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Zusammenfassung
Dipolare aktive Teilchen gehören zu einer Klasse von selbst angetriebenen Teilchen
biologischen oder künstlichen Ursprungs. Diese Teilchen verfügen über ein inter-
nes, typischerweise magnetisches Dipolmoment. Die daraus entstehenden dipola-
ren Teilchen-Teilchen Wechselwirkungen führen in Kombination mit dem aktiven
Antrieb zu komplexem kollektivem Verhalten in Systemen solcher Teilchen.
In der vorliegenden Arbeit verwenden wir Brownsche Dynamik-Simulationen,

um die Vielfalt der dynamischen Strukturbildung in solchen System zu untersu-
chen. Dabei ist diese Arbeit in vier Hauptforschungsthemen gegliedert. Zunächst
untersuchen wir Strukturbildung in kleinen Systemen von dipolaren aktiven Teil-
chen. Hier beobachten wir, dass sich vor allem Ringe und Ketten bilden. Diese
Strukturen sind hauptsächlich abhängig von der Aktivität und der Magnetisie-
rung der Teilchen. Zudem beeinflussen auch Wechselwirkungen mit Wänden im
System die Strukturbildung. Im nächsten Schritt gehen wir zu großen Systemen
dipolarer aktiver Teilchen über. Wir zeigen, dass Aktivität eine entscheidende Rolle
bei dem emergenten Verhalten spielt. Wir klassifizieren das beobachtete kollektive
Verhalten und fassen die Ergebnisse in Zustandsdiagrammen zusammen. Als drit-
tes untersuchen wir den Einfluss eines konstanten homogenen externen Magnet-
feldes auf die Strukturbildung. Dabei beobachten wir, dass Bildung von Bändern
durch starke externe Magnetfelder unterdrückt wird und sich Teilchen stattdes-
sen in säulenartige Strukturen organisieren. Außerdem stoßen wir auf einen bisher
nicht charakterisierten vorübergehenden Zustand von oszillierenden Ketten aktiver
dipolarer Teilchen. Wir gehen davon aus, dass diese Oszillationen durch Buckling-
Instabilitäten verursacht werden. Zuletzt führen wir ein zeitabhängiges externes
Magnetfeld ein und untersuchen die dadurch angetriebene Dynamik der Struktur-
bildung.
Diese Arbeit zeigt, wie dipolare Wechselwirkungen, der Einfluss externer ma-

gnetischer Felder oder Wechselwirkungen mit Wänden des Systems, das bereits
bekannte, vielfältige komplexe kollektive Verhalten in Systemen aktiver Teilchen
erweitern und bereichern können.

Stichwörter: aktive Brownsche Teilchen, Brownsche Dynamik-Simulationen,
dipolare Teilchen, Emergenz, externes Magnetfeld, kollektives Verhalten, Nicht-
gleichgewichtssystem, Simulationen, Strukturbildung, theoretische Physik, Wand-
wechselwirkungen, zeitabhängiges Magnetfeld, Zustandsdiagramm.
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Abstract
Dipolar active particles describe a class of self-propelled, biological or artificial
particles. These particles are equipped with an internal, typically magnetic, dipole
moment. The combination of dipolar particle-particle interactions and activity
leads to emerging complex collective behavior in systems of such particles.
In this thesis, we use Brownian dynamics simulations to explore and charac-

terize the plethora of structural dynamics and pattern formation in systems of
dipolar active particles. This study can be divided into four parts. First, we
focus on structure formation in small systems. Here, we mainly observe chain
and ring formation and characterize how activity and spatial confinement affects
these structures. Second, we move to large systems of dipolar active particles,
classify the collective patterns we observed and summarize our results in diagrams
of states. We show that activity plays a crucial role in the emergent collective
behavior in systems of dipolar active particles. Third, we investigate the effect a
constant homogeneous external magnetic field has on collective dynamics of the
system. We observe that band formation is suppressed by strong external mag-
netic fields and columnar structures form. In addition, we notice a previously not
characterized transient state of oscillating chains of active dipolar particles. We
hypothesize that these oscillations are caused by buckling instabilities. Finally,
we introduce a time dependent external magnetic field and study the dynamics of
structure formation driven by that field.
This thesis demonstrates how dipolar interactions, external magnetic fields, or

confinement, can further add to the rich complex collective behavior in systems of
active particles.

Keywords: active Brownian particles, Brownian dynamics simulations, con-
finement, collective behavior, diagram of states, dipolar particles, external mag-
netic field, non-equilibrium physics, numerical simulations, order parameter, pat-
tern formation, structure formation, theoretical physics, time dependent external
magnetic field.
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Nomenclature

Symbols

Vectors are denoted by small, bold italic letters v. The superscript ’hat’ denotes

a unit vector ê.

symbol meaning unit

B external magnetic field strength B0

β ramping rate B0σ/DT

∆t time step DT/σ

ε cut-off distance cluster σ

L side lengths simulation box σ

µ magnetic moment ε/B0

N particle number 1

Φ filling fraction 1

R radius of circular confinement σ

t time DT/σ

T temperature ε/kB

v0 self-propulsion speed DT/σ
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Nomenclature

Abbreviations

abbreviation meaning

BD Brownian dynamics

cog center of geometry

MD molecular dynamics

MIPS motility induced phase separation

MSD mean-squared displacement

pbc periodic boundary conditions

WCA Weeks-Chandler-Andersen
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1. Introduction

Dipolar active particles, or dipolar swimmers, describe a class of self-propelled,

biological or artificial particles. These particles are equipped with an internal,

typically magnetic, dipole moment. In general, self-propelled particles constantly

convert energy from their environment into directed motion [1, 2]. Directed motion

is crucial for the survival of living organisms, ranging from bacteria over animals

to humans. It is essential in the search for food, to escape predators or unwanted

environmental conditions.

Active particles in large ensembles do not only interact with their environment,

but also with other particles. Because of various interaction forces, systems con-

sisting of many similar units of active particles are known to exhibit rich collective

behavior such as self-organization, pattern formation and swarming [3–5]. Every-

day examples of complex collective behavior are a school of fish or a flock of birds

[6–9]. But also particles on the micro-scale, so called microswimmers, like bacteria

or microalgae can exhibit rich collective behavior. Here, models have shown that

the details of the propulsion mechanism are largely not relevant [10–13].

The physics involved in swimming on microscopic length scales is vastly different

from swimming on macroscopic length scales known to humans for two reasons [14–

17]. First, particles on the micro-scale are subjected to noise: solvent molecules
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1. Introduction

constantly collide with the microscopic particle and cause random translational and

rotational motion. This motion is known as Brownian motion and is the reason for

diffusive behavior of passive mircometer-sized particles [18, 19]. Microswimmers

use active self-propulsion to overcome diffusion. Second, at small length scales

viscous forces dominate over inertial forces when swimming in water. To achieve

directed motion in this low Reynolds number regime, the swimming motion of

microscopic particles has to be reciprocal but asymmetric under time-reversal [20].

Microswimmers have been a particular focus of research because of their possible

biomedical applications [21, 22]. From an application point of view, the desire for

remote control of active particles is high. In that respect, magnetic active particles

are an ideal candidate because they can be controlled non-invasively by an external

magnetic field. One example for a biological dipolar swimmer are magnetotactic

bacteria (MTB) [23–28]. Fig. 1.1 shows two examples of MTB. These bacteria align

with external magnetic fields because of the magnetosome chain, a chain of iron-

oxide or sulfite nanocrystals located inside their cell bodies. Recent studies have

demonstrated concepts where magnetotactic bacteria have been functionalized to

transport drugs into tumor regions [29] or dense biofilms [30]. Here, it has been

shown that externally guided microswimmers can increase the efficacy in the region

of interest dramatically.

Inspired by these biohybrids, artificial magnetic microswimmers have been de-

veloped [14, 22, 31]. Typically, these artificial microrobots realize self-propulsion

via magnetic actuation through an external time-dependent magnetic field [21]

or through an external electric field that induces magnetic interactions between

particles [32]. Here, assembly into structures can be dictated by manipulating the

external field. One example are magnetic Janus particles that can self-assemble

2



Figure 1.1.: Transmission electron microscopy images showing two examples for
magnetotactic bacteria. Left Magnetospirillum gryphiswaledense MSR-1 strain
(reprinted from ref. [27] under the creative commons CC-BY 4.0 license). Right
SS-1 strain (reprinted from ref. [26] under the creative commons CC-BY-NC-ND
3.0 license). Black dots inside the cell bodies are the magnetosome chains.

into various structures which can be controlled by external magnetic fields [33,

34]. Other self-propulsion mechanisms rely on chemical reactions [35, 36] or ther-

mophoresis [37].

While the dipole moment of these active particles is mostly used for guidance,

dipolar particle-particle interactions are inevitably introduced. These long range

and strongly direction dependent interactions may lead to previously unknown

spatial patterns or new forms of collective behavior [38–40].

Structure formation in passive systems of dipolar particles has been studied in

the past both theoretically and in experiments. Calculations of the configurational

energy in two dimensions have shown that the energetically favorable configura-

tion depends on the number of particles N . Systems with small particle number

N are known to adopt chains (N < 3), rings (3 < N ≤ 17) or more complex,

concentric multi-shell hexagonal patterns (N > 17) as favorable configurations

[41–44]. In fact, it has been argued that chain aggregation suppresses the usually

observed vapor-liquid phase transition in systems of dipolar particles [45–48]. Mo-
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1. Introduction

tivated by observations in ferrofluids [49], temperature dependence of chain and

ring structures in passive systems has been investigated and identified as ground

state structures [50–52]. Furthermore, an analytical expression for the contribu-

tions to the systems’ free energy by chains and rings has been derived [53]. Systems

with larger particle number N of passive dipolar particles, as realized in ferroflu-

ids, show more complex structures like lanes, complex networks with branches and

percolation [38, 54–57].

Ferrofluids that are subject to external magnetic fields have been studied in

the past in the field of magnetorheology. Here, mechanical properties such as

the viscosity of the system can be tuned over several orders of magnitude by the

external magnetic field. This remarkable property makes such systems very good

candidates for applications in mechanical systems like dampers, clutches or breaks

[58]. Experiments and numerical simulations of dipolar particles in an external field

[59–61] have demonstrated that structures like equally spaced, columnar ordered

chains and bands are induced by the external magnetic field [57, 62, 63]. These

complex structures give rise to the mechanical properties of ferrofluids [64, 65].

In some studies, the effect of time-dependent external magnetic fields in fer-

rofluids was investigated too. Here, time dependency was typically realized by

a rotating external magnetic field [66, 67]. These studies focused on the elastic

properties of chains, similar to [44]. Time-dependent external magnetic fields may

introduce hysteresis [68], as seen in other magnetic systems [42, 69].

In recent years, also active systems of dipolar particles were studied by several

groups [40]. Of particular interest was the question, how hydrodynamics affect

structures and clusters of dipolar particles [70, 71]. In other studies the effect

of dipolar coupling and activity on cluster formation has been investigated and
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1.1. Outline

summarized in a phase diagram [72]. Brownian dynamics simulations have shown

that motility induced phase separation (MIPS) is generally suppressed by dipolar

interactions [73]. MIPS is expected to occur in systems of active particles with-

out attractive interactions when the average density exceeds the critical density

ΦMIPS = 0.28 [74] in two dimensions. Many factors can influence the exact value

of this critical density, like systems size and finite size effects [75] or softness of the

particle-particle interaction potential [76]. In addition, mixtures of passive dipolar

particles in a bath of active particles have been investigated without [77] and with

the presence of an external magnetic field [78].

Most of these studies have focused on systems in spatially homogeneous envi-

ronments. Yet, microswimmers often interact with interfacial barriers present in

their natural environment or are confined by complex experimental setups like

microfluidic devices. It has been shown that confinement can affect the motion

of microswimmers either via steric and/or hydrodynamic interactions to different

degrees [79–85], sometimes leading to novel dynamics and pattern formation [86–

88].

1.1. Outline

Systems of active dipolar particles are known to exhibit rich collective dynamics.

The aim of this thesis is to expand the current understanding of structure formation

and collective behavior of systems of active dipolar particles, such as magnetotactic

bacteria or artificial magnetic swimmers under various conditions. To that end,

we use a coarse grained model for dipolar active particles. The model and its

corresponding equations of motion are introduced in chapter 2. The equations

5



1. Introduction

of motion are solved numerically in two dimensions. Computational details of

the simulations can be found in chapter 3. The results of these simulations are

presented and discussed in chapter 4 to chapter 7. The main research questions

addressed in this thesis are divided into four parts.

First, we investigate structure formation of dipolar active particles in systems

with small particle number N=36 and low average density Φ in chapter 4. Here, we

ask what structures like chains and rings can emerge and how are these structures

affected by activity and magnetic interactions. In addition, we introduce confining

walls to the system and analyze how structure formation is influenced by the

geometry and by the interactions between the active particles with these confining

walls.

Second, we increase the number of particles to N = 1156 and study the collective

behavior of active dipolar particles in bulk and how it is affected by the systems’

density Φ in chapter 5. We quantify the observed collective behavior by introducing

three order parameters and summarize the results in diagrams of states.

Third, we add a constant homogeneous external magnetic field to the bulk sys-

tem of active dipolar particles and study the effect of this field on the collective

motion of the system in chapter 6. We are particularly interested in emerging

columnar clusters that are induced by the external magnetic fields.

Fourth, we change the constant external magnetic field into a time-dependent

one in chapter 7. The time dependency of the external field is modulated by

a triangular function with a constant ramping rate. Here, we investigate how

this ramping rate affects assembly, disassembly and reassembly of structures for

different motility and magnetic interactions of dipolar active particles

Finally, we summarize our results and draw general conclusions in chapter 8.

6



2. Methods

In this chapter, we present the coarse grained model that we used to investigate

collective dynamics of active dipolar particles throughout this thesis. We will start

by introducing the equations of motion. Furthermore, we define in this chapter

the observables and order parameters that we used to quantify our observations

with in this thesis.

2.1. Equations of motion

To model the dynamics of dipolar swimmers, we considered active Brownian

spheres that have a permanent dipole moment µi = µêi with the magnetic strength

µ at the particle center. Here and in the following, the superscript ’hat’ denotes a

unit vector. As shown in Figure 2.1, the magnetic moment (red arrow) is aligned

with the orientation of the particle êi, which defines the direction of self-propulsion

with speed v0. Two dipolar particles with the orientations êi and êj, separated by

the distance rij = |rij| interact with each other via steric interactions and dipo-

lar interactions. Steric interactions are modeled by a Weeks-Chandler-Andersen

(WCA) potential [89], which is the shifted Lennard-Jones potential truncated at

7



2. Methods

Figure 2.1.: Schematic representation of a single dipolar particle with magnetic
moment (red arrow) and self propulsion velocity (black arrow) aligned with the
orientation of the particle.

6
√

2σ, where σ is the particle diameter

UWCA(rij) =


4ε
[(

σ
rij

)12
−
(
σ
rij

)6
]

+ ε if rij < 6
√

2σ

0 if rij ≥ 6
√

2σ.
(2.1)

Dipolar interactions between two particles with magnetic moments µi = µiêi

and µj = µjêj are modeled by a pairwise dipole potential

Udd(rij,µi,µj) = µ0

4πr5
ij

[
−3 (µi · rij) (rij · µj) + r2

ijµi · µj
]

(2.2)

with the vacuum permeability µ0. One characteristic feature of this potential is

its long range, as it decays as r−3. In addition, dipolar interactions are strongly

anisotropic and favor certain spatial configurations of two particles. Four typical

configurations of two particles with magnetic strength µi = µj = µ, separated by

distance |rij| = rij = σ are shown in Figure 2.2. Here, a head-tail configuration

is energetically favorable. Both features, the long range and anisotropy of interac-

tions, are crucial for the formation of complex structures and collective behavior

of systems with active dipolar particles. We study structure formation in small

systems in chapter 4 and emerging collective behavior in chapter 5.

The dynamics of a dipolar active particle i with position ri and orientation êi

8



2.1. Equations of motion

Figure 2.2.: Schematic showing four typical configurations and their correspond-
ing potential energies in reduced units of two dipolar particles separated by dis-
tance σ. The orientation of the magnetic moments are indicated by red arrows.

are given by the following Langevin equations

ṙi = v0êi + 1
γT
Fi +

√
2DTξ

T
i (2.3)

˙̂ei = 1
γR
τi × êi +

√
2DRξ

R
i × êi, (2.4)

where γT and γR are the translational and rotational drag coefficients, ξT
i is the

translational stochastic force, and ξR
i is the rotational stochastic torque. These

stochastic terms model the particles interactions with its surrounding fluid. Both

are described by Gaussian white noise with zero mean

〈
ξT,R

〉
= 0〈

ξT,R(t) · ξT,R(t′)
〉

= 1δ(t− t′) .

DT and DR are the corresponding diffusion coefficients. Fi and τi describe forces

and torques acting on particle i. The forces Fi acting on particle i are given by

9



2. Methods

the sum of the particle-particle interactions. In addition, we consider interactions

with the confining walls of the system in section 4.2,

Fi =
∑
i 6=j

(
FWCA
ij + F dd

ij

)
+ F wall

i .

The pairwise forces between two particles i, j separated by the distance rij =

|rij| = |ri − rj| consist of forces from excluded volume interactions and dipolar

forces.

The forces resulting from excluded volume interactions are modeled by the

Weeks-Chandler-Andersen (WCA) pair potential with the interaction energy ε

and the particle diameter σ

FWCA
ij =−∇UWCA(rij)

=


48εrij

r2
ij

[(
σ
rij

)12
− 1

2

(
σ
rij

)6
]

if rij < 6
√

2σ

0 if rij ≥ 6
√

2σ.

The dipolar forces are derived from the pairwise dipole potential [90]

F dd
ij =−∇Udd(rij,µi,µj)

=3µ0µ
2

4πr4
ij

[r̂ij (êi · êj) + êi (r̂ij · êj) + êj (r̂ij · êi)

−5r̂ij (r̂ij · êi) (r̂ij · êj) ] .

Forces resulting from interactions with the confinement F wall
i are described by

the same WCA potential. Fig. 2.3 illustrates the interaction of a particle with

the confinement. Here, the shortest distance r to the wall (gray) is measured

10



2.1. Equations of motion

and the repulsive force for a virtual wall particle (balck dotted circle) with its

surface at the point of shortest distance (i.e. outside the wall at a distance σ/2) is

applied. The torques τi acting on the particle i result from the pairwise dipolar

Figure 2.3.: Schematic illustrating particle wall interactions. Repulsive force
(Fwall, gray) results from interaction with virtual wall particle (black dotted lines)
placed at point of shortest distance outside the wall. Possible torques resulting
from wall interaction are shown too (τwall, black). Orientation of particle is indi-
cated by red arrow.

interactions, interactions with the confining walls of the system and alignment

with a homogeneous external magnetic field

τi =
∑
i 6=j
τ dd
ij + τwall

i + τB
i .

The torques resulting from pairwise dipolar interactions are given by [91]

τ dd
ij = rij × F dd

ij = µ0µ
2

4πr3
ij

[3 (êi · r̂ij) (êj × r̂ij) + (êi × êj)] .

Active particles may behave differently when approaching a solid boundary.

A combination of hydrodynamic effects, steric interactions between the wall and

the swimmers’ body or, possibly, their flagella can lead to a reorientation of the

swimmer at the wall [87, 92–94]. We study such wall induced reorientation of a

11



2. Methods

particle in section 4.2. We model the reorientation of the particles near a wall by

introducing a wall torque τwall
i that can be modified with the tuning parameter α

τwall
i = αêi × F wall

i . (2.5)

A value of α = 0 results in a purely repulsive wall with no reorienting torque.

In the presence of a homogeneous external field dipolar particles experience no

force but an aligning torque

τB
i = µêi ×B(t) .

The presence of an external magnetic field can influence the collective behavior

of dipolar particles. In chapter 6 we investigate the effect of a constant external

magnetic field B(t) = Bêx. Throughout this thesis, the orientation of the external

magnetic field is fixed in x-direction êx.

In chapter 7, this field will be explicitly time dependent. Here, we study hys-

teresis in systems of active dipolar particles and how the collective dynamics, in

particular structure formation and chain aggregation and separation, are affected.

To introduce a constant ramping rate β of the magnetic field, we model the time

dependency of the external magnetic field as a triangular wave function with am-

plitude B and period p = 4/β

B(t) =
{
Bβ

∣∣∣∣∣
[(
t− 1

β

)
mod 4

β

]
− 2
β

∣∣∣∣∣−B
}
êx.

Fig. 2.4 demonstrates the magnetization protocol used in this thesis. Here, a

full magnetization cycle is completed after 5/4 periods.

12



2.2. Identifying clusters and structures of polymers

Figure 2.4.: Time dependent external magnetic field as triangular wave function
over 5/4 periods with amplitude set to B = 150 and ramping rate β = 0.4.

2.2. Identifying clusters and structures of polymers

It has been shown that particles in (active) dipolar systems self-organize into

structured polymers [40, 73, 77]. As a first step to classify structures, we need to

identify cluster formation in our system. To identify clusters, we introduced the

following criteria for cluster formation. Two particles are considered as bonded,

when their distance is smaller than a cut-off distance rij < ε. At least three

mutually bonded particles are needed to form a cluster. A density based algorithm

(DBSCAN [95]) was used to determine which particles form one cluster. The cut-

off distance was chosen based on the nearest neighbor distance g1(r) between pairs

of particles in a reference system. As reference system, we chose a system with

the magnetic strength µ = 1. Here, the dipolar coupling energy of the particles

matches the thermal energy µ2/σ3 = T = 1. Since the value of ε depends on the

density of the system, we repeated this calculation for the different investigated

densities in this thesis.

13



2. Methods

The relative number of particles that assemble into clusters gives the probability

of cluster formation ps [96–98]. We calculated the probability of cluster formation

varying the self-propulsion speed and magnetic strength of the particles for various

systems.

Figure 2.5.: a. Illustration showing how the order parameter C was calculated.
Particles in different shades of blue belong to different clusters, gray particles are
not in a cluster. The red line indicates the contour length l, while d is the head-
tail distance. The particle orientation is indicated by arrows. b. Example of two
extreme configurations: A completely straight chain (cyan), where the head-tail
distance d is equal to the contour length l and a perfect ring (magenta), where the
head-tail distance d is equal to the particle diameter σ.

Dipolar particles are expected to self-assemble into chains and rings [41, 42].

To distinguish between clusters in ring and chain configuration, equation (2.6)

introduces a continuous order parameter ranging between 0 and 1 [99]. Figure 2.5

illustrates how this order parameter was calculated.

C = 1− d− σ
l − σ

. (2.6)

Here, d is the head-tail distance while l is the contour length of the identified

cluster (color coded). The contour length l was determined by using a shortest-

14



2.2. Identifying clusters and structures of polymers

path algorithm [100]. A completely straight chain (l = d) results in C = 0, while

a closed ring (d = σ) results in C = 1.

We then calculated this order parameter for each identified cluster in the system

throughout the simulation, resulting in a distribution of the order parameter. The

modal value of this distribution is the structure occurring the most for a given

parameter combination. Hence, we take this structure as the most representative

one. These representative structures were then organized in a diagram of states,

depending on the magnetic strength µ and the self-propulsion speed v0 of the

particles if the probability of cluster formation ps > 0.5. Otherwise, the system is

assumed to be predominantly unstructured.

2.2.1. Dynamics of chains and rings

Because of the geometrical configuration of dipolar particles in ring and chain

structures, we expect that rings are rather stationary (no net propulsion), while

chains remain motile. To analyze the dynamics of clusters systematically, we

tracked the trajectories of individual clusters in chain (C < 0.2) or ring config-

uration (C > 0.8) and calculated the mean-squared displacement (MSD) of the

center of geometry (cog) of these clusters. To extract the type of motion, we fitted

the function f (t) = 4Dcog t
ν to these MSD curves [101, 102], using a least-squares

method [103]. The MSD curves were obtained using a fast Fourier transform

based implementation of a moving window algorithm [104]. To reduce the noise

contributed by short-lived clusters on the MSD calculation, we analyzed configu-

rations with a life time greater than tmin = 3.6.
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2. Methods

2.3. Global order parameters

In large systems, especially at high densities, more complex structures such as

branches, connected networks, bands or loops within rings and large scale cluster

formation are expected to emerge [38, 73, 77, 78, 105]. Some of these complex

structures cannot be properly characterized by equation (2.6), since the head tail

distance might not be well defined. To characterize these systems, we used the

following three global order parameters introduced in [73] instead. To capture

small fluctuations in the system, we averaged the global order parameters over the

simulation trajectories from t = 18 to t = 20 (data taken every ∆t = 0.1). Similar

to other active systems, we expect active dipolar particles to form large clusters. To

describe the clustering behavior, we performed a density based cluster analysis, as

introduced previously in small systems of active dipolar particles. We determined

the value of the cut-off distance ε based on the nearest neighbor distance g1 (r) for

the three studied densities (Φ =0.13, 0.23 and 0.57). To quantify cluster formation,

we used the number of particles in the largest cluster n∗c relative to the system size

N

φc = n∗c
N
. (2.7)

The fraction of the largest cluster is close to 0 when particles form small or no

clusters and reaches 1 when the whole system forms one giant cluster.

Large systems of active particles are expected to undergo motility induced phase

separation (MIPS). In systems of active dipolar particles it has recently been shown

that dipolar interactions suppress MIPS [73]. MIPS is expected to occur in sys-

tems of active particles without attractive interactions in two dimensions when the

average density exceeds the critical density ΦMIPS = 0.28 [74]. The exact value of
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2.3. Global order parameters

the critical density for MIPS has been reported to depend on multiple factors like

system size [75] or softness of the particle-particle interaction potential [76].

To correctly identify MIPS, we analyzed the distribution of local densities in

the system. A homogeneous system is expected to have a Gaussian distribution

of local densities centered around the average system density Φ. A system that

undergoes phase separation shows two maxima at the onset of MIPS, one well

below the average density one well above. We estimated the local densities by

calculating the volumes of the local Voronoi cells Vi using Voronoi tessellation,

while accounting for periodic boundary conditions [106, 107]. The local density is

then given by ρi = Vs/Vi from the single particle volume Vs = πσ2/4. To account

for the fact that larger volumes naturally occur less frequently, we weighted the

probability of the local density p (ρi) with its inverse local density.

Because of the aligning torques between dipolar particles, we expect orienta-

tional order to emerge, even without the presence of an external magnetic field.

We describe the orientational order by calculating the global polarization which is

given by the average over the orientations of all particles in the system

φe = 1
N

∣∣∣∣∣∑
i

êi

∣∣∣∣∣ . (2.8)

To assess the degree of chain formation in large systems, we applied the following

chain criteria, as introduced in [73]. Two particles are considered to be bonded

if they fulfill the following three criteria simultaneously. Fist, if their distance is

smaller than the cut-off distance rij < ε. Second, if they are aligned in parallel

êi · êj > 0, and third if their orientation is in line with their connecting distance

vector (êi × r̂ij) · (êj × r̂ij) > 0. The fraction of particles that fulfill all three
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criteria give the degree of polymerization

φp = nchain

N
.

We then used combinations of these three order parameters to characterize the

state of the system. If an order parameter exceeds a set limit, the system is taken

to be in the state corresponding to that order parameter. We chose this limit to

be at 0.5 for all three order parameters. For example if 〈φp〉 > 0.5 the system

is classified as polymerized. Following this classification method the following

eight combinations are possible, each characterizing the systems’ state as shown in

Table 2.1: cluster, oriented gas, gas of chains, oriented cluster, network of chains,

oriented chains, bands, disordered gas. We present the results of this classification

in diagrams of states in chapter 5 and chapter 6.

〈φc〉 > 0.5 〈φe〉 > 0.5 〈φp〉 > 0.5 state
3 7 7 cluster
7 3 7 oriented gas
7 7 3 gas of chains
3 3 7 oriented cluster
3 7 3 network of chains
7 3 3 oriented chains
3 3 3 bands
7 7 7 disordered gas

Table 2.1.: Order parameter combinations and their corresponding states.
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3. Computational details

In this chapter we introduce the simulation methods we used throughout this

thesis. We will present the discretized equations of motion and our choice of

reduced units. In addition, we give an overview about the simulation parameters

we used in our systems.

3.1. Simulation method

The in chapter 2 introduced Langevin equations are numerically integrated in two

dimensions. In two dimensions, we can simplify equation (2.4) by describing the

orientation of the particle with an angle ϕ in the 2d plane. The orientation vector

in two dimensions is then given by êi = (cosϕi, sinϕi) and the position vector is

given by ri = (xi, yi). The two dimensional equations of motion are then

ṙi = v0êi + 1
γT
Fi +

√
2DTξ

T
i (3.1)

ϕ̇i = 1
γR
τi +

√
2DRξ

R
i . (3.2)

Thus instead of equations (2.3) and (2.4), we integrate equations (3.1) and (3.2).

We note that by this change the multiplicative noise in equation (2.4) simplifies
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3. Computational details

to additive noise in equation (3.2).

To integrate the two dimensional equations of motions numerically, we used

the following reduced units: time t∗ = tDT
0 /σ

2, where DT
0 = kBT/3πησ is the

translational diffusion constant; position r∗ = r/σ; temperature T ∗ = kBT/ε; field

strength B∗ = B/B0, where B0 = 1× 10−5 T is the order of magnitude of the

magnetic field strength of the earth; dipole strength µ∗ = µB0/ε.

We note that, with this choice of dimensionless units, the self-propulsion velocity

v∗0 = v0σ/D
T
0 is identical to the Peclét number. For the sake of readability, we will

omit the asterisk for dimensionless quantities from now on.

Systems that contain and model interactions with confining walls are simulated

using overdamped Brownian dynamics (BD) simulations where the dimensionless

equations of motions are integrated using a 2nd order Runge-Kutta scheme [108,

109] (see equations (3.5) and (3.6)). Here, forces and torques are calculated in two

steps, an estimator (superscript e) and a corrector (superscript c) step. During

the estimator step, forces and torques are being calculated based on the positions

and orientations of the particles at time t, while the corrector step is based on

forward-in-time positions r̃i and orientational angles ϕ̃i:

r̃i = ri(t) + v0êi∆t+ 1
T
F e
i (ri, ϕi) ∆t+

√
2∆t ξT

i (t) (3.3)

ϕ̃i = ϕi(t) + 3
T
τ e
i (ri, ϕi) ∆t+

√
6∆t ξR

i (t) . (3.4)

The Runge-Kutta integration step then takes the average of the estimator and

corrector forces and torques to calculate the positions and orientational angles at
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3.1. Simulation method

time t+ ∆t:

ri (t+ ∆t) = ri (t) + v0êi∆t

+ 1
2T [F e

i (ri, ϕi) + F c
i (r̃i, ϕ̃i)] ∆t

+
√

2∆t ξT
i (t)

(3.5)

ϕi (t+ ∆t) =ϕi(t)

+ 3
2T [τ e

i (ri, ϕi) + τ c
i (r̃i, ϕ̃i)] ∆t

+
√

6∆t ξR
i (t) .

(3.6)

Gaussian distributed random numbers ξαi (t) were generated by the Mersenne

Twister random number generator [110].

Simulations with periodic boundary conditions, in particular large systems with

N = 1156 particles with and without (time dependent) external magnetic field,

were realized by using the simulation toolkit HOOMD-blue vers. 2.6 [111, 112].

The active self-propulsion of the particles and alignment in an external (time-

dependent) magnetic field were added by in-house developed modules. To avoid

interactions between periodic images of the particles, a cut-off distance rcut =

L/2−σ was introduced for dipolar interactions. The project data and its parameter

space was managed within a signac framework [113, 114]. Parameters in HOOMD

were chosen to match the parameters of the Runge-Kutta scheme simulations. In

particular, constants for the translational and rotational diffusion of the spherical

particles match as well as the magnetic moments and self-propulsion speeds.

We categorize our simulations into four parts: small systems, large systems

without an external field, large systems with a constant external field, and large
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3. Computational details

systems with a time dependent external field. We now introduce the choices for

the main simulation parameters for the four parts. Detailed information about the

simulations are listed in appendix A. Throughout all simulations the temperature

of the system was set to T = 1, while varying the self-propulsion speed v0 and the

magnetic moment µ of the particles. Particles were initially placed on a regular

quadratic grid, while the grid spacing was adjusted depending on density. The

following paragraphs introduce the additional system specific parameter.

Simulation parameter small systems

We analyzed small systems with N = 36 particles for various boundary conditions

and sizes of the simulation box. First, we performed simulations of small systems

with periodic boundary conditions where the side length was set to L = 50 (Φ =

0.01). In a next step, confining walls were added to this system. To investigate

the effect of the geometry of the confinement, squared confining walls and circular

confining walls were chosen. To match the area of the squared confinement, the

radius of the circular confinement was set to R = L/
√
π. Here, we varied the

geometry of the confinement and the wall torque parameter α = 0.0, 0.4 and 2.0.

In a next step, we investigated how density affects cluster formation and modu-

lated the density by increasing the particles number N = 81, as well as by reducing

the size of the simulation box in squared confinement with α = 0. We studied three

densities resulting from the following particle number and box size combinations:

Φ = 0.01 (N = 36, L = 50), Φ = 0.03 (N = 81, L = 50), Φ = 0.03 (N = 36,

L = 33.3) and Φ = 0.1 (N = 36, L = 16.8)

For all parameter combinations, numerical integration was performed for Nt =

1× 106 time steps with a time step width ∆t = 2× 10−5 in small systems of active
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3.1. Simulation method

dipolar particles.

Simulation parameter large systems without external field

To investigate the collective dynamics and structure formation of dipolar active

particles, simulations in large systems with N = 1156 particles in periodic simula-

tion boxes were performed with HOOMD-blue with an in-house developed module

for the activity of the particles. To study the effect of density, we varied the

side length of the simulation box. We chose the following three densities. One

well below (Φ = 0.13, L = 85), one close to (Φ = 0.23, L = 63) and one above

(Φ = 0.57, L = 40) the critical density were MIPS is expected in systems of active

particles.

Simulation parameter large systems with constant external field

To investigate the effect of a constant homogeneous external field on the structures

and on the collective dynamics of dipolar active particles, we varied the strength

B of the external field. Alignment of individual particles with the magnetic field

depends on the magnetic moment of the particle itself. Therefore, different combi-

nations of the magnetic moment and field strength B were explored. We studied

the effect of activity in these systems by varying the self-propulsion speed v0. Sim-

ulations were performed with HOOMD-blue with an in-house modification of the

external magnetic field.

Simulation parameter large systems with time dependent external field

Time dependent external magnetic fields are used to control magnetic swimmers

externally. This method is especially promising in biomedical applications i.e. drug
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delivery. The effect of an external magnetic field on a single particle is well studied.

Here, we are interested in how an external time dependent magnetic field affects the

collective behavior of active dipolar particles in bulk suspension. Ferromagnetic

materials are expected to show hysteresis in a time dependent magnetic field.

Analyzing such hysteresis curves gives access to important magnetic properties of

the material. Here, we investigate how activity of dipolar particles affects hysteresis

curves. The external time dependent magnetic field was modeled using a triangular

wave with period p = 4/β and amplitude B and implemented in an in-house

developed module of HOOMD-blue. Simulations were run over 5/4 periods, with

a time-step width ∆t = 1× 10−5 for Nt = b 5
β∆te time steps. Simulations were

performed for values β = 0.4, 0.9, 1.9 and 4.0 which results in Nt = 1.25× 106,

5.56× 105, 2.63× 105 and 1.25× 105 time steps respectively.
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4. Structure formation in small

systems

Because dipolar particles are expected to form chain and ring structures in passive

systems, we study how activity affects those structures in this chapter. In addition,

we investigate how interactions with confinement influences structure formation of

dipolar active particles in small systems. We quantify the type of structures that

emerge and demonstrate how the dominant structures are affected by the magnetic

moment, self-propulsion speed and confinement.

Partial results presented in this chapter, in particular results about

structure formation in confinement have been published in V. Telezki

and S. Klumpp, “Simulations of structure formation by confined dipo-

lar active particles”, Soft Matter 16, 10537–10547 (2020). In some

cases, wording and figures have been adapted to match the format of

this thesis. V.T. and S.K. conceived of the presented project. V.T. set

up and carried out the numerical simulations and analyzed the data.

S.K. supervised the findings of this work. Both authors discussed the

results and contributed to the final manuscript.
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4. Structure formation in small systems

4.1. Assembly of chain and ring structures

In a first step, we investigated the dynamics of a small number of particles (N =

36) without the presence of boundaries (periodic boundary conditions). In the

simulations we observed that for certain parameters dipolar active particles self-

assemble into clusters. A cut-out of a typical snapshot of the simulation is shown

in Figure 4.1. These clusters were mainly found to adopt two distinct structural

formations: chains (Figure 4.1 a-c) and rings (Figure 4.1 d). We observed that

Figure 4.1.: Detail of a snapshot at time t = 45.50 for a simulation with v0 =
10, µ = 1.75 in a squared simulation box with L = 50 and periodic boundary
conditions with N = 36 particles. The magnetic moment of the dipolar particle
is represented as a black arrow. Different chain conformations (a-c) and a ring
conformation (d) are visible.

individual dipolar active particles usually first self-assemble into a chain which then
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4.1. Assembly of chain and ring structures

eventually catches its own tail and forms a ring. These structures are dynamic;

rings and chains can disassemble again into chains, smaller chains or individual

monomers. The number of particles in one structure varies. Generally, we observed

that the structure depends on the magnetic moment µ, the self-propulsion speed

v0 and the boundary conditions.

To quantify the formation of these structured clusters, we asked what the prob-

ability for cluster formation ps is and how it depends on the magnetic strength µ

and the self-propulsion speed v0. To answer that question, we identified particles

forming a cluster using a density based algorithm (see chapter 2), where the closest

neighbor distance was set to ε = 1.21 and the minimal number of particles in a

neighborhood to form a cluster was set to N = 3 which is similar to other studies

[73, 98]. The value of ε was determined by analyzing the nearest neighbor distance

g1(r), for µ = 1 (see Figure 4.2). The histograms indicate that the closest neighbor

distance weakly depends on the self-propulsion speed v0. Here, ε is highlighted by

the dotted line. This value of ε was chosen as more than 85 % of the particles lay

in this region and well behind the shoulder of the distributions for all three choices

of the self-propulsion velocity.

Based on this value for ε, the probability for cluster formation was calculated,

averaged over 10 realizations. The result is shown in Figure 4.3 for different self-

propulsion speeds v0. Here, we observe a steep increase of the probability of cluster

formation ps with increasing magnetic strength µ. This steep increase suggests

that a critical value µ∗ for the magnetic strength can be defined. We estimated

such critical value by calculating ps (µ∗) = 0.5 via linear interpolation between the

two data points closest to ps = 0.5. The inset shows that the critical magnetic

strength µ∗ increases approximately linearly with the self-propulsion speed v0. We
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4. Structure formation in small systems

Figure 4.2.: Normalized histograms of the nearest neighbor distance g1(r) for
dipolar particles with µ = 1 and different self-propulsion speeds v0. The dotted
line is drawn at ε = 1.21. The number in the top right shows the fraction of
accumulated counts up to the dotted line. Data taken from 10 simulation runs
with pbc and L = 50.

Figure 4.3.: Semi-logarithmic curves of the probability of cluster formation ps as
a function of the magnetic strength µ for N = 36 particles. The different curves
correspond to different self-propulsion speeds v0. The inset shows the dependence
of the critical magnetic strength µ∗ on the self-propulsion speed. Data taken from
10 simulation runs with L = 50 (pbc).
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4.1. Assembly of chain and ring structures

note that the critical value of µ∗ ≈ 1.0 for passive particles (v0 = 0) corresponds

to a dipolar coupling strength of λ = µ∗2/T = 1. For passive particles, the ratio

between pairwise dipolar coupling energy and thermal energy is the only relevant

parameter for cluster formation. Clusters begin to dominate (ps > 0.5) exactly

when dipolar coupling energy between two particles matches the thermal energy

of the system (µ∗2 = T ). For systems below the critical density required for MIPS,

adding activity to the system increases the drive towards disorder and thus requires

stronger dipolar interactions for clusters to form.

Figure 4.4.: Weighted cluster size distributions nP (n) for passive (v0 = 0, blue)
and active (v0 = 40, red) particles for different magnetic strengths µ. Data taken
from 10 simulation runs with N = 36 and L = 50 (pbc).

In addition to the probability of cluster formation, we analyzed the weighted
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4. Structure formation in small systems

cluster size distribution nP (n) for different magnetic strengths and its dependence

on self-propulsion speeds. The results are shown in Figure 4.4. For weak dipolar

interactions (µ = 1), small cluster sizes dominate the distribution, independent

of the self-propulsion speeds. With increasing dipolar strength, we noticed that

passive particles (blue) tend to organize in small clusters (n = 3 to 7) while active

particles (red) tend to form one cluster consisting of all particles in the system

(n = 36). This effect seems to be more evident for higher values of µ.

4.1.1. Classification of structures

After determining the probability that a cluster forms, we classified the types of

structures (i.e chains and rings) that we observed according to the order param-

eter introduced in equation (2.6). Here, we ask the question what value of the

order parameter represents the system the best for given self-propulsion speed and

magnetic strength. Do we observe structures and if yes, are they more likely to be

chains or rings?

Fig. 4.5 shows examples of the cluster size weighted histograms for different

simulation parameters. Each histogram is based on 10 independent realizations.

To find the most representative state, we first determined whether more states

with structure than without a structure were counted. This characteristic is given

by the probability of cluster formation. If the probability of cluster formation

ps > 0.5, we determined which structure occurred most frequently by calculating

the maximum Cmax (e.g. colored bar in Figure 4.5 for µ = 2.0, v0 = 0: cyan,

and µ = 4.0, v0 = 40: magenta). This structure is then assumed to be the best

representation of the system for given parameters. If ps < 0.5 we did not calculate
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4.1. Assembly of chain and ring structures

the maximum (e.g. Figure 4.5 for µ = 1.0, v0 = 0: all bars gray). Here, the system

is predominantly in an unstructured state.

Figure 4.5.: State weighted histograms for N = 36 particles L = 50 (pbc) of the
order parameter C for different simulation parameters v0 and µ. The maximum
of the histogram is taken as the most representative structure if the probability
of cluster formation ps > 0.5 (inset, red line). In these cases the maxima are
colored according to the order parameter C. Chain-like structures are represented
by values of C ≈ 0 (cyan), while ring like structures are represented by C ≈ 1
(magenta). If ps < 0.5, the system is considered as predominantly unstructured
and all bars are shown in gray. Data taken from 10 simulation runs.

We then continued to calculate Cmax while varying the self-propulsion speed v0

and the magnetic strength µ and display Cmax in a diagram of states (Figure 4.6).

The diagram of states shows that the structure depends on both the magnetic

strength µ and the self-propulsion speed v0 of the particles. For low magnetic

strengths (µ ≤ 1.0) we observed no structure formation, independent of the self-
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propulsion speed (as already shown in Figure 4.3). For higher magnetic strengths,

we observed chain and ring formation, depending on the self-propulsion speed.

The results shown in Figure 4.6 are qualitatively similar to bigger systems of

dipolar active particles without confinement [73]. Importantly, by distinguishing

the structured state more carefully (i.e. chains and rings) we can show that by

changing the self-propulsion speed while keeping the magnetic strength constant

one can influence the configuration of the dipolar particles. For example, the

structure changes from a chain (v0 = 0) to a ring (v0 = 20) and back to a chain

structure (v0 = 30) while keeping the magnetic strength constant at µ = 3.5.

Figure 4.6.: Diagram of states for N = 36 particles in a system with L = 50
(pbc) according to the maximum of the order parameter Cmax. Here, the magnetic
strength µ and the self-propulsion speed v0 are varied. The crosses indicate the
critical magnetic moment µ∗ for structure formation (ps = 0.5) from Figure 4.3.
The colored areas and the lines were added as visual aids.

For small systems withN = 36 particles and periodic boundary conditions, chain
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structures dominate the diagram of states when the magnetic strength exceeds the

critical value for cluster to form ( µ > µ∗(v0)). In the case of passive particles

(v0 = 0) this result does not fully match earlier analytical studies where ring

structures were predicted to dominate for values µ > µ∗ring [41, 52, 53]. In analytical

calculations, the ratio of chain to ring structures is independent of the density of

the system. In our simulations of finite length we observed that passive particles

tend to form smaller clusters than active ones (see Figure 4.4). We argue that in

our dilute systems (Φ = 0.01) passive particles interact locally and tend to form

sub-systems of 3 to 4 particles that then interact with other sub-systems on much

longer time scales, as suggested by the results of the Monte Carlo simulations

presented in [53]. For these sub-system sizes, chain structures were predicted to

dominate, which is in line with our observations.

4.2. Influence of confinement on structure formation

Typically, active particles are confined by different geometries during experiments

like microtraps (circular) [115] or channels and chambers in microfluidic devices

(squared). To investigate the effect of confinement on structure formation in small

systems, we varied both the geometry and the type of interactions between the

particle and the confining walls in this section. Specifically, we considered that

active particles tend to reorient at walls and added a wall torque, as previously

introduced in equation (2.5).

To analyze how the variation of the boundary conditions affects a single dipolar

swimmer, we first simulated a single active particle and computed the probability

density. The results of ensemble and time averages over 243× 106 snapshots are
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shown in Figure 4.7 for squared and circular confinement and for three different

torque parameters α = 0.0, 0.4 and 2.0.

Figure 4.7.: Two-dimensional probability density (heat map in the inset) and
radial probability density p(r) for one active particle in squared and circular con-
finement. The distributions were obtained from 243× 106 snapshots of a single
particle with self-propulsion speed v0 = 20 (averaged over ensemble and time).
The geometry (top row: squared, bottom row: circular) and the interactions with
the walls were varied, using purely repelling walls (α = 0.0) and walls with an ad-
ditionally induced torque (α = 0.4 and 2.0). The side length of the box is L = 50.
The radius of the circular confinement was chosen to match the area of the squared
confinement. Volume that cannot be occupied by a particle is marked in gray. The
color map is cut off at two times the average probability density 2%̄.

We identified two regions; a homogeneous probability density in the interior of

the confinement (r < R), where the radial probability density is linear, and a

second region directly at the side walls (r = R) or at the corners (r =
√

2R) of the

confinement where the radial probability density drastically increases and shows

peaks. With an additional wall induced torque (α 6= 0), the relative probability

density is increased in the interior with decreased peaks at the walls (r = R) or in

the corners (r =
√

2R).
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The relative probability density of one active particle shows that active parti-

cles without a reorienting torque tend to get trapped at the boundaries, especially

in the corners of a box. Introducing a wall torque results in a more homoge-

neous probability density, irrespective of the geometry. In the case of squared

confinement, a high wall induced torque (α = 2) prevents trapping in the corners.

Trapping at the walls and in corners is reduced by the wall torque, as particles

do not have to rely on thermal fluctuations for their reorientation. A recent com-

bined experimental and numerical study has presented similar probability densities

of magnetotactic bacteria (MSR-1) swimming in circular microtraps [115]. This

study reported curvature dependent values for α = 2− 4 for similar sized circular

confinements, which is in agreement with our observations.

Next, we analyzed how structure formation of N = 36 dipolar active particles

is affected by the confining walls. In movies of the simulation, we noticed that the

formation of rings is often initiated by collisions with walls. To test the hypothesis

that ring formation is initiated by the walls of the confinement, we calculated

the local order parameter Cmax (r) for each position r on a 250 by 250 grid in

the confinement over 10 realizations. The results for moderate swimming speed

v0 = 20 and magnetic strength µ = 2 for different wall interactions and geometries

are shown in Figure 4.8.

Rings (magenta) form predominantly at the walls for the squared (top row) and

the circular (bottom row) confinement, irrespective of the wall torque α. In the

case of the squared confinement, ring formation also occurs in the corners of the

confinement. These results illustrate that ring formation is predominantly caused

by interactions with the walls of the confinement and that this mechanism is not

strongly affected by the geometry or wall induced torques.
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Figure 4.8.: Local order parameter Cmax (r) for squared confinement (top row)
and circular confinement (bottom row) with different induced wall torques α =
0.0, 0.4 and 2.0. The color bar represents the local order parameter. The local
order parameter was calculated on a 250 by 250 grid for a self-propulsion speed
v0 = 15 and a magnetic strength µ = 2 over 10 realizations. The side length of
the box is L = 50 (circle R = 50/

√
π).

In contrast to systems with confinement, we observed fewer ring configurations

in systems with periodic boundary conditions. This deficit in ring configurations

in systems with periodic boundary conditions together with the increase in ring

formation due to walls suggests that ring formation is driven by the increase of

probability density at walls and the accompanied probability fluxes. A recent

study has systematically investigated the emergent probability fluxes in confined

systems and their impact on trajectories of active particles [85].

In addition, Figure 4.8 indicates that rings are rather stationary, while chains

remain motile. As introduced in section 2.2.1, we proceeded to analyze the dy-

namics of clusters systematically. Fig. 4.9 shows the fitted exponent ν and the

prefactor Dcog against the order parameter C of the tracked clusters. For rings
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(C > 0.8), the exponent is mainly evenly distributed between 0.5 and 1.5, reveal-

ing that rings show diffusive behavior (ν = 1) with some rings being sub- (ν < 1)

and superdiffusive (ν > 1). For chains (C < 0.2) the exponent is distributed

between 1 and 2 (while occurring more frequently at higher values of ν) which

shows the superdiffusive behavior of chains. We note that truly ballistic motion

(ν = 2) is not reached. Since the exponent ν was determined over all available time

scales, the typical diffusive behavior of active particles for short times contributes

to reducing the measured exponents to ν < 2. The low proportionality constant

for rings proves together with the exponent ν that rings diffusive slowly or can

be considered stationary (Dcog ≈ 0) for the analyzed time scales. Chains on the

other hand show superdiffusive motion where the factor Dcog increases with the

self-propulsion velocity v0, as expected.

Figure 4.9.: Scatter plots of the exponent ν and the factor Dcog against the order
parameter C obtained from mean-squared displacements of the center of geometry
of clusters in either chain (C < 0.2) or ring (C > 0.8) configuration (we note that
clusters with intermediate values of C were not included in this analysis). Data
taken from 10 realizations of simulations for the parameters v0 = [10, 20, 30, 40]
(blue to red), µ = [1.5, 2.0, 2.5, 3.0] for both circular and quadratic confinement
with L = 50 and α = [0.0, 0.4, 2.0].

Next, we ask the question how do these different wall geometries and wall prop-
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4. Structure formation in small systems

erties affect structures globally? To answer that question we are again interested in

the most representative structure formed by the dipolar active particles. We there-

fore determined diagrams of states based on the maximum of the order parameter

Cmax while varying the boundary conditions. The results are shown in Figure 4.10.

The rows show the dependence on the geometry (top row box, bottom row circle)

and the columns the effect of the additional wall torque (α = 0.0, 0.4 and 2.0). The

comparison between the diagrams of states shows that boundary conditions affect

structure formation to some extent. We noticed that irrespective of the bound-

ary conditions, the transition from no structure (gray) to any structure (magenta

and cyan) is approximately the same. This observation suggests that the criti-

cal magnetic strength required for cluster formation µ∗ is not influenced by the

boundaries of the system. Indicating that this mechanism of structure formation

is not strongly affected by the geometry and wall induced torques, but the relative

frequency of chain and ring formation is affected.

Changing the geometry of the confinement while keeping the boundary condi-

tions purely repulsive (α = 0.0) seems to have the biggest impact on structure

formation of dipolar particles. Here, we observed formation of chains (cyan area)

in the circular confinement for active particles with high motility (v0 = 40). The

absence of corners in the circular environment removes the possibility for an al-

ready formed chain to get stuck in a corner and catch its own tail to form a

ring. Hence, we observed fewer ring structures in a circular environment than in

a squared one. Increasing the wall torque (α = 0.4 and 2.0) has no strong effect

on structure formation in a squared confinement (top row). Yet, the diagram of

states changes qualitatively with increasing wall torque for the case of the circular

confinement (bottom row) where rings become more predominant with increasing
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4.2. Influence of confinement on structure formation

wall torque. For large induced wall torques (α = 2.0) a clear separation of ring and

chain states can no longer be made in the case of circular confinement (hatched

area).

Figure 4.10.: Influence of the boundary conditions on the diagrams of states for
N = 36 particles: The shape of the confinement (first row box L = 50, second
row circle R = 50/

√
π) and the interactions with the walls (columns left to right:

α = 0.0, 0.4 and 2.0) were varied and the diagram of states determined as in
Figure 4.6. The colored areas and the lines were added as visual aids. The hatched
area indicates that no clear assignment to a dominant structure could be made for
these parameters. Top left diagram shows same data as Figure 4.6.

To gain more information about this hatched area, we took a closer look at the

histograms of the order parameter for a circular confinement with a wall torque

parameter α = 2.0 (see Figure 4.11). Here, we observed maxima of chain config-

urations with Cmax 6= 0 as well as bimodal distributions with two peaks for chain

and ring configurations of approximately the same height (v0 = 20, µ = 2.5).

These observations can explain the heterogeneity of the order parameter in the

hatched area.
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4. Structure formation in small systems

Figure 4.11.: Overview of the state weighted histograms of the order parameter
C for circular confinement with R = 50/

√
π and α = 2.0 for N = 36 particles.

The self-propulsion velocity v0 and the magnetic strength µ are varied. The color
bar indicates the dominant order parameter Cmax corresponding to a chain (cyan)
or ring (magenta) configuration. As in Figure 5, if probability of structure for-
mation ps < 0.5 (inset) all bars remain gray. Data obtained from 10 independent
simulations.

4.2.1. Influence of density in confinement

In this section we discuss how density affects cluster formation. We modulated the

density by increasing the particle number, as well as by reducing the size of the

simulation box. So far all the simulations were done for N = 36 particles. Now, we

ask how increasing the density by increasing the particle number affects structure

formation. To answer this question, we increased the particle number to N = 81

particles with a box size of L = 50 (Φ = 0.03) for different geometries and wall

interactions. For a systematic analysis, we repeated the calculation of the order

parameter C and determined diagrams of states (see Figure 4.12) as before.
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4.2. Influence of confinement on structure formation

Figure 4.12.: Diagram of states according to the order parameter Cmax forN = 81
particles and different boundary conditions (top row: box confinement L = 50,
bottom row: circular confinement R = 50/

√
π, columns: different values of wall

torque parameter α. The color bar represents the order parameter.

We noticed that the diagram of states are similar to the simulations with N = 36

particles (see Figure 4.10). Specifically, the transition from no structure (gray) to

any structure (cyan and magenta) is approximately the same. However, there are

differences in the regions with structures. We no longer see a clear chain regime

for the passive case (v0 = 0), instead the Cmax values indicate more heterogeneous

structures. Inspection of the histograms of the order parameter C (Figure 4.13)

shows that for higher particle number the histograms are multi-modal and that

maxima can occur at intermediate values of C (cf. µ = 2.0 and v0 = 0). These

observations suggest that also intermediate structures like bend chains or almost

closed rings can be present. However, we noticed that next to the previously

seen chain and ring structures more complex structures, such as branches or loops
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4. Structure formation in small systems

Figure 4.13.: State weighted histograms of the order parameter C for N = 81
particles in squared confinement with L = 50 and α = 0 for varying self-propulsion
velocity v0 and the magnetic strength µ. The color bar represents the dominant
order parameter Cmax, corresponding to a chain (cyan) or ring (magenta) config-
uration. As in Figure 5, if ps < 0.5 (inset) all bars remain gray.

within a ring can emerge in simulations with N = 81 particles. Selected examples

for these complex structures are shown in Figure 4.14. Such structures are also

known from systems of passive particles [41] and indeed they appear to be more

frequent for values of v0 = 0, as indicated by the higher occurrence of intermediate

values of C in the histograms (see Figure 4.13). However, some of these complex

structures cannot be properly characterized by our order parameter C, since the

head-tail distance is no longer well defined, and other ways of characterizing them

have to be developed.

In addition, we modulated the density by reducing the box size of the squared

confinement with N = 36 particles and purely repelling walls (α = 0) to L = 33.3

(Φ = 0.03, matching the density of the system with N = 81, L = 50) and L = 16.8
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4.2. Influence of confinement on structure formation

Figure 4.14.: A selection of complex structures that were observed in systems
with N = 81 particles (with different self-propulsion velocities and magnetic
strengths). The direction of the magnetic moment is indicated by a black ar-
row. Branches, chains with loops and rings with multiple loops or multiple rings
in one structure are shown.

(Φ = 0.1) respectively. Figure 4.15 shows how the diagram of states (a.) and the

critical magnetic strength µ∗ for structure formation (b.) are affected by the

reduced box size. In smaller systems (with increasing density) ring structures

become dominant for passive particles (v0 = 0) as predicted in [53]. This result

is very similar, but not exactly the same as for the system with N = 81 particles

and matching density (see Figure 4.12 top left, where differences between the

two realizations of the same density are seen for small v0). Furthermore, chain

structures become dominant at high motilities for µ < 1.0 in the case of Φ = 0.10.

This finding is in agreement with the recent results of Liao et al., who showed that

the probability of chain formation is increased because of smaller mean separation

between the particles for higher densities [73]. This explanation is confirmed by the
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4. Structure formation in small systems

observed shift of the critical magnetic strength with increasing density (Figure 4.15

b).

Figure 4.15.: a. Diagram of states according to the order parameter Cmax for
N = 36 particles in squared confinement with α = 0 for different densities Φ by
reducing the box size L. The colored line shows the critical magnetic strength
in the diagram of states. Data taken over 10 independent simulations. Top left
diagram shows same data as Figure 4.6. b. Critical magnetic strength µ∗ against
the self-propulsion velocity v0. The colors indicate the different densities Φ = 0.01
(L = 50, black), Φ = 0.03 (L = 33.3, green), and Φ = 0.1 (L = 16.8, red). The
color bar represents the order parameter. c. Extract from a snapshot showing a
disordered cluster formed in the top right corner of the squared confinement for
the parameters µ = 0, v0 = 40.

A striking deviation from this linear behavior is seen for high motility in the

smallest system (L = 16.8,Φ = 0.10, red line) where clusters are formed with-
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4.3. Comparison to analytical solution

out magnetic interactions (µ∗ ≈ 0). This deviation occurs when the persistence

length of the active particles is much greater than the dimensions of the confining

walls v0/DR � L. Here, the formed clusters are qualitatively different from the

previously observed chains and rings (see Figure 4.15 c). These particles form

rather disordered, finite-sized clusters at the walls of the squared confinement

(α = 0). The clusters are similar to clusters observed for active systems that

display motility-induced phase separation (MIPS) [116, 117]. In our system, the

presence of boundaries seems to take the role of high density clusters during MIPS.

We note that the system densities presented in this chapter are well below the crit-

ical density where MIPS is expected [118]. It was shown recently that MIPS is

repressed by strong dipolar interactions between particles for larger systems with

higher densities [73].

4.3. Comparison to analytical solution

When comparing all presented diagrams of states, we noticed that the critical

magnetic moment for cluster formation µ∗, which is reflected in the transition

from no structure (gray) to any structure (cyan and magenta), is approximately the

same for all systems. In particular the slope of the linear dependence on activity

(Figure 4.15, b.) is not affected. This linear dependence Figure 4.3 suggests a

correction to the critical magnetic coupling strength which is linear in first order

µ∗ =
√
T (1 + γ v0) with a constant γ. Such a correction is obtained quite generally

if the balance condition λ = 1 or µ∗2 = T is modified to µ∗2 = T +f(v0), where the

second term (with f ′(0) = γ) describes the additional ’noise’ due to active motion.

As previously done in other studies [119, 120], the addition of activity can be
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4. Structure formation in small systems

interpreted as an effective increase in temperature. Following this interpretation,

we used this additional term to re-scale the magnetic interactions in an active

system to an effective magnetic interaction µa in a passive system

µa = µ

1 + γv0
.

Fig. 4.16 shows the probability for cluster formation against the effective magnetic

interaction strength µa. All curves collapse on the curve corresponding to the

passive case (v0 = 0, blue), indicating that a re-scaled magnetic strength can be

used to characterize cluster formation in an active system.

Figure 4.16.: Semi-logarithmic curves of the probability of structure formation
ps as a function of the re-scaled magnetic strength µa for N = 36 particles. Data
taken from 10 simulation runs with L = 50 (pbc). Value for γ = 0.013 was
obtained via least-squares fit of data presented in inset of Figure 4.3.

In a next step, we used this re-scaled magnetic moment µa to predict ring and

chain formation in small systems of active dipolar particles. To this extent, we

46



4.3. Comparison to analytical solution

used the free energy expression for ring and chain formation in systems of passive

dipolar particles derived by Kantorovich et al. [53]. Here, the authors present

an analytical formalism for the expected ratio between rings nr and chains nc in

a system with size N when minimizing the free energy of the system. Using the

relations µ = 1/
√
T and µa = µ/ (1 + γv0), we rewrote the ring to chain ratio as

an equation of the re-scaled magnetic moment µa:

fr

fc
= q(µa)R(n)−C(n)

n3ν+1 (4.1)

where

q (µa) = 1
3µa

exp
(
2µ2

a

)
;

R (n) = n

2 sin3 π

n

[(n−1)/2]∑
k=1

cos3
(
πk
2

)
+ 1

sin3 πk
n

+ R(n+1)/2

 ;

C (n) =
n∑
k=1

n− k
k3 ,

with R(n+1)/2 standing for the residual of division. The scaling exponent was

set to ν = 3/4 in two dimensions, according to [121]. Here, q(µ) describes the

pairwise energetic contributions between direct neighbors of particles in a head-

tail configuration, while n3ν+1 accounts for the entropic contributions arising from

n ways opening a ring to form a chain. The term R(n) stems from the partition

function of a ring and the term C(n) stems from the partition function of chain

[53].

Based on equation (4.1), we constructed the diagram of states shown in Fig-
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ure 4.17 (left) for N = 36 particles by classifying the three states as follows. If

µa < µ∗, no structures form (gray). If µa > µ∗ and fr/fc < 1, chains dominate

(cyan). And if µa > µ∗ and fr/fc > 1, rings dominate (magenta). The diagram of

states based on analytical predictions is qualitatively in good agreement with the

diagrams presented for small confined systems at Φ = 0.03 based on the order pa-

rameter C (Figure 4.17, right). The analytical calculation predicts a broader chain

regime compared to the numerical observations. This effect is expected since in

the derivation of the free energy equation by [53], the authors assume that rings

with n < 5 particles do not form and hence not contribute towards the free energy.

In our classification, we assume that rings with n > 3 can form.

Figure 4.17.: Side by side comparison between diagram of states based on equa-
tion (4.1) (left) and simulation data of N = 36 particles in squared confinement
at density Φ = 0.03 (same data as Figure 4.15 a., center). States are color coded
according to color bar.

Surprisingly, we have better agreement of analytical predictions with systems

with squared confined than with systems without confinement (Figure 4.6). We

want to emphasize that equation (4.1) does not take confining walls into account.

We explain this apparent discrepancy by visually inspecting the average cluster
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4.3. Comparison to analytical solution

size in our simulations. Because of the increased probability density at confining

the walls (Figure 4.7), we observed that systems with boundaries form bigger clus-

ters than systems with periodic boundary conditions during our finite simulation

time. This explanation is in line with the fact that confined systems at lower

density Φ = 0.01 have a mismatch for passive particles, as presented earlier in

section 4.1.1. We expect a better agreement between numerical simulations and

analytical predictions if we extend our simulations of passive particles to much

longer times, as demonstrated in [53]. The fact that our results do not match

quantitatively indicates the limits of interpreting activity as an effective temper-

ature. It has been shown in other studies that the calculation of an effective

temperature can be affected by density, collective phenomena and anisotropy in

the system [120, 122–125]. This dependency on the choice of observables used for

re-scaling limits the predictive power of this interpretation.
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5. Collective dynamics in large

systems without external field

In this chapter, we studied the collective dynamics in large systems of dipolar

active particles without an external magnetic field. In particular, we investigated

how activity and density affects the collective dynamics of active dipolar particles.

To characterize the system, we calculated three order parameters, as introduced

in section 2.3: fraction of largest cluster, global polarization and degree of poly-

merization. We present the results for four representative values for the magnetic

moment of the particles in detail: apolar (µ = 0, black), weak (µ = 1, blue),

intermediate (µ = 1.4, green) and strong (µ = 2.6, red). Finally, we summarize

our results in diagrams of states.

To that end, we performed Brownian dynamics simulations ofN = 1156 particles

in a simulation box with periodic boundaries while varying the magnetic moment

and self-propulsion speed of the particles. We performed these simulations at three

representative densities Φ = 0.13, Φ = 0.23 and Φ = 0.57 (see chapter 2).
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5.1. Low density Φ = 0.13

5.1. Low density Φ = 0.13

First, we studied the collective dynamics at low density Φ = 0.13, well below

the critical density where MIPS is expected in systems of active Brownian parti-

cles. Fig. 5.1 shows typical configurations of our system at low average density of

Φ = 0.13, intermediate self-propulsion speed v0 = 23 for three different magnetic

strengths µ. Here, we observed a clear dependence of structural configurations

on the magnetic strength. While particle orientations (color wheel) and positions

are fairly disordered for weak magnetic interactions (µ = 1.0), similar to a gas-

like state, particles start to aggregate into short chains of various lengths with

coexisting monomers for intermediate magnetic interactions (µ = 1.4). For strong

magnetic interactions (µ = 2.6), long chains spanning the simulation box with

multiple branching points and defects form.

Figure 5.1.: Snapshots of systems at low density (Φ = 0.13) with v0 = 23 for
different magnetic interactions strength µ at time t = 20. Orientation of the
particles is indicated by the color wheel (top left).

As demonstrated by Figure 5.1, the system usually contains chains of various

sizes n. Therefore, we ask the question, what is the probability that a randomly

selected particle belongs to a chain of size n? Fig. 5.2 shows the distribution of
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5. Collective dynamics in large systems without external field

the chain sizes P (n) weighted by the chain length n for low (µ = 1.0), inter-

mediate (µ = 1.4) and strong magnetic interactions (µ = 2.6) for four different

self-propulsion speeds v0. In the case of low magnetic interactions (left), the distri-

bution follows a power-law behavior, as has been theoretically predicted for passive

systems with non-interacting dipolar chains [126]. Here, the passive case (v0 = 0,

blue circles) recovers the predicted behavior for n ≥ 10. In the case of active par-

ticles the power-law exponent depends on the self-propulsion speed and magnetic

interaction strength µ, as has been observed by others [73].

Figure 5.2.: Log-log plot of probability distribution of chain sizes P (n) weighted
by number of monomers n per chain for different self-propulsion speeds v0. Dis-
tributions for systems with low (µ = 1.0, left), intermediate (µ = 1.4, center) and
strong magnetic interaction strength (µ = 2.6, right) are shown. Average system
density is set to Φ = 0.13. Cut-off for cluster formation was set at ε = 1.28. Data
taken from t = 18 to t = 20 every ∆t = 0.1.

For intermediate magnetic interactions µ = 1.4 (center), the chain size distri-

bution does no longer follow a power-law behavior for passive particles (v0 = 0,
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5.1. Low density Φ = 0.13

blue circles). Here, passive chains collide with each other and form small-scale

clusters as measured by the order parameter 〈φc〉 ≈ 0.2 (Figure 5.3, top). The

appearance of these clusters defies some assumptions made in [126]. Here, it is

assumed that chains only interact with free monomers but not with other chains.

Systems with strong magnetic interactions µ = 2.6 (right) show maxima in the

probability distribution of chain sizes, indicating that a preferred chain size exists

(v0 = 100, red triangles). This value seems to be affected by the activity of the

particles.

In a next step, we quantify our observations of the collective behavior demon-

strated in Figure 5.1 by calculating the three global order parameters fraction of

largest cluster, global polarization and degree of polymerization, as introduced in

chapter 2. Fig. 5.3 shows the dependence on self-propulsion speed for all three

order parameters at low density Φ = 0.13.

The fraction of the largest cluster compared to system size 〈φc〉 (Figure 5.3, top)

shows that no large scale clusters are present for dipolar active particles with low or

intermediate magnetic moments (µ ≤ 1.4). Only for strong magnetic interactions

(µ=2.6) large scale clusters start to form (red curve). Here, the relative cluster

size exceeds values greater than half the system size (〈φc〉 > 0.5, dashed line)

for intermediate self-propulsion speeds (v0 = 4 to 38). At larger values of self-

propulsion speed v0, we observed that the relative cluster size is reduced with

increasing self-propulsion speed.

The appearance of a maximum for particles with strong magnetic interactions

(red curve) for intermediate self-propulsion speeds can be explained by investigat-

ing the temporal evolution of the order parameter φc(t) as shown in Figure 5.4.

In contrast to systems with lower magnetic strength (shades of gray and shades of
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Figure 5.3.: Dependence of the three order parameters fraction of largest cluster
〈φc〉 (top), degree of polarization 〈φe〉 (center) and degree of polymerization 〈φp〉
(bottom) as a function of self-propulsion speed v0 for different magnetic interaction
strengths µ. System density is set to Φ = 0.13. Cut-off for cluster formation set
at ε = 1.28
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green), systems with high magnetic strength (shades of red) show large fluctuations

of the order parameter in time, suggesting that large clusters continuously form

and break up instead of single particles entering and leaving an already formed

cluster. These differences in cluster dynamics were also observed in movies of the

simulations. Here, long chains align with other already formed chains and briefly

form a large cluster, only to separate at a later point in time.

Figure 5.4.: Time dependency of fraction of largest cluster relative to system
size, Φ = 0.13. Cut-off for cluster formation set at ε = 1.28

Calculation of the global orientation 〈φe〉 (Figure 5.3, center) shows that the

polarization of the system strongly increases with the self-propulsion speed. Even

systems with weak magnetic interactions (µ = 1.0, blue curve) show an increase

in the degree of polarization at high self-propulsion speeds v0. This observation

can be explained as follows: With higher self-propulsion speeds the time between

consecutive collisions is reduced. During a collision particles align due to their
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magnetic interactions and carry this alignment into the next collision, even if the

magnetic interactions are not strong enough to form a bond. Multiple consecutive

collisions cause orientational order to emerge spontaneously. This effect is similar

to the increase of polarization with swimming speed seen in the Vicsek model [3]

and has already been observed by others [73]. Systems without magnetic interac-

tions (µ = 0, black curve) show no orientational order as expected.

The degree of polymerization φp (Figure 5.3, bottom) shows a strong depen-

dence on the magnetic strength. For higher magnetic interactions larger degrees

of polymerization are reached, qualitatively matching the results presented for

small systems (Figure 4.3). With increasing activity, the degree of polymerization

is reduced. In the case of weak magnetic interactions (µ = 1, blue curve), the

degree of polymerization converges towards the apolar case (µ = 0, black curve).

For apolar particles we observed a small increase in the degree of polymerization

which can be explained by an increase in collision rates: With increasing collision

rates the probability of particles colliding while being briefly aligned during that

collision also increases. All curves seem to eventually approach this polymerization

limit set by apolar active particles.

We want to emphasize that although the degree of polymerization slightly in-

creases for apolar particles with activity, the dynamics of these chains are vastly

different from the polar case. In an apolar system these formed chains only exist

briefly during the moment of collision while in a system with dipolar particles

chains exist for much longer times. Visual inspection of movies of the simulations

suggest that the life time of these chains depends on the magnetic interaction

strength and the self-propulsion speed of the particles.

All three order parameters together indicate that dipolar particles in systems
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with low average densities (Φ = 0.13) tend to organize into short chains that

globally exhibit weak polar order. The actual degree of polymerization and polar

order depends on both magnetic strength µ and self-propulsion speed v0. While

activity increases polar order, the degree of polymerization is greatly reduced at

higher self-propulsion speeds.

Figure 5.5.: Snapshots showing examples for states introduced in Figure 5.6 for
systems at low density (Φ = 0.13). Snapshots were taken at time t = 20. The
following states are shown: a. disordered gas (µ = 0, v0 = 23), b. oriented gas
(µ = 2.6, v0 = 500), c. gas of chains (µ = 1.6, v0 = 23), d. oriented chains
(µ = 1.6, v0 = 500), e. network of chains (µ = 2.6, v0 = 23), f. bands (µ = 4,
v0 = 100). The color wheel (top left) indicates the orientation of the particles.

These two opposing effects of activity lead to a rich variety in collective behavior

which strongly depends on self-propulsion speed and magnetic moments of the

particles. In a next step, we characterize the emerging patterns using the three

global order parameters and summarize our results in a diagram of states. Based on
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the classification method introduced in chapter 2 the following eight combinations

are possible, each characterizing a systems’ state as shown in Table 2.1: cluster,

oriented gas, gas of chains, oriented cluster, network of chains, oriented chains,

bands, disordered gas. Examples for each observed state at low densities are shown

in Figure 5.5. We note that oriented clusters would inevitably have a high degree

of polymerization in our systems. Therefore, we never observed this state in our

simulations. When all three criteria are fulfilled, we see that the system develops

a percolating band of chains spanning the whole system size (see Figure 5.5 f.).

Overall, the states observed here are qualitatively similar to the states identified

in [73].

Fig. 5.6 shows the diagram of states for a system with low average density. Here,

we observed six out of the eight possible states. For weak magnetic interactions

(µ < 1) no classification criterion is fulfilled and the system is in a disordered

gas state (gray circle). Only for stronger magnetic interactions (µ ≥ 1.0) order

emerges. At this point, contributions from dipolar interactions are equal to the

energy contributed by thermal noise µ2 = T = 1, which is consistent to cluster

formation in small systems (see chapter 4). While varying the activity different

states can be realized for fixed magnetic strengths. For example, in the case of

intermediate magnetic strength µ = 1.4 systems with low levels of activity tend to

be in a gas of chains (pink triangle). Increasing the activity adds global polarization

and oriented chains (green pentagon) form. For even higher self-propulsion speeds

formation of chains is suppressed while global polarization persists, we observe an

oriented gas (purple plus).
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Figure 5.6.: Diagram of states for systems at low density (Φ = 0.13) for different
magnetic interaction strength µ and self-propulsion speeds v0. Classification of
states is based on combinations of order parameter criteria (see Table 2.1).

5.2. Intermediate density Φ = 0.23

In a next step, we studied the collective dynamics at intermediate density Φ = 0.23,

just below the critical density where MIPS is expected systems of active Brownian

particles. Figure 5.7 shows selected snapshots of the system at intermediate density

Φ = 0.23. For low (µ = 1.0) and intermediate (µ = 1.4) magnetic interaction

strengths, the here observed configurations are qualitatively similar to systems at

low density (Figure 5.1). At high magnetic interaction strengths (µ = 2.6) chains

spanning the system tend to organize into broader bands with multiple lanes and

defects.

A quantitative analysis of the order parameters is shown in Figure 5.8. In con-
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Figure 5.7.: Snapshots of systems at intermediate density (Φ = 0.23) with v0 = 23
for different magnetic moments µ at time t = 20. Orientation of the particles is
indicated by the color wheel (top left).

trast to systems at low density, large scale clusters form already at intermediate

magnetic interaction strengths µ ≥ 1.4 (Figure 5.8, green and red curves) in sys-

tems at Φ = 0.23. Here, the size of the largest cluster is comparable to the system

size (〈φc〉 > 0.8). Activity reduces the size of the large scale cluster to the point

where 〈φc〉 reaches values close to zero for high self-propulsion speeds. The level

of activity needed to suppress large scale clusters depends on the magnetic mo-

ment of the particles. For systems with strong magnetic interactions (red curve)

large scale clusters continue to exists at higher self-propulsion speeds compared to

systems with intermediate magnetic strengths (green curve).

Fig. 5.8 shows the average global orientational order 〈φe〉 for systems with in-

termediate density (Φ = 0.23). In contrast to systems with low density (Φ=0.13,

Figure 5.3), the system starts to exhibit polar order already for low magnetic inter-

actions (µ ≥ 1.0). Here, the degree of polarization seems to be fairly independent

of the magnetic interaction strength. Yet, we still observe a strong dependence on

the activity. The system is globally polarized (〈φe〉 > 0.5, dashed horizontal line)

for self-propulsion speeds v0 > 20, almost reaching total polarization (〈φe〉 > 0.8)
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5.2. Intermediate density Φ = 0.23

Figure 5.8.: Dependence of the three order parameters fraction of largest cluster
〈φc〉 (top), degree of polarization 〈φe〉 (center) and degree of polymerization 〈φp〉
(bottom) as a function of self-propulsion speed v0 for different magnetic moments
µ. System density is set to Φ = 0.23. Cut-off for cluster formation set at ε = 1.21.
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5. Collective dynamics in large systems without external field

at high self-propulsion speeds (v0 = 100). Again, systems without magnetic inter-

actions (µ = 0, black curve) show no global orientational order.

Figure 5.8 bottom shows the degree of polymerization. Systems at intermediate

density (Φ = 0.23) are highly polymerized. Here, the degree of polymerization

increases with the magnetic moment µ, but decreases when activity is increased.

For particles without magnetic interactions (black curve) an increase of the degree

of polymerization with activity can be observed, approaching a limit of 〈φp〉 ≈ 0.2

for high self-propulsion speeds. The curves of the polar particles (blue, green and

red) suggest that a limit of polarization 〈φp〉 ≈ 0.6 for high self-propulsion speeds

independent of magnetic interactions exists that differs from the apolar case (black

curve).

All three order parameters together indicate that dipolar particles in systems at

intermediate average densities (Φ = 0.23) tend to organize into large clusters that

exhibit strong polar order globally, which are known as polar bands or lanes for

high values of magnetic interactions (see Figure 5.7). Lane and band formation

has been investigated in similar systems of active particles. It has been reported

that anisotropy is the driving factor for band formation in active systems. The

origin of anisotropic interactions is not relevant. It can either be introduced by

polar interactions, like in our systems, or by shape anisotropy [72, 127, 128].

The effect of an increased density is also seen in the diagram of states (Fig-

ure 5.9). An increase in density enhances all positive effects magnetic interactions

and activity have on the three order parameter. Therefore, we observe overall an

increase in the degree of polarization, polymerization and clustering. However,

the negative effects of activity, i.e. decrease in clustering and polymerization, are

diminished. As a result, we observe that disordered states (disordered gas, gas of
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5.3. High density Φ = 0.57

Figure 5.9.: Diagram of states for systems at low density (Φ = 0.23) for different
magnetic moments µ and self-propulsion speeds v0. Classification of states is based
on combinations of order parameter criteria (see Table 2.1).

chains) are suppressed in the diagram of states. In addition, oriented gas states

(purple plus) seem to be suppressed at intermediate density.

5.3. High density Φ = 0.57

Finally, we studied the collective dynamics at high density Φ = 0.57, well above

the critical density where MIPS is expected systems of active Brownian particles.

Fig. 5.10 shows typical configurations of our system at high density of Φ = 0.57,

intermediate self-propulsion speed v0 = 23 for three different magnetic interaction

strengths µ. In contrast to systems with low and intermediate densities, particles
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5. Collective dynamics in large systems without external field

with low magnetic interaction strength (µ = 1.0) seem to exhibit global order as

indicated by the purple-blue colors of the particles. This global order persist for

intermediate magnetic interactions (µ = 1.4). Here, a network of orientationally

ordered chains is formed. For strong magnetic interactions (µ = 2.6) long chains

spanning the simulation box, aligned in broad bands or lanes can be observed.

Typically, alignment of chains is off-register and shows defects. Off-register align-

ment has been observed previously in similar systems and has been shown to be

energetically favorable [39, 129, 130]

Figure 5.10.: Snapshots of systems at intermediate density (Φ = 0.57) with
v0 = 23 for different magnetic moments µ at time t = 20. Orientation of the
particles is indicated by the color wheel (top left).

Figure 5.11 shows the fraction of the largest cluster 〈φc〉 for systems at high

density. In contrast to systems with low and intermediate densities, we observed

formation of large scale clusters in systems without magnetic interactions (µ = 0,

black curve). Here, as the self-propulsion speed v0 increases, large scale clusters

start to form. This effect is also known as motility induced phase separation

(MIPS). MIPS is expected to occur in systems of active particles without attractive

interactions when the average density exceeds the critical density ΦMIPS = 0.28
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5.3. High density Φ = 0.57

in two dimensions [74]. Finite size effects [75] and particle softness [76], among

others, were shown to influence the exact value of the critical density.

Figure 5.11.: Dependence of the three order parameters fraction of largest cluster
〈φc〉 (top), degree of polarization 〈φe〉 (center) and degree of polymerization 〈φp〉
(bottom) as a function of self-propulsion speed v0 for different magnetic moments
µ. System density is set to Φ = 0.57. Cut-off for cluster formation set at ε = 1.05

We verified phase separation by calculating the distribution of the local densities

via Voronoi tessellation [106, 107, 131] as introduced in chapter 2. Fig. 5.12 shows
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5. Collective dynamics in large systems without external field

one example of a Voronoi diagram in a system with apolar particles at high self-

propulsion speed v0 = 61. Here, the high density regions are colored in blue,

while the coexisting low density regions are colored in red. The distribution of

the densities follows a bimodal curve (black). It has been reported that dipolar

interactions suppress MIPS [73] which seems to contradict claims that MIPS is

promoted by velocity alignment [132]. However, dipolar interactions do not only

introduce alignment but also promote positional order in form of chain formation.

Chain formation could suppress MIPS, as assembly into chains reduces the number

of free monomers in the dilute phase and has been speculated to suppress liquid-

gas coexistence [48]. We can confirm that MIPS does not emerge in systems with

strong magnetic interactions. Here, the dilute phase does no longer coexist with the

dense one. A more quantitative analysis regarding the coexisting densities during

MIPS in systems of dipolar active particles has been performed in [73]. Here,

coexistence of dilute and dense regions were reported to disappear at µ > 1. This

value corresponds to the critical magnetic strength µ∗ (v0) needed for cluster and

hence chain formation of active dipolar particles, that we determined in chapter 4.

A more detailed study of active dipolar systems around µ∗ (v0) could give further

insights into how dipolar interactions suppress MIPS.

Calculation of global polarization (Figure 5.11) reveals that apolar particles

(black curve) show no global order while systems with magnetic interactions (blue,

green and red curves) exhibit high global orientational order. These observations

are in agreement with [73]. When comparing the degree of global polarization

between systems with different magnetic moments µ we noticed that systems with

weak magnetic interactions (µ = 1, blue curve) reach higher values of polarization

for lower self-propulsion speeds compared to systems with strong magnetic inter-
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5.3. High density Φ = 0.57

Figure 5.12.: Left: system snapshot at t = 20 showing particle positions (black
dots) and the calculated Voronoi cells. System parameters set to µ = 0, v0 =
61, Φ = 0.57. The cells are colored according to their density ρ. Right: histogram
shows distribution of Voronoi cell densities P (ρ) weighted with its inverse density.
Black curve shows fit to bimodal distribution of cell densities, while the vertical
dashed line marks the average system density Φ = 0.57. Histogram data was
averaged over the last 5 frames.

actions (µ = 2.6, red curve). In systems at low densities, we observed the opposite

effect (compare Figure 5.3). To this point it remains unclear why we observed

such a difference.

Figure 5.11 shows the average degree of polymerization in systems with high

average density. In the apolar case (µ = 0, black curve) we see a strong increase of

the degree of polymerization with self-propulsion. Here, values close to 〈φp〉 ≈ 0.5

are being reached. Systems with µ 6= 0 show high degrees of polymerization.

The degree of polymerization seems to converge to approximately 〈φp〉 ≈ 0.9
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5. Collective dynamics in large systems without external field

for high self-propulsion speeds, independent of the magnetic interaction strength

(µ 6= 0). Both effects together, the quick increase to high values of the degree

of polymerization for apolar particles (〈φp〉 ≈ 0.5), and unspecificity of the order

parameter for systems with intermediate and strong magnetic interactions (〈φp〉 ≈

1), suggest that the degree of polymerization is not ideally suited to characterize

chain formation or polymerization in systems at high average densities.

Figure 5.13.: Diagram of states for systems at high density (Φ = 0.57) for differ-
ent magnetic moments µ and self-propulsion speeds v0. Red box highlights state
points with MIPS as identified via Voronoi tessellation. Classification of states is
based on combinations of order parameter criteria (see Table 2.1).

Again, we summarized the results of the three order parameters in a diagram of

states for Φ = 0.57 in Figure 5.13 . As already observed in systems at intermediate

density (Figure 5.9), the disordered gas state (gray circle) is clearly suppressed. In

addition, the oriented gas states (purple plus) vanish from the diagram of states.
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5.3. High density Φ = 0.57

Instead, purely clustered states (brown triangle, highlighted with red box) emerge

for apolar particles at high self-propulsion speeds. These states were identified as

MIPS and is qualitatively in agreement with [73]. Overall, complex networks of

chains (yellow square) and bands (red cross) dominate the diagram of states at

high density.

Now that we have identified and characterized in detail how activity, magnetic

interactions and density affect the collective behavior of systems of active dipolar

particles, we study the influence of a constant external magnetic field in a next

step.
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6. Influence of constant external

magnetic field

In this chapter, we ask the question how does a constant homogeneous external

magnetic field affect the collective dynamics in a large system of dipolar particles in

bulk? First, we present simulation snapshots of typical configurations we observed.

Then we discuss how the complex interplay between external magnetic field and

internal dipole-dipole interactions between the particles affects structure formation

of active dipolar particles. We classified observed states in our system according

to three order parameters and summarized our results in diagrams of states.

To this extent, we analyzed the results of numerical simulations of N = 1156

active dipolar particles for three different densities (low density Φ = 0.13, inter-

mediate density Φ = 0.23 and high density Φ = 0.57) with periodic boundary

conditions for 7 different values of magnetic field strengths in the interval B =

10−2 to 102. We varied magnetic strength µ and self-propulsion speed v0 of the

particles.
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6.1. Low density Φ = 0.13

6.1. Low density Φ = 0.13

Figure 6.1 shows typical system configurations for three different values of the mag-

netic moments µ = 1.0, 1.4 and 2.6 (columns) at three different field strengths of

the external magnetic field B = 0.1, 1.0 and 14 (rows) for particles with moderate

self-propulsion speed (v0 = 23).

Figure 6.1.: Collection of snapshots of the system at low density (Φ = 0.13) for
intermediate self-propulsion speed v0 = 23 for different magnetic field strengths
B (rows) and values for magnetic interaction strengths µ (columns). External
magnetic field points from left to right. All snapshots have been taken at time
t = 20.

Systems with weak external magnetic field display similar configurations to what
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6. Influence of constant external magnetic field

we observed in systems without external magnetic field (chapter 5). In systems

with stronger external magnetic fields, particles align with the direction of the

external field (left to right, cyan). In addition, particles assemble into chains with

defects like short branches or loops for strong external magnetic fields (B = 14).

Here, the average chain length seems to increase with the magnetic moment of

the particles, spanning the whole system size for strong magnetic interactions and

strong external field strengths (µ = 2.6, B = 14, bottom right). These colum-

nar structures are qualitatively similar to structures observed in non-equilibrium

ferrofluids with external magnetic field [57]. In contrast to systems without an

external magnetic field, these columnar structures mostly stay evenly separated

and do not combine into connected networks of chains or into broad bands at

low densities. In fact, we observed in systems with strong magnetic interactions

(µ = 2.6) that an increase of the external magnetic field strength causes broad

bands to separate into bands with fewer lanes or into individual chains of dipolar

particles (e.g. Figure 6.1 µ = 2.6, B = 1.0 and µ = 2.6, B = 14).

We analyzed the numerical simulations quantitatively by calculating three global

order parameters, as introduced in chapter 2. In general, the observations above

are also reflected in the calculated order parameters, which are shown in Figure 6.2.

In particular, we have seen that the fraction of largest cluster 〈φc〉 (top) decreases

with increasing magnetic field strength for high magnetic moments µ (red lines)

while the degree of polymerization 〈φp〉 (bottom) slightly increases with increasing

field strength. Furthermore, 〈φc〉 and 〈φe〉 weakly depend on self-propulsion speed

v0 in systems with strong external magnetic fields.

Naturally, we observed a strong increase of the degree of polarization 〈φe〉 (cen-

ter) with increasing field strength. The average alignment of a single magnetic
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6.1. Low density Φ = 0.13

Figure 6.2.: Three order parameters: fraction of largest cluster (top), polarization
(center) and polymerization (bottom) against self-propulsion speed v0 for four
magnetic moments µ (colors). Solid color and solid lines show data for strong
external magnetic field B = 14, transparent colors and dashed lines show data
with weak magnetic field strength B = 0.1. System density was set to Φ = 0.13.
Cut-off for cluster formation set at ε = 1.28.
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6. Influence of constant external magnetic field

dipole with strength µ in an external magnetic field of strength B in a thermal

bath at temperature T is described by the Langevin function (in reduced units)

[133]

〈φe〉B = coth µB
T
− T

µB
. (6.1)

In Figure 6.3 we compared the expected orientation of the particles according

to the Langevin function (black line) to the measured average orientation in our

system 〈φe〉 (colored dots). Because of particle-particle interactions and alignment

with neighboring particles, most of our data points lie above the Langevin curve.

However, we noticed some outliers well below the expected average orientation. A

snapshot of one of these outliers (red cross) reveals why. In systems with weak

external magnetic fields but strong magnetic moments of the particles, rings or

more complex circular structures can form which reduce the average orientation

of the system.

Additionally, based on the expected average orientation of a reference system

(µ = 1, T = 1), we defined three magnetic field strength regimes: low (B = 0.1)

intermediate (B = 1) and strong (B = 14), as indicated by the vertical dashed

lines. We present our simulation data representatively for these three regimes.

We summarized the results of the order parameters in a diagram of states follow-

ing the classification criteria of Table 2.1 in Figure 6.4. Here, diagrams of states

for three different magnetic field strengths B = 0.1, 1.0 and 14 (left to right) for

density Φ = 0.13 are shown. We can identify three crucial observations.

First, disordered gas states (gray circle) are greatly suppressed with increasing

magnetic field strength. Additionally, the onset of oriented gas states states shifts

to lower values of µ.
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6.1. Low density Φ = 0.13

Figure 6.3.: Left: expected orientation of single particle in external magnetic
field based on Langevin equation (6.1) (black line) with T = 1 and the measured
average orientation in our system for different magnetic moments µ color coded
and self-propulsion speeds v0 (indicated by transparency of dots, higher values of
v0 show up less transparent). Vertical lines indicate three magnetic field strength
regimes for reference system wit µ = 1: low (B = 0.1) intermediate (B = 1) and
strong (B = 14). Right: snapshot of system at parameters µ = 4, B = 1 and
v0 = 23 (red cross in left figure). Particle orientations are indicated by the color
wheel (top left). System at density Φ = 0.13. Snapshot taken at t = 20.

Second, intermediate external magnetic fields (center diagram) suppress the

formation of complex networks of chains (yellow square) and instead promote the

formation of oriented states (purple plus: oriented gas, green pentagon: oriented

chains) and bands (center, bands: red cross).

Third, and most crucially, strong external magnetic fields suppress the formation

of bands. For strong external magnetic fields (right diagram), two states dominate

the diagram: oriented gas (purple plus) and oriented chains (green pentagon). The

line separating these two states is qualitatively similar to the line separating the

gas and chain state in small systems of dipolar active particles (see Figure 4.10,

chapter 4).

We want to highlight the two states indicated as bands (red cross) for strong

external magnetic field in Figure 6.4 (right). At these two parameters (µ = 2.6,
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6. Influence of constant external magnetic field

Figure 6.4.: Diagrams of states for three different external magnetic field
strengths B = 0.1, 1.0 and 14 (left to right). Classification of states is based
on combinations of order parameter criteria (see Table 2.1). System at low density
(Φ = 0.13).

v0 = 200 and µ=4, v0 = 500) we observed the following behavior, as shown in

Figure 6.5. Dipolar active particles that self-assembled into long chains oscillate

with growing amplitude towards their tail. We suspect that such an oscillation

might be caused by a buckling instability. Particles with strong dipolar interactions

are packed closely into a chain. The combination of high swimming speeds and

translational noise might cause a temporary compression and stress along the

chain that is then resolved by buckling of the tail. Self-assembled active dipolar

chains are qualitatively similar to active polymers, where monomers are linked

by a spring potential. Here, it has been shown that the flexure number, which

characterizes the relation between active propulsion and bending rigidity, controls
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6.1. Low density Φ = 0.13

buckling instabilities in a single active filament [134]. To our knowledge, oscillating

chains have not been observed before in systems of active dipolar particles. Further

studies are required to explore this behavior.

When dipolar interactions were reduced, long chains were seen to break into

smaller segments. These breaks typically occurred near the tail of the chain,

where the oscillations reach their maximum amplitude. This observation indicates

that buckling instabilities might cause chains of different lengths to coexist in

systems of active dipolar particles. Breaking of chains is qualitatively similar to

fragmentation of stationary chains observed in magnetorheological suspensions in

a rotating field [66, 135].

So far, we have observed that these oscillating chains are a transient state to-

wards band formation in our systems. At some point, individual oscillating chains

meet. Here, alignment with neighboring particles suppresses oscillations and bands

start to form. Similar lateral aggregation of individual chains into bands and

columnar lanes has been observed in magnetorheological fluids [57, 62, 63, 65].

Figure 6.5.: Series of snapshots showing oscillating chains for dipolar active par-
ticles with strong magnetic interactions µ = 4 and high self-propulsion speed
v0 = 500. Snapshots taken at times 26.46, 26.56 and 26.66 (left to right), color
wheel indicates orientations. External magnetic field points from left to right,
magnetic field strength was set to B = 14.
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6. Influence of constant external magnetic field

In addition, we also investigated the effect density has on systems of active dipo-

lar particles in external magnetic fields. To this extent, we repeated the calculation

of the order parameters above for systems with densities Φ = 0.23 and Φ = 0.57.

We summarized our results in diagrams of states.

6.2. Intermediate density Φ = 0.23

In systems at intermediate density Φ = 0.23, we observed that intermediate ex-

ternal magnetic field strengths of B = 1 do not suffice to suppress formation of

complex networks. Because of the increase in density, short chains may connect

and form a network (see Figure 6.6 central column, µ = 1.4).

This observation is also reflected in the diagram of states (Figure 6.7, yellow

squares). Furthermore, the diagram of states indicates that strong external mag-

netic fields diminish the effect activity has in systems at intermediate density

(Figure 6.7, right). Here, the line separating the two states oriented gas (purple

plus) and oriented chains (green pentagon) is independent of v0. This observation

is dramatically different to the previously characterized systems without external

magnetic fields and to systems at low density with external magnetic fields. Here,

we have demonstrated that activity greatly affects structure formation and the

collective behavior.

In the diagram of states we demonstrated that band formation (red cross) is

suppressed for strong external magnetic fields in systems at low (Figure 6.4) and

intermediate (Figure 6.7) densities. Instead, oriented chains dominate. This effect

seems to be more dominant at intermediate density Φ = 0.23. Therefore, we will

focus on systems at intermediate density and study how external magnetic fields
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6.2. Intermediate density Φ = 0.23

Figure 6.6.: Collection of snapshots of the system at intermediate density (Φ =
0.23) for intermediate self-propulsion speed v0 = 23 for different magnetic field
strengths B (rows) and magnetic moments µ (columns).

affect lane formation in more detail.

6.2.1. Columnar structures

The snapshots in Figure 6.6 show that as the magnetic field strength increases, the

disordered network of chains first organizes into a broad band. Then, as the field

strength increases further, the band separates into columnar structures. These

structures are well aligned with the direction of the external field, spanning the
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6. Influence of constant external magnetic field

Figure 6.7.: Diagrams of states for three different external magnetic field
strengths B = 0.1, 1.0 and 14 (left to right). Classification of states is based on
combinations of order parameter criteria (see Table 2.1). System at intermediate
density (Φ = 0.23). Cut-off for cluster formation set at ε = 1.21.

system for strong magnetic interactions. Snapshots of the simulations suggest

(compare Figure 6.1, Figure 6.6 and Figure 6.10), that the number of lanes in each

columnar structure can vary and is greatly influenced by the density. In addition,

these columnar structures seem to be quite regularly spaced in the direction per-

pendicular to the external magnetic field. These observations qualitatively match

magnetic-field-induced structures in ferrofluids [57, 62, 63].

We characterized these columnar structures with two parameters: the average

number of lanes in a columnar cluster nl and the columnar spacing ∆ry, which

is the average distance between neighboring cluster centers perpendicular to the

external magnetic field.
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6.2. Intermediate density Φ = 0.23

Figure 6.8.: Left: snapshot of system at B = 14, µ = 2.6, v0 = 14 showing
columnar structures. Structures are color coded, center of geometry is marked
by a red cross. Right: average cluster size N against external magnetic field
strength B for particles with moderate self-propulsion speed v0 = 14. System is
at intermediate density Φ = 0.23. Colors indicate different magnetic moments of
the dipolar particles. Data sampled over trajectories at times t = 18 − 20 every
∆t = 0.1.

These two parameters were calculated as follows. First, we determined the in-

dividual clusters (color coded in Figure 6.8, left), using a density based cluster

algorithm (see chapter 2). We then calculated the center of geometry (red cross)

and the length of each cluster in direction of the external magnetic field lix. Aver-

aging the distances between neighboring centers of geometry perpendicular to the

direction of the external magnetic field gives us the columnar spacing. To approx-

imate the number of lanes in each cluster, we divided the number of particles per

cluster ni by the cluster length

nil = ni
lix
.
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6. Influence of constant external magnetic field

We determined these parameters for systems that fulfill the criteria for polarization

(〈φe〉 > 0.5) and polymerization (〈φp〉 > 0.5), corresponding to systems in oriented

chains or bands states (see Table 2.1).

Indeed, the calculation of the average number of particles per cluster N (Fig-

ure 6.8, right) shows a strong decrease in average cluster size with increasing mag-

netic field strength, confirming that clusters separate into smaller sized clusters

as the magnetic field strength increases in systems with µ > 1. Here, the average

cluster size seems to converge to a fixed value for very strong external magnetic

fields.

Figure 6.9.: Columnar spacing ∆ry (left) and average number of lanes per cluster
nl (right) against external magnetic field strength B. The magnetic moment was
set to µ = 4 and density to Φ = 0.23. Colors indicate increasing self-propulsion
speed of the particles. Data sampled over trajectories at times t = 18 − 20 every
∆t = 0.1. Data points show systems that fulfill criteria 〈φe〉 > 0.5 and 〈φp〉 > 0.5.

Fig. 6.9 shows the columnar spacing ∆ry and the average number of lanes per

column nl for systems with strong magnetic interactions µ = 4 at intermediate

density Φ = 0.23. Both, the columnar spacing and the number of lanes per cluster
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decay rapidly and approach a fixed value as the external magnetic field strength

increases. Activity seems to affect this behavior only to little extent.

Columnar spacing has been reported to be independent of the external magnetic

field in experiments with ferrofluids [63]. We recovered this behavior for strong

external magnetic fields in our systems of active particles. However, we observed a

strong dependence of the columnar spacing in the regime of weak external magnetic

fields. We note that in some cases, a weak external magnetic field seems to promote

separation between columnar structures.

As reported in [63], columnar spacing is reduced with increasing density. Al-

though we observed in movies of our simulations that the number of lanes in each

column increases with density, we cannot make quantitative statements about the

influence of density on columnar structures at this point.

6.3. High density Φ = 0.57

Finally, we studied the effect of a constant external magnetic field in systems at

high density Φ = 0.57. Here, we observed that strong external magnetic field

strengths of B = 14 clearly organize the system with high magnetic moments into

columnar structures (see Figure 6.10 µ = 2.6, B = 14). Because of the increase

in density, these columnar structures are made up of multiple lanes in off-register

alignment and not of single lanes, as seen in systems at low density.

In the diagram of states, we observed that the increased density causes the pre-

viously suppressed band states (red crosses) to reappear. In fact, bands dominate

the corresponding diagram of states for strong external magnetic fields and are

independent of activity (Figure 6.11, right). Off-register band formation has been
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6. Influence of constant external magnetic field

Figure 6.10.: Collection of snapshots of the system at high density (Φ = 0.57) for
intermediate self-propulsion speed v0 = 23 for different magnetic field strengths B
(rows) and magnetic moments µ (columns).

previously observed in passive dipolar systems with constant external magnetic

fields [39, 129, 130]. In systems at high density, a clear discrimination between

bands and columnar states can no longer be made. A limiting factor might be the

finite system size, as observed in other systems of active particles [136].
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Figure 6.11.: Diagrams of states for three different external magnetic field
strengths B = 0.1, 1.0 and 14 (left to right). Classification of states is based on
combinations of order parameter criteria (see Table 2.1). System at high density
(Φ = 0.57). Cut-off for cluster formation set at ε = 1.05.
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7. Collective dynamics in

time-dependent external field

In the previous chapter, we have demonstrated how a constant external magnetic

field affects self-assembly of structures of active dipolar particles. In this chapter

we investigate the effect of a time dependent external magnetic field. We model the

time dependency of the external magnetic field as a triangular wave with amplitude

B and ramping rate β, as introduced in chapter 2.

In particular, we are interested how the ramping rate, magnetic interaction

strength and self-propulsion speed of the particles affect structure formation and

previously characterized states. First, we demonstrate how the average orientation

of the system changes with the time dependent external magnetic field. Then,

motivated by movies of our simulations, we characterize the dynamic structure

formation that is introduced with the time dependent external magnetic field.

To that end, we investigate numerical simulations for four different ramping

rates β = 0.4, 0.8, 1.2 and 4.0 while varying the magnetic moments µ and self-

propulsion speed v0 of the particles at three different densities Φ = 0.13, 0.23 and

0.57.
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7.1. Simulation observations

Dipolar particles align with the direction of the external magnetic field. When we

apply our time-dependent external magnetic field with triangular modulation, we

observed that the average orientation of the system φe follows a hysteresis curve

when plotted as a function of the magnetic field strength B, as shown in Figure 7.1.

Here, negative values of the magnetic field strength indicate a change in direction

(right to left). Positive (negative) values for the average orientation φe at positive

(negative) magnetic field strength B signify alignment with the direction of the

external magnetic field, when pointing from left to right (right to left). Particles

are fully aligned when the external magnetic field reaches its maximum amplitude.

During the course of one simulation run particles switch their swimming direction

twice, which results in a closed hysteresis loop.

Figure 7.1.: Hysteresis curve for system with parameters µ = 0.5, v0 = 100,
β = 0.4 and Φ = 0.13. Inset shows time dependency of external magnetic field with
amplitude B = 150. Gray circles mark the coercive force and gray squares mark
the normalized remnant magnetization. Points were calculated from intersection
via linear interpolation.

87



7. Collective dynamics in time-dependent external field

In movies of our simulations, we typically observed the following behavior (Fig-

ure 7.2). As the external magnetic field strength ramps up, particles combine into

chains and align with the direction of the external magnetic field (Figure 7.2, left).

The particles move along the external magnetic field from left to right (cyan). The

length of the chains depends on the magnetic moment of the particles. Particles

with small magnetic moments (µ = 0.5) do not combine into chains but stay sep-

arated. As the external magnetic field strength decreases, particles start to lose

their alignment with the external field and eventually reorient (Figure 7.2, center),

as the external magnetic field switches its direction (right to left). During reori-

entation, chains may break into smaller segments or individual particles. Finally,

as the external magnetic field strength deceases further, particles recombine into

long chains which are aligned with the new direction of the external magnet field.

Now particles move from right to left (red) (Figure 7.2, right).

Figure 7.2.: Time series of snapshots for system with β = 0.4, µ = 2, v0 = 40
and Φ = 0.13. Snapshots are taken at times t = 10.53, 11.03 and 11.53 (left to
right). Color wheel (top left) indicates orientation of particles. External magnetic
field points from left to right (right to left) at time 10.53 (11.53).
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7.2. Coercive force and relative remnant magnetization

7.2. Coercive force and relative remnant

magnetization

As shown in Figure 7.1, particles do not reorient when the external magnetic field

strength is zero. Reorientation of the particles requires a certain field strength Bc.

In this section, we want to study the exact point when the particles reorient and

how it depends on the ramping rate β, magnetic moments µ and activity v0.

We used two points to characterize hysteresis curves of our system, as indi-

cated in Figure 7.1. The coercive force (gray circle) and the normalized remnant

magnetization (gray square). The coercive force is the magnetic field strength Bc

required to demagnetize the system φe(Bc) = 0. At this point, particles are start-

ing to reorient. The normalized remnant magnetization φ∗e is the systems’ average

orientation that remains when the field strength of the external magnetic field is

equal to zero φ∗e = φe(B = 0).

We now ask, how does the coercive force Bc and the normalized remnant mag-

netization φ∗e depend on the systems’ parameter? Fig. 7.3 shows the coercive force

and the normalized remnant magnetization against the activity for three mag-

netic moments µ. The semi-transparent curves with dotted lines show data for

slow ramping rates β = 0.4 and the solid curves with solid lines show data for

higher ramping rates β = 1.9. The relative remnant magnetization is overall high

(φ∗e > 0.9, notice small y-range) and the observed changes with self-propulsion

speed v0 are negligibly small (Fig. 7.3, bottom). Systems with high ramping rates

and low magnetic moments (blue solid curve) require higher values of the external

magnetic field strength for particles to reorient. This observation is to be expected

since the degree of alignment in an external field of a dipolar particle follows a
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7. Collective dynamics in time-dependent external field

Langevin curve (see chapter 2). Both parameters show little to no dependency

on activity and system density (not shown). In systems with constant external

magnetic field, we saw that activity and density affected the collective motion of

dipolar particles (chapter 6). Typically, magnetization curves of ferromagnetic

materials depend on the temperature [68, 137, 138]. This observation once more

shows the limits of interpreting activity as an effective temperature [120].

In systems with a time dependent external magnetic field, the dynamics were not

seen to be affected by the activity of the particles. Here, the temporal evolution

of the external magnetic field dictates the dynamics of the self-assembly of active

dipolar particles.

Figure 7.3.: Coercive force (top) and relative remnant magnetization of the sys-
tem against self-propulsion speed v0 for three different magnetic moments µ. Semi-
transparent dotted curves show systems with low ramping rate (β = 0.4) while
solid curves show systems with high ramping rate (β = 1.9). System density set
to Φ = 0.13
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7.3. Dynamic structure formation

7.3. Dynamic structure formation

One crucial feature in a time dependent external magnetic field is that particles

reorient shortly after the external magnetic field switches its direction (hystere-

sis). In this section, we will focus on the structures that are adopted during this

transition. In general, we observed three distinct scenarios in movies of our simu-

lations. In systems with particles with small magnetic moments, particles do not

assemble into chains but remain separated. Individual particles re-align with the

external magnetic field by performing a U-turn. In systems with intermediate and

high magnetic moments, two possible observations were made. Here, either al-

ready formed chains break into smaller segments and individual particles, reorient

and recombine into new chains. Or initially formed chains stay intact and reori-

ent as whole in a U-turn manner, temporarily adopting a C-shaped chain before

realigning with the new direction of the external magnetic field (see Figure 7.2,

center).

We analyzed such dynamic behavior while varying the parameters β, µ and v0.

We classified these three scenarios by calculating the degree of polymerization φp

in our simulations in a time frame around the time point when particles reorient.

Particles reorient at time t∗ = t(φe = 0) when the average orientation is zero. The

time frame was chosen to include ∆t = 0.15 before and after that time point.

Fig. 7.4 shows an example of this calculation for three different parameter com-

binations µ = 0.5, v0 = 40 (gray), µ = 1.7, v0 = 100 (red) and µ = 4, v0 = 40

(blue). Here, the above mentioned three scenarios can be distinguished. The de-

gree of polymerization is low (〈φp〉 < 0.5), therefore particles do not assemble

into chains (gray). The degree of polymerization is high (〈φp〉 > 0.5), but has a
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7. Collective dynamics in time-dependent external field

distinct minimum, therefore particles assemble into chains but break when reori-

enting (red). The degree of polymerization is high (〈φp〉 > 0.5), therefore particles

assemble into chains that do not fragment into monomers when reorienting (blue).

Figure 7.4.: Temporal evolution of order parameter φp around reorientation point
showing three distinct scenarios for dynamic structure formation (µ = 0.5, v0 = 40:
gray, µ = 1.7, v0 = 100: red and µ = 4, v0 = 40: blue). System density set to
Φ = 0.13.

We then classified our system based on these criteria. The results of this classi-

fication for particles with self-propulsion speed v0 = 40 are presented in Fig. 7.5.

Here we see that higher magnetic moments µ allow chains to stay intact during

reorientation (blue), even for increased ramping rates β. This observation is inde-

pendent of the self-propulsion speed v0 or the density of the system Φ (not shown).

Together with the results presented in section 7.2, we conclude that in systems

with time dependent external magnetic fields, temporal dynamics (assembly and
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7.3. Dynamic structure formation

Figure 7.5.: Diagram showing three different scenarios when particle reorient in
systems with time-dependent external magnetic field depending on magnetic mo-
ment µ and ramping rate of the external magnetic field β. Single particles reorient
(gray), particles form chains that break when reorienting (red) and particles form
chains that stay intact when reorienting (blue).

disassembly) are dictated by the external field but spatial organization (chain

formation) is dictated by the strength of the magnetic moment and the resulting

particle-particle interactions. Spatial organization of dipolar particles into chains

and their elastic properties has been investigated in (rotating) external magnetic

fields in other studies [44, 66, 67]. Here, the work focused on bending rigidity and

the shape of bend chains in external magnetic fields, but not on the dynamical

fragmentation and re-assembly of chains. With the magnetic field protocol we used,

we demonstrated that the level of activity has little effect on the fragmentation

dynamics in our systems. This result is in contrast to the results presented for

systems with constant external magnetic field (see chapter 6), where both activity

and density affect structure formation.
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8. Conclusions

In this thesis, we used Brownian dynamics simulations to study collective dy-

namics and self-assembly of dipolar active particles under various conditions. We

addressed our main research questions in four parts.

First, we focused on structure formation in small systems, N = 36, and stud-

ied the effect of confinement by applying different boundary conditions. Here, we

mainly observed that particles self-assemble into two types of structures, chains

and rings. In a diagram of states we showed what configurations are most likely

to occur depending on the activity and magnetic moments of the particles. We

observed that in systems without confinement, chains dominate the diagram of

states, both for active as well as passive dipolar particles. For passive dipolar

particles, analytical calculations [50–53] predict rings to dominate for the investi-

gated parameters for N = 36 particles. These predictions seem to contradict our

numerical observations at first. We have noticed that passive particles typically

form chains of size N ≈ 3 in our simulations. These chains can be considered

as isolated sub-systems that interact on much longer time scales with other sub-

systems of similar size. These longer time scales are not sufficiently covered in

our dilute simulations at Φ = 0.01. When we consider that the number of par-

ticles in each isolated sub-system is greatly reduced, both numerical simulations
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and analytical predictions result in chains as dominant structures in these smaller

sub-systems. When we increased the density to Φ = 0.03 by reducing the box size

we recovered the predicted ring configurations for passive particles. Other numer-

ical studies have shown that much longer simulation times (up to a factor of 100)

are needed to reach agreement between simulations and analytical predictions of

structure formation in systems of passive dipolar particles [53]. However, due to

their persistent motion, active particles explore their environment faster than pas-

sive particles and therefore reach long-term behavior at earlier times [139] which

are covered in our simulations.

In systems with confinement, we observed that ring formation is promoted by

the confinement. Calculation of a local structure order parameter revealed that

rings dominantly form at walls in our simulations. This finding suggests that

interactions with walls have an important influence on structure formation. We

argue that two mechanisms are responsible for ring formation. One, walls reduce

the degrees of freedom of chains of (active) dipolar particles. Therefore, already

assembled chains can catch their own tail and form into a ring near a wall. And two,

the increase of probability density at walls of the system drives particles to form

larger clusters which favor ring configurations. The effect of boundary conditions

on probability density fluxes of active particles has recently been investigated and

demonstrates a method to manipulate trajectories and thus potentially affect the

collective dynamics of active particles [85, 87].

While we observed that the geometry of the confinement affects structure forma-

tion to a greater extent, a recent study has demonstrated that reorienting torques

at walls in numerical simulations are crucial to faithfully reproduce experimental

observations of magnetotactic bacteria in circular traps [115]. We note that the
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parameters chosen in that study are similar to the ones presented in this thesis.

Furthermore, we demonstrated that the probability of cluster formation in our

system gives crucial insights to understand structure formation. Based on the

probability of cluster formation, we showed that a critical magnetic strength µ∗

can be defined. This critical magnetic strength increases linearly with the self-

propulsion speed of the particles and is independent of boundary conditions and

density of the system. This finding suggest that activity can be treated as an

effective temperature in this case. We used this interpretation to re-scale the

magnetic moments of the active particles to an effective magnetic moment as

function of self-propulsion speed.

We then rewrote a previously derived analytical expression for the expected ratio

of chains to rings in passive systems of dipolar particles [53] as a function of this

effective magnetic moment. Based on this analytical expression, we constructed

a diagram of states predicting ring and chain formation that is qualitatively in

good agreement with our numerical results. A quantitative mismatch indicates

the limits of interpreting activity as an effective temperature. Calculation of an

effective temperature has been shown to depend on the choice of observable for

re-scaling and can be affected by density, collective phenomena and anisotropy

[120, 122–125].

Second, we analyzed the collective behavior of active dipolar particles in larger

systems. To this extent, we performed numerical simulations with N = 1156

particles. Here, we observed distinct states depending on the magnetic moments

and self-propulsion speed of the particles, but also on the density of the system. We

characterized these states by calculating three order parameters and summarized

our results in diagrams of states. Qualitatively, or results match well with the
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observations presented in a similar study by Liao et al. [73]. In particular, we

observed spontaneous global alignment of particles at high levels of activity at low

density, similar to the Vicsek model [3], and motility induced phase separation in

dense systems of apolar particles at high self-propulsion speed [117]. However, our

diagrams of states discriminate the observed states in more detail and extend the

studied range of magnetic moments.

Third, motivated by the level of agreement with [73], we continued to investi-

gate how an external constant magnetic field affects structure formation of active

dipolar particles. Here, we summarize our three most important observations.

One, external magnetic fields suppress the formation of bands at low (Φ =

0.13) and intermediate (Φ = 0.23) densities. Instead, oriented gas and chain

states dominate. We showed that these two states are practically independent of

the level of activity when a strong external magnetic field is present in systems

at intermediate density. This observation is dramatically different from chain

formation observed in systems without external magnetic fields, where activity

plays a crucial role in collective phenomena [73, 77, 99]. In our model, activity is

introduced as an active force acting in the direction of the magnetic moment of

the particle. The external magnetic field introduces a preferred orientation of the

particles on a global level and therefore may change how activity affects collective

dynamics in systems of active dipolar particles. These observations suggest that

details on how activity is introduced into the system, especially when coupled

to orientational degrees of freedom, may be important to understand collective

phenomena in systems out of equilibrium.

Two, we observed oscillating chains as a transient state towards band formation

in our system. We suspect that these oscillations are caused by a buckling insta-
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bility. In addition, we propose that fragmentation of long chains due to buckling

instabilities allows chains of different lengths to coexist in dilute systems of active

dipolar particles with high magnetic moments. This mechanism needs to be inves-

tigated in more detail in future studies. In particular, a quantitative analysis that

shows the relation between oscillations and flexure number of the system might

aid to understand buckling instabilities in active polymers [134].

Three, we observed that active dipolar particles form columnar structures that

are qualitatively similar to structures induced by external magnetic fields in fer-

rofluids [57, 62, 63]. A quantitative analysis showed that the number of lanes per

column and the columnar spacing decreases rapidly with increasing magnetic field

strength. Columnar spacing in ferrofluids has been reported to not depend on the

external magnetic field strength [62, 63]. We recovered this behavior for strong

external magnetic fields. However, we observed a strong dependence of the colum-

nar spacing and number of lanes per column for weak external magnetic fields.

Experimental details like the application of the external magnetic field, presence

of hydrodynamic interactions, polydispersity and boundary conditions might in-

fluence this result. In a first step, we have shown here that activity does not

affect separation between columns to a great extent. In future studies, the effect

of density could be investigated in more detail and compared to [62].

Finally, we introduced a time dependent external magnetic field by modulating

the external field with a triangular function. An analysis of the average orientation

as a function of the external magnetic field resulted in hysteresis curves. We char-

acterized these hysteresis curves by two points, the coercive force and the relative

remnant magnetization and identified that activity affects these parameters only

to little extent. In addition, we saw that three possible dynamic scenarios were re-
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alized, when the external magnetic field switches its sign. One, individual particles

reorient in a U-turn. Two, previously formed chains break when reorienting and

reorganize when aligned with the new direction of the external field. Three, chains

stay intact when reorienting and adopt a C-like shape during that process. We

classified our system based on these three categories. Classification showed that

given the magnetic field protocol we used, activity has little effect on dynamics

and structure formation in our systems. Dynamics (assembly and disassembly) are

dictated by the external magnetic field. Spatial organization (chain formation) is

dictated by the magnetic moment and the resulting particle-particle interactions.

As demonstrated in other studies, different magnetic field protocols may lead to

different observations [67, 140, 141]. Understanding the effect time dependent

external magnetic fields have on dipolar particles is important for programmed

structure formation in and out of equilibrium [33, 34, 142–144].

In conclusion, we have presented and characterized the plethora of structural

dynamics and self-organization in systems of active dipolar particles over multi-

ple scales in this thesis; starting from individual chains and rings and ending in

structure formation and emerging collective behavior. We have shown that dipolar

interactions further add to the rich complex collective behavior in systems of active

particles. The addition of (time dependent) external magnetic fields shows how the

complexity of this system quickly increases. We have demonstrated that Brownian

dynamics simulations are an important tool towards better understanding of the

complex collective phenomena that arise in such systems.
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A. Simulation details

The following table gives an overview about the parameters used in our simulations.
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