an infection rate λ on some transitive and connected subgraph

G0 ⊂ G it holds on G for the same rate λ as well.

For the CP an intermediate phase is possible, where complete convergence does not

hold but the survival probability is positive. But because of the above mentioned

monotonicity on transitive graphs, this is normally only a bounded parameter region,

see [Lig13, Chapter I.4] where among other things this is studied for the CP on regular

trees. Hence, if in the case of the CPERE complete convergence fails for large λ, then it

might lead to a fourth phase where again infinitely many extremal invariant laws exist.
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Open problem 2. Is it possible to extend Theorem 1.4.15 in such a way that it holds

for every (λ, r) ∈ Sc1?

Another interesting question could be the following.

Open problem 3. Is complete convergence a monotonous property (as described

above) for the CPERE?

CPERE on Zd: As an application we showed for our main example the contact pro-

cesses on a dynamical percolation, which we abbreviate with CPDP, on a d-dimensional

integer lattice, i.e. V = Zd and E = {{x, y} ⊂ Zd : ||x− y||1 = 1}, that complete con-

vergence holds for all (λ, r, α, β) ∈ (0,∞)4. Furthermore for general CPERE on (V,E),

where the background process B satisfies Assumption 1.4.1, complete convergence holds

on the survival region of a CPDP with suitable chosen parameters. Therefore, we might

ask the following question.

Open problem 4. Does complete convergence hold for every (λ, r) ∈ (0,∞)2 for

a CPERE on the d-dimensional integer lattice, if the background satisfies Assump-

tion 1.4.1?

Furthermore, it would be interesting to know the behaviour at criticality of a CPERE.

Open problem 5. Does the CPERE on the d-dimensional integer lattice go extinct

almost surely at criticality, if the background satisfies Assumption 1.4.1?

Asymptotic shape theorem on Zd: Closely related to complete convergence is the

asymptotic shape theorem. Recall that we denoted by τ := inf{t ≥ 0 : C
{0},∅
t 6= ∅}

the extinction time of the infection process C with initial configuration ({0}, ∅). Let

Ht :=
⋃
s≤t C

{0},∅
s be the set of all sites which were infected at least once until time t and

Kt := {x ∈ V : x ∈ C
{0},∅
s 4CV,E

s ∀s ≥ t} be the permanently coupled region of the

infection process C. Furthermore, we set H′t := Ht +
[
−1

2
, 1

2

]d
and K′t := Kt +

[
−1

2
, 1

2

]d
.

Conjecture 6. Let (C,B) be a CPERE with infection rate λ > 0 and recovery rate

r > 0, where B satisfies Assumption 1.4.1. Suppose that θ(λ, r, {0}, ∅) > 0 and there

exist constants C1, C2,M > 0 such that

P(t ≤ τ <∞) ≤ C1 exp(−C2t) (8.1)

P(x /∈ HM ||x||1+t, τ =∞) ≤ C1 exp(−C2t) (8.2)

P(x /∈ KM ||x||1+t, τ =∞) ≤ C1 exp(−C2t) (8.3)
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Then there exists a bounded and convex subset U ⊂ Rd such that for every ε > 0

P
(
∃s ≥ 0 : t(1− ε)U ⊂ (K′t ∩H′t) ⊂ H′t ⊂ t(1 + ε)U ∀t ≥ s

∣∣τ =∞
)

= 1.

Let us briefly explain the three conditions mentioned in this conjecture. Condition

(8.1) implies that if the infection process C goes extinct, then this will happen most

likely early on. Condition (8.2) basically states that if C survives, the infection expands

asymptotically at least according to some linear speed with high probability. Condition

(8.3) has a similar interpretation, i.e that also the permanently coupled region expands

at least with some linear speed with high probability. Note that Lemma 4.1.2 already

implies that both processes Ht and Kt can expand at most according to some linear

speed.

As we already mentioned in Section 1.2 Garet and Marchand proved in [GM12] an

asymptotic shape theorem for the contact process on Zd in a static random environments.

Deshayes adapted their techniques in [Des14] to a dynamical setting and showed an

asymptotic shape theorem for a contact process with ageing. Furthermore, in [Des15]

it was explained that this can also be extended to a broader class of time dynamical

contact process, which includes among others the contact process with varying recovery

rates studied by [Bro07] and [SW08]. Since the latter model shares a lot of similarities

with the CPERE constructed here we believe that Conjecture 6 should hold true.

Both works [GM12] and [Des14] have proven similar conditions to (8.1), (8.2) and (8.3),

for the contact process in a static random environment and respectively for the contact

process with ageing, by an adaption of the techniques developed in [BG90]. Since we

already formulated, for the CPDP, an adaption of these techniques in Chapter 6 we

believe that the following conjecture to be true.

Conjecture 7. Let (C,B) be a CPDP with rates λ, r, α, β > 0 on the d-dimensional

integer lattice. Suppose θDP(λ, r, α, β) > 0, then there exists C1, C2,M > 0 such that

(8.1), (8.2) and (8.3) are fulfilled.

CPERE with more general background: In this thesis we focused on a certain

type of background, which is described by an ergodic and reversible spin system with

finite range interactions. But there are certainly interesting choices for the background

which do not satisfy all of Assumption 1.4.1. For example in Remark 1.4.12 we pointed

out that a more general version of the noisy voter model see Example 1.1.2 (ii), might

not satisfy the reversibility assumption, and thus we know nothing about complete

convergence or continuity of the survival probability in this case, even though this
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model seems to be one of the most natural choices for introducing interaction between

edges. Note that in Remark 5.1.12 we mentioned an alternative approach for some

technical aspects, which do not use reversibility.

Also, if we consider the ferromagnetic Ising model on Zd for d ≥ 2 as the background,

see Example 1.1.2 (iii), we can choose the inverse temperature β large enough such that

this system is no longer ergodic, i.e. there exist more than one invariant law. Another

interesting choices for a non-ergodic background would be another contact process or a

similar interacting particle system.

Since we strive to formulate a model which is as realistic as possible. One natural

extension would be to allow a feedback from the infection process to the background.

This seems reasonable, since if an individual is infected and shows symptoms, one

would assume that it would distance itself from other people on its own to avoid the

spread of the infection. Of course this would lead to vastly different model since the

dependency structure is far more complex than in our case.

Further studies on the contact process on a long range dynamical perco-

lation: In the last part of this thesis we studied a contact process on a long range

dynamical percolation. This model is basically an extension of the process considered

by Linker and Remenik in [LR20]. We have not really studied the long range case

in too much depth, and therefore further studies would be necessary to obtain more

understanding of this model. We focused on extending some of the results proven in

[LR20], for example the existence of an immunization region.

Recall p̂e = qpe was the probability of an edge e being open after an update and

v̂e = γve was the update speed of this edge, where q ∈ (0, 1), γ > 0, (pe)e∈E ⊂ [0, 1] and

(ve)e∈E ⊂ (0,∞).

Theorem 1.4.23, yields an upper bound on the critical infection rate λc(r, γ, q), since it

provides a comparison with a long range contact process. This is of course useful to

determine if this system has a positive survival probability. But this theorem is also the

first step towards characterizing the asymptotic behaviour for fast speed, i.e. γ →∞.

Hence, the next step would be to find a lower bound. The approach which Linker and

Remenik used for the CPDP on a graph with bound degree, see [LR20, Theorem 2.3],

cannot be extended easily to the long range setting, since it relies heavily on the fact

that a graph with bounded degrees is considered.

We studied the asymptotic behaviour as γ → 0 under fairly strong assumption, i.e.

Assumption 1.4.26. One could also ask what the asymptotic behaviour is if we assume
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that
∑

y∈N yv{0,y}p{0,y} =∞. We would expect that the asymptotic behaviour should

depend on the choice of the parameter q, since if q is chosen close enough to 1 the

long range dynamical percolation model might not partition Z in finite connected

components anymore. Thus, it is reasonable to assume that there exists an q∗ ∈ (0, 1)

such that sup{λc(r, γ, q) : γ > 0, q ∈ (q∗, 1)} <∞, where r > 0. A similar result was

shown for the CPDP on the d-dimensional integer lattice in [Hil+21].

At the end we want to briefly discuss Assumption 1.4.21 (ii), i.e.
∑

y∈V v
−1
{x,y} < ∞

for all x ∈ V . This assumption does not seem natural. In fact, the reason for this

assumption is of technical nature, since it allowed us to extend the existing results to

our setting. It does seem more natural to assume that ve = v for all e ∈ E , which means

that every edge is updated at the same speed. We would expect that the asymptotic

behaviour is similar or even the same in this case. However, without this assumption

the situation becomes more complicated, since for example one consequence of this

assumption is that all edges attached to a site x can be updated in finite time. But the

number of edges attached to x are infinitely many. By setting the speed constant we

would lose this property, which we heavily relied on.
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Appendix A

ε > M condition for the background

process

Here we calculate the constants ε and M for the processes defined in Example 1.1.2

(i)-(iii), which we already stated Remark 1.4.4. Recall that

M :=
∑
a∈NLe

sup
B⊂E
|q(e, B)− q(e, B 4 {z})| and ε := inf

B⊂E
|q(e, B) + q(e, B 4 {e})|.

After determining the constants ε and M we will also state for which parameter regime

the inequality ε−M > ρ from Corollary 1.4.3 is satisfied.

Dynamical percolation: We introduced the dynamical percolation in Example 1.1.2

(i) and the spin rate of this model is q(e, B) = α1{e/∈B} + β1{e∈B}, where α, β > 0. We

see that

q(e, B) + q(e, B 4 {e}) = α + β and q(e, B) = q(e, B 4 {a})

for all e ∈ E and all a 6= e. Thus, we can conclude that the two constants are M = 0

and ε = α + β. This shows that ε−M > ρ if and only if α + β > ρ.

Noisy voter model: As one can infer from Example 1.1.2 (ii) the spin rate of the

noisy voter model is

q(e, B) = β
(
|B ∩N L

e |1{e/∈B} + |Bc ∩N L
e |1{e∈B}

)
+
α

2
,

where α, β > 0. We see that

q(e, B) + q(e, B 4 {e}) = α + β|Ne| and |q(e, B)− q(e, B 4 {a})| = β

185
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for all e ∈ E and all a ∈ N L
e , and thus M = β|N L

e | and ε = α + β|N L
e |. Furthermore,

ε−M > ρ if and only if α > ρ.

Ferromagnetic stochastic Ising Model: The calculations for this model are a bit

more lengthy. Recall from Example 1.1.2 (iii) that the spin rate of this model is

q(e, B) = 1− tanh

(
β
∑
a∈NLe

(−1)|B
c∩{e,a}|

)
= 2

(
1 + exp

(
2β
∑
a∈NLe

(−1)|B
c∩{e,a}|

))−1

.

Let us first introduce the shorthand notation χ(e, B) :=
∑

a∈NLe
(−1)|B

c∩{e,a}|. We start

with calculating the constant ε. We see that χ(e, B 4 {e}) = −χ(e, B), which yields

that

q(e, B) + q(e, B 4 {e}) =
2

1 + exp
(
2βχ(e, B)

) +
2 exp

(
2βχ(e, B)

)
1 + exp

(
2βχ(e, B)

) = 2

for all e ∈ E and all B ⊂ E. Hence, the infimum over all B yields

ε = inf
B⊂E
|q(e, B) + q(e, B 4 {e})| = 2.

Next we calculate M . For z ∈ N L
e define

H(z,B) :=
(
q(e, B)− q(e, B 4 {z})

)
and χz(e, B) :=

∑
a∈NLe \{z}

(−1)|B
c∩{e,a}|.

Since χ(e, B) + χ(e, B 4 {z}) = 2χz(e, B) we see that

1

2
H(z,B) =

(
exp

(
2βχ(e, B)

)
− exp

(
2βχ(e, B 4 {z})

))
×
(

1 + exp
(
2βχ(e, B)

)
+ exp

(
2βχ(e, B 4 {z})

)
+ exp

(
4βχz(e, B)

))−1

.

Now we see that the factor exp
(
− 2βχz(e, B)

)
in the numerator and denominator and

we use again that (−1)|(B4{z})
c∩{e,z}| = −(−1)|B

c∩{e,z}| for all z ∈ N L
e . This yields

1

2
H(z, B) =

(
exp

(
2β(−1)|B

c∩{e,z}|
)
− exp

(
− 2β(−1)|B

c∩{e,z}|
))

×
(

exp
(
− 2βχz(e, B)

)
+ exp

(
2β(−1)|B

c∩{e,z}|
)

+ exp
(
− 2β(−1)|B

c∩{e,z}|
)

+ exp
(

2βχz(e, B)
))−1

.



187

We take the absolute value and use that χ(e, B 4 {e}) = −χ(e, B), which provides

1

2
|H(z,B)| = exp(2β)− exp(−2β)

exp(2β) + exp(−2β) + exp
(
− 2βχz(e, B)

)
+ exp

(
2βχz(e, B)

) .
Maximizing this term with respect to B ⊂ E is equivalent to minimizing

exp
(
− 2βχz(e, B)

)
+ exp

(
2βχz(e, B)

)
.

The function x 7→ ex + e−x is continuous, strictly decreasing on (−∞, 0] and strictly

increasing [0,∞). It is easy to see that it takes its minimum at x = 0, which has the

function value 2. We see that

χz(e, B) ∈ {−|N L
e |+ 1,−|N L

e |+ 3, . . . , |N L
e | − 3, |N L

e | − 1}.

Note that the set on the right hand side contains 0 only if |N L
e | is odd. Thus, we see

that

sup
B⊂E
|H(z, B)| =


2(e2β−e−2β)
e2β+e−2β+2

if |N L
e | odd

e2β−e−2β

e2β+e−2β if |N L
e | even.

Therefore, using that supB⊂E |H(z, B)| is the same for all z ∈ N L
e inserting this into

the definition of M yields

M =
∑
z∈NLe

sup
B⊂E
|q(e, B)− q(e, B 4 {z})| =

|N L
e |

2(e2β−e−2β)
e2β+e−2β+2

if |N L
e | odd

|N L
e | e

2β−e−2β

e2β+e−2β if |N L
e | even.

After we calculated the constants ε, M we will now determine for which β the inequality

ε−M > ρ holds. Obviously we need that ρ < 2 = ε, since M ≥ 0. If we consider |N L
e |

even, then by inserting ε and M we see that

ε−M = 2− |N L
e |
e2β − e−2β

e2β + e−2β
> ρ ⇔ 1

4
log
( |N L

e | − ρ+ 2

|N L
e |+ ρ− 2

)
> β.

Thus, we see that all 0 ≤ β < 1
4

log
( |NLe |−ρ+2
|NLe |+ρ−2

)
satisfy the inequality. This is actually

also true if |N L
e | is odd. This follows by the fact that M obviously is smaller if |N L

e | is

odd. Nevertheless, we are able to obtain a slightly better bound if we consider |N L
e |
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to be odd. Thus, if we again insert ε and M into the inequality ε −M > ρ. After

rearranging the terms we get that

(2− ρ− 2|N L
e |)e4β + 2(2− ρ)e2β + (2− ρ+ 2|N L

e |) > 0.

Next we substitute t = e2β and calculate the root of

(2− ρ− 2|N L
e |)t2 + 2(2− ρ)t+ (2− ρ+ 2|N L

e |) = 0,

which are by square addition

t± =
−2(2− ρ)±

√
4(2− ρ)2 − 4(2− ρ− 2|N L

e |)(2− ρ+ 2|N L
e |)

2(2− ρ− 2|N L
e |)

.

Since (2− ρ− 2|N L
e |)(2− ρ+ 2|N L

e |) = (2− ρ)2 − 4|N L
e |2 we see that

t± =
±2|N L

e | − ρ+ 2

(2|N L
e |+ ρ− 2)

.

Obviously e2β > 0 for all β ∈ R, and thus the only root which is possible is t+.

Furthermore, β 7→ e2β is monotone increasing, which yields that if |N L
e | is odd, then

ε−M > ρ ⇔ 1

2
log
(2|N L

e | − ρ+ 2

2|N L
e |+ ρ− 2

)
> β.
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Oriented percolation and

K-dependence

B.1 Oriented percolation

The term oriented percolation is not really uniquely connected to one model. In

principle every percolation model defined on a directed graph can be called an oriented

percolation model. Here we will only consider a special case. We consider the oriented

percolation on Z or rather Z × N0. For this type of model there is more then one

possible representation. Here we will formulate it as a discrete stochastic growth model,

as in [Dur84] or [Lig13]. They considered a Markov chain (Xn)n≥0 with values in P(N0)

and the evolution of the process is described through the conditional probability

P(x ∈ Xn+1|X0, . . . Xn) =

p if Xn ∩ {x, x+ 1}

0 otherwise .

We recommend [Dur84] for detailed survey on this model. Note that we will consider a

slightly different version. Let

f : Z×N0 → N0 ×N0

(x, n) 7→ f(x, n) = (2x− n, n).

and set Wn := f(Xn). Since f is bijective, this transformation is a mere reformulation

of the state space and does not really change the behaviour of the process. We only

use this version since we want to compare the oriented percolation to the CPDP in

189
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Chapter 6, and thus this choice seems more intuitive. See Figure B.1 for a visualization

of the two versions. We see that the dynamics of (Wn)n∈N0 are

P(x ∈ Wn+1|W0, . . .Wn) =

p if Xn ∩ {x− 1, x+ 1}

0 otherwise,

and thus W2n ⊂ 2Z and W2n−1 ⊂ 2Z− 1 for every n ∈ N0. Similar as for the contact

process we will indicate the initial state by a superscript, i.e. WA, where A ⊂ 2Z. We

also see that W
{0}
n ⊆ [−n, n]. Furthermore, we denote by τ = {n ≥ 0 : Wn = ∅} the

“extinction” time of (Wn)n≥0. In the terminology of percolation models {τ =∞} is the

event that percolation occurs. Now we state some facts, which we need to utilize in

Section 6.

Figure B.1: Here we visualized a possible realization of an oriented percolation. On
the left the verison (Wn)n and on the right (Xn)n.

Theorem B.1.1. For p close enough to 1 there exist C > 0 and ε > 0 such that

(i) inf
k≥0
P{0}(0 ∈ W2k) > 0,

(ii) P{0}(k < τ <∞) ≤ Ce−εk,

(iii) PA(τ <∞) ≤ Ce−ε|A|, where A ⊂ 2Z.

Proof. This follows from [Lig13, Theorem B24], which proves the equivalent statements

for (Xn)n∈N0

Theorem B.1.2. For p close enough to 1 it holds that

lim
m→∞

lim inf
n→∞

P{−m,...,m}(Wn ∩ {−m, . . . ,m} 6= ∅) = 1.
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Proof. Let us again consider the equivalent version (Xn)n∈N0 . In [DS87, Section 5] it

was shown that for a broad class of stochastic growth models complete convergence

holds. The oriented percolation (Xn)n∈N0 is part of this class as mentioned in their

Example 2. Thus, by [DS87, Theorem 2] for p close to 1 there exists a law ν on P(N0)

such that XA
n ⇒ PA(τ <∞)δ∅ + PA(τ <∞)ν as n→∞. Similar as for the contact

process they derived a duality relation such that for A,B ⊂ N0

P(XA
n ∩B 6= ∅) = P(XB

n ∩ A 6= ∅),

and furthermore used this relation to show that

P(XA
n 6= ∅ ∀n ≥ 0) = ν(B ⊂ N0 : B ∩ A 6= ∅).

Thus, we can conclude that

lim
|A|→∞

lim inf
n→∞

P(XA
n ∩ A 6= ∅) = lim

|A|→∞
P(XA

n 6= ∅ ∀n ≥ 0)2 = 1,

where we used Theorem B.1.1 (iii) to conclude the last equality. Now by transforming

Xn with f and choosing A appropriately we obtain the claim.

B.2 K-dependence

In this section we introduce the notion of K-dependence. To be more precise we

consider a family of Bernoulli variables with a certain dependence structure and state

a comparison result with a family of independent Bernoulli variables.

Definition B.2.1 (K-dependence). Let (Xi)i∈Λ be a family of Bernoulli random

variables, where Λ is a countable index set. We call the family (Xi)i∈Λ K-dependent, if

for every i ∈ Λ there exists a subset Λi ⊂ Λ with i ∈ Λi, |Λi| ≤ K and

Xi is independent of (Xj)j∈Λ\Λi .

Note that by this definition 1-dependence is equivalent to (Xi)i∈Λ being an independent

family of Bernoulli random variables. The next theorem provides that K-dependent

families can be coupled with an independent family such that the independent family

acts as a lower bound.
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Theorem B.2.2. Let Λ be a countable set, p ∈ (0, 1) and K < ∞. Assume that

(Xi)i∈Λ is a K-dependent family of Bernoulli random variables with P(Xi = 1) ≥ p for

all i ∈ Λ and that

p̃ :=
(
1− (1− p)

1
K

)2 ≥ 1

4
.

Then there exists a family (X̃i)i∈Λ of independent Bernoulli random variables such that

P(X̃i = 1) = p̃

and Xi ≥ X̃i for all i ∈ Λ.

Proof. See [Swa17, Theorem 7.4]
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