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Notation

• N := {1, 2, 3, . . . } and N0 := N∪ {0}

• Z : integers

• R : real numbers and R+: positive real numbers

• C : complex numbers

• IN : N-by-N identity matrix

• 0N,M : N-by-M zero matrix

• 0N : (0, . . . , 0)T ∈ RN

• HN,M ∈ CN×M resp. HM ∈ CM×M : N-by-M Hankel matrix resp. M-by-M
Hankel matrix as in (2.10)

• VN,M ∈ CN×M resp. VM ∈ CM×M : N-by-M Vandermonde matrix resp.
M-by-M Vandermonde matrix

• HToep
M ∈ CM×M: M-by-M Hankel-plus-Toeplitz matrix

• diag(a1, . . . , aN) ∈ CN×N resp. diag((aj)
N
j=1) : Diagonal matrix with a1, . . . , aN as

main diagonal entries

• CM(p) ∈ C(M×M) : M-by-M companion matrix of the monic polynomial p(z) =
p0 + p1z + · · ·+ zM as in (2.6)

• TN ∈ RN×N : Chebyshev Vandermonde matrix of size N × N as in (3.6)

• C(R) := { f : R → C | f continuous } vector space of continuous, real valued
functions

• Cd([a, b]) : vector space of d-times continuously differentiable functions on [a, b]

• C∞(R) : space of smooth, real valued functions

• L(V) : vector space of all linear operators on a (normed) vector space V

• f̂ : Fourier transform of the function f with f̂ (ω) := F( f )(ω) :=
∫ ∞
−∞ f (x)eixωdx

• L( f ) : Laplace transform of the function f with L( f )(s) :=
∫ ∞

0 e−st f (t)dt

ix



Notation

• dom(A) : domain of the operator A

• Id : Identity operator

• Sh : shift operator for the shift parameter h as in (3.1)

• Sh,−h : symmetric shift operator with shift parameter h as in (3.3)

• SG,H,h : generalized shift operator as in (3.22)

• arg(c) : argument of a complex number c = reiϕ with arg(c) := ϕ

• L2([a, b], ω) :=
{

f : (a, b)→ R

∣∣∣ (∫ b
a ω(x) f (x)2dx

)1/2
< ∞

}
: Hilbert space

with inner product 〈 f , g〉 :=
∫ b

a f (x)g(x)ω(x)dx

• δk, l : Kronecker delta with δk, l :=

1 if k = l,

0 otherwise,
for k, l ∈ Z

• deg( f ) : degree of the polynomial f

• 〈 f , g〉Q :=
∫ b

a f (x)g(x)ω(x)dx inner product corresponding to the set of orthog-
onal polynomials {Qk|k ∈N0}

• g(x, t) : generating function as in (4.6)

• Lp,q,ω : Sturm-Liouville operator as in Definition 4.16

• V∗ := {ϕ : V → K | ϕ linear} dual space of the vector space V over the field K

• A∗ : adjoint operator as in Definition 4.21

• A+ : Moore-Penrose inverse as in Definition 5.6

• gcd(p, u) : greatest common denominator of two numbers p, u ∈N

• Pz : projection matrix as in (5.40)
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1 Introduction

The reconstruction and analysis of sparse signals is a common and widely stud-
ied problem in signal processing, for example in wireless telecommunication, see,
e.g., [QI99], biomedical engineering, see, e.g., [BKRE09], or power system theory, see,
e.g., [TSSP91]. Hereby, most recovery methods exploit structures or special properties
of the functions which are to be reconstructed. Particularly interesting are methods
which aim to recover functions which possess a sparse representation in a given basis
and use only a small set of sampling values.

Over the years different approaches have been used to analyse and recover struc-
tured functions such as greedy methods, see, e.g., [CDS98], or non-deterministic meth-
ods in the field of compressed sensing, see, e.g., [CRT06, Don06]. Usually, the recon-
struction algorithms used in the framework of compressed sensing are based on l1-
minimization methods and only recover the exact signal with a certain probability.

One example of a deterministic algorithm for the recovery of structured functions
was given in [PW13]. Here, the authors used a small number of Fourier samples for
the recovery of structured functions. In particular, the authors studied how real spline
functions of order m with non-uniform knots containing N terms can be uniquely
reconstructed by m + N Fourier samples. Furthermore, in [Bit17, BZI19] deterministic
fast Fourier transform based algorithms for the recovery of 2π periodic functions with
short frequency support were derived.

One of the best studied examples of structured functions, which for example natu-
rally appear in decay processes, are sparse exponential expansions, i.e.,

f (x) =
M

∑
j=1

cjeαjx,

where cj ∈ C \ {0} and αj ∈ C with |Im(αj)| < π for j = 1, . . . , M. One way to identify
the parameters αj and cj, j = 1, . . . , M and therefore, recover such sparse exponen-
tial expansions is by Prony’s method due to [dP95], which gained great popularity
in the last decade. This method uses 2M equidistant sample values f (x0 + hk) for
k = 0, . . . , 2M − 1, with sampling distance h ∈ R \ {0} and starting point x0 ∈ R.
Even though Prony’s method is a rather simple one, it is highly versatile and can
also be used for the algebraic recovery of piecewise smooth functions, see [Bat15], or
sparse phase retrieval in one dimension, see [BP17]. For system reduction, Prony’s

1



1 Introduction

method is related to the problem of low-rank approximation of structured matri-
ces, in particular Hankel matrices and corresponding nonlinear least-squares prob-
lems, see [Mar12, UM14]. The problem of sparse approximation also connects Prony’s
method and the AKK-theory, see [AAK71], which is a theory used for best approxi-
mation problems associated with (infinite) Hankel matrices and operators, and is used
by engineers for model reduction. In [Pot17] this connection is used for the approxi-
mation of signals using exponential sums with frequencies inside the unit circle.

Since Prony’s method is known to be numerically instable, different numerically
stable methods have been derived. One possible stabilization method is the so called
Approximate Prony method, see [PT10], which is based on [BM05]. Another possible
stabilizing method was proposed in [FMP12], where instead of samples of the original
signal, a windowed average of their autocorrelation sequence is used. This approach
is based on the application of operators of the form ∑M

k=0 g
(

k
M

)
f (k)e(ik·), where g

is a suitable smooth, even function studied in [MP00, MP05], and, enables rigorous
performance guarantees for Prony’s method.

One of the most notable generalizations of Prony’s method, the so-called general-
ized Prony method, was introduced in 2013 by Peter and Plonka, see [PP13]. Here
the reconstruction algorithm behind Prony’s method was extended to the recovery of
sparse expansions into eigenfunctions of certain linear operators, i.e.,

f (x) = ∑
j∈J

cjvj(x),

where J is a index set of size M ∈ N, cj ∈ C \ {0} and vj being the eigenfunction
of a linear operator A. The reconstruction can now be done using 2M values of the
form F(Ak( f )) for k = 0, . . . , 2M− 1, where F denotes a linear functional, satisfying
F(vj) 6= 0 for all eigenfunctions vj.

While some examples of suitable linear operators were given by Peter and Plonka,
e.g., the shift operator as well as certain differential operators, the sample values
needed for the reconstruction are not always accessible in practice. This leads to the
following questions.

(i) Can we find other suitable linear operators with meaningful structured functions
as eigenfunctions and easily accessible sample values?

(ii) Can we modify methods for the numerical stabilization of the Prony method
such as the ESPRIT method, see, e.g., [PT13], for the generalized Prony method?

Based on the questions above, we investigate what functions can be recovered using
only sample values that are easily accessible. Based on the theory of one-parameter
semigroups we derive so called generalized shift operators and their eigenfunctions,
so-called generalized exponential sums. The framework of generalized exponential

2



1 Introduction

sums and generalized shift operators covers all previously derived examples for the
application of the generalized Prony method. Moreover, we extend this to general-
ized trigonometric expansions. Furthermore, we elaborate on the connection between
generalized shift operators and linear differential operators. We introduce a Prony
based method for the reconstruction of orthogonal polynomials based on generating
functions and connect this recovery method to our generalized shift operators.

Additionally, we can answer the second question above in the affirmative. We show
that the numerical stabilizations of Prony’s method are not limited to the case of ex-
ponential expansions but also can be used for the structured functions we considered
throughout this thesis.

This dissertation is organized as follows. In Chapter 2 we give an overview of
Prony’s method and derive the algorithm for the reconstruction of sparse exponential
expansions. Moreover, we present the generalized Prony method for the reconstruc-
tion of M-sparse expansions into eigenfunctions and highlight how the classical Prony
method can be viewed as a special case of the generalized Prony method by using
shift operators.

In Chapter 3 we extend the notion of shift operators. We introduce symmetric shift
operators for the reconstruction of trigonometric functions and generalized shift op-
erators for the reconstruction of generalized exponential sums. To this end, we in-
troduce the concept of operator-valued exponential functions and prove, based on
the work [DOTV97], that each generalized shift operator can be written as such an
operator-valued exponential function with a suitable differential operator A. We
show how non-stationary signal such as generalized exponential sums or generalized
trigonometric expansion can be recovered from suitable function values using the gen-
eralized Prony method. Furthermore, we use the established connection between shift
operators and differential operator to derive a Prony based reconstruction method for
generalized exponential sums using linear differential operators. Moreover, we illus-
trate our finding with numerical examples.

In Chapter 4 we focus on the reconstruction of sparse expansions into orthogonal
polynomials. We recall some of the most important properties of orthogonal poly-
nomials and derive a new recovery method for the reconstruction of sparse expan-
sions into orthogonal polynomials using Prony’s method and generating functions.
Additionally, we explain how this recovery fits into the framework of generalized ex-
ponential sums and generalized shift operators, which we developed in Chapter 3.
Moreover, we highlight the differences between our newly developed algorithm and
some already existing approaches based on Prony’s method and illustrate our findings
with numerical examples.

Chapter 5 is dedicated to the numerical analysis of the Prony method for generalized
exponential sums. Based on [PT13] we derive a modified ESPRIT algorithm for the
reconstruction of generalized exponential sums. Furthermore, we analyse the case of

3



1 Introduction

partially known frequencies and modify the results on clustered frequencies obtained
in [CL20a] for generalized exponential sums. Finally, we elaborate on the modification
of Prony’s method for sparse approximation. We illustrate our derived algorithms
with different numerical examples.

All experiments in this thesis were implemented in MATLAB 2020a and conducted
with a 2,7 GHz Intel Core i5 processor and 8 GB 1867 MHz DDR3. For the computation
of polynomials roots, singular values and least square solutions internal MATLAB
routines have been used.

4



2 The Prony Method

In 1795 Gaspard Riche de Prony developed a method for the reconstruction of low
order exponential functions, see [dP95]. Even though this method dates back to the
18th century, it has preserved up to this date and has inspired a variety of appli-
cations in the field of electrical engineering, see [VMB02], for the approximation of
Green’s function in quantum chemistry, see [YFG+04], and even in the medical field,
see [JHLC16].

As the Prony method lies at the core of this thesis, we will begin by introducing
the classical Prony method as well as one possible generalization in the form of the
generalized Prony method by Peter and Plonka, see [PP13].

2.1 The Classical Prony Method

Prony’s method is a procedure for the identification of parameters in exponential
sums, that is, the Prony method can be used in order to determine frequencies αj and
corresponding coefficients cj of a function f : R→ C given as

f (x) =
M

∑
j=1

cjeαjx (2.1)

for cj ∈ C \ {0} and αj ∈ C with −π < Im(α1) ≤ Im(α2) ≤ . . . Im(αM) < π for
j = 1, . . . , M. Here it is always assumed that M is minimal, i.e., that αj 6= αi for
i 6= j. One big advantage of Prony’s method is that it only uses the minimal number
of 2M values f (k) for k = 0, . . . , 2M− 1, combined with methods from linear algebra
to reconstruct f .

For each signal of the form (2.1), we can define the associated Prony polynomial as

P(z) :=
M

∏
j=1

(
z− λj

)
=

M

∑
k=0

pkzk (2.2)

with λj := eαj for j = 1, . . . , M. We note that by definition the Prony polynomial is
monic, i.e., pM = 1.

We can interpret the signal f in (2.1) as the solution to a homogeneous linear differ-
ence equation and, therefore, understand the Prony polynomial P as the characteristic
polynomial corresponding to the linear difference equation. We verify this by the

5



2 The Prony Method

following computation for m ∈N0

M

∑
k=0

pk f (k + m) =
M

∑
k=0

pk

M

∑
j=1

cjeαj(k+m) =
M

∑
j=1

cjeαjm
M

∑
k=0

pkeαjk

=
M

∑
j=1

cjeαjm P(eαj)︸ ︷︷ ︸
=0

= 0.
(2.3)

Employing the fact that the Prony polynomial is monic, we can rewrite (2.3) as

M−1

∑
k=0

pk f (k + m) = − f (M + m) ∀m ∈N0. (2.4)

Based on this we can form the minimal linear system for the computation of the coef-
ficients pk, k = 0, . . . , M− 1, of the Prony polynomial P given in (2.2)


f (0) f (1) . . . f (M− 1)
f (1) f (2) . . . f (M)

...
...

...
f (M− 1) f (M) . . . f (2M− 2)


︸ ︷︷ ︸

=:HM


p0

p1
...

pM−1

 = −


f (M)

f (M + 1)
...

f (2M− 1)

 . (2.5)

The matrix HM ∈ CM×M, which entries are constant along the diagonals parallel to
the antidiagonal, is called a Hankel matrix and is indeed invertible since it can be
factorized in the following way

HM = ( f (k + m))M−1
k,m=0 =

(
M

∑
j=1

cjeαj(k+m)

)M−1

k,m=0

=

(
M

∑
j=1

cjeαjkeαjm

)M−1

k,m=0

=
(

cjeαjk
)M−1,M

k=0,j=1
· (eαjm)M,M−1

j=1,m=0

=
(

eαjk
)M−1,M

k=0,j=1
· diag(c1, c2, . . . , cM) · (eαjm)M,M−1

j=1,m=0

= VM(eα1 , . . . , eαM) ·D ·VT
M(eα1 , . . . , eαM),

where

VM(eα1 , . . . , eαM) :=
(

eαjk
)M−1,M

k=0,j=1
=


1 1 . . . 1

eα1 eα2 . . . eαM

...
... . . .

...
eα1(M−1) eα1(M+1) . . . eαM(M−1)

 ∈ CM×M

denotes the Vandermonde matrix to the nodes eαj and D := diag(c1, c2, . . . , cM) is
the diagonal matrix containing the parameter cj for j = 1, . . . , M. In order not to
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2.1 The Classical Prony Method

overload the notation we will omit the specification of the nodes and only write VM

up to Chapter 5.4. The matrix D has only nonzero diagonal entries and is, therefore,
invertible and the Vandermonde matrix VM is invertible because of αj 6= αk for j 6= k,
see [Sch02], Section 3.1.2, Lemma 3.1.2.

Once the coefficients of the Prony polynomial have been computed, we can calculate
its roots λj = eαj for j = 1, . . . , M. One way to do this, is by solving the eigenvalue
problem of the companion matrix CM(p) of the Prony polynomial P with coefficients
pk, k = 0, . . . , M− 1, and p = (p0, . . . , pM−1)

T, see [HJ13] pages 194 – 195, with

CM(p) :=



0 0 . . . 0 p0

1 0 . . . 0 p1

0 1 . . . 0 p2
...

...
. . .

...
...

0 0 . . . 1 pM−1


. (2.6)

The values αj, j = 1, . . . , M, can then be easily computed by taking the principal branch
of the logarithm.
Therefore, as a last step, we compute the coefficients cj in (2.1) for j = 1, . . . , M. This
can be done by solving the following Vandermonde system

f (k) =
M

∑
j=1

cjeαjk for k = 0, . . . , 2M− 1. (2.7)

We summarize the above results in the following algorithm.

Algorithm 1 The Classical Prony Method

Input: M ∈N and f (k) for k = 0, . . . , 2M− 1, as in (2.1).
1: Form the Hankel matrix HM := ( f (k + `))M−1

k,`=0 as well as f := ( f (M + `))M−1
`=0 and

solve HM · p = −f for p := (p`)
M−1
`=0 as in (2.5).

2: Define the Prony polynomial P(z) := ∑M
k=0 pkzk with pM = 1 as in (2.2), find all

roots λj = eαj and compute αj = log(λj) for j = 1, . . . , M.
3: Determine the coefficients cj for j = 1, . . . , M as the solution to the Vandermonde

system V2M,M · c = f2M as in (2.7) with V2M,M :=
(

eαjk
)2M−1,M

k=0,j=1
, c := (cj)

M
j=1 and

f2M := ( f (k))2M−1
k=0 .

Output: cj and αj for j = 1, . . . , M as in (2.1).

Remark 2.1 The classical Prony method assumes M to be a known parameter. As this
is often not the case in applications, see, e.g., [Hac05], there also exists a variant of
Prony’s method which computes the parameter M using oversampling and an upper
bound N > M on the number of terms in the exponential sum (2.1). In the noiseless
case, we construct Hankel matrices Hk ∈ Ck×k similarly to the one in (2.5) but of
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2 The Prony Method

different size k = 1, . . . , N, and note that det(Hk) 6= 0 for k = M and det(Hk) = 0 for
k > M, see [KL03], Theorem 4. However, due to the nature of the signal f , we may get
det(Hk) = 0 for some k < M. Therefore, it is not sufficient to determine det(Hk) for
growing k in order to find M. One possible approach to obtain the parameter M is to
analyze the singular values of the matrix HN for some upper bound N for M and to
determine M as the (numerical) rank of HN .

Since the matrices HM and V2M,M occurring in Algorithm 1 are usally ill-conditioned,
see [Tyr94] and [Pan16], there exist many methods aiming at higher numerical stability
such as the approximate Prony method, see [PT10], or the ESPRIT algorithm, see
[RK89], and Chapter 5. ♦

Remark 2.2 (i) The classical Prony method is also known as the annihilating filter
method and is often used in the field of electrical engineering especially, with
regard to finite rate of innovation methods, see, e.g., [VMB02, DVB07]. In this
framework the Prony polynomial P is the z-transform of a filter with coefficients
pk for k = 0, . . . , M, i.e., it is of the form P(z) = ∏M

j=1
(
1− z−1λj

)
= ∑M

k=0 pkz−k

with p0 = 1. The sampling scheme is shifted by M + 1 and instead of the Hankel
system in (2.5), a so-called Toeplitz system of the form

f (0) f (−1) . . . f (−M + 1)
f (1) f (0) . . . f (−M + 2)

...
...

...
f (M− 1) f (M− 2) . . . f (0)



=


f (−M + 1) f (−M + 2) . . . f (0)
f (−M + 2) f (−M + 3) . . . f (1)

...
...

...
f (0) f (1) . . . f (M− 1)

 ·


0 0 . . . 1
0 . . . 1 0

0 . . .
0 0

1 0 . . . 0


is used, see [VMB02], page 1420. As seen above the entries of the Toeplitz matrix
are constant along the extra-diagonals. Thus, the Toeplitz matrix is connected to
the Hankel matrix via multiplication with the counter identity matrix.

(ii) The model f in (2.1) also has close relations to the expansion

g(x) =
M

∑
j=1

cjδ(x− sj)

for cj ∈ C \ {0}, sj ∈ R, and delta-distribution δ. Using the fact that the Fourier
transform ĝ(ω) := F(g)(ω) :=

∫ ∞
−∞ g(t)eiωtdt can be extended to the space of

tempered distributions, we can interpret the exponential sum f in (2.1) as a
Fourier transform of g using αj = isj for j = 1, . . . , M. Therefore, g can also
be recovered using Prony’s method and equidistant Fourier samples. Moreover,

8



2.2 The Generalized Prony Method

this idea was extended to finite linear combination of arbitrary shifts of a given
function φ ∈ L1(R) with non vanishing Fourier transform φ̂, i.e.,

g(x) =
M

∑
j=1

cjφ(x− αj)

with αj ∈ R, for j = 1, . . . , M, see [PW13].

(iii) If we assume |eαj | < 1 for j = 1, . . . , M, considering the data samples f (k) as
Taylor series coefficients

∞

∑
k=0

f (k)zk =
∞

∑
k=0

M

∑
j=1

cjeαjkzk =
M

∑
j=1

cj

1− eαj z

relates Prony’s method to Padé approximation as shown in [PT14a,Cuy20,WM63].
♦

It is well known that Prony’s method is highly instable in the presence of noise,
see, e.g., [LC56], pages 276-280, due to the ill-conditioned Vandermonde matrices,
see [Pan16]. Different models and algorithms were developed to tackle this problem.
In 1973 Pisarenko used the covariance structure of the signal in order to introduce
a set of noise reduced samples, see [Pis73]. Moreover, modified versions of Prony’s
method based on non-linear least square problems and iterative maximum likelihood
estimation were introduced by Osborne et al., see [OS91, Osb75].

Furthermore, if the minimal separation distance

q := min
i,j=1,...,M

i 6=j

|αj − αi|

between the frequencies αj, j = 1, . . . , M, is small, Prony’s method is not able to dis-
tinguish between the frequencies. In [CL20a] a method for retrieving high resolu-
tion information from coarse-scale measurements, using uniform downsampling and
exploiting aliasing in order to increase the resolution is introduced. The effect of
clustered frequencies and on the stability on Vandermonde matrices have also been
studied in [KN21].

2.2 The Generalized Prony Method

In recent years a variety of applications and modifications of Prony’s method have
been derived for the recovery of structured functions such as sparse expansions into
Legendre polynomials, see [PPR13, PT16], or sparse expansions into Chebyshev poly-
nomials, see [PT14b].
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2 The Prony Method

Furthermore, multivariate models of Prony’s method have been established, see,
e.g., [KPRv16, PV20, CL18].

Most notably are the generalized Prony method derived by Peter and Plonka in
2013, see [PP13], as well as the generalized operator based Prony method developed
by Plonka and Stampfer in 2020, see [Sta18,SP20]. We will give a brief summary of the
generalized Prony method as described in [PP13], and begin with reformulating the
classical Prony method.

We note that we can interpret the exponential functions in (2.1) as expansions into
eigenfunctions of the shift operator S1 with

S1 : C(R)→ C(R)

f 7→ f (·+ 1).

Using

S1eαjx = eαj(x+1) = eαj eαjx,

we can reinterpret the roots of the Prony polynomial P in (2.2) as the eigenvalues eαj

corresponding to the eigenfunction eαjx. Introducing the point evaluation functional
F0 : C(R) → C with F0( f ) := f (0), we are able to rewrite the samples used in the
Prony method in the following way,

F0(Sk
1 f ) = F0( f (·+ k)) = f (k) for k = 0, . . . , 2M− 1.

The key ingredients are the iterative application of the shift operator S1, its eigenvalues
and the fact that S1 is a linear operator. Thus, we have the basis for the generalized
Prony method, whose major contribution is that it enables us not only to reconstruct
exponential sums as in (2.1) but rather sparse expansions of eigenfunctions of a linear
operator A.

We, therefore, consider a normed (complex) vector space V and a linear operator

A : V → V

v 7→ Av.

We assume that A possesses eigenvalues λj and corresponding eigenfunctions vj such
that

Avj = λjvj,

where the eigenvalues λj are pairwise distinct. Furthermore, we assume that the eigen-
values are simple, i.e., there exists a unique correspondence between the eigenfunction
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2.2 The Generalized Prony Method

vj and its corresponding eigenvalue λj.

Definition 2.3 (M-Sparse Expansion) Let M ∈ N, V be a normed (complex) vector
space and A : V → V be a linear operator with eigenfunctions vj and corresponding
unique eigenvalues λj. Then we call f an M-sparse expansion into eigenfunctions of
A if f is of the form

f (x) =
M

∑
j=1

cjvj(x) (2.8)

with cj ∈ C \ {0} for j = 1, . . . , M. We assume M to be minimal.

Definition 2.4 (Prony Polynomial) Let f be an M-sparse expansion into eigenfunctions
of a linear operator A as in (2.8). The associated Prony polynomial is defined as

P(z) :=
M

∏
j=1

(z− λj) =
M

∑
k=0

pkzk (2.9)

with the roots of the Prony polynomial λj being the eigenvalues corresponding to the
“active” eigenfunctions of f .

We want to proceed analogously to (2.3). Thus, we employ a linear functional
F : V → C, which is non-vanishing on the eigenfunctions vj of the linear operator A,
i.e., F(vj) 6= 0, and consider the following equation for m ∈N0

M

∑
k=0

pkF(Ak+m f ) =
M

∑
k=0

pkF

(
Ak+m

M

∑
j=1

cjvj

)
=

M

∑
k=0

pkF

 M

∑
j=1

cj Ak+mvj︸ ︷︷ ︸
=λk+m

j vj


=

M

∑
k=0

pk

M

∑
j=1

cjλ
k
j λm

j F(vj) =
M

∑
j=1

cjF(vj)λ
m
j

M

∑
k=0

pkλk
j︸ ︷︷ ︸

=P(λj)=0

= 0.

Again, we can employ the fact that the Prony polynomial is monic and thus we
obtain

M−1

∑
k=0

pkF(Ak+m f ) = −F(AM+m f ) ∀ m ∈N0.
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2 The Prony Method

We formulate this as a Hankel system for m = 0, . . . , M− 1 and get
F( f ) F(A f ) . . . F(AM−1 f )

F(A f ) F(A2 f ) . . . F(AM f )
...

...
...

F(AM−1 f ) F(AM f ) . . . F(A2M−2 f )


︸ ︷︷ ︸

=:HM

·


p0

p1
...

pM−1

 = −


F(AM f )

F(AM+1 f )
...

F(A2M−1 f )

 . (2.10)

We can again diagonalize the Hankel matrix using Vandermonde matrices in the
following way

1 1 . . . 1
λ1 λ2 . . . λM
...

...
...

λM−1
1 λM−1

2 . . . λM−1
M


︸ ︷︷ ︸

=:VM

·


c1F(v1) 0 . . . 0

0 c2F(v2) . . . 0
...

...
. . .

...
0 0 . . . cMF(vM)


︸ ︷︷ ︸

=:D

·


1 λ1 . . . λM−1

1

1 λ2 . . . λM−1
2

...
...

...
1 λM . . . λM−1

M


︸ ︷︷ ︸

=VT
M

.

(2.11)
Since the eigenvalues λj for j = 1, . . . , M are assumed to be pairwise distinct, the Van-
dermonde matrix VM is invertible. The diagonal matrix D is invertible as it contains
only nonzero entries on its diagonal, since cj 6= 0 6= F(vj) for j = 1, . . . , M.

Once we have computed the coefficients pk, k = 0, . . . , M− 1, of the Prony polyno-
mial (2.9), we can calculate its roots λj for j = 1, . . . , M, which are eigenvalues of the
linear operator A. Using the fact that there exists a one-to-one correspondence between
the eigenvalues λj and eigenfunctions vj, we can derive the “active” eigenfunctions in
the M-sparse expansion f .

At last, we again need to compute the parameters cj for j = 1, . . . , M. This is done
by solving the linear system

F(Ak f ) =
M

∑
j=1

cjλ
k
j F(vj) for k = 0, . . . , 2M− 1. (2.12)

We summarize these results in the following theorem.

Theorem 2.5 Let f be an M-sparse expansion into eigenfunctions of the linear operator
A : V → V as in (2.8). Let F : V → C be a linear functional such that F(vj) 6= 0 for all
eigenfunctions vj of the operator A. Then f can be uniquely reconstructed using only the 2M
values F(Ak f ) for k = 0, . . . , 2M− 1, i.e., we can uniquely determine the parameters cj and
the “active” eigenfunctions vj of f .

This yields the following algorithm.
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Algorithm 2 The Generalized Prony Method

Input: M ∈N and F(Ak f ) for k = 0, . . . , 2M− 1

1: Form the Hankel matrix HM :=
(

F(A(k+`) f )
)M−1

k,`=0
as well as f :=(

F(A(M+`) f )
)M−1

`=0
and solve HM · p = −f for p := (p`)

M−1
`=0 as in (2.10).

2: Define the Prony polynomial P(z) := ∑M
k=0 pkzk with pM = 1 as in (2.9), find all

roots λj, j = 1, . . . , M, of P and determine the corresponding eigenfunctions vj for
j = 1, . . . , M.

3: Solve the Vandermonde-like system V2M,M · c̃ = f2M with V2M,M :=
(

λk
j

)2M−1,M

k=0,j=1
,

c̃ := (cjF(vj))
M
j=1 and f2M :=

(
F(Ak f )

)2M−1
k=0 as in (2.12) and compute the coefficients

cj =
c̃j

F(vj)
for j = 1, . . . , M.

Output: cj and vj for j = 1, . . . , M as in (2.8).

Remark 2.6 The generalized operator based Prony method as derived in [Sta18,SP20]
- connected to [PSK19] - is a further theoretical framework in order to systematically
obtain new reconstruction schemes for sparse expansions into eigenfunctions of spe-
cial linear operators with two essential goals.

First off, this method aims to derive simple reconstruction schemes for more general
expansions. The second goal is to obtain a variety of different sample sets that admit
the recovery of these expansions. In particular, this method introduced a generaliza-
tion of the linear sampling function F.

Furthermore, in 2020 an algebraic framework has been proposed which general-
izes several variants of Prony’s method and explains their relationships towards one
another, see [KRv20]. ♦
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3 The Reconstruction of Generalized
Exponential Sums and Generalized
Trigonometric Sums

In the last chapter we have seen that the classical Prony method is only a special case
of the generalized Prony method using the shift operator S1 : C(R) → C(R) with
S1( f ) := f (·+ 1). Indeed, there is no need to restrict ourselves to the shift operator
with the shift parameter 1. In fact, we can choose a more general approach and define
the shift operator with the shift parameter h for h ∈ R \ {0} as

Sh : C(R)→ C(R)

f 7→ f (·+ h).
(3.1)

Thus, we can take a first step towards the generalization of shift operators and
choose a starting point x0 ∈ R, and a sampling distance h ∈ R \ {0}, and according
to Theorem 2.5, we can recover the exponential sum f in (2.1) using the samples
f (x0 + hk) for k = 0, . . . , 2M− 1. Here, we employ the Hankel matrix

HM = ( f (x0 + h(k + m)))M−1
k,m=0

and assume that |Im(αj)| < |πh | holds for all j = 1, . . . , M.

In this chapter we want to explore generalizations of the classical shift operator Sh

as in (3.1) and derive connections to exponential operators. Furthermore, we want to
identify which functions can be reconstructed using Prony’s method and generalized
shift operators.

Thus, a first generalization of the shift operator is studied in Section 3.1. This will
lead to a Prony based recovery method for sparse trigonometric expansions.

In Section 3.2 we further generalize the shift operator based on the theory of expo-
nential operators and semigroups. In particular, the so called generalized exponential
sums are introduced in Section 3.2.1 as eigenfunction of generalized shift operators.
Moreover, generalized trigonometric sums and their recovery are studied in Section
3.2.2. In Section 3.2.3 we use the fact that exponential functions eαjx are not only
eigenfunctions of the shift operator Sh but also of the ordinary differential operator d

dx

in order to derive linear differential operators such that generalized exponential sums
can be recovered using Prony’s method and these differential operators. Addition-
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ally, we will explain the connection between the linear differential operators and the
generalized shift operators.

Section 3.3 is devoted to illustrating our results numerically. This chapter is based
on our papers [PSK19], [KPS19] and parts of our survey [KP21].

We start by taking a closer look at the reconstruction of expansions into trigonomet-
ric functions, i.e., functions of the form

f (x) =
M

∑
j=1

cj cos (αjx) or f (x) =
M

∑
j=1

cj sin (αjx) (3.2)

for cj ∈ C \ {0} and αj ∈ R for j = 1, . . . , M, and construct a suitable shift operator for
the recovery of such functions.

3.1 Reconstruction of Trigonometric Expansions

In the following we will focus on a sparse cosine expansion f , as analogue arguments
can be made for sparse sine expansions as well as sparse hyperbolic expansions. Using
the fact that cos (αx) = 1

2

(
eiαx + e−iαx) holds, we can always rewrite f as an exponen-

tial sum of length 2M and use the classical Prony method and 4M functional values
in order to recover the parameters cj as well as αj for j = 1, . . . , M. Moreover, this also
motivates a first idea for a generalized shift operator, namely a linear combination of
the classical shift operator Sh and S−h in order to recover trigonometric functions, see
also [PSK19].

Definition 3.1 (Symmetric Shift Operator) Let h ∈ R \ {0} be a shift parameter. Then
the symmetric shift operator Sh,−h : C(R)→ C(R) is defined as

Sh,−h f (x) :=
1
2
(Sh f (x) + S−h f (x)) =

1
2
( f (x + h) + f (x− h)) . (3.3)

As the iterative application of the operator is a key ingredient in the generalized
Prony method, we are interested in the properties of the symmetric shift operator.

Proposition 3.2 Let h1, h2 ∈ R \ {0} be shift parameters and f ∈ C(R). Then the following
is true

Sh1,−h1 Sh2,−h2 f = Sh2,−h2 Sh1,−h1 f =
1
2

(
Sh1+h2,−(h1+h2) + Sh1−h2,−(h1−h2)

)
f .

In particular, we have

Sk
h,−h f =

1
2k−1

b(k−1)/2c

∑
`=0

(
k
`

)
S(k−2`)h,−(k−2`)h f + δk/2,bk/2c

1
2k

(
k

bk/2c

)
f (3.4)
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3.1 Reconstruction of Trigonometric Expansions

for k ∈N0.
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Proof. Let f ∈ C(R) and let h1, h2 ∈ R \ {0} be shift parameters. Then we find for
x ∈ R

Sh1,−h1 Sh2,−h2 f (x) = Sh1,−h1

1
2
( f (x + h2) + f (x− h2))

=
1
2
(
Sh1,−h1 f (x + h2) + Sh1,−h1 f (x− h2)

)
=

1
4
( f (x + h2 + h1) + f (x + h2 − h1) + f (x− h2 + h1) + f (x− h2 − h1))

=
1
2

(
Sh1+h2,−(h1+h2)

f (x) + Sh1−h2,−(h1−h2)
f (x)

)
.

Analogously, we can conclude

Sh2,−h2 Sh1,−h1 f (x) = Sh1,−h1 Sh2,−h2 f (x).

Now let k ∈N0. Then the k-th iteration is given by

Sk
h,−h f =

(
1
2
(Sh + S−h)

)k

f =
1
2k

k

∑
`=0

(
k
`

)
Sk−`

h S`
−h f

=
1
2k

k

∑
`=0

(
k
`

)
Sh(k−2`) f

=
1
2k

[
b(k−1)/2c

∑
`=0

(
k
`

)
Sh(k−2`) f +

k

∑
`=b(k−1)/2c+1

(
k
`

)
Sh(k−2`) f +

(
k

bk/2c

)
δk/2,bk/2c f

]

=
1
2k

[
b(k−1)/2c

∑
`=0

(
k
`

)(
Sh(k−2`) + S−h(k−2`)

)
f +

(
k

bk/2c

)
δk/2,bk/2c f

]

=
1

2k−1

b(k−1)/2c

∑
`=0

(
k
`

)
S(k−2`)h,−(k−2`)h f +

1
2k δk/2,bk/2c

(
k

bk/2c

)
f .

This iteration property yields a connection between the reconstruction of trigono-
metric functions and Chebyshev polynomials. In the following we will, therefore,
introduce some of the most important properties.

Definition 3.3 (Chebyshev Polynomials of First Kind) Let n ∈ N0 and x ∈ R. Then
the Chebyshev polynomial of first kind of degree n + 1 is defined as

Tn+1(x) := 2n
n

∏
k=0

(
x− cos

(
(2k + 1)π
2(n + 1)

))
=:

n+1

∑
`=0

an+1,` x`

with T0(x) = 1.

We summarize some of the most important properties of the Chebyshev polynomials
of first kind in the following lemma.
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3.1 Reconstruction of Trigonometric Expansions

Lemma 3.4 Let n ∈N0 and x ∈ R.

(i) Tn is a polynomial of degree n.

(ii) The leading coefficient of the Chebyshev polynomial Tn is given by

an,n =

2n−1, if n ≥ 1,

1, if n = 0.

(iii) The n zeros of Tn are given by

tn,` = cos
(
(2`+ 1)π

2n

)
for ` = 0, . . . , n− 1,

and are called the Chebyshev nodes.

(iv) For x ∈ [−1, 1], the Chebyshev polynomial Tn can be written as

Tn(x) = cos (n arccos (x)).

(v) The Chebyshev polynomials satisfy the recurrence relation

Tn+1(x) = 2xTn(x)− Tn−1(x)

with T0(x) = 1 and T1(x) = x.

(vi) The n-monomial can be expressed in terms of the Chebyshev polynomials in the following
way

xn =
1

2n−1

b(n−1/2)c

∑
`=0

(
n
`

)
Tn−2`(x) +

1
2n δn/2,bn/2c

(
n

bn/2c

)
T0(x). (3.5)

Proof. The claims (i), (ii) and (iii) follow directly from Definition 3.3. Proofs of (iv) and
(v) can be found in [PPST19], Section 6.1. The proof for (vi) can be found in [FP68],
Section 3.6.

Definition 3.5 (Chebyshev Vandermonde Matrix) Let n ∈ N and (xk)
n
k=1 ∈ Rn. The

matrix

Tn = (T`(xk))
n−1,n
`=0,k=1 ∈ Rn×n (3.6)

is called the Chebyshev Vandermonde matrix.
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3 The Reconstruction of Generalized Exponential Sums and Generalized Trigonometric Sums

Lemma 3.6 Let n ∈N and (xk)
n
k=1 ∈ Rn such that xj 6= xk for all j 6= k with j, k = 1, . . . , n.

Then the Chebyshev Vandermonde matrix Tn is invertible with

det (Tn) = 2(n−1)(n−2)/2 ∏
1≤j<k≤n

(xj − xk).

Proof. By Definition 3.3 and Lemma 3.4, the j − 1-th Chebyshev polynomial can be
written as Tj−1(x) = 2j−2xj−1 + ∑

j−2
`=0 aj−1,`x` and is polynomials of degree j− 1 with

j = 1, . . . , n. Therefore, there exist coefficients bk ∈ R for k = 0, . . . , n− 2 such that

j−2

∑
k=0

bkTk(x) =
j−2

∑
`=0

an−1,`x` =: rj−2(x) (3.7)

holds for all j > 1. Hence, for each row of Tn we can subtract the linear combination
of the previous rows given in (3.7) and use the multilinearity of the determinant to get

det(Tn) = det



T0(x1) T0(x2) . . . T0(xn)

T1(x1) T1(x2) . . . T1(xn)

T2(x1) T2(x2) . . . T3(xn)
...

... . . .
...

Tn−1(x1) Tn−1(x2) . . . Tn−1(xn)



= det



1 1 . . . 1
x1 x2 . . . xn

2x2
1 + r0(x1) 2x2

2 + r0(x2) . . . 2x2
n + r0(xn)

...
... ...

...
2n−2xn−1

1 + rn−2(x1) 2n−2xn−1
2 + rn−2(x2) ... 2n−2xn−1

n + rn−2(xn)



= det



1 1 . . . 1
x1 x2 . . . xn

2x2
1 2x2

2 . . . 2x2
n

...
... . . .

...
2n−2xn−1

1 2n−2xn−1
2 . . . 2n−2xn−1

n



= 2(n−2)(n−1)/2det


1 1 . . . 1
x1 x2 . . . xn
...

... . . .
...

xn−1
1 xn−1

2 . . . xn−1
n


= 2(n−2)(n−1)/2 ∏

1≤j<k≤n
(xj − xk).

The factor 2(n−2)(n−1)/2 appears since the j-th row contains the factors 2j−2 for j > 1.
The last equality holds due to the fact that the Vandermonde determinante (xj

k)
n−1,n
j=0,k=1

is of the given form, see [Sch02], Section 3.1.2, Lemma 3.1.2.
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3.1 Reconstruction of Trigonometric Expansions

Remark 3.7 We recall that the Vandermonde matrix has a connection to polynomial
interpolation in the monomial basis, i.e., the problem of, given (n + 1) data tuples
(x0, y0), . . . , (xn, yn) ∈ R2, finding a polynomial P of degree at most n which satisfies

P(xk) = yk for k = 0, . . . , n.

If we rewrite this as a linear system, the corresponding matrix is a transposed Vander-
monde matrix of size (n + 1)× (n + 1), which is invertible if the data points x0, . . . , xn

are pairwise distinct. Consequently, if we consider the problem of polynomial inter-
polation in the Chebyshev basis, the corresponding linear system involves Chebyshev
Vandermonde matrices. Lemma 3.6 ensures that this interpolation problem is, indeed,
solvable if the given points x0, . . . , xn are pairwise distinct.

Furthermore, this idea can be generalized to the problem of polynomial interpola-
tion for different polynomial basis such as different orthogonal polynomials. ♦

Proposition 3.8 Let h ∈ R \ {0} be a shift parameter and Sh,−h be the symmetric shift oper-
ator as in Definition 3.1. Then Sh,−h possesses eigenfunctions of the form cos (αx), sin (αx)
as well as cosh (αx) and sinh (αx) for α ∈ R.

Proof. We show the claim for the trigonometric functions cos (αx) and sin (αx). To this
end, we use the trigonometric identities cos (x± y) = cos(x) cos(y)∓ sin(x) sin(y) and
sin (x± y) = sin(x) cos(y)± cos(x) sin(y), respectively. This yields

Sh,−h(cos (αx)) =
1
2
(cos (α(x + h)) + cos (α(x− h)))

=
1
2
(cos (αx) cos (αh)− sin (αx) sin (αh) + cos (αx) cos (αh) + sin (αx) sin (αh))

= cos (αx) cos (αh)

and

Sh,−h(sin (αx)) = sin (αx) cos (αh),

respectively. Since analogue trigonometric identities hold for cosh (αx) and sinh (αx)
the claim follows.

Theorem 3.9 Let M ∈N and f be an M-sparse cosine expansion, i.e.,

f (x) =
M

∑
j=1

cj cos (αjx) (3.8)

for cj ∈ C \ {0} and αj ∈ R for j = 1, . . . , M. Furthermore, let K ∈ R such that αj ∈ [0, K)
for all j = 1, . . . , M and h ∈ R \ {0} be a shift parameter such that h = π

K . Then f can be
uniquely recovered using the 2M samples f (kh) for k = 0, . . . , 2M− 1. Moreover, let x0 ∈ R
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3 The Reconstruction of Generalized Exponential Sums and Generalized Trigonometric Sums

be an arbitrary sampling point satisfying αjx0 6= π(2`+1)
2 for all ` ∈ Z. Then f can be uniquely

recovered using the 4M− 1 samples f (x0 + hk) for k = −2M + 1, . . . , 2M− 1.

Proof. Equation (3.4) yields that the k-th iteration of the symmetric shift operator Sh,−h

can be written as a linear combination of the shift operators Sh`,−h` for ` = 0, . . . , k.
Therefore, we will use the shifts Sh`,−h` instead of Sk

h,−h. Furthermore, comparison of
(3.5) and (3.4) yields that the linear combination used in both expression is, indeed,
the same. Thus, it is advantageous to define the Prony polynomial in terms of the
Chebyshev polynomials of first kind, i.e.,

P(z) :=
M

∏
j=1

(z− cos (αjh)) =
M

∑
k=0

pkTk(z).

We note that due to the fact that the leading coefficient of the k-th Chebyshev poly-
nomial is 2k−1, pM = 1

2M−1 holds. For the first step we compute the coefficients pk,
k = 0, . . . , M − 1, of the Prony polynomial using the given samples. Therefore, we
employ the definition of the Prony polynomial as well as Proposition 3.2 and get for
x0 ∈ R and the signal f in (3.8)

M

∑
k=0

pk (Shk,−hkSmh f (x0))

=
1
2

M

∑
k=0

pk ( f (x0 + (m + k)h) + f (x0 + (m− k)h))

=
1
2

M

∑
k=0

pk

M

∑
j=1

cj
(
cos (αj(x0 + h(m + k))) + cos (αj(x0 + h(m− k)))

)
=

M

∑
k=0

pk

M

∑
j=1

cj cos (αjhk) cos (αj(x0 + hm))

=
M

∑
j=1

cj cos (αj(x0 + hm))
M

∑
k=0

pk cos (αjhk)

=
M

∑
j=1

cj cos (αj(x0 + hm)) P(cos (αjh))︸ ︷︷ ︸
=0

= 0

for all m = 0, . . . , M− 1. Analogously, we obtain

M

∑
k=0

pk (Shk,−hkS−mh f (x0)) =
M

∑
j=1

cj cos (αj(x0 − hm))
M

∑
k=0

pk cos (αjhk) = 0

for m = 0, . . . , M− 1. Now we distinguish between the case x0 6= 0 and x0 = 0.
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3.1 Reconstruction of Trigonometric Expansions

1. For x0 = 0 we obtain the linear system

M−1

∑
k=0

pk ( f ((m + k)h) + f ((m− k)h)) = − 1
2M−1 ( f ((m + M)h) + f ((m−M)h))

for m = 0, . . . , M− 1. Since f is an even function, it suffices to know the values f (kh)
for k = 0, . . . , 2M− 1 to build this system. The corresponding matrix has Hankel-plus-
Toeplitz structure

HToep
M = ( f ((m + k)h) + f ((m− k)h))M−1

m,k=0

=2

(
M

∑
j=1

cj cos (αjmh) cos (αjhk)

)M−1

m,k=0

=2
(
cos (αjmh)

)M−1,M
m=0,j=1 · diag(c1, . . . , cM) ·

(
cos (αjhk)

)M,M−1
j=1,k=0

=2TM · diag(c1, . . . , cM) · TT
M

(3.9)

with the Chebyshev Vandermonde matrix TM as in Definition 3.5 and nodes cos (αjh),
j = 1, . . . , M. The terms cos (αjh), j = 1, . . . , M, are pairwise distinct and non-zero
by assumption on h. Thus, Lemma 3.6 yields the invertibility of TM. The diagonal
matrix diag(c1, . . . , cM) is invertible since cj 6= 0 for j = 1, . . . , M, by assumption and,
therefore, HToep

M is invertible.

2. For x0 6= 0 we need to take all samples Skh,−khSmh,−mh f (x0) into account. We
consider

M−1

∑
k=0

pk ( f (x0 + (m + k)h) + f (x0 − (m + k)h) + f (x0 + (m− k)h) + f (x0 − (m− k)h))

=− 1
2M−1 ( f (x0 + (m + M)h) + f (x0 − (m + M)h) + f (x0 + (m−M)h) + f (x0 − (m−M)h)) .

(3.10)

Similar to (3.9), the factorization of the occurring Hankel-plus-Toeplitz matrix is given
by

HToep
M = ( f (x0 + (m + k)h) + f (x0 − (m + k)h) + f (x0 + (m− k)h) + f (x0 − (m− k)h))M−1

k,m=0

= 4

(
M

∑
j=1

cj cos (αjx0) cos (αjmh) cos (αjkh)

)M−1

m,k=0

= 4TM · diag(c1 cos (α1x0), . . . , cM cos(αMx0)) · TT
M.

The diagonal matrix diag((cj cos (αjx0))M
j=1) is invertible if cj 6= 0 for j = 1, . . . , M and

cos (αjx0) 6= 0. This is true if αjx0 6= (2k+1)π
2 for all k ∈ Z and j = 1, . . . , M, and, thus,

satisfied by assumption.
Once the coefficients pk, k = 0, . . . , M− 1 of the Prony polynomial have been com-

puted, we can derive its zeros cos (αjh), and, thus, αj for j = 1, . . . , M. In the last step
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3 The Reconstruction of Generalized Exponential Sums and Generalized Trigonometric Sums

we need to solve the linear system

f (x0 + kh) =
M

∑
j=1

cj cos (αj(x0 + kh)), for k = 0, . . . , 2M− 1,

in order to compute the coefficients cj for j = 1, . . . , M.

Remark 3.10 We can also use Theorem 2.5 in order to recover an M-sparse cosine

expansion f . In this case, we use the Hankel matrix HM :=
(

Sk+`
−h,h f (x0)

)M−1,M−1

k,`=0

instead of the Hankel-plus-Toeplitz matrices HToep
M used in (3.10). The corresponding

Prony polynomial is considered in monomial basis.
One advantage of the approach given in Theorem 3.9 is that we can omit the linear

combination of Shift operators given in (3.4). Furthermore, the computation of the
roots of a polynomial in monomial basis is sensitive to noise in the coefficients of the
polynomial, see [Wil59]. A more stable approach is to consider the Prony polynomial
in Chebyshev basis and, therefore, the approach given in the proof of Theorem 3.9 is
advantageous. ♦

We have already noted that the symmetric shift operator possesses both cosine and
sine as eigenfunctions. Thus, we can also apply it for the reconstruction for M-sparse
sine expansions of the form

f (x) =
M

∑
j=1

cj sin (αjx) (3.11)

with cj ∈ C \ {0} and αj ∈ R \ {0} for all j = 1, . . . , M. Indeed, the reconstruction is
similar to the one in (3.8). The major difference is that since sine is an odd function
the point f (0) does not yield information for the recovery of (3.11).

Theorem 3.11 Let M ∈N and f be an M-sparse sine expansion as in (3.11). Let K ∈ R such
that αj ∈ (0, K) for all j = 1, . . . , M and h ∈ R \ {0} be a shift parameter such that h = π

K .
Let x0 ∈ R be an arbitrary sampling point satisfying αjx0 6= π` for all ` ∈ Z. Then f can be
uniquely recovered using the 4M− 1 samples f (x0 + hk) for k = −2M + 1, . . . , 2M− 1. In
particular, f can be uniquely recovered using the 2M samples f (kh) for k = 1, . . . , 2M.

Proof. The proof is similar to the proof of Theorem 3.9. Theorem 3.8 implies that the
eigenvalues corresponding to sin (αx) are also cos (αh). Hence, the Prony polynomial
is defined analogously as in the proof of Theorem 3.9, i.e.,

P(z) :=
M

∏
j=1

(z− cos (αjx)) =
M

∑
k=0

pkTk(z)

with pM = 2−M+1. This yields the same linear system as in (3.10) with the correspond-
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3.1 Reconstruction of Trigonometric Expansions

ing Hankel-plus-Toeplitz matrix

HToep
M = ( f (x0 + (m + k)h) + f (x0 − (m + k)h) + f (x0 + (m− k)h) + f (x0 − (m− k)h))M−1

k,m=0

= 4

(
M

∑
j=1

cj sin (αjx0) cos (αjmh) cos (αjkh)

)M−1

m,k=0

= 4TM · diag((cj sin (αjx0))
M
j=1) · T

T
M,

where TM denotes the Chebyshev Vandermonde matrix as in Definition 3.5. The
invertibility follows by Lemma 3.6 and sin(αjx0) 6= 0 by assumption on x0αj 6= πk
for all k ∈ Z. This is for example satisfied for x0 = π

K = h. Thus, the function
values f (x0 + hk) = f (h(k + 1)) for k = 0, . . . , 2M − 1, are already sufficient for the
reconstruction, since we have

f (x0 − hk) = f (h(1− k)) =

0, if k = 1,

− f (h(1− k)), if k ≥ 2.

After computing the coefficients pk, k = 0, . . . , M − 1 of the Prony polynomial we
derive its roots cos(hαj), and, thus, αj for j = 1, . . . , M. Then we can compute the
coefficients cj for j = 1, . . . , M as in (3.11) by solving a linear system using the sample
values

f (x0 + kh) =
M

∑
j=1

cj sin (αj(x0 + kh)), for k = 0, . . . , 2M− 1.

We have seen that in Proposition 3.8 the hyperbolic functions sinh (αx) as well as
cosh (αx), α ∈ R, are eigenfunctions of the symmetric shift operator. Therefore, we
can also prove similar results for sparse hyperbolic expansions.

Theorem 3.12 Let M ∈ N, cj ∈ C \ {0} and αj ∈ R for all j = 1, . . . , M. Furthermore,
let K ∈ R such that αj ∈ [0, K) for all j = 1, . . . , M and h ∈ R \ {0} be a shift parameter
satisfying h = π

K .

(i) Let f be an M-sparse hyperbolic cosine expansion, i.e.,

f (x) =
M

∑
j=1

cj cosh(αjx).

Then f can be uniquely reconstructed using the samples f (kh) for k = 0, . . . , 2M− 1.
Furthermore, let x0 ∈ R satisfy cosh(x0αj) 6= 0 for all j = 1, . . . , M. Then f can be
uniquely recovered using the 4M− 1 samples f (x0 + kh) for k = −2M + 1, . . . , 2M−
1.
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(ii) Let f be an M-sparse hyperbolic sine expansion, i.e.,

f (x) =
M

∑
j=1

cj sinh(αjx)

with αj 6= 0 for all j = 1, . . . , M. Then f can be uniquely reconstructed using the
samples f (kh) for k = 1, . . . , 2M. Furthermore, let x0 ∈ R satisfy sinh(x0αj) 6= 0
for all j = 1, . . . , M. Then f can be uniquely recovered using the 4M − 1 samples
f (x0 + kh) for k = −2M + 1, . . . , 2M− 1.

Remark 3.13 We note that the trigonometric functions cosine and sine satisfy a differ-
ential equation of the form

y′′ + y = 0.

We can define the differential operator D f := − f ′′(x) as well as an evaluation func-
tional F such that F(cos (αjx)) 6= 0 or F(sin (αjx)) 6= 0 for j = 1, . . . , M holds and
apply Theorem 2.5 in order to reconstruct sparse trigonometric expansion. Similar
arguments can be applied for the hyperbolic functions. ♦

Using Remark 2.2 (ii), we can also apply suitable transforms such as the Laplace
transform and respectively its inverse in order to recover certain functions.

Corollary 3.14 Let M ∈N, cj ∈ C \ {0} and αj ∈ R for all j = 1, . . . , M. Let f be a signal
of the form

f (x) =
M

∑
j=1

cj
x

x2 + α2
j
.

Furthermore, let K ∈ R such that αj ∈ [0, K) for all j = 1, . . . , M, x0 ∈ R, and let h ∈
R \ {0} be a shift parameter satisfying h = π

K . Then f can be uniquely reconstructed using
the 4M− 1 samples L−1( f )(x0 + kh) for k = −2M + 1, . . . , 2M− 1, where L−1 denotes the
inverse Laplace transform given by

L−1(g)(s) :=
1

2πi
lim

T→∞

∫ γ+iT

γ−iT
etsg(t)dt

with γ ∈ R being a vertical contour in the complex plane such that all singularities of g are to
the left and g is bounded on the line given by γ.
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Proof. We consider the Laplace transform L f (s) :=
∫ ∞

0 f (x)e−sxdx and apply it to the
signal of the form ∑M

j=1 cj cos(αjx). This yields

L
(

M

∑
j=1

cj cos(αj·)
)
(s) =

∫ ∞

0

M

∑
j=1

cj cos(αjx)e−sxdx

=
M

∑
j=1

cj

2

∫ ∞

0

(
eαjix + e−αjix

)
e−sxdx

=
M

∑
j=1

cj

2

∫ ∞

0
ex(αji−s) + e−x(αji−s)dx

=
M

∑
j=1

cj

2

(
1

s− αji
+

1
s + αji

)
=

M

∑
j=1

cj
s

s2 + α2
j
.

Since the coefficients cj and αj, j = 1, . . . , M of f are the same as the coefficients of
L−1( f ), we can apply Theorem 3.9 in order to reconstruct L−1( f ) and consequently,
the given signal.

Analogously, models arising for the Laplace transform of sine, hyperbolic cosine
and hyperbolic sine can be recovered using Prony’s method.

3.2 Reconstruction of Generalized Exponential Sums and
Generalized Trigonometric Sums

In Chapter 2 we have seen that we are able to recover M-sparse expansions of a linear
operator A for M ∈ N using a generalized version of Prony’s method. While some
examples of suitable linear operators were given by Peter and Plonka, see [PP13], the
sample values needed for the reconstruction are in practice not always accessible. This
leads to the following questions:

1. Can we find further meaningful examples, i.e., can we find a class of functions
with a corresponding linear operator for which we can apply the generalized
Prony method?

2. What kind of information is needed in order to recover these expansions?

In order to tackle the first question we we will introduce the notion of generalized
exponential functions and generalized exponential sums.

Definition 3.15 (Generalized Exponential Sum) Let G : R → R and H : R → C with
G, H ∈ C(R) such that for a given interval [a, b] ⊂ R the function G is strictly mono-
tone and the function H is non-vanishing. Then we call f a generalized exponential
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sum or an M-sparse generalized exponential if it is of the form

f (x) =
M

∑
j=1

cjH(x)eαjG(x) x ∈ [a, b] (3.12)

with cj ∈ C \ {0}, pairwise different αj ∈ C for j = 1, . . . , M and M ∈ N. The
atoms eαjG(x)H(x), j = 1, . . . , M, of f are called generalized exponential functions.
The function G is called phase function. The function H is called the instantaneous
amplitude function. Furthermore, the signal f is called non-stationary if H 6≡ c or
G(x) 6= mx + d for c, d, m ∈ R for all x ∈ R.

It is easy to see that the classical exponential sum as in (2.1) is a special case of the
generalized exponential sum with H ≡ 1 and G(x) = x.

The following section is devoted to the construction of linear operators for which
the generalized exponential sums are eigenfunctions.

3.2.1 Generalized Shift Operators

The fact that the exponential functions are eigenfunction of the classical shift operator
Sh as given in (3.1) is the starting point for the construction of linear operators that
admit generalized exponentials as eigenfunctions. Therefore, this section elaborates
on the connection between shift operators and exponential operators. This will lead
us to generalized shift operators, which we have studied in our papers [PSK19,KP21],
and which were also investigated in [Sta18, SP20].

First of we begin by taking a closer look at the classical shift operator Sh as in (3.1)
and we will recall some notations and theory of operator theory and one-parameter
semigroups. See [EN00] and [Paz83] for more information on this topic.

Definition 3.16 (Bounded Operator) Let V be a complex Banach space with corre-
sponding norm || · || and A : V → V be a linear operator. Then A is called bounded
if

‖A‖ := sup
‖v‖=1, v∈V

‖Av‖ < ∞ with v ∈ V.

Definition 3.17 (Operator Valued Exponential Function) Let V be a complex Banach
space with corresponding norm || · || and A : V → V be bounded linear operator. Then
we define the operator valued exponential function as

etA =
∞

∑
k=0

(tA)k

k!
(3.13)

for t ∈ R. In the field of quantum physics this operator is also sometimes called (time)
evolution operator.
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Remark 3.18 The operator valued exponential function is, indeed, well-defined since
A is bounded and

‖etA‖ =
∥∥∥∥∥ ∞

∑
k=0

tk Ak

k!

∥∥∥∥∥ ≤ ∞

∑
k=0

tk

k!
‖A‖k = et‖A‖ < ∞

holds. Furthermore, let σ(A) be the spectrum of the operator A and ρ(A) := C \ σ(A)

the resolvent set of the operator A. Then we can define the resolvent

R(·, A) : ρ(A)→ L(V)

as

R(λ, A) := (λId− A)−1,

where Id : V → V denotes the identity operator. This is an analytic map, see [EN00],
Chapter IV, Section 1, Proposition 1.3. Using this we get an equivalent definition of
the operator valued exponential function using Cauchy’s integral formula, see [EN00],
Chapter 1, Section 3, Defintion 3.4, i.e.,

etA :=
1

2πi

∫
δU

etλR(λ, A)dλ

for all t ≥ 0 and U being an open neighbourhood of the spectrum σ(A) with smooth,
positively oriented boundary +δU. We note that the operator valued exponential
function does not depend of the choice of the neighbourhood U. ♦

These operator valued exponential functions have also been studied in the context
of quantum mechanics and in particular as solutions of generalized difference equa-
tions, see [DOTV97,Wil67]. Moreover, these operators have a connection to non-linear
differential equations, see [Ste84]. Special kinds of differential operators and their
corresponding operator valued exponentials have been studied in [DOTV97, DL00].

As for the exponential function, it is easy to see that the operator valued exponential
functions fulfil a linearity condition since usage of the Cauchy product yields

e(t+s)A =
∞

∑
k=0

(t + s)k Ak

k!
=

∞

∑
k=0

k

∑
`=0

k!
(k− `)!`!

(t`sk−`)Ak

k!

=
∞

∑
k=0

k

∑
`=0

t`A`

`!
sk−`Ak−`

(k− `)!
= etAesA

for t, s ∈ R. This motivates the following definition and theorem.
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Definition 3.19 (One-Parameter Semigroup) Let V be a complex Banach space with
corresponding norm || · ||. We call a family of bounded linear operators (T(t))t≥0 a
(one-parameter) semigroup on V or sometimes linear dynamical system if the follow-
ing is satisfied

(i) T(t + s) = T(t)T(s) for t, s ∈ R+,

(ii) T(0) = Id.

We call a linear operator A given as

Av := lim
t→0

T(t)v− v
t

(3.14)

for all v ∈ dom(A) :=
{

v ∈ V
∣∣ limt→0

T(t)v−v
t exists

}
the infinitesimal generator of

the semigroup (T(t))t≥0.
Furthermore, we a call semigroup (T(t))t≥0 strongly continuous if

lim
t→0

T(t)v = v

holds for all v ∈ V.

As we have seen above it is easy to see, that (etA)t≥0 is, indeed, a semigroup. In
particular, the following theorem derives a correspondence between operator valued
exponential functions and semigroups.

Theorem 3.20 Let V be a normed, complex Banach space with corresponding norm || · ||. The
semigroup (T(t))t≥0 is a uniformly continuous, i.e.,

lim
h→0
‖T(t + h)− T(t)‖ = 0

holds, if and only if its infinitesimal generator A is bounded and we have T(t) = etA.

Proof. The proof is a combination of Theorem 1.2. and Corollary 1.4 in [Paz83].

Remark 3.21 Theorem 3.20 implies that the map e·A : R+ → L(V) with t → T(t)
is continuous and differentiable. Therefore, we can conclude that the solution to the
homogeneous abstract Cauchy problemdu

dt = Au(t) t > 0

u(0) = v v ∈ V fixed

is given by u(t) = T(t)v. The connection between the abstract Cauchy problem and
continuous semigroups is elaborated on in [Paz83], Chapter 4.

♦
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3.2 Reconstruction of Generalized Exponential Sums and Generalized Trigonometric Sums

Unfortunately, not every semigroup is uniformly continuous. In particular, the op-
erators we want to consider in the following are not bounded. Therefore, we do not
necessarily have convergence of etA. Nevertheless, if we restrict ourselves to strongly
continuous semigroups, we can still find an interpretation such that T(t) ”equals“ etA.

Theorem 3.22 Let V be a complex Banach space, (T(t))t≥0 be a strongly continuous semi-
group. Then we have

T(t)v = lim
t→0

etA(τ)v

for all v ∈ V with

A(τ)v :=
T(τ)v− v

τ
. (3.15)

Furthermore, the limit is uniform in t on any bounded interval [0, K].

Proof. For a proof we refer to [Paz83], Theorem 8.1.

We now want to connect the classical shift operator as in Definition 3.1 with the
theory of one-parameter semigroups.

Proposition 3.23 Let V be the space of all bounded, uniformly continuous functions on
R with the norm ‖ f ‖∞ := supx∈R | f (x)|. Furthermore, let D : C1(R) → C(R) be the
differential operator defined as D f (x) := d

dx f (x) =: f ′(x), where f ′ denotes the first derivative
of f for f ∈ C1(R). Let St be the shift operator as in (3.1) with t ∈ R+. Then (St)t≥0 is a
strongly continuous semigroup with infinitesimal operator D and dom(D) = { f ∈ V | f ∈
C1(R)}. Furthermore, the following holds

St f = etD f

for all analytic functions f .

Proof. Firstly we note, that V equipped with the supremum norm is a Banach space
and begin by proving that (St)t≥0 is a strongly continuous semigroup. The definition
of the shift operator in (3.1) yields for all f ∈ V and x ∈ R

S0 f (x) = f (x),

St+s f (x) = f (x + t + s) = f ((x + s) + t) = StSs f (x),

lim
t→0

St f (x) = lim
t→0

f (x + t) = f (x),

where the last equality holds since f is continuous. Furthermore, we have

‖St‖ = sup
‖ f ‖=1, f∈V

‖ f (x + t)‖∞ < ∞
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since f is bounded. Equation (3.14) implies, that the infinitesimal generator is given
by

lim
t→0

St f (x)− f (x)
t

= lim
t→0

f (x + t)− f (x)
t

= f ′(x) = D f (x)

for all x ∈ R. Hence, we can conclude that (St)t≥0 is a strongly continuous semigroup
with infinitesimal generator D. We consider for all f ∈ V and x ∈ R

A(τ) f (x) =
Sτ f (x)− f (x)

τ
=

f (x + τ)− f (x)
τ

,

i.e., A(τ) is the difference quotient. Together with Theorem 3.22 we obtain

St f (x) = lim
τ→0

etA(τ) f (x) = lim
τ→0

∞

∑
k=0

(tA(τ))k

k!
f (x) = lim

τ→0

∞

∑
k=0

tk

k!
Ak(τ) f (x),

where the limit exists uniformly for all x ∈ R and t ∈ [0, K] with K ∈ R+. If f
is analytic, we have limτ→0 Ak(τ) f (x) = f (k)(x) for all k ∈ N and hence, the claim
follows.

Even though the differential operator D is unbounded, the action of etD on analytic
functions is well-defined and yields the shift operator. In fact, this connection is well-
known and even dates back to Lagrange.

Moreover, from Proposition 3.23 the question arises if a more general differential
operator of first order may yield a generalized version of the shift operator. This
question is answered by the following theorem. The idea of its proof can be found
in [DOTV97], Section I.2.

Theorem 3.24 Let f : [a, b] → R be an analytic function and D : C1(R) → C(R) be the
differential operator defined as D f (x) = d

dx f (x) = f ′(x), where f ′ denotes the first derivative
of f for f ∈ C1(R) and let h ∈ R+. Furthermore, let g : [a, b] → R be an analytic and
non-vanishing function and v : [a, b]→ R be an analytic function. Then the following holds

ehg(x)D f (x) = f (G−1(G(x) + h)), (3.16)

where G(x) :=
∫ x

a
1

g(t)dt. Furthermore, we have

eh(g(x)D+v(x)Id) f (x) = f (G−1(G(x) + h))
H(x)

H(G−1(G(x) + h)
(3.17)

with H(x) := exp
(
−
∫ x

a
v(t)
g(t)dt

)
.

Proof. We note that in order to improve the readability of this proof, we will directly
consider etg(x)D and etg(x)D+v(x) instead of limτ→0 etg(x)A(τ) and limτ→0 etg(x)A(τ)+v(x)

with A(τ) f (x) = f (x+τ)− f (x)
τ . This is in fact possible, since all considered functions are
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analytic and we can apply the same arguments as in the proof of Proposition 3.23.

We consider t ∈ R+ and A : C1(R) → C(R) be a linear operator such that the action
of etA is well defined on analytic functions f . Then

etA f (x) = f (etAxe−tA)etA (3.18)

holds true since

etA f (x) = etA

(
∞

∑
k=0

f (k)(0)
k!

xk

)
=

∞

∑
k=0

f (k)(0)
k!

etAxk

=
∞

∑
k=0

f (k)(0)
k!

etAxe−tAetAxe−tA . . . xe−tA︸ ︷︷ ︸
k−times

etA

= f (etAxe−tA)etA.

We now set A := g(x)D and use the fact that ehg(x)De−hg(x)D = Id holds. Therefore,
we can write

ehg(x)Dx = ehg(x)Dxe−hg(x)Dehg(x)D = χ1(h)ehg(x)D

with

χ1(h) := ehg(x)Dxe−hg(x)D

and χ1(0) = x. Differentiating χ1 with respect to h yields

d
dh

χ1(h) = ehg(x)D[g(x)D, x]e−hg(x)D, (3.19)

where [g(x)D, x] := g(x)Dx− xg(x)D denote the commutator brackets. Computation
of the commutator brackets yields

[g(x)D, x] f (x) = g(x)
d

dx
(x f (x))︸ ︷︷ ︸

f (x)+x f ′(x)

−xg(x)
d

dx
f (x)︸ ︷︷ ︸

f ′(x)

= g(x) f (x) + g(x)x f ′(x)− xg(x) f ′(x) = g(x) f (x).

Substituting this in (3.19) and applying (3.18) we get

d
dh

χ1(h) = ehg(x)Dg(x)e−hg(x)D = g(χ1(h)). (3.20)

This is a first order non-linear differential equation with the initial condition χ1(0) = x.
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The solution is given by

χ1(h) = G−1(G(x) + h) with G(x) :=
∫ x

a

1
g(t)

dt

since

d
dh

G−1(G(x) + h) = (G−1)′(G(x) + h) =
1

G′(G−1(G(x) + h))
= g(G−1(G(x) + h)).

Equation (3.18) now implies the first part of the claim.
We use the same technique in order to prove the second part of the theorem and

begin by considering

eh(g(x)D+v(x)Id)x = eh(g(x)D+v(x)Id)xe−h(g(x)D+v(x)Id)eh(g(x)D+v(x)Id).

We define

χ2(h) := eh(g(x)D+v(x)Id)xe−h(g(x)D+v(x)Id) with χ2(0) = x

and

u(h) := eh(g(x)D+v(x)Id) with u(0) = 1.

Taking the derivatives with respect to h and application of (3.18) yields

d
dh

χ2(h) = eh(g(x)D+v(x)Id)[g(x)D + v(x)Id, x]e−h(g(x)D+v(x)Id)

= eh(g(x)D+v(x)Id)g(x)e−h(g(x)D+v(x)Id) = g(χ2(h)),

since the commutator of g(x)D + v(x)Id and x is given by

[g(x)D + v(x)Id, x] f (x) = (g(x)D + v(x))x f (x)− x(g(x)D + v(x)) f (x)

= g(x)x f ′(x) + g(x) f (x) + v(x)x f (x)

− xg(x) f ′(x)− xv(x) f (x)

= g(x) f (x).

Thus, the derivative yields the same non-linear differential equation as in (3.20) with
the same initial condition, and, therefore, the same solution.
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Furthermore, we get for the derivative of u with respect to h

d
dh

u(h) = eh(g(x)D+v(x)Id)(g(x)D + v(x)Id)

= eh(g(x)D+v(x)Id)g(x)D + eh(g(x)D+v(x)Id)v(x)Id

= eh(g(x)D+v(x)Id)g(x)D + eh(g(x)D+v(x)Id)v(x)e−h(g(x)D+v(x)Id)eh(g(x)D+v(x)Id)

= eh(g(x)D+v(x)Id)g(x)D + v(χ2(h))u(h).

If we do not consider u as an operator but only as a function in h, we can simplify its
derivative to

d
dh

u(h) = v(χ2(h))u(h). (3.21)

This is a ordinary first-order linear differential equation with the initial condition
u(0) = 1 and solution

u(h) =
H(x)

H(G−1(G(x) + h))

with H(x) := exp
(
−
∫ x

a
v(t)
g(t)dt

)
since

d
dh

H(x)
H(G−1(G(x) + h))

=− H(x)
(H(G−1(G(x) + h)))2 · H′(G−1(G(x) + h))︸ ︷︷ ︸

=H(G−1(G(x)+h))
(
− v(G−1(G(x)+h)

g(G−1(G(x)+h)

) · (G−1)′(G(x) + h)︸ ︷︷ ︸
=g(G−1(G(x)+h)

=
H(x)

H(G−1(G(x) + h))
v(G−1(G(x) + h)

holds. Now let n ∈N0 and we consider the action of the operator eh(g(x)D+v(x)) on the
monomials and get

u(h)xn = eh(g(x)D+v(x)Id)xn

= eh(g(x)D+v(x)Id)xe−h(g(x)D+v(x)Id)eh(g(x)D+v(x)Id)x . . . eh(g(x)D+v(x)Id)xe−h(g(x)D+v(x)Id)

· eh(g(x)D+v(x)Id)

= (eh(g(x)D+v(x)Id)xe−h(g(x)D+v(x)Id))neh(g(x)D+v(x)Id) = (χ2(h))nu(h).

The same argument as for (3.18), thus, yields

eh(g(x)D+v(x)Id) f (x) = f (χ2(h))u(h)

with χ2 and u being the solutions to the differential equations (3.20) and (3.21), respec-
tively.
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Remark 3.25 If f is a signal of the form (3.12) with phase function G(x) :=
∫ x

a
1

g(t)dt,
then 1

g is called the instantaneous phase function as this function can be understood
as the change in the phase G. ♦

We want to use the shift action in (3.16) and (3.17) respectively, to motivate the
definition for our generalized shift operator.

Definition 3.26 (Generalized Shift Operator) Let G : R → R and H : R → C be con-
tinuous functions such that for a given interval [a, b] ⊂ R the function G is strictly
monotone and the function H is non-vanishing. Furthermore, let h ∈ R \ {0} be a
shift parameter. Then the generalized shift operator SG,H,h : C([a, b]) → C(R) is de-
fined as

SG,H,h f (x) :=
H(x)

H (G−1(G(x) + h))
f
(

G−1(G(x) + h)
)

. (3.22)

In particular, we have for H(x) ≡ c for some constant c ∈ R \ {0} and for all x ∈ [a, b],

SG,h f (x) := f
(

G−1(G(x) + h)
)

.

Similarly, for G(x) = x for all x ∈ [a, b],

SH,h f (x) :=
H(x)

H(x + h)
f (x + h).

Remark 3.27 The assumptions on G in Definition 3.26 ensure that G is invertible in the
interval [a, b]. We can consider generalized shift operators for complex-valued func-
tions G : R → C if we assume G to be invertible in [a, b] instead of strictly monotone
and continuous. ♦

So far we have established how generalized shift operators can be constructed using
operator valued exponential functions of special differential operators. In order to
connect these operators to our generalized exponential sums given in (2.8), we take a
closer look at their eigenfunctions.

Theorem 3.28 Let G : R→ R and H : R→ C be continuous functions such that for a given
interval [a, b] ⊂ R the function G is strictly monotone and the function H is non-vanishing.
Furthermore, let h ∈ R \ {0} be a shift parameter. Then the generalized shift operator SG,H,h

as in Definition 3.26 possesses eigenfunctions of the form

eαG(x)H(x)

with corresponding eigenvalue eαh for α ∈ C.
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Proof. Let α ∈ C and x ∈ R. We employ the definition of the generalized shift operator
SG,H,h and obtain

SG,H,h

(
H(·)eG(·)α

)
(x) =

H(x)
H(G−1(G(x) + h))

H(G−1(G(x) + h))eαG(G−1(G(x)+h)))

= H(x)eα(G(x)+h) = H(x)eαG(x)eαh.

The above theorem thus, indeed, proves that the generalized exponential sums are
expansions into eigenfunctions of the generalized shift operators given in Definition
3.26. Therefore, we have all tools at hand in order to recover such generalized expo-
nential sums using the generalized Prony method.

As the iterative application of the linear operator is one of the key elements of this
method, we want to analyze the action of the iterated generalized shift operator SG,H,h.

Theorem 3.29 Let G : [a, b] → R be continuous and strictly monotone and H : R → C

be continuous, such that H(x) 6= 0 for all x ∈ [a, b]. Furthermore, let SG,H,h denote the
corresponding generalized shift operator as in Definition 3.26. Then the following holds for all
f ∈ C(R)

SG,H,h1 SG,H,h2 f = SG,H,h1+h2 f

for all shift parameters h1, h2 ∈ R \ {0} satisfying

G(x) + h1, G(x) + h2, G(x) + h1 + h2 ∈ [G(a), G(b)] for G(a) < G(b) or

G(x) + h1, G(x) + h2, G(x) + h1 + h2 ∈ [G(b), G(a)] for G(b) < G(a).

In particular, we have for k ∈N0

Sk
G,H,h f = SG,H,kh f

for

G(x) + kh ∈ [G(a), G(b)] for G(a) < G(b) or

G(x) + kh ∈ [G(b), G(a)] for G(b) < G(a).
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Proof. We use the definition of the generalized shift operator. Then we have

SG,H,h1(SG,H,h2) f (x) = SG,H,h1

(
H(·)

H(G−1(G(·) + h2))
f (G−1(G(·) + h2))

)
(x)

=
H(x)

H(G−1(G(x) + h1))

H(G−1(G(x) + h1))

H(G−1(G(x) + h1 + h2))

· f (G−1(G(x) + h1 + h2))

=
H(x)

H(G−1(G(x) + h1 + h2))
f (G−1(G(x) + h1 + h2))

= SG,H,h1+h2 f (x) = SG,H,h2 SG,H,h1 f (x).

Consequently, we get

Sk
G,H,h f = SG,H,kh f .

We list some examples for phase functions G, instantaneous amplitudes H, the eigen-
functions to the corresponding generalized shift operator SG,H,h as well as the required
samples of a signal f as in Definition 3.12 in Table 3.1.

inst. phase g phase G inst. ampl. H eigenfct. sampling values

1 x 1 eαx f (x + hk)

x log(x) 1 xα f (ehkx)
xp−1

p (p > 1) xp 1 eαxp
f ( p
√
(xp + hk))

−
√

1− x2 arccos(x) 1 eα arccos(x) f (cos (arccos (x) + kh))
√

1− x2 arcsin(x) 1 eα arcsin(x) f (sin (arcsin (x) + kh))
1

cos(x) sin(x) 1 eα sin(x) f (arcsin (sin(x) + kh))

− 1
sin(x) cos(x) 1 eα cos(x) f (arccos (cos(x) + kh))

1 x xr (r ∈ R) xreαx xr

(x+kh)r f (x + kh)

1 x e−βx2
e−βx2+αx eβh(2x+kh) f (x + kh)

Table 3.1: Examples of generalized shift operators of the form SG,H,h as in Definition
3.26 with G(x) =

∫ x
a

1
g(t)dt, their corresponding eigenfunctions H(·)eG(·) and

the sample values needed for the reconstruction of a generalized exponential
sum as in Definition 3.12.

Remark 3.30 Even though we have established a more general theory around gener-
alized shift operators, in practice only the functions G and H are used. Therefore, it is
also possible to consider special piecewise defined generalized exponential sums. We
can also consider G : [a, b] → R to be a piecewise continuous and piecewise strictly
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monotone function, i.e.,

G(x) :=


G1(x) x ∈ [a1, a2]

G2(x) x ∈ (a2, a3]
...
Gk(x) x ∈ (ak, ak+1],

with a1 = a < a2 < · · · < ak+1 = b and Gj(x) continuous and strictly monotone on
(aj, aj+1] for j = 1, . . . , k. ♦

Theorem 3.31 Let G : [a, b] → R and H : [a, b] → C be continuous functions such that G
is strictly monotone and H is non-vanishing. Furthermore, let f be a generalized exponential
expansion as in (3.12), such that there exists a K ∈ R with |Im(αj)| < K for all j = 1, . . . , M.
Then f can be uniquely reconstructed using the 2M samples f (G−1(G(x0) + hk)) for k =

0, . . . , 2M− 1 with x0 ∈ [a, b], h ∈ R such that 0 < |h| < π
K and

G(x0) + hk ∈ [G(a), G(b)] for G(a) < G(b) or

G(x0) + hk ∈ [G(b), G(a)] for G(a) > G(b)

for all k = 0, . . . , 2M− 1.

Proof. Let f be a generalized exponential sum. Then Theorem 3.28 implies that f is,
indeed, a linear combination of eigenfunctions of the generalized shift operator SG,H,h.
Applying Theorem 2.5 yields that f can be reconstructed using the functional values
F(Sk

G,H,h f ) for a suitable functional F : C(R) → C satisfying F(H(·)eαG(·)) 6= 0 for
all α ∈ C. Theorem 3.29 yields F(Sk

G,H,h f ) = F(SG,H,kh f ) for a suitable functional
F : C(R) → C with F(H(·)eαG(·)) 6= 0 for α ∈ C. Choosing F f := f (x0) for x0 ∈ [a, b]
yields

F(SG,H,kh f ) =
H(x0)

H(G−1(G(x0) + kh))
f (G−1(G(x0) + kh)).

Since the values H(x0)
H(G−1(G(x0)+kh)) , k = 0, . . . , 2M− 1 are independent of the parameters

αj and cj for j = 1, . . . , M, they can be precomputed and consequently the claim
follows.

Thus, we can reformulate the algorithm for the generalized Prony method for gen-
eralized shift operators.
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Algorithm 3 Prony’s Method in Terms of Generalized Shift Operators

Input: M ∈ N, h > 0, sampled values f (G−1(h` + G(x0))), ` = 0, . . . , 2M − 1 and
G(x0).

1: Form the Hankel matrix HM :=
(
ak+` f (G−1(h(`+ k) + G(x0)))

)M−1
k,`=0 as well as

f :=
(
aM+` f (G−1(G(x0) + h(M + `)))

)M−1
`=0 with a` := H(x0)

H(G−1(G(x0)+h`)) for ` =

0, . . . , 2M− 1, and compute HM · p = −f for p := (p`)
M−1
`=0 .

2: Define the Prony polynomial P(z) = ∑M
k=0 pkzk with pM = 1, find all roots λj = eαjh

and determine the parameters αj := 1
h log (λj) for j = 1, . . . , M.

3: Solve the Vandermonde-like system V2M,M · c̃ = f2M with V2M,M :=
(

λk
j

)2M−1,M

k=0,j=1
,

c̃ :=
(

cjeαjG(x0)
)M

j=1
and f2M :=

(
f (G−1(G(x0)+hk))
H(G−1(G(x0)+hk)

)2M−1

k=0
and compute the coefficients

cj =
c̃j

eαjG(x0)
for j = 1, . . . , M.

Output: cj and αj for j = 1, . . . , M as in (3.12).

3.2.2 Generalized Symmetric Shift Operators

The generalized shift operators SG,H,h introduced in Section 3.2.1 can be combined in
a symmetric way as in Section 3.1. This motivates the following definitions.

Definition 3.32 (Generalized trigonometric expansions) Let G : R→ R and H : R→
C be continuous functions such that for a given interval [a, b] ⊂ R the function G is
strictly monotone and the function H is non-vanishing. Then we call f an M-sparse
generalized trigonometric expansion or generalized trigonometric sum if it is of the
form

f (x) =
M

∑
j=1

cjH(x) cos (αjG(x) + β j) or f (x) =
M

∑
j=1

cjH(x) sin (αjG(x) + β j)

with cj ∈ C \ {0}, β j ∈ (−π, π) and pairwise different αj ∈ C for j = 1, . . . , M.

Remark 3.33 These generalized trigonometric sums can also be understood as a spe-
cial case of a signal decomposition into so-called intrinsic mode functions, which are
studied using empirical mode decomposition, see [HSL+98]. Furthermore, special
types of generalized trigonometric sums, called non-harmonic Fourier sums, given by

f (x) =
M

∑
j=1

cj cos (2παjx + β j)

with cj, αj ∈ R+ and β j ∈ (0, 2π) and αj 6= αk for j, k = 1, . . . , M and j 6= k, are also
analysed in [PPD21]. The authors show that such functions can be reconstructed using
Fourier coefficients and rational approximation. ♦
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Definition 3.34 (Generalized Symmetric Shift Operator) Let G : R→ R and H : R→
C be continuous functions such that for a given interval [a, b] the function G is strictly
monotone and the function H is non-vanishing. Furthermore, let h ∈ R \ {0} be a shift
parameter. Then the generalized symmetric shift operator SG,H,h,−h : C([a, b])→ C(R)

is defined as

SG,H,h,−h f (x) :=
1
2
(SG,H,h f (x) + SG,H,−h f (x))

where SG,H,h denotes the generalized shift operator as in Definition 3.26.

Analogously, to Proposition 3.2 we can show that the k-th iteration of a generalized
symmetric shift operator SG,H,h,−h can be written as a linear combination of generalized
shift operators.

Proposition 3.35 Let f ∈ C(R) and let G : R→ R and H : R→ C be continuous functions
such that for a given interval [a, b] the function G is strictly monotone and the function H is
non-vanishing. Moreover, let SG,H,h,−h denote the generalized symmetric shift operator. Then
the following holds,

SG,H,h1,−h1 SG,H,h2,−h2 f = SG,H,h2,−h2 SG,H,h1,−h1 f

=
1
2

(
SG,H,h1+h2,−(h1+h2) + SG,H,h1−h2,−(h1−h2)

)
f

for h1, h2 ∈ R \ {0} satisfying

G(x) + h1, G(x) + h2, G(x) + h1 + h2 ∈ [G(a), G(b)] for G(a) < G(b) or

G(x) + h1, G(x) + h2, G(x) + h1 + h2 ∈ [G(b), G(a)] for G(b) < G(a).

In particular, we have for k ∈N0

Sk
G,H,h,−h f =

1
2k−1

b(k−1)/2c

∑
`=0

(
k
`

)
SG,H,(k−2`)h,−(k−2`)h f + δk/2,bk/2c

1
2k

(
k

bk/2c

)
f (3.23)

for h ∈ R \ {0} satisfying

G(x) + kh ∈ [G(a), G(b)] for G(a) < G(b) or

G(x) + kh ∈ [G(b), G(a)] for G(b) < G(a).

Proof. Application of the definition of the generalized symmetric shift operator yields
similarly as in the proof of Proposition 3.2

SG,H,h1,−h1 SG,H,h2,−h2 f (x) = SG,H,h1,−h1

1
2
(SG,H,h2 f (x) + SG,H,−h2 f (x))

=
1
2

(
SG,H,h1+h2,−(h1+h2) f (x) + SG,H,h1−h2,−(h1−h2) f (x)

)
.
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Now let k ∈N. Then the k-th iteration is given by

Sk
G,H,h,−h f =

(
1
2
(SG,H,h + SG,H,−h)

)k

f (x) =
1
2k

k

∑
`=0

(
k
`

)
Sk−`

G,H,hS`
G,H,−h f

=
1
2k

k

∑
`=0

(
k
`

)
SG,H,h(k−2`) f

=
1
2k

[
b(k−1/2)c

∑
`=0

(
k
`

)(
SG,H,h(k−2`) + SG,H,−h(k−2`)

)
f +

(
k

bk/2c

)
δk/2,bk/2c f

]

=
1

2k−1

b(k−1/2)c

∑
`=0

(
k
`

)
SG,H,(k−2`)h,−(k−2`)h f +

1
2k δk/2,bk/2c

(
k

bk/2c

)
f .

In analogy to Proposition 3.8 we can conclude the eigenfunction for the generalized
symmetric shift operators SG,H,h,−h.

Proposition 3.36 Let h ∈ R \ {0} be a shift parameter and G : R → R and H : R → C be
continuous functions such that for a given interval [a, b] ⊂ R the function G is strictly mono-
tone, the function H is non-vanishing and SG,H,h,−h denotes the generalized symmetric shift
operator as in Definition 3.34. Then SG,H,h,−h possesses the eigenfunctions H(x) cos (αG(x)),
H(x) sin (αG(x)) as well as H(x) cosh (αG(x)) and H(x) sinh (αG(x)) for α ∈ R.

Proof. The claim is a direct implication of Theorem 3.28 and

cos (G(x)α) =
1
2

(
eiG(x)α + e−iG(x)α

)
as well as similar equations for sin (G(x)α), cosh (αG(x)) sinh (αG(x)). We have

SG,H,h−hH(x) cos (G(x)α) =
1
2
(SG,H,hH(x) cos (G(x)α) + SG,H,−hH(x) cos (G(x)α))

=
1
4

(
SG,H,h

(
H(x)eiG(x)α + H(x)e−iG(x)α

)
+ SG,H,−h

(
H(x)eiG(x)α + H(x)e−iG(x)α

))
=

1
2

(
H(x)eiαG(x) cos (αh) + H(x)e−iαG(x) cos (αh)

)
= H(x) cos (G(x)α) cos (αh).

Hence, the claim follows.

Analogously, to Section 3.1 we can now consider generalized cosine expansion.
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Theorem 3.37 Let G : R → R and H : R → C be continuous functions such that for a
given interval [a, b] the function G is strictly monotone and the function H is non-vanishing
and SG,H,h,−h denotes the generalized symmetric shift operator as in Definition 3.34 for h ∈
R \ {0}. Let M ∈N and f be a M-sparse generalized cosine expansion, i.e.,

f (x) =
M

∑
j=1

cjH(x) cos (G(x)αj + β j) (3.24)

for cj ∈ R \ {0}, β j ∈ (−π, π) \ {±π
2 } and αj ∈ R for j = 1, . . . , M. Furthermore, let

αj ∈ [0, K) for all j = 1, . . . , M and some K > 0. Then the signal f can be reconstructed using
the samples f (G−1(G(x0) + hk)) for k = −2M + 1, . . . , 2M + 1 with x0 ∈ [a, b] satisfying
cos (αjG(x0) + β j) 6= 0 for j = 1, . . . , M and 0 < h ≤ π

K satisfying

G(x0) + hk ∈ [G(a), G(b)] for G(a) < G(b) or

G(x0) + hk ∈ [G(b), G(a)] for G(a) > G(b)

for k = −2M + 1, . . . , 2M− 1.
Moreover, if x0 ∈ [a, b] can be chosen such that G(x0) = 0 is satisfied and β j = 0 for all
j = 1, . . . , M, the samples f (G−1(G(x0) + hk)) for k = 0, . . . , 2M− 1 are sufficient for the
reconstruction of the signal f .

Proof. The proof is done analogously to the proof of Theorem 3.9. Equation (3.23)
yields, that the k-th iteration of the generalized symmetric shift operator SG,H,h,−h can
be written as a linear combination of the generalized symmetric shifts SG,H,h`,−h` for
` = 0, . . . , k. Therefore, we will use the shifts SG,H,h`,−h` f (x0) instead of S`

G,H,h,−h f (x0).
We define the Prony polynomial

P(z) :=
M

∏
j=1

(z− cos (αjh)) =
M

∑
k=0

pkTk(z).

We note that due to the fact that the leading coefficient of the k-th Chebyshev polyno-
mial is 2k−1, pM = 1

2M−1 holds. First we compute the coefficients pk, k = 0, . . . , M− 1,
of the Prony polynomial using the given samples. Moreover, Proposition 3.36 implies

SG,H,h,−hH(x) cos(αG(x) + β) = H(x) cos(αG(x) + β) cos(αh)

for α ∈ R and β ∈ (−π, π). Hence, we can conclude

SG,H,kh,−kh f (x0) =
M

∑
j=1

cjH(x0) cos(αjG(x0) + β j) cos(αjkh)

for k ∈ Z. Thus, we employ the definition of the Prony polynomial as well as Propo-
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sition 3.35 and get for the signal f in (3.24) and for m = 0, . . . , M− 1

M

∑
k=0

pk

(
SG,H,h(k+m),−h(k+m) f (x0) + SG,H,h(m−k),−h(m−k) f (x0)

)
=

M

∑
k=0

pk

(
M

∑
j=1

cjH(x0) cos (αjG(x0) + β j) cos (αjh(k + m))

+
M

∑
j=1

cjH(x0) cos (αjG(x0) + β j) cos (αjh(m− k))

)

=2
M

∑
k=0

pk

M

∑
j=1

H(x0)cj cos (αjG(x0) + β j) cos (αjhk) cos (αjmh)

=2
M

∑
j=1

H(x0)cj cos (αjG(x0) + β j) cos (αjmh)
M

∑
k=0

pk cos (αjhk)

=2
M

∑
j=1

H(x0)cj cos (αjG(x0) + β j) cos (αjmh) P(cos (αjh))︸ ︷︷ ︸
=0

= 0.

Thus, we get the Hankel-plus-Toeplitz system

M−1

∑
k=0

pk

(
SG,H,h(m+k),−h(m+k) f (x0) + SG,H,h(m−k),−h(m−k) f (x0)

)
=− 1

2M−1

(
SG,H,h(m+M),−h(m+M) f (x0) + SG,H,h(m−M),−h(m−M) f (x0)

)
for m = 0, . . . , M− 1.

The factorization of the occurring Hankel-plus-Toeplitz matrix is given by

HToep
M =

(
SG,H,h(m+k),−h(m+k) f (x0) + SG,H,h(m−k),−h(m−k) f (x0)

)M−1

k,m=0

= 2

(
M

∑
j=1

H(x0)cj cos (αjG(x0) + β j) cos (αjmh) cos (αjkh)

)M−1

m,k=0

= 2TM · diag(H(x0)cj cos (αjG(x0) + β j)
M
j=1) · T

T
M,

with the Chebyshev Vandermonde matrix TM as in Definition 3.5. The diagonal matrix
diag

(
(H(x0)cj cos (αjG(x0) + β j))

M
j=1

)
is invertible if H(x0)cj 6= 0 for j = 1, . . . , M and

cos (αjG(x0) + β j) 6= 0, which is satisfied by assumption.

If the parameters β j for j = 1, . . . , M do not appear in the signal f and x0 ∈ [a, b] can
be chosen such that G(x0) = 0 is satisfied, we can use the fact that cosine is an even
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function and only consider the system

M

∑
k=0

pk

(
H(x0)

H(G−1(h(m + k)))
f (G−1(h(m + k))) +

H(x0)

H(G−1(h(m− k)))
f (G−1(h(m− k)))

)
=

M

∑
k=0

pk

M

∑
j=1

cjH(x0)
(
cos(αjh(m + k)) + cos(αjh(m− k))

)
= 2

M

∑
k=0

pk H(x0)
M

∑
j=1

cj
(
cos(αjhk) cos(hmαj)

)
= 0.

Thus, the corresponding Hankel-plus-Toeplitz matrix is of the form

HToep
M =

(
H(x0)

H(G−1(h(m + k)))
f (G−1(h(m + k))) +

H(x0)

H(G−1(h(m− k)))
f (G−1(h(m− k)))

)M−1

m,k=0

= 2

(
M

∑
j=1

cj H(x0) cos (αjmh) cos (αjhk)

)M−1

m,k=0

= 2TM · diag(cj H(x0)
M
j=1) · T

T
M.

Once the coefficients pk, k = 0, . . . , M − 1 of the Prony polynomial have been com-
puted, we can derive its zeros cos (αjh), and, thus, αj for j = 1, . . . , M. Now we need
to distinguish between the case β j = 0 for all j = 1, . . . , M and β j 6= 0 for at least one
j ∈ {1, . . . , M}.
1. If the parameters β j do not appear in the signal f given in (3.24) we only need to
solve the linear system for k = 0, . . . , 2M− 1

H(x0)

H(G−1(G(x0) + kh))
f (G−1(G(x0) + kh)) =

M

∑
j=1

cjH(x0) cos (αj(G(x0) + kh)),

in order to compute the coefficients cj for j = 1, . . . , M.
2. If there exists a j ∈ {1, . . . , M} such that β j 6= 0, we first solve

H(x0)

H(G−1(G(x0) + kh)))
f (G−1(G(x0) + kh)) +

H(x0)

H(G−1(G(x0)− kh)))
f (G−1(G(x0)− kh))

= 2
M

∑
j=1

cjH(x0) cos (αjG(x0) + β j) cos (αjhk)

for k = 0, . . . , M − 1 in order to compute dj := cjH(x0) cos (αjG(x0) + β j) for j =

1, . . . , M. Moreover, we also solve

H(x0)

H(G−1(G(x0) + kh))
f (G−1(G(x0) + kh))− H(x0)

H(G−1(G(x0)− kh))
f (G−1(G(x0)− kh))

= 2
M

∑
j=1

cjH(x0) sin (αjG(x0) + β j) sin (αjhk)
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for k = 0, . . . , M − 1 in order to compute d̃j := H(x0)cj sin (αjG(x0) + β j) for j =

1, . . . , M. Finally, we can conclude for the parameters cj and β j for j = 1, . . . , M

cj =

√
d2

j + d̃2
j

H(x0)
and β j = arg

(
dj + id̃j

)
− αjG(x0) mod 2π.

Analogously, to Section 3.1 we can also formulate a similar statement for generalized
sine expansions.

Theorem 3.38 Let G : R→ R and H : R→ C be continuous functions such that for a given
interval [a, b] the function G is strictly monotone and the function H is non-vanishing and
SG,H,h,−h denote the generalized symmetric shift operator as in Definition 3.34 for h ∈ R \ {0}.
Let M ∈N and f be an M-sparse generalized sine expansion, i.e.,

f (x) =
M

∑
j=1

cjH(x) sin (G(x)αj + β j) (3.25)

for cj ∈ R \ {0}, β j ∈ (−π, π) \ {±π
2 } and αj ∈ R for j = 1, . . . , M with M ∈ N.

Furthermore, let αj ∈ [0, K) for all j = 1, . . . , M and some K > 0. Then the signal f can be
reconstructed using the samples f (G−1(G(x0) + hk)) for k = −2M + 1, . . . , 2M + 1 with
x0 ∈ [a, b] satisfying sin (αjG(x0) + β j) 6= 0 for j = 1, . . . , M and 0 < h ≤ π

K satisfying

G(x0) + hk ∈ [G(a), G(b)] for G(a) < G(b) or

G(x0) + hk ∈ [G(b), G(a)] for G(a) > G(b)

for k = −2M + 1, . . . , 2M− 1.

Proof. The proof is done analogously to the one of Theorem 3.37. We define the Prony
polynomial

P(z) :=
M

∏
j=1

(z− cos (αjh)) =
M

∑
k=0

pkTk(z)

with pM = 1
2M−1 holds. As a first step we compute the coefficients pk, k = 0, . . . , M− 1

of the Prony polynomial using the given samples. Proposition 3.36 implies

SG,H,h,−hH(x) sin(αG(x) + β) = H(x) sin(αG(x) + β) cos(αh)

for α ∈ R and β ∈ (−π, π). Hence, we can conclude

SG,H,kh,−kh f (x0) =
M

∑
j=1

cjH(x0) sin(αjG(x0) + β j) cos(αjkh)

for k ∈ Z. Thus, we employ the definition of the Prony polynomial as well as Propo-

46



3.2 Reconstruction of Generalized Exponential Sums and Generalized Trigonometric Sums

sition 3.35 and get for the signal f in (3.24) and for m = 0, . . . , M− 1

M

∑
k=0

pk

(
SG,H,h(k+m),−h(k+m) f (x0) + SG,H,h(m−k),−h(m−k) f (x0)

)
=2

M

∑
j=1

H(x0)cj sin (αjG(x0) + β j) cos (αjmh)
M

∑
k=0

pk cos (αjhk)

=2
M

∑
j=1

H(x0)cj sin (αjG(x0) + β j) cos (αjmh) P(cos (αjh))︸ ︷︷ ︸
=0

= 0.

We get the Hankel-plus-Toeplitz system

M−1

∑
k=0

pk

(
SG,H,h(m+k),−h(m+k) f (x0) + SG,H,h(m−k),−h(m−k) f (x0)

)
=

1
2M−1

(
SG,H,h(m+M),−h(m+M) f (x0) + SG,H,h(m−M),−h(m−M) f (x0)

)
for m = 0, . . . , M− 1. The factorization of the occurring Hankel-plus-Toeplitz matrix
is given by

HToep
M =

(
SG,H,h(m+k),−h(m+k) f (x0) + SG,H,h(m−k),−h(m−k) f (x0)

)M−1

k,m=0

= 2TM · diag((cjH(x0) sin (αjG(x0) + β j))
M
j=1) · TT

M.

The diagonal matrix diag(H(x0)cj sin (αjG(x0) + β j)
M
j=1) is invertible if H(x0)cj 6= 0 for

j = 1, . . . , M and sin (αjG(x0) + β j) 6= 0, which is satisfied by assumption.
Once the coefficients pk, k = 0, . . . , M− 1 of the Prony polynomial have been com-

puted, we can derive its zeros cos (αjh), and, thus, αj for j = 1, . . . , M. Now we need
to distinguish between the case β j = 0 for all j = 1, . . . , M and β j 6= 0 for at least one
j ∈ {1, . . . , M}.
1. If the parameters β j do not appear in the signal f given in (3.24), we only need to
solve the linear system

H(x0)

H(G−1(G(x0) + kh))
f (G−1(G(x0) + kh)) =

M

∑
j=1

cjH(x0) sin (αj(G(x0) + kh))

for k = 0, . . . , 2M− 1 in order to compute the coefficients cj for j = 1, . . . , M.
2. If there exists a j ∈ {1, . . . , M} such that β j 6= 0, we first solve

H(x0)

H(G−1(G(x0) + kh))
f (G−1(G(x0) + kh)) +

H(x0)

H(G−1(G(x0)− kh))
f (G−1(G(x0)− kh))

= 2
M

∑
j=1

cj sin (αjG(x0) + β j) cos (αjhk)

for k = 0, . . . , M − 1 in order to compute dj := cj sin (αjG(x0) + β j) for j = 1, . . . , M.
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Moreover, we also solve

H(x0)

H(G−1(G(x0) + kh))
f (G−1(G(x0) + kh))− H(x0)

H(G−1(G(x0)− kh))
f (G−1(G(x0)− kh))

= 2
M

∑
j=1

cj cos(αjG(x0) + β j) sin (αjhk)

for k = 0, . . . , M − 1 in order to compute d̃j := H(x0)cj cos (αjG(x0) + β j) for j =

1, . . . , M. Finally, we can conclude for the parameters cj and β j for j = 1, . . . , M by

cj =

√
d2

j + d̃2
j

H(x0)
and β j = arg

(
d̃j + idj

)
− αjG(x0) mod 2π.

Remark 3.39 (i) Analogously, to Remark 3.10 we can also use Theorem 2.5 for the
recovery of M-sparse trigonometric expansions by considering the Prony poly-
nomial in monomial basis instead of Chebyshev basis.

(ii) Analogously, to Theorem 3.12 we also use generalized symmetric shift operators
SG,H,h,−h as in Definition 3.34 to recover M-sparse expansions into generalized
hyperbolic functions such as

f (x) =
M

∑
j=1

cjH(x) cosh(G(x)αj) and g(x) =
M

∑
j=1

cjH(x) sinh(G(x)αj)

with cj ∈ C \ {0} and αj ∈ R for j = 1, . . . , M.
♦

We summarize our results for the reconstruction of sparse generalized cosine ex-
pansion in the following algorithm.
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Algorithm 4 Prony’s Method in Terms of Generalized Symmetric Shift Operators

Input: M ∈ N, h > 0 and sampled values f (G−1(h` + G(x0))), ` = −2M +

1, . . . , 2M− 1, H(x0), G(x0)

1: Form the Hankel-plus-Toeplitz matrix

HToep
M :=

(
ak+` f (G−1(h(`+ k) + G(x0))) + ak−` f (G−1(h(k− `) + G(x0)))

+ a−(k+`) f (G−1(−h(`+ k) + G(x0))) + a−(k−`) f (G−1(−h(k− `) + G(x0)))

)M−1

k,`=0

as well as

f :=
(

aM+` f (G−1(G(x0) + h(M + `))) + a`−M f (G−1(G(x0) + h(`−M)))

+ a−(M+`) f (G−1(G(x0)− h(M + `))) + a−(`−M) f (G−1(G(x0)− h(`−M)))

)M−1

`=0

with a` := H(x0)
H(G−1(G(x0)+h`)) , ` = −2M + 1, . . . , 2M− 1 and solve HM · p = −f for

p := (p`)
M−1
`=0 .

2: Define the Prony polynomial P(z) = ∑M
k=0 pkTk(z) with pM = 2−(M−1), find all

roots λj = cos (αjh) and determine the parameters αj := 1
h arccos(λj) for j =

1, . . . , M.
3: Solve the Vandermonde-like system 2V2M,M · d = f2M with

V2M,M :=
(
cos (αjk)

)2M−1,M
k=0,j=1 ,

d :=
(
cj cos (αjG(x0) + β j)

)M
j=1 and

f2M :=
(

ak f (G−1(G(x0) + hk)) + a−k f (G−1(G(x0)− hk))
)2M−1

k=0
.

4: Solve the Vandermonde-like system 2Ṽ2M,M · d̃ = f̃2M with

Ṽ2M,M :=
(
sin (αjk)

)2M−1,M
k=0,j=1 ,

d̃ :=
(
cj sin (αjG(x0) + β j)

)M
j=1 and

f̃2M :=
(

ak f (G−1(G(x0) + hk))− a−k f (G−1(G(x0)− hk))
)2M−1

k=0
.

Compute the coefficients cj =

√
d2

j +id̃2
j

H(x0)
and β j = arg(dj + id̃j)− αjG(x0) mod 2π for

j = 1, . . . , M.
Output: cj, αj and β j for j = 1, . . . , M as in (3.24).
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Remark 3.40 This algorithm can be adapted for the reconstruction of M-sparse gener-
alized sine expansion as in (3.25). Therefore, in the third and fourth step, the vectors
d and d̃ have to be exchanged. ♦

3.2.3 Reconstruction Using Linear Differential Operators

In the previous section we have seen that every generalized exponential sum can be
reconstructed using a corresponding generalized shift operator. However, the clas-
sical exponential sum eαjx is also an eigenfunction of the ordinary linear differential
operator d

dx , i.e.,

d
dx

eαx = αeαx α ∈ C.

We want to use this as a starting point to derive suitable linear differential operators
such that the generalized exponentials as in Definition 3.12 are, indeed, eigenfunctions
of these operators, since it is often simpler to find linear differential operators than to
the generalized shift operators. Theorem 3.24 already gives rise to a possible linear
differential operator and motivates the following definition.

Definition 3.41 Let D : C1(R) → C(R) be the differential operator defined as D f :=
d

dx f . Furthermore, let g, v : [a, b] → R be smooth functions and g be non-vanishing.
Then we define the linear differential operator A : C∞(R)→ C∞(R) by

A f (x) := g(x)(D f )(x) + v(x) f (x) (3.26)

for all f ∈ C∞(R).

Theorem 3.42 Let g, v : [a, b] → R be smooth functions and g be non-vanishing. Then the
linear differential operator A : C∞(R) → C∞(R) given by (3.26) possesses eigenfunctions of
the form

eαG(x)H(x)

with the eigenvalues α ∈ C, where G, H : [a, b] → R are smooth functions given by G(x) :=∫ x
a

1
g(t)dt and H(x) := exp

(
−
∫ x

a
v(t)
g(t)dt

)
, respectively.

Proof. Let G, H : [a, b] → R be defined as in Theorem 3.42, i.e., G(x) :=
∫ x

a
1

g(t)dt and

H(x) := exp
(
−
∫ x

a
v(t)
g(t)dt

)
. Then their derivatives are given by

G′(x) =
1

g(x)
and

H′(x) = −H(x)
v(x)
g(x)

.
(3.27)
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We employ the definition of the linear differential operator A and (3.27) and get

A
(

eG(x)αH(x)
)
= g(x)

(
eG(x)αH(x)

)′
+ v(x)eG(x)αH(x)

= g(x)
(

eG(x)αH′(x) + eG(x)αH(x)G′(x)α
)
+ v(x)eG(x)αH(x)

= −eG(x)αH(x)v(x) + eG(x)ααH(x) + eG(x)αH(x)v(x)

= αeG(x)αH(x).

The above theorem tells us that we have found a suitable linear differential operator
such that the generalized exponential sums are expansions into eigenfunctions of said
operator. Therefore, we can use the generalized Prony method to reconstruct these
sums.

Theorem 3.43 Let G, H ∈ C∞([a, b]), such that G′ and H are non-vanishing on [a, b] ⊂ R

and let x0 ∈ [a, b] be fixed. Then the generalized exponential sum as in (3.12) can be viewed
as a sparse expansion into eigenfunctions of the differential operator A in Definition 3.41,
and f as in (3.12) can be uniquely reconstructed from the derivative samples f (k)(x0) for
k = 0, . . . , 2M− 1.

Proof. Let f be a generalized exponential sum as in (3.12). Then Theorem 3.42 implies
that f can be viewed as a sparse expansion into eigenfunctions of the linear differential
operator A. Therefore, we can apply Theorem 2.5 for a suitable linear functional
F : C∞(R) → C∞(R) satisfying F

(
H(x)eαG(x)

)
6= 0 for all α ∈ C. We choose F to be

the point evaluation functional at x0 with x0 ∈ [a, b], i.e., F( f ) := f (x0), and have to
consider the samples F(Ak f ) for k = 0, . . . , M.

Thus, in order to reconstruct the parameters αj for j = 1, . . . , M, we first have to
compute the required values F(Ak f ) = (Ak f )(x0) for k = 0, . . . , 2M− 1.

For this purpose, we need to determine the lower triangular matrix

L = (λm,k)
2M−1
m,k=0 ∈ R2M×2M

such that (
F(Ak) f

)2M−1

k=0
=
(

Ak f (x0)
)2M−1

k=0
= L ·

(
f (k)(x0)

)2M−1

k=0
.

By definition of A we get λ0,0 := 1, λ1,0 := g(x0) and λ1,1 := h(x0). Generally we
have to consider the elements λm,k as functions in x in order to obtain the entries of L,
starting with λ0,0 ≡ 1. We use induction to show

Ak f (x) =
k

∑
m=0

λk,m(x) f (m)(x).
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The base step is a direct consequence of equation (3.26). The induction step is given
by

Ak+1 f (x) = A

(
k

∑
m=0

λk,m(x) f (m)(x)

)

= g(x)
k

∑
m=0

(
λ′k,m(x) f (m)(x) + λk,m(x) f (m+1)(x)

)
+ v(x)

k

∑
m=0

λk,m(x) f (m)(x)

=
k

∑
m=0

(
g(x)λ′k,m(x) + v(x)λk,m(x)

)
f (m)(x) + g(x)λk,m(x) f (m+1)(x).

We can conclude the recursion

λk+1,m(x) =


g(x)λ′k,m(x) + v(x)λk,m(x), m = 0

g(x)
(

λ′k,m(x) + λk,m−1(x))
)
+ v(x)λk,m(x) m = 1, . . . , k

g(x)λk,m(x) m = k + 1,

and the induction claim follows. The matrix entries λm,k := λm,k(x0) are well-defined
by assumption on H and G. Hence, application of Theorem 2.5 yields that the signal
f can be uniquely reconstructed using the values

F(Ak f ) = Ak f (x0) =
k

∑
m=0

λk,m(x0) f (m)(x0),

and, thus, the claim follows.

Remark 3.44 One major difference between the reconstruction using linear differen-
tial operators and the reconstruction using generalized shift operators is the set of
assumptions on G and H. In Section 3.2.1 it was sufficient to assume that G and H are
continuous. In Section 3.2.3 we need to assume that G and H are smooth. ♦

The connection between the linear differential operator A as in Definition 3.41 and
the generalized shift operator given in Theorem 3.24 is given by the theory of one-
parameter semigroups and operator valued exponential functions, as elaborated in
Section 3.2.1.

Furthermore, this theory also fits into the framework of the generalized operator
based Prony method, see [Sta18, SP20] and can be interpreted as a changing of opera-
tors, see [SP20], Theorem 3.4.

Theorem 3.45 Let A : V → V be a linear operator, and let σ(A) 6= 0 be a subset of the point
spectrum σP(A) with pairwise different eigenvalues and with corresponding eigenfunctions vα

such that the map α 7→ vα is injective for α ∈ σ(A). Let ϕ : σ(A) → C be an analytic,
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injective function. Then ϕ(A) is a well-defined linear operator on

M(A) :=

{
M

∑
j=1

cαj vαj : M < ∞, cαj ∈ C \ {0} and αj ∈ σ(A) pairwise distinct

}
.

Furthermore, if vα is an eigenfunction of A corresponding to the eigenvalue α, then vα is also
an eigenfunction of ϕ(A) corresponding to the eigenvalue ϕ(α).

3.3 Applications to Special Expansions

In this section we want to give some examples of special expansions, which can be re-
constructed using generalized shift operators such as sparse expansions into Gaussian
chirps and other non-stationary signals.

Definition 3.46 (Gaussian Chirp) Let β ∈ C \ {0} and M ∈ N. We call f an M-sparse
expansion into Gaussian chirps if f is of the form

f (x) =
M

∑
j=1

cje−β(x−αj)
2

(3.28)

for cj ∈ C \ {0} and αj ∈ C.

In order to reconstruct sparse expansions of the above form, we need to find a suit-
able generalized shift operator or linear differential operator such that the Gaussian
chirps are eigenfunctions of said operator. First we observe that

e−β(x−α)2
= e−β(x2−2xα+α2) = e−βα2

e−βx2︸ ︷︷ ︸
=:H(x)

e2βxα

implies that a Gaussian chirp, indeed, is a generalized exponential function, i.e., of the
form H(x)eG(x)α with

H(x) := e−βα2−βx2
and G(x) := 2βx. (3.29)

This is in fact a special case. In general it is not possible to choose the functions H or
G depending on the parameter α, since the parameter is unknown. But since in this
case

H(x)
H(G−1(G(x) + h))

=
e−β(α2−x2)

e−β(α2−((2βx+h)/(2β))2)
= e−h(x+h/(4β))

holds, the factor e−βα2
cancels out and the operator SG,H,h is defined independently of

α.
Therefore, the Gaussian chirps fit in the theoretical framework we have derived in
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this chapter.

Theorem 3.47 Let f be an M-sparse expansions into Gaussian chirps as in Definition 3.46
and x0 ∈ R. Then f can be uniquely reconstructed using the sample values f (k)(x0) for
k = 0, . . . 2M− 1.

Proof. Since the signal f is a generalized exponential sum with G and H given in
(3.29), Theorem 3.43 implies that f is a sparse expansion into eigenfunctions of the
differential operator A := 1

G′(x)D − 1
G′(x)

H′(x)
H(x) Id = 1

2β D + xId, where D denotes the
differential operator with D f (x) := f ′(x). Here, it is also important that the terms
containing the parameter α cancel out due to

H′(x)
H(x)

=
e−β(α2−x2)2βx

e−β(α2−x2)
= 2βx.

Thus, the operator A itself is independent of the parameter α.
Furthermore, Theorem 3.43 implies that f can be uniquely reconstructed using the

values f (k)(x0) for k = 0, . . . , 2M − 1. Moreover, we can choose any x0 ∈ R since
G′(x0) = 2β 6= 0 and H(x0) 6= 0 for all x0 ∈ R, which means that the interval [a, b] in
Theorem 3.43 can be chosen arbitrarily.

Theorem 3.48 Let f be an M-sparse expansion into Gaussian chirps as in Definition 3.46
with known scale parameter β ∈ R \ {0} and x0 ∈ R. Furthermore, let the frequencies αj

of f be such that |Im(αj)| < K for some K ∈ R and h ∈ R satisfying 0 < |h| < π
K .

Then f can be uniquely reconstructed using the 2M equidistant sample values f (x0 +
hk
2β ) for

k = 0, . . . , 2M− 1.

Proof. As we have established above the signal f is a generalized exponential sum
with G and H given in (3.29). Then we can apply Theorem 3.31 and can reconstruct
f using the equidistant values f (G−1(G(x0) + hk)) = f

(
hk+2βx0

2β

)
= f

(
x0 +

hk
2β

)
for

k = 0, . . . , 2M− 1. We note that we can choose any arbitrary intervall [a, b] ⊂ R. This
implies that we can choose it such that

|G(b)− G(a)|
2M

=
2|β|(b− a)

2M
>

π

K

holds, and, therefore, no further condition on the choice of h is needed.

Remark 3.49 1. We note that the reconstruction of sparse expansions into Gaussian
chirps in Theorem 3.48 can also be extended to β ∈ C \ {0}. This is done by using
the substitution α̃j = αj2β such that f in (3.28) can be rewritten as

f (x) =
M

∑
j=1

cje
−βα2

j︸ ︷︷ ︸
=:c̃j

e−βx2
eα̃j .
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Therefore, we can choose G(x) := x and H(x) := e−βx2
and get the corresponding

generalized shift operator SG,H,h with SG,H,h f (x) = eβh(2x+h) f (x + h), see also
[PSK19], Section 4.1.

2. In particular, the model in (3.28) also includes expansions into modulated shifted
Gaussians

f (x) =
M

∑
j=1

cje2πisjxe−β(x−αj)
2

with sj ∈ (0, 1), cj ∈ R \ {0} and αj ∈ R for j = 1, . . . , M, which we have
considered in [PSK19]. Since

e2πisxe−β(x−α)2
= e−βα2

e−βx2
e−x(2βα+2πis)

holds, we can choose α̃j := 2βαj + 2πisj for j = 1, . . . , M such that f can be
rewritten as

f (x) =
M

∑
j=1

cje
−βα2

j︸ ︷︷ ︸
=:c̃j

e−βx2
e−xα̃j .

Then the reconstruction of the parameters α̃j for j = 1, . . . , M is sufficient to
find the parameters αj and sj from the real and the imaginary part of α̃j for
j = 1, . . . , M, respectively.

♦

Example 3.50 We illustrate the recovery of expansions into Gaussian chirps and con-
sider f of the form 3.28 with M = 10 and β = i. The original parameters in Table
3.2 have been drawn uniformly from the intervals (−3, 3) + i(−2, 2) for cj and from
(−2, 2) for αj.

param. j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

Re cj 2.357 1.212 0.334 −1.893 −1.728 −2.536 2.483 1.240 0.347 −1.119
Im cj −1.335 0.490 1.952 −1.318 −0.969 −0.413 −1.704 0.736 −0.390 1.931
αj −0.391 0.483 −1.356 −0.475 −1.355 1.032 1.484 −0.597 0.742 −0.823

Table 3.2: Parameters cj and αj for an expansion into Gaussian chirps as in (3.28) with
M = 10, see Figure 3.1.

Since β is complex, we apply the substitution as in Remark 3.49. Moreover, the
starting point is given by x0 = −1 and the shift parameter by h = 1.

The reconstruction is done using Algorithm 3 and used 20 equidistant samples f (k),
for k = −1, . . . , 18, which are represented as black dots in Figure 3.1. The obtained
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Figure 3.1: Real and imaginary part of the sparse expansion into Gaussian chirps f
as given in Example 3.50 in blue. The black dots indicate the used signal
values. The reconstructed signal was obtained by Algorithm 3 and is shown
in red. It cannot be distinguished visually from the original signal f .

maximal reconstruction error for the parameters αj and the parameters cj are

max
j=1,...,10

|αj − α̃j| = 5.36 · 10−12, max
j=1,...,10

|cj − c̃j| = 7.99 · 10−10

where c̃j and α̃j, j = 1, . . . , 10, denote the parameters computed by Algorithm 3.
♦

Corollary 3.51 Let f be a non-stationary signal with quadratic phase given by

f (x) =
M

∑
j=1

cj cos (x2 + αjx + sj) (3.30)

with M ∈N, cj ∈ R\ {0}, αj ∈ (−K, K) for some K ∈ R and sj ∈ [−π
2 , π

2 ] for j = 1, . . . , M.
Furthermore, let h ∈ R \ {0} and x0 ∈ R. Then f in (3.30) can be reconstructed using the
2M sample values f (x0 + hk), k = 0, . . . , 2M − 1 and the 2M sample values f̃ (x0 + hk),
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where f̃ is given by

f̃ (x) =
M

∑
j=1

cj sin (x2 + αjx + sj). (3.31)

Proof. Using the substitutions cj,1 := cj cos(sj), cj,2 := cj sin(sj), bj :=
(

cj,1+icj,2
2

)
, and

dj := bje
−iα2

j /4, the signal given in (3.30) can be rewritten as

f (x) =
M

∑
j=1

(cj cos(sj)) cos(x2 + αjx) + (cj sin(sj)) sin(x2 + αjx)

=
M

∑
j=1

cj,1 cos(x2 + αjx)− cj,2 sin(x2 + αjx)

=
M

∑
j=1

( cj,1 + icj,2

2

)
ei(x2+αjx) +

( cj,1 − icj,2

2

)
e−i(x2+αjx)

=
M

∑
j=1

bje
i((x+αj/2)2−α2

j /4) + bje
−i((x+αj/2)2−α2

j /4)

= 2 Re

(
M

∑
j=1

bje
−iα2

j /4ei(x+αj/2)2

)

= 2 Re

(
M

∑
j=1

djei(x+αj/2)2

)
.

Analogously, we observe that

f̃ (x) =
M

∑
j=1

cj sin(x2 + αjx + sj) =
M

∑
j=1

cj cos
(

x2 + αjx + sj −
π

2

)
= 2 Im

(
M

∑
j=1

djei(x+αj/2)2

)

with dj = bje
−iα2

j /4. The model is, therefore, closely related to the model in (3.28).
Hence, we can define the function g(x) := f (x) + i f̃ (x), which is an expansion into
Gaussian chirps. Consequently, we can apply Theorem 3.48 in order to recover the
parameters dj and αj for j = 1, . . . , 2M using the 2M samples g(x0 + hk) for k =

0, . . . , 2M − 1. As a last step we compute the parameters cj and sj for j = 1, . . . , M
using

bj = dje
iα2

j /4, cj,1 = 2 Re (bj), cj,2 = 2 Im (bj)

|cj| = 2|bj|, sj = arg (bj) and sgn (cj) = sgn (cj,1).
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Example 3.52 We will illustrate the recovery of expansion f of the form (3.30) with
M = 8. The original parameters are given in Table 3.3. The parameters have been
drawn uniformly from the intervals (−1, 5) for the coefficients cj, from (−π, π) for αj

and from (−π
2 , π

2 ) for sj for j = 1, . . . , M. We apply Corollary 3.51 with starting point
x0 = 0 and shift parameter h = 9

20 . Hence, we have used the signal values f ( 9
20 k) and

f̃ ( 9
20 k) for k = 0, . . . , 15 with f̃ as in (3.31). The signal and its reconstruction are shown

in Figure 3.2.

parameter j = 1 j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8

cj −0.2998 −0.285 4.639 2.873 1.877 2.836 2.268 2.883

αj 0.276 1.389 0.141 3.102 −1.768 −2.477 −2.452 −2.742

sj −0.2997 −0.162 −0.422 0.828 0.402 0.854 1.360 1.485

Table 3.3: Parameters cj, sj and αj for j = 1, . . . , M for an expansion f as in (3.30) with
M = 8.

-1 0 1 2 3 4 5 6 7 8 9

-15

-10

-5

0
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Figure 3.2: Original signal f of the form (3.30) with the parameters given in Table 3.3
in blue. The red dots indicate the used signal values of f and the black dots
indicate the used signal values of f̃ . The reconstructed signal was obtained
by application of Corollary 3.51 and Algorithm 3 and is shown in red. It
cannot be distinguished visually from the original signal f .
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The obtained maximal reconstruction errors for the parameters αj, cj and sj for
j = 1, . . . , 8 are

max
j=1,...,8

|αj − α̃j| = 1.7 · 10−6,

max
j=1,...,8

|cj − c̃j| = 9.8 · 10−5 and

max
j=1,...,8

|sj − s̃j| = 1.4 · 10−4,

where c̃j, α̃j and s̃j for j = 1, . . . , 8 denote the recovered parameters. ♦

Corollary 3.53 Let p ∈N odd and M ∈N. Let the signal f be given by

f (x) =
M

∑
j=1

cj cos (αjxp + β j) (3.32)

with cj ∈ R \ {0}, αj ∈ R, β j ∈ (−π, π) \ {±π
2 } for j = 1, . . . , M. Moreover, let αj ∈ [0, K)

for some K ∈ R+ for all j = 1, . . . , M. Then f can be uniquely reconstructed using the
samples f

(
sgn(x0 + hk) p

√
|x0 + kh|

)
for k = −2M + 1, . . . , 2M + 1 with x0 ≥ 0 satisfying

cos (αjx0) 6= 0 for j = 1, . . . , M and 0 < h < π
K . If we choose x0 = 0, the functional values

f
(

p
√

hk
)

for k = 0, . . . , 2M− 1 are sufficient for the reconstruction.

Proof. We consider the intervall [0, ∞) and set G(x) := xp. Choosing the starting point
as p
√

x0, applying Theorem 3.37 and using the fact that cosine is an even function
proves the claim.

Example 3.54 We illustrate the recovery method of a signal f of the form (3.32) with
a small numerical example. Our signal f is of the form (3.32) with M = 2, p = 3
and the parameters Tj, cj and αj given in Table 3.4. The parameters have been drawn
uniformly from the intervals (0, 5) for the coefficients cj, from (0, π) for αj and from
(−π, π) for β j for j = 1, 2. We apply Corollary 3.53 with starting point x0 = 0 and
shift parameter h = 1. Hence, we have used the signal values f (± 3

√
k) for k = 0, . . . , 3.

The signal and its reconstruction are shown in Figure 3.3.

parameter j = 1 j = 2

cj 4.64157 2.90045
αj 2.41598 1.82667
β j −3.03488 −2.38221

Table 3.4: Parameters cj, αj and β j for j = 1, 2 for a expansion f as in (3.32) with M = 2.

The obtained maximal reconstruction error for the parameters αj, cj and β j for j =
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3 The Reconstruction of Generalized Exponential Sums and Generalized Trigonometric Sums

1, 2 are

max
j=1,2
|αj − α̃j| = 2.7 · 10−15,

max
j=1,2
|cj − c̃j| = 1.9 · 10−14 and

max
j=1,2
|β j − β̃ j| = 1.8 · 10−15,

where c̃j, β̃ j and α̃j for j = 1, 2 denote the recovered parameters.
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Figure 3.3: Original signal f of the form (3.32) with the parameters given in Table 3.4 in
blue. The black dots indicate the used signal values of f . The reconstructed
signal was obtained by application of Corollary 3.53 and Algorithm 4 and
is shown in red. It cannot be distinguished visually from the original signal
f .

♦

At last we want to consider an expansion into special orthogonal polynomials,
namely Chebyshev polynomials. These expansions have also been studied in [PT14b,
PP13] and in our paper [PSK19] and we will also study these expansion in Chapter 4.

The approach can also be transferred to Chebyshev polynomials of second, third
and fourth kind, see [PT14b]. However, in [PT14b] the connection to shift operators
with Chebyshev polynomials as eigenfunctions has not been explicitly used.
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3.3 Applications to Special Expansions

Definition 3.55 The following expansion

f (x) =
M

∑
j=1

cnj Tnj(x) (3.33)

with cnj ∈ C \ {0}, nj ∈ N0, for j = 1, . . . , M and Tnj being the nj-th Chebyshev
polynomials of first kind as in Definition 3.3 is called an M-sparse expansion into
Chebyshev polynomials of first kind. We assume the nj to be ordered, i.e., 0 ≤ n1 <

n2 < · · · < nM.

We consider the interval [−1, 1]. Lemma 3.4 (iv) yields that for x ∈ [−1, 1], a sparse
expansion into Chebyshev polynomials f can be written as

f (x) =
M

∑
j=1

cnj cos (nj arccos(x)).

Thus, f is of the form (3.24) with H ≡ 1 and G(x) := arccos(x). Consequently, we can
conclude the following corollary for the reconstruction of f .

Corollary 3.56 Let M ∈ N and f be an M-sparse expansion into Chebyshev polynomials of
first kind. Let K be an upper bound of the degree of f . Furthermore, let 0 < h ≤ π

K . Then f
can be uniquely reconstructed using the 2M samples f (cos(hk)) for k = 0, . . . , 2M− 1.

Proof. This is a direct implication of Theorem 3.37 using the starting point x0 = 1.
Therefore, the required samples simplify to f (cos (arccos(1) + kh) = f (cos (kh)) for
k = −2M + 1, . . . , 2M + 1. Using the fact that cosine is an even function the claim
follows.

Definition 3.57 (Chebyshev Polynomials of Second Kind) Let n ∈ N0 and x ∈ R.
Then the Chebyshev polynomial of second kind of degree n + 1 is defined by

Un+1 := 2n
n

∏
k=0

(
x− cos

(
(k + 1)π

n + 2

))
=:

n+1

∑
`=0

an+1,`x`

with U0(x) = 1.

We summarize some of the most common properties of the Chebyshev polynomials
of second kind in the following lemma.
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3 The Reconstruction of Generalized Exponential Sums and Generalized Trigonometric Sums

Lemma 3.58 Let n ∈N0 and x ∈ R.

(i) Un is a polynomial of degree n.

(ii) The leading coefficient of the Chebyshev polynomial Un is given by

an,n =

2n−1, if n ≥ 1,

1, if n = 0.

(iii) The n zeros of Un are given by

tn,` = cos
(

`π

n + 1

)
for ` = 1, . . . , n.

(iv) For x ∈ [−1, 1] the Chebyshev polynomial Un can be written as

Un(x) =
sin((n + 1) arccos(x))

sin(arccos(x))
.

(v) The Chebyshev polynomials satisfy the recurrence relation

Un+1(x) = 2xUn(x)−Un−1(x)

with U0(x) = 1 and U1(x) = x.

(vi) The Chebyshev polynomials of second kind Un can be expressed in terms of the derivative
of the Chebyshev polynomials of first kind Tn+1, i.e.,

Un(x) =
1

n + 1
T′n+1(x).

Proof. The claims (i), (ii) and (iii) follow directly from Definition 3.57. Proofs of (iv),(v)
and (vi) can be found in [PPST19], Section 6.1.

Corollary 3.59 Let M ∈ N and f be an M-sparse expansion into Chebyshev polynomials of
second kind, i.e.,

f (x) =
M

∑
j=1

cnjUnj(x) (3.34)

with cnj ∈ C \ {0} and nj ∈ N0 for j = 1, . . . , M. We assume the nj to be ordered, i.e.,
0 ≤ n1 < n2 · · · < nM. Moreover, let K be an upper bound of the degree of f , i.e., nM < K.
Then f can be uniquely reconstructed using the samples f (cos(arccos(x0) + kh)) for k =

−2M+ 1, . . . , 2M+ 1 with x0 ∈ (−1, 1) and 0 < h < π
K satisfying arccos(x0)+ kh ∈ (0, π)

for k = −2M + 1, . . . , 2M + 1.
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3.3 Applications to Special Expansions

Proof. Lemma 3.58 (iv) implies that f can be written as

f (x) =
M

∑
j=1

cnj H(x) sin ((nj + 1)G(x))

with H(x) := 1
sin(arccos(x)) and G(x) := arccos(x). Both functions are non-vanishing on

(−1, 1) and G is monotone on (−1, 1). Therefore, we can apply Theorem 3.38 in order
to recover f .

Remark 3.60 The connection between Chebyshev polynomials of first kind Tn and
Chebyshev polynomials of second kind given in Lemma 3.58 (vi) can also be seen in
the operators used for the reconstruction. Let G(x) := arccos(x), H ≡ 1 and SG,H,h,−h

denote the generalized symmetric shift operator as in Definition 3.34. We consider the
action of this operator on a function f and its derivative

d
dx

SG,H,h,−h f (x) =
1
2

(
d

dx
f (cos(arccos(x) + h)) +

d
dx

f (cos(arccos(x)− h))
)

=
1
2

(
f ′(cos(arccos(x) + h))

sin(arccos(x) + h)
sin(arccos(x))

+ f ′(cos(arccos(x)− h))
sin(arccos(x)− h)

sin(arccos(x))

)
.

Viewing this as the action of an operator on f ′, we see that this yields, indeed, the
same generalized symmetric shift operator SG,H,h,−h as in the Corollary above. ♦
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4 Reconstruction of Expansions into
Orthogonal Polynomials

In Section 3.3 we introduced operators for the reconstructions of M-sparse expansions
into Chebyshev polynomials of first or second kind using only 2M functional values.

In recent years, there has been a number of research papers dedicated to the re-
covery of sparse expansions into special orthogonal polynomials such as generalized
Chebyshev polynomials. In [IKY18], a substitution was used in order to reduce the
sparse expansion into orthogonal polynomials into a sparse Laurent polynomial in
power (standard) basis. Sparse expansions into Legendre or Chebyshev polynomials
are analysed in [PT14b,PT16]. Furthermore, reconstruction methods for sparse expan-
sions into non-standard basis such as the Pochammer basis were given in [LS95].

This chapter focuses on the recovery of expansions into orthogonal polynomials
and the general structure behind it. A Prony based reconstruction can be applied by
using differential operators such as the Sturm-Liouville Operator and the generalized
Prony method, see [PP13]. One major drawback is that the required samples are
derivative values, which are not easily accessible. Only in some cases we can use shift
operators, functional values and the generalized Prony method to recover expansions
into orthogonal polynomials such as Chebyshev polynomials of first and second kind,
see Chapter 3.

A further method based on inner products and dual operators as well as the gener-
alized Prony method was introduced in [Sta18].

In this chapter we will introduce a new reconstruction method which is based on
generating functions of the orthogonal polynomials. This new algorithm is presented
in Section 4.1.

In Section 4.2 we expand the reconstruction approach based on linear differential
operators and compare both methods.

Moreover, we will introduce a new application of the generalized Prony method for
q-hypergeometric polynomials in Section 4.3.

In the last section of this chapter, Section 4.4, we will illustrate our newly developed
algorithm using numerical examples.
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4 Reconstruction of Expansions into Orthogonal Polynomials

4.1 Reconstruction Method Using Generating Functions

This section is devoted to the development of a new reconstruction method for sparse
expansions into orthogonal polynomials based on their generating function. Thus, we
will begin by introducing the definitions needed.

Definition 4.1 (Orthogonal Polynomials) Let L2([a, b], ω) be the space of square inte-
grable functions on the interval [a, b] ⊂ R with a weighted inner product

〈 f , g〉 =
∫ b

a
f (x)g(x)ω(x)dx for all f , g ∈ L2([a, b]) (4.1)

with an integrable weight function ω : [a, b] → R. Then the sequence {Qk | k ∈ N0}
of polynomials is called orthogonal if

deg(Qk) = k and 〈Qj, Qk〉 = 0 for j 6= k.

In the following we denote the inner product corresponding to the set {Qk | k ∈ N0}
of orthogonal polynomials with 〈·, ·〉Q and

〈Qi, Qj〉Q = djδi,j (4.2)

with constants dj ∈ R for i, j ∈N0.

We will introduce a class of orthogonal polynomials, namely the Jacobi polynomials,
and summarize some of their common properties. Many well studied and important
orthogonal polynomials are special cases of Jacobi polynomials, such as Chebyshev
polynomials, see Definition 3.3 and Definition 3.57, and Legendre polynomials.

Definition 4.2 (Jacobi Polynomials) Let n ∈ N0 and α, β > −1, x ∈ [−1, 1]. Then the
Jacobi polynomial of degree n is defined as

P(α,β)
n (x) :=

Γ(α + n + 1)
n!Γ(α + β + n + 1)

n

∑
m=0

(
n
m

)
Γ(α + β + n + m + 1)

Γ(α + m + 1)

(
x− 1

2

)m

where Γ(x) :=
∫ ∞

0 tx−1e−tdt for Re(x) > 0 denotes the Gamma function.

Lemma 4.3 Let n ∈N0 and x ∈ [−1, 1]. Then the following holds.

(i) P(α,β)
n is a polynomial of degree n.

(ii) The Jacobi polynomials satisfy the Rodrigues’ formula

P(α,β)
n (x) :=

(−1)n

2nn!
(1− x)−α(1 + x)−β dn

dxn

(
(1− x)α+n(1 + x)β+n

)
.
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4.1 Reconstruction Method Using Generating Functions

(iii) The Jacobi polynomials are orthogonal on the interval [−1, 1] with the weight function
ω(x) := (1− x)α(1 + x)β, i.e.,

∫ 1

−1
P(α,β)

j (x)P(α,β)
k (x)(1− x)α(1 + x)βdx =

2α+β+1

2j + α + β + 1
Γ(j + α + 1)Γ(j + β + 1)

Γ(j + α + β + 1)j!
δjk

(4.3)

for j 6= 0 and

∫ 1

−1
P(α,β)

j (x)P(α,β)
k (x)(1− x)α(1 + x)βdx =

2α+β+1

Γ(α + β + 2)
Γ(j + α + 1)Γ(j + β + 1)

j!
δjk

for j = 0.

(iv) The Jacobi polynomials Pn(α, β) satisfy the following linear homogeneous differential
equation of second order

(1− x2)y′′ + [β− α− (α + β + 2)x] y′ + n(n + α + β + 1)y = 0.

Proof. The proof of (ii) as well as (iii) can be found in [Sze75], Section 4.3. The claim
(i) is a consequence of (ii). The proof of (iv) can be found in [Sze75], Section 4.2. as the
proof of Theorem 4.2.1.

The Chebyshev polynomials of first kind are a special case of the Jacobi polynomials
for α = β = − 1

2 , i.e., P(−0.5,−0.5)
n (x) = Tn(x). Moreover we have Un(x) = P(0.5,0.5)

n (x)
and Pn(x) = P(0,0)

n (x), where Un denote the Chebyshev polynomials of second kind
and Pn the Legendre polynomials, see [Sze75], Section 4.1.

Definition 4.4 (Generating Function) A function g : I1× I2 → R with I1 ⊂ R and I2 ⊂
C is called a generating function for the orthogonal polynomials Qk, k = 0, 1, 2 . . . , if
it is of the following form

g(x, t) =
∞

∑
k=0

wkQk(x)tk with x ∈ I1, t ∈ I2, (4.4)

where wk ∈ R and wk > 0. Here, we use the convention 00 = 1. The generating
function is called ordinary if wk = 1 for k ∈N0 and exponential if wk =

1
k! for k ∈N0.

Remark 4.5 The above definition is a formal one. In order to see if the above series in
(4.4) is, indeed, well-defined, we need to check its convergence. This has to be done
with respect to the particular set {Qk | k ∈ N0} of orthogonal polynomials and the
weight coefficients wk, k ∈N0 which are used. ♦
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4 Reconstruction of Expansions into Orthogonal Polynomials

Theorem 4.6 Let P(α,β)
n be the Jacobi polynomials. Then the ordinary generating function of

the Jacobi polynomials is given by

∞

∑
n=0

P(α,β)
n (x)tn = 2α+βR−1(1− t + R)−α(1 + t + R)−β,

with R = R(x, t) =
√

1− 2xt + t2.

Proof. The proof can be found in [Sze75], Section 4.4.

Since the Chebyshev polynomials are special cases of the Jacobi polynomials, the
above theorem yields the ordinary generating function for the Chebyshev polynomials.
Indeed, for this special case a different and simple proof is possible.

Theorem 4.7 Let {Tn | n ∈ N0} denote the set of Chebyshev polynomials of first kind and
let {Un | n ∈ N0} be the set of Chebyshev polynomials of second kind. Then the ordinary
generating functions are given by

∞

∑
n=0

Tn(x)tn =
1− xt

1− 2xt + t2

for x ∈ [−1, 1] and |t| < 1 and

∞

∑
n=0

Un(x)tn =
1

1− 2xt + t2

for x ∈ [−1, 1] and |t| < 1, respectively.

Proof. We use the recurrence relation for the Chebyshev polynomials given in Lemma
3.4 (v) and consider

∞

∑
n=0

Tn+2(x)tn+2 = t2x
∞

∑
n=0

Tn+1(x)tn+1 − t2
∞

∑
n=0

Tn(x)tn

⇐⇒
∞

∑
n=0

Tn(x)tn − 1− xt = 2xt
∞

∑
n=0

Tn(x)tn − 2xt− t2
∞

∑
n=0

Tn(x)tn

⇐⇒
∞

∑
n=0

tnTn(x)(1− 2xt + t2) = 1− xt

=⇒
∞

∑
n=0

Tn(x)tn =
1− xt

1− 2xt + t2 .

Lemma 3.4 (iv) yields, that |Tn(x)| ≤ 1 for x ∈ [−1, 1] as well as |Tntn| ≤ |t|n. For
|t| < 1, the series

∞

∑
n=0
|Tn(x)tn| ≤

∞

∑
n=0
|t|n =

1
1− |t|
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4.1 Reconstruction Method Using Generating Functions

converges and consequently, the Weierstrass M-test yields absolute and uniform con-
vergence for all x ∈ [−1, 1] and |t| < 1. Using the recurrence relation for the Cheby-
shev polynomials of second kind given in Lemma 3.58 (v) yields the generating func-
tion for Un.

We list some of the most common polynomials with their corresponding generat-
ing functions g(x, t) and the needed weight coefficients wk in Table 4.1. The proof
for the exponential generating function of the Chebyshev polynomials can be found
in [Ces12]. For the other generating functions we refer to [AS64], pages 783-784.
There exist different methods of obtaining generating function such as the Weisner
method, which is based on partial differential equations and group transformation, or
the Truesduell method based on differential-difference equations. A comprehensive
overview on these methods can be found in [McB71].

name weight-coeff. wn generating function

Chebyshev 1. kind Tn 1 1−xt
1−2xt+t2 (|t| < 1)

Chebyshev 1. kind Tn
1
n (n ≥ 1) log

(
1√

1−2xt+t2

)
(|t| < 1)

Chebyshev 1. kind Tn
1
n! etx cos (t

√
1− x2) (t ∈ C)

Chebyshev 2. kind Un 1 1
1−2x+t2 (|t| < 1)

Chebyshev 2. kind Un
1
n! etx

(
cos(t

√
x2 − 1) + x√

1−x2 sin (t
√

1− x2)
)

(t ∈ C)

Legendre Pn 1 1√
1−2xt+t2 (|t| < 1)

Legendre Pn
1
n! ext J0(t

√
1− x2) (t ∈ R)

Laguerre Ln 1 1
1−t e−tx/(1−t) (|t| < 1)

Hermite Hn
1
n! e2xt−t2

(t ∈ C)

Table 4.1: Orthogonal polynomials with their corresponding generating function
g(x, t) and the corresponding weight coefficients wn, n ∈N0.

Definition 4.8 Let M ∈N. Then we call a signal f of the form

f (x) =
M

∑
j=1

cnj Qnj(x) (4.5)

M-sparse expansion into orthogonal polynomials Qnj with coefficients cnj ∈ C \ {0}
and nj are the indices of the “active” orthogonal polynomials for j = 1, . . . , M. We
always assume that the sum representing f has minimal length, i.e., that ni 6= nj for
i 6= j and the nj to be ordered, i.e., 0 ≤ n1 < n2 < · · · < nM.

Theorem 4.9 Let {Qk | k ∈ N0} with Qk ∈ L2([a, b], ω) be a set of orthogonal polynomials
with corresponding inner product 〈·, ·〉Q as in Definition 4.1 and generating function g as in
(4.4). Let f be an M-sparse expansion into orthogonal polynomials as in (4.5) for M ∈ N.
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4 Reconstruction of Expansions into Orthogonal Polynomials

Furthermore, we suppose that there exists a t ∈ C \ {0} such that g is well-defined, i.e.,
uniformly convergent, for all x ∈ [a, b] and tk for k ∈ N. Moreover, we assume that tnj 6= tni

holds for i 6= j, where nj denote the indices of the “active” orthogonal polynomials in f for j =
1, . . . , M. Then we can uniquely reconstruct the sparse expansion into orthogonal polynomials
f as in (4.5) using the 2M samples 〈 f , g(·, tk)〉Q for k = 1, . . . , 2M.

Proof. The proof is a constructive one. We use the definition of the signal f in (4.5) and
the definition of the generating function given in (4.4) and apply the orthogonality

〈 f , g(·, t)〉Q = 〈
M

∑
j=1

cnj Qnj , g(·, t)〉Q =
M

∑
j=1

cnj〈Qnj ,
∞

∑
k=0

wkQktk〉Q

=
M

∑
j=1

cnj

∞

∑
k=0

wktk 〈Qnj , Qk〉Q︸ ︷︷ ︸
δnj ,k

dnj

=
M

∑
j=1

cnj wnj dnj t
nj

=
M

∑
j=1

c̃nj t
nj ,

(4.6)

with c̃nj := cnj wnj dnj . Thus, this inner product “maps” the sparse expansion f into the
orthogonal polynomials to a sparse monomial expansion. We note that the second step
in the above equation is, indeed, possible for t as in the assumption. This monomial
expansion can be recovered via the generalized Prony method. Therefore, we define
the Prony polynomial

P(z) :=
M

∏
j=1

(z− tnj) =
M

∑
k=0

pkzk.

We note that pM = 1, employ (4.6) and consider the following equation for ` =

1, . . . , M,

M

∑
k=0

pk〈 f , g(·, t(`+k))〉Q =
M

∑
k=0

pk

M

∑
j=1

c̃jtnj(`+k)

=
M

∑
j=1

c̃jtnj`
M

∑
k=0

pktnjk

︸ ︷︷ ︸
=P(tnj )=0

= 0.

Exploiting the fact that pM = 1 and the above equations one can compute the coef-
ficients pk, k = 0, . . . , M − 1, of the Prony polynomial by considering the following
Hankel system(

〈 f , g(·, t(`+k))〉Q
)M,M−1

`=1,k=0
· (p0, . . . , pM−1)

T = −
(
〈 f , g(·, t(`+M))〉Q

)M

`=1

70



4.1 Reconstruction Method Using Generating Functions

This matrix can be factorized in the following form
〈 f , g(·, t)〉Q 〈 f , g(·, t2)〉Q . . . 〈 f , g(·, tM)〉Q
〈 f , g(·, t2)〉Q 〈 f , g(·, t3)〉Q . . . 〈 f , g(·, tM+1)〉Q

...
...

...
...

〈 f , g(·, tM)〉Q 〈 f , g(·, tM+1)〉Q . . . 〈 f , g(·, t2M−1)〉Q

 (4.7)

=


1 1 . . . 1

tn1 tn2 . . . tnM

...
...

...
...

t(M−1)n1 t(M−1)n2 . . . t(M−1)nM

 ·


c̃n1 0 . . . 0
0 c̃n2 . . . 0
...

...
. . .

...
0 0 . . . c̃nM

 ·


tn1 t2n1 . . . tMn1

tn2 t2n2 . . . tMn2

...
...

...
...

tnM t2nM . . . tMnM


= VM · diag(c̃n1 , . . . , c̃nM) · diag(tn1 , . . . , tnM) ·VT

M,

with VM :=
(

tnjk
)M−1,M

k=0,j=1
. Since we assumed that the sum determining f in (4.5) has

minimal length we can conclude c̃nj 6= 0, j = 1 . . . , M and tnj 6= tni 6= 0 for j 6= i
by assumption. Therefore, the occurring Vandermonde matrices VM as well as the
diagonal matrices are invertible, and, thus, the Hankel matrix itself is invertible.

Using the coefficients of the Prony polynomial we can compute its roots tnj , and,
thus, the parameters nj for j = 1, . . . , M, as well as the corresponding weights wnj .

As a last step, we now have to compute the coefficients cnj , j = 1, . . . , M, of f in
(4.5). This can be done by solving the overdetermined linear system

〈 f , g(·, tk)〉Q =
M

∑
j=1

c̃nj t
njk for k = 1, . . . , 2M, (4.8)

and we obtain cnj =
c̃nj

dnj wnj
for j = 1, . . . , M. Hence, the claim follows.

Remark 4.10 We omit the samples 〈 f (x), g(x, t0)〉Q = 〈 f (x), g(x, 1)〉Q since for a lot of
generating functions g(x, t) the corresponding series does not converge for t = 1 and
therefore application of Theorem 4.9 would not be possible.

Furthermore, we want to emphasize that depending on the generating function the
parameter t can be chosen as a primitive root of unity. The periodicity of the roots
of unity imply that the the condition tnj 6= tnk for j 6= k in Theorem 4.9 is, indeed,
necessary. Since in practice the parameter nj are unknown, we need tk 6= t` for all
k, ` ∈ {0, . . . , 2MN}, where N is an upper bound on the degree of f . ♦

We want to explore the connection between the generalized Prony method and the
above mentioned reconstruction. Therefore, we consider the following operator.
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4 Reconstruction of Expansions into Orthogonal Polynomials

Definition 4.11 (Dilation Operator) Let h ∈ R \ {0}. Then the dilation operator
Dh : C(R)→ C(R) is defined as

Dh f (x) := f (hx). (4.9)

Remark 4.12 This operator is a special case of the generalized shift operator SG,H,h in
(3.22) with G(x) = log(x) and H ≡ 1, i.e.,

Slog(·),1,h f (x) = f (elog(x)+h) = f (ehx) = f (h̃x)

with h̃ = eh. In the previous section, we established that the eigenfunctions of this
operator are monomials, see Table 3.1. Further information for the reconstruction
using this operator can be found in [Pet14], Section 4.2. ♦

The generating function reconstruction method does not use the linear operator for
which the orthogonal polynomials are eigenfunctions but rather the dilation operator.

We recall (4.6) and consider the samples

〈 f , g(·, tk)〉Q =
M

∑
j=1

c̃nj t
knj

with c̃nj = cnj wnj dnj , j = 1, . . . , M, and k ∈ N. We choose the point evaluation func-
tional F1 : C(R)→ C with F1( f ) := f (1) and get

M

∑
j=1

c̃nj t
knj =

M

∑
j=1

c̃nj F1

(
Dk

t xnj
)
= F1

(
Dk

t

(
M

∑
j=1

c̃nj x
nj

))
. (4.10)

Consequently, we can interpret (4.6) as ”mapping“ between the basis of orthogonal
polynomials into a basis of monomials.

We summarize our results in the following algorithm.
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4.1 Reconstruction Method Using Generating Functions

Algorithm 5 Algorithm for the Reconstruction of Expansions into Orthogonal Polyno-
mials Using a Generating Function

Input: M ∈ N, t ∈ C \ {0} as in Theorem 4.9 and sampled values 〈 f , g(·, t`)〉Q, ` =

1, . . . , 2M.
1: Form the Hankel matrix HM :=

(
〈 f , g(·, tk+`)〉Q

)M−1,M
`=0,k=1 as well as

f :=
(
〈 f , g(·, t`+M)〉Q)

)M
`=1 and solve HM · p = −f for p := (p`)

M−1
`=0 as in (4.7).

2: Define the Prony polynomial P(z) := ∑M
k=0 pkzk with pM = 1, find all roots λj = tnj

of P, and determine the parameters nj := logt (λj) for j = 1, . . . , M. Determine the
weights wnj corresponding to the nj-orthogonal Polynomial Qnj in (4.4) as well as
the parameters dnj in (4.2).

3: Solve the Vandermonde-like system V2M,M · c̃ = f2M with V2M,M :=
(

λk
j

)2M,M

k=1,j=1
,

c̃ = (c̃nj)
M
j=1 :=

(
cnj dnj wnj

)M

j=1
and f2M :=

(
〈 f , g(·, tk)〉Q

)2M
k=1 and compute the

coefficients cnj =
c̃nj

dnj wnj
for j = 1, . . . , M, as in (4.8).

Output: cnj and nj for j = 1, . . . , M as in (4.5).

For application the required samples 〈 f , g(·, t`)〉Q can be computed by numerical
integration using Gaussian quadrature.

Theorem 4.13 Let f ∈ C([a, b]) and n ∈ N. Furthermore, let {Qk | k ∈ N0} be a set
of orthogonal polynomials in Definition 4.1 with corresponding weight function ω, and let xi

denote the i-th root of the the polynomial Qn for i = 1, . . . , n. The Gaussian quadrature I( f )
of f is given by

I( f ) =
n

∑
i=1

ωi f (xi) (4.11)

with weights

ωi =
∫ b

a
ω(x)

n

∏
j=1
i 6=j

x− xj

xi − xj
dx (4.12)

for i = 1, . . . , n. The Gaussian quadrature is exact for polynomials up to degree 2n− 1, i.e.,

∫ b

a
f (x)ω(x)dx = I( f ).

Proof. For the proof we refer to Theorem 3.6.12 in [SB02].

Theorem 4.14 Let M ∈ N and {Qk | k ∈ N0} with Qk ∈ L2([a, b], ω) be a set of orthogo-
nal polynomials with corresponding inner product 〈·, ·〉Q as in Definition 4.1 and generating
function g in (4.4). Furthermore, let f be an M-sparse expansion into orthogonal polynomials
as in (4.5) and N ∈ N be an upper bound on the degree of f , i.e., deg( f ) < N. We suppose
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4 Reconstruction of Expansions into Orthogonal Polynomials

that there exists a t ∈ C \ {0} such that g is well-defined, i.e., uniformly convergent for all
x ∈ [a, b] and tk for k ∈ N0. Moreover, we assume, that t` 6= tk holds for all k, ` = 1, . . . , N.
Then the signal f can be recovered using only the N samples f (xk) with xk denoting the k-th
root of the polynomial QN for k = 1, . . . , N. In particular,

〈 f , g(·, t`)〉Q =
N

∑
i=1

ωi f (xi)
N

∑
n=0

t`nQn(xi)wn (4.13)

holds for ` = 1, . . . , 2M with ωi as in (4.12) and wn as in (4.4).

Proof. We introduce the partial sum

gN(x, t) :=
N

∑
n=0

wntnQn(x).

For fixed t ∈ C this is a polynomial of degree N, i.e., deg (gN(·, t)) = N. We use (4.4)
and consider for ` = 1, . . . 2M

〈 f , g(·, t`)〉Q =
∫ b

a
f (x)g(x, t`)ω(x)dx =

∫ b

a
f (x)

∞

∑
n=0

wn

(
t`
)n

Qn(x)ω(x)dx

=
∫ b

a
f (x)gN(x, t`)ω(x)dx +

∫ b

a
f (x)

∞

∑
n=N+1

wnt`nQn(x)ω(x)dx

=
∫ b

a
f (x)gN(x, t`)ω(x)dx +

∞

∑
n=N+1

wnt`n
M

∑
j=1

cnj

∫ b

a
Qnj(x)Qn(x)ω(x), dx

where the last equation follows by (4.5). Since N is an upper bound on the degree of
f , we know that deg

(
f (·) · gN(·, t`)

)
≤ deg( f ) + deg

(
gN(·, t`)

)
< 2N holds. Thus,

f gN(·, t`) is a polynomial with degree of at most 2N − 1 and, hence, Theorem 4.13
implies

∫ b

a
f (x)gN(x, t`)ω(x)dx =

N

∑
i=1

ωi f (xi)gn(xi, t`),

with xi the i-th root of the polynomial QN and ωi as in (4.12), i = 1, . . . , N. Addition-
ally, we know that deg( f ) < N implies

∫ b

a
Qnj(x)Qn(x)ω(x)dx = 0

for all n ≥ N + 1 and Qnj the “active” orthogonal polynomials in f . Consequently, we
can conclude

〈 f , g(·, t`)〉Q =
N

∑
i=1

ωi f (xi)gN(xi, t`).

Application of Theorem 4.9 yields the claim.
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4.1 Reconstruction Method Using Generating Functions

In particular, we can conclude that the application of the Gaussian quadrature on
the samples 〈 f , g(·, t`)〉Q is sufficient for the reconstruction of a signal f .

Corollary 4.15 Let M ∈ N and {Qk | k ∈ N0} with Qk ∈ L2([a, b], ω) be a set of orthog-
onal polynomials with corresponding inner product 〈·, ·〉Q as in Definition 4.1 and generating
function g in (4.4). Furthermore, let M ∈N and f be an M-sparse expansion into orthogonal
polynomials, i.e.,

f (x) =
M

∑
j=1

cnj Qnj(x)

and N > deg( f ). We suppose that there exists a t ∈ C \ {0} such that g is uniformly
convergent for all x ∈ [a, b] and tk for k ∈ N0. Moreover, we assume, that t` 6= tk holds for
all k, ` = 1, . . . , N. Then we have∣∣∣∣∣〈 f , g(·, t`)〉Q −

N

∑
j=1

ωi f (xi)g(xi, t`)

∣∣∣∣∣ ≤ N

∑
i=1
|ωi f (xi)|

∥∥∥∥∥g(x, t`)−
N

∑
n=0

wnt`nQn(x)

∥∥∥∥∥
∞

with ωi as in (4.12), wn as in (4.4), xi the i-th root of the polynomial QN and ` = 1, . . . , 2M,
i = 1, . . . , N.

Proof. We want to apply Gaussian quadrature to the samples 〈 f , g(·, t`)〉Q for ` =

1, . . . , 2M as in Theorem 4.13 and consider the corresponding error∣∣∣∣∣〈 f , g(·, t`)〉Q −
N

∑
i=1

ωi f (xi)g(xi, t`)

∣∣∣∣∣
for ωi as in (4.12) and xi the i-th root of the orthogonal polynomial QN for ` =

1, . . . , 2M. Application of Theorem 4.14 and, in particular, (4.13) and yields∣∣∣∣∣〈 f , g(·, t`)〉Q −
N

∑
i=1

ωi f (xi)g(xi, t`)

∣∣∣∣∣ =
∣∣∣∣∣ N

∑
i=1

ωi f (xi)
N

∑
n=0

wnt`nwnQn(xi)−
N

∑
i=1

ωi f (xi)g(xi, t`)

∣∣∣∣∣
≤

N

∑
i=1
|ωi f (xi)|

∣∣∣∣∣ N

∑
n=0

wnt`nQn(xi)− g(xi, t`)

∣∣∣∣∣ ≤ N

∑
i=1
|ωi f (xi)|

∥∥∥∥∥g(x, t`)−
N

∑
n=0

wnt`nQn(x)

∥∥∥∥∥
∞

.

In particular, if the generating function g convergences uniformly and N is chosen
large enough, the approximation obtained by the Gaussian quadrature is sufficient for
the reconstruction since

∥∥∥g(x, t`)−∑N
n=0 wnt`nQn(x)

∥∥∥
∞
→ 0 for N → ∞.
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4 Reconstruction of Expansions into Orthogonal Polynomials

4.2 Reconstruction Methods Using Linear Operators

In the previous section we have developed an algorithm for the recovery of sparse ex-
pansions into orthogonal polynomials using a generating function and the generalized
Prony method. In this section we want to take a look at two already existing meth-
ods for the recovery of such expansion using Prony’s method and highlight the major
differences. Both methods use a linear operator for which the orthogonal polynomials
are eigenfunctions. This operator is also known as the Sturm-Liouville operator.

Definition 4.16 (Sturm-Liouville Operator) Let [a, b] ⊂ R a interval, then we can
define the Sturm-Liouville operator Lp,q,ω : C2([a, b])→ C1([a, b]) by

Lp,q,ω f (x) :=
1
ω

(
− d

dx

[
p(x)

d
dx

f (x)
]
+ q(x) f (x)

)
x ∈ (a, b)

with ω, q ∈ C([a, b]) and p ∈ C1([a, b]) with ω(x) > 0 and p(x) > 0 for all x ∈ [a, b].

Remark 4.17 The problem of finding eigenfunctions and eigenvalues of the Sturm-
Liouville operator Lp,q,ω on C2([a, b]) together with the boundary conditions

• α1 f (a) + α2 f ′(a) = 0 for α2
1 + α2

2 > 0,

• β1 f (b) + β2 f ′(b) = 0 for β1 + β2
2 > 0

is called the Sturm-Liouville problem. Is it commonly studied in the field of non-
linear partial differential evolution equations and has applications in quantum me-
chanics, for example the one-dimensional time-independent Schrödinger equation,
see, e.g., [Mar86]. ♦

Lemma 4.18 Let [a, b] ⊂ R an interval and Lp,q,ω be the Sturm-Liouville operator. Then the
following holds.

(i) If ω is the integrable weight function of L2([a, b], ω), then the eigenfunctions of the
Sturm-Liouville operator are orthogonal with respect to the inner product in (4.1).

(ii) The eigenfunctions of the Sturm-Liouville operator are only polynomials if ω, p are cho-
sen such that − p

ω and − p′
ω are polynomials of degree 2 and 1, respectively and q ≡ 0,

i.e. the Sturm-Liouville operator can be simplified to

L p̃,q̃ f := p̃ f ′′(x) + q̃(x) f ′(x) (4.14)

with p̃ := − p
ω and q̃ := − p′

ω .

Proof. For the proof of (i) we refer to [Pry93], Proposition 2.3 and for the proof of (ii)
we refer to [Les62], Theorem 1.

Lemma 4.18 implies that we can use Theorem 2.5 in order to recover sparse expan-
sions into orthogonal polynomials, see [PP13].
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Theorem 4.19 Let Lp,q,ω be the Sturm-Liouville operator. Let p, ω and q be such that − p
ω =:

p̃ and − p′
ω =: q̃ are polynomials of degree 2 and 1, respectively and q ≡ 0. Then the `-th

iteration of the Sturm-Liouville operator is given by

L`
p,q,ω f (x) =

2`

∑
k=1

ak,`(x) f (k)(x) f ∈ C2`([a, b]) (4.15)

for ` ∈N0 with a1,1(x) := q̃(x), a2,1(x) := p̃(x), and for ` ≥ 2, ak,` satisfies the recursion

ak,`(x) =k
(

k− 1
2

p̃′′(x) + q̃ ′(x)
)

ak,`−1(x) +
(
(k− 1) p̃ ′(x) + q̃(x)

)
ak−1,`−1(x)

+ p̃(x)ak−2,`−1(x)
(4.16)

with the convention ak,`(x) = 0 for ` ≥ 1 and k /∈ {1, . . . , 2`}. Moreover, let {Qk | k ∈ N0}
be a set of orthogonal polynomials in Definition 4.1 with corresponding weight function ω and
f be an M-sparse expansion into the orthogonal polynomials Qk as in (4.5). Then f can be
reconstructed using the derivative values f (`)(x0) for ` = 0, . . . , 4M− 2 and x0 ∈ [a, b].

Proof. For the proof of (4.15) with (4.16) we refer to [PP13], Theorem 4.1. Furthermore,
Lemma 4.18 (i) and (ii) imply, that the orthogonal polynomials Qk, k ∈ N0, are the
eigenfunctions of the Sturm-Liouville operator. Therefore, we can apply Theorem 2.5
and the claim follows.

Although this theorem enables us to reconstruct an arbitrary finite expansion into
orthogonal polynomials f , there is one major drawback of this approach.

In practice we usually want to reconstruct a signal or a function from sampled
data, which come in form of functional values f (xj) for sampling points xj with j =
0, . . . , 2M − 1 and not in form of derivative values f (m)(x0) for x0 ∈ R and m =

0, . . . , 2M− 1. Hence, the approach using the Sturm-Liouville operator is not practical.

A different approach for the reconstruction of orthogonal polynomials was introduced
in [Sta18]. We will briefly discuss the method in order to compare it with the one we
derived above. Therefore, we introduce the necessary definitions.

Definition 4.20 (Dual Space) Let V be a normed vector space over a field K. Then
the space V∗ := {ϕ : V → K | ϕ linear} is called the dual space of V. Moreover, the
mapping (·, ·) : V ×V∗ → K with (v, ϕ) := ϕ(v) is called the natural pairing between
V and its dual space V∗.

Definition 4.21 (Adjoint Operator) Let V be a Hilbert space, V∗ be its dual space and
(·, ·) the corresponding natural pairing as in Definition 4.20. Moreover, let A be a
linear operator defined on a dense subspace dom(A) ⊂ V with A : dom(A)→ V. The
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4 Reconstruction of Expansions into Orthogonal Polynomials

operator A∗ : dom(A∗)→ dom(A) is called the (formal) adjoint operator if it satisfies

(Av, ϕ) = (v, A∗ϕ) (4.17)

for all v ∈ dom(A) and ϕ ∈ dom(A∗).

Remark 4.22 The above definition is usually given for unbounded operators A. If A
is continuous and, hence, bounded, we have dom(A) = V. ♦

Since this Chapter focusses on orthogonal polynomials and their expansion, we
consider the Hilbert space L2([a, b], ω).

Theorem 4.23 Let [a, b] ⊂ R and let L2([a, b], ω) be the vector space introduced in Defini-
tion 4.1. Moreover, let Lp,q,ω be the Sturm-Liouville operator given in Definition 4.16. The
following holds.

(i) The space L2([a, b], ω) is self-dual and the natural pairing is the inner product 〈·, ·〉
given in (4.1).

(ii) If p, q are real functions, then the Sturm-Liouville operator is selfadjoint on all functions
that satisfy the boundary conditions given in Remark 4.16.

Proof. For the proof of (i) we refer to [Wer11], Theorem II.2.4. The proof for (ii) can be
found in [Heu06], Section 3 pages 37–38.

Now, we can formulate the dual sampling approach in the context of orthogonal
polynomials.

Theorem 4.24 Let {Qk | k ∈N0} be a set of orthogonal polynomials with Qk ∈ L2([a, b], ω)

and inner product 〈·, ·〉Q as in Definition 4.1. Moreover, let M ∈ N and f be an M-sparse
expansion into the orthogonal polynomials Qk as in (4.5) and A : L2([a, b], ω)→ L2([a, b], ω)

be a linear operator such that AQk = λkQk holds for all k ∈N0. Let A∗ be the adjoint operator
as in Definition 4.21 and φ ∈ dom(A∗) be fixed. Then f can be uniquely reconstructed using
the samples 〈 f , (A∗)`φ〉Q for ` = 0, . . . , 2M− 1.

Proof. Theorem 4.23 (i) implies, that the inner product 〈·, ·〉Q coincides with the natural
pairing on L2([a, b], ω). Furthermore, since the orthogonal polynomials Qk are eigen-
functions of A, we have Qk ∈ dom(A). Consequently, the claim is a direct application
of Theorem 4.1.3. in [Sta18].

Remark 4.25 The function φ ∈ dom(A∗) in the above theorem is called a sampling
kernel in [Sta18]. Furthermore, we can interpret the above theorem as a special
case of the generalized Prony method. Therefore, we define the linear functional
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Fφ : L2([a, b], ω)→ R with Fφ := 〈·, φ〉Q. Application of (4.17) yields

〈 f , (A∗)`φ〉Q = 〈A` f , φ〉Q = Fφ

(
A` f

)
.

Hence, Theorem 2.5 can be applied in order to reconstruct the signal f . ♦

While some first ideas of sampling kernels, adjoint operators and orthogonal poly-
nomials where briefly discussed in [Sta18], the dual sampling approach remained
rather theoretical. In [Sta18], pages 74–75 the choice for a sampling φ with

φ(x) =
∞

∑
k=0

βkQk(x) (4.18)

for |βk| > 0 and ∑∞
k=0 |βk|2 < ∞ was briefly introduced but not further elaborated on.

We take a closer look at these sampling kernels. Using the definition of the adjoint
operator, we can conclude that the needed samples in Theorem 4.24 are of the form

〈 f , (A∗)`φ〉Q = 〈
M

∑
j=1

cnj Qnj ,
∞

∑
k=0

βk(A∗)`Qk〉Q =
∞

∑
k=0

βk

M

∑
j=1

cnj〈Qnj , (A∗)`Qk〉Q

=
∞

∑
k=0

βk

M

∑
j=1

cnj〈A`Qnj , Qk〉Q =
∞

∑
k=0

M

∑
j=1

βkcnj λ
`
nj
〈Qnj , Qk〉Q

=
M

∑
j=1

cnj βnj λ
`
nj

dnj ,

where dnj denotes the constant given in (4.2).
We choose βk = tk for |t| < 1 and k ∈N0. We want to emphasize that this choice of

sampling kernel is indeed possible, if we have uniform convergence of the series given
in (4.18). This yields

〈 f , (A∗)`φ〉Q =
M

∑
j=1

cnj λ
`
nj

tnj dnj .

Comparing these samples with the ones used in Theorem 4.9, we observe that the
major difference is the occurrence of eigenvalues λnj in the dual sampling approach
and therefore our above described method is more advantageous as it omits those
parameters.

Furthermore, this highlights that we do not need the linear operator which has the
orthogonal polynomials Qk, k ∈ N0, as eigenfunctions for the reconstruction method
based on the generating function.

We can specify the operator used in Theorem 4.24.

Theorem 4.26 Let {Qk | k ∈ N0} be a set of orthogonal polynomials with corresponding
inner product 〈·, ·〉Q and generating function g as in (4.4) and let t ∈ C \ {0} such that g is
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well-defined for all x ∈ [a, b]. Let f be an M-sparse expansion into orthogonal polynomials
as in (4.5) for M ∈ N. Furthermore, let Lp,q,ω be the Sturm-Liouville operator given in
Remark 4.16 with p, ω such that − p

ω =: p̃ and − p′
ω =: q̃ are polynomials of degree 2 and 1,

respectively, and q ≡ 0. Then f can be reconstructed using the samples 〈 f , g(·, t)〉Q and

2`

∑
k=1
〈 f , ak,`(·)g(k)(·, t)〉Q

for ` = 1, . . . , 2M− 1 with a1,1(x) := q̃(x), a2,1(x) := p̃(x), and for ` ≥ 2, ak,` satisfies the
recursion

ak,`(x) =k
(

k− 1
2

p̃′′(x) + q̃′(x)
)

ak,`−1(x) +
(
(k− 1) p̃′(x) + q̃(x)

)
ak−1,`−1(x)

+ p̃(x)ak−2,`−1(x)

with the convention ak,` = 0 for ` ≥ 1 and k /∈ {1, . . . , 2`}.

Proof. Theorem 4.18 (ii) implies that the Sturm-Liouville operator Lp,q,ω is self-adjoint
with the orthogonal eigenfunctions Qk for k ∈ N0. Therefore, application of Theorem
4.24 yields that the samples 〈 f , L`

p,q,ωg(·, t)〉Q, ` = 0, . . . , 2M− 1, are sufficient for the
reconstruction of f . Theorem 4.19 yields that the values L`

p,q,ωg(x, t) can be written as
L`

p,q,ωg(x, t) = ∑2`
k=1 ak,`(x)g(k)(x, t) with ak,` satisfying the recursion (4.16).

We note, that for the dual sampling method described above, we do not need deriva-
tive values of the M-sparse expansion f into orthogonal polynomials, but 4M − 2
derivatives of the generating function g, which can be computed beforehand, since
they are independent of the signal f .

Nevertheless, we need to compute 4M− 2 inner products. Thus, in terms of needed
samples our newly developed algorithm is favourable.

4.2.1 Quadratic Sampling Schemes

We also want to introduce a different possible choice for a sampling kernel φ in Theo-
rem 4.24. Instead of φ as in (4.18), we can choose, a finite series as a sampling kernel,
i.e.,

φ(x) =
N

∑
k=1

βkQk(x),

with βk ∈ R \ {0} and N ∈ N. We want to apply Theorem 4.24 for the reconstruction
of an M-sparse expansion into orthogonal polynomials. Thus, we take a closer look at
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the samples, which are needed, i.e.,

〈 f , (A∗)`φ〉Q =

〈
M

∑
j=1

A`cnj Qnj ,
N

∑
k=1

βkQk

〉
Q

=
M

∑
j=1

N

∑
k=1

λ`
nj

cnj βk 〈Qnj , Qk〉Q︸ ︷︷ ︸
=δnj ,k

dnj

` ∈N.

In order to ensure that the above samples are not all vanishing, we need to assume
that N ≥ nj for all j = 1, . . . , M. Hence, we can simply choose

φ(x) =
M

∑
j=1

cnj Qnj(x) = f (x). (4.19)

This yields a quadratic sampling scheme.

Theorem 4.27 Let {Qk | k ∈ N} be the set of orthogonal polynomials corresponding to the
inner product 〈·, ·〉Q on L2([a, b], ω) as in Definition 4.1. Furthermore, let A : L2([a, b], ω)→
L2([a, b], ω) be a linear operator such that AQk = λkQk holds for all k ∈N0. Moreover, let f
be an M-sparse expansion of the form (4.5), i.e.,

f (x) =
M

∑
j=1

cnj Qnj(x)

with cnj ∈ C \ {0} for j = 1, . . . , M. Then the “active” indices nj of the signal f can be
uniquely reconstructed and the coefficients cnj can be reconstructed up to modulus using the
samples 〈A` f , f 〉Q for ` = 0, . . . , 2M− 1 and j = 1, . . . , M. If cnj ∈ R+ for j = 1, . . . , M
holds, then the reconstruction is unique.

Proof. The proof is a constructive one. We define the Prony polynomial

P(z) :=
M

∏
j=1

(z− λnj) =
M

∑
`=0

p`z`

with pM = 1, which is determined by the (unknown) eigenvalues λnj , corresponding
to the “active” polynomials Qnj in (4.5). We consider m ∈ Z, then

M

∑
`=0

p`
〈

A`+m f , f
〉

Q
=

M

∑
`=0

p`

〈
Am+`

(
M

∑
j=1

cnj Qnj

)
,

M

∑
k=1

cnk Qnk

〉
Q

=
M

∑
`=0

p`
M

∑
j=1

M

∑
k=1

cnj cnk〈Am+`Qnj , Qnk〉Q

81



4 Reconstruction of Expansions into Orthogonal Polynomials

=
M

∑
`=0

p`
M

∑
j=1

M

∑
k=1

cnj cnk λm+`
nj
〈Qnj , Qnk〉Q︸ ︷︷ ︸

=δnj ,nk dnj

=
M

∑
j=1

c2
nj

dnj λ
m
nj

M

∑
`=0

p`λ`
nj︸ ︷︷ ︸

=P(λnj )=0

= 0.

Thus, we can solve the Hankel system(
〈Am+` f , f 〉Q

)M−1

m,`=0
· (p0, p1, . . . , pM−1)

T = −
(
〈AM+` f , f 〉Q

)M−1

`=0

for the coefficients of the Prony polynomial. Using the coefficients we can compute its
roots λnj for j = 1, . . . , M.

Finally, we solve the following linear system

〈A` f , f 〉Q =
M

∑
j=1

c2
nj

dnj λ
`
nj

for ` = 0, . . . , 2M− 1,

and compute c2
nj

dnj and with this |cnj | for j = 1, . . . , M.

Corollary 4.28 Let {Qk | k ∈ N} be the set of orthogonal polynomials corresponding to
the inner product 〈·, ·〉Q and A : L2([a, b], ω) → L2([a, b], ω) be a linear operator such that
AQk = λkQk for k ∈N0. Furthermore, let f be an M-sparse expansion of the form (4.5), i.e.,

f (x) =
M

∑
j=1

cnj Qnj(x)

with cnj ∈ C \ {0} for j = 1, . . . , M. Furthermore, let xk ∈ [a, b] be pairwise distinct sampling
points for k = 0, . . . , M. Then the signal f can be uniquely reconstructed using the samples
〈A` f , f 〉Q and f (xk) for ` = 0, . . . , 2M− 1, k = 1, . . . , M, and
j = 1, . . . , M.

Proof. We can apply Theorem 4.27 in order to recover the “active” indices nj for j =
1, . . . , M, of the signal f . The coefficients cnj for j = 1, . . . , M can be computed by
solving the linear system

f (k) =
M

∑
j=1

cnj Qnj(xk) for k = 1, . . . , M.
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4.3 Reconstruction Method Using q-analogs

In this section we want to illustrate that the generalized Prony method can theoreti-
cally be employed for further and more general expansions into orthogonal polynomi-
als if we can view them as eigenfunctions of suitable linear operators. Therefore, we
use the Askey-Scheme and derive a approximation based approach for the reconstruc-
tion of orthogonal polynomials. The Askey-Scheme is a way of organizing orthogonal
polynomials of hypergeometric or basic hypergeometric type into a hierarchy. Further
information on this topic can be found in [KLS10]. We begin by introducing basic def-
initions of q-calculus. We want to mention that these results are of rather theoretical
nature.

The following equation is the starting point for the theory of q-analogs,

lim
q→1

1− qn

1− q
= n for n ∈N0.

Using this, we define the q-analogs for factorials as well as for binomial coefficients.

Definition 4.29 (q-Bracket, q-Shifted Factorial) Let n, k ∈ N0 and 0 < q < 1. Then we
call the expression

[n]q :=
1− qn

1− q
(4.20)

the q-bracket of n. Furthermore, for a ∈ R we define the q-shifted factorical (or
q-analog of the Pochhammer symbol) as

(a; q)n :=
n−1

∏
k=0

(
1− aqk

)
(4.21)

with (a; q)0 := 1 and (a, q)∞ := ∏∞
k=0(1− aqk).

Based on these definitions we can now construct a special differential operator.

Definition 4.30 (q-Differential Operator) Let f : [0, ∞) → C be an arbitrary function
and 0 < q < 1. Then the q-derivative or Jackson-derivative of f at the point x ∈ (0, ∞)

is defined as

(D̃q f )(x) :=


f (qx)− f (x)

x(q−1) x 6= 0

f ′(0) x = 0.

We call D̃q the q-differential operator. If the function f is differentiable, we have
limq→1 D̃q f (x) = f ′(x), see [KLS10], Section 1.15.
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4 Reconstruction of Expansions into Orthogonal Polynomials

Remark 4.31 There also exists a corresponding q-integral. Let f : [0, ∞) → C be an
arbitrary real function and 0 < q < 1. Then the q-integral or Jackson-integral of f on
(0, z) is defined as

∫ z

0
f (t)dqt := z(1− q)

∞

∑
n=0

f (qnz)qn.

The Jackson integral can also be defined on (0, ∞) by

∫ ∞

0
f (t)dq(t) := (1− q)

∞

∑
n=−∞

f (qn)qn.

For a continuous function f we have

lim
q→1

∫ z

0
f (t)dq(t) =

∫ z

0
f (t)dt.

♦

In the theory surrounding q-analogs one finds that for a lot of classical polynomials
such as Laguerre and Legendre polynomials, there exists a q-analog version and for
each Sturm-Liouville-equation their exists a q-difference equation. We will use this to
approximate these classical polynomials using the q-approach.

Definition 4.32 (q-Hypergeometric Function) Let 0 < q < 1, n, j, k ∈N0 and
a1, a2, . . . , aj, b1, b2, . . . , bk ∈ R. Then the basic hypergeometric or q-hypergeometric

function for |z| < 1 is given by

jφk

[
a1 a2 . . . aj

b1 b2 . . . bk
; q, z

]
=

∞

∑
n=0

(a1, a2, . . . , aj; q)n

(b1, b2, . . . , bk, q; q)n

(
(−1)nq(

n
2)
)1+k−j

zn

with (a1, a2, . . . , aj; q)n := ∏
j
m=1(am; q)n the q-shifted factorial as in (4.21) For j = k + 1

we get the special case

k+1φk

[
a1 a2 . . . ak+1

b1 b2 . . . bk
; q, z

]
=

∞

∑
n=0

(a1, a2, . . . , ak+1; q)n

(b1, b2, . . . , bk, q; q)n
zn.

Definition 4.33 (Big q-Jacobi polynomials) Let 0 < q < 1, n ∈ N0 and a, b, c, x ∈ R.
Then the big q-Jacobi polynomials Pn are defined as

Pn(x; a, b, c; q) := 3φ2

[
q−n abqn+1 x
aq cq

; q, q

]
.

The properties of the big q-Jacobi polynomials can be found in [KLS10], Chapter 14,
Section 14.5. We summarize some in the following theorem.
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Theorem 4.34 Let 0 < q < 1, a, b, c, x ∈ R and n, m ∈N0. Then the following holds.

(i) For 0 < aq < 1, 0 ≤ bq < 1 and c < 0 the big q-Jacobi polynomials satisfy the following
orthogonality relation

∫ aq

cq

(a−1x, c−1x; q)∞

(x, bc−1x; q)∞
Pm(x; a, b, c; q)Pn(x; a, b, c; q)dqx

=aq(1− q)
(a, abq2, a−1c, ac−1q; q)∞

(aq, bq, cq, abc−1q; q)∞

(1− abq)
(1− abq2n+1)

(q, bq, abc−1q; q)n

(aq, abq, cq, ; q)n
(−acq2)nq(

n
2)δm,n.

(ii) The big q-Jacobi polynomials obey the limiting behaviour

lim
q→1

Pn(x; qα, qβ, 0; q) =
P(α,β)

n (2x− 1)

P(α,β)
n (1)

,

and for arbitrary γ ∈ R≥0

lim
q→1

Pn(x; qα, qβ,−qγ; q) =
P(α,β)

n (x)

P(α,β)
n (1)

.

Here, P(α,β)
n (x) denotes the classical Jacobi polynomials as in Definition 4.2.

(iii) The big q-Jacobi polynomials satisfy the q-difference equation

q−n(1− qn)(1− abqn+1)x2y(x) = B(x)y(qx)− [B(x) + D(x)]y(x) + D(x)y(q−1x)

with B(x) := aq(x− 1)(bx− c) and D(x) := (x− aq)(x− cq).

Therefore, we can reconstruct M-sparse expansions into big q-Jacobi polynomials,
using the generalized Prony method and Theorem 2.5.

We use the difference equation given in 4.34(iii) and define the following linear oper-
ator.

Definition 4.35 (big q-Jacobi Sturm-Liouville operator) Let 0 < 1 < q and α, β ∈ R.
Then the big q-Jacobi Sturm-Liouville operator L(α,β)

q is given by

L(α,β)
q :=

(
qα+β+1Dq − (qα+β+1 + 1)Id + D 1

q

)
− 1

x

(
qα+β+1Dq − qα+1(1 + qβ)Id + qα+1D 1

q

)
,

(4.22)

where
(

Dq f
)
(x) = f (qx) is the dilation operator as in (4.9) and Id f (x) = f (x) the

identity operator.

The big q-Jacobi polynomials Pn(x; qα, qβ, 0; q) as in Definition 4.33 are eigenfunctions
of this operator with eigenvalues

λ
(α,β)
n = q−n(1− qn)(1− qα+βqn+1).
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4 Reconstruction of Expansions into Orthogonal Polynomials

Therefore, we can use the generalized Prony method in order to uniquely recon-
struct a sparse expansion into big q-Jacobi polynomials such as

f (x) =
M

∑
j=1

cnj Pnj(x; qα, qβ, 0; q) (4.23)

using only the samples (L(α,β)
q )k f (x0) for k = 0, . . . , 2M− 1 and x0 ∈ R with x0 6= 0.

Hence, we can conclude the following theorem.

Theorem 4.36 Let M ∈N, 0 < q < 1 and x0 ∈ R and f be an M-sparse expansion into big
q-Jacobi polynomials, i.e., f is of the form (4.23). Then f can be reconstructed using the 2M
samples (L(α,β)

q )k f (x0), k = 0, . . . , 2M− 1, with L(α,β)
q as in (4.22).

Remark 4.37 There also exists a continuous version for q-Jacobi polynomials. Let
0 < q < 1, n ∈ N0 and α, β, x ∈ R with x = cos(θ). Then the continuous q-Jacobi
polynomials P(α,β)

n are defined as

P(α,β)
n (x|q) :=

(qα+1; q)n

(q; q)n
4φ3

[
q−n qα+β+n+1 q0.5α+0.25eiθ q0.5α+0.25e−iθ

qα+1 −q0.5(α+β+1) −q0.5(α+β+2) ; q, q

]

and they possess the following limiting behaviour

lim
q→1

P(α,β)
n (x|q) = P(α,β)

n (x),

where P(α,β)
n denote the original Jacobi polynomials.

These continuous q-Jacobi polynomials also satisfy a q-difference equation, which is
given in [KLS10], Chapter 14, Section 14.10, Equation 14.10.5, as follows,

(1− q)2D̃q[w̃(x; qα+1, qβ+1|q)D̃qy(x)] + λnw̃(x; qα, qβ|q)y(x) = 0,

where D̃q denotes the q-differential operator as in Definition 4.30. with

y(x) = P(α,β)
n (x|q),

λn = 4q−n−1(1− qn)(1− qn+α+β+1) and

w̃(x; qα, qβ|q) =

∣∣∣ (e2iθ ;q)∞
(q0.5α+0.25eiθ ,q0.5α+0.75eiθ ,−q0.5β+0.25eiθ ;q0.5)∞

∣∣∣2
√

1− x2

for x = cos θ. Therefore, we can also construct an operator, such that the continuous
q-Jacobi polynomials are eigenfunctions of this operator. Since such an operator is
based on the q-differential operator and the function w̃, this is impractical.

♦
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We want to use the limiting behaviour of the Jacobi polynomials to derive an ap-
proximation based Prony algorithm, i.e., we approximate the Sturm-Liouville operator
given in (4.16) and its iterations by the big q-Jacobi Sturm-Liouville operator and its
powers. This gives rise to the following Algorithm.

Algorithm 6 q-Analog Based Prony Algorithm for the Reconstruction of Orthogonal
Polynomials

Input: M ∈N, 0 < q < 1, x0 6= 0, α, β ∈ R and L(α,β)
q f (2x0 − 1) for k = 0, . . . , 2M− 1

1: Set fk = (L(α,β)
q f )k(2x0 − 1) for k = 0, . . . , 2M − 1 and form the Hankel-matrix

HM := ( fk+`)
M−1
k,`=0 and solve the system HM · p = −f with p := (pk)

M−1
k=0 and

f := ( fM+k)
M−1
k=0 .

2: Define pM = 1 and find all roots λnj , j = 1, . . . , M of the polynomial P(z) :=

∑M
k=0 pkzk and compute nj using λnj = q−nj − qα+β+1 − 1 + qα+β+1+nj . Set ñj as the

integer closest to nj.
3: Determine the unknowns c̃nj , j = 1 . . . , M as the solution of the Vandermonde-

like-system V2M,M · c̃ = f2M with V2M,M := (λk
nj
)2M−1,M

k=0,j=1 ,

c̃ = (c̃nj)
M
j=1 := (cnj Pñj(2x0 − 1))M

j=1 and f2M = ( f j)
2M−1
j=0 . Compute cnj =

c̃nj
Pñj

(2x0−1)

for j = 1, . . . , M.
Output: cnj ∈ C \ {0} and ñj ∈ N0 for j = 1, . . . , M as approximations of the parame-

ters in (4.5)

We remark that the iterated action
(

L(α,β)
q

)k
is non trivial as the terms(

qα+β+1Dq − (qα+β+1 + 1)Id + D 1
q

)
and 1

x

(
qα+β+1Dq − qα+1(1 + qβ)Id + qα+1D 1

q

)
do

not commute since(
qα+β+1Dq − (qα+β+1 + 1)Id + D 1

q

) 1
x

(
qα+β+1Dq − qα+1(1 + qβ)Id + qα+1D 1

q

)
= q2(α+β)+1 1

x
D2

q +
1
x

qα+2D2
1
q
− [(qα+β+1(qα+β+1 + qα+β + qα + 1)]

1
x

Dq

+
1
x
[q2α+β+1 + (qα+β+1 + 1)(qα+1 + qα+β+1) + qα+β+2]Id

− 1
x
[(qα+β+1 + 1)qα+1 + (qα+2 + qα+β+2)]D 1

q

6= q2(α+β+1) 1
x

D2
q +

1
x

qα+1D2
1
q
− 1

x
[qα+β+1(2qα+β+1 + qα+1 + 1)]Dq

+
1
x
[qα+β+1 + qα+1(1 + qβ)(qα+β+1 + 1) + q2α+β+2]Id

− 1
x
[qα+1(qα+β+1 + qβ + 2)]D 1

q

=
1
x

(
qα+β+1Dq − qα+1(1 + qβ)Id + qα+1D 1

q

) (
qα+β+1Dq − (qα+β+1 + 1)Id + D 1

q

)
.

Consequently, the above derived algorithm is of a rather theoretical nature.

87



4 Reconstruction of Expansions into Orthogonal Polynomials

Example 4.38 (A Toy Example) The Chebyshev polynomials of first kind Tn(x) are
given as P(−0.5,−0.5)

n , i.e., α = β = −0.5. We now consider f (x) = cTn(x) with parame-
ters c = 1 and n = 3 that need to be recovered.

We want to sample (L(α,β)
q )k f (2x− 1)(x0) for k = 0, 1 for x0 = 1 and choose q = 0.99.

Therefore, we have qα+β+1 = q0 = 1 and

L(−0.5,−0.5)
q =

(
Dq − 2Id + D 1

q

)
− 1

x

(
Dq − (1 + q0.5)Id + q0.5D 1

q

)
with the eigenvalues

λ
(−0.5,−0.5)
n = q−n(1− qn)(1− q−1qn+1).

Thus, we need the samples

f (2x− 1)(1) = 1,

(L(−0.5,−0.5)
q ) f (2x− 1)(1) = (0.990.5 − 1) f (2x− 1)(1) + (1− 0.990.5) · f (2x− 1)(q−1)

= (0.990.5 − 1) + (1− 0.990.5) · 1.18675 = 0.000936096.

This yields p0 = −0.000936096 and p1 = 1. Therefore, the Prony polynomial is given
as P(z) = −0.000936096 + z. The root is λn = 0.000936096 = 0.99−n(1− 0.99n)2, and
approximate this for n ∈ N0. The solution is given as n ≈ 3.04413, and, thus, we get
n = 3. Now we need to solve the linear system

1 = cT3(1),

0.000936096 = cT3(1)λ3,

which yields c = 1.
The reconstruction of the parameter c is exact and the error for the recovery of n is

0.04413. Further stability analysis lies beyond the scope of this thesis, but this result
implies that the derived Algorithm is of instable and as of now not of practical use. ♦

4.4 Numerical Examples and Applications

In this section we want to illustrate Algorithm 5 using different examples.

4.4.1 Reconstruction of Sparse Chebyshev Expansions of First Kind

We will begin by considering sparse expansions into Chebyshev polynomials, which
we have also studied in Section 3.3.

We recall that the Chebyshev polynomials of first kind are a special case of the Jacobi
polynomials for α = β = − 1

2 . Therefore, Lemma 4.3 implies that they are orthogonal
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with respect to the scalar product

〈 f , g〉T :=
∫ 1

−1
f (x)g(x)

1√
(1− x2)

dx

with

〈Tn, Tm〉T =
∫ 1

−1
Tn(x)Tm(x)

1√
(1− x2)

dx =


π n = m = 0,
π
2 n = m 6= 0,
0 n 6= m.

We have seen the generating functions for Chebyshev polynomials of first kind in
Table 4.1 and illustrate them in Figure 4.1.

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 4.1: Different generating functions for the Chebyshev polynomials of first kind
for the parameter t = 1√

2
. The red line shows the generating function for

the weights wk = 1 for k ∈ N0, the blue line the generating function for
wk =

1
k! for k ∈N0 and the black line for the weights wk =

1
k for k ∈N.

Thus, we can formulate the following theorem for the reconstruction of Chebyshev
expansions using the generating function g(x, t) = 1−xt

1−2xt+t2 .

Theorem 4.39 Let M ∈N, |t| < 1 and f be an M-sparse expansion into Chebyshev polyno-
mials of first kind i.e.,

f (x) =
M

∑
j=1

cnj Tnj(x).
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4 Reconstruction of Expansions into Orthogonal Polynomials

Then f can be reconstructed using the samples

∫ 1

−1
f (x)

1− xt`

1− 2xt` + t2`
1√

(1− x2)
dx

for ` = 1, . . . , 2M.

Proof. We employ the fact that 1−xt
1−2xt+t2 is a generating function for the Chebyshev

polynomials. Thus, Theorem 4.9 yields the claim.

Corollary 4.40 Let f be a Chebyshev expansion of the form (3.33) and N ∈ N an upper
bound for the degree of the polynomial f . Furthermore, let t ∈ R \ {0} such that |t| < 1.
The signal f can be reconstructed using the samples f

(
cos

(
(2k−1)π

2N

))
for k = 1, . . . , N.

Moreover, the absolute value of the error obtained from approximating the integral

∫ 1

−1
f (x)

1− xt`

1− 2xt` + t2`
1√

1− x2
dx (4.24)

via Gauss quadrature can be bounded by

π
M

∑
j=1
|cnj |

∥∥∥∥∥ 1− xt`

1− 2xt` + t2` −
N

∑
n=0

t`nTn(x)

∥∥∥∥∥
∞

for ` = 1, . . . , M and cnj , j = 1, . . . , M, the coefficients of the sparse Chebyshev expansion f .

Proof. Theorem 4.7 implies that the ordinary generating function g(x, t) = 1−xt
1−2xt+t2

convergences uniformly for all x ∈ [−1, 1] and |t| < 1. We apply Theorem 4.14 and
can reconstruct f using only the N samples f (xk), k = 1, . . . , N, where xk denotes the
k-th root of the polynomial QN . Moreover, Lemma 3.4 (iii) yields xk = cos

(
(2k−1)π

2N

)
.

Lemma 3.4 (iv) and Corollary 4.15 imply that the absolute value of the error given
by applying Gaussian quadrature to the integral (4.24) is bounded by∣∣∣∣∣〈 f , g(·, t`)〉Q −

N

∑
j=1

ωi f (xi)g(xi, t`)

∣∣∣∣∣ ≤ N

∑
i=1
|ωi f (xi)|

∥∥∥∥∥g(x, t`)−
N

∑
n=0

t`nTn(x)

∥∥∥∥∥
∞

≤
N

∑
i=1
|ωi|

M

∑
j=1
|cnj | · | cos(nj arccos(xi))|

∥∥∥∥∥g(x, t`)−
N

∑
n=0

t`nTn(x)

∥∥∥∥∥
∞

≤
N

∑
i=1
|ωi|

M

∑
j=1
|cnj |

∥∥∥∥∥g(x, t`)−
N

∑
n=0

t`nTn(x)

∥∥∥∥∥
∞

.

The weights ωi, i = 1, . . . , N, given in (4.12) are ωi =
π
N , see [AS64], Equation 25.4.38,

and, hence, the claim follows.

As seen in Table 4.1 there is more than one generating function for the Chebyshev
polynomials of first kind.
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In the following we will now take a closer look at the reconstruction using the
exponential generating function.

Theorem 4.41 Let M ∈ N and f be an M-sparse Chebyshev expansion as in (3.33) and
t ∈ C be a primitive N-th root of unity with N � 2M . Then f can be reconstructed using
the samples

∫ 1

−1
f (x)et`x cos(t`

√
1− x2)dx

for ` = 1, . . . , 2M.

Proof. The series ∑∞
k=0

1
k! t

kTk(x) converges uniformly for all t ∈ C due to the Weier-
strass M-test, since |Tk(x)| ≤ 1 for x ∈ [−1, 1] and ∑∞

k=0
1
k! t

k = et hold. Since
etx cosh(t

√
1− x2) is a generating function for f , we can apply Theorem 4.9 and the

claim follows.

Analogously, to the case of the ordinary generating function we approximate the
needed samples using Gaussian quadrature.

Corollary 4.42 Let M ∈ N and f be an M-sparse Chebyshev expansion of the form (3.33)
and N ∈ N an upper bound on the degree of the polynomial f . Furthermore, let t ∈ C be a
primitive L-th root of unity with L � 2M. Then the signal f can be reconstructed using the
samples f

(
cos

(
(2k−1)π

2N

))
for k = 1, . . . , N. Moreover, the absolute value of the error given

obtained by approximating the integral

∫ 1

−1
f (x)et`x cos(t`

√
1− x2)

1√
1− x2

dx (4.25)

via Gauss quadrature can be bounded by

π
M

∑
j=1
|cnj |

∥∥∥∥∥et`x cos(t`
√

1− x2)−
N

∑
n=0

t`n

n!
Tn(x)

∥∥∥∥∥
∞

for ` = 1, . . . , M.

Proof. We consider the exponential generating function g(x, t) = ∑∞
n=0

tn

n! Qn(x). The
Weierstrass M-test implies that the right hand side is uniformly convergent for x ∈
[−1, 1] and t as assumed. Theorem 4.14 yields that f can be reconstructed using the
samples f (xk) with xk = cos

(
(2k−1)π

2N

)
, k = 1, . . . , N, denoting the roots of the N-th

Chebyshev polynomial as in Lemma 3.4 (iii). Corollary 4.15 and Lemma 3.4 (iv) imply
that the absolute value of the error of the Gaussian quadrature of the integral (4.25)
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4 Reconstruction of Expansions into Orthogonal Polynomials

can be bounded by∣∣∣∣∣〈 f , g(·, t`)〉Q −
N

∑
j=1

ωi f (xi)g(xi, t`)

∣∣∣∣∣ ≤ N

∑
i=1
|ωi f (xi)|

∥∥∥∥∥g(x, t`)−
N

∑
n=0

t`n

n!
Tn(x)

∥∥∥∥∥
∞

≤
N

∑
i=1
|ωi|

M

∑
j=1
|cnj | · | cos(nj arccos(xi))|

∥∥∥∥∥g(x, t`)−
N

∑
n=0

t`n

n!
Tn(x)

∥∥∥∥∥
∞

≤
N

∑
i=1
|ωi|

M

∑
j=1
|cnj |

∥∥∥∥∥g(x, t`)−
N

∑
n=0

t`n

n!
Tn(x)

∥∥∥∥∥
∞

.

Since ωi =
π
N , see [AS64], Equation 25.4.38, the claim follows.

Example 4.43 We consider the following signal:

f (x) = −T2(x) + 2.5T4(x) + 0.7T9(x) + 0.9T11(x)− 1.2T14(x). (4.26)

This is a 5-sparse Chebyshev expansion. We use Algorithm 5, and compare the re-
construction using the different generating functions given in Table 4.1 to calculate
approximations c̃nj and ñj of the original parameters cnj and nj for j = 1, . . . , M as
shown in Table 4.2 and Table 4.3, respectively. For the ordinary generating function
and the generating function with weights 1

n , we choose t = 1√
2

and for the exponential
generating function we choose t = exp

(
πi
15

)
. Furthermore, we use Gaussian quadra-

ture with the samples f
(

cos
(

2k−1
200

))
for k = 1, . . . , 100. The error in the reconstruction

of the indices of the “active” basis polynomials Tnj and the corresponding coefficients
cnj for j = 1, . . . , 5 are shown in Table 4.2 and Table 4.3, respectively.

j nj |nj − ñj| (wn = 1) |nj − ñj| (wn = 1
n ) |nj − ñj| (wn = 1

n! )

j = 1 2 3.01248 · 10−12 2.14895 · 10−12 7.99312 · 10−14

j = 2 4 4.94558 · 10−10 7.18446 · 10−10 1.02602 · 10−12

j = 3 9 8.80341 · 10−5 2.94123 · 10−4 1.60405 · 10−7

j = 4 11 0.00133 0.00547 1.48308 · 10−5

j = 5 14 0.00247 0.01291 0.00228

Table 4.2: Error in the numerical evaluation of indices of the “active” basis polynomials
Tnj of the sparse Chebyshev expansion (4.26) using Algorithm 5 and different
generating functions.
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j cnj |cnj − c̃nj | (wn = 1) |cnj − c̃nj | (wn = 1
n ) |cnj − c̃nj | (wn = 1

n! )

j = 1 −1 1.21369 · 10−11 8.66718 · 10−12 1.40923 · 10−13

j = 2 2.5 2.49116 · 10−9 3.63626 · 10−09 3.10319 · 10−12

j = 3 0.7 0.00015 0.00049 1.57102 · 10−7

j = 4 0.9 0.00076 0.00312 1.79510 · 10−5

j = 5 −1.2 0.00063 0.00335 0.00437

Table 4.3: Error in the numerical evaluation of coefficients cnj of the sparse Chebyshev
expansion (4.26) using Algorithm 5 and different generating functions.
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Figure 4.2: Original signal f of the form (4.26). The reconstructed signal was obtained
by Corollary 4.42 and Algorithm 5 and is shown in red. The orignal signal
f is shown in blue. Both signals cannot be distinguished visually.

Here, since we know that the degrees nj of the polynomials are integers, we have
rounded the reconstructed values ñj to the next integer before proceeding with the
last step of Algorithm 5. The signal f and its reconstruction based on the exponential
generating function are shown in Figure 4.2.

We observe, that the reconstruction method using the exponential generating func-
tion is slightly better than the reconstruction method using the other generating func-
tions. In particular, we perceive that the reconstruction error is larger for the higher
indices, which can be explained by the approximation error for the Gaussian quadra-
ture derived in Corollary 4.42 and Corollary 4.40. ♦

Example 4.44 We want to compare the reconstructions methods based on the different
generating functions given in Table 4.1 in a more detailed way. Therefore, we consider
100 different randomly generated M-sparse Chebyshev expansions as in (3.33) with
M = 4 and compare the average of the maximal reconstruction errors.
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4 Reconstruction of Expansions into Orthogonal Polynomials

The “active” indices nj have been drawn uniformly from {1, . . . , 17} and the param-
eters cnj from {−20, . . . , 20} \ {0} for j = 1, . . . , 4. Moreover, we compute the largest
difference between the “active” indices nj and the corresponding coefficients cnj re-
spectively, and the parameters ñj and c̃nj recovered by Algorithm 5, for j = 1, . . . , 4.

Additionally, we average these values over the 100 calculations. We set n := (nj)
4
j=1,

c = (cnj)
4
j=1, ñ := (ñj)

4
j=1 and c̃ = (c̃nj)

4
j=1, then, for each generating function we define

the reconstruction failure err respectively by

errn :=
1

100

100

∑
j=1
||n− ñ||∞,

errc :=
1

100

100

∑
j=1
||c− c̃||∞.

The result of this computation is presented in Table 4.4. We observe that all generating
functions given in Table 4.1 give similar results.

One possible explanation for the obtained errors is that the absolute value of the
coefficients cnj , j = 1, . . . , 4 can be relatively big, i.e., 1 < |cnj | ≤ 20. Furthermore, it
is possible that the indices nj, j = 1, . . . , 4, can all be relatively big and close to 17.
Therefore, they may negatively impact the error of the Gaussian quadrature.

err wn = 1 wn = 1
n wn = 1

n!

errn 0.78169 0.85064 0.65250
errc 0.22439 0.67256 0.32215

Table 4.4: Performance of the reconstruction of 4-sparse Chebyshev expansions using
Algorithm 5 and different generating functions.

♦

4.4.2 Reconstruction of Sparse Legendre Expansions

In the following section we will illustrate the reconstruction method described in this
chapter using Legendre polynomials. Therefore, we recall the definition of the Legen-
dre polynomials and their most important properties.

Definition 4.45 (Legendre Polynomial) Let n ∈ N0 and x ∈ [−1, 1]. Then the Legen-
dre polynomial Pn of degree n is defined as the solution of the differential equation

d
dx

(
(1− x2)

d
dx

y(x)
)
+ n(n + 1)y(x) = 0 (4.27)

with Pn(1) = 1.

The Legendre polynomials are a special case of the Jacobi polynomials given in
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Defintion 4.2 with α = β = 0, see [AS64], Section 4.1. Therefore, Lemma 4.3 implies,
that the Legendre polynomials are orthogonal with respect to the weight function
ω ≡ 1, i.e.,

∫ 1

−1
Pn(x)Pm(x)dx =

2
2n + 1

δn,m. (4.28)

Furthermore, according to Theorem 4.6, the ordinary generating function for the Leg-
endre polynomials is given by

∞

∑
n=0

Pntn =
1√

1− 2xt + t2
. (4.29)

The convergence of the above series holds for |t| < 1, since

|Pn(x)tn| ≤ |Pn(x)|︸ ︷︷ ︸
≤1

|t|n ≤ |t|n.

Thus, the Weierstrass M-test yields uniform convergence. Therefore, we arrive at the
following theorem.

Theorem 4.46 Let M ∈N and f be an M-sparse expansion into Legendre polynomials, i.e.,

f (x) =
M

∑
j=1

cnj Pnj(x) (4.30)

with cnj ∈ C \ {0} and nj being the indices of the “active” Legendre polynomials for j =

1, . . . , M with 0 ≤ n1 < n2 · · · < nM. Then the signal f can be reconstructed using the
samples

∫ 1

−1
f (x)

1√
1− 2xt` + t2`

dx (4.31)

for ` = 1, . . . , 2M.

Proof. Equation (4.29) yields, that 1√
1−2xt+t2 is the ordinary generating function for the

Legendre polynomials. Therefore, we can apply Theorem 4.9 and the claim follows.

Corollary 4.47 Let M ∈ N and f be an M-sparse expansion into Legendre polynomials
as in (4.30) and N ∈ N an upper bound on the degree of the polynomial f . Furthermore,
let t ∈ R \ {0} such that |t| < 1. Let xk, k = 1, . . . , N, be the k-th root of the N-th
Legendre polynomial PN . Then the signal f can be reconstructed using the samples f (xk)

for k = 1, . . . , N. Moreover, the absolute value of the error obtained from approximating the
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integral

∫ 1

−1
f (x)

1
1− 2xt` + t2` dx (4.32)

via Gauss quadrature can be bounded by

N

∑
i=1

2
|(1− xi)||(P′N(xi))2|

M

∑
j=1
|cnj |

∥∥∥∥∥ 1
1− 2xt` + t2` −

N

∑
n=0

t`nPn(x)

∥∥∥∥∥
∞

for ` = 1, . . . , M and cnj , j = 1, . . . , M, the coefficients of the sparse Legendre expansion f .

Proof. The generating function g(x, t) = 1
1−2xt+t2 converges uniformly. Theorem 4.14

yields that f can be reconstructed from the values f (xi), where xi denotes the i-th root
of the Legendre polynomial PN . The weights ωi of the Gaussian quadrature are given
by

ωi =
2

(1− xi)(P′N(xi))2

for i = 1, . . . , N, see [AS64], Equation 23.4.32. Hence, |Pn(x)| ≤ 1 for all n ∈ N0 and
application of Corollary 4.15 yield the claim.

Example 4.48 We want to illustrate the reconstruction method with an example.
Therefore, we consider a 4-sparse Legendre expansion. We use Algorithm 5 to calcu-
late approximations ñj and c̃nj of the original parameters nj and cnj for j = 1, . . . , 4 as
shown in Table 4.5. The needed samples were approximated using Gaussian quadra-
ture of order N = 50. The roots of the Legendre polynomials were computed using the
Newton method with initial guess yk = cos

(
(2k+1)π
(2N)

)
+
( 0.27

N

)
sin
(

π
(
−1 + 2k

N

)
N−1
N+1

)
for the k-th root with k = 0, . . . , N− 1. Furthermore, we choose t = 1√

2
. Since we know

that the orders nj of the polynomials are integers, we have rounded the values of the
reconstructed values ñj, j = 1, . . . , 4, to the next integer before proceeding with the last
step of Algorithm 5. Even though we obtain small errors in the recovered parameters,
the reconstruction is accurate, as depicted in Figure 4.3.

j nj cnj ñj c̃nj

j = 1 1 −1 0.99999999999999 −0.99999999999998
j = 2 7 1 6.99999999404930 0.99999998854422
j = 3 11 2 10.9999989830414 1.99999839505289
j = 4 25 −2 25.0193267666628 −2.01316759005214

Table 4.5: Numerical evaluation of the indices of the “active” basis polynomials and
corresponding coefficients of the sparse Legendre expansion (4.30) using
Algorithm 5 and the ordinary generating function.
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Figure 4.3: 4-sparse Legendre expansion with parameters given in Table 4.5 and its
reconstruction. The reconstructed signal was obtained by Algorithm 5 and
is shown in red. The original signal is shown in blue. Both signals cannot
be distinguished visually.

♦

Example 4.49 Finally, we also want to compare our Algorithm with the (classical)
”brute force“ Gaussian quadrature approach. Therefore, we consider an M-sparse
expansion f into Legendre polynomials as in (4.30) and N an upper bound on the
degree of f . In order to determine the “active” Legendre polynomials Pnj as well as
the corresponding coefficients cnj , j = 1, . . . , M we compute the inner products

〈 f , P`〉P = 〈
M

∑
j=1

cnj Pnj , P`〉P =
M

∑
j=1

cnj〈Pnj , P`〉P =

{
cnj

2
2nj+1 ` = nj,

0 ` 6= nj
(4.33)

for ` = 1, . . . , N. Hence, the “active” Legendre polynomials Pnj are obtained by the
non-vanishing inner products and the corresponding coefficients cnj can be computed
by

cnj =
〈 f , Pnj〉P(2nj + 1)

2

for j = 1, . . . , M. If the parameter M is known, deg( f ) + 1 inner products are sufficient
for the reconstruction. If M is unknown, we need to compute N + 1 inner products for
the recovery of the M-sparse expansion. We use Gaussian quadrature of order 2N and
note that Theorem 4.13 implies, that the Gaussian quadrature is exact, since we have
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deg( f · Pj) ≤ deg( f ) + deg(Pj) < 2N. In particular, we need N samples for each inner
product. In fact, this method is not only applicable for Legendre polynomials but for
all types of orthogonal polynomials considered in Table 4.1.

We consider the following 5-sparse expansion into Legendre polynomials:

f (x) = 0.5P0(x)− 4P5(x) + 0.2P8(x) + 8P11(x)− 3P21(x). (4.34)

We use the classical Gaussian quadrature approach as described above and compare
the results with the recovery obtained by Algorithm 5 using the ordinary generating
function. In both cases we use the upper bound N = 30. Furthermore, we note that
even though the Gaussian quadrature is exact for the inner products considered in
(4.33), we may obtain small errors due to machine precision. Therefore, we consider
a inner product to be vanishing if it is smaller than a predefined threshold parameter
ε > 0. For our numerical example we use ε = 10−14. The recovered values ñj and c̃j,
for j = 1, . . . , 5, for the approach by Gaussian quadrature and Algorithm 5 are shown
in Table 4.6.

j nj cnj ñj (Algo. 5) c̃nj (Algo. 5) ñj (Quadrature) c̃j (Quadrature)

j = 1 0 0.5 4.1644 · 10−15 0.500000000000006 0 0.5
j = 2 5 −4 5.0000 −3.999999951507359 5 −4.000000000000007
j = 3 8 0.2 8.0001 0.200024082438281 8 0.199999999999998
j = 4 11 8 11.0001 8.000295666331050 11 8.000000000000005
j = 5 21 −3 20.8985 2.902549580175646 21 −3.000000000000013

Table 4.6: Numerical evaluation of the indices of the “active” basis polynomials and
corresponding coefficients of the sparse Legendre expansion (4.34) using
the Gaussian quadrature approach as well as Algorithm 5 and the ordinary
generating function.

We note, that the identification of the indices of the “active” Legendre polynomials
is indeed exact by design of the algorithm. Due to the exactness of the Gaussian
quadrature, we only obtain errors due to machine epsilon and hence, the recovery of
the sparse Legendre-expansion using the “brute force”-Gaussian quadrature approach
yields better results. Moreover, we also compare the run-time of both reconstruction
methods. For Algorithm 5 we have an elapsed run-time of 67.46 seconds and for the
Gaussian quadrature approach we have an elapsed runtime of 410.12 seconds . Thus,
in terms of runtime as well as number of needed functional values Algorithm 5 is
advantageous. Furthermore, Figure 4.4 shows that both recovery methods are highly
accurate.
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Figure 4.4: Recovery of 5-sparse Legendre expansion with parameters given in Table
4.6 with Algorithm 5 shown in red. The blue signal shows the 5-sparse
Legendre expansion recovered by the Gaussian quadrature approach. Both
signals cannot be distinguished visually.

♦
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5 Numerical Behaviour of the Prony
Method for Generalized Exponential
Sums

Even though Prony’s method is rather simple and relies mostly on linear algebra, one
major drawback is its high instability with regard to noise, see [LC56], pages 276-280.
Here, the author aims to recover the function

f (x) = 0.0951ex + 0.8607e3x + 1.5576e5x

using 24 rounded samples of the form f (0.05k) for k = 0, . . . , 23. Even though the
reconstructed signal f̃ fits the given data, i.e., f (0.05k) = f̃ (0.05k) for k = 0, . . . , 23,
instead of the M = 3 exponents Prony’s method only yields two frequencies α1 = 1.58
and α2 = 4.45. The corresponding recovered weights c1 and c2 are distorted by a factor
of 7. This small example gives an insight of the effect of noisy data on the parameter
estimation using Prony’s method.

Hence, in recent years considerable research has been dedicated to the development
of numerically stable Prony methods such as the Approximate Prony method, see
[PT11], the ESPRIT method, see [RK89], and the Matrix Pencil method, see [HS90].

Thus, this chapter is focused on the modification of such stabilizing algorithms for
generalized exponential sums.

In Section 5.1 we will introduce a modification of a subspace method known as the
ESPRIT algorithm for generalized exponential sums.

Furthermore, we will elaborate on how this approach can be modified if one or more
more frequencies are known beforehand in Section 5.2.

In the Section 5.3 we focus on the problem of clustered frequencies and derive a
sub-sampling based recovery method for an improved recovery in this case.

Finally, in Section 5.4 we will survey a modification of Prony’s method in order to
solve the problem of best approximation of a given data vector by a vector of equidis-
tant samples of a generalized exponential sum in the 2-norm.

In Section 5.5 we provided some numerical results for the derived algorithms. Par-
tial results of this chapter have been published in our survey [KP21].
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5.1 Modification of the ESPRIT Algorithm for Generalized
Exponential Sums

One of the most used methods for the stable recovery of sparse exponential sums
is the estimation of signal parameters via rotational techniques, a subspace method
better known as the ESPRIT method, see [RK89]. In [PT13], it was shown that the
ESPRIT method can be seen as a variant of Prony’s method. We will generalize and
modify this approach and apply it in the special case of generalized exponential sums.

Let us recall the some important notation and definitions given in the previous
chapters.

We will again consider generalized exponential sums (3.12) as in Chapter 3, i.e.,

f (x) =
M

∑
j=1

cjH(x)eαjG(x) x ∈ [a, b], (5.1)

with cj ∈ C \ {0}, αj ∈ C with |Im(αj)| < K, K > 0, for j = 1, . . . , M, with G, H
satisfying the restrictions given in Definition 3.15, i.e., G, H ∈ C([a, b]), G strictly
monotone and H non-vanishing.
We assume that only an upper bound L on the number of terms M in (5.1) is known
and oversample our signal f with N ≥ L ≥ M. Therefore, we need to choose 0 <

|h| < π
K and x0 ∈ [a, b] such that the assumption of Theorem 3.29 are satisfied, i.e.,

G(x0) + hk ∈ [G(a), G(a)] for G(a) < G(b) or

G(x0) + hk ∈ [G(b), G(a)] for G(a) > G(b)

for all k = 0, . . . , 2N − 1. Furthermore, we assume the 2N data samples
f
(
G−1(G(x0) + kh)

)
, k = 0, . . . , 2N − 1, h ∈ R \ {0} with N ≥ L ≥ M are given.

In order to simplify notation we define

fk := Sk
G,H,h f (x0) =

H(x0) f
(
G−1(hk + G(x0))

)
H (G−1(hk + G(x0)))

k = 0, . . . , 2N − 1, (5.2)

where SG,H,h f (x) := H(x)
H(G−1(G(x)+h)) f (G−1(G(x) + h)) for h ∈ R \ {0} denotes the gen-

eralized shift operator as in Definition 3.26 and f is a generalized exponential sum as
in (5.1). Furthermore, we recall the definition of the corresponding Prony polynomial
P given in (2.9), i.e.,

P(z) =
M

∏
j=1

(
z− λj

)
=

M

∑
k=0

pkzk (5.3)

with λj := eαjh for h ∈ C \ {0} for j = 1, . . . , M. Here, the parameters λj are the
eigenvalues of the generalized shift operator SG,H,h corresponding to the eigenfunc-
tions eαjG(x)H(x) for j = 1, . . . , M.
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Using this notation we recall, that due to Theorem 2.5 and Theorem 3.31, the fol-
lowing equation holds true

M

∑
k=0

pk fm+k =
M

∑
k=0

pkSk+m
G,H,h f (x0) =

M

∑
k=0

pkSk+m
G,H,h

M

∑
j=1

cjH(x0)eαjG(x0)

=
M

∑
j=1

cj

M

∑
k=0

pkSk+m
G,H,h

(
H(x)eαjG(x)

)
(x0)

=
M

∑
j=1

cj

M

∑
k=0

pkeαjh(k+m)H(x0)eαjG(x0)

=
M

∑
j=1

cjeαjhmH(x0)eαjG(x0)
M

∑
k=0

pkeαjhk = 0.

(5.4)

Definition 5.1 Let N, L ∈ N with N ≥ L and let fk be the noiseless data samples
given in (5.2) for k = 0, . . . , 2N − 1. Then we define the rectangular Hankel matrix
H2N−L,L+1 as

H2N−L,L+1 := ( f`+m)
2N−L−1,L
`,m=0 ∈ C(2N−L)×(L+1). (5.5)

Furthermore, we define the Hankel sub-matrices H2N−L,L(0) ∈ C2N−L,L and
H2N−L,L(1) ∈ C2N−L,L given by

H2N−L,L+1 =
(

H2N−L,L(0) ( f`+L)
2N−L−1
`=0

)
=
(
( f`)2N−L−1

`=0 H2N−L,L(1)
)

,

i.e., we obtain H2N−L,L(0) by removing the last column of H2N−L,L+1 and H2N−L,L(1)
by removing the first column of H2N−L,L+1. Introducing the sub-matrix notation
A(a : b, c : d) to select the rows a to b and the columns c to d of A, we can write

H2N−L,L(0) := H2N−L,L+1(1 : 2N − L, 1 : L) (5.6)

H2N−L,L(1) := H2N−L,L+1(1 : 2N − L, 2 : L + 1). (5.7)

Using equation (5.4) we can determine the rank of the above matrices.

Lemma 5.2 Let M, L, N ∈ N with M ≤ L ≤ N be given. Furthermore, let fk be the
noiseless data samples given in (5.2) for k = 0, . . . , 2N − 1 and H2N−L,L+1 and H2N−L,L(s)
as in Definition 5.1 for s = 0, 1. Then the following holds:

(i)

rank (H2N−L,L+1) = rank (H2N−L,L(s)) = M for s = 0, 1.

(ii) If L = M, then ker (H2N−M,M+1) = span(p) and ker (H2N−M,M+1(s)) = span(0M+1)
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for s = 0, 1 and p denoting the coefficient vector of the Prony polynomial, i.e., p :=
(p0, p1, . . . , pM)T ∈ CM+1 with pM = 1.

Proof. The claim follows direct result from Equation (5.4).

In order to determine the sparsity number M in (5.1), which is equal to the rank of
H2N−L,L+1, we can use the singular value decomposition and the above lemma. Hence,
we consider the singular value decomposition

H2N−L,L+1 = U2N−L ·D2N−L,L+1 ·WL+1 (5.8)

where U2N−L ∈ C2N−L,2N−L and WL+1 ∈ CL+1,L+1 denote unitary square matrices and
where D2N−L,L+1 ∈ R2N−L,L+1 is a rectangular diagonal matrix. By construction, the
singular values are the diagonal entries of the matrix D2N−L,L+1. We assume that the
rows of WL+1 and the columns of U2N−L are ordered such that the singular values

σ1(H2N−L,L+1) ≥ σ2(H2N−L,L+1) ≥ · · · ≥ σL+1(H2N−L,L+1)

are ordered non-increasingly with

σM+1(H2N−L,L+1) = σM+2(H2N−L,L+1) = · · · = σL+1(H2N−L,L+1) = 0.

Once we have determined the rank M of the Hankel matrix, we redefine the Hankel
matrix and consider

H2N−M,M+1 := ( f`+m)
2N−M−1,M
`,m=0 (5.9)

with the corresponding singular value decomposition

H2N−M,M+1 = U2N−M ·D2N−M,M+1 ·WM+1, (5.10)

with unitary matrices U2N−M ∈ C2N−M,2N−M, WM+1 ∈ CM+1,M+1 and D2N−M,M+1 ∈
R2N−M,M+1 a rectangular diagonal matrix.

Again, Lemma 5.2 implies that H2N−M,M+1 has rank M and

D2N−M,M+1 :=



σ1(H2N−M,M+1)
. . .

σM(H2N−M,M+1)

0
...

. . . 0 . . .
...


∈ R(2N−M)×(M+1)
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with the singular values

σ1(H2N−M,M+1) ≥ σ2(H2N−M,M+1) ≥ · · · ≥ σM(H2N−M,M+1) > 0.

Additionally, we recall the definition of the companion matrix from (2.6).

Definition 5.3 (Companion Matrix) Let n ∈N and P be a monic polynomial of degree
n, i.e., P(z) := zn + ∑n−1

k=0 pkzk for some pk ∈ C, k = 0, . . . , n− 1. Then the correspond-
ing companion matrix Cn(p) ∈ Cn×n is given by

Cn(p) :=



0 0 . . . 0 p0

1 0 . . . 0 p1

0 1 . . . 0 p2
...

...
. . .

...
...

0 0 . . . 1 pn−1


, (5.11)

where p := (p0, . . . , pn−1)
T denotes the vector of the coefficients up to the degree n− 1.

Companion matrices are used for the numerical computation of the roots of poly-
nomials, since the eigenvalues of the companion matrix Cn(p) are the roots of the
corresponding monic polynomial P(z) = zn + ∑n−1

k=0 pkzk, see [HJ13], pages 194–195.

Lemma 5.4 Let N, M ∈N with M ≤ N and H2N−M,M(s) be the Hankel sub-matrices as in
Definition 5.1 for s = 0, 1 and L = M. Furthermore, let P be the Prony polynomial given in
(5.3) of degree M and CM(p) be the corresponding companion matrix defined in (5.11). Then
the following holds

H2N−M,M(0) · CM(p) = H2N−M,M(1). (5.12)

Proof. Using the defintion of the Hankel sub-matrix H2N−M,M(0) in (5.6), Lemma 5.2
(ii) and pM = 1 yields

H2N−M,M(0) ·


p0

p1
...

pM−1

 = − ( f`+M)2N−M−1
`=0 .

Therefore, we can use (5.6) and get

H2N−M,M(0) · CM(p) = H2N−M,M(1).
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Remark 5.5 The above lemma implies that the eigenvalues λj, j = 1, . . . , M, of the
companion matrix CM(p) can be computed by solving a generalized eigenvalue prob-
lem. If λ is an eigenvalue of the companion matrix CM(p) with corresponding eigen-
vector v, then we have

H2N−M,M(0) · CM(p) · v︸ ︷︷ ︸
=λv

= H2N−M,M(1) · v

⇔ λH2N−M,M(0) · v = H2N−M,M(1) · v.

(5.13)

Thus, the eigenvalues λ of the matrix pencil corresponding to the matrices H2N−M,M(0)
and H2N−M,M(1), i.e., all λ ∈ C satisfying

det (H2N−M,M(1)− λH2N−M,M(0)) = 0,

are the eigenvalues of the companion matrix CM(p). ♦

Definition 5.6 (Moore-Penrose Inverse) Let A ∈ Cn×m be a matrix. Then a matrix
A+ ∈ Cm×n is called Moore-Penrose inverse or generalized inverse if it satisfies the
Moore-Penrose conditions:

(i) A ·A+ ·A = A,

(ii) A+ ·A ·A+ = A+,

(iii) (A+ ·A)∗ = A+ ·A,

(iv) (A ·A+)∗ = A ·A+.

We note some of the properties of the generalized inverse, see [SS90], Chapter III,
Theorem 1.2 and Theorem 1.3.

Lemma 5.7 Let A ∈ Cn×m, A+ ∈ Cm×n be its Moore – Penrose inverse and A∗ ∈ Cm×n be
the conjugate transpose of A. Then the following holds.

(i) If the columns of A are linearly independent, then

A+ := (A∗ ·A)−1 ·A∗. (5.14)

(ii) If the rows of A are linearly independent, then

A+ := A∗ · (A∗ ·A)−1 .

(iii) If A =

(
D 0
0 0

)
, with D = diag(d1, . . . , dr) and di 6= 0 for i = 1, . . . , r, then the
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Moore-Penrose inverse is given by

A+ =

(
D−1 0

0 0

)

(iv) The matrix PA = A · A+ ∈ Cn×n is the orthogonal projector onto the column space of
A.

Theorem 5.8 Let N, M ∈ N, fk be the noiseless data samples given in (5.2) for k =

0, . . . , 2N − 1, and H2N−M,M+1 as in (5.9) with the singular value decomposition given in
(5.10) using the matrices U2N−M, D2N−M,M+1 and WM+1. Furthermore, we define WM(0)
by removing the last column and the last row of WM+1 and WM(1) by removing the first
column and last row of WM+1, i.e.,

WM(s) := WM+1(1 : M, 1 + s : M + s) for s = 0, 1.

Moreover, let CM(p) be the companion matrix defined in (5.11), where p = (p0, p1, . . . , pM−1)
T

denotes the vector containing the (unknown) coeffcients of the Prony polynomial P given in
(5.3). Then the eigenvalues of WM(0)−1 ·WM(1) are equal to the eigenvalues of CM(p).

Proof. Definition (5.6) implies that the singular value decompositions of the Hankel
sub-matrices are given by

H2N−M,M(0) = U2N−M ·D2N−M,M+1 ·WM+1,M(0),

H2N−M,M(1) = U2N−M ·D2N−M,M+1 ·WM+1,M(1),
(5.15)

where WM+1,M(0) is obtained by removing the last column of WM+1 and WM+1,M(1)
by removing the first column, respectively. Hence, Lemma 5.4 implies

D2N−M,M+1 ·WM+1(0) · CM(p) = D2N−M,M+1 ·WM+1,M(1).

It follows from Lemma 5.7 (iii) that the generalized inverse of D2N−M,M+1 is given by

D+
2N−M,M+1 =

(
diag

(
1

σ1(H2N−M,M+1)
, . . . ,

1
σM(H2N−M,M+1)

, 0
)

, 02N−2M+1

)
with D+

2N+M,M+1 ∈ RM+1,2N−M. Therefore, multiplication with D+
2N−M,M+1 yields

WM(0) · CM(p) = WM(1).

Since Lemma 5.2 yields that the matrices H2N−M,M(0) and H2N−M,M(1) have full rank
M, it follows that D2N−M,M+1 ·WM+1,M(0) and D2N−M,M+1 ·WM+1,M(1) have rank M.
Therefore, we obtain invertibility of the matrices WM(1) and WM(0). Hence, the claim
follows.
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The above theorem implies that it is sufficient to compute the eigenvalues of

WM(0)−1 ·WM(1) (5.16)

in order to compute the eigenvalues eαjh, j = 1, . . . , M corresponding to Prony polyno-
mial corresponding the generalized exponential sum in (5.1). At last we can compute
the parameter cj for j = 1, . . . , M by solving

fk =
M

∑
j=1

cjeαjG(x0)eαjhk H(x0)

for k = 0, . . . , 2N − 1.
We summarize our results in the following algorithm.

Algorithm 7 ESPRIT Algorithm for Generalized Exponential Sums

Input: L, N ∈ N, L ≤ N, L upper bound on the number of terms M in (5.1), h > 0,
sampled values f

(
G−1(h`+ G(x0))

)
, ` = 0, . . . , 2N − 1, G(x0)

1: Form the Hankel matrix H2N−L,L+1 :=
(
ak+` f (G−1(h(`+ k) + G(x0)))

)2N−L−1,L+1
k,`=0

as in (5.5) with a` := H(x0)
H(G−1(G(x0)+h`)) for ` = 0, . . . , 2N − 1. Determine the rank M

of H2N−L−1,L+1.
2: Form the matrix H2N−M,M+1 :=

(
ak+` f (G−1(h(`+ k) + G(x0)))

)2N−M,M+1
k,`=0 as in

(5.9) and compute its singular value decomposition H2N−M,M+1 = U2N−M ·
D2N−M,M+1 ·WM+1.

3: Build the restricted matrix WM(0) by removing the last column and the last row
of WM+1 and WM(1) by removing the first column and the last row of WM+1.
Compute the eigenvalues λj, j = 0, . . . , M of WM(0)−1 ·WM(1).

4: Compute the frequencies αj := 1
h log(λj) for j = 1, . . . , M.

5: Solve the Vandermonde-like system V2N,M · c̃ = f2M with V2M,M :=
(

λk
j

)2N−1,M

k=0,j=1
,

c̃ :=
(

cjλ
G(x0)/h
j

)M

j=1
and f2N :=

(
f (G−1(h(`+ k) + G(x0)))

)2N−1
k=0 and compute the

coefficients cj =
c̃j

eαjG(x0)/h for j = 1, . . . , M.
Output: M, αj and cj for j = 1, . . . , M as in (5.1).

Remark 5.9 (i) In practice, the determination of the rank of the Hankel matrix
H2N−L,L+1 in step 1 is done by calculating the singular values σ1 ≥ · · · ≥ σL+1

and defining M as the number of eigenvalues greater than a small predefined
threshold bound ε > 0. In particular, in the case of noisy data, i.e., f̃k := fk + εk

where εk is additive noise, the parameter ε needs to be chosen appropriately. We
define the error matrix as E2N−L,L+1 := (εk+`)

2N−L−1,L
k,`=0 ∈ C2N−L,L+1 and obtain
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the noisy Hankel matrix H̃2N−L,L+1 ∈ C2N−L,L+1 given by

H̃2N−L,L+1 := H2N−L,L+1 + E2N−L,L+1.

If 2 ‖E2N−L,L+1‖2 � σM(H2N−L,L+1), we can chose

ε ≈ 2 ‖E2N−L,L+1‖2 /σ1(H̃2N−L,L+1),

see [PT17], page 630.

(ii) One possible way to compute the singular values of the Hankel matrices H2N−L,L

and H2N−M,M+1 with high accuracy is given in [Drm15]. The main idea behind
this approach is to determine a so-called rank revealing decomposition (RRD)
based on a modified one-sided Jacobian method prior to computing the singular
value decomposition of the Hankel matrices. Similar approaches can be used
for Vandermonde matrices. For further information on this topic we refer to
[DGE+99, Dem00].

(iii) The above algorithm can also be applied for the recovery of real generalized
trigonometric functions studied in Chapter 3.2.2. In order to so do, we use the
trigonometric identities

cos(αG(x) + β) =
1
2

(
ei(αG(x)+β) + e−i(αG(x)+β)

)
,

sin(αG(x) + β) =
1
2i

(
ei(αG(x)+β) − e−i(αG(x)+β)

)
.

Thus, we obtain for the generalized cosine expansion

M

∑
j=

cj cos(αjG(x) + β j) =
M

∑
j=1

1
2

cj

(
eiβ j eiαjG(x) + e−iβ j e−iαjG(x)

)
=

2M

∑
j=1

c̃jeα̃jG(x)

with c̃j := 1
2 cjeiβ j and α̃j := iαj for j = 1, . . . , M as well as c̃j := 1

2 cje−iβ j and
α̃j = −iαj for j = M + 1, . . . , 2M. For real parameters cj, it is sufficient to recover
the parameter β j and cj from the real and imaginary part of c̃j for j = 1, . . . , M.
We can use analogous trigonometric identities for generalized sine expansions
as well as generalized hyperbolic expansions.

(iv) We can also combine the above ESPRIT algorithm with the algorithm for the
reconstruction of sparse expansions into orthogonal polynomials based on gen-
erating functions obtained in Chapter 4. This is possible, since the algorithm de-
rived in Chapter 4 is based on ”mapping“ the sparse expansion into orthogonal
polynomials to the corresponding sparse monomial expansion and a special gen-
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eralized shift operator, the dilation operator given in Definition 4.11, is used for
the reconstruction. In this case, the samples fk are replaced by the 〈 f , g(·, tk)〉Q
as in (4.8) for k = 0, . . . , 2N − 1.

♦

Based on Lemma 3.1. in [PT17], we can find a relationship between the singular
values of H2N−L,L+1 and H2N−M,M+1. For this purpose, we recall some properties of
eigenvalues of hermitian matrices.

Theorem 5.10 Let A ∈ Cn×n be a hermitian matrix and let λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A)

be the eigenvalues of A. Then the following holds.

(i) (Cauchy’s Interlacing Theorem) Let B ∈ C(n−1)×(n−1) be a principal sub matrix, i.e.,
obtained by deleting the i-th row as well as the i-th column of A for some i ∈ {1, . . . , n}.
Moreover, let λ1(B) ≤ λ2(B) ≤ · · · ≤ λn−1(B) be the eigenvalues of B. Then the
following holds

λ1(A) ≤ λ1(B) ≤ λ2(A) ≤ · · · ≤ λn−1(B) ≤ λn(A).

(ii) (Weyl’s Theorem) Let C ∈ Cn×n be a hermitian matrix and λ1(C) ≤ λ2(C) ≤ · · · ≤
λn(C) be the eigenvalues of C. Furthermore, let λ1(A + C) ≤ · · · ≤ λn(A + C) be the
eigenvalues of A + C. Then we have

λk(A) + λ1(C) ≤ λk(A + C) ≤ λk(A) + λn(C)

for k = 1, . . . , n.

Proof. For the proof of (i) we refer to [SS90], Chapter IV, Theorem 4.2. For the proof of
(ii) we refer to [SS90], Chapter IV, Corollary 4.9.

Lemma 5.11 Let L, M, N ∈ N with M ≤ L ≤ N, fk be the data samples given in (5.2) and
H2N−M,M+1 be the rectangular Hankel matrix given in (5.5). Then the singular values of the
H2N−M,M+1 satisfy the inequality

σk(H2N−L,L+1)
2 ≤ σk(H2N−M,M+1)

2 +
L

∑
j=M+1

∥∥∥fj

∥∥∥2

2
k = 1, . . . , M, (5.17)

where fj = ( fk)
2N−1
k=j denotes the last column of the matrix H2N−j,j+1 for j = M + 1, . . . , L.

Proof. This proof is based on the proof Lemma 3.1 in [PT17]. Therefore, we will reca-
pitulate the first steps of its proof. Analogusly to (5.6), we can represent the matrices
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H2N−L+1,L and H2N−L,L+1 using a block matrix structure

H2N−L,L+1 =
(

H2N−L,L ( f`+L)
2N−L−1
`=0

)
,

H2N−L+1,L =

 H2N−L,L(
( f`+2N−L)

L−1
`=0

)T

 .

Note that we write H2N−L,L instead of H2N−L,L(0) in this proof in order to simplify the
notation and improve the readability of the proof. Furthermore, we set

fL := ( f`+L)
2N−L−1
`=0 ,

h2N−L := ( f`+2N−L)
L−1
`=0 .

Using this notation we obtain

A2N−L := H2N−L,L+1 ·H∗2N−L,L+1 = H2N−L,L ·H∗2N−L,L + fLf∗L, (5.18)

A2N−L+1 := H2N−L+1,L ·H∗2N−L+1,L

=

(
H2N−L,L ·H∗2N−L,L H2N−L,L h2N−L

hT
2N−LH∗2N−L,L ‖h2N−L‖2

2

)
(5.19)

Equation (5.18) implies that A2N−L is a rank-one perturbation of H2N−L,LH∗2N−L,L.
Moreover, equation (5.19) implies that the matrix H2N−L,LH∗2N−L,L is a principal sub-
matrix of A2N−L+1. Therefore, we can apply Cauchy interlacing Theorem (Theorem
5.10 (i)) and obtain

λk(H2N−L,L ·H∗2N−L,L) ≤ λk+1(A2N−L+1) (5.20)

for k = 1, . . . , L. Theorem 5.10 (ii) now yields

λ1(fLf∗L) + λk(H2N−L,L ·H∗2N−L,L) ≤ λk(A2N−L)

for k = 1, . . . , L. We combine this with (5.20) and obtain

λ1(−fLf∗L) + λk(A2N−L) ≤ λk(H2N−L,L ·H∗2N−L,L) ≤ λk+1(A)2N−L+1

for k = 1, . . . , L. Using the fact that −fLf∗L is a rank-one matrix, we can conclude that its
first eigenvalue λ1(−fLf∗L) is equal to the norm −‖fL‖2

2. Hence, we can obtain that the
singular values of the matrix H2N−L,L+1 increase almost monotonously with respect to
L, i.e., they satisfy the following inequality

σk(H2N−L,L+1)
2 ≤ σk(H2N−L+1,L)

2 + ‖fL‖2
2 k = 1, . . . , M,

where fL denotes the last column of the matrix H2N−L,L+1. Iterative application yields
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the claim.

Remark 5.12 The above lemma implies that the choice of the upper bound L has an
effect on the lowest singular value σM(H2N−L,L+1) > 0 of H2N−L,L+1. Since the singular
values are used to estimate the parameter M, the singular value σM should not be too
small. Furthermore, we can conclude that a good choice of the upper bound L is close
to the original parameter M, i.e., L ≈ M and L ≈ N. That is if the matrices H2N−L,L+1

as well as H2N−M,M+1 are almost square.
♦

The difference between our modified version of the ESPRIT Algorithm 7 and the
classical ESPRIT algorithm described in [PT13] is the second step. In the classical ES-
PRIT method, the construction of the matrix H2N−M,M+1 is omitted and instead the
matrix H2N−L,L+1 and its singular value decomposition given as in (5.8) are used. In-
stead of almost square or square matrices only sub-matrices of the orthogonal matrices
in the singular value decomposition are employed.

Using the established rank M of the Hankel matrix H2N−L,L+1, we can construct the
matrices U2N−L,M := U2N−L(1 : 2N − L, 1 : M) and WM,L+1 := WL+1(1 : M, 1 : L + 1)
with orthonormal columns, as well as the diagonal matrix DM := diag(σ1, . . . , σM) and
obtain a partial singular value decomposition of the matrix (5.5). Additionally, we set
WM,L(s) := WM,L+1(1 : M, 1 + s : L + s) for s = 0, 1. This implies that both Hankel
sub-matrices in (5.6) can be simultaneously factorized, i.e.,

H2N−L,L(s) = U2N−L,M ·DM ·WM,L(s) for s = 0, 1.

Hence, rather than the square matrices WM(0) and WM(1) the rectangular matrices
WM,L(0) and WM,L(1) are considered. Therefore, instead of (5.16) we need to compute
the eigenvalues of (WM,L(0))+ ·WM,L(1).

In recent years, different performance results for the ESPRIT method have been
established. Most of the existing performance results are of statistical nature and focus
on asymptotic - either in the sample size or the SNR - statements, see, e.g., [SS91,RH89,
LVT91]. A deterministic result in the special case of exponential sums on the unit circle
was given in [Aub16], Chapter 5, and is based on the application of the Bauer-Fike-
Theorem, see [SS90], Chapter IV, Theorem 3.3, as well as an upper bound on the
condition of Vandermonde matrices with nodes on the unit circle. In particular, these
results imply that performance of the ESPRIT method is good, if the noise present
in the used data samples is small. Since these results only depend on the frequency
parameters eαj , j = 1, . . . , M, we can assume that similar results can be obtained for
generalized exponential sums if |eαj | ≤ 1. Further results for generalized exponential
sums with frequencies outside the unit circle as well as generalized trigonometric
expansions have yet to be obtained.
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5.2 Partially Known Frequency Parameters

In some applications, one or more of the frequency parameters αj for some j =

1, . . . , M, in the model f given in (5.1) are known beforehand, while the corresponding
weight coefficients cj are unknown. Therefore, we cannot simply eliminate the term
cjH(x)eαjG(x) from the sum (5.1) in order to get a new set of measurements and use
Prony’s method. This section is dedicated to the recovery of generalized exponential
sums in the case of partially known frequencies.

Theorem 5.13 Let M, N ∈ N, M ≤ N and f be a generalized exponential sum of the form
(5.1). Furthermore, let fk be the data samples given in (5.2) for k = 0, . . . , 2N − 1 and one
frequency α` for ` = 1, . . . , M, be known beforehand. Then the function f can be recovered
using the samples f̃k = fk+1 − eα1h fk for k = 0, . . . , 2N − 2.

Proof. Without loss of generality we can assume that the frequency α1 is known be-
forehand and we define λ1 := eα1h. We recall the definition of the Prony polynomial P
given in (5.3), i.e.,

P(z) =
M

∑
k=0

pkzk =
M

∏
j=1

(
z− eαjh

)
= (z− λ1)

M

∏
j=2

(
z− eαjh

)
︸ ︷︷ ︸

=:Q(z)

, (5.21)

where p := (p0, . . . , pM)T the coefficient vector of the Prony polynomial. Furthermore,
we have

Q(z) :=
M

∏
j=2

(z− λj) =
M−1

∑
k=0

qkzk

with the coefficient vector q := (q0, . . . , qM−1)
T and λj := eαjh for j = 2, . . . , M. Then

(5.21) yields

p =


0
q0
...

qM−1

− λ1


q0
...

qM−1

0

 .

Thus, it follows from Lemma 5.2 (ii)

02N−M = H2N−M,M+1 · p = H2N−M,M+1 ·




0
q0
...

qM−1

− λ1


q0
...

qM−1

0
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and, therefore, (5.6) yields

02N−M = H2N−M,M+1 · p = (H2N−M,M(1)− λ1H2N−M,M(0))q,

where H2N−M,M(s) denotes the Hankel sub-matrix given in (5.6) for s = 0, 1. Hence,
we define a new Hankel matrix for the reduced problem as

H̃2N−M,M := H2N−M,M(1)− λ1H2N−M,M(0).

We observe that the components f̃k for k = 0, . . . , 2N − 2 of this new Hankel matrix
are of the form

f̃k = fk+1 − λ1 fk =
M

∑
j=1

H(x0)cjeαj(G(x0)+h(k+1)) − eα1hH(x0)
M

∑
j=1

cjeαj(G(x0)+hk)

=
M

∑
j=2

cjH(x0)
(

eαjh − eα1h
)

eαj(hk+G(x0)),

i.e., the coefficients cj for j = 2, . . . , M are changed to c̃j = cj(eαjh− eα1h). Consequently,
we can use the samples f̃k for k = 0, . . . , 2N − 2 to recover the shorter sum

M

∑
j=2

c̃jH(x)eαjG(x).

Once we have computed the remaining αj, j = 2, . . . , M, we obtain the coefficients cj,
j = 1, . . . , M, by solving the linear system

f (G−1(G(x0) + hk)) =
M

∑
j=1

cjeαj(G(x0)+hk)H(G−1(G(x0) + hk)).

5.3 Sub-Sampling Based Algorithm for the Recovery of
Generalized Exponential Sums

As we have previously mentioned, the accuracy of the Prony method does not only de-
pend on the accuracy of the input data, but also on the distribution of the frequencies,
i.e., on the minimal separation distance

q := min
i,j=1,...,M

i 6=j

|αj − αi|.

If the minimal separation distance decreases, the nodes eαjh of the Vandermonde
matrix VM grow closer together and hence the conditions of the Vandermonde matrix
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as well as the Hankel matrix HM grow. In [CL20a], the authors used sub-Nyquist
sampling in order to improve the frequencies with a high resolution. In the following
section, we modify this approach for generalized exponential sums.

We recall the generalized exponential sum as in (5.1),

f (x) =
M

∑
j=1

cjH(x)eαjG(x),

with cj ∈ C \ {0}, αj ∈ C, |Im(αj)| < T, T > 0 and G and H satisfying the assumptions
in Definition 3.15.

Up until this point, we have always chosen the sampling distance h ∈ R \ {0} such
that 0 < |h| < π

T holds. This ensures that the computation of the frequencies αj

from the values eαjh yields a unique solution. In this section, we will deliberately sub-
sample in order to increase the resolution and reconstruct the clustered frequencies
more accurately.

Instead of the consecutive samples fk = Sk
G,H,h f (x0), k = 0, . . . , 2M− 1, only every

u-th sample with u ∈N, u > 1 is used, i.e.,

fuk = S`u
G,H,h f (x0) = Sk

G,H,hu f (x0) (5.22)

for k = 0, . . . , 2M− 1. Since sub-sampling may cause the aliasing, i.e., the collision of
frequencies, we need to distinguish between the collision free and the colliding case.

5.3.1 Collision Free Sub-Sampling

In the following we will assume eαjuh 6= eαkuh for j 6= k and j, k = 1, . . . , M. Since we
are purposely sub-sampling, we cannot uniquely recover the parameter eαh, and, thus,
the frequencies αj, respectively, from the values eαjuh, j = 1, . . . , M, but obtain a set of
possible solutions

Uj :=
{

eαjh+ 2πi
u `

∣∣∣∣ ` = 0, . . . , u− 1
}

. (5.23)

In order to determine the correct frequency αj, j = 1, . . . , M, we use the following
lemma.

Lemma 5.14 Let p, u ∈ N with gcd(u, p) = 1. Furthermore, let α ∈ C with |Im(α)| < K
for some K > 0 for j = 1, . . . , M and h = π

K . Moreover, we define

P :=
{

eαh+ 2πi
p `
∣∣∣∣ ` = 0, . . . , p− 1

}
and

U :=
{

eαh+ 2πi
u `

∣∣∣∣ ` = 0, . . . , u− 1
}

.
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5 Numerical Behaviour of the Prony Method for Generalized Exponential Sums

Then the following holds.

(i) The sets U and P have a unique intersection eαh, i.e., P ∩U = {eαh}.

(ii) There exist r1, r2 ∈ Z such that r1u + r2 p = 1, and we have(
eαuh

)r1
(

eαph
)r2

= eαh.

Proof. For the proof of (i) we refer to [CL20a], Lemma 1. Furthermore, Theorem
15, Chapter 2.4 in [Bos06], yields the existence of r1, r2 ∈ Z satisfying r1u + r2 p =

gcd(u, p) = 1. Hence, we obtain(
eαuh

)r1
(

eαph
)r2

= eαh.

Consequently, the claim follows.

Remark 5.15 The integers r1, r2 ∈ Z given in the above lemma can be computed by
the Euclidean algorithm, see [Bos06], Chapter 2.4, Theorem 15 and are called Bézout
coefficients. ♦

Theorem 5.16 Let G : R → R and H : R → C be continuous functions such that G is
strictly monotone and H is non-vanishing on an interval [a, b] ⊂ R. Furthermore, let f be a
generalized exponential expansion of length M as in (5.1) such that there exists a K ∈ R with
|Im(αj)| < K for all j = 1, . . . , M. Moreover, let h = π

K , u, p ∈ N satisfy gcd(u, p) = 1 and
x0 ∈ [a, b] such that

G(x0) + huk ∈ [G(a), G(b)] for G(a) < G(b) or

G(x0) + huk ∈ [G(b), G(a)] for G(a) > G(b)

for all k = 0, . . . , 2M− 1 as well as

G(x0) + h(uk + p) ∈ [G(a), G(b)] for G(a) < G(b) or

G(x0) + h(uk + p) ∈ [G(b), G(a)] for G(a) > G(b)

for all k = 0, . . . , M − 1 holds. If eαjuh 6= eαkuh for j 6= k holds, then f can be uniquely
reconstructed using the samples f (G−1(G(x0)+ uhk)) for k = 0, . . . , 2M− 1 and the samples
f (G−1(G(x0) + h(uk + p))) for k = 0, . . . , M− 1.

Proof. The proof is based on the Prony method for generalized exponential sums. We
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define

fu` := S`
G,H,hu f (x0)

H(x0)

H(G−1(G(x0) + u`h))
f (G−1(G(x0) + u`h)) and (5.24)

fuk+p := Sk
G,H,huSG,H,hp f (x0)

H(x0)

H(G−1(G(x0) + h(uk + p)))
f (G−1(G(x0) + h(uk + p)))

(5.25)

for ` = 0, . . . , 2M− 1 and k = 0, . . . , M− 1. We note that the values

H(x0)

H(G−1(G(x0) + u`h))
and

H(x0)

H(G−1(G(x0) + h(uk + p)))

for ` = 0, . . . , 2M − 1, k = 0, . . . , M − 1, are independent of the signal f and can be
precomputed.

We follow the first steps of the Prony method for generalized exponential sums and
define the Prony polynomial

P(z) =
M

∏
j=1

(
z− eαjuh

)
=

M

∑
k=0

pkzk. (5.26)

Furthermore, we define the Hankel matrix HM :=
(

fu(`+m)

)M−1

`,m=0
. Lemma 5.2 (ii) as

well as eαjuh 6= eαkuh, j 6= k, and pM = 1 yield

HM · p = −f

with p := (pk)
M−1
k=0 and f :=

(
fu(`+M)

)M−1

`=0
. Once we have computed the coefficients

pk, k = 0, . . . , M, we compute the roots eαjuh of the Prony polynomial P. Moreover, we
solve

fu` =
M

∑
j=1

c̃jeαjuh for ` = 0, . . . , 2M− 1 (5.27)

with

c̃j := cjH(x0)eαjG(x0) (5.28)

for j = 1, . . . , M. In order to uniquely recover the frequencies αj for j = 1, . . . , M from
the set Uj as in (5.23), we consider the M additional samples fuk+p as in (5.25) for
k = 0, . . . , M− 1. Employing Theorem 3.28 yields

fuk+p =
M

∑
j=1

cjH(x0)eG(x0)αj eαj pheαjukh =
M

∑
j=1

c̃jeαj ph
(

eαjuh
)k
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5 Numerical Behaviour of the Prony Method for Generalized Exponential Sums

with c̃j as in (5.28) for j = 1, . . . , M. Hence, we obtain the linear system
1 . . . 1

eα1uh . . . eαMuh

... . . .
...

eα1(M−1)uh . . . eαM(M−1)uh


︸ ︷︷ ︸

=:VM

·


c̃1 0 . . . 0
0 c̃2 . . . 0
...

...
. . .

...
0 0 . . . c̃M


︸ ︷︷ ︸

=:DM

·


eα1 ph

...
eαM ph

 =


fp+0u

...
fp+(M−1)u

 .

Since the diagonal entries of the matrix DM are nonzero, it is invertible. Moreover, the
matrix VM is a Vandermonde matrix with distinct nodes and is, therefore, invertible.
Consequently, this system can be uniquely solved for the values eαj ph for j = 1, . . . , M.
Therefore, we can employ Lemma 5.14 and uniquely recover the values eαjh, and, thus,
the frequencies αj, j = 1, . . . , M.

As a last step we use (5.28) in order to compute the parameters cj, j = 1, . . . , M,
which proves the claim.

Remark 5.17 The assumption of non colliding frequencies in the above theorem, i.e.,
that eαjuh 6= eαkuh for j 6= k is satisfied if one of the following conditions holds:

(i) Re(αj) 6= Re(αk) for j 6= k or

(ii) u Im(αj)
2π 6= u Im(αk)

2π + `
h for j 6= k and for all ` ∈ Z.

♦

We summarize our results in the following algorithm.
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Algorithm 8 Sub-Sampling Algorithm for Generalized Exponential Sums

Input: M ∈ N, u, p ∈ N with gcd(u, p) = 1, h > 0, sampled values
f
(
G−1(h(u`+ kp) + G(x0))

)
, ` = 0, . . . , 2M− 1, k = 0, 1, G(x0), H(x0)

1: Form the Hankel matrix HM :=
(
ak+` f (G−1(h(u`+ k) + G(x0))))

)M−1
k,`=0

with a` := H(x0)
H(G−1(G(x0)+uh`)) for ` = 0, . . . , 2M − 1 as well as f :=(

a`+M f (G−1(h(u(`+ M) + G(x0)))
)M−1
`=0 and compute HM · p = −f for p :=

(p`)
M−1
`=0 .

2: Define the Prony polynomial P(z) := ∑M
k=0 pkzk with pM = 1 as in (5.26) and find

all of its roots λj = eαjuh, j = 1, . . . , M.

3: Form the Vandermonde-like system V2M,M :=
(

eαjukh
)2M−1,M

k=0,j=1
and solve the

linear system V2M,M · c̃ = f2M with c̃ :=
(

c̃jH(x0)eαjG(x0)
)

and f2M :=(
ak+` f (G−1(G(x0) + hu(`+ k)))

)2M−1
k=0 .

4: Form the Vandermonde matrix VM :=
(

eαjkuh
)M−1,M

k=0,j=1
and the diagonal ma-

trix DM := diag(c̃1, . . . , c̃M) and solve the system VM · DM · h = f̃ for h

with h :=
(

eαj ph
)M

j=1
and f̃ :=

(
b` f (G−1(h(u`+ p) + G(x0)))

)M−1
`=0 with b` =

H(x0)
H(G−1(G(x0)+h(u`+p))) .

5: Compute r1, r2 such that r1u + r2 p = 1 and
(

eαjuh
)r1
(

eαj ph
)r2

= eαjh for j =

1, . . . , M.
6: Compute the frequencies αj := 1

h log (eαjh) and cj := c̃j

H(x0)e
αjG(x0)

for j = 1, . . . , M.

Output: αj and cj for j = 1, . . . , M as in (5.1).

Remark 5.18 (i) The above algorithm can also be applied in the case of unknown
sparsity number M. Similarly to the ESPRIT algorithm, we use an upper bound
L ≥ M and 2N samples with N ≥ L ≥ M. Moreover, we also can omit the first
two steps of the algorithm and compute the values eαjuh, j = 1, . . . , M by solving
the generalized eigenvalue problem (5.13) as in Remark 5.5.

(ii) Analogously to Remark 5.9 (iii) we can recover the generalized trigonometric
expansion discussed in Chapter 3.2.2 using Algorithm 8 and 4M samples instead
of 2M.

♦

The above describe algorithm can also be combined with the reconstruction method
obtained in Chapter 4.

Corollary 5.19 Let M ∈ N and {Qk | k ∈ N0} with Qk ∈ L2([a, b], ω) be a set of orthog-
onal polynomials with corresponding inner product 〈·, ·〉Q as in Definition 4.1 and generating
function g in (4.4). Furthermore, let f be an M-sparse expansion into orthogonal polynomials
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5 Numerical Behaviour of the Prony Method for Generalized Exponential Sums

as in (4.5) i.e.,

f (x) =
M

∑
j=1

cnj Qnj(x)

with cj ∈ C \ {0} for j = 1, . . . , M. We suppose that there exits a t ∈ C such that g is
uniformly convergent for all x ∈ [a, b] and tk for k ∈ N. Furthermore, let p, u ∈ N satisfy
gcd(u, p) = 1. Then f can be uniquely reconstructed using the values 〈 f , g(·, tuk)〉Q for
k = 1, . . . , 2M and the values 〈 f , g(·, tu`+p)〉Q for ` = 1, . . . , M.

Proof. We recall that (4.10) the inner product 〈 f , g(·, t)〉Q yields that a mapping be-
tween the sparse expansion into orthogonal polynomials and the corresponding sparse
polynomials in monomial basis. This polynomial can be interpreted as a general-
ized exponential sum with G(x) := log(x) and H ≡ 1. In particular, the samples
〈 f , g(·, tuk+`p)〉Q for k = 1, . . . , 2M− 1 and ` = 0, 1 correspond to the samples needed
for the recovery of the sparse polynomial using the shift operator SG,H,t and x0 = 1.
Since we have nj ∈ N0 for j = 1, . . . , M, we obtain enjtu 6= enktu for j 6= k. Therefore,
we can apply Theorem 5.16 and the claim follows.

5.3.2 Colliding Frequencies

One problem that may occur when the sub-sampling causes aliasing, i.e., that eαjuh =

eαkuh for j 6= k. Without loss of generality we can assume that the collisions appear in
successive terms, i.e., there exits a partition of M such that

M =
M̃

∑
i=1

(ni+1 − ni) (5.29)

with n1 = 1, ni ≤ ni+1, i = 1, . . . , M̃, nM̃+1 = M̃ + 1 and eαjuh = eαkuh with ni ≤ j, k ≤
ni+1 − 1 and j 6= k. Consequently, we obtain for the samples in (5.22)

fu` =
M̃

∑
j=1

c̃(0)j eα
(0)
j u`h (5.30)

with

c̃(0)j :=
nj+1−1

∑
k=nj

c̃k =
nj+1−1

∑
k=nj

ck H(x0)eαkG(x0) (5.31)

and eα
(0)
j uh := eαnj uh

= · · · = eαnj+1−1uh for j = 1, . . . , M̃. However, we note that,
depending on the parameters cj, j = 1, . . . , M, x0 and the function G it may happen that
c̃(0)k = 0 for some k = 1, . . . , M̃. First, we consider the case c̃(0)k 6= 0 for all k = 1, . . . , M̃.
Since we do not know which frequencies collide, we also need to compute M̃.
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Theorem 5.20 Let G, : R → R and H : R → C be continuous functions such that G is
strictly monotone and H is non-vanishing on an interval [a, b] ⊂ R. Furthermore, let f be a
generalized exponential expansion of length M as in (5.1), such that there exists a K ∈ R with
|Im(αj)| < K for all j = 1, . . . , M. Moreover, let h = π

K , u, p,∈ N satisfying gcd(u, p) = 1
and x0 ∈ [a, b] such that

G(x0) + h(uk + `p) ∈ [G(a), G(b)] for G(a) < G(b) or

G(x0) + h(uk + `p) ∈ [G(b), G(a)] for G(a) > G(b)

for all k, ` = 0, . . . , 2M− 1. We suppose eαkuh = eαjuh for some j 6= k holds and that c̃(0)j as
in (5.31) is non-vanishing for all j = 1, . . . , M̃. Then f can be uniquely reconstructed using
the samples f (G−1(G(x0) + h(uk + `p))) for k, ` = 0, . . . , 2M− 1.

Proof. The proof is done similarly to the proof of Theorem 5.16. For simplicity we
write

fuk+`p := SG,H,h(uk+p`) f (x0) =
H(x0)

H(G−1(G(x0)+h(uk+p`))) f (G−1(G(x0) + h(uk + p`)))

for k, ` = 0, . . . , 2M− 1.
We note that Lemma 5.2 implies that we can compute the parameter M̃ as the rank

of the Hankel matrix
(

fu(k+m)

)M−1

k,m=0
. Furthermore, we can use the samples fuk+0p,

k = 1, . . . , M̃, and follow the first steps in the proof of Theorem 5.16 in order to recover

the values eα
(0)
j uh for j = 1, . . . , M̃. Additionally, equation (5.30) yields

1 . . . 1

eα
(0)
1 uh . . . eα

(0)
M̃

uh

... . . .
...

eα
(0)
1 (M̃−1)uh . . . eα

(0)
M̃

(M̃−1)uh


︸ ︷︷ ︸

=:VM̃

·


c̃(0)1

...

c̃(0)
M̃

 =


f0
...

fu(M̃−1)

 . (5.32)

Theorem 3.28 and equation (5.30) imply for k ≥ 1

fuk+p` = SG,H,h(uk+p`) f (x0) = S`
G,H,phSk

G,H,uh f (x0)

= S`
G,H,ph

 M̃

∑
j=1

nj+1−1

∑
i=nj

ci H(·)eαiG(·)eα
(0)
j kuh

 (x0)

=
M̃

∑
j=1

nj+1−1

∑
i=nj

cie
α
(0)
j ukhS`

G,H,ph

(
H(·)eαiG(·)

)
(x0)

=
M̃

∑
j=1

nj+1−1

∑
i=nj

cie
α
(0)
j ukhH(x0)eαi ph`eαiG(x0)
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=
M̃

∑
j=1

c̃(`)j eα
(0)
j ukh

with

c̃(`)j :=
nj+1−1

∑
i=nj

c̃ieαi p`h =
nj+1−1

∑
i=nj

ci H(x0)eαi p`heαiG(x0) (5.33)

for ` = 0, . . . , 2M− 1 and j = 1, . . . , M̃. Using the Vandermonde matrix VM̃ given in
(5.32), we can rewrite this as

VM̃ ·
(

c(`)j

)M̃

j=1
=
(

fuk+p`
)M̃

k=0

and compute c̃(`)j = S`
G,H,ph

(
∑

nj+1−1
i=nj

ci H(·)eαiG(·)
)
(x0) for j = 1, . . . , M̃ and ` =

1, . . . , 2M− 1.
The values c̃(`)j , ` = 1, . . . , 2M − 1 are sample values of a generalized exponen-

tial sum of length nj+1 − nj. In particular, we can compute the values nj+1 − nj by

computing the rank of the Hankel matrix
(

c̃(k+m)
j

)2M−1

k,m=0
. Therefore, we can apply

Theorem 5.16 and reconstruct the frequencies αi and the corresponding coefficients ci,
i = nj, . . . , nj+1 − 1 for j = 1, . . . , M̃. Consequently, the claim follows.

At last, we need to consider the case when aliasing causes a cancellation, i.e., when
c̃(0)k = 0 for some k = 1, . . . , M.

Lemma 5.21 Let p, u ∈ N with gcd(p, u) = 1. Let α1, α2 ∈ C, α1 6= α2 with |Im(αj)| < K,
j = 1, 2 and h = π

K . If eα1uh = eα2uh, then eα1 ph 6= eα2 ph holds.

Proof. For a proof we refer to [CL20a], Lemma 3.

The above lemma implies that even in the case of colliding frequencies and vanishing
coefficients we can recover the signal f . Therefore, we recall equation (5.33), i.e.,

c̃(`)j :=
nj+1−1

∑
i=nj

c̃ieαi p`h =
nj+1−1

∑
i=nj

ci H(x0)eαi p`heαiG(x0) (5.34)

for j = 1, . . . , M̃ and ` = 0, . . . , 2M − 1. For fixed j ∈ N this implies the following
Vandermonde system

(
eαi ph`

)nj+1−1,(nj+1−nj)

i=nj,`=0︸ ︷︷ ︸
=:Vnj+1−nj

· (c̃i)
nj+1−1
i=nj

=
(

c̃(`)j

)nj+1−nj

`=0
.

Lemma 5.21 implies that the occurring Vandermonde matrix Vnj+1−nj is invertible.
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Hence, we can conclude that not all c̃(`)j are vanishing for ` = 0, . . . , nj+1 − nj and
j = 1, . . . , M̃. Consequently, we arrive at the following theorem.

Theorem 5.22 Let G : R → R and H : R → C be continuous functions such that G is
strictly monotone and H is non-vanishing on an interval [a, b] ⊂ R. Furthermore, let f be a
generalized exponential expansion of length M as in (5.1), such that there exists a K ∈ R with
|Im(αj)| < K for all j = 1, . . . , M. Moreover, let h = π

K , u, p,∈ N satisfying gcd(u, p) = 1
and x0 ∈ [a, b] such that

G(x0) + h(uk + `p) ∈ [G(a), G(b)] for G(a) < G(b) or

G(x0) + h(uk + `p) ∈ [G(b), G(a)] for G(a) > G(b)

for all k, ` = 0, . . . , 2M − 1. Then f can be uniquely reconstructed using the samples
f (G−1(G(x0) + h(uk + `p))) for k, ` = 0, . . . , 2M− 1.

5.4 Modification of Prony’s Method for Sparse Approximation

One of the most common applications of Prony’s method is the sparse approximation
of structured signals and in particular exponential sums, i.e., for signals that are either
exactly or approximated by an exponential sum. Therefore, we want to study the
question of approximating a given data vector y = (yk)

N
k=0 ∈ CN+1 by a new vector

f = ( fk)
N
k=0 ∈ CN+1 whose elements are of the form

fk :=
M

∑
j=1

cjzk
j (5.35)

with 2M ≤ N, cj, zj ∈ C \ {0}, and zj pairwise distinct for j = 1, . . . , M. We note that
the length M of the sum in (5.35) is the rank of the Hankel matrix HN,N = ( f j+k)

N
j,k=0

due to Kronecker’s Theorem, see, e.g., Theorem 8.19, in [Fuh12], and, therefore, also
has a close connection to structured low-rank Hankel approximation, see, e.g., [Mar12],
which has been recently studied in the special case of rank-one Hankel approximation
for the spectral norm as well as the Frobenius norm, see [KPP21].

The sparse approximation problem can be rewritten in terms of a non-linear least
squares problem

argmin
c,z∈CM

∥∥∥∥∥∥y−
(

M

∑
j=1

cjzk
j

)N

k=0

∥∥∥∥∥∥
2

2

. (5.36)

This formulation can be used to solve the problem of parameter estimation in the case
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of noisy data, i.e., when the data samples yk are of the form

yk =
H(x0)

H(G−1(G(x0) + hk))
f (G−1(G(x0) + hk)) + εk k = 0, . . . , N,

where εk, k = 0, . . . , N, is the error term and f is a generalized exponential sum as in
(5.1), i.e., of the form f (x) = ∑M

j=1 cjH(x)eαjG(x), since we have

H(x0)

H(G−1(G(x0) + hk))
f (G−1(G(x0) + hk)) =

M

∑
j=1

cjH(x0)eαjG(x0)eαjhk =
M

∑
j=1

c̃jzk
j

with c̃j := cjH(x0)eαjG(x0) and zj := eαjh. If the error terms εk, k = 0, . . . , N, are
independently and identically distributed random variables with εk ∈ N(0, σ2), the
minimization problem can also be interpreted as a maximum likelihood method, see
[SM97], Appendix B, and [Osb75]. Furthermore, we can also understand this as a non-
linear approximation problem of finding a generalized exponential sum f as in (5.1)
such that

N

∑
k=0

∣∣∣∣ yk −
H(x0)

H(G−1(G(x0) + hk))
f (G−1(G(x0) + hk))

∣∣∣∣2
is minimized.

We recall the Vandermonde matrix

VN,M(z1, . . . , zM) := Vz :=



1 1 . . . 1
z1 z2 . . . zM

z2
1 z2

2 . . . z2
M

...
...

...
zN

1 zN
2 . . . zN

M


∈ C(N+1)×M (5.37)

with corresponding node vector z := (z1, z2, . . . , zM). In the following our Vander-
monde matrix always will be of size (N + 1)×M. Since we focus on the recovery of
the parameters zj, j = 1, . . . , M, we use the notation Vz throughout this section. Using
this notation we can write f = Vz · c, with f = ( f0, . . . , fN) and c = (c1, . . . , cM)T ∈ CM

denoting the coefficient vector. Thus, we can reformulate (5.36) as

argmin
c,z∈CM

‖y−Vzc‖2 . (5.38)

We note that the non-linear least square problem in (5.36) is NP-hard to solve, see
[Nat95]. We want to use the so-called variable projection method in order to solve
(5.38) and transfer the problem to a minimization problem with respect to c.

Lemma 5.23 Let N, M ∈ N with 2M ≤ N and let y ∈ CN+1 be the vector of given
data samples. Furthermore, let Vz denote the Vandermonde matrix given in (5.37) and c ∈
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5.4 Modification of Prony’s Method for Sparse Approximation

CM \ {0} denote the vector of (unknown) coefficients. If the parameter z ∈ CM is fixed, the
non-linear optimization problem given in (5.38) is equivalent to

argmax
z∈CM

‖r(z)‖2
2 = argmax

z∈CM
‖Pzy‖2

2 , (5.39)

with Pz = Vz ·V+
z , r(z) := Pz · y ∈ CN+1 and c = V+

z · y.

Proof. For fixed z ∈ CM, the problem in (5.38) reduces to a linear least squares problem

argmin
c∈CM

‖y−Vz · c‖2
2 .

Penrose’s Theorem, see [SS90], Section III, Theorem 1.4, implies that the solution is
given by c = V+

z y, where V+
z denotes the Moore-Penrose inverse given in Definition

5.6. Since the Vandermonde matrix Vz has full rank M, Lemma 5.7 (i) yields

c = V+
z · y = (V∗z ·Vz)

−1 ·V∗z · y,

where V∗z denotes the conjugate transpose of Vz. Additionally, we introduce the pro-
jection matrix Pz ∈ CN+1×N+1 by

Pz := Vz ·V+
z (5.40)

and satisfying

Pz = P∗z, Pz = P2
z, Pz ·Vz = Vz and V+

z · Pz = V+
z . (5.41)

Hence, problem (5.38) can be simplified to

argmin
z∈CM

∥∥y−Vz ·V+
z · y

∥∥2
2 = argmin

z∈CM
‖(IN+1 − Pz) · y‖2

2

= argmin
z∈CM

(y∗ · (IN+1 − Pz)
∗ · (IN+1 − Pz) · y)

= argmin
z∈CM

(y∗y− y∗ · Pz · y) .

Therefore, we need to solve

argmax
z∈CM

y∗ · Pz · y.

Now we define r(z) := Pz · y ∈ CN+1. Then the optimization problem is equivalent to

argmax
z∈CM

‖r(z)‖2
2 = argmax

z∈CM
‖Pz · y‖2

2 .
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We want to briefly elaborate on one of the classical approaches, see, e.g., [Osb75,
ZP19], for solving the optimization problem (5.39). Instead of solving the problem for
the vector z, this problem can also be understood in terms of the Prony method. In
this case we aim to find a vector p ∈ CM+1 satisfying ||p||2 = 1 such that roots of
the corresponding Prony polynomial given in (5.3) are the components z1, . . . , zM of z.
Hence, we introduce the following Toeplitz matrix

Xp :=



p0

p1 p0
... p1

. . .
... p0

pM p1

pM
...

. . .

pM



∈ C(N+1)×(N−M+1), (5.42)

satisfying XT
p ·Vz = 0N−M+1,M+1. Furthermore, we set

Pp := Xp · X+
p = Xp ·

(
XT

p · Xp

)−1
· XT

p ,

with Pp ∈ CN+1×N+1. Using these matrices we get

Pp · Pz = Xp · (Xp · Xp)
−1 · XT

p ·Vz︸ ︷︷ ︸
=0N−M+1,M+1

·V+
z = 0N−M+1,M+1

Since rank(Xp) = N + 1− M = rank(Pp) and rank(Vz) = M = rank(Pz), we can
conclude

Pz = (IN+1 − Pp).

Consequently, we can rewrite the problem (5.39) as

argmin
p∈CM+1,||p||2=1

∥∥Pp · y
∥∥2

2 . (5.43)

Once this problem is solved, the roots of the polynomial P with corresponding
coefficient vector p are computed and then the coefficient vector c can be derived by
c = V+

z · y.

We will present a new analysis which does not transfer the problem to the Prony
polynomial. Let us remark, that one drawback of this new analysis is that we cannot
employ he sparsity M, and, thus, remain with input vector length N + 1.
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In order to solve the derived maximization problem in (5.39) we consider the Jaco-
bian matrix of the vector r(z).

Theorem 5.24 Let N, M ∈N with N ≥ 2M and y ∈ CN+1 be a given data vector. Further-
more, let Vz be the Vandermonde matrix given in (5.37), Pz = Vz ·V+

z be the corresponding
projection matrix and Pz · y =: r(z) = (r`(z))

N
`=0. Then the Jacobian matrix Jz ∈ C(N+1)×M

of r(z) is given by

Jz :=
(

∂r`(z)
∂zj

)N,M

`=0,j=1

= (IN+1 − Pz) ·V′z · diag (V+
z y) + (V+

z )
∗ · diag

(
(V′z)

∗ · (IN+1 − Pz) · y
)
,

(5.44)

where IN+1 denotes the identity matrix of size N + 1 and

V′z =



0 0 . . . 0
1 1 . . . 1

2z1 2z2 . . . 2zM
...

...
...

NzN−1
1 NzN−1

2 . . . NzN−1
M


∈ C(N+1)×M.

In particular,

∇‖r(z)‖2
2 = 2J∗z · r(z) = 2 diag

(
(V′z)

T · (IN+1 − Pz) · y
)
·V+

z · y. (5.45)

Proof. First, we observe that the partial derivative ∂
∂zj

Vz is a rank-1 matrix of the form

∂

∂zj
Vz = z′je

∗
j ∈ C(N+1)×M, j = 1, . . . , M, (5.46)

where z′j := (0, 1, 2zj, 3z2
j , . . . , NzN−1

j )T, and ej is the j-th unit vector of length M.
Applying the general rule

∂Y(x)−1

∂xj
= −Y(x)−1 ∂Y(x)

∂xj
Y(x)−1, Y(x) ∈ Cn×m, x = (x1, . . . , xm)T for n, m ∈N,

to Pz = Vz ·V+
z = Vz · (V∗z ·Vz)−1 ·V∗z and using (5.46) we obtain

∂

∂zj
r(z) =

∂

∂zj
(Pz · y) =

∂

∂zj

(
Vz ·V+

z · y
)

=

(
∂

∂zj
Vz

)
·V+

z y− (V+
z )
∗ ·
[

∂

∂zj
(V∗z ·Vz)

]
·V+

z y + (V+
z )
∗ ·
(

∂

∂zj
Vz

)∗
· y

= (z′je
∗
j )V

+
z y− (V+

z )
∗ ·
[
(z′je

∗
j )
∗Vz + V∗z(z

′
je
∗
j )
]
·V+

z y + (V+
z )
∗ · (z′je∗j )∗ · y

= (V+
z y)jz′j −

(
(z′j)

∗Pzy
)
· (V+

z )
∗ej − (V+

z y)jPzz′j +
(
(z′j)

∗y
)
· (V+

z )
∗ej
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= (V+
z · y)j(IN+1 − Pz) · z′j + ((z′j)

∗ · (IN+1 − Pz) · y) · (V+
z )
∗ · ej

= (V+
z y)j(IN+1 − Pz) ·V′z · ej + ((z′j)

∗ · (IN+1 − Pz) · y) · (V+
z )
∗ · ej,

where (V+
z y)j denotes the j-th component of the vector V+

z y. This implies

Jz = (IN+1 − Pz) ·V′z · diag(V+
z y) + (V+

z )
∗ · diag

((
(z′)∗j · (IN+1 − Pz) · y

)M

j=1

)
.

Consequently, we obtain that the Jacobian matrix Jz of r(z) is of the form (5.44). Fur-
thermore, using (5.41) we get

J∗zr(z) =
(

diag V+
z y
)
·
(
V′z
)∗ · (IN+1 − Pz)

∗ · Pz · y

+

(
diag

(
(V′z)

∗ · (IN+1 − Pz) · y
))∗

V+
z · Pz · y

=

(
diag

(
(V′z)

T · (IN+1 − Pz) · y
))
·V+

z · y.

Hence, the gradient of ‖r(z)‖2
2 given by ∇‖r(z)‖2

2 = 2Jz · r(z) has the desired form
(5.39).

Corollary 5.25 Let N, M ∈ N with N ≥ 2M and y ∈ CN+1 be the given data vector.
Assume that the corresponding Hankel matrix HN−M+2,M = (yk+`)

N−M+1,M−1
k,`=0 has full rank

M and VT
z y has no vanishing components. Then the solution to the optimization problem

given in (5.39) necessarily satisfies

(V′z)
T · (IN+1 − Pz) · y = 0N+1.

Proof. We assume z solves the optimization problem in (5.39). This implies
∇‖r(z)‖2

2 = 0N+1. Hence, Theorem 5.24 yields

∇‖r(z)‖2
2 = 2 diag

(
(V′z)

T · (IN+1 − Pz) · y
)
·V+

z · y = 0N+1.

Since V+
z y has no vanishing components the claim follows.

Remark 5.26 Based on this analysis we proposed the idea for an iterative algorithm
for the approximation on the vector z in [KP21]. For the sake of scientific accuracy and
validity, we want to explain, why this proposed algorithm is not feasible. Therefore,
we will briefly present the suggested method: We start with initial guess z(0) obtained
by Algorithm 7. Then the vector z(j+1), j ∈N0 is updated by solving

(V′z(j+1))
T · (IN+1 − Pz(j)) · y = 0N+1 j = 0, . . . ,

i.e., by computing the zeros of the polynomial Pj(x) = ∑N
k=0 p(j)

k xk with the coefficient

128



5.4 Modification of Prony’s Method for Sparse Approximation

vector p(j) = (p(j)
k )N

k=0 := diag(0, 1, . . . , N) · (IN+1 − Pz(j)) · y. This results in N zeros.
In order to get rid of the superfluous zeros we choose the subset of size M which is
closest to the subset containing the coefficients of z(j).

This algorithm is not feasible, since Lemma 5.7(iv) implies that if the vector z(j) is
the solution of the optimization problem given in (5.39), it lies in the column space of
Vz(j) . Therefore, we have (IN+1− Pz(j))y = 0N+1 and hence p(j) = 0N+1. Consequently,
the corresponding polynomial P(j) is the zero polynomial. If the vector z(j) is close to
the optimal solution machine precision may yield only p(j) ≈ 0N+1, we may obtain
P(j) 6≡ 0 but still P(j) ≈ 0. In this case, the roots of P(j) are in general not close to the
optimal solution z(j). ♦

5.4.1 Gauß-Newton and Levenberg-Marquardt Iteration

In this section we will discuss a different approach to solve the non-linear least squares
problem (5.39) based on the Newton method. In each iteration step, the parameter
vector r(z) = Pz · y is replaced by a new estimate r(z + δ) for δ ∈ CM. This new
vector is now approximated by its first order Taylor expansion r(z) + Jz · δ. Hence,
instead of maximizing ‖r(z + δ)‖2

2 we consider

argmax
δ∈CM

‖r(z) + Jz · δ‖2
2 = argmax

δ∈CM
(r(z) + Jz · δ)∗ · (r(z) + Jz · δ)

= argmax
δ∈CM

(
‖r(z)‖2

2 + r(z) · Jz · δ + δ∗ · J∗z · r(z) + δ∗J∗z · Jzδ
)

,

which yields

2Re(J∗zr(z)) + 2J∗z · Jzδ = 0N+1.

Hence, the corresponding Gauss-Newton iteration at the j-th step is of the form

(J∗z(j) · Jz(j))δ
(j) = −Re

(
Jz(j)r

(
z(j)
))

,

in order to obtain the improved vector z(j+1) = z(j) + δ(j) with Jz(j) as in Theorem 5.24.
Since the vector (IN+1 − Pz(j)) · y may already be close to the zero vector, the matrix

(J∗
z(j)Jz(j)) is usually ill-conditioned. The Levenberg-Marquardt algorithm, see, e.g.,

[Mor78], introduces a regularization changing the coefficient matrix at each iteration
step. The matrix is changed to

(J∗z(j) · Jz(j)) + µjIM

for µj > 0. Then the iteration reads as follows

(
J∗z(j) · Jz(j) + µjIM

)
δ(j) = −Re

(
Jz(j)r

(
z(j)
))

.
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If we arrive at a (local) maximum of ‖r(z)‖2
2, the Levenberg-Marquardt iteration van-

ishes, and we obtain δ(j) = 0. This optimization algorithm is in general very fast. Since
this algorithm may only lead to a local maximum, the solution highly depends on the
input vector. One possible option for an input vector z(0) is the solution obtained by
the ESPRIT method described in Section 5.1. Nevertheless, one drawback is that the
sparsity number M is not used and the matrices are of size N + 1. Therefore, it is
beneficial to use the classical approach described in e.g., [ZP19] and above. Finally, we
want to conclude that the numerical experiments in [ZP19] indicate, that the variable
projection method based on the Levenberg-Marguardt Iteration as well as the Prony
method or the ESPRIT method seem to perform well for the approximation problem
considered in this section.

5.5 Numerical Examples

In this section we want to illustrate our derived algorithms using different numerical
examples.

To this end, we begin by considering the following generalized exponential sum,
which is sometime studied in the field of electrical engineering, see, e.g., [Mil15].

Definition 5.27 (Exponential Cosine Expansion) Let M ∈ N. Then we call f an M-
sparse exponential cosine expansion if f is of the form

f (x) =
M

∑
j=1

cjeαj cos(x) (5.47)

with cj ∈ C \ {0} and αj ∈ C for j = 1, . . . , M.

This expansion is, indeed, a generalized exponential as in (3.12) with G(x) := cos(x)
and H ≡ 1. In order to ensure that G is strictly monotone, we chose the sampling
interval (π, 2π). Then the corresponding generalized shift operator SG,H,h is of the
form

SG,H,h f (x) = f (G−1(G(x) + h)) = f (arccos(h + cos(x))).

Example 5.28 In this example we compare the performance of the classical Prony
method in Algorithm 3 with the ESPRIT method in Algorithm 7 and focus on the
reconstruction of the frequency parameters. We consider a sparse exponential cosine
expansion f as in (5.47) and can use Theorem 3.31 for the reconstruction of f . We
remark that the sampling distance h strongly depends on the length of the interval,
in which G is strictly monotone, as well as on the slope of G−1. Hence, in order to
be able to apply Theorem 3.31, we need to choose a sampling distance h ∈ R \ {0}
and a starting point x0 ∈ R such that cos(x0) + hk ∈ (−1, 1) for k = 0, . . . , 2M − 1.
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This is satisfied for x0 = π + h/2 for 0 < h ≤ π
2M+1 . Since we also want to apply the

modified ESPRIT method to determine the parameter M, we oversample this function
and consider 2N samples with N ≥ M. Therefore, we choose 0 < h ≤ π

2N+1 and
x0 = π + h/2, satisfying the conditions for Theorem 3.31 and the ESPRIT method.

For our numerical example we choose M = 5. The original real parameters in Table
5.1 have been drawn uniformly from the intervals (−1, 1) for cj and from (−π, π) for
αj, j = 1, . . . , M.

parameters j = 1 j = 2 j = 3 j = 4 j = 5

cj 0.7171 0.8221 0.3993 0.4504 −0.5402
αj −1.1251 0.0717 −2.7608 1.4180 0.3554

Table 5.1: Parameters cj and αj for a sparse exponential cosine expansion as in (5.47)
with M = 5, see Figure 5.2.

For the reconstruction using Algorithm 7 we use N = 17 and, therefore, the samples
f (arccos(hk + cos(x0))), k = 0, . . . , 33, with h = 1

35 and x0 = π + h
2 = π + 1

70 . We
assume an upper bound of L = 12 . For the rank approximation in step 1 of Algorithm
7 we use the tolerance ε = 10−10. The singular values of the matrices H22,13 as well as
H29,6 are shown in Figure 5.1. In both cases a clear gap after the fifth singular value is
visible. Furthermore, this visualisation coincides with Lemma 5.11 since the singular
values of the matrix H22,13 are slightly larger than the singular values of H29,6.
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Figure 5.1: Singular values of the matrices H22,13 (blue) and H29,6 (red) used in Al-
gorithm 7 on the logarithmic y-axis and the corresponding index on the
x-axis.
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For the reconstruction using the classical Prony Algorithm 3 we used the 10 samples
f (arccos(hk + cos(x0))) for k = 0, . . . , 9.

0 1 2 3 4 5 6

0

1

2

3

4

5

6

7

8

9

10

Figure 5.2: 5-sparse exponential cosine expansion with parameters given in Table 5.1.
The black dots indicate the sampled used for the reconstruction using Al-
gorithm 7.

Table 5.2 shows the maximal reconstruction error for the frequency parameters αj,
j = 1, . . . , M given by

err := max
j=1,...,5

|αj − α̃j|,

where α̃j denote the recovered parameter for j = 1, . . . , 5.

Algorithm 4 Algorithm 7 (L = 12)

err 0.0904 3.1028 · 10−6

Table 5.2: Maximal error in the frequency coefficients αj for a 5-sparse exponential
cosine expansion as in (5.47) obtain by Algorithm 3 and Algorithm 7.

This shows that the estimation obtained by the ESPRIT Algorithm yields a much
more accurate result than Algorithm 3. One reason for this is the fact that our sampling
distance h is rather small and the samples therefore close, as depicted in Figure 5.2.

♦
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Example 5.29 We also want to test our modified ESPRIT method on noisy data. There-
fore, we consider an M-sparse expansion into Gaussian chirps as in (3.28), i.e.,

f (x) =
M

∑
j=1

cje−β(x−αj)
2

(5.48)

with β = i, cj ∈ C \ {0}, αj ∈ C, j = 1, . . . , M, as in Table 5.3 and M = 5.

parameters j = 1 j = 2 j = 3 j = 4 j = 5

cj 1 −3 0.4 0.01 2
Re(αj) 0 −π

2 −0.25 −1 0.2
Im(αj) 1 0 0.4 0.01 0

Table 5.3: Parameters cj and αj for a 5-sparse expansion into Gaussian chirps as in
(5.48).

Remark 3.49 implies, that this a generalized exponential sum with G(x) = 0 and
H(x) = e−ix2

and can be reconstructed using the samples f (x0 + hk), k = 0, . . . , 2M− 1.
We consider the noisy data samples with

f̃ (x0 + hk) := f (x0 + hk) + εk

where εk additive white Gaussian noise with mean 0 and variance σ2. We perform
tests for 7 different variances σ2 = 10−14, 10−13, . . . , 10−8 using Algorithm 7. We use
the starting point x0 = 0 and the sampling distance h = 0.1. We choose an the
upper bound of L = 8, 2N = 2 · 12 = 24 samples and a tolerance of ε = 10−6. The
maximal reconstruction errors for the frequencies are shown in Table 5.4. Here, we
have α :=

(
αj
)5

j=1 and α̃ :=
(
α̃j
)5

j=1 with α̃j, j = 1, . . . , 5, the parameter obtained by
Algorithm 7.

variance σ2 ‖α− α̃‖∞

10−14 5.8723 · 10−7

10−13 1.8487 · 10−6

10−12 3.5068 · 10−6

10−11 1.4566 · 10−5

10−10 5.5265 · 10−5

10−09 8.8796 · 10−5

10−08 5.1598 · 10−4

Table 5.4: Performance results of Algorithm 7 using different noise levels.

We observe that for growing noise variance the accuracy of the reconstructed values
decreases. In particular, this may result to the recovery of an additional frequency
parameter α6, if the tolerance ε is not chosen appropriately.
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♦

Example 5.30 In this example we want to test Algorithm 8 on a sparse exponential
sine expansion. Therefore, let f be a 5-sparse exponential sine expansion, i.e.,

f (x) =
5

∑
j=1

cjeαj sin(x) (5.49)

with parameters cj and αj, j = 1, . . . , 5, as given in Table 5.5. The minimal separation
distance in our example is given by q = 0.01 and the parameters α1 and α2 are clus-
tered. Moreover, the signal f is, indeed, a generalized exponential sum with H ≡ 1
and G(x) := sin(x).

parameters j = 1 j = 2 j = 3 j = 4 j = 5

cj 1 −0.5 −0.02 1.7 −0.84
Re αj −1 −0.99 −2 1.7 0.3
Im αj −1.12 −1.1199 −5 −5 −1.1189

Table 5.5: Parameters cj and αj, j = 1, . . . , 5, for a 5-sparse exponential sine expansion
as in (5.49).

In order to ensure that G is strictly monotone we consider the interval (−π
2 , π

2 ).
Similarly to Example 5.28 the sampling distance strongly depends on the length of our
considered interval as well as on the slope of G−1. We choose the sampling distance
h = 1

20 and the starting point x0 = −π
2 + 0.01. Furthermore, we set p = 3, u = 11

and choose the samples as in Theorem 5.16. For the application of Algorithm 8 we use
10 samples of the form f (arcsin(sin(x0) + uh`)) for ` = 0, . . . , 9 as well as 5 samples
of the form f (arcsin(sin(x0) + h(u`+ p))) for ` = 0, . . . , 5. The parameters obtained
by Algorithm 8 are denoted by c̃j and α̃j, j = 1, . . . , 5. The reconstruction errors are
shown in Table 5.6.

j |αj − α̃j| |cj − c̃j|
j = 1 1.9183 · 10−07 3.8487 · 10−05

j = 2 3.3868 · 10−07 1.5666 · 10−04

j = 3 1.1341 · 10−08 4.9707 · 10−12

j = 4 6.9634 · 10−13 5.7275 · 10−14

j = 5 4.9968 · 10−10 7.7323 · 10−10

Table 5.6: Error in the numerical evaluations of the parameters cj and αj for the 5-
sparse exponential sine expansion as in (5.49) obtained using Algorithm 8.

We compare this result with the outcome of Algorithm 3. In this case, we only need
10 samples of the form f (arcsin(sin(x0) + h`)) for ` = 0, . . . , 9. The reconstruction
errors obtained by Algorithm 3 are shown in Table 5.7. For better visualization we

134



5.5 Numerical Examples

present the frequencies αj, j = 1, . . . , 5, as well as the parameters obtained by Algo-
rithm 8 and Algorithm 3 in Figure 5.3.

j |αj − α̃j| |cj − c̃j|
j = 1 0.0096 0.4997
j = 2 1.7923 0.5000
j = 3 1.2890 · 10−6 6.1338 · 10−8

j = 4 9.7038 · 10−7 2.7015 · 10−6

j = 5 9.7251 · 10−5 4.3585 · 10−4

Table 5.7: Error in the numerical evaluations of the parameters cj and αj, j = 1, . . . , 5,
for the 5-sparse exponential sine expansion as in (5.49) obtained using Algo-
rithm 3.
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Figure 5.3: Parameter αj (black circles) as well as the corresponding recovered param-
eters obtained by Algorithm 8 (red stars) and Algorithm 3 (blue squares).
The x-axis shows the real part of the parameter αj. The y-axis the imaginary
part of αj, j = 1, . . . , 5.

Algorithm 3 is not able to distinguish between the first two frequencies. We obtain
α̃2 = 1.0096 − 1.1198i and α̃2 = 0.8967 − 2.90981i. The corresponding parameters
cj, j = 1, 2 are adjusted accordingly and we obtain c̃1 = 0.5005 − 0.0003i and c̃2 =

2.8412 · 10−06 + 2.1577i · 10−05. This explains the large reconstruction errors for the
values c1 and c2. This is due to the fact, that the roots of the Prony polynomial eαjh for
j = 1, 2 are close together. In comparison, the values eαjuh are much better separated
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than the values eαjh, j = 1, . . . , 5. Therefore, Algorithm 8 is able to recover the clustered
frequencies with higher accuracy. Nevertheless, the performance of the recovery for
both Algorithms is accurate as shown in Figure 5.4.
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-2

0

2

4
real part

-2 -1 0 1 2 3 4 5 6 7
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10
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Figure 5.4: Recovery of the 5-sparse exponential sine expansion (5.49) with Algorithm
3 in red. Recovery obtain by Algorithm 8 shown in blue. Both reconstruc-
tions cannot be distinguished visually.

Finally, we also want to highlight that in this case our modified ESPRIT Algorithm
7 also yields high accuracy. Therefore, we oversample with N = 14. We choose L = 8
for the upper bound on the sparsity number M = 5 and tolerance ε = 10−12. The
reconstruction errors obtained by Algorithm 7 are shown in Table 5.8. We can see that
the results obtained by Algorithm 8 are slightly better.

j |αj − α̃j| |cj − c̃j|
j = 1 0.0020 0.2965
j = 2 0.0049 0.2965
j = 3 1.2158 · 10−07 2.8488 · 10−09

j = 4 3.5058 · 10−10 1.2134 · 10−09

j = 5 1.1696 · 10−06 5.0034 · 10−06

Table 5.8: Error in the numerical evaluations of the parameters cj and αj, j = 1, . . . , 5
for the 5-sparse exponential sine expansion obtained using Algorithm 7.

♦
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5.5 Numerical Examples

Example 5.31 We consider a M-sparse expansion into Gaussian chirps as in (5.48)
with M = 6 and β = 0.5, i.e.,

f (x) =
6

∑
j=1

cje−0.5(x−αj)
2

with the parameters cj and αj, j = 1, . . . , 6, as in Table 5.9.

parameters j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

cj −0.5 1 7 0.2 −3 8
Re αj 0 0.0010 0.0022 0.00097 0 −0.00003
Im αj 1.88π 1.8π −1.5119 −1.5 −1.4889 1.7899π

Table 5.9: Parameters cj and αj for a 6-sparse expansion into Gaussian chirps as in
(5.48).

We have 2 clusters, i.e., the frequencies α1, α2 and α6 as well as the frequencies α3,
α4 and α5 are clustered together. The minimal separation distance is q = 0.01. We
choose the starting point h = 1

10 and the starting point x0 = 0. For the sub-sampling
parameters we choose u = 5 and p = 3. Then Theorem 5.16 implies that f can be
recovered using the samples f (x0 + h(ku + `p)) for k = 0, . . . , 11 and ` = 0, 1.

The reconstruction errors obtained by Algorithm 8 are shown in Table 5.10. For
better visualization we present the original frequencies αj, j = 1, . . . , 6 as well as the
parameters obtained by Algorithm 8 in Figure 5.5. We obtain a slightly greater error
in the recovered parameters α̃j for j = 1, 2, 6 and the corresponding parameters c̃j,
j = 1, 2, 6 are adjusted accordingly. Therefore, the recovered signal obtained by Algo-
rithm 8 is still highly accurate. This shows that even in the case of multiple clusters
containing more than 2 frequencies, the performance of Algorithm 8 is highly accurate.

j |αj − α̃j| |cj − c̃j|
j = 1 1.2750 · 10−4 0.0016
j = 2 0.0025 0.1282
j = 3 2.4730 · 10−7 4.3621 · 10−4

j = 4 3.6358 · 10−5 8.2152 · 10−5

j = 5 6.3586 · 10−7 5.1094 · 10−4

j = 6 1.9650 · 10−4 0.1294

Table 5.10: Error in the numerical evaluations of the parameters cj and αj, j = 1, . . . , 6
for the 6-sparse expansion into Gaussian chirps with clustered frequencies
obtained using Algorithm 8.
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Figure 5.5: Parameter αj (black circles) as well as the corresponding recovered param-
eters obtained by Algorithm 8 (red stars). The x-axis shows the real part of
the parameter αj. The y-axis shows the imaginary part of αj, j = 1, . . . , 6.
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6 Conclusion and Outlook

In this thesis we have looked at the question of how we can recover structured func-
tions using only a small set of functional values. Answering this question, we have
deduced Prony based algorithms for the unique reconstruction of generalized expo-
nential sums, generalized trigonometric sums and finite, sparse expansions into or-
thogonal polynomials based on the theory of the generalized Prony method derived
in [PP13].

Based on the theory of one-parameter semigroups we derived a Prony method for
the recovery of generalized exponential sums such as sparse cosine exponentials and
generalized trigonometric functions. We showed that these structured functions can be
understood as eigenfunctions of generalized shift operators as well as eigenfunctions
of linear differential operators.

Additionally, we derived a Prony based method for the recovery of sparse expan-
sions into orthogonal polynomials using generating functions and have embedded
this reconstruction method into our the theoretical concept of the generalized Prony
method.

Furthermore, we showed that (stabilizing) numerical methods for the Prony method
can be modified for the recovery of structured functions. In particular, we modified
the ESPRIT method, introduced a sub-sampling Prony based recovery method for
generalized exponential sums (with clustered frequencies) and analysed modifications
of Prony’s method for sparse approximation.

However, there exist further open problems for the recovery of structured functions.
All of the derived methods have been studied in the one-dimensional case. Hence,
an interesting object of investigation would be the two-dimensional or multivariate
case. As we mentioned in Chapter 2, a lot of effort has been made to obtain a Prony-
like method in several variables, see [PV20, KPRv16, CL18]. Therefore, it would be
interesting to see if the results of this thesis can be extended to the multivariate case.

The numerical results in Section 5.5 show that the reconstruction obtained by Algo-
rithm 8 is highly accurate in the case of clustered frequencies. The results in [CL20b]
indicate that similar algorithms can be obtained for the reconstruction of generalized
trigonometric expansions as well as generalized hyperbolic expansions. While there
exists a variety of stability analysis for algorithms such as the ESPRIT method, see
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6 Conclusion and Outlook

e.g. [Aub16, PT13, LLF20] no performance results for the reconstruction method in 8
and similar algorithms have been derived. Hence, it would be of interest to obtain
error analysis results for these algorithms.

Furthermore, the non-linear least squares problem considered in Section 5.4 is also
closely related to structured low-rank approximation, see [Mar12,UM14]. Also, instead
of the Euclideannorm, one can consider the maximum norm, see [Hac05] or the 1-
norm, see [Skr17].

Additionally, one open question is, how functions in special smoothness spaces can
be approximated by exponential sums (or generalized exponential sums), if the input
data is known to be a sampling sequence of a function in a given smoothness space.
Furthermore, it would be of interest to derive a convergence rate with respect to the
number of terms M. The numerical results in [Hac05] show that the function 1

x can be
approximated by an M-term exponential sum with an error of O(exp(c

√
M)).

Finally, the results in [Pot17, PP19] indicate that we can hope for an exponential
decay of the approximation error for a larger class of functions.
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