
Enhancing Geospatial Data for
Passenger Transport Systems

Dissertation

for the award of the degree

“Doctor rerum naturalium” (Dr.rer.nat)

of the Georg-August Universtität Göttingen

within the doctoral programm Environmental Informatics

of the Georg-August Universitiy School of Science (GAUSS) submitted by

Armin Hahn

from Göttingen

Göttingen, 2021

Thesis Commitee

• Prof. Dr. Martin Kappas

Georg-August-Universität, Göttingen

Geographisches Institut - Abteilung Kartographie, GIS und Fernerkundung

• Prof. Dr. Stephan Herminghaus

Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen

Dynamik komplexer Fluide

• Prof. Dr.-Ing. Marcus Baum

Georg-August-Universität, Göttingen

Institut für Informatik - Abteilung Data Fusion

Members of the Examination Board

• Reviewer:

Prof. Dr. Martin Kappas

Georg-August-Universität, Göttingen

Geographisches Institut - Abteilung Kartographie, GIS und Fernerkundung

• Second Reviewer:

Prof. Dr. Stephan Herminghaus

Max-Planck-Institut für Dynamik und Selbstorganisation, Göttingen

Dynamik komplexer Fluide

Further members of the Examination Board

• Prof. Dr.-Ing. Marcus Baum

Georg-August-Universität, Göttingen

Institut für Informatik - Abteilung Data Fusion

• Prof. Dr. Winfried Kurth

Georg-August-Universität, Göttingen

Institut für Informatik - Abteilung Ökoinformatik, Biometrie und Waldwachstum

• Prof. Dr.-Ing. Bernd Stock

HAWK - Hochschule für angewandte Wissenschaft und Kunst, Göttingen

Fakultät für Ingenieurwissenschaften

• Dr. Daniel Wyss

Georg-August-Universität, Göttingen

Geographisches Institut - Abteilung Kartographie, GIS und Fernerkundung

Date of the oral examination: 20.12.2021

Acknowledgements

I would like to thank everyone who accompanied and supported me during my Ph.D.

I would especially like to acknowledge my supervisors Prof. Dr. Martin Kappas, Prof.

Dr. Stephan Herminghaus and Prof. Dr.-Ing. Marcus Baum for their assistance at every

stage of the research project. I would also like to express my gratitude to the examination

board for their time and feedback. Thanks to the Max Planck Institute for Dynamics and

Self-Organization, especially to the whole EcoBus team, with whom I was able to gain a

lot of valuable experience in the pilot projects. I would also like to thank the Leipziger

Verkehrsbetriebe and my colleagues there, as this meant that I never lost touch with the

practical side of passenger transportation. I very much appreciated the interdisciplinary

work and the exchange between di�erent kinds of researchers such as physicists, computer

scientists, geographers, tra�c economists and economists. Furthermore, I would like to

especially thank my colleagues in the o�ce for their help, support and sometimes for

pleasant distractions to rest my mind outside of my research. In particular, I would like

to thank Wiard Frühling for his cooperation, discussions, patience and support. Finally,

my appreciation also goes out to my friends and family.

i

Abstract

This thesis presents and evaluates new solutions and developed software frameworks to

challenges from a geoinformatics perspective that have resulted from participation in

demand responsive transport (DRT) projects. Thereby, the focus is on geospatial data,

such as the road network or general map data, which are used for routing in the context

of passenger transportation systems.

Such DRT systems have the potential to reduce various detrimental e�ects, such as the

consumption of �nite resources (e.g. fossil fuels for the ine�cient motorized private

transport), environmental pollution (e.g. air pollution by particulate matter), or congestion

at peak times in urban regions through more e�cient mobility o�ers, and can thus

simultaneously contribute to mitigating the anthropogenic climate change.

Within the scope of this work, the focus is set on two main points. We especially

concentrate on the aspect of how an enhancement of geospatial data could contribute to

improvements for passenger transport systems. The interdisciplinarity of geographers

was also used in this work to combine the �elds of mobility research, geoinformatics,

computer science, and mathematics (graph theory), and thus to consider problems across

disciplines.

First, a performant approach for determining network distances was developed that

could be an alternative to the usage of Euclidean distance in transportation services and

transportation research. Even nowadays, the Euclidean distance is often used to determine

the distance between two points on the road network to avoid a computationally costly

calculation of exact network distances. However, the use of Euclidean distance can lead

to inaccurate distances, if the actual path on the road network is a much larger detour

than the beeline. A common example for this problem involves rivers, where a small

Euclidean distance may be calculated between a point on one side of a river to a point

on the other side of the river, but if there is no bridge in the immediate vicinity, a much

larger detour, and thus a much larger travel time, must be taken than calculated by

the Euclidean distance. Another example where such problems occur more frequently

is road networks with many oneways. However, these problems can occur anywhere.

We present an approach, which provides approximated network distances. This can

ii

Abstract

be useful if exact network distances are not required, e.g. for rough estimations or

preselections in ride-pooling scenarios, to evaluate whether two requests can possibly

be pooled. Calculating the exact network distances with routing engines (shortest path

algorithms) can be very calculation-intensive, especially for many parallel (and iterative)

calculations on large networks. Since a precalculation of all shortest path distances would

be a reasonable solution but is not practical for large networks, we partition the road

network and determine proxies for each partition. Proxies then represent the area for

the respective partition. The size of the partition and hence the acceptable deviation

(inaccuracy or the degree of generalization of the road network) can be set by a parameter.

Based on the proxies, a complete graph is created, which data can be stored in a lookup

table and network distances can be read easily. Thus, the performance for identifying

network distances depends on the search algorithm, which scales linearly in the worst

case, regardless of the network size, whereas conventional shortest path algorithms scale

worse on large networks. In the evaluation, this approach showed potential use for the

future.

Second, this work also deals with the problem of so-called road snapping. This is the

determination of stop locations at the start and end of a calculated route between two

addresses. Road snapping thus describes the process of determining reference points on

the road network for given start and destination points that are not located directly on

the road network. Conventional routing engines use the perpendicular distance for the

determination, which can lead to insu�cient calculated snapping points, respectively

stop locations, since the actual access to buildings is not taken into account. In the context

of supported DRT projects, insu�cient stop locations can not only be dangerous pick-up

locations on highly tra�cked highways but also can lead to delays in the time schedule,

because bus drivers need to �nd a suitable spot for the boarding of passengers. Such time

delays can interfere with future trips and the whole time schedule. We developed an

alternative approach that uses remote sensing and the cost distance analysis method to

determine the most likely access to buildings and thus more reasonable stop locations.

Therefore, the assumption was made, that the access to buildings consists of few vegeta-

tion cover, minimal slope of the terrain and the calculated path should not cross building

footprints. For this approach, open source data were used and the parameters for the cost

distance analysis were determined by using a vegetation index, a high-resolution eleva-

tion model using light detection and ranging (LiDAR) data, and building footprints from

OpenStreetMap. Thus, the so-called least cost path can be calculated, which re�ects the

most likely path from a building to the road network. Accordingly, optimized snapping

points, respectively stop locations have been determined, that consider the actual access

to the building, which conventional approaches do not consider. For the evaluation,

the used parameters were weighted di�erently, which allowed determining a suitable

iii

Abstract

weight combination of these parameters. Furthermore, the results were compared and

validated with a conventional routing engine, which uses the perpendicular distance. The

presented approach achieves depending on the weight combinations a validation-rate

up to 90.3%, whereas the routing engine only achieves a validation-rate of 81.4%. These

results show that the presented approach could be used in the future to precompute

optimized snapping points, thus avoiding misunderstandings, delays, and dangerous

pick-up and drop-o� locations in the context of passenger transportation systems with a

to-door service.

iv

Zusammenfassung

In dieser Dissertation werden neue Lösungen und entwickelte Software-Frameworks für

Herausforderungen aus Sicht der Geoinformatik vorgestellt und bewertet, die sich aus

der Teilnahme an demand responsive transport (DRT)-Projekten ergeben haben. Dabei

liegt der Fokus auf Geodaten, wie dem Straßennetz oder allgemeinen Kartendaten, die

für ein Routing im Kontext von Personenbeförderungssystemen genutzt werden.

Solche DRT Systeme haben das Potenzial durch e�zientere Mobilitätsangebote verschie-

dene Entwicklungen, wie den Verbrauch von endlichen Ressourcen (z.B. den Verbrauch

von fossilen Treibsto�en für den meistens ine�zienten motorisierten Individualverkehr),

Umweltverschmutzungen (z.B. Luftverschmutzung durch Feinstaub) oder Staus zu Stoß-

zeiten in urbanen Regionen zu reduzieren und können somit zeitgleich einen Beitrag zur

Bekämpfung des anthropogenen Klimawandels leisten.

Im Rahmen dieser Arbeit werden zwei Hauptschwerpunkte untersucht. Dabei wird

insbesondere der übergeordnete Aspekt betrachtet, wie eine verbesserte Nutzung von

Geodaten dazu beitragen kann, moderne Transportsysteme attraktiver zu gestalten. Die

Interdisziplinarität der Geographie biete dabei den Vorteil, die Bereiche Mobilitätsfor-

schung, Geoinformatik, Informatik und Mathematik (Graphentheorie) miteinander zu

verbinden und somit disziplinübergreifende Probleme holistisch betrachten und lösen zu

können.

Es wurde ein Ansatz zur performanten Bestimmung von Netzwerkdistanzen entwickelt,

der die Nutzung der Euklidischen Distanz im Transportbereich und in der Mobilitäts-

forschung ersetzen könnte. Auch heutzutage wird noch die Euklidische Distanz zur

Bestimmung der Distanz zwischen zwei Punkten im Straßennetz verwendet, um so eine

rechenintensive Berechnung von exakten Netzwerkdistanzen zu vermeiden. Die Verwen-

dung der Euklidischen Distanz kann jedoch zu sehr ungenauen Distanzen führen, wenn

der tatsächliche Weg auf dem Straßennetz ein viel größerer Umweg als die Euklidische

Distanz (Luftlinie) ist. Ein Beispiel für dieses Problem kann bei Flüssen auftreten, bei

denen zwar eine geringe Euklidische Distanz zwischen einem Punkt auf der einen Seite

des Flusses und einem Punkt auf der anderen Seite des Flusses ermittelt werden kann,

aber es keine Brücke in unmittelbare Nähe gibt und somit ein größerer Umweg und

v

Zusammenfassung

eine größere Fahrzeit in Kauf genommen werden muss, als ursprünglich anhand der

Euklidischen Distanz ermittelt wurde. Ein weiteres Beispiel wo solche Probleme häu�ger

auftreten sind Straßennetze mit vielen Einbahnstraßen. Allgemein können diese Proble-

me jedoch überall auftreten. Der in dieser Dissertation neu entwickelte Ansatz liefert

angenäherte Netzwerkdistanzen, ist aber weniger rechenintensiv als bisherige Algorith-

men. Das kann nützlich sein, wenn keine exakten Netzwerkdistanzen benötigt werden,

aber die Problematik bzw. die Ungenauigkeit der Euklidischen Distanz in einigen Fällen

vermieden werden soll. Beispielsweise kann diese Ansatz für eine grobe Abschätzung

oder Vorauswahl für die Berechnung von möglichen Fahrgemeinschaften Anwendung

�nden, wenn überprüft werden soll, ob zwei Reisewünsche für eine Fahrgemeinschaft

berücksichtigt werden sollen oder nicht. Eine Berechnung der exakten Netzwerkdistanzen

mit Routenplanern (basierend auf Kürzeste-Wege-Algorithmen) kann sehr rechenintensiv

sein, insbesondere wenn viele Berechnungen parallel und iterativ für große Straßennetze

durchgeführt werden. Eine Vorberechnung aller kürzesten Pfade ist zwar möglich und

würde das Problem der benötigten Rechenleistung umgehen, jedoch ist das besonders bei

großen Netzwerkgraphen nicht praktikabel. Daher wird in dem hier vorgestellten Ansatz

das Straßennetz partitioniert und für jede Partition wird ein sogenannter Proxy de�niert,

der den Bereich seiner Partition repräsentiert. Die Größe der Partitionen und damit auch

die akzeptierte Ungenauigkeit bzw. der Grad der Generalisierung des Straßennetzes kann

anhand eines Parameters bestimmt werden. Mithilfe der Proxies wird ein vollständiger

Graph erstellt, dessen Daten in einer Lookup-Tabelle gespeichert werden und mit einem

Suchalgorithmus können dann dort Netzwerkdistanzen aller kürzesten Wege ausgelesen

werden. Die Performance dieses Ansatzes hängt dabei von dem Suchalgorithmus für die

Lookup-Tabelle ab, der im schlechtesten Fall linear mit der Netzwerkgröße skaliert, wäh-

rend die meisten herkömmlichen Algorithmen zur Bestimmung von Netzwerkdistanzen

mit großen Netzwerken schlechter skalieren. In der Auswertung zeigte dieser Ansatz

Potenzial für eine zukünftige Anwendung.

Im Rahmen dieser Arbeit wurde auch das für DRT Projekte wichtige Problem des soge-

nannten road snappings bearbeitet. Dabei geht es um die Bestimmung von Haltepunkten

am Anfang und Ende einer berechneten Route für zwei Adressen. Road snapping be-

schreibt also den Prozess zur Bestimmung von Referenzpunkten auf dem Straßennetz

für Start- und Zielpunkte, die nicht direkt auf dem Straßennetz liegen. Herkömmliche

Routenplaner nutzen für die Bestimmung die perpendikulare Distanz, wodurch es zu

ungenügenden Haltepunkten kommen kann, da der tatsächliche Zugang zu den Adres-

sen bzw. Gebäuden nicht berücksichtig wird. Im Kontext der begleiteten DRT Projekte

bedeuteten ungenügende Haltepunkte zum Beispiel nicht nur gefährliche Abholorte

an stark befahrenen Bundesstraßen, sondern auch Zeitverzögerungen, weil Busfahrer

einen geeigneten Haltpunkt oder den Fahrgast suchen mussten, da die Fahrgäste einen

vi

Zusammenfassung

anderen Haltepunkt erwarteten. Dieses Problem tritt besonders bei Mobilitätsangeboten

auf, die zusätzlich auch Buchungen via Callcenter ermöglichen, sodass kein Abholort

auf einer Karte angezeigt werden kann. Die dadurch entstehenden Zeitverzögerungen

können dazu führen, dass darau�olgende Fahrten nicht nach Zeitplan statt�nden und sich

Verzögerungen kaskadisch immer weiter vergrößern können. Es wurde eine Alternative

entwickelt, die anhand von Fernerkundung und der Methode der Kostendistanz-Analyse

den wahrscheinlichsten Zugang zu Gebäuden berechnet und somit sinnvolle Haltepunkte

bestimmt. Dafür wurde die Annahme getro�en, dass der Zugang zu Gebäuden nur eine

geringe Vegetationsbedeckung und eine minimale Steigung des Geländes aufweist sowie

der ermittelte Pfad von der Straße zur berücksichtigten Adresse nicht durch andere

Gebäude führt. Für die Bestimmung sogenannter günstigster Kostenpfade durch die

Methode der Kostendistanz-Analyse wurden aus Open Source Daten folgende Parameter

bestimmt: Die Vegetationsbedeckung (anhand eines Vegetationsindexes), die Steigun-

gen eines hochau�ösenden Geländemodells (anhand von light detection and ranging

(LiDAR) Daten) sowie die Grundrisse der Gebäude (von OpenStreetMap). Die ermittelten

Pfade repräsentieren den wahrscheinlichsten Weg von einem Gebäude zum Straßen-

netz. Durch den Schnittpunkt dieser Pfade mit dem Straßennetz sind somit optimierte

Haltepunkte bestimmt worden, die den Weg zum Eingang von Gebäuden berücksichti-

gen. Für die Evaluation wurden die verwendeten Parameter in verschiedene Iterationen

unterschiedlich gewichtet, wodurch als Resultat sinnvolle Gewichtungskombinationen

der Parameter ermittelt werden konnten. Weiterhin wurden die Ergebnisse mit einem

herkömmlichen Routenplaner, der die perpendikulare Distanz verwendet, verglichen und

validiert. Die Haltepunkte von dem vorgestellten Ansatz erreichten je nach verwendeter

Gewichtung eine Validierungs-Rate von bis zu 90.3%, wohingegen der Routenplaner nur

eine Validierungs-Rate von 81.4% erreichte. Die Ergebnisse zeigen, dass der vorgestellte

Ansatz zukünftig genutzt werden kann, um optimierte Haltepunkte vorzuberechnen,

wodurch Missverstädnisse, Verzögerungen und gefährliche Haltepunkte im Rahmen

von Personenbeförderungssystemen mit einem Tür-zu-Tür Angebot vermieden werden

können.

vii

Contents

Acknowledgements . i

Abstract . ii

Zusammenfassung . v

List of Figures . xi

List of Tables . xiv

Acronyms . xv

1. Introduction . 1

1.1. Motivation . 2

1.2. Mobility Concepts . 3

1.3. Main Contribution . 4

1.4. Outline . 4

2. Challenges in Modern Mobility Concepts . 5

2.1. Performance of Network Distance Computations 5

2.2. Optimized Pick-up and Drop-o� Locations in to-Door Services 8

3. Preliminaries . 14

3.1. Graph Theory . 14

3.2. Routing Techniques . 19

3.3. Approximation Algorithms . 21

3.4. Map Matching . 22

3.5. Cost Distance Analysis . 23

4. RelatedWork . 27

4.1. Graph Partitioning of Road Networks . 27

4.2. E�ects on Incomplete Map Data on to-Door Services 31

viii

Contents

5. Performance of Network Distance Computations 34

5.1. Central Ideas . 34

5.2. Methods . 35

5.2.1. Area of Interest . 35

5.2.2. Data . 36

5.2.3. Partitioning . 36

5.2.4. Determination of Partition Proxies 37

5.2.5. Building a Generalized Graph . 38

5.2.6. Network Distance Queries . 38

5.2.7. Scaling and Variability . 39

5.2.8. Evaluation . 39

5.2.8.1. Constant parameter . 40

5.2.8.2. Scaling parameter . 42

5.3. Own Software Package . 44

5.4. Results . 44

5.4.1. Constant Parameter . 47

5.4.2. Scaling Parameter . 52

5.5. Summary . 67

6. Optimized Pick-up and Drop-o� Locations . 69

6.1. Central Ideas . 69

6.2. Methods . 70

6.2.1. Area of Interest . 72

6.2.2. Data . 72

6.2.3. Generation of Snapping Points by Cost-Distance 73

6.2.4. Evaluation of Snapping Points . 74

6.3. Own Software Package and Patent Application 75

6.4. Results . 76

6.5. Summary . 80

7. Discussion . 82

8. Conclusion . 88

Bibliography . 90

Glossary . 102

A. Appendix . 104

ix

Contents

B. Appendix . 109

B.1. Source Code for FluidC-Generalization based on Proxies (FC-GBOP) . . . 109

B.2. Source Code for Accumulative Cost Surface Analysis (ACSA) 134

Curriculum Vitae . 152

x

List of Figures

2.1. Di�erence between network distance and Euclidean distance 6

2.2. Ellipsoid to determine suitable detours 7

2.3. Example of insu�cient snapping in Göttingen 10

2.4. Example of insu�cient snapping in Höxter 11

2.5. Example for multiple stop locations . 12

2.6. E�ects of missing map data . 13

2.7. E�ects of incomplete data on snapping 13

3.1. Methods for storing network graphs . 15

3.2. Visualization of articulation vertices . 16

3.3. Centrality measure - Connectivity . 17

3.4. Centrality measure - Betweenness Centrality 17

3.5. Duality of a network graph . 18

3.6. Complete graph . 18

3.7. Dijkstra’s shortest path algorithm . 20

3.8. Di�erent metrics for least cost paths . 24

3.9. Neighboorhood types for gridded graphs 25

3.10. ..Overview of a cost distance analysis . 26

5.1. Types of road network patterns . 35

5.2. Wor�ow of FluidC algorithm . 37

5.3. Example of partitions and the reduced graph - Göttinge 45

5.4. Example of partitions and the reduced graph - Krefeld 45

5.5. Example of partitions and the reduced graph - Málaga 46

5.6. Example of partitions and the reduced graph - Soest 46

5.7. Number of k partitions (constant) . 47

5.8. Ratio of complete graphs (constant) . 48

5.9. APSP-distances (constant) - Göttingen . 49

5.10. ..APSP-distances (constant) - Krefeld . 50

5.11. ..APSP-distances (constant) - Málaga . 50

5.12. ..APSP-distances (constant) - Soest . 51

5.13. ..Performance for network distances (constant) 51

xi

List of Figures

5.14. ..Number of k partitions (scaling) - Göttingen 52

5.15. ..Number of k partitions (scaling) - Krefeld 52

5.16. ..Number of k partitions (scaling) - Málaga 53

5.17. ..Number of k partitions (scaling) - Soest 53

5.18. ..Ratio of complete graphs (scaling) - Göttingen 54

5.19. ..Ratio of complete graphs (scaling) - Krefeld 54

5.20. ..Ratio of complete graphs (scaling) - Málaga 54

5.21. ..Ratio of complete graphs (scaling) - Soest 55

5.22. ..All shortest path distances (scaling) . 56

5.23. ..Evaluation of all shortest path distances 57

5.24. ..Variation of distances between proxies 58

5.25. ..Performance based on FluidC (scaling) - Göttingen 59

5.26. ..Performance based on Dijkstra (scaling) - Göttingen 59

5.27. ..Performance based on bidirectional Dijkstra (scaling) - Göttingen 60

5.28. ..Performance based on A* (scaling) - Göttingen 60

5.29. ..Performance based on FluidC (scaling) - Krefeld 61

5.30. ..Performance based on Dijkstra (scaling) - Krefeld 61

5.31. ..Performance based on bidirectional Dijkstra (scaling) - Krefeld 61

5.32. ..Performance based on A* (scaling) - Krefeld 62

5.33. ..Performance based on FluidC (scaling) - Málaga 63

5.34. ..Performance based on Dijkstra (scaling) - Málaga 63

5.35. ..Performance based on bidirectional Dijkstra (scaling) - Málaga 63

5.36. ..Performance based on A* (scaling) - Málaga 64

5.37. ..Performance based on FluidC (scaling) - Soest 65

5.38. ..Performance based on Dijkstra (scaling) - Soest 65

5.39. ..Performance based on bidirectional Dijkstra (scaling) - Soest 66

5.40. ..Performance based on A* (scaling) - Soest 66

6.1. Detection of vegetation . 70

6.2. Generated source cells . 71

6.3. Extent of the AOI in Höxter . 72

6.4. Concept of an ideal snapping area . 75

6.5. Validation-rate depending on the weighted parameters 77

6.6. Histogram of the validation-rates . 78

6.7. Least cost paths for di�erent weight combinations 78

6.8. Least cost paths for multiple buildings . 79

A.1. ..Primal road network of Göttingen . 104

A.2. ..Primal road network of Krefeld . 105

A.3. ..Primal road network of Málaga . 106

xii

List of Figures

A.4. ..Primal road network of Soest . 107

A.5. ..True color composite . 108

xiii

List of Tables

5.1. ..Basic properties of the AOIs . 36

5.2. ..Used distance deviations for the AOIs 39

5.3. ..Basic statistics for k partitions (constant) 48

5.4. ..Basic statistics for the ratio of complete graphs (constant) 49

5.5. ..Distribution of resulting performances for Soest (scaling) 66

6.1. ..Classes and thresholds for vegetation and slope 73

A.1. ..Extent of the AOIs . 107

xiv

Acronyms

ACSA Accumulative Cost Surface Analysis.

AOI area of interest.

API application programming interface.

APSP all pairs shortest path.

BFS breadth-�rst search.

CIR color infrared.

CRP customizable route planning.

DARP dial-a-ride problem.

DPS distance-preserving subgraphs.

DRAs deterministic routing areas.

DRRP demand responsive ride pooling.

DRT demand responsive transport.

FC-GBOP FluidC-Generalization based on Proxies.

FMLM �rst mile/last mile.

GHG greenhouse gas.

GIS geographic information system.

GPS global positioning system.

IPCC Intergovernmental Panel on Climate Change.

IQR interquartile range.

xv

Acronyms

kNN k nearest neighbor.

LiDAR light detection and ranging.

LVB Leipziger Vekehrsbetriebe.

MGP multilevel graph partitioning.

MPT motorized private transport.

MSP mobility service providers.

NDVI normalized di�erence vegetation index.

NIR near-infrared.

NRW North Rhine-Westphalia.

OSRM Open Source Routing Machine.

PCD precomputed cluster distances.

TNC transport network company.

VRP vehicle routing problem.

xvi

1. Introduction

Tra�c and logistics are a major cause of environmental damage due to its emissions (e.g.

carbon dioxides, particular matter) and its ine�cient usage of resources in motorized

private transport (MPT) [1, 2]. According to the Intergovernmental Panel on Climate

Change (IPCC), reducing the greenhouse gas (GHG) emissions will be challenging if the

increasing trend of emissions from passenger and freight transport cannot be stopped,

since they could outweigh all mitigation measures [3]. Further, it is predicted that without

aggressive and sustained applied mitigation policies, the transport emissions could be

12 Gt CO2 eq/year by 2050 (for 2019 the total emissions for Europe accounted 5.57 Gt

[4]). The European Parliament state that transport causes nearly 30% of the total CO2

emissions of Europe, where road transportation alone causes 72% of these emissions

[5].

The increasing demand for mobility in the last decades led to congestion in urban areas.

Simultaneously, insu�cient public transport is a growing challenge in rural areas. Thus,

more people either depend on MPT or they move to urban areas, which will further

increase the high tra�c volume. Hence it is important to optimize mobility for the future.

Recently, there has been a growing interest in so-called demand responsive transport

(DRT) systems, demand responsive ride pooling (DRRP) or dynamic and �exible ride-

sharing [6, 7, 1]. Such systems can help to optimize the mobility and accordingly the

current transport systems because they use resources for mobility more e�ciently by

combining similar trips (ride-matching problem) [8, 1].

These transport systems can complement or replace ine�cient static schedules of tram

or bus lines. This means they can act as a feeder or distributor for public transportation,

which is also known as the First Mile / Last Mile problem. Consequently, public transport

in combination with DRT could compete better with MPT. Otherwise, in some cases, DRT

systems can also be seen as an attractive alternative to MPT without public transport.

Overall, such systems have to be comfortable, fast, and reliable to be part of the mobility

in the future [6].

Even though the concept of ride-sharing is not new, more and more mobility projects

with demand driven concepts emerged in the last decade. This is due to a growing interest

1

1. Introduction

in optimizing mobility with more technical capabilities (smartphones, computing power)

and digitalization (e.g. online payment systems) [1, 2, 6]. For instance, in the past, the

planning of trips for similar dial-a-ride systems was often carried out by hand using

Microsoft Excel or Outlook [9]. However, technology and digitalization can be used

to automate such processes. Users can book trips via smartphones and the pooling of

transportation requests can be performed by advanced pooling algorithms and more

available computing power [10].

1.1. Motivation

The challenges related to mobility are very complex. On the one hand, urbanization

and the associated higher demand for mobility in con�ned spaces such as cities, lead to

congestion and overloaded public transport. On the other hand, rural exodus also plays a

role, since in rural areas the economic viability of public transport is often problematic

and, if the demand decreased, the o�ered services by public transport will decrease

too. This makes rural areas even less attractive without MPT and creates a feedback

mechanism of urbanization.

Especially the aspects of environmental pollution and ine�cient use of �nite resources

for the MPT indicate how important a change in mobility is. In order to make the mobility

of the future sustainable and more e�cient, this must be seen as a holistic problem that

requires interdisciplinary solution strategies, which includes for example the following

research areas: vehicle routing problem, enhancing single and multicriteria routing and its

performance (�nding the shortest or fastest path in a complex network), thus additionally

complex networks and graph theory should also be considered. Furthermore, an enhanced

use of geospatial data is also a part that should be considered, since the information

about road closures (constructions) or tra�c jams must be managed and maintained for

a routing engine. Also, geospatial data such as the road network (e.g. OpenStreetMap),

addresses, and house numbers as well as the access to buildings play an important role

for accurate and comfortable routing. In the future, this could be especially important for

autonomous driving, when no human driver can compensate for erroneous or inaccurate

routing.

Geographers are predestined for such interdisciplinary challenges. In this thesis, the

experiences of the following supported pilots of DRT projects have been included:

1. Ecobus: Phase 1 - area of interest in a rural area (small scale)

2. Ecobus: Phase 2 - area of interest in a rural area (medium scale)

2

1. Introduction

3. Flexa - area of interest in an urban area with the focus on feeding and supporting

intermodal transportation

The pilots from Ecobus
1

were a funded research project carried out by the Max Planck

Institute for Dynamics and Self-Organization (Dynamics of Complex Fluids). The Flexa
2

project is part of the o�ered services by the transport company Leipziger Vekehrsbetriebe

(LVB).

1.2. Mobility Concepts

There are a variety of di�erent modern, �exible transport systems, all of which basically

pursue the same goal: they want to o�er a more resource-e�cient alternative to the

conventional motorized private transport (MPT). In addition, most of the systems operate

to replace �xed routes of bus lines, which are not e�cient outside peak hours [9].

Some of the typical names of such modern, �exible transportation systems are demand re-

sponsive transport (DRT) systems, demand responsive ride pooling (DRRP), ride-pooling,

or ride-sharing. Whereby some already make distinctions here. Aydin, Gokasar, and

Kalan [6] state that the di�erence between so-called dial-a-ride problem (DARP) pro-

grams would be the driver supply, which means that in DARP, the drivers are provided

by a company, whereas drivers in ride-sharing systems are independent entities. In this

thesis, we do not use such a distinction between passenger transport systems, as long as

they have a similar goal and hence have similar requirements regarding technology and

information management (e.g. geospatial data and routing for to-door services).

Nevertheless, it is important to distinguish some modern systems from others, as they

lead to di�erent developments. Such demand-oriented transport systems, especially the

ones in cooperation with public transport or as a part of public transport, can actually

achieve a more resource e�cient transportation, as it strengthens the public transport.

In particular, such systems can act as a so-called feeder for public transport or they

can take over the �rst mile/last mile (FMLM). In the case of similar mobility services

such as Uber
3
, Lyft

4
, Grab

5
or Moia

6
[8, 1] etc., there is a risk that they will act as

competitors to public transport in urban areas and that potential customers who have

already used public transport will switch to such services and not, as is necessary, users

from MPT. Therefore, it is reasonable that such mobility services should be provided

1 https://www.ecobus.jetzt/home.html
2 https://www.l.de/verkehrsbetriebe/kundenservice/services/flexa
3 www.uber.com
4 www.lyft.com
5 www.grab.com
6 www.moia.io

3

https://www.ecobus.jetzt/home.html
https://www.l.de/verkehrsbetriebe/kundenservice/services/flexa
www.uber.com
www.lyft.com
www.grab.com
www.moia.io

1. Introduction

by transport network company (TNC) or mobility service providers (MSP) or at least

should be included as cooperation partners so that public transport is strengthened by

such mobility concepts.

For further literature, we refer to Masoud and Jayakrishnan [1] who present a comparison

of di�erent mobility concepts, to Jittrapirom et al. [11] with an overview of further

concepts and their aims, as well as to Böhler [12], even if it is not completely up to date,

but they provide a handbook for planning �exible forms of service in public transport in

Germany.

1.3. Main Contribution

Due to the opportunity to participate in supported DRT projects, it was possible to

identify potential enhancements for passenger transportation systems that geoinformat-

ics can provide. In this thesis, theoretical and real operational problems in passenger

transportation are considered, and moreover, implementations for some selected opti-

mization potentials are presented. The focus of the described challenges and optimization

potentials is on how geodata can be used and improved for this purpose in the �eld of

passenger transportation.

We neither focus on theoretical algorithms for the vehicle routing problem (VRP) nor on

algorithms for pooling nor on matching for dynamic and �exible mobility systems. For

this, we refer to the comprehensive overview from Masoud and Jayakrishnan [1].

1.4. Outline

In the second chapter examples of challenges in supported DRT projects are presented.

They are categorized in challenges based on performance issues due to the complexity of

road networks and computations for such networks and in challenges based on inaccurate

stop locations for to-door transportation. In the third chapter, we present basic concepts

of graph theory, routing techniques, approximation algorithms, map matching, and cost

distance analysis. In the following chapter, related work is introduced. Chapters �ve

and six revisit the categorized challenges from chapter two and present some solution

strategies and concepts for them. In chapter seven, the main results from chapters �ve

and six are discussed and considered in terms of how geospatial data can be enhanced in

the context of passenger transportation, and the methodologies are compared to other

approaches from the literature. Further, the potentials and future work are described

before in chapter eight, the results of this thesis are concluded.

4

2. Challenges in Modern Mobility

Concepts

In this chapter, challenges that occurred in supported DRT projects are presented. The

projects were introduced in section 1.1.

These challenges include performance issues for the determination of network distances

in the context of modern passenger transport systems, as well as the impact of erroneous

or incomplete map data on routing and in particular on so-called stop locations. For the

incomplete map data, OpenStreetMap is mainly used as an example, since both free and

commercial routing engines often use data from OpenStreetMap.

2.1. Performance of Network Distance Computations

Even if navigation and routing is an everyday task, there is still a need for improvements

[13], especially if navigation and routing systems are used for autonomous cars or for

very speci�c and reliable to-door routing, when the driver does not have enough local

knowledge like professional taxi drivers. Further, most popular online maps or routing

engines are used to compute single criterion queries. In practice, however, queries based

on multiple criteria are more useful, such as the shortest or fastest route, while trying to

avoid tolls or congested roads [14]. For more and more upcoming ride-sharing services

and DRT systems, this becomes more relevant, since drivers for such transport services

must rely on accurate routing in general and on accurately calculated stop locations.

Euclidean distances are widely used in transportation practice and transportation research

as a measurement between two points on the road network, due to historic di�culties

in calculating network distances and due to the assumption, that the ratio between

Euclidean distance and network distance on a homogeneous network tend to be constant

[15]. However, only the grid-like Manhattan road pattern can be seen as a homogeneous

network, but this assumption can not be applied to road networks in general. It is arguable

that Euclidean distance is su�cient for approximate estimations of network distance

when a small circuity value is present. This value describes the ratio of the distance on

5

2. Challenges in Modern Mobility Concepts

the road network to the Euclidean distance [16]. Still, the probability of miscalculations

and hence delays decrease with a smaller circuity value but doesn’t prevent errors due to

the Euclidean distance approach. Therefore, Shang et al. [17] recommend using the real

distance between two objects on the road network rather than the Euclidean distance.

Nevertheless, Euclidean distance is still used in current mobility and transportation

research. For example, Czioska et al. [18] use the Euclidean distance to cluster customers

into temporary and spatially similar groups for evaluating the feasibility of shared rides.

Another example of Euclidean distance used in transportation and transportation research

is in modern mobility services such as Uber
1
. Therefore, it is interesting to �nd the k

nearest neighbor (kNN). Shen et al. [19] describe that existing studies focused on kNN

for moving objects are still based on Euclidean distance constraints.

Figure 2.1 shows an extreme example of the di�erence between Euclidean distance and

network distance. Assuming an identical speed, the time delay between the calculated

time to get from the origin to the destination by Euclidean distance, compared to the

actual network distance, is in this case about factor 20.

Figure2.1.:Di�erence between network distance and Euclidean distance. Assumptions in transport planning

based on Euclidean distance can lead to miscalculations for distance and time. The di�erence of distance

or travel time, assuming the same speed, is about the factor 20.

Figure 2.2 depicts the use of Euclidean distance for a concept of a demand responsive

transport (DRT) system from Masoud and Jayakrishnan [1], precisely the concept for

�ltering suitable stops for ride pooling. The origin and destination of a predetermined trip

1 https://www.uber.com/

6

https://www.uber.com/

2. Challenges in Modern Mobility Concepts

are f 1 and f 2, the numbered nodes are possible stops. An ellipsoid is used to determine

the stops that are candidates for an acceptable detour, e.g., potential stops that can be

combined with the predetermined trip between f 1 and f 2. This ellipsoid is based on

Euclidean distance, e.g., an acceptable spatial or temporal detour, but it does not take into

account the actual distance on the road network. Since bu�ers, e.g. for time windows,

are used, the ellipsoid is not symmetric with respect to the origin and the destination.

The plane of the ellipsoid can describe time or space (spatio-temporal), but is only an

approximation to reduce the number of stops to be considered. It can occur that stops are

theoretically reachable, hence are within the ellipsoid, but are not reachable in practice

due to the di�erence between edge costs (network distance) and Euclidean distance.

Figure 2.2.:A network graph showing eligible stops for ride pooling with enumerated stops as nodes and

edge weights between nodes. A trip between f 1 and f 2 is already given. For this given trip combinable

stops, hence possible detours are determined using an ellipsoid based on Euclidean distance. Thus, the

number of eligible stops is reduced, since only stops within this ellipsoid are considered close enough

for a detour to them without violating constraints such as the arrival time window for the original trip.

However, the actual distance on the road network is not considered [1].

The computational complexity behind DRT systems can be easily underestimated. The

performance of calculations can be a limiting factor for the prevalence of such systems,

especially on a large scale [1, 20]. Such calculations include calculations of combinable

trips, but also the reiteration and evaluation process for changing conditions due to new

incoming trips or delays in intermodal trip planning. To combine two trips, many critical

calculations and constraints have to be done and checked, e.g. the distance of the detour

or the additional travel time for a passenger [21]. To �nd the optimal combination of

trips, these calculations have to be done as fast as possible to check given constraints

and compare di�erent combinations of similar travel requests. These calculations can

demand signi�cant computing power when dealing with a large number of requests and

routes.

In the literature, the problem of performance of such calculations, especially for shortest

paths or network distance calculations, is treated di�erently.

7

2. Challenges in Modern Mobility Concepts

Wang et al. [14] describe that multicriteria exact shortest path queries are proven to be

NP-hard [22, 23] and thus the most existing algorithms are approximative solutions [23,

24, 25] (cf. section 3.3) which use a parameter to limit the acceptable range of the results

as a constraint. They point out that for large road networks the existing methods are still

too expensive.

Maue, Sanders, and Matijevic [26] describe that an extreme way to accelerate shortest path

queries for static transportation networks is to precompute all shortest path distances. Yet

this is not practical for large networks since it requires quadratic space and preprocessing

time. For small networks, this can be a feasible solution, especially if possible origins and

destinations are limited. Then, a precalculated distance matrix, which is often provided

by modern routing engines, can be su�cient. If the possible origins and destinations are

not limited to a number of addresses and the network gets larger, the distance matrix can

get unnecessarily complex for certain applications.

There are many routing techniques and optimizations to calculate the shortest path (A*,

bidirectional Dijkstra, contraction hierarchies), hence the network distance between

two points. In section 3.2 the main concepts of such routing techniques are introduced.

Nevertheless, these algorithms scale with the size of the network (run time ≈ O(n2), cf.
section 3.3). For this reason, we will focus on generalizing the road network to reduce

the complexity of the network graph and hence the complexity for calculations such

as network distances queries. This enables a combination of a reduced network graph

and optimized routing algorithms for further performance improvements. We assume

that approximated network distances can be useful and su�cient for some purposes in

passenger transportation, such as reducing the number of potential stops in the ride-

pooling process of DRT systems. Instead of using Euclidean distance as Masoud and

Jayakrishnan [1], it may be su�cient to use the approximated network distances derived

from a generalized road network. Even if exact network distances can not be obtained

from a generalized road network by adjusting the degree of generalization, an acceptable

inaccuracy of the network distances and a concurrent performance improvement can be

achieved.

2.2. Optimized Pick-up and Drop-o� Locations in to-Door

Services

The following section refers especially to the application of routing for to-door services

without limited origin and destinations (addresses), such as those given for bus lines.

8

2. Challenges in Modern Mobility Concepts

Snapping or road snapping describes the assignment of a single coordinate or an address

to a reference point, a so-called snapping point on the road network as a start or end

point of a route. Road snapping is thematically related to so-called map matching, which

methodology is explained in section 3.4.

So far, road snapping in most conventional routing engines is based on perpendicular

distance, the shortest distance between a point and a line, hence the shortest distance be-

tween an address or a coordinate and a segment of the road network. To avoid inaccurate

or misleading snapping points, �xed stops or bus stations have been mostly used so far in

transportation services besides taxis. In to-door transportation, the calculated snapping

points were less relevant in transportation research and passenger transportation, since

to-door transportation was mostly performed by cab drivers (taxis) with local knowledge.

Another approach that can be used for modern, �exible demand transport systems, is

described by Czioska et al. [18], who determine e�cient meeting points. They state that

DRT systems mostly operate on a to-door policy. Instead of using real to-door services,

they determine meeting points for similar requests. This would o�er several bene�ts,

such as fewer stops and less traveled kilometers, but customers have to accept a walk

to meeting points [18]. The method of this approach can be described as follows. The

meeting points are determined in three steps: First, the customers are clustered into

temporary and spatially similar groups. Second, meeting points for boarding (pick-up)

and alighting (drop-o�) are calculated for each cluster. Third, a neighborhood search

algorithm is used to obtain the vehicle routes, that pass through all the calculated meeting

points while respecting requirements such as the passengers’ time constraints. This

approach is one way to avoid the issue with insu�cient stop locations and miscommuni-

cations of pick-up locations but requires acceptance of longer walks to the meeting points,

which does not comply with the requirements of to-door services and transportation of

elderly, hampered, or disabled people. Consequently, optimal snapping points for to-door

services become more relevant for transportation services and transportation research.

Typical snapping problems can occur for large building complexes with several entrances,

such as hospitals or university campuses, buildings directly located on intersections, or

buildings between two parallel roads with an identical name. There are some commercial

services that try to solve the problem like what3words
2

or Google Plus Codes
3
. However,

they only o�er the possibility to determine di�erent building entrances with shorter

coordinates by users, but not to determine meaningful snapping points or calculating them

automatically. Nevertheless, in most conventional routing engines snapping problems

still occur. Figure 2.3 depicts an example snapping point located on a highway, where it

is dangerous and most likely not possible to pick-up or drop-o� passengers. In this �gure,

2 https://what3words.com
3 https://grid.plus.codes/

9

https://what3words.com
https://grid.plus.codes/

2. Challenges in Modern Mobility Concepts

the routing from Google Maps shows the access to the destination with the blue dashed

line and the reference, hence snapping point, directly on a highway. The more suitable

and realistic approach to the building is shown with an orange dashed line, where several

parking spots are available.

Figure 2.3.: Road snapping based on perpendicular distance from Google Maps shows an insu�cient

snapping point without direct access to the building. The orange dashed line shows the correct access to

the building. The dotted line depicts the access to the building by Google Maps [27].

We can assume that Google Maps uses an enhanced technique for road snapping, that

uses additionally to the perpendicular distance a matching of names with the given

address and surrounding road names. However, this technique is still not su�cient as

shown in Figure 2.4. In this �gure, the snapping point is not located on the road in the

southeast, even if the shortest perpendicular distance would lead to a snapping point on

this road. Instead, the road northwest is used as a reference for the given address, since

the road name and the address have a matching name. The actual access to the building

is depicted with the orange dashed line.

Even if such snapping problems don’t occur often, it shows that state-of-the-art routing

engines like Google Maps yet have problems with accurate snapping points. For a reliable

and comfortable to-door mobility service, such problems should be avoided.

Another, more theoretical problem that has not been encountered in the pilot projects,

but may occur when multiple reasonable reference points for passenger boarding are

available on the road network. For this theoretical showcase, we do not care about

the perpendicular distance. As an example, Figure 2.5 shows three possible locations

for the boarding of passengers. The yellow line represents the most reasonable stop

location, but depending on the direction and the destination of the route the other options

10

2. Challenges in Modern Mobility Concepts

Figure 2.4.: Problems in current road snapping by perpendicular distance. Even if a matching name of

the road and the given address is used as an additional feature, the actual access to the building (orange

dashed line) di�ers from the result from Google Maps. The dotted line depicts the access to the building by

Google Maps [28]. In the Appendix A (Figure A.5) is a true color image with a similar extent and a higher

resolution depicted.

can be preferable for boarding. The quality of map data will also in�uence the choice

of boarding locations by routing engines. This can be especially relevant when using

OpenStreetMap data. In OpenStreetMap properties, so-called tags such as “private” or

“service”, are assigned to features (e.g. roads, buildings, areas). Map data with these tags

are then ignored by routing engines to avoid routing on private properties. Due to a

community-driven validation of the map data, it can happen that some assigned properties

are not consistent or even wrong and consequently, the quality of the snapping by routing

engines is in�uenced. In Figure 2.5, the parking lot (yellow line) could theoretically be

assigned with the property “private”, making the other stop locations more reasonable.

Supplementary to the snapping problems, missing map data also lead to challenges in

supported pilot projects. Figure 2.6 shows an example of a missing road, which leads

also to problematic snapping. The road segment highlighted with pink dots was missing

in this case but it could also have a wrong property (e.g. private road) and then it will

not be considered for snapping in most routing engines. This leads to a snapping point

north of the river, because the blue line represents the shortest distance to the next road

segment, while the acceptable alternative (red line) is longer and is thus not considered

as a snapping point.

Another showcase is depicted in Figure 2.7. The service roads to the buildings were

missing, which led to a snapping point on the highway (Bundestrasse B64).

11

2. Challenges in Modern Mobility Concepts

Figure 2.5.: Three possible stop locations for a building that can be reasonable for passenger boarding,

depending on the given route, its driving direction, and the quality of the map data.

These examples show that an accurate determination of snapping points becomes more

relevant for upcoming to-door services besides taxis. The communication of stop locations

for boarding passengers is also crucial. With modern smartphones and apps, this can

be done by highlighting the calculated pick-up location on maps. In the supported pilot

projects in rural areas, we encountered the challenge, that the mobility demand of older

people without smartphones must also be met. This is why booking via a call center

was also made possible as part of the pilot. Here, verbal communication of exact pick-up

locations becomes a serious challenge.

12

2. Challenges in Modern Mobility Concepts

Figure 2.6.: E�ects of missing map data on road snapping. The road segment highlighted with pink dots

was missing or can be theoretically tagged with wrong information, which leads to a snapping point north

of the river. This is due to the shorter distance to the next road segment, represented by the blue line and

the acceptable alternative (red line) is not considered due to the larger distance. Based on the missing map

data or inaccuracies, detours and miscommunication for pick-up and drop-o� locations can occur. This

visualization is based on the exact results of routing engines using OpenStreetMap data.

Figure 2.7.: Snapping problem caused by missing map data. The road segment highlighted with pink dots

was missing in OpenStreetMap, which results in a reference to the road network represented by the blue

line. Thus, a snapping point on a highway was used, since the red line represents a larger distance than

the blue one. On the right is a similar extent of the region with a satellite image from Google Maps to give

a realistic impression of that area. This visualization is based on the exact results of routing engines using

OpenStreetMap data.

13

3. Preliminaries

3.1. Graph Theory

Graph theory is a branch of mathematics. The origin of this sub�eld can be traced back

to Leonhard Euler (1707-1783) and his solution for the problem of the seven bridges of

Königsberg. He was asked to �nd a route or circuit over seven bridges in Königsberg,

with the condition that each bridge should be crossed only once. He was able to prove

by means of a graph, that such a circuit is not possible [29]. A graph G = (V , E) consists

of a �nite set of nodes V = {V1,V2,V3, . . . ,Vn} and edges E, de�ned by pairs of nodes

E1 = {Vi,Vj}. Edges can be assigned arbitrary data, such as distance, velocity, or other

properties of the node pair’s relationships, which are then referred to as edge weights. In

the literature, the terms nodes, vertex, or vertices are often used synonymously. Edges

are also referred to as segments or arcs. By using graphs, relations can be represented

as (complex) networks and mathematical calculations and analyses can be performed

for such networks. Besides the classical �elds of mathematics and computer science

(e.g. networks of communication or parallel computing), graph theory is also used in

chemistry (isomorphism of molecules), biology (spread of diseases and parasites), neuro-

sciences (networks of nerves), and in social sciences (social networks and relationships)

[30, 31]. In the context of this thesis, graph theory is used for cartographic purposes, since

a road network (topological network) can also be viewed as a graph. Edges represent

road segments and nodes represent intersections or the start and end points of the

segments. Graph theory has already been used in numerous cartographic studies for the

generalization of road networks [32, 33, 34, 35, 36, 37, 38, 39].

The graph theory allows a variety of di�erent calculations and analyses such as con-

nectivity analyses or the so-called traveling salesman problem. The traveling salesman

problem is a classical problem of combinatorial optimization, where a sequence of nodes

is searched that covers all nodes of the graph and visits all nodes except the starting

point exactly once with minimal edge weights (e.g. distance) [40]. In the context of road

networks, graph theory also involves the Dijkstra’s algorithm, which is an important

basis for routing problems [41]. This algorithm computes within a graph the shortest or

14

3. Preliminaries

most favorable path in terms of edge weights from a starting node to a destination node.

This algorithm and other routing techniques are introduced in section 3.2.

Further terms, which need a closer terminological consideration, are adjacency and

incidence. They describe the relations of objects to each other in a graph. Adjacency

characterizes elements of the same type (two nodes) in a graph that are adjacent, hence

direct neighbors. Incidence, on the other hand, is characterized by two elements of

di�erent types being adjacent (e.g. an edge and a node).

The data of the graph can be stored in a so-called adjacency matrix or alternatively in

multiple lists. Thereby, for each node, a list with all the adjacent nodes and the weights

is stored. Figure 3.1 depicts an example of a weighted graph and the corresponding

adjacency matrix as well as the alternative storage in multiple lists. Lange [40] states that

in practice, the storage method of multiple lists is mostly used since it requires less space

than the adjacency matrix.

Figure 3.1.:Visualization of a weighted graph (left), the corresponding adjacency matrix (middle), and the

alternative storage in multiple lists (right)[40].

Network graphs can be basically divided into digraphs, multidigraphs, and weighted

graphs. Digraphs are characterized by the fact, that edges are directed. This means they

have an assigned direction, such as oneway roads. Multidigraphs have the additional

property, that between two nodes, multiple edges can exist. A weighted graph describes

the property of weighted edges in a graph. Thereby arbitrary data can be stored as

weights. For road networks, the distance, travel time (speed limit), or general properties

of the roads are stored, such as the name or the condition of the road. Further examples

of edge properties or weights from practice are documented by OpenStreetMap [42, 43].

Consequently, road networks are mostly categorized as weighted multidigraphs.

The degree a node is also called valency [37], gives the number of adjacent nodes D(Vn).

In Figure 3.2, the node V7 has a degree of 5 because it is directly connected or adjacent to

5 di�erent nodes. A special case for the degree of a node arises for loops as in V11. For a

loop in an undirected graph, a degree of 2 is calculated, because each outgoing edge is

interpreted as a neighboring node. Thus, if no digraph is given where the loop has the

attribute “oneway”, then one outgoing edge is counted for each direction. With respect

15

3. Preliminaries

to Figure 3.2, this leads to D(V11) = 5. The node V7 has a central role because removing

this node would result in two separate graphs. These graphs are then called subgraphs. If

removing of a node creates subgraphs or disconnected edges, then such a node is called

articulation vertex [35]. If subgraphs are created by removing edges, these edges are called

disconnected set. In Figure 3.2 the disconnected set would consist of the edges E6 and

E7. Such nodes and edges should ideally be identi�ed before generalization so that they

are not removed during the generalization process. Thus, isolated nodes and unwanted

disconnected subgraphs can be prevented. A further terminological concept is the so-

called dead-end. Dead-ends can be either be roads with an end, but also be connection

points to the road network outside of the selected extract of a road network.

Figure 3.2.:Graph with articulation vertex V7, a disconnected set E6 and E7, a dead-end V10 and a loop V11.

Another basic concept in the context of graph theory that should be mentioned are the

so-called centrality measures. In general, centrality measures represent information about

the connectivity of the whole graph or of single nodes. An example of this is the centrality

measure connectivity. The connectivity value can be between 0 and 1. If the value is 1, all

nodes of a graph are connected. Figure 3.3 shows exemplary connectivity values with the

corresponding graphs. The following formula can be used to calculate the connectivity

[39]:

Connectivity =

∑
i∈N

∑
j∈N aij

N (N − 1)
(3.1)

where aij is the path between the two nodes i and j , and N is the number of all paths. This

measure can be used to validate a generalization of a graph, as unintentionally resulting

isolated nodes or detached subgraphs can be identi�ed.

Another centrality measure is the betweenness centrality. Betweenness centrality can be

considered as a measure of the relevance of a node. This measure indicates the frequency

of shortest paths passing a node. Speci�cally, this can be illustrated in Figure 3.4. All

16

3. Preliminaries

Figure 3.3.: Example of the centrality measure connectivity [39].

shortest paths from regionC1 to regionC2 pass through nodeV . This leads to the highest

betweenness centrality value of V .

Accordingly to Jiang and Claramunt [34], the betweenness centrality for a nodeVi can be

calculated as follows:

Betweenness(Vi) =
N∑
j=1

j−1∑
k=1

Pikj

Pij
(3.2)

where Pij is the amount of shortest paths between the nodes i and j, and Pijk describes

the amount of shortest paths between i and j through k .

Figure 3.4.:Visualization of the betweenness centrality. All shortest paths between C1 to C2 pass through

the node V , which leads to a high betweenness value of V [44].

There are numerous centrality measures. For a more detailed overview, we refer to [45,

46, 47] and for the closeness centrality to subsection 5.2.4.

Another part of graph theory is the distinction between di�erent types of network

graphs. For example, they can be categorized into types such as the dual or the complete

graph. The dual graph represents inverted graphs, where edges of a normal graph

are represented as nodes and vice versa. Consequently, nodes represent roads and

edges indicate intersections [34]. Figure 3.5 depicts an example of the normal and the

corresponding dual graph.

17

3. Preliminaries

Figure 3.5.: Schematic representation of a dual graph (right) from the original graph (left).

Figure 3.6 depicts a complete graph K with 8 nodes. Complete graphs are characterized

by the fact, that every node is directly adjacent to all other nodes. Such graphs can be

very complex since they re�ect every possible shortest path with one edge. The number

of edges of a complete graph can be calculated with the following equation:

Km = n ∗
n − 1

2

(3.3)

where n is the number of nodes.

Figure 3.6.: Example of a complete graph K with eight nodes. Each node is directly connected to all other

nodes.

18

3. Preliminaries

3.2. Routing Techniques

In this section, the basic techniques of many routing tools are presented in a simpli�ed

form. The work�ow of the well-known Dijkstra algorithm [41] is also introduced as an

example. Many optimizations for routing in network graphs or solving the so-called

shortest path problem are based on this algorithm. In section 4.1, more speci�c algorithms

and heuristics are introduced that improve the performance of routing, based on graph

partitioning or so-called arc �ags or label hubs.

Routing, or solving the shortest path problem, is a very large and broad research �eld,

that can be applied to various disciplines. For example, routing is relevant for telecom-

munication, computer networks, but also for routing engines in the context of navigation

and transportation.

Using the information available as edge weights, most routing techniques can determine

not only the shortest path (using distances from edge weights), but also the travel time

or use any other arbitrary data stored as edge weights to calculate the path with the least

sum of edge costs. Hence, the path between two nodes in a graph with the least cost is

determined, using the edge weights as costs. There are special features that have to be

considered since they limit some algorithms, such as negative edge weights or directed

and undirected graphs. However, this is neglected in this section.

For the sake of clarity, we want to emphasize that a shortest path re�ects the order of the

visited nodes or edges. In contrast, the shortest path cost or the shortest path distance

re�ect the sum of the edge weights of this path. In the context of this thesis, the focus is

on shortest path distances. However, the method presented in chapter 5 can be applied

to other purposes as well.

Figure 3.7 illustrates Dijkstra’s algorithm. Given is a graph G = (V , E) with start node

VB and target node VE highlighted. The edge weights can be arbitrary data. In the initial

phase, all nodes except the start node are assigned to in�nite costs. Then recursively the

adjacent nodes of already visited nodes are visited and the costs are updated if the cost is

lower than the already assigned cost. This process runs until the target node is reached

from all possible nodes. This algorithm has the disadvantage, that all nodes in a graph

have to be visited, even if they do not play a role for the shortest path to a given target

node. This is illustrated in Figure 3.7 using the node A, whose reachability costs is also

determined.

In modern optimizations of routing algorithms, there is mostly a tradeo� between �exi-

bility, customizability, and performance [13]. There is an abundance of di�erent routing

techniques, optimizations, and combinations of these techniques. In the following we

19

3. Preliminaries

Figure 3.7.: Example of Dijkstra’s algorithm. Finding the shortest, respectively the least cost path between

the highlighted nodes VB and VE . In A) the initial phase is visualized. Every node except the starting node

is assigned a cost of in�nity. In each step, the adjacent nodes from the starting node and from the already

visited nodes are then recursively updated with their respective costs. The least costs are taken over and

assigned to the node. In B) the paths to each node and their associated costs are shown. In red is the path

with the least cost highlighted, that is �nally assigned to the node. The least cost path, or the shortest path,

assuming edge weights are distances, from VB to VE is using the path B,D,C, E with a total distance of 16.

want to give a brief overview of some common routing techniques besides Dijkstra’s

algorithm:

• Bidirectional Dijkstra [48]: This algorithm is Dijkstra’s algorithm implemented

with bidirectional search. Bidirectional search can be implemented for some other

routing algorithms as well. The search process then starts parallel from the origin

and the destination node, hence from two directions.

• A* (Goal-Directed Technique) [49]: This algorithm is based on Dijkstra. It uses

a heuristic to optimize the e�ciency of the search path by searching in a targeted

manner rather than checking all nodes of a graph, as it is the case with the original

Dijkstra algorithm. Here, the Euclidean distance is used to restrict the search path.

• Contraction Hierarchies [50]: This technique has a comparatively high perfor-

mance and is implemented in many navigation and routing engines. The heuristic

behind this technique can be described by contracting important junctions. This

is done by adding edges as shortcuts between important junctions, thus routing

between two nodes can use the shortcuts and not the full path (not every node)

has to be considered. This approach requires preprocessing, hence dynamically

updates of edge weights are not possible. Thus, for routing engines like Open

Source Routing Machine (OSRM), Contraction Hierarchies is fast, but for example,

road closures can not be updated dynamically due to the required preprocessing

[51].

• FloydWarshall [52, 53]: This algorithm is very speci�c and is mostly not used in

common routing engines, since this algorithm is used to identify all pairs shortest

20

3. Preliminaries

paths (APSP). This can be useful if distances are precomputed and stored in a

distance matrix.

• breadth-�rst search (BFS) [54]: This algorithm visits all nodes in a search from

a given starting node (root) until the searched node is found. In this process, all

directly adjacent nodes are always visited �rst. In contrast, the depth-�rst search

�rst searches in the depth of a graph or tree and visits not step by step all directly

neighboring nodes.

For a detailed overview of state-of-the-art routing techniques in terms of functionality,

performance, and shortcomings, we refer to Bast et al. [13] for the most current overview

and to Delling et al. [55] for an overview speci�cally focused on road networks.

3.3. Approximation Algorithms

Before approximation algorithms can be discussed in more detail, the basics of compu-

tational complexity must be clari�ed. Computational complexity allows describing the

resources needed to solve complex problems. Thus, the complexity of problems can be

classi�ed. For this purpose, either the O notation is used or the complexity is re�ected

by a function f (n), where n represents the size of the input.

For example, algorithms are divided into the complexity classes P, NP, or NP-complete. P

(polynomial time) means that the problem can be solved by an algorithm in polynomial

time, e.g. n2
, n3

, whereas NP-problems (non-deterministic polynomial time) require

mostly exponential time, e.g. 2
n
, 3

n
. NP-complete is the next step, which means that both,

the calculation and the validation always take exponential time.

Simpli�ed, P-problems are all problems that a computer can solve and validate in a

reasonable time. While NP-problems can be validated in polynomial time, but it may

take an exponential time to solve the problem. To be precise, solving problems means

determining the optimal solution.

Most combinatorial optimization problems are NP-hard, such as multicriteria shortest

paths algorithms [22, 23] or the well-known traveling salesman problem [56] (cf. section

3.1).

For such problems, so-called approximation algorithms are mainly used in practice.

Approximation algorithms for discrete optimization problems relax the requirement of

�nding an optimal solution, but the goal is to relax this as little as possible. Thereby,

heuristics and assumptions are used to approximate the optimal solution. Consequently,

if not only the optimal solution is acceptable, multiple solutions can be good enough

21

3. Preliminaries

and acceptable in some cases. This means results for approximation algorithms can

be nondeterministic since the same parameters used for the same algorithm can lead

to di�erent acceptable results, depending on the used algorithm or heuristic. Here,

randomness as part of a heuristic can be named as an example. For a more detailed

overview of approximation algorithms, we refer to Williamson and Shmoys [56] and

Johnson [57].

3.4. Map Matching

The preliminaries described below have also been adopted for the publication Hahn,

Frühling, and Schlüter [58]. Further, another publication process in the International

Scienti�c Journal - Transport Problems
1

is in progress.

Nowadays, the global positioning system (GPS) is used for almost every navigation.

However, the determination of the position always contains a certain inaccuracy. Thin

et al. [59] present and compare di�erent methods to compensate the inaccuracy of GPS.

The so-called map matching is one of these techniques. Pereira, Costa, and Pereira [60]

de�ne map matching as the task of relating a geographic point or a sequence of points to a

logical model of the real world, such as road networks. Map matching can be divided into

real-time map matching and o�ine map matching. A typical application for real-time

map matching is live navigation, where the determined position should be directly located

on the road and not next to the road or on the wrong lane, despite the inaccuracies of

GPS. O�ine map matching instead is mostly used to reconstruct the most likely path of a

given GPS-track by assigning the points to nearby roads. Therefore, conventional routing

engines use the perpendicular distance, which is the shortest line between a point and a

line (e.g. a road segment). This can be calculated using the formula in Equation 3.4:

dperpendicular =
|Ax + By +C |
√
A2 + B2

(3.4)

where dperpendicular is the distance from a point de�ned by (x,y) to a line de�ned by

Ax + By +C = 0.

In this thesis, we focus on so-called road snapping, which is thematically and technically

strongly related to o�ine map matching.

1
ISSN 1896 - 0596

22

3. Preliminaries

We de�ne road snapping as the process of determining start and end point of a route

which represent reference points for a given origin and destination on the road network.

However, the intention of road snapping is di�erent from that of o�ine map matching,

which is why di�erent factors are considered in road snapping than in o�ine map

matching. Here, for example, the use of matching road names with the name of a given

address can be mentioned (cf. Figure 2.4), which is usually not taken into account in

typical o�ine map matching. Examples of road snapping services by conventional

routing engines, that are based on perpendicular distance are the Google application

programming interface (API)
2

or the Nearest API
3

from Open Source Routing Machine

(OSRM).

There are many publications on real-time map matching [60, 61, 62, 63, 64, 65], but a few

on o�ine map matching and road snapping [66], as it has received little research focus

for a number of reasons. In the past, improving map matching, o�ine and especially real-

time map matching were generally more relevant to enhance routing and postprocessing

GPS-tracks. The accuracy of snapping points for pick-up and drop-o� locations was less

important in the past for an e.g. transport network company (TNC) as already mentioned

in section 2.2. This is changed due to the increasing demand for transportation with

to-door services, o�ered by other entities besides taxis. Accurate road snapping may

also be of great interest for autonomous driving in the future, as insu�cient snapping

points, as sometimes derived from conventional routing engines, could no longer be

compensated by the smart behavior of a human driver.

3.5. Cost Distance Analysis

As already indicated in section 3.4, the preliminaries described below have also been

adopted for the publication Hahn, Frühling, and Schlüter [58]. Further, another publica-

tion process in the International Scienti�c Journal - Transport Problems
4

is in progress.

Even though the methodology of a cost distance analysis is su�ciently known and

documented in the �eld of geoinformatics, we also want to address an audience of

mobility researchers, which is why we explain the basics of a cost distance analysis in

this chapter.

Cost distance is a “procedure for determining least cost paths across continuous surfaces,

typically using grid representations” [67]. Cost distance is based on the concept, that

movement in continuous space requires e�orts of di�erent kinds. Therefore, not only

2 https://developers.google.com/maps/documentation/roads/snap
3 http://project-osrm.org/docs/v5.5.1/api/#services
4

ISSN 1896 - 0596

23

https://developers.google.com/maps/documentation/roads/snap
http://project-osrm.org/docs/v5.5.1/api/#services

3. Preliminaries

the length of a route e.g in Euclidean space but also its di�culty in�uence the time or

cost of completing the route. The concepts of Euclidean distance and cost distance are

compared in Figure 3.8.

Figure 3.8.:Di�erent distance metrics for �nding the least cost path from (1:1) to (1:5) highlighted in blue.

A) Least cost path by the Euclidean distance (cost = 5). B) Least cost path by cost distance (cost = 10).

Cost distance analyses, �rst de�ned in the 1950s as Cost Based Proximity Analysis [68],

are widely used in areas such as cartography, archaeology and computer science. Some

possible applications are road planning [69] and the reconstruction of ancient roads with

known start and end points [70]. In many studies, the resulting paths are considered as

realistic [69, 71]. Nowadays, the calculation of the least cost path based on cost distance

is implemented in most geographic information system (GIS) [72].

The identi�cation of the least cost path between two points on a grid can be done as

follows. So-called source cells are given points, that refer to possible destinations.

In a cost distance analysis, for every cell in a grid, the costs of paths to all source cells are

computed and compared. Consequently, the computational time scales with the number

of source cells and with the resolution of the grid or raster. A cost surface is needed as

an input, which can be seen as a gridded representation of a graph, describing the cost

per grid-cell. In a grid representation of a graph, cell centres represent the nodes of a

graph with costs passing the nodes. They are connected via edges with adjacent nodes,

respectively adjacent cells [73].

There are several possible neighbourhood types that determine the number and relations

of adjacent nodes of a cell. The most common ones are shown in Figure 3.9.

The weights of the edges are calculated for horizontal and vertical neighbours as shown

in Equation 3.5. For diagonal neighbours the Equation 3.6 was used.

24

3. Preliminaries

Figure 3.9.:Di�erent neighbourhood types in gridded data representation: A) Rooks pattern - 4 linked

neighbours for each cell. B) Queens pattern - 8 linked neighbours for each cell. C) Knights pattern - 16

linked neighbours for each cell. [69]

a1 =
(cost1 + cost2)

2

(3.5)

b1 =
√

2 ∗
(cost1 + cost2)

2

(3.6)

When multiple parameters should be considered, di�erent cost surfaces can be amalga-

mated into a merged cost surface. For a single cost surface or a merged cost surface, an

accumulative cost surface and a backlink raster are calculated based on the cost surfaces.

Therefore, in most implementations of cost distance analysis, Dijkstra’s shortest path

algorithm is used [74]. We used a well-established modi�cation of this algorithm [69] to

calculate the cost from each cell to the next source cell with the least cost, resulting in an

accumulative cost surface and a backlink raster. The cells of a backlink raster contain

coded direction values linking to the next cell on the least cost path to the source cell.

The cells of an accumulative cost surface contain the actual cost of the path to the source

cell. The backlink raster can then be used to track the least cost path from any cell to the

next source cell with the least cost [75]. Figure 3.10 shows a simpli�ed example of a cost

distance analysis with equally weighted cost surfaces.

25

3. Preliminaries

Figure 3.10.:A) Generation of a Merged Cost Surface with equally weighted Cost Surfaces. B) Generation

of the Accumulative Cost Surface using the Queens pattern and Equation 3.5 and Equation 3.6. In each cell,

the least costs to the next Source Cell is stored.

26

4. RelatedWork

4.1. Graph Partitioning of Road Networks

Many research domains make use of graph theory to constitute and analyze relations

in data as already introduced in section 3.1. Thus, graph partitioning can play a role as

part of methodologies for many di�erent research areas, resulting in di�erent aims and

approaches just for graph partitioning. Nevertheless, graph partitioning and clustering in

networks are key tools for processing and analyzing large complex networks, independent

of the research area [76]. Hence, graph partitioning can be also seen as a generalization

process.

Graph partitioning is a very versatile and broad �eld of expertise. Schulz [77] states that

“it is quite fascinating that the problem of dividing a graph into a given number of blocks
having roughly equal size, such that some objective function is minimized, literally has
application everywhere. For example, solving the graph partitioning problem can help to
balance load and minimize communication in scienti�c simulations [78, 79, 80], can speed
up Dijkstra’s algorithm [81, 82], and in general is useful technique in the route planning
area [83, 84, 85] [...].”1

Furthermore, such methods can be applied to e.g. social networks

or arbitrary information, that can be stored in network graphs. This is particularly

interesting against the background of big data since larger amounts of data can be better

processed due to the partitioning. In this thesis, however, we focus on graph partitioning

from the point of view for optimizing routing performance and generalization of road

networks.

We present a condensed and simpli�ed overview of the main approaches in the literature

with the focus on road network partitioning and routing enhancement, that can be used

to optimize e.g. the pooling process in demand responsive transport (DRT) systems.

Routing enhancement can be carried out by improvements of the routing algorithms (cf.
section 3.2) itself (e.g. A*, Bellman-Ford, bidirectional Dijkstra, etc.) or with preprocessing

1
Remark: This direct quote has been modi�ed by adjusting the source citations to match with the

bibliography of the present thesis.

27

4. Related Work

and modi�cations of the underlying data. In this work, we focus on the latter one, which

can often be combined with enhanced routing algorithms.

Bichot and Siarry [86], Buluç et al. [87], Pavlopoulos et al. [88], and Schae�er [31] report

comprehensive overviews of graph clustering algorithms and fundamentals, mainly for

application in parallel computing, biology, and chemistry. Despite the abundance of graph

clustering methods, the application for road networks is less frequently investigated.

Enhancement of the computation time of shortest path algorithms in road networks,

partitioning the network, preprocessing, and modi�cations of routing algorithms are the

most common methods used in the existing literature.

In the following, we present the basic ideas of the most relevant approaches from the

literature.

Arc-Flag: Reducing the search size
The widely used Arc-�ag approach, introduced by Lauther [81] and improved by Hilger

et al. [89], Köhler, Möhring, and Schilling [90], and Möhring et al. [82] are based on the

idea of edges with additional binary information, in particular, whether they are part of a

shortest path to a given region of the network. In this approach, the network is divided

into simple, rectangular regions using a grid [81] or kd-trees and quad-trees [82, 89].

Due to the �ags, the search size for a shortest path is reduced. Still, the preprocessing

is very expensive, a modi�cation of the used routing algorithm is needed and the space

complexity depends on the partitioning because each arc has �ags equal to the number

of partitions.

Natural cuts: Minimizing edges between partitions
Another widely used approach, presented in the groundbreaking paper of Delling et al.
[91], is based on the idea of natural cuts. This approach is divided into two steps. First,

minimum-cuts are computed to identify dense regions of the graph. Second, search

heuristics are used to create �nal partitions. Delling et al. [91] state that their resulting

algorithm PUNCH (Partitioning Using Natural Cut Heuristic) is well suited for road

networks since the natural cuts can be compared with bridges, mountain passes, or

ferries, where a separation of a road network is reasonable, referring to large, continental-

sized networks. Based on minimal or natural cuts many similar approaches emerged.

Customizable Route Planning
The customizable route planning (CRP) approach, presented by Delling et al. [85] and

Delling and Werneck [92] is based on the principle of separating the topology of the

graph as an overlay graph from cost metrics which can be changed dynamically. It

consists of two main stages. i) metric-independent preprocessing, which generates an

overlay graph based on the topology of the primal graph. Therefore a graph partitioning

28

4. Related Work

algorithm is needed. Delling et al. [85] and Delling and Werneck [92] used the PUNCH

algorithm from Delling et al. [91], but the partitioning algorithm can be exchanged. For

each partition, incoming arcs are denoted as entry points of the partition and outgoing

arcs as exit points. The overlay graph is then the bipartite graph with directed shortcuts

between entry points and each exit point within the same partition. ii) The next stage

computes actual costs of the overlay graph based on given metrics. The metric and hence

the cost can be changed and updated fast and independently.

Proxies and precomputed distances
Jung and Pramanik [93] developed HiTi (Hierarchical Multi), a graph model to structure

the topology of road maps. They partition large graphs into smaller subgraphs and

precompute shortest paths between boundary nodes of each subgraph and �nally store

them in a hierarchical manner, which is then used by their new proposed shortest path

algorithm SPAH. They used simple grid graphs as a representation for road networks.

Yan et al. [94] and Xu and Jacobsen [95] make also use of boundary nodes to partition

gridded road networks. Therefore, they used the area of the whole graph, seen as a

polygon. They calculated cuts (shortest paths between border nodes on the contour) of

the graph with equally distributed border nodes to divide the graph into zones. Yan et al.
[94] performed minor adjustments to generate distance-preserving subgraphs (DPS) with

prede�ned route sources and targets based on the zones. Their approach can be used in

logistics plannings where logistic hubs as prede�ned route sources and targets are static

and known before the partitioning process.

Maue, Sanders, and Matijevic [26] describe that an extreme way to accelerate shortest path

queries for static transportation networks is to precompute all shortest path distances. Yet

it is not practical for large networks since it requires quadratic space and preprocessing

time. Thus, they explore an approach to speed up queries by precomputing and storing

only some shortest path distances, resulting in so-called precomputed cluster distances

(PCD), which can be seen as a lookup table with the precomputed distances between

given clusters. Therefore they used a k-centering clustering, which partitions the graph

into random k-clusters with similar sizes. For each cluster, they create a new node v′

with zero edge weight to every border node of the same cluster. Thereby the search size

can be pruned when routing through clusters because only the newly added node and

the border nodes have to be considered. The shortest path search runs in two phases.

First, a bidirectional search from starting node s to target node t is performed until the

search boundaries meet or until the distance between s , t and the respective border nodes

of their cluster is found. The distance table with precomputed distances between clusters

can then be used to look up the missing distance between the two corresponding clusters,

where s and t are located.

29

4. Related Work

Eapen and Beegom [96] and Ma et al. [97] use the concept of deterministic routing areas

(DRAs) and corresponding proxies, which are small subgraphs and their representative

nodes. To identify the DRAs, bi-connected components and some minor improvements

(size restriction, assignment of leaf nodes) are used. A bi-connected component is a

maximal set of edges, such that any two edges of the set lie on a cycle. Based on the DRAs,

a reduced graph is created where DRAs are replaced with proxy nodes. The distances

within each DRA between every node and its proxy are calculated and stored in a lookup

table. The query stage runs di�erently depending on the location of starting node s and

target node t . If they are within the same DRA, the precomputed paths or distances can

be used from the lookup table. If they are located in di�erent DRAs, a normal routing

algorithm runs on the reduced graph between the corresponding proxies for s and t . The

additional distance from the proxies to s , respectively t can then be read from the lookup

table.

Various interdisciplinary approaches
Raghavan, Albert, and Kumara [98] introduced the label propagation algorithm (LPA) for

detecting communities in social networks. This approach is still known for its e�ciency

and scalability, as it runs almost in linear time. The procedure of this algorithm starts

with an initial phase where every node gets a unique label. In every further step, nodes

adopt the label which occurs most in neighboring nodes. Therefore the algorithm uses

the structure of the graph, hence the connections of nodes to their neighbors. If no label

is in the majority (tie), like in the �rst iteration, then the assignment is random. Thus, the

�nal results are nondeterministic. This algorithm runs until no labels are changed in an

iteration and then nodes with the same label are grouped into a community, respectively

into a partition of the graph. A special feature compared to other approaches is, that no

prior analysis or knowledge about the graph is needed, such as the number of communities

or the size of communities.

Modularity is another widely used approach to detect communities in social networks.

The basic idea from Newman [99] is to use Modularity as a best-�tting function or

measure, resulting in a score for partitions. It evaluates given partitions by relating

the proportion of edges within a community to randomly distributed edges. Partitions

are changed until a su�cient score is reached. For this approach, the number and size

of communities are required as a given parameter. Consequently, prior analysis of the

network is important, as the optimal number and size of communities depend on the

network and its structure.

Anwar et al. [100] presented a dynamic clustering of urban road networks based on �ow

data. They aim to partition the network based on congestion to reduce the complexity of

the network and hence the computing load for routing management could be optimized.

30

4. Related Work

A modi�ed k-clustering, a density-based clustering with a given number of clusters was

used to create a density peak graph, and then as a �nal result, the partitioning of the

network.

Another approach by Shoman and Gülgen [101] used the concept of centrality measures

for thinning a road network to enhance the labeling of roads for visual purposes. The idea

of centrality measures is to determine an indicator for the importance of nodes. Com-

mon centrality measures they considered are closeness, betweenness, straightness and

reach. Less important nodes and corresponding edges are omitted in the generalization

process.

Multilevel Graph Partitioning
The multilevel graph partitioning (MGP) is a widely used heuristic in graph partitioning in

general, but it is independent of the partitioning process itself. It comprises three phases.

i) Coarsening a graph, mostly done by contracting nodes until the graph is small enough

for computational complex partitioning algorithms. ii) Initial partitioning by using any

partitioning algorithm that uses edge weights. iii) Uncoarsening the graph to its �ner,

primal level while mapping the partitions to the �ner level. Additionally, the partitions

are often improved in this step by some iterative improvement heuristic (e.g. local search),

because partitions based on a coarse level correspond to big changes on the primal level,

which might be not optimal on the primal level. This heuristic enables the application for

graph partitioning algorithms with a higher calculation complexity on large networks,

due to the coarse level and the opportunity of parallelizing the computations. For more

information, we refer to the multilevel graph partitioning section in [87].

Commonly used software
Commonly used software in the existing literature are METIS

2
and SCOTCH

3
. Both are

not fully up-to-date. Still, there are widely used algorithms implemented. For more

recent work, we want to highlight the software published by the Karlsruhe High Quality

Partitioning Group (KaHIP)
4
. One focus of the software is to parallelize computations

to speed-up the partitioning process itself for large networks. Since this is not the main

focus of our work, we will not go further into detail.

4.2. E�ects on Incomplete Map Data on to-Door Services

Inaccurate or missing map data is a huge problem for routing engines, especially for the

determination of stop locations in passenger transport systems. Such stop locations, that

2 http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
3 https://gforge.inria.fr/projects/scotch/
4 http://algo2.iti.kit.edu/kahip/

31

http://glaros.dtc.umn.edu/gkhome/metis/metis/overview
https://gforge.inria.fr/projects/scotch/
http://algo2.iti.kit.edu/kahip/

4. Related Work

are determined by road snapping (cf. section 3.4) can lead to miscommunication between

the driver and the customer if they are not reasonable. Commercial navigation providers

usually charge for so-called map curation and map updates and do not make their data

available for others, since the quality of the routing depends directly on the quality of

the underlying data. Nevertheless, there are also many open source solutions based

on the map material of OpenStreetMap
5
. This project provides open source geospatial

data and it relies on mapping and map curation of the community. Everyone has the

possibility to correct �aws in the maps or to add missing information without big hurdles.

Due to the large community, changes in the map material, such as road closures, are

often adapted more quickly than in alternative sources [102]. Maier [102] presents a

brief overview of OpenStreetMap (structure of the data and potential usage) for spatial

economic research. Haklay [103] provides an overview on how good the quality of the

data from OpenStreetMap is compared to alternatives.

Other publications, that are more focused on solving the problem of missing Open-

StreetMap data are from Ort, Paull, and Rus [104] and Funke, Schirrmeister, and Storandt

[105]. Ort, Paull, and Rus [104] propose an approach combined with LiDAR data to

avoid problems caused by incomplete map data in the context of autonomous vehicle

navigation and Funke, Schirrmeister, and Storandt [105] published an approach on how

to extrapolate missing OpenStreetMap data in road networks.

However, in this thesis, the focus is more on the e�ects of missing or inaccurate map

data for routing purposes. There is only few published work on mapping automation for

OpenStreetMap, as this problem has not been solved yet completely and both, commercial

providers like What3Words
6

and HereMaps
7

as well as OpenStreetMap rely on mapping

and feedback from users. Especially missing information such as house numbers can

cause critical problems for a routing based on OpenStreetMap data since then, only the

centroid of the correct road is used as a destination and not the correct address. The

coverage and the quality of the OpenStreetMap data vary by area. Services such as

regio-osm8
o�er overviews e.g. of the coverage of mapped house numbers for cities.

The publication of Hu et al. [106] belongs to one of the few publications in this area

that deal with the same thematic problem, as described in Figure 2.2. They focused on

determining the entrance of public buildings and highlight the problems for routing and

navigation services (e.g. from Google Maps), but have a particular focus on pedestrian

navigation. Therefore, they use statistical learning, or classi�cation (weighted random

forest, balanced random forest, and smoteBoost). They assumed that the position of the

5 https://www.openstreetmap.de/
6 https://what3words.com
7 https://www.here.com/
8 https://regio-osm.de/

32

https://www.openstreetmap.de/
https://what3words.com
https://www.here.com/
https://regio-osm.de/

4. Related Work

entrance of public buildings has certain patterns. Intrinsic features such as the distance

from the outer building footprint (edges) to the centroid and extrinsic features such as

the shortest path to the main road were used. Hu et al. [106] state, that most entrance

detection methods rely on the analysis of street-level images (e.g. image recognition),

and in contrast to that, their approach relies only on data from OpenStreetMap.

Another publication that aims for the detection of entrances is published by Kang et al.
[107]. They aim to improve autonomous navigation for robots by using street-level images

and distinguish for example objects like windows and doors with image recognition to

consequently determine the entrance of buildings. However, this can barely be used for

the navigation described in the context of the present thesis.

33

5. Performance of Network Distance

Computations

5.1. Central Ideas

In section 2.1, drawbacks related to the use of Euclidean distance and limitations of the per-

formance of algorithms for calculating network distances in the context of transportation

services or transportation research have been described.

In this chapter, we present an approach based on generalizing the network graph and

therefore reducing the complexity for computations or even for precomputing network

distances. For this purpose, we make the following assumptions:

1. For some purposes, approximated network distances are su�cient. They are less

error-prone than distances calculated by Euclidean distances. A possible application

could be a preselection of considered stops when similar travel requests should be

pooled.

2. To construct edges for the generalized graph, we used the shortest paths between

selected nodes on the primal graph and add these shortest paths as new edges on

the generalized graph. Therefore, we assume, that in practice mainly the shortest

distance is used.

Graph partitioning techniques (cf. section 4.1) were used to generalize the road network,

hence the primal network graph to create a generalized graph.

For this generalized graph, it is more feasible to precompute network distances and

store them e.g. in a lookup table, for which then only a search algorithm is needed,

such as linear search, which scales linearly instead of common algorithms such as A* or

(bidirectional) Dijkstra (cf. section 3.2), which do not scale linearly with the size of the

network (run time ≈ O(n2)).

For our approach, the graph is divided into di�erent partitions and for each partition, a

reasonable proxy is computed using a centrality measure (cf. section 3.1). All shortest

34

5. Performance of Network Distance Computations

paths between the proxies of the partitions are then extracted from the primal graph

and transferred to the generalized graph as edges. This results in a complete graph

Kreduced with realistic network distances between the proxies. The complete graphKreduced

is then stored in an adjacency matrix and we implemented a prototype for network

distance queries to compare the performance with conventional implementations of A*

and (bidirectional) Dijkstra. A parameter that limits the size of partitions in network

distance is used to manipulate and estimate the accuracy of the approximated network

distances.

5.2. Methods

5.2.1. Area of Interest

The selection of a suitable area of interest (AOI) can be challenging due to di�erent

types of patterns in road networks, such as the �ve road patterns from Southworth and

Ben-Joseph [108]: Gddiron, fragmented parallel, warped parallel, loops and lollipops

and lollipops on a stick (cf. Figure 5.1). The topological structure of a road network

has an impact on the results of partitioning algorithms. Since we aim for real-world

application, we want to avoid using only a grid graph, which only represents manhattan-

like networks. Another challenge is the visualization of large road networks as well as

the way of functioning of the reduction process in detail. Therefore, we chose smaller

road networks and visualize oversimpli�cations as a showcase. We selected di�erent

types of road networks that can be designated as gridded-like, concentric-like, mixed,

and twisted road network patterns. The extent and the primal road networks for each

selected AOI are shown in the Appendix A. Basic properties as the circuity, the total

street length, and the area for each AOI are shown in Table 5.1.

Figure 5.1.: Five patterns in road networks from [108].

35

5. Performance of Network Distance Computations

circuity total street length [m] area [km
2
]

Göttingen 1.064 226575 25.90

Krefeld 1.021 73328 3.98

Málaga 1.143 57045 4.01

Soest 1.059 125969 10.08

Table 5.1.: Basic properties for each AOI.

5.2.2. Data

We created a weighted undirected Graph G(V , E), where V is the set of nodes and E the

set of edges consisting of Vu,Vv . This is done based on data from OpenStreetMap
1
.

5.2.3. Partitioning

We considered approaches from di�erent research areas for the partitioning of networks.

To the best of our knowledge, approaches from social sciences to detect communities

have not yet been considered for partitioning road networks. We selected the FluidC

algorithm proposed by Parés et al. [109], which is based on the idea of �uids interacting

in an environment, expanding and contracting as a result of that interaction. This idea

could be also feasible for the partition of road networks into similar parts without prior

analysis or knowledge of the network, which is needed for widely used partitioning and

clustering algorithms such as k-means. This requires, for example, the number of clusters,

hence partitions, which depend on the size and structure of the network. The FluidC

algorithm is an enhancement of the already mentioned label propagation algorithm

[98] in section 4.1. The process of the FluidC algorithm starts to assign random nodes

to k-partitions. These partitions expand and push until a balanced, stable state in the

sense of density is found. In simple terms, for each community the density with a range

between 0 and 1 is calculated with:

Density(c) =
1

v ∈ c
(5.1)

and nodes are assigned to the nearest community respecting the topology with the lower

density to reach a balanced partition. Figure 5.2 depicts the work�ow of the FluidC

algorithm for two partitions. For a more detailed description of the algorithm, we refer

to Parés et al. [109].

1 https://www.openstreetmap.org/

36

https://www.openstreetmap.org/

5. Performance of Network Distance Computations

Figure 5.2.:Work�ow of the FluidC algorithm with two partitions in green and red. The calculated density

for assigned nodes determines to which partition a considered node (blue circle) will be assigned [109].

We used the implementation of the FluidC algorithm from networkx
2

and enhanced

this implementation with an evaluation to detect a suitable size of k-partitions, using

a maximum acceptable distance deviation. After an initial partition, a proxy for each

partition will be determined (cf. subsection 5.2.4). From this proxy, the shortest path costs

(distance) to all other nodes within the same partition will be calculated. If the cost of any

shortest path is bigger than the given distance deviation parameter, the number of k is

incremented until partitions with the given requirements are found. This regularization

mechanism ensures, that after the �nal generalization each node is reachable within the

used distance deviation from the corresponding proxy. By manipulating the distance

deviation, the degree of generalization can be modi�ed. The smaller the distance deviation,

the more partitions will be created and the resulting approximated network distances are

more accurate.

5.2.4. Determination of Partition Proxies

In order to determine the proxies for partitions, we considered centrality measures (cf.
section 3.1). We selected the centrality measure closeness centrality. The node with the

highest closeness centrality for each partition is selected as a proxy. Since the closeness

centrality value of a node is in�uenced by the whole graph, the closeness values are

calculated for each partition, respectively subgraph, separately in each iteration.

Closeness centrality is the average length of the shortest path between the selected node

to all other nodes. For the closeness centrality, it is relevant if the given graph is directed

or undirected due to the di�erence between incoming and outgoing paths for the selected

node. Thus, we transformed the road network into an undirected graph. The closeness

centrality was calculated with Equation 5.2:

2 https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.

algorithms.community.asyn_fluid.asyn_fluidc.html

37

https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.community.asyn_fluid.asyn_fluidc.html
https://networkx.github.io/documentation/stable/reference/algorithms/generated/networkx.algorithms.community.asyn_fluid.asyn_fluidc.html

5. Performance of Network Distance Computations

CCloseness(u) =
n − 1

v=1∑
n−1

d(v,u)

(5.2)

where d(v,u) is the distance of the shortest path between node v and u, n is the number

of nodes, that can reach the selected node u.

5.2.5. Building a Generalized Graph

To create a generalized graph, we assumed that mainly the shortest paths are used in

transportation and hence the shortest path between proxies on the primal graph can

represent almost realistic trips between these points.

The generalized, complete graph Kreduced (cf. section 3.1) is based on the set of proxies

V ′. The edges are generated depending on the shortest paths between the proxies on

the primal graph. The costs of the shortest paths are added as the edge weights. The

geometric properties from the original path can also be transferred to the new edges,

but since we focus on enhancing the computing time, the original properties of the

edges, except the distance on the road network will be neglected. All properties of edges

that are part of a shortest path could be transferred to the new edge of the complete

graph. However, cases would have to be taken into account that e.g. di�erent road names

or di�erent types of roads have to be either combined or generalized. To examine the

presented approach more closely, only the distance of the edge weights was taken and

summed up and assigned to the new edge of the complete graph. In the future, other

properties should be able to be transferred without major challenges.

The generalized graph can then be created as a complete graph, where each node is

directly connected to every other node. This information can also be stored in a lookup

table for fast processing. The performance of lookups from such a table depends on the

search algorithm, e.g. for linear search, it runs at worst with a run time O(n).

5.2.6. Network Distance Queries

To enable queries to retrieve network distances, a preprocessing is required once to extend

the properties of all nodes in the primal graph by the ID of the referring proxy. Then the

referring proxies Ps and Pt can be read for a routing request from Vs to Vt . Approximate

network distance between Vs to Vt , thus the distance between the proxies Ps and Pt can

then be read from the adjacency matrix or lookup table from Kreduced .

38

5. Performance of Network Distance Computations

The resulting distances tend to underestimate the exact network distances, since the

distances from the assignment of nodes (e.g. Vs ,Vt) to proxies (e.g. Ps , Pt) are not taken into

account. However, these missing distances are smaller than the used distance deviation.

To minimize this underestimation of network distances, a corrective factor can be added

to the network distance between the two proxies. For example, for Ps and Pt the distance

deviation could be added for the start and the target node so that the �nal network

distance between any two nodes is either exact or overestimated. Thus a corrective factor

of a maximum of two times the distance deviation can be added. A smaller corrective

factor may be more reasonable.

5.2.7. Scaling and Variability

To identify the behavior for di�erent conditions, we applied this approach for each AOI,

introduced in subsection 5.2.1, with di�erent distance deviations. Due to the in�uence

of the road network pattern, it is very di�cult to determine an equation to calculate

reasonable distance deviations on the basis of the area or the total street length. Initial

tests for each AOI lead to the following used distance deviations, shown in Table 5.2.

Thereby, we aimed to have a comparative number of partitions (roughly between 10 and

25 partitions) for the constant parameter. For the scaling investigation, a minimum and a

maximum distance deviation were determined. The minimum value was determined by

decreasing the distance deviation until the computation time has increased signi�cantly

and the computation was almost impracticable. The maximum value was determined so

that only a few partitions will be created. Between these two values, 15 evenly distributed

distance deviations were determined as parameters. For each distance deviation, multiple

iterations were performed to evaluate the behavior, e.g. the �uctuation of the results.

constant [m] scaling minimum [m] scaling maximum [m]

Göttingen 3500 2.300 5.000

Krefeld 1500 600 2.000

Málaga 1000 400 1800

Soest 2000 1300 3000

Table 5.2.:Used distance deviations in the evaluation for the part with a constant distance deviation and

the part with a changing distance deviation (scaling between minimum and maximum).

5.2.8. Evaluation

We split the evaluation into two parts. In the �rst part, we analyze the behavior with

a constant distance deviation and in the second part, we analyze the behavior with a

39

5. Performance of Network Distance Computations

changing distance deviation to evaluate the scaling of the approach (cf. subsection 5.2.7).

We have structured these two parts as follows: For each aspect investigated, we have

summarized in a clear way what the aim of the investigation is, why we are studying it

and what analyses and interpretations this study allows, and �nally, which methods are

used to measure and present the results.

For each of the investigated aspects, we ran every calculation with n = 14 iterations, using

the exact same parameters to obtain a basic statistical overview. This allows evaluating

the results of the nondeterministic approach, e.g. with respect to the scattering.

5.2.8.1. Constant parameter

1. Number of partitions
Aim of investigation: Variability of the resulting number of partitions for n iterations.

Analysis and interpretation: Reviewing the scattering of the results helps to de�ne the

impact of randomness in the nondeterministic approach.

Methods: Using descriptive statistics, visualized by scatter plots.

2. Size reduction
Aim of investigation: Comparing the size (the number of edges) for all precomputed

shortest paths of the primal and the reduced graph, hence the enhancement of the gener-

alization regarding the size for precomputed shortest paths.

Analysis and interpretation: Indicates the size reduction for precomputed paths for used

distance deviation and shows the potential use for large network graphs.

Methods: Using the ratio of the complete graphs Kprimal and Kreduced for n iterations,

visualized in scatter plots.

3. All pairs shortest path (APSP)
Aim of investigation: Uniform distribution of proxies.

Analysis and interpretation: The used algorithm FluidC leads to nondeterministic results,

due to the in�uence of randomness by selecting nodes. The mean distance between all

proxies, hence all shortest path distances are an indicator if the proxies are reasonably

homogeneously distributed in the road network, which allows the conclusion that the

proxies represent the primal road network somehow realistic.

Methods: Using error bars to visualize the variation of the mean distance of all shortest

path distances between proxies.

40

5. Performance of Network Distance Computations

4. Performance
Aim of investigation: Performance of network distance queries for the presented approach

in comparison to A*, Dijkstra, and bidirectional Dijkstra.

Analysis and interpretation: Shows the potential speed-up and di�erence compared to

conventional algorithms. To be comparable in the performance calculation, we used

implementations in the programming language python using the same libraries and not

implementations that are faster due to more performant programming language (e.g.

C++).

Methods: Using a random set of node pairs (50 pairs) and take the mean of the processing

time in seconds for n iterations and visualize the results with boxplots.

We want to point out, that this compares approximate network distances versus exact

network distances.

41

5. Performance of Network Distance Computations

5.2.8.2. Scaling parameter

Overall, 15 di�erent distance deviations were used and for each distance deviation n = 14

iterations were performed.

1. Number of partitions
Aim of investigation: Variability of the resulting number of partitions for n iterations and

15 di�erent distance deviations.

Analysis and interpretation: Indicates the scaling of the number of partitions e.g. linear

or exponential if the distance deviations change linearly. This can help to estimate the

size of the complete graph Kreduced .

Methods: Creating boxplots for each distance deviation and repetitions with the same

parameter of n = 14.

2. Size reduction
Aim of investigation: Comparing the size (the number of edges) for all precomputed

shortest paths of the primal and the reduced graph, hence the enhancement of the gener-

alization regarding the size for precomputed shortest paths.

Analysis and interpretation: Indicates the size reduction for precomputed paths for used

distance deviations and shows the potential use for large network graphs.

Methods: Using the ratio of the complete graphs Kprimal and Kreduced for di�erent distance

deviations. Since for each distance deviation multiple repetitions were performed (with n

iterations), boxplots for each distance deviation were created.

3. All pairs shortest path (APSP)
Aim of investigation: Uniform distribution of proxies.

Analysis and interpretation: The used algorithm FluidC leads to nondeterministic results,

due to the in�uence of randomness by selecting nodes. The mean distance between all

proxies, hence all shortest path distances are an indicator if the proxies are reasonably

homogeneously distributed in the road network, which allows the conclusion, that the

proxies represent the primal road network somehow realistic.

Methods: The weighted mean and weighted standard deviation are computed and vi-

sualized in scatter plots. For each distance deviation, n iterations were performed. For

the weighted mean x̄∗ and the weighted standard deviation s∗ we used the following

equations:

42

5. Performance of Network Distance Computations

x̄∗ =

∑N
i=1

wixi∑N
i=1

wi

. (5.3)

s∗ =

√√∑N
i=1

wi(xi − x̄∗)2

(M−1)

M

∑N
i=1

wi

(5.4)

4. Variations of APSP-distances with respect to the distance deviation
Aim of investigation: The percentage variation of the distance between proxies (weighted

standard deviation) related to the used distance deviation (the given parameter).

Analysis and interpretation: The proportional variation with respect to the selected

parameter is helpful to classify the magnitude of the variation, and consequently it allows

to draw the conclusion, whether proxies are reasonably homogeneously distributed.

Methods: Using the ratio of the weighted standard deviation and the used distance devia-

tion in percent.

5. Performance
Aim of investigation: Performance of network distance queries for the presented approach

in comparison to A*, Dijkstra and bidirectional Dijkstra.

Analysis and interpretation: Shows the potential speed-up and di�erence compared to

conventional algorithms. To be comparable in the performance calculation, we used

implementations in the programming language python using the same libraries and not

implementations that are faster due to a more performant programming language (e.g.

C++).

Methods: Using a random set of node pairs (50 pairs) and take the mean of the processing

time in seconds for n iterations and visualize the results with boxplots.

We want to point out, that this compares approximate network distances versus exact

network distances.

43

5. Performance of Network Distance Computations

5.3. Own So�ware Package

For the presented approach, a framework called FluidC-Generalization based on Proxies

(FC-GBOP) was programmed (~2000 lines of python code). Thus, the approach including

the evaluation can be carried out. This framework contains some additional features.

Therefore and for the whole project, including documentation, we refer to the following

link of the repository.

https://github.com/fauceta/FC-GBOP

The main source code is shown in Appendix B.1 to give a brief overview of the amount

of programming work. This printout is not formatted and is not intended for practical

use. We want to point out, that the design of this framework is focused on functionality

rather than on the performance of the preprocessing stage.

5.4. Results

In this section, some results are presented as examples and for visualization. In the

next sections subsection 5.4.1 and subsection 5.4.2, the results of the evaluation are

shown and for reasons of comprehensibility, the results are also interpreted directly

after the results for the respective aspect so an assignment of results and discussion

(interpretation) becomes more comprehensible. In section 5.5 the main concluding results

are summarized.

Methodically, we want to emphasize that the comparison of some �gures can be mis-

leading due to di�erent scaling. We are aware of this and have therefore tried to apply

the following rule. If the value ranges are uniform, they are used uniformly. However,

if the range of values di�ers so much from other comparable �gures that the axes and

the scaling would have to be stretched even further and the readability would su�er, the

scaling was adjusted in powers of 10 and the di�erent scale was explicitly pointed out for

reasons of transparency.

Figure 5.3, Figure 5.4, Figure 5.5, and Figure 5.6 show examples of the FluidC approach to

generalize road networks. These �gures are intended for visualization of the approach,

which is why very simple parameters have been used. On the left, the primal road

networks are shown. The partitions are colored and the corresponding proxies are

marked by black squares. On the right side, the reduced complete graphs Kreduced are

shown, that are based on the proxies and the realistic edge weights between them.

44

https://github.com/fauceta/FC-GBOP

5. Performance of Network Distance Computations

Figure 5.3.: In A) an example of partitions is visualized in colored nodes and their proxies by black squares

with a distance deviation of 4500m for Göttingen as a showcase. In B) the corresponding reduced complete

graph Kr educed is presented.

Figure 5.4.: In A) an example of partitions is visualized in colored nodes and their proxies by black squares

with a distance deviation of 1500m for Krefeld as a showcase. In B) the corresponding reduced complete

graph Kr educed is presented.

45

5. Performance of Network Distance Computations

Figure 5.5.: In A) an example of partitions is visualized in colored nodes and their proxies by black squares

with a distance deviation of 1400m for Málaga as a showcase. In B) the corresponding reduced complete

graph Kr educed is presented.

Figure 5.6.: In A) an example of partitions is visualized in colored nodes and their proxies by black squares

with a distance deviation of 2300m for Soest as a showcase. In B) the corresponding reduced complete

graph Kr educed is presented.

46

5. Performance of Network Distance Computations

5.4.1. Constant Parameter

Regarding the procedure of the evaluation for a constant distance deviation, described in

subsubsection 5.2.8.1, the resulting plots are shown in the following. For the constant

distance deviation, multiple iterations (n = 14) were performed for each AOI. The used

distance deviations are listed in Table 5.2.

1. Number of partitions

Figure 5.7 shows the scattering of the number of resulting partitions. Overall, Málaga

shows the highest variation of 26 between the smallest (7) and the largest number of

partitions (33). In contrast, Göttingen has the least variation of 8. It can be seen, that the

results for Málaga show by far the most scattering, followed by the results for Soest and

the results for Göttingen and Krefeld have a comparatively low scattering. This behavior

can be explained due to the di�erent road patterns since Málaga has the most convoluted

road pattern, followed by Soest, Göttingen and Krefeld. In Table 5.3 the basic statistics of

the results are shown.

(a) Göttingn (b) Krefeld

(c)Málaga (d) Soest

Figure 5.7.:Number of k partitions for a constant distance deviation.

47

5. Performance of Network Distance Computations

minimum maximum mean standard deviation

Göttingen 10 18 13.9 3

Krefeld 5 16 7.1 3

Málaga 7 33 19.1 7

Soest 7 26 13.6 5

Table 5.3.: Basic statistics for the number of k partitions.

2. Size reduction
Figure 5.8 depicts the ratio of the edges of the complete graphs Kprimal and Kreduced . This

represents the size of the networks, when all shortest paths would be precomputed

(cf. complete graphs in section 3.1). The size of the precomputed network Kprimal does

not change, but the size of the graph Kreduced . This is directly related to the number of

partitions. Based on the value, it can be seen that the magnitude ofKreduced is much smaller

than that of Kprimal . This shows the potential reduction in size using the FluidC approach

for all precomputed shortest paths. Table 5.4 shows the basic statistics corresponding to

Figure 5.8.

(a) Göttingen (b) Krefeld

(c)Málaga
(d) Soest

Figure 5.8.: Ratio of the size of the complete graphs Kr educed and Kpr imal .

48

5. Performance of Network Distance Computations

minimum maximum mean standard deviation

Göttingen 6120 20808 11954 5138

Krefeld 974 11688 7702 3855

Málaga 204 5137 1158 1409

Soest 991 15333 5747 4595

Table 5.4.: Basic statistics for the ratio of the complete graphs Kr educed and Kpr imal .

3. All pairs shortest path (APSP)
Figure 5.9, Figure 5.10, Figure 5.11 and Figure 5.12 depict the variability of all shortest

path distances between proxies. A small variation is indicative of an even distribution of

the proxies on the road network. The �gures show a large range of distances between

proxies, but the mean values seem to be more or less constant for every AOI. A larger

range of values is logically more likely for real road networks than for theoretical or

symmetrically constructed networks such as gridded ones. Furthermore, the range of

values should also be seen in the context of the used distance deviation (cf. Table 5.2).

The �uctuation of the mean values is therefore more meaningful. Málaga is the only AOI

with a larger range than the used distance deviation, which can be traced back to the

fact, that this is the most convoluted network of all considered networks. In addition,

only the mean values for Málaga show a comparatively larger �uctuation.

Figure 5.9.:APSP-distances for Göttingen (constant).

4. Performance
Figure 5.13 depicts the performance of the routing algorithms Dijkstra, bidirectional

Dijkstra, A* and the presented approach based on FluidC. In these �gures, the approach

based on FluidC is called “reduced”, because instead of returning exact network distances

as the other algorithms do, this approach only returns reduced network distances. For

each iteration, 50 random node pairs were used to measure the time for the network

distance queries. For every AOI, Dijkstra and bidirectional Dijkstra show by far the worst

49

5. Performance of Network Distance Computations

Figure 5.10.:APSP-distances for Krefeld (constant).

Figure 5.11.:APSP-distances for Málaga (constant).

performance of the considered algorithms. The reduced approach (FluidC) and A* show

only minor di�erences but perform by far the best.

50

5. Performance of Network Distance Computations

Figure 5.12.:APSP-distances for Soest (constant).

(a) Göttingen (b) Krefeld

(c)Málaga (d) Soest

Figure 5.13.: Performance of di�erent routing approaches for each AOI.

51

5. Performance of Network Distance Computations

5.4.2. Scaling Parameter

In this section, the results for a changing distance deviation are presented, which shows

the scaling of the introduced approach. Again, for each distance deviation, multiple

iterations (n = 14) were performed for each AOI. Between the selected minimum and

maximum (cf. subsection 5.2.7 and Table 5.2) 15 equally distributed distance deviations

were used.

1. Number of partitions

Figure 5.14, Figure 5.15, Figure 5.16 and Figure 5.17 show the variation of the resulting k

partitions for di�erent distance deviations. Overall, for these �gures, three main facts

can be derived. First, the larger the distance deviation gets, the smaller the number of k

partitions is. Second, in each �gure, an asymptotic tendency can be recognized. There

seems to be a certain level of distance deviation, above which the number of k partitions

hardly change. Third, the variability per distance deviation within the iterations decreases

with an increasing distance deviation.

Figure 5.14.:Number of k partitions versus distance deviation for the AOI Göttingen.

Figure 5.15.:Number of k partitions versus distance deviation for the AOI Krefeld.

52

5. Performance of Network Distance Computations

Figure 5.16.:Number of k partitions versus distance deviation for the AOI Málaga.

Figure 5.17.:Number of k partitions versus distance deviation for the AOI Soest.

53

5. Performance of Network Distance Computations

2. Size reduction

Figure 5.18, Figure 5.19, Figure 5.20 and Figure 5.21 visualize the behavior of the ratio of

Kprimal and Kreduced for a changing distance deviation. The behavior depicted in the plots

seems to be more or less linear, but considering the logarithmic scale on the y-axis, it

indicates an exponential scaling. That means, the use of high distance deviations results

in an exponential size reduction for all precomputed shortest paths, comparing the primal

complete graph with the reduced complete graph.

Figure 5.18.: Ratio of complete graphs versus distance deviation for the AOI Göttingen.

Figure 5.19.: Ratio of complete graphs versus distance deviation for the AOI Krefeld.

Figure 5.20.: Ratio of complete graphs versus distance deviation for the AOI Málaga.

54

5. Performance of Network Distance Computations

Figure 5.21.: Ratio of complete graphs versus distance deviation for the AOI Soest.

55

5. Performance of Network Distance Computations

3. All pairs shortest path (APSP)

Figure 5.22 depicts the weighted mean and weighted standard deviation of all shortest

path network distances of Kreduced for a changing distance deviation. The mean value

allows conclusions on the distribution of proxies for di�erent iterations. The resulting

distances, which are represented by the weighted mean value, are also in�uenced by

the selected distance deviation. With an increasing distance deviation, the mean value

decreases. This behavior can be explained by Figure 5.23. The lower the number of

partitions, the lower the total distance of APSP-distances and consequently also the mean

distances.

The weighted standard deviation represents the variability of the weighted mean values,

which indicates a meaningfulness of the drawn conclusions based on the weighted mean

values.

(a) Göttingen (b) Krefeld

(c)Málaga (d) Soest

Figure 5.22.:Weighted mean and weighted standard deviation of APSP-distances for a changing distance

deviation.

56

5. Performance of Network Distance Computations

Figure 5.23.: Dependence of all pairs shortest path (APSP)-distances between proxies and the number

of partitions. A) Two partitions (red circled area), hence two proxies (red nodes) and all shortest paths

between proxies are highlighted in blue. In B) the same network is used, but instead with 5 partitions,

resulting in more shortest paths between proxies. Consequently, the more partitions, the larger the value

of APSP-distances gets in most cases.

57

5. Performance of Network Distance Computations

4. Variations of APSP-distances with respect to the distance deviation

In Figure 5.24 the variation of the distance between proxies related to the used distance

deviation is shown in percent for each AOI. For Göttingen, Krefeld and Soest a small,

linear increasing tendency can be recognized. Nevertheless, the main point of this plot is,

that all values are within a range of small values. The highest variation for all areas and

distance deviations is 8% (Málaga), while the lowest one amounts to 1.5% (Soest).

The last two plots show that proxies seem to be distributed roughly even on the road

network and are not distributed in clusters. This can be related to a problem of common

cluster algorithms, when a low minimum of cluster size is needed for density-based

clustering algorithms, such as k-means or DBSCAN and an abundance of micro-clusters

should be avoided in high-density regions [110]. This could occur when normal cluster-

ing algorithms are applied to nodes of the network graph and consequently the primal

network graph would be poorly represented by the generalized form. In our presented

approach, we can assume that the reduced network Kreduced represents somehow realisti-

cally the primal network since the proxies are mostly evenly distributed (no clustering)

and the centrality measure closeness is used to incorporate a weighting of central and

important nodes. Furthermore, the small percentage variation shows that the distance

deviation works well as a restrictive parameter and only small deviations occur in the

�nal resulting partitions.

(a) Göttingen (b) Krefeld

(c)Málaga (d) Soest

Figure 5.24.:The percentage variation of the distance between the proxies related to the distance deviation.

58

5. Performance of Network Distance Computations

5. Performance

Figure 5.25, Figure 5.26, Figure 5.27 and Figure 5.28 show the performance of the respective

approach for the AOI Göttingen. Special attention must be paid to the scaling on the

y-axis since the reduced approach is faster by a factor of about 1000. For every approach,

only relatively small variations are evident from the boxplots and the used distance

deviation has only a small e�ect on the performance, since the mean of the boxplots in

Figure 5.25 seems to be constant. The distance deviation only in�uences the performance

of the reduced approach (resulting size of the network) but is also shown on the x-axis

for the other algorithms for easier comparison.

The scattering, which can be seen from the boxplots in Figure 5.25 and which deviates sig-

ni�cantly from the natural deviations, respectively scattering (see boxplots in Figure 5.26,

Figure 5.27 and Figure 5.28), can be attributed to the lookup table or linear search. If the

searched node pair is at the beginning of the adjacency matrix of the graph, the network

distance can be delivered much faster than in case the searched node pair is at the end of

the adjacency matrix. This can explain the deviations in performance for the approach

based on FluidC and could be improved e.g. by other search algorithms instead of linear

search.

Figure 5.25.: Performance of the reduced approach based on FluidC for the AOI Göttingen.

Figure 5.26.: Performance of the Dijkstra algorithm for the AOI Göttingen.

59

5. Performance of Network Distance Computations

Figure 5.27.: Performance of the bidirectional Dijkstra algorithm for the AOI Göttingen.

Figure 5.28.: Performance of the A* algorithm for the AOI Göttingen.

60

5. Performance of Network Distance Computations

The resulting plots for the performance regarding the AOI Krefeld are depicted in Fig-

ure 5.29, Figure 5.30, Figure 5.31 and Figure 5.32. Again, we want to highlight the di�erent

scaling on the y-axis, when comparing the performance for Krefeld. Overall, for a gridded

network such as the road network from Krefeld, the reduced approach based on FluidC

seemed to be the most performing algorithm. Except for an outlier for the smallest dis-

tance deviation, the performance is mostly constant and faster than the other algorithms.

Dijkstra, bidirectional Dijkstra, and A* show a larger scattering and dispersion of values,

with the fastest performance being slower than the slowest performance by the approach

based on FluidC.

Figure 5.29.: Performance of the reduced approach based on FluidC for the AOI Krefeld.

Figure 5.30.: Performance of the Dijkstra algorithm for the AOI Krefeld.

Figure 5.31.: Performance of the bidirectional Dijkstra algorithm for the AOI Krefeld.

61

5. Performance of Network Distance Computations

Figure 5.32.: Performance of the A* algorithm for the AOI Krefeld.

62

5. Performance of Network Distance Computations

In Figure 5.33, Figure 5.34, Figure 5.35 and Figure 5.36 are the results for the performance

for the AOI Málaga. For Málaga, a very similar trend to the results to Krefeld can be seen.

There are only minimal deviations in the value ranges.

Figure 5.33.: Performance of the reduced approach based on FluidC for the AOI Málaga.

Figure 5.34.: Performance of the Dijkstra algorithm for the AOI Málaga.

Figure 5.35.: Performance of the bidirectional Dijkstra algorithm for the AOI Málaga.

63

5. Performance of Network Distance Computations

Figure 5.36.: Performance of the A* algorithm for the AOI Málaga.

64

5. Performance of Network Distance Computations

Figure 5.37, Figure 5.38, Figure 5.39 and Figure 5.40 report the performance for Soest.

Dijkstra, bidirectional Dijkstra, and A* seem to perform very similarly on this road

network. These algorithms seem to be constant with a small dispersion of values. In

contrast, the reduced approach seems to have a larger dispersion. However, the di�erent

scaling on the y-axis should be taken into account. Table 5.5 shows the maximum values

(absolute and relative) for the interquartile range (IQR) and the range between the lower

and the upper whisker of the boxplots. The ratio to the median was used to determine the

relative dispersion. It can be seen that the absolute di�erence for the reduced approach is

much smaller than for the other approaches, i.e. there a much smaller di�erences in the

performance. However, the relative di�erences in relation to the median are larger than

for the other approaches. The values in Table 5.5 illustrate the di�erences between the

considered approaches, using Soest as an example.

Figure 5.37.: Performance of the reduced approach based on FluidC for the AOI Soest.

Figure 5.38.: Performance of the Dijkstra algorithm for the AOI Soest.

65

5. Performance of Network Distance Computations

Figure 5.39.: Performance of the bidirectional Dijkstra algorithm for the AOI Soest.

Figure 5.40.: Performance of the A* algorithm for the AOI Soest.

max. IQR max. ∆ Whiskers

absolute relative [%] absolute relative [%]

Reduced 0.00007 36 0.00015 67

Dijkstra 0.02445 19 0.05041 41

Bidirectional Dijkstra 0.02267 19 0.05451 41

A* 0.02234 18 0.06197 51

Table 5.5.:Maximal interquartile range (IQR) and the maximal di�erence between the lower and the upper

whisker of the boxplots for the AOI Soest regarding the performance. The relative values were calculated

in relation to the respective median.

66

5. Performance of Network Distance Computations

5.5. Summary

In this chapter, we have presented an approach that has the potential to provide perfor-

mant approximated network distances. The approach is based on a modi�ed algorithm

for graph partitioning (FluidC) and on the concept of precalculating all pairs shortest path

(APSP)-distances. This precalculation is used for the implemented prototype routing,

which uses a linear search algorithm. This algorithm scales normally faster than linear

and at worst linear (run time ≈ O(n)), whereas the best competing algorithm considered

in this work (A*) scales quadratically (run time ≈ O(n2)).

The general concept of the presented approach is a segmentation of the road network into

partitions. For each partition, one node, called proxy, is chosen that best represents the

respective partition. The degree of generalization is regularized by setting the maximal

acceptable distance deviation between a proxy and all other nodes within the respective

partition.

For evaluation of this approach, various real-world road networks were used to demon-

strate the functionality for di�erent patterns in road networks. The behavior of this

approach was examined for several aspects as described in subsection 5.2.8. Multiple

iterations were performed to obtain a statistical basis to evaluate the �uctuations of

the nondeterministic results of the used algorithm FluidC. By this, the e�ect of various

distance deviations is quanti�ed for the investigated real-world road network patterns.

The results of multiple iterations show, that the pattern of the road network has a

very strong in�uence. For example, the variation of the number for resulting partitions

depends on the network, especially for convoluted road networks this �uctuation is high.

Consequently, the size of the complete graphs also �uctuates. For more symmetric and

gridded-like road networks graphs, the number of partitions varies less.

The homogeneous distribution of the resulting proxies on the road network was in-

vestigated, allowing a conclusion whether the generalized network graph realistically

represents the original network. Our evaluation shows that the proxies and consequently

also the partitions are reasonably evenly distributed on the road network.

In terms of performance, the approach was compared with implementations of some

conventional algorithms that provide exact network distances (Dijkstra, bidirectional

Dijkstra, and A*). We would like to emphasize here, that this comparison is only meaning-

ful to a certain extent since none of the implementations of the algorithms are designed

for maximum performance and exact network distances are compared with approximated

network distances resulting from the presented approach. Thus, these results have to

67

5. Performance of Network Distance Computations

be interpreted carefully. Nevertheless, the results show tendencies and allow a rough

assessment and comparison of the di�erent approaches.

The performance of the considered algorithms was compared to the presented, also called

“reduced approach”. This approach always performs best or sometimes similar to the A*

algorithm. The Dijkstra and bidirectional Dijkstra algorithms could not compete.

68

6. Optimized Pick-up and Drop-o�

Locations

6.1. Central Ideas

Content of this chapter is partly published in Hahn, Frühling, and Schlüter [58] and

Hahn, Frühling, and Schlüter [111]. In addition, a publication process in the International

Scienti�c Journal - Transport Problems
1

is in progress.

The challenges for stop locations, especially in passenger transportation, were already

introduced in section 2.1. In the current chapter, we present an approach to determine

optimized stop locations for transport services using remote sensing data. Therefore, we

want to enhance common snapping techniques, that are based on perpendicular distance,

which is related to the research area of o�ine map matching (cf. section 3.4). Still, there

are minor di�erences, such as considering a matching name of a given address and

surrounding road names. Further, the terms and meaning of map matching and snapping

sometimes di�er in literature and practice. Therefore, we de�ne the term road snapping,

which is characterized by the fact that it only serves the purpose of determining the start

and end points of a route on a road network for given addresses or coordinates. These

points will be called snapping points.

In the presented approach the already known method of cost distance analysis (cf. section

3.5) is used to identify the most likely access to buildings, which in turn results in

optimized snapping points, hence stop locations.

We assume, that the most realistic path from the road network to the building consists

of minimal vegetation cover, minimal slope of the terrain, and the path could not go

through building footprints.

1
ISSN 1896 - 0596

69

6. Optimized Pick-up and Drop-o� Locations

6.2. Methods

The method of cost distance analysis was already introduced in section 3.5. We performed

such a cost distance analysis with cost surfaces for the parameters vegetation, slope, and

building footprints. Therefore, we used multispectral images to determine the vegetation

cover based on the vegetation index normalized di�erence vegetation index (NDVI),

light detection and ranging (LiDAR) data for modeling the slope of the terrain, building

footprints from OpenStreetMap, and the road network from OpenStreetMap. For the

detection of vegetation, NDVI and color infrared (CIR) images (cf. Figure 6.1) were

considered. CIR images are false color images using the wavelengths for near-infrared

(NIR), red, and green. However, the identi�cation of vegetation using the NDVI led to

better results, so the CIR images were not considered further.

We used thresholds for the parameters vegetation and slope to distinguish between cells

with no-vegetation and vegetation, and between cells with passable or not-passable slope

(cf. subsection 6.2.3). Consequently, only binary rasters are used instead of continuous

data.

(a) Color infrared image (b) Normalized di�erence vegetation index

Figure6.1.:Extract of the AOI with a false color composite color infrared (CIR) image (left) and the vegetation

index normalized di�erence vegetation index (NDVI) to detect vegetation. A true color composite (RGB) of

this extent is attached in the Appendix A (Figure A.5).

The road network was transformed to a source raster, where cells represent the existence

of road segments, further called source cells. To avoid an unnecessary computation com-

plexity due to a high amount of source cells, we only generated a source cell every 3 meters

on the road network, which we still consider as su�ciently accurate (cf. Figure 6.2).

Based on the building footprints, a binary raster with cells representing the existence or

absence of buildings was created. The centroids of these building footprints will further

be called destination cells. Then a merged cost surface is generated, by merging and

weighting the cost surfaces of vegetation, slope, and building footprints.

70

6. Optimized Pick-up and Drop-o� Locations

Figure 6.2.: Extract from AOI with the generated source cells as the centroid of the red circles. These

source cells were generated with a spacing of 3 meters. This resolution is considered su�cient for accurate

snapping.

Further, the accumulative cost surface and the backlink raster were calculated, where

each cell in the accumulative cost surface represents the costs from said cell to the source

cell, that can be reached with the least cost using the merged cost surface. The complete

least cost paths between destination (centroids of buildings) and source (road network)

cells can then be generated using the coded direction values in the backlink raster. The

last point of the least cost path describes the source cell and thus the snapping point for

the corresponding destination cell on the road network.

We evaluated our results by comparing the calculated snapping points using cost distance

with the snapping points from the conventional routing engine OSRM
2
, which uses the

perpendicular distance. Therefore we applied a so-called ideal snapping area (cf. section

6.2.4), which de�nes an area where snapping points are considered correct. This area is

based on manually set geographical points, which were used as ground truth data. For

the considered AOI we set 495 ideal snapping points. We also evaluated the weighting of

the classes vegetation, slope, and building footprints. Only the odd numbers from 1 to 9

were used as weights for each class to reduce the calculation time.

The number of total weight combinations were calculated according to Equation 6.1:

iterationsweiдhtinд = n
k

(6.1)

2 http://project-osrm.org/

71

http://project-osrm.org/

6. Optimized Pick-up and Drop-o� Locations

where n is the number of possible weights (1,3,5,7,9) and k is the number of classes

(vegetation, slope, and building footprints). Accordingly, we still have 125 di�erent

weighting combinations in total, which means 125 iterations of a complete cost distance

analysis. As a result, we have validation-rates describing the percentage of snapping

points within the ideal snapping area for each weight combination. This enables a detailed

analysis of a reasonable weighting and a comparison between the calculated snapping

points based on cost distance and the snapping points from OSRM.

We would also like to emphasize, that the weighting of the cost surfaces means higher

weighting results in a higher cost, and hence the parameter has less in�uence on the least

cost path. To illustrate this using an example, a high weighting of vegetation costs leads

to least cost paths that strictly avoid vegetation, hence to be precise, the cost and not the

feature or parameter is weighted.

6.2.1. Area of Interest

A small extent of the used area of interest (AOI) was already shown in Figure 2.4. It

is located in the town of Höxter. Höxter is a medium-sized town in the southwest of

North Rhine-Westphalia (NRW) in Germany. This city extends over 158.16 km
2

with a

population of 29.112 [112]. The used AOI is square-shaped, 1 km
2

in size and located at

the centre of Höxter. Most of the landcover in the AOI are residential areas, but there are

some industrial complexes in the centre, north-west and east of the AOI. The coordinates

con�ning the geographical extent of the AOI are shown in Figure 6.3. This AOI was

chosen due to the availability of high-resolution data and local knowledge of that area.

Figure 6.3.:Coordinates con�ning the extent of the AOI (used EPSG:4326).

6.2.2. Data

We derived the road network and the building footprints from OpenStreetMap contrib-

utors [113]. The aerial imagery and light detection and ranging (LiDAR) data can be

obtained from the OpenGeoData project [114] for NRW. We �ltered the road network

72

6. Optimized Pick-up and Drop-o� Locations

data resulting in a road network comprising only publicly accessible roads. The aerial

imagery is a multispectral image containing red and near-infrared (NIR) wavelengths,

hence the normalized di�erence vegetation index (NDVI) can easily be calculated with:

NDV I =
NIR − Red

NIR + Red
(6.2)

The point cloud from the LiDAR data was used to generate a grid, where each cell

represents the slope value of the terrain. Therefore, the point cloud had to be preprocessed.

We used the open source tool LAStool
3

to create xyz data and interpolate missing cells

before calculating the slope for each cell.

For each considered parameter (vegetation, slope, building footprints, and the road

network), a grid representation was generated with a cell size of 0.2 x 0.2 meters, thus

the cells of the cost surfaces overlap exactly and cells from cost surfaces and the source

raster refer to the same position in the AOI.

6.2.3. Generation of Snapping Points by Cost-Distance

We determine thresholds for the classes vegetation and slope on an empiric basis. The

results are shown Table 6.1.

Class Derived from Threshold

vegetation NDVI raster > 0.2
no-vegetation NDVI raster ≤ 0.2
passable slope raster ≤ 11

not passable slope raster > 11

Table 6.1.:Classes of the cost distance analysis, the source, and the used thresholds for the binary concept.

As mentioned before, using continuous data without thresholds was also considered, but

initial tests and results showed that a binary concept with a clear distinction between e.g.

passable or not passable cells regarding the slope leads to clearer least cost paths. These

thresholds are based on empirical samples in the study area and should not be applied to

other areas without testing. To distinguish cells into vegetation or no-vegetation, the

NDVI with a value of 0.2 was used, whereas for the distinction for passable and not

passable cells a degree of 11 was chosen.

3 http://lastools.org/

73

http://lastools.org/

6. Optimized Pick-up and Drop-o� Locations

To be able to calculate the least cost paths from building addresses to the road network,

the allowed movement of paths has to be de�ned �rst. Considering only vertical and hor-

izontal movement can be seen as su�cient. However, an additional diagonal movement

is feasible and improves the quality and accuracy of the least cost paths. Consequently,

we decided to used the Queens pattern as a neighbourhood type (cf. Figure 3.9).

6.2.4. Evaluation of Snapping Points

Ideal snapping points for buildings were predetermined as points on the road network,

which are most likely accessible from the building, hence the start point on the road

network to the entrance. If a building has more than one possibility to gain access from

the road network, multiple ideal snapping points were set. Unfortunately, ground truth

data from transport services or entities e.g. pick-up and drop-o� locations from taxis are

di�cult to obtain due to privacy concerns. Consequently, we set 495 reference points

as ground truth data using aerial images and local knowledge about the accesses of

buildings.

A line from each building’s centroid to its ideal snapping point on the road network was

generated. This ensures a spatial relation between the two points. The �rst vertex of the

line represents the building’s centroid and the second vertex represents the ideal snapping

point. This line and its second vertex can be compared to lines from the building’s centroid

to calculated snapping points by cost distance and to the snapping points obtained from

OSRM.

Considering a maximum acceptable distance from the ideal snapping point to calculated

snapping points results in a circled area around the ideal snapping point. In the �rst

validation step, we checked if the calculated snapping point is located inside this area.

However, if the distance between the building and the road is short, a calculated snapping

point might be validated even if the ideal snapping point is in another direction from the

building’s centroid position, hence on another road. To also consider the direction, in the

next validation step, we compare the di�erence in bearings between the two lines from

the building’s centroid to the ideal snapping point and to the calculated snapping point.

Thus, a maximum acceptable degree for the angle between these two lines was used as a

threshold.

This leads to an area around the ideal snapping point which is further called ideal snapping

area and is illustrated in Figure 6.4. To validate a snapping point, we checked if the point

is located inside this ideal snapping area.

74

6. Optimized Pick-up and Drop-o� Locations

Figure 6.4.:Concept of ideal snapping area. The ideal snapping area is de�ned by a vector (yellow line)

from the centroid of building B to the ideal snapping point (yellow point), a maximum distance which

is de�ned by r and a direction which is de�ned by the maximum allowed di�erence in bearings. In this

example, the allowed di�erence in bearings β between θ1 and θ2 is 15°. The ideal snapping area is shown

in green. An ideal snapping area restricted only by r could lead to acceptable snapping points on Road A

and Road B if r would be larger.

Consequently, a calculated snapping point is only validated if the di�erence between the

calculated and the manually set ideal snapping point regarding distance and direction is

below the prede�ned threshold. With a growing distance between the points and the same

maximum acceptable di�erence in bearings, the size of the ideal snapping area increases

until the area is de�ned only by the radius of the circle, based on the maximum allowed

distance. For the process of evaluation, the maximum acceptable distance between the

points was set to 25 meters, and the maximum di�erence in bearings between the line

from the building’s centroid to the calculated snapping point and the ideal snapping point

was set to 70°.

6.3. Own So�ware Package and Patent Application

To carry out the cost distance analyses, hence to calculate optimized snapping points and

further to perform the evaluation, another framework called Accumulative Cost Surface

Analysis (ACSA) was programmed (~2200 lines of python code.) This framework and

the technical documentation for required preparation, e.g. setting up the routing engine,

preprocessing, and modeling of data, is accessible in the following repository:

https://github.com/fauceta/ACSA.

75

https://github.com/fauceta/ACSA

6. Optimized Pick-up and Drop-o� Locations

However, the main source code as a simple printout is attached in Appendix B.2. To

access the source code for practical use, we recommend the code from the repository.

For the described approach, the Max-Planck-Gesellschaft zur Förderung der Wissenschaften

e.V. has �led in the above method as a European patent application
4
.

6.4. Results

In the AOI 403 out of 495 calculated snapping points by perpendicular distance using the

Nearest API from OSRM are inside the ideal snapping area, which leads to a validation-rate

of 81.4%. The calculated snapping points by cost distance show di�erent validation-rates,

depending on the weighting of the parameters. Thus, the validation-rate varies from

84.8% to 90.3%.

A detailed analysis of the weighting and the validation-rate allows scoring the weighting

of each parameter. Figure 6.5 shows for each weight combination the enhancement of

the validation-rate compared to the validation-rate without weighting the parameters. A

trend can be seen, that a higher cost of the parameter slope leads to higher validation-

rates whereas the lower cost of the parameter slope results in lower validation-rates. For

the parameter vegetation and building footprints, no such clear trend can be identi�ed.

However, the highest validation-rates were achieved with a medium cost of vegetation

and building footprints.

Figure 6.6 depicts the distribution of the validation-rates. All validation-rates of our pre-

sented cost distance approach are higher than the validation-rates based on perpendicular

distance, with the highest validation-rates being achieved most frequently.

An additional cost distance analysis with more weight combinations for a small extract

of the AOI was performed. The same address respectively the same building was used

for illustration, as already in Figure 2.4, where insu�cient snapping of Google Maps was

shown. Figure 6.7 depicts the impact of the weighting on the quality of the least cost

paths. The most reasonable least cost path, hence the snapping point is represented by

the blue line, whereas the other least cost paths serve as extreme examples and do not

re�ect reasonable access to the building. However, the red least cost path results in a

very similar stop location as from Google Maps.

Figure 6.8 shows least cost paths for multiple buildings in comparison to results from

the routing engine OSRM. For the considered buildings, the resulting snapping points

based on least cost path and based on perpendicular distance are represented by the

4
Number: 20180864.9 - 1001

76

6. Optimized Pick-up and Drop-o� Locations

Figure 6.5.: E�ects of weights on the validation-rate. For each weight combination, the di�erence of the

validation-rate compared the validation-rate without weighting parameters. Additionally, the data was

normalized to a value range between 0 and 1 to allow better visualization.

intersections with the road network. For both approaches, any coordinate instead of only

building addresses can be used. This example shows, that the resulting snapping points

based on least cost paths are overall more reasonable in the selected extract.

77

6. Optimized Pick-up and Drop-o� Locations

Figure 6.6.:Histogram of the distribution of the validation-rates. In total, 125 cost distance analyses were

performed. The validation-rate based on perpendicular distance is not a�ected by the weighting, therefore

in the 125 iterations the validation-rates do not change, whereas the validation-rates for the approach

based on cost distance are a�ected by the weighting.

Figure 6.7.: In�uence of the weighting using the example from Figure 2.4. The weighting with a cost of

5 (vegetation), 7 (slope), and 3 (building footprints) results in a least cost path (blue) which re�ects the

realistic access to the building, whereas the other extreme examples show, that important parameters are

almost ignored, if not adequately weighted. The red least cost path represents a similar stop location, as

retrieved from Google Maps, shown in the example in Figure 2.4.

78

6. Optimized Pick-up and Drop-o� Locations

Figure 6.8.:Multiple least cost paths (blue) in comparison with the results from the routing engine OSRM,

which is based on perpendicular distance. The intersections with the roads represent the resulting snapping

point, hence stop location for the given address.

79

6. Optimized Pick-up and Drop-o� Locations

6.5. Summary

We presented an approach to identify optimized stop locations for passenger transporta-

tion with to-door services based on the common method of cost distance analysis. This

can be useful for mobility service providers (MSP) or a transport network company

(TNC), which o�er such services, especially in combination with public transport or

multimodal transportation. Time delays, that are caused by �nding a reasonable stop

location, can interfere with the plans of future trips and the time schedules. This could

be prevented with precalculated optimized stop locations. Therefore, we used remote

sensing and carried out the cost distance analysis with the parameters vegetation cover,

slope of the terrain, and building footprints. We assumed, that the most likely path from

buildings to the road network is characterized by minimal vegetation cover, and minimal

slope of the terrain, and that building footprints must not be crossed. These parameters

were weighted di�erently and evaluated to identify a reasonable weighting of these

parameters. Further, the resulting snapping points from cost distance were compared to

a conventional routing engine (Open Source Routing Machine (OSRM)), which is based

on perpendicular distance.

The results show that the approach based on cost distance outperforms the snapping

points from the routing engine, as evidenced by the high validation-rates (up to 90.3%),

compared to the routing engine (81.4%). Furthermore, the highest validation-rates are

achieved more frequently (cf. Figure 6.6).

Given the high computational complexity of cost distances analyses, an application of

the presented approach is particularly suitable for a limited area in combination with a

one-time preprocessing, where the corresponding snapping points are calculated and

stored for each address or even for every pixel of the considered area. For dynamic

adjustments such as changes in the road network due to road closures or construction

zones, the cost distance analysis would have to be performed again. However, on the one

hand, road closures and construction zones rarely a�ect road snapping and on the other

hand, in the precalculated result of the one-time preprocessing, the a�ected areas could

be adjusted manually.

For the considered area of interest, the evaluation showed that the slope parameter should

have a particularly high cost in order to obtain the most reasonable snapping points. For

the other parameters, there is no clear trend and the best results were obtained when

these parameters had medium costs. Still, these results are valid only for the considered

study area and cannot be easily transferred to other areas. The given conditions in

an area such as the vegetation cover, the topography, and the built-up area have an

in�uence on a reasonable weight combination. For example, slopes of hedges, bushes,

80

6. Optimized Pick-up and Drop-o� Locations

and fences in a rather �at area are a very good indicator to determine the access to

buildings, whereas, in a more mountainous area, the access to buildings may also have a

higher slope. Consequently, this parameter should have less in�uence there.

81

7. Discussion

In the context of the supported DRT projects, we tried to identify all the potentials for

the improvement in modern, �exible passenger transportation. The evaluation of the

projects covered theoretical aspects as well as very real problems in operation. From the

viewpoint of geoinformatics, two challenges seemed worth to be investigated in more

detail in this thesis.

The �rst one is the up to now common use of Euclidean distance for calculations of

network distances, whereby inherent pitfalls may become relevant when the real dis-

tance on the road network di�ers markedly from Euclidean distance. The second is to

assign appropriate locations to the requester’s location for passenger boarding. Both,

generalization of road networks for the purpose of simpli�ed routing as well as the use

of geospatial data (e.g. remote sensing data) for optimizing the accuracy of start and

end points of calculated routes were addressed. As di�erent as these topics may seem,

both can contribute signi�cantly to an enhancement of modern passenger transport

systems.

In chapter 5, an own approach was presented, with which approximated network distances

can be easily determined and this approach should be seen as an alternative to the

Euclidean distance in transportation practice and transportation research. Our evaluation

showed, that the presented approach shows potential for further usage and that it works

for di�erent road network patterns. In Chapter 6, we introduced an approach to determine

optimized stop locations, using the method of cost distance analysis and remote sensing

data. We assumed, that the path from buildings to the road network consists of few

vegetation cover, minimal slope of the terrain, and that building footprints should not

be crossed. We compared our results to a conventional routing engine, which is based

on the error-prone perpendicular distance. We achieved a higher validation-rate (up to

90.3%) than the conventional routing engine (81.4%) and we could evaluate a reasonable

weighting of the used parameters.

In the following, we will relate the used methods to approaches from literature, eval-

uate the used methodology, hence highlighting disadvantages and advantages and we

recommend optimization potentials and future work. Therefore, we will distinguish

82

7. Discussion

between the work regarding an enhancement of the performance for network distance

computations (cf. chapter 5) and the optimization for pick-up and drop-o� locations (cf.
chapter 6).

References to previous research

Performance of network distance computations

The presented approach shows potential to replace the usage of Euclidean distance in

transportation and transportation research. Euclidean distance is still used today to

determine the distance between two points on the road network, shown among others in

[18, 1, 19]. Even if this method can be feasible for road networks with a small circuity value,

pitfalls as depicted in Figure 2.1 may occur. Reasons for the use of Euclidean distances

in these �elds are either historically caused [15] or due to less required computing

power compared to a determination of exact network distances. The calculation of exact

network distances can still be very time-consuming and costly if many calculations

have to be performed for parallel queries. Therefore, Maue, Sanders, and Matijevic [26]

suggest as an extreme way to precalculate all pairs shortest path (APSP)-distances, so

no calculations need to be performed and results can be looked up. However, this is not

feasible for large networks. This is why we and other approaches from the literature

use graph partitioning of the underlying data to reduce the required computational

power for solving such queries (cf. section 4.1). In the conventional approaches for

partitioning of road networks, most approaches from literature do not consider methods

cross-disciplinary for the partitioning. Since both, graph theory and graph partitioning

have applications in many di�erent areas of science, there are plenty of di�erent methods.

We refer to the literature presented in section 4.1. To the best of our knowledge, no

algorithm that is actually intended for community detection in social networks has been

applied to road network partitioning so far. The concept of the algorithm FluidC we

adopted from social sciences, may be suitable for the partitioning of road networks. From

this point of view, our approach is innovative. As already mentioned in the introduction

of this algorithm (cf. subsection 5.2.3), the basic idea is, that �uids interact with each

other and contract and expand until a balanced state is reached.

In section 4.1, we presented a brief literature review addressing the main concepts of

the considered approaches for conventional road network partitioning in the context

of routing enhancement. In our developed approach, we combine some advantages and

bene�ts published in the literature. The published concepts of partitioning the road

network and the basic idea of using proxies have been proven successful in the past. Jung

and Pramanik [93], Yu, Lee, and Munro-Stasiuk [69], and Xu and Jacobsen [95] present an

approach that uses graph partitioning for routing enhancement. They determine so-called

distance-preserving subgraphs (DPS), which can be seen as an equivalent to partitions (cf.

83

7. Discussion

section 4.1). However, there are some drawbacks in their concept, since the applicability

is limited to prede�ned targets, e.g. logistic hubs. Therefore, these approaches are not

suitable for �exible passenger transportation systems.

Further similarities between our approach and the conventional ones from literature

are precalculations of shortest path distances. Maue, Sanders, and Matijevic [26] use

precomputed cluster distances (PCD) and lookup tables and Eapen and Beegom [96] and

Ma et al. [97] use so-called deterministic routing areas (DRAs).

Most previous approaches have mainly used only gridded and symmetrically constructed

networks and did not evaluate their algorithms for di�erent road network patterns. So

Jung and Pramanik [93], Yu, Lee, and Munro-Stasiuk [69], and Xu and Jacobsen [95]

have only used grid networks and other approaches from literature used for example

continental-sized road networks [91], where the di�erence between urban or rural road

network patterns get less relevant on the large scale since only larger highways are

considered. Both examples are hardly suitable for the application for �exible passenger

transport systems.

A direct quantitative comparison of own results to results from the literature was not

performed, because the used road networks di�er, a quantitative evaluation of partitioning

is not standardized, and the used implementations in di�erent programming languages

are not comparable. Instead, a detailed, quantitative evaluation was performed for real

road networks.

We want also to mention for the sake of completeness that there are other approaches such

as multilevel graph partitioning (MGP) and the software METIS, SCOTCH, and KaHIP

(cf. section 4.1). The original purpose of these approaches is mostly the optimization for

parallel computing in computer sciences. Also, some of the algorithms are protected by

patents, and implementations of these algorithms are not easily accessible. Our approach,

on the other hand, can be easily used and modi�ed.

Optimzed pick-up and drop-o� locations

Inaccuracies in routing in the context of passenger transportation can lead to problems

such as misunderstandings between customers and drivers and time delays in the schedule.

Especially inaccuracies at the start and end points of a route, hence pick-up and drop-o�

locations can lead to problems. This can be caused by incorrect, inaccurate, or missing

map data as well as by an insu�cient road snapping technique.

In research, there has been little focus on improving road snapping for the purpose of

better stop locations. There are many publications on real-time and o�ine map matching

(cf. section 3.4), but they have a di�erent intention and do not consider the entrances to

buildings at the start and endpoints of a route to determine reasonable stop locations.

84

7. Discussion

The publication from Hu et al. [106] is one of the few that addresses the same issue as

described in Figure 2.2. They try to identify the entrances of buildings in order to optimize

pedestrian routing to public buildings. Therefore, they use statistical learning methods

for building footprints from OpenStreetMap data. To the best of our knowledge, our

presented approach is the only one that uses remote sensing for this goal. Hu et al. [106]

plan to also use satellite imagery complementary to their approach in the future, but

they have exploited little potential so far. According to Hu et al. [106], most approaches

in the literature for determining building entrances are based on the analysis of street-

level images such as image recognition of Google Street-View images. Such data and its

applications are often limited and therefore currently not used in the context of passenger

transport systems.

Other approaches from literature in the context of �exible passenger transport systems

have somehow circumvented the limited accuracy of to-door routing, e.g. by determining

meeting points [18] or by using prede�ned stops as used in the supported project Flexa
1
.

To-door services have been mainly reserved for taxi companies, that do not require

accurate routing due to local knowledge. For private use, the demand for a more accurate

routing was apparently not high enough so far, as a small delay due to searching for

the building entrance and stop locations is unlikely to have serious consequences. In

transportation services, even small delays can interfere with the plans of future trips and

time schedules. Especially in combination with intermodal trip planning, this can result

in missing connection trains.

Another aspect already mentioned, is missing or incorrect map data (cf. section 2.2).

Many routing engines use data from OpenStreetMap. Consequently, the quality of the

results from the routing engine depends on the quality of the map data. If e.g. house

numbers are missing, the centroid of the road is used for routing, which leads to very

large inaccuracies, especially on long roads. There are services that o�er the coverage

of tagged house numbers in OpenStreetMap for some areas
2
. However, improving the

coverage of tagged house numbers is mostly still done by the users by hand, as described

in this blog [115].

Funke, Schirrmeister, and Storandt [105] published an approach for automatic extrapola-

tion of missing OpenStreetMap data, focusing on missing street names. Nevertheless, the

experience gained in the supported pilot projects showed, that most work still has to be

done by hand. Despite that, the quality of OpenStreetMap data for routing could compete

in the considered areas with commercial alternatives such as HereMaps
3
, especially

regarding the accuracy of constructions and road closures.

1 https://www.l.de/verkehrsbetriebe/kundenservice/services/flexa
2 https://regio-osm.de/
3 https://www.here.com/

85

https://www.l.de/verkehrsbetriebe/kundenservice/services/flexa
https://regio-osm.de/
https://www.here.com/

7. Discussion

Critical view of methodology and future work

Performance of network distance computations

We are aware, that in our evaluation exact shortest path distances are compared with

approximate shortest path distances, which need to be interpreted with caution. Further-

more, the parameters used have been chosen to show the potentials and the functioning

of the presented approach. We did not primarily determine parameters for practical

application, since depending on the AOI and given requirements, such as the maximal ac-

ceptable distance between proxies and all nodes within the same partition, the parameters

can be completely di�erent.

For future work, we suggest investigating the presented approach in more detail for an

application in transportation practice. Also, the suitability of this approach for other

disciplines could be investigated, too. It is conceivable, that this approach can also be

applied to e.g. social networks or other disciplines using network graphs. Especially, in

the context of big data, a generalization of network graphs can be worthwhile.

Optimized pick-up and drop-o� locations

The presented approach for determining optimized stop locations is somehow limited

for applications by the required computation time. An application can therefore be

recommended if the calculation is done as a preprocessing and for a bounded area to

restrict the complexity. Both, the application and further research on this approach are

limited due to data availability. More ground truth data would be preferable for a more

extensive evaluation. Data from taxi companies are di�cult to obtain due to privacy

issues and if such data are available, the other required data, such as LiDAR data are

often not freely accessible or not a�ordable in a su�cient resolution.

Further research could concentrate on improving the calculation time, and testing and

evaluating this approach for di�erent regions as well as for the interpolation of house

numbers. The cell size of 0.3 x 0.3 meters could be changed to reduce the computation

time. However, when choosing the resolution, the guideline from Shannon, Whittaker,

and Nyquist should be taken into account, which states that the cell size of a grid should be

at least 2 ∗
√

2 times smaller than the smallest detail to be kept [116, 117]. Considering the

grid representation (cf. Figure 3.9), another pattern could be used, but it would hardly lead

to any advantages. Consequently, we do not recommend changing the chosen Queens

pattern. In addition, interpolation of missing house numbers should be investigated.

Therefore, it should be assumed that there is a clear rule in the assignment of house

numbers, such as odd house numbers on the one side and even house numbers on the

other side of the road. Then, for buildings the assigned roads can be determined by the

cost distance method and the rule for assigning house numbers can be applied. Such

interpolated house numbers should be interpreted with caution, since there are sometimes

86

7. Discussion

further address additions, e.g. characters, and a certain inaccuracy of the results can be

expected. However, the most realistic application for this approach is for DRT systems

with a small or medium-sized area. For each address in this area, snapping points could

be precalculated and stored, so they could easily be read when needed without calculating

the snapping points and preventing the usage of the error-prone perpendicular distance.

This would also allow manual adjustments for stop locations if these points would be

stored e.g. in a lookup table since manually modi�ed snapping can be implemented.

87

8. Conclusion

In this thesis, we picked up two challenges we identi�ed to have the potential to improve

modern, �exible passenger transport systems by using methods from geoinformatics. First,

an alternative to the Euclidean distance was developed by providing fast approximated

network distances. Second, an approach for determining enhanced stop locations for

passenger transport systems with to-door services was set up by using remote sensing.

These two challenges were addressed in an interdisciplinary manner so that methods

and strengths from di�erent disciplines were combined.

A new �exible and robust approach was presented, that generalizes complex network

graphs such as road networks, and can further provide approximated network distances

without having to resort to routing engines, respectively shortest path algorithms. They

can require a lot of computing power, especially for many parallel queries and for large

road networks. In the evaluation, di�erent aspects of the used approximation algorithm

and hence resulting nondeterministic results were investigated. These aspects consist

of deviations of the number of partitions, the potential reduction for precalculating all

pairs shortest path (APSP)-distances, distribution of partitions, and the performance in

comparison to conventional shortest path algorithms. For each of these aspects, statistics

were used to describe the behavior of our algorithm. Due to the design of approximation

algorithms or precisely the used FluidC algorithm, nondeterministic results can arise.

For this reason, the statistical investigations were performed for several iterations with

unchanged parameters. Further, the scalability of this approach was also considered and

investigated. It was shown, that the presented approach copes well with di�erent road

network patterns, which is often neglected in research. Comparable approaches from

literature often evaluate their algorithms only on symmetric or constructed network

graphs, such as symmetrically gridded road networks, which re�ect only the results for

Manhattan-like road networks, but not for many other real-world road network patterns.

By testing algorithms on irregular road networks, an interpretation and evaluation is

more di�cult, but rather show the potential application for practical use. The comparison

of the performances indicates, that the presented approach has potential, but this should

be investigated more closely in the future by exploiting an improved implementation in

other, more performant programming languages.

88

8. Conclusion

Furthermore, in chapter 6 an approach to determine the access to buildings using the

method of cost distance analysis and remote sensing data, was presented. This technique

can be used to determine optimized stop locations, that could potentially be applied to e.g.

demand responsive transport (DRT) systems with a to-door service. In conventional rout-

ing engines, such as Google Maps or Open Source Routing Machine (OSRM), sometimes

dangerous stop locations at heavily tra�cked highways or insu�cient stop locations

without direct access to the corresponding building are calculated, which could lead to

delays and misunderstandings between drivers and passengers. Such problems could

be avoided by the presented approach. To the best of our knowledge, a research gap

has been identi�ed here, since little comparable research exists and even state-of-the-art

routing engines like Google Maps provide inaccurate snapping points.

In a comparison of our approach and the conventional routing engine OSRM, which

computes the stop locations based on perpendicular distance, the results show that our

approach outperforms the conventional alternative. We could achieve a validation-rate up

to 90.3%, whereas the conventional routing engine reaches a validation-rate of 81.4%.

In this work, we have shown some potential contributions that geoinformatics can o�er to

make e�cient passenger transportation systems more attractive compared to motorized

private transport (MPT), thus contributing further to mitigating the developments of the

anthropogenic climate change.

89

Bibliography

[1] N. Masoud and R. Jayakrishnan. “A real-time algorithm to solve the peer-to-

peer ride-matching problem in a �exible ridesharing system”. In: Transportation
Research Part B: Methodological 106 (Dec. 2017), pp. 218–236. doi: 10.1016/j.trb.

2017.10.006. url: https://doi.org/10.1016/j.trb.2017.10.006.

[2] M. Tamannaei and I. Irandoost. “Carpooling problem: A new mathematical model,

branch-and-bound, and heuristic beam search algorithm”. In: Journal of Intelligent
Transportation Systems 23.3 (Nov. 2018), pp. 203–215. doi: 10.1080/15472450.

2018.1484739. url: https://doi.org/10.1080/15472450.2018.1484739.

[3] R. Sims et al. “Transport”. In: Climate Change 2014: Mitigation of Climate Change.
Contribution of Working Group III to the Fifth Assessment Report of the Intergov-
ernmental Panel on Climate Change. Ed. by Edenhofer O. et al. Cambridge, United

Kingdom and New York, NY, USA: Cambridge University Press, 2014. Chap. 8,

pp. 599–670.

[4] EDGAR - Emissions Database for Global Atmospheric Research. 2019 Fossil CO2
Total Emissions. https://edgar.jrc.ec.europa.eu/. 2019.

[5] European Parliament. CO2 emissions from cars: facts and �gures (infographics):
News: European Parliament. https : / / www . europarl . europa . eu / news / en /
headlines/society/20190313STO31218/co2- emissions- from- cars- facts-

and-figures-infographics. 2019.

[6] O. F. Aydin, I. Gokasar, and O. Kalan. “Matching algorithm for improving ride-

sharing by incorporating route splits and social factors”. In: PLOS ONE 15.3 (Mar.

2020). Ed. by Chen Lv, e0229674. doi: 10.1371/journal.pone.0229674. url:

https://doi.org/10.1371/journal.pone.0229674.

[7] S. Fahnenschreiber et al. “A Multi-modal Routing Approach Combining Dynamic

Ride-sharing and Public Transport”. In: Transportation Research Procedia 13 (2016),

pp. 176–183. doi: 10.1016/j.trpro.2016.05.018. url: https://doi.org/10.

1016/j.trpro.2016.05.018.

[8] J. Ke, H. Yang, and Z. Zheng. “On ride-pooling and tra�c congestion”. In: Trans-
portation Research Part B: Methodological 142 (Dec. 2020), pp. 213–231. doi: 10.

1016/j.trb.2020.10.003. url: https://doi.org/10.1016/j.trb.2020.10.003.

90

https://doi.org/10.1016/j.trb.2017.10.006
https://doi.org/10.1016/j.trb.2017.10.006
https://doi.org/10.1016/j.trb.2017.10.006
https://doi.org/10.1080/15472450.2018.1484739
https://doi.org/10.1080/15472450.2018.1484739
https://doi.org/10.1080/15472450.2018.1484739
https://edgar.jrc.ec.europa.eu/
https://www.europarl.europa.eu/news/en/headlines/society/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics
https://www.europarl.europa.eu/news/en/headlines/society/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics
https://www.europarl.europa.eu/news/en/headlines/society/20190313STO31218/co2-emissions-from-cars-facts-and-figures-infographics
https://doi.org/10.1371/journal.pone.0229674
https://doi.org/10.1371/journal.pone.0229674
https://doi.org/10.1016/j.trpro.2016.05.018
https://doi.org/10.1016/j.trpro.2016.05.018
https://doi.org/10.1016/j.trpro.2016.05.018
https://doi.org/10.1016/j.trb.2020.10.003
https://doi.org/10.1016/j.trb.2020.10.003
https://doi.org/10.1016/j.trb.2020.10.003

Bibliography

[9] A. König and J. Grippenkoven. From public mobility on demand to autonomous
public mobility on demand – Learning from dial-a-ride services in Germany. Ed. by

Eric Sucky et al. 2017. url: https://elib.dlr.de/104956/.

[10] J. Alonso-Mora et al. “On-demand high-capacity ride-sharing via dynamic trip-

vehicle assignment”. In: Proceedings of the National Academy of Sciences 114.3

(Jan. 2017), pp. 462–467. doi: 10.1073/pnas.1611675114. url: https://doi.org/

10.1073/pnas.1611675114.

[11] P. Jittrapirom et al. “Mobility as a Service: A Critical Review of De�nitions, Assess-

ments of Schemes, and Key Challenges”. In:Urban Planning 2.2 (June 2017), pp. 13–

25. doi: 10.17645/up.v2i2.931. url: https://doi.org/10.17645/up.v2i2.931.

[12] S. Böhler. Handbuch zur Planung �exibler Bedienungsformen im 0̈PNV. Dec. 2020.

isbn: 9783879940387.

[13] H. Bast et al. “Route Planning in Transportation Networks”. In: Algorithm Engi-
neering. Springer International Publishing, 2016, pp. 19–80. doi: 10.1007/978-3-

319-49487-6_2. url: https://doi.org/10.1007/978-3-319-49487-6_2.

[14] S. Wang et al. “E�ective Indexing for Approximate Constrained Shortest Path

Queries on Large Road Networks”. In: Proc. VLDB Endow. 10.2 (Oct. 2016), pp. 61–

72. issn: 2150-8097. doi: 10.14778/3015274.3015277. url: https://doi.org/10.

14778/3015274.3015277.

[15] D. Levinson and A. El-geneidy. Network Circuity and the Location of Home and
Work. 2007.

[16] J. Huang and D. Levinson. “Circuity in urban transit networks”. In: Journal of
Transport Geography 48 (Oct. 2015), pp. 145–153. doi: 10.1016/j.jtrangeo.2015.

09.004. url: https://doi.org/10.1016/j.jtrangeo.2015.09.004.

[17] S. Shang et al. “Trajectory similarity join in spatial networks”. In: Proceedings of
the VLDB Endowment 10.11 (2017), pp. 1178–1189. issn: 21508097. doi: 10.14778/

3137628.3137630.

[18] P. Czioska et al. “Real-world meeting points for shared demand-responsive trans-

portation systems”. In: Public Transport 11.2 (July 2019), pp. 341–377. doi: 10.1007/

s12469-019-00207-y. url: https://doi.org/10.1007/s12469-019-00207-y.

[19] B. Shen et al. “V-Tree: E�cient kNN Search on Moving Objects with Road-

Network Constraints”. In: 2017 IEEE 33rd International Conference on Data En-
gineering (ICDE). IEEE, Apr. 2017. doi: 10.1109/icde.2017.115. url: https:

//doi.org/10.1109/icde.2017.115.

91

https://elib.dlr.de/104956/
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.1073/pnas.1611675114
https://doi.org/10.17645/up.v2i2.931
https://doi.org/10.17645/up.v2i2.931
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.1007/978-3-319-49487-6_2
https://doi.org/10.14778/3015274.3015277
https://doi.org/10.14778/3015274.3015277
https://doi.org/10.14778/3015274.3015277
https://doi.org/10.1016/j.jtrangeo.2015.09.004
https://doi.org/10.1016/j.jtrangeo.2015.09.004
https://doi.org/10.1016/j.jtrangeo.2015.09.004
https://doi.org/10.14778/3137628.3137630
https://doi.org/10.14778/3137628.3137630
https://doi.org/10.1007/s12469-019-00207-y
https://doi.org/10.1007/s12469-019-00207-y
https://doi.org/10.1007/s12469-019-00207-y
https://doi.org/10.1109/icde.2017.115
https://doi.org/10.1109/icde.2017.115
https://doi.org/10.1109/icde.2017.115

Bibliography

[20] N. Agatz et al. “Optimization for dynamic ride-sharing: A review”. In: European
Journal of Operational Research 223.2 (Dec. 2012), pp. 295–303. doi: 10.1016/j.

ejor.2012.05.028. url: https://doi.org/10.1016/j.ejor.2012.05.028.

[21] M. Hyland and H. S. Mahmassani. “Operational bene�ts and challenges of shared-

ride automated mobility-on-demand services”. In: Transportation Research Part A:
Policy and Practice 134 (Apr. 2020), pp. 251–270. doi: 10.1016/j.tra.2020.02.017.

url: https://doi.org/10.1016/j.tra.2020.02.017.

[22] M. Garey and D. Johnson. “Computers and Intractability: A Guide to the Theory

of NP-Completeness”. In: 1978.

[23] R. Hassin. “Approximation Schemes for the Restricted Shortest Path Problem”.

In: Mathematics of Operations Research 17.1 (1992), pp. 36–42. issn: 0364765X,

15265471. url: http://www.jstor.org/stable/3689891.

[24] D. H. Lorenz and D. Raz. “A simple e�cient approximation scheme for the

restricted shortest path problem”. In: Operations Research Letters 28.5 (2001),

pp. 213–219. issn: 0167-6377. doi: https://doi.org/10.1016/S0167-6377(01)

00069 - 4. url: https : / / www . sciencedirect . com / science / article / pii /

S0167637701000694.

[25] G. Tsaggouris and C. Zaroliagis. “Multiobjective Optimization: Improved FPTAS

for Shortest Paths and Non-Linear Objectives with Applications”. In: Theory of
Computing Systems 45.1 (Nov. 2007), pp. 162–186. doi: 10.1007/s00224-007-

9096-4. url: https://doi.org/10.1007/s00224-007-9096-4.

[26] J. Maue, P. Sanders, and D. Matijevic. “Goal-directed shortest-path queries using

precomputed cluster distances”. In: Journal of Experimental Algorithmics 14 (Dec.

2009), p. 3.2. doi: 10.1145/1498698.1564502. url: https://doi.org/10.1145/

1498698.1564502.

[27] Google Maps. Query Am Fassberg 17, Goettingen, Germany. https://www.google.

de/maps/place/Am+Fa%C3%9Fberg+17,+37077+G%C3%B6ttingen/@51.5605163,

9 . 9660005 , 681m / data = !3m2 ! 1e3 ! 4b1 ! 4m5 ! 3m4 ! 1s0x47a4d503fe8feebf :

0x2c2b721e7a1fcf62!8m2!3d51.5605163!4d9.9681893. 2021.

[28] Google Maps. Query Friedenstrasse 29A, Hoexter, Germany. https://www.google.

de/maps/place/Am+Fa%C3%9Fberg+17,+37077+G%C3%B6ttingen/@51.5605163,

9 . 9660005 , 681m / data = !3m2 ! 1e3 ! 4b1 ! 4m5 ! 3m4 ! 1s0x47a4d503fe8feebf :

0x2c2b721e7a1fcf62!8m2!3d51.5605163!4d9.9681893. 2021.

[29] A. Beutelspacher. Diskrete Mathematik für Einsteiger. 5. Au�age. Springer-Verlag

GmbH, Oct. 14, 2014. isbn: 9783658057800.

92

https://doi.org/10.1016/j.ejor.2012.05.028
https://doi.org/10.1016/j.ejor.2012.05.028
https://doi.org/10.1016/j.ejor.2012.05.028
https://doi.org/10.1016/j.tra.2020.02.017
https://doi.org/10.1016/j.tra.2020.02.017
http://www.jstor.org/stable/3689891
https://doi.org/https://doi.org/10.1016/S0167-6377(01)00069-4
https://doi.org/https://doi.org/10.1016/S0167-6377(01)00069-4
https://www.sciencedirect.com/science/article/pii/S0167637701000694
https://www.sciencedirect.com/science/article/pii/S0167637701000694
https://doi.org/10.1007/s00224-007-9096-4
https://doi.org/10.1007/s00224-007-9096-4
https://doi.org/10.1007/s00224-007-9096-4
https://doi.org/10.1145/1498698.1564502
https://doi.org/10.1145/1498698.1564502
https://doi.org/10.1145/1498698.1564502
https://www.google.de/maps/place/Am+Fa%C3%9Fberg+17,+37077+G%C3%B6ttingen/@51.5605163,9.9660005,681m/data=!3m2!1e3!4b1!4m5!3m4!1s0x47a4d503fe8feebf:0x2c2b721e7a1fcf62!8m2!3d51.5605163!4d9.9681893
https://www.google.de/maps/place/Am+Fa%C3%9Fberg+17,+37077+G%C3%B6ttingen/@51.5605163,9.9660005,681m/data=!3m2!1e3!4b1!4m5!3m4!1s0x47a4d503fe8feebf:0x2c2b721e7a1fcf62!8m2!3d51.5605163!4d9.9681893
https://www.google.de/maps/place/Am+Fa%C3%9Fberg+17,+37077+G%C3%B6ttingen/@51.5605163,9.9660005,681m/data=!3m2!1e3!4b1!4m5!3m4!1s0x47a4d503fe8feebf:0x2c2b721e7a1fcf62!8m2!3d51.5605163!4d9.9681893
https://www.google.de/maps/place/Am+Fa%C3%9Fberg+17,+37077+G%C3%B6ttingen/@51.5605163,9.9660005,681m/data=!3m2!1e3!4b1!4m5!3m4!1s0x47a4d503fe8feebf:0x2c2b721e7a1fcf62!8m2!3d51.5605163!4d9.9681893
https://www.google.de/maps/place/Am+Fa%C3%9Fberg+17,+37077+G%C3%B6ttingen/@51.5605163,9.9660005,681m/data=!3m2!1e3!4b1!4m5!3m4!1s0x47a4d503fe8feebf:0x2c2b721e7a1fcf62!8m2!3d51.5605163!4d9.9681893
https://www.google.de/maps/place/Am+Fa%C3%9Fberg+17,+37077+G%C3%B6ttingen/@51.5605163,9.9660005,681m/data=!3m2!1e3!4b1!4m5!3m4!1s0x47a4d503fe8feebf:0x2c2b721e7a1fcf62!8m2!3d51.5605163!4d9.9681893
https://www.google.de/maps/place/Am+Fa%C3%9Fberg+17,+37077+G%C3%B6ttingen/@51.5605163,9.9660005,681m/data=!3m2!1e3!4b1!4m5!3m4!1s0x47a4d503fe8feebf:0x2c2b721e7a1fcf62!8m2!3d51.5605163!4d9.9681893
https://www.google.de/maps/place/Am+Fa%C3%9Fberg+17,+37077+G%C3%B6ttingen/@51.5605163,9.9660005,681m/data=!3m2!1e3!4b1!4m5!3m4!1s0x47a4d503fe8feebf:0x2c2b721e7a1fcf62!8m2!3d51.5605163!4d9.9681893

Bibliography

[30] M. Newman. “Detecting community structure in networks”. In: The European
Physical Journal B - Condensed Matter 38.2 (Mar. 2004), pp. 321–330. doi: 10.1140/

epjb/e2004-00124-y. url: https://doi.org/10.1140/epjb/e2004-00124-y.

[31] S. E. Schae�er. “Graph clustering”. In: Computer Science Review 1.1 (Aug. 2007),

pp. 27–64. doi: 10.1016/j.cosrev.2007.05.001. url: https://doi.org/10.

1016/j.cosrev.2007.05.001.

[32] S. Benz and R. Weibel. “Road network selection for medium scales using an ex-

tended stroke-mesh combination algorithm”. In: Cartographic and Geographic In-
formation Science 41.4 (2014), pp. 323–339. doi: 10.1080/15230406.2014.928482.

[33] A. Edwardes and W. Mackaness. “Intelligent Generalisation of urban road net-

works”. In: Proceedings of GIS Research UK (2000), pp. 81–85.

[34] B. Jiang and C. Claramunt. “A structural approach to model generalisation of an

urban street network”. In: Geoinformatica 8.2 (2004), pp. 151–171. doi: 10.1023/b:

gein.0000017746.44824.70.

[35] W. A. Mackaness and M. K. Beard. “Use of graph theory to support generalisation”.

In: Cartography and Geographic Information Systems 20 (1993), pp. 210–221.

[36] W. A. Mackaness and G. A. Mackechnie. “Automating the detection and simpli�-

cation of junctions in road networks”. In: Geoinformatica 200.3 (1999), pp. 185–

200.

[37] R. Thomson and D. Richardson. “A graph theory approach to road network gen-

eralisation”. In: Proceedings 18th ICA/ACI International Cartographic Conference
(1995), pp. 1871–1880.

[38] R. Thomson and D. Richardson. “The ‘Good Continuation’ Principle of Perceptual

Organization applied to the Generalization of Road Networks”. In: Proceedings of
the ICA 19th International Cartographic Conference (1999), pp. 14–21.

[39] Q. Zhou and Z. Li. “Evaluation of Properties to determine the Importance of

individual Roads for Map Generalization”. In: Lecture Notes in Geoinformation and
Cartography. Springer Berlin Heidelberg, 2011, pp. 459–475. doi: 10.1007/978-3-

642-19143-5_26. url: https://doi.org/10.1007/978-3-642-19143-5_26.

[40] N. de Lange. Geoinformatik. Springer Berlin Heidelberg, 2013. doi: 10.1007/978-

3-642-34807-5.

[41] E. W. Dijkstra. “A Note on Two Problems in Connexion with Graphs”. In: NU-
MERISCHE MATHEMATIK 1.1 (1959), pp. 269–271.

[42] OpenStreetMap. Attributierung von Straßen in Deutschland. 2020. url: https :

//wiki.openstreetmap.org/wiki/Attributierung_von_Stra%5C%C3%5C%9Fen_

in_Deutschland.

93

https://doi.org/10.1140/epjb/e2004-00124-y
https://doi.org/10.1140/epjb/e2004-00124-y
https://doi.org/10.1140/epjb/e2004-00124-y
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1016/j.cosrev.2007.05.001
https://doi.org/10.1080/15230406.2014.928482
https://doi.org/10.1023/b:gein.0000017746.44824.70
https://doi.org/10.1023/b:gein.0000017746.44824.70
https://doi.org/10.1007/978-3-642-19143-5_26
https://doi.org/10.1007/978-3-642-19143-5_26
https://doi.org/10.1007/978-3-642-19143-5_26
https://doi.org/10.1007/978-3-642-34807-5
https://doi.org/10.1007/978-3-642-34807-5
https://wiki.openstreetmap.org/wiki/Attributierung_von_Stra%5C%C3%5C%9Fen_in_Deutschland
https://wiki.openstreetmap.org/wiki/Attributierung_von_Stra%5C%C3%5C%9Fen_in_Deutschland
https://wiki.openstreetmap.org/wiki/Attributierung_von_Stra%5C%C3%5C%9Fen_in_Deutschland

Bibliography

[43] OpenStreetMap. Map Features. 2021. url: https://wiki.openstreetmap.org/

wiki/Map_features.

[44] M. Barthelemy. “Betweenness centrality in large complex networks”. In: The
European Physical Journal B - Condensed Matter 38.2 (2004), pp. 163–168. doi:

10.1140/epjb/e2004-00111-4.

[45] J. Golbeck. “Analyzing networks”. In: Introduction to Social Media Investigation.

Elsevier, 2015, pp. 221–235. doi: 10.1016/b978-0-12-801656-5.00021-4. url:

https://doi.org/10.1016/b978-0-12-801656-5.00021-4.

[46] A. Landherr, B. Friedl, and J. Heidemann. “A Critical Review of Centrality Mea-

sures in Social Networks”. In: Business & Information Systems Engineering 2.6 (Oct.

2010), pp. 371–385. doi: 10.1007/s12599-010-0127-3. url: https://doi.org/10.

1007/s12599-010-0127-3.

[47] L. Metcalf and W. Casey. “Graph theory”. In: Cybersecurity and Applied Mathe-
matics. Elsevier, 2016, pp. 67–94. doi: 10.1016/b978-0-12-804452-0.00005-1.

url: https://doi.org/10.1016/b978-0-12-804452-0.00005-1.

[48] G. Vaira and O. Kurasova. “Parallel Bidirectional Dijkstra’s Shortest Path Algo-

rithm”. In: Databases and Information Systems VI - Selected Papers from the Ninth
International Baltic Conference, DB&IS 2010, July 5-7, 2010, Riga, Latvia. Ed. by Ja-

nis Barzdins and Marite Kirikova. Vol. 224. Frontiers in Arti�cial Intelligence and

Applications. IOS Press, 2010, pp. 422–435. doi: 10.3233/978-1-60750-688-1-422.

url: https://doi.org/10.3233/978-1-60750-688-1-422.

[49] P. E. Hart, N. J. Nilsson, and B. Raphael. “A Formal Basis for the Heuristic Deter-

mination of Minimum Cost Paths”. In: IEEE Transactions on Systems Science and
Cybernetics 4.2 (1968), pp. 100–107. doi: 10.1109/TSSC.1968.300136.

[50] R. Geisberger et al. “Exact Routing in Large Road Networks Using Contraction

Hierarchies”. In: Transportation Science 46.3 (2012), pp. 388–404. issn: 1526-5447.

doi: 10.1287/trsc.1110.0401. url: https://doi.org/10.1287/trsc.1110.0401.

[51] Project-OSRM. How to run the tool chain. https://github.com/Project-OSRM/

osrm-backend/wiki/Running-OSRM. 2017.

[52] R. W. Floyd. “Algorithm 97: Shortest Path”. In: Commun. ACM 5.6 (June 1962),

p. 345. issn: 0001-0782. doi: 10.1145/367766.368168. url: https://doi.org/10.

1145/367766.368168.

[53] S. Warshall. “A Theorem on Boolean Matrices”. In: J. ACM 9.1 (1962), pp. 11–12.

issn: 0004-5411. doi: 10.1145/321105.321107. url: https://doi.org/10.1145/

321105.321107.

94

https://wiki.openstreetmap.org/wiki/Map_features
https://wiki.openstreetmap.org/wiki/Map_features
https://doi.org/10.1140/epjb/e2004-00111-4
https://doi.org/10.1016/b978-0-12-801656-5.00021-4
https://doi.org/10.1016/b978-0-12-801656-5.00021-4
https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1007/s12599-010-0127-3
https://doi.org/10.1016/b978-0-12-804452-0.00005-1
https://doi.org/10.1016/b978-0-12-804452-0.00005-1
https://doi.org/10.3233/978-1-60750-688-1-422
https://doi.org/10.3233/978-1-60750-688-1-422
https://doi.org/10.1109/TSSC.1968.300136
https://doi.org/10.1287/trsc.1110.0401
https://doi.org/10.1287/trsc.1110.0401
 https://github.com/Project-OSRM/osrm-backend/wiki/Running-OSRM
 https://github.com/Project-OSRM/osrm-backend/wiki/Running-OSRM
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/367766.368168
https://doi.org/10.1145/321105.321107
https://doi.org/10.1145/321105.321107
https://doi.org/10.1145/321105.321107

Bibliography

[54] R. Rojas et al. “Konrad Zuses Plankalkül — Seine Genese und eine moderne

Implementierung”. In: Geschichten der Informatik. Springer Berlin Heidelberg,

2004, pp. 215–235. doi: 10.1007/978-3-642-18631-8_9. url: https://doi.org/

10.1007/978-3-642-18631-8_9.

[55] D. Delling et al. “Engineering Route Planning Algorithms”. In: Algorithmics of
Large and Complex Networks. Springer Berlin Heidelberg, 2009, pp. 117–139. doi:

10.1007/978-3-642-02094-0_7. url: https://doi.org/10.1007/978-3-642-

02094-0_7.

[56] D. P. Williamson and D. B. Shmoys. The Design of Approximation Algorithms. 1st.

USA: Cambridge University Press, 2011. isbn: 0521195276.

[57] D. S. Johnson. “Approximation algorithms for combinatorial problems”. In: Journal
of Computer and System Sciences 9.3 (Dec. 1974), pp. 256–278. doi: 10.1016/s0022-

0000(74)80044-9. url: https://doi.org/10.1016/s0022-0000(74)80044-9.

[58] A. Hahn, W. Frühling, and J. Schlüter. “Determination of optimized pick-up and

drop-o� locations in transport routing - A cost distance approach”. In: XIII Interna-
tional Scienti�c Conference and X International Symposium of Young Researchers.
Conference Proceedings. Ed. by Aleksander Sladkowski. Katowice, Poland: Silesian

University of Technology - Faculty of Transport and Aviation Engineering, 2021.

isbn: 978-83-959742-1-2.

[59] Li Nyen Thin et al. “GPS Systems Literature: Inaccuracy Factors And E�ective

Solutions”. In: International journal of Computer Networks & Communications 8.2

(Apr. 2016), pp. 123–131. doi: 10.5121/ijcnc.2016.8211. url: https://doi.org/

10.5121/ijcnc.2016.8211.

[60] F. C. Pereira, H. Costa, and N. M. Pereira. “An o�-line map-matching algorithm

for incomplete map databases”. In: European Transport Research Review 1.3 (Sept.

2009), pp. 107–124. doi: 10.1007/s12544-009-0013-6. url: https://doi.org/10.

1007/s12544-009-0013-6.

[61] M. Hashemi and H. A. Karimi. “A critical review of real-time map-matching

algorithms: Current issues and future directions”. In: Computers, Environment
and Urban Systems 48 (2014), pp. 153–165. issn: 0198-9715. doi: https://doi.

org/10.1016/j.compenvurbsys.2014.07.009. url: https://www.sciencedirect.

com/science/article/pii/S0198971514000908.

[62] M. He et al. “An enhanced weight-based real-time map matching algorithm for

complex urban networks”. In: Physica A: Statistical Mechanics and its Applications
534 (Nov. 2019), p. 122318. doi: 10.1016/j.physa.2019.122318. url: https:

//doi.org/10.1016/j.physa.2019.122318.

95

https://doi.org/10.1007/978-3-642-18631-8_9
https://doi.org/10.1007/978-3-642-18631-8_9
https://doi.org/10.1007/978-3-642-18631-8_9
https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1007/978-3-642-02094-0_7
https://doi.org/10.1016/s0022-0000(74)80044-9
https://doi.org/10.1016/s0022-0000(74)80044-9
https://doi.org/10.1016/s0022-0000(74)80044-9
https://doi.org/10.5121/ijcnc.2016.8211
https://doi.org/10.5121/ijcnc.2016.8211
https://doi.org/10.5121/ijcnc.2016.8211
https://doi.org/10.1007/s12544-009-0013-6
https://doi.org/10.1007/s12544-009-0013-6
https://doi.org/10.1007/s12544-009-0013-6
https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2014.07.009
https://doi.org/https://doi.org/10.1016/j.compenvurbsys.2014.07.009
https://www.sciencedirect.com/science/article/pii/S0198971514000908
https://www.sciencedirect.com/science/article/pii/S0198971514000908
https://doi.org/10.1016/j.physa.2019.122318
https://doi.org/10.1016/j.physa.2019.122318
https://doi.org/10.1016/j.physa.2019.122318

Bibliography

[63] L. Knapen et al. “Likelihood-based o�ine map matching of GPS recordings using

global trace information”. In: Transportation Research Part C: Emerging Technolo-
gies 93 (Aug. 2018), pp. 13–35. doi: 10.1016/j.trc.2018.05.014. url: https:

//doi.org/10.1016/j.trc.2018.05.014.

[64] M. A. Quddus, W. Y. Ochieng, and R. B. Noland. “Current map-matching algorithms

for transport applications: State-of-the art and future research directions”. In:

Transportation Research Part C: Emerging Technologies 15.5 (Oct. 2007), pp. 312–

328. doi: 10.1016/j.trc.2007.05.002. url: https://doi.org/10.1016/j.trc.

2007.05.002.

[65] D. Zhang, Y. Dong, and Z. Guo. “A turning point-based o�ine map matching

algorithm for urban road networks”. In: Information Sciences 565 (July 2021),

pp. 32–45. doi: 10.1016/j.ins.2021.02.052. url: https://doi.org/10.1016/j.

ins.2021.02.052.

[66] H Yin and O. Wolfson. “A weight-based map matching method in moving objects

databases”. In: vol. 16. July 2004, pp. 437–438. isbn: 0-7695-2146-0. doi: 10.1109/

SSDM.2004.1311248.

[67] M. J. de Smith, M. F. Goodchild, and P. A. & Associates Longley.Geospatial Analysis
6th Edition. 2018.

[68] D. H. Douglas. “Least-cost Path in GIS Using an Accumulated Cost Surface and

Slopelines”. In: Cartographica: The International Journal for Geographic Informa-
tion and Geovisualization 31 (Oct. 1994), pp. 37–51. doi: 10.3138/D327-0323-

2JUT-016M.

[69] C. Yu, J. Lee, and M. Munro-Stasiuk. “Research Article: Extensions to least-cost

path algorithms for roadway planning”. In: International Journal of Geographical
Information Science 17.4 (2003), pp. 361–376. doi: 10.1080/1365881031000072645.

[70] M. van Leusen. “Pattern to process: methodological investigations into the forma-

tion and interpretation of spatial patterns in archaeological landscapes”. In: (Jan.

2002).

[71] G. Rees. “Least-Cost Paths in Mountainous Terrain”. In: Computers & Geosciences
30 (Apr. 2004), pp. 203–209. doi: 10.1016/j.cageo.2003.11.001.

[72] W. Warntz. “Transportation, Social Physics, And The Law Of Refraction”. In: The
Professional Geographer 9 (Feb. 2005), pp. 2–7. doi: 10.1111/j.0033-0124.1957.

094_2.x.

[73] W. Collischonn and J. Pilar. “A direction dependent least-cost-path algorithm for

roads and canals”. In: International Journal of Geographical Information Science
14 (June 2000), pp. 397–406. doi: 10.1080/13658810050024304.

96

https://doi.org/10.1016/j.trc.2018.05.014
https://doi.org/10.1016/j.trc.2018.05.014
https://doi.org/10.1016/j.trc.2018.05.014
https://doi.org/10.1016/j.trc.2007.05.002
https://doi.org/10.1016/j.trc.2007.05.002
https://doi.org/10.1016/j.trc.2007.05.002
https://doi.org/10.1016/j.ins.2021.02.052
https://doi.org/10.1016/j.ins.2021.02.052
https://doi.org/10.1016/j.ins.2021.02.052
https://doi.org/10.1109/SSDM.2004.1311248
https://doi.org/10.1109/SSDM.2004.1311248
https://doi.org/10.3138/D327-0323-2JUT-016M
https://doi.org/10.3138/D327-0323-2JUT-016M
https://doi.org/10.1080/1365881031000072645
https://doi.org/10.1016/j.cageo.2003.11.001
https://doi.org/10.1111/j.0033-0124.1957.094_2.x
https://doi.org/10.1111/j.0033-0124.1957.094_2.x
https://doi.org/10.1080/13658810050024304

Bibliography

[74] T.H. Cormen et al. Introduction to Algorithms. MIT Press, 2001.

[75] J. Xu and R. G. Lathrop. “Improving cost-path tracing in a raster data format”. In:

Computers & Geosciences 20.10 (1994), pp. 1455–1465. issn: 0098-3004. doi: https:

//doi.org/10.1016/0098-3004(94)90105-8. url: http://www.sciencedirect.

com/science/article/pii/0098300494901058.

[76] Y. Akhremtsev, P. Sanders, and C. Schulz. “(Semi-)External Algorithms for Graph

Partitioning and Clustering”. In: 2015 Proceedings of the Seventeenth Workshop
on Algorithm Engineering and Experiments (ALENEX). Society for Industrial and

Applied Mathematics, Dec. 2014, pp. 33–43. doi: 10.1137/1.9781611973754.4.

url: https://doi.org/10.1137/1.9781611973754.4.

[77] C. Schulz. “High Quality Graph Partitioning”. PhD thesis. Karlsruher Institute for

Technology, 2013.

[78] K. Schloegel, G. Karypis, and V. Kumar. “Graph Partitioning for High-Performance

Scienti�c Simulations”. In: Sourcebook of Parallel Computing. San Francisco, CA,

USA: Morgan Kaufmann Publishers Inc., 2003, pp. 491–541. isbn: 1558608710.

[79] Ü. V. Çatalyürek and C. Aykanat. “Decomposing irregularly sparse matrices for

parallel matrix-vector multiplication”. In: Parallel Algorithms for Irregularly Struc-
tured Problems. Ed. by Alfonso Ferreira et al. Berlin, Heidelberg: Springer Berlin

Heidelberg, 1996, pp. 75–86. isbn: 978-3-540-68808-2.

[80] J. Fietz et al. “Optimized Hybrid Parallel Lattice Boltzmann Fluid Flow Simulations

on Complex Geometries”. In: Euro-Par 2012 Parallel Processing. Ed. by Christos

Kaklamanis, Theodore Papatheodorou, and Paul G. Spirakis. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 818–829. isbn: 978-3-642-32820-6.

[81] U. Lauther. “An extremely fast, exact algorithm for �nding shortest paths in static

networks with geographical background”. In: Geoinformation und Mobilität-von
der Forschung zur praktischen Anwendung 22 (2004), pp. 219–230.

[82] R. Möhring et al. “Partitioning graphs to speedup Dijkstra’s algorithm”. In: Journal
of Experimental Algorithmics 11 (Feb. 2007), p. 2.8. doi: 10.1145/1187436.1216585.

url: https://doi.org/10.1145/1187436.1216585.

[83] D. Luxen and D. Schieferdecker. “Candidate Sets for Alternative Routes in Road

Networks”. In: Experimental Algorithms. Ed. by Ralf Klasing. Berlin, Heidelberg:

Springer Berlin Heidelberg, 2012, pp. 260–270. isbn: 978-3-642-30850-5.

[84] S. Lloyd. “Least squares quantization in PCM”. In: IEEE Transactions on Information
Theory 28.2 (1982), pp. 129–137. doi: 10.1109/TIT.1982.1056489.

97

https://doi.org/https://doi.org/10.1016/0098-3004(94)90105-8
https://doi.org/https://doi.org/10.1016/0098-3004(94)90105-8
http://www.sciencedirect.com/science/article/pii/0098300494901058
http://www.sciencedirect.com/science/article/pii/0098300494901058
https://doi.org/10.1137/1.9781611973754.4
https://doi.org/10.1137/1.9781611973754.4
https://doi.org/10.1145/1187436.1216585
https://doi.org/10.1145/1187436.1216585
https://doi.org/10.1109/TIT.1982.1056489

Bibliography

[85] D. Delling et al. “Customizable Route Planning”. In: Experimental Algorithms.
Springer Berlin Heidelberg, 2011, pp. 376–387. doi: 10.1007/978-3-642-20662-

7_32. url: https://doi.org/10.1007/978-3-642-20662-7_32.

[86] C.E. Bichot and P. Siarry. “Graph Partitioning”. In: Encyclopedia of Parallel Com-
puting. Springer US, 2011, pp. 805–808. doi: 10.1007/978-0-387-09766-4_92.

url: https://doi.org/10.1007/978-0-387-09766-4_92.

[87] A. Buluç et al. “Recent Advances in Graph Partitioning”. In:Algorithm Engineering.

Springer International Publishing, 2016, pp. 117–158. doi: 10.1007/978-3-319-

49487-6_4. url: https://doi.org/10.1007/978-3-319-49487-6_4.

[88] G. Pavlopoulos et al. “Using graph theory to analyze biological networks”. In:

BioData Mining 4.1 (Apr. 2011). doi: 10.1186/1756- 0381- 4- 10. url: https:

//doi.org/10.1186/1756-0381-4-10.

[89] M. Hilger et al. “Fast point-to-point shortest path computations with arc-�ags”. In:

DIMACS Series in Discrete Mathematics and Theoretical Computer Science. Amer-

ican Mathematical Society, July 2009, pp. 41–72. doi: 10.1090/dimacs/074/03.

url: https://doi.org/10.1090/dimacs/074/03.

[90] E. Köhler, R. Möhring, and H. Schilling. “Acceleration of Shortest Path and Con-

strained Shortest Path Computation”. In: Experimental and E�cient Algorithms.
Springer Berlin Heidelberg, 2005, pp. 126–138. doi: 10.1007/11427186_13. url:

https://doi.org/10.1007/11427186_13.

[91] D. Delling et al. “Graph Partitioning with Natural Cuts”. In: 2011 IEEE International
Parallel & Distributed Processing Symposium. IEEE, May 2011. doi: 10.1109/ipdps.

2011.108. url: https://doi.org/10.1109/ipdps.2011.108.

[92] D. Delling and R. F. Werneck. “Faster Customization of Road Networks”. In:

Experimental Algorithms. Springer Berlin Heidelberg, 2013, pp. 30–42. doi: 10.

1007/978-3-642-38527-8_5. url: https://doi.org/10.1007/978-3-642-38527-

8_5.

[93] S. Jung and S. Pramanik. “An e�cient path computation model for hierarchically

structured topographical road maps”. In: IEEE Transactions on Knowledge and Data
Engineering 14.5 (Sept. 2002), pp. 1029–1046. doi: 10.1109/tkde.2002.1033772.

url: https://doi.org/10.1109/tkde.2002.1033772.

[94] D. Yan et al. “Finding distance-preserving subgraphs in large road networks”. In:

2013 IEEE 29th International Conference on Data Engineering (ICDE). IEEE, Apr.

2013. doi: 10.1109/icde.2013.6544861. url: https://doi.org/10.1109/icde.

2013.6544861.

98

https://doi.org/10.1007/978-3-642-20662-7_32
https://doi.org/10.1007/978-3-642-20662-7_32
https://doi.org/10.1007/978-3-642-20662-7_32
https://doi.org/10.1007/978-0-387-09766-4_92
https://doi.org/10.1007/978-0-387-09766-4_92
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1007/978-3-319-49487-6_4
https://doi.org/10.1186/1756-0381-4-10
https://doi.org/10.1186/1756-0381-4-10
https://doi.org/10.1186/1756-0381-4-10
https://doi.org/10.1090/dimacs/074/03
https://doi.org/10.1090/dimacs/074/03
https://doi.org/10.1007/11427186_13
https://doi.org/10.1007/11427186_13
https://doi.org/10.1109/ipdps.2011.108
https://doi.org/10.1109/ipdps.2011.108
https://doi.org/10.1109/ipdps.2011.108
https://doi.org/10.1007/978-3-642-38527-8_5
https://doi.org/10.1007/978-3-642-38527-8_5
https://doi.org/10.1007/978-3-642-38527-8_5
https://doi.org/10.1007/978-3-642-38527-8_5
https://doi.org/10.1109/tkde.2002.1033772
https://doi.org/10.1109/tkde.2002.1033772
https://doi.org/10.1109/icde.2013.6544861
https://doi.org/10.1109/icde.2013.6544861
https://doi.org/10.1109/icde.2013.6544861

Bibliography

[95] Z. Xu and H. A. Jacobsen. “Processing proximity relations in road networks”. In:

Proceedings of the 2010 international conference on Management of data - SIGMOD
’10. ACM Press, 2010. doi: 10.1145/1807167.1807196. url: https://doi.org/10.

1145/1807167.1807196.

[96] N. Eapen and A. Beegom. “A linear time pre-processing for optimization of shortest

path and distance algorithms”. In: 2017 IEEE International Conference on Signal
Processing, Informatics, Communication and Energy Systems (SPICES). IEEE, Aug.

2017. doi: 10.1109/spices.2017.8091313. url: https://doi.org/10.1109/

spices.2017.8091313.

[97] S. Ma et al. “Proxies for Shortest Path and Distance Queries”. In: IEEE Transactions
on Knowledge and Data Engineering 28.7 (July 2016), pp. 1835–1850. doi: 10.1109/

tkde.2016.2531667. url: https://doi.org/10.1109/tkde.2016.2531667.

[98] U. N. Raghavan, R. Albert, and S. Kumara. “Near linear time algorithm to detect

community structures in large-scale networks”. In: Physical Review E 76.3 (Sept.

2007). doi: 10.1103/physreve.76.036106. url: https://doi.org/10.1103/

physreve.76.036106.

[99] M. Newman. “Modularity and community structure in networks”. In: Proceedings
of the National Academy of Sciences 103.23 (May 2006), pp. 8577–8582. doi: 10.

1073/pnas.0601602103. url: https://doi.org/10.1073/pnas.0601602103.

[100] T. Anwar et al. “Partitioning road networks using density peak graphs: E�ciency

vs. accuracy”. In: Information Systems 64 (Mar. 2017), pp. 22–40. doi: 10.1016/j.

is.2016.09.006. url: https://doi.org/10.1016/j.is.2016.09.006.

[101] W. Shoman and F. Gülgen. “Centrality Based Hierarchy for Generalizing and

Labeling Street Features in Multi Resolution Maps”. In: July 2016.

[102] G. Maier. “OpenStreetMap, the Wikipedia Map”. In: REGION 1.1 (Dec. 2014), R3–

R10. doi: 10.18335/region.v1i1.70. url: https://doi.org/10.18335/region.

v1i1.70.

[103] M. Haklay. “How Good is Volunteered Geographical Information? A Comparative

Study of OpenStreetMap and Ordnance Survey Datasets”. In: Environment and
Planning B: Planning and Design 37.4 (Aug. 2010), pp. 682–703. doi: 10.1068/

b35097. url: https://doi.org/10.1068/b35097.

[104] T. Ort, L. Paull, and D. Rus. “Autonomous Vehicle Navigation in Rural Environ-

ments Without Detailed Prior Maps”. In: May 2018, pp. 2040–2047. doi: 10.1109/

ICRA.2018.8460519.

99

https://doi.org/10.1145/1807167.1807196
https://doi.org/10.1145/1807167.1807196
https://doi.org/10.1145/1807167.1807196
https://doi.org/10.1109/spices.2017.8091313
https://doi.org/10.1109/spices.2017.8091313
https://doi.org/10.1109/spices.2017.8091313
https://doi.org/10.1109/tkde.2016.2531667
https://doi.org/10.1109/tkde.2016.2531667
https://doi.org/10.1109/tkde.2016.2531667
https://doi.org/10.1103/physreve.76.036106
https://doi.org/10.1103/physreve.76.036106
https://doi.org/10.1103/physreve.76.036106
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1073/pnas.0601602103
https://doi.org/10.1016/j.is.2016.09.006
https://doi.org/10.1016/j.is.2016.09.006
https://doi.org/10.1016/j.is.2016.09.006
https://doi.org/10.18335/region.v1i1.70
https://doi.org/10.18335/region.v1i1.70
https://doi.org/10.18335/region.v1i1.70
https://doi.org/10.1068/b35097
https://doi.org/10.1068/b35097
https://doi.org/10.1068/b35097
https://doi.org/10.1109/ICRA.2018.8460519
https://doi.org/10.1109/ICRA.2018.8460519

Bibliography

[105] S. Funke, R. Schirrmeister, and S. Storandt. “Automatic Extrapolation of Missing

Road Network Data in Openstreetmap”. In: Proceedings of the 2nd International
Conference on Mining Urban Data - Volume 1392. MUD’15. Lille, France: CEUR-

WS.org, 2015, pp. 27–35.

[106] X. Hu et al. “Tagging the main entrances of public buildings based on Open-

StreetMap and binary imbalanced learning”. In: International Journal of Geo-
graphical Information Science (Feb. 2021), pp. 1–29. doi: 10.1080/13658816.2020.

1861282. url: https://doi.org/10.1080/13658816.2020.1861282.

[107] S.J. Kang et al. “Entrance Detection of Buildings Using Multiple Cues”. In: Intelli-
gent Information and Database Systems. Springer Berlin Heidelberg, 2010, pp. 251–

260. doi: 10.1007/978-3-642-12145-6_26. url: https://doi.org/10.1007/978-

3-642-12145-6_26.

[108] M. Southworth and E. Ben-Joseph. Streets and the Shaping of Towns and Cities -.
None. Washington: Island Press, 2003. isbn: 978-1-559-63916-3.

[109] F. Parés et al. Fluid Communities: A Competitive, Scalable and Diverse Community
Detection Algorithm. 2017. eprint: arXiv:1703.09307.

[110] C. Malzer and M. Baum. “A Hybrid Approach To Hierarchical Density-based

Cluster Selection”. In: Sept. 2020, pp. 223–228. doi: 10.1109/MFI49285.2020.

9235263.

[111] A. Hahn, W. Frühling, and J. Schlüter. “Using open-source high resolution remote

sensing data to determine the access to buildings in the context of passenger

transport”. In: (Mar. 2021). doi: 10.5194/egusphere-egu21-9408. url: https:

//doi.org/10.5194/egusphere-egu21-9408.

[112] Landesdatenbank-NRW.Die LandesdatenbankNRW. https://www.landesdatenbank.

nrw.de/ldbnrw/online/dat. 2018. url: https://www.landesdatenbank.nrw.de/

ldbnrw/online/dat (visited on 06/27/2018).

[113] OpenStreetMap contributors. Planet dump retrieved from https://planet.osm.org.

https://www.openstreetmap.org. 2017.

[114] Information und Technik - Nordrhein-Westfalen.OpenGeoDataNordrhein-Westfalen
retrieved fromhttps://planet.osm.org. https://www.opengeodata.nrw.de/produkte/.

2017.

[115] OSM Blog - unknown author. Von einem, der auszog, viel zu viele Hausnummern
zu mappen. https://blog.openstreetmap.de/blog/2012/01/von-einem-der-

auszog-viel-zu-viele-hausnummern-zu-mappen/. 2012.

[116] D. P. Huijsmans and A. M. Vossepoel. “Informatie in Gedigitaliseerde Beelden,volume

One: Introduction”. In: (1989).

100

https://doi.org/10.1080/13658816.2020.1861282
https://doi.org/10.1080/13658816.2020.1861282
https://doi.org/10.1080/13658816.2020.1861282
https://doi.org/10.1007/978-3-642-12145-6_26
https://doi.org/10.1007/978-3-642-12145-6_26
https://doi.org/10.1007/978-3-642-12145-6_26
arXiv:1703.09307
https://doi.org/10.1109/MFI49285.2020.9235263
https://doi.org/10.1109/MFI49285.2020.9235263
https://doi.org/10.5194/egusphere-egu21-9408
https://doi.org/10.5194/egusphere-egu21-9408
https://doi.org/10.5194/egusphere-egu21-9408
https://www.landesdatenbank.nrw.de/ldbnrw/online/dat
https://www.landesdatenbank.nrw.de/ldbnrw/online/dat
https://www.landesdatenbank.nrw.de/ldbnrw/online/dat
https://www.landesdatenbank.nrw.de/ldbnrw/online/dat
 https://www.openstreetmap.org
 https://www.opengeodata.nrw.de/produkte/
https://blog.openstreetmap.de/blog/2012/01/von-einem-der-auszog-viel-zu-viele-hausnummern-zu-mappen/
https://blog.openstreetmap.de/blog/2012/01/von-einem-der-auszog-viel-zu-viele-hausnummern-zu-mappen/

Bibliography

[117] A.V. Oppenheim et al. Signals & Systems. Prentice-Hall signal processing series.

Prentice Hall, 1983. isbn: 9780138147570.

101

Glossary

DARP "Ride-sharing aims to bring together travelers with similar routes and schedules,

and the idea is similar to the traditional dial-a-ride problem (DARP). The di�erence

between ride-sharing and DARP program is the type of driver supply; in a DARP,

drivers are provided by a company within the DARP program, whereas drivers in

ride-sharing systems are independent entities."[6].

distance deviation In this thesis, the distance deviation is a parameter to adjust and

ensure an acceptable size of partitions and hence the degree of generalization.

Euclidean distance The Euclidean distance describes the length of a straight line between

two points in Euclidean space.

First Mile / Last Mile problem The First Mile / Last Mile problem in logistics and trans-

portation describes the �rst, respectively the last leg for customers or mailings to

their �nal destination. As an example from logistics, the delivery from hubs to

individual addresses is time-consuming and expensive..

intermodal Intermodal transportation describes a trip consisting of di�erent transport

modes within a trip. For example: A trip consist of a ride-sharing concept that

delivers the passenger to a train station and then the trips continues by train.

perpendicular distance The perpendicular distance describes the shortest distance be-

tween a point and a point on a line in Euclidean space.

road snapping Road snapping describes the assignment of coordinates or addresses to

reference point on the road network. This is needed to determine the start- and

endpoint of a route in the road network.

snapping point A snapping point is a reference point for a coordinate or an address on a

road network, that results from road snapping or map matching. This is needed to

determine the start- and endpoint of a route for given coordinates or addresses that

are not directly located on the road network.

102

Glossary

stop locations We used the term stop locations as a simpli�cation for pickup and drop

o� locations in the context of passenger transportation.

to-door In this thesis, to-door services or routing describes mobility concepts such as

DRT-systems, where either requests from any address (from door) or to any address

(to door) or both (door-to-door) is allowed. Often peer-to-peer is used as a synonym

for door-to-door.

traveling salesman problem The traveling salesman problem is a classic basic problem

in combinatorial optimization, where a sequence of nodes is sought that covers all

nodes of the graph and all nodes except the starting point are visited exactly once

and the end of the sequence is the starting point. Here the length of the path must

be minimally short.

variation The variation or also variability describes the behaviour of the data in a general

sense. This should not be mistaken with variance.

vehicle routing problem The vehicle routing problem describes the problem of �nding

optimal routes for multiple vehicles and a given set of stops in transportation.

Thereby, parameters such as the capacity of the vehicles or time windows for

considered pick-up passengers are common restrictions. If this problem is reduced

from a �eet of vehicles to one vehicle and only the shortest route should be found,

regardless of other parameters, this can be seen as an equivalent to the traveling

salesman problem.

103

A. Appendix

Figure A.1.: Primal road network of Göttingen.

104

A. Appendix

Figure A.2.: Primal road network of Krefeld.

105

A. Appendix

Figure A.3.: Primal road network of Málaga.

106

A. Appendix

Figure A.4.: Primal road network of Soest.

north south east west

Göttingen 51.567068 51.515715 9.966399 9.900996

Krefeld 51.342099 51.324141 6.576635 6.548003

Málaga 36.755269 36.737246 -4.469599 -4.491996

Soest 51.5871 51.5593 8.1336 8.0865

Table A.1.: Extent of the considered road networks in chapter 5 (EPSG:4325).

107

A. Appendix

Figure A.5.: True color composite (RGB) of an extend in the AOI Höxter. A similar extent was shown in

Figure 2.4.

108

B. Appendix

B.1. Source Code for FluidC-Generalization based on Proxies

(FC-GBOP)

The following code is intended to provide an overview of the software. To work with it,

we recommend using the tested code from the repository. Python version 3.7.6 was used

and the required libraries with their version numbers are listed in the requirements.txt in

the repository.

Repository: https://github.com/fauceta/FC-GBOP

Requirements: https://github.com/fauceta/FC-GBOP/blob/master/requirements.txt

For inquiries please contact: armin.hahn@ds.mpg.de

1 # De f i ne s p r ope r t i e s o f the area o f i n t e r e s t
2

3 c l a s s A r e aO f I n t e r e s t :
4 shapef i leName = ’ ’
5 north = 0 .0
6 south = 0 .0
7 eas t = 0 .0
8 west = 0 .0
9 abb r e v i a t i on = ’ ’

10 cen te r = 0 , 0
11

12 goe t t i ngen = A r e aO f I n t e r e s t ()
13 goe t t i ngen . shapef i leName = ’ Goet t ingen ’
14 goe t t i ngen . north = 51 .567068
15 goe t t i ngen . south = 5 1 . 5 1 5 7 1 5
16 goe t t i ngen . eas t = 9.966399
17 goe t t i ngen . west = 9.900996
18 goe t t i ngen . abb r e v i a t i on = ’ goe ’
19

20 k r e f e l d = A r e aO f I n t e r e s t ()
21 k r e f e l d . shapef i leName = ’ K r e f e l d ’
22 k r e f e l d . nor th = 51 .3420997
23 k r e f e l d . south = 5 1 . 3 2 4 1 4 1 1
24 k r e f e l d . eas t = 6.5766356
25 k r e f e l d . west = 6 .5480031
26 k r e f e l d . abb r e v i a t i on = ’ kre ’
27

28 soes t = A r e aO f I n t e r e s t ()
29 soes t . shapef i leName = ’ Soest ’
30 soes t . nor th = 5 1 . 5 8 7 1
31 soes t . south = 5 1 . 5593
32 soes t . eas t = 8 . 1 336
33 soes t . west = 8.0865
34 soes t . abb r e v i a t i on = ’ soe ’

109

https://github.com/fauceta/FC-GBOP
https://github.com/fauceta/FC-GBOP/blob/master/requirements.txt
mailto: armin.hahn@ds.mpg.de

B. Appendix

35

36 malaga = A r e aO f I n t e r e s t ()
37 malaga . shapef i leName = ’ malaga ’
38 malaga . north = 36.75526978941597
39 malaga . south = 36.737246196202555
40 malaga . eas t = −4.491996074660827
41 malaga . west = −4.46959984835477
42 malaga . cen te r = 36 .746258 , −4.480798
43 malaga . abb r e v i a t i on = ’ malaga ’

Listing B.1:AOI.py

1 import osmnx as ox , networkx as nx , geopandas as gpd , pandas as pd , numpy as np , ma tp l o t l i b . pyp lo t as p l t ,
ma tp l o t l i b . patches as mpatches , ma tp l o t l i b . c o l o r s as mpc , ma tp l o t l i b . cm as mcm, car topy . c r s as c c r s

2

3 import i t e r t o o l s , random , request , t ime i t
4

5 from networkx . a l go r i t hms import community
6 from car topy . mpl . g r i d l i n e r import (
7 LONGITUDE_FORMATTER ,
8 LATITUDE_FORMATTER ,
9)

10 from car topy . i o . img _ t i l e s import Goog l eT i l e s
11

12

13 ################## Graph P a r t i t i o n i n g ##################
14 def evalOptimumK (G , d i s t anceDev i a t i on , k =2 , a l go r i thm = ’ f l u i d ’ , p r o x y _ c e n t r a l i t y = ’BC ’) :
15 " " "
16 main f unc t i on tha t loads data , p a r t i t i o n s and eva lua te the p a r t i t i o n s
17 implemented a l go r i t hms : f l u i d , lpa , modu la r i t y or k e r n i ghan_ l i n
18 implemented c e n t r a l i t y : BC (Betweennness) , CL (C loseness)
19 " " "
20 whi le (True) :
21 # c r ea t e the p a r t i t i o n s and wr i t e the community IDs i n the nodes DF
22 nodes , edges = c r e a t e P a r t i t i o n (G , a l go r i thm = algor i thm , k=k)
23

24 # c r ea t e s subgraphes and i d e n t i f i e s the p ro x i e s with pagerank
25 subgraphs = pa r t i t i o n _g r aph (G , nodes)
26

27 d f _p r o x i e s = f i n d _p r o x i e s (G , nodes , subgraphs , k , p r o x y _ c e n t r a l i t y = p r o x y _ c e n t r a l i t y)
28

29 # prepares data subgraphs and p ro x i e s i n one dataframe
30 d f _p r o x i e s [’ subgraph ’] = [v f o r k , v i n subgraphs . i tems ()]
31

32 # check the r e a c h a b i l i t y f o r each community
33 p r i n t (f ’ . . . p roces s i ng k−va lue : { k } ’)
34 a c c e s s a b i l i t y = communi tyReachab i l i t y (d f _p rox i e s , d i s t an c eDev i a t i o n)
35

36 i f a l go r i thm == ’ f l u i d ’ :
37 i f a c c e s s a b i l i t y == Fa l s e :
38 k+= 1
39 cont inue
40 e l s e :
41 p r i n t (f ’ found optimum k { k } ’)
42 break
43 e l s e :
44 break
45 r e t u rn nodes , edges , d f _p rox i e s , subgraphs
46

47

48 def getPr imalGraph (coords) :
49 " " "
50 c rea ted the networkx graph with osmxn f o r g i ven coo rd ina te s . E i t h e r a bbox with
51 4 coords or 2 coords as a po in t . E . g . [north , south , east , west]
52 " " "
53

54 i f l en (coords) == 4 :
55

56 G = ox . graph_from_bbox (north = coords [0] , south = coords [1] , eas t = coords [2] , west = coords [3] , network_type ="
d r i v e " , t runcate_by_edge =True)

57

58 e l i f l en (coords) == 2 :
59 G = ox . graph_from_point (coords , network_type = ’ d r i v e ’ , t runcate_by_edge =True , d i s t ance =1000)
60

61 e l s e :
62 r a i s e Va l u eE r r o r (’ Cannot read type o f bbox . ’)
63

64 r e t u rn G
65

110

B. Appendix

66

67 def c r e a t e P a r t i t i o n (G , a lgor i thm , k) :
68 " " "
69 c r e a t e s p a r t i t i o n s based on a graph G (networkx graph) , g i ven a lgo r i thm and a parameter k f o r the number o f

p a r t i t i o n s , needed f o r some a lgo r i t hms
70 a lgo r i thm = f l u i d , lpa , modu la r i t y or k e r n i ghan_ l i n
71 " " "
72

73 nodes , edges = ox . save_ load . g raph_to_gdfs (G , nodes=True , edges=True)
74

75 nodes [" community "] = 0
76

77 i f a l go r i thm == ’ f l u i d ’ :
78 communities = community . a s y n _ f l u i d c (G . to_und i r ec ted () , k)
79

80 e l i f a l go r i thm == ’ lpa ’ :
81 communities = community . l abe l_propagat ion_communi t i es (G . to_und i r ec ted ())
82

83 e l i f a l go r i thm == ’ modu la r i t y ’ :
84 communities = community . greedy_modular i ty_communit ies (G . to_und i r ec ted () , weight = ’ l eng th ’)
85

86 e l i f a l go r i thm == ’ k e r n i ghan_ l i n ’ :
87 communities = community . k e r n i g h an _ l i n _ b i s e c t i o n (G . to_und i r ec ted () , weight =None)
88

89 e l s e :
90 r a i s e Va l u eE r r o r (’ unsupported a lgo r i thm ’)
91

92 f o r idx , p a r t i t i o n in enumerate (communities) :
93 f o r node in p a r t i t i o n :
94 nodes . a t [node , " community "] = i d x + 1
95 r e t u rn nodes , edges
96

97

98 def p a r t i t i o n _g r aph (G , nodes) :
99 " " "

100 p a r t i t i o n i n g o f the graph based on p r ope r t i e s o f nodes (ass igned p a r t i t i o n)
101 r e t u r n s subgraphs in a d i c t with G1 , G2 as key and networkx subgraphs as va lues
102 " " "
103 # use k or get the amount o f communities
104 sum_communties = nodes . community . max ()
105

106 community_nodes = []
107

108 # i t e r a t e f o r each community
109 f o r i i n range (sum_communties) :
110 community_nodes . append ([nodes . l o c [nodes [’ community ’] == i + 1]]) #need i +1 because community s t a r t s

wi th 1 not with zero
111

112 # s p l i t the graph by community va lue
113 subgraphs = { }
114 f o r idx , p a r t i t i o n in enumerate (community_nodes) :
115 s u f f i x = i d x + 1
116 subgraphs ["G" + s t r (s u f f i x)] = G . subgraph (l i s t (community_nodes [i d x] [0] [’ osmid ’]))
117 r e t u rn subgraphs
118

119

120 def f i n d _p r o x i e s (G , nodes , subgraphs , k , p r o x y _ c en t r a l i t y , verbose = Fa l s e) :
121 " " "
122 accepts proxy c e n t r a l i t y : ’ BC ’ , ’ CL ’ or d i c t wi th we igh t ing { ’ BC ’ : 0 . 5 , ’ CL ’ : 0 . 5 }
123 " " "
124 g l oba l p r o x i e s
125 p ro x i e s = { }
126

127 # ca l c betweennes p ro x i e s i n r e f e r ence to the o r i g i n a l graph , added in g l oba l p r o x i e s
128 betweenness_prox ies (G , subgraphs)
129

130 # ca l c c l o senes s p ro x i e s i n r e f e r ence to t h e i r subgraph , added in g l oba l p r o x i e s
131 c l o s ene s s _p ro x i e s (G , subgraphs)
132

133 i f verbose == True :
134 import pp r i n t
135 p r i n t (’ Subgraphs and t h e i r p r o x i e s with cor respond ing c e n t r a l i t y measures : ’)
136 pp r i n t . pp r i n t (p r o x i e s)
137

138

139 i f p r o x y _ c e n t r a l i t y == ’BC ’ :
140 # s e l e c t s on ly BC p ro x i e s from proxy d i c t
141 s e l e c t ed_p r o x i e s = { key : va lue f o r (key , va lue) i n p ro x i e s . i tems () i f key [− 1 1 :] == ’ betweenness ’ }
142 e l i f p r o x y _ c e n t r a l i t y == ’ CL ’ :
143 # s e l e c t s on ly CL p ro x i e s from proxy d i c t

111

B. Appendix

144 s e l e c t ed_p r o x i e s = { key : va lue f o r (key , va lue) i n p ro x i e s . i tems () i f key [−9 :] == ’ c l o senes s ’ }
145 e l i f type (p r o x y _ c e n t r a l i t y) == d i c t :
146 p r i n t (f ’ not implemented yet { k } ’)
147 e l s e :
148 r a i s e Va l u eE r r o r (’ unknown p r o x y _ c e n t r a l i t y va lue ’)
149

150 # c r ea t e s a sepe ra te gdf f o r p r o x i e s
151 proxy_f rames = []
152

153 # e x t r a c t the osmids from nested d i c t
154 prox ies_osmid = []
155 f o r k1 , v 1 i n s e l e c t e d_p r o x i e s . i tems () :
156 f o r k2 , v2 i n v1 . i tems () :
157 prox ies_osmid . append (k2)
158

159 f o r i tem in prox ies_osmid :
160 proxy_f rames . append (nodes . l o c [nodes [’ osmid ’] == item])
161

162 d f _p ro x i e s = pd . concat (proxy_f rames)
163 r e t u rn d f _p r o x i e s
164

165

166 def betweenness_prox ies (G , subgraphs) :
167 " " "
168 Ca l c u l a t e s the betweenness c e n t r a l i t y f o r subgraphs . Input subgraphs as key−va lue pa i r (d i c t s)
169 " " "
170 betweenness_or ig = nx . be tweennes s_cen t r a l i t y (nx . DiGraph (G) , weight = ’ l eng th ’)
171

172 # proxy = { } # use g l oba l v a r i a b l e i n s t ead
173 # i t e r a t e over the d i f f e r e n t subgraphs (Gn)
174 f o r key , va lue i n subgraphs . i tems () :
175 # c r ea t e d i r e c t ed graph f o r the subgraph
176 subgraph_d i r = nx . DiGraph (va lue)
177

178 # s e l e c t the node w i th i n the subgraph with the h i ghe s t va lue in betweenness_or ig
179 subg raph_cen t ra l i t y_osmid = None
180 s ubg r aph_cen t r a l i t y _ v a l u e = 0
181 f o r osmid in subgraph_d i r . nodes () :
182 i f (s ubg r aph_cen t r a l i t y _ v a l u e < betweenness_or ig . get (osmid)) :
183 s ubg r aph_cen t r a l i t y _ v a l u e = betweenness_or ig . get (osmid)
184 subg raph_cen t ra l i t y_osmid = osmid
185

186 # wr i t e the p a r t i t i o n and the proxy i n t o proxy d i c t
187 p ro x i e s [f ’ { key } _betweenness ’] = { subg raph_cen t ra l i t y_osmid : s ubg r aph_cen t r a l i t y _ v a l u e }
188

189

190 def c l o s ene s s _p ro x i e s (G , subgraphs) :
191 " " "
192 Ca l c u l a t e s the c lo senes s c e n t r a l i t y f o r subgraphs . Input subgraphs as key−va lue pa i r (d i c t s)
193 " " "
194 # proxy = { } # use g l oba l v a r i a b l e i n s t ead
195 f o r key , va lue i n subgraphs . i tems () :
196 subgraph_d i r = nx . DiGraph (va lue)
197 # c a l c u l a t e c l o senes s f o r the subgraph
198 c l o s e n e s s _ c e n t r a l i t y = nx . c l o s e n e s s _ c e n t r a l i t y (subgraph_di r , d i s t ance = ’ l eng th ’)
199 # get the osmid with the h i ghe s t c l o senes s va lue
200 c lo seness_p roxy = max (c l o s e n e s s _ c e n t r a l i t y , key= c l o s e n e s s _ c e n t r a l i t y . get)
201 #need g l oba l v a r i a b l e proxy
202 p ro x i e s [f ’ { key } _c lo senes s ’] = { c l o seness_p roxy : c l o s e n e s s _ c e n t r a l i t y . get (c lo seness_p roxy) }
203

204

205 def we i gh t_p rox i e s (weight ing , subgraphs , k) :
206 " " "
207 weights CL and BC with the g iven d i c t we igh t ing − t h i s f un c t i on i s may be i r r e l e v a n t , not on ly max BC / CL f o r

c a l c u l a t i o n)
208 " " "
209 # pseudo_prox ies f o r t e s t i n g
210 p = { ’ G1_betweenness ’ : { 604342 19 : 0 .08739129284107451 } , ’ G2_betweenness ’ : { 305204955 : 0 . 18 13449781659389 } , ’

G3_betweenness ’ : { 579926865 : 0 . 13271033478893743 } , ’ G4_betweenness ’ : {60346725 : 0 . 16642530104538839} , ’
G5_betweenness ’ : { 1 9 1 2529768 : 0 .09292258832870187} , ’ G 1_c loseness ’ : { 28 123858 : 0 .000541468385671 13 13 } , ’
G2_c loseness ’ : { 2 8 1 99 1 7 2 : 0.0008807034474547498} , ’ G3_c loseness ’ : { 280957 15 : 0 .0005816236962446243} , ’
G4_c loseness ’ : {60437845 : 0 .0008652616490743784} , ’ G5_c loseness ’ : {4254093089: 0 .001 135 1970347807095 } }

211

212 # get a l l keys o f the d i c t i n t o a l i s t
213 l i s t _ o f _ k e y s = [* p]
214

215 # se t i to 1 , due k min i s 2 p a r t i t i o n s and numbering f o r p a r t i t i o n s s t a r t s with 1
216 i = 1
217

218 # loop from i =1 u n t i l i ==k ; f o r each p a r t i t i o n s e l e c t i n g the BC / CL keys

112

B. Appendix

219 whi le i < (k + 1) :
220 # s e l e c t keys f o r p a r t i t i o n i
221 tmp_keys = [i tem f o r item in l i s t _ o f _ k e y s i f i tem . s t a r t sw i t h (’G { } ’ . format (i))]
222 # p r i n t (tmp_keys , i)
223

224 # f o r i tems in tmp_key e x t r a c t BC / CL
225 BC_key = [x f o r x i n tmp_keys i f x . endswith (’ betweenness ’)] [0]
226 #CL_key = [x f o r x i n tmp_keys i f x . endswith (’ c l o senes s ’)] [0]
227

228 BC_pai r = p . get (BC_key)
229 # CL_pa i r = p . get (CL_key)
230 # us ing l i s t comprehension to get the f i r s t va lue o f the k−v−pa i r (osmid−c e n t r a l i t y _ v a l u e)
231 BC = [(BC_pai r [x]) f o r x i n l i s t (BC_pai r)] [0]
232

233 #we igh t ing the nodes with BC f o r p a r t i t i o n i , g e t t i ngen subgraph [i] and ca l c
234

235 #CL = [(CL_pa i r [x]) f o r x i n l i s t (CL_pa i r)] [0]
236 # calc_BCCL ()
237 #mod i f i ed_p rox i e s
238 p r i n t (’BC : { } , CL : { } , i : { } ’ . format (BC , None , i))
239 i += 1
240

241

242 def communi tyReachab i l i t y (d f _p rox i e s , d i s t an c eDev i a t i o n) :
243 " " "
244 c a l c u l a t e s the r e a c h a b i l i t y f o r p r o x i e s . Are a l l nodes w i th i n a community
245 reachab le with a g iven d i s t ance (i n meter as edgeweight ’ l eng th ’ i s used)
246 " " " "
247 a c c e s s a b i l i t y = True
248 f o r idx , row in d f _p ro x i e s . i t e r r ows () :
249 p r i n t (f ’ ’ ’ \ t . . . p roces s i ng r e a c h a b i l i t y f o r community { row [’ community ’] } ’ ’ ’)
250 proxy = row [’ osmid ’]
251 subgraph = row [’ subgraph ’]
252

253 r e a c h a b i l i t y = nx . s i n g l e _ s ou r c e _d i j k s t r a _p a t h _ l e n g t h (subgraph , proxy , weight = ’ l eng th ’)
254

255 # get nodes with h ighe r d i s t ance dev i a t i on
256 f o r key , va lue i n r e a c h a b i l i t y . i tems () :
257 i f va lue > d i s t an c eDev i a t i o n :
258 p r i n t (key , va lue)
259 a c c e s s a b i l i t y = Fa l s e
260 # break # r e tu rn to e x i t the f o r loop of d f _p r o x i e s enhancing the performance because other

communities shouldnt be cons idered anymore
261 r e t u rn a c c e s s a b i l i t y
262

263 r e t u rn a c c e s s a b i l i t y
264

265

266 def getBBoxFromAddress (address) :
267 " " "
268 needs address as s t r
269 r e t u r n s bbox in west , south , east , nor th
270 " " "
271 G = ox . graph_from_address (address , network_type =" d r i v e " , t runcate_by_edge =True)
272 nodes = ox . save_ load . g raph_to_gdfs (G , nodes=True)
273 r e t u rn nodes . to ta l_bounds
274

275

276 ################## Graph con s t r u c t i on ##################
277 def cons t ruc tGraph (G , d f _p rox i e s , nodes , edges , completeGraph = True) :
278 " " "
279 Crea tes a new complete graph , based on a se t o f nodes (d f _p r o x i e s)
280 " " "
281

282 G2 = nx . Mu l t iGraph ()
283 p r o x i e s _ l i s t = l i s t (d f _p r o x i e s [’ osmid ’])
284

285 #add nodes , edges to the new gene r a l i z ed graph
286 G2 = addNodesToGraph (G2 , p r o x i e s _ l i s t , nodes)
287

288 # prepare the edges f o r r e c on s t r u c t i o n
289 poss ib l eRou te s = c a l c A l l P o s s i b l e R ou t e s (G , p r o x i e s _ l i s t)
290 i f completeGraph == Fa l s e :
291 s p l i t t e dRou t e s = s p l i t R o u t e s (poss ib leRoutes , p r o x i e s _ l i s t)
292 s p l i t t e dRou t e s = c leanRouteSteps (s p l i t t e dRou t e s)
293 nodePairsFromRoute = getEdgePairFromRoute (s p l i t t e dRou t e s)
294

295 e l s e :
296 nodePairsFromRoute = getEdgePairFromRoute (pos s ib l eRou te s)
297

113

B. Appendix

298 # c leaned dup l i c a t e s / r eve r sed rou tes i n c r e a t eEdgeL i s t
299 edgeL i s t = c r e a t e Edge s L i s t (nodePairsFromRoute , edges)
300

301 # round the edgweight on two dec imals
302 edgeL i s t = [(elem [0] , round (elem [1] , 2)) f o r elem in edgeL i s t]
303

304 G2 = addEdgeL is t (edgeL i s t , G2)
305

306 r e t u rn G2
307

308

309 def ge tOsmAt t r ibu tes (l i s to fOsmID , nodes) :
310 " " "
311 get OpenStreetMap a t t r i b u t e s . Mod i f i ed from getPo int In format ionf romOsmID
312 " " "
313

314 i f nodes i s None :
315 r a i s e Va l u eE r r o r (’ nodes not de f ined ’)
316

317 r e s u l t s = []
318 f o r i tem in nodes . i t e r t u p l e s () :
319 i f s t r (i tem . osmid) i n s t r (l i s t o fO sm ID) :
320 r e s u l t s . append ([(’ osmID ’ , i tem . osmid) , (’ x ’ , i tem . x) , (’ y ’ , i tem . y) , (’ geometry ’ , i tem . geometry) , (’

community ’ , i tem . community)])
321

322 # i f l en (shape l yob j e c t s) ! = l en (l i s t o fO sm ID) :
323 # r a i s e Va l ueE r r o r (’ l eng th o f input and output not equal ’)
324

325 r e t u rn r e s u l t s
326

327

328 def addNodesToGraph (G2 , l i s t o fOsmIDs , nodes) :
329 " " "
330 modi f ied from addOsmIDAndShapelyPointToGraph
331 adds nodes to a graph from a l i s t o f osmIDs (conve r t i ng the IDs to coords)
332 r e t u r n s a networkx graph
333 " " "
334

335 osm_a t t r i bu te s = ge tOsmAt t r ibu tes (l i s t o fOsmIDs , nodes)
336

337 f o r idx , i tem in enumerate (o sm_a t t r i bu te s) :
338 G2 . add_node (item [0] [1] , osmID= item [0] , x= item [1] , y= item [2] , community= item [4] , xy = (i tem [1] [1] , i tem [2] [1])

)
339

340 #examples o f the p r ope r t i e s
341 # item [0] [1] = ID 28127489
342 # item [0] = osmID (’ osmID ’ , 60346417)
343 # item [1] = x (’ x ’ , 9 . 9 140377)
344 # item [2] = y (’ y ’ , 5 1 . 5 48437 1)
345 # item [3] = shape l yPo in t (’ geometry ’ , < shape ly . geometry . po in t . Po in t ob j e c t a t 0x0000022BE1994408 >)
346 # item [4] = community (’ community ’ , 4)
347 # (item [1] [1] , i tem [2] [1]) (9 . 9 1 40377 , 5 1 . 5 48437 1) #need f o r p l o t t i n g and g e t t i n g pos
348 r e t u rn G2
349

350

351 def getLengthf romNodePair (tp l , edges) :
352 " " "
353 e x t r a c t s the l eng th o f an edge by us ing the nodepai r
354 " " "
355

356 f o r idx , row in edges . i t e r r ows () :
357 i f (t p l [0] == i n t (row [’ u ’]) and t p l [1] == i n t (row [’ v ’]) or t p l [0] == i n t (row [’ v ’]) and t p l [1] == i n t (row [’

u ’])) :
358 # p r i n t (" Index : " + s t r (i d x) + " " + s t r (row [’ l eng th ’]))
359 r e t u rn f l o a t (row [’ l eng th ’])
360

361

362 def c l eanEdgeL i s t F romDup l i ca t e s (edgeL i s t) :
363 " " " "
364 remove dup l i c a t e s from the e d g e l i s t eg . [[(1 , 2) , 5] , [(3 , 4) , 6] , [(6 , 3) , 9] , [(2 , 1) , 5]]
365 r e s u l t s i n [[(1 , 2) , 5] , [(3 , 4) , 6] , [(6 , 3) , 9]]
366 " " "
367

368 c l e anEdgeL i s t = []
369 f o r i tem in edgeL i s t :
370 i f s t r (i tem [0] [: : − 1]) i n s t r (edgeL i s t) :
371 i f (s t r (i tem [0] [: : − 1]) not i n s t r (c l e anEdgeL i s t)) and (s t r (i tem [0]) not i n s t r (c l e anEdgeL i s t)) :
372 c l e anEdgeL i s t . append (item)
373 e l s e :
374 c l e anEdgeL i s t . append (item)

114

B. Appendix

375

376 r e t u rn c l e anEdgeL i s t
377

378

379 def c r e a t e Edge s L i s t (nodePairsFromRoute , edges) :
380 " " "
381 g e t t i n g l eng th a t t r i b u t e f o r every u , v i n a l l po s s i b l e rou tes between r ep r e s en t a t o r s
382 " " "
383

384 newEdges = []
385 f o r idx , route i n enumerate (nodePairsFromRoute) :
386 d i s t ance = 0
387 newEdgeUV = (route [0] [0] , route [− 1] [− 1])
388 f o r edge in route :
389 d i s t ance += getLengthfromNodePai r (edge , edges)
390 newEdges . append ([newEdgeUV , d i s t ance])
391

392 edgeL i s t = c l eanEdgeL i s t F romDup l i ca t e s (newEdges)
393

394 r e t u rn edgeL i s t
395

396

397 def addEdgeL is t (newEdges , rG) :
398 " " "
399 add edges and i t s edgeweight (l eng th) from an e d g e s l i s t (newEdges) to rG
400 " " "
401 f o r i tem in newEdges :
402 rG . add_edge (item [0] [0] , i tem [0] [1] , l eng th = item [1])
403 r e t u rn rG
404

405

406 def getEdgePairFromRoute (pos s ib l eRou te s) :
407 " " " "
408 r e t u r n s a l i s t wi th tup l e p a i r s with the ad jacen t nodes (u , v f o r edges) o f a l l p o s s i b l e rou tes
409 " " "
410

411 a l l Edge s = []
412 f o r route i n pos s ib l eRou te s :
413 a l l Edge s . append (l i s t (z i p (route [: − 1] , route [1 :])))
414

415 r e t u rn a l l Edge s
416

417

418 def c leanRouteSteps (s p l i t t e d r o u t e s) :
419 " " "
420 remove dub l i c a t e s
421 " " "
422

423 r e s = []
424 f o r i tem in s p l i t t e d r o u t e s :
425 i f i tem not i n r e s :
426 r e s . append (item)
427 r e t u rn re s
428

429

430 def s p l i t R o u t e s (data , s p l i t t e r s) :
431 " " "
432 s p l i t the rou tes by g iven s p l i t t e r s . E . g . rou tes over other p r o x i e s w i l l s top and s p l i t the routes , r e s u l t i n g

on ly i n rou tes between p ro x i e s wi thout p ro x i e s w i t h i n the route
433 " " "
434

435 r e s u l t s = []
436 f o r route i n data :
437 found = 0
438 f o r idx , r i n enumerate (route [1 : − 1] , 1) : # s t a r t i d x at 1
439 i f r i n s p l i t t e r s :
440 temp = route [found : i d x + 1] # +1 to capture the s p l i t t e r va lue
441 r e s u l t s . append (temp)
442 found = id x
443 remain ing = route [found :]
444 r e s u l t s . append (remain ing)
445 r e t u rn r e s u l t s
446

447

448 def c a l c A l l P o s s i b l e R ou t e s (G , r ep r e s en t a t o r s) :
449 " " "
450 r e t u r n s a l i s t wi th a l l po s s i b l e s ho r t e s t rou tes between a l l po s s i b l e nodepa i r s
451 " " "
452

453 po s s i b l e P a i r s = l i s t (i t e r t o o l s . combinat ions (r ep r e sen t a to r s , 2))

115

B. Appendix

454 # r e c i p r o c a l = True keep edges tha t appear i n both d i r e c t i o n s i n the o r i g i n a l graph
455 G_undi rected = G . to_und i r ec ted ()
456

457 poss ib l eRou te s = []
458 c r i t i c a l P a i r s = []
459

460 f o r i tem in po s s i b l e P a i r s :
461 t r y :
462 route = nx . sho r t e s t _pa th (G_undirected , i tem [0] , i tem [1] , weight = ’ l eng th ’)
463 poss ib l eRou te s . append (route)
464 except :
465 c r i t i c a l P a i r s . append (item)
466 pass
467

468 i f l en (c r i t i c a l P a i r s) > 0 :
469 r a i s e Va l u eE r r o r (’ l engh t o f c r i t i c a l P a i r s > 0 − some rou tes are miss ing ! ’)
470

471 r e t u rn pos s ib l eRou te s
472

473

474 def upda t eD fP ro x i e s I n t e r i o rNodes (d f _p r o x i e s) :
475 " " "
476 r e t u r n s an updated d f _p r o x i e s with a new column of a l l osmids f o r each p a r t i t i o n / proxy
477 " " "
478

479 i n t e r i o r _node s = []
480 f o r index , row in d f _p ro x i e s . i t e r r ows () :
481 i n t e r i o r _ node s . append (l i s t (row [’ subgraph ’] . nodes ()))
482 d f _p ro x i e s [’ i n t e r i o r _ node s ’] = i n t e r i o r _ node s
483 r e t u rn d f _p r o x i e s
484

485

486 def sumNetworkDistances (G) :
487 " " "
488 c a l c u l a t e s the sum of the network d i s t ance s
489 " " "
490 G_undi rected = G . to_und i r ec ted ()
491 sum_network_distances = sum ([d [’ l eng th ’] f o r u , v , d i n G_undi rected . edges (data =True)])
492 r e t u rn sum_network_distances
493

494

495 def updateDfProx iesSubgraphS i ze (d f _p r o x i e s) :
496 " " "
497 Updates the d f _p r o x i e s with the a t t r i b u t e o f subgraph s i z e and the sum of network d i s t ance s
498 " " "
499 G_s i ze = []
500 sum_network_distance = []
501 f o r idx , row in d f _p ro x i e s . i t e r r ows () :
502 subgraph = row [’ subgraph ’]
503 G_s i ze . append (subgraph . s i z e (weight = ’ l eng th ’))
504 sum_network_distance . append (sumNetworkDistances (subgraph))
505 d f _p ro x i e s [’ G_s i ze ’] = G_s i ze
506 d f _p ro x i e s [’ sum_network_distance ’] = sum_network_distance
507 r e t u rn d f _p r o x i e s
508

509

510 # #################### P l o t t i n g #########################
511 def p l o t P a r t i t i o n (nodes , edges , d f _p r o x i e s) :
512 " " "
513 p l o t s the p a r t i t i o n s i n co lo red nodes
514 " " "
515

516 f i g = p l t . f i g u r e (f i g s i z e = (20 , 20))
517 ax = f i g . add_subplot (1 , 1 , 1 , p r o j e c t i o n = c c r s . P l a t eCa r r ee ())
518

519 bbox = ge tBBoxFo rP lo t t i ng (nodes)
520 ax . s e t _ e x t en t (bbox , c r s = c c r s . P l a t eCa r r ee ())
521

522 #background map
523 # ax . add_image (imagery , 1 2 , a lpha =0 . 5)
524

525 # p l o t edges
526 edges . p l o t (
527 ax=ax ,
528 edgeco lor = " b lack " ,
529 l i n ew i d t h = 1 ,
530 f a c e c o l o r = "none" ,
531 zo rde r =2 ,
532 alpha =0 .8 ,
533)

116

B. Appendix

534

535 # p l o t nodes
536 nodes . p l o t (
537 ax=ax ,
538 marker= "o" ,
539 marke r s i ze =200 ,
540 # edge_co lor = ’#909090 ’ ,
541 column=" community " ,
542 cmap=" Set3 " ,
543 zo rde r = 1 ,
544 legend = Fa lse ,
545 c a t e g o r i c a l =True ,
546)
547

548 # p l o t p ro x i e s
549 d f _p ro x i e s . p l o t (
550 ax=ax ,
551 marker= " s " ,
552 marke r s i ze = 250 ,
553 co l o r = " b lack " ,
554 zo rde r =5 ,
555)
556

557 # p l o t g r i d with coords
558 g l = ax . g r i d l i n e s (d raw_ labe l s =True)
559 g l . x l a be l s _ t op = g l . y l a b e l s _ r i g h t = Fa l s e
560 g l . x f o rma t t e r = LONGITUDE_FORMATTER
561 g l . y f o rma t t e r = LATITUDE_FORMATTER
562 g l . x l a b e l _ s t y l e = { ’ s i z e ’ : 20}
563 g l . y l a b e l _ s t y l e = { ’ s i z e ’ : 20}
564

565 # p l t . t i t l e (
566 # "Community and Proxy De tec t i on in Road Networks " ,
567 # { " f o n t s i z e " : 30 } ,
568 # pad=40 ,
569 #)
570 p l t . show ()
571

572

573 def p lotGraph (G2 , nodes , l a b e l s = Fa l s e) :
574 " " "
575 p l o t s the new reduced graph
576 " " "
577 xmin , ymin , xmax , ymax = nodes . to ta l_bounds
578 #Boundings p lus th ree percent
579 xmin = xmin − (xmax − xmin) *0 .03
580 xmax = xmax + (xmax − xmin) *0 .03
581 ymin = ymin − (ymax − ymin) *0 .03
582 ymax = ymax + (ymax − ymin) *0 .03
583

584 pos = nx . g e t _node_a t t r i bu t e s (G2 , ’ xy ’)
585 f i g , ax = p l t . subp lo t s (f i g s i z e = (1 5 , 1 5))
586 ax . s e t _ x l im (l e f t =xmin , r i g h t =xmax)
587 ax . s e t _ y l im (ymin , ymax)
588

589 import py lab
590 nx . draw (G2 , pos , node_color = ’ b lack ’ , node_shape= ’ s ’ , node_s i ze =250)
591 # s p e c i f i y edge l a b e l s e x p l i c i t l y
592 i f l a b e l s == True :
593 edge_ labe l s = d i c t ([((u , v ,) , d [’ l eng th ’]) f o r u , v , d i n G2 . edges (data =True)])
594 nx . draw_networkx_edge_labels (G2 , pos , edge_ labe l s = edge_ labe l s)
595

596 pylab . show ()
597

598

599 def markNode (G , nodeL i s t) :
600 " " "
601 p lo t with a marked nodes . L i s t o f osmIDs as input
602 " " "
603

604 nc = [’ r ’ i f node in nodeL i s t e l s e ’ #757575 ’ f o r node in G . nodes ()]
605 ox . p lo t_graph (G , f i g _ h e i g h t = 10 , f i g _w id t h =10 , node_color =nc , node_s i ze =20 , node_zorder =3 , edge_ l inew id th =3)
606

607

608 #### f un c t i on s g e t _ c o l o r _ l i s t , ge t_node_co lo r s_by_s ta t s from G . Boeing − C r ed i t s
609 # h t tp s : / / g i thub . com/ gboeing / osmnx
610 def g e t _ c o l o r _ l i s t (n , color_map= ’ plasma ’ , s t a r t =0 , end = 1) :
611 r e t u rn [mcm. get_cmap (color_map) (x) f o r x i n np . l i n s pa c e (s t a r t , end , n)]
612

613

117

B. Appendix

614 def ge t_node_co lo r s_by_s ta t (G , data , s t a r t =0 , end = 1) :
615 df = pd . DataFrame (data =pd . S e r i e s (data) . s o r t _ v a l u e s () , columns = [’ va lue ’])
616 df [’ c o l o r s ’] = g e t _ c o l o r _ l i s t (l en (d f) , s t a r t = s t a r t , end=end)
617 df = df . r e i ndex (G . nodes ())
618 r e t u rn df [’ c o l o r s ’] . t o l i s t ()
619

620

621 def p l o t C e n t r a l i t i e s (G , c e n t r a l i t y = ’ be tweennes s_cen t r a l i t y ’) :
622 " " "
623 p l o t s the c e n t r a l i y va lues as plasma co l o r s
624 c r e d i t s to G . Boeing h t tp s : / / g i thub . com/ gboeing / osmnx−examples / blob / master / notebooks /06−example−osmnx−networkx

. ipynb
625 accepts c e n t r a l i t y inpu t ’ be tweennes s_cen t r a l i t y ’ , ’ c l o s e n e s s _ c e n t r a l i t y ’ and every other extended s t a t (not

t e s t ed)
626 " " "
627

628 ex tended_s ta t s = ox . ex tended_s ta t s (G , ecc =True , bc=True , cc =True)
629 nc = ge t_node_co lo r s_by_s ta t (G , data = ex tended_s ta t s [c e n t r a l i t y])
630 f i g , ax = ox . p lo t_g raph (G , node_color =nc , node_edgecolor = ’ gray ’ , node_s i ze =20 , node_zorder =2)
631

632 # f o r p l o t t i n g the ao i wi th betweenness i n same pa t t e rn (s i z e , a x i s e t c .)
633 # bbox_tp l # north , south , east , west as tup l e
634 # ox . p lo t_g raph (G , bbox_tpl , f i g _ h e i g h t = 15 , f i g _w i d t h = 15 , node_color =nc , a x i s _ o f f = Fa l se , equa l_aspect =True ,

node_s i ze =50 , node_zorder =3 , edge_ l inew id th =2)
635

636

637 def p l o t S c a l i n g R e s u l t (data , d i s tances , x _ a x i s = ’ s c a l i n g_ soe ’ , y _ a x i s = ’ k _ p a r t i t i o n s ’ , e x p _ p l o y f i t =2) :
638 " " "
639 p l o t s the s c a l i n g as a graph with a f i t t i n g curve
640 " " "
641

642 # get the x− l a b e l s as l i s t from d i c t d i s t an ce s
643 x _ a x i s = l i s t (np . l i n s pa c e (d i s t an ce s [x _ a x i s] [0] , d i s t an ce s [x _ a x i s] [1] , d i s t an ce s [x _ a x i s] [2]))
644

645 i f y _ a x i s == ’ r educ t i on ’ :
646 p l t . p l o t (x_ax i s , data [2] , ’ b+ ’)
647 p l t . t i c k l a b e l _ f o rma t (s t y l e = ’ s c i ’ , a x i s = ’ y ’ , s c i l i m i t s = (0 , 0))
648 p l t . y l a b e l (’ K_reduced / K_pr imal ’)
649 p l t . x l a b e l (’ d i s t ance dev i a t i on [m] ’)
650 p l t . show ()
651

652 # f i t t i n g
653 x = x _ a x i s
654 y = l i s t (data [2])
655

656 # polynomia l
657 z = np . p o l y f i t (x , y , e x p _ p l o y f i t)
658 f = np . po ly 1d (z)
659

660 x 1 = np . l i n s pa c e (x [0] , x [− 1] , 50)
661 y1 = f (x 1)
662

663 p l t . p l o t (x , y , ’ k+ ’ , x1 , y 1)
664

665 e l i f y _ a x i s == ’ k _ p a r t i t i o n s ’ :
666 # p l o t t i n g xd i s t ance dev i a t i on − y k _ p a r t i t i o n s
667 p l t . p l o t (x_ax i s , data [3] , ’ b+ ’)
668 # p l t . t i c k l a b e l _ f o rma t (s t y l e = ’ s c i ’ , a x i s = ’ y ’ , s c i l i m i t s = (0 , 0))
669 p l t . y l a b e l (’ k p a r t i t i o n s ’)
670 p l t . x l a b e l (’ d i s t ance dev i a t i on [m] ’)
671 p l t . show ()
672

673 # f i t t i n g
674 x = x _ a x i s
675 y = l i s t (data [3])
676

677 # polynomia l
678 z = np . p o l y f i t (x , y , e x p _ p l o y f i t)
679 f = np . po ly 1d (z)
680

681 x 1 = np . l i n s pa c e (x [0] , x [− 1] , 50)
682 y1 = f (x 1)
683

684 p l t . p l o t (x , y , ’ k+ ’ , x1 , y 1)
685

686

687 def p lo tBoxp lo t sO fDF (df_y , l i s t _ x a x i s , x l abe l , y l abe l , y s c a l e = ’ log ’ , ymin=None , ymax=None , x _ t i c k s =None) :
688 " " "
689 p l o t t i n g boxp lo t s o f g i ven dataf rames . Used to present the s c a l i n g o f the approach .
690 " " "

118

B. Appendix

691

692 f o r idx , i tem in enumerate (l i s t _ x a x i s) :
693 l i s t _ x a x i s [i d x] = i n t (i tem)
694

695 # round va lues
696 l i s t _ x a x i s = [round_value (i) f o r i i n l i s t _ x a x i s]
697

698 # i n v e r t data on y a x i s to f i t i n c r e a s i n g x a x i s
699 y = df_y [d f_y . columns [: : − 1]]
700

701 # conver t to y dataframe to nested l i s t so f o r each nested l i s t a boxp lo t can be c a l c u l a t ed
702 ne s t e d L i s t = []
703 f o r i i n y . i t e r r ows () :
704 ne s t e d L i s t . append (l i s t (i [1]))
705

706 # c r ea t e p l o t
707 f i g = p l t . f i g u r e (f i g s i z e = (20 , 5))
708 ax = p l t . subp lo t (1 1 1)
709 f o r idx , i tem in enumerate (n e s t e d L i s t) :
710 ax . boxp lo t (item , po s i t i o n s =[− i d x] , s h ow f l i e r s = Fa l s e)
711 ax . s e t _ x t i c k l a b e l s (l i s t _ x a x i s)
712 i f y s c a l e == ’ s c i ’ :
713 ax . t i c k l a b e l _ f o rma t (s t y l e = ’ s c i ’ , a x i s = ’ y ’ , s c i l i m i t s = (0 , 0))
714 e l i f y s c a l e == ’ log ’ :
715 ax . s e t _ y s c a l e (’ l og ’)
716 p l t . y l a b e l (y l a b e l)
717 p l t . x l a b e l (x l a b e l)
718 i f ymin and ymax ! = None :
719 p l t . y l im ([ymin , ymax])
720 p l t . show ()
721

722

723 def p lo tBoxp lotsOfPer formanceDF (df_y , l i s t _ x a x i s , x l abe l , y l abe l , y s c a l e = ’ log ’ , ymin=None , ymax=None) :
724 " " "
725 p l o t t i n g boxp lo t s o f g i ven dataf rames rega rd ing the performance . Used to present the s c a l i n g o f the approach .
726 " " "
727

728 # i n v e r t data and cas t x−a x i s to i n t
729 # l i s t _ x a x i s = l i s t _ x a x i s [: : − 1]
730 f o r idx , i tem in enumerate (l i s t _ x a x i s) :
731 l i s t _ x a x i s [i d x] = i n t (i tem)
732

733 # round va lues
734 l i s t _ x a x i s = [round_value (i) f o r i i n l i s t _ x a x i s]
735

736 # i n v e r t data on y a x i s to f i t i n c r e a s i n g x a x i s
737 y = df_y [d f_y . columns [: : − 1]]
738

739 # conver t to y dataframe to nested l i s t so f o r each nested l i s t a boxp lo t can be c a l c u l a t ed
740 ne s t e d L i s t = []
741 f o r i i n y . i t e r r ows () :
742 ne s t e d L i s t . append (l i s t (i [1]))
743

744 # c r ea t e p l o t
745 f i g = p l t . f i g u r e (f i g s i z e = (20 , 5))
746 ax = p l t . subp lo t (1 1 1)
747 f o r idx , i tem in enumerate (n e s t e d L i s t) :
748 ax . boxp lo t (item , po s i t i o n s =[− i d x] , s h ow f l i e r s = Fa l s e)
749 ax . s e t _ x t i c k l a b e l s (l i s t _ x a x i s)
750 i f y s c a l e == ’ s c i ’ :
751 ax . t i c k l a b e l _ f o rma t (s t y l e = ’ s c i ’ , a x i s = ’ y ’ , s c i l i m i t s = (0 , 0))
752 e l i f y s c a l e == ’ log ’ :
753 ax . s e t _ y s c a l e (’ l og ’)
754 p l t . y l a b e l (y l a b e l)
755 p l t . x l a b e l (x l a b e l)
756 i f ymin and ymax ! = None :
757 p l t . y l im ([ymin , ymax])
758 e l s e :
759 # p l t . y l im ([0 . 0 1 , 0 . 1 0])
760 min_value = df_y . min () [0]
761 num_decimals = getNumberOfF loatZeros (min_value)
762 ymin , ymax = getMinMaxExponent (num_decimals)
763 p l t . y l im ([ymin , ymax])
764 p l t . show ()
765

766 def p l o t E r r o r B a r s (mean , std , f i g s i z e , l a b e l _ x a x i s , l a b e l _ y a x i s) :
767 " " "
768 p lo t e r r o r bars f o r mean and standard dev i a t i on
769 " " "
770

119

B. Appendix

771 x_pos = l i s t (range (1 , l en (mean) + 1))
772 p l t . f i g u r e (f i g s i z e = f i g s i z e)
773 p l t . bar (x_pos , mean , y e r r = std , a l i g n = ’ cen te r ’ , e co l o r = ’ b lack ’ , c aps i z e = 15 , a lpha =0)
774 p l t . y l a b e l (l a b e l _ y a x i s)
775 p l t . x l a b e l (l a b e l _ x a x i s)
776 p l t . x t i c k s (x_pos)
777 p l t . s c a t t e r (x_pos , mean , co l o r = ’ b lack ’)
778 p l t . show ()
779

780

781 #################### Save_n_Load #######################
782 def saveProcessedData (G2 , nodes , edges , d f _p rox i e s , outputName , output In fo , ou tpu tD i r = ’ . / data / ’ , t ime_stamp= Fa l s e)

:
783 " " "
784 save the r e s u l t s i n t o csv (nodes , edges , d f _p r o x i e s) and
785 graphs G , G2 and subgraphs as graphML .
786 " " "
787

788 from datet ime import datet ime
789 import os
790 time_stamp = datet ime . now () . s t r f t im e ("_%Y_%m_%d_%H_%M")
791

792 i f t ime_stamp == True :
793 fo lder_name = f ’ { ou tpu tD i r } { outputName } { ou tpu t I n fo [0] } { time_stamp } / ’
794 # folder_name = ou tpu tD i r + outputName + s t r (ou tpu t I n fo [0]) + time_stamp + ’ / ’
795 i f not os . path . e x i s t s (fo lder_name) :
796 os . mkdir (fo lder_name)
797

798 nodes . to_csv (f ’ { fo lder_name } { outputName } _nodes { time_stamp } . csv ’)
799 edges . to_csv (f ’ { fo lder_name } { outputName } _edges { time_stamp } . csv ’)
800 d f _p r o x i e s . to_csv (f ’ { fo lder_name } { outputName } _p rox i e s { time_stamp } . csv ’)
801

802 saveNxGraph (G2 , f i l ename = f ’ G_reduced_ { outputName } { time_stamp } . j son ’ , ou tpu tD i r = folder_name)
803

804 with open (f ’ { fo lder_name } i n f o _ { outputName } { time_stamp } . t x t ’ , ’w ’) as f i l e :
805 f i l e . w r i t e (s t r (ou tpu t I n fo))
806 e l s e :
807 i f not os . path . e x i s t s (ou tpu tD i r) :
808 os . mkdir (ou tpu tD i r)
809

810 nodes . to_csv (f ’ { ou tpu tD i r } { outputName } _nodes . csv ’)
811 edges . to_csv (f ’ { ou tpu tD i r } { outputName } _edges . csv ’)
812 d f _p r o x i e s . to_csv (f ’ { ou tpu tD i r } { outputName } _p rox i e s . csv ’)
813

814 saveNxGraph (G2 , f i l ename = f ’ G_reduced_ { outputName } . j son ’ , ou tpu tD i r = ou tpu tD i r)
815

816 with open (f ’ { ou tpu tD i r } i n f o _ { outputName } . t x t ’ , ’w ’) as f i l e :
817 f i l e . w r i t e (s t r (ou tpu t I n fo))
818

819

820 def loadProcessedData (fo lde r_pa th , key , debug= Fa l s e) :
821 " " "
822 load processed data . Needs fo lde rpa th , r e t u r n s G_reduced , nodes , edges , p r o x i e s
823 " " "
824

825 from pa t h l i b import Path
826 path = Path (f o l de r _pa th)
827 f i l e s = [f f o r f i n path . i t e r d i r () i f f . match (" * . * ")]
828

829 G , nodes , edges , d f _p r o x i e s = None , None , None , None
830

831 f o r f i l e i n f i l e s :
832 i f (’ reduced ’ i n s t r (f i l e)) and (key i n s t r (f i l e)) :
833 G = loadNxGraph (f i l e)
834 e l i f ’ nodes ’ i n s t r (f i l e) and key in s t r (f i l e) :
835 nodes = gpd . r e a d _ f i l e (f i l e , GEOM_POSSIBLE_NAMES=" geometry " , KEEP_GEOM_COLUMNS="NO")
836 e l i f ’ edges ’ i n s t r (f i l e) and key in s t r (f i l e) :
837 edges = gpd . r e a d _ f i l e (f i l e , GEOM_POSSIBLE_NAMES=" geometry " , KEEP_GEOM_COLUMNS="NO")
838 e l i f ’ p r o x i e s ’ i n s t r (f i l e) and key in s t r (f i l e) :
839 d f _p ro x i e s = gpd . r e a d _ f i l e (f i l e , GEOM_POSSIBLE_NAMES=" geometry " , KEEP_GEOM_COLUMNS="NO")
840 e l i f ’ i n f o ’ i n s t r (f i l e) and key in s t r (f i l e) :
841 with open (f i l e , ’ r ’) as i n f o _ t e x t :
842 p r i n t (’ ’)
843 p r i n t (’ I n f o − DD and coords : ’ + i n f o _ t e x t . read ())
844

845 e l s e :
846 i f debug == True :
847 p r i n t (’ could not read f i l e : ’ + s t r (f i l e))
848

849 r e t u rn G , nodes , edges , d f _p r o x i e s

120

B. Appendix

850

851

852 def loadNxGraph (f i l e _ p a t h) :
853 " " "
854 load graph from json s t y l e data
855 " " "
856

857 import j son
858 with open (f i l e _ p a t h) as j s o n _ f i l e :
859 data = j son . load (j s o n _ f i l e)
860 G = nx . ad jacency_graph (data)
861 r e t u rn G
862

863

864 def saveNxGraph (G , f i l ename = ’ G_reduced . j son ’ , ou tpu tD i r = ’ . / data / ’) :
865 " " "
866 saves the nx graph
867 " " "
868

869 import j son
870 output = ou tpu tD i r + f i l ename
871 data = nx . ad jacency_data (G)
872 # data = j son . dumps (data)
873 with open (output , ’w ’) as f i l e :
874 f i l e . w r i t e (j son . dumps (data))
875

876

877 def j s o nToF i l e (f i l e , f i lename , ou tpu tD i r = ’ . / data / ’) :
878 " " "
879 saves a python d i c t to j son f i l e
880 " " "
881

882 import j son
883 output = ou tpu tD i r + f i l ename
884 with open (output , ’w ’) as j s o n _ f i l e :
885 j son . dump(f i l e , j s o n _ f i l e)
886

887

888 def f i l e To J s on (f i l e) :
889 " " "
890 reads a f i l e and parse i t to j son type (d i c t)
891 " " "
892

893 import j son
894 with open (f i l e , ’ r ’) as my f i l e :
895 data =my f i l e . read ()
896 # parse f i l e
897 obj = j son . loads (data)
898 r e t u rn obj
899

900

901 def l i s t T o F i l e (l i s t _ a r r a y , f i l ename = ’ G_reduced . j son ’ , ou tpu tD i r = ’ . / data / ’) :
902 " " "
903 s t o r e s a l i s t i n t o a f i l e .
904 " " "
905

906 import os
907 i f not os . path . e x i s t s (ou tpu tD i r) :
908 os . mkdir (ou tpu tD i r)
909 p r i n t (ou tpu tD i r + ’ c rea ted . ’)
910

911 f i l e p a t h = ou tpu tD i r + f i l ename
912 with open (f i l e p a t h , ’ a ’) as f i l e :
913 f o r i tem in l i s t _ a r r a y :
914 f i l e . w r i t e (’ { } \ n ’ . format (i tem))
915

916

917 def nes tedL i s t sToCSV (n e s t e d _ l i s t , f i l ename = ’ f i l e . csv ’ , ou tpu tD i r = ’ . / data / ’) :
918 " " "
919 wr i t e s a nested l i s t to a csv f i l e
920 " " "
921

922 import os , csv
923 i f not os . path . e x i s t s (ou tpu tD i r) :
924 os . mkdir (ou tpu tD i r)
925 p r i n t (ou tpu tD i r + ’ c rea ted . ’)
926

927 f i l e p a t h = ou tpu tD i r + f i l ename
928 with open (f i l e p a t h , ’ a ’) as f i l e :
929 wr i t e r = csv . w r i t e r (f i l e)

121

B. Appendix

930 f o r i tem in n e s t e d _ l i s t :
931 wr i t e r . wr i te row (item)
932

933

934 def f i l e T o L i s t (pa thToF i l e) :
935 " " "
936 l oads a f i l e and s t o r e s the content i n a l i s t
937 " " "
938

939 l i s t _ a r r a y = []
940 with open (pathToF i l e , ’ r ’) as f i l e :
941 f o r l i n e i n f i l e :
942 l i s t _ a r r a y . append (f l o a t (l i n e [: − 1]))
943 r e t u rn l i s t _ a r r a y
944

945

946 def l o adRe su l t s (fo lde r_pa th , key1 , key2) :
947 " " "
948 Only f o r separa te p l o t t i n g . Loads r e s u l t s and f i l t e r s by keywords .
949 Parameters
950 −−−−−−−−−−

951 f o l de r _pa th : TYPE STRING
952 key1 : STRING
953 Abbrev ia ton .
954 key2 : STRING
955 k _pa r t i t i o n s , per formance_pr imal , performance_reduced , s c a l i n g , space .
956

957 Returns L i s t
958 −−−−−−−

959 " " "
960

961 from pa t h l i b import Path
962 path = Path (f o l de r _pa th)
963 f i l e s = [f f o r f i n path . i t e r d i r () i f f . match (" * . * ")]
964

965 l o a d e d _ l i s t = []
966 f o r f i l e i n f i l e s :
967 i f key1 i n s t r (f i l e) and key2 in s t r (f i l e) :
968 l o a d e d _ l i s t = f i l e T o L i s t (s t r (f i l e))
969 r e t u rn l o a d e d _ l i s t
970

971 def l o ad L i s t s F r omF i l e (fo lde r_pa th , key1 , key2) :
972 " " "
973 s im i l a r to loadResu l t s , but can read l i s t s from t e x t f i l e s
974 " " "
975

976 from pa t h l i b import Path
977 path = Path (f o l de r _pa th)
978 f i l e s = [f f o r f i n path . i t e r d i r () i f f . match (" * . * ")]
979

980 f o r f i l e i n f i l e s :
981 i f key1 i n s t r (f i l e) and key2 in s t r (f i l e) :
982 df = pd . read_csv (f i l e , d e l im i t e r = ’ , ’ , header =None)
983 #remove bracke t s
984 df [0] = df [0] . s t r . s t r i p (’ [’)
985 df [3] = d f [3] . s t r . s t r i p (’] ’)
986 # cas t column 2 to f l o a t
987 df [0] = pd . to_numeric (d f [0] , e r r o r s = ’ coerce ’)
988 df [1] = pd . to_numeric (d f [1] , e r r o r s = ’ coerce ’)
989 df [2] = pd . to_numeric (d f [2] , e r r o r s = ’ coerce ’)
990 df [3] = pd . to_numeric (d f [3] , e r r o r s = ’ coerce ’)
991

992 r e t u rn df
993

994

995 def l oadSca l i ngDa taF romF i l e (fo lde r_pa th , key) :
996 " " "
997 s im i l a r to loadResu l t s , but can read csv i n t o pandas df
998 " " "
999

1000 from pa t h l i b import Path
1001 path = Path (f o l de r _pa th)
1002 f i l e s = [f f o r f i n path . i t e r d i r () i f f . match (" * . csv ")]
1003

1004 K_pr imal = ’ ’
1005 K_reduced = ’ ’
1006 K_pa r t i t i o n s = ’ ’
1007

1008 f o r f i l e i n f i l e s :
1009 i f key i n s t r (f i l e) and ’ K_pr imal ’ i n s t r (f i l e) :

122

B. Appendix

1010 K_pr imal = f i l e
1011 e l i f key i n s t r (f i l e) and ’ K_reduced ’ i n s t r (f i l e) :
1012 K_reduced = f i l e
1013 e l i f key i n s t r (f i l e) and ’ K _ p a r t i t i o n s ’ i n s t r (f i l e) :
1014 K_pa r t i t i o n s = f i l e
1015

1016 d f_p r ima l = pd . read_csv (K_primal , header =None)
1017 df_reduced = pd . read_csv (K_reduced , header =None)
1018 d f _ p a r t i t i o n s = pd . read_csv (K_pa r t i t i o n s , header =None)
1019

1020 r e t u rn df_pr imal , df_reduced , d f _ p a r t i t i o n s
1021

1022

1023 def loadCSV2DF (fo lde r_pa th , key) :
1024 " " "
1025 reads a l l csv f i l e s i n a f o l de r , load them in t o mu l t i p l e dataf rames
1026 dataf rames are re tu rned in a l i s t , i n case mu l t i p l e csv f i l e s are found
1027 " " "
1028

1029 from pa t h l i b import Path
1030 path = Path (f o l de r _pa th)
1031 f i l e s = [f f o r f i n path . i t e r d i r () i f f . match (" * . csv * ")]
1032

1033 DFs = []
1034 f o r f i l e i n f i l e s :
1035 i f key i n s t r (f i l e) :
1036 DFs . append (pd . read_csv (f i l e))
1037 r e t u rn DFs
1038

1039

1040 def r e a d F i x A l l S h o r t e s t P a t h s (r e s u l t s , key) :
1041 " " "
1042 read a l l s h o r t e s t paths (cons tant) r e s u l t s f o r p l o t t i n g .
1043 " " "
1044

1045 from pa t h l i b import Path
1046 f o l de r _pa th = r e s u l t s
1047 path = Path (f o l de r _pa th)
1048 f i l e = [f f o r f i n path . i t e r d i r () i f f . match (f ’ * { key } * . csv ’)] [0]
1049 #problem tha t f o r each row not every column has va lues . Read i t as s t r i n g s and s p l i t i t then add NaNs
1050 tmp_df = pd . read_csv (f i l e , sep= ’ ^ ’ , header =None , p r e f i x = ’ X ’)
1051 tmp_df2 = tmp_df . X0 . s t r . s p l i t (’ , ’ , expand=True)
1052 de l tmp_df [’ X0 ’]
1053 tmp_df = pd . concat ([tmp_df , tmp_df2] , a x i s = 1)
1054 # conver t s t r va lues i n t o f l o a t
1055 df = tmp_df . apply (pd . to_numeric)
1056 r e t u rn df
1057

1058

1059 def ge t F i l eByKey (fo lde r_pa th , key) :
1060 " " "
1061 f i l t e r s f i l e s i n a f o l d e rpa th by a key
1062 " " "
1063

1064 from pa t h l i b import Path
1065 path = Path (f o l de r _pa th)
1066 f i l e s = [f f o r f i n path . i t e r d i r () i f f . match (key)]
1067 r e t u rn f i l e s
1068

1069

1070 # ##################### Lookup ##########################
1071 def r e f e r i n g P r o x i e s (G , nodes) :
1072 " " "
1073 r e t u r n s a d i c t wi th the osmid as keys and the r e f e r r i n g proxy as va lue
1074 " " "
1075

1076 p ro x yd i c t = { }
1077 f o r i tem in G . nodes () :
1078 p ro x yd i c t [i tem] = nodes . l o c [nodes [’ osmid ’] == item] [’ community ’] . va lues [0]
1079 r e t u rn p ro x yd i c t
1080

1081

1082 def lookupDis tance (s t a r t P ro x y , t a rge tP roxy , a d jMa t r i x) :
1083 " " "
1084 s imple lookup in a mat r i x wi thout s p e c i a l / per formant a l go r i t hms .
1085 " " "
1086 s = s t a r t P r o x y −1
1087 t = t a r g e tP ro x y −1
1088

1089 r e t u rn ad jMa t r i x [s] [t]

123

B. Appendix

1090

1091

1092 #################### Eva l ua t i on ########################
1093 def a l l _ s h o r t e s t _ p a t h s _ s t a t i s t i c s (G , weight = ’ l eng th ’) :
1094 " " "
1095 i t e r a t e over each node and computes a l l s h o r t e s t path l eng th s
1096 " " "
1097

1098 nes ted_path_ lengths = []
1099 f o r node in G . nodes () :
1100 nes ted_path_ lengths . append (l i s t (nx . s i n g l e _ s ou r c e _d i j k s t r a _p a t h _ l e n g t h (G , source =node , weight =weight) .

va lues ()))
1101 f l a t L i s t = [i tem f o r elem in nes ted_path_ lengths f o r item in elem]
1102 # f i l t e r i n g zeros , i f o r i g i n and de s t i n a t i o n node i s the same
1103 r e s = [n f o r n in f l a t L i s t i f n ! = 0]
1104 r e s _ d i c t = { ’mean ’ : np . a r r a y (r e s) . mean () , ’min ’ : np . a r r a y (r e s) . min () , ’max ’ : np . a r r a y (r e s) . max () , ’ s td ’ : np . a r r a y (

r e s) . s td () , ’ median ’ : np . median (np . a r r a y (r e s)) , ’ t o t a l _ n ’ : l en (r e s) }
1105

1106 r e t u rn res , r e s _ d i c t
1107

1108

1109 def rndNodePai rs (G , numberOfPairs) :
1110 " " "
1111 generate random nodepa i r s to t e s t the performance f o r r ou t i n g / lookup
1112 " " "
1113

1114 i = 0
1115 rndNodepai rs = []
1116 whi le i < numberOfPairs :
1117 rndNodepai rs . append ((random . cho ice (l i s t (G . nodes ())) , random . cho ice (l i s t (G . nodes ()))))
1118 i +=1
1119 r e t u rn rndNodepai rs
1120

1121

1122 def per formancePr imalGraph (G , nodePa i r s) :
1123 " " "
1124 measures the t ime f o r a standard s ho r t e s t path rou t i n g on the pr ima l graph
1125 " " "
1126

1127 s t a r t _ t ime = t ime i t . d e f au l t _ t ime r ()
1128 c r i t i c a l P a i r s = []
1129 f o r p a i r i n nodePa i r s :
1130 t r y :
1131 nx . sho r t e s t _pa th_ l eng th (G , source = pa i r [0] , t a r g e t = pa i r [1] , weight = ’ l eng th ’)
1132

1133 except :
1134 t r y :
1135 nx . sho r t e s t _pa th_ l eng th (G , source = pa i r [1] , t a r g e t = pa i r [0] , weight = ’ l eng th ’)
1136 except :
1137 c r i t i c a l P a i r s . append (p a i r)
1138 pass
1139 # p r i n t (’ c r i t i c a l p a i r s : ’ + s t r (c r i t i c a l P a i r s))
1140 s top_t ime = t ime i t . d e f au l t _ t ime r ()
1141 p r i n t (f ’ C r i t i c a l P a i r s : { l en (c r i t i c a l P a i r s) } ’)
1142 p r i n t (f ’ Time − pr ima l : { stop_t ime−s t a r t _ t ime } ’)
1143 r e t u rn (stop_t ime−s t a r t _ t ime)
1144

1145

1146 def pe r fo rmancePr ima lG raph_d i j k s t r a (G , nodePa i rs) :
1147 " " "
1148 measures the t ime f o r a s ho r t e s t path rou t i n g (d i j k s t r a) on the pr ima l graph
1149 " " "
1150

1151 s t a r t _ t ime = t ime i t . d e f au l t _ t ime r ()
1152 c r i t i c a l P a i r s = []
1153 f o r p a i r i n nodePa i r s :
1154 t r y :
1155 nx . sho r t e s t _pa th_ l eng th (G , source = pa i r [0] , t a r g e t = pa i r [1] , weight = ’ l eng th ’)
1156

1157 except :
1158 t r y :
1159 nx . sho r t e s t _pa th_ l eng th (G , source = pa i r [1] , t a r g e t = pa i r [0] , weight = ’ l eng th ’)
1160 except :
1161 c r i t i c a l P a i r s . append (p a i r)
1162 pass
1163 # p r i n t (’ c r i t i c a l p a i r s : ’ + s t r (c r i t i c a l P a i r s))
1164 s top_t ime = t ime i t . d e f au l t _ t ime r ()
1165 p r i n t (f ’ C r i t i c a l P a i r s : { l en (c r i t i c a l P a i r s) } ’)
1166 p r i n t (f ’ Time − pr ima l d i j k s t r a : { stop_t ime−s t a r t _ t ime } ’)
1167 r e t u rn (stop_t ime−s t a r t _ t ime)

124

B. Appendix

1168

1169

1170 def pe r f o rmanceP r ima lG r aph_b i d i r e c t i ona l _d i j k (G , nodePa i rs) :
1171 " " "
1172 measures the t ime f o r a s ho r t e s t path rou t i n g (b i d i r e c t i o n a l D i j k s t r a) on the pr ima l graph
1173 " " "
1174

1175 s t a r t _ t ime = t ime i t . d e f au l t _ t ime r ()
1176 c r i t i c a l P a i r s = []
1177 f o r p a i r i n nodePa i r s :
1178 t r y :
1179 nx . b i d i r e c t i o n a l _ d i j k s t r a (G , source = pa i r [0] , t a r g e t = pa i r [1] , weight = ’ l eng th ’)
1180

1181 except :
1182 t r y :
1183 nx . b i d i r e c t i o n a l _ d i j k s t r a (G , source = pa i r [1] , t a r g e t = pa i r [0] , weight = ’ l eng th ’)
1184 except :
1185 c r i t i c a l P a i r s . append (p a i r)
1186 pass
1187 # p r i n t (’ c r i t i c a l p a i r s : ’ + s t r (c r i t i c a l P a i r s))
1188 s top_t ime = t ime i t . d e f au l t _ t ime r ()
1189 p r i n t (f ’ C r i t i c a l P a i r s : { l en (c r i t i c a l P a i r s) } ’)
1190 p r i n t (f ’ Time − pr ima l b i d r e c t i o n a l d i j k : { stop_t ime−s t a r t _ t ime } ’)
1191 r e t u rn (stop_t ime−s t a r t _ t ime)
1192

1193

1194 def per formancePr imalGraph_asta r (G , nodePa i rs) :
1195 " " "
1196 measures the t ime f o r a s ho r t e s t path rou t i n g (A s t a r) on the pr ima l graph
1197 " " "
1198

1199 s t a r t _ t ime = t ime i t . d e f au l t _ t ime r ()
1200 c r i t i c a l P a i r s = []
1201 f o r p a i r i n nodePa i r s :
1202 t r y :
1203 nx . s t a r _pa th_ l eng th (G , source = pa i r [0] , t a r g e t = pa i r [1] , weight = ’ l eng th ’)
1204

1205 except :
1206 t r y :
1207 nx . s t a r _pa th_ l eng th (G , source = pa i r [1] , t a r g e t = pa i r [0] , weight = ’ l eng th ’)
1208 except :
1209 c r i t i c a l P a i r s . append (p a i r)
1210 pass
1211 # p r i n t (’ c r i t i c a l p a i r s : ’ + s t r (c r i t i c a l P a i r s))
1212 s top_t ime = t ime i t . d e f au l t _ t ime r ()
1213 p r i n t (f ’ C r i t i c a l P a i r s : { l en (c r i t i c a l P a i r s) } ’)
1214 p r i n t (f ’ Time − pr ima l a s t a r : { stop_t ime−s t a r t _ t ime } ’)
1215 r e t u rn (stop_t ime−s t a r t _ t ime)
1216

1217

1218 def performanceReducedGraph (ad jMa t r i x , p roxyd i c t , nodePa i rs) :
1219 " " "
1220 measures the t ime f o r a lookup in the ad jacency mat r i x as an a l t e r n a t i v e to standard s ho r t e s t path rou t i ng .
1221 " " "
1222

1223 s t a r t _ t ime = t ime i t . d e f au l t _ t ime r ()
1224 f o r p a i r i n nodePa i r s :
1225 l ookupDis tance (p r o x yd i c t [p a i r [0]] , p r o x yd i c t [p a i r [1]] , a d jMa t r i x)
1226 s top_t ime = t ime i t . d e f au l t _ t ime r ()
1227 p r i n t (f ’ Time − reduced : { stop_t ime−s t a r t _ t ime } ’)
1228 r e t u rn (stop_t ime−s t a r t _ t ime)
1229

1230

1231 def performance_Rout ingMachine (nodePai rsCoords) :
1232 " " "
1233 only nht tps : / / g i thub . com/ gboeing / osmnxetwork d i s t ance s as t e s t i n g from osrm rou t i ng machine . I s d i f f i c u l t to

compare (l o c a l r ou t i n g machine vs on l i ne + i n t e r n e t connect ion / speed + hardware)
1234 " " "
1235

1236 s t a r t _ t ime = t ime i t . d e f au l t _ t ime r ()
1237 u r l = " h t tp s : / / r ou t e r . p ro j e c t−osrm . org / route / v 1 / d r i v i n g / { l on 1 } , { l a t 1 } ; { lon2 } , { l a t 2 } ? overv iew = f u l l &geometr ies =

geojson "
1238 # u r l = " h t tp : / / 1 4 1 . 5 . 1 0 9 . 1 1 7 : 5 0 0 0 / route / v 1 / d r i v i n g / { l on 1 } , { l a t 1 } ; { lon2 } , { l a t 2 } ? overv iew = f u l l &geometr ies =

geojson "
1239

1240 f o r p a i r i n nodePai rsCoords :
1241 u r l = u r l . format (l a t 1 = p a i r [0] [0] , l on 1 = pa i r [0] [1] , l a t 2 = pa i r [1] [0] , lon2 = pa i r [1] [1])
1242 data = reques t s . get (u r l) . j son ()
1243 # route = data [’ rou tes ’] [0] [’ geometry ’]
1244 route = data [’ rou tes ’] [0] [’ l e g s ’] [0] [’ d i s t ance ’]

125

B. Appendix

1245 s top_t ime = t ime i t . d e f au l t _ t ime r ()
1246 p r i n t (f ’ Time − OSRM : { stop_t ime−s t a r t _ t ime } ’)
1247 r e t u rn (stop_t ime−s t a r t _ t ime)
1248 # r e tu rn route
1249

1250

1251 def osmIdToLatLon (osmid , nodes) :
1252 " " "
1253 r e t u r n s l a t / lon f o r a node based on osmID
1254 " " "
1255

1256 l a t = nodes . query (f ’ osmid == { osmid } ’) . y . va lues [0]
1257 lon = nodes . query (f ’ osmid == { osmid } ’) . x . va lues [0]
1258 r e t u rn (l a t , lon)
1259

1260

1261 def rndNodePairsToCoords (nodePairs , nodes) :
1262 " " "
1263 t rans fo rm random node pa i r s to l a t / lon coo rd ina te s so a query f o r a rou t i n g machine can be c a r r i e d out
1264 " " "
1265

1266 rndNodePairsCoords = []
1267 f o r p a i r i n nodePa i r s :
1268 rndNodePairsCoords . append ((osmIdToLatLon (p a i r [0] , nodes) , (osmIdToLatLon (p a i r [1] , nodes))))
1269 r e t u rn rndNodePairsCoords
1270

1271

1272 # ##################### U t i l s ###########################
1273 def c a l c C i r c u i t y (G , c i r c u i t y _ d i s t = ’ gc ’) :
1274 " " "
1275 average c i r c u i t y : sum of edge l eng th s d i v i ded by sum of s t r a i g h t − l i n e
1276 d i s t ance between edge endpoints . f i r s t load a l l the edges o r i g i n and
1277 de s t i n a t i o n coo rd ina te s as a dataframe , then c a l c u l a t e the s t r a i g h t − l i n e
1278 d i s t ance
1279 " " "
1280

1281 from osmnx . u t i l s import g r e a t _ c i r c l e _ v e c
1282 from osmnx . u t i l s import eu c l i d ean_d i s t _ v e c
1283

1284 edge_ l eng th_ to t a l = sum ([d [’ l eng th ’] f o r u , v , d i n G . edges (data =True)])
1285

1286 coords = np . a r r a y ([[G . nodes [u] [’ y ’] , G . nodes [u] [’ x ’] , G . nodes [v] [’ y ’] , G . nodes [v] [’ x ’]] f o r u , v , k i n G . edges
(keys =True)])

1287 df_coords = pd . DataFrame (coords , columns = [’ u_y ’ , ’ u_x ’ , ’ v_y ’ , ’ v_x ’])
1288 i f c i r c u i t y _ d i s t == ’ gc ’ :
1289 gc_d i s t ances = g r e a t _ c i r c l e _ v e c (l a t 1 = d f_coords [’ u_y ’] ,
1290 l n g 1 = d f_coords [’ u_x ’] ,
1291 l a t 2 = df_coords [’ v_y ’] ,
1292 lng2 = df_coords [’ v_x ’])
1293 e l i f c i r c u i t y _ d i s t == ’ euc l i dean ’ :
1294 gc_d i s t ances = euc l i d ean_d i s t _ v e c (y 1 = d f_coords [’ u_y ’] ,
1295 x 1 = df_coords [’ u_x ’] ,
1296 y2= df_coords [’ v_y ’] ,
1297 x2= df_coords [’ v_x ’])
1298 e l s e :
1299 r a i s e Va l u eE r r o r (’ c i r c u i t y _ d i s t must be " gc " or " euc l i dean " ’)
1300

1301 gc_d i s t ances = gc_d i s t ances . f i l l n a (va lue =0)
1302 t r y :
1303 c i r c u i t y _ a v g = edge_ l eng th_ to t a l / g c_d i s t ances . sum ()
1304 except Z e r oD i v i s i o n E r r o r :
1305 c i r c u i t y _ a v g = np . nan
1306

1307 r e t u rn c i r c u i t y _ a v g
1308

1309

1310 def pro jCoords (or ig_epsg , dest_epsg , x , y) :
1311 " " "
1312 f r ans fo rms coo rd ina te s by us ing the epsg−code .
1313 Common epsg−codes :
1314 WGS84 l a t lon (decimal , un i t : degree) : 4326
1315 WGS 84/ UTM 32 N (un i t : meters) : 32632
1316 WGS 84/ UTM 33 N (un i t : meters) : 32633
1317 WGS 84/ Pseudo Mercator (un i t : meters) : 3857
1318 Parameters :
1319

1320 epsg−codes : s t r
1321 example : ’ epsg : 4326 ’
1322 " " "
1323

126

B. Appendix

1324 from pypro j import Pro j , t rans fo rm
1325

1326 i n P r o j = P ro j (o r i g_epsg)
1327 ou tP ro j = P ro j (dest_epsg)
1328 x2 , y2 = t rans fo rm (i nP ro j , outPro j , x , y)
1329 r e t u rn x2 , y2
1330

1331

1332 def getAreaFromBBox (minLon , minLat , maxLon , maxLat , dest_epsg , p ro j e c t ed =True) :
1333 " " "
1334 f r ans fo rms the coo rd ina te s o f the bbox in (epsg : 4 326) to a g iven t a r g e t p r o j e c t i o n by the de s t i n a t i o n epsg .

C a l c u l a t e s the area based on the g iven un i t s o f the epsg p r o j e c t i o n (meters or k i l ome te r s) .
1335 Example :
1336 WGS 84/ UTM 32 N (un i t : meters) : 32632
1337 www. epsg . i o
1338 h t tp s : / / g i s . s tackexchange . com/ ques t i ons /59087/ c a l c u l a t i n g −bounding−box−s i z e
1339 " " "
1340

1341 proj_minLon , pro j_minLat = pro jCoords (’ epsg :4326 ’ , dest_epsg , minLon , minLat)
1342 proj_maxLon , proj_maxLat = pro jCoords (’ epsg :4326 ’ , dest_epsg , maxLon , maxLat)
1343

1344 i f p ro j e c t ed == Fa l s e :
1345 p r i n t (’ not implemented yet . Example f o r spheres : h t tp s : / / g i s . s tackexchange . com/ ques t ions /59087/ c a l c u l a t i n g

−bounding−box−s i z e ’)
1346 e l s e :
1347 area = (proj_minLon − proj_maxLon) * (p ro j_minLat − proj_maxLat)
1348

1349 r e t u rn area
1350

1351

1352 def g r a p h S t a t i s t i c s (G_primal , G_reduced , nodes , dest_epsg) :
1353 " " "
1354 r e t u r n s s t a t i s t i c s o f the graph :
1355 c i r c u i t y
1356 area o f the bbox
1357 d i s t ance o f a l l s h o r t e s t paths
1358 r e t u r n s the reduc t i on in percent
1359 " " "
1360

1361 minx , miny , maxx , maxy = nodes . to ta l_bounds
1362 area = getAreaFromBBox (minx , miny , maxx , maxy , dest_epsg = dest_epsg)
1363 # area = getAreaFromBBox (bbox [2] , bbox [0] , bbox [3] , bbox [1] , dest_epsg = dest_epsg)
1364

1365 # to und i rec ted graphs
1366 G_pr ima l_und i rec ted = G_pr imal . t o_und i r ec ted ()
1367 G_reduced_undi rected = G_reduced . to_und i r ec ted ()
1368

1369 sum_network_dis tances_pr imal = sum ([d [’ l eng th ’] f o r u , v , d i n G_pr ima l_und i rec ted . edges (data =True)])
1370 sum_network_distances_reduced = sum ([d [’ l eng th ’] f o r u , v , d i n G_reduced_undi rected . edges (data =True)])
1371

1372 p r i n t (f ’ ’ ’ \ n Graph s t a t s : \ n c i r c u i t y : { round (c a l c C i r c u i t y (G_primal , c i r c u i t y _ d i s t = ’ gc ’) , 6) } ’ ’ ’)
1373

1374 p r i n t (f ’ area : { round (area / 1000000 ,2) } km^2 ’)
1375 p r i n t (f ’ t o t a l s t r e e t l eng th − pr ima l : { round (sum_network_dis tances_pr imal , 0) }m’)
1376 p r i n t (f ’ t o t a l s t r e e t l eng th − reduced : { sum_network_distances_reduced }m’)
1377 p r i n t (f ’ r educ t i on : { round (100− (sum_network_distances_reduced / sum_network_dis tances_pr imal) * 1 00 , 2) }% ’)
1378 p r i n t (f ’ i s complete : { i sComplete (G_reduced) } ’)
1379

1380 r e s = { } # un i t s
1381 r e s . update ({ ’ area ’ : f ’ { round (area / 1000000 ,2) } ’ }) # km^2
1382 r e s . update ({ ’ t o t a l s t r e e t l eng th − pr ima l ’ : f ’ { round (sum_network_dis tances_pr imal , 0) } ’ }) #meter
1383 r e s . update ({ ’ t o t a l s t r e e t l eng th − reduced ’ : f ’ { sum_network_distances_reduced } ’ }) #meter
1384 r e s . update ({ ’ r educ t i on ’ : f ’ { round (100− (sum_network_distances_reduced / sum_network_dis tances_pr imal) * 1 00 , 2) } ’ }) #

percentage
1385 r e s . update ({ ’ i s complete ’ : f ’ { i sComplete (G_reduced) } ’ })
1386

1387 r e t u rn re s
1388 # r e tu rn round (100− (sum_network_distances_reduced / sum_network_dis tances_pr imal) * 1 00 , 2)
1389

1390

1391 def d f S t a t i s t i c s P e r Row (df) :
1392 " " "
1393 r e t u r n s s t a t i s t i c s (mean , median , s td) per row of a dataframe
1394 " " "
1395

1396 mean = []
1397 median = []
1398 s td = []
1399

1400 f o r row in df . i t e r r ows () :

127

B. Appendix

1401 tmp = np . a r r a y (row) [1]
1402 mean . append (tmp .mean ())
1403 median . append (tmp . median ())
1404 s td . append (tmp . s td ())
1405 r e t u rn mean , median , s td
1406

1407

1408 def calcEdgesComplete (G) :
1409 " " "
1410 c a l c u l a t e s the number o f edges the complete graph would have
1411 " " "
1412

1413 n = len (G . nodes ())
1414 m = (n * (n−1)) /2
1415 r e t u rn m
1416

1417

1418 def ge tBBoxFo rP lo t t i ng (nodes , margin =0 . 03) :
1419 " " "
1420 take t o t a l bounds o f nodes and add margin f o r p l o t t i n g , d e f a u l t th ree percent
1421 " " "
1422

1423 xmin , ymin , xmax , ymax = nodes . to ta l_bounds
1424

1425 xmin = xmin − (xmax − xmin) *margin
1426 xmax = xmax + (xmax − xmin) *margin
1427 ymin = ymin − (ymax − ymin) *margin
1428 ymax = ymax + (ymax − ymin) *margin
1429

1430 bbox = xmin , xmax , ymin , ymax
1431 r e t u rn bbox
1432

1433

1434 def i sComplete (G) :
1435 " " "
1436 checks i f the graph i s a complete graph . Returns boolean
1437 " " "
1438

1439 n = len (G . nodes ())
1440 i f (n * (n−1)) /2 == len (G . edges ()) :
1441 r e t u rn True
1442 e l s e :
1443 r e t u rn Fa l s e
1444

1445

1446 def g e t Ad jMa t r i x (G , check= Fa lse , s t r u c t u r e = ’ d f ’) :
1447 " " "
1448 c r e a t e s the ad jacency mat r i x as a pandas df
1449 s o r t the nodes by community id
1450 " " "
1451

1452 unsor tedNodeL i s t = l i s t (G . nodes (’ community ’))
1453 unsor tedNodeL i s t . s o r t (key = lambda x : x [1] [1])
1454

1455 so r t edNodeL i s t = [i tem [0] f o r item in unsor tedNodeL i s t]
1456

1457 df = nx . to_pandas_adjacency (G , n od e l i s t = sor tedNodeL i s t , weight = ’ l eng th ’)
1458

1459 i f check == True :
1460 i f (so r t edNodeL i s t [0] , so r t edNodeL i s t [− 1]) == (d f . columns [0] , d f . columns [− 1]) :
1461 p r i n t (’ s o r t i n g check ok ’)
1462 e l s e :
1463 p r i n t (’ s o r t i n g f a i l e d ’)
1464

1465 i f s t r u c t u r e == ’ d f ’ :
1466 r e t u rn df
1467 e l i f s t r u c t u r e == ’ np ’ :
1468 r e t u rn df . to_numpy ()
1469

1470

1471 def l i s t S t a t i s t i c s (l i s t _ a r r a y) :
1472 " " "
1473 p r i n t s s tandard numpy s t a t i s t i c s (min , max , mean , std , va r i ance o f a l i s t
1474 r e t u r n s a d i c t
1475 " " "
1476

1477 r e s u l t s = np . a r r a y (l i s t _ a r r a y)
1478

1479 d i c t _ r e s u l t s = { }
1480 d i c t _ r e s u l t s [’ v a r i ance ’] = np . var (r e s u l t s)

128

B. Appendix

1481 d i c t _ r e s u l t s [’mean ’] = np .mean (r e s u l t s)
1482 d i c t _ r e s u l t s [’ median ’] = np . median (r e s u l t s)
1483 d i c t _ r e s u l t s [’ d e v i a t i on ’] = np . s td (r e s u l t s)
1484 d i c t _ r e s u l t s [’min ’] = np . min (r e s u l t s)
1485 d i c t _ r e s u l t s [’max ’] = np .max (r e s u l t s)
1486

1487 p r i n t (f ’ ’ ’ v a r i ance : { d i c t _ r e s u l t s [’ v a r i ance ’] } ’ ’ ’)
1488 p r i n t (f ’ ’ ’mean : { d i c t _ r e s u l t s [’mean ’] } ’ ’ ’)
1489 p r i n t (f ’ ’ ’ median : { d i c t _ r e s u l t s [’ median ’] } ’ ’ ’)
1490 p r i n t (f ’ ’ ’ d e v i a t i on : { d i c t _ r e s u l t s [’ d e v i a t i on ’] } ’ ’ ’)
1491 p r i n t (f ’ ’ ’ min : { d i c t _ r e s u l t s [’ min ’] } ’ ’ ’)
1492 p r i n t (f ’ ’ ’max : { d i c t _ r e s u l t s [’max ’] } \ n ’ ’ ’)
1493

1494 r e t u rn d i c t _ r e s u l t s
1495

1496

1497 def g e t S c a l i n g I t e r a t i o n s (i n fo , sca l ing_DD) :
1498 " " "
1499 get the s teps o f the uses parameter f o r the s c a l i n g approach
1500 " " "
1501

1502 # i f DD i s not i n t − may be an old r e l i c t
1503 sca l ing_DD = [i n t (DD) f o r DD in sca l ing_DD]
1504 # c r ea t e the i t e r a t i o n s s teps
1505 i t e r a t i o n s _ s t e p s = l i s t (range (i n f o [’ s ca l ing_DD_s tep ’]))
1506 # z i p sca l ing_DD and i t e r a t i o n s _ s t e p s then cas t i t as s t r i n g , r ep l a ce " , " with "_ " and remove brake t s
1507 z i pped_ in fo = l i s t (z i p (sca l ing_DD , i t e r a t i o n s _ s t e p s))
1508 r e s = []
1509 f o r i tem in z i pped_ in fo :
1510 r e s . append (s t r (i tem) . r ep l a ce (’ , ’ , ’ _ ’))
1511 # r e gu l a r e xp r e s s i on s to remove brake t s
1512 import re
1513 r e s = ([re . sub (’ [^ a−zA−Z0−9−_]+ ’ , ’ ’ , x) f o r x i n r e s])
1514 r e t u rn re s
1515

1516

1517 def weightedAvgAndStd (va lues , we ights) :
1518 " " "
1519 Return the weighted average /mean and standard dev i a t i on .
1520 va lues , we ights −− Numpy ndar rays with the same shape .
1521 " " "
1522

1523 import math
1524 average = np . average (va lues , we ights =weights)
1525 # Fas t and numer i c a l l y p r e c i s e :
1526 va r i ance = np . average ((va lues−average) * *2 , we ights =weights)
1527 r e t u rn (average , math . s q r t (v a r i ance))
1528

1529

1530 def i s Z e r o (n) :
1531 " " "
1532 checks i f n i s zero .
1533 " " "
1534

1535 t r y :
1536 i f i n t (n) == 0 :
1537 r e t u rn True
1538 e l s e :
1539 r e t u rn Fa l s e
1540 except :
1541 r e t u rn Fa l s e
1542

1543

1544 def getNumberOfF loatZeros (number) :
1545 " " "
1546 get number o f d i g i t s o f a f l o a t which are n u l l . He l p f u l f o r sma l l va lues to determine the c o r r e c t exponent f o r

b e t t e r p l o t t i n g
1547 " " "
1548

1549 str_num = s t r (number) . s p l i t (’ . ’) [1]
1550 f o r idx , char i n enumerate (str_num) :
1551 i f i s Z e r o (char) == True :
1552 cont inue
1553 e l s e :
1554 break
1555 r e t u rn i d x
1556

1557

1558 def getMinMaxExponent (min_decimals) :
1559 " " "

129

B. Appendix

1560 get the minimal exponent f o r p l o t t i n g . For mu l t i p l e datase ts , check how many d i g i t s (ze ros) a f l o a t i n g number
has a f t e r l e s s than 1 .

1561 " " "
1562

1563 min_ l im i t = 1* 10** − (min_decimals + 1)
1564 max_ l imi t = 1* 10** − (min_decimals)
1565 r e t u rn (min_ l im i t , max_ l imi t)
1566

1567

1568 def round_value (value , d i g i t =2) :
1569 " " "
1570 round va lues to a de f a u l t d i g i t o f 2
1571 " " "
1572

1573 r e t u rn i n t (round (va lue * 0 . 00 1 , d i g i t) * 1000)
1574

1575

1576 # ##################### Se rve r ##########################
1577 def i n i t A r g P a r s e r () :
1578 " " "
1579 reads e x t e r n a l parameter from console , r e t u r n s a d i c t wi th AOI , s t a r t , s top
1580 step , i t e r a t i o n s
1581 " " "
1582

1583 import a rgparse
1584 pa r se r = a rgparse . ArgumentParser (d e s c r i p t i o n = ’ Parameters AOI , f i x_DD , s c a l i n g _ s t a r t , s ca l i ng_ s top ,

s c a l i n g _ s t ep ’)
1585

1586 pa r se r . add_argument (’ AOI ’ , type = s t r ,
1587 help = ’ A r equ i r ed i n t e g e r p o s i t i o n a l argument ’)
1588

1589 pa r se r . add_argument (’ f i x_DD ’ , type = in t ,
1590 help = ’ A r equ i r ed i n t e g e r p o s i t i o n a l argument ’)
1591

1592 pa r se r . add_argument (’ s c a l i n g _DD_ s t a r t ’ , type = in t ,
1593 help = ’ A r equ i r ed i n t e g e r p o s i t i o n a l argument ’)
1594

1595 pa r se r . add_argument (’ s ca l ing_DD_s top ’ , type = in t ,
1596 help = ’ A r equ i r ed i n t e g e r p o s i t i o n a l argument ’)
1597

1598 pa r se r . add_argument (’ s ca l ing_DD_s tep ’ , type = in t ,
1599 help = ’ A r equ i r ed i n t e g e r p o s i t i o n a l argument ’)
1600

1601 pa r se r . add_argument (’ i t e r a t i o n s ’ , type = in t ,
1602 help = ’ A r equ i r ed i n t e g e r p o s i t i o n a l argument ’)
1603

1604 args = pa r se r . pa r se_a rgs ()
1605

1606 params = { ’ AOI ’ : a rgs . AOI , ’ f i x_DD ’ : a rgs . f i x_DD , ’ s c a l i n g _DD_ s t a r t ’ : a rgs . s c a l i ng_DD_s t a r t ,
1607 ’ s ca l ing_DD_s top ’ : a rgs . sca l ing_DD_stop , ’ s ca l ing_DD_s tep ’ : a rgs . sca l ing_DD_step ,
1608 ’ i t e r a t i o n s ’ : a rgs . i t e r a t i o n s }
1609 r e t u rn params

Listing B.2:Community_proxies.py

1 ################# Load Parameters ######################
2 import AOI , community_proxies
3 import os , j son
4 import numpy as np , networkx as nx
5 from datet ime import datet ime
6

7 s t a r t _ t ime = datet ime . now () . s t r f t im e ("\%H:\%M:\%S/\%d.\%m.\%Y ")
8

9 t r y :
10 params = community_proxies . i n i t A r g P a r s e r ()
11

12 AOI = g e t a t t r (AOI , params [’ AOI ’])
13

14 i f params [’ AOI ’] == ’ malaga ’ :
15 coords = AOI . cen te r
16 e l s e :
17 coords = [AOI . north , AOI . south , AOI . east , AOI . west]
18

19 f i x _ d i s t a n c e _ d e v i a t i o n = params [’ f i x_DD ’]
20 s c a l i n g _d i s t a n c e _d e v i a t i o n = np . l i n s pa c e (params [’ s c a l i n g _DD_ s t a r t ’] , params [’ sca l ing_DD_s top ’] , params [’

s ca l ing_DD_s tep ’])
21

22 n = params [’ i t e r a t i o n s ’]
23 except :

130

B. Appendix

24 r a i s e Va l ueE r r o r (’ I nput parameters could not be read ’)
25

26 time_stamp = datet ime . now () . s t r f t im e ("\%Y_\%m_\%d_\%H_\%M")
27 c a l c _ t ime_ s t a r t = datet ime . now ()
28

29 ou tpu t _ f o l de r = f ’ . / r e s u l t s / { time_stamp } _ { AOI . abb r e v i a t i on } / ’
30 i f not os . path . e x i s t s (ou tpu t _ f o l de r) :
31 os . mkdir (ou tpu t _ f o l de r)
32

33 # wr i t e the parameters from conso le / setup in a json− f i l e
34 with open (ou tpu t_ f o l de r + ’ i n f o _ ’ + AOI . abb r e v i a t i on + ’ . j son ’ , ’w ’) as f i l e :
35 f i l e . w r i t e (j son . dumps (params))
36

37 # wr i t e the d i s t ance de v i a t i o n s f o r s c a l i n g i n t o a f i l e (most ly x−a x i s f o r p l o t s)
38 community_proxies . l i s t T o F i l e (s c a l i n g _d i s t a n c e _de v i a t i o n , f i l ename = ’ s c a l i n g _d i s t a n c e _d e v i a t i o n s _ { } . t x t ’ . format (AOI .

abb r e v i a t i on) , ou tpu tD i r = ou tpu t_ f o l de r)
39

40

41 ################### cons tant DD ########################
42 ##### Order
43 ### Kp a r t i t i o n s with i t e r a t i o n s n
44 ### r a t i o complete graphs K_primal , K_reduced
45 ### performance
46 ### s ho r t e s t paths d i s t ance s − d i s t r i b u t i o n
47 ### s t o r e s graph f i l e s
48

49 k _ p a r t i t i o n s = []
50 pr imal_complete = []
51 reduced_complete = []
52 numberOfPairs = 50
53 r e su l t s _pe r f o rmance_p r ima l _d i j k = []
54 r e s u l t s _pe r f o rmance_p r ima l _b i d i j k = []
55 r e su l t s _pe r f o rmance_p r ima l _a s t a r = []
56 resu l t s_per fo rmance_reduced = []
57 G = community_proxies . getPr imalGraph (coords)
58 sp_d i s t ances = []
59 s p_d i s t an c e s _d i c t = { }
60

61

62 f o r x i n range (1 , n) :
63 nodes , edges , d f _p rox i e s , subgraphs = community_proxies . evalOptimumK (G ,
64 f i x _ d i s t a n c e _d e v i a t i o n , k =2 , a l go r i thm = ’ f l u i d ’ , p r o x y _ c e n t r a l i t y = ’ CL ’)
65

66 ## k p a r t i t i o n s
67 k _ p a r t i t i o n s . append (l en (subgraphs))
68

69 p r i n t (f ’ F i n i s hed i t e r a t i o n { x } o f { n } i n pa r t K _ p a r t i t i o n s . ’)
70 p r i n t (f ’ Dura t ion s i n ce s t a r t − i n hours : { divmod ((datet ime . now () − c a l c _ t ime_ s t a r t) . t o t a l _ seconds () , 3600)

[0] } , i n mins : { divmod ((datet ime . now () − c a l c _ t ime_ s t a r t) . t o t a l _ seconds () , 60) [0] } . ’)
71

72 ## s i z e − cons t r u c t a new reduced graph
73 G2 = community_proxies . cons t ruc tGraph (G , d f _p rox i e s , nodes , edges , completeGraph = True)
74

75 pr imal_complete . append (community_proxies . ca lcEdgesComplete (G))
76 reduced_complete . append (community_proxies . ca lcEdgesComplete (G2))
77 p r i n t (f ’ F i n i s hed i t e r a t i o n { x } o f { n } i n pa r t s i z e . ’)
78 p r i n t (f ’ Dura t ion s i n ce s t a r t − i n hours : { divmod ((datet ime . now () − c a l c _ t ime_ s t a r t) . t o t a l _ seconds () , 3600)

[0] } , i n mins : { divmod ((datet ime . now () − c a l c _ t ime_ s t a r t) . t o t a l _ seconds () , 60) [0] } . ’)
79

80 ##performance
81 # get ad jacency mat r i x i n np or df
82 ad jMa t r i x = community_proxies . g e t Ad jMa t r i x (G2 , check= Fa lse , s t r u c t u r e = ’ np ’)
83

84 # prepare a per formant lookup to i d e n t i f y the p ro x i e s f o r every pr ima l node
85 r e f e r r i n g P r o x i e s = community_proxies . r e f e r i n g P r o x i e s (G , nodes)
86 G_d i r = nx . DiGraph (G)
87 rndNodePai rs = community_proxies . rndNodePai rs (G , numberOfPairs = numberOfPairs)
88

89 r e su l t s _pe r f o rmance_p r ima l _d i j k . append (community_proxies . pe r fo rmancePr ima lG raph_d i j k s t r a (G_dir , rndNodePairs))
90 r e s u l t s _pe r f o rmance_p r ima l _b i d i j k . append (community_proxies . p e r f o rmanceP r ima lG r aph_b i d i r e c t i ona l _d i j k (G_dir ,

rndNodePai rs))
91 r e su l t s _pe r f o rmance_p r ima l _a s t a r . append (community_proxies . per fo rmancePr imalGraph_astar (G_dir , rndNodePai rs))
92 resu l t s_per fo rmance_reduced . append (community_proxies . performanceReducedGraph (ad jMa t r i x , r e f e r r i n g P r o x i e s ,

rndNodePai rs))
93 p r i n t (f ’ F i n i s hed i t e r a t i o n { x } o f { n } i n pa r t performance . ’)
94 p r i n t (f ’ Dura t ion s i n ce s t a r t − i n hours : { divmod ((datet ime . now () − c a l c _ t ime_ s t a r t) . t o t a l _ seconds () , 3600)

[0] } , i n mins : { divmod ((datet ime . now () − c a l c _ t ime_ s t a r t) . t o t a l _ seconds () , 60) [0] } . ’)
95

96 ## s ho r t e s t paths d i s t ance s − d i s t r i b u t i o n
97 # sp_d i s t ances . append (l i s t (community_proxies . a l l _ s h o r t e s t _ p a t h s _ s t a t i s t i c s (G2 , weight = ’ l eng th ’)))

131

B. Appendix

98 r aw _ s t a t i s t i c s , d i c t _ s t a t i s t i c s = community_proxies . a l l _ s h o r t e s t _ p a t h s _ s t a t i s t i c s (G2 , weight = ’ l eng th ’)
99 sp_d i s t ances . append (r aw _ s t a t i s t i c s)

100 s p_d i s t an c e s _d i c t . update (d i c t _ s t a t i s t i c s)
101

102

103 ### expor t data
104 community_proxies . l i s t T o F i l e (k _p a r t i t i o n s , f i l ename = ’ f i x _ k _ p a r t i t i o n s _ { } . t x t ’ . format (AOI . abb r e v i a t i on) , ou tpu tD i r =

ou tpu t _ f o l de r)
105 community_proxies . l i s t T o F i l e (pr imal_complete , f i l ename = ’ f i x _K_p r ima l _ { } . t x t ’ . format (AOI . abb r e v i a t i on) , ou tpu tD i r =

ou tpu t _ f o l de r)
106 community_proxies . l i s t T o F i l e (reduced_complete , f i l ename = ’ f i x_K_reduced_ { } . t x t ’ . format (AOI . abb r e v i a t i on) , ou tpu tD i r

= ou tpu t _ f o l de r)
107 community_proxies . l i s t T o F i l e (r e su l t s _pe r f o rmance_p r ima l _d i j k , f i l ename = ’ f i x _pe r f o rmance_p r ima l _d i j k _ { } . t x t ’ . format

(AOI . abb r e v i a t i on) , ou tpu tD i r = ou tpu t _ f o l de r)
108 community_proxies . l i s t T o F i l e (r e su l t s _pe r f o rmance_p r ima l _b i d i j k , f i l ename = ’ f i x _pe r f o rmance_p r ima l _b i d i j k _ { } . t x t ’ .

format (AOI . abb r e v i a t i on) , ou tpu tD i r = ou tpu t_ f o l de r)
109 community_proxies . l i s t T o F i l e (r e su l t s _pe r f o rmance_p r ima l _a s t a r , f i l ename = ’ f i x _pe r f o rmance_p r ima l _a s t a r _ { } . t x t ’ .

format (AOI . abb r e v i a t i on) , ou tpu tD i r = ou tpu t_ f o l de r)
110 community_proxies . l i s t T o F i l e (resu l t s_per fo rmance_reduced , f i l ename = ’ f i x_per fo rmance_reduced_ { } . t x t ’ . format (AOI .

abb r e v i a t i on) , ou tpu tD i r = ou tpu t_ f o l de r)
111 community_proxies . nes tedL i s t sToCSV (sp_d i s tances , f i l ename = ’ f i x _ d i s t r i b u t i o n _ a l l _ s h o r t e s t _ p a t h _ d i s t a n c e s _ r aw_ { } . csv

’ . format (AOI . abb r e v i a t i on) , ou tpu tD i r = ou tpu t_ f o l de r)
112 community_proxies . j s o nToF i l e (sp_d i s t ance s_d i c t , f i l ename = ’ f i x _ d i s t r i b u t i o n _ a l l _ s h o r t e s t _ p a t h _ d i s t a n c e s _ s t a t i s t i c s _

{ } . j son ’ . format (AOI . abb r e v i a t i on) , ou tpu tD i r = ou tpu t_ f o l de r)
113

114

115 # #################### s c a l i n g DD #######################
116 s ca l i ng_p r ima l_comp le te = []
117 sca l ing_reduced_comple te = []
118 s c a l i n g _ k _ p a r t i t i o n s = []
119 r e su l t s _pe r f o rmance_p r ima l _d i j k = []
120 r e s u l t s _pe r f o rmance_p r ima l _b i d i j k = []
121 r e su l t s _pe r f o rmance_p r ima l _a s t a r = []
122 resu l t s_per fo rmance_reduced = []
123 s c a l i n g _ sp_d i s t a n c e s = []
124 s c a l i n g _ s p _d i s t a n c e s _d i c t = { }
125

126 f o r d i s t ance in s c a l i n g _d i s t a n c e _d e v i a t i o n :
127 tmp_sca l ing_pr imal_complete = []
128 tmp_sca l ing_reduced_complete = []
129 tmp_ s c a l i n g _ k_pa r t i t i o n s = []
130 tmp_resu l t s_pe r fo rmance_p r ima l_d i j k = []
131 tmp_ re su l t s _pe r f o rmance_p r ima l _b id i j k = []
132 tmp_resu l t s_pe r fo rmance_pr ima l_as ta r = []
133 tmp_resu l ts_per formance_reduced = []
134 tmp_sca l i ng_sp_d i s t ances = []
135

136 f o r i t e r a t i o n in range (1 , n) :
137 nodes , edges , d f _p rox i e s , subgraphs = community_proxies . evalOptimumK (G ,
138 d i s tance , k =2 , a l go r i thm = ’ f l u i d ’ , p r o x y _ c e n t r a l i t y = ’ CL ’)
139

140 # cons t r u c t a new reduced graph
141 G2 = community_proxies . cons t ruc tGraph (G , d f _p rox i e s , nodes , edges , completeGraph = True)
142

143 # s t o r e the graph , nodes and subgraphs f o r f u r t h e r pos tp roces s i ng
144 i n f o = (d i s tance , coords)
145 d f _p r o x i e s = community_proxies . upda t eD fP ro x i e s I n t e r i o rNodes (d f _p r o x i e s)
146 d f _p r o x i e s = community_proxies . updateDfProx iesSubgraphS i ze (d f _p r o x i e s)
147 community_proxies . saveProcessedData (G2 , nodes , edges , d f _p rox i e s , outputName= f ’ { AOI . abb r e v i a t i on } _ { i n t (

d i s t ance) } _ i t e r a t i o n _ { i t e r a t i o n } ’ , ou tpu t I n fo = in fo , ou tpu tD i r = f ’ { ou tpu t _ f o l de r } / data / ’)
148

149 tmp_sca l ing_pr imal_complete . append (community_proxies . ca lcEdgesComplete (G))
150 tmp_scal ing_reduced_complete . append (community_proxies . ca lcEdgesComplete (G2))
151 tmp_ s c a l i n g _ k_pa r t i t i o n s . append (len (G2 . nodes ()))
152 p r i n t (f ’ F i n i s hed i t e r a t i o n { i t e r a t i o n } o f { n } f o r d i s t ance { d i s t ance } i n pa r t s i z e s c a l i n g . ’)
153 p r i n t (f ’ Dura t ion s i n ce s t a r t − i n hours : { divmod ((datet ime . now () − c a l c _ t ime_ s t a r t) . t o t a l _ seconds () , 3600)

[0] } , i n mins : { divmod ((datet ime . now () − c a l c _ t ime_ s t a r t) . t o t a l _ seconds () , 60) [0] } . ’)
154

155 # get ad jacency mat r i x i n np or df
156 ad jMa t r i x = community_proxies . g e t Ad jMa t r i x (G2 , check= Fa lse , s t r u c t u r e = ’ np ’)
157

158 # prepare a per formant lookup to i d e n t i f y the p ro x i e s f o r every pr ima l node
159 r e f e r r i n g P r o x i e s = community_proxies . r e f e r i n g P r o x i e s (G , nodes)
160 rndNodePai rs = community_proxies . rndNodePai rs (G , numberOfPairs = numberOfPairs)
161

162 # tmp_resu l t s_per fo rmance_pr ima l . append (community_proxies . per formancePr imalGraph (G , rndNodePai rs))
163 tmp_resu l t s_pe r fo rmance_p r ima l_d i j k . append (community_proxies . per formancePr imalGraph (G_dir , rndNodePai rs))
164 tmp_ re su l t s _pe r f o rmance_p r ima l _b id i j k . append (community_proxies . per formancePr imalGraph (G_dir , rndNodePai rs)

)
165 tmp_resu l t s_pe r fo rmance_pr ima l_as ta r . append (community_proxies . per formancePr imalGraph (G_dir , rndNodePai rs))

132

B. Appendix

166 tmp_resu l ts_per formance_reduced . append (community_proxies . performanceReducedGraph (ad jMa t r i x ,
r e f e r r i n g P r o x i e s , rndNodePai rs))

167

168 # a l l s h o r t e s t path d i s t ance s
169 r aw _ s t a t i s t i c s , d i c t _ s t a t i s t i c s = community_proxies . a l l _ s h o r t e s t _ p a t h s _ s t a t i s t i c s (G2 , weight = ’ l eng th ’)
170 # tmp_sca l i ng_sp_d i s t ances . append (community_proxies . a l l _ s h o r t e s t _ p a t h s _ s t a t i s t i c s (G2 , weight = ’ l eng th ’))
171 tmp_sca l i ng_sp_d i s t ances . append (r aw _ s t a t i s t i c s)
172 tmp_s ca l i n g_ sp_d i s t ance s_d i c t = { f ’ ’ ’ { i n t (d i s t ance) } _ { i t e r a t i o n } ’ ’ ’ : d i c t _ s t a t i s t i c s }
173 s c a l i n g _ s p _d i s t a n c e s _ d i c t . update (tmp_sca l i n g_ sp_d i s t ance s_d i c t)
174

175

176

177 s ca l i ng_p r ima l_comp le te . append (tmp_sca l ing_pr imal_complete)
178 sca l ing_reduced_comple te . append (tmp_scal ing_reduced_complete)
179 s c a l i n g _ k _ p a r t i t i o n s . append (tmp_ s c a l i n g _k_pa r t i t i o n s)
180 r e su l t s _pe r f o rmance_p r ima l _d i j k . append (tmp_resu l t s_pe r fo rmance_p r ima l_d i j k)
181 r e s u l t s _pe r f o rmance_p r ima l _b i d i j k . append (tmp_ re su l t s _pe r f o rmance_p r ima l _b id i j k)
182 r e su l t s _pe r f o rmance_p r ima l _a s t a r . append (tmp_resu l t s_pe r fo rmance_pr ima l_as ta r)
183 resu l t s_per fo rmance_reduced . append (tmp_resu l ts_per formance_reduced)
184 s c a l i n g _ sp_d i s t a n c e s . append (tmp_sca l i ng_sp_d i s tances)
185

186

187 ### expor t the r e s u l t s − completeG2 , completeG , r educ t i on
188 community_proxies . nes tedL i s t sToCSV (sca l ing_pr ima l_comple te , f i l ename = ’ s ca l i ng_K_p r ima l _ { } . csv ’ . format (AOI .

abb r e v i a t i on) , ou tpu tD i r = ou tpu t_ f o l de r)
189 community_proxies . nes tedL i s t sToCSV (sca l ing_reduced_complete , f i l ename = ’ sca l ing_K_reduced_ { } . csv ’ . format (AOI .

abb r e v i a t i on) , ou tpu tD i r = ou tpu t_ f o l de r)
190 community_proxies . nes tedL i s t sToCSV (s c a l i n g _ k _ p a r t i t i o n s , f i l ename = ’ s c a l i n g _ K _p a r t i t i o n s _ { } . csv ’ . format (AOI .

abb r e v i a t i on) , ou tpu tD i r = ou tpu t_ f o l de r)
191 community_proxies . nes tedL i s t sToCSV (r e su l t s _pe r f o rmance_p r ima l _d i j k , f i l ename = ’ s ca l i ng_pe r f o rmance_p r ima l _d i j k _ { } .

csv ’ . format (AOI . abb r e v i a t i on) , ou tpu tD i r = ou tpu t _ f o l de r)
192 community_proxies . nes tedL i s t sToCSV (r e su l t s _pe r f o rmance_p r ima l _b i d i j k , f i l ename = ’ s c a l i n g_pe r f o rmance_p r ima l _b i d i j k _

{ } . csv ’ . format (AOI . abb r e v i a t i on) , ou tpu tD i r = ou tpu t_ f o l de r)
193 community_proxies . nes tedL i s t sToCSV (r e su l t s _pe r f o rmance_p r ima l _a s t a r , f i l ename = ’ s ca l i ng_pe r fo rmance_p r ima l _a s t a r _

{ } . csv ’ . format (AOI . abb r e v i a t i on) , ou tpu tD i r = ou tpu t_ f o l de r)
194 community_proxies . nes tedL i s t sToCSV (resu l t s_per fo rmance_reduced , f i l ename = ’ sca l ing_per fo rmance_reduced_ { } . csv ’ .

format (AOI . abb r e v i a t i on) , ou tpu tD i r = ou tpu t_ f o l de r)
195 community_proxies . nes tedL i s t sToCSV (s ca l i n g_ sp_d i s t ance s , f i l ename = ’

s c a l i n g _ d i s t r i b u t i o n _ a l l _ s h o r t e s t _ p a t h _ d i s t a n c e s _ r aw_ { } . csv ’ . format (AOI . abb r e v i a t i on) , ou tpu tD i r =
ou tpu t _ f o l de r)

196 community_proxies . j s o nToF i l e (s c a l i n g _ sp_d i s t a n c e s _d i c t , f i l ename = ’
s c a l i n g _ d i s t r i b u t i o n _ a l l _ s h o r t e s t _ p a t h _ d i s t a n c e s _ s t a t i s t i c s _ { } . j son ’ . format (AOI . abb r e v i a t i on) , ou tpu tD i r =
ou tpu t _ f o l de r)

197

198 end_time = datet ime . now () . s t r f t im e ("\%H:\%M:\%S/\%d.\%m.\%Y ")
199 p r i n t (’ s t a r t : ’ + s t r (s t a r t _ t ime))
200 p r i n t (’ end : ’ + s t r (end_time))

Listing B.3: FCGBOP.py

133

B. Appendix

B.2. Source Code for Accumulative Cost Surface Analysis

(ACSA)

The following code is intended to provide an overview of the software. To work with it,

we recommend using the tested code from the repository. Python version 3.7.6 was used

and the required libraries with their version numbers are listed in the requirements.txt in

the repository.

Repository: https://github.com/fauceta/ACSA

Requirements: https://github.com/fauceta/ACSA/blob/master/requirements.txt

For inquiries please contact: armin.hahn@ds.mpg.de

1 import i t e r t o o l s , numpy as np , gdal , sys , time , os r
2 from PIL import Image
3 from so r t ed con t a i n e r s import S o r t e d L i s t
4 from pa t h l i b import Path
5 import u t i l s
6 from time import t ime
7

8 def a c c _ co s t _ho r i _ v e r t (cos t 1 , cos t2) :
9 " " "

10 c a l c u l a t e s the cos t to t r a v e l from one c e l l to another i n h o r i z n t a l ore d iagona l d i r e c t i o n
11 " " "
12 r e t u rn (c o s t 1 + cos t2) / 2
13

14 def acc_cos t_d i agona l (cos t 1 , cos t2) :
15 r e t u rn (1 . 4 1 4 2 1 4 * (c o s t 1 + cos t2) / 2)
16

17 def z e r o _ s ou r c e _ c e l l s (s ou r c e _ r a s t e r) :
18 " " "
19 s e t s a l l c e l l s i n the c a l c u l a t i o n r a s t e r to 0 when they are source c e l l s i n the source r a s t e r
20 " " "
21 g l oba l a c t i v e _ l i s t
22 dim_n , dim_m = len (s ou r c e _ r a s t e r [1]) , l en (s ou r c e _ r a s t e r [0])
23 #dim_n , dim_m = sou r c e _ r a s t e r . shape [0] , s ou r c e _ r a s t e r . shape [1]
24 c a l c _ r a s t e r = np . f u l l ([dim_n , dim_m] , 0 .) . as type (f l o a t)
25

26

27 a r r a y _ po s i t i o n s = np . a r r a y (l i s t (z i p (np . where (s ou r c e _ r a s t e r == 1) [0] , np . where (s ou r c e _ r a s t e r == 1) [1])))
28 f o r row in a r r a y _ po s i t i o n s :
29 c a l c _ r a s t e r [row [0] , row [1]] = 0
30 a c t i v e _ l i s t . add ((0 , (row [0] , row [1])))
31

32 a r r a y _ po s i t i o n s = np . a r r a y (l i s t (z i p (np . where (s ou r c e _ r a s t e r == 0) [0] , np . where (s ou r c e _ r a s t e r == 0) [1])))
33 f o r row in a r r a y _ po s i t i o n s :
34 c a l c _ r a s t e r [row [0] , row [1]] = 700000
35 r e t u rn c a l c _ r a s t e r
36

37 def w r i t e _ t o _b a c k l i n k _ r a s t e r (n e i g hbo r _ c e l l _ p o s i t i o n) :
38 " " "
39 r e t u rn d i r e c t i o n va lue depending on the r e l a t i v e po s i t i o n which i s g i ven
40 " " "
41 a , b = n e i g hbo r _ c e l l _ p o s i t i o n [0] , n e i g hbo r _ c e l l _ po s i t i o n [1]
42 i f (a == 0 and b == 1) :
43 r e t u rn 1
44 e l i f (a == 1 and b == 1) :
45 r e t u rn 2
46 e l i f (a == 1 and b == 0) :
47 r e t u rn 3
48 e l i f (a == 1 and b == −1) :
49 r e t u rn 4
50 e l i f (a == 0 and b == −1) :
51 r e t u rn 5
52 e l i f (a == −1 and b == −1) :

134

https://github.com/fauceta/ACSA
https://github.com/fauceta/ACSA/blob/master/requirements.txt
mailto: armin.hahn@ds.mpg.de

B. Appendix

53 r e t u rn 6
54 e l i f (a == −1 and b == 0) :
55 r e t u rn 7
56 e l i f (a == −1 and b == 1) :
57 r e t u rn 8
58

59

60 def f i nd_ne i ghbo r s (c e l l , c a l c _ r a s t e r) :
61 " " "
62 de tec t ne ighbours (Queens Pa t t e rn) , checks i f these po s i t i o n s are i n s i d e the mat r i x
63 and r e t u r n s the neighbour po s i t i o n s i n a l i s t .
64 " " "
65

66 i = c e l l [0]
67 j = c e l l [1]
68 ne i g hbou r s _ l i s t = []
69 ne i ghbo r_pos i t i on s = (
70 (− 1 ,0) , #above
71 (0 , − 1) , # l e f t
72 (1 , 0) , #below
73 (0 , 1) , # r i g h t
74 (− 1 , 1) , #above r i g h t
75 (1 , 1) , #below r i g h t
76 (1 , − 1) , #below l e f t
77 (−1 ,−1) #above l e f t
78)
79 # loop a l l ne ighbours o f input c e l l
80 f o r ne ighbor i n ne i ghbo r _pos i t i on s :
81 # c a l c u l a t e abso lu te c e l l p o s i t i o n in mat r i x
82 c e l l = i + ne ighbor [0] , j + ne ighbor [1]
83 # check i f ne ighbor i n s i d e mat r i x and not a Source C e l l
84 i f np . a l l (0 <= c e l l [0] < dim_m) and np . a l l (0 <= c e l l [1] < dim_m) and np . a l l (c a l c _ r a s t e r [c e l l] ! =

0) :
85 ne i g hbou r s _ l i s t . append ((c e l l))
86

87 r e t u rn n e i g hbou r s _ l i s t
88

89 def acs_A lgo r i thm (a c t i v e _ l i s t , merged_cost_array , c a l c _ r a s t e r , b a c k l i n k _ r a s t e r , ou tpu t _ r a s t e r) :
90 " " "
91 implementat ion o f the modi f ied d i j k s t r a a lgo r i thm to generate an Accumulat ive Cost Sur face and a Back l i nk

Ras te r
92 " " "
93

94 g l oba l dim_m , dim_n
95

96 whi le (1) :
97

98 i f (l en (a c t i v e _ l i s t) == 0) :
99 break

100

101

102 m i n _ a c t i v e _ l i s t = a c t i v e _ l i s t [0]
103 min _ a c t i v e _ l i s t _ v a l u e = a c t i v e _ l i s t [0] [0]
104

105 c u r r e n t _ c e l l _ p o s i t i o n = (m i n _ a c t i v e _ l i s t [1] [0] , m i n _ a c t i v e _ l i s t [1] [1])
106 c u r r e n t _ c e l l _ v a l u e = merged_cost_ar ray [c u r r e n t _ c e l l _ p o s i t i o n] # the v laue o f the cu r r en t c e l l

p o s i t i o n
107

108 #remove the lowest c e l l i n the a c t i v e _ l i s t
109 a c t i v e _ l i s t . pop (0)
110 ou tpu t _ r a s t e r [c u r r e n t _ c e l l _ p o s i t i o n] = m i n _ a c t i v e _ l i s t _ v a l u e # wr i t e to output r a s t e r
111

112 # de tec t a l l ne ighbours on moores neighbourhood
113 ne ighbors = f i nd_ne i ghbo r s (c u r r e n t _ c e l l _ p o s i t i o n , c a l c _ r a s t e r) # f i n d ne ighbor po s i t i o n s o f the

c e l l
114

115

116 i = 0
117 # loop through a l l ne ighbors o f the cu r r en t c e l l
118 f o r n i n ne ighbors :
119

120 # get the c e l l va lue o f the ne ighbor
121 ne i ghbo r _ c e l l _ v a l u e = merged_cost_ar ray [n [0] , n [1]]
122

123 i f (ou tpu t _ r a s t e r [ne ighbors [i] [0] , ne ighbors [i] [1]] == 0) : ## on ly i f ne ighbor has no en t r y
i n the output r a s t e r

124 ne i g hbo r _ c e l l _ po s i t i o n = np . s ub t r a c t (ne ighbors [i] , c u r r e n t _ c e l l _ p o s i t i o n) # get the
r e l a t i v e po s i t i o n o f the ne ighbor to the cu r r en t c e l l e . g . (0 , 1) (− 1 ,0) , . . .

125

126 # Ca l c u l a t e Cost to t r a v e l from one c e l l to another

135

B. Appendix

127 i f (n e i g hbo r _ c e l l _ po s i t i o n [0] == 0) or (n e i g hbo r _ c e l l _ po s i t i o n [1] == 0) : #
v e r t i c a l

128 va lue = m i n _ a c t i v e _ l i s t _ v a l u e + a c c _ co s t _ho r i _ v e r t (c u r r e n t _ c e l l _ v a l u e ,
n e i ghbo r _ c e l l _ v a l u e)

129 e l s e : # d iagona l
130 va lue = m i n _ a c t i v e _ l i s t _ v a l u e + acc_cos t_d iagona l (c u r r e n t _ c e l l _ v a l u e ,

n e i ghbo r _ c e l l _ v a l u e)
131

132 # get the old va lue in the c a l c _ r a s t e r
133 o ld_va lue = c a l c _ r a s t e r [ne ighbors [i] [0] , ne ighbors [i] [1]]
134

135 # i f the c a l c u l a t ed va lue i s lower
136 i f (va lue < o ld_va lue) :
137

138 # rep l a ce cu r r en t va lue in the c a l c _ r a s t e r use the new va lue

139 c a l c _ r a s t e r [ne ighbors [i] [0] , ne ighbors [i] [1]] = va lue
140

141 # c a l c u l a t e D i r e c t i o n va lue
142 d i r e c t i o n _ v a l u e = w r i t e _ t o _b a c k l i n k _ r a s t e r (n e i g hbo r _ c e l l _ po s i t i o n)
143

144 # wr i t e d i r e c t i o n va lue to the Back l i nk Ras te r
145 ba c k l i n k _ r a s t e r [ne ighbors [i] [0] , ne ighbors [i] [1]] = d i r e c t i o n _ v a l u e

146

147 #add ca l c u l a t ed va lue to the a c t i v e _ l i s t
148 a c t i v e _ l i s t . add ((c a l c _ r a s t e r [ne ighbors [i]] , (ne ighbors [i] [0] , ne ighbors [i

] [1])))
149

150 #700000.0 i n d i c a t e s tha t the c e l l i s u n v i s i t e d .
151 i f (o ld_va lue ! = 700000.0) :

152 #remove va lue from the a c t i v e l i s t
153 a c t i v e _ l i s t . remove ((o ld_va lue , (ne ighbors [i] [0] , ne ighbors [i] [1])))
154 i = i + 1
155

156 # r e tu rn back l i n k and accumulat i ve cos t s u r f a c e (ou tpu t _ r a s t e r)
157 r e t u rn ba c k l i n k _ r a s t e r , ou tpu t _ r a s t e r
158

159 def a r r a y _ t o _ r a s t e r (newRasterfn , dataset , a r ray , d_type) :
160 " " "
161 save G T i f f f i l e from numpy . a r r a y
162 Th i s f un c t i on was de r i ved from ht tps : / / g i s . s tackexchange . com/ ques t ions /247906/how−to−create−an−rgb−g e o t i f f

− f i l e −r a s t e r −from−bands−using−the−gdal−python−module
163 " " "
164 dim_m , dim_n = a r r a y . shape [1] , a r r a y . shape [0]
165 o r i g i nX , p i xe lW id th , b , o r i g i n Y , d , p i x e l H e i g h t = da tase t . GetGeoTransform ()
166

167 d r i v e r = gda l . GetDriverByName (’ G T i f f ’)
168

169 # se t data type to save .
170 GDT_d_type = gda l . GDT_Unknown
171 i f d_type == " Byte " :
172 GDT_d_type = gda l . GDT_Byte
173 e l i f d_type == " F loa t32 " :
174 GDT_d_type = gda l . GDT_Float32
175 e l s e :
176 p r i n t ("Not supported data type . ")
177

178 # se t number o f band .
179 i f a r r a y . ndim == 2 :
180 band_num = 1
181 e l s e :
182 band_num = a r r a y . shape [2]
183

184 outRas te r = d r i v e r . C rea te (newRasterfn , dim_m , dim_n , band_num , GDT_d_type)
185 outRas te r . SetGeoTransform ((o r i g i nX , p i xe lW id th , 0 , o r i g i n Y , 0 , p i x e l H e i g h t))
186

187 f o r b i n range (band_num) :
188 outband = outRas te r . GetRasterBand (b + 1)
189 i f band_num == 1 :
190 outband . W r i t eA r r a y (a r r a y)
191 e l s e :
192 outband . W r i t eA r r a y (a r r a y [: , : , b])
193

194 # s e t t e i n g s r s from input t i f f i l e .
195 p r j = da tase t . Ge tP r o j e c t i on ()
196 outRasterSRS = os r . Spa t i a l R e f e r en ce (wkt= p r j)
197 outRas te r . S e t P r o j e c t i o n (outRasterSRS . ExportToWkt ())
198 outband . F lushCache ()

136

B. Appendix

199 r e t u rn ou tRas te r
200

201 def change_va lues_by_threshho ld (i npu t_a r ray , threshho ld , va lues) :
202 " " "
203 changes a l l va lues to one of two po s s i b l e va lues i n an a r r a y depending on the cu r r en t a va lue and a

th re sho ld
204 Example :
205 change_va lues_by_thresho ld (ar ray , 2 , (0 , 4))
206 r ep l a ce every va lue in a r r a y with 0 i f below 2 or i f h i ghe r than two va lue o f the c e l l i s s e t to 4
207 " " "
208 a r r a y _ po s i t i o n s = np . a r r a y (l i s t (z i p (np . where (i npu t _a r r a y < th reshho ld) [0] , np . where (i npu t _a r r a y <

th reshho ld) [1]))) ## get p o s i t i o n s i n a r r a y
209 f o r row in a r r a y _ po s i t i o n s :
210 i npu t _a r r a y [row [0] , row [1]] = va lues [0]
211

212 a r r a y _ po s i t i o n s = np . a r r a y (l i s t (z i p (np . where (i npu t _a r r a y >= th reshho ld) [0] , np . where (i npu t _a r r a y >=
th reshho ld) [1]))) ## get p o s i t i o n s i n a r r a y

213 f o r row in a r r a y _ po s i t i o n s :
214 i npu t _a r r a y [row [0] , row [1]] = va lues [1]
215

216 r e t u rn i npu t _a r r a y
217

218 def de l e t e_va lue s_by_ th re shho ld (a r ray_ inpu t , array_change , change_value) :
219 " " "
220 de l e t e s va lue in an a r r a y_ i npu t depending on the va lues i n ar ray_change and the change_value .
221 " " "
222 # i d e n t i f y a r r a y po s i t i o n s
223 a r r a y _ po s i t i o n s = np . a r r a y (l i s t (z i p (np . where (a r r a y_ i npu t == change_value) [0] , np . where (a r r a y_ i npu t ==

change_value) [1]))) ## get p o s i t i o n s i n a r r a y
224 # se t a l l va lues i n the a r r a y to 0
225 f o r row in a r r a y _ po s i t i o n s :
226 array_change [row [0] , row [1]] = 0
227 r e t u rn array_change
228

229 def c r e a t e _ co s t _ s u r f a c e s (data , th resho lds , ou tpu t_ fo lde r , weightComb) :
230 " " " " " "
231 g l oba l a c t i v e _ l i s t , dim_m , dim_n
232

233 # read . t i f f i l e s to a r r a y s
234 ndv i _a r r a y = np . a r r a y (data . v ege t a t i on . ReadAsArray ())
235 s l ope_a r r a y = np . a r r a y (data . s lope . ReadAsArray ())
236 bu i l d i n g _ a r r a y = np . a r r a y (data . b u i l d i n g s _ r a s t e r . ReadAsArray ())
237 s t r e e t _ a r r a y = np . a r r a y (data . road_network . ReadAsArray ())
238

239 # get the two dimensions o f the numpy a r r a y
240 dim_n , dim_m = len (ndv i _a r r a y [1]) , l en (ndv i _a r r a y [0])
241

242 # i n i t i a l i z e we igh t ing to t h e i r f e a t u r e s
243 ndvi_weight , s lope_weight , bu i l d i ng s_we i gh t = weightComb [0] , weightComb [1] , weightComb [2]
244 paved_weight = 1
245

246 # c r ea t e f i l ename based on weight
247 f i l ename = f ’ { ndv i_we ight } { s lope_we ight } { bu i l d i ng s_we i gh t } ’
248

249 # se t paths f o r back l i n k r a s t e r
250 f i l e p a t h _ b a c k l i n k = f ’ { ou tpu t _ f o l de r } / Back l i n k_Ras t e r / back l i nk_ { f i l ename } . t i f ’
251 u t i l s . c r e a t e Fo l de r (f ’ { ou tpu t _ f o l de r } / Back l i n k_Ras t e r / ’)
252

253 my_ f i l e = Path (f i l e p a t h _ b a c k l i n k)
254 # i f ! my_ f i l e . i s _ f i l e () :
255 # r a i s e .
256

257 # apply t h r e sho ld s f o r b ina r y r e s u l t s
258 # 0 = no−vege ta t ion , 1 = vege t a t i on ; 0 = passable , 1 = not_passab le
259 # to reduce computations , the we igh t ing can rep l a ce the b ina r y 1 , s i n ce the we igh t ing i s 1 x we igh t ing =

we igh t ing
260 # vege t a t i on when h ighe r then t ra sho ld , passab le when lower than th re sho ld
261 ndv i _a r r a y = change_va lues_by_threshho ld (ndv i_a r ray , t h r e sho ld s . vege ta t ion , (ndv i_weight , 0))
262 s l ope_a r r a y = change_va lues_by_threshho ld (s lope_a r ray , t h r e sho ld s . s lope , (0 , s lope_we ight))
263

264 # se t we igh t ing f o r bu i l d i n g s
265 a r r a y _ po s i t i o n s = np . a r r a y (l i s t (z i p (np . where (b u i l d i n g _ a r r a y == 1) [0] , np . where (b u i l d i n g _ a r r a y == 1) [1])))

get p o s i t i o n s i n a r r a y
266 f o r row in a r r a y _ po s i t i o n s :
267 bu i l d i n g _ a r r a y [row [0] , row [1]] = bu i l d i ng s_we i gh t
268

269 a r r a y _ po s i t i o n s = np . a r r a y (l i s t (z i p (np . where (b u i l d i n g _ a r r a y == 1 2 7) [0] , np . where (b u i l d i n g _ a r r a y == 1 2 7)
[1]))) ## get p o s i t i o n s i n a r r a y

270 f o r row in a r r a y _ po s i t i o n s :
271 bu i l d i n g _ a r r a y [row [0] , row [1]] = 0

137

B. Appendix

272

273 #remove va lues from the s lope r a s t e r where bu i l d i n g a r r a y has the va lue 1 (bu i l d i n g present)
274 s l ope_a r r a y = de l e t e_va lue s_by_ th re shho ld (bu i l d i ng_a r r a y , s lope_a r ray , 1)
275

276 # generate merged cos t a r r a y based on the weights and the d i s c r e t e a r r a y s
277 merged_cost_ar ray = (ndv i _a r r a y) + (b u i l d i n g _ a r r a y) + (s l ope_a r r a y) # c a l c u l a t e cos t su r f a c e a r r a y with

weighted input a r r a y s
278

279 # se t c e l l s to paved_weight where c e l l s are 0 in merged cos t a r r a y
280 a r r a y _ po s i t i o n s = np . a r r a y (l i s t (z i p (np . where (merged_cost_ar ray == 0) [0] , np . where (merged_cost_array == 0)

[1]))) ## get p o s i t i o n s i n a r r a y
281 f o r row in a r r a y _ po s i t i o n s :
282 merged_cost_ar ray [row [0] , row [1]] = paved_weight
283

284 # expor t a r r a y f o r merged_cost_ar ray as a . t i f f i l e
285 path = f ’ c o s t _ r a s t e r { f i l ename } . t i f ’
286 f i l e p a t h = f ’ { ou tpu t _ f o l de r } / Cos t_Su r f aces / { path } ’
287 u t i l s . c r e a t e Fo l de r (f ’ { ou tpu t _ f o l de r } / Cos t_Su r f aces / ’)
288 a r r a y _ t o _ r a s t e r (s t r (f i l e p a t h) , data . vege ta t ion , merged_cost_array , " F l oa t32 ")
289

290 #remove po s s i b l e nega t i v e s
291 merged_cost_ar ray = np . abso lu te (merged_cost_ar ray)
292 # conver t to f l o a t va lues
293 merged_cost_ar ray = merged_cost_ar ray . as type (f l o a t)
294 s ou r c e _ r a s t e r = s t r e e t _ a r r a y
295

296

297 # i n i t i a l i z e l i s t o f a c t i v e c e l l s
298 a c t i v e _ l i s t = []
299 a c t i v e _ l i s t = S o r t e d L i s t (a c t i v e _ l i s t)
300

301 ou tpu t _ r a s t e r = np . f u l l ([dim_n , dim_m] , 0 .) . as type (f l o a t)
302 ba c k l i n k _ r a s t e r = np . f u l l ([dim_n , dim_m] , 0 .) . as type (f l o a t)
303

304 # se t source c e l l s to 0 in the output r a s t e r
305 c a l c _ r a s t e r = z e r o _ s ou r c e _ c e l l s (s ou r c e _ r a s t e r)
306 back l i n k _ r a s t e r , ou tpu t _ r a s t e r = acs_A lgo r i thm (a c t i v e _ l i s t , merged_cost_array , c a l c _ r a s t e r ,

b a c k l i n k _ r a s t e r , ou tpu t _ r a s t e r)
307

308 path_accum_cost = f ’ acc_cos t_ { f i l ename } . t i f ’
309 f i l epa th_accum = f ’ { ou tpu t _ f o l de r } / Accumu la t i ve_Cos t_Sur faces / { path_accum_cost } ’
310 u t i l s . c r e a t e Fo l de r (f ’ { ou tpu t _ f o l de r } / Accumula t i ve_Cos t_Sur faces / ’)
311

312 a r r a y _ t o _ r a s t e r (f i l e p a t h _b a c k l i n k , data . road_network , b a c k l i n k _ r a s t e r , " Byte ")
313 a r r a y _ t o _ r a s t e r (f i l epath_accum , data . road_network , ou tpu t_ ra s t e r , " F l oa t32 ")

Listing B.4: acsa.py

1 import numpy as np , geopandas as gpd , pandas as pd , i t e r t o o l s
2 from osgeo import ogr , gdal , os r
3 from math import s in , cos , sq r t , atan2 , rad ians , degrees
4 from pa t h l i b import Path
5 from pypro j import P ro j
6 import u t i l s
7 from time import t ime
8

9 def read_shape_to_ar ray (input_shape , re fe rence_ img , output_image) :
10 " " "
11 t h i s f un c t i on s burns s h a p e f i l e s i n t o a numpy a r r a y with the va lue 1 f o r ob j e c t s i n the s h a p e f i l e and r e t u r n s

t h i s g r i d
12 " " "
13 # i n i t i a l i s e paramaters
14 g_format = ’ G T i f f ’
15 datatype = gda l . GDT_Byte
16 r a s t e r _ v a l u e = 1
17 # Get p r ope r t i e s o f re fe rence_ img
18 img = gda l . Open (re fe rence_ img , gda l . GA_ReadOnly)
19 # load the shp
20 shp = ogr . Open (input_shape)
21 shp_ laye r = shp . GetLayer ()
22 # r a s t e r i s e the shp us ing r a s t e r _ v a l u e
23 output = gda l . GetDriverByName (g_format) . C reate (output_image , img . Ras te rXS i ze , img . Ras t e r YS i z e , 1 , datatype ,

op t ions = [’COMPRESS=DEFLATE ’])
24 output . S e t P r o j e c t i o n (img . Ge tP r o j e c t i onRe f ())
25 output . SetGeoTransform (img . GetGeoTransform ())
26 # s t o r e r a s t e r i n band 1 o f the t i f f
27 gda l . R a s t e r i z e L a y e r (output , [1] , shp_ layer , burn_va lues = [r a s t e r _ v a l u e])
28 # r e s e t parameters
29 output , = None

138

B. Appendix

30 img = None
31 shp = None
32 shape_ar ray = gda l . Open (output_image) . ReadAsArray ()
33 r e t u rn (shape_ar ray)
34

35

36 def sho r t e s t _pa th (b a c k l i n k _ r a s t e r _ a r r a y , d e s t i n a t i o n) :
37 " " "
38 c a l c u l a t e s and r e t u r n s the s ho r t e s t path on a Back l i nk Ras te r f o r a g iven De s t i n a t i on to the c l o s e s t Source

C e l l .
39 " " "
40 c u r r e n t _ po s i t i o n = de s t i n a t i o n
41 p a t h _ l i s t = [] # i n i t a t e path l i s t wi th the de s t i n a t i o n po s i t i o n
42 whi le (1) : # loop u n t i l c u r r en t c e l l i s source c e l l
43 # [(,) , (,)]
44 va lue = b a c k l i n k _ r a s t e r _ a r r a y [c u r r e n t _ po s i t i o n [0] , c u r r e n t _ po s i t i o n [1]]
45 # p r i n t (va lue)
46

47 p a t h _ l i s t . append (c u r r e n t _ po s i t i o n)
48 i f (va lue == 0) :
49 ca l cu l a t ed_snapp ing_po in t = p i x e l 2 coo rd (c u r r e n t _ po s i t i o n [0] , c u r r e n t _ po s i t i o n [1]) # p a t h _ coo r d s _ l i s t

[− 1] [0] , p a t h _ coo r d s _ l i s t [− 1] [1] # l a s t element
50 r e t u rn p a t h _ l i s t
51 e l i f (va lue == 1) :
52 r e l a t i v e _ p o s i t i o n = (0 , −1)
53 e l i f (va lue == 2) :
54 r e l a t i v e _ p o s i t i o n = (−1 , −1)
55 e l i f (va lue == 3) :
56 r e l a t i v e _ p o s i t i o n = (−1 , 0)
57 e l i f (va lue == 4) :
58 r e l a t i v e _ p o s i t i o n = (−1 , 1)
59 e l i f (va lue == 5) :
60 r e l a t i v e _ p o s i t i o n = (0 , 1)
61 e l i f (va lue == 6) :
62 r e l a t i v e _ p o s i t i o n = (1 , 1)
63 e l i f (va lue == 7) :
64 r e l a t i v e _ p o s i t i o n = (1 , 0)
65 e l i f (va lue == 8) :
66 r e l a t i v e _ p o s i t i o n = (1 , −1)
67 c u r r e n t _ po s i t i o n = (c u r r e n t _ po s i t i o n [0] + r e l a t i v e _ p o s i t i o n [0] , c u r r e n t _ po s i t i o n [1] + r e l a t i v e _ p o s i t i o n

[1])
68

69

70

71 def burn_ras te r_by_po lygon (re fe rence_ img , output_image , polygon) :
72 " " "
73 t h i s f un c t i on s burns polygons i n t o a numpy a r r a y with the va lue 1 f o r ob j e c t s i n the s h a p e f i l e and r e t u r n s

t h i s g r i d
74 " " "
75 g_format = ’ G T i f f ’
76 datatype = gda l . GDT_Byte
77 r a s t e r _ v a l u e = 1
78

79 # Get p r o j e c t i o n
80 Image = gda l . Open (re ference_ img , gda l . GA_ReadOnly)
81 Output = gda l . GetDriverByName (g_format) . C reate (output_image , Image . Ras te rXS i ze , Image . Ras t e r YS i z e , 1 , datatype

)
82 Output . S e t P r o j e c t i o n (Image . Ge tP r o j e c t i onRe f ())
83 Output . SetGeoTransform (Image . GetGeoTransform ())
84

85 r a s t _og r_ds = \
86 ogr . GetDriverByName (’Memory ’) . CreateDataSource (’ wrk ’)
87 s r = os r . Spa t i a l R e f e r en ce ()
88 s r . ImportFromEPSG (25832)
89 rast_mem_lyr = r a s t _og r_ds . C rea teLaye r (’ po ly ’ , s r s = s r)
90

91 wkt_geom = (s t r (polygon))
92 f e a t = ogr . Fea ture (rast_mem_lyr . GetLayerDefn ())
93 f e a t . Se tGeomet r yD i r e c t l y (ogr . Geometry (wkt = wkt_geom))
94 rast_mem_lyr . C rea teFea tu re (f e a t)
95

96 gda l . R a s t e r i z e L a y e r (Output , [1] , rast_mem_lyr , burn_va lues = [r a s t e r _ v a l u e])
97

98 def p i x e l 2 coo rd (px , py) :
99 " " "

100 t h i s f un c t i on c a l c u l a t e s and r e t u r n s the g l oba l coo rd ina te s f o r a po s i t i o n in a numpy a r r a y by a g iven
r e f e r en ce image

101 " " "
102 g l oba l xOf f , xS i ze , b , yOf f , d , yS i z e
103 xp = xS i z e * px + b * py + xO f f

139

B. Appendix

104 yp = d * px + yS i z e * py + yO f f
105 r e t u rn (xp , yp)
106

107 def coo rd s2p i x e l (xp , yp) :
108 " " "
109 t h i s f un c t i on c a l c u l a t e s and r e t u r n s the po s i t i o n in a numpy a r r a y to g l oba l coo rd ina te s by a g iven r e f e r en ce

image
110 " " "
111 g l oba l xOf f , xS i ze , b , yOf f , d , yS i z e
112 px = i n t ((xp − xO f f) / x S i z e)
113 py = i n t ((yp − yO f f) / yS i z e)
114 r e t u rn (px , py)
115

116 def p i xe l 2coo rdPa th (path) :
117 " " "
118 t h i s f un c t i on r e t u r n s the path in g l oba l coo rd ina te s f o r a path o f p o s i t i o n s a two dimens iona l numpy a r r a y
119 " " "
120 # get columns and rows of your image from gda l i n f o
121 c o o r d _ l i s t = []
122 f o r tup l e i n path :
123 cu r ren t_coo rds = p i x e l 2 coo rd (tup l e [1] , t up l e [0])
124 c o o r d _ l i s t . append (cu r ren t_coo rds)
125

126 r e t u rn c o o r d _ l i s t
127

128 def f i nd_ne i ghbo r s (c e l l) :
129 " " "
130 t h i s f un c t i on de t ec t s the abso lu te po s i t i o n s o f a c e l l i n an a r r a y o f the ne ighbours based on Moores

neighbourhood
131 " " "
132 i = c e l l [0]
133 j = c e l l [1]
134 ne i ghbo r_pos i t i on s = (
135 (− 1 ,0) , (0 , − 1) , (1 , 0) , (0 , 1) , (− 1 , 1) , (1 , 1) , (1 , − 1) , (−1 ,−1)
136)
137 n e i g h b o r s _ l i s t = []
138 f o r ne ighbor i n ne i ghbo r _pos i t i on s :
139 c e l l = i + ne ighbor [0] , j + ne ighbor [1] # c a l c u l a t e ne ighbor c e l l p o s i t i o n in mat r i x
140 i f np . a l l (0 <= c e l l [0] < dim_m) and np . a l l (0 <= c e l l [1] < dim_m) : #and np . a l l (c a l c _ r a s t e r [c e l l] ! = 0) : #

check i f ne ighbor i n s i d e mat r i x and not a source c e l l
141 n e i g h b o r s _ l i s t . append ((c e l l)) #appen c e l l p o s i t i o n to n e i g h b o r s _ l i s t
142 r e t u rn n e i g h b o r s _ l i s t
143

144 def f ind_minimum_edge_value (m in_va lue_pos i t i on) :
145 " " "
146 t h i s f un c t i on r e t u r n s the minimum edge va lue o f a polygon in the accumulat i ve cos t s u r f a c e
147 " " "
148 a c t i v e _ l i s t = [(0 , (m in_va lue_pos i t i on))]
149 edge_va lues = []
150

151 whi le (l en (a c t i v e _ l i s t) > 0) :
152 m i n _ a c t i v e _ l i s t = a c t i v e _ l i s t [0]
153 a c t i v e _ l i s t . remove (a c t i v e _ l i s t [0])
154 c u r r e n t _ c e l l _ p o s i t i o n = (m i n _ a c t i v e _ l i s t [1] [0] , m i n _ a c t i v e _ l i s t [1] [1])
155 c u r r e n t _ c e l l _ v a l u e = i n d i v _ a c c _ c o s t _ r a s t e r [c u r r e n t _ c e l l _ p o s i t i o n] # the v laue o f the cu r r en t c e l l p o s i t i o n

156 ne ighbors = f i nd_ne i ghbo r s (c u r r e n t _ c e l l _ p o s i t i o n) # f i n d ne ighbor po s i t i o n s o f the c e l l

157 i = 0
158 # loop through a l l ne ighbors o f the source c e l l
159 f o r n i n ne ighbors :
160 # get the c e l l va lue o f the ne ighbor
161 ne i ghbo r _ c e l l _ v a l u e = i n d i v _ a c c _ c o s t _ r a s t e r [n [0] , n [1]]
162 # only i f ne ighbor has no en t r y i n the output r a s t e r
163 i f (ou tpu t _ r a s t e r [ne ighbors [i] [0] , ne ighbors [i] [1]] == 0) :
164 # get the old va lue
165 o ld_va lue = i n d i v _ a c c _ c o s t _ r a s t e r [ne ighbors [i] [0] , ne ighbors [i] [1]]
166 # get the r e l a t i v e po s i t i o n o f the ne ighbor to the cu r r en t c e l l e . g . (0 , 1) (− 1 ,0) , . . .
167 ne i g hbo r _ c e l l _ po s i t i o n = np . s ub t r a c t (ne ighbors [i] , c u r r e n t _ c e l l _ p o s i t i o n)
168 i f ((n e i ghbo r _ c e l l _ v a l u e ! = 0) and (ou tpu t _ r a s t e r [ne ighbors [i] [0] , ne ighbors [i] [1]] == 0)) :
169 edge_va lues . append ((ne i ghbo r_ce l l _ va l ue , (ne ighbors [i] [0] , ne ighbors [i] [1])))
170 # i f the c a l c u l a t ed va lue i s lower than the cu r r en t va lue in the i n d i v _ a c c _ c o s t _ r a s t e r use the new

va lue
171 e l i f (o ld_va lue == 0) :
172 a c t i v e _ l i s t . append ((i n d i v _ a c c _ c o s t _ r a s t e r [ne ighbors [i]] , (ne ighbors [i] [0] , ne ighbors [i] [1])))
173 # wr i t e to output r a s t e r
174 ou tpu t _ r a s t e r [(ne ighbors [i] [0] , ne ighbors [i] [1])] = 1
175 i = i + 1
176 i f (l en (edge_va lues) > 0) :
177 r e t u rn min (edge_va lues)

140

B. Appendix

178

179

180 def c a l c u l a t e _bea r i n g (l a t l o ng 1 , l a t l o n g 2) :
181 " " "
182 c a l c u l a t e s the bear ing o f two coord ina te p a i r s (t up l e s)
183 " " "
184 l a t 1 = r ad i ans (l a t l o n g 1 [0])
185 l on 1 = l a t l o n g 1 [1]
186 l a t 2 = rad i ans (l a t l o n g 2 [0])
187 lon2 = l a t l o n g 2 [1]
188 dLon = rad i ans (lon2− l on 1)
189 y = s i n (dLon) * cos (l a t 2)
190 x = cos (l a t 1) * s i n (l a t 2) − s i n (l a t 1) * cos (l a t 2) * cos (dLon)
191 brng = (degrees (atan2 (y , x)) +360)%360
192 r e t u rn brng
193

194 def sho r t e s t _pa th s (data , ou tpu t_ fo lde r , weightComb) :
195 " " "
196 c a l c u l a t e s and r e t u r n s the s ho r t e s t paths from bu i l d i n g s to c e l l s i n the s t r e e t r a s t e r
197 " " "
198

199 g l oba l xOf f , xS i ze , b , yOf f , d , yS i z e
200

201

202 ndvi_weight , s lope_weight , bu i l d i ng s_we i gh t = weightComb [0] , weightComb [1] , weightComb [2]
203 paved_weight = 1
204

205 f i l ename = f ’ { ndv i_we ight } { s lope_we ight } { bu i l d i ng s_we i gh t } ’
206

207

208 path = f ’ c a l c u l a t ed_ snapp i ng_ c e l l _ { f i l ename } . csv ’
209 f i l e _ p a t h _ p o i n t s = f ’ { ou tpu t _ f o l de r } / c a l cu l a t ed_snapp ing_po in t s / { path } ’
210

211

212 path_back l i nk = f ’ back l i nk_ { f i l ename } . t i f ’
213 f i l e _ p a t h _ b a c k l i n k = f ’ { ou tpu t _ f o l de r } / Back l i n k_Ras t e r / { pa th_back l i nk } ’
214 #my_ f i l e = Path (s t r (f i l e p a t h))
215 # i f my_ f i l e . i s _ f i l e () :
216

217 ba c k l i n k _ r a s t e r = gda l . Open (f i l e _ p a t h _ b a c k l i n k)
218 ba c k l i n k _ r a s t e r _ a r r a y = np . a r r a y (b a c k l i n k _ r a s t e r . ReadAsArray ())
219 path_accum_cost = f ’ acc_cos t_ { f i l ename } . t i f ’
220 f i l e_path_accum = f ’ { ou tpu t _ f o l de r } / Accumula t i ve_Cos t_Sur faces / { path_accum_cost } ’
221 a c c _ co s t _ r a s t e r = gda l . Open (f i l e_path_accum)
222 a c c _ co s t _ r a s t e r _ a r r a y = np . a r r a y (a c c _ co s t _ r a s t e r . ReadAsArray ())
223 # get dimensions o f the g r i d
224 dim_n , dim_m = a c c _ co s t _ r a s t e r _ a r r a y . shape
225 #rows , colms = len (a c c _ co s t _ r a s t e r _ a r r a y) , l en (a c c _ co s t _ r a s t e r _ a r r a y [0])
226 #dim_m , dim_n = rows , colms # ve r t au s ch t ? n=rows , m=colums
227 ou tpu t _ r a s t e r = np . f u l l ([dim_m , dim_n] , 0)
228 xOf f , xS i ze , b , yOf f , d , yS i z e = b a c k l i n k _ r a s t e r . GetGeoTransform ()
229 data f rameCa l cu la ted = pd . DataFrame (columns = [’ i d ’ , ’ b u i l d i n g _ l n g ’ , ’ b u i l d i n g _ l a t ’ , ’ snap_ lng_ca l c ’ , ’

s n ap_ l a t _ c a l c ’ , ’ c a l c _bea r i ng ’])
230

231 # loop polygons here
232 # 1 burn r a s t e r
233 #2 read as a r r a y
234 #3 loop c rea t e i n d i v i d u a l accumulat i ve r a s t e r
235 #4 f i n d l e a s t cos t path and save i t somewhere
236 #5 r e c a c l u a t e to r e a l coo rd ina te s h t tp s : / / s c r ip tndebug . wordpress . com / 2 0 1 4 / 1 1 / 2 4 / l a t i t u d e l o n g i t u d e −of−each−

p i x e l −using−python−and−gda l /
237

238 bu i l d i ng_po l ygons = data . bu i l d ings_shape # s h a p e f i l e imported with gpd
239 # bu i l d i ng_po l ygons = bu i l d i ng_po l ygons . t o _ c r s (’ EPSG : 2 5832 ’) # not needed an r a i s e s FutureWarning because

deprecated syntax
240

241 f o r bu i l d ing_po l ygon in bu i l d i ng_po l ygons . geometry :
242 cen t r o i d = bu i l d ing_po l ygon . c en t r o i d # get c en t r o i d o f cu r r en t polygon
243

244 c en t r o i d _po s i t i o n = coo rd s2p i x e l (c en t r o i d . coords [0] [0] , c en t r o i d . coords [0] [1])
245 " " "
246 The next comment l i n e s are r equ i r ed to use the edge c e l l o f a bu i l d i n g polygon as De s t i n a t i on C e l l s
247 " " "
248 # burn_ras te r_by_po lygon (re ference_ img , output_image , bu i l d ing_po l ygon) # c r ea t e t i f wi th cu r r en t polygon
249 # po lygon_ar ray = gda l . Open (output_image) . ReadAsArray () # read c rea ted . t i f
250

251 #dim_n , dim_m = len (po lygon_ar ray) , l en (po lygon_ar ray [0]) # get dimensions o f polygon a r r a y (same as
accumulat i ve cos t r a s t e r)

252 # i n d i v _ a c c _ c o s t _ r a s t e r = a c c _ co s t _ r a s t e r _ a r r a y # c r ea t e new r a s t e r based on accumulat i ve cos t r a s t e r
253

141

B. Appendix

254 # a r r a y _ po s i t i o n s = np . a r r a y (l i s t (z i p (np . where (po lygon_ar ray == 1) [0] , np . where (po lygon_ar ray == 1) [1])))
loop a l l p o s i t i o n r ep r e s en t i n g cu r r en t polygon

255 # f o r row in a r r a y _ po s i t i o n s :
256 # i n d i v _ a c c _ c o s t _ r a s t e r [row [0] , row [1]] = 0 # se t c e l l s r ep r e s en t i n g cu r r en t bu i l d i n g to 0
257

258 # f i n d l e a s t cos t edge c e l l
259 # i f (l en (a r r a y _ po s i t i o n s) > 0) : ## on ly i f a bu i l d i n g was f round
260 # an y _bu i l d i n g _ c e l l = ((a r r a y _po s i t i o n s [0] [0] , a r r a y _ po s i t i o n s [0] [1])) #any c e l l o f the bu i l d i n g
261

262 #minimum_edge_value_posit ion = find_minimum_edge_value (a n y _bu i l d i n g _ c e l l) # f i n d the minimal accumulat i ve
cos t va lue at c e l l s ad jacen t to bu i l d i n g c e l l s

263

264 # i f (minimum_edge_value_posit ion) :
265 # c en t r o i d _po s i t i o n = minimum_edge_value_posit ion
266

267 # c en t r o i d _po s i t i o n = c en t r o i d _po s i t i o n [1]
268 i f (c e n t r o i d _po s i t i o n [0] <= dim_m and c en t r o i d _po s i t i o n [1] <= dim_n) :
269 path = sho r t e s t _pa th (b a c k l i n k _ r a s t e r _ a r r a y , (c e n t r o i d _po s i t i o n [1] , c e n t r o i d _po s i t i o n [0]))

270

271 #path on ba c k l i n k _ r a s t e r to next source c e l l
272 pa t h _ coo r d s _ l i s t = p i xe l 2coo rdPa th (path)
273

274 #add cen t r o i d to the l i s t
275 pa t h _ coo r d s _ l i s t . i n s e r t (0 , c en t r o i d . coords [0])
276

277 # f i r s t element (s t a r t po in t)
278 bu i l d i n g _ c en t r o i d = pa t h _ coo r d s _ l i s t [0]
279

280 # l a s t element (end po in t)
281 ca l cu l a t ed_snapp ing_po in t = pa t h _ coo r d s _ l i s t [− 1]
282

283 bu i l d i n g _ c en t r o i d = u t i l s . p ro jCoords (o r i gEpsg = ’ epsg :25832 ’ , destEpsg = ’ epsg :4326 ’ , x= bu i l d i n g _ c en t r o i d
[0] , y= bu i l d i n g _ c en t r o i d [1])

284 snapp ing_po int = u t i l s . p ro jCoords (o r i gEpsg = ’ epsg :25832 ’ , destEpsg = ’ epsg :4326 ’ , x=
ca l cu l a t ed_snapp ing_po in t [0] , y= ca l cu l a t ed_snapp ing_po in t [1])

285 # p r i n t (f ’ b u i l d i n g _ c en t r o i d : { b u i l d i n g _ c en t r o i d } , snapp ing_po int : { snapp ing_po int } ’)
286 bear ing = c a l c u l a t e _bea r i n g (bu i l d i n g_ cen t r o i d , snapp ing_po int)
287 # r e l a t i o n = (" Bu i l d i n g : " , b u i l d i n g _ c en t r o i d , " Snapping : " , snapping_point , " Bear ing : " , bea r ing)
288

289 # data f rameCa l cu la ted = da ta f rameCa lcu la ted . append ({ ’ i d ’ : s t r (round (bu i l d i n g _ c en t r o i d [1] , 6)) + s t r (
round (bu i l d i n g _ c en t r o i d [0] , 6)) , ’ b u i l d i n g _ l n g ’ : b u i l d i n g _ c en t r o i d [1] , ’ b u i l d i n g _ l a t ’ :
b u i l d i n g _ c en t r o i d [0] , ’ snap_ lng_ca l c ’ : snapp ing_po int [1] , ’ s n ap_ l a t _ ca l c ’ : snapp ing_po int [0] , ’
c a l c _bea r i ng ’ : bea r ing } , i gno re_ index =True)

290 # id_rounded_coord i s the coord o f bu i l d i n g _ c en t r o i d rounded − bu i l d i n g _ c en t r o i d [1] = l a t ,
b u i l d i n g _ c en t r o i d [0] = lng

291 data f rameCa l cu la ted = data f rameCa l cu la ted . append ({ ’ i d ’ : f ’ { round (bu i l d i n g _ c en t r o i d [0] , 6) } _ { round (
bu i l d i n g _ c en t r o i d [1] , 6) } ’ , ’ b u i l d i n g _ l n g ’ : b u i l d i n g _ c en t r o i d [1] , ’ b u i l d i n g _ l a t ’ : b u i l d i n g _ c en t r o i d
[0] , ’ snap_ lng_ca l c ’ : snapp ing_po int [1] , ’ s n ap_ l a t _ ca l c ’ : snapp ing_po int [0] , ’ c a l c _bea r i ng ’ :
bea r ing } , i gno re_ index =True)

292

293

294 path = f ’ c a l c u l a t ed_ snapp i ng_ c e l l _ { f i l ename } . csv ’
295 u t i l s . c r e a t e Fo l de r (f ’ { ou tpu t _ f o l de r } / c a l cu l a t ed_ snapp ing_po in t s / ’)
296 f i l e _ p a t h = f ’ { ou tpu t _ f o l de r } / c a l cu l a t ed_ snapp ing_po in t s / { path } ’
297

298 data f rameCa l cu la ted . to_csv (f i l e _ p a t h)
299 # e l s e :
300 # cont inue

Listing B.5: snapping.py

1 import shapely , i t e r t o o l s , u r l l i b . request , j son , osmnx as ox , geopandas as gpd , shapely , pandas as pd , numpy as np
, csv , ma tp l o t l i b . pyp lo t as p l t , ma tp l o t l i b . c o l o r s

2 from pypro j import Pro j , t rans fo rm
3 from pa t h l i b import Path
4 from shape ly . geometry import Po in t
5 from math import s in , cos , sq r t , atan2 , rad ians , degrees
6 from s t a t i s t i c s import mean
7 from mp l _ t oo l k i t s . mplot3d import Axes3D
8 import u t i l s
9

10 #GPPTOLp7
11

12

13 # def download_bui ld ing_polygons (p lace) :
14 # """
15 # downloads bu i l d i n g s from OSRM based on a p lace .
16 # A s h a p e f i l e con ta i n i ng the bu i l d i n g polygons i s re tu rned

142

B. Appendix

17 # """
18 # #B = ox . b u i l d i n g s . bu i l d i ng s_ f rom_p lace (place , r e t a i n _ i n v a l i d = Fa l s e)
19 # #ox . save_ load . s a v e_gd f _ shape f i l e (B , f i l ename = ’ b u i l d i n g s ’ , f o l d e r =" I : / / implementat ion / / osmnx ") # save

bu i l d i n g s
20 # r o o t _ f o l d e r = Path (" data / ")
21 # bu i ld ing_po lygons_shp = r oo t _ f o l d e r / " input_data " / " bu i l d ing_shapes " / " bu i l d i n g s _3 . shp "
22 # bu i l d i n g_po l y = gpd . r e a d _ f i l e (s t r (bu i ld ing_po lygons_shp)) # read bu i l d i n g s
23 # r e tu rn bu i l d i n g_po l y
24

25 # def po lygon_to_po in t s (s e l f , po ly) :
26 # """
27 # c a l c u l a t e s c en t r o i d s o f polygons and s t o r e s the po in t s i n a s h a p e f i l e .
28 # The po in t s are re tu rned .
29 # """
30 # ## Shapre Area
31 # shapeArea = poly [’ geometry ’] . area
32 # # copy poly to new GeoDataFrame
33 # po in t s = poly . copy ()
34 # # change the geometry
35 # po in t s . geometry = po in t s [’ geometry ’] . c en t r o i d
36 # #ox . save_ load . s a v e_gd f _ shape f i l e (po ints , f i l ename = ’ bu i l d i n gCen t r o i d s ’ , f o l d e r =" F : / A r cG IS_Cos tD i s t ance / / data

") # save c en t r o i d s
37 # # same c r s
38 # po in t s . c r s = poly . c r s
39 # r e tu rn po in t s
40

41 def c a l c u l a t e _bea r i n g (l a t l o ng 1 , l a t l o n g 2) :
42 " " "
43 c a l c u l a t e s the bear ing o f a l i n e based on two coord ina te p a i r s s to red in t up l e s .
44 the bear ing i s re tu rned
45 " " "
46 l a t 1 = r ad i ans (l a t l o n g 1 [0])
47 l on 1 = l a t l o n g 1 [1]
48 l a t 2 = rad i ans (l a t l o n g 2 [0])
49 lon2 = l a t l o n g 2 [1]
50 dLon = rad i ans (lon2− l on 1)
51 y = s i n (dLon) * cos (l a t 2)
52 x = cos (l a t 1) * s i n (l a t 2) − s i n (l a t 1) * cos (l a t 2) * cos (dLon)
53 brng = (degrees (atan2 (y , x)) +360)%360
54 r e t u rn brng
55

56 def idea l_da ta f r ame (snapp ing_ l i ne s) :
57 " " "
58 Th i s f un c t i on genera tes and r e t u r n s a dataframe con ta i n i ng a l l b u i l d i n g c en t r o i d s
59 and the r e l a t e d i d e a l snapping po in t s .
60 " " "
61 data f rame Idea l = pd . DataFrame (columns = [’ i d ’ , ’ b u i l d i n g _ l n g ’ , ’ b u i l d i n g _ l a t ’ , ’ s nap_ lng_ idea l ’ , ’ s n ap_ l a t _ i d e a l

’ , ’ i d e a l _bea r i n g ’])
62 i =0
63 f o r row in snapp ing_ l i ne s . i t e r r ows () : ## i t e r a t e geopanda dataframe
64 cu r r en t_ l i ne_geomet r y = snapp ing_ l i ne s [’ geometry ’] [i]
65

66 point_A = cu r r en t_ l i ne_geomet r y . coords [0] # Bu i l d i n g
67 point_B = cu r r en t_ l i ne_geomet r y . coords [1] # S t r e e t
68

69 l a t _Bu i l d i n g , l n g _Bu i l d i n g = u t i l s . p ro jCoords (o r i gEpsg = ’ epsg :25832 ’ , destEpsg = ’ epsg :4326 ’ , x= po int_A [0] , y
= po int_A [1])

70 l a t _ S t r e e t , l n g _S t r e e t = u t i l s . p ro jCoords (o r i gEpsg = ’ epsg :25832 ’ , destEpsg = ’ epsg :4326 ’ , x= point_B [0] , y=
point_B [1])

71

72 # i n P r o j = P ro j (’ epsg : 2 5832 ’) #wgs84 / utm zone 32n
73 # ou tP ro j = P ro j (’ epsg : 4 3 26 ’) # wgs84
74

75 # a_x , a_y = t rans fo rm (i nP ro j , outPro j , po int_A [0] , po int_A [1]) ## v e r t e x 1
76 # b_x , b_y = t rans fo rm (i nP ro j , outPro j , po int_B [0] , point_B [1]) ## v e r t e x 1
77

78 bear ing = c a l c u l a t e _bea r i n g ((l a t _Bu i l d i n g , l n g _Bu i l d i n g) , (l a t _ S t r e e t , l n g _S t r e e t))
79

80 da ta f rame Idea l = da ta f r ame Idea l . append ({ ’ i d ’ : f ’ { round (l a t _Bu i l d i n g , 6) } _ { round (l ng_Bu i l d i ng , 6) } ’ , ’
b u i l d i n g _ l a t ’ : l a t _Bu i l d i n g , ’ b u i l d i n g _ l n g ’ : l ng_Bu i l d i ng , ’ s n ap_ l a t _ i d e a l ’ : l a t _ S t r e e t , ’
snap_ lng_ idea l ’ : l n g_S t r ee t , ’ i d e a l _bea r i n g ’ : bea r ing } , i gno re_ index =True)

81

82 i = i +1
83 r e t u rn da ta f r ame Idea l
84

85 def neares t_data f rame (shape_gdf , baseURL) :
86 " " "
87 c a l c u l a t e s f o r every po in t the pe rpend i cu l a r d i s t ance to the c l o s e s t po in t on the s t r e e t network
88 Th i s f un c t i on r equ i r e s a working OSRM Serve r with the Neares t API
89 " " "

143

B. Appendix

90 osrm_server = f ’ { baseURL } / nea re s t / v 1 / d r i v i n g / ’
91 i = 0
92 data f rameNearest = pd . DataFrame (columns = [’ i d ’ , ’ snap_ lng_neares t ’ , ’ s nap_ l a t _nea re s t ’ , ’ nea re s t _bea r i ng ’])
93 # ca l c c en t r o i d s o f the shapes
94 shape_gdf [’ c en t r o i d ’] = shape_gdf . c en t r o i d
95

96 f o r row in shape_gdf . i t e r r ows () :
97 po in t = shape_gdf [’ c en t r o i d ’] [i]
98 # p ro j to epsg 4326 from
99 l a t I npu t , l ng I npu t = u t i l s . p ro jCoords (o r i gEpsg = ’ epsg :25832 ’ , destEpsg = ’ epsg :4326 ’ , x= po in t . x , y= po in t . y)

100 l a t L n g S t r i n g = f ’ { l n g I npu t } , { l a t I n p u t } ’
101 # p r i n t (f ’ { os rm_server } { l a t L n g S t r i n g } . j son ’)
102 with u r l l i b . r eques t . ur lopen (osrm_server + l a t L n g S t r i n g + " . j son ") as u r l :
103 data = j son . loads (u r l . read () . decode ())
104 d i c t = data [’ waypoints ’] # d i c t wi th coords i n here
105 coords = d i c t [0] [’ l o c a t i o n ’] # coords here
106 lngOutput = coords [0]
107 l a tOu tpu t = coords [1]
108 pointSnap = Po in t (coords [0] , coords [1]) # po in t on the s t r e e t network

109 bear ing = c a l c u l a t e _bea r i n g ((l a t I npu t , l n g I npu t) , (coords [1] , coords [0]))
110 data f rameNearest = data f rameNearest . append ({ ’ i d ’ : f ’ { round (l a t I npu t , 6) } _ { round (lng Input , 6) } ’ , ’

s nap_ l a t _nea re s t ’ : coords [1] , ’ snap_ lng_neares t ’ : coords [0] , ’ nea re s t _bea r i ng ’ : bea r ing } ,
i gno re_ index =True)

111 i += 1
112

113 r e t u rn data f rameNearest
114

115 def merge_dataframes (d f 1 , d f2) :
116 " " "
117 genera tes and r e t u r n s a merged dataframe by us ing a j o i n t on the f i e l d id us ing two dataf rames
118 " " "
119 merged_df = d f 1 . merge (df2 , l e f t _ on = ’ i d ’ , r i gh t _on = ’ i d ’ , how= ’ i nne r ’) #merge dataf rames
120 r e t u rn merged_df
121

122 def c a l c u l a t e _ d i s t a n c e (row , type) :
123 " " "
124 c a l c u l a t e s the d i s t ance by the Havers ine formula and r e t u r n s the va lues i n meters
125 " " "
126 l a t 1 = r ad i ans (row [’ s n ap_ l a t _ i d e a l ’])
127 l on 1 = rad i ans (row [’ snap_ lng_ idea l ’])
128 i f (type == " nea res t ") :
129 l a t 2 = rad i ans (row [’ snap_ l a t _nea r e s t ’])
130 lon2 = rad i ans (row [’ snap_ lng_neares t ’])
131 e l i f (type == " c a l c ") :
132 l a t 2 = rad i ans (row [’ s nap_ l a t _ c a l c ’])
133 lon2 = rad i ans (row [’ snap_ lng_ca l c ’])
134

135 R = 6373 .0 # ea r th r ad i u s
136 dlon = lon2 − l on 1
137 d l a t = l a t 2 − l a t 1
138 a = s i n (d l a t / 2) **2 + cos (l a t 1) * cos (l a t 2) * s i n (dlon / 2) **2
139 c = 2 * atan2 (s q r t (a) , s q r t (1 − a))
140 d i s t ance = R * c * 1000 # in meters
141 r e t u rn d i s t ance
142

143 def eva lua te (row , type , t h r e sho ld_bea r i ng s = 70 , t h r e sho l d_d i s t ance = 25) :
144 " " "
145 Th i s f un c t i on r e t u r n s t rue i f the d i s t ance and bea r ings i s below de f ined th resho lds , o the rw i se f a l s e
146 " " "
147 # th r e sho l d_d i s t an ce = 25
148 # th r e sho ld_bea r i ng s = 70
149 i f (type == " nea res t ") :
150 d i s t ance = row [’ d i s t a n c e _ i d e a l _ n e a r e s t ’]
151 bea r i n g _d i f f e r e n c e = row [’ b e a r i n g _d i f f e r e n c e _ i d e a l _ n e a r e s t ’]
152 e l i f (type == " c a l c ") :
153 d i s t ance = row [’ d i s t a n c e _ i d e a l _ c a l c u l a t e d ’]
154 bea r i n g _d i f f e r e n c e = row [’ b e a r i n g _ d i f f e r e n c e _ i d e a l _ c a l c u l a t e d ’]
155

156 i f (d i s t ance < th r e sho l d_d i s t ance and bea r i n g _d i f f e r e n c e < th r e sho ld_bea r i ng s) :
157 r e t u rn 1 # t rue
158 e l s e :
159 r e t u rn 0 # f a l s e
160

161 def compare_bear ings (row , type) :
162 " " "
163 c a l c u l a t e s and r e t u r n s the d i f f e r e n c e between two bea r ings (ang le between bear ing l i n e s)
164 " " "
165 i f (type == " nea res t ") :
166 i d e a l _bea r i n g = row [’ i d e a l _bea r i n g ’]

144

B. Appendix

167 nea re s t _bea r i ng = row [’ nea re s t _bea r i ng ’]
168 e l i f (type == " c a l c ") :
169 i d e a l _bea r i n g = row [’ i d e a l _bea r i n g ’]
170 nea re s t _bea r i ng = row [’ c a l c _bea r i ng ’]
171 bea r i n g _d i f f e r e n c e = (i d e a l _bea r i n g − nea re s t _bea r i ng) % 360
172 i f (b e a r i n g _d i f f e r e n c e < −180) :
173 bea r i n g _d i f f e r e n c e += 360
174 i f (b e a r i n g _d i f f e r e n c e >= 180) :
175 bea r i n g _d i f f e r e n c e −= 360
176 r e t u rn (abs (b e a r i n g _d i f f e r e n c e))
177

178 def e va l ua t i on (data , ou tpu t_ fo lde r , th resho lds , weightComb , baseURL) :
179 " " "
180 Th i s f un c t i on
181 " " "
182

183 data f rame Idea l = idea l_da ta f r ame (data . snapp ing_ l i ne s)
184 data f rameNearest = neares t_data f rame (data . bu i ld ings_shape , baseURL)
185

186 merged_df = merge_dataframes (dataf rameNearest , da ta f r ame Idea l)
187

188 # t u p l e _ l i s t = []
189 n d v i _ l i s t = []
190 s l o p e _ l i s t = []
191 b u i l d i n g _ l i s t = []
192 v a l i d a t e d _ l i s t = []
193

194

195 v a l i d a t e d _ r a t e = 0
196

197 ndvi_weight , s lope_weight , bu i l d i ng s_we i gh t = weightComb [0] , weightComb [1] , weightComb [2]
198 #paved_weight = 1
199

200 f i l ename = f ’ { ndv i_we ight } { s lope_we ight } { bu i l d i ng s_we i gh t } ’
201 path = f ’ c a l c u l a t ed_ snapp i ng_ c e l l _ { f i l ename } . csv ’
202 f i l e _ p a t h = f ’ { ou tpu t _ f o l de r } / c a l cu l a t ed_ snapp ing_po in t s / { path } ’
203 #my_ f i l e = Path (s t r (f i l e _ p a t h))
204 # p r i n t (my_ f i l e)
205 # i f my_ f i l e . i s _ f i l e () :
206 ca l cu l a t ed_snapp ing_d f = pd . read_csv (f i l e _ p a t h)
207 merged_a l l_d f = merge_dataframes (merged_df , c a l cu l a t ed_snapp ing_d f)
208 # p r i n t (merged_a l l _d f)
209 merged_a l l_d f [’ d i s t a n c e _ i d e a l _ n ea r e s t ’] = merged_a l l_d f . apply (c a l c u l a t e _d i s t an c e , a rgs = (" nea res t " ,) , a x i s = 1) #

c a l c u l a t e d i s t ance between nea res t and i d e a l
210 merged_a l l_d f [’ b e a r i n g _d i f f e r e n c e _ i d e a l _ n e a r e s t ’] = merged_a l l_d f . apply (compare_bearings , a rgs = (" nea res t " ,) ,

a x i s = 1) # c a l c u l a t e d i s t ance between nea res t and i d e a l
211 merged_a l l_d f [’ e va lua ted_nea re s t ’] = merged_a l l_d f . apply (eva luate , a rgs = (" nea re s t " , t h r e sho ld s .

bea r i ng s_eva lua t i on , t h r e sho ld s . d i s t an ce_e va l u a t i on) , a x i s = 1) # e v l u a t i on 1 = t rue , 0 = f a l s e
212

213

214 merged_a l l_d f [’ d i s t a n c e _ i d e a l _ c a l c u l a t e d ’] = merged_a l l_d f . apply (c a l c u l a t e _d i s t an c e , a rgs = (" c a l c " ,) , a x i s = 1) #
c a l c u l a t e d i s t ance between nea res t and i d e a l

215 merged_a l l_d f [’ b e a r i n g _ d i f f e r e n c e _ i d e a l _ c a l c u l a t e d ’] = merged_a l l_d f . apply (compare_bearings , a rgs = (" c a l c " ,) ,
a x i s = 1) # c a l c u l a t e d i s t ance between nea res t and i d e a l

216 merged_a l l_d f [’ e v a l ua t ed_ca l cu l a t ed ’] = merged_a l l_d f . apply (eva luate , a rgs = (" c a l c " , t h r e sho ld s .
bea r i ng s_eva lua t i on , t h r e sho ld s . d i s t an ce_e va l u a t i on) , a x i s = 1) # e v l u a t i on 1 = t rue , 0 = f a l s e

217

218 # coun t s_ca l c = merged_a l l_d f [’ e v a l ua t ed_ca l cu l a t ed ’] . va lue_counts ()
219 # counts_neares t = merged_a l l_d f [’ e va lua ted_nea re s t ’] . va lue_counts ()
220

221 # tup l e = (f i lename , coun t s_ca l c [1])
222 # t u p l e _ l i s t . append (tup l e)
223

224 path = f ’ n e a r e s t _ c a l c u l a t e d _ i d e a l _ { f i l ename } . csv ’
225 u t i l s . c r e a t e Fo l de r (f ’ { ou tpu t _ f o l de r } / E va l ua t i on / ’)
226 f i l e _ p a t h = f ’ { ou tpu t _ f o l de r } / E va l ua t i on / { path } ’
227 merged_a l l_d f . to_csv (f i l e _ p a t h , encoding = ’ u t f −8 ’)

Listing B.6: evaluation.py

1 from osgeo import gdal , ogr , os r
2 from pa t h l i b import Path
3 from pypro j import Pro j , t rans fo rm
4 from f i ona . c r s import from_epsg
5 from r a s t e r i o import mask
6 import numpy as np , pandas as pd
7 import overpy , f iona , os
8 import r a s t e r i o
9

145

B. Appendix

10

11 def c l i p _ r a s t e r _by_bbox (f i l e , bbox , output_name= ’ c l i p . t i f ’) :
12 " " " [summary]
13

14 : param f i l e : [d e s c r i p t i o n]
15 : type f i l e : [type]
16 : param bbox : [bbox with u l x u l y l r x l r y ; min_x , max_y , max_x , min_y]
17 : type bbox : [type]
18 : param output_name : [d e s c r i p t i o n] , d e f a u l t s to ’ c l i p . t i f ’
19 : type output_name : s t r , op t i ona l
20 " " "
21 datase t = gda l . Open (f i l e)
22 datase t = gda l . T r an s l a t e (output_name , dataset , pro jWin = bbox)
23

24 def mask_raster (f i l e _ p a t h , shapely_bbox , o u t p u t _ f i l e = ’ c l i p . t i f ’) :
25

26 data = r a s t e r i o . open (f i l e _ p a t h)
27 out_ img_array , out_ t rans fo rm = mask (da tase t = data , shapes = shapely_bbox , crop =True)
28 out_meta = data . meta . copy ()
29

30 with r a s t e r i o . open (ou t pu t _ f i l e , "w") as dest :
31 dest . w r i t e (out_ img_array)
32

33

34 def pro jCoords (or igEpsg , destEpsg , x , y) :
35 " " "
36 Transform coo rd ina te s by us ing the epsg−code .
37 Common epsg−codes :
38 WGS84 l a t lon (decimal , un i t : degree) : 4326
39 WGS 84/ UTM 32 N (un i t : meters) : 32632
40 WGS 84/ UTM 33 N (un i t : meters) : 32633
41 Parameters :
42

43 epsg−codes : s t r
44 example : ’ epsg : 4326 ’
45

46 r e t u r n s l a t , lng f o r epsg :4326
47 " " "
48 i n P r o j = P ro j (o r i gEpsg)
49 ou tP ro j = P ro j (destEpsg)
50 x2 , y2 = t rans fo rm (i nP ro j , outPro j , x , y)
51 r e t u rn x2 , y2
52

53 def getExtent f romShape (s h a p e f i l e) :
54 " " "
55 Get the ex ten t o f a s h a p e f i l e . Returns the coo rd ina te s i n
56 west , east , sout , north
57 min_x , max_x , min_y , max_y
58

59 Parameters
60 −−−−−−−−−−

61 s h a p e f i l e s : s t r
62 Path to the s h a p e f i l e .
63 " " "
64 f i l e = ogr . Open (s h a p e f i l e)
65 l a y e r = f i l e . GetLayer ()
66 ex ten t = l a y e r . Ge tEx tent ()
67 r e t u rn ex ten t
68

69 def getNoDataValue (r a s t e r f n) :
70 r a s t e r = gda l . Open (r a s t e r f n)
71 band = r a s t e r . GetRasterBand (1)
72 r e t u rn band . GetNoDataValue ()
73

74 def a r r a y 2 r a s t e r (newRasterfn , r a s t e rO r i g i n , p i xe lW id th , p i x e lHe i gh t , a r r a y) :
75

76 co l s = a r r a y . shape [1]
77 rows = a r r a y . shape [0]
78 o r i g i n X = r a s t e r O r i g i n [0]
79 o r i g i n Y = r a s t e r O r i g i n [1]
80

81 d r i v e r = gda l . GetDriverByName (’ G T i f f ’)
82 outRas te r = d r i v e r . C rea te (newRasterfn , co l s , rows , 1 , gda l . GDT_Int16) #GDT_Byte e r s e t z t damit va lues ueber

255 z u l a e s s i g s ind
83 outRas te r . SetGeoTransform ((o r i g i nX , p i xe lW id th , 0 , o r i g i n Y , 0 , p i x e l H e i g h t))
84 outband = outRas te r . GetRasterBand (1)
85 outband . W r i t eA r r a y (a r r a y)
86 outRasterSRS = os r . Spa t i a l R e f e r en ce ()
87 outRasterSRS . ImportFromEPSG (32633)
88 outRas te r . S e t P r o j e c t i o n (outRasterSRS . ExportToWkt ())

146

B. Appendix

89 outband . F lushCache ()
90

91 def c oo r d 2p i x e l O f f s e t (r a s t e r f n , x , y) :
92 r a s t e r = gda l . Open (r a s t e r f n)
93 geotrans form = r a s t e r . GetGeoTransform ()
94 o r i g i n X = geotrans form [0]
95 o r i g i n Y = geotrans form [3]
96 p i x e lW id th = geotrans form [1]
97 p i x e l H e i g h t = geotrans form [5]
98 xO f f s e t = i n t ((x − o r i g i n X) / p i x e lW id th)
99 yO f f s e t = i n t ((y − o r i g i n Y) / p i x e l H e i g h t)

100 r e t u rn xO f f s e t , yO f f s e t
101

102 def rasterFromSHP (shape f i l e , o u t pu t f i l e , pxS i ze) :
103 d r i v e r = ogr . GetDriverByName (’ ESRI Shape f i l e ’)
104 da t a F i l e = d r i v e r . Open (s hape f i l e , 0) #0 read only 1 w r i t e
105 l a y e r = d a t a F i l e . GetLayer ()
106 s p a t i a l R e f = l a y e r . G e t Spa t i a l R e f ()
107 f e a t u r e = l a y e r . GetNextFeature ()
108 geom = f e a t u r e . GetGeometryRef ()
109 s p a t i a l R e f = geom . Ge tSpa t i a l Re f e r ence ()
110

111 # c r ea t e r a s t e r
112 NoDataValue = −9999
113 xmin , xmax , ymin , ymax = l a y e r . Ge tEx ten t ()
114

115 # Create the de s t i n a t i o n data source
116 x_ re s = i n t ((xmax − xmin) / pxS i ze)
117 y_ res = i n t ((ymax − ymin) / pxS i ze)
118 t a r ge t _d s = gda l . GetDriverByName (’ G T i f f ’) . C reate (o u t pu t f i l e , x_res , y_res , 1 , gda l . GDT_Byte)
119 t a r ge t _d s . SetGeoTransform ((xmin , pxS ize , 0 , ymax , 0 , −pxS i ze))
120 band = ta r ge t _d s . GetRasterBand (1)
121 band . SetNoDataValue (NoDataValue)
122

123 # R a s t e r i z e
124 gda l . R a s t e r i z e L a y e r (ta rge t_ds , [1] , l a ye r , burn_va lues = [0])
125

126 r a s t e r = gda l . Open (o u t pu t f i l e , gda l . GA_Update)
127 r e t u rn r a s t e r
128

129 def read_shape_to_ar ray (input_shape , re fe rence_ img , output_image , r a s t e r V a l u e) :
130 " " "
131 t h i s f un c t i on s burns s h a p e f i l e s i n t o a numpy a r r a y with the r a s t e r V a l u e f o r ob j e c t s i n the
132 s h a p e f i l e and r e t u r n s t h i s g r i d
133 " " "
134 # i n i t i a l i s e paramaters
135

136 gda l fo rmat = ’ G T i f f ’
137 datatype = gda l . GDT_Byte
138 # r a s t e r _ v a l u e = r a s t e r V a l u e
139 # Get p r ope r t i e s o f re fe rence_ img
140 img = gda l . Open (re fe rence_ img , gda l . GA_ReadOnly)
141 # load the shp
142 shp = ogr . Open (input_shape)
143 shp_ laye r = shp . GetLayer ()
144 # r a s t e r i s e the shp us ing r a s t e r _ v a l u e
145 output = gda l . GetDriverByName (gda l fo rmat) . C reate (output_image , img . Ras te rXS i ze , img .
146 Ras te r YS i z e , 1 , datatype , op t ions = [’COMPRESS=DEFLATE ’])
147 output . S e t P r o j e c t i o n (img . Ge tP r o j e c t i onRe f ())
148 output . SetGeoTransform (img . GetGeoTransform ())
149 # s t o r e r a s t e r i n band 1 o f the t i f f
150 gda l . R a s t e r i z e L a y e r (output , [1] , shp_ layer , burn_va lues = [r a s t e r V a l u e])
151 # r e s e t parameters
152 output = None
153 img = None
154 shp = None
155 shape_ar ray = gda l . Open (output_image) . ReadAsArray ()
156 r e t u rn (shape_ar ray)
157

158 def r a s t e r 2 a r r a y (r a s t e r f n) :
159 r a s t e r = gda l . Open (r a s t e r f n)
160 band = r a s t e r . GetRasterBand (1)
161 a r r a y = band . ReadAsArray ()
162 r e t u rn a r r a y
163

164 def coo rd s2p i x e l (xUTM , yUTM , r a s t e r) :
165 " " "
166 Conver ts UTM Coords i n t o p i xe lCoo rds .
167

168 Parameters

147

B. Appendix

169 −−−−−−−−−−

170 r a s t e r : osgeo . gda l . Da tase t
171 gda l . Open (pathToRaster) i f needed .
172 " " "
173 # r a s t e r = gda l . Open (r a s t e r)
174 geotrans form = r a s t e r . GetGeoTransform ()
175 xOr i g = geotrans form [0]
176 yOr i g = geotrans form [3]
177 xS i z e = geotrans form [1]
178 yS i z e = geotrans form [5]
179 px = i n t ((xUTM − xOr i g) / x S i z e)
180 py = i n t ((yUTM − yOr i g) / yS i z e)
181 r e t u rn (px , py)
182

183 def c r e a t e Fo l d e r (f o l de r _pa th) :
184 " " " Checks i f the g iven path i s a f o l de r , i f i t does not e x i s t s , c r ea t e the f o l d e r .
185

186 : param path : [d e s c r i p t i o n]
187 : type path : s t r
188 " " "
189 i f not os . path . e x i s t s (f o l de r _pa th) :
190 os . mkdir (f o l de r _pa th)
191

192 def g en e r a t e _ v a l i d a t i o n _ r a t e s (ou tpu t_ f o l de r) :
193 " " " Generates a csv f i l e based of a l l csv− f i l e s from the eva l ua t i on (n e a r e s t _ c a l c u l a ed_ i d e a l) .
194

195 : param path : [d e s c r i p t i o n]
196 : type path : s t r
197 " " "
198 we i g h t i n g _ l i s t = []
199 v a l i d a t i o n _ c a l c = []
200 v a l i d a t i o n _n e a r e s t = []
201

202 path = Path (f ’ { ou tpu t _ f o l de r } / E va l ua t i on / ’)
203 f i l e s = [f f o r f i n path . i t e r d i r () i f f . match (" n e a r e s t _ c a l c u l a t e d _ i d e a l _ * . csv * ")]
204

205 f o r f i l e i n f i l e s :
206 weight ing = s t r (f i l e) [−7:−4]
207

208 df = pd . read_csv (f i l e)
209 coun t s_ca l c = df [’ e v a l ua t ed_ca l cu l a t ed ’] . va lue_counts ()
210 counts_neares t = df [’ e va lua ted_nea re s t ’] . va lue_counts ()
211

212 # c a l c u l a t e s the v a l i d a t i o n r a t e t rue out o f a l l e n t r i e s
213 v a l i _ c a l c = coun t s_ca l c [1] / l en (d f)
214 v a l i _ n e a r e s t = counts_nea res t [1] / l en (d f)
215

216 we i g h t i n g _ l i s t . append (we igh t ing)
217 v a l i d a t i o n _ c a l c . append (v a l i _ c a l c)
218 v a l i d a t i o n _n e a r e s t . append (v a l i _ n e a r e s t)
219

220 d f _ r e s u l t = pd . DataFrame ()
221 d f _ r e s u l t [’ we igh t ing ’] = w e i g h t i n g _ l i s t
222 d f _ r e s u l t [’ v a l i _ c a l c ’] = v a l i d a t i o n _ c a l c
223 d f _ r e s u l t [’ v a l i _ n e a r e s t ’] = v a l i d a t i o n _n e a r e s t
224

225 d f _ r e s u l t . to_csv (f ’ { ou tpu t _ f o l de r } / E va l ua t i on / v a l i d a t i o n _ r a t e s . csv ’)
226

227 def a l ready_processed (f i l e _ p a t h) :
228 " " " Checks i f a f i l e e x i s t s , r e t u r n s t rue or f a l s e
229

230 : param f i l e _ p a t h : [d e s c r i p t i o n]
231 : type f i l e _ p a t h : [s t r]
232 : r e t u rn : [bool]
233 : r t ype : [type]
234 " " "
235

236 my_ f i l e = Path (f i l e _ p a t h)
237 r e t u rn my_ f i l e . i s _ f i l e ()
238

239 def gene ra te_ l cp (f i l e p a t h _ b a c k l i n k _ r a s t e r , d e s t i n a t i o n _ l a t l o n) :
240

241 ba c k l i n k _ r a s t e r = gda l . Open (f i l e p a t h _ b a c k l i n k _ r a s t e r)
242

243 # c r ea t e numpy a r r a y from r a s t e r
244 back l i n k _a r r a y = np . a r r a y (b a c k l i n k _ r a s t e r . ReadAsArray ())
245

246 # c a l c u l a t e c e l l p o s i t i o n in r a s t e r from l a t l o n
247 utm_coords = pro jCoords (’ epsg :4326 ’ , ’ epsg :25832 ’ , d e s t i n a t i o n _ l a t l o n [0] , d e s t i n a t i o n _ l a t l o n [1])
248

148

B. Appendix

249 # round to one d i g i t s i n ce 0 .2m f o r each p i x e l are r e l e v an t
250 x_utm , y_utm = [round (item , 1) f o r i tem in utm_coords]
251 c e l l p o s i t i o n _ x , c e l l p o s i t i o n _ y = c oo r d 2p i x e l O f f s e t (f i l e p a t h _ b a c k l i n k _ r a s t e r , x_utm , y_utm)
252

253 c u r r e n t _ po s i t i o n = (c e l l p o s i t i o n _ x , c e l l p o s i t i o n _ y)
254

255

256 p a t h _ l i s t = []
257 p a t h _ l i s t . append (c u r r e n t _ po s i t i o n)
258 whi le (1) : # loop u n t i l c u r r en t c e l l i s source c e l l
259

260 # get the c e l l va lue f o r the cu r r en t c e l l , s t a r t i n g with d e s t i n a t i o n . Depending
261 #on the c e l l va lue (0= source , . . . 8= d iagonal , lower r i g h t c e l l) , add the c e l l _ p o s i t i o n
262 # o f the path to the source c e l l to the p a t h _ l i s t
263 c e l l _ v a l u e = back l i n k _a r r a y [c u r r e n t _ po s i t i o n [1] , c u r r e n t _ po s i t i o n [0]]
264

265

266 i f (c e l l _ v a l u e == 0) :
267 r e t u rn p a t h _ l i s t
268 e l i f (c e l l _ v a l u e == 1) :
269 c u r r e n t _ po s i t i o n = tup l e (map(lambda i , j : i + j , c u r r en t _po s i t i on , (− 1 ,0))) #annahme x , y , be i 1 l i e g t d ie

source c e l l e l i n k s daneben
270 p a t h _ l i s t . append (c u r r e n t _ po s i t i o n)
271 e l i f (c e l l _ v a l u e == 2) :
272 c u r r e n t _ po s i t i o n = tup l e (map(lambda i , j : i + j , c u r r en t _po s i t i on , (−1 ,−1)))
273 p a t h _ l i s t . append (c u r r e n t _ po s i t i o n)
274 e l i f (c e l l _ v a l u e == 3) :
275 c u r r e n t _ po s i t i o n = tup l e (map(lambda i , j : i + j , c u r r en t _po s i t i on , (0 , − 1)))
276 p a t h _ l i s t . append (c u r r e n t _ po s i t i o n)
277 e l i f (c e l l _ v a l u e == 4) :
278 c u r r e n t _ po s i t i o n = tup l e (map(lambda i , j : i + j , c u r r en t _po s i t i on , (1 , − 1)))
279 p a t h _ l i s t . append (c u r r e n t _ po s i t i o n)
280 e l i f (c e l l _ v a l u e == 5) :
281 c u r r e n t _ po s i t i o n = tup l e (map(lambda i , j : i + j , c u r r en t _po s i t i on , (1 , 0)))
282 p a t h _ l i s t . append (c u r r e n t _ po s i t i o n)
283 e l i f (c e l l _ v a l u e == 6) :
284 c u r r e n t _ po s i t i o n = tup l e (map(lambda i , j : i + j , c u r r en t _po s i t i on , (1 , 1)))
285 p a t h _ l i s t . append (c u r r e n t _ po s i t i o n)
286 e l i f (c e l l _ v a l u e == 7) :
287 c u r r e n t _ po s i t i o n = tup l e (map(lambda i , j : i + j , c u r r en t _po s i t i on , (0 , 1)))
288 p a t h _ l i s t . append (c u r r e n t _ po s i t i o n)
289 e l i f (c e l l _ v a l u e == 8) :
290 c u r r e n t _ po s i t i o n = tup l e (map(lambda i , j : i + j , c u r r en t _po s i t i on , (− 1 , 1)))
291 p a t h _ l i s t . append (c u r r e n t _ po s i t i o n)
292

293 def p i x e l 2 coo rd (f i l e p a t h _ r a s t e r , px , py) :
294 # ===
295 # c a l c u l a t e s the UTM coord f o r a p i x e l coord . For r a s t e r s the coord ina te o f
296 # a p i x e l i s on the upper l e f t co rner . To get the cen te r o f a p i x e l , h a l f
297 # a p i x e l S i z e i s added f o r each d i r e c t i o n (x , y)
298 # ===
299 r a s t e r = gda l . Open (f i l e p a t h _ r a s t e r)
300 geotrans form = r a s t e r . GetGeoTransform ()
301 xOr i g = geotrans form [0]
302 yOr i g = geotrans form [3]
303 xS i z e = geotrans form [1]
304 yS i z e = geotrans form [5]
305 x_utm = px * xS i z e + xOr i g + (xS i z e / 2)
306 y_utm = py * yS i z e + yOr i g + (yS i z e / 2)
307 r e t u rn (x_utm , y_utm)
308

309 def c rea teGeo j son (nested_coords) :
310 import j son
311 template = {
312 " type " : " F e a t u r eCo l l e c t i o n " ,
313 " f e a t u r e s " : [
314 {
315 " type " : " Feature " ,
316 " p r ope r t i e s " : { } ,
317 " geometry " : {
318 " type " : " L i n e S t r i n g " ,
319 " coo rd ina te s " : nested_coords
320

321 }
322 }
323]
324 }
325 r e s = j son . dumps (template)
326 r e t u rn re s
327

149

B. Appendix

328 def l o n l a t _ l c p (f i l e p a t h _ r a s t e r , l cp) :
329 l a t l on_ coo rd s = []
330 f o r i tem in l cp :
331 x_utm , y_utm = p i xe l 2 coo rd (f i l e p a t h _ r a s t e r , i tem [0] , i tem [1])
332 l a t , lon = pro jCoords (’ epsg :25832 ’ , ’ epsg :4326 ’ , x_utm , y_utm)
333 l a t l on_ coo rd s . append ([lon , l a t])
334 r e t u rn l a t l on_ coo rd s
335

336 def l cp_geo j son (f i l e p a t h _b a c k l i n k , l a t l on , ou tpu t_d i r =None) :
337 l cp = gene ra te_ l cp (f i l e p a t h _b a c k l i n k , l a t l o n)
338 l c p _ l o n l a t = l o n l a t _ l c p (f i l e p a t h _b a c k l i n k , l cp)
339 geojson = c rea teGeo j son (l c p _ l o n l a t)
340 i f ou tpu t_d i r == None :
341 r e t u rn geojson
342 e l s e :
343 with open (f ’ { ou tpu t_d i r } ’ , ’w ’) as f i l e :
344 f i l e . w r i t e (geojson)
345

346 def h i s tog ramm_va l i da t i on_ ra te (f p _ v a l i d a t i o n _ r a t e s , co l , b ins , x l abe l , y l abe l , f o n t s i z e , f i g S i z e = (1 0 , 1 0)) :
347 # h i s tog ramm_va l i da t i on_ ra te (f p _ v a l i d a t i o n _ r a t e , ’ v a l i _ c a l c ’ , 6 , ’ v a l i d a t i o n −r a t e ’ , ’ f requency ’ , 20)
348 import ma tp l o t l i b . pyp lo t as p l t
349 df = pd . read_csv (f p _ v a l i d a t i o n _ r a t e s)
350 df = df [co l]
351 f i g , ax = p l t . subp lo t s (f i g s i z e = f i g S i z e)
352 df . p l o t . h i s t (g r i d =True , b ins = bins , rw id th =0 . 5 , c o l o r = ’ #607 c8e ’ , ax=ax)
353 p l t . x l a b e l (x l a b e l)
354 p l t . y l a b e l (y l a b e l)
355 p l t . rcParams . update ({ ’ f on t . s i z e ’ : f o n t s i z e })
356 p l t . show ()
357 r e t u rn f i g , ax
358

359 def mixed_h i s tog ramm_va l ida t ion_ra te (f p _ v a l i d a t i o n _ r a t e s , col_cd , col_pd , bins , x l abe l , y l abe l , f o n t s i z e , f i g S i z e
= (1 0 , 1 0)) :

360 # h i s tog ramm_va l i da t i on_ ra te (f p _ v a l i d a t i o n _ r a t e , ’ v a l i _ c a l c ’ , 6 , ’ v a l i d a t i o n −r a t e ’ , ’ f requency ’ , 20)
361 import ma tp l o t l i b . pyp lo t as p l t
362 df = pd . read_csv (f p _ v a l i d a t i o n _ r a t e s)
363 df_cd = df [co l_cd]
364 df_pd = df [col_pd]
365 f i g , ax = p l t . subp lo t s (f i g s i z e = f i g S i z e)
366 p l t . s t y l e . use (’ seaborn−deep ’)
367 p l t . h i s t ([df_pd , df_cd] , b ins , l a b e l = [’ pe rpend i cu l a r d i s t ance ’ , ’ Cost−D i s tance ’] , rw id th =None , edgeco lor = "k ")
368 p l t . legend (l o c = ’ upper r i g h t ’)
369 p l t . x l a b e l (x l a b e l)
370 p l t . y l a b e l (y l a b e l)
371 p l t . rcParams . update ({ ’ f on t . s i z e ’ : f o n t s i z e })
372 p l t . rcParams [" patch . f o r ce_edgeco lo r "] = True
373 p l t . show ()
374 r e t u rn f i g , ax
375

376 def p l o t _ v a l i d a t i o n _we i g h t s (f p _ v a l i d a t i o n _ r a t e s , f o n t s i z e = 1 2) :
377 from mp l _ t oo l k i t s . mplot3d import Axes3D
378 import ma tp l o t l i b
379 import ma tp l o t l i b . pyp lo t as p l t
380

381 df = pd . read_csv (f p _ v a l i d a t i o n _ r a t e s)
382

383 v e g e t a t i o n _ l i s t = [] # ndv i
384 s l o p e _ l i s t = [] # s lope
385 b u i l d i n g s _ l i s t = [] # bu i l d i n g s
386

387 v a l u e s _ l i s t = []
388

389 f o r idx , row in df . i t e r r ows () :
390 v e g e t a t i o n _ l i s t . append (i n t (s t r (row [’ we igh t ing ’]) [0]))
391 s l o p e _ l i s t . append (i n t (s t r (row [’ we igh t ing ’]) [1]))
392 b u i l d i n g s _ l i s t . append (i n t (s t r (row [’ we igh t ing ’]) [2]))
393

394 v a l u e s _ l i s t . append (row [’ v a l i _ c a l c ’])
395

396 # o f f s e t abz iehen
397 o f f s e t = min (v a l u e s _ l i s t)
398

399 v a l u e s _ o f f s e t = [va lue − o f f s e t f o r va lue in v a l u e s _ l i s t]
400

401 # a l t e r n a t i v e normal i ze data
402 norm = ma tp l o t l i b . c o l o r s . Normal ize (vmin=min (v a l u e s _ o f f s e t) , vmax=max (v a l u e s _ o f f s e t))
403 colormap = p l t . get_cmap (" w in te r ")
404

405 f i g = p l t . f i g u r e ()
406 ax3D = f i g . add_subplot (1 1 1 , p r o j e c t i o n = ’ 3d ’)

150

B. Appendix

407

408 x = v e g e t a t i o n _ l i s t
409 y = s l o p e _ l i s t
410 z = b u i l d i n g s _ l i s t
411

412 p = ax3D . s c a t t e r (x , y , z , s =30 , c= colormap (norm (v a l u e s _ o f f s e t)) , marker= ’ o ’)
413 # p = ax3D . s c a t t e r (x , y , z , s = 10 , c= colormap (v a l u e s _ o f f s e t) , marker = ’ o ’)
414

415

416 ax3D . s e t _ x l a b e l (’ v ege t a t i on ’ , l abe lpad = 1 2)
417 ax3D . s e t _ y l a b e l (’ s lope ’ , l abe lpad = 1 2)
418 ax3D . s e t _ z l a b e l (’ b u i l d i n g f o o t p r i n t s ’ , l abe lpad = 1 2)
419

420 # se t t i c k l a b e l s to every nth (2) t i c k
421 f o r l a b e l i n ax3D . axes . x a x i s . g e t _ t i c k l a b e l s () [: : 2] :
422 l a b e l . s e t _ v i s i b l e (Fa l s e)
423 f o r l a b e l i n ax3D . axes . y a x i s . g e t _ t i c k l a b e l s () [: : 2] :
424 l a b e l . s e t _ v i s i b l e (Fa l s e)
425 f o r l a b e l i n ax3D . axes . z a x i s . g e t _ t i c k l a b e l s () [: : 2] :
426 l a b e l . s e t _ v i s i b l e (Fa l s e)
427

428 cbar = p l t . c o l o rba r (p)
429 cbar . s e t _ l a b e l (’ ’ r ’ $ \ De l ta$ v a l i d a t i o n −r a t e ’)
430 p l t . rcParams . update ({ ’ f on t . s i z e ’ : f o n t s i z e })
431 p l t . show ()

Listing B.7: utils.py

1 from pa t h l i b import Path
2 import u t i l s , acsa , snapping , e va l ua t i on
3 import r a s t e r i o , gdal , i t e r t o o l s
4 from shape ly import geometry
5 import geopandas as gpd
6 from datet ime import datet ime
7

8 c l a s s dataSet :
9 vege t a t i on = None

10 s lope = None
11 bu i l d i n g s _ r a s t e r = None
12 bu i ld ings_shape = None
13 road_network = None
14 snapp ing_ l i ne s = None
15 bu i l d i n g _ c en t r o i d s = None
16

17 c l a s s t h r e sho ld s :
18 vege ta t i on = None
19 s lope = None
20 bea r i n g s _eva l ua t i on = None
21 d i s t an ce_e va l u a t i on = None
22

23

24 ## se t paths
25 # input
26 r o o t _ f o l d e r = Path (’ . . / data / input_data / t i l e_32526_5736_15_06_2017 ’)
27 ou tpu t _ f o l de r = Path (’ . . / data / output_data ’)
28 # tmp_fo lder = Path (’ . . / data / tmp ’)
29

30

31 ##Open data
32 data = dataSet ()
33

34 # data . road_network = gda l . Open (f ’ { tmp_fo lder } / tmp_roads . t i f ’)
35 data . road_network = gda l . Open (f ’ { r o o t _ f o l d e r } / road_network / roads_3m_steps . t i f ’)
36

37 # data . v ege t a t i on = gda l . Open (f ’ { tmp_fo lder } / tmp_vegetat ion . t i f ’)
38 data . v ege t a t i on = gda l . Open (f ’ { r o o t _ f o l d e r } / v ege t a t i on / NDVI_res_20cm . t i f ’)
39

40 # data . s lope = gda l . Open (f ’ { tmp_fo lder } / tmp_slope . t i f ’)
41 data . s lope = gda l . Open (f ’ { r o o t _ f o l d e r } / LiDar_DEM / s l o p e _ f i l l _ n o _d a t a . t i f ’)
42

43 # data . b u i l d i n g s _ r a s t e r = gda l . Open (f ’ { tmp_fo lder } / tmp_bu i ld ings . t i f ’)
44 data . b u i l d i n g s _ r a s t e r = gda l . Open (f ’ { r o o t _ f o l d e r } / b u i l d i n g s _ r a s t e r / b u i l d i n g s _ r a s t e r . t i f ’)
45

46 # data . bu i l d ings_shape = gpd . r e a d _ f i l e (f ’ { tmp_fo lder } / tmp_bui ld ings_shape . shp ’)
47 data . bu i l d ings_shape = gpd . r e a d _ f i l e (f ’ { r o o t _ f o l d e r } / bu i l d ings_shape / bu i l d ings_no_ga rage_pa rk ing . shp ’)
48

49 # data . snapp ing_ l i ne s = gpd . r e a d _ f i l e (f ’ { tmp_fo lder } / tmp_snapping_ l ines . shp ’)
50 data . snapp ing_ l i ne s = gpd . r e a d _ f i l e (f ’ { r o o t _ f o l d e r } / s n a pp i n g _ l i n e s _ f u l l / i d e a l _ l i n e s . shp ’)
51

151

B. Appendix

52

53 # se t t h r e sho ld s
54 t h r e sho ld s = th r e sho ld s ()
55 t h r e sho ld s . v ege t a t i on = 0 .2
56 t h r e sho ld s . s lope = 1 1
57 t h r e sho ld s . b ea r i n g s _eva l ua t i on = 70
58 t h r e sho ld s . d i s t an ce_e va l u a t i on = 25
59

60 ### se t weight combinat ions
61 we i gh t _ comb ina t i on s_ l i s t = [range (1 , 1 1 , 2) , range (1 , 1 1 , 2) , range (1 , 1 1 , 2)]
62 we i gh t _ comb ina t i on s_ l i s t = l i s t (i t e r t o o l s . product (* we i gh t _ comb ina t i on s_ l i s t))
63 # we i gh t _ comb ina t i on s_ l i s t = [(4 , 6 , 7) , (5 , 6 , 7) , (6 , 7 , 8)] # (ndvi , s lope , bu i l d i n g)
64

65 # t imer f o r s t a r t o f weight combinat ions
66 s t a r t _ t ime = datet ime . now ()
67

68 # i t e r a t e o f weight_combs
69 f o r idx , weightComb in enumerate (we i gh t _ comb ina t i on s_ l i s t) :
70

71 # se t t imer f o r every i t e r a t i o n
72 we i gh t _ i t e r a t i o n_ t ime = datet ime . now ()
73

74 # c r ea t e cos t su r f aces , accumulat i ve cos t s u r f a c e s and back l i n k r a s t e r f o r each we ight ing
75 p r i n t (f ’ . . . p roces s i ng cos t s u r f a c e s f o r i t e r a t i o n { i d x + 1 } o f { l en (we i gh t _ comb ina t i on s_ l i s t) } ’)
76 i f u t i l s . a l r eady_processed (f ’ { ou tpu t _ f o l de r } / Accumula t i ve_Cos t_Sur faces / acc_cos t_ { weightComb [0] } { weightComb

[1] } { weightComb [2] } . t i f ’) :
77 pass
78 e l s e :
79 acsa . c r e a t e _ co s t _ s u r f a c e s (data , th resho lds , ou tpu t_ fo lde r , weightComb)
80

81 # c r ea t e the snapping po in t s
82 p r i n t (’ . . . p roces s i ng snapping po in t s ’)
83 i f u t i l s . a l r eady_processed (f ’ { ou tpu t _ f o l de r } / c a l cu l a t ed_ snapp ing_po in t s / c a l c u l a t ed_ snapp i ng_ c e l l _ { weightComb

[0] } { weightComb [1] } { weightComb [2] } . csv ’) :
84 pass
85 e l s e :
86 snapping . sho r t e s t _pa th s (data , ou tpu t_ fo lde r , weightComb)
87

88 # e va l u a t i n g the snapping po in t s
89 p r i n t (’ . . . e v a l u a t i n g snapping po in t s ’)
90 i f u t i l s . a l r eady_processed (f ’ { ou tpu t _ f o l de r } / E va l ua t i on / n e a r e s t _ c a l c u l a t e d _ i d e a l _ { weightComb [0] } { weightComb

[1] } { weightComb [2] } . csv ’) :
91 pass
92 e l s e :
93 eva l ua t i on . e va l ua t i on (data , ou tpu t_ fo lde r , th resho lds , weightComb , ’ h t tp : / / l o c a l h o s t :5000 ’)
94

95 p r i n t (f ’ Time s i n ce s t a r t : { datet ime . now () − s t a r t _ t ime } . \ nTime s i n ce i t e r a t i o n s t a r t : { datet ime . now () −
we i gh t _ i t e r a t i o n_ t ime } ’)

96

97 # generate csv f i l e wi th v a l i d a t i o n r a t e s
98 u t i l s . g e n e r a t e _ v a l i d a t i o n _ r a t e s (ou tpu t _ f o l de r)
99 p r i n t (f ’ F i n a l p roces s i ng t ime : { datet ime . now () − s t a r t _ t ime } ’)

Listing B.8:main.py

152

	Acknowledgements
	Abstract
	Zusammenfassung
	List of Figures
	List of Tables
	Acronyms
	Introduction
	Motivation
	Mobility Concepts
	Main Contribution
	Outline

	Challenges in Modern Mobility Concepts
	Performance of Network Distance Computations
	Optimized Pick-up and Drop-off Locations in to-Door Services

	Preliminaries
	Graph Theory
	Routing Techniques
	Approximation Algorithms
	Map Matching
	Cost Distance Analysis

	Related Work
	Graph Partitioning of Road Networks
	Effects on Incomplete Map Data on to-Door Services

	Performance of Network Distance Computations
	Central Ideas
	Methods
	Area of Interest
	Data
	Partitioning
	Determination of Partition Proxies
	Building a Generalized Graph
	Network Distance Queries
	Scaling and Variability
	Evaluation
	Constant parameter
	Scaling parameter

	Own Software Package
	Results
	Constant Parameter
	Scaling Parameter

	Summary

	Optimized Pick-up and Drop-off Locations
	Central Ideas
	Methods
	Area of Interest
	Data
	Generation of Snapping Points by Cost-Distance
	Evaluation of Snapping Points

	Own Software Package and Patent Application
	Results
	Summary

	Discussion
	Conclusion
	Bibliography
	Glossary
	Appendix
	Appendix
	Source Code for FluidC-Generalization based on Proxies (FC-GBOP)
	Source Code for Accumulative Cost Surface Analysis (ACSA)

	Curriculum Vitae

