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Chapter 1

Introduction and main results

The field of epidemiological models has been an active field of research for a long time.
An epidemiological model describes and simulates a possible course of an infection,
which spreads through a given population. The question of how to model the spread of
different infections in an realistic manner has brought forth dozens of models. But the
spread of an infection is a highly complex problem. Thus, there are still “real-world

phenomena”, which cannot be adequately explained.

The contact process is a particularly simple example of an epidemiological model. This
process models the spread of an infection over time in a spatially structured population,
where this structure is given through a graph G = (V, E). The vertex set V labels
the individuals and two individuals z,y € V' are considered neighbours, i.e. they have
physical contact, if there exists an edge {x,y} € E. If an individual is infected, it
can pass on its infection to its neighbours. The contact process has been around for
almost half a century. Thus, it is not surprising that there exist many variations
of this model, which try to incorporate more realistic assumptions and try to shed
light on different aspects. Nevertheless, certain aspects are still not well understood.
This is something which the current global pandemic, caused by Covid-19, has made
us aware of. For example it has become apparent that with the implementation of
preventive measures such as social distancing the spread of Covid-19 has slowed down
significantly. Strong evidence for these effectiveness of this measures in Germany has,
for example, been provide by Dehning et al. [Deh+20]. Of course the situation vastly
differs between different countries. These phenomena indicate that the spatial structure

of the population has an huge impact on the course of the pandemic.

Of course there have been variations of the contact process, which incorporate random
spatial structures, in order to take into account that one does not exactly know this

structure. This mostly was done in a static setting. By this we mean that even through
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these variations considered for example a random population structures, it is was still
fixed at the beginning and could not change halfway through. This does not appear to
be realistic, since we are not always in contact with the same people. Only recently
have people started to consider models which model infections in dynamical spatial
structures. This means that the spatial structure can change on the same time scale as
the spread of the infection happens. Since theory and knowledge regarding this type of
models is still limited we were motivated to further study the impact of such dynamical

structures on the course of an infection.

Therefore, in this thesis we study a contact process in an evolving random environ-
ment. The model we consider is a variation of the contact process that allows for the
neighbourhood relations to change over time by introducing a time evolving random

environment.

We will assume that our evolving environment will always converge to a unique
equilibrium regardless of its initial state. If we additionally assume convergence
to be fast enough, then the initial state of the environment is inconsequential to the
fact if the infection can persist in the population for all time or eventually dies out. We
will also study the equilibrium states of the system or to be precise the invariant laws.
If we further assume that the environment evolves according to a reversible dynamic

we can determine conditions under which we can fully characterize all invariant laws.

As an application we consider a contact process on top of a dynamical percolation
as random environment and we assume that the underlying graph is a d-dimensional
integer lattice. A dynamical percolation is a stochastic process which assigns to every
edge independently a state of being open or closed, where the infection can only use
open edges. Furthermore, the state of every edges is independently of the other edges
updated with a certain rate. This infection model was first proposed by Linker and
Remenik in [LR20]. We can augment some of their result, and therefore contribute to

a more complete picture of the behaviour of this particular model.

The class of models we consider is defined on a graphs with bounded degrees. This
means that the number of neighbours of a individual is bound uniformly. Of course
in reality nobody can have infinitely many acquaintance or friends, with whom they
interact. But a uniform bound also seems somewhat unnatural. Thus, in the last part
of this thesis we consider an extension of the model proposed in [LR20]. To be precise
we consider a contact process on a dynamical long range percolation and extend some

of the results known in the finite range case to this setting.
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1.1 The contact process in an evolving random

environment

In this section we will formally introduce a contact process in an evolving random
environment, which we abbreviate with CPERE. As already mentioned the spatially
structure of the population will be given through a graph G = (V| E), where V is a
countable set and denotes the vertex set and E the edge set. We will assume throughout
this thesis that G is transitive, connected and has bounded degree. Furthermore, we
assume that GG is an infinite graph since otherwise the answer to the question, if a

infection can persist for all time, is always no.

The CPERE (C,B) = (C;, B;):>¢ is a Feller process on P(V) x P(E), where P(V)
and P(F) are the power sets of V and E. We call the process B the background
process, since it describes the evolving random environment and assume that it is an
autonomous Feller process with values in P(F). On top of this space-time random

environment we define an infection process C with values in P(V') and transitions

C,.=C—>CuU{z} atrate \-#{yeC:{z,y} € B, } and

(1.1)
C,.=C—C\{z} atrater,

where A\ > 0 denotes the infection rate and r > 0 the recovery rate. If x € C;, then we

call z infected at time t. If e € B; we call e open at time t and closed otherwise.

We equip P(V) x P(FE) with the topology which induces the point wise convergence.
This means if ((Ch, Bn))nE]N is a sequence in P(V) x P(E), then (C,, B,) — (C, B) as
n — oo if and only if Ty e)e(cn,B,)1 = L{(@e)e(c,B)} as n — oo for every (z,e) € V x E.
Furthermore, we denote by “ = 7 the weak convergence of probability measures on

P(V) x P(E).

Remark 1.1.1. Besides P(V) x P(E) we could also choose {0,1}" x {0,1}¥ as the
state space of the CPERE, since we can identify every element (C, B) with the function
1{.e(c,p) and vice versa. Note that on {0,1}" x {0,1}¥ the product topology induces
the point wise convergence. In the literature both choices of states spaces are common.

We decided to use P(V) x P(E) out of preference and notational convenience.

It is common to add the initial configuration (C, B) as a superscript to the process,

i.e. (C%B BP). Sometimes it is more convenient to use the usual notation to indicate
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the initial configuration of a Markov process by adding it to the law as a superscript,
ie.

PP ((CBy) € -) = Pa,((Ci.By) € -[(Co.Bo) = (C, B)).

We do not only consider deterministic initial configurations. Thus, if we want to

consider an initial distribution u of (C, B) we write

Py ((C.,By) € -) :/ng?ﬁ((ct,Bt) € - )u(d(C,B)).

Note that if g = dc ® pse, where s is a probability measure on P(FE), then we abuse
the notation slightly and write IPSS’;’“ 2),

The CPERE can be defined for a fairly general class of interacting particles systems,
acting as the background process B. In this thesis we focus on the case where the
background is a spin system on P(E). An interacting particle systems is called a spin

system if it has a generator of the form

ecE

where ¢(e, B) is the flip rate of e with respect to the “present” configuration B C F
and A is the symmetric difference of sets, i.e. By A By = (B1\Ba) U (By\By).

We additionally equip the edge set E with a spatial structure by considering the line
graph L(G) (see Definition [2.4.9). In the line graph the original edge set E is considered
to be the vertex set and edges e;,es € E are defined to be adjacent if they have a
vertex in common, i.e. it exists z € V such that x € e, e5. Let BE(e) denote the ball
with centre e € E of radius n with respect to the graph distance of L(G). We assume

that the spin system satisfies the following three properties.

1. It is attractive, i.e. the spin rate ¢(-,-) satisfies that if B; C By, then

qle,B1) < q(e,Bs) ife¢ By, and q(e, By) > q(e, By) if e € By.

2. It is translation invariant, i.e. if o is a graph automorphism (see Definition [2.4.3))then

q(e, B) = q(o(e),0(B)) for all B C E.
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3. The spin system is of finite range, i.e. there exists a constant R € IN such that
q(e, B) = q(e, BN Bg(e))

for all e € F and B C E. We call such a spin system of range R.

We will now list some examples of spin systems we consider for the background dynamic.

Example 1.1.2. Let N* denote the neighbourhood of e in the line graph L(G).

(i) The probably easiest possible non-trivial choice is the dynamical percolation. This
system will be our main example. The dynamical percolation updates every edge
independently from all other edges. Hence, the background B is a Feller process

with transition

B, =B — BU{e} atrate a and
B, = B — B\{e} at rate 5,

where a, 5 > 0.

(i7) Next we consider a noisy voter model on G = (V, E') with
V=72 and FE={{z,y}CZ:|z—y| =1}

In this case L(G) is again a 1-dimensional nearest neighbour integer lattice just
like G. The background B has transitions
B, =B — BU{e} atrate % + BIBNNF| and

B,. =B — B\{e} at rate %Jr B|B N NE|,

where «a, 5 > 0.

(7i1) The last example is the ferromagnetic stochastic Ising model with inverse temper-

ature 3 > 0. Here, the transitions of B are

B,. = B— BU{e} atrate 1 — tanh (8(|N| —2|BNN}|)) and
B,_ = B— B\{e} at rate 1 — tanh (8(|N"| — 2|B°NN})).

(1v) A trivial example is B; = E for all ¢ > 0. With this choice we recover the classical

contact process, since all edges are open at all times, and thus the infection
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process C is not affect by B at all. We will abbreviate the classical contact

process with CP.

The CP can be constructed via the so called graphical representation, which is a general
concept to construct an interacting particle system via a graphical approach. In the case
of the CP one draws infection and recovery events according to a Poisson point process,
which are respectively depicted by arrows pointing from an individual z to a neighbour
y and by crosses at a site x. Now if x is infected the arrow causes the infection of
y. On the other hand a cross at x leads to the recovery of x. See Figure for a
visualization. The CPERE is essentially constructed in the same way as the CP with
the difference that we incorporate the background into the graphical representation as
visualized in Figure Basically an infection arrow from x to y can only transmit

an infection at a time ¢ if the edge is open, i.e. {z,y} € B;.

time time

to 1 1 0 1 1 t T 0 1 0 1 0

0 1 0 0 1 0 V 0-L 1 0 0 1 0 V
0 1 2 3 4 0 1 2 3 4

(a) The arrows form sites = to y correspond to a (b) Grey areas indicate that an edge is closed with
possible transmission of an infection from x to y respect to the background. Infection arrows in a
and the crosses correspond to a possible recovery grey area are ignored. The red lines again indicate
of the respective site. The red lines indicate the the infection paths.

infection paths.

Figure 1.1: Visualization of a graphical representation of the classical contact process
and the contact process in a evolving random environment.

One of the key quantities in infinite systems which model the spread of infections is

the so called survival probability of the infection C, which is defined as follows:

Definition 1.1.3 (Survival probability #). Let C C V, B C E and A,r > 0. Then

O\, C, B) :=P\"P(C, £ 0 vt > 0)
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is called the survival probability (of C).

We often omit some or even all arguments of the survival probability 6 to aid the
readability of texts and formulas. We will see that CPERE exhibits a so called phase
transition. This means that the process drastically changes its behaviour with regards
to 6 if the parameter of interest (\,r) crosses a certain critical threshold and thus,
one can divide the parameter set in different phases. This means that if we increase
the infection rate or respectively decrease the recovery rate, the drastic change which

occurs is the possibility for the infection to survive, i.e. (A, r,C, B) > 0.

Definition 1.1.4 (Critical infection rate for survival). Let C' C V be finite, B C E

and r > 0. We define the critical infection rate for survival by

Ae(r,C, B) :=inf{\ > 0: 6(\,r,C,B) > 0}.

We will show that the survival probability # is monotone in A and r, and thus the
infimum attains a unique value. Note that we can analogously define a critical recovery

rate 7.(A\, C, B). In this case the infection rate is a variable instead of the recovery rate.

Remark 1.1.5. As already mentioned the dynamical percolation introduced in Exam-
ple (7) can be considered as our main example for a background process. In this
special case we will call the process (C,B) a contact process on a dynamical percolation,
which we abbreviate with CPDP. In this model we have two additional parameters «

and (3 corresponding to the rates at which edges open or close. Thus, we denote by
Opp(\,1a,8,C,B) = PP (C, # 0 vt > 0)

the survival probability of CPDP and by A\PP(r, a, 3, C, B) the critical value of the
contact process on a dynamical percolation, where C' C V non-empty and finite and
B C E. 1f it is clear from the context that we consider the dynamical percolation as

background, then we will drop the super/subscript DP.

1.2 History

To the best of our knowledge the CP was first introduced by Harris [Har74|. It is a
Markov process which models the spread of an infection in a structured population via

a contact interaction. This means we consider a collection of individuals and we know
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which of these individuals have physical contact. So if we assume that a number of
these individuals are infected, then with at a certain rate a “sick” individual can infect
a “healthy” one with whom they are in contact. On the other hand, if one individual
is “sick”, it recovers at a certain rate, i.e. after a random amount of time. Now the
dynamics of the spread of the infection is modelled via the CP X. Again, this is a

Markov process with state space P (V') and transitions

X, =A—Au{z} atrate \-|{y€ A:{z,y} € E}| and
X;- =A— A\{z} atrater,

where A > 0 is the infection rate and with rate r > 0 a infected person recovers.

Remark 1.2.1. For the CP the survival probability only depends on the fraction \/r,
since by rescaling the time the problem reduces to the case » = 1. This is not the case

for the CPERE since rescaling time also affects the background B.

Thus, in this section we assume that » = 1 and in the context of the CP we denote the
survival probability by 0(\,C) = P{(C; # 0 Vt > 0), where C' C V denotes the set of
initially infected individuals. Since one is mainly interested in whether the survival
probability is non-zero the quantity of interest is again A. = inf{\A > 0: (X, {z}) > 0},
which is called the critical infection rate of survival. For the CP one can show that for
any two finite and non-empty sets C,C" C V, 0(C') > 0 < 6(C’) > 0. This means that
the critical value . does not depend on the choice of the initial configuration as long
as at least one and only finitely many individuals are initially infected. Till this day
Liggetts books [Ligl2] and [Ligl3] are the standard reference for interacting particles
systems and in particular the CP. Thus, for a detailed introduction and description of

the CP and interacting particle in general we refer the reader to these two books.

The above mentioned graphical representation was introduced by Harris [Har78] for
a certain class of Markov processes. Besides its obvious use to construct the CP this
representation turned out to be one of the most powerful tools for studying the CP, since
it enables us to use a wide range of coupling methods. For example, it is immediately
clear by this construction that the survival probability is monotone with respect to an
increase in the infection rate or the initial infections. In a lot of situation it enables one
to couple the CP to a different model which is much easier to study in the particular
situation. For example, Durrett [Dur91| construct a coupling between the CP on the
1-dimensional integer lattice and an oriented percolation on Z x Z, which allows them

to conclude that A. < co. This shows in particular that the critical value is finite if the
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graph G is infinite and connected. On the other hand, for graphs with bounded degree

one can show that A\, > 0 by a comparison with branching random walk.

A different aspect which was intensively studied were the corresponding invariant laws.
In Markov process theory the invariant distributions are often investigate, since they
determine the asymptotic behaviour as ¢ — oo. A typical question is if there exists a
unique invariant law and if not, if it is possible to classify the infinitely many invariant
laws. Note that dy is obviously an invariant law of the CP. Thus, we can excluded
that no invariant law exists in case of the CP. There has been considerable effort to
study these questions for the CP. Since the CP is a monotone Feller process one can
show quite easily that a so called upper invariant law ¥ exists, i.e. X} = 7 as t — oo,
where the superscript denotes that X} = V. In the subcritical phase, i.e for A < A,
clearly X; = dp as t — oo, and therefore the process is ergodic, which means 7 = dy.
In the supercritical phase, i.e. A > ., this is not so clear and in fact with the concept
of duality one can show that in this phase 7 # dp, and thus the contact process is not

ergodic.

This motivates the question: How do the invariant laws look in the supercritical phase?
Is it possible to characterize them? On the d-dimensional integer lattices with nearest
neighbour structure, i.e. V =2 and E = {{z,y} C V : ||z — y[|s = 1}, where || - ||
denotes the 1-norm, Durrett and Griffeath [DG82] managed to formulate equivalent

conditions such that the so called complete convergence holds for the CP, i.e.
XY = [1 -0\ C)op+ 0\, C)D

as t — 0o. This means that there exist only two extremal measures, which are dy and

v and that every other invariant law is only a convex combination of these two.

These conditions are also equivalent to a result which is closely related to complete
convergence, the so called asymptotic shape theorem. Let 0 denote the zero vector in
7% and set
H, =X and K, =X/ AX["
s<t
The set H; contains all sites which were at least once infected until time ¢ and K; is the
coupled region at time t. A very lose interpretation of the coupled region K;, given in

[DG82], is that X ° is in its “equilibrium” in this region. Let us set H, := H, + -3, 3] !
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and K} .= K; + [—%, %]d for all t > 0. Formally the asymptotic shape theorem states

that there exists a compact and convex set U C R? such that for every ¢ > 0
P(3s>0:(1—e)tU C (K,NH) CH, € (1+e)tU ¥t > 5| X% £0vt>0) = 1.

In words this result states that the CP X is a linear growth model. This means that
H; expands asymptotically linear in time with respect to the spatial distance. The
supplement that (K, N H}) grows asymptotically linear, means in broad terms that
the area where X;{O} is already in its equilibrium expands asymptomatically linear in
time. Such shape theorems seem to be prominent for models defined on integer lattices
with nearest neighbour structure since the graph distance is given through the 1-norm.
Usually Z< is endowed with || - ||;, and thus the graph distance not only describes a

“social” distance but can also seen as a “geographical” distance.

Furthermore, in [DG82] was shown that for A large enough these equivalent condition
are satisfied. But they and many others believed that these results hold for every A > A..
Only years later Bezuidenhout and Grimmett |[BG90| developed a technique which
could be used to show that the equivalent conditions stated in [DG82] are satisfied for
A > A.. At this point we should mention that the techniques developed in [BG90| have
more applications. For example they can be used to show that the CP goes extinct
almost surely at criticality, i.e. 8(A.,C') = 0 for all C' C V finite. We will later come

back to these techniques since we will modify them and apply them to our model.

On other graphs the complete convergence does not always hold true. For example the
CP on the d-regular tree T¢ exhibits a intermediate phase, where survival is possible,
but there exist infinitely many extremal invariant measures. This can be found in
[Ligl2, Chapter 1.4]. Salzano and Schonmann have studied in [SS97] and [SS99| the
so-called second lowest extremal invariant measure and with it partial convergence and
complete convergence results of the CP. In [Sal99] Salzano actually provided examples
of trees on which, as the infection parameter increases, complete convergence alternates
between holding and failing infinitely many times. Thus, on general graphs it is near

to impossible to make an exact statement whether complete convergence holds or not.

The results we described until now assume that the graph G is known. This is equivalent
to the assumption that we know the complete spatial structure of the population. In
fact this is a rather unrealistic assumption, since determining the exact structure of a
population is extremely difficult if not impossible. This is one motivation to study the

contact process in a random environment. One of the first works to consider a contact
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process on Z in a random environment was from Bramson, Durrett and Schonmann
[BDS91], where they considered the recovery rates (r;);cy to be distributed identical
and independent across sites. There have been others, which additionally choose the
infection rate according to some probability distribution independently for all sites, see
for example |Lig92] and [Kle94]. But, they assume that the infection rates are strictly

positive. Therefore, the underlying graph structure has not changed.

If the random environment is allowed to prevent the transmission of an infection
between two adjacent sites, then this would really change the underlying graph, since
this corresponds to erasing an edge. From a geometric perspective, one could speak of
a contact process on a random graph. One of the first examples for such a model was
considered by Pemantle and Stacey [PS01]. They studied among other things a contact
process on a Galton-Watson tree. There has been a considerable amount of effort to
study such variations of the CP. Maybe one of the most natural choices is to consider
an infection rate randomly chosen between 0 and some constant A independently for
each edge. This can be seen as a contact process on top of a bond percolation model.
This infection model was for example considered by Xue [Xueld|, who investigated
survival of the infection and proposed an upper bound on the critical infection rate.
Another related work was done by Chen and Yao [YC12|. They studied complete
convergence of a contact processes on a percolation clusters of Z? x Z_. Note that
they needed to introduce one oriented spatial direction for their techniques to work.
Certainly closely related to the complete convergence is the asymptotic shape theorem.
Garet and Marchand [GM12] proved such a result for the contact process on Z< in a
rather general random environments. Van Hao Can |Canl5| studied the contact process
on a long range percolation cluster. In comparison to the other models we listed here

the resulting underlying graph has no longer bounded degrees. It is only locally finite.

These works all consider contact processes in a static random environment, i.e. the
random environment is random but fixed for the whole time horizon. But in reality,
connections between individuals obviously change over time. Therefore, with the aim in
mind to formulate an infection model closer to reality, people tried to incorporate this
effect. Such models can be called a contact process in a dynamical random environment.
To the best of our knowledge the first to explicitly consider a contact process with
dynamical rates was Broman [Bro07|. In this work they considered a contact process
on top of a vertex dynamical percolation, which affects the recovery rate in such a way
that the recovery rate of a individual alters between two values. Thus, they study a

contact process with varying recovery rates. In [Bro07] they considered general graphs
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and assumed that the dynamical percolation is started stationary. They studied mainly
comparison methods of the critical value with respect to the classical contact process.
[SWO8] can be considered as a follow up, since they studied the same model on Z¢
and studied the influence of the initial configuration of the dynamical percolation on
the critical value, i.e. it is no longer started stationary, and proved that this variation
of the contact process dies out at criticality. [SWO08| considered a multi-type contact
process, where a state of temporary immunization of an individual was introduced.
Hence, individuals in this state cannot be infected, and thus one could say this is closely
related to the asymptotic behaviour of the model introduced by [Bro07], where the
recovery rates alter between r and co. In [Rem08] they even managed to show complete
convergence of their model. There is a rich literature on multi-type contact process see
for example [DS91], [DM91] and [Kuol6].

The three works |[Bro07], [SWO08| and [SWO0§|, all studied a contact process with varying
recovery rates. Only recently have people started to study what we would consider
contact processes on dynamical random graphs. For example [JM17] and [JLM19]
studied the contact process on finite and scale free graphs with vertex updates. This
means, that when a vertex x is updated all edges connected to z are removed and
afterwards new edges are randomly added. The first work to consider a dynamical

random environment affecting the infections on an infinite graph was [LR20].

1.3 The contact process on a dynamical percolation

In this section we recapitulate the results of [LR20] in more detail since they can be
considered the starting point for our work. The process considered in |[LR20] is a
contact process on a dynamical percolation. This model is a special case of the CPERE
as seen in Example (7). They considered a particular choice of the rates, namely
r=1, a=wvpand f =v(l —p) forv >0 and p € (0,1). The parameter v can be
understood as the update speed of an edge and p is the probability for an edge to be
open afterwards. Additionally they consider B to be started stationary, i.e its initial

distribution is its unique invariant law which we denote by .

The main object of [LR20] was to study the existence of a phase transition, i.e if the

critical infection rate

Ae(v,p) == inf {/\ >0: /QDP()\, 1Lop,v(1 —p),{z}, B)n(dB) > O}
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is non-trivial, where x € V' is arbitrary. Note that since the background is started in
its invariant law via the graphical representation, one can easily see that the CPDP is
translation invariant with respect to spatial shifts, which is the reason why \.(v, p) does

not depend on the choice of x. First they showed a weaker version of monotonicity.

Proposition 1.3.1. For every p € [0,1] the function v — %)\C(v,p) is non-increasing.

This result corresponds to [LR20, Proposition 2.1]. Now they were able to show
existence of a phase which they called the immunization phase, which basically states
that if the background parameters are chosen favourable enough the infection cannot
survive regardless of the infection rate. This phenomenon is not present in the classical
case. The following theorem is a combination of Theorem 2.5 and Theorem 2.6 in
[LR20].

Theorem 1.3.2 (Immunization). Let G = (V, E) be a connected and vertex transitive

graph with bounded degrees. Then

(i) For every v > 0 there exists a po(v) > 0 such that \.(v,p) = oo for every
p < po(v).

(1) There exists a p1 € (0,1) such that for every p > p1, A(v,p) < oo for every
v > 0.

Theorem shows the existence of a critical curve v — po(v) such that for every
(v, p) which lies above the curve we have A\.(v,p) < oo, i.e. there exists a infection rate
such that survival is possible. On the other hand for every pair (v, p) which lies below it
holds that A.(v,p) = o0, i.e. regardless of the infection rate extinction happens almost
surely. Note that Proposition states that the critical value can at most grow
linear with respect to v. This yields that the curve v — py(v) is non-increasing, since if
A(v,p) < oo for a v > 0, then Proposition implies that A(v/,p) < oo for all v/ > wv.
See for a visualization. The next result is a combination of Theorem 2.3 and
Theorem 2.4 in [LR20| and is about the extreme case v — 0 and v — 0.

Theorem 1.3.3 (Asymptotic behaviour). Let G = (V, E) be a connected and vertex
transitive graph with bounded degrees.

(i) For everyp € (0,1), A\.(v,p) — as v — oo, where A& denotes the critical

Ae(G)
p
value of the classical contact process on G.

(17) For the V=7 and E = {{x,y} CZ: |x —y| = 1} it holds for every p € (0,1)
that the critical value \.(v,p) — 0o as v — 0.
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This theorem characterizes the asymptotic behaviour. As one expects for v — o0,
i.e. fast speed, the critical behaviour is that of CP on GG with rescaled infection rate,
i.e. Ap. A non-rigorous argument for this is that by letting v tend to co the update
events happen so frequently that it is no different from throwing a coin with success
probability p after encountering a infection event. In particular the immunization phase

shrinks as v — oo and ceases to exist for v = oo, which means that v — pg(v) decreases

to 0 (see [Figure 1.2)).

p
A

2

v = po(v)

0 >

v

Figure 1.2: This is a sketch of the phase diagram of a CPDP on the 1-dimensional
integer lattice Z. The red curve denotes the critical parameter configuration and the
red area is the immunization phase, i.e. certain extinction regardless of the infection
rate. For parameter in the white area above the red curve there exists a infection rate A
such that the infection has a positive survival probability. For v = 0 extinction happens
almost surely with exception of p = 1.

On the other hand the asymptotic for slow speed are only fully characterized for the
1-dimensional integer lattice. Theorem [I.3.3] (i7) states that in this case A.(v,p) = oo
for p <1 as v — 0 (see [Figure 1.2)), which agrees with the our intuition. One would
expect that the critical behaviour for v — 0 is the same as the contact process on
a percolation cluster. Since on Z no infinite cluster occurs for p < 1, survival is not

possible.

On more general graphs one would expect that the asymptotic behaviour for slow speed
depends on the parameter p, since a percolation cluster of infinite size becomes possible.
Proposition and Theorem (1) show that for p small enough A.(v,p) — oo
as v — 0. But recently Hilario et al. [Hil+21] have studied a robust renormalization

approach for generalized contact process. They call any process that is obtained from
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a percolative structure of recovery and transmission marks in same way as the contact
process, but the distribution of these marks is given through some other Poisson point.
This renormalization approach allows them to study survival or extinction of processes
in this class. In fact the CPDP is part of this class and also one of the two examples
they treat in |Hil4-21]. Thus, they managed to provide some further results on the
asymptotic behaviour of the critical infection rate for slow speed on the d-dimensional

integer lattice.

Theorem 1.3.4. Let V = 7% and E = {{x,y} C Z¢: ||x—y||s = 1} and p.(d) denotes

the critical probability of an independent percolation model on (2%, E).

(i) For allp < p.(d) and X > 0 there exists vo(p, A, d) > 0 such that for any v € (0, v)

the infection dies out almost surely.

(17) For any p > p.(d) we have sup{A.(v,p’) v > 0,p" € [p, 1]} < 0.

We illustrated the phase diagram of CPDP on Z¢, where d > 0, in Figure . If we
compare this setting to the behaviour on 1-dimensional lattice we see that there exist
an additional phase where survival is always possible and the critical infection rate

Ae(v, p) is uniformly bounded if p > p.(d).

p

B

v

Figure 1.3: This is an illustration of the phase diagram of a CPDP on the d-dimensional
integer lattice Z¢. Again the red curve denotes the critical parameter configuration
and the red area is the immunization phase.
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1.4 Summary of the main results

In this section we give an overview of this thesis and at the same time a detailed
summary of the main results. The results are proven in the corresponding chapters

later on.

First we will study the CPERE on graphs with bounded degree. We study the influence
of the initial configuration of the background on the survival probability. Next we focus
on the invariant laws and therefore on the question whether the CPERE is ergodic or
not. The goal here is to derive two conditions which imply complete convergence of
the CPERE. We finish this part by considering the special case of the CPDP. Here, we
formulate a block construction of the CPDP, which enables us to couple this process
with an oriented percolation in the spirit of [BG90]. Among other things this enables
us to show that the two conditions which imply complete convergences are satisfied in
this special case. In the last part we will study a contact process on a dynamical long

range percolation.

First of all in Chapter [2| we introduce some basic notions. We start with a short
introduction of Feller processes, and clarify some notation and definitions which we
need in this thesis. Then we introduce the Poisson point process and with this process
we formulate the graphical representation of a interacting particle system, which is one
of the most essential tools in this thesis. We finish this chapter with the introduction

of some notation and useful results on graphs.

In the first part of this thesis we start to study the CPERE. Thus, we need to clarify the
setting we work in for the next chapters. Let G = (V, E') be a connected and transitive
graph with bounded degree. We denote by p the exponential growth of the graph G,
(see Definition , i.e. p=lim,_ o +log(|B,(z)|), where B,(z) denotes the ball of
radius n with = € V' as centre with respect to the graph distance. Note that since G is
transitive p does not depend on the choice of x. If p = 0 we call G of subexponential

growth. Next we define the coupled region of the background at time ¢ by
U, =U,(B):={cc E:e¢ B AB’ VB, B, C F} (1.2)
and the permanently coupled region at time ¢ through

U, =U(B):={e€ E:ec Vs >t} (1.3)

where t > 0. Recall that B is an attractive, translation invariant and finite range spin

system. But we need some further assumption on the background process B.
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Assumption 1.4.1. The background B satisfies the following assumptions:

(i) B is ergodic, i.e there exists a unique invariant law 7 such that B = 7 as
t — oo forall BC FE.

(12) There ezist constants T, K,k > 0 such that P(e ¢ V}) < K exp(—kt) for every
e € FE and for allt > T.

(iii) B is a reversible Feller process (see Definition[2.1.7).

Loosely speaking if we assume that B is ergodic, i.e. that () is satisfied, then (i7) refers
to the expansion speed of the permanently coupled region. This gives us a rough insight

on how fast the background process convergences to the invariant law 7.

Chapter (3| is basically divided in two parts. The first part is dedicated to the
construction of a finite range spin system and the expansion behaviour of its permanently
coupled region. In Section [3.1| we explicitly state one possible graphical representation
for a general finite range spin system. Thus, we show that all spin systems we consider
can be constructed via a graphical representation, which is a useful and important
fact since we heavily rely on coupling methods which use such a representation. In
Section we study the expansion speed of the permanently coupled region W}, t > 0.
As readers familiar with interacting particle systems might know, the question if a spin
systems satisfies (i) or not, is in general not trivial to determine. Hence, it may not be
even harder to additionally show (ii). Thus, the main goal of Section is to show

the following result.

Proposition 1.4.2. Suppose that Assumption (1) is satisfied and there ezist
constants S, K' > 0 and v > p such that P(e ¢ V) < K'e™?* for every e € E and
s > S. Then there exist T, K > 0 and k > 0 such that

Ple ¢ U)) < Ke ™

forallt >T and e € E.

With this result we are able to state a sufficient condition such that a spin system
satisfies (i) and (ii) of Assumption [1.4.1 which is based on the so-called M < ¢
condition, see [Ligl2, Theorem 1.4.1]. Recall that N* denotes the neighbourhood of e
with respect to the line graph L(G).
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Corollary 1.4.3. Suppose e — M > p, where

M= suplg(e, B) — q(e, BA{a})| and = inf |g(e, B) +qle, B AA{e})],

aeNE BCk
then Assumption[1.4.1] (i) and (ii) are satisfied.

The proof of Corollary can be found in Section |3.2l The definition of both M
and ¢ do not depend on the choice of e since the background is translation invariant.
M is a measure for the maximal dependence of the transition rates on the state of a
single edge, while € is a measure for the minimal rate at which the state of a single
edge changes. Note that we simplified the definitions of M and ¢ in comparison to

[Lig12, Chapter I], since we only consider finite range spin systems.

Remark 1.4.4. The constants M and ¢ can be explicitly calculated for the three
systems defined in Example [[.T.2] The calculation can be found in Appendix [A] Thus,
with Corollary we can state sufficient conditions on the rates such that these spin
systems satisfy Assumption [I.4.1] (i) and (i)

1. For the dynamical percolation the two quantities are M =0 and € = o + 3 and

hence a + 3 > p is sufficient.

2. In case of the noisy voter model, M = BINF| and € = o + B|NL|. This implies
that o > p suffices.

3. For the ferromagnetic stochastic Ising model the calculation is more lengthy but

can still be carried out in a straightforward manner and the result is that

2(e2P—e—28 .
e=2 and M= Wf\m if |NC'] odd

IV Ezgl—ijﬁ if INMF| even,

and therefore 0 < 8 < %log (%—f;;’;) is sufficient, where the right hand side is
only positive if p < 2. Note that if |[NL] is odd we are able to obtain a slightly

better bound on /3, which can be found at the end of Appendix [A]

The second part of Chapter [3|is dedicated to obtaining some basic knowledge about
the CPERE. In Section we rigorously formulate the graphical representation of
the CPERE. A direct consequence of this construction is the existence of a Feller
process (C, B) with rates as in . In Section we state some basic properties of
the CPERE, such as some monotonicity properties of the CPERE, additivity of the
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infection process C and more. These properties follow with relatively small effort via
different couplings derived from the graphical representation. We end Chapter 3| with
a comparison result between the CPDP and CPERE. Let (C,B) be a CPERE such
that B is a spin system with rate ¢(-,-) and set

min +— 1 7F s min - — 1 7FU
a Jmin e, F), B Join, (e, F'U {e}) "

Omax := max ¢(e, F') and .. ;= max q(e, FFU{e}).
max gfe,F) and P i= ma gfe.FU{e})

Recall that 6 denotes the survival probability of a CPERE and 0pp the survival
probability of a CPDP as mentioned in Remark

Corollary 1.4.5. Let A,r > 0 and aumax,Omin; Bmax, Bmin > 0 as in (1.4). Then
GDP()H Ty, Olmax, ﬁmina C? B) 2 9()‘7 T, Ca B) Z QDP(Av T, Omin, 5max7 Cv B)

where C CV and B C E.

This result is a direct consequence of Proposition [3.4.5]

Example 1.4.6. If we consider the background process B to be a noisy voter model on
7 as defined in Example m (74) with rates a, § > 0 we obtain the following bounds
on the survival probability of C:

HDP(/\,T,Oé —i—ﬁ,ﬁ,C, B) Z 9()\,7’, C, B) Z HDP(A,T’,ﬁ,Oé + ﬂ,C, B)

In Chapter 4] we study the influence of the initial configuration of the background
process on the chances of survival. In this chapter we will only use Assumption [1.4.1

(7) and (i7). Let us fix the following notation:

Definition 1.4.7 (Survival probability for stationary background). Let C C V, B C E
and A\, > 0. Then
0"(\, 1, C) =P (C, # 0Vt > 0)

is the survival probability of C with By ~ m, i.e. the background being stationary, and

we define the critical infection rate as

AL(r) :==1nf{A > 0:0"(\,r,{z}) > 0}.
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Note that we will show later, in Corollary 4.0.2} that for a stationary background the
definition of the critical infection rate does not depend on the choice of x € V. We

denote by N, the neighbourhood of z in G. Let ¢;(), p) be the unique solution of
cA —1—log(cA\INL|) =p (1.5)

which satisfies 0 < ¢1()\, p) < %, where A > 0 and z € V. We will later see, in
Lemma , that ¢ (A, p) is an upper bound for the maximal growth rate of the set
of all infections. The main goal in this chapter is to show that under an additional
condition, the initial configuration of the background B has no influence on whether

survival of the infection is possible or not.

Theorem 1.4.8. Let A, > 0 and C C V be finite and non-empty. Suppose (i) and
(1) of Assumption are satisfied and c1(\, p) > k™ tp, then O(\,r,C, By) > 0 if and
only if O(\,r,C, By) > 0 for all By, By C E.

Note that the statement is obviously true if |C| € {0,000}, since then the survival
probability 6 is either 0 or 1. We will see that if the inequality ci()\,p) > xk !p
holds, then asymptotically the growth speed of the infection C is slower than the
expansion of the permanently coupled region ¥, with respect to time. Furthermore,
by Proposition (1) if follows that 67 (A, r,Cy) > 0 if and only if §7(\, 7, Cy) > 0
for any two non-empty and finite C,Cy C V. Thus, as a direct consequence of

Theorem [1.4.8 we get the following result regarding the critical infection rate.

Corollary 1.4.9. Let r > 0 and suppose Assumption [1.4.1) (i) and (ii) are satis-
fied. If there exists a mon-empty and finite set C' C V and a B' C E such that
ci(Ae(r,C", B'), p) > 7 'p, then it follows that \.(r,C, B) = \¥(r) for all non-empty
and finite C CV and B C E. Then we denote the critical infection rate simply by
Ae(T).

Note that if we consider graphs with subexponential growth, i.e. p = 0, the inequality
c1(A, p) > k™ 1p is obviously satisfied for all A > 0. Thus, on graphs with subexponential

growth Theorem and Corollary are true as long as Assumption [1.4.1] (i) and
(1) are satisfied.

Since Corollary provides us with sufficient conditions to determine if the critical
infection rate A.(r) is independent of the initial conditions, we can naturally extend
Theorem [1.3.2((i) and Theorem [1.3.3] which were proven in [LR20], in the sense that
we drop the assumption of stationarity, i.e. By ~ 7. Recall from Remark that we
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denote the survival probability and the critical infection rate by dpp and APY for the

contact process on a dynamical percolation.

Corollary 1.4.10. Let p > 0 be the exponential growth of G.

(i) For everyp € (0,1), /\CDP(l,Up,U(l -p),C, B) — % asv — 0o, forallC CV
non-empty and finite and all B C E, where \Y denotes the critical infection rate

of the classical contact process with recovery rate 1 on the graph G.

(17) If G is of subexponential growth, i.e p =0, then for every r > 0 and v > 0 there
exists a po = po(r,v) > 0 such that for every p < py, \P¥ (r, vp,v(l —p),C, B) =
oo for all C CV non-empty and finite and all B C E.

(i) If V=7 and E = {{z,y} CZ: |x—y| =1}, i.e. G is the 1-dimensional integer
lattice, then for every r > 0 and p € (0,1), /\CDP<T, vp,v(1 — p),C, B) — 00 as
v — 0, for all C' C V non-empty and finite and all B C E

In Chapter |5 we study a quite different aspect of the CPERE. In this chapter we will
focus on the connection between survival and non-ergodicity, i.e. that there exists more
than one invariant law. Note that Assumption m (737) will be pivotal and therefore,

we briefly discuss when this assumption is satisfied.

For a given spin systems it is by no means trivial to see if it is reversible or not. But
the class of stochastic Ising models satisfies reversibility by definition. Therefore, it
seems to be natural to choose our background from this class of spins systems. By the
definition given in [Ligl2, Section IV.2] a stochastic Ising model is a spin system which

is reversible with respect to the probability measure

v(B) ~ exp (D2 (=1)F"Plp),

DCE

where (Jp)pce C R such that ), . |Jp| < co. Note that the sequence (Jp)pcp is
called a potential of an Ising model. Hence, Assumption m (14i) is already naturally
satisfied. On the other hand by [Ligl2, Theorem IV.2.13] we know that every reversible,
finite range spin system with strictly positive spin rates must already be a stochastic
Ising model. Given a potential (Jp)pcg there are obviously infinitely many ways to

choose the spin rates ¢(-, ). One common choice of the spin rate is

g(e, B) == 1 — tanh (Z(—l)BC“DUD) - 2(1 +exp (2 Z(—l)'BC”DJD>)_.1 (1.6)

e>D ed>D
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Of course, if Assumption [L.4.1] (i) and (ii) are satisfied is a different question and also
not always the case. For example in case of the ferromagnetic Ising model stated in
Example (zi1) if the parameter ( is small enough, it satisfy these two assumptions.
But depending on the underlying graph G, this system can exhibit a non-trivial phase
transition between ergodicity and non-ergodicity, i.e. for § large enough there exist

more than one invariant law. See for example [Ligl12, Theorem IV.3.14].

Remark 1.4.11. In fact with the choice (1.6]) of the spin rates we can show that all
three systems in Example are part of the class of stochastic Ising models.

1. Let p € (0,1). We choose Jp = 3log (ﬁ) for |D| = 1 and Jp = 0 otherwise.
Next plugging this choice of a potential into the spin rates we get that
q(e, B) = pliegny + (1 — p)licepy. Now rescaling time with a constant v > 0
and setting v := vp and f := v(1 — p) yields that the dynamical percolation is a
stochastic Ising model for all a, 5 > 0.

2. To show this for the noisy voter model on the 1-dimensional nearest neighbour
lattice, let v > 0 and choose Jp = {log(1 +~7'), for |D| = 2 and Jp = 0
otherwise. Inserting this into (|1.6|) yields that

1 /1 )
e B) = 5 (5B AN gy + B AN eery) +7).
Again rescaling time with the factor O‘(%’Ll), where a > 0 and setting 3 := % we

see that the spin rate corresponds to the spin rate of a noisy voter model as given
in Example (17).

3. That the ferromagnetic stochastic Ising model introduced in Example (uii)
is part of this class is quite obvious, but for the sake of completeness we also

state the concrete potential (Jp)pcg. For f > 0 we choose Jp = f§if |D| = 2
and D C NX and Jp = 0 otherwise. This choice yields

q(e,B) =1 — tanh (2ﬂ(‘/\/’eL‘ — 2(]1{eeB}’B ﬂNeL’ + ﬂ{e¢3}|BC ﬂ./\/;ﬂ)).

Remark 1.4.12 (General noisy voter model). One might question why we do not

consider a more general noisy voter model, as for example a process with transitions

B, =B — BU{e} atrate a; + 8|BNNZF| and
B, = B — B\{e} atrate ay+ 3|B°NNZE|,
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where aq, ag, 8 > 0. It is not difficult to show that this process satisfies (i) and (ii) of
Assumptions m But we do not know if this process always satisfy (ii7) in this general
setting. For example it is not clear if this process is part of the class of stochastic Ising

models, which would imply that (zii) is satisfied.

In Chapter p| Section 5.1} we start with proving the existence of a so-called upper
invariant law U = Uy,. This law has the property that if v is a invariant law of the
CPERE, then this implies that v < 7, where =< denotes the stochastic order. This
explains why its called upper invariant law. At this point it is not clear if 7 differs from
the trivial invariant law 0y ® m. The question if 7 = §y ® 7 is equivalent to asking if
this system is ergodic, i.e. if there exists a unique invariant law which is the weak limit
of the process. By monotonicity, we know that if \; < Ay, then vy, , X 7,,, and the

reversed order holds for the recovery rate. Thus, we define the following critical value.

Definition 1.4.13 (Critical infection rate for non-triviality of 7). For r > 0 we define

A(r):=inf{\>0:7,, #0y @7}

The first aim is to show that this phase transition corresponds to the already known
phase transition between certain extinction and persistence of the infection in the
population with positive probability. Here we will again need the growth assumption
c1(A, p) > 7'p. Recall that ¢; (), p) is the unique solution of (L.5), & is given through
Assumption m (77) and p is the exponential growth of the graph G.

Proposition 1.4.14. Let r > 0 and suppose Assumptions (1)-(1ii) are satisfied.
Then X.(r) = XX (r). If additionally ci(AZ(r), p) > k™ 'p, then X.(r) = A.(r).

In Section [5.2| we derive the main result of this chapter. We state two conditions which
are equivalent to the so-called complete convergence of the CPERE, i.e. for every initial
configuration C' C V and B C E

(CEP BP) = 0(C, By +[1 —0(C, B)](6) @ ). (1.7)

Note that if we know that complete convergence holds true, then we have already

characterized all invariant laws of (C,B). We abuse notation somewhat by writing
{z € C;i.0.} = {x € C, for a sequence of times t 1 oo},

where i.0. is short for “infinitely often”.
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Theorem 1.4.15. Let \,r > 0 such that c1(\, p) > k™ 'p. Furthermore, let Assump-
tions [1.4.1) (i)-(iii) be satisfied. Suppose

P\ (x € C, i0.) = 0(\,7,C, B) (1.8)
forallz € V,C CV and B C E and

lim lim sup IP,\yr(ClB”(r)’m NB,(z) #0)=1 (1.9)

n—=00 {00

for any x € V. Then (1.7) is satisfied. Conversely if (1.7) holds and additionally
U #£ 0y @m, then (L.8)) and (1.9) are satisfied.

We finish this chapter with Section [5.3] where we discuss continuity of the survival
probability 6. If |C| € {0, 0o}, then 0(-, C, B) is constant, and thus obviously continuous.
Therefore, we will only consider the case where C' is non-empty and finite. We define

for such initial configurations (C, B) the region of survival by
S(C,B) :=={(\,7) € (0,00)* : §(\,r,C, B) > 0}. (1.10)

On the complement (S (C,B ))C we see that the survival probability is again 0, and
thus obviously again continuous. So the only interesting question is if (-, C, B) is
continuous on S(C, B). Unfortunately, on general graphs we are not able to determine
if the survival probability is continuous on the whole survival region. Thus, for technical

reasons, we need to restrict ourselves to the parameter set
Se, ={(\r): AN < Ast. (N,r) € SHa},0) and 1 (N, p) > & 'p}, (1.11)

which contains all parameter (A, r) such that a X < \ exists fo which survival is still
possible and the already known growth condition is satisfied. This is actually equivalent
to assuming that for r > 0, ¢; ()\Z(r), p) > k" 1p. Note that by Theorem m, the set
S., does not depend on the choice of the initial configurations (C, B) of the CPERE
with C being non-empty and finite. We denote by U the interior of a set U C RY,

i.e. the largest open set which is contained in U.
Theorem 1.4.16. Let C C V be finite and non-empty and B C E. Then the survival
probability 0(-,C, B) is continuous on Socl.

Note that on subexponential graphs, i.e. p = 0, we know that c;(\, p) > k™ 1p is always
satisfied and thus S, = S(C, B) for all (C, B) with C' being non-empty and finite.
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This means in particular that on subexponential graphs Theorem [1.4.16[shows that the
survival provability is everywhere continuous, except at criticality, i.e. the boundary of
the survival region. With the techniques used in this chapter we are neither able to
prove or disprove continuity at criticality. Such a result is much more involved and
not even know for the CP on every graph G. An exception is for example the CP on
the d-dimensional integer lattice. For this model [BG90| showed that the process goes
almost surely extinct at criticality, which implies continuity on the whole parameter
set. We can use their techniques to show, among other things, continuity of the CPDP

in this setting.

Thus, in Chapter [6] we focus on our main example introduced in Example (7).
The CPDP on the d-dimensional lattice, i.e.

V=2 and FE={{z,y}CZ: ||z -yl =1},

where ||-||; denotes the 1-norm. Note that we denote by 0 € Z? the d-dimensional vector
of zeros. Since we consider the concrete case of a dynamical percolation as background
process we have two additional parameters o and [ to consider. First of all the d-
dimensional lattice is obviously of subexponential growth, and thus by Remark
the background process B satisfies Assumption for all o, 8 > 0. Furthermore,
recall from Remark that we denote the survival probability by 6(A,r, a, 8, C, B).
Since we only consider the dynamical percolation as background we drop the subscript
DP. As mentioned in the same remark. Since p = 0, by Corollary the critical

infection rate is given through
Ae(r,a, B) =inf{\A > 0:0(\,r,a, 3,{0},0) > 0}.

Another property of dynamical percolation is that every edge is independent of the
other edges, i.e. if e # €/, then {e € B,;} and {¢’ € B,} are independent for every t > 0.
Thus, we can explicitly state the invariant law © = 7, g of the background process.

According to this measure the state of every edge is independently distributed with

_a

ek i.e. for every e € F

respect to a Bernoulli distribution with parameter

iﬂ and ﬂ({BCE:eéB}):af_ﬂ.

The main topic of Chapter |§| is to adapt the techniques developed by |[BG90] to the
CPDP. The revolutionary aspect of this work was that they managed to formulate

W({BCE:@EB}):a
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conditions equivalent to the survival of the CP, which only depend on an arbitrarily large
but finite space-time box. On the other hand the survival of the CP is obviously a event
which depends on the whole space-time path of the CP. Essentially these conditions
state that if we consider a large enough space-time box [—L, L]¢ x [0, 7] and start with
a smaller fully infected space box [—n,n]?, with high probability we find a spatially
shifted box [—n,n|? 4+ z at the sides or the top of the large box [—L, L]? x [0, T, which
is again fully infected. With these conditions they managed to formulate a coupling
between an oriented percolation and the CP such that if the percolation model survives,
then the CP survives and vice versa.

In Section [6.1] we start with formulating appropriate finite space-time events for the
CPDP and eventually we prove that if we are in the supercritical phase, i.e that
O\, 7, 3,{0},0) > 0, then these events occur with high probability, which means
that the finite space-time conditions are satisfied. In Section [6.2] we construct the
previously mentioned coupling with an oriented percolation such that if this model
percolates it implies survival of the CPDP and vice versa. This is a powerful tool and

has far reaching consequences, since it enables us to show the following results.

In this case we can again denote the survival by
S:={(\r,apB) € (0,00)*: 6()\,7“,04,5, {0},@) > 0}, (1.12)

where we know by Theorem [T.4.§ that this set does not depend on the intial configuration
of the CPDP as long as the set of initially infected sites C' is non-empty and finite. We

also include the two additional parameter.

Theorem 1.4.17. The CPDP goes almost surely extinct at criticality, 1.e.
G(A,r,a,ﬁ, {0},@) =0
for all (A7, a, B) € (0,00)4\S.

Furthermore, for the parameters o and 5 we can obtain the same monotonicity and

continuity properties as for the infection and recovery rates A\ and r, which we showed
in Section [3.4] and Section [5.3] Therefore, a direct consequence of Theorem is

the following result:

Corollary 1.4.18. Let C' C V and B C E. The survival probability is continuous, i.e.

()\,T’,Oé,ﬂ) = Q(A,T,@,ﬁ,C,B)
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is continuous seen as function from (0,00)* to [0, 1].

At last we are able to show that complete convergence holds for the CPDP for every

choice of parameters.

Theorem 1.4.19. The CPDP (C,B) satisfies complete convergence, i.e. for every
CcVand BCFE

(CEP BEY=[1-0(C,B)(0y®@7)+0(C,B)T ast— oco.

We will end this chapter by showing that for a general CPERE on the d-dimensional
integer lattice, complete convergence holds on a subset of its survival region. To be
precise this subset will be the interior of the survival region of a suitable CPDP, which
lies “below” the CPERE. This CPDP is obtain by Proposition [3.4.5l Here we will
again use the subscript DP since we need to distinguish between a CPERE and a
CPDP, i.e. 8 denotes the survival probability of the CPERE and fpp of the CPDP (see

Remark [1.1.5)).

Theorem 1.4.20. Let (C,B) be a CPERE on the d-dimensional integers lattice (2%, E)
with infection rates A > 0, recovery rate r > 0 and spin rate of the background q(-,-) and
suppose that (i)-(iii) of Assumption[1.4.1] are satisfied. Let Qumin and Bmax be defined
as in ([L4). If Opp(X, 7, Qmin, Bmax, {0}, 0) > 0 then complete convergence holds, i.e. for
everyC CV and BC E

(CEP BE) = [1—0(\r,C,B)|(6g @)+ 0\, 7,C,B)T ast— oc.

In Chapter [7] we will consider a contact process on a dynamical long range percolation,
which we abbreviate with CPLDP. The term “long range” refers to the fact that
connections of any length are possible, and therefore we are no longer in the setting of

bounded degrees. To be precise we consider the set

E={e={z,y} z,yeV,x#y},

which contains edges between all vertices and not only neighbours, i.e. vertices x,y € V
such that d(z,y) = 1. Recall d(-,-) is the graph distance induced by the graph
G = (V, E). We define the CPLDP (C, B) on the state space P(V) x P(€). In this
chapter we adapt the methods developed in [LR20] and extend some of their result,

which we summarize in Section [1.3] to the long range or rather infinite range setting.
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But, let us first state the concrete setting and process. We consider two sequences
(Pe)ece C [0,1] and (ve)ece C (0,00) of real numbers. Here p, will be the probability
that after an update the edge e is open and v, is the update speed of this particular edge.
Additionally we assume that if {z;,y;} € € for i € {1,2} with d(z1,y1) = d(z2,v2),
then pra, yiv = Plasys) a0d Vfay g1} = Vi, 41 Thus, edges which are of the same length
according to the graph distance d(-, -) have the same probability to being open after
an update and the same update speed. We want to remain in a similar setting as the
CPDP, where the behaviour of the background is governed by two parameters. Thus,
let v > 0 and ¢ € (0,1) and set

ﬁe = ﬁe(Q) = (dPe and ?Aje = f)e(’y) = YU,

for all e € £. Note that ¢ and « have similar interpretations as the parameters p and
v considered in Section [1.3] Now we are ready to define the dynamical long range
percolation process which will be our background process. Thus, B is again a Feller

process on P(€) with transitions

B,. =B — BU{e} at rate 0.p. and

(1.13)
B, = B — B\{e} at rate 0.(1 — p.).

Note that we choose By ~ 7, where 7 is the invariant law of B which means that the
events ({e € By})ece are independent and P(e € By) = p, for all e € £.

As usual in a long range setting we need some assumptions regarding the decay of the

flip rates of the background process.

Assumption 1.4.21. Assume that the sequences (pe)ece and (ve)ecs satisfy

(1) ZyEV Uiz} Doyt < 00 for all x € V and

(1) D ey v{_xl’y} < oo forallz eV.

In Section we will discuss the construction of this process via a graphical repre-
sentation and prove that is well defined. We need to adjust the construction use for
the CPERE specifically for this case, since (V) is no longer a graph with bounded
degree. This is possible since Assumption implies that v, P2,y — 0 and
Uz} — 00 as d(x,y) — oo, this indicates that the probability that a long edge is open,
i.e. an edge connecting two vertices over a long distance, becomes exceedingly unlikely.
Therefore, heuristically speaking a successful infection over a long distance is getting

more unlikely as the distance increases. Since the probability that this particular edge
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is closed in the moment a infection event takes places increases. Simply put, at any
time the percolation cluster will be locally finite graph, and thus the construction still
works out. With Assumption we are able to show in Lemma that (C,B) is
a well-defined Markov process, in the sense that |C¢| < co almost surely for all ¢ > 0,
if C C V is finite. Although we do not show that this process has the Feller property.
As before we again focus on the survival of the CPLDP, and thus for A\, r,v > 0 and
q € (0,1) we again denote by

O\, 7,7,q,C) =Py a(CE # 0Vt >0)
the survival probability and the critical infection rate for survival by
Ae(ryv,q) :=inf{\>0:0(\7r,v,q {x}) > 0}.

It is not hard to see that the CPLDP is again monotone regarding changes in the
infection rate A, and thus the infimum takes a unique value. Also note that again the
definition does not depend on the choice of x € V| since we started the background in
its stationary state, and therefore this follows again by translation invariance. Actually,
monotonicity in the rates A, r and ¢ can be easily concluded by a coupling argument
via the graphical representation, similarly to Lemma and Lemma for the
CPDP. Thus, we will not show this again. But as in the setting in [LR20] it is not
clear at all if the survival probability is monotone in 7. Hence, we show at least the

following result.

Proposition 1.4.22. The function v — v A(r, v, q) is monotone decreasing.

Another application of the graphical representation enables us to compare the CPLDP
to a long range version of the contact process. Let us now define this long range version.

Let 7 > 0 and (ac)cce be a sequence of positive real numbers such that ag, 4 = a1

if d(z,y) = d(2',y') and
Za{%y} <0

yev

for all z € V', where we again used the convention ay, ) = 0. Then a Feller process X

on the state space P(V') with transitions

X =C—CU{z} atrate Z Afzyy and

yeC

X, =C — C\{z} atrater,
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is called a long range contact process. For more details on this type of process one may

consult [Swa09].

Proposition 1.4.23 (Comparison with a long range contact process). Let C' C V' and
(CY,By)i>0 be a CPLDP with parameter \,r,y > 0 and q € (0,1). Then there exists a

long range contact process (Xtc)tzo with XOC = C, infection rates

1
a(A.q) =5 (A + 0 = V(A + 70e)? = duepdyg ) '
for all e € € and recovery rate r such that Xtc C C¢ for all t > 0.

. . . . . 5C . . . .
This result in particular yields that if X~ survives with positive probability so does

CC. Furthermore, it is not difficult to see that for every e € £

lim @ (A, 7, q) = Agpe.

Y—00

In Section we will provide some preliminary ground work for Section [7.3] where we
prove existence of a immunization phase. The techniques applied in these two sections
use among other things a comparison argument between a long range percolation model
and the background process on a finite time interval [nT,(n + 1)T), where n € Ny
and T' > 0. Thus, we first state a bound on the probability that an edge e is closed
throughout such a time interval of length T" and then, introduce a long range percolation
model and show some results which guarantee absence of infinite connected component

in such a model.

In Section we study the critical infection rate A\.(r,q, ) with respect to small q.
For the arguments in this section Assumption [1.4.21| (i4) will be crucial, i.e. that

Z U{_xl,y} < o0

yev
for all z € V. This assumption implies that vy, ,, — 0o as d(zx,y) — oo. Heuristically
speaking, this assumption might be interpreted in the following way. Since the updates
of long edges happen very frequently one can assume that before every infection event
an update already took place, and thus an successful transmission of an infection via
a long edges e occurs approximately with rate Ap.. We show with a strategy similar
to the proof of [LR20, Theorem 2.5] that for the CPLDP there exists a immunization
phase.
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Theorem 1.4.24. Suppose Assumption [I.4.21) is satisfied. Then, for a given r > 0
and vy > 0, there exists ¢* = q*(r,v) € (0,1) such that C dies out almost surely for all
q < q*, regardless of the choice of A > 0, i.e. A\.(r,7,q) = oo for all ¢ < q*.

In Section [7.4] we will study the asymptotic behaviour of the critical infection rate

Ae(r,q,7) as v — 0. For general countable vertex sets V' a direct consequence of

Proposition [1.4.22| and Theorem [1.4.24]is the following result.

Corollary 1.4.25. Let r > 0. There exists a ¢* = q*(r) € (0,1) such that for every
q < q*, there exists a vo = Y0(q) > 0 such that \.(r,v,q) = 0o for all v < ~9. This

implies in particular that im.,_o A.(r,7,q) = oo for every q < g*.

But if we choose V =7 and E = {{z,y} CZ : |v —y| = 1}, i.e. G = (V, E) is the
1-dimensional lattice, then we can fully describe the asymptotic behaviour for slow

speed of the CPDLP, i.e. v — 0, under suitable assumption.

Assumption 1.4.26. Assume that the sequences (pe)ece and (Ve)ecs satisfy

Zyvﬁiy} <oo and Z?ﬂ){o,y}p{o,y} <
yeN yeN

This is basically a stronger version of Assumption [1.4.21]

Theorem 1.4.27. Suppose Assumption is satisfied. Letr >0, g € (0,1) and
C' C V be non-empty and finite. Then, for every A > 0 there exists v*(A) = ~v* > 0 such
that CC dies out almost surely for all v < ~*, i.e. O(\,r,7,q,C) = 0 for all v < v*.

Thus, in particular lim.,_o A.(1, 7, q) = oco.

With this result we have proven that in the regime for which Assumption [1.4.26] is
fulfilled we have a similar overall behaviour as for the contact process on a finite range
dynamical percolation, and thus in this case the phase diagram with respect to the

background parameters should also look as the visualization in Figure [1.2]
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Chapter 2

Basic notions and graphical

representation

2.1 Markov process theory

Here we give a short recap of some results and notation used in (homogenous) Markov
process theory. For a self-contained and detailed introduction to this topic we refer the
reader to [EK09] or |Ligl2|. Let (Q, F, P, (F;)i>0) be a filtered probability space and
(S, B(S)) be a measure space, where we assume that S is a compact Polish space and

B(S) is the Borel o-algebra.

Definition 2.1.1 (Markov property). We call an (F;—adapted) stochastic process
(X4t)e>0 @ Markov process if for t > s, F is independent of X, given Xj, i.e.

for all measurable and bounded functions f : S — R.

Recall that a Markov process is called (time)-homogeneous if the conditional distribution
of X; given X, only depends on the difference t — s, i.e. E[f(X,)|X,] = E[f(X;_s)|Xo]
for all measurable and bounded functions f : S — R. Furthermore, let us denote by
B(S) the set of all bounded and measurable functions and by C(S) the space of all

continuous functions. We equip C'(S) with the supremum norm ||f|| = sup,cg | f(2)|-

Definition 2.1.2 (Transition semigroup). For ¢ > 0 we call T'(t) : C(S) — B(S) which
maps [ — (z — E[f(X;)[Xo = z]), the transition operator of X and (T'(t));o its

transition semigroup.

33
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It is easy to see that (T'(t));>o has semigroup structure since obviously 7'(0)f = f
holds for every f € C(S) and by the Markov property we can show that the so called
Chapman-Kolmogorov equation holds, i.e. T'(t + s)f = T'(t)T(s) f for every f € C(S).
Note that we denote by Dg(]0,00)) the Skorokhod space. This is the function space
which contains all cadlag functions f : [0,00) — S, i.e. f is right continuous and has
left limits everywhere. Often we need stronger assumptions on the process X, which

leads us to the notion of a Feller process.

Definition 2.1.3 (Feller process). We call a Markov process X = (X;);>o a Feller
process if X has almost surely paths in Dg([0,00)) and T'(t)f € C(S) for all f € C(S).

Note that the transition semigroup of a Markov process characterizes the finite dimen-

sional marginals and thus, characterizes the distribution of X completely.

Definition 2.1.4 (Markov semigroup). We call a collection (7'(¢));>0 of operators on
C(S), i.e. T(t) : C(S) — C(S) for all t > 0, a Markov semigroup if the following is
satisfied:

1. T(0)f = f for all f e C(S)

2. The mapping t — T'(t) f from [0, 00) to C(S) is right continuous for all f € C(S).

3. T()T(s) =T(t+s) for all f € C(S) and all t,s >0

4. For all ¢t > 0 it holds T'(t)1s = 1s.

5. T(t)f >0if f >0 forallt>0.

It is not difficult show that a transition semigroup of a Markov process is a Markov
semigroup as seen in |Ligl2, Proposition 1.3]. More importantly the reverse is also true,
i.e. if (T'(t))t>0 is a Markov semigroup, then there exists a unique Feller process X such
that

T(t)f(z) = E[f(X4)[Xo = ]

forall x € S, f € C(S) and t > 0. See [Ligl2, Theorem 1.5]. The correspondence
between Feller process and Markov semigroup is without doubt of great importance
in the Markov process theory. But in most cases it can be exceedingly difficult or
impossible to explicitly determine a Markov semigroup. Thus, it is more convenient to

work with the so-called generator A.
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Definition 2.1.5 (Generator). Let X be a Markov process and (7'(t));>o its corre-
sponding transition semigroup, then we define

Af(z) =limt(T(t)f(x) — f(2)).

t—0

for all f € D(A) := {f € B(S) : limy_,ot Y|T(t)f — fl||ls exists}. We call A the
generator of the semigroup (7'(¢)):>o0.

The generator is the time derivative of the Markov semigroup at the time point 0, i.e.

d
STt = A

Since (T'(t)):>0 also satisfies the semigroup structure we have two defining properties
of a operator-valued exponential function, and thus T'(t) = ¢** for all ¢ > 0 such that
in turn A determines the Markov semigroup. Of course if S is not a finite set it is by
no means trivial if these objects are well defined. To provide sufficient conditions for
A such that these objects are properly defined, one would need to use the theory for
operator semigroups developed by Hille and Yosida. We will not go further into detail
here and again refer the interested reader to [Ligl2, Section 1.2] or to [EK09, Chapter

1], where this is described in a more general setting.

Let us proceed with introducing some further notation and useful results. First of all,
since we don’t always start the Feller process X in a deterministic value x € S but

rather with a initial distribution v we use the notation
T(0)f = [ T(0)5()ide)

for all f € C(S) and the shorthand v7'(t).

Definition 2.1.6 (Stationary distribution). Let X be a Feller process with state space
S and (T'(t))¢>o its Markov semigroup. Then a probability measure v on € is called

stationary or invariant if vT'(t) = v for all ¢ > 0.

Note that the definition obviously implies that if Xy ~ v, then (Xiys)t>0 4 (X4)e>o for
all s > 0. But this means that if the Feller process is stationary we can easily extend
the definition to the whole negative real line such that (X;);cr is stationary process.

Later in Chapter [5| we need the concept of (time)-reversibility.
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Definition 2.1.7 (Reversible). A Feller process X is said to be reversible with respect

to the probability measure v if

[ rriwgsy = [ grsan
for all f,g € C(S), where (T'(t)):>o is the corresponding Markov-semigroup.

Obviously if X is reversible with respect to v, then ¥ must be an invariant distribution
of X. This can be obtained by setting ¢ = 1s. An equivalent and maybe somewhat

more intuitive interpretation of reversibility is the following:

Proposition 2.1.8. Let X be Feller process. Then X is reversible with respect to
the probability measure v if and only if (X¢)er and (X_;)ier have the same joint
distributions, where (Xi)ier is the stationary process obtained by using the initial

distribution v and the transition mechanism corresponding to T'(t).
Proof. See [Ligl2, Proposition I1.5.3] O

Next we introduce a partial order on the space of all probability measures on S, which
is called the stochastic order. We assume that S is equipped with a partial order 7 <”.
Furthermore with respect to this partial order we call a function f : S — R increasing
if x <y implies f(z) < f(y), where z,y € S.

Definition 2.1.9 (Stochastic order). Let Py and P, be probability measures on
(S, B(S)). Then we say Py dominates Py stochastically, which we denote by Py < Py if

and only if
/fd]P1 < /fd]P2

for all measurable, increasing and bounded functions f : S — R. Let X; and X5 be
S-valued random variables. We write X; < X, if PX1 < PX2,

Now we are able to introduce the notion of monotonicity for Feller processes.

Definition 2.1.10 (Monotone Feller process). Let 1, 2 be two probability measures
on S. We call a Feller process X monotone if p11 < po implies p17'(t) < puoT'(t) for all
t>0.

Definition 2.1.11 (Coupling of probability measures). A coupling of two probability
measure Py and Py on (S, B(S)) is any probability measure P on (S, B(S?)) such that
P(A x S) =P;(A) and P(S x A) = Py(A) for all A € B(S).
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Another useful result for ordered probability measures is Strassen’s Theorem.

Theorem 2.1.12 (Strassen). Let Py and Py be probability measures on (S, B(S)). If
P, < Py, then there exists a coupling P such that P({(x,y) € S? : x < y}) = 1.

Proof. See [Holl2, Theorem 7.9 O

Remark 2.1.13. This result can again be formulated for random variables. Assume
that X; and X5 are two random variables with values in S and are defined on the same
probability space (€, F,P) with X; < X,. Then Theorem implies that there
exists a probability space (Q, F, ]f’) and on it copies X, 2 X, and X, 4x 1 such that
X 1 < Xg holds P-almost surely.

2.2 Poisson point processes

In this section we briefly introduce Poisson point processes, since we need them to
formulate the graphical representation of an interacting particle system in the next
section. Let (£2,.4,P) be a probability space and (S, 7T) a topological space which is
second countable, Hausdorff and locally compact, i.e. for every x € S there exists a
set U € T with x € U and a compact set C' C S such that U C C. Recall that by
definition o(7) = B(S). First we need to state some general definitions and results

concerning random measures and point processes.

Definition 2.2.1 (Locally finite measures). Let u be a measure on (S, B(S)). We call
w locally finite if for every « € S there exists U € B(S) with z € U such that u(U) < cc.
We denote by 9t = M(S) the set of all locally finite measures. Furthermore we define

the set of all locally finite counting measures by
Mi={pueM: u(A) € NgU {oo} for all A € B(S)}.

Definition 2.2.2. A random measure = : ) — 91 is called a point process. We call a
point process simple if P(Z({z}) < 1forallz € S) = 1.

The next result justifies that a point process is seen as a random point cloud in S.

Proposition 2.2.3. Let = be a simple point process, then there exists a No U {o0}-
valued random variable N and a sequence of S-valued random variables Xqo, X1, ... such
that
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Proof. See [Kall7, Lemma 1.6] O

Now we finally introduce the Poisson point process.

Definition 2.2.4 (Poisson point process). = : 2 — I is called a Poisson point process

on S with intensity measure £ : P(S) — R, if
1. Z(B) ~ Poi(¢(B)) for every bounded B € B(S) and

2. 2(By),...,=(B,) are independent for every n € IN and every collection of bounded
disjoint sets By, ..., B, € B(S).

The standard example is S = R? and ¢ chosen as the Lebesgue measure. In this case
the Poisson point process is often described as an ideal gas. We end this section with
a characterization when a Poisson point process is simple, which justifies when the

physical picture of an ideal gas is appropriate.

Proposition 2.2.5. Let = be a Poisson point process with intensity measure €. The

Poisson point process = is simple if and only if £({z}) =0 for allx € S

Proof. See [Kal06, Propsition 10.4.] O

2.3 Interacting particle systems and their graphical

representation

In this section we introduce a graphical Poisson construction for interacting particle
systems. Interacting particle system are a particular class of Feller processes. In the
literature this term is not really standardized so we will briefly explain what we mean
by it.

Let A be a finite or countably infinite set, where the interpretation of the elements
contained in A are locations and we assume that on each location sits exactly one
particle. Thus, we can identify each particle with its location x € A. Now we want
to assign to each particle a state, which may change over time. We denote by S the
set of all possible states and we assume it to be finite. Now f € S is a configuration
of the states of all particles, i.e. f(x) € S denotes the state of the particle x € A.
An interacting particle system is a Feller process with state space S* and is specified
via local interaction between particles. With a local interaction we mean that this

particular interaction only depends on the states of a finite number of particles and can
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only affect a finite number of particles, i.e. change their states. A common example for
such a system is an opinion model, i.e. the particles correspond to people which can
have a variety of opinions and S denotes all possible opinions. The local interactions
describe how the opinion of a particular person is affect by another person’s opinion.

For a detailed introduction of interacting particle systems we refer the reader to [Ligl12].

We only consider the special case where a particle can assume one of two distinct states,
i.e. S ={0,1}. This actually allows an alternative interpretation, where the state 1 or 0
describe whether a particle is present at the location x € A or not. Since we consider a
infection model this interpretation seems more apt. In this context A is the population
of individual and the particles are the infection. Thus, if a particle is present at x € A it
means individual z is sick if it is not present the individual is healthy. Out of notational
convenience we work with the power set P(A) as state space instead of {0,1}*. Note
that it is not difficult to see that {0, 1}* only contains indicator functions, i.e. for every
f € {0,1}* there exist a set A C A such that f = 14. Hence, it is easy to see that

there exists a one-to-one correspondence between these two sets, i.e. {0,1}* = P(A).

The graphical Poisson construction we are about to introduce is often called the
graphical representation. As the name suggests this construction of particle systems
is done with the help of an underlying Poisson point process. The standard reference
for interacting particle system [Ligl2] describes this for the case of additive systems.
Besides this standard reference, [Swal7| explains in detail a graphical construction for
a broader class of interacting particle systems. Since we intend to use this approach
here we recapitulate some of the notation and results. Again, for a detailed description

we refer to [Swal7].

For a map m : P(A) — P(A) we define the set
D(m):={xecA:JAcP(A)st. z € m(A) A A}

This set is the collection of all z € A, which can possibly be changed by m. Next
for a given x € A we call y € A m-relevant if there exist A, B € P(A) such that
x € m(A) Am(B) and A A B = {y}, in words this means that the state of y, i.e. y
being contained in the configuration or not, may affect which state x is in after the

application of m. We define

R.(m) :={y € A:yis m-relevant w.r.t x}.
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Definition 2.3.1 (local map). A map m : P(A) — P(A) is called a local map if the

following three conditions are fulfilled.
1. D(m) is finite.
2. R,(m) is finite for all x € A.
3. Foreachz € A, if y ¢ AA B for all y € R,(m), then x ¢ m(A) A m(B).

See |Swal7, Exercise 4.9] for a map which satisfies the first two properties, but not
the last. This map is in fact discontinuous. Just before [Swal7, Exercise 4.9] it is
mentioned that one can show that a map m : P(A) — P(A) is continuous if and only if

the second and the third property are satisfied.

Let M be a countable set of local maps and let (7,,)merm be non-negative constants,
where r,, will be the rate corresponding to a map m € M. Let = be a Poisson point
process on (M x R, B(M x R)) with intensity measure £ such that

EM x [s,1)) = Y r(t — ),
meM
where M C M is finite. Note that we fully characterized & since {M X [s,t) : s <
t,M C M finite} is a m-system which generates B(M x R). We use a short hand
notation and write d¢ = r,,dt as the intensity measure of =. By Proposition the
Poisson point process is simple and therefore by Proposition there exist random
variables (mq,t1), (ma,t2), ... with state space M x R such that = = Y77 S, ,)-

Since = is supported by these random variables and we denote
w:=supp(Z) := {(my, tx) : k € N}.

Furthermore, we set ws,, := w N M X (s,u] with s < u. Now for every random set
Op = {(m1,t1), ..., (Mp, tn)} C wsu, where we assume that ¢t < --- <t, and n € N
we can define the map X% (A) := my 0---om(A) pointwise for A € P(A). By [Swal7,
Theorem 4.14] if the rates satisfy

sup Z rm(|Rz(m)| 4+ 1) < oo, (2.1)
z€A meM,D(m)3z

then, for every A € P(A) and s < u, the pointwise limit X, (A) := limg, 1o, , X7 (A)
exists almost surely and does not depend on the choice of the finite sets w,, T ws4.
Furthermore [Swal7, Theorem 4.14] states, that if X, is a P(A)-valued random variable,
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independent of w, then X; := X(Xy), where ¢ > 0, defines a Feller process with

generator

Af(A) = Y rn(f(m(A)) = f(A)).

meM
for all f € C(P(A)) and initial state Xg = Xy. Recall that this also means that
X has almost surely paths in Dpg)([0,00)). In case that the initial configuration is

deterministic, i.e. Xo = A € P(A), we sometimes add it as a superscript X4 = (X7);>o.

Example 2.3.2 (The classical contact process). As an example for an interacting
particle system constructed via this graphical representation we consider the classical

contact process. For z,y € V such that {z,y} € F one considers the maps

AU ifye A
inf, ,(A) = tey iy
A otherwise,

rec,(A) == A\{x}

with rates g, , = A > 0 and rpec, = 7 > 0 such that by construction the process X

with transitions

X =A—AU{z} atrate \-|{y € A:{z,y} € E}| and
X, =A— A\{z} atrater.

See [Figure 2.1| for a visualization. The inf, , map refers to an infection event, which
means that a potential infection is transmitted from individual x to its neighbour y. On
the other hand the rec, map refers to a recovery event, which means that individual x

recovers from a potential infection and is healthy afterwards.

2.4 Basic notions of graphs

Let V be a countable set and F C {e = {z,y} : x,y € V,x # y}. We call V the set of
all vertices and E the set of all unoriented edges. We call the tuple G = (V, E) a graph.
Note that by assumption F contains no loops and if there exists an edge between x

and y it is unique. In the literature such graphs are often called simple or strict.

Definition 2.4.1. Let G = (V, F) be a graph. Let x € V and we denote the neigh-
bourhood of © by N, .= {y € V : {x,y} € E} and |N,]| is the degree of z. If
sup,ey [Nz| < 00, we say G is of bounded degree.
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time time
t o t o 1 1 0 1 1
——
e |
—
0 | V 0 | 1 0 0 1 0 V
0 1 2 3 4 0 1 2 3 4

(a) The arrows from z to y correspond to the (b) The red lines indicates an infection path, i.e. if
inf, , map, which transmits an infection from = a site is red at time ¢ it is infected.

to y if x is infected. The crosses signify a map

rec;, which causes x to recover.

Figure 2.1: Visualization of a graphical representation of a classical contact process.

Definition 2.4.2. We call z,y € V' adjacent if {x,y} € E. We call z,y € V' connected,
if there exists a finite sequence (v;)o<i<n C V such that © = vy, y = v, and {v;,v;41} € E

forall 0 <¢<n—1. Ifall z,y € V are connected, then we call the graph G connected.

With the notion of connectedness we can introduce the so called graph distance d as
follows. Let (v;)o<i<n be a sequences with the smallest number of vertices needed to
connect x to y, then set d(x,y) = n. We call the set By(x) :={y € V : d(z,y) < k},
the ball of radius k around x € V. See Figure 2.2(a)|for a visualization.

Definition 2.4.3. (Graph automorphism) Let o : V' — V be a permutation such that
{z,y} € E if and only if {o(x),0(y)} € E. We call such a o a graph automorphism
and Aut(G) the set of all graph automorphisms.

Remark 2.4.4. Let G = (V, E) be a graph

1. Note that the set Aut(G) of all graph automorphism endowed with the concate-

nation o as operation is a group.

2. Since by assumption {z,y} € E < {o(x),0(y)} € F for any ¢ € Aut(G),

we slightly abuse notation and for and write o(e) = {o(x),0(y)} for a given

e ={z,y}.

Now we will introduce the notion of transitivity, which basically describes that a graph

looks locally the same everywhere.



2.4 Basic notions of graphs | 43

Definition 2.4.5. (Transitivity) We call the graph G = (V| E)
1. wertex transitive if for every z,y € V a 0 € Aut(G) exists such that o(z) = .
2. edge transitive if for every ey, ey € E a 0 € Aut(G) exists such that o(e;) = e.

3. transitive if the graph is vertex and edge transitive

Note that all vertices of a vertex transitive graph G = (V| F) have the same degree,
Le. IN;| = |N,| for all z,y € V. Note that we can describe the growth of a connected
and vertex transitive graph G = (V, E) through the following notion:

Definition 2.4.6 ((Sub-)exponential growth). Let G be a vertex transitive and con-
nected graph. We say G has ezponential growth p if

lim llog(|]Bn(x)|) =p.

n—oo 1,

If p =0 we call G of subexponential growth. The limit does not depend on the choice of
xeV.

Lemma 2.4.7. Let G be a vertex transitive and connected graph with bounded degree.

Then p < log(|N,| — 1), where x € V and hence in particular p < oc.

Proof. Let us fix some 2 € V and let n > 1. Now let y € 0B, (z), i.e. d(z,y) = n.
Also there must exist at least one z € N, such that d(z, z) = n — 1, otherwise y could

not be connected to x which would be a contradiction. Now we see that

0Boia(2)] < Y0 (N = 1) = (Vo] = 1)]9Bu(2)],

y€IB,, (z)

where we used that |[NV;| = |[N,| for every y € V. Recursive application implies that
|0B,,(z)| < (JN;| — 1)™. Thus, we can conclude that

1B, (z)| = Z |0Bg(x)] +1 < Z<|Nx’ )= (INZ] _‘Al/ZT—i- _ 1.

k=1

But with this inequality we see that
1 1 .
—log([Ba(2)]) < log(|\a] — 1) + — log (LI (IAG] - 1).

Hence if we let n — oo it follows that p < log(|N,| — 1). O
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Remark 2.4.8. Note that lim,,_, % log(|B,(x)|) = p and lim,,_, |B,(z)|e " = 1 are
equivalent statements. Thus, the term exponential growth refers to the growth of the
cardinality of a ball B,,(z) as n tends to infinity. It also makes sense to call the graph
of subexponential growth if p = 0, since p = 0 implies that lim,, . |B,(z)|e~¢" = 0 for
every C' > 0. Also Lemma implies that connected and vertex transitive graphs G
with bounded degree can not have a superezponential growth. As a by-product we get

a upper bound on the constant p.

Next we introduce the line graph.

Definition 2.4.9 (Line graph). Let G = (V, E) be a graph, then we call L(G) the
line graph of G. The vertex set of the line graph is the edge set E and two elements
in E are defined to be adjacent if they share a vertex, e.g. e; and e, are adjacent if
ley Neg| = 1.

We will denote the neighbourhood and ball of radius n around an element e in the line

graph by N* and BZ(e). See Figure for a visualization.

Remark 2.4.10. Note that we can express the neighbourhood of an element {z,y} in
the line graph as N = {a € E : [eNa| = 1} and the balls as

B, ({z,y}) = {{z.2'} € E: 2 € Bu(2),7 € Bu(y)}-

(a) Visualization of By(z) (b) Visualization of BL (e)
Figure 2.2: Here we illustrate the two different types of balls on the lattice Z2. The

blue line indicates the “boundary” of the balls of distance two and the red vertices/edges
are the elements contained in the balls.

Lemma 2.4.11. Let G be a graph and L(G) its corresponding line graph.
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(i) If G is connected, then L(G) is connected.

(i1) If G has bounded degree, then also L(G) has bounded degree.

(111) If G is edge transitive, then L(G) is vertex transitive.

(iv) Let G be connected and transitive. If G is of exponential growth p, then L(G) is

also of exponential growth p.

Proof. (i) This is clear by definition

(i)

(iid)

(iv)

For any e € F there exist z,y € V such that e = {z,y}. Now we can identify

each edge contained Ny, 4y by the vertex which is not equal to z or y and see that
Nawyl = |(Ne UN\{z, 5} < INa] + [Ny < o0

where we used that G is of bounded degree.

First we prove that o(N,) = /\/:,(x) for every x € V. Let us assume that
o(N;) # Ny () then either there exists a y € N, such that o(y) ¢ N, and
thus {o(x),0(y)} ¢ E which is a contradiction to {z,y} € F, or there exists a
z € Ny with 071(2) ¢ N, but {o(z),z} € E implies {07 (c(z)),07(2)} =
{z,071(2)} € E since 0! is again a graph automorphism, which is a contradiction.
Now let 0 € Aut(G) and recall that for e = {x,y}, o(e) = {o(x),0(y)}. Let
e1, e € Eif e; and ey are adjacent, i.e. they have a vertex x in common, then o(e;)
and o(ey) are adjacent as well, since 0(N;) = Ny(). Thus, every o € Aut(G)
induces a graph automorphism on L(G). In the line graph F has the role of the
set of all vertices. Now it is clear that if G is edge transitive, then L(G) is vertex

transitive.

Let z,y € V with e = {z,y} € F, then analogously to (i) we can again uniquely
identify each edge €’ # e with a vertex z ¢ {x,y}, which is contained in the union
B,.(z) UB,(y). Note that since G is transitive and connected each vertex has the
same number of neighbours, i.e. |B,(z)| = |B,(y)| for all z,y € V', and at least
two. Thus, it follows that

[Bu(2)] < [Ba(2) UBL(y)| < [By(e)| < 2By(2)],

Now the claim follows by Remark [2.4.8
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Chapter 3

Graphical representation and

consequences

3.1 Graphical representation of finite range spin

systems

In this section we show that every finite range spin system can be constructed via the
graphical representation discussed in Section [2.3] We explicitly state a set of maps
M and corresponding rates (7, )meam such that the generator of the resulting Feller
process agrees with the generator of a previously specified finite range spin system.
One reason for this effort is that the techniques used in the next section heavily rely on

this representation.

Recall that we assumed that the graph G = (V| E) is transitive, connected and has
bounded degree. Now by Lemma we know that the line graph L(G) is vertex
transitive, connected and has bounded degree. Therefore, we consider in the current
and next section a slightly more general setting. Let X be an attractive and translation
invariant spin system of range R on some connected and vertex transitive graph
G = (V, &) with bounded degree. This is notationally more convenient, than using the

line graph L(G). Recall that the generator of a spin system is

Aspin/ (4) =D alw, A)(f(AD {z}) — f(A)), (3.1)

eV

where f € C(P(V)) and A C V. The interpretation of a spin system is that at a
site x € V a spin flip takes places with a spin rate g(x, A), which depends on the

configuration A. Such a spin flip can be seen as the action of a map m : A — A A {z}.

47



48 | Chapter 3 Graphical representation and consequences

As already mentioned we intend to construct these systems by using the representation
introduced in Section [2.3] Therefore, one issue is that we can not use the set of all spin
flip maps m, since the rates of these maps would need to be ¢(x, A) and thus depend
on the configuration A. This is not in line with the setting in Section [2.3] where every
rate 7, is constant with respect to the configuration A. Hence, we need to choose

different maps.

Since we only consider finite range systems we know that there exists a range R € IN
such that ¢(x, A) = q(z, AN Bg(z)) for any A C V. This means in particular that
q(z,-) only depends on finitely many elements and thus we can work around this by
just defining separate maps for every relevant configuration in Bg(x). We distinguish
between an up or down flip, i.e. if z € A or x ¢ A. Then we consider every possible
configuration of the R-neighbourhood of z, which we denote by N, (R) := Bg(z)\{x}.
This leads to the following maps and rates. For every x € V and F C N, (R) we set

AU{z} ifz¢ Aand ANN(R)=F
upx,F(A) =
A otherwise,

A if A A =F
down, p(A) = \{z} ifze Aand ANN.(R)

A otherwise,
for A C V and choose the rates to be
Tup, = q(z, F)) and  Tdown, , = q(z, F'U{x}). (3.2)
Note that x ¢ F, since F' C N,(R). We denote the sets of the two types of maps by
My ={up, : 2 €V, F C Ny(R)} and Mygyn = {down, p : z € V, F C N(R)}

and define the set of all maps as M := M, U Mgown. Now let =9 be a Poisson point
process on M x R with rates (7,,)mem. Obviously (2.1)) is satisfied, and thus via the
construction in Section 2.3 we get a Feller process X with the generator

Af(A) =Y ra(f(m(A) = f(A)).

meM
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Now it suffices to show that this generator is the same as the generator stated in (3.1)),
i.e. that Af(A) = Agpinf(A) for all f € C(P(V)) and A € P(V). By plugging in the

maps and rates we get that

Af(A) =3 > ale, F)(f(up, p(4) = f(4))

€V FCNg

+q(z, FU{x})(f(down, p(A)) — f(A)).

By using that ¢(z, F) = ¢(x, F U D) for any D C V with D N Bg(z) = (), we see that

S alw, F)(f(up, £(A)) — f(A))

FCNz(R)

=Tgny Y. Luwm—rya(z, A(F(AU{z}) — f(A))
FCNz(R)

1 g pale, AF(AU {a}) - F(A)).

An analogous calculation to the one just performed for the maps up, » can also be

formulated for the maps down, » and therefore,

Af(A) =) Mpgaya(e, A)(FAU{z}) = F(A) + Lpeayale, A)(F(A\{z}) = £(A))

eV

= " qlz, A(f(A L {z}) = F(A)) = Agpinf(A).

eV

Thus, we constructed a spin system with spin rate ¢(-, -).

The first consequence of this representation is that we are able to couple a general finite
range spin system with a dynamical percolation (see Example (7)). Set

Cmin = W0 Tup, - Buin = pm Tdown,
(3.3)
Omax = Nax Ty and fFpax = MaX Tdown,
FCN,(R) "P=F FCN&(R) A

as already seen in (|1.4). Note that aumin, Bmin, Omax and Bmax do not depend on z since

the spin system is translation invariant.

Proposition 3.1.1. Let X be a spin system with spin rate q(-,-). Furthermore let cpin,
Bmins Omax and Bmax be defined as in . There exists a dynamical percolation Y
with Tates oupax and Byin and Y with rates auin and Buax such that if Y, = X = Y,
then Y, C X, C Y, almost surely for all t > 0.
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Proof. Let X be the spin system obtained via the graphical representation described
above, which uses the maps up, » and down, r and the rates defined as in (3.3),
i.e. Tup, , = q(v, F) and Tdaown, , = q(z, F U {z}), where z € V and I C N,(R). By
construction we see that X has the spin rate ¢(-,-). Now we adjust the construction in
the following way. We use the same maps but choose the rates to be Tup, p = Omin and
Tdown, p = Dmax for any x € V and any F C N, (R). This yields a spin system Y with

spin rate

Q(% A) = O‘min]l{mGA} + ﬁmax]l{axZA}a

where z € ¥V and A C V. Thus, Y is a dynamical percolation with rates am;, and Bpax.
Analogously by choosing the rates to be Tup, p = Omin and Tdown, p = Bmax for any
x €V and any F C N,(R) we obtain a dynamical percolation Y with rates ay,., and
Buin- Let g(-,-) denote the spin rate of Y, then by definition of the rates in it

follows that
q(r,A) <q(x,A) <q(z,A) if ¢ A and

q(x,A) > q(x,A) > q(x,A) if zeA

for any x € V and A C P(V). Now by [Ligl2, Theorem III.1.5] it follows that there
exist a coupling such that it Y, = X, = Y, then Y, CX, C Y, almost surely for all
t>0. n

3.2 Expansion speed of the permanently coupled region

Recall the definition of the coupled and permanently coupled region from ([1.2)) and
(1.3). On a general graph G for the spin system X the coupled region at time ¢ is

U, =0,(X)={zeV:z¢ X" AX" VA, A, CV}
and the permanently coupled region at time ¢ is
U={zeV: xeWys>t}

for ¢ > 0. The main goal of this section is to show Proposition [1.4.2] To be precise we
show that if there exist constants S, K’ > 0 and v > p such that

P(x ¢ V,) < K'e (3.4)
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for every x € V and s > S. Then there exist constants T, K > 0 and x > 0 such that
P(z ¢ V) < Ke " for all t > T and x € V. In particular Proposition follows for
G = L(G). The strategy is to use the Borel-Cantelli Lemma and the fact that t — W}

is non-decreasing. We see that

P(3t>s:z¢¥,) < i P(Bi(z) ¢ Wy)
=l (3.5)

+ > PBi(r) C Uy, Ft € [k k+1) stz ¢ by
k=|s]

The idea is that with we are able to show that for discrete time points k > |s]
with a high probability By (x) is already contained in the coupled region Wy if s is
large enough. Then we show that on the event that By(xz) C Wy it is unlikely that the
site  is affected by some y € Bf(z) within one unit of time, which is necessary for a
t € [k, k+ 1) to exist such that = ¢ V,.

We briefly explain why this is the case. We know that R,(m) C Bg(x) for all x € D(m)
and only finitely many m € M exist with € D(m). Thus, we define the set

R, = U R.(m) C Bg(x)

m:x€D(m)

and see that this set is finite. In line with the notion of m-relevance we call R, the
set of all relevant elements with respect to z, i.e. if y € R, there exists an m with
x € D(m) such that y is m-relevant with respect to x. Now if R, C ¥,_ it is impossible
that = ¢ W, since all relevant elements with respect to = are contained in the coupled
region. Therefore, x can only “decouple” in the time interval [k, k + 1) if it is affected
by some y ¢ Wy.

To formalize this, we use so-called paths of potential influence. Recall some notation
from Section , which are w = supp(27) and ws,, = w N M X (s,u], where =7 is the
Poisson point process used in the graphical representation of X. We took the following

definition from [Swal7].

Definition 3.2.1 (Path of potential influence). Let z,y € V and s < u. A path of
potential influence from (z,s) to (y,u) is a cadlag function v : [s,u] — V such that
v(s) =7(s—) =z and y(u) =y, and
L. if y(t—) # ~(t) for some ¢ € (s,u], then there exists some m € M such that
(m,t) € w, ¥(t) € D(m) and y(t—) € Ry (m),
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2. for each (m,t) € w with t € (s,u] and () € D(m), one has y(t—) € Ry (m).

We write (z,s) ~ (y,u) if there exists a path of potential influence between (z, s) and

(y,u).

The first property ensures that every jump of a path of potential influence v corresponds
to a point (¢, m) € w, such that m can actually affect the site v(¢). The second property
guarantees that for any point (m,t) € ws,, which could have caused the position (t),
i.e. 7(t) € D(m), the “previous” site y(t—) must have been m-relevant with respect to
the current state, i.e. y(t—) € Ry (m). This implies in particular that maps m with
R, (m) = 0 cannot play a role for such a path ~, an example for such a map is the

map rec, since obviously R, (rec,) = 0.

Now let us repeat and reformulate what we described before the definition. Let x € Uy,
then if there exists an ¢ € [k, k + 1) such that z ¢ U;, then there exists a y ¢ Uy such
that (y, k) ~ (x,t).

Before we continue, we first need to derive a bound on the probability of the sum of
n exponentially distributed random variables with parameter A. This sum is gamma
distributed with paramter n and A, which we will denote by I'(n, ). Now we show the

following result:

Lemma 3.2.2. Let T,, ~ I'(n, \) with A > 0 and n € N and let 0 be a constant such
that 0 < 6 < 1 and O\ —log(6A) — 1 > 0. Then

P(T, < 6n) < exp (—n(6X —log(6X) — 1)).
Proof. Let ¢ > 0, then the generalized Markov inequality yields
e "P(T, < On) = e " P(e™ < ) < Ele™™"] = A"(A +¢) ™.
Rearranging and renaming yields P(7}, < n) < e™o(©) where
fo(c) = cf + log(\) — log(\ + ¢).

For a fixed #, the function fy has its minimum at ¢y = % — A, which has the function
value fp(cg) = 1—0A+1log(fX). Note that it is necessary that 6 € (0, §) since otherwise
cg < 0. This proves the claim. O

Now we define Chax := SUPyey D memt pim)se 'm| Ra(m)]. The constant Cpax is an

upper bound on the rate at which a map m is drawn, which could affect the state of
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an arbitrary « € V with |R,(m)| # 0. Note that 0 < Ciax < 00 by (2.1). Now we are

able to derive the necessary bound. Recall that R denotes the range of the spin system.

Lemma 3.2.3. Let L > 0 and s > 0. Then there exists K' > 0, &' > L and L' > Cpax
such that for all z,y € V with d(z,y) > L,

P(Jue[s,s+1):(z,8) ~ (y,u)) < Ko TR d@)]

Proof. Let us assume (z,s) ~ (y,u). Thus, there must exist a path of potential
influence v from (z,s) to (y,u). The first thing we observe is that R.(m) C Bgr(z)
for all z € V and all m € M, and therefore we conclude that the path v must at
least jump [R™'d(z,y)] times. Hence, for every path 7 there must exist a sequence
{(my, 1), (Mn,8,)} Cwsy with s: =89 < 83 <+ <8, <wandn>[Rd(z,y)]
such that the s correspond to the jump times of v, v(sx) € D(my) and y(sp—) €
Roy(s) (mi) for all & < n. Therefore, for every v there exists a sequence (z4)o<r<n C V
such that v(t) = zy for t € [sy_1,s,) for all k and zp = z and z,, = y. Note that

1 < d(xp,zr—1) < R. For a given sequence (zx)o<k<n C V we can define the times
Ty = inf{t > Ty_1 : (m,t) € E with 2y € D(m) and |R,, (m)| # 0},

where T := 0. Now define Ypax : (s, u] — V such that Y. (t) =z for all t € [Ty, T}).
By definition it is clear that out of all paths which pass through the points (xx)o<k<n
the path ., is the first to reach y, i.e. T,, < s, for any path of potential influence ~
which passes through (zj)o<k<n. Note that by translation invariance the distribution
of T, ~ I'(n,Cpax) is in particular independent of the exact sequence (zj)o<p<n-
Furthermore the number of all possible sequences (zg)o<k<, Which connect x to y
and satisfy 1 < d(xg, ;1) < R for all £ < n is bounded by the number M™, where
M := |N,(R)|. This implies that

P(Ju € [s,s+1):(x,8) ~ (y,u) with n jumps) < M"P(T, < 1).
Now we observe that

{Fuels,s+1): (x,5) ~ (y,u)}
= U {Elu €ls,s+1):(x,8) ~ (y,u) with n jumps},
n=[R~1d(z,y)]
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and therefore via o-additivity of P
P(Fue[s,s+1):(z,s) ~ (y,u)) < Z M"P(T,, < n”'n).
n=[R~"d(zy)]
Note that 0 — 0Cpax — log(0Cmax M) — 1 is a continuous function and converges to oo
as 0 — 0. Thus, there exists § < (RCpax + 1)7! such that

K = 0Chax — 10g(0C1axM) — 1 > L. (3.6)

Now we set L' := 0~!. Note that d(x,y) > L' implies that [R™'d(z,y)] > L’ > Chax,
where z,y € V. Since M > 1, (3.6 implies in particular that

0C nax — 10g(0Chax) — 1 > 0.

Thus, by Lemma and the fact that we consider n with n™' < [R™!d(z,y)] ' < 0
such that P(T,, < n~'n) < P(T, < 0n) we get that

P(Ju € [s,s+1): (z,8) ~ (y,u)) < Z M"exp (= n(0Cmax — 10g(0C max) — 1))
n=[R~"d(z,y)]

_ oxp (= [R7'd(z,y)](0Cmax — log(0Cmax M) — 1))
- 1 — exp(l — 0C ax + 10g(0CmaxM))

Now we set K’ 1= (1 —exp(l — 0Cax + 10g(90maXM)))_1 and by ({3.6)) we know that
K’ > 0. Therefore, we conclude that

P(Et e[k, k+1): (z,k)~ (y, 1) < Ko~ R 1d@y)] =

Now we can finally prove Proposition [1.4.2] Note that we show this result on arbitrary
connected, vertex transitive graphs G with bounded degree. In Section these results

are formulated on the line graph L(G) which is only a special case by setting G = L(G).

Proof of Proposition [1 Recall from ([3.4) that we assume that there exist con-
stants S, K’ > 0 and v > p such that P(z ¢ ¥,) < K'e™* for every x € V and s > S.
Furthermore, in (3.5)) we saw that

o0 [e.9]

Pl ¢ V)< Y PBi(z) ¢ Tp)+ Y PBi(z) C Uyt € [k k+1)st. ¢ T,).

k=|s] k=|s]
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We begin with considering the first sum. With we can conclude for all D C V
that
P(D ¢ W) ~P@yeDiy ¢ t) <Y Plyg b) < [DIK'e ™,
yeD

Thus, by setting t = k and D = By(x), we get P(By(z) ¢ Vi) < |Bip(x)|K'e™ 7. We
know that |Bg(x)|e ”* — 1, since G is of exponential growth p. We also assumed
that v — p > 0. Hence, there exists a 0 < k1 < v — p, such that for s large enough
By (x)|e % < 1 for all k> |s], and thus

Z |IBk ‘K/ -k __ - K’ Z |]Bk |€ (y—r1)k *N1k < K’ Z e —k1k _ KleiﬁlLSJ,
h=ls) pe] k=]

where K; = K’(1 — e *)~!. Therefore, the sum convergences to 0 as s — oo and in
particular we also get an exponential bound. Now it suffices to find a similar bound for
the second sum. Recall that 0B (z) = By (z)\Bg_1(x). We see that

NE

P(By(z) C Uy, 3t € [k, k+ 1) s.t. z ¢ ¥,

bl

Il
-

w
&L

IN

(Fy € OB, 11(x) and 3t € [k, k+ 1) s.t. (y, k) ~ (z,1))

PP
pop>

IA

”Mg lMg

> PEtekk+1) st (y k)~ (2,1)).

—k yEOBm 11 (x)

Note that d(x,y) > |s]. Hence, by choosing s large enough such that the conditions of
Lemma are satisfied, we can conclude that there exists K* > 0 and k* > p(R + 1)
such that

> P(Bi(x) C Wy, 3t € [k k+1) st x ¢ y) Z Z (OB ()| e TR

By using again that the graph is of exponential growth p and a comparison with the

geometric sum we get that there exists Ky, ko > 0 such that

o0

Z P(By(z) C Wy, 3t € [k, k+1) st x ¢ T,) < Kye "2,
k=|s]
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Thus, we can conclude that P(x € V) < Kje™ L8] 4 Kye="215 which proves the claim
that there exists x, K > 0 such that P(z € V) < Ke *lsl, O

Remark 3.2.4. Taking a close look at the proof of Proposition [1.4.2] we see that « is
chosen such that v — k > p, i.e. the exponent is smaller by a value of p. Here we want
to emphasize that depending on the concrete spin system, this might not be the best
possible choice. For example in case of the dynamical percolation (see Example
(1)) we know that W} = W, for all t > 0, and therefore one can easily calculate that for
all t > 0,

Pz € ¥,) =P(x € V) < e @A,

Next we prove Corollary Note that we again prove this on G, which is the more
general case and the statement follows by considering G = L(G). Let us briefly recall
the statement of Corollary on G. We consider

M= 3 suwlg(z,A) —q(z,BA{y})| and e= inf |g(z, A) +q(z, AL {2})],
JeN(R) ACY v

and show that if ¢ — M > p, then it follows that the process X is ergodic and there
exists a T > 0 such that, there exist k, K > 0 with P(z ¢ U}) < Ke " for all t > T
and z € V.

Proof of Corollary [1.4.3] Since we assumed that ¢ — M > p by [Ligl2, Theorem
[.4.1] it follows that the process X is ergodic, i.e. there exists an unique invariant
measure 7, and there exists a K > 0 such that

6—(5—M)t

sup |P(X! € D) —7(D)| < K

_ 3.7
ACVY B e—M ( )

for any D C V. Since X is a monotone Feller process, by Theorem [2.1.12 we find a
version X such that monotonicity holds almost surely, i.e. that XAt XA if A C Ay
almost surely, where the superscript indicates the initial condition. Therefore, the

coupled region simplifies to ¥; = )N(f A f(?, and thus by using monotonicity we get that

e—(e—M)t

PlzeW)=PreX/,2¢X)=PrzecX))-PrecX’ < 2K

where we have used {z € X?} C {z € XY} and the triangle inequlity as well as (3.7).

Finally an application of Proposition [1.4.2] proves the claim. O

We end this section with a useful lemma, which we will need in Chapter



3.2 Expansion speed of the permanently coupled region = 57

Lemma 3.2.5. Let X be a spin system with spin rate q(-,-), A C V and v € A.
Furthermore, let w > 0 and n € IN, then for every € > 0 there exists a k > n such that
for all sets D C V with AN By(z) = D N By(x),

P(XANB,(z) =X NB, () Vt <u) >1—¢.

Proof. Without loss of generality we can assume that v = 1. Otherwise we rescale
time in an appropriate manner and consider (X,;);>o instead of (X;);>¢. Similarly to
the proof of Proposition we see that, if there exists ¢t € [0,1) such that X # XP
on B, (x), then there must exist y € E\By(z), z € B,(z) and ¢t € [0,1) such that
(y,0) ~ (2,t). Therefore,

P(3t <1:X!NB,(2) # X7 NB,(2))

< Z i P(3y € 0B,,11(2) and 3t € [0,1) s.t. (y,0) ~ (2,1))

z€By () m=k

< >y i Y P(Fte[0,1) st (y,0) ~ (2,1)).

2€B., () m=k y€dBy, 11 ()

Note that d(z,y) > k — n. Now choose k large enough such that the assumptions of
Lemma are satisfied and thus, there exists a K’ > 0 and ' > p(R + 1) such that

P(3t €[0,1) s.t. (y,k) v (2,) < K'e~F 4G,

where p was the exponential growth of G. We get that

IP(EIt < 1: X? N IBn([L') % XtD M IBn(x)> S |IBn(.T>|K, Z |aIBm+1(,ZU>|€_H/’—R_1(m_n)1,

m=k

since d(z,y) > m —n for y € OB, 41(x) and z € B,,(x). Note that

(R+1)[R ' (m—n)]>m—-n and sup|0B,,1(7)]e ™ < 00
m>0

where we used for the second term that G is of exponential growth p. Hence, the sum
on the right hand side convergences, since ' > p(R 4 1). This implies in particular
that the right hand side tends to 0 as £ — oco. Hence, for every ¢ > 0 there exists
k > n large enough such that the right hand side is smaller than e, which provides the

claim. ]
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3.3 Construction of the CPERE via graphical

representation

In this section we explicitly construct the CPERE via the graphical representation
introduced in Section [2.3]on a connected and transitive graph G = (V, E') with bounded
degree. This provides of course existence of the Feller process (C, B) and the graphical

representation is an important tool in a lot of proofs in the subsequent chapters.

We assume that the maps and rates used to construct the (autonomous) background B
via the graphical representation are known, i.e. Mg, is a countable set which contains
local maps m : P(E) — P(F) with corresponding rates (7)memp,q Such that the
bound on the rates given in ([2.1)) is satisfied. For examples see Section on the graph
L(G). Then B is a Feller process with generator

Apaacf (B) = D ru(f(m(B)) — f(B)).

meMBaCk

For the construction we are about to formulate we will use P(V U E) as a state space
of the process. The reason for that is that with this choice we fit into the setting
of Section [2.3] This is of course no issue, since P(V U E) and P(V) x P(E) can be
easily identified with each other since for every set A C V U F there exists a C C V
and B C F such that A = C' U B, and thus A corresponds to (C, B) and vice versa.
Therefore, we first extend the maps m € Mpue to maps m* : P(VUE) — P(V U E).
As we already mentioned for every set A C V U FE exist C' C V and B C FE such that
A = CUB. Then we set m*(A) := CUm(B) for every m € Mpaq. Let M}, denote
the set of all maps m* and we use the same rates as before, i.e. r,,« = r,,. Next for
ACVUE and z,y € V such that {z,y} € E we define

AU{y} ze€Aand {z,y} € A
coopw(A) = ‘
A otherwise,

rec,(A) = A\{z}.

and set the rates to be Tcoop,, = A and 7pee, = 7. The map coop,, , is called the
cooperative infection map. The name comes from the fact that for x to successfully
infect y it needs the edge {x,y} to be open. In this sense z and {z,y} must cooperate

such that the infection spreads to y.
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Now define the set of all maps relevant for the infection process to be

Mcp :={coop, , : z,y € V s.t. {z,y} € E}U{rec,:x € V}.

~~ ~~
:Minf =Mpec

Let us denote by = = E) , the Poisson point process with respect to M := McpUME,
and the corresponding rates (7, )mer. Obviously (2.1)) is satisfied, and thus there exists
a Feller process X on P(V U E) with generator

Af(A) =) ru(f(m(A)) = F(A))

meM

=D A > (FAU{yl) = F(A) + ) r(f(Afz}) = £(A))
zeV  yeVi{zy}lazcA xcV

Y ra(F(AE) Um(A\V)) — F(A)),
MEMBpack

where A C V U E. The process X is a combination of infection process and the
background in one. But, it is far more convenient to treat these two parts as separate
object. Therefore, we switch back to the state space P(V) x P(FE), which we achieve
by setting C; := X;\FE and B, := X,\V for all ¢ > 0. With this we obtained the
CPERE as described in Section , i.e. (C,B) is a Feller process on the state space

P(V) x P(E) and C has jump rates (1.1
We visualized this construction in for the contact process on a dynamical
percolation, i.e. B is a dynamical percolation (see Example [1.1.2] (i)). In this case B

can be constructed via the maps
birth.(B) := B U {e} death.(B) := B\{e}

for B C E and rates rpijrth, = @ and rqeath, = 3 for all e € E.

Remark 3.3.1. The Poisson point process = used in the graphical representation
can be represented as the sum of three independent Poisson point process. These
are =" on Mj,; x R, which are in the graphical representation (see , the
infection arrows, =" on M, X R corresponding to the recovery symbols and =2k on
MG, X R which are the maps used to construct the background process. The sum of
these three processes is again =, i.e. & = = 4 Zrec 4 ZBack Tt is useful to distinguish
the three parts since we will often use couplings based on one or more of these three

point process, while the remaining maps stay the same.
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time
b elZaN
N
el
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T
s L VUE
0 {01} 1 {2} 2 {23} 3 {34} 4

(a) The two tailed arrows correspond to the coop
maps and the crosses on the sites refer to a rec
maps. These are the infection and recovery events.
The circles and crosses on the edges correspond to
birth or death maps, which respectively cause an
edge to open or to close. The grey area indicates
that the edge is closed.

Figure 3.1: Visualization of a graphical

time

t 0 1 0 1

~

aa

1 0 0 1 0

VurFE

s -

0 {01} 1 4Lz} 2 {23} 3 {34) 4

(b) The vertical red lines indicate when a site is
infected and the vertical purple lines when a edge
is open. An infection path is visualized by a path
of red vertical lines and red arrows, which lead
from a site at time s to a site at time ¢. Note that
arrows are only red, i.e. transmit the infection, if
the edge is open.

representation of a contact process on a

dynamical percolation defined on finite subgraph of the 1-dimensional integer lattice.
In this image we consider V' U F as state space and therefore added time lines to the
edges.

3.4 Basic properties of the CPERE

We denote by P, the probability law associated with the Poisson point process
= = Z,,. Note that we defined the CPERE (C, B) on the same probability space as =.
Furthermore, by construction via the graphical representation it is clear that (C, B) is
a strong Markov process with respect to the filtration (F;):>o, where F; is generated

by the Poisson point process Z up until time ¢.

Recall that we add superscripts either to the process C%Z B or the law Ing;’B) to
indicate the initial configuration (C,B). Also recall that we introduced the short
notation uT) ,(t) in Section where (T, (t))t>0 is the corresponding semigroup and
w the initial distribution of the CPERE. We equip P (V') and P(F) with the inclusion
as a partial order. Furthermore, we equip P(V') x P(E) with the following partial
order. Let C;C" C V and B,B’ C E, then (C,B) C (C',B') if C C C" and B C B'.

Lemma 3.4.1 (Monotone Feller process). Let (C,B) be a CPERE and (T, (t))i>0
its corresponding Feller semigroup. Then (C,B) is a monotone Feller process, i.e. let
w1 and ps be probability measures on P(V) x P(E), if 1 =< uo then this implies
T, (t) < poT(t) for allt > 0.
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Proof. Since by assuming that B is an attractive spin system it follows due to
construction in Section [3.3| that (C, B) is also an attractive spin system. Thus, (C, B)
is a monotone Feller process by [Lig12, Theorem I11.2.2]. O

Not only is the CPERE monotone with respect to its initial condition it is also monotone

with respect to the infection and recovery rate.

Lemma 3.4.2 (Monotonicity of CPERE). Let (C,B) be a CPERE with parameter
A > 0. Let h\ > X then there exists an CPERE ((A}, B) with infection rate X, the same
initial configuration and recovery rate r such that C, C ét for allt > 0. In words C is

monotone increasing in X. On the other hand C is monotone decreasing in r.

Proof. The two properties follow from a coupling via the graphical representation,

which does not depend on the initial configuration. We only prove monotonicity in \.

Recall that M,; = {coop,, : z,y € V with {z,y} € E}. Let A > \ and consider
a Poisson point process Zinf op R, x M, with intensity measure (X — A)dt, i.e. all
maps m € M, occur with rate (X — A). Also let Zinf b independent of =, which is
the process used in the graphical representation of (C,B) (see Section . Next we
define = := = 4+ =, This is again a Poisson point process on R x M, with the only
difference compared to =, that the rates r,, = X for all m € M. Now let ((AJ, B) be
the process constructed by the graphical representation where we use = instead of =
and we use the same initial configuration. Since only more infection events can happen
it is obvious that C; C ét for all £ > 0. Since B is exactly the same process for both

constructions the claim follows. The proof of monotonicity in r follows analogously. [

Let us also add that the process C% is additive in the following sense:

Lemma 3.4.3 (Additivity). Let t > 0, then CP U C"P = C?V"® for all BC E
and C,C" C V.

Proof. This follows immediately via the graphical representation in Section 3.3 [

Furthermore the probabilities of events where C depends only on a finite time horizon
are continuous with respect to the infection and recovery rate, if we consider finitely

many initially infected sites.
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Lemma 3.4.4 (Continuity for finite times and finite initial infections). Let (C,B) be a
CPERE with initial configuration C C'V and B C E such that |C| < co. Furthermore
fort >0 let A C Dpw)([0,1]), then

A POP((C)uer € A and 10 POP((C)yer € A)
are continuous.

Proof. We will only prove that A — P, ,((Cy)s<; € A) is continuous the statement
for r follows again analogously. Let (6, B) be a CPERE with infection rate > A and
the same recovery rate and initial configuration as (C, B). Let (C, B) be coupled via
the graphical representation to (C,B) such that C; C ét for all t > 0 and Cy = 60.
We already used this coupling in the proof of Lemma [3.4.2] We just introduce more
infection arrows via a Poisson point process Zinf with intensity measure (X — )\)dt and

use = = Z + E to construct (C,B). Now it suffices to show that
P(C, # C, for some s < t)—0

as \/)\\ — A = 0. Now set X,(z) := |{y € Cs : {z,y} € Bs}|, which is the number of
infected neighbours of x, which share an open edge with x at time s. Note that any
additional infection paths of C up until time £ must have started through an infection

e
—inf

event (s, coop, ) € supp (™) with {z,y} € B,. This means that these events happen

A=) /0 > X, (x)ds.

zeV

with the random intensity

It follows immediately that

B[R [ 3 (0] < W3 = s, | [ 1640

zeV

f

Now let C be a classical contact process with infection rate A constructed via =™ and

=re (see Remark [2.3.2), thus C; C C, for all ¢ > 0. We know that

EA,T[/Ot\cS\ds] < EM[/; @yds} <

where the second inequality follows by [Ligl3, Chapter I, (1.19)].
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Now we see by conditioning and using independence of Einf

~ R t

P(C, # C; for some s <t) =1—-E,, [exp ( — (A — )\)/ ZXS(x)dsﬂ
0

A~ t —

<INI(X - A)]EM[/ C.lds]

0

where we used 1 — ¢~ < z and that [N,| = |\, | for all y € V. By letting |X — A| — 0,

the right hand side convergences to zero, which proves the claim. O

We end this chapter with a comparison result between CPERE and CPDP.

Proposition 3.4.5. Let (C,B) be a CPERE with infection and recovery rate A,r > 0.
Furthermore let Omax,Omin, Bmax aNd Pumin be chosen as in . Then there exists two
CPDP (C,B) and (C,B) with the same infection and recovery rates and the dynamical
percolations B and B with respectively the rates Qumax, Bmin ANd Qnmin, Bmax- 1 hese
processes have the property that if (C,, B,) = (Co, By) = (Co, By) then C, C C, C C,
and B, C B; C B; for all t > 0 almost surely.

Proof. First of all we can construct analogously as in the proof of Proposition 3.1.1] a
spin system B with spin rate ¢(-,-) and two dynamical percolations B and B which
have respectively the rates amax, Bmin and Qumin, Bmax, Where any of the three processes
has values in P(E). Furthermore let g(-,-) and g(-, -) denote the spin rates of B and B,
then again by choice of the rates it follows that

q(e,B) <q(e,B) <q(e,B) if e¢ B and
(e,B)>q(e,B) if eeB

for any e € E and any B C E. Let A\,r > 0, then we define the function

flz, A) = A{y e Vi {z,y} € A,y € A} (zgay + 1l (zeny,

where z € V and A C V U E. Next we can construct three process X, X and X via
the graphical representation as described in Section [3.3] which have respectively the
spin rates
qx (2, A) = f(z, Al pevy +q(z, AV )1 cpy,

(z, A)lgevy +q(z, A\V)1epy  and
(2, A)1evy + (2, A\V )1 ek,

S
“(\2 }\z
ES
I
- =
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where z € VU FE and A C V U E. Now it follows immediately that

gx(z,A) < gx(z,A) < gx(z,A) if z¢ A and
gx(z,A) > gx(z,A) > gx(2,A) if ze€A

holds for all z € VUE and A C VUE. Thus, we can again use [Ligl12, Theorem III.1.5],
which implies that there exist a coupling such that if X, = X, = X, then X, ¢ X, C X,
for all ¢ > 0 almost surely. Now we can again use the one to one correspondence
between P(V U E) and P(V) x P(FE) as we did in the end of the Section [3.3] to obtain
(C,B),(C,B) and (C,B). This proves the claim. O



Chapter 4

Influence of the initial state of the

background on survival

The main objective in this chapter is to prove Theorem [1.4.§] i.e. that the chance of
survival does not depend on the initial configuration of the background if a certain
growth condition is satisfied. Recall GG is a connected and transitive graph with bounded
degree and is of exponential growth p > 0. Additionally in this section we assume that

the background B satisfies Assumption [1.4.1] (¢) and (i¢).

Before we start we briefly state some properties of the survival probability which follow

from the monotonicity and additivity results shown in Section [3.4]

Proposition 4.0.1 (Monotonicity). Let C' C V' be a finite subset B C E also let
A, > 0. The following properties hold.

(1) The survival probabilities 6 and 0™ are monotone in all arguments separately.

(1) Assume that x € C then

O\, r,{z},B) > 0= 0(\r,C,B) >0,
O\, r,C,B)>0=3yeC:0(\r{y},B)>0.

(zit) 0"(\,r,{z}) = 0"(\,r,{y}) and O(\,r,{x}, B) = O0(\,r,{y}, B) for all z,y € V
for B € {0, E'}.

Proof. (i) This is a direct consequence of Lemma and Lemma [3.4.2]

(77) The first implication is a direct consequence of Lemma The second impli-
cation follows from additivity (see Lemma [3.4.3]).

65
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(731) This is a direct consequence of the assumption that B is translation invariant,
i.e. Assumption [I.4.1] (7). This implies that the CPERE is translation invariant.
Therefore, let o € Aut(G) such that it maps z to y, which exist since G is
transitive. Thus, we can conclude that O(\, r,{z}, B) = 0(\,r, {y},0(B)). Now
if By ~ m, by translation invariance it follows that o(Bg) ~ 7 and obviously
o(B) = B for B € {0, E} for any o € Aut(G). This yields the claim. O

Corollary 4.0.2. Let \,;r > 0, C C V finite and non-empty. Then, 07(\,r,C) > 0
if and only if 07(\,7,C") > 0 for all C" C V finite and non-empty. This shows in
particular that the Definition of the critical infection rate \I(r) does not depend

on the initial condition C' C 'V as long as the set is non-empty and finite.

Proof. Suppose §™(\,r,C) > 0. Then, by Proposition [4.0.1] (it) we get that there
exists a y € C’ such that the survival probability 07 (A, r,{y}) > 0. Furthermore, by
Proposition [£.0.1] (iit) it follows that 6™(X\,r, {y}) = 6™(\,r,{z}) for all z € V. Thus,
by monotonicity we get that 67(\,r,C") > 0 for all C" C V non-empty and finite. On
the other hand if §7(\, 7, C) = 0, then obviously 67 (\,r, {y}) = 0 for all y € C. But
with Proposition [£.0.1] (¢ii) it follows that 6™ (\, 7, {z}) = 0 for all z € V. Now suppose
that there exists a finite and non-empty C’ C V such that 67 (A, r,C") > 0. But then
Proposition [4.0.1] (iz) would imply that there exists a y € C” such 67(\,r,{y}) > 0.
This is a contradiction, since we already showed that 67(\,r,{z}) =0 for all z € V.

That AZ(r) does not depend on the choice of C' as long as it is non-empty and finite is

a obvious consequence. O]

4.1 Comparison between the expansion speed of the

infection and the permanently coupled region

In this section we study the asymptotic growth speed of the infection process C and the
asymptotic speed at which the state of the edges in the background couple if started in
different initial conditions, i.e. the asymptotic growth speed of the permanently coupled

region W', At last we will compare these two objects in terms of expansion speed.

The maximal number of infected sites can be represented by a classical contact process
CC = (C¥)s=0 with infection rate A > 0, recovery rate r = 0 and C§ = C' C V, which
is coupled with the CPERE (C%? B?) such that C-* ¢ (NJtC for all t > 0 for any
B C E. This can be achieved via the graphical representation (see Remark by
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exchanging the maps coop, , with the maps inf,,. In words, this means that we
ignore the background B and consider every infection arrow to be valid regardless of
the state of the edge at the time of the transmission. In Figure we visualized the
spread of the infection C{ on Z and in Figure the expansion speed of ¥} for
the case where B is a dynamical percolation. The comparison suggest that ¥’ expands
much faster than C{0}.
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(a) The black lines represent the right and left (b) A simulation of the first update times of a

most particle of C{% on Z with A = 2. The red dynamical percolation on Z with speed v = a +

line has a slope of % and the blue line % B = 2. The black bars are the waiting times until
the first update. The red dashed line is the right
and left most edge of the connected component of
U’ containing the edge {0, 1}.

Figure 4.1: Simulations on the lattice Z of the infected area C{% on the left and the
first update times of a dynamical percolation and thus ¥’ on the right.

We start with the set of all infections, i.e. the process éc’ which is also often called
the simplest growth model or Richardson model. See [Dur88|] for a more detailed
description. It is well known that asymptotically the infected area can grow at most at
some linear speed in time. This is also visible in Figure . Next we provide an
explicit upper bound for this linear speed. To be precise, for given infection paramter

A > 0 this upper bound will be (c;(, p))~!, where ¢; (), p) is a solution of
cA — 1 —log(cAIN;]) = p. (4.1)

Lemma 4.1.1. Let A > 0 and x € V. There exists a unique solution 0 < ¢ (A, p) < A7
of (4.1)). Furthermore, X +— c1(\, p) is continuous, strictly decreasing, c1(\, p) — oo as
A— 0 and c1 (N, p) = 0 as A — oc.
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Proof. The solution ¢i(A, p) can actually be stated explicitly with the help of the
Lambert W-function. It is also called the product logarithm since it is the inverse
function of ¢ — te!. As domain of the function we consider (—e™!, 00) such that
W :(—e™* 00) = (=1, 00). This means that W (s)e"(*) = s for all s € (—e~',00). Let
us state some properties of W. The function W is continuous and strictly increasing.
Furthermore, W(s) — —1 as s — —e !, W(s) = oo as s — oo and W(0) = 0.
Then one can show that ¢;(), p) = —+W ( — |N;|"'e=(#2) which can be verified by
inserting our guess into (4.1]). First wee see that cA — 1 —log(cA|N,|) = p if and only if
INz| "t exp(—(1 4 p)) = chexp(—cA). Therefore, inserting our guess in the right-hand
side and using that W is the inverse function of ¢ — te! verifies that this is a solution

of (4.1). Note that
—e Tt < ING[Thexp(—(1 +p)) <0

and —1 < W(s) < 0 for —e™! < s < 0, and thus it follows that ¢;(), p) < +. Now for
A > 0 fixed set g,(c) :== cA — 1 —log(cA|N;])) — p for all ¢ > 0. Obviously the function
gp is smooth on (0,00) and its derivative is g/(c) = A — 1 > 0 for all ¢ < § which

implies that g, is strictly decreasing on (0, 1), and thus ¢; (A, p) must be the unique

solution of (4.1)) on (0, %) At last the two properties follow immediately. [

Let us define the first hitting time of y € V for C with initial infections C' C V as
7,(C) =inf{t >0:y € CC}. The special case of following lemma, where V = Z¢ with

nearest neighbour structure and A = 1 can be found in [Dur88, Lemma 1.9].

Lemma 4.1.2. Let A > 0 and set g,(c) := cA — 1 —log(cAIN,])) — p for all ¢ > 0.
Then for every 0 < ¢ < ¢1(\,0) we have go(c) > 0 and

exp(—=go(c)d(z,y))
1 —exp(—go(c)) -

P(r,({z}) < cd(z,y)) <
where x # y. This implies in particular for all ¢ < c1(\, p) that for any v € V

P(3s>0:CY c By(z) vt > s) =1

To understand this result more clearly let us consider Figure In this figure we
visualized that the set of all infection expands asymptotically linear in time with some
slope ¢ > 0. What Lemma basically states is that for every slope ¢ < ¢;(A, p)
from some time point s > 0 onwards the boundary of the set of all infected individuals

will expand with a steeper slope than ¢, and thus ¢ < ¢.
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Proof. Let 0 < ¢ < ¢;(A,0). If 7,({z}) < cd(z,y), then the site x must have been
infected before the time point cd(z,y). This means in particular that there exists
a sequence of distinct points © = xg,2z1...,2, = y such that (z,_1,z,) € E for
n € {1,...,m}, along which the infection travels. Note that obviously m > d(z,y).
Now we wet Ty := 0 and define 7}, := inf{¢t > T,,_1|(inf,, , ., ,t) € =™} for 1 <n < m.
It is clear from the construction that 7,({z}) < T,,,. The memorylessness property
implies that T,,, ~ I'(A\,m). Therefore, the event {7,({z}) < cd(x,y)} is equivalent to
the statement that there exists a sequence (x,,, T}, )o<n<m With m > d(z,y), x¢ = x and

xm =y such that T, < cd(zx,y).

It is easy to see that the number of paths of length m is bounded by K™, where
K :=|N,| for an arbitrary z € V. The number K™ is obviously also a bound on the

number of paths of length m connecting x to y. This implies the inequality

(e 9] [e. 9]

P(7,({z}) < cd(z,y)) < Z K™P (T, < cd(z,y)) < Z K™P(T,, < cm),

m=d(z,y) m=d(z,y)

where we used that d(x,y) < m. Furthermore by Lemma we see that

P(r,({z}) < cd(z,y)) < Z K™ exp(—m(cA — 1 —log(c))))

m=d(z,y)
_exp (—d(z,y)(cA — 1 —log(cAK))
1 —exp(l —c)+log(cAK))

By Lemma we have that cA — 1 —log(cA\K) > 0 for ¢ < ¢;1(A,0), and thus the first
claim follows. For the second claim we conclude that

P(CY), ) € Bu(2) <Py eV idx,y) =n+1,7,({z}) < c(n+1))

< > P(r,({z}) < cd(z,y))
yeV:d(z,y)=n+1
exp(—go(c)(n + 1))

e A i wpeey v sy

Note that if ¢ < ¢1(A, p), then go(c) > p. Thus,

SUPg>q |0Bj,41(z) e P

1 — exp(—go(c))

C o} T exp(—(go(c) — p)(n
P(CY 2 Balo) < ( ) exp(—(go(c) = p)(n+1))

=gp(c)>0
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and since G is of exponential growth p the first factor is finite. Since g,(c) > 0 by a
comparison with the geometric sum we see that the right hand side is summable. Thus,

applying the Borel-Cantelli Lemma we get that

P(3N >1:CY

c¢(n+1)

C B,(z),¥n > N) = 1.
Since Clf? € C{{}, | for all ¢ € (n,n + 1] it follows that

P(Eszo:ég}QIBM(x),VtZS) = 1. O

Next we consider the speed of expansion of the permanently coupled region ¥’ defined
n (1.3). Recall that Bf(e) denotes the ball of radius k € IN around an edge e € E in
the line graph L(G) (see Section [2.4).

Proposition 4.1.3. Let e € E and k as in Assumption (i1). If c> k~p, then
P(ds>0: IBLtHl( e) C W, Vt>s)=1.

Proof. Fix an arbitrary e € E and recall that by Assumption [I.4.1] (4i) there exist
T, K,k > 0 such that P(e ¢ ¥}) < Ke " for all t > T". Thus, it follows that

Y PBL(e) L <K Z B a(e)le™™". (4.2)
n=[T] n=[T]

By Remarkn we see that |BL (e)le™ — 1 as n — oo, if G has exponential growth
p > 0. Therefore, K := K -sup, ¢y |BL, (€)| exp(—pn) < oo and

3 BB LU <K 3 [BL, @ e <Ky 3 e <o
n=[T] n=[T] n=[T]

where we used ke > p. If p = 0, we know by Remark [2.4.8 - that |BL, (e)|e”™ — 0 as
n — oo for all C' > 0, and thus the right hand side of (| is finite. Since we know
that the left hand side of (4.2)) is summable, the Borel—Cantelli Lemma yields that

PEN >1:BL () C W, Vn > N) = 1.

Note that ¥/, C U/, for all t > n, which proves the claim. O
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At the end of this section we use these two results such that we can compare the
asymptotic expansion speed of the infection and the coupled region. Since one process
has values in P(V') and the other in P(E) we need to introduce the following notation.
We denote by

O, :={z eV {z,y} €V, Vy e N,}.

the set of all vertices whose attached edges are already permanently coupled at time ¢.

Theorem 4.1.4. Let A > 0, C' C V' be non-empty and finite, k as in Assumption|1.4.1
(i1) and c1 (X, p) chosen as in Lemmalf.1.1. If c1 (N, p) > k™' p, then

P(3s>0:CC C &, Vt >s) = 1.

Proof. Let x € V and y € N,. First we consider C' = {x}. Note that we assumed
c1(\, p) > £~ 'p, and thus there exists a ¢ < ¢1(, p) such that ck > p. Since ¢ < ¢1(A, p)
by Lemma 4.1.2 we get that

P(3s >0:CY c Bpy(x) vt > s) = 1. (4.3)
On the other hand we know that ck > p, and hence Proposition [4.1.3| implies that
P(3s > 0: Bl ({a,4}) C W, ¥ > ) = 1

Since ]BftJH({x,y}) contains all edges attached to any vertex in B (), we see by
definition of the random set ®. that

P(3s > 0:By(x) C Py Vt > 5) = 1. (4.4)
By combining (4.3]) and (4.4) we get that
P(3s>0:CM C o, vt >s)=1.

Now let C' C V' be an arbitrary non-empty and finite subset. Then we see with Lemma

[3.4.3 that

P(fs>0:C{C D Wt >s) <> P(fs>0:Cl” C Wt > s).

zeC

But we already showed that P(#s > 0 : é;{x} C P, Vt > s) =0 for all x € V and thus,
the right hand side is already equal to 0. This proves the claim. [
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4.2 Proofs of Theorem [1.4.8], Corollary 1.4.9] and
Corollary 1.4.10]

We are finally ready to prove the main results of this chapter. We begin with the proof
of Theorem Let us briefly recapitulate its content. Let A\,r > 0 and C C V be
finite and non-empty. Suppose that c;(\, p) > k~!p is satisfied, then we show that
G(A\,r,C, By) > 0 if and only if §(\,r,C, By) > 0 for all By, By C E.

Proof of Theorem [1.4.8. Let A\, > 0. As mentioned at the beginning of this chapter
we assume that Assumptions [L.4.1] (i)-(i7) are satisfied. Additionally we suppose that
c1(A, p) > k~1p holds, where ¢; (], p) is the solution of and £ as in Assumption[1.4.1]
(7). Furthermore let z € V' be fixed. The proof strategy is to use 67 ({x}) as a reference,
i.e. Bg ~ m. Note that we omit the infection and recovery rate as variables since they
are considered constant throughout the whole proof. By Proposition m (¢) it suffices
to show that (C,0) > 0 if and only if (C, E) > 0.

Let A C V be an arbitrary finite non-empty set. Then by Corollary it follows
that 67 (C') > 0 if and only if §7(A) > 0. Since also 0™ ({z}) = 6" ({y}) for all y € V' it

is enough to show:
a) If 07({z}) > 0, then 6({z},0) > 0.
b) If 67({z}) = 0, then 8({x}, E) = 0.

The key idea is that we prove this by coupling the CPERE (C, B) to processes C and
C, which act as a upper and lower bound, i.e. C, = Cy = Cy and C, C C, C C, for
all t > 0. Note that all three infection processes will depend on the same background
process B. Let s > 0, then we define C%?* as follows.

1. We set QOC’B’S = (. On [0, s] we only consider the recovery symbols caused by

—rec

=" and ignore all infection arrows, i.e. coop, , maps.

2. On (s,00) we use the same graphical representation as for the C“#, i.e. the same

—rec

infection arrows and recovery symbols generated by =™ and =™ and the same
background B2,

Next we define GC’B’S as follows.

1. We set GOC’B’S = C. On [0, s] we only consider the infection events caused by

=inf e and also the

. This means we ignore all recovery symbols caused by ="
background B in the sense that we treat all edges as open. Hence, instead of

the maps coop, , we apply the maps inf, , (see Example [2.3.2)).



4.2 Proofs of Theorem [1.4.8] Corollary [1.4.9/ and Corollary |1.4.10[ | 73

2. On (s,00) we again use the same graphical representation as for C%# and we

use the same background B2,

See for a visualization of C”, C and C* on the same realization of B. Recall

time time time

T 0 0 0 0 T

0 1 ) 0 1 0 v 0 0 1 0 Vv 0 0 ] 1 Vv

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

(a) Construction of C via the (b) Construction of C* via the (c) Construction of C” via the
Graphical representation. Graphical representation. Graphical representation.

Figure 4.2: Here we visualize, how the three process C*, C and C~ a constructed by
using the same Poisson point process Z=.

that CC is the classical contact process without recoveries which is coupled to the
CPERE (C%5B B2) such that CS*® = C§ = C and C? ¢ C¢ for all ¢ > 0. By
construction Cf’B’S = éf for all ¢ <'s.

We set A (C) = {(N?tc C &, Vt > s}. Another reason why we consider these two

processes is that by the construction of C* and C’ it is clear that

P(A(C)N{CY" £ 0 vt > 0}) = P(A,(C) N {C{7* # 0 vt > 0}), (4.5)
P(A,(C) N {CT" £ 0 Wt > 0}) = P(A,(C) N {CTP* £ 0 vt > 0}), (4.6)

since both processes are independent of the background B on [0, s] and in the time
interval (s, 00) all infection paths stay in the coupled region, i.e. the initial configuration

of the background process has no influence.

We start by proving a). To avoid clutter we set A := As({x}). We see that
0({x},0) = P(A, N {CIH £ 0 Ve > 0})

for every s > 0 and by (4.5 we get that

0({z},0) > /P(As({x}) N{CI™" £ 0 vt > 0})w(dB). (4.7)



74 | Chapter 4 Influence of the initial state of the background on survival

The state () is obviously an absorbing state for the infection. Hence,

[Penici? 20z 0paes)
(4.8)
_ / P(A, N {CFP* £ 0 vt > s})r(dB).

Let C® be a process which is constructed analogously as C* with the difference that on
[0, s] also no recovery symbols have an effect. Therefore, C is just a delayed CPERE.
By construction it is clear that it is only possible for C¥¥*H5 to survive if until time s
the site z is not hit by a recovery symbol, i.e. let 7' := inf{t > 0 : (rec,,t) € =}, then
C*1#hB goes extinet almost surely on the event {7' < s}. Note that g{z}’B’s = ClehBs
on {T > s} and thus,

/ P(A, N {CIP* £ 0 vt > s})n(dB)
(4.9)
:/]P(AS A{CEME £ 0t > s} {T > 5}1))n(dB).

—=rec

Furthermore we know that the event {7 > s} only depends on =" in the time interval
0, 5]. Since A, only depends on =™ and the point processes 282 and =™ have no

impact on the survival of C on [0, s, we get that

/IP(AS A{CEE 2§ vt > 5} {T > s}))n(dB)
(4.10)
=P(T > s) /]P(AS N{CEHPe £ ) vt > s})n(dB).

By construction it follows that (C?);<s and (B;):<s are independent. Also since 7 is

the unique invariant law of the background process we see that
/ P(ClHPe £ 0 Wt > 0)m(dB) = / P(CIH £ 0 vt > 0)n(dB) = 67({«}) > 0,

for every s > 0, where the last inequality follows by assumption. As already mentioned
C is just a delayed CPERE and if it is started stationary the survival probability is
constant in s. By Theorem for every 07 ({z}) > ¢ > 0 there exists a S > 0 such
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that P(A;) > 1 — ¢ for all s > 5, where we used that A; C Ay if s < s'. We can use
this to conclude that

‘ /P(Q“"}’B’S # 0Vt > 0)7(dB) — /IP(AS N{CIHH £ 0 vt > s})m(dB)| < &.
(4.11)

Now using (4.7)-(4.11)) successively yields that 6({x}, @) > P(T > s)(0"({z}) —¢) > 0,
where we used that P(7" > s) > 0 for all s > 0. This proves a).

It remains to show b). Here, it suffices to show that
P(A, N {C"F £ vt >0}) =0 (4.12)
for all s > 0. This is because Theorem yields that

]P( U An):]P(HSZO:éfQQDtWES):l,

n€lNg

where we used in the first equality that A, C Ay if s < 5. Hence,
P(CEM £ 0 vt >0)=P({3s>0:C" € &, vt > s} n{CE £ 0 vt > 01)

< P(AN{CIE £ 0 vt > 0}),

n=0

and therefore (4.12)) implies that the right hand side is 0. By constructions of C we see
that

P(A, N {CEHE £ 0 vt > 01) < P(A, N {C" 20 vt > 0}).
Furthermore by (4.6) it follows that

—{z},E,s —{z},B,s

P(A, N {CP* Lo v > 01) = /]P(AS N{CP* £ g vt > 0})r(dB)

and since Eiz}’B’s = C" for all B C E we get

/ P(A, N {CI £ 0 vt > 01)m(dB) < EWI[PC(C, £ 0 vt > 0)] =0,
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where we used that by assumption 67 (C') = 0 for all finite C' and |6§x}| < 0o almost

surely. Therefore,
PP (A, N {CIHF £ 0 vt > 0}) =0

for all s > 0, which implies 6({z}, E) = 0. O

Now we have shown that if ¢;(\,p) > k!p holds, then the chance to survive is
independent of the initial configuration of the background. Next we will show as a
corollary that if for a » > 0 there exists a non-empty and finite set C C V and B C F
such that ¢;(A(r,C, B),p) > k'p, then it follows that A\.(r,C,B) = A7(r) for all
non-empty and finite C' C V and B C E. This basically means that if for » > 0 there
exists an A such that survival is possible and additionally c;(), p) > k= !p then the
critical infection rate is independent of the choice of the initial configuration (C, B) as

long as C' C V' is non-empty and finite.

Proof of Proposition Let » > 0 and suppose there exists a non-empty and
finite ¢/ C V and set B’ C E such that ¢ ()\c(r, C’,B’),p) > k~tp. We know by
Lemma that A — ¢1(\, p) is continuous and strictly decreasing. Hence, there
exists an € > 0 such that all A\ < \.(r,C", B") + ¢ satisfy ¢;(\,p) > £~ 'p. Now we
consider A < \.(r,C’, B') + . Theorem [L.4.8| implies in particular that

O\, r,C",B")>0< 07(\,r,C") > 0. (4.13)

Furthermore, in Corollary we already showed that

0"\, r,C") > 0< 07(\,r,C) >0, (4.14)
for every non-empty and finite C' C V. This, in particular implies that

Ae(r, C', B") = N (r).

Next we use again that ¢; (), p) > k~!p such that Theorem together with
and yield that (X, r,C’, B) > 0 if and only if (A, r, C, B) > 0 for all non-empty
and finite C' C V and all B C E. This obviously implies that

A(r,C",B") = \l(r) = A\(r, C, B)

for all finite and non-empty C' C V and B C FE. [
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We end this chapter by showing an extension of the results concerning the asymptotic

behaviour and the immunization region shown by [LR20].

Proof of Corollary Recall from Remark that for a CPDP with param-
eters A, r, o, f and initial configuration (C, B) we denoted the survival probability by
Opp(\, 7, , B, C, B) and the critical infection rate by AP¥(r, o, 3, C, B). Let v > 0 and
p € (0,1), then we set @« = vp and = v(1 — p). Since B is a dynamical percolation
we know from Remark that for the constant x in Assumption [L.4.] (iz) it holds
that kK > a+ f = v. From here on throughout the proof we again drop the sub- and

superscript DP out of notational convenience.

Fix some z € V and recall that \¢ denotes the critical infection rate of the classical
contact process with recovery rate 1 on the graph G. We first show (i), which states
that for every p € (0,1], )\C(l,vp,v(l —-p),C, B) — % as v — oo, forall C C V
non-empty and finite and all B C F.

Theorem m (7) implies in particular that for every p € (0, 1), we can choose for every
e >0 a vg > 0 large enough such that

G
/\’Cr(l,vp,v(l —p)) < ?c +¢e

for all v > vy. Thus, next we choose v; > vy such that ¢; (p_l)\f—l—e, p) > v~ 1p. Because

¢1 is monotone deceasing in the first coordinate we see that

ar(AZ (L, vp,v(1 = p)),p) >v"'p

for all v > v;. Since we know that x > v by Corollary it follows that for all v > v,
the critical infection rate )\C(l, vp,v(l — p)) is independent of the initial configuration,
i.e.

/\C(l,vp, v(l— p)) = )\C(l,vp, v(l—p),C, B)

for all C' C V non-empty and finite and all B C E. So finally, Theorem [1.3.3] (i) yields
that Ne
lim )\C(l,vp,v(l —p)) ==,
p

V—00

Next we show (i7) and (7i7). In both cases we consider graphs of subexponential
growth, i.e. p = 0. Therefore, the inequality c;(\, p) > £~ 1p is obviously satisfied, and
thus by Proposition it follows that the critical infection rate A.(r,vp,v(1 — p)) is

independent of the initial configuration for any choice of the parameter.
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Now we first show (i), which states that for every r > 0 and v > 0 there exists a
Po = po(r,v) > 0 such that for every p < po, )\C(T, vp, v(l—p)) = 00. Now Theoremm
(1) yields that for every v > 0 there exists a py = po(v) > 0 such that for every p < po,
Xg(l, vp,v(1 — p)) = oo Since we showed that the critical value does not depend on
the initial conditions a direct consequence is that )\C(l, vp,v(l — p)) = 00, i.e. for every
A >0,

9(>\, Lop,v(1 —p),C, B) = 0.

for every finite C' C V' and every B C E. But, by rescaling time with the factor r we
see that
O\, 1,vp,v(1 —p),C,B) = 9()\7“, r,orp,vr(l —p), C, B),

and therefore by setting v’ := vr we see that for every A\ > 0 the survival probability
8(/\,7‘, v'p,v'(1 —p), C, B) = 0 for all finite C' C V and all B C E. This proves the

claim.

Claim (4i7) follows via a similar argument. Hence, we will now show that for every
p € 1[0,1), )\c(r, vp,v(1 —p)) — o0 as v — 0. By Theorem m (77) we know that
Ae(1,vp,v(1 — p)) = oo as v — 0, i.e. the special case r = 1. Thus, for every A > 0

there exists a vy > 0 such that
(A 1, vp,v(1 —p),C,B) =0

for every C' C V finite, B C F and for every v < vy. Now again rescaling time by the
fixed factor r and setting A" := Ar and v, := vor yields that for every X > 0 there

exists a v, > 0 such that
O(N,r,op,v(l1 —p),C,B) =0

for every v < v}, and thus APF (r, vp,v(1 — p)) —o00as v — 0. ]



Chapter 5

The CPERE and its invariant laws

In this chapter we mainly study the invariant laws of the CPERE. We assume through
out this whole chapter that the background B satisfies the Assumption (1)-(i13).

5.1 Upper invariant law and the dual process of C

First we introduce the notion of duality. Let X and Y be two processes on the same
probability space and let the Polish spaces Sx and Sy denote their respective state

spaces.

Definition 5.1.1 (Duality). Let ¢t > 0. We call (X,,)o<u<t and (Y,)o<u<: dual with
respect to a function H : Sy x Sy — R if s — E[H(X;_, Y,)] is a constant function
for 0 < s <t.

For the classical contact process X (see Example one can use the graphical
representation to construct a dual process X such that s P(Xs N }A(t_s # () is a
constant function for s < t and X is again a classical contact process. The process
X which satisfies this “self’ duality with respect to function H(A, B) := Lianpxey is
obtained by the following construction: Consider the graphical representation backwards
in time and reverse the infection arrows. The recovery symbols stay as they are. See
for a visualization. In case of the classical contact process X (see Remark
, duality is a powerful tool to analyse its invariant laws. It can in particular be
used to provide a connection between the survival probability and the upper invariant

law.

79
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time ,

t T 1 1 0 1 1|

0. 1 0 0 1 0 Vv
0 1 2 3 4

Figure 5.1: The red lines indicate the original infection paths in the construction of X.
The blue lines indicate the infection paths which result from considering the graphical
representation backward in time. The blue paths define the dual process X, which also
runs backwards in time.

We are not able to construct a dual process for (C,B) in this manner. But if we first
fix the background B in the time interval [0,%], we can construct a process C which

satisfies a conditional duality relation with respect to C, i.e.
P(C{P N A#0(G) = P(CSP n CLY £ 0|G) = P(C N TP # 0]G) (5.1)

holds almost surely for all s < ¢, where G := (B, : 0 < s < t) is the o-algebra
generated from the background process until time ¢. Obviously C will in general not

be CPERE, but this process will nevertheless prove useful.

Define BB+ .= Bg_s)i, i.e. fix the background, reverse the time flow and start at
some fixed time ¢ > 0. Now we define the dual process (ef’B’t)ggsgt with ag’B’t =A
as follows: We define this process analogously to C with the help of the graphical
representation using the same infection and recovery events just backwards in time and

the direction of the infection is reversed, i.e.
(u, coop, ) = (t — u,coop, ) and (u,rec,) — (t —u,rec,),

where z,y € V such that {z,y} € E. Note that the superscript B does not denote the
initial configuration of the time reversed background B but of the original B. Now

we just let the infection run backwards in time, starting at time ¢ till time 0. See
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for a visualization of the construction. We see that we coupled C to Cin
such a way that (5.1 holds.

time N

bt 0 1 0 1 0

0 1 0 0 1 0 174
0 1 2 3 4

Figure 5.2: The arrows and crosses are respectively the infection and recovery events.
The grey areas are the blocked edges. Thus, if an arrow is contained in a grey area
it is not considered. The red lines are the infection paths of the forward-time process
C. The blue lines are the infections backwards in time with respect to the mirrored
arrows, which define the process C.

Next we show amongst other things that we can recover a self duality in the case where

we assume stationarity of B, i.e. By ~ 7.

Proposition 5.1.2 (Distributional duality). Lett >0, A,C CV and B, H C E then
s> P(COPNCMEY L9 BENH £0) and s — P(CSE N CMPT £ ()
are constant functions. If B is reversible this implies in particular that for allt > 0
PE™(C,NA#0D) =PA™(C,NC #0).

Proof. Let t > 0. By using (5.1]) we see that

P(C/PNA#0,BPNH #0)=E[P(C{" N A+ 01G) 1 ssamL0)]
E[P(CS? N CLY #0101 1gram0)]

P(CSP NGBt £ 0,BP N H #0)



82 | Chapter 5 The CPERE and its invariant laws

for all s < t. The equality P(C? N A # @) = P(CSB N CM £ ) for all s < ¢
follows by taking expectations in ({5.1]), which proves the first claim. For the second

claim choose s = 0 and integrate both sides with respect to m, and thus
/]P(QB)(Q NA#Q)r(dB) = /]P(éf’B’t NC # 0)r(dB). (5.2)

We assumed that B is reversible with respect to its invariant law 7. Let us consider
(Bs)s<t with By ~ 7 and as before set ﬁg’t = By_g- for 0 < s < t, then by
Proposition [2.1.8 it follows that (Bj)s< 4 (ﬁg’t)sgt. Again define by the reversed
graphical representation (C4™),, with respect to the background (B™),<,. Now the
process (CA™t B™)__, is again a CPERE with initial distribution 6,4 @ 7. Hence, this

fact together with (5.2)) yields that

PE(C,NA#£0) = PA(C,NC #0). O

Now we study the upper invariant law 7 of (C,B). We start with the existence of such
a law. Recall that we denoted by T'(t) = T} ,(t) the Feller semigroup corresponding to
the CPERE (C, B) with parameters A and r.

Proposition 5.1.3 (Upper invariant law). There exists a probability measure U such
that (oy ® 0g)T(t) = U as t — oc.

Proof. Obviously it holds that u := dy ® dg = (0y ® 0g)T(t) = pT'(t) for all t > 0
and thus by Lemma 3.4.1} uT'(s) = pT(t)T(s) = uT'(t + s) for all ¢, s > 0, where we
used the semigroup property. Next let f be an arbitrary bounded, measurable and

monotone increasing function. Then by definition of the stochastic order it holds that

T(s)f(V, E) = / fduT (s) > / FAuT (t + 5) = T(t + ) f(V, E)

and thus, s — T(s)f(V,FE) is non-increasing, real-valued function and obviously
bounded from below. This implies that T'(s)f(V, E) convergences as s — 00. Since
this is the case for any measurable, increasing and bounded function and the set of
these functions is dense in the set of all measurable and bounded functions we get weak

convergence of uT'(s), which yields the claim. O

Next we show two properties of the upper invariant law 7. The measure v derives its

name from the first property.
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Lemma 5.1.4. Let U = Uy, be the upper invariant law of the CPERE (C,B) with

infection rate A > 0 and recovery rate r > 0. Then we have:
(1) If v is an invariant law of (C,B), then v X 7.

(17) If My < Ao, then Uy, X Un,r and if 11 > 19 then Uy .y < Uny,y.

Proof. (i) Lemma states that (C,B) is a monotone Feller process, this implies
that for any invariant law v holds that v = vT'(t) < (0y ® 0g)T(t) = U as t — o0,

where Proposition [5.1.3| provides the weak convergence.

(17) Let u be a probability distribution on P(V') x P(E). By Lemma it follows
that if Ay < Xy then pTy, ,(t) = uTh, () for all ¢ > 0 and if 71 > ry then
Wy, (t) = ply,,(t). Thus, the claim follows by setting © = dy ® dp and letting
t — oo by Proposition [5.1.3 O

We do not need to start the background with every edge in the open state, i.e. Bg = E,
to have convergence towards the upper invariant law. As long as the initial distribution
of the background dominates 7 stochastically, this is enough to ensure convergence

towards 7.

Lemma 5.1.5. Let p1 be a probability measure with m < p then (dy @ p)T'(t) =7 as
t — o0.

Proof. First of all it is clear that dy ® 7 < dy ® u, and therefore

lim (0y ® 7)T'(t) = tliglo(5v @ )T (t).

t—o00

if the limit exists. So its enough to prove convergence for m = p. Since 7 is the invariant
law of the background and the infection process can only occupy fewer sites than all of

V it follows that (dy @ m)T'(s) < (dy @ ) for all s > 0 and by Lemma we get that
by @m)T(t+s) =< (0y @m)T(t) forallt,s>0.

Again using the same procedure as in Proposition |5.1.3[ we see that a measure v/ exists
such that (6y ® m)T(t) = v/ as t — oco. By Lemma (1) we know that v/ < 7.
This means that if we can show that 7 < v/ we are finished. By Assumption [1.4.1] ()

we know that 7 is the unique invariant law of B. Thus, the second marginal of any
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invariant law of (C,B) must be 7. Therefore it is clear that for every invariant law v,

v < 0y ® m must hold. Therefore by monotonicity and stationarity we know that
v=vT({t) 2 0y @m)T(t) =1 ast— oco.

Since this holds for any invariant law 7 it also holds for the upper invariant law

vV =T. O

This enables us to uncover a connection between the survival probability 6™ of the
infection process C started with stationary background and the upper invariant law v

in the next result.

Proposition 5.1.6. Let C' C V' be finite, then
0" (C) =PE(C, #DVt>0)=p({ACP(V):CNA#D} x P(E)),

and thus in particular (A, r,{z}) > 0 if and only if Ux, # 6y @ m, where v € V is

arbitrary.

Proof. By the self duality relation from Proposition [5.1.2| we get for C' C V
PV (C,NC #0) =PE(C, #0) — POI(C, # 0Vt >0) ast— oo,

where we used continuity of the probability measure. On the other hand, since C' is

finite we get
PYICNC20) = [ Lo (b MTOEAB) [ Lurcanv(d(4, B)
as t — oo, where we used Lemma Now we can conclude that
T{ACV:ANC #0} x P(E)) =PE™(C, # 0Vt > 0). (5.3)

which yields the first claim.
Next by Proposition [4.0.1] (i4¢) we know that 67({z}) = 6™({y}) for all z,y € V. This

yields in particular that the second claim does not depend on the choice of z. Now
choose C' = {z} for some x € V. Suppose that 67 ({x}) > 0, then we see by (5.3]) that

7({(A,B) e P(V) x P(E) : x € A}) > 0. (5.4)
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This implies that 7 # dy @ 7. For the converse direction we assume that 67 ({z}) = 0,
and hence 6™ ({y}) =0 for all y € V. Now we see by (5.3)) that

7({(A,B) e P(V) x P(E):y € A}) =0.

for all y € V. Now let us consider the set D := {(A4,B) € P(V) x P(E): A#0}. By
using o-subadditivity and (5.4) we see that

7(D) <> T({(A,B) € P(V) x P(E) : y € A}) =0,

yev

and thus it follows that 7 = §y ® w. This provides the second claim. m

This connection between the survival probability 87 and the upper invariant law 7
already suggests that the parameter regime where the upper invariant law agrees with
0y ® 7 is the same as the regime of almost certain extinction. Note that if 7 = §y ® m,
then by Lemma and Lemma M(@) follows that the CPERE convergences weakly
towards the measure 6y ® m and if 7 # dy ® m we already know that at least two
distinct invariant laws exist, and therefore there are obviously infinitely many invariant
laws. Thus, if 7 is trivial or non-trivival also determines if the system is ergodic or

non-ergodic.

Now we show that the critical value AL(r) of the phase transition between triviality and
non-triviality of the upper invariant law indeed agrees with the critical value for survival
AT(r), where the background is assumed to be stationary. If we additionally assume
that ¢ (/\’CT(r), p) > k~1p, then we know that the critical infection rate of survival does

not depend on the initial configuration.

Proof of Corollary Let » > 0, then as a direct consequence of Proposi-
tion m follows that A.(r) = AT(r). If we assume additionally ¢; (AZ(r), p) > x~'p by
Corollary follows that there exists a A.(r) such that A.(r) = A.(r, C, B) for every
C' C V non-empty and finite and every B C E, and thus in particular \(r) = A.(r). O

For the remainder of this section we provide some ground work for the subsequent
sections which consider complete convergence and continuity properties of the survival

probability.

Proposition 5.1.7. The measure U has the property that ({0} x P(E)) € {0,1}.
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Proof. Let D := {0} x P(E). If 7(D) = 1 then it follows that 7 = 0y ® 7. Thus, we
assume that 7(D¢) = ¢q € (0,1]. Recall that the second marginal of 7 is 7. Now define
v(+) :=1v(:|D°) and write

vV=qu+(1—-¢q)(dp®m).

This equality together with the fact that dy ® m and 7 are invariant measures implies
that the measure v is again invariant. Let f : P(V) x P(E) — R be a bounded,

measurable and monotone increasing function. Then dy ® m < 7 implies that

/fdv:q/fdu+(1—q)/fd(éq)@w)gq/fdu+(1—q)/fdv,

and therefore ¢ [ fdv < ¢ [ fdv. Since ¢ > 0, this implies that for all such functions
[ fdv < [ fdv which yields that 7 < v. On the other hand since we know that 7 is
the upper invariant law by Lemma m (i7) it follows that v < 7, and thus v = 7. But
this implies that 7(D¢) = 1, and therefore 7(D) = 0. O

A consequence of this proposition is that if 7 # dy ® 7, then

lim 0"(B,(z)) = lim 7({A C V: ANB,(z) # 0} x P(E))

=7({ACV:A#£0} xP(E)) =1,

where we used Proposition in the first equality and x € V. We want to extend

this result to
lim 0(B,(z),0) = 1.

n—oo
Recall that B is an autonomous Feller process. Thus, we denote by (S(t)):>o the Feller
semigroup associated with the background process. Let s > 0, then we set 75 := §3S(s)

and

67 (C) = / P(CE® £ 0Vt > 0)ry(dB).

By Assumption [1.4.1] (i) there exists a unique invariant law m of the background process
B such that 7, = 7 as s — co. Recall that C denotes a classical contact process with
infection rate A > 0 without recovery, i.e. only infection arrows are taken into account

and the background as well as recovery symbols are completely ignored.

Lemma 5.1.8. Lett > 0, ¢ > 0 and A C V finite. Then there exists a finite
D = D(t,e,A) CV such that

P(CAcD)>1—c.
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Proof. Let t > 0 and A C V finite and fixed. We know that for every finite initial
configuration A the random set |6f| < oo almost surely. This implies that for some
x €A,

P(3n>1: C! c B,(z)) = 1.

Thus, since {C2 C B, (z)} € {C# C B,,(2)} if m > n and because of continuity of P,
it follows that for every € > 0 there exists an N € IN such that

P(C{ C By(z)) >1—¢
for all n > N, which proves the claim. O]

Recall that BL(e) denotes the ball in the line graph L(G) of radius n € N with e € F

as centre.
Lemma 5.1.9. Let ¢ € E and k € IN. There exists a probability law ps on P(E?) with
marginals ™ and w5 such that for every € > 0 there exists a s > 0 such that

1s({(B,D) € E*: BNBj(e) =DNBj(e)}) >1—e.

Proof. Let B™ be the background process such that Bf ~ w. Now let B™ be coupled
to B? via the graphical representation. Recall that the coupled region was defined as

follows:
U, ={ecE:e¢ B> AB?» VB, B, C E}.

Choose ¢ > 0 such that ck > p. By Theorem [4.1.3| we know that
P(3s>0:Bf(e) C Uy Vt>s)=1.

By continuity of the law P and monotonicity of the event, there exists an s > k such
that P(Bf,(e) C U, Vt > s) > 1 — &, which in particular implies that

P(BT,NBE(e) =B, NBE(e)) > 1 —e.

Now set s’ = ¢s and let pugy be the joint probability distribution of (BT, Bf,). This

s’

distribution satisfies the claim. O]

With these two lemmas we are able to show the following useful approximation result
of the survival probability. Recall that ¢i(, p) is the solution of (1.5]),  is the constant
from Assumption [1.4.1] (i) and p denotes the exponential growth of the graph G.
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Lemma 5.1.10. Let \,r > 0 and suppose that c,(\, p) > k™ p. Then for any C C V,

lim 67 (A, r,C) = 67(\, 7, O).

S§—00

Proof. Note that if |C] = co or C' = () the statement is trivial, since either both sides
are 1 or 0. Thus, we assume that C' is a finite non-empty subset of V. Fix x € C' and
y € N,.. Since ¢1(), p) > k~'p by Proposition we know that

P(3u>0:CCC®, Vt>u)=1.

Set AL(C) := {C¢ C &, Vt > u}. We see that for every ¢ > 0 there exists a T > 0
such that P(AL(C)) > 1 — ¢ for all u > T, where we used that Al(C) c AL(C) for
u < v’ and continuity of the law P. Next we fix u > T" and define A% (C') := {C¢ ¢
B,.(z) Vt <u} for m € N. By Lemma we can choose a m = m(u) large enough
such that P(A2, (C)) > 1 — e. Together this yields

0(C,B) < P(AL(C)N A2, (C)N{C{P £ 0Vt > 0}) + 2¢ (5.6)

for any B C E. By Lemma we can choose a k = k(m) > m + 1 large enough such
that
P(BY (BL,, ({z,5}) = BP NBL, ({z.y) VE<w) > 1—e,  (5.7)

for any D C E with BNBf({z,y}) = DNBE({z,y}). Note that B, ({z,y}) contains
in particular all edges which are attached to all vertices in B,,(z). Now for notational
convenience define A3 (C) := A}(C) N A, (C). Furthermore set

A, (B, D)) ={BP N BL,,({z.y}) = B NBL., ({z.y}) vt < u} N 43, (C),
EW(B,D):={(B.D) € E*: BAB({z.y}) = DNBL({z,y})}.

By Lemma there exists a distribution y, on P(E?) with marginals 7 and 7, such
that for s > 0 large enough

,uS(Ek(B, D)) >1—c. (5.8)
Note that by choice of these events

Amu(C, (B, D)) n{C{F # 0 Vi > 0}

5.9
= A u(C, (B, D)) N{CEP £ 0 vt > 0} ¢ {CEP £ 0 vt > 0}, (5:9)
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since on the event A,,,(C, (B, D)) the infection stays in B,,(z) until time v and
afterwards only travels along edges already contained in the permanently coupled
region. But, for any of the initial configuration B or D the background does not differ
in the ball BL | ({z,y}) at any time ¢ € [0, u] and thus, we can interchange B and D
on A,,.(C, (B, D)). Finally we can conclude that

/ P(AL(C) N A2,,(C) N {CF £ 0Vt > 0))n(dB)
< [ P(Ana(CL(B.D) N{CEY £0 ¥ 2 0)) s oy (d(B. D)) + 25 (5.10)

g/]P(CtC’D # 0Vt > 0})my(dD) + 2e,

where we used (5.7) and (5.8)) in the first inequality and in the second the definition of
Ex(B, D) together with (5.9). Hence, by combining (/5.6) and (5.10) we obtain

0™ (C) < 6™ (C) + 4e.

On the other hand we have that 75 = §3S(s). Since B is by assumption a monotone
Feller process we get that g < 7 for all s > 0, and thus by monotonicity of the survival
probability it follows that

07 (C) < 07(C) < 07(C) + 4,
which proves the claim. [

With this approximation result we are able to show the desired result.

Lemma 5.1.11. Let x € V and r > 0. Suppose that c;(N\*(r), p) > k'p, then for all
A > A(r) = \(r)
lim O(\,r,B,(z),0) = 1.

n—o0

Proof. Let us fix z € V. By Lemma we know that A — ¢1(A, p) is continuous
and strictly decreasing. Thus, if ¢;(A™(7), p) > £~ 'p, then there exists an ¢ > 0 such
that ¢;(\, p) > k7 tp for all X € (\T(r), \™(r) + &’). Note that by Proposition
AT(r) = Ae(r). Let n > 0 and fix A € (AT(r), \Z(r) +¢€) by we know that for every
e > 0 there exists n large enough such that 6™(B,(z)) > 1 — & and by Lemma

we know that for given n and e there exist s > 0 large enough such that

0™ (B (2)) > 1 — . (5.11)
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Choose a set {z; : i € N} C V such that d(x;,x;) > 2n for i # j. Note that by this

choice the sets (B, (z;));en are disjoint. Let us consider the event
Ay =13 <m: (L, rec,) ¢ supp(E™°) V(t, ) € [0, s] x By (2;)},

i.e. in words for some ¢ < m no recovery symbols occurs up to time s in B, (z;). For

given s and n choose m large enough such that
P(4;,,) >1—¢. (5.12)

Let k = k(m, n) be large enough such that (J" | B,,(z;) C Bg(x). Now by the choice of
s it follows that

P(CPHY £ 0 vt > 0]43, ) > PE@™)(C, # 0Vt > 0) = 6™ (B,(2)  (5.13)

where we used the translation invariance of (C,B) and that A7, is independent of the

background. Now by (5.11)), (5.12) and (5.13]) we get that
0(By(z),0) > P(CPH Y £ 0 vt > 0] 43, )P(A2, ) > 6™ (Bu(2))(1 —¢) > (1 —¢)?,

which yields that lim, . O(A, 7, B,(2),0) = 1, for all A € (A.(7), A(r) + €). Since
A = c1(A, p) is strictly decreasing it is possible that there exists X' > A such that
c1(N,p) > k71p is no longer satisfied. In this case we can use monotonicity and see
that

lim (N, r, B,(x),0) > lim O(\,r, B,(x),0) = 1. O

n—o0 n—oo

This result actually plays a key role for some of the continuity properties concerning
the survival probability with respect to the infection and recovery rate. It seems
appropriate to mention here that there is a different way to prove Lemma [5.1.11
without relying on the duality and hence it would be possible to drop Assumption [1.4.1
(7i1), i.e. reversibility of the background, in this particular case. Therefore this might
be relevant for further analysis of the CPERE with a non-reversible background. Of

course this comes with the price of posing some different assumptions on the graph G.

This proof strategy uses ergodicity theory. Hence, we will clarify some notions and
objects. For details we refer the interested reader to [Kal06, Chapter 9]. Let (Q, F, P)
be a probability space and S : Q — € be a measure-preserving map, i.e. P¥ = P. We
denote by Z = {A € F: A= S7'(A)} the invariant o-algebra. We call the 4-tupel
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(Q, F,P,S) an ergodic system if Z is P-trivial, i.e. if A € Z, then P(A) € {0,1}. Let
X be the identity on Q, i.e. X(w) = w, if (Q,F,P,S5) is ergodic then we call (X, S)
ergodic. Let f : Q@ — R be a measurable function. The mean ergodic theorem of
Birkhoff, see [Kal06, Theorem 9.6], in particular states that if (X, S) is ergodic, then

Zf STFX) = E[f(X)]  asn — oo.

Now we will briefly summarize the proof strategy.

Remark 5.1.12. Let us consider the special setting of the 1-dimensional integer lattice,
ie. V=7Zand F = {{z,y} CV :|x—y|=1}. Now define Y, := ]l{ciz},@;é@ wi=gy 10 be
the indicator variable for the event of survival in case the process starts only with site

x being infected and all edges closed.

Recall that we constructed (C, B) via a graphical construction with respect to a Poisson
point proces =. From a different perspective = can be seen as a family of independent
Poisson process (Z,).evur on R, where =, 4 =, forall z,y € V and =, 4 = for all
e,e’ € E. Let S be a shift operator which maps §, — {41 and §z—12) — &(z,041} for
all z € V., where £ = (£.).evur is a realization of Z. Now it is clear that the shift S is
a measure preserving map with respect to the distribution of this family of Poisson
processes, since it maps vertices to vertices and edges to edges. Furthermore, since the

processes are all independent it follows immediately that (=, 5) is ergodic.

Now since (C, B) is constructed via the graphical construction we see that there must

exist a measurable function f from the state space of = to {0, 1} such that

FISTHE)) = 1 gthrog sy = Vi

for every k € Z. Note that by translation invariance, P(Yy, = 1) = P(Y, = 1) for all
x € Z. Now if we assume that 67(\, 7, {0}) > 0 we see that P(Y; = 1) > 0 by Theorem
1.4.8, Then by Birkhoft’s mean ergodic theorem [Kal06, Theorem 9.6], it follows that

n

1
an

Y, = Z f(s E[f(2)] = PU(C, # 0Vt >0) >0

= r=—n

almost surely. But this implies that almost surely there must exist a y for which Y, = 1.
Moreover, by additivity it follows that the event {CiB n(@)? # () ¥t > 0} occurs as soon

as the event {Y,, = 1} occurs for some site in y € B, () which proves the statement.
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This approach can be adapted for more general graphs G = (V, E). For example if
we assume that V' is a finitely generate group and G = (V, E) the Cayley graph of V.
Since V' is equipped with a group action we can again define a shift operator S, which
maps y — y + z, and thus adjust the proof with a multivariate version of the mean
ergodic theorem. See for example [Kal06, Theorem 9.9]. Note that Cayley graphs are

always vertex transitive, but not necessarily edge transitive.

5.2 Equivalent conditions for complete convergence

This section is dedicated to proving Theorem [1.4.15] Recall that ¢; (), p) is the solution
of (L.F), « is the constant from Assumption [1.4.1] (it) and p denotes the exponential
growth of the graph G. In this section we assume that \,» > 0 and that the already

familiar growth condition ¢; (), p) > k™ !p is satisfied.

Therefore, the main goal is to show that the two conditions (1.8)) and ([1.9)), which are
PP (x € C, 1.0.) = 0(\, 7, C, B) (5.14)
forallz € V,C CV and B C F and

lim lim sup IP,\VT(ClB"(x)’Q NB,(z) #0) =1 (5.15)

n—=00  t o0

for any x € V, are equivalent to complete convergence of the CPERE, i.e.
(CEP BPY = 0(C,Byv+[1—0(C,B)|(6p @) ast— oo (5.16)

for all C Cc V and B C E. We first show convergence of the marginals C and B and
then conclude that this already implies that the CPERE (C, B) convergences.

By Assumption (i) we already know that B = 7 as ¢ — oo for all B C E. Hence
it remains to show that the two conditions (5.14) and (5.15) imply that the infection
process C convergences weakly as t — oco. We show that for any C C V and B C E

Py, (CEPNC" #0) = 0\ 7, C,B)I™(\,r,C), (5.17)

as t — oo for every C' C V finite, which suffices to conclude weak convergence of the
infection process C since the function class {1{.ncrzpy : €' C V finite} is convergence

determining. This actually turns out to be the major share of the workload. At last we
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show that the converse holds true as well, which provides that (5.16)) implies ([5.14)) and
(5.15). Once we know that the marginals converge we show that this already implies

the convergence of the joint distribution, i.e. (C;, B;) converges weakly as t — oc.

As the readers familiar with the classical contact process might know a similar result
holds in the classical case as well. In fact the proof strategy to derive the equivalence
of the two conditions and convergence of the first marginal is inspired by the proof for
the classical contact process. The idea is basically the same, but since we introduced a
background we lose some important properties for which we need to formulate a work
around. Therefore, we briefly summarize the important points of this approach to give

the reader more intuition before we start with the actual proofs.

As in Remark we denote by X a classical contact process. In the beginning of
Section [5.1| we already explained how to construct a dual process X! = ()A(ffs)uStJrs
for X such that s — P (X, N Xt = @) is a constant function on [0, ¢]. It is not difficul
to see that (X%),<, and the dual process (Xg’t“)ugt are independent, since they are
defined on disjoint sections of the graphical representation. Furthermore, it is also
know that the dual process X has again the dynamics of a classical contact process.

These facts can be used to conclude that

P (XS, NC" #0) = P(XS N X £ 0)
=P (XS # 0, XC s 0) — P(XC #0, RC't+s L X A R s — 0)
_B(XC £ OPIXC £ 0) — BXC £ 0.KE4 4 0.XC RO ).

Now obviously P (XS # 0)P(X{" # 0) — 6(C)0(C") as s,t — 0, where 6(-) denotes
the survival probability of X. Graphically, the event in the last term means that two
independent contact processes which will not go extinct share no infected site after a
long time. If the graph is “nice” enough, it seems reasonable to assume that this gets

more unlikely as s, ¢ grow larger such that
P (XS # 0, X £, XS N X =) — 0.

as s,t — oo. Note that this property is somewhat similar to the second condition ([5.15)

and hence indicates its necessity.
The two major issues, or rather the two properties we do not have in our setting are:

1. For the CPERE the process (CS?),<, and the dual process (65”3“5) are

u<t
not independent, since both processes depend on the background (BZ), <. .
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2. For an arbitrary B C E the process (GSI’B’HS, ﬁf’“’s)
CPERE again.

u<iys 18 MO necessarily a

The approach to solve these two problems is to construct a process (é,]v3) which
satisfies these two properties and does not differ on a finite time horizon from (é, ]§)
with an arbitrarily high probability. This is possible since we know by Proposition |5.1.2
that if By ~ m, i.e. if we start in its invariant law, then the dual process (6, ]§) is
again a CPERE. So in case we do not start stationary, the idea is that we use the fact
that the background couples itself faster than the infection can spread through the
population, i.e.
]P(ESEO:(NJtCQCI)tVtZS):L

where ®; denotes the set of all vertices whose attached edges are already permanently
coupled at time ¢. This holds by Proposition since we assumed ¢ (A, p) > k1 p.
Thus, we can basically wait long enough for B to forget its initial configuration in the

relevant area and restart the process in its invariant law.

Now we start by formulating this in a rigorous manner. For that we first introduce

some shorthand notation to keep the formulas somewhat cleaner. For A C V we set

Ap ={{z,y} € E:z € A},
AN = U By(x),

AY ={{z,y} e E:z e AV},

where By (x) is the ball with centre x and radius N with respect to the graph distance
of G (see Section [2.4).

Let (Efn/ 2),25 /2 denote a process with same dynamics as the background process B,
which is coupled with the original background in such a way that it starts at time s/2
with an initial distribution 7 and is assumed to be independent from (BZ),_, /2, but

from s/2 onwards it uses the same graphical representation as BZ. For a visualization

see |F1igure 5.3|

Lemma 5.2.1. Let D C V, B C FE be finite and fized. Then for every e > 0 there
exists an S > 0 such that for all s > S

P(BY?NDp=BENDpVYu>s)>1—c
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Proof. Let x € D. Let ¢ > 0 be chosen such that ck > p, then by Proposition |4.1.3
we know that P(ds > 0 : Bj.-1;(x) € ®, Vt > s) = 1. Let S’ > 0 be chosen such that
D C By for all t > S’/2. By continuity of the measure P, for every € > 0 there
exists a S > S’ > 0 such that ]P(IBLC—ltJ (x) C &y, Vt > %) > 1 — ¢ then this already
implies that for all s > .S

P(BY?>NDp =B NDpVu>s)>1—c. O

Let ¢, s > 0 and recall the dual process (éf}’B’”S)TSHS of (C%8),<t1s. In the definition

r

of the dual process we fixed the background (BZ),<;,, reversed the graphical represen-
tation with respect to the time axis at the time point ¢t 4+ s and fixed A as the initial

set of infected sites for the dual process.

Now let (éf’s/Q’HS)ugHs/g be a process coupled to CABHs by using the same time-
reversed infection arrows and recovery symbols, but the background at time s/2 (foward

in time) is reset and independently drawn according to the law 7, i.e. we use (Bf/ Z)QS /2
instead of (BZ),>s/2. Again see Figure [5.3| for a illustration.

time time

t o 0 1 0 1 0 t T 0 1 0 1 0

8 -~ - [ o ey -~~~ ~ -~~~ 8§ ~f-----fF====~~=Ff------p-------
e
x

72 B B D Joo o] S

E—

0L 1 0 0 1 0 174 0l 174

0 1 2 3 4 0 1 2 3 4

(a) Visualization of the graphical representation (b) Visualization of the graphical representation
of (Cy, By )u<iss and the dual (CEF$), <. of (BY?)jacu<t and (C/ > ety on-

Figure 5.3: As usual the arrows and crosses denote the infection and recovery symbols.
The grey area visualize the closed edges according to B (left picture) and the light
green areas the closed edges according to B (right picture). The red line visualizes the
infection path forward in time, i.e. C, and the blue line the infection path backward in
time, i.e. C in the left and C on the right.
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Lemma 5.2.2. Lett > 0, A CV be finite and B C E. Then for every e > 0 there
exists an S > 0 such that for all s > S,

P(éf,B,t+s _ éf,s/lﬂs Vu<t)>1-—e.

Proof. First, by Lemma [5.1.8 we know that for every ¢; > 0 there exists a finite
D = D(t,e;,A) C V such that

P(éé,B,H—s’ 6378/2%5 CDVu<t)>1—e¢.

Now for D given via Lemma we obtain that for every 5 > 0 there exists an S > 0
such that for every s > S

P(BY>N Dy =B NDpVu>s)>1—e,

Recall that Dy C E was the set which contains every edge attached to D. But now we
see that

{CABt+s Cas/2t+s « D vy <t} N {BY?>N Dy =BP N Dy VYu > s}
C {GA,B,H—S _ éA,s/Q,t—l—s Vo < t}

But by choosing e1,e2 < 5 we see that IP((AJ;"B’”S + CAs/2tts vy, < t) < e, which

yields the claim. O

With Lemma and Lemma we formalized what we before described loosely
as ((vj, ]§) not differing from (@, ]§) with an arbitrarily high probability. Now we can
begin to show the convergence of the first marginal. We will split this in two steps by
first proving an upper bound and in the second step we use and to show

that this upper bound also acts as a lower bound which provides the desired result.

Proposition 5.2.3. Lett,s > 0, C,C" C V with C' being finite and B C E, then for
every € > 0 there exist S, T > 0 such that

Py, (CSP £ 0,CO B L0y <O(\,r,C,B)O" (A1, C") +¢
forall s > S, t >T. This implies in particular for any finite C' C 'V

limsup Py, (CSP N C" # 0) < (N, 7, C, B)o™(\,r,C").

t—o00
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Proof. By Proposition it follows that
P(Ciy) N O #0) = P(CTP N CY P 2 0) < P(CTP #0,C75 #0).
Thus, it suffices to show that for every € > 0 there exist S, T > 0 such that
P(CSP £ 0,C P £ 0) < 0(C, B)IT(C') + ¢
for all s > S and t > T'. We denote the extinction time of the infection process C by
Tew = Tep(C, B) := inf{t > 0: CZ¥ = ¢}

First we observe that for C’ C V finite that P (7., > t) — 67(C") as t — co. Thus,
for every £ > 0 there exists a T > 0 such that [P (7, > t) — 67(C")| < ¢ for all
t >T. So we fix ¢ such that this is satisfied. Note that

IP(C7B) (U < Teg < OO) =1~ ]P(C’B) (Tea: < U) - IP(C,B) (7—61 = OO)’

and thus it follows that lim, . P(“®)(u < 7., < c0) = 0. Now we can use that
{CYB £ 0} = {7., > s} to see that for every & > 0 there exists an S; > 0 such that

IP(1oy > 5/2,CE B £ ) — P(CEB £ 0, CE P £ ()| < P(s/2 < Tuw < 00) <&,
(5.18)

for all s > Sy, which implies that
P(CCB £ 0, CE P £ ) < P(rep > 5/2, CE P £ ) 4 ¢,
Applying Lemma [5.2.2 yields that for given € > 0 there exists Sz > 0 such that
P(CC Btrs = QU2 iy < ) > 1 —¢
for all s > Sy, and thus for s > max(Sj, S)
P(CSP #£0,C7 1 £ 0) < P, > 5/2,C7 /2 £0) + 2.
Furthermore, we know that for every € > 0 there exists an S35 > 0 such that

IPCB) (1, > 5/2) — 0(C, B)| < ¢
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for all s > S3. Note that by construction (C&#),<,/» and (éTC/’S/Q’HS)TSHS/Q are

independent, and thus

P(r., > 5/2,C0 7 2 0) = POP)(r, > s/2)P(CY /> £ )
= P(C’B)(Te:c > S/2>P(C,’W)(Tez > t)»

~Cs/2t+s ]\_3/)5/2

where we used in the second equality that (Cu , B, +s_u)u <tis)2 is again a CPERE

with intial distribution dcv ® 7. Set k := 4e + 2. We obtain at last that for any ¢t > T'
and s > S := max(S, S2, 53) (note that S depends on T') we have

P(CSP #0,C B £ 0) <POP (1, > 5/2)PC D (1, > ) + 2
<0(C, B)0™(C") + &,

which proves the claim. O

The next step is to prove a lower bound. For that we need the following stopping time
man(C,B) :=if{t >0: (C” BE) > (A, H)}, (5.19)

which is the first time that at least all sites in A are infected and all edges in H are

open.

Lemma 5.2.4. Let A,C CV and H,B C E be non-empty and A and H finite. Let
x € C then
PCB) (14 i < 00) > PP (2 € C, i0.)

Proof. Suppose that 7 # dy. Otherwise P(©®)(z € C, i.0.) = 0, and thus the inequality

is trivially true. First of all note that
{Tan(C,B) < 00} = {(CE" BP) 5 (A, H) for some t > 0}. (5.20)

Next we define the stopping times Ty = inf{t > T}_; + 1 : x € C;}, where Ty = 0.
Recall that F; is the o-algebra generated from all Poisson point processes used in the
graphical representation until time ¢. Let us assume that x € C, since m # Jy and we
know that the background process is translation invariance, we can guarantee that
€= IP({’“"}’@)(Cl 2 A,B; O H) > 0. This implies by monotonicity

P(Cr,41 2 A,Br,4+1 2 H|Fp,) > ¢ almost surely on {7} < oo}. (5.21)
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Set Ay :={Cp41 2 A,Bp 41 2 H} € Fr,11 C Fry,, := Grq1 and then we see that
ZIP Ag|Gy) = almost surely on ﬂ{Tk < 00}
k=0 _

Since Ay € Gy for all £ € IN we can apply an extension of the Borel-Cantelli Lemma
[Durl9, Theorem 4.3.4] and we get that

{i]P(AMgk) = OO} = {4 i0.}.

Note that (), {7k < oo} = {z € C; i.0.}. Hence, by (.20 and (5.21)) we get that
POB) (14 p < 00) > POP({A 10} n{r € C,ion}) =P (recCiio). O

Proposition 5.2.5. Let C CV and B C E. Suppose (5.14) and (5.15)) are satisfied,
then
lim inf Py, (COP N C #0) > 0(\r,C,B)O™(\,r,C").
—00

for every C" C 'V finite.

Proof. Let ACV and H C F with A and H being finite sets. We can assume that
T # d0p, since if m = dp, then 67(C”) = 0 for all C" C V finite, and thus the right hand
side is zero. Recall from that the first time that at least all sites in A are infected
and all edges in H are open is denoted by 74 i(C, B). Furthermore, set ol := TA,AN

and 74 := 749. Now we see that

PP (Criyra NC' £ 0) = PP (0] < 5,Cppss NC' #£D)

CNBN)

A (Ct+u+(sfcrN ne' 7& Q)]
> PO (Y < ) inf PAAE)(C, NC #0),

r>t+u

(5.22)
- E []]'{UN<3}IP

where we used that (C,B) is a strong Markov process. As already mentioned before
one major issue is that in comparison to the classical case our duality is weaker in the
sense that th—’&-lf&-r U S not again a CPERE, and therefore our process is not self dual.

But now we show that the difference is not big if we choose t + u large enough. Recall
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that ®; was the set of all vertices x such that all edges attached to x are contained in
the coupled region at time ¢. By Proposition we know that

P(3s>0:Cc® Vt>s)=1,
and thus for every & > 0 there exists an S > 0 such that
P(CACd, VE>S5)>1—¢
As an application of Lemma we find an N = N(S) € IN such that
P(CAcAVVE<S)>1—¢.
Furthermore, by Lemma there exists an M > N such that
AM L AMUB

P(B,? =B, on AN forallt§€)>1—e’

-

~~
::ES(BszM)

where B C FE is chosen arbitrarily and &’ is independent of the choice of B. Thus, we
can conclude for a given A C V that for every ¢ > 0 there exists an S = S(¢) > 0,
N = N(S) € Nand M > N such that

P{C/c &, Vt> S CHc ANVt < SYNEg(B,N,M)) >1—¢

for all B C E. Note that £ depends on A. On this event the process CA4E does not
differ from CA4EYB for any B C E, since on this event the infection paths have either
not yet left AV and the edges in AY will have the same state open or closed with the
two chosen initial configuration or the infection paths stay in ®, the area where every

edge attached to an infected site has already been coupled. Thus, we get
PAAY)(C, N C £ 0) — / PAAEYE)(C. N C" £ P)r(dB)| < e. (5.23)
Furthermore, by monotonicity (see Lemma [3.4.1)) it follows that

PAAE)(C, NC" £ 0) > PAD(C, NC' £ 0) —e.
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Using this and the fact that if the background is started stationary the CPERE is self
dual by Proposition [5.1.2} and therefore we get with ((5.22]) that

POD(Crraru NC' #0) 2 PO < 5) inf (P(ANC, #0) <),

r>t+u

Then, analogously to (5.22)) by considering 7p with D C V finite instead of o2 we can
find a similar lower bound for the last probability such that

POB)(Crygry NC" #0) > PEB (0 < )P (7 < ) inf PPD(ANC, #0) —e.

r>u

For A C V and B C F finite we know by Lemma that
PEB) (144 < 00) > 0(C, B),
and thus by letting s,¢, u — 0o we see that

lim inf P(@B)(C, N C" # 0) > 6(C, B)#™(C") lim inf PPD(ANC, #0) —e.

t—o00

Now for an arbitrary z € V' we choose A = D = B,,(x) and use which means that
for all § > 0 there exists ny € IN such that lim inf, ., P®B=@N(B, (2)NC;, #0) > 1 -6
for all n > ny. Note that € depends on B,,(x), which means we first need to choose ny
and then the parameter accordingly such that holds for € = ¢ and such that

lim inf PP (C, N C" £ 0) > 6(C, B)I™(C") — 20.

t—o00

Since this holds for all § > 0, the claim follows. m

We showed one direction of the equivalence. Next we show the converse direction.

Proposition 5.2.6. Suppose (5.17)) holds and assume that Uy, # dyp @ m, then ({5.14))
and (5.15)) are satisfied.

Proof. Note that ), # dy ® 7 can only occur if 7 # Jy. Choose C' = C" = B,, and
B = (), then by follows that lim; ., P®B~9(B, N C, # 0) = 6(B,,0)0™(B,,).
Using Lemma yields that the right hand side converges to 1 as n — oco. This
proves . Now all what is left to show is . We see that

{C,NnC" #Dio} = ﬂ{CsﬂC' # () for some s > n},

nelN
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and thus by continuity of the law P we get that

PEB(C,NC #0io0.) = lim PCE(C,NC" # ) for some s > n) > 6(C, B)O™(C"),

n—oo

where we again used (5.17). Now using the fact that PO (2 € C) > 0forall 2,y € V
it follows analogously as in the proof of Lemma m, that the event {x € CtC’B io.}
almost surely happens on {CtC’B NC" # () i.0.}, and thus

P@B)(z € C,1.0.) > 6(C, B)O™(C).
Furthermore, if we choose C' = B,, and let n — oo, then Lemma [5.1.11] yields that
PEB)(z e Cyi0.) > 60(C, B)

for all x € V and C' C V. Since the reversed inequality “<” obviously holds as well,

this provides ((5.14)). O

Since we have shown that the conditions (5.14) and (5.15)) are equivalent to the fact
that the two marginal processes converge, the only thing left to show is that convergence

of the marginals already implies convergences of the joint distribution.

Proposition 5.2.7. Suppose that (5.17) holds, then for all C C V and B C E it
follows that

PP(CoNAZ£0,B,NH #0)

5.24
— 0(C,Byv({(C",B"): C'"NA#0,B'NH#0}) 524)
ast — oo, for every ACV and H C E finite.

Proof. Let A,C C V and B,H C FE be chosen arbitrary with A C V and H C FE
finite. We consider these sets as fixed. We again exploit the duality relation we derived
in Proposition [5.1.2] which states that

P(CEENA#0,BE,NH#0)=P(CEPNCH £ 0 BE nH#A0)  (5.25)

where t, s > 0. Let 7 = 7., (C, B) denote the extinction time with initial configuration
CcCcVand BCE.
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Some simple calculations yield that

0 <P(CSPNCHPH £ 0, BE, N H #0) — P(CTP £ 0, G £ 0, B N H #0)
=P(CSP #0,CMP £0,CEP N TP = 0,BE N H £ 0)
<P(CSP £0,CM £0,C5P n CHP = ) (5.26)
(

P(COP #0,CH2 #0) — P(CTP N G 2.0).

Now we fix an arbitrary ¢ > 0. Then by a combination of Proposition [5.2.3| and ({5.17))

we get that there exists a S; > 0 and T" > 0 such that

[P(CTP #0,CM 0) — P(CIP N G £ 0)] <

Wl M

for all s > S; and ¢t > T. By using the duality relation (5.25) together with ([5.26]) we

can conclude that

IP(COENA#0,BE, NH#D) —P(COB £0,CMP £ 0 BE N H #0)| < %

for all s > Sy and ¢ > T'. Furthermore, there exists an Sy = S3(C, B, ¢) > 0 such that

P(CS® £ 0.1 £ 0, B, N H #0)
—P(r > s/2,CMPIE £ 0,BL,NH#0) < %

for s > S5, which can be shown analogously to (5.18). In the last step we conclude
that there exists an S3 = S3(¢, A, H,e) > 0 such that for s > S3

IP(r > s/2,CMBATE L), B, NH #0)

~As/2t+s 5/2 €
—P(r > /2, G £ 0. B2, 0 H £0)| < 3
which follows as a combination of Lemma and Lemma [5.2.2] Finally by putting
everything together and using the triangle inequality we get that for every ¢t > T' there
exists an S > 0 such that
[B(CETNA#0.BE NH #0)~P(r > s/2.CH* " 2 0B ,nH#0)| <e

t+s/2

for every s > S. To be precise one can choose S = max{S1, Ss, S3}.
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This means that if we first let s — oo and then ¢ — oo, the two probabilities converge
to the same limit. So it suffices to show that
~As/2t+s 5/2
P(r > s/2,C,; #(Z),BHS/QQH#@)
— 0(C,B)p({(C,B) :CNA#0,BNH#0})

as s,t — 0o. Recall that we already concluded above that (CS2

v )r<s/2 is independent

8

of ((v}f’s/ P s /2 and it is also independent of (Br/ ?)y>s /2. Thus, we get that
P(r > 5/2,C2 £0,B]2 , N H #0)

=P(r > s/2)P(C*/>F £ B2 N H+#0).

t+s/2

Next we use that (C{»"/>"* B2 )., is again a CPERE with initial distribution
04 ® m, and thus by duality

P(CH £ 0,872 ;N H #£0) =PV (C,nA#0,B,N H #10),

which converges to the desired limit since we have already shown that (dy @)1 (t) = 7
as t — oo by Lemma m The claim follows, since P(“P) (7 > 5/2) — 0(C, B) as
5 — 00. [

Note that analogously as before (5.24)) is equivalent to complete convergence, i.e for
every initial configuration C C V and B C E

(CEP BP) = 0(C, By +[1 — 0(C, B)](6y @ ),

since the function class {1{.naz0,.nmz0y : C' C V, H C E finite} is convergence deter-

mining. Now we can conclude the main result of this chapter.

Proof of Theorem [1.4.15l The theorem follows as a combination of the four Propo-

sitions [5.2.3],[5.2.5], [5.2.6] and [5.2.7] To be precise Propositions and yield

that (5.14) and (5.15)) imply the convergence of the first marginal, i.e. (5.17). But in
Proposition we already concluded that ([5.17)) suffices to conclude weak conver-

gence of the CPERE;, i.e. (5.24). At last Propostion m provides equivalence of the

conditions and complete convergence. O]
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5.3 Continuity of the survival probability

In this section we study continuity of the survival probability with respect to the
infection rate A and recovery rate r. We start with determining on which regions of

the parameter space the functions
A= 0N\ r,CB) and 71— 0\ C, B)

are left or right continuous. Before we proceed we need the following result concerning

the limit of a sequence of monotone and continuous functions.

Lemma 5.3.1. Let f : Ry — [0,1] and f, : Ry — [0,1] for every n > 1 with
lim,, oo fu(z) = f(x) for allz € Ry. Let f, be a continuous and monotone function for
alln € N, and furthermore f,(x) > fuoi1(x) for all x € Ry. Then if f, is increasing
for all n € IN, it follows that f is right continuous and if f, is decreasing, then f is left

continuous.

Proof. Let (f,).en be a sequence of increasing and continuous functions and let x,, | z.
We show that lim,, . f(x,) = f(z). By our assumptions it is clear that (f,,(z,))nen is
a decreasing sequence which is bounded from below by f(z), and thus the sequence
converge. Hence, it holds that lim, . fu(x,) > f(x).

Suppose limy, o0 fn(zn) > f(x). Since (fn(xn))new converges there must exist y > f(z)
such that lim,_, f(x,) = y. Since f is the pointwise limit of (f,), there must exist
an m € IN such that f,,(z) < y. Also f,, is continuous and z,, | x. Thus, there must
exist k € IN such that f,,(zx) < y. Now let [ := max(k, m). Because of monotonicity it
follows fi(x;) < y, which is a contradictions, since (f,,(x,))nen is strictly decreasing to
y, and therefore lim,, o, fn(z,) = f(z) but since f,,(x,) > f(z,) > f(z) for alln € N
it follows lim,,,, f(x,) = f(z). Note that we used here that f is monotone increasing,
which follows by the fact that (f,)nen is a sequence of monotone increasing functions,

and therefore the limit function f must also be monotone increasing.

If we assume f,, is decreasing instead of increasing with a similar line of arguments
it follows that f must be left continuous, since for every sequence z, T z we see that

n(Zn) lnen 1s a decreasing sequence. ]
(fn(2n))ne g seq

As a direct consequence of this lemma we can conclude right continuity in the following

proposition.
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Proposition 5.3.2. Let C CV and B C E. Then, for r > 0 the function
A= O\, C, B),

is right continuous on (0,00) and for A\ > 0 the function r — O\, r,C,B) is left

continuous on (0, 00).

Proof. By Lemma |3.4.4) we know that the function A — IP(;:;’B)(Ct # () is continuous

for any ¢ > 0 and also IPE\;’B)(CS #0) > IP&(:;ZB)(Ct # () if s <. Thus, we can conclude
that

PP(C, £0) LONT,C,B) as  t— oo,

by continuity of IP. Since ]PE\?,ZB)(Ct # ()) is increasing with respect to the infection rate
A, we can use Lemma to conclude that A — (A, r,C, B) is right continuous.

Analogously it follows that r +— (A, r, C, B) is left continuous since ]PE\?;’B)(C,: £ () is

decreasing with respect to the recovery rate r. O]

The continuity from the respective other side is more difficult to prove. Before we

proceed with this we need the following somewhat technical result.

Lemma 5.3.3. Let (C,B) be a CPERE, ) # C C V be finite and B C E. Set
D, 4(C, B) := {3z € V such that B, (x) € C? for some s < t}

forn e N and t > 0. In words D, +(C, B) is the event that for some s <t there exists

a site © such that all sites in the ball B,,(x) with centre x are infected at time s. Then

lim P(D,(C,B)) > 6(C,B)  for alln € IN.

t—o00

Proof. We can assume that m # Jp since otherwise the survival probability is 0
which makes the statement trivial. We omit for most parts of the proof the initial
configuration (C, B) since it remains unchanged throughout this proof. Note that since
D, is increasing in ¢, it follows that lim;_,o, P(D, ;) = P(D, ). The idea of this proof
is that if a site x is infected at time k € IN, i.e. x € Cy, the probability that all sites in
a radius of n get infected by time k + 1, i.e. Cyyq 2 B, (z), is positive for every fixed
n € IN. But if we assume that C survives we know that for every ¢t > 0 there exists an
x € V such that x € C; and this will imply Py, (D;.o) > 0(\, ) for every n € N. In
fact
{C; £ 0Vt >0} ={Vk € Ny, 3z € V such that x € C,}
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since () is an absorbing state.

Recall that Fj, is the o-algebra generated from the Poisson point processes = used in

the graphical representation until time k. Then we set
e =e(n) = P (C, D B,(2)) > 0.

We see that P(Cry1 2 B, (z)|Fr) > ¢ almost surely on {z € C}, where we used
monotonicity with respect to the initial configurations (see Lemma [3.4.1]). This yields
that for any 2* € V

]P( J{Cri 2 ]Bn(x)}‘]-"k> > P(Cpyt D Bo(ah)|Fi) > e.

zeV

almost surely on {z* € C;}. We set A}, :=J
We see that

{Crs1 2 By(2)} € Fiyr for k € N,

zeV

Z]P(AZ+1|Fk) =00 as.on {Vk € Ny, dx € V such that € Cy}.

k=0

Now analogous to Lemma we can use the extension of the Borel-Cantelli Lemma,
found in [Durl9, Theorem 4.3.4] and get that

{ S OP(AL|F) = oo} — {A” 1.0.).
k=0
This implies {C; = () V¢ > 0} C {A} i.0.}. Obviously P“®) ({A7 i.0.}) < §(C, B), and
thus with what we just shown it follows that actually P(©®)({ A7 i.0.}) = 6(C, B) holds.
This yields for all n > 0

Py, (Dyoo(C, B)) > PP (A7 1.0.) = 0(), 7, C, B). 0

Finally, we are prepared to prove the second continuity property. Recall from ([1.11))
that
S, ={(\7):3IN < Ast. (V,r) € SH{a},0) and ¢ (N, p) > k' p},

where S({z}, ) denotes the survival region for the initial configuration ({z},0) defined
in (1.10)), i.e. (A\,7) € S({x},0) if and only if (X, r,{z},0) > 0.
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Proposition 5.3.4. Let C CV, BC E andx €V.

(i) Let r > 0. Then the function \ — O(\,r,C, B) is left continuous, and thus
continuous, on {\: (\,7) € S., }.

(17) Let X\ > 0. Then the function r — O(\,r,C, B) is right continuous, and thus

continuous, on {r: (A\,r) € S, }.

Proof. We assume that ¢' C V is finite and non-empty. Otherwise the surival
probability is 0 or 1 and a constant function is obviously continuous. We only show (i)
since (#7) follows analogously, i.e only some minor changes are needed in the proof. We
fix » > 0 and assume that {\ : (A\,r) € S, } # 0. Thus, let (\,7) € S, fix some z € V.
and define 7 = 7, :=inf{t > 0: 3z € V s.t. C; D B, (z)}, where n € IN. We see that

O(N) =P(C, #0 Vs >0) >P({r <t} N{C, #0 Vs > 1})
= E[l;pyP(Cs # 0 Vs > 7|F;)]

for any t > 0, where we used again that if C; # () for ¢ > 7, then this must also be true
for all t < 7. Now we use the fact that (C,B) is a Feller process, and see that

P(C, # 0 Vs > 7|F.) = P(Crys £ 0 Vs > 0] (Cr,B,)),

where we used the strong Markov property. From the definition of 7 it is clear that
there exists an o € V such that C, D B,,(x). Now we know that

P(Cris #0 Vs > 0] (C,,B,)) > PE@ID (G £ 0 vs > 0),

and by translation invariance the right-hand side is independent of x. Thus we can

omit the site x and write IB,,. So we get that
0(N) > PA(D, )PV (C, # 0 Vs > 0) = Py(Dns)0(N, By, 0),

where we used that {r < t} = D, ;. The set D, is defined as in Lemma Now
let A(r) < X < X < A, and thus N, \" € {\: (\,r) € S,,}. Then we see that

O(X) = Py (D )0(N, By, 0) = Py (D )0(N', By, 0),
where we used monotonicity which was shown in Lemma Letting X' T A yields

O(\—) > Pr(Dy)0(N", By, 0), (5.27)
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where we used continuity of A — P(D,,;) which follows by Lemma [3.4.4] Recall that
(C, B) was the initial value of the CPERE, using Lemma we get thet

lim Py (D,,(C, B)) > 0(),C, B),

t—o00

and thus letting ¢ — oo in ([5.27)) yields
6(\—,C,B) > tliglo P(D,:(C, B))O(N', B, 0) > 6(\,C, B)O(\", B, 0).
Since we know that A € {\: (\,7) € &, }, by Lemma it follows that
O\, B,,0) — 1 as n — oo.

Putting everything together yields (A—, C, B) > 6(\, C, B). But since we know that the
function is monotone increasing in A, this yields left continuity on the parameter set {\ :
(A7) € 50'01 }. Right continuity, and therefore continuity follows by Proposition . O

We end this section with the following proof:
Proof of Theorem [1.4.16l By Proposition and Proposition it follows that
(A, 1) — 6\, C,B)

is separately continuous on the open set Scl C RR?, which means that the function is
continuous in all variable separately, i.e. A — 0(\,r,C, B) and r — 0(\,r,C, B) are
continuous on {A: (A\,r) € S, } and {r: (\,r) € S, } respectively. Since the survival
probability € is monotone in the infection rate A and the recovery rate r it follows that

the function is jointly continuous on S,,, see [KD69, Proposition 2]. O
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Chapter 6

CPDP on the d-dimenstional integer
lattice Z¢

In the previous sections we considered the CPERE in a fairly general setting. In this
section we focus on the main example introduced in Example [I.1.2] (¢). The CPDP
on the d-dimensional lattice with nearest neighbour structure. Therefore, V = Z< and
E = {{z,y} C Z% : ||x — y||, = 1}, where || - ||; denotes the 1-norm. Thus, in this
chapter the background B is assumed to be the dynamical percolation. Let us recall

that B is a Feller process with transitions

B, =B — BU{e} atrate a and
B, = B — B\{e} at rate 3,

where «, § > 0. In words this means that with rate a an edge is updated to the state

open and with rate [ it is closed.

In Section we discussed the graphical representation of spin systems. In case of
the dynamical percolation one can give a simpler choice of maps which yield the same

dynamics, which are
birth.(B) := BU{z} and death.(B):= B\{z}

for B C E and rates rpjrth, = @ and 7death, = (3 for all e € E. It is not difficult to
see that the resulting Feller process has the same transition rates as the Feller process
constructed with the maps up, » and down, p with respective rates ryp, . = o and
Tdown, , = B for all x € V and F' C N,. The advantage of this simplification of the

graphical representation is that it is clear that in case of the dynamical percolation

111
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every edge updates independently of all other edges, i.e. the events {e € B;} and
{¢/ € B;} are independent if e # ¢’. On the other hand from the dynamics it is also

clear that

a
a+ B’

P(e € BY) = Lieny exp(—(a + A)1) + -5 (1~ exp(~(a+ B)1) =
as t — o0o. The first summand is the probability that no update event occurred at e,
and thus for e to be open it must already hold that e € B. The second summand is
the probability that the edge is in the state open conditioned on the event that the
edge was already updated at least once. This shows that the invariant law of B is 7, g,
under which the state of every edge is independent and it is open with probability ﬁ
Not surprisingly this means that the invariant law = = 7, g depends on the parameters
a and .

Now we turn our attention to the main objective of this chapter, which is to provide an
oriented site percolation model which is coupled to the CPDP in such a way that the
percolation model survives if and only if the infection process of the CPDP survives.
The strategy of this coupling is not new. We define so called “good” blocks, which satisfy
certain desirable properties guaranteeing survival throughout a large space-time box
and also let the process end in a advantageous state such that it can survive throughout
the next good blocks with high probability. Using these good blocks we construct an
oriented site percolation on a “macroscopic” grid, where the sites correspond to the

space-time boxes.

As already mentioned, this particular block construction was initially developed by
[BGI0| for the classical contact process, which they then used to show that the contact
process dies out at criticality. It can also be used to show complete convergence and
an asymptotic shape theorem. We mainly follow |Ligl3| Part 1.2], since he describes a
version of this construction in a neat and detailed manner. We are not the first ones to
adapt these techniques to a variation of the contact process. This was already done by
several people, for example the already mentioned works [Rem08] and [SWO08] did this
for a contact process with varying recovery rates and in |[Des14] this was done for a

contact process with ageing.

This chapter is arranged as follows: In Section [6.1] we will introduce two finite space-time
conditions and show that if survival of the CPDP is possible, i.e. a positive survival
probability, this implies already that these conditions are satisfied. We use these results

to construct the oriented site percolation previously mentioned in Section [6.2] The
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so constructed coupling yields the equivalence of the finite space-time condition and
the possibility of survival. At last we use this comparison tool in Section [6.3], where
we prove the equivalent conditions for complete convergence, i.e. that and
are satisfied. Therefore, we can use Theorem to conclude that for the CPDP
complete convergence holds. Furthermore, we will also show that the CPDP dies out

at criticality. This enables us to show continuity of the survival probability.

6.1 A finite space-time condition which is equivalent to
survival of the CPDP

In this section we formulate the aforementioned finite space-time conditions, which we
will show to be equivalent to survival of the CPDP. For this, we introduce a truncated

version of the CPDP on a finite space-time box. For an arbitrary but fixed L € IN set
V=70 [-L,L]" and E;, :={e:enV; € E}

and denote this truncated version by (;C, ;B). This process can again be defined via
a graphical representation with the difference that we only consider the finite graph
G = (V1, Ep) instead of G. Therefore, only flip events influencing edges in E; are
considered and for the infection process we only consider recovery symbols on sites

x € [—L,L]*NZ% and infection events which emanate from a site z € (—L, L) N Z<.

Remark 6.1.1. Note that we abuse notation slightly in the way that if we say (,C, ; B)
has initial configuration C' C V and B C E, we instead consider C' "NV, and BN Ep,
as the initial configuration. Furthermore, we often consider all sites to be initially
infected in a box [—n,n|? N Z< to keep the formulas somewhat “cleaner” we omit the

_ d _ d d
intersection with Z¢ and write for example C;™""*% instead of CI™"" %5,

Now we are ready to formulate the above mentioned conditions on the finite space-time
box [—L, L]* x [0,T + 1], where T > 0. For that we need to consider the events

Ay =Ai(n, L, T) := {LMC[T_fl’n]d’w D + [—n,n]? for some z € [0, L)}, (6.1)
Ay = As(n, L, T) := {L+2nC£:f’n]d’® Dz 4 [-n,n]? for some 0 <t < T
and z € {L+n} x [0,L)""}. (6.2)
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In words the event A; states if we start the truncated CPDP the initial configuration
([-n,n]¢,0) we find a spatial shifted version of the box [—n,n]? at the top of a bigger
space-time box [—(L +n), L +n]? x [0, + 1]. On the other hand the event A, states
that we instead find a spatial shifted version of the box [—n,n]? at the “right” boundary,
in direction of the first coordinate, of the bigger space-time box. In broad terms one
could say that these events guarantee that throughout this big space-time box the
infections survives at least as “strong” as it started. We illustrate the cross section of
these events in the direction of the first coordinate axis of the two events in

time time

A : A : Lo
411 s AL

t+l__ ........ ; ...........................

|
1 i T
—(L+2n) —-n 0 n L4+n L4+2n

Figure 6.1: Illustration of the events in (6.1]) and (6.2)

The finite space-time condition, which we will impose are that we can choose the

parameters n, L and 7" in such a way that these events happen with “high” probability.

Condition 6.1.2. For all € > 0 there exist n, L > 1 and T > 0 such that

P(A;))>1—¢ and P(Ay) >1-—c.

The goal of this section is to show that if survival is possible, i.e. (A, r, a, 8,{0},0) > 0,
then Condition [6.1.2] is satisfied. This takes some effort to prove. We start by showing

an approximation result for the survival probability.

Proposition 6.1.3. For every BC E, N > 1 and C C Z¢ finite

Jim lim PGB (| ,Cy| > N) = PEB(C, £ 0 Vit > 0).
Proof. Recall that C denotes the classical contact process without recovery. For a
given t > 0, by Lemma [5.1.8| it follows that for any € > 0 there exists a finite D C V'
such that
P(CScD)>1—c¢
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Recall that Dg denotes the set of all edges which are attached to a site in D. Now
let Ly € N be large enough such that D C V;, and Dg C Ey, for all L > L. Since we
consider a dynamical percolation as background it follows ; B® = B on Dy for all

s > 0, since edges do not interact with each other. This implies that
P(,COP =CfP)>1—¢
for all L > Ly. Therefore, we get that for every ¢ > 0 there exist an Ly € IN such that
[PEE(Cy| = N) = PP)(| ,C = N)| <e

for all L > Lo. This implies limy,_,o, P(“5)(| ,C;| > N) = P(@B)(|C;| > N). Hence, it

remains to show that

lim PEB(|C,| > N) = PEB(C, #£ 0 vt > 0).

t—o00

The idea is to split this up and show for all N > 1,

lim PEB(|Cy| > N, C, = for some s > 0) =0, (6.3)
—00
Jim PEB(|Cy| > N,C, # 0 Vs > 0) = POB(C, # 0Vt > 0). (6.4)
—00

Now (/6.3)) follows immediately by Fatou’s lemma, since we get that

limsup P(“B)(|C,| > N, C, = 0 for some s > 0)

t—o00

SE(C’B) lim sup 1{|Ct\2N,CS=0 for some s>0}] = 0.
t—»00

Note that obviously the integrand convergences to 0 pointwise, as ) is an absorbing

state.

Next we see that by the martingale convergence theorem
P(CB)(C, #£ )Vt > 0) = P(C; # 0Vt > 0|F,) = Lic,20 vis0) (6.5)

as § — oo almost surely, where the first equation follows by the Markov property and
for the limit we used that the event of survival is a tail event, i.e. measurable by the
terminal o-algebra.

Let us assume that at time s there are N infected sites. Then the probability that all
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these n sites recover before from any of these N sites an outwards pointing infection

arrow Occurs is (Mﬁ)N. This implies due to the Markov property that
|Cs|
P(C-B:)(C t > <1—( r ) . .
(C#0vt>0) < mIY (6.6)

Now note that to show it suffices to show that
tli>rcr>10 |Cy| = oo almost surely on {C; # 0 Vt > 0}.
We show this by contradiction by assuming that
1P<CvB>(tlggo |Cy| # 00, Cy# 0Vt >0) > 0. (6.7)

Now for every w € {lim;, |C;| # oo} we find a M(w) > 0 and a sequence (7,(w))nen
such that 7,,(w) < Ty1(w), Th(w) — 00 as n — oo and |C,, (w)| < M(w). For every
w € {lim;_,o |C¢| = o0} set 7,,(w) = n. But this yields for w € {lim;_,, |C;| # oo} that

M)
> <1,

(Crn,Brp) > <1_ "
P (C, £ 0, V> 0)(w) < 1 (Hm

for every n > 1. Letting n — oo yields together with (6.5) a contradiction to (6.7)).
Thus the proof is complete. O

Let us recall that a measure p is said to have positive correlations if

/fgdu > /fdu/gdu (6.8)

for all increasing functions f and g. As already mentioned (; C, ;B) is constructed via

a graphical representation, and thus it is also a Feller process. Let
¢+ (P(Vi) x P(EL)" — Ry

denote the transition rates of (;C,;B). Now we can use [Ligl2, Theorem I1.2.14].
Preceding this theorem it is nicely described that for interacting particle systems on

finite state spaces this theorem ensures that

¢((C,B),(C",B")) >0= (C,B) > (C'",B") or (C,B) C (C",B)

(6.9)
& pT*(t) has positive correlation whenever p does,
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where T denotes the Feller semigroup of (;C, ;B). This is easy to check for (;C, ;B),

since every event in the graphical representation only affects one site or edge at a time.

Proposition 6.1.4. For everyn, N > 1 and L > n,
P([—n,n}dﬂ)ﬂ LCt N [O, L)d| < N) < (]P([—n,n]d,@)q LCt| < 2dN))27d'

Proof. Let us define X; := | LCL_"’n]d’w N[0, L)% and X, ..., X,e analogously for the
other orthants in R?. Obviously X1, ..., X, are identically distributed random variables.

Znnldo . . :
"m0 the X, are increasing functions for every m €

Furthermore, as functions of LC£
{1,...,24}. Thus, since proves that the measure P(=mn"9) ((,Ct, .By) € ) has
positive correlations, yields that the events ({X,, < N}),eq1,. 24y are positively

correlated. This implies

P(|,CIm™ < 29N) > P(X) + - + Xpu < 2°N)
2d
> JP( M {X0n < N}> > (P(X, < )™ 0

m=1
For L € N and T > 0 we set
S(L,T) == {(z,t) € Z* x [0,T] : ||z]|oc = L}

This is the union of all lateral faces of the space-time box [—L, L]? x [0,T]. Now we
fix a C C (—L,L)*NZ% We want to consider all points in S(L,T) which can be
reached from C' through an (-infection path, i.e. an infection path which starts with

the background in state 0.

Let us define N§'(L, T) to be the maximal number of points in any D C S(L,T)N,C,
where D has the property that every two points with the same spatial coordinate
(z,t1) € D and (z,t3) € D satisty |ty — t;| > 1. Obviously subsets which satisfy this
property exist. Since S(L,T) is bounded every subset which satisfies this property can
only contain finitely many points, and therefore the maximal number also exists. Of
course there might be more than one subset whose cardinality is equal to the maximal

number of points.

The next result provides us with a connection of the extinction probability and having

“few” infected points at the top and lateral faces of a large space-time box.



118 | Chapter 6 CPDP on the d-dimenstional integer lattice Z4

Lemma 6.1.5. Let L; 1 oo and T; T oo. Then for all M, N > 1 and finite C', we have
limsup P(NS (L;, T;) < M)PE9) (| L, Cr| <N) < PED(C, = 0 for some t > 0)
Jj—o0

Proof. Let Fi 1 be the o-algebra generated by the Poisson point process = of the
graphical representation restricted to V7, x [0, 7] and Ey x [0,T]. Let us assume that
L > 1 is large enough such that C' C (—L, L) N Z% and we already know that

N
]p(c,w)(ct = () for some t > O|Fpr) > ( > exp(—4dA\M) > 0

,
T+ 2d\
almost surely on {N§' (L, T) < M, ]LC%Q\ < N}.

(6.10)

Note that we show (6.10]) in the second part of the proof.

Then as in the proof of Proposition [6.1.3| we will make use of the martingale convergence
theorem together with using positive correlations of the appropriate events as in
Proposition 6.1.4] Let us fix arbitrary M, N > 0 and set

G = {C’ = § for some ¢ > 0}
0
Hj = {N@C(LJ”TJ') < M, ‘LjC% | <N}

for all 7 > 0. Then again by the martingale convergence theorem we get that
P(G|FL, 1) — 1g almost surely as j — oo.

Now equation ([6.10) implies that on H; the conditional probability P(G|Fz,r,) is
bounded from below by a positive constant which is independent of j. Thus, 15 =
lim;_,oo P(G|FL;1;) > 0 on {Hj i.0.}, which implies that {H} i.0.} C G and therefore

limsup P(H;) < P(G).

Jj—0o0
Now we only need to use positive correlations again in order to see that
P(N§ (L, T) < M, | ,CF*| < N) = P(N§ (L, T) < M)P(| ,.C°| < N).

Then putting the two pieces together proves the claim.

Now it remains to show (6.10)). We consider the infected sites at the “top” of the
space-time box, i.e. the set LC?’Q). Then by the same argument used to obtain we
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can conclude that the probability that all infections originating from LC%@ conditional
m)N. Here we used that for
x,y € Z% the random sets {t > 0 : (coop, ,,t) € = and {t >0 (coop, . t) € =inf)

are independent.

on | LC?’®| = N go extinct, is bounded from below by (

Now let us consider the time lines {z} x [0, 7] above (z,0), where ||z||oc = L and let
(x,81),...,(z,s,) € {x} x [0,T]

be points of a maximal set of points on this time line contained in S(L,T) N ;C?
which satisfy that each pair is separated by at least the distance 1, where n = n(x).
Assume that n > 1 and let

n

I=J{x} x (si = Lsi + 1)) 0 ({z} x [0, T)).

=1

Now all infected points in {z} x [0,T] are contained in I, i.e. if z € ;C¢? for s < T
then (x,s) € I. Otherwise there would exist a point (z,u) € ({z} x [0,T]) N ,C?
such that |u — s;| > 1 for every ¢ € {1,...n}, which would violate the assumption of
maximality. The Lebesgue measure of the time coordinate of I is at most 2n. Let us
denote by A, the event that no infection arrow of x emanates from I towards any of its
2d neighbors. The probability P(4,) is bounded below by e~44"*. On the other hand,
we already concluded that the complement of I with respect to the time line {x} x [0, T]]
can contain no infected space-time point, so that any infection arrow emanating from
it cannot contribute to survival of the infection. Note that the initial set of infections

is contained in the large space-time box.

The events of the Poisson point processes used in the graphical representation which
happen before and after T" are independent, since they take place on disjoint parts.
This means that the contributions of the points in LC?’@ and the contributions of the
several time lines (1, __; As are independent. Also note that the events A, are
independent and >\ _;n(z) = N§(L,T). Thus, we get that

1 L.CF
PO (C, = for some t > 0|FL 1) > ( L ) o

_ c
> (—5m) | exp(—ADING (L)),

which implies (6.10). We want to remark here on that (1, - A= the infection
cannot leave the large space time box before T, i.e. LCtC’@ = Cf’w for t <T'. Therefore,

the lower bound on extinction of ; C%? is also a lower bound for extinction of C¢?. [
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Set for L € N and T > 0
S (L,T):={(x,s) €2 x [0,T] : x; = +L,2; > 0 for 2 < i < d}.

This is the intersection of one particular lateral face of the box [—L, L]¢ x [0, T] with the
first orthant. Let C' C (=L, L) N Z<. Similar as before let Nf’@(L, T') be the maximal
number of points in any subset D C S, (L, T) N ;C%? such that the points fulfill the
following property: If (z,t;) € D and (x,t3) € D are any two points with the same

spatial coordinate, then |ty — t1] > 1.

Proposition 6.1.6. For everyn,M > 1 and L > n,
—n,n]? d2? —n,n]d
(PN ™ (L, 1) < M))™ < PN (L, T)| < Md2?)

Proof. Note that S(L,T) consists of 2d-many lateral faces and there exist 2% orthants.
So if we take every non-empty intersection of a lateral faces and an orthants we
decompose S(L,T) in d2¢ disjoint hypersurfaces. Next let X7, ..., X4 be the maximal
number of infected points contained in the those hypersurfaces, for example X; =
N (L, T). Analogously to Proposition we obtain that

(PUNL ™ (L, 1)] < M) < P((V{X < M}).

k=1

Now we know that on the event on the right-hand side each of the d2? many disjoint
parts of the lateral sides cannot contain more than M elements. Thus, if we add all
parts together we know that S(L,T') cannot contain more than Md2¢ many infected

space-time points on this event and this implies the claim. O

Finally we are able to show the first direction of the desired equivalence.

Theorem 6.1.7. Suppose (X, r,c, 3,{0},0) > 0, then Condition[6.1.9 is satisfied.

Proof. The proof consists of three parts. First we derive some bounds on the proba-
bilities of crucial events and then we use these results to derive the first and second
bound of Condition successively.

Let 0 < 6 < 1. We will later on specify how to choose d exactly. By Lemma [5.1.11| we

know that there exists an n = n(d) such that

P(CI™Y £ vt > 0) > 1 - 6% (6.11)
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Given n we can choose N’ = N'(n,d) such that
{0},0 )Y
(1 — P CO S [ n] )) <4, (6.12)

since ]P(n“C‘{O}’@ O [-n,n]?) > 0. In the next step we choose N = N(N') large
enough such that for A C Z¢ with |A| > N, there exists D = D(A) such that D C A
with |D| > N and ||z — y||oec > 2n + 1 for all z,y € D with z # y. In words, N needs
to be large enough such that any subset, of size at least IV contains at least N’ elements

that are all spaced a distance 2n + 1 apart. Later on we will consider the probability

a := P(there exist (-infection paths contained in [0,2n] x [—n,n]*" x [0,1]

from (0,0) to every point in [0,2n] x [—n,n]*! x {1}) (6.13)
where it is clear that a > 0. We choose M’ = M’(n, d) such that
(1-a)™ <. (6.14)

Then choose M = M (M) such that if F' C Z¢ x Ry is a finite set with |F| > M and
the distance of points with the same spatial coordinates is at least one, there exists
an H = H(F) with H C F and |H| > M’ such that for two points (x,t) € H and
(y,s) € H it holds that either

r=y, [t—s>1 or ||z —ylle>2n+1. (6.15)

Now it obviously holds that 1 —§ < 1 — §% and we know from Proposition and
(6.11) that

lim lim PO %) > 94y = Pl £ g wve > 0) > 1 - 62 (6.16)

t—o0 L—o0

Next we will construct two strictly increasing sequences (7j)g>0 and (Lg)r>o such that

Tk, Lk T oo and

P(|, CLm ) > 20Ny =16 (6.17)
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for all £ > 0. But to construct these sequences we need two more properties. Since

(;Cy, . By) is a Feller process, we know that
t— P(] LC?"’"]d’@\ > 29N is continuous (6.18)

and since the contact process on a finite graph dies out almost surely, and therefore

also a CPDP on a finite graph, we can conclude that
Jim (] LCmN0 S 9dny =, (6.19)
First by there exist a T > 0 such that
Jim (| LC I S ANy S 1 (6.20)
for all ¢t > T{. Obviously there exists an Ly € IN such that
P(| ,C"" ) > 2'N) > 1 -4,

Now we keep Ly fixed, then by (6.18)) and (6.19)) it follows that there exists a Tt > T},
such that (6.17)) holds for £ = 0. Now we define the sequences recursively. Now choose
T} > Ty + 1. Since in particular 77 > T by (6.20) it follows that

lim (| ,CY, mrlt) S 9dNY > 1 - .
L—oo
Again there exists an L} such that

]P(|L,10[T,””} >2N)>1-6

Now set L; = max (L}, Lo + 1), note that by monotonicity the strict inequality still
holds with L; instead of L}. Analogously as before by and we find an
T, > T such that holds for £ = 1. We can repeat this procedure recursively
such that holds for all £ > 0.

Using this particular choice of Ly and T}’s together with Lemma yields that for
some k£ >0

SP (NS (L4, Ty) < Md2?) :P(N[—"’”]d(Lk,Tk) < Ma2"P(| , L) < 2¢N)

Ly,

SIP(C,[5 w0 for some ¢ > 0) + (52 < 26%,
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where we used (6.11]) in the last inequality. Thus,
PN (L, Th) < Md2%) < 26 (6.21)

for some k > 0. Now letting 7' = T}, and L = L, for this k£ we get by using Proposition
[6.1.4] and [6.1.6] that

P(|,CF"" 00, L) < N) < (P(|,Cp " < 2'N))"
PN, (L)) < M) < PNy (L. T)| < Md2t))T

which implies due to (6.17)) and (6.21)) that

d _
P(|,CEm 0 [0, L)Y > N) > 1 — (P(| ,Com"0 < 2¢n)* " = 162", (6.22)

1 1

PN (L, T) > M) > 1 — (P(NS(L,T)| < Md2%)#" > 1 (26)@7. (6.23)

Now we attend to the first inequality in Condition Let us define for every D C V'
and T > 0,

W} = {3z € D such that there are (-infection paths from (z,T) to every
(y, T + 1) with y € (z 4 [-n,n]?) that stay in (z + [-n,n]*) x (T, T + 1]}.

Now let A C [0, L)? with |A| > N. Recall that D(A) is a subset of A containing at
least N’ elements, which are all spaced a distance 2n + 1 apart. We see that for any
such A

—n,n]%,0 —n,n]%.0
{1,500, L)% > N, 00, L) = A} nWh

C{LJrnC[Tfl’"]d’@ D x + [—n,n]? for some z € [0, L)?}. (6.24)

The inclusion holds since the first event on the left-hand side guarantees that at time
T more than N sites contained in [0, L)? are infected and the second event guarantees
that one of the infected sites x € D(A) infects x + [—n,n]?. Also by the restrictions
imposed in the event it is clear that the paths stay in the space box [—(n + L), n + L]%.

Let x1, 29 € D(A) with z1 # x5. Note that by definition of Wg(A) and D(A) it follows
that for i = 1,2 the events that (x;, T) infect the whole set z; + [—n,n|? at time T+ 1
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are independent since the paths must be contained in (x; + [—n,n]?) x (T, T + 1]. Now
for every A C [0, L)4 with |A] > N by choice of D(A) and N’ with (6.12)) we know that

T T {0}.0 )
P(W|Fr) = P(Wh) > 1— (1= P(y €7 5 [=nn]) " >1-4 (6.25)

Thus, ]P(Wg(A)’]:T) > 1 — . Note that we used that WE(A) only depends on the
graphical representation on the time interval (7,7 + 1], since disjoint parts of the
graphical representation are independent, Wg( A) is independent of Fr. Obviously we
have that

U 1.5 00,0y > N, S n o, ) = A}
Aclo,L) (6.26)
_ [=n,n]®,0 d
={| .Cr N[0, L)% > N}.

Now we choose an arbitrary but fixed subset A’ C [0, L) with |A’'| > N. By using
(6.24), (6.25), (6.26) and the just mentioned independence of disjoint parts of the

graphical representation we obtain

j|d7

IP(LMCL;&’” "5 2+ [—n,n)¢ for some z € [0, L)%
>P cm Ao, )y > N, Y a0, L) = Ay n W
=z U{|LT 0,L)%| > N, [ Cy 0,L)" = A} D(A)
AC[o,L)

= E IIIT Y
o E (1{| chjn’n]d’wﬂ[O,L)d‘>N7Lc[jj"v"]dv@m[07L)d:A} IP( D(A)’ T) )
S —
Ac[o,L)¢ e

>P(|,CEm " 0 [0, L)Y > N)(1 - 4).

By using (6.22)) we get
IP(LMC[TT&’W’@ O 2+ [—n,n]? for some z € [0,L)7) > (1 —6)(1 — §27.
By an adequate choice of § we obtain the first inequality of Condition Of course

this must be done in accordance with the second inequality, which we attend to next.

First of all let us recall that N[;g ’n]d(L, T') denotes the maximal number of infected time
points in the intersection of the first orthant and the lateral face with the first space
coordinate being L (see right before Proposition [6.1.6). Let {(z, t))}x be one possible
choice of maximal points counted by Nﬂl ’n]d(L, T). Next let Y} be a variable which
is 1 if (zy, 1) infects all points in (zy, + [0,2n]) X [—n,n]¢! x {tx + 1} via @-infection

paths which are contained in (z + [0,2n]) x [-n,n]?"t x (t,t + 1] and otherwise 0.
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If Ni;’"}d(L, T) > M then we can choose M’ space time points distance 2n + 1 apart
in space or having the same spatial coordinate and being 1 apart in time by (6.15).
We denote the just defined variables by Y) with 1 < k < M’ for these M’ points. Let
Frr be defined as in the proof of Lemma . It is clear that conditioned on Fp, 1
and restricted to {NJ[:(; ’”]d(L, T) > M}, the M’ space-time points are determined and

therefore Y1, ..., Yy, are independent. Also

IP(Yk = 1|JT'-L7T)]1 al

—n.nld == —n,n]d
(N> My (N> My

for every 1 < k < M’ where a was defined in (6.13]). A direct conclusion is that

P(Yy=1forsomek=1,...,M'|Frr)=1—(1— a)M’
on {N 7L, T) > M.

Now since

(Y =1 for some k= 1,..., M} {NT(L,T) > M)
C{L+2nC£:f’”]d’w D x+ [—n,n]? for some 0 <t < T and x € {L +n} x [0,L)* "}
we get by using that disjoint parts of the graphical representation are independent,
(6.14) and (6.23)) that

IP(LJFQHCE;T{’"V’@ D x4 [—n,n]? forsome 0 <t < T and x € {L +n} x[0,L)" )
>(1=68)(1—@28)% .

By choosing § accordingly the proof is finished and yields the claim. m

6.2 Comparison of CPDP to an oriented site

percolation on a macroscopic grid

In the last section we formulated Condition [6.1.2] The events used in this condition
only depended on the graphical representation in a large space-time box. We also
showed that the possibility of survival of the CPDP implies this condition. The goal of
this section is to prove that equivalence holds, i.e. we show that Condition implies
survival of the CPDP.
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The strategy is to use Condition to define so-called good blocks and with that to
construct an oriented percolation model which is coupled to the CPDP in the sense
that if percolation occurs it implies that the CPDP survives. We “stack” the good
blocks in such a way that an (-infection path exists which connects (0, 0) to co. For
this argument to work at the end of each block (in time direction) one uses the Markov
property to restart the CPDP in an adequate initial state. We will see that every time

we restart, we need to set the background to ) as its initial configuration.

But first we need to combine ([6.1) and (6.2]) into one, since it is more convenient to

have a single condition which a good block has to fulfill. We consider the event

As = As(n, L, T) := {2L+2n(3,[f"’”}d’qJ D x + [—n,n]? for some T < t < 2T

(6.27)
and z € [L+n,2L + n] x [0,2L)" '}

Similar as before we illustrate in the cross section in direction of the first
coordinate of the event in (6.27). This event states that we start with a space box of

| ] | [N | | »

T N \ I > 1
—(2L 4 2n) —-n 0 n L+n 2L +n 2L+ 2n

Figure 6.2: Visualization of the events in (6.27]). The blue space-time box shows the
area where the infected space box of length 2n will be contained.

infected sites, here [—n,n]? in the worst possible background configuration, then we
find again such a infected space box at some later time shifted at least by L + n and at

most by 2L 4+ n to the right along the first spatial coordinate.

Proposition 6.2.1. Suppose Condition[6.1.9 holds. Then for every ¢ > 0, there are
choices of n, L, T such that P(A3) > 1 —e.
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Proof. For € > 0 we choose n, T, L such that Condition [6.1.2] is satisfied. Now let 7
be the first hitting time such that

L+2nC[;”’”]d’@ D x + [—n,n]? for some x € {L +n} x [0, L) (6.28)

If 7 < oo we choose y = y(7) € {L + n} x [0,L)%! to be one site such that
L +2n(j[fn’n]d’@ Dy + [—n,n]¢. If y is not unique, we choose it minimal with respect to

an arbitrary order on Z?, which we picked beforehand. Out of notational convenience
we set I(L,n) := [L+n,2L +n] x [0,2L)%!. We see that

2L+2nC£_"’n}d’® D+ [-n,n] for some T+1<t<2T+2and z € I(L,n)}
{r<T+1}n {2L+2ncgﬁfﬁj’@ O 2+ [—n,n]? for some x € I(L,n)}, (6.29)

where we used for this inclusion the fact that if the process satisfies the event A, and

then afterwards, a time and spatially shifted version of A; it also satisfies the event As

(see [Figure 6.3|for a illustration). Furthermore,

P{r<T+1}n {QLH”C[TT;Z];I’@ Dz + [—n,n]? for some z € I(L,n)})
= [1{T§T+1}P<2L+2nc’[l“_f77—r—ﬂ?® O x + [-n,n]? for some x € I(L,n)|F,)]  (6.30)
>P(r <T+1)P({ LMCL;fl’"]d’@ Dz + [—n,n]? for some z € [0,L)?} ),

—A,

where we used in the last inequality and the strong Markov property to restart
the process at time 7 with (y + [—n,n|?, () as initial state, which yields a lower bound
by monotonicity. This is possible since we are on the event {7 < T + 1}. Note we also
used the spatial invariance to shift the process back to the origin. Furthermore, we
shrank in the last inequality the truncation of the process from [—2(L + n), 2(L + n)]¢
to [—(L +n), L + n]% This is no problem since by monotonicity the probability only
gets smaller. By Condition we know that P(7 <T+1) > 1—cand P(A4;) > 1—¢.

This fact together with (6.29)) and (6.30)) yields that

dforsomeT+1§t<2T+2

P nC[fn’"}d’w D a4+ [—n,n] > (1—¢)2
(2L+2 ' and x € [L +n,2L +n] x [0,2L)%"

Now set 7" := T + 1 and replacing (1 — ¢)? by 1 — ¢ yields the claim. O
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|

—(2L + 2n)

T
2L+ 2n

Figure 6.3: Here it is illustrated how Az is constructed by first using Ay and then
Ay, where we restart the process with only a copy of [—n,n]? being infected and the
background in the state (.

Since we finally obtained our key ingredient Proposition [6.2.1] we are ready to start

with the construction. Let us set
Dj,k = [_(1 - Qj)aa (1 + 2.7)(1] X [_aa a]d_l X [5kb7 (5]{: + 1)b]7
where j,k € Z and a,b > 0.

Proposition 6.2.2. Suppose Condition [6.1.9 holds, then for every ¢ > 0 there are
choices of n,a,b with n < a such that if (z,s) € D,

P(3(y,t) € Djt1p41 s-t. there are O-infection paths that stay in
([=5a, 5a] + 2ja) x [—5a,5a]" x [0,6b] and goes from
(z,8) + ([=n,n]* x {0}) to every point in (y,t) + ([—n,n]* x {0})) > 1 —e.

Proof. Without loss of generality we will asume that j, k = 0, since we can obtain the
result for arbitrary j, k by shifting the construction which follows below by a suitable
space-time shift. One important fact we need to mention is that even though is
formulated in such a way that x is in the the box [L+n, 2L+n|x [0, 2L)%! by symmetry
we can replace this box by every box obtained via reflection about a coordinate plane in
7 (see. The idea is that we apply the event A3 repeatedly to move the centre
(z, 5) of the initially fully infected hypercube, where x € [—(2L +n), 2L +n]?, in five to
ten steps to a new centre (y,t) with y € [2L +n, 3(2L +n)] x [ (2L +n), (2L + n)]*" 1.
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We visualized the procedure in Figure [6.5. For € > 0 let n, L,T" be chosen such that
(6.27) is satisfied. Let a = 2L + n and b = 2T. The construction proceeds as follows:

1. Concerning the coordinates 2 < ¢ < d we will use that we can reflect about the
coordinate planes, so if the initial center at any step is (z,r) and z; > 0, then we
will move the box in the negative direction and if z; < 0 in the positive direction
(see Figure . The centre is moved at most by 2L, so by choice of a we will

}dfl

never leave [—a, a with this procedure.

2. Concerning the first coordinate at the beginning we will move it always in the
positive direction until the center of the infected box is contained in [a, 3a] (see
Figure . Since we move the centre of the box by at least L +n and at most
2L + n, by choice of a this is achieved after at most four steps. Then assume that
(k,r) is the centre of the fully infected box. If z; > 2a we move it towards the
negative direction and if z; < 2a towards the positive. Again by choice of a the

centre will not leave [a, 3a].

This procedure is carried out until the time coordinate r of the centre of the infected
box (z,7) is contained in [5b, 6b]. By choice of b we see that this happens after five to ten
steps. Note that the construction only uses the graphical representation corresponding
to the sites and edges in [5a, 5a]? and the truncated edge set Es,. Furthermore, the
subsequent steps take place on disjoint time intervals. Analogously as in the proof
of Proposition after each step we restart the process with (z,7) + [-n,n]¢ as
initially infected individuals and the background in the state ), i.e. all edges closed.
Since disjoint parts of the graphical representation are independent, this yields that we

succeed with at least probability (1—¢)1°. Change ¢ accordingly and we are finished. [J

P

| =

] ]

time point ¢

time point 0

Figure 6.4: Here we visualized for d = 2 the space cross-cut at time 0 and ¢. The
green boxes are the reflections about the coordinate planes. The blue box is the area
where the infected box of side length 2n is contained.
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(v, )

(lZ’T)J Tt

Ti
>

—
@.9)

(a) First coordinate: Start in (z,s) use to find (b) All other coordinates: Assume z; =

infected box around (z,7) restart at this point and use 0, while using successively reflect

successively . along the coordinate plane if i-th coordinate
changes its sign. Note that after achieving
x1 € [a,3a] we apply this strategy to the
first coordinate as well until ¢ € [5b, 6]

Figure 6.5: Visualization of the construction in Proposition m

Remark 6.2.3. The proof of Proposition [6.2.2] also yields that a “reflection” of the
statement holds true, i.e. we reflect the whole construction in the direction of the first
coordinate at (2ja,0,...,0) € Z¢ such that at the end (y,t) € D;_1 11

The idea is to switch to the “macroscopic” grid {(j,k) € Z x Nq : j + k even}, where
we identify the points (j, k) with the space-time boxes

S;r=[a(12j — 1),a(12j + 1)] x [—a, a]d_l X [30kb, (30k + 1)b] = Dé; 6k

Heuristically speaking, we will declare (j, k) to be open if we find an appropriate
translation of [—n,n|? in this box, which is completely infected. For a,b > 0 as in
Proposition let w(j, k) := ((12ja,0,...,0),30kb) € Z* x Ny and set

ME(, k) = (U ([=5a, 5a] = 2la) x [~5a, 5a]*" x [51, (5] + 1)b]) +w(j, k).
=0

See the solid boxes in Figure [6.6] for a illustration.
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Next we formulate the events which are fundamental for our construction. For a point
(x,5) € Sg.m we define

B* = B*(j, k, (v,5)) := {El(y,t) € Sj11 441 and there are
() — infection paths that stay in M*(j, k)
and go from (z,s) + ([—n,n]* x {0}) (6.31)

to every point in (y,t) + ([-n,n]? x {O})}

For these events, similarly to Proposition [6.2.2] we show the following lemma.

Lemma 6.2.4. Suppose Condition [0.1.9 holds, then for every € > 0 there are choices
of n,a,b with n < a such that if (x,s) € S;, P(B*) > 1 — ¢, where (j, k) € Z x N,.

Proof. This is a direct consequence of Proposition So if (z,s) € Sk = Dej ks
then we let for € > 0, n, a, b be the choice such that we get with a probability larger
than 1 — &’ that there exists an (2,7) € Dgjr1,664+1 such that there exist (-infection
paths from (x, s) + ([=n,n]¢ x {0}) to all points in (z,7) + ([=n, n]¢ x {0}). There does
not necessarily exist a unique point (z,r), if there is more than one point, we just take
the earliest and if that does not yield a unique point we minimize the space coordinate
according to an arbitrary order on Z¢, which we fixed beforehand. Next we use this
procedure again on (z,7). We repeat this procedure in total six times successively. For
visualization take a look at the solid lined boxes in [Figure 6.6 Then, similarly to the
proof of Proposition [6.2.2] by choosing &’ > 0 correctly we get the statement that for
every € > 0 there are choices n, a,b such that P(BT) > 1 —e.

The same statement holds for B~, where we want to point out that one can use the
same procedure just with the reflected events, see Remark O

Note that the boxes B* only depend on a finite sector of the graphical representation
and only overlap with the adjacent boxes (see [Figure 6.6)). At first this last step seems

a bit redundant, since we could very well work with the events defined in Proposition
6.2.2, but with this additional step we made the dependency between the respective

events clearer. Now we are ready to prove the main theorem of this section.

Theorem 6.2.5. Suppose Condition[6.1.9 holds. Then for every q < 1 there are choices
of n,a,b such that if the initial configurations Wy C 27, and Cy = C' satisfy

jEWy = C Da+[-n,n]* for some x € [a(12] — 1),a(12] + 1)] x [~a,a]™" (6.32)
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then {(Cy,By) : t > 0} can be coupled with an oriented site percolation {Wy : k > 0}

with parameter q such that
jEW, = C;Da+[-n,n]" for some (z,t) € Sjx (6.33)

In particular this implies that the CPDP survives.

Sj_ 141 Sjp1i41

k4141 ! | /

Figure 6.6: Here we see a visualization of the space-time boxes B* (defined in (6.31))),
where the solid line visualizes the box B*(j,k,-). We also see that B (j, k,-) only
overlaps with B~ (7, k, -) and B~ (j+2, k, ), where the dotted lines visualizes B~ (j+2, k, -)
and the dashed B (j — 2, k, ).

Proof. The construction of the oriented site percolation is similar to |Ligl3, Theorem
2.23]. The idea is that we construct our percolation model recursively with the help of
Lemma [6.2.4] Thus, let for an arbitrary € > 0 the numbers n, a, b be the choices done
in the Lemma Note that since the events we use are not independent we need to
use a comparison of independent and locally dependent Bernoulli random variables to

obtain an independent oriented site percolation in a second step, as we desire.

We will now construct random variables (X;(k),Y;(k)) with £ > 0 and j € Z. These
variables X (k) will either be 1 if there exists a (z, s) € S; such that (z, s)+ ([—n, n]? x
{0}) is infected and otherwise 0. Additionally if such a point exists we set Y;(k) = (z, s)
and if not Y;(k) = 1, where { is a designated state such that the state space of these
random variables is {0,1} x (Z? x [0,00)) U {1}
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Without loss of generality we will assume that Wy = {0}. By assumption (6.32)) there

exists an zy such that (z¢,0) € Spp and x¢ + [—n,n]? is initially infected. We set

(X0(0),Y5(0)) = (1, (z0,0)) and (X;(0),Y;(k)) = (0,1) for all j # 0. Now with respect
to k we recursively construct these random variables. Suppose that (X;(k),Y;(k));jez

are defined for all £ < m, then we proceed with the step m — m + 1.
1. If X;_1(m) =0 and X;1(m) =0 then we set (X;(m+1),Y;(m+1)) = (0,7)
2. We set X;(m+1) = 1 if either X;_{(m) =1 and the event B*(j —1,m,Y;_1(m))

occurs and/or X;1(m) =1 and B~ (j + 1,m,Y;+1(m)) occurs.

Again the events BT (j —1,m,Y;_1(m)) and B~(j+1,m, Y;+1(m)) only guarantee
existence of a point (y,t) € Sj11 such that (z,7)+ ([—n,n]? x {0}) is completely
infected, but there might exist more than one. We set Y;(m + 1) as the smallest
space-time point (y, t), smallest in the sense that we take the earliest with respect
to time and if that does not yield a unique point we minimize according to an

arbitrary but beforehand specified order on Z¢.

By this construction for fixed k& > 0 the set {j : X;(k) = 1} obviously satisfies (6.33).
Next let G,, be o-algebra generated from all (X;(k),Y;(k))jez with & < m. By the

choice of n,a,b made at the beginning of the proof we see that
P(X;(m+1)=1G,) >1—¢ on {X;(m)=1or X; 1(m)=1}.

Since B* only overlap with their adjacent boxes, by construction the (X;(m + 1));ez
are conditional on G,,, 3-dependent family of Bernoulli variables (see Definition .
By Theorem we find a families of independent Bernoulli variables such that we
can define a oriented site percolation W}, with parameter ¢ := (1 — )2 which satisfies
(6.32)) and (6.33)). Since € was arbitrarily we are finished. O

6.3 Consequences of the percolation comparison

In this section we can finally reap the benefits of all work we have done so far in Chapter [6]
First we prove that at criticality, survival is not possible and as direct consequence we
gain continuity of the survival probability. Then, we use Theorem to show that for
the CPDP the two conditions and are satisfied such that by Theorem
it follows that complete convergence for the CPDP holds true. Recall that we defined

in (L.12) the survival region as S := {(\,r, o, 8) € (0,00) : (A, r, v, 3, {0}, 0) > 0}.
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6.3.1 Extinction at criticality and continuity

In Section we showed some basic properties of the CPERE. In case of the CPDP
we have two additional parameters a and 8 for which we can easily deduce similar

monotonicity and continuity properties as for the infection and recovery rate A and 7.

Lemma 6.3.1 (Monotonicity with respect to the background). Let (C,B) be a CPDP
with parameters \,r,a, 3 > 0. Let a > «, then there exists a CPDP ((A},]?’)) with
parameter \,r,a, 5 and the same initial configuration such that C; C ét and By C ]§t
for all t > 0. In words C is monotone increasing in «. On the other hand C is

monotone decreasing in [3.

Proof. This follows with an analogous coupling as in the proof of Lemma [3.4.2] Since if
we consider & > «, then let =Sbirth b o Poisson point process on R x {birth. : e € E}
with intensity measure (@ — a)dt, i.e. all maps birth, occur with rate (@ — a), and
again let Shirth 1 independent of =, where = is the Poisson point process used in the
graphical representation of the original CPDP. Then set = = =4 Ebith apd proceed as

in Lemma [3.4.2] The monotonicity in [ follows analogously. O]

Remark 6.3.2. Obviously 7,3 = ma s if @ < @. Thus, if we consider the stationary
case, i.e. that Cy = C' C V and By ~ 7,3, then there exists an CPDP (G,E) with
parameter \,r, @, and Cy = C C V and ]§0 ~ 7a,p such that C, C 6,5 and B; C ]§t
for all ¢t > 0. This follows by first coupling the initial state of the background with

Theorem [2.1.12| such that By C ]§0 and then using Lemma and Lemma m

Lemma 6.3.3 (Continuity for finite times and finite initial infections). Let (C,B) be a
CPDP with initial configuration Cy = C' C V with |C| < co. Also let A C Dp([0,1])
fort > 0.

1. The maps o +— Pg\%ﬁ?ﬁ((cs)sgt € A) and 3 +— Pg\iﬁ?ﬂ((cs)sgt € A) are contin-

uous, where By = B.
2. If By ~ Tap, then a v PO ((C,)e € A) and = PST0 ((C,)per € A)

are continuous.

Proof. 1. The proof for o and ( is similar to the proof of Lemma [3.4.4l Again
we will only prove the statement for the function o — P, 5((Cs)s<t € A),
since the statement follows similarly when varying 3 as a variable with just a few

obvious changes.
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Let (6, ]§) be the CPDP that has the same rates and initial configuration as
(C, B) with the exception that the rate « is substituted with & > «. This process
was constructed in the way such that C; C ét and B; C ]§t for all ¢ > 0 and also
Co= 60 and By = ]§0. Here again it suffices to show that as @ — « it follows
thatP(Cy # C, for some s < t) — 0.

Set Yi(z) = #{y € C, : {x,y} € ]§8,{a@y} ¢ B}, which is the number of
infected neighbors of x at time s that could infect z according to ﬁs, but not
with regards to B,. For the process C and C to differ, an additional infection

path must have been started by an infection event (s, inf,,) € Z™ such that
{z,y} € B, and {z,y} ¢ Bs. Thus it again holds that

P(C, # C, for some s < t) =1 — ]E[exp ( — /OtZY;(Q:)ds>].

zeV

Now let C be again the classical contact process with infection rate A and recovery
rate 7 constructed via =™ and 2 (see Remark [2.3.2), thus C; C C; for all £ > 0.

Obviously the classical contact process C is independent of B and ]§, and thus

t t
E[/o ZYs(Qf)ds] SE[/O Z Z (]1{{cc,y}el§s} - ﬂ{{w,y}eBs})ﬂ{xeés}ds]

zeV zeV {z,y}€F

:Z Z /0 (P({z.y} € ﬁs) — P({z,y} € B,))P(z € C,)ds

z€V {zy}€E

gKIE[/t |€s]ds} < 00.
0

Since every edge e flips from open to closed and vice versa independently we see
via the coupling that it follows P(e € B,) — P(e € B,) — 0 as |& — a| — 0 for
every e € F and every s > 0. So by the same inequality as in the first part and

by dominated convergence we see that

t
P(C, # C, for some s < t) < ]E[/ ZYs(x)ds] — 0
0

zeV
as |@ —al — 0.
The proof for continouity of 5+ Py, 4 5((Cs)s<t € A) follows analogously.

. The difference to 1. is that the invariant law depends on « and 3, and thus in

this case the initial distribution of the background also changes if we vary a or .
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So let us assume By ~ 7, 3. Recall that every edges e is open with probability

QLJFB and closed otherwise. Now it holds for

-~

<ase @ < @
a<a =
- a+0 - a+p

Let (Z(e))eer be family of independent Bernoulli random variables such that

~

(e (0%

Pz =V=375"a+73

Now we set ]§0 =BoU{e € E: Z(e) =1}. Obviously ]§o ~ ma,p and By C EABO
almost surely. From this point we can proceed as we did before by using the
coupling out from the proof of Lemma m to construct a CPDP (6, ]§) with the
desired rates and C,; C (Ajt and B; C ]§t for all £ > 0. Where we have the slight
difference we have Cy = 60 and By C ]§0 almost surely instead of equality. Thus
the initial state of the two background process are not the same as before. But
by the coupling we know that we have again that P(e € ]§5) —P(e € Bs) -0 as
| — a| — 0 for every e € FE and every s > 0. Thus, from here on we can apply

the exact same proof strategy as above. O]
We are finally ready to show that survival is impossible at criticality.

Proof of Theorem [1.4.17. As we already mentioned at the end of the proof of
Proposition the “block”-events only depends on a bounded section of the graphical
representation, but by Lemma and Lemma we get that IP,\maﬁ(Bi) is
continuous seen as a function of any of the four parameters. Let us take as usual the
infection parameter A as an example. By Proposition we know that for every
e > 0 we find a, b, n such that Py(B*) > 1 — ¢, then because of continuity there must
exist a A < A such that Py(B%) > 1 — ¢ as well and then by Theorem it follows
that the CPDP also survives with A’. This proves the claim. O

Recall that we call a function f : R C U — R separately continuous if it is continuous
in each coordinate separately. In comparison to that one calls f jointly continuous if it

is continuous with respect to the Euclidean topology on R

Proposition 6.3.4. Let C' C V with C finite and non-empty and B C E.

1. The survival probability O(\,r, o, B, C, B) is separately right continuous seen as a

function in (\,r,«, B) on (0,00)%.
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2. The survival probability O(\,r, «, B, C, B) is separately left continuous seen as a

function in (\,r,c, 5) on S.

Proof. We already showed right and left continuity in A and r on the respective

parameter sets in Proposition [5.3.2| and [5.3.4] Right and left continuity in o and 5 can

be shown by the same approach. O]

We have seen that Corollary [1.4.17 states that the infection process C cannot survive at
criticality. As a consequence of this fact we can conclude that the survival probability

is jointly continuous with respect to its parameters (\, 7, «, [3).

Proof of Corollary Theorem shows that the survival probability is
separately left continuous seen as a function in the four parameters (A, r, a, 5) on S
and is separately right continuous on (0,00)%. Now let us again exemplarily prove
continuity of A\ — 0(\,r,«, 5,C, B). The proof is analogous for the remaining three
parameter. By Proposition it is clear that the function is every continuous expect
at criticality. Now obviously in case of A the left limit at criticality exists, since we
come from the subcritical parameter region where the survival probability is constant
0. But by Theorem we know that the CPDP almost surely goes extinct at
criticality, which means that the survival probability is 0. But with that we have
shown that the left limit and the right limit at the critical value are the same since
A= O\ 7, a,,C, B) is right continuous on (0, c0) by Proposition and thus, the

function is continuous.

Now we know that the survival probability is separately continuous seen as a function
of the four parameters. But we also know that the function is monotone in each
coordinate, so we can use [KD69, Proposition 2], which states that if a function is

continuous and monotone in each coordinate, then it is jointly continuous. O]

6.3.2 Complete Convergence of the CPDP

We start by showing that the second condition (1.9) holds true, which is proven by the

next proposition.

Proposition 6.3.5. Suppose (\,r,, 8) € S, then for every x € 7,

lim lim inf ]Pﬁfg’”)(ct NB,(z) #0)=1.

n—oo t—o0
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Proof. By translation invariance it suffices to prove the claim for x = 0. For d > 2
the claim follows analogously as in the second part of the proof of [Ligl3, Theorem

2.27]. Hence, we only need to consider d = 1.

Again by Theorem for every 0 < ¢ < 1 there exists n, a, b such that an oriented
site percolation (Wy)r>o with parameter ¢ exist, which satisfies (6.32)) and (6.33)). Now

let us consider the set D,, = (—15am — 2, 15am + 1). By construction of the oriented

site percolation in the proof of Theorem (see [Figure 6.6 for a visualization) it

follows that for m > 0,

lim inf P9 (C, N D,, # 0) > lilgn inf PUm-m (W N {—m,...,m} #0), (6.34)
—o0

t—o00

since the infection is always contained in the blocks B*. By Theorem we get that
the right-hand side in (6.34)) convergences to 1 as m — oo. O

Now it is left to prove that (1.8]) holds true. We will split the prove of this condition in
two parts. First we show that with Theorem that a positive survival probability
already implies that the probability that a single site is infinitely often infected is

positive as well.
Proposition 6.3.6. Suppose (\,r,«,8) € S, then ]Pf\ig)ﬁ(x € C; 1.0.) > 0 for all
x €V and all non-empty C CV and B C E.
Proof. We will now show that if ({0}, ) > 0 then
P8 (1 € C,1.0.) > 0, (6.35)
where C' C V and B C E. By monotonicity we see that for any y € C|
PEB)(z € Cyi0.) > P (z € C, i0.).

Recall that the stopping time 7, = 7,({y},0) was the first time that at least the site x
is infected with initial configuration ({y}, ) (see (5.19)). Since we consider a CPDP,
we know that P4 (2 € C,) > 0 for all 2,y € V, and thus PUH) (7, < 00) > 0. By
the strong Markov property we see that

P (1 € C, i.0.) > PUH (7, < 0o)PEH (1 € €, i0))
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Thus, by translation invariance to show (6.35)) it suffices to show
PN (0 € C, i.0.) > 0. (6.36)

Analogously as we just did let 7,, = 71_,, ,;a({0}, () be the first time that at least all

d

sites in [—n,n]* are infected with initial configuration ({0}, (). We can conclude in the

same manner that PU%H) (7. < 00) > 0, and thus by the strong Markov property
PO (0 € C, i0.) > PUOM (1) < oo)P71"D(0 € C, i0.).

By Theorem we know that for every 0 < ¢ < 1 there exist n,a,b and an oriented
percolation (Wy)k>o with parameter ¢ such that (6.32) and (6.33)) are satisfied. By
choosing ¢ close enough to 1 Theorem (i) shows that infjso P{%(0 € Wy) > 0.

Now by Fatou’s lemma

P (0 € Way, 1.0.) > limsup P (0 € Way,) > 0.

k—o00

Thus, by (6.32)) and (6.33)) with positive probability for infinitely many k
el 5 g [—n,n]? for some (z,t) € So.

It is clear that P(z € C,[f_n’n]d’w) > 0 for every x € Z¢ and that this probability is
continuous in ¢, since (C,B) is a Feller process, and therefore for any compact set
K C Z% x [0,00) we see that

i POECTT) = int P(r e i) >0,
where we again used translation invariance and symmetry. This implies that every time
a hypercube of side length 2n, which is bounded away from 0, is completely infected,
there is a positive probability that O gets infected from this hypercube after a time step
of length 1. Then can be shown analogously to Lemma [5.2.4] and |5.3.3], which
means that we utilized a generalized version of the Borel-Cantelli Lemma to show that
the event {0 € clmnl™d

i.0.} happens almost surely on the event
{CE‘"’"]d’“’ D + [~n,n]? for some (v,t) € Sy, for infinitely many k}.

With this argument we have shown ([6.35]), i.e. we have shown that ({0}, () > 0 implies
PEB)(z € C;i0.) > 0. O
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Next we will show that if we have a positive probability that a single site is infinitely
often infected we can already conclude that ((1.8) holds true. Note that the following

result actually holds true for general CPERE on the d-dimensional integer lattice.

Proposition 6.3.7. Let (C,B) be a CPERE with infection rate A > 0 and recovery
rate v > 0 on the d-dimensional integer lattice, i.e. G = (Z* E). Suppose that
IPES’;’B) (x € Cy i.0.) >0 for all z € V, all non-empty C C'V and all B C E, then

Pg?;B)(x € C; i.0.)=0(\r,C, B).

Proof. First, we observe that {z € C; i.0.} C {C; # 0 ¥Vt > 0}. Thus, to show the
claim we need to show the converse inclusion. In principle this can be shown analogous
to the first part of the proof of [Ligl3, Theorem 2.27]. We will now adapt this prove
to our setting, where we need to take the background into consideration. First we set

A :={0 € C, i.0.} and show the inequality
P(A|F,) = PCB)(4) > P00 € C, for some t > )P (M1 ccy  (6.37)

for every x € Z®. For that let us consider 7 := inf{t > 0:0 € C;}, i.e. the first time 0
got infected. By the Markov property we know that P(A|F,) = P(CsBs)(A), and thus

we see that

where we used monotonicity in the first inequality and the tower property in second.
Now using the strong Markov property, by (6.38)) it follows that

P(CBI(A) > BPC-B) (M), oy] > B[P ()1 ] on {z€C,}, (6.39)

where we used, in the second inequality, again that the CPERE is monotone and that
by definition 0 € C,. Now we see that (6.37)) follows by (6.39)).

Since we assumed that P¢Z({0 € C; i.0.}) > 0 for any non empty C C V and B C E,
by translation invariance of the background B we know that P40 (2 € C;) > 0 for

any x € Z%. Thus, by using symmetry of Z¢ and translation invariance we see that

PU=H(0 e C, for some t > 0) = PUOD (1 € C, for some t > 0) > PUOHD(4),
(6.40)
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where we used Lemma in the last inequality. Now ([6.37)) together with (6.40|) this
implies that

P(A|F,) > (PUOMD ()16 gy

But by assumption we know that PUH0)(A) > 0. Furthermore, by the martingale
convergence theorem it follows that P(A|Fs) — 14, since A is an element of the tail
o-algebra. But this implies that {C; # () Vt > 0} C {0 € C; i.0.} almost surely. [

Finally we are able prove that complete convergence holds for the CPDP on the whole

parameter set (0, 00)%.

Proof of Theorem [1.4.19L Suppose (A, 7, «, 3) € S, then by Proposition|6.3.5] Propo

sition and Proposition we know that (1.8)) and ((1.9) are satisfied, and thus
by Theorem [1.4.15]it follows that

(CP.BP) = (1-0(C,B)) (@) + 0(C,B)T  ast — oc.

On the other hand if (A, 7, a, 8) € 8¢, then by Proposition[5.1.6]it follows that 7 = g @.
Thus, by Proposition follows that (C;*”, BE) = §y®m ast — co. By monotonicity
shown in Lemma we then know that (CY"F BP) = §y@mast — coforall C C V
and B C E, which proves the claim. [

We conclude this chapter by showing that for a general CPERE on the d-dimensional
integer lattice, complete convergence holds on a suitable subset of its survival region.
To be precise this subset will be the survival region of a suitable chosen CPDP, which
lies “below” the CPERE. Here we will again use the subscript DP since we need to
distinguish between a CPERE and a CPDP.

Proof of Theorem [1.4.20l Let (C,B) be CPERE with infection rate \, recovery
rate 7 and the background process has spin rate ¢(-,-), recall from (1.4 the rates
Qumin = Minpcpz q(e, F) and Buax := maxpcpe qe, F'U {e}). By Proposition W
there exists a CPDP (C, B) with rates amin, Omax and the same initial configuration as
(C,B), i.e. Cy = C, and By = B, such that C, C C; and B, C B, for all t > 0. This
implies that

P(x € C, i.0.) < P(z € C; i.0.) (6.41)

By assumption Opp (A, 7', Gumin, Bmax, 10}, @) > 0, and thus by Proposition[6.3.6/and (6.41])
it follows that IPE\(:;’B) (z € Cyi.0.) > 0 for any finite and non-empty set C C Z<¢ and
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any B C E. Furthermore, by Proposition it follows that the first condition (|1.8))
holds. Now it follows analogously by the fact that C, C C; and B, C B; for all t > 0
and Proposition that is satisfied. Since we assumed that (i)-(4i7) of Assump-
tion are satisfied Theorem implies that if Opp(\, 7, Amin, Omax, {0}, ) > 0,
then

(COP.BP) = (1—0(\,r,C, B)) (0 @ m) +0(\,1,C, B)w

forall C Cc V and all B C F. O



Chapter 7

Contact process on a dynamical long

range percolation

7.1 Construction of the CPLDP via a graphical

representation and further applications

The CPLDP cannot be constructed in exactly the same way as we constructed the
CPERE on graphs with bounded degrees, where we relied on the graphical representation
as introduced in Section [2.3] The reason for this is that we want to allow transmission
of an infection between each pair of vertices z,y € V if the edge connecting them is
open at the time of transmission. Thus, it is fairly obvious that the rate bound is
not satisfied since we would draw maps coop,, , for every z,y € V with z # y with a

positive but fixed rate A.

It is still possible to construct the CPLDP via a graphical representation, if we consider
a setting where most connections {z,y} € £ are closed. We basically need to ensure
that [{y € V : {z,y} € B;_}| < oo for all t > 0 and all z € V, i.e. all vertices x have
almost surely a finite degree at all times. We will see that Assumption guarantees
this. Recall that this assumption states that

D VenPeay <00 and Y vl < oo

yev yeVv

for all z € V. Now we start to construct the CPLDP. The long range dynamical
percolation itself can be defined via the graphical representation described in Section
by considering the maps birth.(B) := B U {e} and death.(B) := B\{e} with

respective rates rpipth, = UePe aNd T'death, = Ve(l — Pe), where e € £ and B C €. Thus

143
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the set of maps is Mpp := {birth, : e € £} U {death, : e € £} and we denote the
Poisson point process on Mpp x R with the corresponding rates (r.,)mempp DY ZppP-
Obviously Assumption implies that the rate bound is satisfied since for any
e € € only two maps m exist such that e € D(m), and thus we obtain a Feller process
B on the state space P(€) with jump rates , i.e. the process has transitions

B, =B — BU{e} at rate 0.p. and
B,. = B — B\{e} at rate 0.(1 — p.).

Next let {z,y} € £ and define the map

AUAx, ifre Aorye A
inf, (4) = 40 Y Y
A otherwise ,

where A C V' and recall the recovery map rec, from Example and let the rates

be ring , = A >0 and 7pec, =7 > 0. Now set

{z,y

M* = \{inf?x’y} A{x,y} € S}JU {rec, :z €V}
:'/\‘/r[fk :Mrec

inf

We denote again by =™ the Poisson point process on M, x R corresponding to

the infection events, where the intensity measure is determined through the rates

(Tm)memz . and = on M. X R for the recovery events and the rates are (7 )mem;e.-

Remark 7.1.1. The difference between the maps inf ?x,y} and inf, , from Example
is that the action of infy, , causes x to infect y and vice versa. Thus, if either of = or
y is infected afterwards both sites are infected. On the other hand inf, , only causes z
to infect y. It is not difficult to see that we could also use infy, , instead of inf, , in
Example and we would still obtain the classical contact process, see Figure
for a visualization. We change the maps here only for technical reasons. For some
results in Chapter [0] it was important that we were able to identify in which direction
the infection arrow points. In this section it is more convenient to use the infection
maps inf ’{‘mjy}. Since this enables us to use the comparison results developed by [Bro07]

in the next section.

Definition 7.1.2 (Infection path). Given space-time points (y, s) and (z,u) with u > s
we say that there is an infection path from (y,s) to (z,u) if there is a sequence of

times s =ty <ty < --- <t, <t,11 =wu and space points y = xg, x1,...,T, = T such
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that, (inff,,  .,.t) € supp(Z) and {zy, 2311} € By, for all k € {0,...,n} and
supp(2°) N ({recy, } x [t ter1)) = 0 for all k € {0,...,n}. We write (y, s) — (z,u)

if there exists an infection path.

Now we define the infection process by
CY :={z €V :3y eV such that (y,0) = (z,1)}, (7.1)

where ¢ > 0 and we set C§ := C' C V. By definition it is not clear yet if this process is
well-defined in the sense that if we start with a finite initial set it stays finite for the

whole time.

Lemma 7.1.3. Suppose Assumption [1.4.21] is satisfied. Let C C V' be finite, then
|CY| < oo almost surely for all t > 0.

Proof. Let us consider B; := | J,, B¢, which is the set of all e € £, which were open
at least once between time 0 and ¢. The process B’ = (B});>¢ is again a Feller process
with transition B, = B — B U {e} at rate v.p.. This can be seen by just ignoring

every death, map in the previous construction. Now one can easily calculate that

Ell{y € V: {x.y} € B} = Y P({x,y} € Bo) + P({z,y} ¢ By) (1 - e Ftewr?omnt)

yev Sﬁ{m,y\}%{x,y}t
<Y Py 1D DegyPiay) < 00,
yeVv yev

where we used that the events ({e € Bg})ece are independent and Assumption
provides that the expression is finite. Now we can conclude that for every fixed ¢ the
graph (V,B}) is almost surely locally finite. Thus, analogously to Example we
can define a classical contact process X' = (X%),<; on the graph (V,Bj}) such that we

have transitions

X =A— Au{z} atrate \-|{y€ A:{zx,y} € B}, and
X! =A— A\{z} atrater,

where X{ = Cy = C. This definition is meant in a quenched sense, i.e. we first fix the
realization of B} and then define the classical contact process on the graph (V,Bj).
By definition B; C Bj for all ¢ > 0. Thus, we see that C; C X! for all s < ¢. But

since we know that (V,B}) is almost surely finite, we also know that |Cy| < |X!| < o0
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almost surely for all s < t. This is again a direct consequence of the construction in
Example [2.3.2 O

We chose the probability of an edge being open after an update to be of the form p. = qp.
and the update speed to be 0, = yv, for all e € £, where v > 0 and ¢ € (0,1). Thus,
the critical infection rate A.(r, 7, ¢) can be seen as function of -y, ¢ and the recovery rate.
Now we show, via the graphical representation, that the function v — v~ \.(r,q,7)
is non-increasing. This means that the critical infection rate A.(r,¢,7) can at most

increase with linear growth with respect to .

Proof of Proposition [1.4.22] Let (C,B) be a CPLDP with parameter A, v, > 0
and g € (0,1). Suppose that A > A.(r,7,q). If we rescale the time by sending ¢t — %t,

we get a process (C, B) with transitions

C,=C—-CuU{z} at rate%-]{yeét,:{m,y}eﬁt,}],
C,=C — C\{z} at rate %r,

B, =B — BU{e} at rate y'v.p, and

B, = B — B\{e} at rate y'v.(1 — p.).

Of course the time change has no influence on the survival probability, and thus the
critical value stays the same. If we assume that ' > 7, we see that the recovery rate is
bigger than r. Therefore, we can couple (é, ]§) via the graphical representation with a
CPLDP (C, ]A3) with parameter ’\77,, r, v and ¢ such that C, > (Ajt for all t > 0. Since
A > A(r, 7, q) we know that C has a chance to survive and through the coupling we see
that if C survives, so does C. This implies that 7,7’\ > Ae(r, 7, q) for all A > A.(r,7,q),
and thus %)\C(T,’y,q) > %)\c(r, v, q) for v/ > . ]

Next we formulate a comparison between a long range contact process and the CPLDP.
We will see that the long range contact process acts as a lower bound with respect to

survival, i.e if the long range contact process survives so does CPLDP.

But first, let us rigorously define a long range contact process. Let r > 0 and (a,)ees

be a sequence of positive real numbers such that )\, a3 < oo for allz € V. We

yev
assume translation invariance, i.e. that ag, 3 = agw yy if d(z,y) = d(2', '), and use the

convention that ay, .3 = 0.

We consider the set M* := {inf} : e € £} U {rec, : € V'} as the set of all possible
maps. Furthermore, we set M?,:= {inf} : e € £} and M, := {rec, : x € V}. We
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choose the rates to be riper = a. > 0 and 7pec, =7 > 0 for alle € £ and all z € V.
Note that the bound (2.1)) on the rates (7,;,)menm= is satified since

sup Z T (JRz(m)| + 1) < 3811‘[/) (ZG{W}) +r < o0, (7.2)
FAS

TV meM,D(m)3z yev

where we used in the first inequality that R, (inf7, ) = {z,y} for all y # z and that
Aoy} = Qo gy if d(2,y) = d(2',y') to conclude that the supremum of the sums is finite.
Thus, by the construction discussed in Section we obtain a Feller process X on the
state space P(V') and the jump rates are given by

X =C—CU{x} atrate Za{mvy} and

yeC
X =C — C\{z} atrater.

Next we show Proposition [1.4.23] which states that we can couple the CPLDP (C¢, B)

. <C . "
with a long range contact process X~ with transition rates

1
(N, 7, q) = 3 (A + Yo — /(A + yve)? — 4vepe)\7q>.

and the same recovery rate r such that Xf C C¢ for all t > 0.

Proof of Proposition [1.4.23] By Definition|7.1.2| we know that we only use potential

s >k
—inf

infection events (inf7, ,,t) € supp(=™" ) such that {z,y} € B, in an infection path,

i.e. only infection arrows placed on an open edge are valid. We set for all e € £
Yi(e) :=|{s < t: (inf?,s) € supp(E™) and e € B,}| and  X(e) := Licem,y-

Now we can identify the transitions and transition rates of the just defined process
(Y, X) quite easily. The state of Y;(e) depends on Xj(e), and thus has transitions

Yi(e)=n—n+1 atrate \X;_ =1,
The process X (e) is autonomous such that it has transition

Xi—(e)=0—1 at rate v.p. and
Xi—(e)=1—=0 at rate 0.(1 — pe).
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Now [Bro07, Theorem 1.4] together with Theorem [2.1.12] yields that there exists an
Poisson process Y, (e) on [0, c0) with rate @, such that Y;(e) > Y,(e) almost surely for

all t > 0. Since e was chosen arbitrarily this holds for every e € £, where

7, — %()\ i, — /O 807~ i, ).

*
inf

This means we find a Poisson point process =™ on M# . x R with intensity measure

s ek
—inf

Tmdt, where rines = @ > 0 for e € £ such that (inf],¢) € supp(E™ ) already implies
that (inf*,t) € supp(Z™F) such that e € B;.

Thus, via the graphical representation we can construct a Feller process X on P (V') with
respect to the Poisson point process =™ + Zf such that it has the required transition
rates and X € C¢ for all t > 0. Now it remains to show that X is well-defined. To

show this it suffices to verify ([7.2]). We see that

At oo\ 2\
o =S (1o - ) <

where we used that 1 —xz < /1 —x for 0 < z < 1. Since /\iv < 1 we see that a, < 2\p,.

But by Assumption |1.4.21|the sequence (piz4})yev is summable for every x € V, and
thus ([7.2)) is satisfied. O

Next we show that the rates (G.(),7,q))ces chosen in Theorem [1.4.23| converge as

v — oo and we provide the exact limit.

Lemma 7.1.4. Let the sequence (a.(X, 7, q))ecs be chosen as in Theorem|1.4.25. Then,
it follows that im.,_,o @ (X, 7, q) = Agpe for alle € €

Proof. Let us consider the function x +— /1 — z for 0 < x < 1. The Taylor expansion
at x = 0 yields that

\/1—:10:1—%—0(1:2).

Since (A + 0.)* > 40.\ is equivalent to (A — 0.)* > 0 we know that é&g:; € [0,1],

where we used that p. € [0, 1]. Thus, if we consider v as variable we see that

- 1 )
4yvePe _ AYVePe A -2
L=/l G = 5@1756)2 +0(v™),

where O(77?%) is meant with respect to v — oo. This implies that

_ A+ e VePed VePed -
a.(y) = 5 (1— 1 - fey ) = 32 1 07,
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A

Now we see that the remainder vanishes and /\r;ev — 1 as v — oo. Thus, @.(y) = Ape

as vy — 0. O

7.2 Comparison of a long range percolation model with

the dynamical long range percolation

In this section we will compare the dynamical long range percolation B blockwise to
a long range percolation model. The idea is that we partition the time axis [0, 00) at
each edge e € £ into equidistant blocks [nT’, (n 4+ 1)T"), where T'> 0 and n € INy. Now

we set

1 ife¢gB;forallte nT,(n+1)T
wp(e) == # B, InT, (n+1)T) (7.3)
0 otherwise,

which indicates whether an edge e was closed for the whole time period [nT, (n + 1)T).
We will simplify notation and write wy,(z,y) instead of w, ({z,y}) for {z,y} € £. The
idea is that we accept all infection events (¢,inf}) with ¢t € [nT, (n + 1)T") such that
wy(e) = 0. This leads to an infection process, which survives more easily than C, see
also the visualization of the graphical representation for the CPDP in [Figure 7.1] These
techniques are not new, they were already used by |[LR20| for graphs with bounded

degree. Here we adjust the arguments to graphs with unbounded degrees.

time time

b 0 1 0 1 0 b 1 1 0 1 0

gT--F-----fp-------f-------}-------F------= k- - -

b A RN - OIOH [Tt

ol 0 1 0 1 0 v 0l 0 1 0 1 0 %
0 1 2 3 4 0 1 2 3 4

Figure 7.1: Red lines indicate as usual infection paths. On the left hand side we
illustrated the graphical representation with respect to the background B. On the right
hand side we modified the background in such a way that the edges are only closed if
they were closed throughout a whole block of length [nT, (n + 1)T).
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Obviously (wn(€))mn,e)emoxe is not a family of independent variables. But at least we
know that w,(e) and w,,(¢') are independent as long as e # ¢’ for all n,m € Ny. So
dependence only occurs along the time line for a fixed edge. A lower bound on the
conditional probability that w,(e) = 1 given all previous states w,_i(e),...,wy(e)

already exists and was proven in |[LR20].
Proposition 7.2.1. LetT' > 0 be fized, then it holds for alln € IN that for everye € £
P(wn(e> = 1|wn—1(6)7 s 7w0(6))

_ﬁe'ﬁeT eff)eT + (1 - ﬁe)<1 — eiﬁeT) — efﬁef)eT
]_ _— @_Iae@eT

) = 0¢(7,¢,T) = be.

Z (1 - ﬁe)e
1 — e 0T

_ _ A —PeteT A
= (1 —pee (1 L pp——

Proof. See [LR20, Proposition 3.8]. O

Lemma 7.2.2. Let (X,,)nen, be a family of Bernoulli random variables such that

P(X, = 1| X0 1,...,X0) > g,

where q € (0,1). Then there exist an independent and identically distributed family of
Bernoulli random variables (X] )nen,, such that P(X] =1) =q and X,, > X, almost

surely for every n € INy.
Proof. First of all we set
pn<l’n_1, . ,.Io) = IP(Xn = 1|Xn_1 =Tp_1y--- 7X0 = ZL'())

for n > 1 and py = P(Xo = 1), where z,,_1,...29 € {0,1}. Let (xn)n>0 be a family of
independent and identical uniform distributed random variables on [0, 1] which are also

independent of the family (X,,),>0-

Next we iteratively define the desired family of random variables (X ),>. For that we
need to define a family of auxiliary random variables (Y},),>0. First let Y := 1 <01,
where qp € [0, 1]. Note that the exact value of ¢ is yet to be determined. This will
happen in the next step. Now set X{ := XyYy. We see that X < X, and that
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Thus, by choosing qq := pio we see that P(X{ = 1) = ¢. Next suppose that we already
defined X ., X{. We set

n—1y- -
P (Tp 1, ) =P(X,, =1X, =2, 1,...,X) = w0),

where z,_1,...29 € {0,1} and pj := po. Also let ¢,(-) be a function which maps
{0, 1} to [0,1] which is yet to be determined. We set Y,, := 1\, <q.(x/_,....x;); and
X = X,Y,. It is again immediately clear that X] < X,,. Now we see that

P(X, =1X. |,... . X)) =PV, =1,X,=1X,_,,....X})

By choice x,, is independent of (X} )r<n—1 and (Xj)g<n. The random variable Y, is a
function of x,, and all (X} )r<n—1 and X, is a function of all (Xj)r<,—1. This yields

that Y,, and X, are conditional on (X} )r<,—1 independent, i.e.

P(X! = 1|X! o X0 =P(X, = 1|X o XOP(Ye = 11Xy, XD)
=g (X 1, X (X) 1. X))

Thus, if we choose g,(X)_1,...,X{) =q- (pL,(X}_1,. .. ,X(’)))fl, we get that

Since the right hand side is independent of the values of X{,..., X, ; it follows that
X is independent of (X} )r<n—1. Furthermore, if we take the expectation of both sides,
we get that P(X! = 1) = ¢. What is left to show is that p/, (X, .., X{}) > q, since

n—1o -

otherwise ¢/, (X ., X{) > 1. By the choice, the family (x»)n>0 is independent of

n—1y -

the family (X,,),>0, and thus we see that

IP(Xn = 1‘anla s 7X07Xn717 s 7X0) = IP(Xn = Hanla s 7X0) > q.

But we know that the (X} )r<,—1 are functions of the (X)r<n—1 and (xx)k<n—1. This
implies that G, | == o(X}, : k <n—1) C o(Xi,xx : £ < n—1), and therefore by

taking the conditional exception with respect to G;,_; on both sides it follows that
Po(X) 1 X)) =P(X, =1X, ..., X)) > q.

This concludes the proof. [
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The bounds derived in Proposition together with Lemma enable us to
compare (wy(€e)),>0 with a family of independent and identically distributed Bernoulli

random variables.

Corollary 7.2.3. Let T > 0 and (w,(€))me)enoxe be defined as in (7.3). Then
there exists a family of independent Bernoulli variables (w),(€))m eyemoxe such that
P(w!,(e) =1) = d. and wy(e) > w (e) almost surely for all (n,e) € Ny x E.

Proof. This is a direct consequence of Proposition Lemma and the fact

that w,(e) and w,,(e’) are independent as long as e # ¢ for all n,m € IN. O

Since we want to formulate a comparison with a long range percolation model, we
will now briefly introduce this model and summarize some fact about it. First let us
clarify the notation. Recall that the graph G = (V| E) is transitive, connected and has

bounded degree. Furthermore, we again denote the set of edges of all lengths by

E={e={z,y} CV:x#y}

The long range percolation model is defined on (@), .{0,1}, F, i) where @, {0, 1}
is the sample space, F is the g-algebra generated by the finite-dimensional cylinders
and p = [[,ce pte with p({1}) = b € [0,1]. Now w € @), .-{0,1} is a realization
of the long range percolation model. We declare an edge e = {z,y} € £ to be open
if w(e) = 1. Then with probability by, ,, > 0 the edge between z and y is open.
Furthermore we assume for every fixed x € V' that ZyEV biz,y < 00 to guarantee that
(V,w™({1})) is a locally finite graph, where w™'({1}) = {e € £ : w(e) = 1}. Note
that we use the convention by, ,3; = 0 for all z € V. Furthermore, we again assume
translation invariance, i.e. that by, 3 = by if d(z,y) = d(2', '), where d(-,-) is the
graph distance induced by G. We denote by C(z) the connected component containing

x € V. The following result provides a sufficient condition for absence of percolation.

Proposition 7.2.4. Let )
surely there exists no infinite connected component. In this case |C(x)| is also integrable
forallz e V.

bizyy < 1 for one and hence every x € V. Then almost

Proof. This can be proven via a coupling with a branching process. Since V' is countable
we can index all vertices such that V = {xg,z,...}. Recall that w = (w(e))eee is
a family of independent random variables such that P(w(e) = 1) = b, for all e € €.

Let |C(xg)| be the connected component of o with respect to w. Now let w™™ be an
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independent copy of w for all n,m € Ny, i.e. P(w™™(e) =1) = b, for all e € £ and all
n,m € INy. Furthermore, this means that w is independent of all w™™ and the copies

w™™ and w™"™ are independent if either n # n’ or m # m’. We consider the index set
T = {(ag,1,...,0,) €V :n € No,ap = 7 and a;_; # «; for all 0 < i < n}.

For a = (v, a1, . . ., ) we define the generation of o as |o| = n (so that |(x)| = 0).
Furthermore, we equip 7 with the lexicographical order with respect to the enumeration
of V.

Now we construct a family of random variables (X, )aer with X, € {0, 1}, where X () =
1. We will define these random variables iteratively according to the lexicographical
order. For given n,m € Ny we define the set I'" C &£, which contains all edges,
which we at least “observed” once until the offsprings of x,, in the n-th generation
are drawn. Suppose we already constructed all X, with |a| < n and all X, with
la| = n such that a,,—1 € {z¢,...,2pm-1}. Then, let I'" contain all edges {y,z} € &
such that there exists an o € T with || = k < n and oy, =y € V or with |a| =n
and a,, =y € {wo,...,Tm_1}, which satisfies X, = 1. Now, we define X, for all « € T

with |a] =n and a,,_1 = x,, by

1 if {xm, o} € I w{z,, a,}) =1 and Xiao,an_s,em) = 1
Xo =91 if{zp,a,} €Il™ w"({xm, a,}) =1 and X(ao,som—zam) = 1

0 otherwise

In words if we have that X,  a, 50, = 1 and have not observed {z,,,a,} yet,
then we set X, = 1 if w({zy,a,}) = 1. But if {z,,,«,} was previously already
observed, then we already know if the edge is open or closed with respect to w. To
preserve independence between different generations and between the several offspring
of the same generation we use the independent copy w™™ instead of w. Now we set
Lp = Zaefr:wzn X,. Because of translation invariance the offspring distribution is the
same in every step. Thus, we see that Z = (Z,)nen, is a branching process with Z, = 1
and offspring mean p := ZyEV biz,yy, Which is constant over x because of translation

mvariance.

If y € C(x) then there exists a collection of edges {{y;, yi+1} : @ < n} such that yy = o
and y, = y. But then all edges {y;, y;+1} must have been observed at least once in the
course of the construction of (X, )ae7, and thus all y; will be counted by Z eventually,
which implies that |C(xo)| < >, cnZn = T, where T is the total progeny of the



154 | Chapter 7 Contact process on a dynamical long range percolation

branching process. Note that this might not happen in the same order as the original
path {{y;,yix1} : ¢ < n}, since we might take a shortcut via a resampled edge, which
was originally closed. But, because of the resampling mechanism, it is not possible for
an originally open edge to be closed without being “used” at least once. Thus, the

total progeny T of Z can only be larger than |C(zo)].

It is well known that for p < 1 the branching process dies out almost surely which
provides the first claim. It also holds that E[T] < ﬁ for p < 1 as for example shown
in [Hofl6, Theorem 3.5], which provides integrability of |C(z)|. Because of translation
invariance this result does not depend on the choice of z since |C(xg)| = |C(y)| for all
yeV. O

Next we consider the special case V =7 and E = {{z,y} C Z : |v — y| = 1}. Since we
assumed translation invariance we can simplify notation and set by, nyry = bjoxy =: b
for all K € IN and all n € Z. In fact only if ), \ kby = 00, is it possible for a infinite
component to exists. The reason for this is that if ), . kby < oo holds, then the long
range percolation is similar to a finite range percolation in the sense that there appear
so-called “cut-points”, see Figure [7.2] which lead to a partition of the integer lattice Z,
which consists of finite connected components. We will briefly show this result for the

long range percolation before we continue with our study of the CPLDP.

Definition 7.2.5. Let V = Z. A cut-point m € Z is a point such that no (unoriented)
edge {z,y} with z < m < y is present in the model, i.e. w({z,y}) = 0.

Figure 7.2: Visualization of a cut point

In the proof of the following result ergodic theory is used. A brief summary of some of
the important notions can be found right before Remark [5.1.12]

Proposition 7.2.6. Let (b)ren C [0,1) with >, kbr < 00, then the following holds:

1. For m € Z the probability P(m is a cut-point) = P(0 is a cut-point) > 0, and as

a consequence there exist almost surely infinitely many cut-points.
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2. The subgraphs induced in the intervals between consecutive cut-points are inde-
pendent and identically distributed. In particular, this implies that the distances

between consecutive cut-points form a sequence of i.i.d. random variables as well.

3. There exists no infinite component.
Proof. By translation invariance we know that

P(m is a cut-point) = P(0 is a cut-point) = H (1 = biogy)-

<0<y

The infinite product on the right hand side is strictly positive, since

oo k—1
Z Oizy) = Z Zb{—l,—l+k} - Z kby, < oo,
<0<y k=1 [=0 lelN

where we used that by_; _;1ry = b for every [ € Z. Thus this yields the first claim.
Next let us define X, := Ly, is a cut-point}- Let S be a shift operator such that

(wW{z, ) ayes = (@Hz + 1y +11) @z yyee-

In words we shift all edge by one vertex to the right. Since (w(e))ece is a family of
independent random variables it is clear that (w,.S) is ergodic. It is not difficult to see
that there must exists a measurble function f : Q — {0, 1} such that X = f(S*w)
for all k € Z. Then by Birkhoft’s mean ergodic theorem follows that

1 n
— X — E[Xy] = P(0 is a cut-point) > 0
s 3 X = B = P poin)
almost surely. This implies that infinitely many X} are equal to 1 almost surely. The
second statement is immediate, since there are no edges between different intervals
between consecutive cut-points. This also means that with probability 1 there cannot

exist an infinitely large component. O]

7.3 Existence of an immunization phase

Throughout this section we assume that Assumption [1.4.21]is satisfied, which states
that > cy V{wy}Playy < 00 and 3 v{_xl’y} < oo for all z € V. In this section we will
show Theorem [1.4.24] which means that we prove that for given » > 0 and v > 0, there
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exists a ¢* € (0,1) such that C dies out almost surely for all ¢ < ¢* regardless of the
choice of A > 0, i.e. A.(r,7,q) = oo for all ¢ < ¢*.

The idea is that, if ¢ is small enough, then an arbitrary vertex will eventually be isolated
for a long time, and therefore a potential infection cannot spread to another vertex
before the isolated vertex is affected by a recovery event. So it is basically a dead end

for an infection path. To make this formally precise let us define X = (X ) (e,n)cexm,

and U = (Ux,n)(x,n)EVX]NO by

X, 1 ifee By for some t € [nT,(n+ 1)T)
0 otherwise,

U 1 if supp(Z°)N{rec,} x [nT,(n+1)T) =0
0 otherwise.

Note that X., = 1 — w,(e) from for all e € &, where wy(e) is defined in [7.3] If
Usrn =0 and ZyEV X{zyy,n = 0, then an infection on site 2 cannot possibly survive in
the time interval [nT, (n + 1)T). This follows since i X{z 4} = 0 implies that for
the whole time interval all edges attached to z are closed. Therefore, since U, ,, = 0 we
know that the site x will recover and cannot be reinfected. Furthermore, between time
nT and (n + 1)7T no infection can spread from x. Now we define a random graph G

with vertex set V' x INg and add edges according to the following rules.
1. If Uy, =1, add an oriented edge from (x,n) to (z,n + 1).

2. If X, =1 for e ={z,y}, add edges as it U,,, = 1, U,,, = 1 and an unoriented
edge between (z,n) and (y,n).

The rules are visualized in Note that all “horizontal” edges are unoriented
such that they can be used in both directions, but all “vertical” edges are oriented and

only point upwards.

Definition 7.3.1. (Valid path) Let G; be the random graph constructed above and
C C V be the set of all initially infected individuals. We say that there exists a valid
path from C x {0} to a point (z,n), if there exists sequence xg, 1, ..., x,, = x with
g € Cand 0 =ng < ny; < --- < n, = n such that there exist an edge in G; from

(g, ) to (a1, npyq) for all k € {0,... ,m—1}.

In we visualized how a fragment of the graph could look like. Here, the red
path shows a possible valid path. For every n € N we denote by Y,, = Y, (U, X), the
set of all points x € V such that there exists a valid path from Yy x {0} to (z,n).
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T Y T Y

Figure 7.3: Illustration of the first and second rule. Solid lines are present edges and
dashed lines indicate absent edges. The numbers in the circles indicate the state of the
U variables and the number of above the horizontal edges the state of the X variables.

O O O O O

O C ) O

Figure 7.4: Visualization of a fragment of GG;. The red path indicates a possible valid
path

Lemma 7.3.2. Let T > 0,n € Ny and C C V. Then x € CS; and C =Y, implies
that x € Yy, and thus in particular if Y,, = 0, then CS, = 0.

Proof. If z € C¢, then there must at least exist one infection path from C' x {0} to
(z,nT) as defined in Definition [7.1.2] This means that there exists a sequence of times
0=tyg<t; <-- <ty <ty =nT with n’ > n and space points xg,x1,..., Ty =
with 29 € C such that, (inf},  .,,t) € supp(E™) and {z}_1, 24} € By, for all
ke {l,...,n + 1} and supp(Z™°) N ({rec,, } x [ty trr1)) =0 for all k € {0,...,n'}.
For any such path there must exist a subsequence of sites (Z,)m<n C (g )r<n (including
xo and x,) such that z,, € C,r for m € {0,...,n}. Now if we can show that
Tm-1 € Cn_nyr and z,, € C,,7 imply that z,, € Y,, the claim follows since 7y € Yy = C

by assumption.
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So if z,,_1 # x,, it means that the infection must have spread from x,, | to x,, in the
time interval [(m — 1)T, mT). But we already assumed the existence of an infection
path. Thus, we find a sequence of sites z,,—1 = y{*,...y/" = =, and a sequences
of times (m — 1)T" < t1" < --- < " < 17}, = mT with (y}");<1 C (2r)k<w and
(t7)j<t C (tr)k<n'+1 such that (inf’{kyzn_lvyzn},tzn) e =™ and {yi",,y;'} € By for all
k€ {l,...,1}. In particular this implies that X¢m my, 1 = 1forall k € {1,...,1},
thus by the second rule z,, € Y,,.

If ,,_1 = x, then either there was no recovery event in the whole time interval
[(m - 1T, mT), then by the first rule z,, € Y;, or the infection must have spread to
another site and the site x,, got reinfected. Then there must have been a site 2’ and a
time ¢ € [(m — 1)T, mT) such that {z,,,2'} € B; and therefore x,, € Y,, by the second
rule. O

Obviously (Ugn)@n)evxn, is an independent and identically distributed family of
random variables with P(U,,, = 1) = e™"7. Furthermore by definition it is independent
of the family (X¢n)(en)cexin,. We already mentioned that X, =1 — wy(e), and thus
we get by Corollary that there exists a family of independent and identically
distributed random variables (X[, )(necexw, such that P(X/ = 1) = 1 — J. and
Xen < X[, almost surely for all (e,n) € & x INg, which are also independent of
(Uzn)(@n)evxn,- Analogously to Y, we can now define Y, = Y (X’, U) in the same way
with the difference that we use X{, instead of X ,. We see immediately that Y, C Y,
for all n € INy. So whenever (Y)),ew, goes extinct, i.e. there exists a k € INy such that
Y, =0, so does (Y,,)nen,- We will see that Y, is much easier to analyse compared to

Y.

Lemma 7.3.3. Let x € V. If E[|Y]||Yy = {x}] < 1, then Y’ goes extinct almost surely
for any finite A C'V as initial state.

Proof. The process Y’ = (Y,))nen, is basically a type of oriented percolation model.
Thus, it is not difficult to see that Y is a Markov process and the state () is an absorbing
state. The idea is to consider N :=inf{n > 0:Y, := 0}, which is the extinction time
of Y/, and set F4(n) := P(Ne& < n|]Yy = A). Note that since the U and X' are all

independent the event

{there exists no valid path from (y,0) to Ny x {n}}
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is a decreasing event with respect to a product measure for every y € V. So we know
that by the FKG inequality or rather the reverse of it, see [Gri99, Theorem 2.4], that

Fa(n) > H P({there exists no valid path from (y,0) to No x {n}}) = Fi,y(n),
yeA

where we used translation invariance. The aim is to show that if E[|Y]||Yy = {z}] < 1,
then Fp,3(n) — 1 as n — oo. We will not prove this result in detail since the proof is
identical to [LR20, Lemma 3.7]. O

Now Theorem [1.4.24] follows as a corollary.

Proof of Theorem [1.4.24l Let us fix z € V. We can calculate that

EIYIIYy = {o}] = Ellyera,, ,, =0 Vil + P (V{Xfoyp0 = 0} ElUng]. (7.4)

yev

Let us choose 0 < € < 1 arbitrarily but fixed. For the last term, we find a 77 > 1 large

enough such that

E[U,0] =T < % (7.5)

for all ' > Tj. For the first term we see that Y] is actually the connected component
containing z formed by a long range percolation model with probabilities (1 — d;)ces,
where §, is defined in Proposition [7.2.1] First we note that §. = 8.(¢,T) can be
considered as a function of ¢ and 7', where we omitted v since this parameter remains

constant throughout this proof. We see that

_ e—f)eT

€ eﬁef)eT _ 1

1—0,=1—e P 4 pe Pl 4 (1 —p.)p < PeteT + Pe + (7.6)

for all e € £, where we used that 1 —x < e and 1 + 2 < e” for z > 0. Recall that
Pr = qpg- For the remainder of this proof we choose ¢ = ¢(T) := T2 and see that
1

I
1 - 5e(Q(T), T) < —=Pele + ﬁpe +

T 2 0e(T) (7.7)

0T
for all e € £. We attach T" as an index to Y{(7'), since by the choice of g the probabilities
(1 — 0¢)ece determining the connected components only depend on the choice of T.
Next we will show that there exists 7o > 0 and an M (e,T) = M > 0 such that

E[L vy Y{(T)]] < (7.8)

[GCRNO)
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for all T' > T5. For this, let Z(T) be the connected component containing x formed by
a long range percolation model with probabilities (b.(T"))cce such that Y{(T) C Z(T)
for every T' > 0. This is possible since holds for all e € £. Furthermore, b.(7") is
decreasing in 7" and b.(7') — 0 as T" — oo for all e € £. We also see that b.(T") < b.(1)
for all 7' > 1 and every e € £. By Assumption it follows that (b4 (1))yev is
summable for all z € V. Therefore, by Lebesgues theorem of dominated convergence

we see that there exists a T, > T large enough such that

Zb{ny}(T> <1

yev

for all T > T,. For this choice of Ty the integrability of |Z(713)| follows by Proposi-
tion [7.2.4] i.e. E[|Z(T3)] < oo. Thus, for every € > 0 there exist an M(e,T5) = M >0

such that

£

E[Lzm] Z(T)l) < 3

Now we see that b.(7") is monotone decreasing in T for all e € £, and thus

Bz Z(T)|] < B[z sy Z(T2)]] <

Wl M

for all T' > T5. Furthermore since by definition Y{(T") C Z(T') for all T we see that

E[1 gy ey Y1 (T)]] <

Wl M

for all T" > T5. Now we see that

]E[]l{glyGV:Xixyy}’O:l}|}/1/|] < B[y s Y]] + E[]l{|Y1’|§M}]l{3y€V¢Xim,y},o=1}|Y1/|]’
and therefore we can use (7.4)) and conclude with the bounds ([7.5) and (7.8]) that

S £
EVIYg ={a}] < 3+ MP({3y e V: Xip o= I {Y| < Mp) +5 (79)

<P(3yeV:X[, 1

=1)

for all 7' > T5,. By using subadditivity of the measure P we get that

POy eV: X, 0= 1) =P( U Xfypo = 1}) <D (1= 8y (D), 1)),

yeVv yev

since P(X{, 1o =1) =1 =0, (q(T),T) for every {z,y} € £. Now we can use again
that 1 — g, (¢(T),T) < be(1) for all T'> 1 and (byy 3 (1))yev is summable for every
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x € V. Together with the fact that 1 — 6, ,3(q(7T),T) — 0 as T'— oo this implies that
there exists a T3 > T, such that

3 (1 = Sy (@(T),T)) < 3iM (7.10)

yeVv

for all T'> T3. Now ([7.9) and ((7.10) imply that there exists a T and ¢ such that
E[Y[IYg ={z}] <e <1

Therefore, by Lemmawe see that Y’ goes extinct almost surely and since Y,, C Y/,
we know that Y, goes extinct almost surely. Finally, we can use Lemma to
conclude that this already implies that C1*} goes extinct almost surely as well.

But if C{#} goes extinct almost surely, i.e #({x}) = 0, then by translation invariance it
follows that 6({y}) = 0 for all y € V, and thus if we assume 6(C) > 0 for some finite
C C V via the graphical representation it would follow that there must exist a z € C
such that ({z}) > 0 which leads to a contradiction. Thus, C goes extinct almost
surely for all finite C' C V. O

7.4 Extinction for slow background speed for V' =7

On general graphs G = (V, E') Proposition [1.4.22] and Theorem [1.4.24] provide partial
results on the behaviour of the critical infection rate for slow speed of the background

process, which we stated in Corollary [1.4.25] Let us recall the statement of this corollary.
For a given r > 0 there exists a ¢* = ¢*(r) > 0 such that lim,_,o A.(1, 7, ¢) = oo for all
q < q*. We prove this result now.

Proof of Corollary Let r > 0 be fixed. Now Theorem provides that
for a given 5 > 0 there exists a g9 = qo(r,7%) > 0 such A.(r,q,7%) = oo for all
q < qo. But by Proposition it also follows that A.(r,q,v) = oo for all ¢ < o
and all v < 7. Another consequence of Proposition [1.4.22] is that if 7, < 7y, then
the ¢1 = qi1(r,71) provide by Theorem for 1 must be bigger or equal to ¢,
i.e. ¢ > qo. Like this we can recursively construct an increasing sequence (¢, )nen, such
that we can define ¢* := sup,,ciy ¢, Now for every ¢ < ¢* there must exist an n € INy
such that g < ¢,,, and thus A\.(r, q,v) = oo for all v < ~,.. Hence, it follows in particular
that lim,_o Ac(r, ¢,7) = oo for all ¢ < ¢*. O
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Now we restrict ourselves to the one dimensional integer lattice. Since in this case
we can fully characterize the behaviour of the critical infection rate as v — 0. Thus,
throughout this section we consider G = (V, E) to be the one dimensional lattice, i.e
V =%and E = {{z,y} CZ: |x—y| =1}, and assume that Assumption is

satisfied, i.e.

Z y”{_ol,y} <oo and Z Yv{oy3Pioyy < X
yeN yelN

Obviously this assumption already implies Assumption [1.4.21| and by ([7.6]) we see that

A " R 1
>yl =) <D y(P{o,y}U{o,y}T + Doy + —T> <00 (7.11)
Y{o.u}
yelN yeN
for all x € Z, by taking the stronger Assumption |1.4.26|into consideration. The goal of
this section is to show Theorem [I.4.27] We will now modify and adapt the strategy
used in [LR20].

This means that as in the previous section we construct a type of oriented long range
percolation model, which will be coupled to the CPLDP in such a way that if this
model goes extinct so does the CPLDP. Recall that w,(e), which is defined in (7.3)), is
the indicator function, that is one if the edge e is closed for the whole time interval
[nT, (n+ 1)T). By Corollary we know that there exists a family of independent
Bernoulli random variables (w),(€)){(n,e)emoxe} such that wy,(e) < wy(e) almost surely
and P(w] (e) =1) =, for all n € Ny and all e € £. We define the oriented long range

percolation model right away with respect to the family (w},(e)){(m.e)emoxe}-

One key point of the arguments used in [LR20] was that in an independent percolation
model on Z with p < 1 an infinitely large cluster does not occur, and thus the
percolation almost surely partitions Z into finite connected components. As we saw
in Proposition the long range percolation exhibits a similar behaviour, as finite
range percolation models on Z, in case that ZyelN y(1—0df041) < 00, i.e. the percolation

graph is almost surely a union of finite connected components.

Recall from Definition that a cut-point m is a point such that no edge {z,y}
with x < m < y is present in the model. In comparison to the nearest neighbour case,
one major problem is that the presence of cut points at two different vertices is not

independent. The events ({k is a cut-point})ez are in fact a positively correlated. To
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be precise {k is a cut-point} is a decreasing event, and thus by the FKG inequality, see
[Gri99, Theorem 2.4], for any m € G

P({0 is a cut-point} N {m is a cut-point}) > P(0 is a cut-point)P(m is a cut-point).

So we need to adjust the construction in such a way that we can deal with this

unfavourable correlation.

Definition 7.4.1. Let n, Ky € N and 7" > 0. We call m € G an (n, Ky)-cut if
w! (z,y) =1 for all x < m <y with, |z — y| < 2K,.

The event (), <,.lo—y|<ar, 10n (2, y) = 1} corresponds to m being an (n, Ko)-cut. Let

ro € IN and define

My, = [k(2Ko + 7o), (k + 1)(2Ko +710) — 1| N Z

M = [k(2Ko + o), k(2Ko + 10) + Ko — 1] N Z

MPS = k(2K + 7o) + Ko, k(2K +10) + Ko + 710 — 1] N Z
M = [k(2Ko + r0) + Ko + 7o, (k + 1)(2Ko + 7o) = 1] N Z

The collection (My,)rez forms a disjoint partition of Z. Furthermore, for every k € Z
the sets MM Mt and M{¥" are disjoint and My = MM U M U M. We also
want to remark that |M| = 2Ky + 1o, |[M™94] = ry and |M] = |Mélght| = Ky. See

igure 7.5| for a visualization.

: lni/[ k—1 ' : : |
- g rleft o L i
| 3 | M A e |
‘ : : ! - > | : o
- Koy I 709 : Ko ‘ 7

Figure 7.5: Visualization of the sets Mj_;, M4 M and Me™,

Next we define the random variables

1 if no (n, Ky)-cut lies in Mmid
Xy = (7.12)

0 otherwise.

If Xj,, =0, then there exists a barrier in M4, which the infection cannot overcome

via edges of length shorter than 2K.
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We will now partition the space-time strip Z x [nT, (n + 1)T) for every n, where T" > 0,
according to the presence of (n, Ky)-cuts. Let ¢, be the right most (n, Ky)-cut in
M4 x [nT, (n+1)T) and if none is present, then set it equal to the right boundary of
M4, Now set Dy, := [ck_1.n + 1, Chn] N Z. We see that Sy, := Dy, x [nT, (n+ 1)T)
is a disjoint space-time partition of Z x [0, 00). See Figure for an illustration.

time
A
I . 1 |
2T = ' - : -
| : I |
| N I |
I : 1 : | :
: ;Sfll :80,13 131,1;
[ : | |
| I . |
T ; -
| 1 . |
I | : | :
;5‘"71,0 :S070§ 351705
I ! .
| | | 7
0 To Ky ‘

Figure 7.6: A visualization of a possible partition. The thick black lines represent an
(n, Ko)-cuts and the blue boxes the resulting partition.

The boxes can only be of bounded size and we see from the construction that

Dien > DI =M U AL, s
Dy © D™ =M U ME" U ME" U MR = M U Dy i |
Here D" is the minimal set, in the sense that Dy, must at least contain all vertices
contained in D™ and D" is maximal, i.e Dy, can at most contain all vertices in
Dpr#*. This provides us with an upper and lower bound on the number of vertices
contained Dy ,, which are 2Ky < |Dy,,| < 2K + 2rp. Thus, we can define ,Icnjln =
D™ x [T, (n+1)T) and S := D x [nT, (n+1)T) as the minimal and maximal

possible space-time box with S{* C Sy, C SP2™.

Recall that X}, provides us with the information whether it is possible for the infection
to traverse M,?id via short edges. So if X}, = 0 and X1, = 0, then the boundaries
of Sk, are (n, Ky)-cuts and the infection can only leave this box via long edges. Hence,

we define

1 if there exists an edge e = {z,y} with |z — y| > 2K,
Wiy = which connects Sy, to S;, at some t € [nT, (n+ 1)T)

0 otherwise,
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where k # [. See Figure [7.7] for a visualization.

time
A

Figure 7.7: The thick black lines represent again (0, Kj)-cuts and the blue boxes a
part of the resulting partition. Here we visualized the case when Wy 4130 = 1.

These variables provides us with the information whether it is possible for an infection
to travel via long edges at time step n from box k to [. Note that by definition
Wikiyn = Wiikyn, and thus we will assume k& < [. The idea is that for large K, a
transmission of the infection via a long edge will be unlikely since they will most likely
not be open. Therefore, we intend to control the survival via short edges in #solated
boxes. Here isolated means that both boundaries of the boxes are (n, Ky)-cuts. Hence,
we need a variable which provides us with the information whether the infection can

persist in a box Sy, for a time period of length 7.

We will now define random variables to control the survival in a box Sj, by

1 if there exists an infection path starting at n7T" that
U = is ending at (n + 1)7" and is contained in S,

)

0 otherwise.

See Figure for a illustration. If Uy, = 0 then an infection contained in an isolated
box S, i.e. Xi—1, = 0 and X}, = 0, cannot survive via transmission along short
edges only. We denote by BXe the o-algebra containing informations of all w/,(e) of all

short edges in time step n, i.e.
BEe = o ({{w)(z,y) =1} : d(z,y) < 2Ko}). (7.14)

Remark 7.4.2. Let us summarize some properties of the variables we just defined.
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(1) The X variables from ((7.12]) depend only on edges of maximal length 2K. Since
the minimal distance d(M™4, M™d) > 2K for k # [ we see that Xy, and X/
are independent if k # k' for all n,n’ € IN,.

(i1) Ugn only depends on edges {z,y} with z,y € Dy, and |z — y| < 2K,. On
the other hand Wy ,, only depends on edges {2',y'} such that 2’ € Dy, and
y € Dy, with |x — y| > 2Ky. Recall that Dy, N D, = 0 for k # . Therefore,
Up n and Wy 1y, are independent for all £, k,1 € Z and n,n’ € N, where k < [.

(#3i) By definition Uy, and Uy, are independent if n # n’ and only conditionally
independent given BE if n = n’ and k # k.

(iv) Analogously the variables Wy iy, and Wiy o are independent if n # n' but
are only conditionally independent given BX if n =n’ and {I,k} # {I',k'}.

Note that in (#ii) and (iv) conditioning on BX0 serves the purpose of knowing how the

partition (Sk,)kez in step n look like.

time
A

T

=7

.
=

Figure 7.8: The thick black lines represent again (0, Kj)-cuts and the blue boxes a
part of the resulting partition. Here we visualized the case when Uy = 1.

We will again define a random graph G, with vertex set Z x INg where the edges are

placed according to the following rules which are visualized in [Figure 7.9;
1. If Up,, = 1 add oriented edges from (k,n) to (k —1,n+ 1), (k,n+ 1) and
(k+1,n+1)
2. If Xy, =1 add edges as if Uy,, = 1, Upy1,, = 1 and additionally an unoriented
edge between (k,n) and (k + 1,n).
3. f Wi = 1 add an edge as if Uy, = 1, Uj,, = 1 and additionally an unoriented
edge from (k,n) to (I,n).

If Uy, = 1 then the infection survives through the space-time box Sy, and it could

possibly spread in at least one of the boxes Sy, 11 for m € {k—1,k,k+1}. If X¢,, =1
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then it could possibly spread to its neighbors in the time period [nT, (n + 1)T"). If
Wikiym = 1 for any | # k the infection could spread to the space-time box S;,. So in
this case even if Uy, = 0 we add the same edges or rather assume that the infection
survives, because it could leave Sy, to some S;, for [ > k and return to Sy, before
(n+1)T.

ntl O o O o O O

. ORRGENG ORRGRING S

k—1 k k+1 k—1 k k+1 k+2
Upn =1 Xpn =1

k-1 & kil -1 l I+1
Wiknm =1

Figure 7.9: Visualization of the three rules. Solid lines are present edges and dashed
lines absent edges.

Definition 7.4.3. (valid path in G3) Let G5 be the above constructed random graph.
Let Zy C Z denotes the indices of the boxes which contain the initially infected sites
C'. We say that there exists a valid path from Zy x {0} to a point (k,n) if there exists
a sequence ko, k1,...k, =k with k € Zy and 0 =ny < n; <--- <n,, = n such that
there exist an edge in Gy between (xy, ng) and (21, ng41) for all k € {0,...,m — 1}.

Similar as in the previous section we define a process Z = (Z,,)n>0, where for all n > 0
the random set Z,, = Z, (U, X, W) contains all points x € Z for which there exists a
valid path from Zy x {0} to (z,n) in Go for n > 1.

Lemma 7.4.4. LetT > 0, n € Ng and C C V. We choose Zy such that k € Zy if
and only if CN Dy # 0. If x € CY, then there exists a k € Z. such that x € Skn and
k € Z, and thus if Z, =0, then CS = ().
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Proof. This proof is similar to Lemma . Again if we assume that z € C%, then for
some x € C there must exist an infection path from (x,0) to (y,n7"), and thus we find
a subsequence of sites = xg, 71, ..., z, = y such that z,, € C¢, for m € {0,...,n}.
Note that these sites are part of the infection path. Also since the (Skn)kn)czxn, form
a disjoint partition of Z x [0, c0) for every x,, there exists an k,, = k,,(z,,) such that
(2, mT) € S, m. Here it again suffices to show that z,, € CS and @, € C(Cm—i-l)T
imply that k,,.1 € Z,,.1. Then, the claim follows immediately, since x € Z; by
definition of Z,. Now from the way we chose the sequence (,,)m<, there is an infection
path from (z,,, mT) to (xm,11, (m + 1)T) for all m <n — 1. To be precise these paths

are just sections of the original infection path.

1. Let us start with the case that k,, # k,,.1. Let e1,...e,. be the edges present
in the infection path from (x,,, mT) to (xm,+1,(m + 1)T), where r € N. We
only need to consider the edges which connect vertices in different space-time
boxes. Let e,y = {2/,y'} and t' € {mT,(m + 1)T} with (2',t') € Sp ,nr and
(y',t') € Symr on the infection path. Then again there exists k,{’ such that
' € Sym and ¥y € Sy,

If |2" —y'| > 2K, then Wy iy = 1, since if (e,,,1') is part of the infection path
there must have been an infection event, and thus the edge e,,» must have been
open. Thus, by the third rule I' € Z,,, .1 if ¥’ € Z,,,.

On the other hand if |2" — /| < 2K then |I" — k’| = 1. This is because for any
space boxes | Dy | > 2Ky, so the space time boxes which are connected via e,
must be adjacent. Hence, the boundary between Sy ,, and Sy, is no (m, Ky)-cut,
since this would prevent an infection to spread via the short edge e,,,. This
implies that either X/, =1 or Xy, = 1. Thus, by the second rule I' € Z,,, 1, if
K € Z,.

Since e, was chosen arbitrarily from ey, ..., e,,, by a combination of the second
and third rule follows that | € Z,,,11.

2. Now we consider the case that k,, = k,,.1. Now either the infection path is
contained in Sk 7, this would imply that Uy ,,, = 1, or it left the box and returns
at a later time. This would mean that either there exist an [ € Z such that
Wiaiym = 1, Xpm = 1 or Xj_1,, = 1, since the infection left the box, and
therefore an edge connecting two different boxes must have been open. Thus,
km+1 € Zmi1 m
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We again find ourselves in the situation that Z,, is somewhat easier to handle than
the original infection process, but still hides a lot of dependency structure. For the
remaining section we will choose T' := % and let ¢ € (0,1) be fixed. Recall the definition
of §, from Lemma Note that this yields
0c(v,4,77") = (1 — qpe)e” (1 = qpel_—f_ve), (7.15)
1 — e—apeve

which is now independent of ~.

Let us give a short description of what we do now. Next we show that we can choose
ro, Ko and v or equivalently 7" such that the probabilities are small that any of the
X, W or U variables are one. With this we will then show that we can choose rg, Ky
and v* in such a way that Z,, goes almost surely extinct for all v < v*. For this we

again need the results we derived in Section [7.2

Bound for the X variables: Let us recall that

{Xin =1} = {no (n, Ky)-cut lies in M} = ﬂ U {w!,(z,y) =0}. (7.16)

MM Ry
The probability P(Xj, = 1) does not depend on 7, as already mentioned in ([7.15).
This is important since later, in order to find a bound on P(Uj, = 1), we need to vary
7. Thus, changing v will not affect the probability P(Xj, = 1). If we remove the
restriction |z — y| < 2K, we obtain with that

Ka=1c () U fwl(zy) =0}

meMmid z<m<y

Now consider n to be fixed. Since (w!(e))eces is a family of independent Bernoulli
random variables, we can interpret these variables as a long range percolation model
with probabilities by, := (1 — dgoxy) for all k € Z, where we used that ¢, ) = dgaryy if
d(x,y) = d(«',y"). Therefore, we see that in the terms of the long range percolation
model it holds that

m U {w! (z,y) = 0} = {no cut point lies in M;™}.
meMmid z<m<y
We set

P(Xp,=1) < JP( N U {wh(ey) = o}) = e1(r0), (7.17)

meMmid i<m<j



170 | Chapter 7 Contact process on a dynamical long range percolation

where |[M™4| = rj. Note that the right hand side only depends on the size of M
and not its exact location. Since X, and X}, have the same distribution and are
independent if either n # n’ or k # k' we see that the right hand side does not depend
on n or k. Now by we know that Y7 kb, = > o, k(1 —00}) < 0o. Thus, by
Theorem there exist almost surely infinitely many cut points. But this means that

e1(ro) =0 as 19— o0. (7.18)

Note that this bound is independent of the choice of K. This is important since in
the next step we derive a bound for the probability (W, = 1) by choosing K

accordingly. But the choice of K will depend on the choice of 7.

Bound for the W variables: Next we consider the family describing transmission
along long edges, i.e. {Wyn, : k1 € Z,k < I,n € No}. By definition it holds
Wiikyn = Wik n, which is why we only need to consider £ < [. We see that

Woana=1=  |J Awle.y)=0}

€Dy 1, YED n:
le—y|>2Ko

If we now use the sets D" and D™ defined in ([7.13|) we see that

Wik =1} C U {wl(x,y) =0}

€D ye Dax:
lx—y|>2Ko

Note that the right hand side is independent of BX, where BX¢ is defined in [7.14}

n

Thus, for a ry given we can conclude that

P(Wikiyn = 1B < Y (1= 6payy) = ara(Ko, 7o), (7.19)
zEDmaX ye pmax;
|.’L'*y|>2K0
where again the right hand side is independent of ~. By subadditivity and ((7.19) we
get that
P #k: Wiyn = 1BE) <> api(Ko, ro).
1#k

Next we take a closer look at D*®* defined in (7.13). We see that Dr** N Dax = Mmid
and if [ > k + 1 then D® N DM = (). Since |M™4| = ry, the neighbouring maximal
boxes have an overlap of ry many vertices which we count double in the sum ), 21 Ok -

If for a given k we just count every edge of length > 2K, “leaving” D;'**, again the sum
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only gets larger. Also note that |D*| = 2(rg + Ky). By symmetry and the thoughts

above, we see that

Z ar1 (Ko, m0) = 2 Z axi(Ko, o) < 4| D] Z (1= d04})

Lk Li>k y>2Kg

=8(Ko+10) Y (1—=doyy),

y>2Ko

where we used translation invariance. Summarizing the whole procedure yields that for

any k € Z,

P # k: Wikaya = 1UBEY) <8(Ko+10) Y (1= 6j0gy) := 2(Ko,m0).  (7.20)

y>2Ko

But since we know that > . y(1 — d{0yy) < oo from (7.11)), it is not difficult to
see that also 2N (1 — dp04y) — 0 as N — oo must hold. Hence, for every ro,
e9(Ko,1m0) — 0 as Ky — oco. But in particular if we choose Ky = 1o, then we see that
also

e(ro,m0) =0 as 19— 00 (7.21)

Bound for the U variables: Recall that on every finite graph the classical contact

process dies out. We denote by 77050 the extinction time of a classical contact process

ext
with infection rate and recovery rate as the CPLDP (C,B) on a complete graph with
2(Ky + o) vertices, where every vertex is initially infected. Since |Dy | < 2(Kq + 70)

it holds that
P(Upp = 1IBE) < P(7550 > 471 o= 3(Ko, 70, 7). (7.22)

For every ¢ > 0 we can choose 4* > 0 small enough such that P(7/%"° > 41) < ¢ for

all v < ~*, and thus in particular e3( Ky, ro,y) — 0 as v — 0.

We have now derived upper bounds on the probability that the X, W and U variables
are one. We see that (Xj,)wmn)ezxn, are independent random variables and X,
is measurable with respect to B for all k € Z and all n € INy. But the families
(Ukn) (knyezxvg and {Wipinp - k1 € Zok < I,n € Ny} are only independent in time
direction. In spatial direction they are only independent conditionally on BXo see

Remark [7.4.2] Therefore, the aim now is to construct independent upper bounds of the

W and U variables, which are also independent of the X variables.
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Proposition 7.4.5. Let a; (Ko, 7o) and e35(Ko,ro,7y) be chosen as in (7.19) and (7.22)
and ro, Ko,y > 0 large enough such that a; (Ko, r0),e3(Ko,70,7) <1 for all | # k and

n € Ng. Then there exist independent families
(U]:;7n)(k,n)€Z><No and {W{/k‘,l},n : k,l € Z, k < l,n € ]NO}

of independent Bernoulli random variables with (WY, ,, . = 1) = ai1(Ko, o) and
P(Uy, = 1) = e3(Ko,70,7) for all k # 1 and all n € Ny such that they are independent
of the family (Xin)knyezxN, and such that Wy gy n < Wfk,l}m and Uy, < Uy, almost
surely for all k #1 and all n € Ny.

Proof. Recall from that BX = o({{w)(z,y) = 1} : d(z,y) < 2K,}). We
will now explicitly construct the U’ variables. For that we define the random variable
Phn = P(Uky = 0|BE°) for k € Z and n € Zy. Note that by and the assumptions
of this proposition pj/,, > 1 — e3(Ko,70,7) > 0. Now let (X}.,,)(k.n)ezxw, be family of
independent uniform random variables on [0, 1] and are also independent of the X, U
and W variables. Let s, be random variables with values in [0, 1] which are yet to be
determined. Next let (U, )(kn)ezxn, be random variables in {0, 1} such that Uy , =0

if and only if Uy, = 0 and x{,, < sgn. By definition it is clear that U}, > Uyp.

1-e3(K,
Next we set sy, 1= w and see that
k,n

IP(U]/cyn = 0) = E[]P<Uk,n = 07 Xg,n < Sk,n|3£(0)} = E[plk]’nsk,n] =1- 83(K07T077)7

where we used in the second equation conditional independence given BX°  which

follows by the same line of arguments as in the proof of Lemma since we assumed

that (Xg ) (km)ezxN, 18 independent of (Uy.p)(kn)ezx,- Analogously follows that
P(Uy,, = 0By°) = P(Upn = 0, X1, < sk.0|By°) = 1 — e3(Ko,70,7),

The right hand side is not random anymore, and thus it follows that the variable Uy ,
is independent of BXo for all k € Z and n € Nj,.

We already know that Uy, and Uy, ,, are independent if n # n’. Thus, it suffices to
show that Uy, and Uy, are independent if n = n’ and k # k'. Let us fix some n and
let ki # -+ - # ki be an arbitrary but finite sequence of integers and uy,...u; € {0, 1},
where [ € IN. Since we fixed n we omit the subscript n in the following. We need to
show that

P(U;, =w,... Uy, =w) =P(U;, =w)...P(U, =w).

1
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For this, it suffices to consider u; = --- = u; = 0, since if two events A and B are

independent, then so are A and B¢. Now we see that

P(U}, =0,...U} =0)
=E[(Us, = 0,... Uy, =0, x5, < Sps-- - X < 55| BE)]

=E[(Ug, =0,...Uy, = O|l§'K0)]P(X/,2]1 < sk1|BK0) .. .IP(XZ < skl|BK0)],

where we again used conditional independence which follows analogously as before.
Thus, we have that

1
P(U;, =0,...U}, = 0) = (1 — e5(Ko, ro,v))l]E[(Ukl =0,...U, = 0[B") T ] p—].
i=1 ki

But since the U variables are conditional independent given BX° and P(Uy, = 0) = pY
it follows that

P(U}, =0,...U}, = 0) = (1 —&5(Ko,70,7)) = P(U}, =0) ... P(U}, = 0).

The W' variables can be constructed analogously. The only thing we need to mention
is that we must choose the family {X?Iz,l},n ck,l € Z,k #1,n € Ny} to be indepen-
dent of the X, U and W variables and additionally to be independent of the family

(X}Zn)(k,n)GleNo- L]

Analogously as in the previous section we define a process (Z),),cz with respect to
the random variables X, U’ and W’ we obtained in Proposition [7.4.5] It follows that
Zn, C Z! for all n € Ng. Thus if (Z))nez goes extinct almost surely, then the same

follows for (Z,)nez-

Lemma 7.4.6. If E[|Z]||Z) = {0}] < 1, then Z' dies out almost surely for any finite
A CV as initial state.

Proof. Analogously to Lemma [7.3.3] O

Now we are ready to show Theorem [1.4.27] Thus, let r > 0, ¢ € (0,1) and C C V
non-empty and finite, for a given A > 0 we show that there exists v* > 0 such that C®
dies out almost surely for all v < ~v* i.e. O(A, 7, v,q,C) = 0 for all v < ~*. This implies
in particular that A.(r,7v,q) — oo as v — 0.
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Proof of Theorem Again it suffices to consider Z) = {0}, since the general
case follows analogously as shown in the proof of Theorem Thus, we again fix
Zl = {0}. The proof strategy is similar to the proof of Theorem We see that
|Z1| < 3|Z|, where Z is a connected component containing 0 of a long range percolation

model with probabilities given through

by = PWi ., =1) and bpriy = PUWppny, = 1 U{Xkn = 1})

for all k,1 € Z with |k — [| = 2. Note that the constant 3 comes from the fact that if
any of the X or W’ variable are 1, three blocks will get infected, see Figure[7.9 We

see that we can again split up the expectation such that

E[|Z]] =E[(1(x 0=1juix-s0=1juiezawy, ,, ,~11)IZ1]]
+ E[L{x, 0=030{X_1.0=0}0, 0 (W}, =0} U] - (7.23)

-~

<E[U} ]

We also know that by (7.17) and (7.19)
P(Xyn=1)=¢e1(ro) and P(Wj, ., =1) = ap(ro, Ko).

Note that by we know that by, is independent of the choice of v. Thus, the
probabilities by 3 (Ko, 70) can be seen as functions of the parameters K, and ry and we
see that

Z biray (Ko, o) < 2e1(ro) + Z ar,(ro, Ko).

Ik I£k

From here onwards for the remainder of the proof we choose Ky = r( such that b{k,l}(To)
is only a function of ry. Now by (7.18)) and ((7.21)) it follows that

Zb{k,l}(ro) < 2e4(ro) + Zak,l(TOa o) — 0

I#k I#k

as 1o — o0o. Thus there exists R; > 0 such that Zl# bieay(ro) < 1 for all rg > R;.
Thus, by Proposition we know that |Z| is integrable. We add ry as an index,
i.e. Z(ryg). We can show analogously as in the proof of Theorem that for every
e > 0 there exists an M = M (e, Ry) such that

E[|Z(r0)|L{z(ro) >3] <

Wl M
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for all ro > Ry. Thus, we can conclude that

El(Tixo=nuix yo=nugiezwy, |, =11)12 (0]

<E[(1{z(0)>mP|Z(ro)]] + M(P(X10=1)+P(X_10=1) + Z]P(W{/o,j},o =1))

JEZ

15
Sg + M<2€1(7“0) + Zak7l(’l"0,’f‘0)>.
l#k

Next we again use ((7.18)) and ([7.21)) and see there must exists a Ry > R; such that
M(251(r0) + Zl#k akﬁl(ro,ro)) < g for all ro > Ry. By (7.22)) we can choose 7* > 0

small enough such that E[Uyg] < 5 for all v < ~*, then it follows with ([7.23) that
E[|Z]] < 3e. Thus, if we choose ¢ < 3 we see that

EllZ1]1 25 = {«}] < 3E[|Z]] < 1.

By Lemma it follows that (Z)),en goes extinct almost surely, which implies that
(Zn)nen goes extinct almost certain, since Z,, C Z/, for all n almost surely. Then by
Lemma it follows that C*} goes extinct almost certain, where z € Dy . Therefore,
it follows that C® goes extinct almost certain for all finite C' C Z and all v < 7*. In
formulas this means that 0(\,r,v,q) = 0 for all v < ~*.

The infection rate A was chosen to be fixed, but arbitrary in beginning, and therefore
this also implies that lim,_, A.(r,7,¢) = oo. Since assuming otherwise would imply
that there must exists a Ay > 0 and 79 > 0 such that A\.(r,7,q) < Ao for all v € (0,70).
But we just showed that there exists a 7§ = 7§ (A\o) such that 6(Xg,7,7,¢q) = 0 for all

v < 75, and thus the assumption leads to a contradiction. O
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Chapter 8

Conclusion and open problems

In this chapter we briefly recapitulate some of the major results and point out some
possible further problems, which might be interesting to tackle. The main focus of
this thesis was on a contact process in an evolving random environment, which we
abbreviated by CPERE, on a graph G = (V, E) with bounded degree and exponential
growth p, where the evolving random environment is described by an ergodic and
reversible spin system with finite range interactions. Recall that A is the infection rate,
r is the recovery rate and & is chosen as in Assumption [I1.4.1] (). As usual in this kind
of model we focused mainly on the parameter regime where survival of the infection

process C is possible, which we named the survival region and denoted by
S(C,B) = {(\,r) € (0,00)*: 0(\,r,C, B) > 0},

where (C, B) are the initial configuration of the CPERE. Note that we only consider C
non-empty and finite, since otherwise the question whether survival is possible or not
is trivial.

We managed to show that if we find a A > 0 with 8(\, r, C, B) > 0 for some configuration
(C, B), which satisfies the inequality c¢;(\, p) > £~ 1p, then the survival of the infection
process C is independent of the choice of the initial configuration. Recall that c¢; (), p)~*
is an upper bound on the asymptotic expansion speed of the set of all possible infections
and kp~! is a lower bound on the asymptotic expansion speed of the permanently
coupled region. Furthermore, we were able to show that the survival probability is

continuous on the interior of the subset

Se, ={(\7r):IN < Ast. (N,r) € SH{a},0) and (N, p) > k' p}.

177
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We also managed to conclude that the phase transition of survival with the background
started stationary, i.e. 67(\,r, {z}) = 0 to 0™(\,r,{z}) > 0, agrees with the phase
transition of non-triviality of the upper invariant law, i.e. 7 = dp @ m to U # Jp ®
7. Thus, if additionally ¢;(A™(r),p) > x~'p holds the initial configuration of the
background is of no importance to the question of non-triviality of 7. This in itself is
an interesting observation, but we were also able to derive equivalent conditions for

complete convergence, i.e.
(CP,BP) = 0(C,B)7 + [1 - 0(C, B)] (5 ® )
as t — oo on the parameter subset
S ={(\r) € S({z},0) s ex(X, p) > 7 p}.

Note that if we know that complete convergence holds, then we have also fully charac-
terized all possible invariant laws of the CPERE. We illustrated the survival region
S(C, B) and the two subsets S} and S, in Figure . Note that these three param-
eter regions are subsets of each other, i.e. S} C S; C S(C,B). On subexponential
graphs, i.e. p = 0, the inequality c;(\, p) > k~!p is trivially satisfied for all A > 0 since
c1(A,p) > 0 for all A > 0. Thus, S} = S., = S(C, B) for all (C, B) with C' non-empty
and finite.

A
A )\C(T,{I},@) )\c(ra OvB)

1%}
)
=
\
\

Figure 8.1: The solid and dashed red curve indicates the critical infection rate A.(r,-)
of the CPERE. The solid black curve indicates the critical infection rate of a CP, where
M¢ is the critical infection rate for r = 1.

Influence of the initial configuration on the critical infection rate: This brings

us to the first open problem. We already mentioned that the initial configuration (C, B)
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has no influence on the critical infection rate if ¢;(\.(r, C, B), p) > k™ !p is satisfied, or
to be precise if the asymptotic expansion speed of the permanently coupled region is
greater than that of the infection. But is this still the case if ¢; (), p) < k™ 1p? Of course
this is only possible if p > 0. It seems appropriate to mention here that c; (), p)~! and
kp

determine the exact constants it might be possible to choose the parameters of the

are only bounds on the asymptotic expansion speeds, but even if we are able to

background small enough with respect to the infection rate A and recovery rate r such
that it might happen that the coupled region expands slower than the infection, see for
example the dynamical percolation in Example (7). For this model a + 3 seems
to determine the expansion speed, and thus we can just choose a +  small enough in

comparison to A and r.

Open problem 1. Let x € V be arbitrary but fixed and suppose p > 0. Is the
critical infection rate always independent of the initial conditions? In other words is
Ae(r,{z},0) = A(r,C,B) for all r > 0, C C V finite and B C E? Ordor >0,C CV
finite and B C E exists such that A.(r,{z},0) > \.(r,C, B)?

Complete convergence of CPERE on general graphs: If ¢;(\,p) > x7'p is
satisfied Theorem states that if the two conditions and are satisfied,
then we get that complete convergence holds for the CPERE. Hence, again the same
question arises. What if ¢;()\, p) < k7 !p? In the proof of Theorem we rely
at some crucial steps on the assumption that the asymptotic expansion speed of the
permanently coupled region is greater than that of the infection. Thus, we cannot just

forgo this assumption.

For the CP Salzano and Schonmann studied the property of complete convergence
in [SS97] and [SS99]. Among other things they showed in [SS97, Theorem 1(i)] that
on transitive, connected graphs with bounded degree the complete convergence is
monotone in the sense that if it holds for some infection rate A it already holds for all
A > X and if it holds for an infection rate A on some transitive and connected subgraph
Go C GG it holds on G for the same rate A as well.

For the CP an intermediate phase is possible, where complete convergence does not
hold but the survival probability is positive. But because of the above mentioned
monotonicity on transitive graphs, this is normally only a bounded parameter region,
see [Ligl3, Chapter 1.4] where among other things this is studied for the CP on regular
trees. Hence, if in the case of the CPERE complete convergence fails for large A, then it

might lead to a fourth phase where again infinitely many extremal invariant laws exist.
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Open problem 2. Is it possible to extend Theorem [1.4.15|in such a way that it holds
for every (\,r) € S.,7

Another interesting question could be the following.

Open problem 3. Is complete convergence a monotonous property (as described
above) for the CPERE?

CPERE on Z?: As an application we showed for our main example the contact pro-
cesses on a dynamical percolation, which we abbreviate with CPDP, on a d-dimensional
integer lattice, i.e. V =Z% and E = {{z,y} C Z% : ||x — y||; = 1}, that complete con-
vergence holds for all (\,r, , 8) € (0,00)*. Furthermore for general CPERE on (V, E),
where the background process B satisfies Assumption [I.4.1], complete convergence holds
on the survival region of a CPDP with suitable chosen parameters. Therefore, we might

ask the following question.

Open problem 4. Does complete convergence hold for every (A7) € (0,00)? for

a CPERE on the d-dimensional integer lattice, if the background satisfies Assump-
tion [L4.1F

Furthermore, it would be interesting to know the behaviour at criticality of a CPERE.

Open problem 5. Does the CPERE on the d-dimensional integer lattice go extinct
almost surely at criticality, if the background satisfies Assumption [1.4.1]

Asymptotic shape theorem on Z¢: Closely related to complete convergence is the
asymptotic shape theorem. Recall that we denoted by 7 := inf{t > 0 : Cfo}’w # 0}
the extinction time of the infection process C with initial configuration ({0}, ). Let
H, =, CL%? be the set of all sites which were infected at least once until time ¢ and
K, := {xie V iz e C%" A CYP s >t} be the permanently coupled region of the

infection process C. Furthermore, we set Hj := H, + [—1, %]d and K| := K, + [—3, %]d.

Conjecture 6. Let (C,B) be a CPERE with infection rate A > 0 and recovery rate
r > 0, where B satisfies Assumption Suppose that 6(\,r,{0},0) > 0 and there
exist constants C4, Cy, M > 0 such that

P(t <7 <o0) <Cexp(—Cat) (8.1)
IP({B §é HMH:EII1+ta T = OO) <Oy exp(—Cgt) (8.2)
IP(.?Z §é KMH:BIIlth? T = OO) < (4 eXp(—CQt) (8.3)
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Then there exists a bounded and convex subset U C R¢ such that for every ¢ > 0

P(3s>0:t(1—e)U C (K;NH)) CH, Ct(1+e)U Vt > s|t =00) = 1.

Let us briefly explain the three conditions mentioned in this conjecture. Condition
implies that if the infection process C goes extinct, then this will happen most
likely early on. Condition basically states that if C survives, the infection expands
asymptotically at least according to some linear speed with high probability. Condition
has a similar interpretation, i.e that also the permanently coupled region expands
at least with some linear speed with high probability. Note that Lemma already
implies that both processes H; and K; can expand at most according to some linear

speed.
As we already mentioned in Section Garet and Marchand proved in |[GM12] an

asymptotic shape theorem for the contact process on Z in a static random environments.
Deshayes adapted their techniques in |[Des14] to a dynamical setting and showed an
asymptotic shape theorem for a contact process with ageing. Furthermore, in [Des15|
it was explained that this can also be extended to a broader class of time dynamical
contact process, which includes among others the contact process with varying recovery
rates studied by [Bro07] and [SWO08]. Since the latter model shares a lot of similarities
with the CPERE constructed here we believe that Conjecture [6] should hold true.

Both works [GM12] and [Des14] have proven similar conditions to (8.1]), and (8.3),
for the contact process in a static random environment and respectively for the contact
process with ageing, by an adaption of the techniques developed in [BG90]. Since we
already formulated, for the CPDP, an adaption of these techniques in Chapter [6] we

believe that the following conjecture to be true.

Conjecture 7. Let (C,B) be a CPDP with rates A, r, «, f > 0 on the d-dimensional
integer lattice. Suppose Opp(A, 7, a, ) > 0, then there exists Cy, Cy, M > 0 such that

(8.1)), (8.2) and ({8.3]) are fulfilled.

CPERE with more general background: In this thesis we focused on a certain
type of background, which is described by an ergodic and reversible spin system with
finite range interactions. But there are certainly interesting choices for the background
which do not satisfy all of Assumption [1.4.1] For example in Remark we pointed
out that a more general version of the noisy voter model see Example m (47), might
not satisfy the reversibility assumption, and thus we know nothing about complete

convergence or continuity of the survival probability in this case, even though this
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model seems to be one of the most natural choices for introducing interaction between
edges. Note that in Remark [5.1.12] we mentioned an alternative approach for some

technical aspects, which do not use reversibility.

Also, if we consider the ferromagnetic Ising model on Z? for d > 2 as the background,
see Example m (441), we can choose the inverse temperature /3 large enough such that
this system is no longer ergodic, i.e. there exist more than one invariant law. Another
interesting choices for a non-ergodic background would be another contact process or a

similar interacting particle system.

Since we strive to formulate a model which is as realistic as possible. One natural
extension would be to allow a feedback from the infection process to the background.
This seems reasonable, since if an individual is infected and shows symptoms, one
would assume that it would distance itself from other people on its own to avoid the
spread of the infection. Of course this would lead to vastly different model since the

dependency structure is far more complex than in our case.

Further studies on the contact process on a long range dynamical perco-
lation: In the last part of this thesis we studied a contact process on a long range
dynamical percolation. This model is basically an extension of the process considered
by Linker and Remenik in [LR20]. We have not really studied the long range case
in too much depth, and therefore further studies would be necessary to obtain more
understanding of this model. We focused on extending some of the results proven in

[LR20], for example the existence of an immunization region.

Recall p. = qp. was the probability of an edge e being open after an update and
U = v, was the update speed of this edge, where ¢ € (0,1), v > 0, (pe)ece C [0, 1] and
(Ue)6€5 C (0,00)

Theorem , yields an upper bound on the critical infection rate A.(r,~, ¢), since it
provides a comparison with a long range contact process. This is of course useful to
determine if this system has a positive survival probability. But this theorem is also the
first step towards characterizing the asymptotic behaviour for fast speed, i.e. v — oo.
Hence, the next step would be to find a lower bound. The approach which Linker and
Remenik used for the CPDP on a graph with bound degree, see [LR20, Theorem 2.3],
cannot be extended easily to the long range setting, since it relies heavily on the fact

that a graph with bounded degrees is considered.

We studied the asymptotic behaviour as v — 0 under fairly strong assumption, i.e.
Assumption [1.4.26] One could also ask what the asymptotic behaviour is if we assume
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that ZyG]N YU10,1P{0,yy = 00. We would expect that the asymptotic behaviour should
depend on the choice of the parameter ¢, since if ¢ is chosen close enough to 1 the
long range dynamical percolation model might not partition Z in finite connected
components anymore. Thus, it is reasonable to assume that there exists an ¢* € (0,1)
such that sup{A.(r,7,q) : v > 0,q € (¢*,1)} < oo, where r > 0. A similar result was
shown for the CPDP on the d-dimensional integer lattice in [Hil+21].

At the end we want to briefly discuss Assumption [1.4.21] (i), i.e. Zer v{_xly} < 00

for all x € V. This assumption does not seem natural. In fact, the reason for this
assumption is of technical nature, since it allowed us to extend the existing results to
our setting. It does seem more natural to assume that v, = v for all e € £, which means
that every edge is updated at the same speed. We would expect that the asymptotic
behaviour is similar or even the same in this case. However, without this assumption
the situation becomes more complicated, since for example one consequence of this
assumption is that all edges attached to a site x can be updated in finite time. But the
number of edges attached to = are infinitely many. By setting the speed constant we

would lose this property, which we heavily relied on.
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Appendix A

e > M condition for the background

process

Here we calculate the constants € and M for the processes defined in Example
(i)-(i7i), which we already stated Remark [1.4.4] Recall that

M := Z sup |q(e, B) — q(e, BA{z})| and e := élé% lq(e, B) + q(e, B A {e})|.

BCFE
aeNL °C

After determining the constants € and M we will also state for which parameter regime

the inequality € — M > p from Corollary is satisfied.

Dynamical percolation: We introduced the dynamical percolation in Example
() and the spin rate of this model is q(e, B) = alyie¢py + Bliceny, where a, 5 > 0. We
see that

q(e,B)+q(e,BA{e}) =a+ and q(e, B) = q(e, B A {a})

for all e € E and all a # e. Thus, we can conclude that the two constants are M =0
and € = a + . This shows that ¢ — M > p if and only if a + 5 > p.

Noisy voter model: As one can infer from Example (i7) the spin rate of the

noisy voter model is
a
a(e, B) = B(IBON [Liegmy + 1B NN [Liceny) + 5
where a, 5 > 0. We see that

q(e, B) +qle, B A{e}) = a+ BINe| and [q(e, B) —q(e, BA{a})| = f
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for all e € F and all a € NX| and thus M = B|NX| and € = a + B|NE|. Furthermore,
e —M > pif and only if a > p.

Ferromagnetic stochastic Ising Model: The calculations for this model are a bit
more lengthy. Recall from Example (74) that the spin rate of this model is

g(e, B) = 1 — tanh (5 3 (—1)B°”{e’a}|) - 2(1 +exp <2B 3 (—1)'Bcﬁ{e’“}>)_l.

aeNL acNE

Let us first introduce the shorthand notation x(e, B) := >,z (—1)FHea We start
with calculating the constant e. We see that x(e, B A {e}) = —x(e, B), which yields
that

2 2 exp (26)((6, B))

Q(e, B) + Q(ev BA {6}) - 1+ exp (2ﬁx(e’ B)) 1+ exXp (2ﬁX(e> B))

=2

for all e € F and all B C E. Hence, the infimum over all B yields
e = jnf |q(e, B) +qle, B AA{e})| = 2.
Next we calculate M. For z € NF define

H(z,B) := (q(e,B) —q(e, BA{z})) and x.(e,B):= Z (—1)lBnieal,
aENE\{z}

Since x(e, B) + x(e, B A {z}) = 2x.(e, B) we see that

%H(z, B) :(eXp (Zﬁx(e, B)) — exp (2596(67 BA {Z}))>

X <1 + exp (28x(e, B)) + exp (2Bx(e, B A {z})) + exp (48x:(e, B))>_1.

Now we see that the factor exp ( —206x.(e, B)) in the numerator and denominator and
we use again that (—1)I(BAED el = _(—1)IB{es) for all 2 € AF. This yields

%H(z, B) :(exp <2B(—1)|ch{e’z}|) — exp ( — 25(_1)|Bcﬁ{e,z}>)
X (exp ( — 20x. (e, B)) + exp <2ﬂ(—1)‘ch{e’z}|>

+ exp ( - 25(—1)'3%{6’4‘) + exp (26;@(6, B))) _1.
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We take the absolute value and use that x(e, B A {e}) = —x(e, B), which provides

exp(23) — exp(—25)
exp(28) + exp(—23) + exp ( — 28x.(e, B)) + exp (2Bx:(e, B))

1
Maximizing this term with respect to B C E is equivalent to minimizing

exp (— 28x:(e, B)) + exp (28x:(e, B)).

The function z — e + e~* is continuous, strictly decreasing on (—oo, 0] and strictly
increasing [0, 00). It is easy to see that it takes its minimum at x = 0, which has the

function value 2. We see that
Xz(e; B) S {_|'/\[6L‘ + 17 _|'/\[6L‘ + 37 CI) |j\/;L| - 37 |'/\/‘eL| - 1}

Note that the set on the right hand side contains 0 only if |[AZ| is odd. Thus, we see
that

2AeXP—e20) e AFL] odd
sup |H(z, B)| = ezZte:zZH ) | €L|
BCE e if |V even.

Therefore, using that supg- |H(z, B)| is the same for all z € N* inserting this into
the definition of M yields

NP R 20 it |NL] odd

M =" suplq(e, B) — qle, B A {z})| =
EZNL BCE ]j\/'ﬂfjii_i? if INF] even.

After we calculated the constants e, M we will now determine for which g the inequality
e — M > p holds. Obviously we need that p < 2 = ¢, since M > 0. If we consider |NZ|

even, then by inserting € and M we see that

—e NE —p+2
L e N —p+
£ — _2_|N|2B_|_e26 p & log(—W,L|+ >>B.

Thus, we see that all 0 < g < %log (Wi};g ”_Lg) satisfy the inequality. This is actually

also true if [N'L] is odd. This follows by the fact that M obviously is smaller if | V| is

odd. Nevertheless, we are able to obtain a slightly better bound if we consider [N
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to be odd. Thus, if we again insert ¢ and M into the inequality e — M > p. After

rearranging the terms we get that
(2= p = 2N +2(2 = p)e® + (2 — p+2|N[) > 0.
Next we substitute ¢ = ¢? and calculate the root of
(2= p = 2ANIDE +2(2 = p)t + (2= p+ 2N]) =0,

which are by square addition

L T22=p) £ VAR = p) 42— p = ANED2 — p + 2N
e 2(2—p—2INH) '

Since (2 — p — 2INL)(2 — p+ 2INE|) = (2 — p)? — 4|NE|? we see that

RN —p+2
T QNE+p-2)

Obviously e?® > 0 for all 3 € R, and thus the only root which is possible is .

Furthermore, 3 +— €2? is monotone increasing, which yields that if |[NV*| is odd, then

L _
2|N | p+2> -5

1
~M>p & -l (
c P 2 S QNI+ p—2



Appendix B

Oriented percolation and

K-dependence

B.1 Oriented percolation

The term oriented percolation is not really uniquely connected to one model. In
principle every percolation model defined on a directed graph can be called an oriented
percolation model. Here we will only consider a special case. We consider the oriented
percolation on Z or rather Z x INy. For this type of model there is more then one
possible representation. Here we will formulate it as a discrete stochastic growth model,
as in [Dur84] or [Ligl3]. They considered a Markov chain (X,,),>¢ with values in P(INy)
and the evolution of the process is described through the conditional probability

P(z € Xo 1| X0, Xp) =4 { }

0 otherwise .

We recommend [Dur84] for detailed survey on this model. Note that we will consider a

slightly different version. Let

fﬁZXINo%IN(]XINO

(x,n) — f(z,n) = (2x —n,n).

and set W, :== f(X,,). Since f is bijective, this transformation is a mere reformulation
of the state space and does not really change the behaviour of the process. We only

use this version since we want to compare the oriented percolation to the CPDP in

189
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Chapter [6] and thus this choice seems more intuitive. See for a visualization

of the two versions. We see that the dynamics of (W,,)nen, are

it X, N{x—1,x+1
IP(I € WnJrl‘WO’...Wn) = P { }
0  otherwise,

and thus Ws,, C 27 and Ws,,_1 C 27, — 1 for every n € INy. Similar as for the contact
process we will indicate the initial state by a superscript, i.e. W4, where A C 2Z. We
also see that Wi C [—n,n]. Furthermore, we denote by 7 = {n > 0: W,, = ()} the
“extinction” time of (W),,),>0. In the terminology of percolation models {7 = 0o} is the
event that percolation occurs. Now we state some facts, which we need to utilize in
Section [6l

N N
A ’A

Figure B.1: Here we visualized a possible realization of an oriented percolation. On
the left the verison (W),,), and on the right (X,,),.

Theorem B.1.1. For p close enough to 1 there exist C' > 0 and & > 0 such that
(i) i‘éﬁ PO} (0 € Wy,) >0,
(ii) POk < 7 < 00) < Ce™k,

(i3i) PA(1 < 00) < Ce ! where A C 27Z.

Proof. This follows from |Ligl3, Theorem B24], which proves the equivalent statements
for (X,)nen, O

Theorem B.1.2. For p close enough to 1 it holds that

lim lim inf IP{_m""’m}(Wn N{-m,...,m} #0)=1.

m—o0 mNn—0o0
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Proof. Let us again consider the equivalent version (X, )nen,. In [DS87, Section 5] it
was shown that for a broad class of stochastic growth models complete convergence
holds. The oriented percolation (X,,)nen, is part of this class as mentioned in their
Example 2. Thus, by [DS87, Theorem 2] for p close to 1 there exists a law v on P(INy)
such that X2 = PA(7 < 00)dy + PA(7 < c0)v as n — co. Similar as for the contact
process they derived a duality relation such that for A, B C N

P(X!NB#0)=P(XJNA#0),
and furthermore used this relation to show that
P(X2#0Vn>0)=v(BCNy: BnA#p).
Thus, we can conclude that

lim liminf P(X'NA#Q)= lim P(X2#0Vn>0)?=1,
|A| =00 n—o0 |A| =00
where we used Theorem [B.1.1] (éii) to conclude the last equality. Now by transforming
X,, with f and choosing A appropriately we obtain the claim. O]

B.2 K-dependence

In this section we introduce the notion of K-dependence. To be more precise we
consider a family of Bernoulli variables with a certain dependence structure and state

a comparison result with a family of independent Bernoulli variables.

Definition B.2.1 (K-dependence). Let (X;);ea be a family of Bernoulli random
variables, where A is a countable index set. We call the family (X;);epn K-dependent, if
for every i € A there exists a subset A; C A with i € A;, |A;| < K and

X; is independent of (X;);jca\a,-

Note that by this definition 1-dependence is equivalent to (X;);ex being an independent
family of Bernoulli random variables. The next theorem provides that K-dependent
families can be coupled with an independent family such that the independent family

acts as a lower bound.
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Theorem B.2.2. Let A be a countable set, p € (0,1) and K < oco. Assume that
(X,)iea is a K-dependent family of Bernoulli random variables with P(X; = 1) > p for
all i € A and that

o |

p=(1-(1-p7)" >

Then there exists a family (Xi)ieA of independent Bernoulli random variables such that

and X; > X; foralli e A.

Proof. See [Swal7, Theorem 7.4] O
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