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Abstract
The improvements in sensor technology, e.g., the development of automotive Radio Detection and
Ranging (RADAR) or Light Detection and Ranging (LIDAR), which are able to provide a higher
detail of the sensor’s environment, have introduced new opportunities but also new challenges to
target tracking. In classic target tracking, targets are assumed as points. However, this assumption
is no longer valid if targets occupy more than one sensor resolution cell, creating the need for
extended targets, modeling the shape in addition to the kinematic parameters. Different shape
models are possible and this thesis focuses on an elliptical shape, parameterized with center,
orientation, and semi-axes lengths. This parameterization can be used to model rectangles as well.
Furthermore, this thesis is concerned with multi-sensor fusion for extended targets, which can be
used to improve the target tracking by providing information gathered from different sensors or
perspectives. We also consider estimation of extended targets, i.e., to account for uncertainties, the
target is modeled by a probability density, so we need to find a so-called point estimate.

Extended target tracking provides a variety of challenges due to the spatial extent, which need
to be handled, even for basic shapes like ellipses and rectangles. Among these challenges are the
choice of the target model, e.g., how the measurements are distributed across the shape. Additional
challenges arise for sensor fusion, as it is unclear how to best consider the geometric properties
when combining two extended targets. Finally, the extent needs to be involved in the estimation.

Traditional methods often use simple uniform distributions across the shape, which do not properly
portray reality, while more complex methods require the use of optimization techniques or large
amounts of data. In addition, for traditional estimation, metrics such as the Euclidean distance
between state vectors are used. However, they might no longer be valid because they do not
consider the geometric properties of the targets’ shapes, e.g., rotating an ellipse by 180 degree
results in the same ellipse, but the Euclidean distance between them is not 0. In multi-sensor fusion,
the same holds, i.e., simply combining the corresponding elements of the state vectors can lead to
counter-intuitive fusion results.

In this work, we compare different elliptic trackers and discuss more complex measurement
distributions across the shape’s surface or contour. Furthermore, we discuss the problems which
can occur when fusing extended target estimates from different sensors and how to handle them
by providing a transformation into a special density. We then proceed to discuss how a different
metric, namely the Gaussian Wasserstein (GW) distance, can be used to improve target estimation.
We define an estimator and propose an approximation based on an extension of the square root
distance. It can be applied on the posterior densities of the aforementioned trackers to incorporate
the unique properties of ellipses in the estimation process. We also discuss how this can be applied
to rectangular targets as well. Finally, we evaluate and discuss our approaches. We show the
benefits of more complex target models in simulations and on real data and we demonstrate our
estimation and fusion approaches compared to classic methods on simulated data.
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1.1 Motivation

A topic gaining more relevance over the past years concerns the challenges and opportunities
involving improvements in sensor technology. Classic point target tracking assumes that sensors
like Radio Detection and Ranging (RADAR) are tracking far away targets, which generate only a
single measurement per time step originating from a single point, i.e., the target extent is smaller
than a sensor resolution cell. Now, due to sensors with higher resolution tracking targets in closer
range, e.g., automotive RADAR or Light Detection and Ranging (LIDAR), this point assumption is
no longer valid. Instead, a target can generate multiple detection points per time step scattered
across its contour or surface. In this case, not just the kinematic parameters, but also the shape
of the target need to be considered and estimated, see Figure 1.1 and Figure 1.2. Such targets are
called extended targets and the problem is named Extended Target Tracking (ETT) or Extended
Object Tracking (EOT) [MCS+14, GBR17]. The goal of ETT is to find a shape model which fits the
data and to derive an appropriate measurement equation which can be used for iterative tracking
over several time steps.

Different sensors can be used for tracking, but we focus on RADAR sensors. While LIDAR sensors
produce clearly visible edges and camera provides color images, they are both susceptible to
certain weather conditions such as heavy rain. RADAR sensors in turn can handle those challenges

1
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Figure 1.1: Comparison of point target tracking (left) and ETT (right). Measurements are blue
crosses. The estimated targets are a black cross and an ellipse respectively.

(a)

LIDAR_TOP

(b)

Figure 1.2: Example from the nuScenes dataset [CBL+20], showing a camera view with orange
bounding boxes in Figure 1.2a and the corresponding LIDAR point cloud with bounding boxes in
top down view in Figure 1.2b

and can produce range rate measurements, i.e., the velocity in measurement direction. They still
have their own challenges, often producing noisier measurements, scattered across the target, as
can be seen in, e.g., the nuScenes dataset [CBL+20]. Often times basic shapes like an ellipse or a
rectangle are used. However, there are several different algorithms using such shapes.
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Figure 1.3: Ellipse parameterized with a center m = [m1 m2]
T, an orientation α, and semi-axes

lengths a and b.

This thesis focuses on those methods parameterizing an ellipse (or a rectangle) with a center

m =
[︂
m1 m2

]︂T
, an orientation α, and semi-axes lengths a and b, see Figure 1.3, as it is intuitive

to track the uncertainties of the different elements of the shape state. For example, a car usually
does not change its dimensions, but it can rotate, so process noise on the semi-axes lengths is kept
to a minimum while the noise on the orientation can be set higher. There are several different
options for trackers with such a parameterization, so they will be compared in simulations in
this thesis. Furthermore, this thesis discusses the usage of the range rate measurement in these
approaches and evaluates it in simulations as well. In real automotive data, the detection points
are often biased towards the visible side, which is called self-occlusion, or stem mainly from certain
reflection areas such as the wheels. Therefore, we investigate and develop methods which apply
the aforementioned parameterization but use a more complex measurement distribution across
the surface as well.

Independent of the automotive case, ETT and this parameterization in particular lead to interesting
aspects which need to be considered in estimation and fusion. Multi-sensor fusion is one approach
to improve the quality of the estimation by incorporating different sensor estimates which can
provide different information. As an example, the aforementioned self-occlusion can lead to
uncertainty in the occluded parts, which can be solved by involving estimates from sensors placed
at different angles around the target. Figure 1.4 shows a scenario in which an elliptic target is
tracked by two sensors. The red sensor sees the target from the side and thus, it has a good estimate
of the major axis length as well as the m1 position. Meanwhile, the blue sensor sees it from the
front and has a good estimate of the minor axis length and the m2 position. If the sensors also
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m2

m1

Figure 1.4: Example of two sensors in red and blue, tracking an ellipse. The ground truth is in gray
and the sensor estimates are the ellipses in the respective color of the sensor.

provide covariances properly reflecting these uncertainties, an estimate close to the ground truth
can be obtained. However, this can only be achieved if the semi-axes lengths (and the orientation)
are used to model the shape, so that their individual uncertainties are available and they can be
fused directly. A challenge in the fusion process using this parameterization are ambiguities, e.g.,
rotating an ellipse by 180◦ results in the same ellipse, but in a different state vector. Classic fusion
approaches can therefore produce counter-intuitive results.

These ambiguities lead us to another challenge in ETT, which is the estimation. In Bayesian
estimation (and tracking), the target state is modeled as a probability density to account for
uncertainties stemming from, e.g., uncertain prior knowledge, as well as process and measurement
noise. Therefore, after updating the density with measurements or after fusing it with sensor
estimates, we end up with a posterior density. In practice, we often do not want an entire density
as the output of the tracker, but instead a specific point in that density, a so-called point estimate
(not to be confused with point targets). In the context of a density describing elliptic targets, the
point estimate would be a specific ellipse. It is usually gained by calculating the expectation of the
density. To do so, we integrate over the density and find the value which minimizes the average
distance to it. The squared Euclidean distance between the state vectors is generally used as the
distance measure. This approach is straightforward, but it does not consider the random variable
as a representation of a shape, ignoring geometric properties of the state, i.e., the aforementioned
ambiguities.

We will highlight conditions under which classic fusion and estimation would fail and focus
on how to solve these fusion and estimation problems mainly considering elliptic targets, but
comment on the applicability to rectangular targets as well.
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1.2 Considered Problems and Research Questions

This thesis is based in the field of ETT. The focus of this work is particularly on elliptic extended
targets. However, the applicability of the methods developed in this thesis on other shapes will be
discussed as well. The considered problems and research questions are described in this section.

1.2.1 Tracking using Doppler RADAR

Several different approaches exist for tracking extended targets, which will be discussed in more
detail in Chapter 3. For this thesis, we will focus on RADAR data and its unique properties,
i.e., detections on the surface and the range rate measurement. The latter describes the velocity
of the measured point in the direction of the measurement and is determined via the Doppler
effect. While the incorporation of the range rate can introduce greater non-linearities, it provides
information about the target’s velocity. We compare elliptic ETT methods and discuss how they
can be extended via the range rate measurement. Therefore, the first research question is:

RQ 1 How can elliptic extended target trackers, parameterized with orientation and semi-axes
lengths and based on the standard spatial distribution model, be extended by the range rate
measurement and what are its benefits?

However, these classic approaches assume the measurements to be uniformly distributed across
the entire surface, while in reality, they are often biased towards the sensor or originate from
certain reflectors, e.g., the wheels of a car. The current state of the art captures these more complex
distributions using a Gaussian Mixture (GM) density, e.g., [SD18, KHB19, HK20] or, in case of the
Random Matrix (RM) model, truncates the density modeling the shape [XWB+21]. Our focus
is on the shape parameterization via orientation and semi-axes lengths, which can be used in
conjunction with the GM model. However, the aforementioned trackers using GM apply, e.g.,
optimization techniques or a particle filter. Therefore, our next research question is:

RQ 2 Can a closed-form measurement update be derived for a measurement model using
additive sensor noise and a GM based measurement source distribution on an extended target?

1.2.2 Fusion and Estimation

Fusion of extended target state densities in multi-sensor scenarios can be more complex than fusion
of point target densities due to the ambiguities in the shape parameterization. This introduces
challenges for fusing ellipse (or rectangle) state densities parameterized with orientation and
semi-axes lengths, which we will investigate. The corresponding research question is:

RQ 3 How can state densities of ellipses be fused with respect to their geometric properties?
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The aforementioned challenges stemming from geometric properties of shape densities do occur in
the estimation process as well, to be specific, in the metric which determines the cost function, i.e.,
the Euclidean distance. Rotating an ellipse by 180◦ results in the same ellipse, but the Euclidean
distance between the state vectors is not 0. Therefore, the final research question is:

RQ 4 How can an estimator be derived which considers the geometric properties of ellipses?

1.3 Contributions

The contributions of this thesis are based on the publications [1–5] (other unrelated publications
are [6–9]) and refer to the four research questions from Section 1.2. They can be summed up as

• a discussion and implementation of range rate usage in single ETT methods, which parame-
terize an elliptical shape with orientation and semi-axes lengths, including a discussion and
comparison of state of the art methods in ETT using this parameterization,

• a closed-form measurement update for elliptic (or rectangular) shapes based on multiplicative
noise modeled by a GM, the Gaussian Mixture Multiplicative Error Model Extended Kalman
Filter* (GM-MEM-EKF*), along with an evaluation on real automotive RADAR data,

• a novel probability density for elliptical targets, a so-called Random Ellipse Density (RED),
to handle challenges introduced by the geometric properties of ellipses in sensor fusion,

• an estimator on ellipse densities replacing the Euclidean distance with the Gaussian Wasser-
stein (GW) distance [GS84] as the metric in the cost function, the Minimum Mean Gaussian
Wasserstein (MMGW) estimator, and an approximation of it using an extension of the square
root distance [DKZ09] which can be calculated using particles.

1.4 Structure of this Thesis

The remainder of this thesis is structured as follows. In Chapter 2, the foundations for this thesis
are laid. Next, elliptical extended target trackers parameterizing the ellipse with orientation
and semi-axes lengths are discussed in Chapter 3. In this chapter, we also discuss the usage of
the range rate, including the introduction of the Multiplicative Error Model Extended Kalman
Filter* Doppler (MEM-EKF*-D) to incorporate the range rate measurement into the Multiplicative
Error Model Extended Kalman Filter* (MEM-EKF*) [YB19]. The GM-MEM-EKF* to handle more
complex distributions across the shape’s surface is then presented in Chapter 4. After that,
the fusion and estimation on state densities describing elliptic extended targets are handled in
Chapter 5, introducing the RED and the MMGW estimator. The trackers and fusion and estimation
methods from the previous three chapters are then evaluated in Chapter 6 and discussed in
Chapter 7. This thesis is concluded and future work is proposed in Chapter 8.
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This chapter lays the foundation of the thesis by presenting the basic concept of filtering in
Section 2.1. Special considerations necessary for ETT are then elaborated in Section 2.2 including
extended target metrics. While the discussed ETT methods generally assume Gaussian densities,
we require some special densities later on, which are discussed in Section 2.3. Dynamic models for
the prediction part of the tracking process are presented in Section 2.4.

2.1 Filtering Methodology

The goal of filtering is to estimate a desired state based on observations. This thesis considers
Bayesian filtering, which is explained in Section 2.1.1. For the special case of a linear dependency
between the state and measurements as well as all densities being Gaussian, the Kalman filter is the
optimal Bayesian filter and is presented in Section 2.1.2. If linearity is not given, extensions of the
Kalman filter exist, which will be discussed afterwards, namely the Extended Kalman Filter (EKF)
in Section 2.1.3 and the Unscented Kalman Filter (UKF) in Section 2.1.4. A discussion on fusing
estimates from different sensors is provided in Section 2.1.5.

7
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xk+2xk xk+1

yk yk+1 yk+2

Figure 2.1: Hidden Markov model showing the evolution of the hidden state xk over time and
generating measurements yk.

2.1.1 Bayesian Filtering

The goal in Bayesian filtering [BSLK04] is to track a state xk over time steps k. The state itself
is unknown and not directly observable. Instead, a measurement yk is received at time step k.
To account for uncertainties, we model the state as a random variable with probability density
function p(xk). The tracking consists of two steps: predicting the state to future time steps and
combining the state with measurements yk observed at those time steps. To project the state to the
next time step k + 1, a transition model is used, described by a function

xk+1 = f(xk,wk) , (2.1)

which is corrupted by process noise wk. A measurement is generated from the state via a measure-
ment function

yk = h(xk,vk) , (2.2)

which is corrupted by sensor noise vk. The state evolving over time and generating measurements
can be represented by a hidden Markov model as in Figure 2.1. We have the Markov property

p(xk|xk−1 . . .x0) = p(xk|xk−1) , (2.3)

p(yk|xk . . .x0) = p(yk|xk) , (2.4)

i.e., the current state only depends on the previous state and the current measurement only depends
on the current state.

To account for our initial knowledge or lack thereof about the state, we define a prior p(x0) at time
step 0. The lesser information is known beforehand, the more spread out the prior density can be
chosen, i.e., if no prior information is available, the prior can be modeled by a uniform distribution
across the entire state space.

Based on the transition function (2.1), we derive a transition density p(xk+1|xk) to model the state
changing over time and being influenced by process noise. Note that the transition density only
depends on the current state and the state depends on all previous measurements. We get
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p(xk+1|y1:k) =

∫︂
p(xk+1|xk) · p(xk|y1:k)dxk , (2.5)

by applying the Chapman-Kolmogorov equation. We denote y1:k as all measurements from time
steps 1 to k. This step is named prediction or time update.

We can relate the state and measurement via a likelihood function p(yk|xk) based on the measure-
ment function 2.2. Once measurement yk is received, we want to fuse the state and measurement
to calculate the so-called posterior density using Bayes formula. We multiply the likelihood with
the prior density p(xk|y1:k−1) at time step k,

p(xk|y1:k) ∼ p(yk|xk) · p(xk|y1:k−1) . (2.6)

This is called the update or measurement update step.

After the update, we have a posterior density. However, we usually want to provide a specific
realization of the state, not a density, as output. Therefore, we calculate a so-called point estimate
using the squared Euclidean distance as a cost function

ẑk = argmin
z

∫︂
||z− xk||22 · p(xk|y1:k)dxk . (2.7)

2.1.2 Kalman Filter

The challenge in Bayesian tracking is that the calculation of the posterior (2.6) and the inte-
grals in (2.7) and (2.5) require full knowledge of the likelihood, a closed-form solution does not
necessarily exist, and the calculations might not be computationally feasible. The Kalman fil-
ter [Kal60, KB61, BSLK04] provides closed-form formulas and is the optimal filter if two conditions
are met, the relation of the measurement and state and the relation of the state and future state
need to be linear and all densities need to be Gaussian.

To ensure linearity, we define the measurement and transition functions (2.2) and (2.1) as

yk = Hxk + vk , (2.8)

xk+1 = Fxk +wk , (2.9)

with additive measurement noise vk, process noise wk, measurement matrix H, and process matrix
F. For the Gaussian condition to hold, we define the prior as a Gaussian x0 ∼ N (x̂0,C

x
0 ). We

define the noises as Gaussians vk ∼ N (0,Cv
k) and wk ∼ N (0,Cw

k ), as well, which are usually
assumed to be zero-mean and independent to each other and the state [BSLK04]. Given non
zero-mean noise, the mean can be incorporated into the tracking procedure if it is known.



10 CHAPTER 2. Foundations for Extended Target Tracking

y

x

xk−1

xk

y

x

xk|yy

xk

yk

y

x

xk−1

xk

y

x

xk

yk

Figure 2.2: Kalman filter prediction and update step with state xk being predicted in the left figure
and updated using the measurement yk in the right figure, resulting in a posterior xk|yk.

As all densities are Gaussian and they are combined in a linear fashion, the posterior will again
be Gaussian, enabling an iterative tracking approach. Additionally, the point estimate (2.7) can
simply be calculated by taking the posterior density’s mean.

To differentiate the state before and after the measurement update, we use the notation xk|k−1

and xk|k as the state at time k incorporating measurements up to time k − 1 and up to time k
respectively. The update is conducted using the formulas

x̂k|k = x̂k|k−1 +Kk(yk −Hx̂k|k−1) , (2.10)

Cx
k|k = Cx

k|k−1 −KkC
y
kK

T
k , (2.11)

Kk = Cx
k|k−1H

T(Cy
k)

−1 , (2.12)

Cy
k = HCx

k|k−1H
T +Cv

k . (2.13)

We name ν = yk −Hx̂k|k−1 the innovation.

To transition the state into the next time step in the prediction step, the Kalman filter provides the
formulas

x̂k+1|k = Fx̂k|k , (2.14)

Cx
k+1|k = FCx

k|kF
T +Cw

k . (2.15)

In summary, the two step process consists of a prediction step, which usually increases the
covariance, i.e., the uncertainty of the estimate due to process noise and an update step, which
combines prior and likelihood using Bayes formula to improve the estimate, usually decreasing
the uncertainty. This is visualized in Figure 2.2.
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2.1.3 Extended Kalman Filter

A disadvantage of the Kalman filter is the condition that the measurement and process model
need to be linear. A modification of the Kalman filter able to deal with non-linear systems using
linearization is provided by the EKF [BSFC90] formulas. The general assumption is that we have
non-linear functions with additive noise

yk = h(xk) + vk , (2.16)

xk+1 = f(xk) +wk . (2.17)

The EKF uses Taylor-series expansion to linearize the functions around the current estimate as the
linearization point, calculating the Jacobians

H̃k =
∂h

∂x

⃓⃓
x̂k|k−1

, (2.18)

F̃k =
∂f

∂x

⃓⃓
x̂k|k

. (2.19)

We then conduct the update and prediction as above, replacing Hx̂k|k−1 with h(x̂k|k−1) and Fx̂k|k

with f(x̂k|k) to calculate the innovation and the mean of the predicted state. Every other occurrence
of H and F is replaced with the respective Jacobians H̃k and F̃k.

The downsides of an EKF are the possibility of divergence in strong non-linearities, the dependence
on the prior as a linearization point, the often large and complex Jacobians being a source for
coding errors, and the potential loss of optimality.

2.1.4 Unscented Kalman Filter

Another option to handle non-linearities is the UKF [WVDM00,JU04]. The basic idea is to represent
the densities as samples. This is similar to a particle filter [GSS93]. However, while a particle filter
needs to draw a large number of samples, the UKF provides a solution to sample in a smart way
and keep the number of samples low. It deterministically draws a small number of so-called sigma
points, which are chosen in a way to capture the density up to its second order properties with a
minimum number of points. After we calculate the sigma points, we transform them using the
non-linear function. Then, we use the transformed points to approximate the transformed density.

During the prediction, we choose N sigma points x(i)
k|k with i ∈ {1 . . . N}. N is set as 2d+ 1 with

state dimension d, i.e., xk|k ∈ Rd. The sigma points are drawn based on the mean and the columns
of a square root decomposition of the covariance matrix. The weights w(i)

k|k are determined under
the condition

N∑︂
i=1

w
(i)
k|k = 1 . (2.20)
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Each sigma point is transformed using

x
(i)
k+1|k = f(x

(i)
k|k) . (2.21)

After each sigma point is transformed, the predicted state density can be approximated as

x̂k+1|k =

N∑︂
i=1

w
(i)
k|kx

(i)
k+1|k , (2.22)

Cx
k+1|k =

N∑︂
i=1

w
(i)
k|k(x

(i)
k+1|k − x̂k+1|k)(x

(i)
k+1|k − x̂k+1|k)

T +Cw
k , (2.23)

with Cw
k being the covariance of the zero-mean process noise. The measurement update is

conducted analogously. For more details, see [WVDM00, JU04].

2.1.5 Multi-Sensor Track to Track Fusion

One way to improve tracking is the combination of the information from multiple sensors. Knowl-
edge can be shared among neighboring sensors in a sensor network, e.g., [LJMD15] or it can be
combined in a central fusion unit [DWH08]. One has to consider the amount of data shared as
well. One way to reduce communication is to share the state densities instead of the entire point
clouds [DWH08]. The estimates must then be fused either locally at the sensor or in the central
fusion unit. As different sensors have different quality and can detect different parts of the target,
it is important to consider the uncertainty in the fusion, e.g., [GK12], in other words, not just the
point estimates, but the entire state densities need to be fused.

In general, we assume n sensors and for each a local state p(xs|ys) depending on the local mea-
surement ys with s ∈ {1 . . . n}. Each state is modeled as a Gaussian, i.e., xs ∼ N (x̂s,C

x
s ). We now

want to combine the states to get a global estimate such that p(x|{y1, . . . ,ys}) [GK12]. Different
strategies exist like fusing sensor estimates directly, for which they would have to be synchronized,
or fuse them with a global estimate [ASKB12]. The easiest way to do so is to fuse the local sensor
estimates with a global estimate as if they were measurements in a Kalman filter. This can pose
problems if the sensor estimates are correlated. A correlation can occur due to a common process
model or common prior. If the correlations are not considered properly, the covariance can be
underestimated, e.g., it is reduced by the information it already had [CAM02]. To handle unknown
correlations, covariance intersection can be used, e.g., [JU97, CAM02, RNAH15], which estimates
the fused covariance as one encompassing the intersection of the covariances of the densities which
are fused. Another solution providing less conservative results for the fused covariance is the
inverse-covariance intersection [NSRH17, NSH17]. If the information form of the Kalman filter
is used, the redundant information can be subtracted [Mut98, ASKB12]. Alternatively, known
correlations from, e.g., a common dynamic model, can be tracked [DWH08,BS81], with more recent
approaches suggesting to track the correlation via square root decomposition [RNH19, RNH20].
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2.2 Extended Target Tracking

Unlike point targets, extended targets are assumed to be bigger than a single sensor resolution
cell. As a result, an extended target can generate multiple spatially distributed measurements per
time step, distributed across its surface [GBR17]. This principle is introduced in Section 2.2.1. It is
necessary to correctly model the shape as well as how the measurements are distributed across
that shape to properly track extended targets. Due to the varying geometric properties of the
different shapes, we need to make special consideration to find suitable metrics that incorporate
those geometric properties, which is discussed in Section 2.2.2.

2.2.1 Extended Targets

In ETT, we assume a target can generate multiple measurements, i.e., at time step k we get
nk ≥ 0 measurements y

(i)
k with i ∈ {1 . . . nk}. A common assumption is that nk is Poisson

distributed [GBR17]. We further assume that the target is not a point, but possesses an extent
from which measurements are generated. This mean the target state consists of the position, the
kinematic parts, and the extent [GBR17]. [GBR17] describe three levels of complexity to model the
extent. It can not be modeled at all, i.e., we still assume a point, it can be modeled by a simple shape
like an ellipse or rectangle, and it can be modeled by a more complex shape, e.g., a star-convex
one. Another differentiation is given by a model’s assumption of the measurement distribution
on the shape. [GBR17] differentiate two settings, measurements from the boundary of the shape
or measurements from the entire surface. Another option would be to assume specific reflection
points as in, e.g., [HSSS12, BWBS+17].

In the standard spatial distribution model [GS05], we assume that a measurement y(i)
k originated

from a measurement source z
(i)
k , which in turn is drawn from a density p(z(i)k |xk) modeling the

distribution of measurement sources across the extent of the target xk. To get our likelihood, we
need to integrate over all measurement sources

p(y
(i)
k |xk) =

∫︂
p(y

(i)
k |z(i)k )p(z

(i)
k |xk)dz

(i)
k . (2.24)

While some approaches try to model that distribution to identify specific measurement sources for
each measurement, e.g., [BH14, WÖ15, HSRD16, TLTK19, KBW17], others apply different models,
e.g., utilizing the mean and spread of the measurement point clouds as in the RM approach [Koc08,
FFK11]. An overview of ETT models can be found in [MCS+14, GBR17].

2.2.2 Extended Target Metrics

Metrics for extended targets are an ongoing research topic. For point targets, it is often enough to
simply use the Euclidean distance between the state vectors to model the error as it fully covers the
distance between two points. However, for extended targets, the direct comparison of individual
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state parameters can be counter-intuitive. Depending on the parameterization, different state
vectors can describe the same shape, even though their Euclidean distance is not zero. Additionally,
it is unclear how a difference in shape should be punished, i.e., if two different but overlapping
shapes are better or worse than two similar, but not overlapping shapes or if a difference in
orientation should be punished more or less than a difference in semi-axes lengths.

A metric considering the actual area of the estimated shape is Intersection-over-Union
(IOU) [GLO11], which is often used in computer vision. The metric divides the overlapping
area by the area of the two shapes’ union, resulting in a single value between 0 and 1. The ad-
vantage of this metric is the incorporation of the actual area. The downsides are, however, that
all non-overlapping shapes produce a value of 0, independent of the differences in their extents.
Additionally, calculating the area of arbitrary shapes is not always simple and computationally
feasible. Another metric is the Hausdorff distance, e.g., [VH00], which does not consider the entire
area, but instead finds the point on one shape which has the maximum minimal distance to a point
on the other shape. This metric works for non-overlapping shapes but is harder to interpret and
can result in counter-intuitive behavior, e.g., the Hausdorff distance of a circle to the same circle
with one spike is the same as the distance of a circle to a circle with several similar spikes.

A different approach is to model the shapes as probability densities and to then apply a metric for
measuring the difference between probability densities on them. A straightforward approach is to
use a uniform distribution across the shape’s surface. Given two shapes described by the densities
f(z) and g(y), the p-Wasserstein distance can be used to describe their difference [HM02]

Wp(f, g) =
(︂

inf
h

∫︂
||z− y||p2h(z,y)dzdy

)︂ 1
p

, (2.25)

with h(z,y) describing any joint density with marginals f and g. Depending on the shape, the
calculation of the integral might be infeasible. As an approximation, the continuous densities can
be replaced with empirical densities fn(z) = 1

n

∑︁n
i=1 δ(zi − z) and gm(y) analogously, to get the

form [HM02]

Wp(f, g) =
(︂

inf
C

n∑︂
i=1

m∑︂
j=1

Cij ||zi − yj ||p2
)︂ 1

p

, (2.26)

with transport matrix C so that
∑︁n

i=1 Cij = 1
m and

∑︁m
j=1 Cij = 1

n . If we have m = n in Equa-
tion (2.26), the formula can be simplified to the Optimal Sub-Pattern Assignment (OSPA) dis-
tance [SVV08] between the discrete densities

Wp(f, g) = min
π∈Πn

(︂ 1

n

n∑︂
i=1

||zi − yπ(i)||p2
)︂ 1

p

, (2.27)
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with Πn being the set of all permutations of the numbers 1 to n. This metric provides a straight-
forward scalar value, but depending on the shape, it can be difficult to find a proper distribution
of the points on the surface. Its easier to only use the contour, but then the weight of the density
would only be on the contour as well.

A covariance matrix can be visualized as an ellipse in 2D. Therefore, elliptic shapes can be modeled
as 2D Gaussian densities, using the center as the mean and reconstructing the covariance matrix
from the orientation and semi-axes lengths of the ellipse. One metric to model the difference be-
tween Gaussians is the Kullback-Leibler divergence, see, e.g., [YBG16]. It measures the information
lost in the approximation of one density with the other. As the Kullback-Leibler divergence is
not a metric because it lacks symmetry, it can be turned into one by taking the sum of it in both
directions. A different metric for Gaussian densities is the GW distance [GS84]

GW(mz,Z,my,Y) =

√︂
||mz −my||22 +Tr[Z+Y − 2(Z

1
2YZ

1
2 )

1
2 ] , (2.28)

with mean my and covariance Y of the Gaussian describing the ellipse y and z analogously. Unlike
the Wasserstein distance based on the discretization of a uniform distribution as described above,
the Wasserstein distance between two Gaussians can be calculated in closed form. However,
modeling the shape as a Gaussian concentrates a larger amount of the probability mass in the
center than a uniform distribution would do. [YBG16] demonstrate, however, that the GW and
the Wasserstein distance based on the discretization of a uniform distribution across the contour
behave similarly for ellipses, while the Kullback-Leibler divergence shows some counter-intuitive
behavior, e.g., quadratic growth of the error in relation to a linearly growing distance between the
centers and the error of the centers depending on the shape matrix.

Due to the same parameterization, the difference between rectangles can be measured using the
GW distance as well. However, the density of the shape would be weighted less in the corners.
This leads to a limitation pointed out by [YBG16], i.e., the GW distance finds no difference in
squares only differing in their rotation (as two circles in this case would be the same independent
of their orientation).

2.3 Special Densities

We will employ different densities in addition to Gaussian densities in this thesis to handle
the unique challenges of ETT. More details can be achieved using a GM density, described in
Section 2.3.1. If a parameter of the density is periodic, e.g., the orientation, the concept of wrapped
distributions can be applied, which is presented in Section 2.3.2.
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2.3.1 Gaussian Mixture

Sometimes, a Gaussian density is not enough to model a part of the system, e.g., the state or noise.
To handle this, the corresponding density can instead be modeled using a GM density. A GM with
n components is distributed according to

x|Xn ∼
n∑︂

i=1

wiN (x̂i,C
x
i ) , (2.29)

with Xn being a set of n components each consisting of a mean x̂i, a covariance Cx
i , and a weight

wi, with the condition that
∑︁n

i=1 wi = 1 and wi ≥ 0 ∀i ∈ {1 . . . n}.

GMs can be used to represent the state of a target to handle unclear associations, e.g., [Sal09].
For example, if an extended target has multiple possible measurement sources, then all possible
associations of the measurement to the sources need to be considered. Similarly, if we have
multiple targets, then all possible associations between measurements and targets need to be
considered. Each of these associations leads to a new GM component and from each component,
new components can arise. This can lead to the number of components growing exponentially over
time, making it computationally infeasible to keep track of all of them. To counter this behavior,
mixture reduction techniques can be applied, as discussed in, e.g., [CWPS11]. In general, the
goal is to find a second mixture Xñ with ñ < n components w̃j , x̃j , and C̃x

j (j ∈ {1 . . . ñ}), which
minimizes a distance measure, e.g., the integral square error, to the original mixture, i.e.,

Xñ = argmin
Xñ

∫︂
(p(x|Xn)− p(x|Xñ))

2dx . (2.30)

Other options for the distance measure include the normalized integral square error or the Kullback-
Leibler divergence.

A simple approach is to prune the components starting with those that have a lower weight until
the desired number of components is reached. This approach can, however, be less precise than
merging of the components. There are different merging based approaches, further discussed
in [CWPS11]. The general idea is to use a greedy merging approach to find an initial reduced GM
and then use optimization to find a reduced GM by merging components in a way that minimizes
a distance measure, e.g., the integral square error, to the original GM. For the greedy approach,
components can be merged in pairs until the desired number of components is reached or clustered
and then the clusters are merged [Sal09]. Examples are the GM reduction via clustering [SH09],
constrained optimized weight adaption [CS10], an approach based on sparse modeling [ZHL12], or
a method based on fuzzy adaptive resonance theory [ZJ14]. [AOÖ15] propose to use the Kullback-
Leibler divergence from the reduced mixture to the original one, not the other way around, and
include pruning in addition to the merging used by the aforementioned approaches. An approach
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consisting of pruning, clustering, and merging via covariance intersection based on an optimization
criterion is described in [XFPW19].

The merging process itself can be conducted via moment matching, finding a single component
Gaussian which captures the mean and covariance of the GM [HH08]. Assume we have a cluster
of n ≤ n components with indices |I| = n and respective means x̂i, covariances Cx

i , and weights
wi (i ∈ I). According to [CWPS11], a single component Gaussian can be calculated using

wmerged =
∑︂
i∈I

wi , (2.31)

x̂merged =
∑︂
i∈I

wi

wmerged
x̂i , (2.32)

Cx
merged =

∑︂
i∈I

wi

wmerged
(Cx

i + x̂ix̂
T
i )− x̂mergedx̂

T
merged . (2.33)

2.3.2 Wrapped Distribution

A wrapped distribution [MJ09, KGH14] is a modification of a probability density to account for
parameters lying on a unit sphere. Given, e.g., a probability density of an angle θ, which by
definition is 2π periodic, the density p(θ) can be wrapped

pw(θ) =

∞∑︂
k=−∞

p(θ + k2π) , (2.34)

with −π ≤ θ < π. In Kalman filtering, the 2π periodicity of the orientation can be handled in a
similar way by wrapping the innovation between −π and π, e.g., [MĆP16]. The formula to restrict
an innovation angle νθ is simply

νθ,w =
(︁
(νθ + π) mod (2π)

)︁
− π . (2.35)

2.4 Dynamic Models

To realize the prediction of the target state, a suitable process model is required. Different models
exist depending on the target type. We will present two, the Nearly Constant Velocity (NCV)
model because of its linearity in Section 2.4.1 and the Coordinated Turn (CT) model because of its
incorporation of the yaw rate in Section 2.4.2. In the following, the time difference between time
steps k and k + 1 is denoted by T .
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2.4.1 Nearly Constant Velocity Model

For the NCV model, e.g. [LJ03], the kinematic part of the state is modeled using a position

m =
[︂
m1 m2

]︂T
, velocity ṁ =

[︂
ṁ1 ṁ2

]︂T
, and sometimes an acceleration. As an example, we

provide a model in 2D using position and velocity, with the acceleration modeled as zero-mean

white process noise
[︂
a1 a2

]︂T
, i.e., we have state vector and discretized process model

xkin
k =

[︂
m1 m2 ṁ1 ṁ2

]︂T
, (2.36)

xkin
k+1 =

⎡⎢⎢⎢⎢⎣
1 0 T 0

0 1 0 T

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦xkin
k +wk . (2.37)

If we assume discrete acceleration process noise (resulting in the model also being called a discrete
white noise acceleration model), i.e., the noise is constant during the sampling period and the
noises drawn in different time steps are uncorrelated, we get [BSLK04]

w =

⎡⎢⎢⎢⎢⎣
0.5T 2 0

0 0.5T 2

T 0

0 T

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

G

[︄
a1

a2

]︄
∼ N (0,G

[︄
σ2
a1

0

0 σ2
a2

]︄
GT) . (2.38)

Sometimes, a polar velocity model is more appropriate. We define the velocity using a scalar
velocity v and orientation α with acceleration noise on the velocity a and noise on the orientation
ω. This changes state, process model, and noise to

xkin
k =

[︂
m1 m2 α v

]︂T
, (2.39)

xkin
k+1 =

⎡⎢⎢⎢⎢⎣
1 0 0 T cos(α)

0 1 0 T sin(α)

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦xkin
k +wk , (2.40)
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w =

⎡⎢⎢⎢⎢⎣
0.5T 2 cos(α) 0

0.5T 2 sin(α) 0

0 T

T 0

⎤⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

G

[︄
a

ω

]︄
∼ N (0,G

[︄
σ2
a 0

0 σ2
ω

]︄
GT) . (2.41)

As the transition matrix now contains the orientation from the state vector, the process model is
not linear anymore. The nonlinear Kalman filter prediction can be applied using, e.g., EKF or UKF.

2.4.2 Coordinated Turn Model

To model turning motions more accurately, the yaw rate ω can be added to the state, resulting in a
Coordinated Turn (CT) or (nearly) constant turn model [RHG14]. Approximating the acceleration
on velocity and yaw rate as 0, a CT model with polar velocity can be derived as

xkin
k =

[︂
m1 m2 α v ω

]︂T
, (2.42)

xkin
k+1 =

⎡⎢⎢⎢⎢⎢⎢⎣
m1 +

2v
ω sin(0.5ωT ) cos(α+ 0.5ωT )

m2 +
2v
ω sin(0.5ωT ) sin(α+ 0.5ωT )

α+ ωT

v

ω

⎤⎥⎥⎥⎥⎥⎥⎦+wk . (2.43)

Assuming constant noise input while approximating the orientation as constant between sampling
times, the acceleration noise can be calculated as

w =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5T 2 cos(α) 0

0.5T 2 sin(α) 0

0 0.5T 2

T 0

0 T

⎤⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

G

[︄
av

aω

]︄
∼ N (0,G

[︄
σ2
av

0

0 σ2
aω

]︄
GT) . (2.44)

Here, av describes the acceleration noise in the direction of the heading, while aω is the acceleration
noise on the yaw rate. For Cartesian velocity, the model can be converted to
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xkin
k =

[︂
m1 m2 ṁ1 ṁ2 ω

]︂T
, (2.45)

xkin
k+1 =

⎡⎢⎢⎢⎢⎢⎢⎣
m1 +

ṁ1

ω sin(ωT )− ṁ2

ω (1− cos(ωT ))

m2 +
ṁ1

ω (1− cos(ωT )) + ṁ2

ω sin(ωT )

ṁ1 cos(ωT )− ṁ2 sin(ωT )

ṁ1 sin(ωT ) + ṁ2 cos(ωT )

ω

⎤⎥⎥⎥⎥⎥⎥⎦+wk , (2.46)

with the noise under constant noise assumption being approximated as

w =

⎡⎢⎢⎢⎢⎢⎢⎣
0.5T 2 cos(α) 0

0.5T 2 sin(α) 0

T cos(α) 0

T sin(α) 0

0 T

⎤⎥⎥⎥⎥⎥⎥⎦
⏞ ⏟⏟ ⏞

G

[︄
av

aω

]︄
∼ N (0,G

[︄
σ2
av

0

0 σ2
aω

]︄
GT) , (2.47)

with α = ∡(
[︂
ṁ1 ṁ2

]︂T
). Again, an appropriate model needs to be chosen to deal with the

non-linearities, e.g., EKF or UKF. For more details, we refer to [RHG14].



3
Elliptical Target Tracking on Doppler RADAR

Contents
3.1 Problem Setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Ellipse-RHM-EKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.3 MEM-EKF* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Due to a higher resolution resulting from higher frequency, automotive RADAR can provide
more information about its surroundings than classic RADAR used for tracking, e.g., distant
airplanes [GSD+17]. Multiple RADARs can be utilized to realize a surround view of the host.
Unlike camera and LIDAR, RADAR is more robust against bad lighting or weather conditions.
On the other hand, RADAR often has lower measurement rate and higher noise than LIDAR.
An additional feature of RADAR is the usage of the Doppler effect to measure the velocity of a
measurement point in measurement direction, the so-called Doppler velocity or range rate.

This chapter deals with trackers using elliptic shapes to track extended targets. The exact problem
setting is described in Section 3.1. Several elliptical extended target trackers exist in literature, all
with their own advantages and disadvantages. To better differentiate them, we focus on approaches,
which model the shape using orientation and semi-axes lengths and are based on the common
spatial distribution model [GS05], assuming a uniform distribution of the measurements across
the surface. We utilize a variant of the Random Hypersurface Model (RHM) [BH14, BH09, BNH10]
using the polar ellipse equation [ZXWA13] and provide an EKF formulation using the aforemen-
tioned ellipse parameterization in Section 3.2. Another method of interest is the MEM-EKF* [YB19],
which is a problem-tailored EKF for ellipses. It has been demonstrated to be able to provide
better results during turning maneuvers than the RM model [Koc08, FFK11]. The latter models
the shape as a positive definite matrix distributed by an inverse Wishart density. The MEM-EKF*
is used in literature, e.g., for tracking on image data in conjunction with a convolutional neural
network in [XN21]. It is presented in Section 3.3. For both trackers, we provide a discussion

21
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on the incorporation of the range rate measurements. For the MEM-EKF*, we also present an
implementation using range rate.

Remark. This chapter is based on the conference publication [1], which compares several elliptic extended
target trackers parameterized with center, orientation, and semi-axes lengths. The Doppler extension for
MEM-EKF*, MEM-EKF*-D, is adapted from the conference publication [5].

3.1 Problem Setting

We consider the problem of single ETT, i.e., a target’s shape is bigger than a single sensor resolution
cell. Unlike a point target, which can generate a single or no measurement per time step, an
extended target can also generate more than one measurement per time step, distributed across its
shape. See Section 2.2 for more details on the foundations of ETT. We describe our assumptions
for extended targets in Section 3.1.1. We assume the measurements stem from a RADAR sensor,
which can produce detections not just from the contour, but from across the entire surface. Related
works in ETT are presented in Section 3.1.2 and properties of RADAR are discussed along with
datasets and tracking methods incorporating the range rate in Section 3.1.3.

3.1.1 Target Model Assumptions

This work focuses on elliptical shapes as they are convenient due to their simplicity, their suitability
for high noise scenarios, in which the target’s shape is hard to estimate, and them having the
same parameterization as bounding boxes. We parameterize the ellipse using the center m ∈ R2,
orientation α ∈ [−π, π[, and semi-axes lengths a ∈ R+ and b ∈ R+. Unlike shape matrices, this
representation can consider different noise values on the individual shape parameters, e.g., when
an elliptical target has fixed semi-axes lengths, but the orientation can change, the noise on the
semi-axes can be chosen much lower than on the orientation. This has been demonstrated in [YB19].
In addition, kinematic parameters are tracked. Different models are possible, e.g., a Cartesian
velocity, a polar velocity, or a polar velocity in the direction of the shape’s orientation. It must
be noted here that, while using the same parameter for the velocity and shape orientation can
be intuitive, in some situation, it is not always appropriate, e.g., due to the drifting motion of
ships [FBH19, SRW15]. In the following, we have the change in position ṁ along with optional
additional parameters like the yaw rate, which are represented as dots our state equation. In
summary, our considered state at time step k, xk, is modeled as

xk =
[︂
mT

k ṁT
k . . . αk ak bk

]︂T
. (3.1)

Each time step k, the state is represented by a Gaussian random variable xk ∼ N (x̂k,C
x
k).

We assume that the sensor measures nk 2D reflection points or sources z
(i)
k in Cartesian space
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(i ∈ {1, . . . , nk}), which are distributed uniformly across the surface and are mutually indepen-
dent [GGMS05, GS05]. Each measurement source i can be located anywhere on the surface of the
ellipse, so we can describe it using the following formula which holds true for all points z(i)k on the
surface of the ellipse described by the matrix Ak

(z
(i)
k −mk)

TAk(z
(i)
k −mk) ≤ 1 , (3.2)

with

Ak =

[︄
cos(αk) − sin(αk)

sin(αk) cos(αk)

]︄[︄
a2k 0

0 b2k

]︄[︄
cos(αk) − sin(αk)

sin(αk) cos(αk)

]︄T

. (3.3)

The sources are then corrupted by independent Gaussian white noise vk ∼ N (0,Cv
k). This gives

us the measurement equation of measurement i at time k

y
(i)
k = z

(i)
k + v

(i)
k . (3.4)

For the sake of simplicity, the measurement and time indices are omitted in the remainder of this
chapter.

3.1.2 Related Work

In general, different shape models exist, such as elliptic shapes [Koc08, FFK11, BNH10, YB19,
BDD17,BH14,GBR17,LL16,BH09,BFF+10,YSD20,ZXWA13,Gov19,VBGs+15,DWS11,AGS19,TÖ21,
LLL20, AMPG13, GLO11] or rectangles [GLO11, SWBH12]. There are also approaches modeling
more detailed distributions on a simple shape, e.g., [SD18, KHB18, KHB19, HK20, ZL21, XWB+21,
CLLL21, YWB+21]. More complex shapes can be achieved via multiple ellipses [LL14, TÖO21],
multiple reflector points [BWBS+17, HSSS12], star-convex shapes via RHM [BH14, WÖ15, HSRD16,
TLTK19, KBW17], splines [KHB18, NBW19], or via an extension deformation approach [CLL20].
[LGYBC21, LGB+19] track banana-shaped clusters based on shape matrices and Lie groups using
an Iterative Extended Kalman Filter (IEKF), e.g., [Zha97].

An elliptic extended target approach which fulfills the criteria set at the beginning of this chapter is
the Independent Axis Estimation (IAE) by [Gov19], which splits the state into a kinematic state and
two independent Gaussian random variables to model the semi-axis lengths. They approximate
the orientation of the shape via the orientation of the velocity vector, similar to [BFH12]. The
kinematic part is updated using Kalman filter formulas and they derive closed-form formulas for
the update of the semi-axis lengths using the eigenvalues of the spread matrix, approximating its
rotation with the velocity vector as well.
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Other elliptical extended target trackers which we do not consider here are the aforementioned,
widely-used RM approaches [Koc08, FFK11, LL16, VBGs+15], pioneered by Koch [Koc08] and
further developed by Feldmann et al. [FFK11]. They model the shape as a shape matrix instead of
using explicit parameters as in Equation (3.1). In this approach, the kinematic and shape states are
decoupled, modeling the kinematic state as a Gaussian density, while the shape state is realized
using an inverse Wishart distributed shape matrix. Here, the shape state is updated using the
spread matrix of the measurements.

A method which uses the random matrix likelihood, but models the shape parameters as orienta-
tion and semi-axes is presented in [TÖ21]. They do, however, model the parameters as independent
random variables, using Gamma distributions for the semi-axes, and apply a variational approach
for the update. An approach proposed by [DWS11] is not based on the common spatial distribution
model, modeling the measurements’ principal components as Gaussians. An ellipse is tracked
in [AMPG13] using a convolutional particle filter and approximates the orientation by the velocity
vector. In [YSD20], an ellipse is modeled via image moments and then tracked using an RHM
along with an UKF. The approach by [LLL20] constructs a measurement equation using the polar
ellipse equation and greedy association, but they model the orientation using a vector consisting

of
[︂
cos(α) sin(α)

]︂T
instead of just α, requiring a pseudo-measurement to restrain it. They handle

non-linearities using an UKF for the kinematic update and apply optimization to estimate the
semi-axes.

Other approaches which can deal with a variety of star-convex shapes apply an RHM [BH14,
WÖ15, HSRD16, TLTK19, KBW17], which defines a function to describe the contour of the target.
There exists a version which utilizes the implicit ellipse equation to create a measurement equation
for ellipses [BNH10], but often a radial function is defined yielding the distance of the center to the
contour for a given angle. This is possible due to the star-convex assumption. The radial function
can be used in combination with a scaling parameter to allow a distribution across the surface
and not just the contour. Various implementations exist realizing the radial function using the
polar ellipse equation for elliptic shapes [ZXWA13], [3] or using Fourier coefficients [BH11] or a
Gaussian Process (GP) [WÖ15] for arbitrary star-convex shapes. A GP is described by a mean and
a kernel function and [WÖ15] provide a periodic kernel, while a modification in [HSRD16] uses
an axis-symmetric kernel. For these approaches, a greedy association model is used to determine
the expected measurement source, i.e., the distribution of the source is approximated by a Dirac
distribution. This can, however, lead to a bias in the estimation of the target’s size. More details on
that follow in the description of the RHM in Section 3.2. Discussions and approaches to handle the
bias can be found in, e.g., [BH14, BH09, BFF+10, ZXWA13, FZH14, FDZH16, FZBH15].

An approach sampling equidistantly distributed measurement sources on a star-convex shape
defined by a radial function and associating measurements to them via an Expectation Maxi-
mization (EM) approach can be found in [KBW17]. A different association for a GP based RHM
is proposed in [MBL+20], which samples expected measurement sources based on the sensor
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resolution and uses global nearest neighbor to associate the measurements to them. A method
defining a shape function based on splines using a running parameter can be found in [KHB18] and
a method modeling more complex shapes via level-set RHMs is presented in [ZFBH16]. Tracking
of star-convex shapes using GPs via a convolutional particle filter has been done in [ADFAM17].
For more complex shapes, a method which uses multiple elliptical sub-objects and handles the
measurement update via a variational Bayesian approach is presented in [TÖO21]. Another recent
implementation using variational Bayes to track a GP based RHM can be found in [KKÖ21].

A different approach is to model the shape using reflection points, e.g., [HSSS12, BWBS+17],
handling the association via Probabilistic Data Association (PDA) [BSDH09] as in [HSSS12] or via
an EM strategy [BWBS+17]. The Probabilistic Multi-Hypothesis Tracker (PMHT) [SL95] is used
to handle multiple extended targets and point targets at the same time in [TLTK19], using a GP
based target model and dynamically estimating the number of contour points via the expected
measurement rate. An implementation of the histogram-PMHT for extended targets using RMs
can be found in [WD14]. The work in [PMGA11] defines a likelihood for arbitrary shapes by
discretizing the visible part of the contour and applies a particle filter.

3.1.3 Automotive Doppler RADAR

A RADAR measurement point usually consists of range and angle, but can be converted to
Cartesian coordinates as is discussed in Section 3.3.1. In general, RADAR sensors can use the
Doppler effect to determine the velocity of a measured point in the direction of the measured
angle. This can be considered as the change rate of the range and is often called range rate.
The nuScenes dataset [CBL+20] is an example of a dataset providing RADAR data with range
rate measurements. They utilize five 77 GHz Frequency-Modulated Continuous-Wave (FMCW)
RADAR sensors positioned at the corners and the front of the vehicle. They have a range of up to
250 m, a capture frequency of 13 Hz, and an accuracy in the range rate measurement of ±0.1 km/h.
The dataset contains scenes of about 20 s long from urban scenarios.

Other datasets include CARRADA [ONR+21], which provides range-Doppler and range-angle
measurements of cars, pedestrians, and cyclists, the Oxford Radar RobotCar dataset [BGM+20,
MPLN17], which provides range-angle measurements, the Astyx dataset [MK19], which provides
a smaller but higher resolution set of RADAR point clouds, and the Epan dataset [YSKR20], which
uses a RADAR in some of its scenes. Furthermore, [MWRH20] present a high resolution RADAR
dataset using a synthetic aperture RADAR providing range, azimuth, and Doppler information.
The PixSet dataset [DMT+21] presents annotated data with focus on full-waveform LIDAR data,
but also contains detections from a RADAR sensor.

Incorporation of the range rate into the measurement equation of tracking algorithms can be found,
e.g., in [DHL04] for point targets. An approach for extended targets is presented in [KSD16],
defining a likelihood for a particle filter. They apply it on multiple targets in [SKRD16]. An
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approach using multiple reflection points can be found in [BWBS+17] based on EM and an EKF.
While [HSSS12] use reflectors as well, they cluster them, use PDA for the association, and apply
an UKF. In [SRW15], Jacobians are used to incorporate the Doppler measurement into the RM
tracker by transforming the shape matrix and updating the kinematics in conjunction with an UKF.
Based on the RHM approach which uses a GP for the radial function from [WÖ15], the model
was extended by the range rate using an EKF in [6]. Another approach presented in [KBK+16]
calculates the mean of the measurements to avoid modeling a shape, applying an offset to account
for the fact that the mean is not always at the vehicle’s center of rotation, and incorporates
the range rate by calculating the velocity profile and applying an UKF. Learned models via
variational approaches [SD18] which handle more complex distributions can be found as well. In
the volcanormal model [BDD17], which models a density around the contour of an ellipse, the
range rate measurement is integrated and the update conducted via batch optimization techniques.
In [GM20], they directly use the extent of a measurement cluster for the shape update and calculate
the velocity of the cluster via recursive least squares. [CLLL21] provide a measurement equation for
a more complex distribution of the measurement sources and incorporate the range rate, handling
non-linearities with an UKF. A grid based approach to enhance measurement information is
provided in [BML+20], which calculates occupancy evidence.

3.2 Ellipse-RHM-EKF

The RHM [BH14, BH09, BNH10] approach has been developed to work for star-convex shapes.
[BH14, BH09, BFF+10] provide an (implicit) ellipse parameterization, but they model the shape
using the elements of the shape matrix’ square root obtained via a Cholesky decomposition and
apply an UKF. However, the Cholesky decomposition does not have an intuitive meaning and
similar to using a shape matrix, individual ellipse parameters cannot be tuned. Therefore, we
suggest to model the shape using orientation and semi-axes lengths.

Furthermore, we adapt the usage of the polar ellipse equation for the radial function of the RHM
from [ZXWA13]. This results in an explicit measurement equation. However, due to approxima-
tions regarding the actual measurement source, this method introduces a bias. [BH11] suggest
an implicit measurement equation to reduce the bias for their RHM based on Fourier coefficients
and [ZXWA13] adapted this idea for their polar ellipse equation. Both approaches handle the
non-linearities using an UKF. In the following, we will present compact closed-form expressions
using an EKF implementation for both the explicit measurement equation in Section 3.2.1 and the
implicit one in Section 3.2.2.
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Figure 3.1: Visualization of the radial function for an ellipse, with the radial function providing the
length of the dashed line between the center and the contour point at angle θ.

3.2.1 Explicit Equation

The polar ellipse equation of our state x

rx(θ) =
ab√︁

(b · cos(θ − α))2 + (a · sin(θ − α))2
, (3.5)

describes the distance of the ellipse’s center to its surface for a given angle θ and is visualized in
Figure 3.1. To model a distribution across the entire surface, we introduce a scaling factor s and
model the measurement source as

z = m+ srx(θ)eθ , (3.6)

with eθ =
[︂
cos(θ) sin(θ)

]︂T
describing a unit vector in direction θ. Inserting (3.6) into (3.4), we get

the measurement equation

y = h(x) = m+ srx(θ)eθ + v . (3.7)

This leaves us with two parameters to model the actual distribution, the input angle θ of the radial
function and the scaling factor s. In [BH14], they demonstrated that a uniform distribution on the
surface of the ellipse can be realized for a given angle θ if the squared scaling factor is uniformly
distributed, i.e.,

s2 ∼ U(0, 1) . (3.8)

As a Kalman filter assumes all random variables to be Gaussian distributed, s is approximated
by a Gaussian with mean ŝ = 2

3 and variance σ2
s = 1

18 . To deal with the resulting multiplicative
noise term, [WÖ15] proposed to shift the zero-mean portion of s into an additive noise term. This
replaces s in (3.7) with ŝ and the noise v with

v = (s− ŝ)rx(θ)eθ + v . (3.9)
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The angle θ on the other hand is commonly approximated by a Dirac delta function, which in
turn is determined based on the target to measurement geometry, i.e., the orientation of the vector
(y −m)

θ ≈ ∡(y −m) . (3.10)

This approach to approximate θ is called a greedy approximation. Associating a specific measure-
ment to an angle θ can be seen as associating the measurement to a measurement source, which is
defined by θ. Therefore, this approach is also called greedy association. While this method works
well enough in most cases, it is sensitive to the prior estimate and it introduces a bias in high noise
scenarios, i.e., the size of the shape is overestimated. Other more complex methods exist as well,
such as the partial likelihood [FZBH15], but they are excluded as we want to focus on compact
closed-form solutions.

The algorithm is named Ellipse Random Hypersurface Model Extended Kalman Filter
(Ellipse-RHM-EKF). It processes the measurements sequentially. The state estimate at time step k
after the first i measurements have been processed is denoted as x̂(i)

k and its covariance matrix is
named C

x(i)
k . Given mk measurements, the measurement update at time step k is summarized in

Algorithm 1. The time update can be conducted using any appropriate dynamic model.

3.2.2 Implicit Equation

[BH11,ZXWA13] state that the influence of the greedy association and thus the bias can be reduced
by reformulating the measurement equation into an implicit form

0 = g(x,y) = s2 · ∥rx(θ)∥2⏞ ⏟⏟ ⏞
g1

−∥y −m∥2⏞ ⏟⏟ ⏞
g2

+2ŝrx(θ) · eT
θ · v + ∥v∥2⏞ ⏟⏟ ⏞
g3

. (3.11)

The multiplicative noise from the scaling factor s in g1 is handled similarly to the explicit version
and results in the modified g1 and g4 in the following equation (keep in mind that s2 ∼ U(0, 1), so
that E[s2] = 0.5)

g(x,y) ≈ 0.5 · ∥rx(θ)∥2⏞ ⏟⏟ ⏞
g1

−∥y −m∥2⏞ ⏟⏟ ⏞
g2

+2ŝrx · eT
θ · v + ∥v∥2⏞ ⏟⏟ ⏞
g3

+(s2 − 0.5) · ∥rx(θ)∥2⏞ ⏟⏟ ⏞
g4

. (3.12)

The general structure of the algorithm, named Ellipse Random Hypersurface Model Extended
Kalman Filter Implicit (Ellipse-RHM-EKF-imp), is the same as for the explicit version and can be
found in Algorithm 2. The analytic approximations dealing with the measurement error are based
on [Bau13].
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y(i)
k

)︂−1 (︂
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k

)︂T

x = [mT . . . α a b]
T
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T

rx(θ) =
ab√

(b cos(θ−α))2+(a sin(θ−α))2

θ = ∡(y −m)

v ∼ N (0,Cv
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H =
(︁

∂h
∂m . . . ∂h
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∂h
∂a

∂h
∂b

∂h
∂r

)︁
∂h
∂m = I2 + µs ·

(︃
rx(θ)

(︃
− sin(θ)
cos(θ)

)︃
· ∂θ
∂m + eθ · ∂rx

∂m

)︃
∂θ
∂m = 1

(y1−m1)2+(y2−m2)2
· (y2 −m2 −(y1 −m1))

∂rx
∂m = ∂rx

∂θ · ∂θ
∂m

∂rx
∂θ = 0.5·(ab3−a3b)·sin(2(θ−α))√

(b cos(θ−α))2+(a sin(θ−α))2
3

∂h
∂α = −∂rx

∂θ · ŝ · eθ

Cs = σ2
s2 · ∥rx(θ)∥4

C
x(0)
k+1 = FC

x(nk)
k FT +Cw

k

x̂
(0)
k+1 = Fx̂

(nk)
k

∂h
∂a = ŝ · eθ ·

(︃
b√

(b cos(θ−α))2+(a sin(θ−α))2
− a2b sin(θ−α)2√

(b cos(θ−α))2+(a sin(θ−α))2
3

)︃
∂h
∂b = ŝ · eθ ·

(︃
a√

(b cos(θ−α))2+(a sin(θ−α))2
− ab2 sin(θ−α)2√

(b cos(θ−α))2+(a sin(θ−α))2
3

)︃

Algorithm 1: The Ellipse-RHM-EKF algorithm iterative measurement update and time
update (given a linear process model). At time step k, mk measurements y

(i)
k with i ∈

{1 . . .mk} are sequentially processed. The upper rounded box prepares the values for the
Kalman filter update and the second one describes the actual update. Below, variables
and functions are defined and the rounded box below describes how the Jacobian and the
noise term depending on the scaling factor are calculated. The derivatives of the kinematic
part represented by dots is 0. Note that the most recent estimate x̂

(i−1)
k is used to realize

the Jacobian H and the noise covariance Cs. The time update is outlined in the lower box.
Based on [1].
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−∥y −m∥2⏞ ⏟⏟ ⏞
g2

+2ŝrx(θ) · eTθ · v + ∥v∥2⏞ ⏟⏟ ⏞
g3
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g4
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k ,y

(i)
k )− g2(x̂

(i−1)
k ,y

(i)
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2
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θ = ∡(y −m)
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(︁
∂g1
∂m . . . ∂g1

∂α
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∂a

∂g1
∂b

∂g1
∂r

)︁
∂g1
∂θ = 0.5 (a2b4−a4b2) sin(2(θ−α))

((b cos(θ−α))2+(a sin(θ−α))2)2

∂θ
∂m = 1

(y1−m1)2+(y2−m2)2
· (y2 −m2 −(y1 −m1))

∂g1
∂α = −∂g1

∂θ

∂g1
∂b = 0.5( 2a2b

(b cos(θ−α))2+(a sin(θ−α))2 − 2a2b3 cos(θ−α)2

((b cos(θ−α))2+(a sin(θ−α))2)2 )

∂g1
∂m = ∂g1

∂θ · ∂θ
∂m

∂g1
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(b cos(θ−α))2+(a sin(θ−α))2 − 2a3b2 sin(θ−α)2

((b cos(θ−α))2+(a sin(θ−α))2)2 )
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∂g2
∂m . . . ∂g2

∂α
∂g2
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∂m = (−2(y1 −m1) −2(y2 −m2))
∂g2
∂α = ∂g2

∂a = ∂g2
∂b = 0

Cv = tr(ttTCv) + tr((Cv)2) + tr(Cv)2

t = 2ŝrx(θ)e
T
θ

Cs = σ2
s2 · ∥rx(θ)∥4

Algorithm 2: Ellipse-RHM-EKF-imp iterative measurement update using mk measure-
ments from time step k and the update with a specific measurement y(i)

k is shown. The
upper rounded box prepares the values for the Kalman filter update and the second one
describes the actual update. Below, variables and functions are defined and the rounded
box below describes how the Jacobians and the noise terms are calculated. The derivatives
of the kinematic part represented by dots is 0. Note that the most recent estimate x̂

(i−1)
k is

used to realize the Jacobians H1 and H2 and the noise covariances Cv and Cs. Based on [1].
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An advantage of both the explicit and implicit version is that due to the joint state vector, it is easy
to use the shape’s orientation α as the direction of the velocity and realize the kinematics as a scalar
velocity v, e.g.,

xcomb =
[︂
mT v . . . α a b

]︂
, (3.13)

As this results in a non-linear process model, an EKF or UKF can be used here to handle the
non-linearities.

3.2.3 Range Rate usage

The formulas of an EKF RHM can be extended by the range rate as was shown in [6], estimating
the range rate at the measurement determined via greedy association. While [6] uses a GP to
calculate the radial function, the corresponding formulas can be swapped for the polar ellipse
equation. Please note that the original work assumes a fix shape as well as contour measurements.
Further research is required to determine the effectiveness of the Doppler given uncertain shape
parameters or different measurement distributions.

3.3 MEM-EKF*

A different approach to handle the measurement distribution is the introduction of a Multiplicative

Error Model (MEM) [BFH12, YB16, YB17, YB19]. It uses a multiplicative noise term h =
[︂
h1 h2

]︂T
to create a measurement equation without the need for a greedy association. The resulting explicit
measurement equation has the form

y = m+

[︄
cosα − sinα

sinα cosα

]︄[︄
a 0

0 b

]︄
⏞ ⏟⏟ ⏞

S

[︄
h1

h2

]︄
+ v . (3.14)

The multiplicative noise term h can be interpreted as describing a distribution across the unit circle,
which is then transformed using the shape parameters in the matrix S. While h would ideally
describe a uniform distribution across the surface, it must be approximated as a Gaussian to work
in the Kalman filter framework. Therefore, we have h ∼ N (0,Ch) with Ch = diag

(︂ [︂
0.25 0.25

]︂ )︂
to approximate a uniform distribution across an ellipse. The variance can be set to 1

3 to approximate
a uniform distribution across a rectangle instead.
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To handle the multiplicative noise, [YB19] developed a problem-tailored Kalman filter, the
MEM-EKF*. To achieve a closed form solution, they decouple the kinematic and shape state,

i.e., they use the state x =
[︂
rT pT

]︂T
with

r =
[︂
mT ṁT . . .

]︂T
, (3.15)

p =
[︂
α a b

]︂T
, (3.16)

which are both modeled as Gaussian random variables with means r̂ and p̂ and covariances Cr

and Cp, respectively. This decoupling is not always justified in practical applications, but the
formulas still consider correlations between the two state vectors based on the measurement
equation. The variance of the multiplicative noise is used to incorporate the shape parameters’
mean and variance into the kinematic update via analytic approximations. This is justified as the
distribution of the measurement sources is described by mean and variance of the multiplicative
noise. The measurement equation is linearized as

y ≈ Hr+ Sh+

[︄
hTJ1

hTJ2

]︄
(p− p̂) + v , (3.17)

with the exact realization of H depending on r so that Hr = m. S is realized using the values of p̂
and Jacobians J1 and J2 can be found in [YB19]. This results in a measurement noise covariance

Cy = HCrHT + SChST⏞ ⏟⏟ ⏞
CI

+CII +Cv , (3.18)

with the elements of CII calculated as

CII
mn = tr(Cp(Jn)

TChJm) , (3.19)

and CII
mn referring to the element at the mth row and nth column of CII. The update is then

conducted using the Kalman filter formulas.

For the shape update a pseudo-measurement is defined based on the innovation of the kine-
matic update. This is necessary, as with the ordinary measurement, the shape state could not
be fully observed, as is proven for axis-aligned extended targets in [BFH12]. For the calcu-
lation of the pseudo-measurement, we utilize the Kronecker product ⊗, which is defined as

y ⊗ y =
[︂
y21 y1y2 y2y1 y22

]︂T
. It can be seen that the second and third element are the same.

The pseudo-measurement is then calculated as the Kronecker product of the innovation with the
duplicate elements removed via the matrix multiplication
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yp =

⎡⎢⎣1 0 0 0

0 0 0 1

0 1 0 0

⎤⎥⎦(︂
(y − ŷ)⊗ (y − ŷ)

)︂
. (3.20)

The expected pseudo-measurement is then

ŷp =
[︂
Cy

11 Cy
22 Cy

12

]︂T
, (3.21)

with Cy
mn referring to the element at the mth row and nth column of Cy. Linearizing the corre-

sponding measurement equation around p, we get the Jacobian

M =

⎡⎢⎣ 2S1C
hJ1

2S2C
hJ2

S1C
hJ1 + S2C

hJ2

⎤⎥⎦ , (3.22)

with S1 and S2 being the first and second row of S respectively. The derivation of M as well as the
innovation covariance matrix can be found in [YB19].

As the MEM-EKF* does not use a greedy association model, it does not suffer from a bias in the
shape estimation or a prior dependency for the measurement to target association. Therefore, it is
more robust. However, it must still be noted that the prior needs to be chosen carefully, because a
prior which provides a significant portion of the probability mass to negative semi-axes lengths
can lead to unintuitive results.

In general, a Cartesian velocity is used for the kinematic state, but [YB19] present a modification to
extend r by a yaw rate ω and incorporate its influence on the shape during the time update.

3.3.1 Range Rate Usage

The following section is based on our work [5]. We discuss how to make use of the unique range
rate property of Doppler RADAR in the MEM-EKF*. We consider the same state dimensions as
before, however, as the velocity is relevant for the measurement update, we explicitly define here

that it consists of a Cartesian velocity ṁ =
[︂
ṁ1 ṁ2

]︂T
and a yaw rate ω, i.e., we have

r =
[︂
m1 m2 ṁ1 ṁ2 ω

]︂T
, (3.23)

p =
[︂
α a b

]︂T
. (3.24)
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Figure 3.2: Example of the transformation bias from polar to Cartesian coordinates. The original
mean is displayed as a blue circle in Cartesian coordinates. Samples drawn from the original
distribution in polar space and transformed into Cartesian space are marked with gray dots. The
mean of the samples in Cartesian space is drawn as a red cross, showing a visible bias to the actual
mean. The sensor position is marked with a black diamond.

Previously, we assumed the measurements to be in Cartesian coordinates. In reality, the RADAR
measurements consist of range, angle, and range rate ỹ =

[︂
r θ ṙ

]︂
with additive zero-mean

Gaussian measurement noise on those coordinates ṽ ∼ N (0,Cṽ), as mentioned in Section 3.1.3. In
the remainder of this work, we assume the elements of the measurement noise to be uncorrelated
in polar coordinates, i.e., Cṽ = diag

(︂ [︂
σ2
r σ2

θ σ2
ṙ

]︂ )︂
. The range and angle measurements can be

transformed into Cartesian measurements

yc
b = r

[︄
cos(θ)

sin(θ)

]︄
. (3.25)

However, the conversion into Cartesian space under Gaussian noise in polar space leads to the
introduction of a bias. Figure 3.2 shows an example in which 1000 samples in polar space with

mean
[︂
10.0 0.0

]︂T
and covariance diag

(︂ [︂
0.2 0.05π

]︂ )︂
are drawn, transformed into Cartesian

space and plotted as gray dots along with the true and sample mean, revealing a clear bias.
This bias can be removed and the measurement noise covariance of the transformed noise v be
adequately estimated using the formulas from [LBS93]
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yc = r

[︄
cos(θ)

sin(θ)

]︄
1

e−0.5σ2
θ

, (3.26)

Cv
11 = r2e−2σ2

θ (cos(θ)2(cosh(2σ2
θ)− cosh(σ2

θ)) + sin(θ)2(sinh(2σ2
θ)− sinh(σ2

θ)))

+ σ2
re

−2σ2
θ (cos(θ)2(2 cosh(2σ2

θ)− cosh(σ2
θ)) + sin(θ)2(2 sinh(2σ2

θ)− sinh(σ2
θ))) , (3.27)

Cv
11 = r2e−2σ2

θ (sin(θ)2(cosh(2σ2
θ)− cosh(σ2

θ)) + cos(θ)2(sinh(2σ2
θ)− sinh(σ2

θ)))

+ σ2
re

−2σ2
θ (sin(θ)2(2 cosh(2σ2

θ)− cosh(σ2
θ)) + cos(θ)2(2 sinh(2σ2

θ)− sinh(σ2
θ))) , (3.28)

Cv
12 = Cv

21 = sin(θ) cos(θ)e−4σ2
θ (σ2

r + (r2 + σ2
r)(1− eσ

2
θ )) , (3.29)

with Cv
nm referring to the element of Cv in row n and column m. They derive the formulas

analytically, approximating the true measurement in the formulas by taking the expectation and
conditioning it on the measurement. Note that this transforms the measurements into Cartesian
coordinates in sensor space. To transform it into global coordinates, the data needs to be rotated
and shifted by the sensor’s orientation and position. Please note that it is still valid to assume a
Cartesian measurement, as we can assume that the transformation and removal of the bias has
been done in a preprocessing step.

For the calculation of the range rate, we define the sensor position s ∈ R2 and the true Cartesian

measurement source in local sensor coordinates zl =
[︂
z1,l z2,l

]︂T
= z− s as well as the target’s

center in local sensor coordinates ml =
[︂
m1,l m2,l

]︂T
= m− s. The formula for the range rate is

then

ṙ =
zl

||zl||2

(︂[︄
ṁ1

ṁ2

]︄
+ ω

[︄
−(zl,2 −ml,2)

zl,1 −ml,1

]︄)︂
. (3.30)

The velocity at a point on the target consists of the velocity of the target and an influence of the
yaw rate, which depends on the direction and length of the vector from the target’s center to the
detected point. The velocity is then projected onto the measurement direction. This is visualized
in Figure 3.3. To reduce the non-linearities, we use a pseudo-measurement for the range rate
as suggested in [DHL04] by multiplying the original range measurement with the range rate
measurement, resulting in

ṙp = ṙr = zl

(︂[︄
ṁ1

ṁ2

]︄
+ ω

[︄
−(zl,2 −ml,2)

zl,1 −ml,1

]︄)︂
. (3.31)

Due to the incorporation of the range measurement into the range rate measurement, the noise
covariance needs to be changed as follows [DHL04]
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a

b
α

ω

ṁ

z

ω × (z−m)

ṁ+ ω × (z−m)

s

ṙ

m

Figure 3.3: Calculation of the range rate measurement ṙ derived at a measurement source z.
× denotes the cross product, the calculation is done as in 3.30. The actual range rate measurement
ṙ is the length of the red line.

Cv
33 = σ2

r ṙ
2 + σ2

ṙr
2 + 3σ2

rσ
2
ṙ , (3.32)

Cv
31 = Cv

13 = cos(θ)σ2
r ṙ , (3.33)

Cv
32 = Cv

23 = sin(θ)σ2
r ṙ . (3.34)

Note that this transformation holds only if the range and range rate are independent. If they are
correlated by some factor ρ, this needs to be reflected in the formulas. We refer to [DHL04] for the
corresponding formulas and more information on this topic. For this thesis, we assume ρ = 0.

To incorporate the pseudo range rate measurement, we define the following measurement equation

h(r,p) =
[︂
hc(r,p)T hṙ(r,p)

]︂T
+ v , (3.35)

hc(r,p) = m+ Sh , (3.36)

hṙ(r,p) = ṁ1m1,l + ṁ2m2,l + (ṁ1S1 + ṁ2S2 − ωm1,lS2 + ωm2,lS1)h , (3.37)

with S1 and S2 as the rows of S as defined in (3.14).

As in the original MEM-EKF*, we linearize around r and p

y ≈

⎡⎢⎣ m̂1

m̂2

̂̇m1m̂1,l + ̂̇m2m̂2,l

⎤⎥⎦+H(r− r̂) + Sdh+

⎡⎢⎣h
TJr

1

hTJr
2

hTJr
3

⎤⎥⎦ (r− r̂) +

⎡⎢⎣h
TJp

1

hTJp
2

hTJp
3

⎤⎥⎦ (p− p̂) + v , (3.38)
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with h =
[︂
h1 h2

]︂T
and Jp

1 ,J
p
2 being the same as J1,J2 from the original formulas [YB19] and Sd

and the Jacobians realized using the values of p̂ and r̂ and constructed as

Sd =

[︄
S

ṁ1S1 + ṁ2S2 − ωm1,lS2 + ωm2,lS1

]︄
, (3.39)

H =

⎡⎢⎣ 1 0 0 0 0

0 1 0 0 0

ṁ1 ṁ2 m1,l m2,l 0

⎤⎥⎦ , (3.40)

Jr
1 = Jr

2 = 02×5 , (3.41)

Jr
3 =

[︂
−ωST

2 ωST
1 ST

1 ST
2 −m1,lS

T
2 +m2lS

T
1

]︂
, (3.42)

Jp
3 =

[︂
Jp
31 Jp

32 Jp
33

]︂
, (3.43)

Jp
31 =

[︄
l(sin(α)(−ṁ1 − ωm2,l) + cos(α)(ṁ2 − ωm1,l))

w(cos(α)(−ṁ1 − ωm2,l) + sin(α)(−ṁ2 + ωm1,l))

]︄
, (3.44)

Jp
32 =

[︄
sin(α)(ṁ2 − ωm1,l) + cos(α)(ṁ1 + ωm2,l)

0

]︄
, (3.45)

Jp
33 =

[︄
0

sin(α)(−ṁ1 − ωm2,l) + cos(α)(ṁ2 − ωm1,l)

]︄
. (3.46)

We exclude the range rate measurement from the shape update, because the shape update contains
greater non-linearities and the range rate is mainly influenced by the kinematic properties. As the
algorithm uses a multiplicative error and linearizations based on the MEM-EKF* and extends the
measurement equation by the range rate of Doppler RADAR, we call it the MEM-EKF*-D.
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4
Extended Target Tracking with Self-occlusion
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A limitation of the classic elliptic (or rectangular) extended target trackers described in the previous
chapter is that they assume that measurements originate from the entire surface or, in case of
the RHM based approaches, it is also possible to assume a distribution on the contour. On real
RADAR or LIDAR data, however, the detection points are rather biased towards the visible
side of the contour, e.g., due to self-occlusion, or originate from specific reflection points such
as the wheels of a car. An example can be seen in Figure 4.1. Therefore, we present a tracker
for more complex distributions. Based on the good performance of the MEM-EKF*, we use the
multiplicative noise measurement model and the corresponding linearizations from it as basis. We
describe our assumptions about the target and setting in Section 4.1. The tracker we propose is
then presented in Section 4.2, given a simple rectangular model. Then, it is modified for the more
complex distribution of measurements in the nuScenes dataset [CBL+20] in Section 4.3. Just as in
Chapter 3, we omit time and measurement indices for readability in this chapter.

Remark. This chapter is based on the workshop publication [4]. It extends the publication by a discussion
and implementation of the model for real data.

4.1 Problem Setting

The main challenge in this chapter is the distribution of measurement sources for RADAR data.
Usually, due to so-called self-occlusion, only the parts of the target on the sensor side are visible.

39
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Figure 4.1: Example of a RADAR measurement distribution in unit coordinates, i.e., transformed
into a coordinate system with the target’s center at

[︁
0 0

]︁
and the shape being axis-aligned with

semi-axes lengths equal to 1, as was done in [SD18], accumulated over a nuScenes [CBL+20] scene.
The ground truth scaled to unit coordinates is in gray and the measurements are blue dots. To
show the self-occlusion, measurements were only considered if the sensor was in the green area,
i.e., on the right side of the target.

In addition, the different parts of the target have different reflectivity, meaning the distribution
is usually more complex than a simple uniform distribution. In Figure 4.1, which shows an
instance of the nuScenes dataset [CBL+20], it can be seen clearly that a simple uniform distribution
does not capture the measurements distribution well. Instead, a GM representing all areas of the
surface which are likely to generate measurements can be a more precise approximation for the
multiplicative noise. We present the assumed target and measurement model in Section 4.1.1 and
related works in Section 4.1.2.

4.1.1 State and Measurement Model

Regarding the target model in state of the art automotive tracking, other road users are often de-
scribed by bounding boxes rather than ellipses. However, we can easily change the representation
from ellipses to rectangles as they use the same parameterization: center, orientation, and semi-axes
lengths. A uniform distribution on a rectangle instead of on an ellipse can be approximated by a
Gaussian multiplicative noise [YB19] as well, changing the variance from 1

4 to 1
3 . Therefore, we use

the same decoupled kinematic and shape state as before, i.e.,

r =
[︂
mT ṁT . . .

]︂T
, (4.1)

p =
[︂
α a b

]︂T
. (4.2)



CHAPTER 4. Extended Target Tracking with Self-occlusion 41

This target model and the aforementioned description of the measurement model result in the
measurement equation

y = Hr+ Sh+ v , (4.3)

S = Rαdiag
(︂ [︂
a b

]︂ )︂
, (4.4)

Rα =

[︄
cos(α) − sin(α)

sin(α) cos(α)

]︄
, (4.5)

h ∼
n∑︂

j=1

wjN (ĥj ,C
h
j ) , (4.6)

with H depending on the number of kinematic parameters so that Hr = m. The multiplicative
noise h is modeled by a GM and each mixture component j consists of a mean ĥj and covariance
Ch

j , both describing the area on the target in unit coordinates which generates detections, and a
weight wj , describing how likely the respective area produces a reflection point. Based on this
formulation, h can be seen as distributed in unit coordinates, applicable to different semi-axes
lengths and orientations of the target, similar to [SD18, KHB19, HK20].

4.1.2 Related Work

In [ZL20], a bias is introduced into the RM density. They provide a different method using a GM
representation by providing different shifting and scaling parameters of the original RM in [ZL21],
handling the update using a variational approach. In [XWB+20a, XWB+20b, XWB+21], the RM
density is truncated to model a distribution along the visible side.

The approach from [BRAD16] models a density with most of the probability mass on the contour
and in [BDD17], they present the so-called volcanormal model, which models the distribution as a
density across the contour of an ellipse, utilizing optimization techniques to update the target.

The method from [CLLL21] models the distribution across a rectangular shape via segments
between the corners or across the surface which they realize as uniform distributions via a multi-
plicative scaling factor. They handle association via PDA and non-linearities via UKF. While their
proposed method is made for an extent modeled by corners of a rectangle, they also provide a
version using orientation, length, and width.

[GLO11] propose a different approach for measurements distributed across the contour of an
ellipse or rectangle, analyzing the measurement distribution to determine how many sides are
visible and assigning the measurements to equally spaced measurement sources. [AGS19] assumes
a distribution across the contour of an ellipse, discretizes it, updates with each individual mea-
surement source to create a GM posterior, and then uses moment matching to reduce it back to a
single component. [YWB+21] model the distribution via ellipses which are located on a contour
described by a B-spline and handle association via PMHT.
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The RHM based approaches, e.g., [BH14,WÖ15,HSRD16,TLTK19,KBW17] can handle distribution
across the contour and due to their greedy association model, they can handle only part of the
contour to be visible. The greedy association model comes with other downsides, however, such
as a bias in high noise and a strong dependency on the prior estimate.

Approaches using a parameterization suitable for ellipses, but modeling a more complex distri-
bution across the shape include [SD18, KHB19, HK20]. They model the distribution across the
shape via a GM. For the update, [SD18] define a likelihood and use a particle filter. The other two
approaches define a closed-form update via association of the measurements to components of the
GM. They handle this via EM in [KHB19] or via cluster processes in [HK20]. These approaches do,
however, learn their measurement distribution, requiring large amounts of data. In addition, they
learn the sensor noise as part of the GM, while in reality, it can vary depending on the sensor to
target geometry. On the other hand, we use the linearization from the MEM-EKF* to provide a
model which keeps the distribution across the shape and the sensor noise separate.

4.2 Proposed Tracker

We use the linearizations from the MEM-EKF* [YB19] as a basis for the filter to deal with the
multiplicative noise, with the difference that we consider it to be a GM and not a single zero-
mean Gaussian. In addition, this formulation keeps the measurement noise separate from the
multiplicative noise. This can be important, as the sensor noise can depend on the sensor to
target geometry, e.g., when transforming it from polar to Cartesian coordinates as described in
Section 3.3.1.

For our tracker, we have to consider three additional challenges here

• the weights of the GM need to be chosen appropriately,

• an expectation of a component of h that is non-zero must be considered in the update, and

• the posterior will be a mixture.

Weights The weights represent how likely a component generates a measurement. This depends
on the target and sensor properties. In general, one can assume measurements are more likely
to stem from the visible side of the target. Therefore, the weight should depend on the sensor
position relative to the target, see, e.g., Figure 4.1 or the sensor-dependent distributions in [KHB19].
Here, we propose a straightforward approach. We find the weight for a component j by first
transforming the sensor position s relative to the target into unit coordinates. Then, we find the
angle difference θj between it and the component’s mean ĥj to get the weight
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wj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1.0 if θj < 0.4π ,

0.5 if 0.4π ≤ θj < 0.7π ,

0.001 otherwise ,

(4.7)

θj = |(ψs − ∡(ĥj) + π mod (2π))− π| , (4.8)

ψs = ∡(sx) , (4.9)

sx = diag
(︂ [︂

1
a

1
b

]︂ )︂
RT

α(s−m) , (4.10)

with sx describing the sensor position transformed into target unit coordinates, ψs being the angle
from the target’s center to the sensor in unit coordinates, and θj representing the absolute difference
between the angle from the center to the sensor and the angle from the center to the mean of
component j. This is also visualized later in this section in Figure 4.2. The absolute value is taken
as the direction does not matter, only the difference. Components with a small angle difference θj
have a high weight and those with large angle difference have a low weight as we assume they are
occluded by the rest of the target. Components in between get a relatively high weight as well.
There are two reasons: the first is that it is hard to find when exactly a component stops generating
measurements and the other more important reason is that the true state is not known. Therefore,
the equations above must be approximated with the state estimate. If the estimate is off, the wrong
side can get a higher weight than the correct one. Therefore, neighboring components should get a
descent weight and the rest can be handled via the predicted likelihood. Our initial experiments
revealed that this approach produces better updates than giving the neighboring components a
low weight. Note that for more complex distributions, a different strategy might be necessary, e.g.,
choosing different set of weights or even different component means and covariances based on ψs.

Update The original MEM-EKF* [YB19] demonstrated how the covariance of the multiplicative
noise can be incorporated into the shape update. This is important as it essentially describes the
spread of the measurement sources. But as the multiplicative noise does not need to be zero-mean
anymore, the resulting bias needs to be incorporated into the expected measurements and into the
covariance as well (as similar to the covariance of the multiplicative noise, its mean influences the
innovation covariance originating from the shape uncertainty, i.e., CII

nm from (3.19), which needs
to be modified in the following). Ignoring the measurement and time indices for readability, the
update formulas for a mixture component j are as follows

• the new expected measurement is

yj = Hr̂+ Sĥj , (4.11)



44 CHAPTER 4. Extended Target Tracking with Self-occlusion

with ĥj being the mean of the jth GM component, S being realized using p̂, and r̂ and p̂

being the latest estimates of the kinematic and shape states.

• the covariance Ch in CI from equation (3.18) and M from equation (3.22) is replaced with
Ch

j .

• every occurrence of Ch in CII from equation (3.19) is replaced by Ch
j + ĥjĥ

T
j . For example,

the mth row and nth column CII
mn of covariance CII becomes

CII
mn = tr

(︂
CpJT

n

(︂
Ch

j + ĥjĥ
T
j

)︂
Jm

)︂
(4.12)

for m,n = 1, 2.

According to [4], details on the changes in the derivations of CII and M are as follows. Recap that
for CII, we have [YB19]

CII = cov
{︂[︄

hT
j J1

hT
j J2

]︄
(p− p̂),

[︄
hT
j J1

hT
j J2

]︄
(p− p̂)

}︂
,

with J1,J2 referring to the Jacobians used in (3.17). If hj is not zero-mean, the formula (3.19)
changes to

CII
mn = E

[︁
hT
j Jm(p− p̂)(p− p̂)TJT

nhj

]︁
= E

[︁
tr
(︁
hT
j Jm(p− p̂)(p− p̂)TJT

nhj

)︁]︁
= E

[︁
tr
(︁
(p− p̂)(p− p̂)TJT

nhjh
T
j Jm

)︁]︁
= tr

(︁
E
[︁
(p− p̂)(p− p̂)TJT

nhjh
T
j Jm

]︁)︁
= tr

(︁
CpJT

n (C
h
j + hjĥ

T
j )Jm

)︁
. (4.13)

Keep in mind that hj and p are assumed to be independent. The formula shows that not just
the covariance, but also the mean of hj takes a role in determining the influence of the shape
covariance on the innovation covariance.

To calculate M, we take the measurement equation for the pseudo-measurement [YB19]

hp(r,p) =
[︂
h
(11)
p h

(22)
p h

(12)
p

]︂T
, (4.14)

h(nm)
p (r,p) = (Hnr+ Snhj + vn − yn)(Hmr+ Smhj + vm − ym) , (4.15)

with the subscripts n,m referring to the corresponding row of the respective vector or matrix and
y from (4.11). We now linearize this equation while considering a non zero-mean hj and take the
expectation, i.e., M = E

[︁∂hp(r,p)
∂p

]︁
. For the first row, we have
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E
[︁
2(H1r+ S1hj + v1 − y1)h

T
j J1

]︁
=2E

[︁
(H1r−H1r̂)h

T
j J1

]︁
(4.16)

+ 2E
[︁
(S1hjh

T
j − ˆ︁S1ĥjh

T
j )J1

]︁
(4.17)

+ 2E
[︁
v1h

T
j J1

]︁
(4.18)

=2ˆ︁S1(E[hjh
T
j ]− ĥjE[hj ]

T)J1 (4.19)

=2ˆ︁S1C
h
j J1 . (4.20)

Note that r and h as well as v and h are independent, resulting in (4.16) and (4.18) being 0. The
second and third row in M are derived analogously. The formula shows that M stays the same.

Mixture The updates with a measurement y using each of the n components leaves us with a
resulting GM of n components

r|y ∼
n∑︂

j=1

w+
j N (r̂j ,C

r
j) , (4.21)

p|y ∼
n∑︂

j=1

w+
j N (p̂j ,C

p
j ) , (4.22)

with w+
j = wj · l(y)j and l(y)j as the predicted likelihood of the update with the jth component of h

l
(y)
j =

1

2πdet(Cy)
e(y−yj)

T(Cy)−1(y−yj) , (4.23)

with yj from (4.11) and Cy from (3.18), but using CI and CII as described in this section. After each
sequential measurement update, the GM is reduced to a single component via moment matching
as in, e.g., [BNH11]. The corresponding formulas are [GO12])

r̂ =

n∑︂
j=1

w+
j r̂j , (4.24)

Cr =

n∑︂
j=1

w+
j (C

r
j + (r̂j − r̂)(r̂j − r̂)T) , (4.25)

p̂ =

n∑︂
j=1

w+
j p̂j , (4.26)

Cp =

n∑︂
j=1

w+
j (C

p
j + (p̂j − p̂)(p̂j − p̂)T) . (4.27)
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input : prior kinematic and shape mean and covariance r̂(0), Cr,(0), p̂(0), and Cp,(0), n multiplicative noise
means and covariances ĥ and Ch as defined in, e.g., (4.28) and (4.29), m measurements y, and global
sensor position s

output : posterior kinematic and shape mean and covariances r̂(m), Cr,(m), p̂(m), and Cp,(m)

ψs ← (4.9), (4.10) using r̂(0), p̂(0), and s
for j ∈ {1 . . . n} do

wj ← (4.7), (4.8) using ψs and ĥj

end
for i ∈ {1 . . .m} do

for j ∈ {1 . . . n} do
r̂
(i)
j , Cr,(i)

j , p̂(i)
j , Cp,(i)

j , lj ←memekfstar(r̂(i−1), Cr,(i−1), p̂(i−1), Cp,(i−1), ĥj , Ch
j )

w+
j ← wj · lj

end
w+ ← normalize(w+)

r̂(i) ← (4.24) using all w+
j and all r̂(i)j

p̂(i) ← (4.26) using all w+
j and all p̂(i)

j

Cr,(i) ← (4.25) using all w+
j and all Cr,(i)

j

Cp,(i) ← (4.27) using all w+
j and all Cp,(i)

j

end
return r̂(m), Cr,(m), p̂(m), Cp,(m)

Algorithm 3: Measurement update procedure using GM-MEM-EKF*. The function
memekfstar() takes kinematic and shape mean and covariance as well as a multiplica-
tive noise term, updates according to the GM-MEM-EKF* formulas modified as described in
Chapter 4, and returns the update’s kinematic and shape mean and covariance as well as the
predicted likelihood. The function normalize() normalizes the input weights. Based on [4].

Finally, to provide an example, we assume a rectangular target generating measurements from its
contour. Only the visible side of the rectangle can generate measurements. To describe this model,
we chose n = 4 components, one for each side, as follows

ĥ =

[︄
0.9 0.0 −0.9 0.0

0.0 0.9 0.0 −0.9

]︄
, (4.28)

Ch =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

diag
(︂ [︂

1
300

1
3

]︂ )︂
diag

(︂ [︂
1
3

1
300

]︂ )︂
diag

(︂ [︂
1

300
1
3

]︂ )︂
diag

(︂ [︂
1
3

1
300

]︂ )︂

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, (4.29)

so that the component approximates a uniform distribution over the respective side and assumes a
uniform distribution within the first 10% of the target’s depth to account for uncertainties. The
tracker is called GM-MEM-EKF* and we summarize it in Algorithm 3 and an example setup and
how the weights are chosen can be found in Figure 4.2. Note that the choice of components and
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θ2

∡(ĥ2)

ψs

sx

Figure 4.2: Setup of 4 GM components in unit coordinates with the origin at the gray rectangle’s
center and the local sensor in unit coordinates at sx. The orientation of the upper component, h2,
is displayed. The target is in gray, the GM components in blue and their weights are represented
by the intensity of the components’ color. [4] c⃝2021IEEE

the weighting scheme depend on the application scenario. They could be replaced by different
models, e.g., learned models from a real data set [KHB19, SD18, HK20].

4.3 Modifications for Real Data

To demonstrate our approach on real data, we add a hand-tuned version of the model for
nuScenes [CBL+20]. The dataset provides only few RADAR detections per target and time step,
so we looked into four selected targets with higher measurement rate (while nuScenes offers an
accumulation of measurements, this can lead to smears of the RADAR data for moving targets).
For more technical details on the nuScenes dataset and the sensor setup, we refer to Section 3.1.3.
As can be seen in Figure 4.1, the measurements are distributed on the visible side, but can also
originate from the inside of the target. Therefore, the GM and the rules for the weights are modified
as follows

ĥ =

[︄
0.0 0.85 0.0 −0.85 0.0

0.0 0.0 0.85 0.0 −0.85

]︄
, (4.30)
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, (4.31)

wj =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.4 if j == 1 ,

1.0 if θj < 0.45π ,

0.05 otherwise .

(4.32)

The intention was to allow a wider distribution across the contour. The model assumes that to
a certain probability, measurements can originate from the inside as well. For actual learned
distributions, e.g., [KHB19, HK20, SD18], the number of components is usually much larger. For
the hand-tuned model, we found that a simpler model keeps the estimate more stable using the
moment matching approach. We comment more on this later in the discussion in Chapter 7.
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Until now, we described the tracking of single extended targets in single sensor scenarios. In the
last chapter, we considered the challenge of self-occlusion and how it affects the distribution of
measurement sources. While a more complex model for the distribution helps to keep track of the
target, we are still missing information if, e.g., one side of the target is fully occluded. One way
to combat this is the use of multiple cooperating sensors, each of which tracks the target locally
and then provides its estimate along with the covariance. Different topologies for such sensor
networks are possible, but our main concern in this chapter is the fusion process itself, so they will
not be discussed in detail here. If we have multiple state densities in the current state of the art,
we can combine them using the Kalman filter formulas. To then get a point estimate on the fused
posterior density, in classic estimation, an estimate is gained by calculating its expectation. In the
case of a Gaussian density, this means simply taking its mean. However, if our state is an ellipse
described by a center, orientation, semi-axes lengths, and kinematic parameters, counter-intuitive
estimates or fusion results can arise using these classic methods as the geometric properties of
ellipses are not considered in them. This problem is described in detail in Section 5.1. We propose
a special density, an RED, for the fusion of ellipses in Section 5.2 and an MMGW estimator for
ellipses in Section 5.3, which replaces the Euclidean with the GW distance. Details on the methods’
implementations are provided in Section 5.4 and their applicability to rectangles, which can be
parameterized in the same way as ellipses, is discussed in Section 5.5.

49
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To the best of our knowledge, there is no other method in literature fusing Gaussian densities of
ellipses parameterized by orientation and semi-axes lengths while considering their geometric
properties. There are only methods fusing their point estimates, i.e., the means of the Gaussian
densities, as in [RX20]. We also know of no approach replacing the cost function of the estimation
of extended targets with a metric on shapes. This idea is, however, similar and inspired by
the Minimum Mean Optimal Sub-Pattern Assignment (MMOSPA) estimators [GSSW10, BWH15],
which replaced the cost function in the estimation of multiple point targets [VMBS+15] by the OSPA
distance [SVV08]. As both of these concepts essentially model the shape/targets as densities and
find a density minimizing a Wasserstein distance, they are related to the concept of a Wasserstein
barycenter [AC11, JPDM11, COO15, CD14].

Remark. This chapter is based on the conference publication [2], which describes fusion and estimation on
ellipse densities, as well as the journal publication [3], in which the MMGW estimation is presented and
evaluated in greater detail and which introduces the concept of an RED for fusion. In addition, this thesis
extends these publications via a discussion and implementation of estimators on rectangles.

5.1 Problem Setting

We consider sensors providing estimates for elliptic extended targets. For this chapter, the sensors
are handled as black-boxes, i.e., they track targets internally and only provide the mean and
covariance of the target, not the entire point cloud. Examples for trackers they can use internally
are the ones from Chapter 3 or Chapter 4. In either case, we assume the ellipses we track are
modeled as in Section 5.1.1. We further assume that we have a central fusion unit and the sensors
provide their estimates along with their covariances to it. This is described in Section 5.1.2. The
challenges of fusing the local state densities, provided by the sensors, with the global state density
in the central fusion unit and of gaining an intuitive point estimate from the density is elaborated
in Section 5.1.3. Related works in this area are discussed in Section 5.1.4.

5.1.1 State

Just as in the previous chapter, we model the ellipse using a center m =
[︂
m1 m2

]︂T
, an orientation

α, and semi-axis lengths a and b (see Figure 5.1a). Kinematics are modeled by a velocity ṁ and
optional other parameters, such as the yaw rate. Based on (3.1), we get

xk =
[︂
mT

x,k ṁT
x,k . . . αx,k ax,k bx,k

]︂T
. (5.1)

Each sensor keeps track of the entire shape, either because it can detect the entire shape or it can
handle only part of the shape being visible (see Chapter 4 for more details).
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5.1.2 Fusion Model

As the focus is on the unique properties of fusing elliptic targets, we will only consider a single
target scenario with multiple sensors. As stated above, we get an estimate x̂s,k for each sensor s at
time k, parameterized as described in Equation (5.1). The sensors also provide the uncertainties
of the estimates via a covariance matrix Cs,k. These local estimates and covariances are sent to
a central fusion unit to be fused with the global estimate xk, which is modeled by a Gaussian
density. The fusion can be conducted using the Kalman filter formulas, e.g., [ASKB12] by relating
the estimates and global state as follows

xs,k = Hsxk + vs,k , (5.2)

with vs,k ∼ N (0,Cs,k) and Hs = Id with Id being the d-dimensional identity matrix and d the
dimension of x. If not all of the state elements are provided by the sensor, the corresponding rows
of Hs can be deleted.

This method provides an easy fusion approach, which does, however, ignore possible correlations
between the estimates [ASKB12]. As the focus of this work is on handling the unique geometric
properties of ellipses during the fusion process, we assume xk and all vs,k are independent for
all s. This is not always given in practice and methods described in Section 2.1.5 can be used to
handle correlations. How to incorporate them into the methods introduced in this chapter will be
commented on in Section 5.4.1.

5.1.3 Problem Analysis

For brevity’s sake, we will omit the time index k from here on. Given the aforementioned global
estimate x with mean x̂ and covariance C and the local sensor estimate x̂s with sensor noise
modeled by the covariance Cs, they can be combined with the Kalman filter formulas. This naive
approach is based on Bayesian fusion

p(x|x̂s) ∼ p(x̂s|x) · p(x) , (5.3)

with prior x ∼ N (x̂,C) and Gaussian likelihood x̂s|x ∼ N (x,Cs). An estimate is calculated by
finding the Minimum Mean Square Error (MMSE) estimate using the squared Euclidean distance
as cost function

ẑ = argmin
z

∫︂
||z− x||22 · p(x|x̂s)dx = E[x|x̂s] . (5.4)

However, when fusing elliptic targets, this approach can yield counter-intuitive results. To give an
example, consider a global estimate as in Figure 5.1a and a local sensor estimate as in Figure 5.1b.
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Figure 5.1: Ellipses with parameters mx = [5 5]T, αx = π
2 , ax = 4, and bx = 2 in Figure 5.1a and

ms = [5 5]T, αs = 0, as = 2, and bs = 4 in Figure 5.1b and their MMSE estimate using Euclidean
distance in Figure 5.1c. [3] c⃝2021IEEE

If both the global estimate and the sensor noise had the same covariance, the Kalman filter would
provide the fused estimate as the average of the two means (see the formulas in Section 2.1.2), i.e.,

ẑ =
1

2
(x̂+ x̂s) , (5.5)

which can be found in Figure 5.1c. It is clearly visible that the global estimate and the local sensor
estimate describe the same ellipse, yet the fusion looks different. This is due to ambiguities in
the ellipse parameterization. Both ellipses are geometrically identical, but the sensor estimate is
rotated by 0.5π and semi-axes lengths are swapped. As a result, the naive fusion would average
the wrong axes with each other (ax with as and bx with bs in Figures 5.1a and 5.1b).

Examples for the origins of these ambiguities are

• sensor placement, i.e., sensors initializing a target with the orientation facing away from the
sensor,

• high process noise, i.e., due to a strong orientation shift, the estimate might rotate too strongly,
or

• different inner workings of the trackers, i.e., an orientation shift of the ground truth of 0.5π
can lead a tracker to also shift the orientation or to exchange the semi-axes lengths.

In addition to the same ellipse parameterized in an ambiguous way, it can be unclear how different
ellipses should be associated. As an example, we consider an ellipse and the same ellipse rotated
90◦ to the first one. It is unclear whether it is better to align the orientations or the semi-axes
lengths or to find a different combination (see Figure 5.2).
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? ?

Figure 5.2: Illustration of the possibilities of combining the magenta and cyan ellipse into one
of the red ellipses. For the upper one, we assume the orientation is the same and average the
overlapping semi-axes, while for the lower one, we pair the semi-axes of the same lengths and
average the orientations.

The main reason for these counter-intuitive results is that the naive approach considers the state as
elements of a vector, ignoring the geometric dependencies of the described ellipses. Looking at
Equation (5.4) we can split the issue with the naive approach into two parts

(1) the fusion by means of Equation (5.3) and

(2) the squared Euclidean distance ||z− x||22 as cost function.

While one solution would be to transform the state into shape matrices and combine them, this
would ignore the uncertainties. We do, however, want to fuse the entire state density, not just
combine the estimates. We handle the two challenges that we identified above in the following
two sections by providing

(1) a novel probability density for elliptic shapes in Section 5.2, which considers the ambiguities
of ellipses and allows for Bayesian fusion and

(2) an MMGW estimator which uses the squared GW distance as a cost function to obtain
intuitive point estimates in Section 5.3.

As the focus lies on the shape state, we will omit the kinematic part in the remainder of this chapter
for readability, only using center, orientation, and semi-axes lengths.

5.1.4 Related Work

For elliptic targets, many fusion approaches exist based on RMs. [GO13] propose to combine RMs
using their Poisson rates, creating a shape that would have been created by the measurements
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creating the input shapes, which is more a combination of the shapes than a fusion of the densities.
Another approach in [LJMD15] proposes to minimize the Kullback-Leibler divergence between
the fused density and the input densities, all as inverse Wishart densities, by taking the weighted
average of the shape matrices (and the degrees of freedom). The fusion method from [VGBW17]
uses the point clouds directly. However, one of their approaches uses a particle filter with particles
drawn from an importance distribution and weighted using the RM likelihood. For the estimate,
the weighted average of the particle shape matrices is calculated. That approach was extended
in [LG19] for asynchronous sensors, which approximates the local particle densities as a GM, sends
only the GM, and then fuses them via geometric mean densities. A different approach presented
in [HL19] fuses the estimates of different sensors using the statistics of noise-free latent variables
gained from the RMs at each sensor. They combine this with a variational Bayesian approach.

An approach using ellipses parameterized with orientation and semi-axes lengths in a distributed
sensor network based on diffusion Kalman filter can be found in [RX20]. However, they only
combine the estimates without considering the covariances and share the point clouds between
the sensors as well.

For other shapes, there is a method fusing rectangular estimates based on the covariances
of their corners in [NK16] and another using one corner as a reference point in [HMSB19].
[DGN+16] presents a fusion method for segments, i.e., points, lines, or L-shapes. A combination of
star-convex shapes modeled by GPs using measurements from different sensors directly can be
found in [MBMW17] and an approach fusing by finding a new center and radial function is pre-
sented in [MBL+19]. For multi-target tracking using a Random Finite Set (RFS), the RFSs provided
by different sensors are combined by minimizing the Kullback-Leibler divergence in [FGW20].
Another central fusion approach sharing detections directly to update a rectangular target can be
found in [SKRD16].

Fusion of bounding boxes can also be found in computer vision. In [SWG21], a method is presented
which clusters and fuses bounding boxes received from different detection methods or from the
original and augmented versions of the same input image. The fusion is conducted using the
confidence scores of the bounding boxes. Another approach by [BPS14] finds the best fusion result
of a set of bounding boxes by defining a distance measure based on position and size dimensions,
which they call attraction, and then optimize using gradient ascent. Optionally, weights can
be provided based on how well the algorithms perform if that knowledge is available. In their
approach in [LHGD18], the fusion of bounding boxes is conducted via weighted averages, with the
weights being determined via the distances to other boxes. Averaging was also done in [BYML16].
In the hierarchical Bayesian data fusion approach [RM17], the trackers to be fused are given
weights as well based on the Mahalanobis distance to the measurement and the Euclidean distance
to the trackers. The bounding boxes are then fused using Kalman filter formulas, with the weights
determining the variances.
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5.2 Random Ellipse Densities

In this section, we model a density for ellipses incorporating their geometric properties. While the
center poses no problem, the orientation and semi-axes lengths, however, can be the source for
ambiguities and unclear meanings.

We start with the semi-axes lengths. They need to be positive, so we turn the state density into a
truncated Gaussian density with lower bounds of 0 for a and b

pt(x) =

⎧⎨⎩0 if a < 0 ∨ b < 0 ,

c · p(x) otherwise ,
(5.6)

with normalizing constant c.

The orientation poses a greater challenge. Due to the 2π periodicity, every shift of the orientation
by a multiple of 2π results in the same ellipse. A wrapped distribution is a common solution for
this type of problem [MJ09, KGH14]. However, due to the symmetric properties of ellipses, a shift
of the orientation by a multiple of π results in the same ellipse as well. Additionally, rotating
the ellipse by 0.5π and swapping the semi-axes lengths also results in the same ellipse (see, e.g.,
Figure 5.1) and even without swapping the semi-axes lengths, it is unclear how the optimal fusion
would look like (see, e.g., Figure 5.2). In other words, the semi-axes lengths need to be included
in the wrapping, which in turn means the period is smaller, i.e., the wrapped distribution must
restrict the orientation between 0 and 0.5π. To formulate the wrapped distribution, we define a
transformation for equivalent ellipses, which can handle the swapping of semi-axes lengths

Kk(x) =
[︂
mT

x αx,k vk(lx, wx) vk+1(lx, wx)
]︂T

, (5.7)

with

vk(l, w) =

⎧⎨⎩l if k is even ,

w if k is odd ,
(5.8)

αx,k = αx + k · π
2
, (5.9)

and k ∈ Z. The above transformation incorporates all representations of the ellipse by including all
shifts by a multiple of 0.5π. The function in (5.8) ensures that for shifts by a multiple of π, nothing
else changes, while for all other shifts, the semi-axes lengths are swapped as well. To incorporate
the entire state density, all k from −∞ to ∞ need to be considered, resulting in a density

p̃(x) =

⎧⎨⎩
∑︁∞

k=−∞ pt(Kk(x)) if 0 ≤ αx <
π
2 ,

0 otherwise .
(5.10)
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The density avoids ambiguities by incorporating the geometric properties of ellipses. We call it a
Random Ellipse Density (RED).

Note that the only exception regarding the ambiguities occurs in the corner case of a circle. If both
semi-axes lengths are the same, the orientation does not matter. As this is a zero-probability event
mathematically speaking, we do not consider this special case.

Also, note that taking a point estimate from this density is not straightforward. In fact, the estimate
minimizing the Euclidean distance as a cost function would not have a meaning for this density,
as it does not consider the geometric properties of ellipses. In the next section, we provide an
estimator which considers these properties and which can be used to get an intuitive point estimate
from an RED.

5.3 Minimum Mean Gaussian Wasserstein Estimator

To find a meaningful point estimate given an ellipse density, we need to incorporate the geometric
properties of ellipses. Therefore, we need to replace the Euclidean distance with a distance on
ellipses. Extended target metrics are presented in Section 2.2.2. [YBG16] discuss metrics for elliptic
extended targets including IOU [GLO11], the GW distance [GS84], Kullback-Leibler Divergence,
and the Hausdorff distance, e.g., [VH00]. According to their evaluation, the GW distance provides
an intuitive, scalar value that can be calculated in closed form. It is originally used as a measure of
distance between Gaussian densities. However, using the center of the ellipse as mean and the
shape matrix as covariance, we can use the GW distance as a distance measure between ellipses.
The shape matrix of a state vector x can be calculated from the orientation and semi-axes lengths
using

X = Rαx ·

[︄
a2x 0

0 b2x

]︄
·RT

αx
, (5.11)

Rα =

[︄
cos(α) − sin(α)

sin(α) cos(α)

]︄
. (5.12)

The squared GW distance [GS84] between two ellipses (modeled as Gaussians with means mx and
mz and covariances X and Z respectively) is then defined as

GW(mz,Z,mx,X)2 = ||mz −mx||22 + tr(Z+X− 2(Z
1
2XZ

1
2 )

1
2 ) , (5.13)

with the matrix square root defined as

X = X
1
2

(︁
X

1
2

)︁T
, (5.14)
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which in the case of positive definite matrices can be calculated from their eigenvalues and
eigenvectors as

X
1
2 = Rαx ·

[︄
ax 0

0 bx

]︄
·RT

αx
. (5.15)

Note that the squared semi-axes lengths are the eigenvalues of the shape matrix and the columns
of the rotation matrix are the eigenvectors. Using the GW distance does not weigh each part of the
ellipse equally, concentrating more of the weight on the center than on the edges. Still, it is a good
candidate for estimation.

Using this distance measure instead of the Euclidean distance, we can get an estimate using

ẑ = argmin
z

∫︂
GW(mz,Z,mx,X)2 · p̃(x)dx , (5.16)

which finds the ellipse ẑ which minimizes the GW distance to the density p̃(x). We call this
estimator a Minimum Mean Gaussian Wasserstein (MMGW) estimator. This estimator can be used
to gain a meaningful estimate on the RED, but also on the original density p(x), as it considers the
geometric properties and, therefore, the ambiguities of ellipses.

However, due to the GW distance, the estimator is difficult to calculate. Even if only samples of
the density were used, an iterative optimization needs to be conducted [PRV20]. As we wish to
find a closed-form solution, we advocate the use of the square root distance [DKZ09]

SR(Z,X) = ||Z 1
2 −X

1
2 ||F , (5.17)

with the squared Frobenius norm of an n×m matrix A defined as

||A||2F =

n∑︂
i=1

m∑︂
j=1

A2
ij , (5.18)

with Aij referring to the element of A at the ith row and jth column. As the GW distance also
considers the center, we need to extend the square root distance by the center as well, naming the
result the Extended Square Root (ESR) distance. The squared ESR distance is defined as

ESR(mz,Z,mx,X)2 = ||mz −mx||22 + SR(Z,X)2 . (5.19)

To explain the reason for using the ESR distance, we have to define commuting matrices. Two
matrices A and B commute if AB = BA. For positive definite matrices, this happens when
the axes of the corresponding ellipses align. For matrices that commute, the GW distance can
be transformed into the ESR distance, i.e., the two metrics are equivalent for commuting matri-
ces [GS84, AP18]. Therefore, we use the ESR distance as an approximation for matrices that do
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not commute. We will provide an evaluation of this approximation in Section 6.3. Given this
approximation, we can replace the GW distance with the ESR distance

GW(mz,Z,mx,X)2 ≈ ||mz −mx||22 + tr((Z
1
2 −X

1
2 )(Z

1
2 −X

1
2 ))

= ||mz −mx||22 + ||Z 1
2 −X

1
2 ||2F

= ESR(mz,Z,mx,X)2 , (5.20)

creating an approximated MMGW estimator. Using this approximation, we can apply a transfor-
mation

T (x) =
[︂
mT

x s
(11)
x s

(12)
x s

(22)
x

]︂T
, (5.21)

with s(nm) being cells of the symmetric square root matrix[︄
s
(11)
x s

(12)
x

s
(21)
x s

(22)
x

]︄
= X

1
2 , (5.22)

and s(12)x = s
(21)
x , to get

ẑ = argmin
z

∫︂
GW(mz,Z,mx,X)2 · p̃(x)dx

≈ argmin
z

∫︂
||T (z)− T (x)||22 · p̃(x)dx

= T−1(E[T (x)]) . (5.23)

In other words, if we sample enough particles from the density, transform, and average them,
we can approximate the MMGW estimate. In [AP18], it was also argued in the context of GM
reduction, that a single Gaussian minimizing the GW distance to a GM can be approximated
by averaging the square roots of the GM’s covariances. In the following, we denote the space
consisting of the center and elements of the square root matrix as “square root space" while we
name the original state space the “ellipse parameter space". To include kinematic parts, the ESR
distance in (5.19) and by that the transformation in (5.21) need to be extended by the kinematic
vector analogous to m.

Note here that we use the matrix square root as defined for positive definite matrices in (5.15).
There are other ways to get a square root, e.g., the Cholesky decomposition. The elements of the
Cholesky decomposition have been used to represent the state vector of an ellipse in other works
as well [BH14, ZXWA13]. We prefer the described method, however, since calculating the square
root matrix based on the orientation and semi-axes lengths of the ellipse is straightforward.

Figure 5.3 provides an overview of how the methods are related. The REDs from the previous
section are defined in the original ellipse parameter space and used for fusion. To approximate
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ellipse parameter space
[︁
mT ṁ . . . α l w

]︁

estimates as regular density p(x) (5.1)
transform using (5.7)

RED p̃(x) (5.10)

fusion

approximate via particles

square root space
[︁
mT ṁ . . . s11 s12 s22

]︁
transformed density p(T (x)) (5.21)

minimize GW distance

average particles
≈

MMGW estimate (5.23)

Figure 5.3: A summary of the two spaces and the densities we consider and how the MMGW
estimate can be gained from them. [3] c⃝2021IEEE

the MMGW estimate (red arrow), we approximate the density transformed into square root space
via particles (first blue arrow). This can also be done with an ordinary ellipse density to find the
MMGW estimate. The estimate itself can then be approximated by calculating the mean in square
root space, i.e., averaging the particles (second blue arrow).

5.4 Implementation

In this section, we present our implementations of the algorithms proposed in this chapter. Sec-
tion 5.4.1 shows how an algorithm using an RED for fusion in ellipse parameter space can be
implemented. As the square root space does not have the issues of ambiguity present in ellipse
parameter space, an alternative fusion approach is to transform the density before the fusion
and then fuse in square root space. A practical implementation of this approach using Monte
Carlo (MC) simulation is presented in Section 5.4.2.

5.4.1 Ellipse Parameter Space

Revisiting the example from Figure 5.2, which shows the issue of which fusion is better, the RED
offers a solution by being a multi-modal Gaussian density, considering all combinations of ellipse
representations. To fuse two REDs using the Kalman filter formulas, each component of the prior
needs to be combined with each component of the likelihood, i.e.,
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p̃(x|x̂s) ∼ p̃(x̂s|x) · p̃(x)

=

∞∑︂
k=−∞

pt(Kk(x̂s)|x) ·
∞∑︂

j=−∞
pt(Kj(x))

=

∞∑︂
j=−∞

∞∑︂
k=−∞

pt(Kk(x̂s)|x) · pt(Kj(x)) , (5.24)

with the orientations αx and αx̂s
restricted as in (5.10). This ensures that all possible combinations

are considered.

As the number of components is infinite, we need to reduce (5.24). To do so, we consider that the
orientation is still per definition 2π periodic, so as an approximation, we can apply the trick from
wrapped distributions to restrict the orientation innovation between −π and π. That means the
update of a component Kj(x) with another component Kk(x̂s) would be the same as the update
with component Kk+4(x̂s). We can then reduce the updates to only 4 consecutive components of
the likelihood for each prior component. This also works the other way around. Updating Kj(x)

with Kk(x̂s) would provide the same result as updating Kj+4(x) with Kk(x̂s). Therefore, we can
restrict both prior and likelihood RED to 4 consecutive components and apply the orientation
innovation restriction between −π and π for each update. Applying these two approximations
gives us the density

p̃(x|x̂s) ≈ c1 ·
n+4∑︂
j=n

m+4∑︂
k=m

pt(Kk(x̂s)|x)pt(Kj(x)) , (5.25)

with normalizing constant c1 and n,m ∈ Z. This way, all four orientations are used. The innovation
in α is restricted between −π and π in the Kalman filter update as suggested in, e.g., [MĆP16]. To
use the Kalman filter formulas properly, we assume most of the probability mass for the semi-axes
lengths is on the positive axis, so that we can approximate the truncated densities as regular
Gaussians

pt(Kk(x̂s)|x) ≈ p(Kk(x̂s)|x) , (5.26)

pt(Kj(x)) ≈ p(Kj(x)) . (5.27)

Each component consists of a mean x̂(i), a covariance Cx(i), and a weight wi. The initial RED
components have equal weights, but after each fusion, the weight of a new component is calculated
as the product of the old weight and the predicted likelihood lj,k of the fusion of component j
from the global prior at the central fusion unit and component k from the local estimate, i.e.,
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lj,k =
1√︂

(2π)ddet(Cl
j,k)

e−0.5(Kk(x̂s)−Kj(x̂))
T(Cl

j,k)
−1(Kk(x̂s)−Kj(x̂)) , (5.28)

Cl
j,k = Kk(C

xs) +Kj(C
x) , (5.29)

with d being the dimension of the state, i.e., x ∈ Rd and Kj(C
x) and Kk(C

xs) producing the
covariances with the rows and columns corresponding to a and b shifted accordingly if j or k is
odd respectively.

After the fusion, the 4 components of the prior grow to 16. To counter this exponential increase
in component numbers, we apply a mixture reduction. A brief discussion on GM reduction
techniques can be found in Section 2.3.1. In the original article, we used a more heuristic mixture
reduction. However, to improve the results, we now apply the clustering algorithm from [Sal09], as
it provides an algorithm with shorter runtime at the cost of possibly merging more components as
is necessary compared to other pair-wise merging approaches. As certain combinations of ellipse
representations do not reflect a likely semi-axes association, we start with a pruning step before
using the merging algorithm. The algorithm itself assumes components with higher weights have
higher importance, so they start by selecting the highest weighted component, denoted with index
c, then calculate the distance to all other components which are not in a cluster yet, denoted with
index i. The distance measure uses the weights to make low weight components more likely to be
merged and considers the central component’s covariance. It is calculated as

dc,i =
wiwc

wi + wc
(x̂(i) − x̂(c))T

(︁
Cx(c)

)︁−1
(x̂(i) − x̂(c)) . (5.30)

All components with dc,i below a threshold are combined with the central component c into a
cluster. The process is then repeated for the remaining components until all belong to a cluster.
Note that a cluster can also consist of only a single component. The components in each cluster are
then merged by minimizing the Kullback-Leibler divergence, using (2.31), (2.32), and (2.33). If the
reduced mixture still has a number of components above a threshold, the distance threshold for
the clustering is increased and the process repeated. A more thorough study of mixture reduction
methods for REDs and how they compare in terms of accuracy versus runtime needs to be studied
in future work.

To incorporate correlation between the sensor estimates as described in Section 2.1.5, stemming
from, e.g., a common prior or process model, several aspects need to be considered, as we are not
fusing Gaussian densities, but GM densities. Covariance intersection is a straightforward solution
as it can be considered for the fusion of each individual mixture component. Another idea could be
to use information form. Approaches to track the correlation between sensor estimates can also be
considered, given a common process model. The exact realization depends on the type of network
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input : multi-modal global RED with means x̂, covariances C, and weights w, local sensor estimate’s mean x̂s

and covariance Cs

output : updated RED means x̂+, covariances C+, and weights w+

for k ∈ {0 . . . 3} do
x̂s.k ← K(x̂s, k)
Cs.k ← K(Cs, k)

end
for n ∈ {0 . . .len(w)−1} do

for k ∈ {0 . . . 3} do
x̂+.(4n+ k), C+.(4n+ k), w+.(4n+ k)←kalman(x̂.n, C.n, x̂s.k, Cs.k)
w+.(4n+ k)← w+.(4n+ k) ·w.n

end
end
x̂+, C+, w+ ←reduce_mixture(x̂+, C+, w+)
return x̂+, C+, w+

Algorithm 4: The RED fusion algorithm relies on the following functions: K() switches ac-
cording to (5.7) with the last input as k when given state means and switches covariances
accordingly as well, len() provides the length of the input vector, kalman() is the Kalman
filter update from Section 2.1.2 (restricting the innovation in α between −π and π) providing
updated mean, covariance, and predicted likelihood, and reduce_mixture() is a mixture
reduction function also providing normalized weights. x̂s.k refers to the kth element in the
array x̂s. Based on [3].

used as well, i.e., is the RED kept in a central unit and updated with the estimates of the sensors
or does each sensor keep an RED and update with neighboring sensors in a distributed fashion?
As noted in Section 5.1.2, we assume independence between the sensor estimates to focus on the
geometric properties, but these challenges should be considered in future work.

To retrieve a point estimate from the posterior, we sample particles, transform them using (5.21),
and average them, following the blue arrows in Figure 5.3. This method is called Random Ellipse
Density Minimum Mean Gaussian Wasserstein (RED-MMGW) and pseudo-code can be found in
Algorithm 4.

5.4.2 Square Root Space

The square root space possesses the quality of not having ambiguities in the ellipse representation,
i.e., given the transformation (5.21), we have

T (K0(x)) = T (Kk(x)) ∀k ∈ Z . (5.31)

This includes the property that all representations of a circle result in the same transformed value,
i.e.,

T (x̂1) = T (x̂2) if a1 = b1 = a2 = b2 ∧m1 = m2 . (5.32)
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Using this quality, we can transform the densities first and then fuse them in square root space.
Due to the non-linearities of the transformation, we approximate the transformed density as a
Gaussian using MC simulations. We also tried a linearization using Jacobians, but our previous
investigation revealed that approach to not be promising [2].

Given an ellipse density, we draw m particles,

p(j) ∼ N (x̂,C) j ∈ {1 . . .m} , (5.33)

apply the transformation (5.21), and approximate the density in square root space as a Gaussian
with mean ŷ and covariance D

ŷ ≈ 1

m

m∑︂
j=1

T (p(j)) , (5.34)

D ≈ 1

m

m∑︂
j=1

(T (p(j))− ŷ)(T (p(j))− ŷ)T . (5.35)

Transforming prior and local estimate in this way, we conduct the fusion using Kalman filter
formulas. The mean of the resulting density can be used for the MMGW estimate as discussed
previously. The posterior is kept as a transformed density and each incoming local estimate is
transformed as described above before the fusion to iterate over multiple time steps.

While this method makes some approximations, it still preserves some information on the uncer-
tainties of the different parameters, which generally provides better results than simply averaging
the shape matrices. Additionally, it uses the square roots of the shape matrices, which provides
additional advantages regarding the GW distance as will be demonstrated in Section 6.4.1 and
discussed in Section 7.3.2.

This method is called Monte Carlo Minimum Mean Gaussian Wasserstein (MC-MMGW) with
pseudo-code provided in Algorithm 5.

5.5 Applicability to Rectangles

Due to rectangles being parameterized with the same parameters as ellipses, one can argue to
use the MMGW estimator and RED concepts for rectangular shapes as well. We can create a
covariance matrix corresponding to the orientation and shape of a rectangle. However, a Gaussian
concentrates more probability mass in the center than on the contour. For ellipses, we could argue
that the shape of the Gaussian was still elliptical, but for a rectangle, the corners would get much
less probability weight than the sides. Therefore, a different metric can be more applicable. In this
section, we argue for an appropriate metric for rectangles, which we then use to define an estimator
for rectangle densities. We will then later compare it to the MMGW estimate for rectangles.
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input : Gaussian approximated global mean ŷ and covariance D in square root space, local sensor estimate’s
mean x̂s and covariance Cs in ellipse parameter space, and the number of particles m

output : updated mean ŷ+ and covariance D+

for j ∈ {1 . . .m} do
p.j ← mvn(x̂s, Cs)

end
ŷs ←mean(T(p))
Ds ←mean(outer(T(p)−ŷs, T(p)−ŷs))
ŷ+, D+ ←kalman(ŷ, D, ŷs, Ds)
return ŷ+, D+

Algorithm 5: The MC-MMGW algorithm relies on the following functions: mvn() provides a
sample from a multivariate normal distribution, T() describes the transformation from (5.21),
mean() provides a mean, outer() describes the outer product, and kalman() is a regular
Kalman update. Based on [3].

We presented extended target metrics in Section 2.2.2. There, we argued that an appropriate metric
can be derived by modeling the shapes as densities and then calculating a distance on densities
between them. A general approach would be to model the shape as a uniform distribution
and apply the Wasserstein distance. To make the calculations more feasible, we use discrete
densities and apply the corresponding formulas [HM02]. The cost function can then be replaced
by the Wasserstein distance between the discrete densities to create a Minimum Mean Discretized
Wasserstein (MMDW) estimator. The question is then how to discretize, e.g., the entire surface
or only the contour. Examples for rectangles modeled by a Gaussian or discretized uniform
distribution are presented in Figure 5.4.

The first option we consider is to discretize only the contour. For rectangles, this makes it easier to
calculate a fixed number of equally spaced discretization points across the contour so that each
rectangle is discretized by the same number of points. Using a discrete density with the same
number of points, we can calculate the Wasserstein distance as the OSPA distance [SVV08]. We
define a function fn(x), which takes a rectangle and transforms it into a set of n points distributed
equally across its contour. In this notation, fn(x)i refers to a specific point i ∈ {1 . . . n}. Given two
rectangles x and z, we can calculate the 2-Wasserstein distance between them using

W
(n)
2 (x, z) = min

π∈Πn

(︂ 1

n

n∑︂
i=1

||fn(x)i − fn(z)π(i)||22
)︂ 1

2

, (5.36)

with Πn being the set of all permutations of the numbers 1 to n and for a specific permutation
π ∈ Πn, π(i) refers to the index of the element assigned to the element with index i. Similar to the
MMGW estimator, we now replace the cost function in the classic estimator with the squared W (n)

2

distance calculated using Equation (5.36), which we call Discretized Wasserstein - Contour (DW-C),
to get a Minimum Mean Discretized Wasserstein - Contour (MMDW-C) estimator. Given a state
density p(x), we get an estimate using
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(a) (b) (c)

Figure 5.4: A uniform distribution is used to model a rectangle and approximated via a discrete
density visualized by red points discretizing the entire surface (a) or only the contour (b). Alterna-
tively, the uniform distribution is approximated by a Gaussian with brighter color representing
higher probability (c).

ẑ = argmin
z

∫︂
W

(n)
2 (x, z)2 · p(x)dx . (5.37)

Unlike with the estimation using the GW distance, the above estimate can not be calculated
by simply finding the mean of the density in a transformed space. However, as stated above,
minimizing the Wasserstein distance in this setting means minimizing the OSPA distance, which
can be handled using the MMOSPA estimator as suggested in [GSSW10]. To calculate the integral,
we approximate the density using m particles, i.e.,

ẑ ≈ argmin
z

m∑︂
j=1

1

m
W

(n)
2 (p(j), z)2 , (5.38)

with each p(j) drawn from p(x) as in (5.33). Then, we iteratively find the estimate which minimizes
the average OSPA distance to each particle (remember that each particle and the estimate are
rectangles, which are represented by a discrete set of points along their contour, e.g., Figure 5.4b,
to model them as discrete densities, meaning the estimate we find can be considered as the
Wasserstein barycenter to the particles [AC11]). This process is illustrated in Algorithm 6. Note
that using the MMOSPA estimator in this way provides an estimate in the shape of a point cloud.
To actually get an estimate parameterized by center, orientation, and semi-axes lengths, a rectangle
has to be fit onto the points or additional restrictions need to be incorporated into the process. We
further elaborate on this later in this section.
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input : a rectangle state density with mean x̂ and covariance Cx, a number of discretization points n, and a
number of particles to be drawn m

output : point cloud z of n points representing the MMDW-C estimate

z←get_contour (x̂, n)
p←draw_particles (x̂, Cx, m)
for j ∈ {1 . . .m} do

q.j ←get_contour (p.j, n)
end
while not converged do

for j ∈ {1 . . .m} do
π.j ← argmin

π∈Πn

∑︁n
i=1 ||q.j(π(i))− z(i)||22

end
for i ∈ {1 . . . n} do

z(i)←
∑︁m

j=1
1
m
q.j(π.j(i))

end
end
return z

Algorithm 6: The MMDW-C algorithm uses the following functions. get_contour() pro-
vides an array of points on the contour of a rectangle, with the first argument describing the
shape and the second being the number of discretization points. draw_particles() draws
particles from the provided Gaussian density with the mean and covariance described by the
first two elements and the third element being the number of particles. p.j refers to the jth
particle in p and z(i) refers to the ith point in the array z. Πn refers to the set of permutations
over n. Possible convergence criteria are, e.g., a maximum number of iterations and a threshold
for the difference between two consecutive estimates.

Another option is to discretize the entire surface, but it is more difficult to find an equally spaced
set of points for that setting, especially for a given number of points. Therefore, we suggest to
discretize it as best as possible, risking an unequal number of points, and then calculating the
2-Wasserstein distance between them. Using surface discretization, we call it the Discretized
Wasserstein - Surface (DW-S). For the estimator, we would once again discretize the original
density p(x). Each particle represents a rectangle, which we model as a uniform distribution. The
best estimate with respect to the 2-Wasserstein distance would then be the Wasserstein barycenter
of the set of uniform distributions, which can be calculated using [HM02]. We applied the function
free_support_barycenter() of the lp module of the python optimal transport library [FCG+21]. The
resulting estimator is called the Minimum Mean Discretized Wasserstein - Surface (MMDW-S)
estimator.

For both MMDW estimators, it must be noted that the estimate is not a rectangle but a discrete
density that does not necessarily have a rectangular shape. Therefore, as a second approximation
step, a rectangle needs to be fitted onto the estimated density. This can be done by finding the
bounding box that minimizes the squared distances from the points to the box via an optimization
algorithm. Finding the minimum enclosing bounding box [FS75] can be an initial guess. If the
entire surface is used, minimizing the distance between the bounding box and all points might
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return counter-intuitive results. Instead, the convex hull can be used to find the points which form
the contour.

A third option is to use a Gaussian to approximate the rectangles, as the parameters are the same.
While the distribution is not uniform, the advantage is that the MMGW estimator could be used
here. It provides an estimate consisting of rectangle parameters and not of a point cloud onto
which a rectangle needs to be fit as with the other two approaches. We will also demonstrate in
Section 6.4.2 that the MMGW estimator is much faster.

We will analyze the behavior of the three approaches, the two metrics for rectangles and their
relation to the GW distance for rectangles, in Section 6.3 and compare the estimates of the different
estimators under varying noise as well in Section 6.4.2. Theoretical differences are the concentration
of the density mass, either in the center for GW distance or on the contour or the entire surface,
depending on the discretization. That means the main difference occurs in the corner case of equal
semi-axes lengths.

Regarding the REDs, ambiguities can occur in the same way in rectangles as they do in ellipses,
making it applicable to rectangles. The main difference between rectangles and ellipses regarding
ambiguities lies in the corner case of equal semi-axes lengths as well. For ellipses, this represents
a circle, for which the orientation does not matter anymore. This was one of the limitations of
the REDs. For squares, however, the orientation still matters, so one can argue that the REDs fit
rectangles better than ellipses. Regarding the need for an appropriate estimator, we will show in
the evaluation that the MMGW estimator can be sufficient for rectangles.
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6
Evaluation and Analysis
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We provide a comparison of the different trackers from Chapter 3 as well as an evaluation of
the MEM-EKF*-D in Section 6.1. The proposed approach for non-uniform distributed noise, the
GM-MEM-EKF* from Chapter 4, is then evaluated in Section 6.2. To support our findings regarding
estimation and fusion from Chapter 5, we provide an analysis of possible metrics to justify the
use of the ESR distance in Section 6.3 along with experiments for a comparison of the MMGW
estimator with state of the art methods in Section 6.4. We also examine the GW distances and the
estimator’s applicability on rectangle densities in these sections. To evaluate the RED-MMGW and
the MC-MMGW we conduct a simulation with a moving ellipse in Section 6.5 and compare them
to a fusion approach for RMs.

6.1 Tracker Comparison in Simulations

The simulations of this section are based on [1] and [5]. The goal is to get an initial comparison of
existing elliptic target trackers based on an extent modeled by center, orientation, and semi-axes
lengths and on the common spatial distribution model. We consider the trackers described in
Chapter 3, i.e., the MEM-EKF* [YB19], the Ellipse-RHM-EKF and the Ellipse-RHM-EKF-imp. As
it uses the same parameterization and the same assumptions regarding the measurement source
distribution, we add the IAE [Gov19] to the comparison. For the MEM-EKF*, we have the version

69
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Figure 6.1: Example run of trajectory A for low noise with gray ground truth and measurements as
black dots. [1] c⃝2020IEEE

as described in Section 3.3 and one with the orientation approximated by the velocity vector,
marked as -oa (orientation approximation), inspired by [BFH12, Gov19]. For the RHMs, we have
the versions from Section 3.2 and for both a version using a single state variable for the shape and
velocity orientation, denoted -c (combined), and in addition, a variant of the implicit version using
an approximation of the orientation by the velocity vector, denoted -oa. All methods use an NCV
model for the prediction, along with a Cartesian velocity, except for the trackers with combined
orientation for velocity and shape (denoted with -c) which use a polar velocity.

We evaluate the trackers on a simple trajectory (trajectory A) in Section 6.1.1 and on a more difficult
one with stronger turns (trajectory B) in Section 6.1.2. The prior is set as

x̂0 =
[︂
0 0 10 0 0 3 1.5

]︂T
, (6.1)

Cx
0 = diag

(︂ [︂
0.5 0.5 0.1 0.1 0.05π 0.5 0.2

]︂ )︂2

. (6.2)

In each time step, the number of measurements is drawn from a Poisson distribution with rate 40,
the measurement sources are sampled uniformly across the ground truth’s surface area and cor-
rupted by zero mean Gaussian noise. There are two settings with low and high noise respectively

Cv
low = diag

(︂ [︂
0.52 0.52

]︂ )︂
, (6.3)

Cv
high = diag

(︂ [︂
2.02 2.02

]︂ )︂
. (6.4)

The squared GW distance is used for the error calculation and its mean is determined over 1000
MC runs.

Finally, to evaluate the benefits of using the range rate measurement, we evaluate the range rate
extension of the MEM-EKF* in Section 6.1.3.

6.1.1 Trajectory A

The target moves straight, then does a slight turn from time steps 9 to 13 with yaw rate 0.01π

(see Figure 6.1). The results are presented in Figure 6.2. Due to the bias resulting from the
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Figure 6.2: Mean squared GW error in trajectory A. [1] c⃝2020IEEE

greedy association, the explicit RHM versions do not perform well, especially in high noise. The
implicit equation improves the quality, but a bias is still visible when compared to the MEM-EKF*
and IAE. The IAE is better than the MEM-EKF* in high noise, but it must be noted that its
approximation of the shape orientation via the velocity vector is true in the simulation. Using the
same approximation, the MEM-EKF*-oa performs best in our scenarios.

6.1.2 Trajectory B

The target moves straight, then turns from steps 6 to 9 with yaw rate 0.05π, slows down later from
time steps 13 to 15 from 10 to 7 meters per second, and then turns more strongly from time steps 19
to 21 with yaw rate 0.1π (see Figure 6.3). The results are presented in Figure 6.4. Again, the explicit
versions do not work well. The combination of the shape and velocity orientation as well as the
orientation approximation improve the Ellipse-RHM-EKF-imp to be better than the MEM-EKF* in
turns, with the orientation approximation working better in low noise and the combination of the
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Figure 6.3: Example run of trajectory B for low noise with gray ground truth and measurements as
black dots. [1] c⃝2020IEEE

orientations working better in high noise. Overall, the IAE provides again good results, especially
in high noise, only beaten by the MEM-EKF*-oa.

6.1.3 Usage of Range Rate

To evaluate the usage of range rate measurements, we compare the MEM-EKF*-D from Section 3.3.1
to the MEM-EKF* not using the range rate. We demonstrated in the previous section that the
MEM-EKF* provides better results for elliptic targets than the RHM based trackers, so we will not
consider an elliptic RHM with range rate measurements here. For the IAE, a range rate extension
is not available. However, an extension of the RM approach for polar measurements and range
rate is presented in [SRW15], which we name Random Matrix Doppler (RM-D) here. We add it to
the comparison as well as the RM approach from [FFK11] not using range rate. All trackers use a
CT model with Cartesian velocity and a yaw rate as fifth kinematic state dimension, handling the
non-linearities in the time update using an UKF.
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Figure 6.4: Mean squared GW error in trajectory B. [1] c⃝2020IEEE

We simulate 2 scenarios with the aim of providing challenges regarding higher process noise.
The first scenario models a turning trajectory. The process noise is σv = 0.2 on the velocity and
σω = 0.01π on the yaw rate. The target moves for 70 time steps and from time steps 20 to 30, the
yaw rate is set to 0.05π, otherwise to 0 before adding noise, to ensure a turning motion in the
simulation. The prior has means and covariances

x̂0 =
[︂
−30.0 −40.0 2.5 0.0 0.0 0.0π 2.0 1.0

]︂
, (6.5)

Cx
0 = diag

(︂ [︂
0.5 0.5 0.1 0.1 0.001π 0.01π 0.01 0.01

]︂ )︂2

. (6.6)

For the second scenario, we simulated stronger process noise, using the trajectory from, e.g., [FFK11,
YB19]. We again set the process noise on the velocity to σv = 0.2, but on the yaw rate to σω = 0.001π

this time to enforce a similar motion in each run. The trajectory is 60 time steps long and sets the
yaw rate to 0.08π during time steps 14 to 17, to 0.1π during time steps 26 to 31 and 38 to 43, and to
0 otherwise. The prior means and covariances are
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Figure 6.5: Example run of the first scenario with ground truth in gray, measurements as black
dots, sensor position as a black diamond, and estimates as colored ellipses. [5] c⃝2021IEEE

x0 =
[︂
−50.0 10.0 3.64 −3.42 0.0 −0.24π 2.0 1.0

]︂
, (6.7)

Cx
0 = diag

(︂ [︂
0.5 0.5 0.01 0.01 0.001π 0.001π 0.01 0.01

]︂ )︂2

. (6.8)

For both scenarios, the measurements are sampled uniformly across the surface of the ground truth,

turned into polar measurements with the sensor position always at
[︂
0 0

]︂T
and then corrupted

by zero-mean Gaussian noise with standard deviations σr = 0.5, σθ = 0.002π, and σṙ = 0.1. The
number of measurements is drawn from a Poisson distribution with rate 5 to better simulate
RADAR measurements. We conducted 100 MC runs and used the GW distance as error measure.

An example of the first scenario can be found in Figure 6.5 and the results are displayed in Figure 6.6.
For both MEM-EKF* and RM, the inclusion of the range rate improves the estimation, with
MEM-EKF*-D outperforming RM-D. However, for all trackers, the error spikes at the beginning
and end of the turning motion.
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Figure 6.6: Results of the first scenario. [5] c⃝2021IEEE

An example of the second scenario can be found in Figure 6.7 and the results are displayed in
Figure 6.8. Similar to the first scenario, there are spikes during the turns, with the one at the
beginning of the turning motion usually higher than the one at the end, but overall, the order of
the algorithms in terms of precision is the same as in the first scenario.

6.2 Evaluation of the GM-MEM-EKF* Algorithm

This section is based on [4]. As we simply hand-tuned the GM of our GM-MEM-EKF* filter, we
exclude learned models from the comparison. Furthermore, we exclude trackers which only con-
sider contour measurements, as our approach can handle more complex distributions. The method
from [CLLL21] has different assumptions, which is discussed in more detail in Section 7.2. Further-
more, we will consider the Hierarchical Truncated Gaussian Random Matrix (HTG-RM) [XWB+21],
which can set a variable depth for the contour measurements by truncating the RM density and
provides a closed-form solution. We will use hand-tuned truncation bounds as well. In addition,
the standard MEM-EKF* [YB19] and the RM approach from [FFK11] are used. As the following
simulation focuses on measurements situated on the contour, we apply rectangular targets. To han-
dle this in the RM based approach, we scale the matrix using factor 1

3 instead if 1
4 , which improved

the results. Similarly, we replaced the variance of the multiplicative noise in the MEM-EKF* in the
same way.

All trackers used a CT model, handling the non-linearities in the time update via an UKF. As
the parameterization of rectangles and ellipses are the same, the GW distance can be used for
rectangles, e.g., [XWB+21], which we also demonstrate in Section 6.3. We evaluate the proposed
tracker on simulated data in Section 6.2.1. In addition, this thesis extends the original publication
via an evaluation on real data in Section 6.2.2.
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Figure 6.7: Example run of the second scenario with ground truth in gray, measurements as black
dots, sensor position as a black diamond, and estimates as colored ellipses. [5] c⃝2021IEEE
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Figure 6.9: Example run of trajectory A with gray ground truth and measurements as black dots.
The sensor position is marked with a black diamond. The track starts from the sensor. Based on [4].
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Figure 6.10: Example run of trajectory B with gray ground truth and measurements as black dots.
The sensor position is marked with a black diamond. The track starts at the sensor. Based on [4].

6.2.1 Simulated data

We used the same 2 trajectories described in Section 6.1. The only difference is that to better
highlight the convergence of the algorithm, we extended trajectory A to 19 time steps. Figures 6.9
and 6.10 show example runs using the proposed trackers. The prior state is
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Figure 6.11: Mean squared GW error in trajectory A. Based on [4].

x̂0 =
[︂
0 0 10 0 0 0 3 1.5

]︂T
, (6.9)

Cx
0 = diag

(︂ [︂
0.5 0.5 0.1 0.1 0.001π 0.01π 0.2 0.1

]︂ )︂2

, (6.10)

with the dimensions corresponding to 2D center, 2D velocity, yaw rate, shape orientation, and
semi-axes lengths. The RM based approaches turn the shape parameters into a shape matrix and
the initial degree of the inverse Wishart density is set to 64. The process noise and other time
update parameters are tuned to achieve the best performance to the best of our ability. In each
time step, measurements are generated by determining the left most and right most corner of
the ground truth visible from the sensor. The number of measurements is drawn from a Poisson
distribution with rate 10. That number of angles between the two corners is then drawn uniformly.
For each angle, the intersection with the visible contour is determined and then corrupted with
zero mean Gaussian noise with covariance Cv = diag

(︂ [︂
0.04 0.04

]︂ )︂
. We calculated the mean

squared error over 100 MC runs.

The results of trajectory A can be found in Figure 6.11. As expected, the algorithms that consider a
uniform distribution across the entire surface are slowly diverging until they end up only tracking
the visible part of the shape. The GM-MEM-EKF* and HTG-RM both keep track of the shape
the entire time, keeping an overall small GW error, with GM-MEM-EKF* being better at first, but
HTG-RM improving after the left side of the ground truth gets visible.

The results of scenario B can be found in Figure 6.12, leading to a similar conclusion. A notable
difference is that all algorithms struggle more with the increased process noise, but GM-MEM-EKF*
keeps the lowest error over most of the time steps.
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Figure 6.12: Mean squared GW error in trajectory B. Based on [4].

6.2.2 Real Data

The algorithms were modified to work with the targets picked from nuScenes [CBL+20]. The
goal was to find a setting which worked with all targets. See Section 4.3 for more details on the
implementation of the GM-MEM-EKF* for nuScenes data. We kept the MEM-EKF* and the RM
approach for the comparison. As the measurements are more distributed towards the inside of the
target and not just the contour, the truncation in the HTG-RM was modified to assume detections
on the entire visible half. For the evaluation, we picked four targets which provide a relatively
higher number of measurements per time step. To include randomness, the tracks are initialized
with the true position (except for the velocity, which was not given and was thus manually
estimated) corrupted with Gaussian noise, which is used as the prior. The prior covariance is

Cx
0 = diag

(︂ [︂
1.0 1.0 0.1 0.1 0.001π 0.01π 0.2 0.1

]︂ )︂2

. (6.11)

The four tracks can be seen in Figure 6.13 and the corresponding results over 100 MC runs in
Figure 6.14. It can be seen that the GM-MEM-EKF* works well for all scenarios. It shows overall
good performance especially when the target passes the sensor. Only at the end and sometimes
the beginning of trajectories, the HTG-RM provides similar results. Please note that tuning the
algorithms for even a few tracks of the nuScenes data is a difficult task and a large scale evaluation
on the entire dataset would require an analysis of the entire dataset. Based on that, an evaluation
against the methods using learned models on nuScenes could be conducted in future work.

6.3 Metric Analysis

This analysis is based on publication [3]. Based on our discussion of the metric behavior, we did
some modifications to the original experiments to better demonstrate the quality of approximating
the GW distance using the ESR distance. We decided to compare the squared distances directly,
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(a) Example run of first nuScenes trajectory. The
track starts at the bottom left.

(b) Example run of second nuScenes trajectory.
The track starts at the top right.

(c) Example run of third nuScenes trajectory. The
track starts at the top right.

(d) Example run of fourth nuScenes trajectory.
The track starts at the bottom left.

Figure 6.13: Experiments on real data from the nuScenes dataset [CBL+20] with gray ground truth
and RADAR measurements as black dots. The positions of all involved sensors are marked with
black diamonds. Only every tenth time step is plotted for visibility.
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Figure 6.14: GW error in the four nuScenes trajectories.
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as they are used in the estimation process. The basis of the experiments is still from [YBG16].
In our derivation of the approximation, we noted that the two metrics would be the same if the
shape matrices commute (see Section 5.3 for more details). The matrices commute if the ellipses’
axes align. Therefore, a first experiment compares the metric outputs for the distance between an
ellipse with itself, rotating in small intervals until it rotated by π (see Figure 6.15a). It can be seen
in Figure 6.15b that for a difference between the ellipses’ orientations of 0.25π shifted by a multiple
of 0.5π, the difference between the metrics is highest and for a difference of 0 shifted by a multiple
of 0.5π, it is 0. This confirms that for commuting matrices, the metrics are the same, while for an
orientation difference exactly in between two commuting states, it is highest. Still, the difference is
minor if the other parameters are the same.

As the approximation error is highest for an orientation difference of 0.25π, we modified the
remaining experiments from [YBG16] to consider this difference. The motivation here is that we
want to investigate how this highest error is influenced by the other parameters. In Figure 6.15c,
the distance between the ellipses’ centers slowly increases. It can be seen in Figure 6.15d that the
difference between the metrics is constant if only the center changes, which is to be expected as the
center has the same influence for both metrics. In Figure 6.15e, one ellipse starts out smaller in
length than the other and then increases. Interestingly, Figure 6.15f shows that the lowest metric
difference is not at an axis length ratio of 1, but around 0.5, i.e., when the changing semi-axis
of the scaling ellipse is 1. This can be explained as the scaling ellipse’s fixed axis is 1 as well,
meaning the ellipse is a circle at this point. For a circle, the orientation does not matter, i.e., the
circle and the base ellipse commute. For an increasing axis ratio, the difference increases. The ESR
distance punishes greater differences in the axis dimensions more severely than the GW distance,
but otherwise, the general behavior of the metrics is the same.

These experiments demonstrate that the difference between the metrics is greatest if the two shapes
are exactly in between two commuting states. Increases in positional difference between the
ellipses do not increase the metric difference, while an increasingly different axis ratio does. In all
cases, the difference was minor and the general behavior of the metrics was the same.

In addition, we conducted the same experiments, using the squared GW distance, the squared
Euclidean distance, and the squared Wasserstein distance on rectangles modeled as uniform
distributions as described in Section 5.5. The Wasserstein distance assumes a rectangular shape,
sampling 100 equally spaced discretization points to discretize the contour and using optimization
to find at least 400 equally spaced points to discretize the surface. The results can be found
in Figure 6.16. As expected, the Euclidean distance works differently than the other metrics,
increasing with an increasing angle offset in the first scenario. The outputs of the GW based
approaches and the approaches using a uniform distribution to model the shape behave similarly,
with the latter producing smaller values. In the second scenario, only the position changes, leading
to a similar behavior of all approaches. The third scenario shows again the same results, similar
behavior and higher values from the GW based approaches to the discretized Wasserstein distance
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Figure 6.15: Comparison of squared GW and squared ESR distance with ground truth in gray, the
estimates changing from blue to green, and the metric outputs over the different estimates in their
respective color.
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based approaches, with the difference getting higher for greater differences in the semi-axes. The
minimum is similar for all approaches except for the Euclidean mean, which attains its minimum
when both rectangles have the same length. Please note that the uneven behavior of the surface
discretization Wasserstein metric in the scaling scenario is due to the change of the number and
position of the discretization points on the surface as the shape’s scale changes.

As the greatest difference between ellipses and rectangles occurs in the case of equal semi-axes
lengths, i.e., the orientation is irrelevant for a circle but not for a square, we repeat the experiments
with a square as ground truth. We modify the third scenario to scale the estimate equally so that it
remains a square. The results can be found in Figure 6.17. Most notably is that the GW distance
differs more greatly here. As expected, it considers the distance between all squares as 0 as long as
only the rotation differs. In the second scenario, the GW distance is more similar to the discretized
Wasserstein distances, but in the third, the difference gets greater for greater scaling. Another
interesting point from the third scenario is that for squares, all approaches have their minimum
when the squares have the same size.

6.4 Estimation via MMGW

The goal in this section is to evaluate the quality of our estimator, the approximated MMGW
estimator using the ESR distance, compared to the actual MMGW estimator and to the estimate
using the Euclidean distance in Section 6.4.1. These experiments are based on the publication [3].
Furthermore, we extend the publication by providing two more experiments. The first is an evalua-
tion on rectangles in Section 6.4.2, comparing the MMGW estimate to the estimate minimizing the
Wasserstein distance over the discretized surface, as described in Section 5.5. For the second new
experiment, we compare the MMGW estimator to the regular Euclidean estimate on the posterior
density of the MEM-EKF* in different tracking scenarios in Section 6.4.3.

6.4.1 MMGW on Ellipses

Based on our analysis, we found that the orientation plays a major role when it comes to the
difference between the estimators. In addition, the GW distance between two ellipses with the
same orientation boils down to the Euclidean estimate, which is further elaborated in Section 7.3.1.
Therefore, we focus on comparing the estimation for different orientation noise values. We provide
three Gaussian distributed ellipse densities, all with mean

x̂ =
[︂
0 0 0 8 3

]︂T
, (6.12)
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(d) Metric outputs for tilted rectangle moving.
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(f) Metric outputs for tilted rectangle scaling.

Figure 6.16: Comparison of squared GW distance, ESR distance, Euclidean distance, and Wasser-
stein distance with 100 contour discretization points (DW-C) and with at least 400 surface dis-
cretization points (DW-S) on rectangles with the ground truth in gray, the estimates changing from
blue to green, and the metric outputs over the different estimates in their respective color.
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(b) Metric outputs for same square rotating.
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(d) Metric outputs for tilted square moving.
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Figure 6.17: Comparison of squared GW distance, ESR distance, Euclidean distance, and Wasser-
stein distance with 100 contour discretization points (DW-C) and with at least 400 surface dis-
cretization points (DW-S) on squares with the ground truth in gray, the estimates changing from
blue to green, and the metric outputs over the different estimates in their respective color.
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consisting of center, orientation, and semi-axes lengths. The kinematics are omitted as the focus is
on the shape estimate (see Section 5.1.3). The first density has the covariance

C = diag
(︂ [︂

0.5 0.5 0.01π 0.5 0.5
]︂ )︂

, (6.13)

representing low noise on the orientation. The second increases the orientation variance to 0.2π and
the third to 0.5π. To calculate the approximated MMGW estimate, we draw 1000 particles from the
density described above, transform them into square root matrix space using (5.21), and average
them. We compare our results with three other estimators. One uses the Euclidean distance as
a cost function and can be obtained as the mean of the Gaussian density, i.e, (6.12). Another is
the MMGW estimator minimizing the GW distance to the particles using an optimization method
from [PRV20], which we initialize with equal weights and the approximated MMGW estimate as
initial guess. Finally, as the approximated MMGW estimate is gained by averaging the square root
matrices, we are interested in the behavior of the average of the shape matrices, i.e., the estimate
minimizing the Euclidean distance in shape matrix space.

The 1000 particles we draw above can be used to represent the density described by (6.12) and (6.13).
We use them to approximate the mean squared GW distance of each respective estimate to the
density. Table 6.1 shows the metric outputs and Figure 6.18 shows the estimates given each metric,
in both cases compared to the squared GW distance and its estimate.

The approximated MMGW estimator provides similar results to the MMGW estimator calculated
via optimization, which confirms the observations from Section 6.3. Furthermore, the theoretical
similarity of the Euclidean distance to the GW distance for commuting ellipses as discussed in
Section 7.3.1 is shown here experimentally in the case of low orientation noise. It can be seen
visually as well as in the values of the mean squared GW distance that the difference between the
estimates is minimal for low orientation noise and increases for higher variances in orientation.
We can also observe that the semi-axes lengths of the estimate minimizing the GW distance grow
closer for higher orientation noise, resulting in a more circular estimate. The averaging of the shape
matrices produces a slightly larger estimate than that of the MMGW estimator, being even worse
than the Euclidean estimate for the density with low orientation noise. We show theoretically in
Section 7.3.2 for commuting matrices why this occurs.

6.4.2 MMGW on Rectangles

We use the same density and covariance settings as described in the previous section. For the
MMDW estimators, we also sample 1000 particles from the prior and apply the discretization of
the entire surface as well as of only the contour. For the contour, we simply calculate a set of
100 equally spaced points. For the surface, we use optimization to find a set of equally spaced



88 CHAPTER 6. Evaluation and Analysis

−10 −5 0 5 10
−10

−5

0

5

10

m1 in m

m
2

in
m

Low noise

−10 −5 0 5 10
−10

−5

0

5

10

m1 in m

Medium noise

Euclidean Shape mean ESR GW

−10 −5 0 5 10
−10

−5

0

5

10

m1 in m

High noise

(a) (b) (c)

Figure 6.18: MMSE estimates on ellipses based on Euclidean distance, shape matrix mean, ESR
distance, and GW distance for different orientation noises. 20 sample particles to highlight the
uncertainty are drawn in gray. Based on [3].

Euclidean shape mean ESR GW
Test low 1.8065 1.8169 1.8013 1.8001
Test medium 4.3642 3.7792 3.6913 3.6897
Test high 5.0107 3.8869 3.7994 3.7994

Table 6.1: Squared GW error of MMSE estimate using Euclidean distance, the shape matrix mean,
the approximated MMGW estimate using ESR distance, and the MMGW estimate using GW
distance. The results are presented for different orientation noises. Based on [3].

points that best fit the area of the rectangle and which contain a minimum of 400 points. Similar to
the squared GW distance before, we calculate the distance between two rectangles as the mean
squared Wasserstein distance between their discretization points.

The results can be found in Figure 6.19 and the error based on the Wasserstein distance using
discretization points with a discretization of the contour as well as of the surface can be found
in Table 6.2 and Table 6.3 respectively. We visualized the Euclidean and the MMGW estimates
as rectangles and plotted the actual point clouds for the MMDW estimates (as mentioned in
Section 5.5, we would need to fit a rectangle onto them, which would introduce the additional
challenge of finding an appropriate algorithm, which is not part of this analysis). An important
observation here is that the higher the orientation noise is, the less the MMDW estimate looks like
a rectangle (see, e.g., Figure 6.19b and 6.19c).

The results show that, as expected, the MMDW point cloud regarding contour or surface discretiza-
tion is always best in respect to their respective metric. The main problem with MMDW-S and
MMDW-C however is their runtime, as can be seen in Table 6.4. The approximated MMGW is
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Figure 6.19: MMSE estimates on rectangles for different orientation noises given Euclidean distance,
ESR distance, DW-C, and DW-S.

Euclidean ESR DW-C
Test low 0.9313 0.9313 0.9304
Test medium 2.5013 2.3416 2.2223
Test high 3.3248 2.6395 2.4915

Table 6.2: Wasserstein error based on contour discretization (100 points) of the MMSE estimate us-
ing Euclidean distance, the approximated MMGW estimate using ESR distance, and the MMDW-C
estimate using DW-C. The first test uses low, the second medium, and the third high orientation
noise.

Euclidean ESR DW-S
Test low 0.8971 0.8953 0.8733
Test medium 2.2536 2.0895 2.0345
Test high 2.9926 2.3331 2.2814

Table 6.3: Wasserstein error based on surface discretization (at least 400 points) of the MMSE
estimate using Euclidean distance, the approximated MMGW estimate using ESR distance, and
the MMDW-S estimate using DW-S. The first test uses low, the second medium, and the third high
orientation noise.

MMGW MMDW-C MMDW-S
Test low 0.0342 408.29 2793.85
Test medium 0.0432 2573.94 3739.63
Test high 0.0264 2007.84 2895.39

Table 6.4: Runtime in seconds of the estimators in scenarios with low, medium, and high noise on
the orientation.
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much faster while still giving a good approximation, especially for the MMDW-S. This is expected
as the GW distance focuses the probability mass on the center and less on the contour, so it better
approximates a uniform density on the entire surface and not the contour. It is also expected
that due to the concentration on the center, the MMGW estimates are slightly smaller than the
MMDW-S estimates. Another interesting observation here is that the contour discretization of
the MMDW-C prefers slightly smaller shapes under high orientation noise than the MMDW-S
(see Figure 6.19c). The high error scenario also shows that the MMGW estimates disregards the
actual mean orientation. However, the MMDW estimates prefer circular estimates here, which
would make it difficult to fit a proper rectangular estimate onto them. Overall, it seems that an
ellipse might be a better estimate in this situation, which can be easily obtained from using the
MMGW estimator. In summary, we demonstrated that the MMGW estimate is a well working
approximation in respect to the discretized Wasserstein distance and can provide reasonable, if
only slightly too small, estimates on rectangles as well.

6.4.3 MMGW in Extended Target Tracking

To demonstrate the benefit of using the MMGW estimate on the posterior density in ETT, we
provide a simulated example. In Section 6.4.1, we demonstrated that the Euclidean estimate is
a good approximation of the MMGW estimate if orientation noise is low. Therefore, we provide
a simulation with an ellipse turning independently of the velocity vector. The ellipse is tracked
using the MEM-EKF* and the Euclidean estimate as well as the MMGW estimate are provided.

The prior density is

x̂0 =
[︂
0 0 10 0 0 3 1.5

]︂T
, (6.14)

Cx
0 = diag

(︂ [︂
0.25 0.25 0.01 0.01 0.5π 0.04 0.01

]︂ )︂
, (6.15)

to ensure a high uncertainty on the initial orientation. It consists of center, Cartesian velocity,
orientation, and semi-axes lengths. As the focus is on the shape estimation, we only consider a
Cartesian velocity and propagate the state in time using an NCV model. The velocity is corrupted
by process noise σṁ1

= 0.1 and σṁ2
= 0.1. In addition, we assume a turning of the shape

independent of the kinematics, simulated by a random process noise added to the orientation in
each time step. For the variance of the orientation process noise, we have two setting. For low, it
is 0.01π and for high, it is 0.2π. In each time step, the ellipse produce a number of measurements
drawn from a Poisson distribution with mean 5. They are distributed uniformly across the
surface and corrupted by zero-mean measurement noise with covariance Cv = diag(

[︂
1 1

]︂
). The

important factors are high noise on the orientation and low measurement rate under high noise to
ensure the orientation uncertainty is still high after the update. To account for the high noise, we
conducted 1000 MC runs and calculated the mean squared GW error over the time steps. Example
trajectories can be found in Figure 6.20 and the results are in Figure 6.21. For low noise, we see that
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(a) Example run for low orientation noise.

(b) Example run for high orientation noise.

Figure 6.20: Tracking with Euclidean vs MMGW estimation with ground truths in gray and
measurements as black dots.

the MMGW estimate is better in the first time step due to the high orientation noise in the prior,
but as more measurements are generated and the estimate grows more certain in the orientation,
the MMGW error of the MMGW and the Euclidean estimate become similar. This is expected
given the results of Section 6.4.1. In high noise, the uncertainty on the orientation parameter stays
high. As a result, the MMGW estimate produces a lower error than the Euclidean estimate over all
time steps.

6.5 Fusion using REDs

This evaluation is based on [3]. The goal is to compare the iterative fusion via REDs and via the
approximated fusion in square root space from Section 5.4. We consider the fusion using the
Kalman filter formulas on the original densities, i.e., using the Euclidean distance, as state of the
art. Other fusion methods in recent literature focus on RMs and thus inverse Wishart densities.
The one in [RX20] considers orientation and semi-axes lengths and combines the shape matrices.
It does, however, share the original measurement point clouds, so we will not consider it here.
To have a baseline, we will however apply an averaging of the shape matrices, which we call
“shape mean”. To consider a shape change, e.g., through orientation changes, we model the shapes
as inverse Wishart densities and combine them using the method from [LJMD15], as well as the
forget model described in [GsFS16] for the prediction step.
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Figure 6.21: Mean squared GW error for Euclidean vs MMGW estimation.

We use 1000 particles for the approximation of the MMGW estimate in the RED-MMGW and the
approximation of the state as a Gaussian in square root space for the MC-MMGW. In addition to
the Kalman filter based fusion, here named “Regular”, we provide the Kalman filter based fusion
using the MMGW estimator on the posterior, named “Regular-MMGW”. For the “shape mean”,
each inverse Wishart density gets a degree of 6. We consider a moving ellipse and apply an NCV
model with Cartesian velocity.

We conduct three experiments, each with prior mean and covariance

x̂ =
[︂
0 0 10 0 0 8 3

]︂T
, (6.16)

C = diag
(︂ [︂

0.5 0.5 10.0 10.0 0.5π 0.5 0.5
]︂ )︂

, (6.17)

consisting of 2D center, 2D velocity, orientation, and semi-axes lengths. The orientation noise
is chosen high enough to provide low initial knowledge about the orientation. We conducted
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Figure 6.22: Sample run under low orientation noise with ground truth in gray, sensor esti-
mates in blue, and the centrally fused RED-MMGW estimate in green for every other time
step. [3] c⃝2021IEEE

1000 MC simulations. For each, the ground truth is sampled from the prior and then propa-
gated over 20 time steps using random zero-mean process noise on the velocities with standard
deviations σṁ1 = 0.1 and σṁ2 = 0.1. To provoke a turning motion, we align the shape orien-
tation with the velocity vector. In each time step, a measurement is generated by taking the
ground truth, adding ambiguity by transforming it according to (5.7) with a random integer k,
and then adding measurement noise. For the first experiment, titled low, the noise covariance
is Cs = diag

(︂ [︂
0.5 0.5 0.05 0.05 0.01π 0.5 0.1

]︂ )︂
. The second experiment, medium, uses

the same covariance and only changes the orientation variance to 0.2π, and the third one, high,
uses 0.5π. The three settings can be compared to the noise settings in Figure 6.18. In addition to
the orientation noises, the semi-axes lengths have different uncertainties. Due to the switching
of the axes to model ambiguities, not all measurements of the same axis have the same variance,
simulating different axis uncertainties by different sensors. To handle the shape process and
measurement noise in the “shape mean” approach, we used a forget parameter of 0.2 in low, 5.0 in
medium, and 10.0 in high, which provided the best results in our experiments. Figure 6.22 shows an
example run using the RED-MMGW, plotting only every other time step for better visibility. We
use the squared GW distance as an error function. The results over 1000 MC runs with respect to
the root mean squared error can be found in Figure 6.23.

Figure 6.23a shows that the regular fusion fails even under low orientation uncertainty due to
the ambiguities. The shape mean converges, but RED-MMGW and MC-MMGW provide the best
results. As demonstrated before, the combination of shape matrices instead of their square roots
can produce estimates that are too large (considering the GW distance). A second reason for the
worse estimate of the shape mean is that it does not consider the covariances.
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Figure 6.23: Tests comparing different ellipse fusion approaches under different sensor noise.
Based on [3].

For medium noise, the advantage of the RED-MMGW over the MC-MMGW can be seen in Fig-
ure 6.23b. It seems that the transformed density is less Gaussian the higher the noise is in the
orientation, which can be a possible explanation of the decrease in estimation quality of the
Gaussian approximation of the MC-MMGW.

Figure 6.23c reveals that under high noise, the methods seem similar again. We demonstrated
before that under high uncertainty in the orientation, a circular estimate is preferred by the GW
distance. However, due to the averaging of the wrong semi-axes lengths in the regular fusion, a
circular estimate is produced as well, e.g., Figure 5.1, meaning the better results are only achieved
by coincidence. The Gaussian approximation also uses a circular mean for all measurements in
MC-MMGW, so the information loss from the Gaussian approximation is less severe.

The experiments demonstrate the effectiveness of the RED in dealing with ambiguities. Note that
if no ambiguity would exist, the regular Kalman filter based fusion would of course be optimal.
However, as demonstrated in Section 6.4, using the MMGW estimator on the posterior of the
fusion can still improve the results with respect to the mean squared GW distance under high
orientation uncertainty.
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In this chapter, the methods we compared, proposed, and evaluated in this thesis are discussed.
We first discuss the results of the comparison of elliptic trackers in Section 7.1, followed by a
discussion of the GM-MEM-EKF* in Section 7.2. After that, we examine the MMGW in Section 7.3
and finally the fusion via REDs in Section 7.4.

7.1 Discussion of Elliptic Target Trackers

In this section, general advantages and disadvantages of the algorithms are discussed as well as
the benefits of the range rate usage. It is based on the publications [1] and [5].

Table 7.1 summarizes Ellipse-RHM-EKF, which has the general issues of a bias in high sen-
sor noise and a strong sensitivity to the prior because of the greedy association. While the
Ellipse-RHM-EKF-imp, summarized in Table 7.2, reduces the bias, it is not gone completely and
the prior dependency is still present. This is demonstrated by the results of Section 6.1. However,
both RHMs are still flexible and can be changed to a different star-convex shape given the circum-
stances. Depending on the underlying model, more complex parameters to describe the shape can
be chosen, e.g., by incorporating the support points of the GP based RHM [WÖ15] into the state
vector. Also, if the prior is good, they can even deal with measurements originating only from
the visible side. The RHM in general can offer tight coupling of kinematic and shape parameters.
The joint state vector makes it possible to use the same parameter for the orientation of the shape
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Pros Cons
straightforward measurement model bias in high noise
coupling of shape and kinematic parameters sensitive to prior
extension via range rate straightforward

Table 7.1: Pros and Cons of Ellipse-RHM-EKF. Based on [1].

Pros Cons
reduced bias in high noise complicated formulas
coupling of shape and kinematic parameters sensitive to prior
extension via range rate straightforward

Table 7.2: Pros and Cons of Ellipse-RHM-EKF-imp. Based on [1].

and velocity while keeping correlations to the kinematic and shape parameters. Extending the
measurement equation via the range rate is straightforward due to the greedy association [6]. Its
usability for different shapes, however, needs to be confirmed in future work.

As the IAE uses the spread matrix, a sufficient number of measurements are necessary. But it is
possible to skip one semi-axis length during the update if necessary. Furthermore, it is unclear
how to handle different noise covariances for the individual measurements, e.g., if the original
measurement noise is in polar coordinates, the approximated Cartesian noise can differ for each
measurement. However, the IAE requires only few formulas and works similarly well than the
MEM-EKF* if its conditions are met. The findings are summarized in Table 7.3.

The MEM-EKF* is summarized in Table 7.4. While the IAE and MEM-EKF* both provide the
best results in our scenarios with respect to the GW distance, the MEM-EKF* is more general. It
works if velocity and shape are not aligned, if the measurement rate is low, i.e., 1, or if a target
is stationary. This can be expected as the MEM-EKF* is problem-tailored to this specific scenario.
An extension for rectangular targets is straightforward by using a variance of 1

3 instead of 1
4 for

the multiplicative noise to approximate a uniform distribution between −1 and 1. In addition, we
have shown how the range rate can be incorporated into the MEM-EKF* and demonstrated its
benefits in simulations.

7.2 Discussion of Gaussian Mixture Modeled Multiplicative

Noise

This section is based on [4] and extends the publication via additional theoretical differentiation
to other methods and discussion about range rate and the influence of the sequential update. As
described in Chapter 4 and demonstrated in Section 6.2, a GM can be used as a multiplicative noise
term to extend the MEM-EKF* to a more complex measurement source distribution. Unlike RHMs,
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Pros Cons
no bias in high noise needs ≥ 3 measurements with same noise
can deal with bad prior no coupling of axes and kinematics
works well even in strong turns needs velocity orientation

Table 7.3: Pros and Cons of IAE. Based on [1].

Pros Cons
no bias in high noise no contour measurements
can deal with bad prior no coupling of shape and kinematics
works well even in strong turns sensitive to shape covariance
can be extended by range rate

Table 7.4: Pros and Cons of MEM-EKF*. Based on [1].

the shape does not need to be star-convex and the distribution can be arbitrary as it essentially
consists of a set of Gaussians. However, unlike the GP based RHM, the shape is less flexible during
the update, as it only depends on the orientation and two semi-axes lengths.

The difference to other GM based methods is that [KHB19] handle the unknown associations via
EM. In a different approach, [HK20] handle them via cluster processes by keeping association
events using an RFS framework. Additionally, both methods learn the additive sensor noise as
part of the GM. Our method allows to separate the distribution of the measurement sources and
the additive sensor noise, which can be of advantage if the sensor noise depends strongly on the
sensor to target geometry. Another method using a learned GM is [SD18], which uses a particle
filter. It should be noted that tuning the distribution of the measurement sources requires either
large amounts of data in low noise scenarios to learn them or expert knowledge to tune them by
hand.

The method in [AGS19] uses GMs as well, with the difference to our method being that they
model the distribution of the measurement sources as a discrete density, while we describe the
measurement sources via a GM distribution across the shape. While we then end up with a GM
posterior component for each of the GM components describing the distribution, they end up with
a GM posterior component for each discrete measurement source. The only similarity is that they
also reduce the posterior to one component using moment matching.

The RM based approach using GMs from [ZL21] also uses optimization. Furthermore, they only
provide a shift and a scaling factor, no rotation of the original RM, making it less flexible, e.g., to
represent the four sides of a vehicle.

While the method from [CLLL21] uses multiplicative scaling factors, similar to the multiplicative
noise, and differentiates different scattering regions across the shape, the method has several
differences, i.e., they model the rectangle as a set of corners and use constraints to keep the
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rectangular shape. Alternatively, orientation and semi-axes can be used but need to be transformed
into the space of rectangle corners. They use the corners to model a uniform distribution for each
line segment between two corners, which can be extended to different polynomials as well. In
addition to the line segments, they also model a distribution over the surface of a rectangle using
two scaling factors, assuming a uniform distribution. In summary, they have different assumption
of the measurement source distribution than our approach. Therefore, a direct comparison is
not feasible. Still, while they do not do this in their work, the two scaling factor can be used
analogously to the multiplicative noise to model segments on the surface. Additionally, while they
handle association via PDA instead of moment matching, they propose to use a sequential update,
which would result in the same formulas as our moment matching approach. However, they do
not weight the different regions depending on the aspect angle to the sensor, instead they use
gating. It is unclear how the gating procedure would be modified if the surface is split into regions
as in our approach. While it can be shown that the formulas for their model using orientation and
axes could be transformed to the measurement equation (3.14) used in MEM-EKF*, they do not
use a pseudo-measurement for the shape update and they apply an UKF to handle non-linearities
and keep all state parameters in a combined state vector. A comparison between our proposed
approach and a UKF implementation would therefore be interesting in future work.

We have demonstrated that the GM-MEM-EKF* works well in our simulations. However, due to
the dependency on the prior, it is more vulnerable to strong process noise. We must also note that
the order of measurements in the sequential update can influence the results. In future work, the
exact impact and how to find an optimal order needs to be investigated.

An inclusion of the range rate measurement is possible for the kinematic update. However,
while it produces good results in our simulations for a uniform measurement distribution as
demonstrated for the MEM-EKF* in Section 6.1.3, initial tests on simulations for more complex
GMs have concluded that the non-linearities are too strong for the range rate to provide a benefit.
Depending on the process noise and sensor to target geometry, the inclusion of the range rate
can even worsen the results. Therefore, a more thorough investigation of the inclusion of range
rate into GM-MEM-EKF* needs to be conducted in future work. In addition, as with the greedy
association, setting the weights based on the sensor position relative to the predicted target can
lead to diverging tracks for highly uncertain priors, e.g., due to strong process noise on the yaw
rate. In these cases, a combination with a more robust association method as was done in other
trackers using a GM for the measurement distribution might be necessary.

7.3 Discussion of Minimum Mean Gaussian Wasserstein Esti-

mation

This section is based on the discussion in the publication [3] and extends it via a discussion of
the usage of MMGW on rectangles. The evaluation of the MMGW estimation provided insights
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we want to discuss further in this section. First, the MMGW estimate is compared to the classic
estimate using Euclidean distance in Section 7.3.1. Then, the relation between the MMGW concept
and fusion concepts of shape matrices, like RM fusion methods, are discussed in Section 7.3.2.
Finally, we comment on the use of the MMGW estimator for rectangles compared to the MMDW
estimators in Section 7.3.3.

7.3.1 GW vs Euclidean Distance on Ellipse Parameters

We have demonstrated that from a geometrical point of view, the influence of the orientation
uncertainty is not considered properly in the classical estimation methods. A high uncertainty
in the orientation means that the true ellipse can be rotated by nearly 90◦ to the mean of the
posterior density. Especially for large ellipses, this can be a bad estimate based on a metric that
actually considers the shape’s area, like the GW distance. The MMGW estimator, on the other
hand, considers this by increasing the estimate’s minor axis length while decreasing its major axis
length for increasing orientation noise. If the noise is high enough that essentially no information
about the orientation is given, the estimator deals with it by providing circular estimates. It should
be highlighted that these are just the point estimates. The mean of the density is preserved, as
the semi-axes lengths might be certain and can be used if future updates decrease the orientation
uncertainty.

If the orientation noise is low, however, the estimates are similar. To understand this relation, we
need to look at the calculation of the ESR distance which we use to approximate the GW distance.
If orientation noise is low, the majority of the density belongs to ellipses with almost overlapping
semi-axes. If the axes overlap, the ESR distance boils down to

ESR(mz,Z,mx,X)2 = ||
[︂
(mz −mx)

T vk(lz, wz)− lx vk+1(lz, wz)− wx

]︂
||22

∀αz, k with (αz = αx + k
π

2
) and k ∈ Z , (7.1)

with vk() from (5.8). As all orientations would be the same and thus, the axes are assigned correctly
as well, the ESR distance and the Euclidean distance would be very similar for low orientation
uncertainty. Additionally, the matrices would commute, which means that the approximation of
the GW distance by the ESR distance is exact. Therefore, the Euclidean distance leads to a good
estimate in regards to the GW distance for low orientation noise, which explains the results of
Section 6.4.

This means that the Euclidean estimate can be used as a good approximation of the MMGW
estimate if we know that orientation noise is low. In settings with high orientation noise, however,
the MMGW estimate should be preferred to properly incorporate geometric information of the
target as demonstrated in Section 6.4.3.
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7.3.2 GW vs Euclidean Distance on Shape Matrices

To differentiate our estimation method from those used for RMs, e.g., for particle densities of
RMs [VGBW17,RX20], we highlight that their estimate is gained as the mean of the shape matrices.
However, the MMGW estimate is gained from the matrices’ square roots, i.e., it finds the Euclidean
mean in shape matrix square root space and not in shape matrix space. In the context of the RM
based methods, their approach can be helpful, but for our purposes, the square roots provide better
results. The reasons are for one that, as shown in Chapter 5, using the square roots provides a good
approximation of the GW distance. Additionally, using square roots also provides better estimates
if the original density is distributed as a Gaussian in the ellipse parameter space. For example,
consider commuting ellipses, i.e., two ellipses with overlapping semi-axes, with 0 orientation
uncertainty. For one of the semi-axes lengths, two equally likely estimates are given, 2 and 10.
Given the formulas for the MMGW estimator, the averaging of the square root matrices would
boil down to averaging the length estimates 2+10

2 = 6. Averaging the shape matrices, on the other

hand, would boil down to averaging the squared lengths, i.e.,
√︂

4+100
2 ≈ 7. The resulting length

estimate would be bigger than expected given the original density in ellipse parameter space. This
has been further demonstrated by the results of Section 6.4.

7.3.3 GW vs Discretized Wasserstein Distance

We have presented MMDW estimators for rectangles. They turn the shapes into discretized
densities, either discretizing only the contour or the entire surface, and minimize the Wasserstein
distance between them. We have demonstrated that these estimators have a high runtime and the
MMGW estimator can provide a fast and precise approximation. We want to note here, however,
that these MMDW estimators can be applied to other, more arbitrary shapes as well, for which
an approximation as a Gaussian might not be appropriate anymore. The effect that the MMDW
estimator has on different shapes under different noise is, therefore, something that should be
investigated in the future.

7.4 Discussion of RED Fusion

This section is based on the publication [3]. To discuss the results of our evaluation of the fusion
via REDs, we discuss the relation between RED fusion and classic fusion in Section 7.4.1 and
differentiate RED fusion to RM fusion in Section 7.4.2.

7.4.1 RED vs Fusion on Ellipse Parameters

An RED is a special density tailored for the ambiguities of ellipse densities parameterized with
orientation and semi-axes lengths. The density can handle unclear associations between axes
and orientation. However, if the noise is low enough and the ellipse parameters are actually
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distributed as a Gaussian with no danger of switching in the parameterization due to ambiguities,
the regular Kalman filter would of course be optimal. In practice, this is not necessarily given.
Different initialization or high noise might lead to ambiguous parameterization, which can result in
unintuitive estimates as demonstrated in Section 6.5. We like to note that while the RED provides
clear advantages in high orientation noise, the MC-MMGW has a similar performance if the
orientation noise is low and it does not require GM reduction. Depending on prior knowledge on
the uncertainties, one or the other might be preferable.

The advantage of the RED can be applied to multi-target problems as well. We have not considered
this challenge in the context of this thesis, but it would be a logical follow-up and we want to
discuss it theoretically here. For multi-target fusion, the correct targets need to be associated
with each other. Simply using Euclidean distance between two ellipses can lead to unintuitive
associations here as well (remember the example from Chapter 5 Figure 5.1, which showed two
ellipses which were the same but were described by different state vectors). The REDs can solve
this problem while offering the option to incorporate the uncertainties of the parameters.

7.4.2 RED vs Fusion of Random Matrices

Literature provides several methods to fuse RM densities. As they consider shape matrices
distributed via an inverse Wishart density, its applicability to ellipse densities parameterized with
orientation and semi-axes lengths is limited and a clear distinction is given.

[GO13] provides a method to merge shapes, not their densities. [LJMD15] suggest to calculate the
weighted average of shape matrices to minimize the Kullback-Leibler divergence, which would
dismiss the covariance of the original ellipse parameters if given. Additionally, the difference in
averaging shape matrices and their square roots was discussed in Section 7.3.2. [LG19] represent the
state in ellipse parameter space using a GM calculated via weighted samples from an importance
distribution with the parameters of the original RM as mean. These mixtures cannot be directly
translated to our scenario, in which the uncertainties in ellipse parameter space are given from the
beginning. [HL19] provide an approximation via latent variables. Again, due to the differences, a
direct comparison here is not feasible.

In summary, while transforming the estimates’ means to RMs and fusing them with one of the
given fusion methods is an option to handle the ambiguities, the REDs provide an alternative
fusion approach which preserves the estimates’ covariances.
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8
Conclusion and Outlook

This thesis considers ETT on RADAR data using elliptic extended targets parameterized with
center, orientation, and semi-axes lengths. We answer our first two research questions as follows.

RQ 1 We discussed the usage of range rate measurements in elliptic target trackers assuming
a uniform distribution across the surface. We also determined via a theoretical discussion and
evaluation on simulated data that the best tracker in the scenarios and under the assumptions we
considered is the MEM-EKF*, which is problem tailored to elliptic extended targets. It does not
show the bias visible in the RHM based trackers and is more flexible regarding the orientation
than the IAE. Should its assumption of aligned orientation and velocity be given, the IAE is a well
working alternative with fewer formulas. Due to these results, we implemented an extension of the
MEM-EKF* for the range rate measurement from Doppler RADARs, providing the MEM-EKF*-D
and evaluated it on simulated data.

RQ 2 We applied linearizations based on the MEM-EKF* as well as weight approximation
and moment matching to derive a closed-form solution for a tracker which uses a GM based
measurement distribution on the surface of an extended target, creating the GM-MEM-EKF*,
which can handle the complex measurement source distribution and additive sensor noise.

We discussed fusion and estimation of elliptical extended targets in this thesis as well, highlight-
ing disadvantages of classical approaches and under which circumstances they would fail. We
proposed methods specific for ellipses parameterized with orientation and semi-axes lengths and
answer the last two research questions as follows.

RQ 3 Regarding the unique challenges for fusing state densities modeled with orientation and
semi-axes lengths, we defined a GM based density combining all representations of the same
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ellipse, an RED, which can handle the geometric properties in the fusion process and provided an
implementation of it for iterative fusion.

RQ 4 Considering the estimation on ellipse densities, we discussed issues stemming from using
the classic Euclidean distance in the cost function and suggested to use a distance measure on
ellipses instead, the GW distance, deriving the MMGW estimator and an approximation based on
the ESR distance.

For all proposed methods, we conducted evaluations by comparing them to the state of the art
and discussed the results. As rectangular targets, i.e., bounding boxes, can be parameterized using
orientation and semi-axes lengths as well, we also investigated the applicability of the methods
presented in this thesis for rectangles.

For future work, more complex distributions using GMs can be tested and compared to meth-
ods using optimization techniques. A comparison to learned models in scenarios with varying
sensor noise can also be conducted. It should be further investigated what the limitations and
possible benefits of using the range rate for the more complex measurement distribution of the
GM-MEM-EKF* are. In addition, benefits of using more advanced methods to handle the associa-
tion to the components need to be evaluated. As the proposed method depends on the prior, it
would be interesting to combine the tracker with a method handling association via EM [KHB19]
or which keeps track of the different association hypotheses [HK20]. In that regard, it must be
investigated whether such methods decrease the influence of the order of measurements in the
sequential update under high process noise and if there is a way to find an optimal order.

For the fusion, several aspects are of interest here as well. A fusion with two REDs is technically
not an RED anymore, so it should be investigated if reducing the result back to an RED instead
of keeping it and applying mixture reduction can improve the performance. Otherwise, trying
different mixture reduction strategies might lead to improvements as well. Furthermore, it must
be investigated for REDs how correlations between different sensor estimates can be handled best,
e.g., via covariance intersection, usage of the information form, or tracking of the correlation, and
how the REDs can be applied in different sensor network topologies.

Additionally, while the MMGW estimator provides an estimate incorporating the geometric
properties of ellipses, it must be investigated how to best determine the uncertainties of the
parameters of that estimate. The estimate is the mean in square root space transformed back into
ellipse parameter space. For the uncertainty, the evaluation of the MC-MMGW has proven that
a Gaussian approximation of the density in square root space is not enough to capture all of the
transformed density under high orientation noise. The question is therefore how to better capture
the uncertainty in square root space and how to transform it back into ellipse parameter space.

Furthermore, the usage of REDs and the GW distance for association in multi-target scenarios is a
topic of interest for future work. For arbitrary shapes, the same concepts need to be investigated,
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too. The MMDW estimators presented for rectangles can be used for other shapes as well if an
appropriate discretization can be found. Therefore, its usage on different types of extended targets
and approximations for lower runtime should be investigated in future work.
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