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Summary 

A key research question in livestock research is how livestock’s phenotypic diversity is shaped by its 

genomic diversity. Genomic diversity is thereby assessed through genomic markers. The use and 

definition of genomic markers is strongly technology driven and therefore changes through time. 

During the last years, single nucleotide polymorphisms (SNPs) have become the main marker class. 

Additionally, SNP arrays have been the genotyping technology of choice during the last years due to 

their early availability. They are, however, currently partially displaced by whole-genome-sequencing 

(WGS) for SNP calling. Further, structural variants (SV) are moving more and more into the focus of 

researchers. In this context, the thesis aims in evaluating the value of SNP markers in various ways with 

its main focus on chickens as a diverse livestock species with major agricultural value. 

In Chapter 1, the current knowledge of genomic variation, marker technologies, and their use in 

livestock sciences, especially in chickens, is reviewed. Chapter 2 and 3 then address a systematic error 

of SNP arrays, the SNP ascertainment bias. SNP ascertainment bias is a systematic shift of the allele 

frequency spectrum of SNP arrays towards more common SNPs due to the pre-selection of SNPs in a 

limited number of individuals of few populations. 

Chapter 2 aims in assessing the magnitude of the bias for a standard chicken SNP array and the steps 

of array design that created the bias. In the study, we therefore remodeled the design process of the 

chicken array based on (pooled) WGS of various chicken populations. This revealed a sequential 

reduction of rare alleles during the design process, which was mainly caused by the initial limitation of 

the discovery set and a later within-population selection of common SNPs while aiming for equidistant 

spacing. Increasing the discovery set had the largest impact on limiting ascertainment bias. Other 

steps, as e.g. validation of the SNPs in a broader set of populations did not show relevant effects. 

Correction methods for ascertainment bias are by now often unfeasible in studies. Chapter 3 therefore 

proposes to use imputation of the array data to WGS level as an in silico correction method of the allele 

frequency spectrum. The study revealed that imputation is able to strongly reduce the effects of 

ascertainment bias, even when a very sparse reference panel was used. However, it became also 

obvious that the reference panel then has the same effect as the discovery panel during array design. 

It is therefore crucial to select samples for the reference panel evenly spaced across the intended range 

of populations. 

SVs are harder to call and genotype than SNPs. Therefore, the question arises whether effects of SV 

are captured by SNP-based studies due to strong linkage disequilibrium between SNPs and SVs. This is 

assessed in Chapter 4 for three commercial chicken breeds, based on WGS data. The study showed 
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that LD between deletions and SNPs was on the same level as LD between SNPs and other SNPs, 

indicating that deletion effects are captured by SNP marker panels as good as SNP effects. LD between 

SNPs and other SVs was strongly reduced. The main factor for this reduction was local differences to 

SNPs in terms of minor allele frequency. However, a reduction of homozygous variant calls for non-

deletion SVs compared to the Hardy-Weinberg-expectation may indicate problems of the used SV 

genotypers. 

In the last chapter (Chapter 5), the impact of ascertainment bias and possibilities to deal with it in 

chicken genomics (and also more general in livestock genomics) is discussed. Further, the potentials of 

including SVs into studies are evaluated. It also discusses what is necessary to combine the information 

of different genomic data sets to leverage the value of analyses. Finally, an outlook on what 

information will be additionally available in near future based on recent technological advances is 

given. 
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Zusammenfassung 

Eine zentrale Forschungsfrage in der Nutztierforschung ist, wie die phänotypische Vielfalt von 

Nutztieren durch ihre genomische Vielfalt geprägt wird. Die genomische Vielfalt wird dabei durch 

genomische Marker beschrieben. Die Verwendung und Definition von genomischen Markern ist stark 

technologieabhängig und ändert sich daher im Laufe der Zeit. In den letzten Jahren haben sich 

Einzelnukleotidpolymorphismen (SNPs) zur wichtigsten Markerklasse entwickelt. Außerdem waren 

SNP-Arrays in den letzten Jahren aufgrund ihrer frühen Verfügbarkeit die Genotypisierungstechnologie 

der Wahl. Sie werden jedoch derzeit teilweise durch die Ganzgenomsequenzierung (WGS) zur SNP-

Bestimmung verdrängt. Darüber hinaus rücken Strukturelle Varianten (SV) mehr und mehr in den 

Fokus der Forschung. In diesem Zusammenhang zielt die vorliegende Arbeit darauf ab, die 

Aussagekraft von SNP-Markern auf verschiedene Weise zu bewerten, wobei der Schwerpunkt auf 

Hühnern als einer vielfältigen Nutztierart mit großer landwirtschaftlicher Bedeutung liegt. 

In Kapitel 1 wird der aktuelle Wissensstand über genomische Variation, Markertechnologien und 

deren Einsatz in der Nutztierwissenschaft, insbesondere bei Hühnern, dargestellt. Kapitel 2 und 3 

befassen sich dann mit einem systematischen Fehler von SNP-Arrays, dem SNP Ascertainment Bias. 

Der SNP Ascertainment Bias ist eine systematische Verschiebung des Allelfrequenzspektrums von SNP-

Arrays hin zu häufigeren SNPs aufgrund der Vorauswahl von SNPs in einer begrenzten Anzahl von 

Individuen aus wenigen Populationen. 

Kapitel 2 zielt darauf ab, das Ausmaß des Bias für einen Standard-SNP-Array für Hühner und die 

Schritte des Array-Designs, die den Bias verursacht haben, zu bewerten. In der Studie haben wir daher 

den Designprozess des Hühnerarrays auf der Grundlage von (gepoolten) WGS verschiedener 

Hühnerpopulationen nachgestellt. Dabei zeigte sich eine sequentielle Reduktion seltener Allele 

während des Designprozesses, die vor allem durch die anfängliche Begrenzung des Discovery Sets und 

eine spätere Selektion von häufigen SNPs innerhalb der Populationen bei gleichzeitigem anstreben von 

äquidistanten Abständen verursacht wurde. Eine Vergrößerung des Discovery Panels hatte den 

größten Einfluss auf eine Begrenzung des Ascertainment Bias. Andere Schritte, wie z. B. die Validierung 

der SNPs in einem breiteren Set von Populationen, zeigten keine relevanten Auswirkungen. 

Korrekturmethoden für den Ascertainment Bias sind in Studien bisher meist nicht durchführbar. In 

Kapitel 3 wird daher vorgeschlagen, die Imputation der Array-Daten auf WGS-Niveau als in silico 

Korrekturmethode für das Allelfrequenzspektrum zu verwenden. Die Studie zeigte, dass die 

Imputation in der Lage ist, die Auswirkungen von Erhebungsfehlern stark zu reduzieren, selbst wenn 

ein sehr kleines Referenzpanel verwendet wurde. Es wurde jedoch auch deutlich, dass das 

Referenzpanel dann den gleichen Effekt wie das Discovery-Panel während des Array-Designs hat. 
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Daher ist es von entscheidender Bedeutung, dass die Proben für das Referenzpanel gleichmäßig über 

das Populationsspektrum verteilt ausgewählt werden. 

SVs sind schwieriger zu bestimmen und zu genotypisieren als SNPs. Daher stellt sich die Frage, ob die 

Effekte von SV auch durch SNP-basierte Studien erfasst werden. Das wäre der Fall, wenn zwischen 

SNPs und SVs ein starkes Kopplungsungleichgewicht (LD) besteht. Dies wird in Kapitel 4 für drei 

kommerzielle Hühnerrassen auf der Grundlage von WGS-Daten untersucht. Die Studie zeigte, dass das 

LD zwischen Deletionen und SNPs auf dem gleichen Niveau lag wie das LD zwischen SNPs und anderen 

SNPs, was darauf hindeutet, dass Effekte von Deletionen von SNP-Marker-Panels genauso gut erfasst 

werden wie SNP-Effekte. Das LD zwischen SNPs und anderen SVs war stark reduziert. Der Hauptfaktor 

für diese Verringerung waren lokale Unterschiede zu SNPs in Bezug auf die Minor-Allel-Frequenz. Eine 

Reduktion der homozygoten Varianten für Nicht-Deletions-SVs im Vergleich zur Erwartung unter 

Hardy-Weinberg-Gleichgewicht kann jedoch auf Probleme der verwendeten SV-Genotypisierer 

hinweisen. 

Im letzten Kapitel (Kapitel 5) werden die Auswirkungen des Ascertainment Bias und die Möglichkeiten, 

damit in der Hühnergenomforschung (und auch generell in der Nutztiergenomforschung) umzugehen, 

diskutiert. Außerdem werden die Möglichkeiten der Einbeziehung von SV in Studien bewertet. Es wird 

auch erörtert, was notwendig ist, um die Informationen aus verschiedenen genomischen Datensätzen 

zu kombinieren damit der Aussagewert von Studien erhöht wird. Abschließend wird ein Ausblick 

darauf gegeben, welche Informationen aufgrund der jüngsten technologischen Fortschritte in naher 

Zukunft zusätzlich verfügbar sein werden. 
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Source and types of genomic variation 

The genomic information of eukaryotes is purely encrypted in form of deoxyribonucleic acid (DNA). 

DNA consists of two counter-rotating strands of nucleotides, forming a double helix (Watson and Crick 

1953). A single nucleotide is the combination of a central deoxyribose, a phosphate group and one out 

of four nucleobases. The nucleobases are thereby either purine bases (adenine, A; guanine G) or 

pyrimidine bases (thymine, T; cytosine, C). The phosphate group binds to the deoxyribose of the next 

nucleotide via a covalent binding and thereby is responsible for establishing the backbone of the DNA 

strand. The nucleobases connect the opposing strands via hydrogen bounds. In this scope, A always 

binds to T via two hydrogen bounds, while C binds to G via three bounds (Knippers 2015). The sequence 

of bases allows the coding of information in form of (protein-coding) genes and according regulatory 

elements, available on both of the two complementary strands (Nordheim 2015). Further, the 

existence of the two strands is the primary basis for replicative processes (Dröge 2015a). 

The nuclear DNA of animals is thereby organized in chromosomes. They can be divided into autosomes 

and heterosomes. While autosomes exist pair-wise, one inherited by the sire and one by the dam, 

heterosomes show a sex-linked pattern. In mammals, females carry two X chromosomes, while males 

carry an X and a shorter Y chromosome (Graves and Watson 1991). In contrast, male birds carry two Z 

chromosomes, and female birds have a Z and a shorter W chromosome (Stevens 1997). Genetic sex 

determination in fish species is due to an XY, ZW, polygenic or clonal system, often combined with 

environmental plasticity (Devlin and Nagahama 2002). Note that the larger heterosome regularly also 

carries parts of the information of the smaller heterosome in the so-called pseudo-autosomal region 

(Smeds et al. 2014; Raudsepp and Chowdhary 2015). Besides nuclear DNA, animal cells also carry 

mitochondrial DNA, which is organized in circular form and, besides some rare and often pathogenic 

cases, exclusively inherited from the dam (Hiendleder 2007). 

Genomic variants are typically classified by the way they change the genome. The simplest and 

currently most evaluated form of polymorphisms are single nucleotide polymorphisms (SNP), which 

describe a single base exchange at a specified position in the genome. SNPs can thereby have up to 

four states in a population, even though commonly only bivariate SNPs are analyzed. Mutations 

generating SNPs are separated into transitions (Ti) and transversions (Tv). While Ti refers to the 

exchange of a purine base by the other one (A↔G) or of a pyrimidine base by the other one (C↔T), 

Tv describes the switch between purine and pyrimidine bases. The Ti/Tv ratio is species-dependent, 

but commonly larger than one, meaning that Ti are more common than Tv (Purvis and Bromham 1997). 

Variants that are more than a simple base exchange are classified as structural variants (SV). However, 

it is common to regard short (< 50 bp) insertion-deletion (InDel) polymorphisms separately due to 

technical reasons. SV (> 50 bp) are generally separated into unbalanced SV, which change the overall 
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genome size (deletions: DEL; duplications: DUP; insertions: INS) and balanced SV, which change the 

structural confirmation, but not the overall size of the genome (inversions: INV; translocations: TRA). 

Further classifications commonly tackle special cases of those variants, e.g. microsatellites, also called 

simple sequence repeats (SSR), as multiple repetitions of short segments with variable repetition 

number (Li et al. 2002), or have a purely technical basis, e.g. restriction site length polymorphisms 

(RFLP; Botstein et al. 1980) that are length fragments of DNA after digestion by restriction 

endonucleases and therefore effectively represent any possible mutation of restriction sites. Further, 

classifications may be mainly used in a specific technical context, e.g. copy number variants (CNV) as 

summary for DEL and DUP identified from sequencing read depth or array probe intensities (Wang et 

al. 2007; Abyzov et al. 2011). 

Genomic variation is initially generated by mutation (Falconer and Mackay 1996). Mutations either 

change single bases, or insert, duplicate, delete, invert or translocate parts of the DNA up to the size 

of the complete genome, or lead to complex rearrangements. Mutational events thereby can e.g. 

happen due to repair mechanisms of strand breaks or due to errors in replication and crossovers 

(Dröge 2015b). Germline point mutations, which result in SNPs, are typically considered as being rare 

events with their frequency being related to the genome size (Lynch 2010). So are mutation rates per 

site in vertebrates estimated to be between 0.4 x 10-8 and 1.3 × 10-8 (Yoder and Tiley 2021). Mutation 

rates can differ throughout the chromosome. Axelsson et al. (2005) held the increased CpG content 

on micro chromosomes of chickens responsible for increased mutation rates compared to macro 

chromosomes. Further, Itsara et al. (2010) estimated the mutation rate of CNV with 1.22 x 10-2 

mutations per generation in humans much higher than the rate of single nucleotide variants (SNV). 

This is in line with assumptions that the presence of segmental duplications, also called low copy 

repeats, can trigger SV formation mechanisms as non-homologous allelic recombination (NAHR) and 

thereby leads to hotspots of recurrent and non-recurrent mutation (Gu et al. 2008). Additionally, 

Carvalho et al. (2013) found complex genomic rearrangements to trigger further mutation in 

breakpoint junctions and thereby mutation rates of SNV to be increased by a factor of 10-4 in those 

regions.  

Newly mutated alleles can then increase or decrease in frequency by random drift or selection 

(Falconer and Mackay 1996). Given the neutral theory of molecular evolution by Kimura (1968), most 

of the mutations are selectively neutral and thereby have a high chance of quickly getting lost by 

random drift, and only few get enriched in the population. This leads to a specific allele frequency 

spectrum, which will be handled in detail later. Further, the few mutations that come with a selective 

advantage leave distinct patterns in the genome (Nielsen 2005), allowing to trace them in the genome, 

which will be handled also later.  
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Mutations on the same chromosome of an individual are commonly inherited physically linked as a so-

called haplotype. Changes in the frequency of the haplotypes due to drift or selection affect those 

linked variants therefore equally, leading to a non-random co-occurrence of alleles. This physical 

linkage can be broken by events of crossing over, with the chance being higher the larger the distance 

between the two variants is. The co-occurrence of alleles in terms of a correlation between alleles is 

commonly referred to as linkage disequilibrium (LD), independently from the existence of physical 

linkage (Qanbari 2020). The strength of LD thereby is a function of physical distance, recombination 

rate, and effective population size of a population (Sved 1971). LD thereby also changes over 

generations. The LD between variants allows to use an easy to genotype variant as a predictor (marker) 

for a close-by, not necessarily known, variant of interest. This means that a part of the genomic 

variance of interest can be predicted by a subset of the genomic variants, with the effectiveness being 

due to the strength of LD between markers and variants of interest (los Campos et al. 2020). 

Advantages and limitations of genotyping and sequencing technologies 

Since Watson and Crick (1953) published the basic structure of DNA, huge research effort was spent 

to gain a deeper understanding of the blueprint of living organisms. Accompanied by revolutionary 

technological breakthroughs (Sanger et al. 1977; Mullis et al. 1986), this led to the publication of the 

first human reference genome less than 50 years later (Lander et al. 2001). The growing availability of 

technology strongly shaped the use of genomic markers. For a long time, molecular insights were 

constrained to markers like RFLP (Botstein et al. 1980) or microsatellites (Li et al. 2002) that are only 

sparsely distributed over the genome, or to the sequencing of small genomic fragments like 

mitochondria (e.g. Hiendleder et al. 2008). Their use was quickly replaced by single nucleotide 

polymorphisms (SNP) with the beginning 21st century due to the development of SNP arrays and short-

read sequencing technologies (LaFramboise 2009; Novembre and Ramachandran 2011; Mardis 2017). 

Especially the quick decrease in sequencing costs (NHGRI 2020), also known as genomic revolution, led 

to the discovery of millions of SNPs and InDels (Table 1.1). Due to problems with resolving longer SVs 

by short sequencing reads, recent discoveries of more than 30,000 SVs per human genome became 

only possible by the development of long-read sequencing technologies as PacBio and Nanopore 

sequencing (Ho et al. 2019). The following chapter will therefore explain the properties of some 

current state-of-the-art technologies and the bioinformatics needs to call markers. The technologies 

can be roughly divided into short and long-read sequencing as well as genotyping through SNP arrays. 
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Table 1.1: Numbers of published short variants for selected vertebrate species 

Species Reference Assembly length [Gb] # SNPs and InDels Number [kb-1] 

Human GRCh38.p13 3.099 700,532,304 226.05 

Mouse GRCm39 2.728 82,972,037 30.41 

Chicken  GRCg6a 1.065 23,425,227 22.00 

Turkey Turkey_5.1 1.115 5,390 < 0.01 

Cow ARS-UCD1.2 2.715 97,127,239 35.77 

Goat ARS1 2.922 33,996,710 11.63 

Horse EquCab3.0 2.506 20,355,608 8.12 

Pig Sscrofa11.1 2.501 63,845,860 25.53 

Sheep Oar_v3.1 2.619 60,248,438 23.00 

Numbers of published SNPs and InDels available on ENSEMBL 104 (Howe et al. 2021). Species were selected 
based on data availability and relevance for farming. Human and mouse were added for comparison. 

 

Illumina short-read sequencing 

While enhanced variants of the original Sanger sequencing approach (Sanger et al. 1977) are still used 

to re-sequence single genes, sequencing of complete vertebrate genomes is nowadays 

overwhelmingly performed by the use of Illumina’s sequencing by synthesis. Briefly, this approach 

starts from fragmenting extracted DNA into parts with a specific length distribution that has typically 

an average (mean insert size) of several hundred bp and a specific variance. Oligonucleotide adapters, 

which later enable binding to the flow cells and may contain library-specific barcodes for multiplexing, 

are then bound to both ends of the fragments. The oligonucleotides then bind to matching 

oligonucleotides on the surface of the flow cell and a step called bridge amplification generates spots 

of multiple identical copies of the DNA fragments on the flow cell. The actual sequencing then happens 

by using a polymerase to bind one fluorescence-marked nucleotide to the amplicons per sequencing 

cycle, which emits a base-specific light signal that is captured by a camera. The process is typically 

repeated for 100 – 300 cycles and leads to reads with according lengths. Optionally, this is followed by 

a further round of bridge amplification to bind the fragments to the opposite side and repeat the same 

round of sequencing cycles. This then results in read pairs with opposite read directions (paired-end 

sequencing; Fuller et al. 2009; Mardis 2017).  

There are some non-random error sources, appearing at different steps of the workflow, which affect 

Illumina short-read sequencing. Ross et al. (2013) identified regions with extreme GC content to be 

under-covered, most likely due to problems in DNA amplification by PCR. This, however, should be less 

problematic with modern PCR-free library preparation. They additionally showed strongly increased 

error rates in longer homopolymeric stretches. Nakamura et al. (2011) assumed inverted repeat 
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sequences to lead to hairpin structures during sequencing and thereby to delays in nucleotide 

elongation and accumulated sequencing errors. Finally, Li (2014) showed that low complexity regions 

of the genome are highly affected by erroneous mapping of the short Illumina reads. 

Calling variants from short-read data requires computationally expensive bioinformatics. It is mainly 

done by re-sequencing based on a reference genome instead of de-novo assembling the genome if a 

suitable reference genome is present. Pipelines for the discovery of short variants (SNPs and InDels) 

are usually based on the GATK best practices workflow (van der Auwera et al. 2013). This involves 

mapping of the reads to a reference genome (usually bwa-mem; Li 2013), marking of PCR and optical 

duplicates, recalibration of base quality scores, per-sample calling of variants with minimal thresholds 

followed by a consolidating population-wide joint calling and a final filtering step. This workflow 

sometimes is modified, e.g. by the choice of the variant caller (GATK haplotype caller vs. freebayes; 

McKenna et al. 2010; Garrison and Marth 2012), or whether the filtering approach relies on hard filters 

or a supervised machine learning algorithm (van der Auwera et al. 2013). 

In contrast to SNPs and short InDels, SVs cannot be called directly from short reads due to their size. 

Instead, callers use combinations of auxiliary information as local read depth, insert size distributions 

and orientation of paired-end reads, split read information, and local reassembly (Ho et al. 2019). The 

strong algorithmic differences between the callers lead to different performances in regard to 

sensitivity and specificity for various SV- and length classes (Ho et al. 2019; Kosugi et al. 2019). To 

overcome those issues, ensemble approaches (e.g. parliament2; Zarate et al. 2020) try to combine the 

results of multiple callers and to balance sensitivity and specificity based on the number of supporting 

callers. Nevertheless, the calling of SVs from short-read sequencing is associated with a high rate of 

false-positive calls, requiring strict filtering strategies. It is thereby still common to include time-

consuming visual scoring in those filtering procedures (Bertolotti et al. 2020; Bouwman et al. 2020). A 

pipeline to reduce the time needed for scoring is SV-plaudit (Belyeu et al. 2018). It combines the 

automated production of quality plots by samplot (Belyeu et al. 2021) with a cloud-based distribution 

of work across different assessors. Possibilities to speed this process up by supervised machine 

learning algorithms are currently evaluated (Chowdhury and Layer 2020). However, there are unsolved 

problems with SV calling in regions with a high share of repetitive elements and the calling of INS 

relative to the reference genome (Delage et al. 2020) due to the missing ability of short reads to 

accurately resolve them. 

Reduction of sequencing costs may be realized by reduced library approaches such as restriction site-

associated DNA sequencing (RADseq, Andrews et al. 2016) techniques such as genotyping by 

sequencing (GBS, Elshire et al. 2011). They, however, only give insight into special regions of the 

genome and results may be influenced by variations of the restriction sites that hinder cutting by the 
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restriction enzymes (Davey et al. 2011; Andrews et al. 2016). Another method to reduce sequencing 

costs may be sequencing of DNA that was pooled from multiple samples (Futschik and Schlötterer 

2010). Pooled sequencing, however, does not allow the observation of genotypes from single samples 

and comes with a series of problems regarding biased allele frequencies and technical limitations for 

variant calling (Futschik and Schlötterer 2010; Boitard et al. 2012; Chen et al. 2012; Gautier et al. 2013; 

Schlötterer et al. 2014; see also the supplementary material to Chapter 2 and Chapter 3). Further, low-

coverage sequencing of populations combined with imputation techniques is discussed for larger 

populations (Pook et al. 2021). 

Long read sequencing technologies 

Recent developments in sequencing technology are intended to overcome the short read lengths and 

the need for DNA amplification of Illumina sequencing by single molecule sequencing. The first 

technology, Single Molecule Real Time (SMRT) sequencing of Pacific Biosciences (PacBio), also uses 

DNA synthesis by fluorescence-marked nucleotides through a polymerase. However, in contrast to 

Illumina, the polymerase is attached to a zero-mode waveguide and the unamplified DNA is led to the 

polymerase, which allows getting rid of the amplification steps and increases read lengths to > 10 kb 

(Rhoads and Au 2015). An advanced protocol, called circular consensus sequencing (CCS), ligates 

hairpin adaptors to both ends of the DNA template to form a circular template that combines the 

previous forward and backward strand separated by the hairpin sequences. This is sequenced multiple 

times and allows for in silico error correction. CCS reads, also called high-fidelity (HiFi) reads, then can 

have accuracies of > 99.5 % which is comparable to Illumina short-reads (Wenger et al. 2019). Note 

that the error profile is especially prone to InDels in a homopolymeric context (Wenger et al. 2019). 

In contrast, nanopore sequencing from Oxford Nanopore Technologies (ONT) comes with a completely 

different approach. For ONT nanopore sequencing, adapters are ligated to DNA strands. These 

adapters then guide the DNA through a nanopore, located at a membrane and set under a certain 

electric current. The passing of the DNA leads to characteristic changes of the current, which can later 

be used to determine the base sequence of the DNA molecules (Jain et al. 2016). ONT nanopore 

sequencing allows for huge read lengths with records of larger than one Mb, and thereby e.g. allowed 

for the first telomere-to-telomere assembly of a human chromosome (Miga et al. 2020). However, 

especially the translation to the base sequence, also called base calling, is computationally demanding 

and prone to high error rates (Wick et al. 2019). Recent developments try to tackle this problem by 

enhanced designs of the nanopore and advanced base-calling algorithms (Wick et al. 2019). Further, 

the 1D2 protocol tends to sequence forward and reverse strand to correct for sequencing errors. This, 

however, comes with reduced throughput of a flowcell and therefore increased costs. A special 

advantage of ONT nanopore sequencing is its scalability and potential usability in the field as e.g. 



Chapter 1 General Introduction 15 
 

shown during the latest Ebola outbreaks (Quick et al. 2016) and also being available for the monitoring 

of livestock disease outbreaks (Hansen et al. 2018). 

SNP arrays 

In contrast to sequencing technologies, microarray technology is only able to genotype previously 

known SNPs. SNP densities are commonly either low (≤10 k SNPs; e.g. Boichard et al. 2012; IMAGE 

2020), medium (~50 k SNPs; e.g. Matukumalli et al. 2009; Groenen et al. 2011), or high (≥500 k SNPs; 

e.g. Kranis et al. 2013; Unterseer et al. 2014; Illumina 2015). Two platforms are common: Affymetrix 

Genotyping Arrays and Illumina Bead Chips. They have both in common that they have multiple 

oligonucleotides, the so-called probes, for each SNP attached to the surface of the array. In the case 

of Affymetrix, there exist two different probes for each SNP, one for the A-allele and one for the B-

allele. The DNA then binds to the probes, resulting in specific match and mismatch patterns (Figure 1.1 

a). The combination of the signals is then translated to the AA, AB, or BB genotype (LaFramboise 2009). 

However, potential effects of off-target SNPs need to be taken into account (Wan et al. 2009). In 

contrast, the recent generation of Illumina Bead Chips contain multiple probes that represent only one 

flanking region of the SNP on the beads (Figure 1.1 b). The DNA then binds to the probes and the 

probes are extended at the SNP position by the, to the template complementary, fluorescence-marked 

base (Steemers et al. 2006). Thereby, A and T emit a red signal, and C and G a green signal. The 

combinations of intensity and color signals per bead result in three distinct clusters for the three 

genotypes (LaFramboise 2009). The restriction to two colors limits the SNPs on Illumina Bead Chips to 

{AT}/{CG} SNPs (Steemers et al. 2006). Note that earlier Illumina platforms used two different bead 

types per SNP, one for the A- and one for the B-allele, in combination with multi- instead of single-base 

extension (Gunderson et al. 2005). 
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Figure 1.1: Comparison between the Affymetrix and Illumina SNP array platforms. The top represents 
an example DNA fragment with an A/C SNP. The Affymetrix array (a) contains match probes for both 
alleles with varying SNP locations. The DNA fragments then bind to the probes, resulting in perfect 
matches (bright yellow) or mismatches (dimed yellow). The Illumina beads (b) contain only one probe 
type per SNP. The DNA fragments bind to the probes, which are then extended by a single fluorescence 
marked base. The emitted color signal allows distinguishing the SNP allele (source: LaFramboise 2009). 

The design process of arrays is based on two main selection decisions. The one with major implications 

on downstream analyses is the pre-selection of known candidate SNPs due to wanted characteristics, 

which is described in detail in Chapter 2. The second decision is based on technical characteristics of 

the platform such as invariable sites around the SNP for probe binding (Kranis et al. 2013). 

CNV can be discovered from SNP arrays by analysis of auxiliary characteristics in populations. This may 

be done by screening the genotypes of a population for physically clustering mendelian errors, 

deviations from Hardy-Weinberg-Equilibrium, and missing genotypes as indications of DEL (Conrad et 

al. 2006; McCarroll et al. 2006). The current default software PennCNV (Wang et al. 2007) directly 

utilizes fluorescent intensity signals, SNP allele frequencies, and pedigree information in a Hidden 

Markov Model to call CNVs. Callable length classes and breakpoint resolution are thereby dependent 

on the SNP density of the array. Due to the bad breakpoint resolution, it is common to merge 

overlapping CNVs into copy number variable regions (CNVR) in array-based analysis (Lee et al. 2020), 

which implies that a CNVR may in fact consist of multiple independent CNVs. 
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Imputation to switch between marker maps 

As shown in the previous paragraphs, marker maps can heavily differ in the type of markers and density 

due to the used techniques. This is especially prevailing in studies that need to combine datasets that 

stem from different SNP arrays and potentially include WGS data for a subset of individuals. The 

different maps typically show a certain share of overlap, and neighboring markers are not independent 

of each other due to LD. This allows estimating missing marker genotypes in the less complete data set 

by utilization of the information of the more complete set, known as imputation. 

Imputation is typically performed by deriving information on haplotypes (Marchini et al. 2007; 

Browning and Browning 2009; Howie et al. 2011; Sargolzaei et al. 2014; Browning et al. 2018) or LD 

between markers (Money et al. 2015) in the denser set, the reference set. Sometimes, pedigree 

information is also used (Sargolzaei et al. 2014). Based on those information sources, the tools impute 

missing markers in the less dense set, the study set, with the most likely genotypes. Note that 

haplotype-based imputation methods always require a phasing step, whose accuracy affects the later 

imputation accuracy (Pook et al. 2019). This is commonly implemented as pre-phasing based on the 

study genotypes alone (Browning et al. 2018), increasing the speed of imputation while having only a 

minor impact on accuracy (Howie et al. 2012; Pausch et al. 2013).  

Imputation results further strongly depend on the setup of the used reference panel. A general rule is 

that the genetic distance between reference panel and study set should be as small as possible (Hickey 

et al. 2012; Berry et al. 2014; Roshyara and Scholz 2015; Pook et al. 2019) and larger reference panels 

increase imputation accuracy (Pausch et al. 2013; Pook et al. 2019). However, as increasing the 

reference panel often means including more distant reference samples, the performance of multi-

breed reference panels is of major interest. While e.g. IMPUTE2 (Howie et al. 2011) should be robust 

in this sense, as it limits the reference panel to k nearest haplotypes for an increase in speed, Beagle 

(Browning et al. 2018) uses the complete reference panel. This resulted in reduced accuracies for multi-

breed reference panels in some studies (e.g. Berry et al. 2014; Korkuć et al. 2019; Nolte et al. 2020). 

Korkuć et al. (2019) especially showed the need for a strongly increased multi-breed reference panel 

to gain equal accuracies as for a small closely related panel. Other studies, however, could show 

increased imputation performance for admixed breeds and rare SNPs when using multi-breed 

reference panels (Brøndum et al. 2014; Rowan et al. 2019; Ye et al. 2019). Alleles with low frequency 

are further harder to impute (Hickey et al. 2012; Kreiner-Møller et al. 2015) and profit more from 

increased reference panel sizes (Kreiner-Møller et al. 2015; Rowan et al. 2019). 

A common question is whether to impute low-density panels initially to an intermediate density and 

then to the targeted density, or directly to the targeted density. Studies, that had an additional 

intermediate reference panel (VanRaden et al. 2013; van Binsbergen et al. 2014; Kreiner-Møller et al. 
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2015) could show superior performance of the two-step procedure. However, subsetting the high-

density panel to an intermediate panel for a first imputation step could not compete with direct 

imputation (Korkuć et al. 2019). 

A practical issue often lies in how to measure imputation accuracy. The probably simplest solution is 

to calculate the mean number of imputation errors (genotype discordance), or its counterpart the 

genotype concordance (one minus discordance). Since this penalizes homozygote to heterozygote 

errors as much as homozygote to opposite homozygote errors, the allelic concordance is often used 

as a refined measure (Pook et al. 2019; Zhang et al. 2021). It describes one minus the mean absolute 

difference between the true and imputed number of alternative alleles divided by two. A problem of 

concordance and discordance rates is that they do not evaluate the performance of a method relative 

to simply imputing the most frequent genotype and thereby underestimate errors for rare alleles 

(Hickey et al. 2012). Therefore, Pearson correlations between true and imputed alternative allele 

counts are more appropriate (Hickey et al. 2012). However, if calculated per marker, and a marker 

becomes fixed after imputation, correlations cannot be calculated (Pook et al. 2019). This may require 

using more complex statistics as e.g. the imputation quality score (IQS; Lin et al. 2010). 

The use of genomic markers in livestock sciences 

Genomic prediction 

Indicated by the Breeders Equation (Falconer and Mackay 1996), one of the main interests of a breeder 

is to select the best parents for the next generation as early and as accurately as possible. This interest 

has strongly driven the idea of not selecting based on the phenotype of an animal, or an auxiliary 

phenotype if the phenotype of interest cannot be observed at the time point of selection. Those are 

often bad estimators of the underlying genotypic background. Better estimates were initially achieved 

by utilizing information of relatives to predict breeding values, first by the selection index theory (Lush 

1933) and later by Henderson’s Best Linear Unbiased Prediction method (BLUP; development history 

summarized by Schaeffer 1991). In the 1990s, the idea of using associations between sparsely 

distributed genomic markers and phenotypes to assist traditional selection procedures, known as 

marker-assisted selection (MAS), was heavily evaluated (Kumar et al. 2011; Wakchaure and Ganguly 

2015). The limitation of MAS to marker effects above a certain significance threshold, however, 

neglects the contribution of small effects to the total genetic value and furthermore results in a bias 

towards overestimated effects (Meuwissen et al. 2001). However, as most of the variance of relevant 

traits in animal breeding is based on those small and neglected effects, MAS did not establish in animal 

breeding (Meuwissen et al. 2016). 
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The limitations of MAS led to the groundbreaking suggestion of Meuwissen et al. (2001) to estimate 

the breeding value of an animal as the sum of all available marker effects. Estimation of those effects 

was based on a BLUP model that assumes the effects to come from a joint normal distribution and is 

known as random (or sometimes ridge) regression BLUP (rrBLUP). Even though the necessary SNP array 

technology to derive the needed dense set of markers was not available at that time (Koning 2016), 

genomic breeding programs in dairy cattle were implemented within ten years. This was possible by 

the proposal of a genomic dairy cattle breeding program by Schaeffer (2006), which implements the 

use of young bulls before progeny testing and by this approximately doubles genetic gain per time, 

and the availability of the first cattle array (Matukumalli et al. 2009). Successively, the genomic 

selection was also adapted in other livestock (Meuwissen et al. 2016) and plant breeding programs 

(Koning 2016). 

The initial method of Meuwissen et al. (2001) is mainly implemented by a slightly changed method, 

genomic BLUP (GBLUP; VanRaden 2008). It derives similar results by using the marker genotypes to set 

up a genomic relationship matrix and then directly estimating genomic breeding values from a BLUP 

model. This is more efficient if the number of individuals is less than the number of SNPs (Koning 2016; 

Meuwissen et al. 2016). Further, a series of Bayesian nonlinear methods (also known as the Bayesian 

Alphabet; Gianola et al. 2009) tries to break with the assumption of normally distributed SNP effects 

by allowing a fraction of the SNPs to have zero effect (Meuwissen et al. 2001), or even to come from 

different distributions (Erbe et al. 2012). 

Besides the size of the training set and population structure, a key factor to derive high prediction 

accuracies is the marker density (Erbe et al. 2013). This has driven the interest in whether an 

investment in WGS data may lead to the best results. Ober et al. (2012) tested this in a Drosophila 

dataset and showed an asymptotic trend of the accuracy when transitioning from low density to WGS. 

The same was shown by Perez-Enciso et al. (2015) through simulation. Further, the assumption of 

Meuwissen (2009) that Bayesian methods profit more from WGS data than GBLUP was not confirmed 

by Ober et al. (2012). As large WGS training sets are still unavailable, van Binsbergen et al. (2015) tested 

the performance of genotypes imputed to WGS, but they could not outperform high-density array 

data. 

Mapping of quantitative trait loci 

Another interest is in revealing the genetic basis of phenotypic traits to gain a better insight in the 

underlying biological mechanisms. Earlier linkage mapping methods relied on the decrease of marker-

QTL LD over time in experimental families (Mackay and Powell 2007). Fine mapping of QTLs thereby 

required either large families or multi-generation breeding experiments (Mackay and Powell 2007). 

The availability of dense marker maps in form of genotyping arrays and later WGS data for larger 
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phenotyped populations has strongly modified the methodology for QTL detection by switching from 

family-based linkage mapping, to population-based genome-wide association studies (GWAS; Visscher 

et al. 2012). The basic principle of GWAS is to statistically test each marker (mostly SNPs, but may also 

be other variants) of a dense marker map independently from the other markers in the panel for 

association with the phenotypic variance of a trait. Significantly associated markers are then assumed 

to be in strong LD and thereby close physical distance to a causal genomic variant, or even represent 

the causal variant. Besides the choice of the statistical test, a main technical issue in GWAS is to 

appropriately control for multiple testing and background effects due to population stratification. 

GWAS are thereby well suited to identify QTLs of medium to large effect size that segregate with high 

MAF in a population, but get problems when identifying effects of rare or fixated variants (Visscher et 

al. 2012). 

Other approaches to map QTL are selection signature analyses, by Qanbari and Simianer (2014) also 

referred to as “genome to phenotype” approaches. The idea behind this is that artificial or natural 

directional selection for certain traits increases the allele frequencies of effect alleles more than what 

is expected from random drift. This also pulls frequencies of linked variants with it until recombination 

events happen, known as hitchhiking effect (Smith and Haigh 1974; Fay and Wu 2000). Selection, 

therefore, leaves specific patterns in the genome, e.g. increased regional differentiation between 

populations (Akey et al. 2002), local differences to the expectation under neutral molecular evolution 

(Tajima 1989), or the excessively high frequency of long haplotypes (Sabeti et al. 2002). See e.g. Nielsen 

(2005) and Vitti et al. (2013) for detailed reviews. To overcome the problem that single selection 

signature detection methods are specific for certain frequency- or age classes of alleles under 

selection, combinations of the approaches as e.g. suggested by Ma et al. (2015) may be helpful. Note 

that it is often not possible to connect selection signatures with a specific phenotype. Studies rather 

discuss candidate regions based on known functions of genes in those regions (e.g. Qanbari et al. 2019; 

Peripolli et al. 2020). 

A special case is the identification of potentially lethal recessive haplotypes in livestock populations 

without knowledge of the actual defect. The idea behind this is that haplotypes that carry a lethal 

recessive allele, and are therefore used as markers for the unknown causal defect allele, do not appear 

homozygous in vital populations. Methods, therefore, aim at identifying those haplotypes and test 

whether the missing homozygosity is non-random (VanRaden et al. 2011). Sensitive and accurate 

identification of (assumed to be overwhelmingly rare) lethal haplotypes thereby depends on very large 

sample sizes (Hoff et al. 2017), by now only available through routine genotyping of major breeds. 

Knowledge about those lethal haplotypes allows mating regimes that specifically avoid matings of two 

carrier individuals and thereby ensures that no affected offspring are produced (Hoff et al. 2017). 

Besides the avoidance of direct economic loss due to reduced fertility (VanRaden et al. 2011; Wobbe 
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et al. 2019), this is also advised by animal welfare laws, as knowingly mating two carriers may be 

classified as torture breeding. 

Population genomics 

Population genomics in livestock generally fulfill different goals. Interests are typically in inferring 

knowledge about domestication history (Groenen et al. 2012; MacHugh et al. 2017; Orlando 2020; 

Wang et al. 2020), describing current population structures (Bortoluzzi et al. 2018; Malomane et al. 

2019; Perini 2020), monitoring small populations (Bortoluzzi et al. 2018; Reimer et al. 2020; Schäler et 

al. 2020), or the characterization and delimitation of breeds (Upadhyay et al. 2019; Perini 2020; Reimer 

et al. 2020).  

The exploration of a population’s diversity commonly relates the population of interest to a 

comparable ideal population given the Wright-Fisher model. This model assumes an isolated random 

mating population with distinct generations and constant population size as a sample of an infinitely 

sized base population. It further disregards mutation and selection (Falconer and Mackay 1996). Any 

limitation of the size of a population will necessarily result in inbreeding, meaning that parents of an 

individual have at least one common ancestor. The two alleles at a locus then have the chance to be 

identical by descent (i.b.d.). As the handling of populations often differs from the idealized conditions 

of the Wright-Fisher model (e.g. by overlapping generations or non-random mating), the comparison 

between populations in regard to their size is commonly done by the effective population size (Ne). Ne 

describes the size of an ideal population with the same rate of inbreeding (Δ𝐹) as observed from the 

population of interest (𝑁𝑒 = 1/2Δ𝐹; Falconer and Mackay 1996). As Ne is often used to define the risk 

status of livestock populations (e.g. for German livestock breeds; BMELV 2008), monitoring of 

inbreeding development is a routine task. Classical pedigree-based methods are thereby gradually 

replaced by marker-based methods. A relative straight-forward approach to derive inbreeding 

coefficients of individuals (Fx) is to set up a genomic relationship matrix (e.g. VanRaden 2007) and to 

extract them from the diagonal elements, which are 1 + 𝐹𝑥. This, however, may sometimes be 

problematic, as the accurate scaling of the approach by VanRaden (2007) relies on allele frequencies 

of an unselected founder population. Further, note that this estimate describes identical by state 

(i.b.s.) instead of i.b.d. probabilities. Another way to estimate inbreeding is by runs of homozygosity 

(ROH). Longer homozygous stretches in the genome are signs of i.b.d. haplotypes (Broman and Weber 

1999). The ROH-based inbreeding coefficient (FROH) is then the proportion of the autosomal genome 

covered by ROH (McQuillan et al. 2008). ROH are, due to recombination, shorter if the common 

ancestor of the parents can be found more distant in the pedigree (McQuillan et al. 2008). This allows 

setting length restrictions for ROH to trace inbreeding over time (McQuillan et al. 2008). The 

identification of ROH can thereby depend strongly on the density of the marker map (Herrero-
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Medrano et al. 2014) and parameter settings for identification algorithms (e.g. MAF filtering or LD 

pruning; Meyermans et al. 2020). 

Inbreeding in a population reduces the variance at loci. Two important measures that describe the 

variance, and thereby the diversity, at a locus, are expected (HE) and observed heterozygosity (HO) 

(Fernández and Bennewitz 2017). HE defines the expected proportion of heterozygote samples given 

a certain allele frequency (p) and Hardy-Weinberg-Equilibrium (HWE). As 𝐻𝐸 = 2𝑝(1 − 𝑝), it equals 

the binominal variance and describes the expected allelic variance of a diploid individual at a certain 

locus. HO as the observed state may deviate on average, if the population is not in HWE. Reasons may 

be non-random mating schemes or selection (Falconer and Mackay 1996). 

Inferring information on population substructures can be done by Wright’s F statistics (Wright 1949), 

which relate inbreeding coefficients of a structured population to the expectation given random 

mating. Weir and Cockerham (1984) described it slightly differently in a variance-analytic framework 

that relates the genomic variance of the total population, between subpopulations, between 

individuals within subpopulations, and between gametes within individuals to each other in a way to 

extract information on inbreeding and population subdivision. Population subdivision is thereby 

expressed through Wright’s Fixation Index (FST), which relates the between subpopulation variance to 

the total variance. There exist multiple FST estimators, with Θ̂ by Weir and Cockerham (1984) probably 

being the most widely accepted one, which however requires individual-level genotype data and 

therefore is not always usable. When FST is estimated from two populations, it can also be understood 

as distance between the two populations. However, other pairwise distance measures rather try to 

express differences in relation to coalescent times with different underlying model assumptions. So 

does e.g. Nei’s distance (D; Nei 1972) assume constant mutation rates and Reynolds distance (Reynolds 

et al. 1983) a pure drift-only model. Distance measures are generally based on estimates of allele 

frequencies. 

A problem of pairwise similarity/ distance measures is that they quickly create multidimensional 

spaces when multiple individuals/ populations are involved. Techniques of dimension reduction as 

prime component analysis (PCA) are therefore extensively used. PCA extracts a series of uncorrelated 

vectors based on a genetic covariance matrix, the eigenvectors or prime components (PC; Patterson 

et al. 2006). This rotates the observation space in a way that the first PC explains the maximum 

variation that can be explained in a one-dimensional space, the second one opens the two-dimensional 

space that explains as much variation as possible given the first PC and so on. The most famous 

example of a PCA is by Novembre et al. (2008) who were able to show that the first two PCs of a PCA 

on European humans were able to reflect the geographic sampling location. A problem of PCA is that 

uneven sampling strongly affects the projections (McVean 2009). Further, when used for a broad set 
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of populations, PCA may hide information due to a common reduction to only two dimensions. An 

alternative to PCA is multidimensional scaling (MDS). MDS has the same intention as PCA, but is based 

on a pairwise distance matrix (Backhaus 2003; Li and Yu 2008). By this, it is more flexible than PCA as 

it allows the use of different distance measures. 

A common population genetic question is whether a set of observed populations shares common 

ancestry and how they cluster in that sense. Clustering of individuals/ populations may be performed 

by reconstruction of phylogenetic trees. Based on genetic distance matrixes, classical hierarchical 

clustering methods like the unweighted pair group method with arithmetic mean (UPGMA) iteratively 

collapse the distance matrix for the least distant pair of populations and calculate new distances 

between the collapsed group and the other remaining population(group)s. In the case of UPGMA, the 

new distance is simply the arithmetic mean of the old distances. This is then graphically represented 

by a dendrogram whose branch lengths reflect the coalescence time if mutation rates are equal along 

all branches (Weir 1996). An alternative approach is the construction of a neighbor-joining tree (Saitou 

and Nei 1987). The neighbor-joining algorithm thereby starts from a star-like phylogeny and iteratively 

joins pairs of populations with the goal to minimize the total tree length. This results in an unrooted 

phylogenetic tree. Additionally, there exist maximum parsimony methods, which simply cluster 

populations by the least differences without obtaining branch lengths, and maximum likelihood 

methods, which search for the tree that shows the maximum likelihood given a specific evolutionary 

model (Weir 1996). A general problem of phylogenetic trees is that they depend on models of 

bifurcating trees and, by this, deny the role of hybridization in evolutionary and domestic processes. 

The Treemix (Pickrell and Pritchard 2012) method tries to overcome this issue by representing a 

phylogeny as a directed network graph. Further, Patterson’s D statistic (Green et al. 2010; Patterson 

et al. 2012) and related estimates of admixture fractions as implemented in the Dsuite tool (Malinsky 

et al. 2021) allow testing for hybridization events. 

An alternative cluster approach, which is not based on a tree-like representation, is the STRUCTURE 

model by Pritchard et al. (2000). The model assumes a set of k unknown populations, characterized by 

their allele frequencies. It then (partly) assigns individuals to these unknown populations through a 

Bayesian clustering approach while simultaneously estimating the allele frequencies of the unknown 

populations. This results in a vector Q for each individual that specifies which proportion of the genome 

belongs to which of the k populations and, by this, allows for admixed individuals. As the computational 

effort for the original STRUCTURE method is relatively high (Novembre and Ramachandran 2011; 

Novembre 2016), nowadays default implementation is the faster maximum-likelihood-based 

ADMIXTURE algorithm by Alexander et al. (2009). A still existing problem is to find the ‘right’ number 

of k populations with different methods coming with unstable results (Novembre 2016). This often 

results in studies that exploratory examine different k to interpret the results (e.g. Malomane et al. 
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2019). Nevertheless, as the STRUCTURE model has some tight assumptions (e.g. linkage equilibrium 

between markers, HWE, special population histories; Pritchard et al. 2000), Lawson et al. (2018) 

showed that over-interpretation of the results may easily happen. Note that methods like HAPMIX 

(Price et al. 2009) and RFMix (Maples et al. 2013), that allow local ancestry estimations of admixed 

chromosomes based on haplotypes from phased reference populations, may also be of interest in this 

context. 

SNP ascertainment bias and mitigation procedures 

Besides already noted potential impacts of marker density, a major drawback of using array SNPs as 

markers for all kinds of genomic analyses is their non-random selection. As SNPs for arrays need to be 

selected before array production, the first step of array design is to screen public databases and/ or a 

limited set of sequenced discovery samples for potential SNPs. 

Following Nielsen (2004), the unfolded allele frequency spectrum describes the probability to observe 

a certain number of mutant alleles at a certain locus in a population of n haplotypes. Assuming neutral 

evolution (Kimura 1991), the expected unfolded frequency spectrum (X) is defined as 𝑃(𝑋 = 𝑥) =

𝑥−1 ∑ (1 𝑖⁄ )𝑛−1
𝑖=1⁄  (0 < 𝑥 < 1; Nielsen 2004). Selection (ascertainment) of all variable SNPs in a subset 

of the total population then biases the spectrum towards more common alleles, whereby the strength 

of the bias increases with decreasing number of discovery samples (Figure 1.2). This bias is called SNP 

ascertainment bias (Nielsen 2004; Clark et al. 2005; Albrechtsen et al. 2010) and is present for each 

SNP array with different intensities. The bias can be further increased if multiple subpopulations are 

present and ascertainment is only performed in one of those subpopulations. While for the discovery 

population the effect of ascertainment bias is as described above, the shift towards common variants 

is less in all non-discovery populations with extremes resulting in a shift towards rare variants (Nielsen 

2004). The strength of this effect is thereby strongly affected by the distance of the population to the 

discovery population (Dokan et al. 2021; Geibel et al. 2021b). 
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Figure 1.2: Expected allele frequency spectra under different ascertainment schemes. The spectra 
present the number of expected mutant (unfolded spectrum) and minor (folded spectrum; inset) 
alleles in a population of n = 20 haplotypes, assuming neutral molecular evolution. The three scenarios 
represent the unbiased case and ascertainment from discovery samples of d = 10 haplotypes vs. d = 2 
haplotypes. The biased scenarios represent the case that the discovery samples are a subset of the 
typed samples (adapted from Nielsen 2004). 

As many population genetic statistics rely on the allele frequency spectrum, they are directly affected 

by ascertainment bias with different intensities (Clark et al. 2005). The most direct impact of 

ascertainment bias is present for estimators that are directly based on the observed allele frequency 

spectrum, such as the neutrality test Tajima’s D (Tajima 1989; Ramirez-Soriano and Nielsen 2009) or 

estimates of heterozygosity (Rogers and Jorde 1996; Clark et al. 2005; Albrechtsen et al. 2010; 

Malomane et al. 2018; Geibel et al. 2021b). For example, Bradbury et al. (2011) observed that 

ascertainment bias decreased expected heterozygosity in Atlantic Cod by up to 30 % the further away 

the discovery population was. 

When considering population differentiation, effects become less predictable, and different 

ascertainment schemes lead to different results (Dokan et al. 2021). The fact that common SNPs across 

different populations may be rather old variants (Wakeley et al. 2001) introduces biases towards lower 

population subdivision estimates when ascertainment is conducted independently in multiple 

subpopulations (Nielsen 2004; Dokan et al. 2021), or in a third population (Dokan et al. 2021). Upward 

biased population differentiation is also present when ascertainment bias affects the subpopulations 

differently strong (e.g. ascertainment in only one of the subpopulations; Dokan et al. 2021). In contrast, 

if an ascertainment scheme preferentially selects variants that are common in multiple populations, 
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the subdivision will be overestimated (Dokan et al. 2021). Nevertheless, estimators are influenced by 

ascertainment bias to a different extent. So is FST less affected as an estimator compared to other 

distance estimators that are not scaled by overall heterozygosity when the numerator and 

denominator of FST are affected in the same direction (Albrechtsen et al. 2010; Geibel et al. 2021a).  

Ascertainment that is performed unbalanced across subpopulations also rotates the principal 

components of a PCA (McVean 2009; Malomane et al. 2018; Dokan et al. 2021). The variation within 

the discovery populations, as well as differentiation between discovery and non-discovery populations, 

will be overestimated compared to variation within non-discovery populations (Nielsen 2004; 

Albrechtsen et al. 2010; Dokan et al. 2021), which has an effect comparable to uneven sampling 

(McVean 2009). 

Common variants are on average older variants that had already time to recombine more often than 

younger variants (Clark et al. 2003; Nielsen and Signorovitch 2003). Ascertainment of medium frequent 

variants, therefore, results in an SNP panel that is older than an unbiased panel. This, in turn, means 

an underestimation of LD decay from frequency-independent estimators as |𝐷′| (Nielsen and 

Signorovitch 2003). Pairwise MAF differences, however, become on average smaller through 

ascertainment bias. This, in turn, inflates LD estimates by r² (Nielsen and Signorovitch 2003; Qanbari 

2020), as the upper limit of r² is defined by the MAF difference (VanLiere and Rosenberg 2008). 

Other than bivariate SNPs, polymorphic markers as microsatellites are less affected by ascertainment 

bias (Bradbury et al. 2011; Lachance and Tishkoff 2013). The same counts for haplotype-based 

estimators (Lachance and Tishkoff 2013). 

To cope with ascertainment bias, it may be advisable to correct the allele frequency spectrum by 

reverse-engineering the ascertainment process (Nielsen et al. 2004; Clark et al. 2005; Albrechtsen et 

al. 2010), or account for ascertainment bias in the estimators (Nielsen 2000; Nielsen and Signorovitch 

2003; Ramirez-Soriano and Nielsen 2009). Those methods, however, rely on simplified ascertainment 

schemes and require exact knowledge of the ascertainment process, which commonly conflicts with 

reality (Albrechtsen et al. 2010). More versatile is the attempt to model ascertainment within 

demographic simulations, as implemented into fastsimcoal2 (Excoffier et al. 2013) and used by 

McTavish and Hillis (2015) to test different combinations of demographic models and ascertainment 

schemes in cattle for the goodness of fit with observed data. Further, Quinto-Cortés et al. (2018) 

described a comparable method that implemented a Bayesian optimization process to automate the 

search for the best fitting demographic scenario.  

However, with very broad demographic scenarios, these simulations also become too complex. 

Malomane et al. (2018) tested therefore how different filtering strategies affect ascertainment bias. 
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They identified LD-pruning as a promising approach, as it reduces redundant information of high-MAF 

SNPs while keeping the information of rare SNPs. Further, Chapter 3 presents an approach to use 

imputation based on a sparse WGS reference panel to mitigate the effects of ascertainment bias. 

The chicken 

Origin and domestication 

It is commonly accepted that the wild origin of the domesticated chicken (Gallus gallus domesticus) is 

the red jungle fowl (RJF) whose natural habitats stretch mainly across Southeast Asia. However, the 

amount of contribution of the five wild Gallus gallus subspecies (G. g. gallus, G. g. spadiceus, G. g. 

bankiva, G. g. jabouillei, G. g. murghi) is still content of scientific discourse. Some authors argue for 

multiple independent domestication events, as reviewed by Tixier-Boichard et al. (2011). However, the 

by now largest study on chicken domestication by Wang et al. (2020) argues based on 863 sequenced 

chickens that domestication of chickens was based on G. g. spadiceus ~9,500 ± 3,300 years ago with 

later introgression by the other four subspecies (G. g. murghi and G. g. jabouillei > G. g. gallus > G. g. 

bankiva). Note, however, that wild RJF samples, which are often even sampled in zoological parks, may 

not be free from hybridization with domestic chickens, as e.g. shown by Mariadassou et al. (2021). This 

could influence the results as well as a sampling bias in the study towards Asian chickens (Lawal and 

Hanotte 2021). Additionally, later introgression from other Gallus species into domesticated chicken 

populations seems also to have contributed significantly, as e.g. shown for the grey jungle fowl (Gallus 

sonneratii) from India that seems to be the origin of the yellow skin color of domestic chickens 

(Eriksson et al. 2008). 

Dispersion across the world strongly followed human migration routes, as recently reviewed by Lawal 

and Hanotte (2021). The broad diversity of breeds may thereby have been shaped by multiple 

migration events and a rich crossbreeding history. This is e.g. reported from Europe, where many fancy 

breeds were developed by crossing imported Asian breeds to local chicken populations in the 19th 

century (Malomane et al. 2019). 

Value in farming 

The chicken is the agricultural vertebrate species with the most individuals worldwide (FAO 2021b). A 

strongly increasing trend in the reported number of chickens can be observed especially in Asia since 

the 1980s (Figure 1.1). For 2019, the Food and Agriculture Organization of the United Nations (FAO) 

reported 25.9 billion chickens worldwide, 15.8 billion (61 %) in Asia, and 5.9 billion (23 %) on the 

American continent. In contrast, the numbers have been only 2.2 billion on each of the two continents 

in 1980 (FAO 2021b). 
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Figure 1.3: Worldwide chicken numbers by continent and year (data source: FAO 2021b).  

Commercial chicken breeding is done by nucleus hybrid breeding schemes with strong horizontal and 

vertical concentrations of the market. Exemplarily for layers, a worldwide egg need of 900 billion 

eggs/year could be satisfied by a four-line crossing scheme with theoretically only 15,000 purebred 

grand-grand mothers (Preisinger 2018). This and the high costs of performance testing resulted in 

currently only four companies sharing the laying hen market (Preisinger 2018). The intensive breeding 

programs and negative correlations between growth and egg numbers (Willam and Simianer 2011) 

also led to a strong specialization of commercial lines for egg (white and brown layers) vs. meat 

production (broilers). Nevertheless, in developing countries backyard chicken farming with native 

chicken breeds still plays a significant role (e.g. ~50 % in the Philippines in 2005; Chang 2007). 

Global chicken diversity 

The limitation to few chicken lines in commercial meat and egg production contrasts with a large 

number of global chicken breeds. The Domestic Animal Diversity Information System (DAD-IS) 

currently lists 1,823 chicken breeds worldwide with 125 counting as extinct and 524 as at risk in at 

least one country (FAO 2021a). Breeding goals on a global scale extend the production of animal 

protein (e.g. game birds or a large diversity of fancy breeds; Crawford 1993). Further, Malomane et al. 

(2019) describe a gradual genetic separation between European and Asian breeds with African and 

South American breeds clustering in between. 

 The within-breed diversity of chickens exhibits a decline with genetic distance to the wild populations 

(Malomane et al. 2021) with European populations showing an on average lower diversity than Asian 

ones (Malomane et al. 2019; Malomane et al. 2021). The premature assumption that commercial 

populations generally exhibit very low levels of genetic diversity due to their intensive breeding history 
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can thereby only be confirmed for white layers (Malomane et al. 2019). Commercial brown layers show 

a medium heterozygosity and broilers a rather high heterozygosity (Malomane et al. 2019). This is 

commonly explained by the single-breed origin of white layer lines in contrast to multi-breed origins 

of brown layers and broilers (Crawford 1993; Malomane et al. 2019; Tixier-Boichard 2020). 

Genome 

The chicken genome consists of 38 autosomes, a Z/W heterosomal sex system, and the mitochondrial 

genome, in total ~1.2 Gb. The first reference genome was published in 2004 based on a female from a 

red jungle fowl inbreeding line (International Chicken Genome Sequencing Consortium 2004). The 

initial build was successively updated through the last years and the current build GRCg6a (Genome 

Reference Consortium GRCg6a 2018) consists of 32 autosomes, the heterosomes, and the 

mitochondrial sequence.  

A difference of avian genomes to mammalian genomes is the strong decay in chromosome lengths 

across the genome. Autosomes are therefore often divided into macro- (1-5), intermediate (6-11), and 

micro-chromosomes (12-38; International Chicken Genome Sequencing Consortium 2004). However, 

the exact classification varies across publications. The micro-chromosomes show several differences 

in comparison to macro-chromosomes. This includes elevated recombination rates (International 

Chicken Genome Sequencing Consortium 2004; Groenen et al. 2009; Megens et al. 2009), elevated 

rates of synonymous substitutions, higher GC content and gene density, and lower repeat density 

(International Chicken Genome Sequencing Consortium 2004). A further feature of the chicken 

genome is the known bad assembly quality of chromosome 16 due to the major histocompatibility 

(MHC) complex with a strong repetitive genome content (Solinhac et al. 2010; see also Chapter 5). 

There are currently 23.4 M SNPs and short InDels published on ENSEMBL (Table 1.1). However, this 

seems to be an underestimation of the total number, as we already called >20 M bivariate SNPs just 

on chr1 – chr28 in our studies (Chapter 3). An accurate estimate of the number and length of chicken 

SVs is not yet available. Although studies identified up to 12,955 SV (Sohrabi et al. 2018) after filtering, 

the studies were all based on arrays or short-read data and limited to a single calling algorithm in a 

limited set of breeds, most likely lacking from a high number of false positives and low sensitivity at 

the same time.  

For chickens, there exist currently four commercially available SNP arrays. The first array by Groenen 

et al. (2011) contains 60 k SNPs on the Illumina platform that were selected from reduced library 

sequences of four discovery populations (two broiler lines, a white layer line, and a brown layer line). 

Kranis et al. (2013) created a 580 k Affymetrix array. They used a broader discovery set, including 

multiple lines of white layers, brown layers, broilers, and inbreeding lines from the Roslin Institute, UK. 
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The SNPs for the array were further validated in a broad set of fancy breeds. The 55 k Affymetrix array 

by Liu et al. (2019) was developed with the intention to capture the variation of indigenous Chinese 

chicken breeds while still showing overlap with the previously existing arrays. Further, recently 

multispecies arrays with the purpose of monitoring small European populations were developed in the 

scope of the EU project IMAGE (https://www.imageh2020.eu/). The IMAGE001 multispecies array 

thereby contains ~10 k chicken SNPs (IMAGE 2020).  

Aim of the thesis 

The previous chapter highlighted the wide usability of genomic markers in livestock sciences. However, 

the different marker classes and technologies come with their specific properties and problems. 

Outstanding are especially the ascertainment bias of SNP arrays and the inaccurate SV calling pipelines. 

Further, the chicken is an excellent model organism in livestock sciences due to its broad diversity of 

populations. The thesis, therefore, aims in answering the following questions by using chicken data: 

Chapter 2 asks which steps in the array design process created the SNP ascertainment bias. The 

question is answered by remodeling the design process of a commercial SNP array-based on WGS data. 

Chapter 3 investigates whether imputation of array data to WGS level allows for in silico correction of 

SNP ascertainment bias. 

Chapter 4 then assesses whether a separate SV calling is necessary for genomic studies, or whether 

potential effects of SV would already be captured by SNPs in strong LD to the SV. 
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Abstract 

Single nucleotide polymorphisms (SNPs), genotyped with arrays, have become a widely used marker 

type in population genetic analyses over the last 10 years. However, compared to whole genome re-

sequencing data, arrays are known to lack a substantial proportion of globally rare variants and tend 

to be biased towards variants present in populations involved in the development process of the 

respective array. This affects population genetic estimators and is known as SNP ascertainment bias. 

We investigated factors contributing to ascertainment bias in array development by redesigning the 

Axiom™ Genome-Wide Chicken Array in silico and evaluating changes in allele frequency spectra and 

heterozygosity estimates in a stepwise manner. A sequential reduction of rare alleles during the 

development process was shown. This was mainly caused by the identification of SNPs in a limited set 

of populations and a within-population selection of common SNPs when aiming for equidistant 

spacing. These effects were shown to be less severe with a larger discovery panel. Additionally, a 

generally massive overestimation of expected heterozygosity for the ascertained SNP sets was shown. 

This overestimation was 24 % higher for populations involved in the discovery process than not 

involved populations in case of the original array. The same was observed after the SNP discovery step 

in the redesign. However, an unequal contribution of populations during the SNP selection can mask 

this effect but also adds uncertainty. Finally, we make suggestions for the design of specialized arrays 

for large scale projects where whole genome re-sequencing techniques are still too expensive. 

Introduction 

Starting in the first decade of this century, the possibility of cost-efficiently genotyping high numbers 

of Single Nucleotide Polymorphisms (SNP) for many individuals in parallel via SNP arrays led to an 

increase in their usage for population genetic analyses in humans (Novembre et al. 2008; Patterson et 

al. 2012), model species (Laurie et al. 2007; Platt et al. 2010), plants (Travis et al. 2015; Mayer et al. 

2017) and livestock (Muir et al. 2008; Gibbs et al. 2009; Kijas et al. 2009; Gautier et al. 2010; Qanbari 

et al. 2010; McTavish et al. 2013; Malomane et al. 2019). 

Various SNP arrays exist for humans (Perkel 2008), plants (Unterseer et al. 2014; Singh et al. 2015) and 

all major livestock species (Matukumalli et al. 2009; Ramos et al. 2009; Groenen et al. 2011; Boichard 

et al. 2012; Kranis et al. 2013; Tosser-Klopp et al. 2014; Sandenbergh et al. 2016). SNP numbers within 

these arrays range from 10 k SNPs (Boichard et al. 2012) over approximately 50 k (Matukumalli et al. 

2009; Groenen et al. 2011; Tosser-Klopp et al. 2014; Singh et al. 2015) up to 600 k (Kranis et al. 2013; 

Unterseer et al. 2014). The design process of every array has an initial step of SNP discovery in 

common, where SNPs are identified from existing databases and/or from a small set of sequenced 

individuals. SNPs are then selected based on different quality criteria like minor allele frequency (MAF) 
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thresholds and platform specific design scores (Fan et al. 2010). Additional criteria like equidistant 

spacing over the genome (Kranis et al. 2013), overrepresentation of some areas like chromosomal ends 

to increase imputation accuracy (Boichard et al. 2012) or genic regions (Kranis et al. 2013), or increased 

overrepresentation of high MAF SNPs (Matukumalli et al. 2009) are applied dependent on the design 

intentions. In the end, draft arrays are validated either on the set of populations used for the SNP 

discovery itself (Ramos et al. 2009) and/or on a broad set of individuals from different populations (Fan 

et al. 2010; Kranis et al. 2013). 

In contrast to whole genome re-sequencing (WGS) data, SNP arrays often show a clear 

underrepresentation of SNPs with extreme allele frequencies (Nielsen 2004). As population genetic 

statistics are mostly based on estimates of allele frequencies, this context leads to biased population 

genetic estimators (Nielsen 2004; Clark et al. 2005) and is known as SNP ascertainment bias. 

The absence of rare alleles is mainly driven by two factors in the array design process where SNPs are 

selected (ascertained) based on different requirements and decisions (Eller 2001). The first factor is a 

relatively small panel of individuals being used for discovery of SNPs, leading to a large proportion of 

globally rare variants not being selected, since they appear monomorphic in the discovery panel 

(Nielsen and Signorovitch 2003; Clark et al. 2005). The second factor is the across population use of 

arrays. Arrays are developed based on the variation within the discovery panel, thus missing variation 

present in distantly related individuals or populations (Eller 2001; Nielsen 2004). This second source of 

bias was shown to be of relatively high importance for livestock studies, where arrays are usually 

developed for large commercial breeds and later used to genotype diverse sets of local breeds all over 

the world (McTavish and Hillis 2015; Malomane et al. 2018). 

Besides different strategies to minimize the impact of ascertainment bias (Lachance and Tishkoff 2013; 

Malomane et al. 2018), there are some attempts to correct the allele frequency spectrum via Bayesian 

methods (Nielsen and Signorovitch 2003; Nielsen 2004; Nielsen et al. 2004). However, those 

corrections highly rely on detailed statistical assumptions of the ascertainment process (Guillot and 

Foll 2009; Albrechtsen et al. 2010) or take a variety of ascertainment processes and demographic 

patterns into account to model evolutionary scenarios which are then compared to real world data 

(McTavish and Hillis 2015; Quinto-Cortés et al. 2018). However, those methods are currently only 

tested for corrections of the first source of ascertainment bias, the small discovery panel (Nielsen and 

Signorovitch 2003; Nielsen 2004; Nielsen et al. 2004). Additionally, detailed information on the design 

process is limited in practice (Albrechtsen et al. 2010) and the complexity of the processes makes 

statistical models for the corrections inaccurate. 

Agricultural species such as chickens often show a complex domestication history, and therefore allow 

for few prior assumptions on ascertainment bias. Domestic chickens are assumed to originate from 
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red jungle fowl (Gallus gallus) ancestors in Southeast Asia (West and Zhou 1988; Lawal et al. 2020), 

represented by the five subspecies G. g. gallus, G. g. spadiceus, G. g. murghi, G. g. bankiva and G. g. 

jabouillei (Tixier-Boichard et al. 2011). Additionally, some hybridization events with other Gallus 

species (e.g. grey jungle fowl; Gallus sonneratii) have been suggested (Eriksson et al. 2008; Lawal et al. 

2020). The diversity of today's local breeds of chickens in Europe originates from chickens that reached 

the continent about 3000 years ago via a northern and a southern route, followed by selection and 

crossing with Asian chicken breeds introduced in the 19th century (Tixier-Boichard et al. 2011). While 

commercial white layers were derived solely by intensive directional selection of a single breed, the 

White Leghorn, commercial brown layers are derived from a broader genetic basis (e.g. Rhode Island 

Red, New Hampshire, Barred Plymouth Rock). Commercial broilers are derived by cross-breeding of 

paternal lines (e.g. White Cornish) with maternal lines which descend from a comparable basis as 

brown layers (e.g. White Plymouth Rock) (Crawford 1993). For more detailed information on chicken 

ancestry we refer to Lawal et al. (2020) and for a comprehensive overview on diversity and population 

structure of domesticated chickens to Malomane et al. (2019). 

Given the complexity of modern array design processes and the chicken population structure, this 

study aims at highlighting the mechanisms which promote the bias by illustrating the effects of the 

different steps of the array design process on the allele frequency spectrum, using real data in a typical 

setting from livestock sciences. For this purpose, the design process of the Axiom™ Genome-Wide 

Chicken Array (Kranis et al. 2013) was simulated in a set of diverse chicken WGS data. Allele frequency 

spectra as well as expected heterozygosity (Hexp) were compared to the WGS data and the SNPs of the 

Axiom™ Genome-Wide Chicken Array. Finally, some recommendations are made to design an array for 

monitoring genetic diversity. 

Material and methods 

Ethics approval and consent to participate 

DNA samples were taken from a data base established during the project AVIANDIV (EC Contract No. 

BIO4-CT98_0342; 1998 – 2000; https://aviandiv.fli.de/) and later extended by samples of the project 

SYNBREED (FKZ 0315528E; 2009 – 2014; www.synbreed.tum.de). Blood sampling was done in strict 

accordance to the German animal welfare regulations, with written consent of the animal owners and 

was approved by the at the according times ethics responsible persons of the Friedrich-Loeffler-

Institut. According to German animal welfare regulations, notice was given to the responsible 

governmental institution, the Lower Saxony State Office for Consumer Protection and Food Safety 

(33.9-42502-05-10A064). 

https://aviandiv.fli.de/
http://www.synbreed.tum.de/
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Populations and sequencing 

The analysis is based on WGS data of a diverse set of 46 commercial, non-commercial and wild chicken 

populations, sampled within the framework of the projects AVIANDIV (www.aviandiv.fli.de) and 

SYNBREED (www.synbreed.tum.de). Commercial brown (BL) and white layer (WL) populations consist 

of 25 individually re-sequenced animals each, while the two commercial broiler lines (BR1 and BR2) 

include 20 individually sequenced animals each. For 41 populations, pooled DNA from 9 - 11 animals 

per population was sequenced, while Gallus varius (green jungle fowl; GV) samples of only two animals 

were sequenced as a pool. More detailed information about the samples can be found in S1 File and 

two previously published papers, from Malomane et al. (2018) and Qanbari et al. (2019). Coverage was 

between 7X and 10X for the individual sequences, while DNA pools were sequenced with 15X to 70X 

coverage. Sequencing was conducted on Illumina HiSeq machines at the Helmholtz Zentrum, German 

Research Center for Environmental Health in Munich, Germany. 

Raw data preparation and SNP calling 

Sequences were aligned to the reference genome Gallus_gallus-5.0 (UCSC 2016; Warren et al. 2017) 

and the SNP calling was conducted according to GATK Best Practices guidelines (DePristo et al. 2011; 

van der Auwera et al. 2013). BWA-MEM 0.7.12 (Li 2013) was used for the alignment step, duplicates 

were marked using Picard Tools 2.0.1 (Broad Institute 2015) MarkDuplicatesWithMateCigar and base 

qualities were recalibrated with GATK 3.7 (McKenna et al. 2010) BaseQualityRecalibrator. The set of 

known SNPs, necessary for base quality score recalibration, was downloaded from ENSEMBL release 

87 (ENSEMBL 2016). SNPs were called for all samples separately using the GATK 3.7 HaplotypeCaller 

and later on simultaneously genotyped across samples with GATK 3.7 GenotypeGVCFs. Due to 

computational limitations, the ploidy parameter of HaplotypeCaller was set to two instead of the 

higher true ploidy of the pooled sequences. By this, slightly less rare alleles were called. However, 

effects of this limitation are negligible (S2 File; S1 Fig). Note that allele frequencies were estimated 

from the ratio of allelic depth by total depth. 

SNP filtering was conducted using GATK 3.7 VariantRecalibrator, which filtered the called SNPs by a 

machine learning approach (use of a Gaussian mixture model), which uses both a set of previous known 

(low confidence needed) and a set of highly reliable (assumed to be true) variants as training sources 

(Broad Institute 2018). The source for known SNPs (prior 2) provided to VariantRecalibrator was again 

ENSEMBL (release 87) and the SNPs of the Axiom™ Genome-Wide Chicken Array were defined as true 

training set (prior 15). The algorithm was trained on the quality parameters DP, QD, FS, SOR, MQ and 

MQRankSum. Filters were set to recover 99 % of the training SNPs in the filtered set, which resulted in 

a Transition/Transversion ratio of 2.52 for known SNPs, and a Transition/Transversion ratio of 2.26 for 

novel SNPs. Only biallelic autosomal SNPs were used in all further analyses. 

http://www.aviandiv.fli.de/
http://www.synbreed.tum.de/
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Identification of the ancestral allele 

Ancestral alleles were defined using allele frequency information from the three wild populations 

Gallus gallus gallus (GG), Gallus gallus spadiceus (GS) and Gallus varius (GV) by an approach 

comparable to Rocha et al. (2014). It was assumed that the Gallus gallus and Gallus varius species 

emerged from a common ancestor and Gallus gallus later split into Gallus gallus gallus and Gallus 

gallus spadiceus subspecies. Additionally, assuming neutral molecular evolution (Kimura 1991), the 

ancestral allele was most likely the major allele within those three populations, when weighting the 

allele frequency of Gallus varius twice. This procedure assigned the ancestral status to the reference 

allele for 86 % of the SNPs and to the alternative allele for 14 % of the SNPs. The change in the allele 

frequency spectrum was only relevant for the interval from 0.95 – 1.00, which was reduced by 111,851 

SNPs (0.39 % of all SNPs) when switching from alternative to derived allele frequency (S2 File; S2 Fig). 

Reference Sets 

Three different reference sets were defined as follows: the unfiltered WGS SNPs (28.5 M SNPs), SNPs 

filtered using GATK 3.7 (McKenna et al. 2010) VariantRecalibrator (20.9 M SNPs; filtered WGS) and 

array SNPs (540 k SNPs), which are the intersection of the unfiltered SNPs and the SNPs of the Axiom™ 

Genome-Wide Chicken Array. The separate use of unfiltered and filtered WGS SNPs was done to assess 

the effect of filtering (especially the use of an ascertained SNP set as the true set) on ascertainment 

bias. 

Redesigning the SNP Array 

The process of redesigning the array in silico is briefly shown in Figure 2.1 and explained in more detail 

in the following. For the design process, the populations were divided into four groups: 

1) Discovery populations (8) 

2) Validation populations (19) 

3) Application populations (18) 

4) Outgroup (1) 

For SNP discovery, firstly the four commercial lines (commercial white layers, WL; commercial brown 

layers, BL and the two commercial broiler lines, BR1 and BR2) were used. The set was then extended 

by additionally selecting those populations that were closest related to each of the commercial 

populations based on pairwise Nei’s standard genetic distance (Nei 1972). As the two broiler 

populations were closest related (S3 Fig), the next two closest populations were chosen. This resulted 

in the inclusion of White Leghorn (LE), Rhode Island Red (RI), Marans (MR) and Rumpless Araucana 

(AR). Note that the commercial populations are closely related to the populations used as discovery 
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populations for the development of the Axiom™ Genome-Wide Chicken Array (2013) with exception 

of some inbred lines from the Roslin Institute in Edinburgh of which we do not know the genetic origin. 

The discovery set used for the original array (2013) additionally consisted of more animals from 

multiple layer and broiler lines than ours. Further, the discovery set had to be split into broilers (BR1, 

BR2, MR, AR) and layers (WL, LE, BL, RI) for the equal spacing step. From the remaining populations, 

19 were randomly chosen for validation of previously discovered SNPs (validation populations), 18 

populations (which were not included in the array development) were used as a case study for an 

application of the array (application populations), and Gallus varius as a different species was defined 

as outgroup. The interested reader can find all underlying pairwise Nei’s standard genetic distances 

(Nei 1972) in S3 File and additionally pairwise FST values (Wright 1949) in S4 File. 

 

 

Figure 2.1: Flow chart of the array redesign process. The steps of redesigning the array (blue) are 
described in more detail in the text. Application of the array (red) was done after each subsequent 
step to assess the effects of the according step on the frequency spectrum. 

Based on the unfiltered SNP set, the sampling of the SNPs for an approximately 600 k sized array was 

remodeled in silico in five consecutive steps according to the design process of the original array which 

was described by Kranis et al. (2013), starting from the unfiltered SNP set: 
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1) SNP discovery  10.9 M SNPs 

Discovery of SNPs fulfilling basic criteria (quality ≥ 60; MAF ≥ 0.05; coverage ≤ mean + 

three standard deviations) within the discovery populations. 

2) Cluster removal  8.8 M SNPs 

SNP clusters were defined as SNPs with less than 4 bp invariant sites at one side of a SNP 

and less than 10 bp invariant sites at the other side of the SNP within the discovery 

populations. Those SNPs were removed, which is justified rather technically to enable 

probe binding, but could also lead to an overrepresentation of conserved regions 

compared to highly variable regions of the genome. 

3) Equal spacing  2.1 M SNPs 

Reduction of SNPs to achieve approximately equidistant spacing between variable SNPs 

within discovery populations based on genetic distances. This algorithm was modeled 

according to Kranis et al. (2013) and followed a two-step procedure. The first step was 

setting up an initial backbone of common SNPs (three sub-steps). It started with selecting 

SNPs which segregated in all discovery populations (MAF within each population > 0) while 

requiring a minimal distance of 2 kb, resulting in about 8 k SNPs. This was complemented 

by a backbone of SNPs which segregated in all layer populations and another one of SNPs 

which segregated in all broiler populations. Note that Kranis et al. (2013) additionally 

constructed a backbone from a group of inbred lines for which no comparable samples 

were available for this study. In the second step, the algorithm iterated over all single 

populations and filled in potential gaps between backbone SNPs which are variable within 

the according population. This was done by choosing the SNPs closest to equidistant 

positions within the gap while aiming for a predefined local target density of 667 

segregating SNPs/cM (linkage map taken from Groenen et al. 2009). See S4 Fig for the 

detailed contribution of additional SNPs from each sub-step of the algorithm. 

4) SNP validation  1.7 M SNPs 

Removing SNPs (~ 20 %) which were not variable in at least 8 of the 19 validation 

populations. This step would in reality be done by genotyping with preliminary test arrays 

and therefore allows the use of a broader set of populations than the discovery step. 

5) Downsampling  580 k SNPs 

Downsampling of SNPs comparable to step 3, but without adding the broiler/ layer specific 

backbones and instead keeping all exonic SNPs (annotation using Ensembl VEP 89.7; 

McLaren et al. 2016). Additionally, the target density in broiler lines was set as three times 

the target density of the layer lines. The increased target density in broilers is intended to 

account for lower levels of linkage disequilibrium in these lines. 
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Variation of the design process 

The whole design process was repeated 50 times with populations being randomly assigned to be 

discovery, validation or application populations, while the Gallus varius population was always kept as 

the outgroup. In this process, the number of populations per group was the same as in the previous 

scenario. 

To assess the impact of the number of discovery populations on the design process, the number of 

discovery populations was varied in additional runs from 4 to 40 randomly chosen populations (while 

assigning the remaining populations, except Gallus varius, to validation and application groups of equal 

size) with 20 random replicates for each number of discovery populations. In a last scenario, equal 

spacing was varied with respect to the target density (33 – 3333 SNPs/cM) with 20 independent 

population groupings for each target density, with or without the initial backbone. As the number of 

SNPs from the backbone was constant, the increase of the target density led to a higher number of 

SNPs chosen by the algorithm due to the equal spacing itself and hence the relative influence of the 

fixed number of common backbone SNPs decreased. 

Analyses of the results 

Per-locus-allele frequencies for individually sequenced populations were estimated from genotypes, 

whereas the estimation for the sequenced DNA-pools was based on the allelic depth. Influences on 

the allele frequency spectra were examined by comparing density estimates of derived allele 

frequency spectra (unfolded frequency spectrum). Further Hexp, the expected heterozygosity assuming 

Hardy Weinberg frequencies of the genotypes, for the different populations were used as summary 

statistics of the within population allele frequency spectra and calculated as in equation (2.1), where 

denotes the frequency of the reference allele at locus  and  the total number of loci. 
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Deviations in the estimation of Hexp from the various SNP sets were quantified as differences between 

the Hexp calculated from the respective SNP set and the Hexp calculated from the filtered WGS SNPs 

relative to the Hexp from the filtered WGS SNPs, further called overestimation of Hexp (OHE; equation 

(2.2)), which was calculated per population. 
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An OHE of zero means that the estimates are equal, while an OHE of one describes doubling of the 

unbiased estimate. 
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The effects of the population group assignments on the OHE of the random population assignments 

were evaluated by pairwise comparisons of least square means (LSMEANS; calculated with the R 

package emmeans (R Core Team 2017; Lenth 2019) by using Tukey correction for multiple pairwise 

contrasts) of the population groups. An underlying mixed linear model for the estimation of LSMEANS 

was fitted using the R package lme4 (Bates et al. 2015) as shown in equation (2.3), where the OHE 

depended on an overall mean , the fixed effect of the population group (i can be discovery-

, validation-, application- or outgroup), a random effect for the jth repetition of random population 

grouping ( ) and a random error . The procedure is comparable to 

simple pairwise comparisons of group means, the correction by the repetition only reduces the error 

variance and thus decreases the confidence intervals. 

 ijk i j ijkpopGOHE rep e     (2.3) 

Results 

Numbers of SNPs 

The SNP calling identified 28.5 M biallelic autosomal SNPs from which 20.9 M SNPs passed GATK’s 

filtering procedure. 540 k SNPs from the unfiltered WGS SNP set are also mapped on the original 

Axiom™ Genome-Wide 580 k Chicken Array. The remodeling of the array according to the design 

process of the original array returned 10.9 M SNPs from the discovery step, which were reduced to 

approximately 580 k in steps as described. Numbers of identified SNPs for the additional runs differed 

depending on the populations and settings used and are listed in S1 Table. It has to be noted that the 

different sub-steps of the equal spacing algorithm contributed with different amounts of SNPs (S4 Fig). 

Especially the much higher contribution of SNPs which were segregating in all broiler populations 

compared to SNPs segregating in all layer populations in the remodeling with populations chosen 

comparable to the original array was remarkable. This is due to closer relationships between the broiler 

populations and their generally higher heterozygosity. Additional information about the identified 

number of SNPs depending on the number of discovery populations and target density as well as 

information about the share of SNPs of different random runs can be found in S5 – S7 Figs. 

Underrepresentation of rare SNPs 

A clear underrepresentation of rare SNPs in all ascertained SNP sets compared to WGS is evident from 

the allele frequency spectra (Figure 2.2). Major changes in the allele frequency spectra during the array 

development process were observed after the SNP discovery step and the equal spacing step. The SNP 

discovery led to an underrepresentation of rare SNPs compared to sequence data, which was 

 ipopG
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intensified by the equal spacing step (Figure 2.2). The process finally resulted in a spectrum which was 

comparable to the spectrum of the original array, albeit slightly more right skewed. Randomly choosing 

populations as discovery populations confirmed the shape of the first remodeling, where the 

population groups were chosen according to the original array (Kranis et al. 2013). As major changes 

in the spectra mainly occurred after the SNP discovery and equal spacing, further results will 

concentrate on those steps. 

 

 

Figure 2.2: Derived allele frequency spectra for the different SNP sets. For the remodeled sets, areas 
show the modelling according to the original array (2013) while grey lines represent the 50 random 
population groupings. 

The allele frequency spectra (Figure 2.3) within discovery populations, compared to the spectra over 

all populations, clearly showed the cutoff from the MAF 0.05 filter. Furthermore, the allele frequency 

spectra of the discovery populations revealed a higher share of common SNPs than the overall spectra 

after equal spacing. In contrast, the spectra within validation- and application populations showed less 

pronounced peaks after the discovery step and the outgroup (Gallus varius) revealed fixation of most 

SNPs variable in the discovery populations. 
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Figure 2.3: Derived allele frequency spectra within the population groups. 

Influence of number of discovery populations and target density on allele frequency spectra 

Not surprisingly, an increased number of discovery populations resulted in a higher number of rare 

alleles after the discovery step, and thus an allele frequency spectrum with a more pronounced peak 

of rare alleles (Figure 2.4 A). Apparently, the shift of the allele frequency spectrum after the equal 

spacing step was dependent on the number of discovery populations, as an increase in the number of 

discovery populations shifted the allele frequency spectra towards a higher proportion of alleles with 

a low derived allele frequency. With an increasing number of discovery populations, the shape of the 

allele frequency spectra got closer to the spectrum of the original array. 
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Figure 2.4: Impact of a varying number of discovery populations (A) or target density (B) on the 
derived allele frequency spectrum. For A, blue indicates the spectra after the discovery step and red 
after the equal spacing step. For B, only the equal spacing step is shown and blue indicates that the 
algorithm including the initial backbone, while red shows the results without the backbone included in 
the algorithm. Different numbers of populations in the discovery set (4 to 40) or the increase in the 
target density are indicated by an intensifying color gradient and only one representative and 
randomly picked run per population number/ target density is shown. As the differences in the color 
gradients are hard to distinguish, arrows in the respective color are indicating the shift of the spectra 
with increasing numbers of discovery populations. 

A very low target density, indicating that SNPs were mostly called due to being common backbone 

SNPs, resulted in an allele frequency spectrum with the majority of alleles having a MAF of around 0.5 

(Figure 2.4 B). Increasing the target density for the equal spacing and thus reducing the influence of 

the initial backbone of common SNPs shifted the peak of the allele frequency spectrum left towards a 

higher proportion of alleles with small derived allele frequencies. Using only the backbone SNPs 

common over all discovery populations and thus calling SNPs mostly by the equal spacing procedure 

resulted, independently from the target density, in a spectrum similar to the one obtained with a high 

target density with backbone (Figure 2.4 B). 

Overestimation of Hexp 

Figure 2.5 shows the Hexp of different SNP sets by population. The Hexp obtained from the filtered WGS 

SNPs were slightly higher than from the unfiltered WGS SNPs. Hexp obtained from the ascertained SNP 

sets showed an even more pronounced overestimation together with an increase during the design 

steps. In general, the correlations between the Hexp obtained in the different SNP sets were relatively 

high (≥ 0.95; S2 Table). Especially the Hexp of the two WGS SNP sets showed a nearly perfect correlation 

of > 0.99, which led to an almost constant OHE of -0.23 (Table 2.1) for the unfiltered WGS SNPs. As 

already recognizable from the Hexp themselves, the OHE was positive for all ascertained SNP sets (0.66 

– 1.29), which at the same time showed a slightly reduced correlation to the filtered WGS SNP set (0.95 

– 0.97). Comparable to the allele frequency spectra, the most pronounced increase of the OHE was 
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caused by the SNP discovery and followed by the equal spacing step (OHE increased by 0.66), while 

the OHE from the original array SNPs (1.41; Figure 2.5; Table 2.1) laid in the range covered by the 

remodeling steps. 

 

 

Figure 2.5: Expected Heterozygosity (Hexp) by population and SNP set. Populations are ordered by 
the Hexp of the unfiltered WGS SNP set. Only the reference sets and relevant steps of the array design 
are shown. Discovery populations are shaded with a darker background. 

 

Table 2.1: OHE of the SNP sets from the first run 

Populations Unfiltered 
WGS 

Array SNPs 1 – SNP 
discovery 

2 - cluster 
removal 

3 – equal 
spacing 

4 – vali-
dation 

5 – down-
sampling 

All -0.23 ± 0.01 0.84 ± 0.30 0.66 ± 0.26 0.66 ± 0.26 1.09 ± 0.32 1.29 ± 0.35 1.27 ± 0.34 

Discovery -0.23 ± 0.00 1.05 ± 0.10 0.86 ± 0.10  0.86 ± 0.10 1.15 ± 0.15 1.28 ± 0.17  1.32 ± 0.13 

Validation -0.23 ± 0.00 0.87 ± 0.13 0.68 ± 0.10 0.67 ± 0.10 1.15 ± 0.13 1.36 ± 0.14 1.33 ± 0.12 

Application -0.23 ± 0.00 0.83 ± 0.12 0.64 ± 0.07 0.63 ± 0.07 1.10 ± 0.11 1.33 ± 0.14 1.30 ± 0.15 

Outgroup -0.17 -0.88 -0.85 -0.86 -0.85 -0.85 -0.84 

Mean OHE ± standard deviation. 
An OHE of zero means no bias and an OHE of 1 means doubling the Hexp. 

 

Averaging the OHE within the population groups revealed a 30 % higher OHE of the discovery 

populations compared to validation and application populations after the discovery step. The equal 

spacing step reduced this difference to an only 1 % larger OHE for discovery populations, while it came 

with a substantial increase of the variance of OHE, which was larger for the discovery populations than 
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validation and application populations. The validation step then increased the OHE of the validation 

populations more than the OHE of discovery and application populations. This stronger OHE of 

discovery populations was also apparent within the array SNPs (24 % higher). In contrast to the other 

populations, the outgroup showed an underestimation of the Hexp, resulting in an OHE of < -0.84 for all 

ascertained SNP sets (Figure 2.5; Table 2.1). 

A closer look on the contribution of the sub-steps during the equal spacing step revealed that 62 % of 

the SNPs which were preserved during equal spacing were variable in all of the four closely related 

broiler populations (BR1, BR2, MR, AR; maximum pairwise Nei’s distance of 0.06 and FST of 0.17 in the 

filtered SNP set), while only 3 % of the SNPs were retained due to being variable in all of the four less 

closely related layer populations (WL, LE, BL, RI; maximum pairwise Nei’s distance of 0.15 and FST of 

0.48 in the filtered SNP set). The first population used to fill in the gaps in the backbone (WL) 

contributed 17 % of the SNPs, while the other populations contributed < 8 %. 

 

Table 2.2: OHE of the SNP sets out of the 50 random population groupings 

Populations 1 – SNP  
discovery 

2 – cluster  
removal 

3 – equal  
spacing 

4 – validation 5 – down-
sampling 

Discovery 0.76 ± 0.004
a 0.75 ± 0.004

a 1.13 ± 0.006
a 1.28 ± 0.006

b 1.33 ± 0.007
a 

Validation 0.61 ± 0.003
b 0.60 ± 0.003

b 1.11 ± 0.004
b 1.29 ± 0.004

b 1.29 ± 0.005
b 

Application 0.61 ± 0.003
b 0.61 ± 0.003

b 1.12± 0.004
ab 1.35 ± 0.004

a 1.34 ± 0.004
a 

Outgroup -0.85 ± 0.008
c -0.86 ± 0.008

c -0.85 ± 0.015
c -0.84 ± 0.017

c -0.84 ± 0.019
c 

LSMEANS for OHE ± standard error. 
An OHE of zero means no bias and an OHE of 1 means doubling the Hexp. 

Different lowercase letters within columns indicate significant differences to the 5 % level. 

 

These findings were supported by the 50 random groupings (S8 Fig). The LSMEANS (Table 2.2) of the 

population groups revealed 24 % larger OHE for discovery populations than for validation and 

application populations after discovery and cluster removal step, which was decreased to a numerically 

insignificant difference after the equal spacing step. Interestingly, and in contrast to the findings from 

the first remodeling, SNP validation led to a significantly higher OHE (5 % larger) for application 

populations than discovery and validation populations. 

Influence of number of discovery populations and target density on Hexp 

Figure 2.6 A shows that increasing the number of discovery populations reduces the median OHE of 

discovery populations after SNP discovery while not affecting the OHE of validation and application 

populations. Equal spacing (Figure 2.6 B) removed the average difference of OHE between the 
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different population groups. Due to the limited number of populations in the complete set, the number 

of validation populations had to be reduced with more populations in the discovery set. This led to an 

increasing impact of individual validation populations on the ascertainment. The OHE of validation 

populations therefore increased with a high number of discovery populations (S9 D Fig), comparable 

to the higher OHE of discovery populations for a small number of discovery populations. In our case, 

the biased array for validation populations was therefore obtained with a combination of 30 

populations in the discovery set and 7 populations in the validation set. However, the least biased array 

for discovery and application populations was the array with the maximum number of discovery 

populations (40). 

 

 

Figure 2.6: Relation of the OHE as a function of the number of discovery populations. A - discovery, 
B - equal spacing. While the number of discovery populations was varied from 4 to 40 by increments 
of one, the Boxplots are only shown for a subset of the number of discovery populations to avoid a 
crowded figure. The smoothing lines, which show the trend, are calculated from all observations. Plots 
for all five steps can be found in S9 Fig. 

In the equal spacing step, using only backbone SNPs resulted in a higher OHE for discovery than for 

non- discovery populations. Increasing the target density and thus increasing the proportion of SNPs 

due to the equal spacing part of the algorithm reduced the difference in OHE between the population 

groups (Figure 2.7 A). If the SNPs from the initial backbone were not used, no difference of OHE 



Chapter 2 How Array Design creates SNP Ascertainment Bias 62 
 

between discovery and non- discovery populations was present, regardless of the target density 

(Figure 2.7 B). 

 

 

Figure 2.7: OHE after equal spacing (step 3) by target density in SNPs/cM and population group. The 
smoothing lines show the trend and the dashed lines the target density of 667 SNPs/cM, used for the 
remodeling according to the original array (Kranis et al. 2013). The algorithm was run including the 
initial backbone SNPs (A) or not including them (B). Gallus varius is not included, as it is constantly 
underestimated. 

Discussion 

In this study we used a uniquely diverse collection of sequenced wild, commercial and non-commercial 

chicken populations, mainly based on samples of the Synbreed Chicken Diversity Panel (Malomane et 

al. 2019). Parts of our set were also involved in the development process of the Axiom™ Genome-Wide 

580 k Chicken Array (Kranis et al. 2013). This offered an excellent possibility for assessing the impact 

of ascertainment bias on real data in a complex scenario. In general, results derived from this study 

should therefore be transferable to other species. However, domestic chickens show a rich history of 

hybridization and crossbreeding events (Malomane et al. 2019). The effects of using a discovery set 

closely related to the commercial populations and distributing the discovery set randomly across the 
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spectrum of populations were therefore comparably small in this study. Special patterns of population 

structure e.g. the stronger differentiation in cattle due to the two subspecies Bos taurus and Bos 

indicus (Hiendleder et al. 2008) accompanied by limiting the discovery set to one of the two clades, 

should increase the impact of population structure dependent ascertainment bias. 

Potential impacts of the SNP calling pipeline 

As the state of the art pipeline of GATK relies on a supervised machine learning approach for filtering 

the SNP calls, which needs a highly reliable set of known SNPs, we started with examining potential 

impacts of the filtering procedure on ascertainment bias. The number of rare variants was slightly 

reduced by the filtering procedure and thus increased estimates of Hexp were obtained in the filtered 

WGS set. As rare variants have a higher risk to be discarded as sequencing errors (Heslot et al. 2013), 

this reduction is expected when applying quality filters. However, a clear assessment of correctly and 

falsely filtered variants is not possible here and one has to balance this tradeoff based on the study 

purpose. 

Another source of ascertainment bias could be the use of array SNPs as training set for GATK 

RecalibrateVariants, which potentially leads to discarding rare variants more likely if they are not 

present in the discovery populations of the used array. As the correlation between the Hexp of the 

unfiltered and filtered WGS SNPs was nearly one, this source seems to be negligible and the use of 

array variants as a highly reliable training set seems to be unproblematic. 

Due to computational limitations, we had to assume a ploidy of two for pools during the SNP calling 

process, which resulted in a minimal reduction of rare alleles. However, this effect was shown to have 

a very minor impact on the findings of this study (S2 File). Nevertheless, pooled sequencing itself can 

slightly bias allele frequency estimates compared to individual sequencing (Futschik and Schlötterer 

2010; Chen et al. 2012; Schlötterer et al. 2014; Wang et al. 2016). As all frequency estimates for single 

SNPs were taken from the same data source throughout the study, this does not affect our results. 

However, estimates for the magnitude of the ascertainment bias for single populations have to be 

understood rather relative to our gold standard than as absolute values.  

General impact over all groups 

The general reduction of rare alleles in array data compared to WGS data and the resulting 

overestimation of Hexp supports findings of previous studies (Nielsen 2004; Clark et al. 2005; 

Albrechtsen et al. 2010; Malomane et al. 2018). This reduction of rare alleles was mainly seen at steps 

where selection was explicitly biased towards high MAF alleles (MAF filter for quality control in 

discovery step and use of common alleles for the backbone in the equal spacing step) and/ or was 

applied to a small number of populations (small discovery set vs. small validation set). Thereby, the 
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strongest shifts of the allele frequency spectra and increases of Hexp are observed after SNP discovery 

and equal spacing. Both, cluster removal and second downsampling had almost no effect on the allele 

frequency spectra and Hexp, while the validation step slightly decreased the share of rare SNPs. 

The discovery step had the strongest impact on discovery populations, when a small set of discovery 

populations was used (Figure 2.6 A). Similarly, the influence of the validation step on validation 

populations was strongest in case of a small number of validation populations (S9 D Fig). A balancing 

of these two groups of samples is therefore necessary, if the number of available DNA samples for 

array development is limited. Instead of using separate populations for discovery and validation, we 

rather suggest to space the discovery set across all available populations and validate test arrays on 

additional samples of the same populations. 

If the equal spacing step contains a preselection of SNPs based on their variability within population 

groups, the bias is stronger towards high MAF SNPs and thus yields a higher OHE. This effect was 

reduced by increasing the target density and thus selecting relatively more SNPs due to the equal 

spacing instead of common occurrence. 

Differences between groups 

If allele frequency spectra are changed in the same way for all populations and are therefore biasing 

heterozygosity estimates to the same extent, findings for between population comparisons will be 

little affected. Ascertainment bias then is only of importance if one compares populations based on 

different arrays, and corrections of the allele frequency spectrum as reviewed by Nielsen (2004) should 

be possible. As correlations between Hexp of ascertained SNP sets and unfiltered/ filtered WGS SNP 

sets were consistently high (> 0.94), arrays designed in the way as performed in this paper should 

mostly be suitable for robust and cost efficient analyses. Biasedness of estimates could be reduced 

even more by considering filter strategies according to Malomane et al. (2018). 

However, we could show that the bias acts with different extent on different population groups 

(population structure dependent bias) and therefore changes ranking of populations and can affect 

conclusions. This population structure dependent bias was already shown to have severe impact on 

findings from SNP arrays. For example, Bradbury et al. (2011) found a demographic decline up to an 

approximately 30 % lower Hexp for Atlantic cod based on the distance to the sampling location of the 

discovery panel and McTravish and Hillis (2015) showed strong deviations between simulated and 

observed polymorphisms for different combinations of migration and ascertainment scenarios on 

simulated cattle populations. In concordance with this, populations which are closely related to the 

discovery populations of the original array in our study on average showed a 24 % higher OHE than 

validation and application populations for the original array. 
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This population structure dependent bias was mainly introduced by the initial discovery step. It was 

also observed in the random population groupings, but to a slightly different extent. The difference in 

overestimation decreased with an increase in the number of discovery populations (Figure 2.6) and 

was smallest if the discovery populations showed minimum distance to the application and validation 

populations (results not shown). Comparable observations were already made by Frascaroli et al. 

(2013) which found very small ascertainment bias for European elite maize lines when using a SNP 

panel discovered in a combination of a maize diversity set and inbred lines, but strong ascertainment 

bias when using SNPs which were discovered in American elite lines. Therefore, we suggest to ideally 

choose an array where the discovery panel does span the scope of populations it will be applied to, 

and by this covers the existing variation in a most representative way, or to design such an array for 

oneself if it does not exist. 

The equal spacing step lowered the difference in mean OHE between population groups in most of our 

remodeling scenarios, but obviously not in case of the original array. In the remodeling, we saw this 

difference only with a low target density and thus calling SNPs in the equal spacing step mainly due to 

being common over many populations (Figure 2.7 A). However, the equal spacing step also increased 

the variance of OHE in the discovery panel, meaning that the OHE was increased more for some of the 

discovery populations than for others, thus causing more uncertainty for resulting effects. This effect 

is driven by the unequal contribution of variable SNPs to the chosen SNP set by the different 

populations during the equal spacing step (S3 Fig). The equal spacing step increases the OHE for some 

of the discovery populations, while it decreases it for others, and hence it does not remove the 

population structure dependent bias. This means that the knowledge of which discovery populations 

were used is not sufficient to draw conclusions regarding a possible ascertainment bias, since their 

relative contribution varies through the described pipeline. 

Outgroup 

Gallus varius as an outgroup showed a different behavior than all other populations. It already 

exhibited the lowest Hexp in the unfiltered WGS SNP set, which was most likely driven by the small 

number of only two samples in the pool, and showed less upward bias of Hexp in the filtered WGS SNP 

set than all other populations. The Gallus varius sequence reads on average showed weak Phred-scaled 

mapping quality scores of 19 (1.3 % probability of misalignment), while the mean quality scores of the 

other populations ranged from 25 (0.3 %) to 28 (0.1 %). Variation, only present in Gallus varius, will 

therefore be more likely missed due to misplacement of the reads or discarded as possible sequencing 

errors. Additionally, every ascertained SNP set showed an OHE for Gallus varius of < -0.84, as variation 

being present only in Gallus varius was not found in Gallus gallus discovery panels and, vice versa, 

variants from Gallus gallus were not variable in Gallus varius (Figure 2.3). This demonstrates that arrays 
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should not be used if different species (even closely related ones) are included in the research project. 

Even sequence based estimates can be slightly biased, if the reference genome does not fit properly. 

Potential impact on other breeding applications 

In general, we cannot infer the impact on breeding applications which require phenotypic data (e.g. 

genomic selection (Meuwissen et al. 2001) or genome wide association studies (Goddard and Hayes 

2009)) and/or individually sequenced or genotyped individuals (e.g. linkage disequilibrium decay 

(Qanbari et al. 2014) or runs of homozygosity analyses (Peripolli et al. 2017)) from this study. However, 

literature highlights the increased power of high MAF SNPs to capture/ detect effects which are caused 

by common variants due to stronger linkage disequilibrium and higher levels of variance explained. 

Therefore, increasing MAF in a first instance increases prediction accuracy when the number of SNPs 

is limited (Perez-Enciso et al. 2015) and therefore some SNP ascertainment schemes intentionally bias 

the used SNPs towards high MAF within the desired populations (Matukumalli et al. 2009). The switch 

to WGS data, and therefore the additional inclusion of rare alleles, is then expected to increase the 

possibility of capturing the effects of rare alleles (Druet et al. 2014; Perez-Enciso et al. 2015; 

Wainschtein et al. 2019). However, the increase in efficiency by higher numbers of SNPs levels off when 

going towards WGS data (Ober et al. 2012). Nevertheless, we would expect negative impacts of 

ascertainment bias due to the across population use of the arrays. When biasing the genotyped 

variation towards the discovery population, the variability in populations, which are less related to the 

discovery populations, is less increased or even reduced, and arrays therefore become less valuable in 

non-target populations. Slight effects of this were demonstrated by simulation (Perez-Enciso et al. 

2015) and we can clearly support these findings by the levels of differences in the genotyped 

heterozygosity which we observed in this study. For the effect of ascertainment bias on a broader set 

of applications, we further refer the interested reader to studies which specifically address those issues 

(e.g. Nielsen 2004; Lachance and Tishkoff 2013; Qanbari et al. 2014; Malomane et al. 2018; Quinto-

Cortés et al. 2018). 

Further recommendations for future studies 

We showed that existing arrays come with a large potential for ascertainment bias which is barely 

predictable due to a diverse set of promoting factors. Strongly decreasing costs for WGS and increasing 

availability of powerful computing resources therefore promote an intensified use of WGS for 

population genetic analyses, especially when diverse populations are included in the studies. However, 

costs and computational effort will still be substantial for large scale projects. Possible cost effective 

alternatives could be reduced library sequencing approaches like Genotyping-by-Sequencing (Elshire 

et al. 2011; Heslot et al. 2013), even though such methods introduce other problems related to the 

use of restriction enzymes which are reviewed by Andrews et al. (2016). 
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For the purpose of monitoring genetic diversity in a large set of small non-commercial populations, the 

development of a specialized new array for cost effective high throughput genotyping could be still a 

good option. For the design of such an array, unbiasedness would thereby be represented by a random 

draw of the total variation within the target populations. As this is only a theoretical possibility, the 

practical solution closest to unbiasedness one can achieve would be a random draw form the SNPs 

present in the discovery set. It is thereby crucial to extend the discovery set in a way which represents 

the total variability over all populations as balanced as possible. The use of publicly available sequences 

can be helpful to reach this goal. The ascertainment of the SNPs should then be done preferably over 

a large set of highly diverse populations covering a wide spectrum of the diversity within a species 

available populations instead of biasing the process towards common alleles by performing within 

population ascertainment. 
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Abstract 

Background 

Population genetic studies based on genotyped single nucleotide polymorphisms (SNPs) are influenced 

by a non-random selection of the SNPs included in the used genotyping arrays. The resulting bias in 

the estimation of allele frequency spectra and population genetics parameters like heterozygosity and 

genetic distances relative to whole genome sequencing (WGS) data is known as SNP ascertainment 

bias. Full correction for this bias requires detailed knowledge of the array design process, which is often 

not available in practice. This study suggests an alternative approach to mitigate ascertainment bias of 

a large set of genotyped individuals by using information of a small set of sequenced individuals via 

imputation without the need for prior knowledge on the array design. 

Results 

The strategy was first tested by simulating additional ascertainment bias with a set of 1,566 chickens 

from 74 populations that were genotyped for the positions of the Affymetrix Axiom™ 580k Genome-

Wide Chicken Array. Imputation accuracy was shown to be consistently higher for populations used 

for SNP discovery during the simulated array design process. Reference sets of at least one individual 

per population in the study set led to a strong correction of ascertainment bias for estimates of 

expected and observed heterozygosity, Wright’s Fixation Index and Nei’s Standard Genetic Distance. 

In contrast, unbalanced reference sets (overrepresentation of populations compared to the study set) 

introduced a new bias towards the reference populations. Finally, the array genotypes were imputed 

to WGS by utilization of reference sets of 74 individuals (one per population) to 98 individuals 

(additional commercial chickens) and compared with a mixture of individually and pooled sequenced 

populations. The imputation reduced the slope between heterozygosity estimates of array data and 

WGS data from 1.94 to 1.26 when using the smaller balanced reference panel and to 1.44 when using 

the larger but unbalanced reference panel. This generally supported the results from simulation but 

was less favorable, advocating for a larger reference panel when imputing to WGS.  

Conclusions 

The results highlight the potential of using imputation for mitigation of SNP ascertainment bias but 

also underline the need for unbiased reference sets. 

Keywords 

SNP ascertainment bias; imputation; chickens; population genetics 
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Background 

To perform cost- and computationally efficient, many of the population genetic studies of the last 10 

years for humans (Novembre et al. 2008; Patterson et al. 2012), as well as for model- (Laurie et al. 

2007; Platt et al. 2010) and agricultural species (Muir et al. 2008; Gibbs et al. 2009; Travis et al. 2015; 

Mayer et al. 2017) were based on single nucleotide polymorphisms (SNP), which were genotyped by 

commercially available SNP arrays. Those arrays are based on a non-random selection (ascertainment) 

of SNPs, and come with a bias relative to whole genome re-sequencing (WGS) data, widely known as 

SNP Ascertainment Bias (Clark et al. 2005; Albrechtsen et al. 2010; Lachance and Tishkoff 2013). 

To design an array, SNPs initially need to be discovered in a finite set of sequenced individuals, the 

discovery panel. The chance to discover globally common SNPs is higher in this finite set of individuals 

than the chance to discover globally rare SNPs. This results in allele frequency spectra of arrays 

showing a shift towards common SNPs as compared to allele frequency spectra of WGS, which typically 

contain a high share of rare SNPs (Nielsen 2004). Additionally, the discovery panel is typically not a 

random sample from the global population of a species, but over-represents individuals from more 

intensively researched populations, e.g. humans of Yoruban, Japanese, Chinese and European descent 

(The International HapMap Project 2003), commercially bred taurine cattle breeds (Matukumalli et al. 

2009) or commercial layer and broiler chicken lines (Kranis et al. 2013). SNPs that are common in those 

discovery populations are not necessarily globally common. As a consequence, allele frequency spectra 

of discovery populations are systematically skewed towards higher minor allele frequencies (MAF) 

than those of non-discovery populations (Nielsen 2004; Geibel et al. 2021). In extreme cases, e.g. when 

used for samples of other species, this can result in a lack of variable and thus informative SNPs on the 

array and therefore a shift of the frequency spectrum towards rare variants (Geibel et al. 2021). 

The shift in the allele frequency spectra has an effect on population genetic estimators that depend on 

the allele frequency estimates. Exemplarily, the shift in allele frequencies towards common variants 

leads to an systematic overestimation of the heterozygosity of populations (Malomane et al. 2018; 

Geibel et al. 2021). The relative effect is stronger for populations that were part of the discovery set 

compared to populations that were not part of the discovery set (Geibel et al. 2021). Since 

commercially used breeds tend to be overrepresented in discovery sets (Matukumalli et al. 2009; 

Kranis et al. 2013), their diversity thus tends to be overestimated compared to non-commercial breeds 

not included in the discovery set (Geibel et al. 2021). Systematic differences in allele frequency spectra 

further increase estimates of genetic distances between populations which were part of the discovery 

set and those which were not (Albrechtsen et al. 2010). 

The complex interaction between the size of the discovery panel and its restriction to a subset of 

populations makes it difficult to predict or outright correct for the effect of SNP ascertainment bias. 
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Further, attempts to implement bias-reduced estimators require strong assumptions on the design 

process of the used SNP array (Nielsen 2004), which is often not public knowledge or too complicated 

to be remodeled (Nielsen et al. 2004; Quinto-Cortés et al. 2018). Malomane et al. (2018) therefore 

screened different raw data filtering strategies on mitigation of ascertainment bias in SNP data and 

identified linkage pruning to result in slightly decreasing ascertainment bias. Due to strongly 

decreasing sequencing costs and the complexity of the ascertainment bias correction strategies, more 

and more studies started using WGS data for population genetic analysis during the last years (Qanbari 

et al. 2014; Qanbari et al. 2015; Lawal et al. 2018; Qanbari et al. 2019; Peripolli et al. 2020). However, 

costs for broad WGS based studies are still rather high, resulting in large-scale collaborations such as 

the 1000 Genomes Project (Auton et al. 2015), the 1000 Bull Genomes Project (Hayes and Daetwyler 

2019), or the 1001 Arabidopsis Genomes Project (Alonso-Blanco et al. 2016). 

A commonly used method to in silico increase the resolution of SNP data sets is imputation (Marchini 

and Howie 2010). Over the years a variety of imputation approaches (Li and Stephens 2003; Marchini 

et al. 2007; Howie et al. 2009; Delaneau et al. 2012; Sargolzaei et al. 2014; Money et al. 2015; Browning 

et al. 2018) have been proposed that utilize linkage, pedigree, and haplotype information. To increase 

the marker density, an additional reference panel of individuals that were genotyped/sequenced by 

the intended resolution is required to additionally infer information from SNPs missing on the 

respective lower density study set.  

Imputation-based studies mostly either used a reference panel of the same population as the study 

set itself (Pausch et al. 2013; Heidaritabar et al. 2016; van den Berg et al. 2019) or utilized large global 

reference panels such as the 1000 Genomes (Huang et al. 2012; Artigas et al. 2015; Auton et al. 2015) 

or 1000 Bull genomes (Raymond et al. 2018; Hayes and Daetwyler 2019) projects. Especially for 

admixed or small endangered populations, the use of additional distantly related populations in the 

reference panel was investigated. On one hand, Brøndum et al. (2014), Ye et al. (2019) and Rowan et 

al. (2019) identified multi-breed reference panels to increase imputation accuracy especially in 

admixed breeds and for low frequent alleles when imputing from high-density genotypes to sequence 

data. On the other hand, Berry et al. (2014) observed that smaller within breed reference panels 

(140 - 688 reference cattle individuals per breed) performed always superior compared to the 

combined across breed reference panel when imputing from low density to high-density array 

genotypes. Korkuć et al. (2019) showed that adding 100 to 500 Holstein cattle sequences to a reference 

panel of 30 German Black Pied cattle significantly decreased the imputation accuracy in comparison to 

the pure panel when imputing from array to sequence data. Adding the same numbers of a multi-

breed reference panel only outperformed the pure panel when at least 300 reference animals were 

added. Pook et al. (Pook et al. 2019) investigated the inclusion of chicken populations to the reference 

set which were differently distantly related to the study set. While error rates generally decreased for 
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rare alleles, the inclusion of distantly related populations slightly increased error rates for previously 

good imputed SNPs. Overall, the ideal setup of a reference panel seems to be highly dependent on the 

application with positive effects for some, but also potential harm in other cases.  

In this context, the current study aims at assessing the influence of a study design on SNP 

ascertainment bias, which uses a small number of sequenced chickens (the reference set) to in silico 

correct SNP ascertainment bias in a broad multi-population set of genotyped chickens (the study set) 

by imputation to sequence level. The general idea behind this design is to allow for a large sample size, 

which reduces sampling bias while keeping sequencing costs affordable as most individuals will only 

be genotyped. We, therefore, assessed the potential effects of this design by imputing in silico created 

low-density array data to high-density array data, and by imputing real high-density data to WGS data.  

Material and Methods 

Data 

Three different sets of genomic data were used for this study:  

Set 1: Individual sequence data of 68 chickens from 68 different populations, sequenced within the 

scope of the EU project Innovative Management of Animal Genetic Resources (IMAGE; 

www.imageh2020.eu) (Bortoluzzi et al. 2020). They were complemented by 25 sequences (17 + 8) 

from two commercial white layer lines, 25 sequences (19 + 6) from two commercial brown layer lines, 

and 40 sequences (20 each) from two commercial broiler lines (Qanbari et al. 2019). In total 158 

sequences from 74 populations. 

Set 2: Pooled sequence data from 37 populations (9-11 chickens per population) (Malomane et al. 

2018). All except 4 chickens from two populations were part of set 3. 

Set 3: Genotypes of 1,566 chickens from 74 populations, either genotyped (sub-set of the Synbreed 

Chicken Diversity Panel; SCDP) (Malomane et al. 2019) with the Affymetrix Axiom™ 580k Genome-

Wide Chicken Array (Kranis et al. 2013), or complemented from set 1. 

The intersection of the used data sets is shown in Figure 3.1 and accession information of the raw data 

per sample can be found in Supplementary File 1. All three data sets came with their own 

characteristics. While individual sequences are considered to be the gold standard throughout this 

study, genotypes of the Affymetrix Axiom™ 580k Genome-Wide Chicken Array (Kranis et al. 2013) are 

biased towards variation which is common in the commercial chicken lines (Geibel et al. 2021) and 

pooled sequences only allow for an estimate of population allele frequencies and show a slight bias 

http://www.imageh2020.eu/
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due to sample size and coverage (Supplementary File 2) (Futschik and Schlötterer 2010; Schlötterer et 

al. 2014).  

 

 

Figure 3.1: UpSet plot showing the distinct intersections of chickens between the used sequencing/ 
genotyping technologies. The left bar plot contains the total number of individuals that were 
genotyped (array), individually sequenced (indSeq), or pooled sequenced (poolSeq). The upper bar plot 
contains the number of individuals within each distinct intersection, indicated by the connected points 
below. 

Calling of WGS SNPs and generation of genotype set 

Alignment of the raw sequencing reads against the latest chicken reference genome GRCg6a (Genome 

Reference Consortium GRCg6a 2018) and SNP calling was conducted for individual and pooled 

sequenced data following GATK best practices (DePristo et al. 2011; van der Auwera et al. 2013). As 

the Affymetrix Axiom™ 580k Genome-Wide Chicken Array (Kranis et al. 2013) does not contain enough 

SNPs on chromosomes 30 – 33 for imputation (and chromosome 29 is not annotated in the reference 

genome), only up to chromosome 28 was used. This resulted in 20,829,081 biallelic SNPs on 

chromosomes 1 - 28 which were used in further analyses. Additionally, all individual sequences were 

genotyped for the positions of the Affymetrix Axiom™ 580k Genome-Wide Chicken Array (Kranis et al. 

2013).  

To ensure compatibility between Array- and WGS data, the genotypes of the Synbreed Chicken 

Diversity panel were lifted over from galGal5 to galGal6 and corrected for switches of reference and 

alternate alleles. Only SNPs with known autosomal position, call rates > 0.95 and genotype recall rates 

> 0.95 were further considered. MAF filters were later used when subsampling the different sets and 
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thus not considered in this step. Further, missing genotypes were imputed using Beagle 5.0 (Browning 

et al. 2018) with ne=1000 (Pook et al. 2019) and the genetic map taken from Groenen et al. (2009). 

This resulted in a final set of 1,566 animals from 74 populations (18 - 37 animals per population) and 

462,549 autosomal SNPs, further referred to as the genotype set. 

As Malomane et al. (2018) described LD-based pruning as an effective filtering strategy to minimize 

the impact of ascertainment bias in SNP array data, the genotype set was additionally LD pruned using 

plink 1.9 (Chang et al. 2015) with --indep 50 5 2 flag. This reduced the genotype set to 136,755 SNPs 

(30 %) and will be referred to as pruned genotype set. 

The description of the detailed pipeline can be found in Supplementary File 2. 

Analyses based on simulation of ascertainment bias within the genotype set 

A first comparison was based solely on the 15,868 SNPs of chromosome 10 of the genotype set which 

allowed for a high number of repetitions while still being based on a sufficiently sized chromosome. To 

simulate an ascertainment bias of known strength, an even more strongly biased array was designed 

in silico from the genotype set for each of the 74 populations (further called discovery populations) by 

using only SNPs with MAF > 0.05 within the according discovery population. This simulates the 

limitation to common variants in the discovery samples, which is the main reason for the 

ascertainment bias. Then, reference samples for imputation were chosen in five different ways with 

ten different numbers of reference samples and three repetitions per sampling: 

1) allPop_74_740: Equally distributed across all populations by sampling one to ten chickens 

per population (74 - 740 reference samples). 

2) randSamp_5_50: 5, 10, …, 50 randomly sampled chickens (5-50 reference samples). 

3) randPop_5_50: Five chickens from each of one to ten randomly sampled populations 

(5 - 50 reference samples). 

4) minPop_5_50: Five chickens from each of one to ten populations which were closest 

related to the discovery population, based on Nei’s Distance (Nei 1972; 5 - 50 reference 

samples). 

5) maxPop_5_50: Five chickens from each of one to ten populations which were most 

distantly related to the discovery population, based on Nei’s Distance (Nei 1972; 5 - 50 

reference samples). 

This resulted in 2,200 repetitions of in silico array development and re-imputation per sampling 

strategy. The reference set was formed by sub-setting the total genotype matrix to SNPs with MAF > 

0.01 within the reference samples and the reference samples chosen via the above-mentioned 

strategies. Imputation of the in silico arrays to the reference set was performed by running Beagle 5.0 
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(Browning et al. 2018) with ne=1000 (Pook et al. 2019), the genetic distances taken from Groenen et 

al. (2009) and the according reference set. The schematic workflow can be found in Figure 3.2. 

 

 

Figure 3.2: Schematic representation of the workflow of creating and re-imputing the in silico arrays. 
The starting point was a 0/1/2 coded marker matrix with SNPs in rows and individuals in columns 
(different populations separated by vertical lines). In a first step, an array (light blue rows) was 
constructed in silico from known data by setting all SNPs to missing which were invariable (MAF < 0.05, 
red rows) in the discovery population (first three columns). In a second step, a reference set (dark blue 
columns) was set up from animals for which complete knowledge of all SNPs was assumed. This 
Reference set was then used in a third step to impute the missing SNPs in the study set using Beagle 
5.0 and resulting in a certain amount of imputation errors (red numbers). 

Analyses were then based on comparisons between the in silico ascertained and later imputed sets 

and the genotype set, which was considered as the ‘true’ set for those comparisons.  

Imputation of genotype set to sequence level 

After the initial tests of the imputation strategies by the in silico designed arrays, we imputed the 

complete genotype set to sequence level, using the available individual sequences as the reference 

panel. In the first run, one reference sample per sequenced population was chosen (74 reference 

samples; 74_1perLine) which is equivalent to the first scenario allPop_74 of the in silico array 

imputation. As we had more than one sequenced individual for the commercial lines, the number of 

reference samples for the commercial lines was subsequently increased to five reference samples per 

line (up to 98 reference samples; 98_5perLine). Finally, we used all available individually sequenced 
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animals as reference samples (158 reference samples; 158_all), which resulted in a strong imbalance 

towards the two broiler lines (20 reference samples per broiler line).  

Parameter settings in Beagle were further tweaked by increasing the window parameter to 200 cM to 

ensure enough overlap between reference and study SNPs. This was needed as we observed low 

assembly quality and insufficient coverage of the array on the small chromosomes. Analyses were then 

based on comparisons between the genotype set, the pruned set or the imputed sets and the gold 

standard, the WGS data. 

Comparison of population genetic estimators 

Ascertainment bias shows its primary effect on the allele frequency spectrum. As populations are 

affected differently, we first concentrated on two heterozygosity estimates: expected (HE) and 

observed (HO) heterozygosity, which summarize per-population allele frequency spectra. We 

additionally included two allele frequency dependent distance measurements: Wright’s fixation index 

(FST) (Wright 1949) and Nei’s distance (D) (Nei 1972). 

HO, as the proportion of heterozygous genotypes in a population, could only be calculated when the 

genotypic status of a population was known (individual sequences or genotypes). In contrast, HE could 

also be calculated from pooled sequences which allow the estimation of allele frequencies (p). 

Thereby, HO and HE (equation (3.1)) are calculated as average over all loci (l = 1, …, L). 
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
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  (3.1) 

As pooled sequence data comes with a slight but systematic underestimation of HE (Futschik and 

Schlötterer 2010; Supplementary File 2), HE for pooled sequences was multiplied with the correction 

factor 1
n

n , introduced by Futschik and Schlötterer (2010), where n  is the number of haplotypes in 

the pool. This partially corrected the HE estimates for the bias introduced by pooled sequencing 

(Supplementary File 2). 

D was calculated as given by equation (3.2), where Dxy accounts for the genetic distance between 

populations X and Y, while xil and yil represent the frequency of the ith allele at the lth locus in population 

X and Y, respectively. 
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Pairwise FST values between populations X and Y were estimated using equation (3.3), where lHT  

accounts for the HE within the total population at locus l  and lHS  for the mean HE within the two 

subpopulations at locus l  (Wright 1949).  
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D and FST both show a downward bias that is comparable to HE when estimated from pooled data 

(Supplementary File 2). The effect of ascertainment bias is much larger than the effect of pooling for 

D. In contrast, FST is generally robust against the effects of ascertainment bias when a sufficiently large 

discovery panel was used for array development (Albrechtsen et al. 2010). Therefore, it shows 

underestimation when calculated from pooled sequence data, which is larger than the effect of 

ascertainment bias (Supplementary File 2). We therefore could not dissect the effects of the two biases 

in the comparisons on sequence level and did not include FST there. 

Having no ascertainment bias would mean that estimates of a respective set would lie on the line of 

identity (diagonal) when regressing the set against the true values. The magnitude of the bias can 

therefore be defined as the distance of the estimates to that line. We therefore regressed the 

estimates from biased data ( ijy ) on the unbiased ones ( ijx ) while fitting group specific intercepts (

igroup ) as well as group-specific slopes ( i igroup  ) and a random error ( ij , 2~ (0, )eN I  ) as in 

equation (3.4). 

 ij i i i ij ijy grou upp gro x     (3.4) 

The definition of a group describes for within-population estimators (e.g. HE) whether a population 

was used for SNP discovery (discovery population), samples from that population were used as 

reference set (reference population) or none of both (application population). Note that in scenarios 

where reference individuals were present for every population, we only divided them into discovery 

and application populations. For between population estimators (FST, D), a group describes the 

according combination of the two involved population groups. Differences of the estimated slopes 

from one and the correlation between heterozygosity and distance estimates from biased and true set 

within groups were used as indicators for the magnitude of bias and random estimation error. 
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To get a measure for a fixed estimation error, we also calculated the mean overestimation across 

populations (j = 1 ... J) as in equation (3.5). 
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Note, that we had more than one (pooled) sequenced chicken for only 45 populations. Comparisons 

of population estimates on sequence level are therefore limited to 45 populations out of the 74 

populations which were used as study and reference set for the imputation process. 

Assessment of imputation accuracy 

Assessment of imputation accuracy was done by using Pearson correlation (r) between true and 

imputed genotypes (Hickey et al. 2012; Berry et al. 2014) for the in silico designed arrays. Pearson 

correlation puts a higher relative weight on imputation errors in rare alleles than plain comparison of 

allele- or genotype concordance rates (Hickey et al. 2012). In case of the imputation to sequence level, 

we used leave-one-out validation to assess per-animal imputation accuracy. However, the leave-one-

out validation in our case shows a slightly downward biased accuracy estimate for the non-commercial 

samples (Figure S 11, Supplementary File 2). For validation, the only sequenced sample of those 

populations was the test sample, which had to be removed from the reference set. Therefore, no 

closely related sample to the test sample remained in the reference set and the accuracy was 

subsequently underestimated. We additionally used the internal Beagle quality measure, the dosage 

r-squared (DR2) (Browning and Browning 2009) to evaluate per-SNP imputation accuracy. This, 

however, only shows the theoretical imputation accuracy and cannot capture biases due to biased 

reference sets. 

Results 

In silico array to genotype 

As expected, the in silico ascertained sets showed a strong overestimation of the HE for nearly all 

populations in all cases. The overestimation was much stronger for populations used for SNP discovery 

(Figure 3.3 A). Imputation using an equal number of reference samples per population (scenario 

allPop_74_740) massively decreased this bias (Figure 3.3 B). The correction became stronger with an 

increasing number of reference populations.  
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Figure 3.3: True HE vs. ascertained HE (A) and imputed HE (B) by population group. For the imputed 
case, the strategy of using the same number of reference samples per population (allPop_74_740) is 
shown, an increase in the number of reference samples per population (1-10) is marked by an 
increasing color gradient and the line of identity is marked by a solid black line. 

To get an impression on the strength of the correction and the needed size of the reference panel, 

Figure 3.4 compares the correlation by population group, the slope for the within-group regression of 

the true HE and HO vs. the ascertained/ imputed cases and mean overestimation for strategy 

allPop_74_740. It shows that the effects of ascertainment bias were stronger for HE than for HO. 

Imputation when using the reference set with just one individual per population corrects the initially 

much lower correlation within population group to > 0.99. While slope and mean overestimation are 

also pushed promptly towards the intended values of one and zero respectively for the non-discovery 

populations, there remains a small bias for the discovery populations, which decreases with an 

increasing number of reference samples. 
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Figure 3.4: Development of correlation within population group (A), slope (B) and mean 
overestimation (C) of the regression lines for the two heterozygosity estimates when distributing 
the reference samples equally across all populations (allPop_74_740). The intended value for 
unbiasedness and minimum variance is marked as dense black horizontal line. Note that the case 
without imputation is consistent with zero reference samples. 

The effects were observed in a comparable manner for the other imputation strategies (Figure S 3). 

Due to smaller reference panels, the correction effect of the imputation was generally worse than for 

strategy allPop_74_740. Interestingly, when limiting the reference samples to a small number of 

populations (strategies randPop_5_50, minPop_5_50, maxPop_5_50), we observed a newly 

introduced bias towards the reference populations (Figure S 3). This effect was strongest for strategy 

maxPop_5_50, where we chose the reference populations with a maximum distance from the 

discovery population. However, increasing the number of reference samples minimized the bias of 

reference and discovery populations with all strategies.  

The effects of ascertainment bias were less pronounced in the distance measurements (D and FST; 

Figure S 4) than in the heterozygosity estimates. The bias was thereby only of numerical relevance, 

when estimating the distances between populations which belong to differently strongly biased 

population groups and was partly increased for some population groups by imputation with 

unbalanced reference samples (Figure S 5). Note that FST was, all in all, less affected than D. 

The reduction of ascertainment bias was accompanied by high per-animal imputation accuracies (r). 

Strategy allPop_74 (one reference individual per population) resulted in a median imputation accuracy 

of 0.94. Increasing the number of reference individuals subsequently increased the accuracy up to 0.99 

for 10 reference individuals per population (allPop_740). The accuracy was consistently higher for 

individuals which were part of the discovery population (Figure 3.5). Accuracies were lower for the 

other strategies, mainly due to a maximum number of 50 reference individuals, which are fewer than 
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the 74 of allPop_74. Detailed results for imputation accuracy can be found in Figure S 2 and 

Supplementary File 2. 

 

 

Figure 3.5: Development of the per-animal imputation accuracy for the in silico array to genotype 
set imputation with an increasing number of reference animals per population. Individuals are 
grouped on whether they belong to the population used for SNP discovery or not and reference 
individuals were chosen as in scenario allPop_74_740. The lines show the trend of the median and 
outliers are not shown in the plot as they do not add valuable information due to the high number of 
repetitions. 

Genotype to sequence 

The effect of imputation to WGS on ascertainment bias of HE is shown in Figure 3.6. Given the situation 

that we cannot completely exclude pooling bias for the pooled sequenced samples (Supplementary 

File 2), only the effect on the individually sequenced samples can be discussed with adequate 

reliability. While the regression of array-based HE estimates on sequence-based HE estimates showed 

a slope of 1.94 for the individually sequenced populations, the linkage pruning slightly reduced this 

slope to 1.71. The clearly best result was achieved with imputation to WGS (slope = 1.26; 74_1perLine; 

Figure 3.6 A). This effect was also observed when considering all samples. However, note that there is 

also a slight effect of the remaining pooling bias, which cannot be separated from ascertainment bias 

for the pooled sequenced populations. Slightly increasing the reference panel (Figure 3.6 B) up to five 

samples per commercial line (98_5perLine) does not show any effect, while using all commercial 

samples in the reference panel (158_all) and thereby clearly biasing the reference panel towards the 

broiler samples increases HE again for all samples (slope = 1.44). 
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Figure 3.6: Effect of different correction strategies on ascertainment bias for expected 
heterozygosity (HE; A + B) and for Nei’s standard genetic distance (D; C + D). A + C – uncorrected array, 
linkage pruned array and imputed array (reference set 74_1perLine) based vs. sequence-based HE/ D. 
B + D – array imputed with different reference sets vs. sequence-based HE/ D. The solid black line 
represents the line of identity, the solid colored lines are regression lines within the individually 
sequenced populations (larger points) and the dashed lines regression lines within all populations 
which include individually and pooled (small points) sequenced populations. Note that there is also an 
effect of pooled sequencing which affects the ‘true’ values of the pooled sequenced populations. 

The results for Nei’s standard genetic distance (D;Figure 3.6) showed the same pattern as the results 

for HE. The slope for distances between individually sequenced populations decreased from 2.86 

(array) and 1.77 (array_pruned) to 1.38 (imputed, 74_1perLine). The unbalanced reference panel 

158_all then again increased the slope to 1.56. The correlation for all distances, besides being also 

influenced by pooling bias and therefore being a rough estimate, was increased from 0.93 (array) 

respectively 0.95 (array_pruned) to 0.98 (all reference sets). 



Chapter 3 How Imputation Can Mitigate SNP Ascertainment Bias 89 
 

The overall imputation accuracy was lower than the one obtained for in silico array to array imputation. 

Increasing the number of commercial reference samples only resulted in increased imputation 

accuracies for the commercial samples. See Supplementary File 2, Table S 1, Figure S 6, Figure S 7 and 

Figure S 11 for details. 

Discussion 

Overall performance of the correction method 

Imputation of SNP data sets from lower to higher density is a commonly used technique to either 

increase the resolution of data sets (Pausch et al. 2013; Heidaritabar et al. 2016; Raymond et al. 2018) 

or make them comparable across different platforms (Al-Tassan et al. 2015; Bouwman et al. 2018). 

The according studies mostly use a relatively homogeneous study set and a closely related and large 

reference set (Pausch et al. 2013; Heidaritabar et al. 2016). However, studies exist which investigate 

the effect of increasing the reference set to a multi-population reference set to use an increased 

number of reference haplotypes (Berry et al. 2014; Brøndum et al. 2014; Korkuć et al. 2019; Rowan et 

al. 2019; Ye et al. 2019). To our knowledge, we here present the first study that investigates the use of 

a relatively small and diverse reference set on a large and diverse study set to correct for a genotyping 

platform-specific bias, the SNP ascertainment bias.  

This approach intends that single imputation errors do not harm, if the mean across the genome, 

presented by different population genetic estimators, shows unbiased results with minimum variance. 

Therefore, imputation to WGS level using a comparably small reference panel can be used to correct 

for the ascertainment bias of commercial arrays. 

Especially the in silico ascertained SNP arrays showed that even a very small reference panel consisting 

of one individual of each population showed very good results for all investigated estimators (e.g. 

correlation between biased HE and true HE of initially < 0.5 for the discovery populations increased to 

> 0.99; Figure 3.4; Figure S 4) and became better with an increasing number of reference populations. 

The results were less beneficial for the real WGS data, but also showed a strong decrease of the slope 

towards one. From the imputed in silico arrays, we could additionally realize a fast closing of the gap 

of the stronger overestimation of heterozygosity within discovery populations and the less severe 

overestimation in non-discovery populations. This also seemed to be the case when imputing to WGS 

level where we observed that the slope within the commercial populations (closely related to discovery 

populations of the real array) decreased more than the slope within all populations due to imputation. 

However, this observation in the WGS data has to be regarded with caution, as we additionally 

identified a non-negligible bias due to pooled sequencing which interfered with the assessment of 
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ascertainment bias and which was, in our study, confounded with the difference between commercial 

populations (sequenced individually) and non-commercial populations (sequenced as pools). 

The use of WGS information via imputation also consistently showed better results in regard of 

reduction of ascertainment bias than using linkage pruned array SNPs which was reported to be an 

effective filtering strategy for ascertainment bias mitigation by Malomane et al. (2018). 

Generally, the effect of imputation on the investigated estimators was shown to be comparable across 

estimators, regardless of their initial reaction to ascertainment bias. An interesting side observation 

was that FST did not show any ascertainment bias on the real array data (Figure S 10) when calculated 

in the form of summing the numerator across SNPs and dividing by the sum of the denominator as 

calculated in this study. FST was only affected when used to estimate differentiation between the 

discovery- and non-discovery populations in the simulated array data, whose heterozygosity estimates 

were affected by ascertainment bias to a different degree. This strongly supports the findings of 

Albrechtsen et al. (2010), who showed FST to be relatively robust against the effects of ascertainment 

bias. 

We also investigated the effect of differently sized and constructed reference sets for imputation. 

Generally, larger reference sets increased the accuracy of imputation and thus decreased the 

ascertainment bias more than smaller reference sets. The best results were achieved when the 

reference set was as evenly distributed across the study set as possible. When reference populations 

were closely related to the discovery population, reduction in imputation quality and increase in 

ascertainment bias were less severe in case of unbalanced reference sets than if distantly related 

reference populations were used. This suggests that variation within study- and reference set needs 

to show enough overlap to achieve sufficient imputation accuracy and therefore reduction of 

ascertainment bias. 

Results from literature suggest that multi-breed reference panels generally increase imputation 

accuracy especially for rare variants and within admixed populations (Brøndum et al. 2014; Rowan et 

al. 2019; Ye et al. 2019). Additionally, Rowan et al. (2019) argue that they do not seem to introduce 

variation at a relevant scale for markers for which the breeds are actually fixed. However, some studies 

also showed that strongly unbalanced reference sets can reduce imputation accuracy (Berry et al. 

2014; Korkuć et al. 2019). In this study, including additional reference samples in a biased way when 

going from reference set 74_1perLine to 158_all increased the effects of ascertainment bias on HE and 

D. Additionally, only the commercial populations, for which we increased the number of reference 

samples, showed a gain in per-animal imputation accuracy (Figure S 11). However, theoretical 

imputation accuracies rather increased than decreased (Figure S 6; Table S 1) for previously poorly 

imputed SNPs. The increase in accuracies for poorly imputed SNPs supports the findings of Brøndum 
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(2014), Rowan et al. (2019) and Ye et al. (2019) that multi-breed reference panels rather help in getting 

better imputation results. However, the missing gain in per-animal accuracy for non-commercial 

populations together with the observed bias in the leave-one-out validation for our sparse reference 

set highlights the still existing need for closely related individuals as shown by Berry et al. (Berry et al. 

2014), Korkuć et al. (Korkuć et al. 2019) and Pook et al. (Pook et al. 2019). The worsening effect on bias 

correction, however, highlights the main reason for ascertainment bias. One can only identify variation 

which is present in the investigated samples. When developing an array, one observes the variation in 

the discovery set, while in our case we observed variation in the reference set used for imputation. An 

overrepresentation of certain populations in the reference set biases estimators towards variation 

present in those populations. Besides the aforementioned effects in the imputations to WGS, we also 

observed this by an increasing bias for the unbalanced reference sets in the in silico array imputations 

(Figure S 3, Figure S 5). Therefore, it is crucial to use a reference set for imputation which covers the 

intended range of variation.  

Besides the previously described effects of imputation on ascertainment bias, we also identified an 

effect of array design on imputation accuracy. Discovery populations show higher imputation 

accuracies than non-discovery populations (Figure 3.5). As markers on arrays are more representative 

for discovery populations than non-discovery populations, relatively more of the genetic variability in 

discovery populations is explained by the array and imputation is more accurate on average. 

Conclusion 

The problem to which we provide at least a partial solution is that relevant population genetic 

parameters are systematically biased through the design process of SNP arrays. Imputation was able 

to mitigate this SNP ascertainment bias in our samples for all studied estimators (HE, HO, FST, D), 

measured as correlation, average relative difference and slope of the regression line when comparing 

the biased estimators to the according gold standard. The effect was already present when using a 

very small reference set of only one sequenced individual per population. Imputation also performed 

better than simple filtering strategies based on the array data alone. However, when using imputation 

for ascertainment bias reduction care has to be taken in designing an evenly spaced reference panel 

to not introduce a new bias towards variation present in the reference panel while missing variants of 

other populations. We also suggest using a larger reference panel than the one which was available 

for this study to achieve better results. Additionally, we observed an effect of array design on 

imputation accuracy as discovery populations showed a higher imputation accuracy than non-

discovery populations. This should be taken into account when designing studies based on imputed 

SNPs by choosing an appropriate genotyping array for the intended study populations. 
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Figure S 8: Effect of pooled sequencing and the correction factor of Futschik and Schlötterer (2010) on 

expected heterozygosity (HE) and ascertainment bias. 

Figure S 9: Effect of pooled sequencing on the expression of the ascertainment bias in Nei’s standard 

genetic distance (D). 

Figure S 10: Effect of pooled sequencing on the expression of the ascertainment bias in Wright’s 

fixation index (FST). 

Figure S 11: Per animal imputation accuracies (r) for the array to sequence imputation from leave-one-

out validation. 

Table S 1: Quantiles of theoretical imputation accuracies (DR2) by reference set 
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Abstract 

Background 

Structural variants (SV) are causative for some prominent phenotypic traits of livestock as different 

comb types in chickens or color patterns in pigs. Their effects on production traits are also increasingly 

studied. Nevertheless, accurately calling SV remains challenging. It is therefore of interest, whether 

close-by single nucleotide polymorphisms (SNPs) are in strong linkage disequilibrium (LD) with SVs and 

can serve as markers. Literature comes to different conclusions on whether SVs are in LD to SNPs on 

the same level as SNPs to other SNPs. The present study aimed to generate a precise SV callset from 

whole-genome short-read sequencing (WGS) data for three commercial chicken populations and to 

evaluate LD patterns between the called SVs and surrounding SNPs. It is thereby the first study that 

assessed LD between SVs and SNPs in chickens. 

Results 

The final callset consisted of 12,294,329 bivariate SNPs, 4,301 deletions (DEL), 224 duplications (DUP), 

218 inversions (INV) and 117 translocation breakpoints (BND). While average LD between DELs and 

SNPs was at the same level as between SNPs and SNPs, LD between other SVs and SNPs was strongly 

reduced (DUP: 40 %, INV: 27 %, BND: 19 % of between-SNP LD). A main factor for the reduced LD was 

the presence of local minor allele frequency differences, which accounted for 50 % of the difference 

between SNP – SNP and DUP – SNP LD. This was potentially accompanied by lower genotyping 

accuracies for DUP, INV and BND compared with SNPs and DELs. An evaluation of the presence of tag 

SNPs (SNP in highest LD to the variant of interest) further revealed DELs to be slightly less tagged by 

WGS SNPs than WGS SNPs by other SNPs. This difference, however, was no longer present when 

reducing the pool of potential tag SNPs to SNPs located on four different chicken genotyping arrays. 

Conclusions 

The results implied that genomic variance due to DELs in the chicken populations studied can be 

captured by different SNP marker sets as good as variance from WGS SNPs, whereas separate SV calling 

might be advisable for DUP, INV, and BND effects. 

Keywords 

Chickens; single nucleotide polymorphisms; structural variants; linkage disequilibrium 
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Background 

A type of genomic variation that affects large regions of the genome is caused by structural variants 

(SV). SVs can alter the total genome size by deleting (deletions, DEL), duplicating (duplications, DUP) 

or inserting (insertions, INS) longer stretches of DNA (unbalanced SV). Those SVs are often referred to 

as copy number variations (CNV). In contrast, inversions (INV) and translocations (TRA) do not affect 

the length of the genome (balanced SV) (Ho et al. 2019). Especially unbalanced SVs are assumed to 

come with a strong functional impact on the phenotype, e.g. by strong deleterious effects of DELs 

which can remove complete genes (Feuk et al. 2006) or by DUPs that increase numbers of cis-

regulatory elements (Feuk et al. 2006; Lee et al. 2021). SVs and complex combinations of multiple SVs 

are also known to be causative for some of the most prominent phenotypic breed characteristics of 

livestock breeds as walnut- and rose comb in chickens (Imsland et al. 2012) or belted color patterns 

and dominant-white color in pigs (Rubin et al. 2012). 

 The power for detection of SVs of certain types and sizes, however, is highly technology-dependent in 

various aspects (Ho et al. 2019). During the last two decades, technologies evolved that increased the 

resolution and accuracy of SV detection at the submicroscopic level. Array-based comparative genomic 

hybridization (aCGH) allowed the detection of long CNVs >35 kb (Feuk et al. 2006). The development 

and increased use of microarrays led to technologies that either detect DELs from characteristics of 

population-level single nucleotide polymorphism (SNP) genotypes (Conrad et al. 2006; McCarroll et al. 

2006) or utilized signal intensity information (Wang et al. 2007). The increasing availability of short-

read sequences during the last decade led to the development of multiple SV detection algorithms 

which use read depth distributions (Abyzov et al. 2011; Ho et al. 2019) and/ or information from split 

reads and insert size distributions of paired-end reads, potentially combined with local assembly 

procedures (Rausch et al. 2012; Layer et al. 2014; Chen et al. 2016; Ho et al. 2019). However, short-

read-based methods still come with a variety of limitations due to the short read sizes which highly 

vary between the algorithms (Escaramís et al. 2015; Ho et al. 2019) and especially a general deficit in 

calling INS (Delage et al. 2020). Therefore, current state-of-the-art methods nowadays utilize the 

information of PacBio or Nanopore long-read sequencing or linked-read technologies as HI-C 

(Sedlazeck et al. 2018), but the availability of these types of sequencing data is still very limited for the 

majority of intensively researched livestock species.  

Other than for SVs, the use of SNPs has become routine over the last two decades. Therefore, large 

whole-genome-sequencing (WGS) reference panels (Auton et al. 2015; Hayes and Daetwyler 2019) and 

collections of individuals, which were genotyped by microarrays and phenotyped in routine breeding 

programs or during large-scale research projects (Malomane et al. 2019), exist. Given the complexity 

of SV detection, it is of interest to know which part of the effects of SVs on the phenotype is already 
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captured by potential linkage disequilibrium (LD) between the SV of interest and nearby SNPs. Strong 

LD would allow for the inclusion of those effects in e.g. genomic prediction without the need for a 

separate SV analysis. 

LD between two variants can be measured using a variety of estimators (reviewed e.g. by Qanbari 

2020), of which the squared correlation of haplotypes (𝑟2) is probably the most prominent one. It can 

be interpreted as the amount of information of a variant that is captured by another one. However, its 

upper limit is defined by the difference in minor allele frequency (ΔMAF) between the two variants 

(VanLiere and Rosenberg 2008). The overall strength of LD is highly population depended and closely 

linked to the effective population size (Qanbari 2020). LD thereby shows a characteristic decay pattern 

of mean LD by distance. However, for many applications as genome-wide association studies (GWAS), 

the interest is more in the maximum observed LD of a causal variant to a close-by so-called tag SNP, 

which can capture the effect as a marker genotype. 

By now, a bunch of studies has addressed the question of LD between SVs and surrounding SNPs in 

humans with contrasting results. Generally, common DELs were shown to be in good LD to SNPs by 

most of the studies (Hinds et al. 2006; McCarroll et al. 2006; Cooper et al. 2008; Conrad et al. 2010; 

Mills et al. 2011), but some found this LD to be weaker than SNP – SNP LD (Redon et al. 2006; Kato et 

al. 2009). Literature additionally suggests, that rare DELs are weaker tagged (tag SNP is SNP with 

highest LD to the variant within a defined distance) than common DELs (McCarroll et al. 2008; Conrad 

et al. 2010) and DUP were in weaker LD to SNPs than DELs (Kato et al. 2009; Conrad et al. 2010; 

Sudmant et al. 2015). It was additionally shown that the availability of tag SNPs for SVs depends on the 

SNP panel used (WGS vs. different arrays) (Cooper et al. 2008; Conrad et al. 2010; Mills et al. 2011). A 

further effect that was found is the location of the SV on the genome. Regions of segmental 

duplications are known to trigger recurrent SV formation by non-allelic homologous recombination 

and therefore lead to SV hotspots (Gu et al. 2008; Ho et al. 2019). A closer look at those regions by 

Locke et al. (2006) found very few of those CNV to be tagged by surrounding SNPs. 

Reduced LD between SNPs and SVs can have diverse reasons. A main factor is the increased possibility 

of the occurrence of recurrent mutations in regions of low sequence complexity by non-allelic 

homologous recombination (NAHR; Gu et al. 2008). SVs from recurrent mutational events then show 

reduced LD to variants from a unique mutational event (Locke et al. 2006; McCarroll et al. 2006). LD 

between SNPs and SVs may further be decreased by different selectional properties of SNPs and SV 

(Berger et al. 2015), MAF differences between SVs and SNPs (VanLiere and Rosenberg 2008), or 

ascertainment of SNPs for arrays that excludes regions of high structural complexity due to technical 

reasons (Lee et al. 2020). Additionally, known problems with SV calling accuracy (Ho et al. 2019) may 
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lead to a high share of false-positive SV calls and therefore on average low LD to more accurately called 

SNPs. 

For livestock, results on SV – SNP LD are very rare, even though a high number of publications targeted 

SV. Based on a GWAS on 26,362 Holstein dairy cattle 50 k genotypes, Xu et al. (2014) found a quarter 

of CNVs that were significantly associated with milk traits not being tagged by adjacent SNPs. The same 

was observed by Lee et al. (2020) who investigated functional and population genetic features of CNV 

regions in two dairy cattle breeds, also called from a 50 k SNP array. They identified a weak linkage 

between CNV regions and SNPs, which was slightly stronger between DELs and SNPs than between 

DUPs and SNPs. Wang et al. (2015) included a local LD analysis around CNVs (called from SNP arrays) 

that were significantly associated with production traits in pigs. Four out of eight significantly 

associated CNVs overlapped haploblocks of non-significant SNPs, but only one CNV was found 300 kb 

downstream of significantly associated SNPs. Note that this, however, may also have been an artifact 

of a much stronger correction for multiple testing in SNPs than in CNVs. 

In chickens, a variety of studies investigated CNVs on a quantitative basis. The studies either used aCGH 

(Wang et al. 2010; Wang et al. 2012; Crooijmans et al. 2013; Tian et al. 2013; Han et al. 2014), utilized 

signal information of SNP arrays (Jia et al. 2013; Zhang et al. 2014; Rao et al. 2016; Gorla et al. 2017; 

Strillacci et al. 2017; Lin et al. 2018) via PennCNV (Wang et al. 2007), or read depth information of 

short-read sequences (Fan et al. 2013; Yan et al. 2015; Sohrabi et al. 2018; Seol et al. 2019; Weng et 

al. 2020). There were only three studies that also included non-CNV SVs (Kerstens et al. 2011; Fan et 

al. 2013; Weng et al. 2020). None of the studies analyzed the LD patterns of the variants. 

Aim of the study 

This is the first study that assessed SV – SNP LD in chickens to investigate the usefulness of SNP markers 

in capturing SV-based genomic variance. We, therefore, identified SVs from paired-end short-read 

sequences in three commercial chicken populations (white layers, brown layers, broilers), thoroughly 

described the SV callset, and assessed the strength of LD between those SVs and SNPs. We also 

identified major reasons for some existing differences to SNP – SNP LD and evaluated the performance 

of four available SNP arrays to tag SVs. 

Results 

Calling results and description of variants 

For the study, paired-end short-read sequences of 90 chickens from three populations (25 commercial 

white layers, WL; 25 commercial brown layers, BL; 40 commercial broiler chickens, BR) were used. The 

raw data was first published by Qanbari et al. (2019) who described the studied populations in more 
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detail. SNP genotypes were retrieved from a previous study (Geibel et al. 2021a). SVs were called by a 

consensus calling approach, which used three paired-end and split-read-based tools, followed by a 

strict filtering procedure that further utilized read-depth and SNP information. Finally, the remaining 

SV calls were visually checked by evaluating samplots (Belyeu et al. 2021) for each variant, the merged 

SNP and SV set was phased, and missing genotypes were imputed. The filtering procedure retained 

12,294,329 bivariate SNPs, 4,301 DELs, 224 DUPs, 218 INVs, and 117 translocation breakpoints (break 

ends; BND) on chromosomes 1 - 33. Note that all INS were filtered out due to missing support by at 

least two variant callers. 

Figure 4.1 A shows the length distribution of the called SVs. DELs were on average shortest with a 

median of 443 bp and a maximum of 67,037 bp. DUPs (median = 12,285 bp; maximum = 778,041 bp) 

were larger than DELs and INVs were largest (median = 25,643 bp; maximum = 5,795,187 bp). BNDs 

only indicate translocation breakpoints and, therefore, do not come with length information. The 

called SNPs in total accounted for 1.28 % of the autosomal reference genome length, while DELs 

covered 0.35 %, DUPs 0.39 %, and INVs 2.80 % of the chicken genome. The distributions by individuals 

can be found in Figure 4.1 B. We additionally checked how much of the autosomal reference genome 

is homozygously deleted in the chickens. This number varied from 0.045 % (135 kb) to 0.076 % (727 kb) 

with BL showing a larger size of homozygously deleted reference genome than WL and BR (Figure 4.1 

C). 
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Figure 4.1: Length distribution of SVs (A), percent of affected autosomal reference genome by 
individual and variation type (B), and percent of homozygously deleted reference genome by 
individuals (C). The size in B is calculated as the average between the haplotypes of an individual 
affected by the non-reference allele. Note the log-scaled y-axis in A. Per-breed bars in the histograms 
are stacked on each other. 

We further checked for chromosome-wise differences in the number of called variants by regressing 

the relative number of called variants per chromosome on the relative chromosome length (Figure S 

3). SNPs did not show any difference to the line of identity (slope = 1.00, p = 1.00), while DELs (slope = 

1.28, p = 1.4e-4) and INVs (slope = 1.39, p = 6.1e-9) showed a significant bias towards larger 

chromosomes. DUPs (slope = 1.13, p = 0.34) and BNDs (slope = 1.14, p = 0.17) also showed a numerical 

bias towards larger chromosomes, which, however, was not significant. Note that the R² value of the 

model was comparably small with 0.39. 

Distributions of minor allele frequencies (MAF; Figure 4.2) revealed a slight (DEL) to strong (DUP) shift 

towards rare variants compared with SNPs for DELs and DUPs, while INVs and BNDs showed a slight 

shift towards more common variants. 
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Figure 4.2: Distribution of minor allele frequency (MAF) across all samples by variant type. 

Variant effect predictions of Ensembl-vep (McLaren et al. 2016) classified 98.48 % of the impacts of 

SNPs on genes as MODIFIER, 1.14 % as LOW, 0.37 as MODERATE and only 0.01 % as HIGH. DEL impacts 

were classified only in 0.41 % of the cases other than MODIFIER (MODERATE = 0.01 %; HIGH = 0.40 %), 

while DUP impacts were classified as HIGH in 9.95 % of the cases (MODIFIER = 90.05 %). In contrast, 

INV and BND impacts were completely classified as MODIFIER. Further results of VEP are summarized 

in Figure S 4. 

 

LD decay 

To assess the information content of SNPs on SVs, we calculated the LD between SVs and all bivariate 

SNPs up to 100 kb apart from the breakpoints as squared haplotype correlation (𝑟2). Note, that SNPs 

that were located on SVs were excluded from the analysis, as their calls may be directly influenced by 

the SV. To get a baseline for comparisons, we also calculated the SNP – SNP LD within this distance. 

Mean SNP – SNP 𝑟2 was highest in WL (0.51 within 500 bp), followed by BL (0.41) and BR (0.26). The 

DEL – SNP LD decay curve follows closely the pattern of the SNP – SNP LD decay (Figure 4.3). Even 

though the level of LD was strongly reduced for the other variant types, a slight decay curve with 

increasing distance was still noticeable. Due to the small number of called DUPs in WL, the decay curve 

strongly fluctuated in this population. However, BR and BL gave some evidence that the DUP – SNP 

and INV – SNP decay curves were comparable, while BND – SNP decay came with a slightly lower level 

of LD. 
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Figure 4.3: LD decay in the broiler (BR), brown layer (BL) and white layer (WL) chickens. The LD is 

presented as mean 𝒓𝟐 in 500 bp distance bins and the shaded areas represent Bonferroni-corrected 

95 % bootstrap confidence intervals. For SNP – SNP distance bins with > 1M 𝒓𝟐 values, no confidence 
intervals were estimated. 

 

To quantify the difference in LD between variants and populations and account for the population-

specific level of LD, we expressed the mean LD in the 500 bp bins relative to the SNP – SNP LD and 

further averaged those values for the first 10 bins (Table 4.1). This revealed comparable values within 

variants and across populations of less than 12 % difference. Across all populations, DEL – SNP LD was 

on the same level as SNP – SNP LD, while DUP – SNP LD was ~40 %, INV – SNP ~27 % and BND – SNP 

~19 % of SNP – SNP LD within 5 kb distance. Note that the relative 𝑟2 was not necessarily constant 

across the complete range of 100 kb (Figure S 5).  
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Table 4.1: SV – SNP 𝒓𝟐/𝒓𝑺
𝟐 relative to the SNP – SNP 𝒓𝟐/𝒓𝑺

𝟐 

Type 
 All  BR  BL  WL 

 𝑟2* 𝑟𝑆
2** Δ***  𝑟2* 𝑟𝑆

2** Δ***  𝑟2* 𝑟𝑆
2** Δ***  𝑟2* 𝑟𝑆

2* Δ*** 

DEL – SNP  100.1 
± 6.1 

98.8 
± 4.3 

-1.3  95.4 
± 4.1 

94.2 
± 2.5 

-1.2  107.0 
± 3.2 

103.2 
± 1.2 

-3.8  98.1 
± 3.4 

98.8 
± 2.5 

0.7 

DUP – SNP  39.9 
± 6.8 

68.2 
± 8.9 

28.3  39.5 
± 5.8 

66.7 
± 4.3 

27.2  41.1 
± 7.0 

65.6 
± 9.9 

24.5  39.1 
± 8.1 

72.3 
± 10.5 

33.2 

INV – SNP  26.8 
± 5.2 

46.0 
± 4.3 

19.2  32.6 
± 2.4 

46.8 
± 1.7 

14.2  26.0 
± 2.4 

50.1 
± 3.4 

24.1  21.6 
± 3.1 

50.1 
± 6.2 

28.5 

BND – SNP  18.5 
± 3.6 

46.9 
± 5.4 

28.4  22.4 
± 2.3 

50.4 
± 3.7 

28.0  18.0 
± 1.9 

44.6 
± 5.1 

26.6  15.3 
± 2.0 

45.5 
± 5.7 

30.3 

* Means of the first ten 500 bp bins relative to the SNP – SNP 𝑟2 [%] ± standard deviations [%] 
** Means of the first ten 500 bp bins relative to the SNP – SNP 𝑟𝑆

2 [%] ± standard deviations [%] 
*** Difference between relative 𝑟2 and relative 𝑟𝑆

2 

 

Effect of allele frequency 

Figure 4.2 revealed differences in the MAF spectra of the variant types. We therefore further evaluated 

local MAF differences (ΔMAF) within-population by comparing ΔMAF for the SNP – SNP and SV – SNP 

pairs within 5 kb distance. This revealed elevated ΔMAF for DUP – SNP, INV – SNP, and BND – SNP pairs 

compared to SNP – SNP and DEL – SNP pairs in BL and WL (Figure S 7, Figure S 8), but not in BR (Figure 

S 6). As the upper bound of 𝑟2 directly depends on ΔMAF (VanLiere and Rosenberg 2008), we 

investigated which part of the observed differences in the LD decay curves is due to the observed allele 

frequency differences. For this, we used the standardized squared correlation coefficient (𝑟𝑆
2), which 

expresses 𝑟2 as the proportion of the maximum possible 𝑟2 given ΔMAF of the two variants (VanLiere 

and Rosenberg 2008) and thereby excludes effects of different allele frequencies on 𝑟2. Mean 𝑟𝑆
2 

values (Figure S 1) were generally higher than mean 𝑟2 values (Figure 4.3) due to the removal of the 

allele-frequency-dependent component. While the 𝑟𝑆
2 values of DEL – SNP relative to the SNP – SNP 

values (Table 4.1) were on a comparable level of > 94 % as the relative 𝑟2 values (-3.8 % to +0.7 %), 

the relative 𝑟𝑆
2 values of DUPs, INVs and BNDs were between 14 % and 33 % higher than the according 

relative 𝑟2 values. The relative 𝑟𝑆
2 values for the complete range of 100 kb are shown in Figure S 9. 

Absence of homozygous SV genotypes 

During the investigation of the reasons for the lower level of LD between non-DEL SVs and SNPs, we 

realized a strong absence of homozygous calls for DUPs, INVs, and BNDs, but not for DEL (exemplarily 

demonstrated for BR in Figure 4.4 A). To check whether this deviation is due to small variant allele 

frequencies, we calculated the deviation to Hardy-Weinberg-Equilibrium (HWE) and tested those for 

significance, using a Haldane Exact test under usage of the R package HardyWeinberg 1.7.2 
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(Graffelman 2015) (exemplarily shown for BR in Figure 4.4 B). Homozygous DEL calls deviated into 

positive as well as into negative direction from the HWE. Homozygous calls for the other SV classes 

instead nearly exclusively deviated into a negative direction for all populations and only negative 

deviations were significant. 

 

Figure 4.4: Percentage of individuals carrying SV genotype (A) and deviations of homozygous variant 
genotypes from the Hardy-Weinberg-Expectation (B) in the broiler population for each called SV. 
Deviations from HWE were tested by a Haldane Exact test under usage of the R package 
HardyWeinberg 1.7.2 (Graffelman 2015). Bonferroni correction of the p values was applied within SV 
class. Homref – homozygous for the reference allele; het – heterozygous; homvar – homozygous for 
the variant allele; n.s. – not significant. Comparable figures for WL and BL can be found in Figure S 11 
and Figure S 12. 

We tried to tackle the effect of this problem by correlating the 0/1/2 coded SNP genotypes with a 

coverage-dependent measure of copy number for DELs and DUPs, the Duphold Flanking Fold Change 

(DHFFC; Pedersen and Quinlan 2019). However, as the DHFFC was also used for filtering, the results of 

this are potentially confounded and are only part of the supplementary material (Supplementary File 

1). 

Taggability 

Theoretically, one SNP in strong LD to the variant of interest would be enough to serve as a marker 

that (partly) captures the effect of the variant for, e.g., GWAS or genomic selection as tag SNP. We, 

therefore, investigated the presence of potential tag SNPs close to the variants of interest. The used 

measure was the maximum observed 𝑟2 between a variant of interest and a pool of potential tag SNPs 

within a certain distance (𝑟𝑡𝑎𝑔 
2 ). Nearly all variants in all variant classes came with at least one variable 

SNP within proximity of 10 kb (Figure S 14). Mean 𝑟𝑡𝑎𝑔 
2  for all variants and populations showed an 

asymptotic trend with identifying the best tag SNP within 10 kb for most of the variants in all three 
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populations (Figure 4.5). Only mean 𝑟𝑡𝑎𝑔 
2 of DUPs in BR was continuously growing until 100 kb distance 

(Figure 4.5). Mean 𝑟𝑡𝑎𝑔 
2  for SNPs only reached ~0.9 within 100 kb in all three populations, meaning 

that some SNPs were not in full phase to any other SNP. Mean 𝑟𝑡𝑎𝑔 
2  was slightly reduced for DELs and 

strongly for DUPs, INVs and BNDs compared to SNPs (Figure 4.5).  

  

 

Figure 4.5: Mean taggability for broiler (BR), brown layer (BL), and white layer (WL) chickens. 

Taggability (𝒓𝒕𝒂𝒈
𝟐 ) was calculated as the maximum 𝒓𝟐 value up to a certain distance from the variant of 

interest. Means across variants are presented as lines while the shaded area represents the 
Bonferroni-corrected 95 % bootstrap confidence intervals. 

We additionally defined a variant as tagged if 𝑟𝑡𝑎𝑔 
2 > 0.75 and evaluated shares of accordingly tagged 

variants. While more than 85 % of the SNPs were tagged in BR within 10 kb, this number was slightly 

smaller for DELs (>75 %). More than 25 % of the DUPs were tagged within 10 kb distance and 50 % 

within 100 kb, while less than 15 % of INVs and BNDs were tagged. The tendency is the same in the 

two layer populations, but the absolute numbers slightly deviate. As a maximum value of a sample is 

not independent of the number of sampled values, we also checked the number of present potential 

tag SNPs within 5 kb distance to the variant of interest. Interestingly, SNPs were surrounded by 

significantly more close variable SNPs on average than SVs in all three populations (Table 4.2). This 

difference was still present when regarding only tag SNPs (𝑟 
2 > 0.75). 
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Table 4.2: Median number of variable SNPs within 5 kb distance to variants of interest 

Variant 
 BR  BL  WL 

 All 𝑟2 ≥ 0.75  all 𝑟2 ≥ 0.75  all 𝑟2 ≥ 0.75 

SNP  140 a 7 a  85 a 5 a  73 a 9 a 

DEL  70 d 5 b  41 c 4 b  38 c 6 b 

DUP  78 cd 4 b  48 bc 3 ab  31 c 4 ab 

INV  90 c 3 b  49 bc 5 ab  42 bc 11 ab 

BND  119 b 6 ab  59 b 1 ab  61 b 1 ab 

Different lowercase letters within columns account for significantly different medians at the significance level 
of 0.05 (Bonferroni-corrected pairwise Wilcoxon rank-sum test) 

 

In practice, the interest of researchers and breeding companies may not be the taggability of SVs by 

WGS SNPs, but by array SNPs. Those come with a different allele frequency spectrum and lower 

resolution than WGS SNPs, which influences the LD patterns (Qanbari 2020). However, they are often 

available for a huge number of phenotyped individuals due to their use in routine breeding programs. 

We, therefore, evaluated the potential performance of four publically available chicken genotyping 

arrays with resolutions of 600 k (Kranis et al. 2013), 60 k (Groenen et al. 2011), 55 k (Liu et al. 2019), 

and 10 k (IMAGE 2020). 

The availability of variable SNPs close to the variants of interest was strongly dependent on the 

resolution of the arrays. While the 600 k array had a variable array SNP within 15 kb for more than 

90 % of the variants in all three populations, the 60 k and the 55 k array came with a slight shift of this 

dependency of having a variable array SNP for >80 % of the variants at 50 kb and >90 % at 100 kb 

(Figure S 16). The 10 k array, however, contained no variable array SNP for 50 % of the variants within 

100 kb. A non-random difference in SNP density by variant type is not present for any array. The 

reduced density compared to WGS also reduced the taggability. Mean 𝑟𝑡𝑎𝑔 
2  values for SNPs and DELs 

reached between 0.06 for BR and the 10 k array and 0.65 for WL and the 600 k array within 100 kb 

distance (Figure S 15). Interestingly, DELs seem to be slightly stronger tagged than SNPs in BL and WL 

(Figure S 15), while the other variant types were tagged by maximally 50 % of the level which was 

reached in SNPs and DELs. The results are comparable when checking the proportion of variants with 

𝑟𝑡𝑎𝑔 
2 > 0.75 (Figure S 17). 40 % of the WGS SNPs and even 45 % of DELs were tagged with more than 

𝑟𝑡𝑎𝑔 
2 > 0.75 by a SNP of the 600 k array in WL. In contrast, less than 1 % of SNPs and DELs were tagged 

by a SNP of the 10k array in BR. 
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Discussion 

Strong LD between genomic markers and causal genomic variants is the fundamental requirement of 

methods like genomic prediction (Meuwissen et al. 2001) and GWAS (Visscher et al. 2012). A stringent 

evaluation of LD between SNP marker panels and potentially causal SVs of different classes is therefore 

of strong interest for researchers and practical breeders, especially as the strength of this LD is 

discussed differently in literature (e.g. Hinds et al. 2006; McCarroll et al. 2006; Redon et al. 2006; 

Cooper et al. 2008; McCarroll et al. 2008; Kato et al. 2009; Conrad et al. 2010; Mills et al. 2011; Sudmant 

et al. 2015; Lee et al. 2020). We here present the first study that performed this evaluation in chickens. 

Implications from the SV calling pipeline 

The median sequencing coverage of the samples (5 – 17 X) was comparably low for SV discovery. 

Despite the fact that the sequencing depth differed between layers and broilers, results were similar 

for all three populations. An effect of the sequencing depth on the results is therefore unlikely, as the 

results could be repeated across sequencing depths. 

The SV calling approach was intended to return highly accurate variant calls, therefore prioritizing 

precision over sensitivity. This especially required the exclusion of regions with unusually high 

coverage, as they may be artefacts of inaccurate read mapping in regions of low sequence complexity 

(Li 2014). As those regions are known to be hot spots for SV formation by non-allelic homologous 

recombination (NAHR) (Locke et al. 2006; Gu et al. 2008; Bickhart and Liu 2014; Sudmant et al. 2015), 

we expect to have missed a significant proportion of SVs, especially multi-copy DUP. Further, there 

was a missing overlap between DELLY and MANTA at INS calling, resulting in no INS calls. A generally 

weak power in INS calling from short reads is expected, though (Delage et al. 2020). Those two 

problems highlight the need for long-read sequencing data for future studies, which should allow for 

improved resolution of complex regions and comes with improved abilities for INS calling (Sedlazeck 

et al. 2018; Ho et al. 2019). The limitations of the calling approach and the resulting characteristics of 

the callset need to be considered when comparing our results to SV callsets that were derived by 

different approaches and therefore probably capturing SVs with different properties. 

We further identified a lack of homozygous calls of DUPs, INVs, and BNDs with regard to HWE (Figure 

4.4, Figure S 11, Figure S 12). One possible reason may be a deleterious load and therefore purifying 

selection on those variants. While literature highlights the deleterious potential of DELs, INVs, and 

BNDs (Feuk et al. 2006; Bouwman et al. 2020), DUPs are rather considered positive by increasing gene 

expression (Feuk et al. 2006; Lee et al. 2021). In our case, DELs rather show a slight excess of 

homozygotes than an expected lack under purifying selection (Figure 4.4, Figure S 11, Figure S 12). The 

lack of homozygous calls was instead present for DUPs, INVs, and BNDs. Additionally, VEP impact 
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predictions classified 99.6 % of the DEL impacts as MODIFIER and only 0.4 % as HIGH, while DUP 

impacts were classified as HIGH in 10 % of the cases. The discrepancy with literature for DELs may 

partly be due to past inbreeding in the populations (Qanbari et al. 2019; Talebi et al. 2020), which 

resulted in small effective population sizes (Qanbari et al. 2010) and therefore may have purged 

strongly deleterious DELs (Bortoluzzi et al. 2020; Kyriazis et al. 2020). Purging of deleterious DELs may, 

together with limitations of the used SV callers, also be a reason for the relatively short sizes of the 

called DELs. Nevertheless, as none of the INVs and BNDs had predicted impacts besides MODIFIER, a 

second reason seems to be more likely: There may be deficits of the genotypers in accurately 

distinguishing between heterozygous and homozygous calls of DUPs, INVs, and BNDs.  

LD decay results 

The overall levels of SNP – SNP LD within the populations reflect the knowledge from the literature 

(Qanbari et al. 2010; Qanbari 2020) and the different levels of variability (BR > BL > WL) (Qanbari et al. 

2019; Geibel et al. 2021b). This resulted in WL having the strongest overall level of LD and BR the 

weakest. Besides that and if not especially indicated differently, results were the same for all three 

populations throughout the following sections.  

The DEL – SNP LD, all in all, was on the same level as SNP – SNP LD. This implies good predictability of 

DEL effects by SNP call sets and is in accordance with the majority of the existing studies (Hinds et al. 

2006; McCarroll et al. 2006; Cooper et al. 2008; Conrad et al. 2010; Mills et al. 2011). Studies that 

found DEL – SNP LD to be on a reduced level compared to SNP – SNP LD mostly performed the DEL 

calling from SNP arrays, which implies low breakpoint resolution (Lee et al. 2020). It is also common to 

merge CNV to copy number variable regions (CNVR) in SNP array or read-depth-based studies (Lee et 

al. 2020). Therefore, a CNVR can reflect multiple mutation events and not only a single variant, 

resulting in reduced LD to bivariate SNPs, an effect we do not expect to be present in our data due to 

the more precise variant definition. 

The level of DUP – SNP LD was strongly reduced compared to SNP – SNP LD and DEL – SNP LD, which 

is in accordance with the existing studies (Kato et al. 2009; Conrad et al. 2010; Sudmant et al. 2015; 

Lee et al. 2020). However, levels of ~40 % of the SNP – SNP LD (Table 4.1) were higher than what was 

found e.g. by Lee et al. (2020), who found DUP – SNP LD to be ~20 % of SNP – SNP LD in two dairy 

cattle populations. A main factor of DUP – SNP LD being reduced compared to SNP – SNP LD may be 

due to the lower allele frequencies of DUP in our callset (Figure 4.2) and therefore increased local 

ΔMAF (Figure S 7, Figure S 8) in BL and WL. Removing the ΔMAF dependent part of LD by expressing 

LD as 𝑟𝑆
2 increased the relative 𝑟2 of 30 % to a relative 𝑟𝑆

2 of 68 % of the SNP – SNP 𝑟𝑆
2 (+28 %, Table 

4.1). This means that local differences in the allele frequency spectra between SNPs and DUP account 

for ~50 % of the difference between SNP – SNP LD and DUP – SNP LD 
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A second cause for reduced DUP – SNP LD could be a higher rate of genotyping errors in DUP. In fact, 

we identified a significant reduction of homozygous DUP calls compared to HWE (Figure 4.4, Figure S 

11, Figure S 12) as already discussed above. The potential genotyping inaccuracy may additionally be 

supported by the, admittedly subjective, observation of the two assessors during the visual filtering 

step that DUP came with less clear support than DEL. This, however, resulted only in a moderately 

reduced inter-observer reliability of 94 % in DUP compared to 97 % in DEL (Supplementary file 3). 

A further possibility of reduced DUP – SNP LD may be the occurrence of multi-copy CNVs (mCNVs) 

(Locke et al. 2006; Sudmant et al. 2015) in our callset. DUP in the callset may partly represent CNVs 

that occur with different copy numbers and are therefore multi- instead of bivariate variants. This 

reduces the linkage to bivariate SNPs. We saw slight support for the occurrence of some mCNV in the 

callset e.g. by some high DHFFC values. However, mCNVs are known to cluster in special regions of the 

genome (Sudmant et al. 2015) due to non-allelic homologous recombination (NAHR) as a formation 

mechanism (Gu et al. 2008; Hastings et al. 2009). Note that NAHR can also occur recurrently (Gu et al. 

2008), resulting in variants that are called bivariate but stem from multiple mutation events. As those 

clusters should result in high-coverage regions, which we removed in the filtering step, we do not 

expect a higher number of mCNV and recurrent mutations in our callset. 

We also evaluated the linkage between SNPs and INV/ BND and found low levels of LD (26.8 % and 

18.5 % of SNP – SNP LD). The reduced LD in our study is again partly due to local allele frequency 

differences (Figure S 6 - Figure S 8) as for DUP. Relative 𝑟𝑠
2 values were therefore 14 % to 30 % higher 

than relative 𝑟2 values (Table 4.1). However, 𝑟𝑠
2 values for INV – SNP and BND – SNP were still only 

~50 % of SNP – SNP 𝑟𝑠
2. The remaining gap may partly be due to genotyping problems. We identified 

the lack of homozygous calls for INVs and BNDs (Figure 4.4, Figure S 11, Figure S 12) as for DUPs. In 

combination with the missing ability to use coverage information for filtering, we would trust the INV 

and BND genotypes least in our callset. In contrast to our results, Sudmant et al. (2015) found INV to 

be in good LD to SNPs in a very accurate callset from 2,504 human genomes, which further supports 

that the accuracy of INV calls was low in our study.  

Taggability 

The analysis of taggability revealed comparable patterns as the LD decay. A high fraction of SNPs and 

DEL was tagged by close-by WGS SNPs in all three populations (Figure 4.5; Figure S 14), while only a 

small fraction of DUPs, INVs, and BNDs was tagged. However, in contrast to the decay patterns, SNPs 

on average were tagged slightly stronger than DEL, and between 5 % and 10 % more SNPs were tagged 

with 𝑟𝑡𝑎𝑔
2  > 0.75 than DEL. A reason for the higher taggability of SNPs compared to DEL, while the LD 

decay does not differ, may be the reduced SNP density around DELs (Table 4.2), as the chance for 

higher maximum values increases with the number of SNPs in the region of interest. In contrast, DELs 
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were tagged slightly better by array SNPs than WGS SNPs by array SNPs. In the case of array SNPs, no 

locally increased density was present, as array design aims at an equidistant spacing of markers across 

the genome (Kranis et al. 2013). This resulted in no difference between the taggability of SNPs and 

DELs by array SNPs. Potential issues of excluding SNPs in complex regions during array design as 

suggested by Lee et al. (2020) as a reason for reduced CNV – SNP LD, were not observed in this study, 

as we excluded SVs in those regions due to a minor calling accuracy. Using array SNPs to tag the WGS 

variants further revealed a strong need for dense marker maps to provide good tag SNPs, as only the 

600 k array could provide tag SNPs with 𝑟𝑡𝑎𝑔
2  > 0.75 for more than 25 % of SNPs and DEL. This may 

largely explain why e.g. Xu et al. (2014) found a quarter of CNVs that were significantly associated with 

milk traits in Holstein cattle to be not tagged by SNPs of a 50 k array. It suggests that this is not solely 

due to the nature of CNV but that they also missed a comparable fraction of effects, which are caused 

by SNPs. 

The concept of taggability is especially relevant for GWAS, where phenotype-marker associations are 

tested for each marker separately. The strength of the LD between marker and causal variant then 

directly influences the power of the GWAS. However, the absence of single tag SNPs does not imply 

that the effect of an SV cannot be captured by a longer haplotype. Methods that utilize effects of 

multiple SNP at once (e.g. ridge regression best linear unbiased prediction (Meuwissen et al. 2001)), 

of which each can explain a slightly different fraction of the variance of the causal variant, may be more 

robust in this sense. Additionally, imputation of known SVs would probably be a way to overcome the 

issue of low taggability and needs further investigation. 

Conclusions 

We evaluated LD patterns between a comprehensive SV callset and surrounding SNPs in three 

commercial chicken populations. We found DEL – SNP LD to be on the same level as SNP – SNP LD, 

while DUP – SNP, INV – SNP, and BND – SNP LD were strongly reduced. This was in accordance with 

the availability of tag SNPs for a high share of SNPs and DELs, while tag SNPs for DUPs were rare and 

mostly missing for INVs and BNDs. Different arrays came with a density-dependent ability to tag WGS 

SNPs and SVs but did not show strong systematic differences compared with taggability by WGS SNPs. 

The main reason for existing differences in SNP – SNP and DUP/INV/BND – SNP LD in our study was 

due to local MAF differences. Those accounted for ~50 % of this difference in the strength of LD. This 

implies that genomic variance due to DELs in the chicken populations studied can be captured by 

different SNP marker sets as good as variance from WGS SNPs, whereas separate SV calling might be 

advisable for DUP, INV, and BND effects. 
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Material and Methods 

Data 

The study used WGS data of 25 white layers, 25 brown layers, and 40 broiler chickens. The raw data 

was first published by Qanbari et al. (2019), which contains more information about the samples. 

Chickens were paired-end sequenced with a median coverage between 5 X and 17 X, read length of 

100 bp (WL + BL) or 126 bp (BR), and insert sizes of ~400 bp. Basic quality statistics can be found in 

Supplementary file 2 as MultiQC report (Ewels et al. 2016). 

Population integrity was controlled using principal component analysis in plink 1.9 (Purcell et al. 2007). 

The SNPs were first LD pruned by setting the --indep-pairwise flag to sliding windows of 50 kb, a 

stepsize of five SNPs and an 𝑟2 of 0.5. Based on the pruned SNPs, plink extracted then 90 prime 

components. Results for the first four prime components and the variance explained can be found in 

Figure S 18. The first two prime components, which in total accounted for 33.2 % of the total variance, 

clearly separated broilers, white- and brown layers. The two broiler subpopulations were only slightly 

separated by the second prime component and clearly by the third, which accounted for 4.5 % of the 

total variance. The fourth component started splitting one of the broiler populations. We assumed this 

to be sufficiently closely related to consider the two broiler subpopulations as a combined population 

for further analyses. 

Variant Calling Pipeline 

Alignment on the reference genome galGal6/ GRGC6a and SNP calling were conducted in a previous 

study (Geibel et al. 2021a) following GATK best practices pipeline (McKenna et al. 2010). The SNPs 

needed for this study were then extracted from the old callset using bcftools (Li 2011) and the 

duplicate-marked and base quality score recalibrated BAM files were used as starting point for the SV 

calling process. 

SV calling was conducted following a consensus calling approach. SVs were first separately called per 

individual and then genotyped on population-level by running Delly 0.8.5 (Rausch et al. 2012), Manta 

1.6.0 (Chen et al. 2016), and a combination of Lumpy 0.2.13 (Layer et al. 2014) and Svtyper 0.7.0 

(Chiang et al. 2015) in parallel on the complete set. The genotyping results of the three calling pipelines 

were then merged using SURVIVOR 1.0.7 (Jeffares et al. 2017) and allowing for breakpoint differences 

of 1000 bp. This resulted in 95,478 raw SV calls. 

Additionally, read depth profiles for all samples in 100 bp windows were generated using Mosdepth 

0.2.9 (Pedersen and Quinlan 2018) and SVs were annotated with Dupholds (version 0.2.1) (Pedersen 

and Quinlan 2019) flanking fold change (DHFFC) and the SNP genotype calls located on the SV. 
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The merged callset was then filtered based on the following parameters: 

1) Caller overlap: At least two of the three callers needed to support the variant. 

2) Genotype concordance: The genotype that was supported by two out of the three callers was 

considered as the consensus genotype. Genotypes without the necessary support were set to 

missing for later re-imputation. If more than two samples did not have the necessary genotype 

concordance support for an SV, the complete SV was removed from the data set. 

3) Removal of high coverage regions: Local coverage was extracted by Mosdepth 0.2.9 (Pedersen 

and Quinlan 2018) in 100 bp windows. If windows exceeded a threshold of twice the average 

coverage across all samples (expected value for a fixed DUP) plus two standard deviations, 

they were classified as unusually highly covered. Unusually highly covered regions were further 

merged if they were less than 1000 bp apart from each other. SVs with breakpoint confidence 

intervals falling in such a region were removed from the data set. 

4) Difference to flanking coverage: DELs and DUPs calls were checked for non-consistent 

coverage changes relative to the flanking coverage by evaluating the Duphold Flanking Fold 

Change (DHFFC) (Pedersen and Quinlan 2019). DELs were considered as wrong genotypes 

when heterozygotes were not between 0.1 and 0.9 and homozygous DEL genotypes not 

smaller than 0.25. Heterozygous DUPs had to be >1.1 and homozygous DUPs >1.5. DELs/DUPs 

with more than one error or more than 10 % wrong genotypes were filtered. Otherwise, the 

putatively wrong DEL/DUP genotypes were set to missing for later re-imputation. 

5) Support by SNP calls on DELs: SNP calls need to be homozygous on heterozygous DELs and 

missing on homozygous DELs. We, therefore, calculated for each DEL genotype the relative 

number of wrong SNP genotypes (e.g. one error by five total SNPs on the DEL = 0.1). If the sum 

of those error rates across samples exceeded two or 50 % of the number of samples that were 

at least heterozygous for the DEL, the DEL was filtered. Otherwise, the putatively wrong DEL 

genotypes were set to missing for later re-imputation. 

This resulted in 5,600 SVs (4,831 DELs; 253 DUPs; 346 INVs; 170 BNDs; 94.1 % filtered). No INS 

remained, as Lumpy does not call INS and there was no overlap between Delly and Manta. Samplot 

1.0.19 (Belyeu et al. 2021) was then used to generate quality control plots for each SV that passed the 

previous filtering step. The quality plots were visually screened by two separate observers comparable 

to the workflow implemented in SV-plaudit (Belyeu et al. 2018), but implemented locally by using 

image-sorter2 (https://github.com/Nestak2/image-sorter2). The SVs needed to be scored as ‘pass’ by 

each of the two observers to be further used (Supplementary file 3). By this, a further 6.9 % of the SVs 

(3.5 % of DEL, 11.1 % of DUP, 36.0 % of INV, and 30.8 % of BND) were removed. The removed SVs were 

mainly in regions with complex mapping patterns. 

https://github.com/Nestak2/image-sorter2
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The final SV callset (4,301 DEL, 224 DUP, 218 INV, 117 BND) was then merged with the SNP callset 

(12,294,329 bivariate autosomal SNPs). The samples were phased and missing genotypes were 

imputed by beagle 5.0 (Browning et al. 2018) with default settings besides reducing ‘ne’ to 10,000 

(Pook et al. 2019). Functional consequences were annotated by ensembl-vep (McLaren et al. 2016) 

using the release 100 GRGC6a annotation files. 

Estimation of LD 

LD between two loci with a maximum distance of 100 kb was initially estimated from phased 

haplotypes as follows: 
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Where 𝑝𝐴 and 𝑝𝐵 account for the alternative allele frequencies at the two loci and 𝑝𝐴𝐵 for the 

according haplotype frequency. To control for allele frequency deviations that influence the maximum 

possible 𝑟2, we further scaled 𝑟2 by the maximum possible 𝑟2 given Δ𝑀𝐴𝐹 (𝑟𝑆
2 = 𝑟2/𝑟max |Δ𝑀𝐴𝐹

2 ) 

where 𝑟max |Δ𝑀𝐴𝐹
2  was derived as described by VanLiere and Rosenberg (2008). As we realized a 

problem with calling of homozygous DUP, we additionally estimated LD as squared Pearson Correlation 

between 0/1/2 coded SNP genotypes and the Duphold Flanking Fold Change (DHFFC) (Pedersen and 

Quinlan 2019) as a measure for the relative reference genome coverage at DEL and DUP (due to 

possible confounding only part of Supplementary file 1). LD decay was then summarized in means of 

500 bp bins between the variants.  

Bonferroni corrected bootstrap confidence intervals for the LD decay were estimated by resampling 

the 𝑟2 values within each bin 100,000 times with replacement. As tests showed confidence intervals 

for SNP - SNP LD being < 0.001 due to the huge number of underlying values, we decided to skip 

estimation of confidence intervals for bins with > 1M 𝑟2 values. 

A tag SNP was defined as the SNP with the highest 𝑟2 to the variant of interest within a certain distance 

(𝑟𝑡𝑎𝑔
2 ). The taggability of variant classes was then investigated by comparing means of 𝑟𝑡𝑎𝑔

2  and shares 

of variants with 𝑟𝑡𝑎𝑔
2 > 0.75. Additionally to the taggability by WGS SNPs, we compared the taggability 

by SNPs of four commercially available SNP arrays. The 600 k Affymetrix Axiom chicken genotyping 

array (Kranis et al. 2013), a 60 k Illumina Bead Chip (Groenen et al. 2011), a 55 k Affymetrix genotyping 

array (Liu et al. 2019), and the IMAGE_001 multispecies array, which contains 10 k chicken-specific 

SNPs on an Affymetrix genotyping array (IMAGE 2020). The annotation files were lifted over to the 

reference genome galGal6/GRGC6a by the UCSC (Kent et al. 2002) liftOver tool under usage of the 

according chain files and the overlaps with the variable WGS SNPs were defined as pools of potential 

Array tag SNPs. 
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Workflow 

The complete pipeline was set up in snakemake 5.3.0 (Köster and Rahmann 2012) and the according 

scripts including the snakefile with all used parameters as well as the dependency analytics graph 

(DAG) and the rulegraph of the pipeline can be found on Zenodo 

(https://doi.org/10.5281/zenodo.5770348). 
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Prevalence of genomic data in livestock sciences 

Due to the fast implementation of genomic breeding programs in livestock breeding, especially in dairy 

cattle breeding, cheap commercial SNP arrays have been on the market relatively early for the major 

livestock species (e.g. Matukumalli et al. 2009; Ramos et al. 2009; Groenen et al. 2011; McCue et al. 

2012; Tosser-Klopp et al. 2014). This and the fund of large datasets of genotypes and phenotypes from 

routine breeding programs led to a huge interest from researchers in livestock sciences in utilizing 

them, which led to by now 1,409 publications listed in Web of ScienceTM, with the main interest in 

cattle (Figure 5.1). The strongly decreasing sequencing costs (NHGRI 2020) and development of 

standard pipelines for variant calling (van der Auwera et al. 2013) led to an even stronger increasing 

trend for whole-genome-sequencing (WGS) based studies since 2013, with 2020 being the first year 

with more WGS- than array-based studies (Figure 5.1) in livestock sciences. The high number of 

publications implies that SNP-arrays and WGS are strongly used in livestock research. The number may 

even be underestimating the true number, as search terms probably did not capture all writing options 

or miss publications that are directly denoted to a breed name without using the species name. 

 

Figure 5.1: Numbers of publications from livestock sciences that utilized genomic technologies by 
year. The numbers were derived by a Web of ScienceTM search (https://www.webofscience.com; 
03.09.2021) for the search terms “SNP array”/ “SNP chip” (1,469) and “whole-genome-sequencing” 
(809), respectively. Results were restricted to the major livestock species and the categories “Genetics 
Heredity”, “Veterinary Sciences”, and “Agriculture Dairy Animal Science” to exclude publications 
targeting microbiology and comparable topics. Results before the year 2000 were excluded from the 
graph. 

The probably largest gains in knowledge about human genomics of the recent years were derived 

through the thousand genomes project (Huang et al. 2012). The largest data sets in livestock sciences 

are proprietary, as owned by breeding companies. Nevertheless, a comparable attempt to generate a 

https://www.webofscience.com/
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huge collection of sequenced animals in livestock sciences is the 1,000 Bull Genomes project (Hayes 

and Daetwyler 2019). This already enabled some huge meta-GWAS studies (e.g. Bouwman et al. 2018), 

that allow combining results from proprietary phenotypes and imputed genotypes while restricting 

the access of phenotypic information to confidants of the companies. Projects at that scale are 

currently missing for other livestock species. However, in chickens, the amount of publically available 

genomic data is steadily increasing. Malomane et al. (2019), e.g., published a dataset of 3,235 

genotyped chickens from 162 populations, and Wang et al. (2021) utilized 868 chicken sequences that 

are available via different projects. This scattered availability of partly public chicken data should be a 

welcoming situation for a consortium as in humans or cattle to enable according research in chickens. 

Strength and impact of ascertainment bias in livestock genomics 

As shown in the previous subchapter, a large number of genomic studies in livestock are based on SNP 

arrays. Assessment on how this may have impacted findings is therefore important. 

The focus of ascertainment schemes on commercially important populations in livestock sciences 

(Matukumalli et al. 2009; Kranis et al. 2013) should have led to a high prevalence of biased results. 

Quantitative assessment of ascertainment bias, however, was rarely done by now. This may be due to 

the need for broad sets of sequenced samples for a direct comparison between array and WGS data. 

By now, only the overestimation of array-based LD in cattle (Qanbari et al. 2014) and chicken (Qanbari 

2020) was shown, and Malomane et al. (2018) explored the effect on expected heterozygosity (Hexp), 

FST and prime component analysis (PCA) in chickens. Further, some conclusions can be drawn from 

Chapter 2 and Chapter 3, which should widely overlap with the results of Malomane et al. (2018), as 

the used samples show a strong overlap. 

In Chapter 2, Hexp calculated from array data was on average overestimated by 84 % compared to Hexp 

from WGS data in chickens. Hexp thereby always depends on the total number of variants. This means, 

that more and diverse populations in the callset lead to an increased number of invariable SNPs within 

populations and a reduced Hexp. Hexp of a population should therefore rather be regarded relative to 

other populations than absolute. However, the overestimation was ~20 % stronger for populations 

that are genetically comparable to the discovery populations of the original array than for other 

populations, highlighting the uneven ascertainment scheme. Comparable was observed by Herrero-

Medrano et al. (2014), who compared heterozygosity estimates from array data and WGS in mainly 

European and some Asian pigs. They found a strong correlation between array- and WGS-

heterozygosity for most European breeds, but not for Asian breeds and breeds with likely Asian 

introgression. This suggests that the Porcine SNP60 BeadChip (Ramos et al. 2009) misses Asian SNP 

variation. 
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The intensity of ascertainment bias should be different across livestock species. It should generally be 

lower in chickens than in cattle. Commercial chicken breeds are scattered across the global diversity 

spectrum (Malomane et al. 2019), and ascertainment was done in broilers, brown layers, and white 

layers together with SNP validation in a diversity set (Kranis et al. 2013). However, note that the 

validation step did not show a relevant impact on the ascertainment bias in Chapter 2. Cattle, in 

contrast, suffers from the strong division into the two clades of taurine and indicine cattle lineages, 

accompanied by initial ascertainment only in taurine cattle (Matukumalli et al. 2009), which was only 

later extended by indicine SNPs (Utsunomiya et al. 2019). As no studies directly assess the prevalence 

of ascertainment bias in cattle, this needs to be done by evaluating auxiliary information. Imputation 

accuracy strongly depends on the availability of variable markers in the study set. Due to ascertainment 

bias, this is commonly higher for populations closely related to the discovery populations. Thus, in 

Chapter 3, we found that imputation accuracy is higher for discovery populations than for non-

discovery populations in our chicken data set. By implication, this can be used to roughly compare 

marker panels of comparable density for their bias. As earlier cattle SNP arrays only used taurine 

discovery sets (Matukumalli et al. 2009), while later arrays also included indicine samples (Utsunomiya 

et al. 2019), those second-generation arrays commonly performed better for imputation of indicine or 

crossbred samples (e.g. Boison et al. 2015; Toro Ospina et al. 2021). This suggests a strong prevalence 

of ascertainment bias for indicine cattle at least in the arrays without indicine-specific SNPs. Further, 

McTavish and Hillis (2015) used a comparison between simulations of different cattle demographic 

scenarios and ascertainment schemes with empirical BovineSNP50 bead chip (Matukumalli et al. 2009) 

data. They found a scenario, which strongly upward biases heterozygosity in taurine cattle while 

underestimating heterozygosity in indicine cattle, to most likely reflect the empirical situation. 

As shown by Dokan et al. (2021), the effect of ascertainment bias on FST in direction and intensity highly 

depends on underlying demographic scenarios and sampling schemes. In the simulations by McTavish 

and Hillis (2015), scenarios with ascertainment in taurine cattle reduced FST between indicine and 

taurine cattle up to -30 % depending on the intensity of isolation between taurine and indicine cattle. 

In contrast, Malomane et al. (2018) found overwhelmingly upward biased FST values in chickens. Note, 

however, that the empirical chicken data in Chapter 4 did not show an ascertainment bias for FST in 

chickens larger than the pooling bias. The discrepancy to Malomane et al. (2018) may be due to 

different ways of averaging FST across loci. While Malomane et al. (2018) calculated FST as mean across 

loci, we divided the sum of the numerator by the sum of the denominator as initially suggested by 

Wright (1949) and later Weir and Cockerham (1984). This seems to be more robust against 

ascertainment bias (unpublished observations). 
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Possibilities to deal with ascertainment bias 

Given the prevalence of ascertainment bias, the question arises of how to deal with it. The first 

intention would probably be to switch to WGS, as e.g. proposed by Qanbari and Simianer (2014), and 

which is already done for an increasing number of projects (Figure 5.1). This, however, may only be 

feasible for larger groups or consortia, as costs, as well as computational needs for sequencing, are still 

magnitudes higher than for genotyping. Attempts to reduce costs for sequencing have been e.g. 

pooled sequencing (Futschik and Schlötterer 2010) or reduced representation library methods (Davey 

et al. 2011). Pooled sequencing was used to utilize a complete flowcell for sequencing multiple samples 

from a population and by this decrease the sequencing costs. Pooled sequencing, however, comes with 

a series of biases (supplementary material of Chapter 3; Futschik and Schlötterer 2010; Boitard et al. 

2012; Chen et al. 2012) and problems due to a dramatic increase in the computational need for 

accurate variant calling (supplementary methods of Chapter 2). Further, pooled sequencing only 

rudimentary allows analyses that go beyond the estimation of allele frequencies (e.g. short-distance 

LD analyses by physical linkage; Feder et al. 2012). Nowadays, the use of pooled sequencing should be 

pointless in most cases, as barcoding techniques allow the use of flow cells for multiple samples in 

parallel. This allows methods that sequence a share of samples with very low depth and then impute 

variants by utilizing populations-wide haplotype information (Pook et al. 2021). This, however, is still 

limited to homozygous populations that do not exist in livestock (Pook et al. 2021). Another way of 

reducing the sequencing need is to only sequence a subset of the genome, e.g. by sheering the genome 

through restriction enzymes and then sequencing only the beginning and end of the sheered fragments 

(genotyping by sequencing, GBS; Elshire et al. 2011). SNP discovery is then influenced by the 

prevalence of restriction sites and the choice of the restriction enzyme (Davey et al. 2011). It further 

comes with highly skewed genome coverage, causing further problems in SNP calling (Beissinger et al. 

2013). 

Despite the opportunities of low-coverage sequencing, the current development in routine breeding 

programs, which require phenotyping and genotyping on a large scale, is to rather extend the sample 

size while decreasing marker density by the use of low-density SNP arrays (e.g. Rensing et al. 2017). 

For the within-breed genomic selection, a certain ascertainment bias is actually intended. The main 

purpose here is to find a balance between genotyping costs, defined by the number of needed markers 

on an array and the number of genotyped and phenotyped individuals, and the prediction accuracy to 

maximize genetic gain per time and costs. With a limited SNP panel, high minor allele frequency (MAF) 

SNPs, potentially even biased due to their LD to QTLs, generally have a higher effect on prediction 

accuracy than low-MAF SNPs in the first instance (Perez-Enciso et al. 2015). Further, variability of SNPs 

is in this situation only relevant for the breed of interest. The use of specialized arrays will in those 
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situations probably stay the best option for larger breeding programs, as long as low-coverage 

sequencing methods do not compete in terms of accuracy. However, note that MAF and LD of the SNPs 

on those arrays may change over time and reevaluation of the arrays may become necessary. Further, 

those specialized arrays cannot be used in other breeds and the breed of interest needs to be large 

enough that the design of a specialized array is economically efficient. 

The situation is different in livestock population genomics. Here, the accurate and unbiased 

representation of all populations on arrays is of major interest. In a long term, the broad use of WGS 

data will probably become the standard for those cases, especially as the design process of an array 

will not be able to consider all future use cases of the array. Nevertheless, by now this is often not 

feasible on a logistic and financial basis. As we showed in Chapter 2 that a broad and large discovery 

panel is the key factor in limiting ascertainment bias, the design or selection of an appropriate array 

needs to take this primarily into account. With this in mind, it is critical that detailed information about 

the discovery panel is publicly available for each array. 

Further, as arrays will never be free from some amount of ascertainment bias, the robustness of 

methods needs to be evaluated alongside the effects they show. Chapter 3 e.g. revealed that FST was 

more robust against ascertainment bias in our setting than Nei’s distance, and would therefore 

probably be the better choice to express population differentiation in this setting. This information is, 

however, not available for many methods and may also differ between different scenarios. As WGS 

data for a direct evaluation of estimator robustness may not be available oftentimes, evaluations, as 

proposed in Chapter 3 that add additional known bias onto array data, may therefore give first 

impressions on the behavior of the estimator under ascertainment bias. Further, modern simulation 

software such as MoBPS (Pook et al. 2020) allows the evaluation based on different simulated 

scenarios (e.g. done for FST by Dokan et al. 2021).  

It may be further advisable to correct the SNP data for ascertainment bias. Methods as proposed by 

Nielsen et al. (2004), however, require detailed knowledge on the ascertainment process and should 

therefore be unfeasible in most cases. Malomane et al. (2018) investigated the effect of filtering 

strategies and identified e.g. LD pruning to reduce ascertainment bias, while strict MAF filters 

increased it. However, the filtering of SNP data should always be critically questioned. The effects may 

be different in certain situations. So might LD pruning, which certainly has a positive effect e.g. on FST, 

hinder the accurate identification of rare haplotypes for haplotype-based methods (comparable to 

what was shown for identification of runs of homozygosity by Meyermans et al. 2020). 

In Chapter 3, we further proposed to use imputation to WGS as in silico correction of SNP data. Our 

results were promising and certainly suggest this for future use. However, access to a large reference 

panel, which is evenly spaced across the intended range of populations, is thereby crucial. An 
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unbalanced reference panel can have the same effect as an unbalanced discovery panel and introduces 

its own bias. Further, we performed imputation in this case from 600 k to WGS. Imputation from arrays 

of lower density may result in reduced accuracy and worse results. 

Inclusion of structural variants into genomic studies 

As already indicated in Chapter 1 and Chapter 4, SVs are causal for some prominent qualitative and 

quantitative traits of livestock. By now, detailed knowledge on the amount of genomic variance 

explained by SVs in livestock is missing. This has its major reason in low precision and recall rates of 

array- and short-read-based SV calling algorithms. The problem can be highlighted by the results of 

Chapter 4, where we called 95,478 raw SVs that were reduced to 4,860 (~5 %) by the, admittedly strict, 

filtering procedure. This is common across studies and to a high share influenced by mapping problems 

in repetitive regions. So attributed Bertolotti et al. (2020) an overall false discovery rate (FDR) of 91 % 

in SV calling for Atlantic salmon to an FDR of 99.2 % in regions of complex mapping patterns and 85 % 

in the rest of the genome. Algorithms are thereby better suited to identify DELs than other variants, 

explaining why 88 % of our called variants were DEL. When evaluating the share of chicken genomes 

affected by the called variants (Figure 4.1 B), the included SNP still affected most of the genome 

(~0.37 % – 0.41 %). INV showed a large range between 0.1 % and 0.7 %, most likely affected by single 

long INVs, as the overall number was low with a skewed length distribution (Figure 4.1 A) and small 

MAFs (Figure 4.2). DELs (~ 0.08 %) and DUPs (~0.01 %) covered less of the genome. This is certainly an 

underestimation of the total length covered, as lots of SV are expected to be associated with regions 

of low sequence complexity, which we had to exclude due to short-read mapping problems. Those 

results argue for both, the high prevalence and thereby possibly associated effects of SV on 

phenotypes and the need to use long-read sequencing data to get comprehensive insights into the SV 

landscape of chickens. 

In Chapter 4, we also evaluated whether SNPs could serve as markers for SV effects. As SNP-DEL LD 

was as strong as SNP-SNP LD in nearly all regarded senses, at least DEL effects should already be 

captured in SNP-based studies. The overall LD, however, depended on the density of the SNP panel. 

Low-density arrays therefore of course capture less of the total DEL variance than WGS sets. LD 

between SNPs and the other SV was strongly reduced, advocating for separate SV calling if those 

effects are also of interest. Interestingly, the main reason for this reduction was due to larger MAF 

differences. They may indicate different mutation or selection patterns and require further research. 

A practical consideration for the inclusion of SVs in studies is that SV classification is harder than SNP 

classification, as they commonly span an interval. This may cause problems for the use of SV in tools 

that rely on exact marker positions, but do not consider endpoints of the SV. The calling tools 
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additionally often show a low breakpoint accuracy. Merging of SV calls for later genotyping across 

samples within caller as well as between callers, as needed for consensus calling approaches, therefore 

involves a relaxed definition of the breakpoint confidence interval (usually ~1000 bp used). This 

potentially leads to merging of different (overlapping) variants. The problem is especially prevalent in 

read-depth-based studies, which commonly define CNV regions rather than exact CNV (e.g. Lee et al. 

2020). The prevalence of this merging of different SVs is likely one explanation of reduced LD between 

SNPs and SV, as already discussed in Chapter 4, but may also mask SV-phenotype associations in GWAS 

which needs to be considered when including SVs into studies. 

Combinability of genomic data across studies 

A general problem in genomic studies that stood out during this project is the sometimes rare 

combinability of existing datasets. Some research questions require large sample sizes and costs for 

the generation of such large genomic data sets commonly go beyond the budget of a project. This can 

either be solved by forming large consortia as for the 1000 genomes project (Auton et al. 2015) or the 

1000 bull genomes project (Hayes and Daetwyler 2019). Another possibility is to combine publically 

available data sets, whose availability is steadily increasing through the open data politics of the larger 

scientific journals (e.g. Chapter 3; Wang et al. 2021). In both cases, but also within projects, data sets 

are oftentimes based on different technologies and therefore come with different marker maps. This 

requires imputation to bring them onto the same scale for analysis. Accurate imputation results, 

however, require a good overlap of the marker maps. 

Considering the requirements of imputation during design processes of arrays as by Boichard et al. 

(2012), however, is not necessarily part of the array design process. When comparing the four available 

chicken arrays (Figure 5.2), the very small overlap between the two first genotyping platforms by 

Groenen et al. (2011) and Kranis et al. (2013) of only 2,180 SNPs (3.9 % of the 60 k SNPs) stands out. 

As Liu et al. (2019) explicitly included SNPs of the previously existing arrays to ensure overlap, it 

overlaps with the 600 k array by 24,164 SNPs (46.5 %) and with the 60 k array by 6,310 SNPs (12.1 %). 

The IMAGE multispecies array (IMAGE 2020) was designed to allow for cheap genomic characterization 

of European gene bank samples for later use in research projects. It overlaps with the (no longer 

commercially available) 50 k array by 6,751 SNPs (73.2 %) and with the 600 k array by only 1,043 SNPs 

(11.3 %). While the inclusion of SNPs of both previously existing arrays by Liu et al. (2019) allows a 

combination with other data sets by imputation, the minimal overlap between the 10 k / 60 k array 

and the 600 k array will most likely require the additional use of a sequence-based reference panel to 

impute them onto the same scale. 
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Figure 5.2: Overlap between the four chicken SNP arrays. KRANIS_600k = 600 k Affymetrix array 
(Kranis et al. 2013); GROENEN_60k = 60 k Illumina Bead Chip (Groenen et al. 2011); LIU_55k = 55 k 
Affymetrix genotyping array (Liu et al. 2019); IMAGE_10k = 10 k Affymetrix genotyping array 
(IMAGE_001 multispecies array; IMAGE 2020). 

Besides the necessary overlap between the marker maps, the reference panel plays an important role 

in imputation. As shown in Chapter 3 and already noted before, representative reference sets are 

crucial for the results of imputation. Currently, no global reference panel as the 1000 genomes project 

(Auton et al. 2015) or 1000 bull genomes project (Hayes and Daetwyler 2019) is available for chickens. 

A joint effort in combining the currently strongly scattered and only partly public datasets to such a 

panel is, therefore, necessary to further merge array-based study results on the scale. 

A, rather practical, problem when combining study results is the switch between versions of reference 

genomes and marker coding. The first one can be done easily by liftOver tools (e.g. from UCSC; Kent 

et al. 2002), if the according chain files exist. The switch between A/B coding of the arrays and 

reference-based coding, as needed to combine datasets from different platforms, requires the 

according annotation files of the providers. If they are available, translation is also relatively easy. 

However, care should be taken if plink (Purcell et al. 2007) up to version 1.9 was used for data curation. 

Plink by default silently introduces a major allele coding and deletes all information of the original A/B 

coding (Chang et al. 2015), making the translation to reference-based coding nearly impossible. As 

many researchers are not aware of this problem, a certain share of public genotyping data should be 

affected by this problem. We experienced this as well in Chapter 3. A back-translation was possible in 

this case, as a certain share of chickens in the analysis was sequenced as well as genotyped, which 

allowed identifying the wrongly coded SNPs by low recall rates of homozygous SNPs (supplementary 

methods of Chapter 3). However, this is unlikely to be the case for the overwhelming majority of 
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studies and underscores the need to share true raw data rather than curated datasets to avoid the 

accumulation of such unidentifiable error sources. 

The genomic technology of the future 

Current developments show two contrasting future trends. The first one is related to large intensively 

bred populations. In those populations, the trend is to increase the number of genotyped individuals 

and by this the number of phenotypes in the training population, which is needed for accurate 

breeding value estimation. This is in cattle e.g. done by the use of (low-density) arrays in combination 

with genotyping or even sequencing key ancestors on a higher density to enable imputation (Rensing 

et al. 2017). Another way is to utilize low coverage sequencing to identify haplotype information for 

imputation to achieve the same goal (Pook et al. 2021).  

The other trend, mainly focused by research, is to increase knowledge about, by now hardly accessible, 

genomic regions through the utilization of long-read sequencing technologies as nanopore and PacBio 

sequencing. This is necessary, as short reads cannot resolve repetitive and complex genomic regions. 

This leads to strongly increased coverage of repetitive regions with low mapping quality (Li 2014), as 

prevalent in Chapter 4. Further, assemblies are commonly bad in those regions. A prominent example 

is the highly variable chr16 of the chicken genome that contains the major histocompatibility complex 

(MHC). It is currently the worst assembled chicken autosome with a 149 kb unplaced scaffold and a 

502 kb gap at the beginning of the chromosome. The bad assembly quality and a high amount of 

repetitive regions lead to unreliable mapping results for short reads (Figure 5.3). This is similar for 

chr25, which is known for a high amount of repetitive elements (Masabanda et al. 2004). Long read 

sequencing technologies are hereby assumed to better resolve those regions and thereby allow the 

calling of SNPs as well as SVs in those regions (Sedlazeck et al. 2018). However, as the comparison 

between Illumina paired-end and PacBio HiFi reads in Figure 5.3 shows, mapping is only partially 

improved in those really complex regions.  
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Figure 5.3: Comparison of performance of Illumina and PacBio sequencing reads in resolving complex 
genomic regions. The graph exemplarily compares the well-assembled chr20 to two chromosomes 
that are known for complex rearrangements (chr16 and chr25) for one white layer chicken 
(unpublished data). 151 bp paired-end Illumina reads (NovaSeq 600, PCR-free library) were mapped to 
the reference GRCG6a using bwa-mem (Li 2013) while >10 kb PacBio HiFi reads (Sequel II) were 
mapped using minimap2 (Li 2018). Depth of coverage was calculated in 500 bp bins by mosdepth 
(Pedersen and Quinlan 2018) and set in relation to the median depth on chr20. The mean phred-scaled 
mapping quality for the bins was further calculated by bedtools (Quinlan and Hall 2010). Bins that 
exceed the y-axis-cutoff of 10 are indicated by red ticks and the median of chr20 by a dashed horizontal 
line. 

One reason for the only partly improved mappability may be the still incomplete and erroneous 

reference genome GRGC6a. Recently, two additional reference genomes were published by the 

Vertebrate Genome Project (Rhie et al. 2021). The reference bGalGal1.mat.broiler.GRCg7b is based on 

a female chicken from a maternal commercial broiler line (NCBI 2021a) and 

bGalGal1.pat.whiteleghornlayer.GRCg7w on a female chicken from a paternal white leghorn layer line 

(NCBI 2021b). Figure 5.4 compares the chromosome lengths of the three reference genomes. While 

some chromosomes are slightly shorter on the new assemblies than for GRCg6a, the sex chromosomes 

were enlarged for GRCg7b, while they are not available yet for GRCg7w. The new references further 

provide assemblies for all in GRCg6a missing autosomes. Interestingly, they also report a 39th autosome 

pair, while publications by now only reported 38 pairs (e.g. International Chicken Genome Sequencing 



Chapter 5 General Discussion 138 
 

Consortium 2004; Schmid et al. 2015). As, by now, no official description of the new reference 

genomes besides the database entries exists and the assemblies are in the status of “high-quality draft 

assembly” (Vertebrate Genomes Project 2021), this development needs further observation.  

 

Figure 5.4: The assembly length of the two latest chicken reference genome builds. GRCg6a is based 
on a Red Jungle Fowl inbred chicken, GRCg7b on a chicken from a commercial maternal broiler line, 
and GRC7w on a chicken from a paternal white leghorn layer line. Chromosome UN: unplaced scaffolds 
(data sources: NCBI 2018, NCBI 2021a, and NCBI 2021b). 

A further reason for bad mapping may be the presence of SV. Recent projects, therefore, aim in 

allowing variability in the reference genome through a graph-based representation, e.g. in cattle by 

Crysnanto and Pausch (2020). Those graph genomes seem to improve mapping quality (Crysnanto and 

Pausch 2020) and additionally show impressive results for SV discovery (Crysnanto et al. 2021). Future 

studies on the usage of graph-genomes in chickens are therefore indispensable. A first step in this 

direction was taken by a very recent study by Wang et al. (2021). They reported the first chicken pan-

genome based on GRCg6a and iterative local reassembly of 664 chicken short-read sequences, which 

has the same intention as a graph genome but slightly differs in the methodology. They announced 

the discovery of ~66.5 Mb of additional sequences and 4,063 new genes. However, as newly predicted 

non-reference genes showed a strongly reduced transcript abundance in comparison with the 

reference genes (19.4 % vs. 90.6 %) for various transcriptomic datasets, the study seems to lack from 

a bad short-read assembly quality. The usage of long-read sequencing data seems therefore to be 

advised for the creation of a high-quality graph genome in chickens. 
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General conclusion 

This study investigated the properties of different marker technologies, namely SNP arrays and WGS 

in chicken genomics. The main part thereby handled SNP ascertainment bias. We could confirm that 

SNP ascertainment bias is present in chicken array data. Further, the selection of the discovery panel 

and possible intentional overrepresentation of SNPs with higher MAF had the main effect on the 

creation of ascertainment bias, even during a complex array design process. We further showed that 

imputation to WGS may be a possibility to in silico mitigate SNP ascertainment bias. For this, an evenly 

distributed reference panel is crucial. 

To test whether SNPs are also able to capture the effects of SVs, we investigated LD patterns between 

different SNP marker panels and SVs. This showed that DEL-effects can be captured as well as other 

SNP-effects by different SNP marker panels, while for non-DEL SV a separate SV calling is necessary. 

Some difficulties in the SV calling process further pointed out some weaknesses of short-read based 

SNP calling, which requests long-read sequencing for more accurate results in the future.  

The work indicated the broad usability of SNP markers from SNP arrays and WGS in chicken genomics 

but also highlights the need to carefully consider the shortcomings of the underlying technologies in 

the design and discussion of studies. 
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