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Abstract

Storing memory of molecular encounters is vital for an effective response to recurring
external stimuli. Interestingly, memory strategies vary among different biological
processes. These strategies range from networks that process input signals and retrieve
an associative memory to specialized receptors that bind only to related stimuli. The
adaptive immune system uses such a specialized strategy and can provide specific
responses against many pathogens. During its response, the immune system retains
some cells as memory to act quicker when reinfections with the same or evolved
pathogens occur. However, differentiation of memory cells remains one of the least
understood cell fate decisions in immunology.

The ability of immune memory to recognize evolved pathogens makes it an ideal
starting point to study learning and memory strategies for evolving environments—a
topic with applications far beyond immunology.

In this thesis, I present three projects that study different aspects of memory
strategies for evolving stimuli. Indeed, we find that specialized memory strategies can
follow the evolution of stimuli and reliably recover memory of previous encounters. In
contrast, fully connected networks, such as Hopfield networks, fail to reliably recover
the memory of evolving stimuli. Thus, pathogen evolution might be the reason that
the immune system produces specialized memories. We further find that specialized
memory receptors should trade off their maximal binding for cross-reactivity to bind
to evolved targets. To produce such receptors, the differentiation into memory cells in
the immune system should be highly regulated. Finally, we study update strategies of
memory repertoires using an energy-based model. We find that repertoires should have
a moderate risk tolerance to fluctuations in performance to adapt to the evolution of
targets. Nevertheless, these systems can be very efficient in distinguishing between
evolved versions of stored targets and novel random stimuli.
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Glossary and Abbreviations

Abbreviations
AUC area under the curve

AUROC area under the receiver operating characteristic curve

bnAb broadly neutralizing antibody

FDC follicular dendritic cell

GC germinal center

ROC receiver operating characteristic

Glossary
affinity maturation During affinity maturation, B-cells undergo multiple rounds of mu-

tation and selection in the germinal center to increase the binding affinity of their
receptors to the presented antigen.

antibody Antibodies are Y-shaped proteins that can bind to antigens. A B-cell can turn
into a plasma cell that secretes large amounts of antibodies. These antibodies share
the binding site with the receptors of the B-cell.

antigen Antigens are structures on the surface of pathogens to which antibodies bind.

B-cell B-cells are an integral part of the adaptive immune system. Through affinity mat-
uration, they can increase the binding affinity of their receptors to most presented
pathogens. During an immune response, activated B-cells can differentiate into
memory B-cells or plasma cells.

B-cell receptor B-cell receptors are Y-shaped proteins with a variable region at the top
that binds to antigens.

Hebbian learning An incremental learning rule that includes new information at a learning
rate λ while discarding old information at the rate (1 − λ).

Hopfield network Hopfield networks are fully connected graphs that serve as an associative
memory model. Typically patterns are stored in the energy minima of the network.

vi



Glossary and Abbreviations

memory B-cell B-cells that differentiate into memory are retained for a fast response to
reinfections with similar pathogens.

pathogen Pathogens, e.g., viruses or bacteria, are organisms that can cause diseases.

plasma cell Plasma cells secrete large amounts of antibodies during an immune response.

Symbols
α specificity (only in [1]); in [2, 3] α is the index for patterns

β deliberation in [1]; corresponds to bias factor in decision-making and inverse tempera-
ture in thermodynamics

βH inverse Hopfield temperature for equilibration

βS inverse temperature of compartmentalization

χ random pattern

δ viral evolution in [1]

Ji,j connection matrix of a Hopfield network of size L × L

L length of patterns

λ learning rate

mα weights of the stored states in the memory repertoire

µ mutation rate of patterns in [2, 3]

N number of pattern classes stored in the memory

ν shape-space position of antigen

νr shape-space position of receptor

r receptor

rm memory receptor

σ stored patterns (only in [2])

t time

τ time interval; in [1] deliberation time

Θ shape parameter of the affinity function
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Chapter 1

Introduction

1.1 Scope of this thesis
The starting point and inspiration for the research I conducted over the past few years
is the adaptive immune system and, in particular, immune memory. Thus, it only seems
right to start my thesis at the same point, allowing me to introduce open questions
and motivate the importance of my work.

With the combination of innate and adaptive immunity, our immune system
constantly protects us against a multitude of threats. Classically, the innate and the
adaptive immune system were seen as two lines of defense against pathogens [4]. In
this simplified picture, the innate system quickly mounts a broad response that can
clear basic and very common pathogens. In contrast, the adaptive immune system can
protect us against more complicated threats such as evolving viruses. This division of
tasks is an oversimplified view and the interaction and cooperation between innate and
adaptive immune system are ongoing during infections [4, 5]. Nevertheless, it allows us
to get a first understanding of the adaptive immune system’s role, namely protection
against complicated novel and evolving pathogens.

The immune system mounts an adaptive response when encountering such pathogens
that the innate response cannot clear. Through a series of mechanisms, the adaptive
immune system produces a specific response to the threat. This response takes between
4-10 days [6], during which the pathogen can almost freely grow within the host, often
leading to acute infections and illnesses during that time. While fighting new threats
might seem like the primary purpose of the adaptive immune system, its ability to
produce a long-lasting memory is equally remarkable. In addition to the adaptive
immune system producing highly specific and effective responses to pathogens, some
intermediate stages of the maturation process in creating effective responses are retained
as long-lasting memory. With this memory, the immune system can then mount fast
and specific responses during reinfections with the same pathogen. Remarkably, the
memory is not only able to neutralize the same pathogen but also mutated variants of
that pathogen.
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Introduction

The ability to form an effective memory for future infections is also the basis for vacci-
nation efforts. Vaccines often contain harmless—or at least less harmful—variants of a
pathogen to trigger an adaptive immune response that produces memory cells against
future infections. Notably, the development of vaccines against various pathogens, such
as polio, measles, and rubella, was possible without a comprehensive understanding
of the underlying mechanisms [7]. Despite the undoubted success of many vaccines,
not all were successful and some, such as the respiratory syncytial vaccine, were even
harmful [8]. Moreover, effective vaccines have yet to be developed against some of the
most deadly threats, such as HIV and malaria [9, 10]. There is, however, hope that
a better understanding of the mechanisms that underlie the generation of protective
immune memory will allow the development of safe, effective vaccines for these and
other pathogens.

As mentioned above, contributing to the understanding of immune memory was
the original goal of this thesis. In particular, I focus on an often overlooked part of
the process, namely the ability to recognize evolved pathogens. The first underlying
question of this thesis is thus:

What is the optimal immune memory for evolving pathogens?

This is a very broad question, and a complete answer would need to include a full
understanding of all biological processes involved in memory production as well as
the coupling to the pathogen evolution. This thesis, however, focuses on an abstract
theoretical understanding of this question. While it cannot answer this question in all
its details, it does provide important insights into understanding immune memory.

Taking a more abstract approach has further advantages since it allows a translation
of the results to other fields. In this case, it allows us to study memory in systems of
evolving environments in general. This is a problem not only of interest for immune
memory but in many other fields such as neuroscience [11], anthropology [12], social
learning [13], and machine learning [14]. In particular, this thesis wants to contribute
to the following question.

How should memory of evolving environments be structured, and how should it
be updated?

To introduce these problems and answer some of the questions, this thesis is
organized as follows. First, in the remainder of this chapter, I will give a more detailed
introduction to the immune system, focusing on B-cell memory in section 1.2. In section
1.3, I will introduce some models to study immune memory, adaptation to evolving
environments, and other models of working memories. Chapter 2 will introduce the
mathematical models and methods used for this thesis. Chapter 3 consists of the
publication [1], in which we focus on the first question posed and study the optimal
specificity of immune memory against evolving pathogens. Chapters 4 and 5 take a
broader approach and focus on memory for evolving environments in general. These
chapters consist of the preprints [2] and [3], respectively. In [2], we build a generalized
Hopfield model that allows us to study differences between specialized memory, such as
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1.2 The adaptive immune system and immune memory

immune memory, and fully connected networks. In [3], we use an energy-based model
to study the risk of different memory strategies. The discussion in the final chapter 6
connects all the results and puts them in the context of future research.

1.2 The adaptive immune system and immune
memory

Naturally, I can only introduce the concepts relevant to my thesis here. I hope that
these compellingly motivate physicists to work on problems motivated by the immune
system or biological systems in general. For a more general description of the immune
system, I recommend the book by Sompayrac [15] and for a detailed description of
immune memory the reviews [7, 16–19] that have all inspired this section. To anyone
interested in biologically-inspired topics beyond the scope of this thesis, I recommend
the review by Altan-Bonnet et al. [20].

Adaptive immunity develops during the lifetime of an organism and its interactions
with a multitude of pathogens. Before introducing immune memory formation through
a closer look at the adaptive immune system during primary and secondary infections, I
will introduce the central actors of the adaptive immune system, B- and T-cells. In the
adaptive immune system, we can distinguish between three types of T-cells. (1) Killer
T-cells, as the name suggests, can induce the death of infected cells. Additionally, they
can recruit other cells during the immune response via cytokines, i.e., signal proteins.
Killer T-cells are often referred to as CD8+ T-cells due to their surface protein [21]. (2)
CD4+ helper T-cells identify foreign cells and thus potential threats to the host. They
can then initiate and influence the immune response via direct signals to B-cells [21]. (3)
Regulatory T-cells, which also present the CD4 protein, suppress an immune response
against cells recognized as self. These T-cells thus provide an essential mechanism to
prevent autoimmune diseases [22]. For the scope of this thesis, the details about T-cell
generation, selection, and differentiation are not essential. Instead, it is sufficient to
remember the role of helper T-cells during the B-cell selection described below. For a
review of T-cell development, I refer to reference [23].

The second key player in the adaptive immune system are B-cells, or more precisely,
their receptors. B-cell receptors are the foundation of one of the most effective weapons
against pathogens, antibodies. B-cell receptors have a Y-shape, with variable binding
sites at the top of the structure, dictating specificity to an antigen. Through genomic
rearrangement, mutation, and selection, these binding sites can specialize their binding
to unique molecules of the pathogens called antigens. During infections, B-cells can
turn into plasma cells that secrete large amounts of antibodies that closely resemble
their receptors in both structure and function. These antibodies are also Y-shaped
and share the binding sites with the original B-cell receptor. Thus, a B-cell that can
effectively bind to an antigen has the potential to produce highly effective antibodies.
In addition to the antigenic binding sites, antibodies can interact with other immune
cells through the binding site at their base.
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When deployed, antibodies have three main ways to neutralize a threat [24]. (1)
By directly binding to their targets, antibodies can neutralize pathogens by preventing
them from interacting with the organism. This is important for the protection against
viruses or toxins. (2) Antibodies use opsonization for larger-size threats such as bacteria.
In this phenomenon, they bind to molecules on the pathogen’s surface to form a coating
that is recognized by phagocytic cells such as macrophages. These cells then proceed to
ingest and destroy the pathogen. (3) Antibodies can activate the complement system,
a part of the innate immune system. The complement system is a complex network of
more than 30 proteins that can elicit highly efficient and tightly regulated inflammatory
and cytolytic immune responses [25].

Independent of the three responses mentioned above, it is crucial to have antibodies
with a high binding affinity that can respond quickly to a threat. The immune system
generates antibodies with high binding affinity by maturing B-cells and their receptors
through affinity maturation. Interestingly, B-cells do not interact with pathogens
during affinity maturation but rather with follicular dendritic cells (FDCs). FDCs
retain the antigens from pathogens and present them to B-cells [26]. Many studies
report that FDCs can retain antigens for extended periods on timescales of 12 months
or even longer [27–29]. However, the mechanisms behind this ability or the transport
of antigens to the FDCs remain unknown [26].

To understand how the immune system initiates affinity maturation and forms
a high-affinity response, we will follow an idealized adaptive B-cell response for two
consecutive infections. Figure 1.1 shows a schematic that summarizes a primary
adaptive immune response, the differentiation into memory, and the secondary memory
immune response.

When the immune system encounters a novel pathogen that the innate immune
system cannot clear, it initiates an adaptive immune response. A few days after an
infection or antigen administration, germinal centers form inside secondary lymphoid
organs (such as lymph nodes or the spleen) to allow the affinity maturation of B-cells
[6]. However, before entering the germinal center, naïve B-cells undergo the first phase
of antigen-driven differentiation. This differentiation also occurs in the lymphoid organs
yet outside of the germinal centers. Here, naïve B-cells first encounter FDCs with the
presented antigens [30]. If the B-cell receptors can bind to the presented antigens, the
B-cells internalize the antigen and present them to helper T-cells [31]. The T-cells can
then activate the B-cells to proliferate. It is generally assumed that this activation
by T-cells is essential for all following steps. Nonetheless, studies have also shown
that a T-cell-independent B-cell response is possible [32–34]. However, these results go
beyond the scope of this thesis, and we will focus on the T-cell-dependent response
only. In that case, the activation by T-cells can be seen as the first step of binding
affinity selection of B-cell receptors since B-cells need to bind to the antigens in order
to present them to T-cells [35, 36].

After activation and proliferation, the B-cells appear to have three fates [7]. First,
they can differentiate into short-lived plasma cells that secrete a quick yet low-affinity
antibody response to control the initial infection. As the name suggests, the lifespan
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Figure 1.1 Adaptive B-cell immune response and memory differentiation. During
the primary immune response, B-cells first encounter antigens presented by follicular
dendritic cells (FDCs) in the secondary lymphoid organ. B-cells with receptors that bind
to the antigen can internalize and present it to helper T-cells for activation. Activated
B-cells proliferate and then differentiate into three main types: (1) short-lived plasma cells
that provide a quick yet low-affinity antibody response, usually limited to the infection. (2)
germinal center (GC)-independent memory B-cells for future infections. (3) GC B-cells that
migrate to the germinal center.
The germinal center is split into two zones. GC B-cells first enter the dark zone, where
they undergo somatic hypermutations and proliferate. They then enter the light zone where
they compete for T-cell help. After this selection, GC B-cells have three fates. (1) They can
re-enter the dark zone and undergo further rounds of mutation and selection. (2) They can
turn into memory B-cells. (3) Typically, high-affinity B-cells turn into long-lived plasma cells
that secrete high-affinity antibodies in the late germinal center.
During a secondary immune response to a re-encountered pathogen, long-lived plasma
cells from the primary response still provide a high-affinity response to homologous (non-
mutated) pathogens. Memory B-cells can differentiate into long-lived plasma cells or reseed
germinal centers to provide a rapid immune response to evolved pathogens. Typically GC-
independent and early GC memory B-cells reseed germinal centers, while late GC memory
B-cells differentiate into long-lived plasma cells.
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of these plasma cells is generally limited to the infection [34]. Second, other cells
differentiate into low-affinity memory B-cells that are kept for future infections [37–39].
These will be discussed in more detail later. Lastly, B-cells can migrate into the
germinal center, where they undergo affinity maturation.

Germinal centers are separated into two regions: a dark zone and a light zone [40].
These names are remnants of historical images that show a dark region occupied by
many cells and a second lighter region. B-cells that migrate into the germinal center
first enter the dark zone. In this zone, B-cells proliferate and somatically hypermutate
the variable regions of the receptors with a mutation rate 106 times faster than the
overall mutation rate of human DNA [41, 42]. This process generates a large diversity of
B-cells that originated from B-cells with receptors that bound weakly to the presented
antigens.

In the next step, B-cells migrate to the light zone, where they undergo affinity
selection. FDCs again present antigens to the B-cells, which they try to internalize
for processing and presentation to helper T-cells for further activation. Studies have
shown that in the light zone B-cells are significantly more numerous compared to helper
T-cells [35, 40] which is the limiting factor in the selection process [6, 40]. Indeed,
a recent study suggests that the threshold requirement for B-cells to obtain T-cell
help in the germinal center is higher than the threshold for naïve B-cells to obtain
T-cell help during initial activation prior to seeding germinal centers [43]. Though a
complete description of this light zone process does not yet exist [44], it has been shown
experimentally that B-cells with higher binding affinity have a selective advantage to
get activated [45–47].

If activated, the B-cells again have one of three fates. First, they can reenter the
dark zone for a further round of mutation before again undergoing selection in the
light zone. Indeed, B-cells typically undergo many rounds of somatic mutations and
selection during affinity maturation and increase the binding affinities of their receptors
by up to 105 fold [46, 48, 49]. Second, the B-cells can differentiate into memory B-cells
as a protection for future infection. The last option is differentiation into long-lived
plasma cells. In contrast to the short-lived plasma cells from activated pre-germinal
center B-cells, these cells provide a highly specific and high-affinity antibody response
that can protect against future infection. While their maximal lifespan is still disputed,
they have been observed to live for at least one year [50]. While much progress has
been made in understanding affinity maturation, the differentiation in the germinal
center is still one of the least understood cell fate decisions in the immune system [6,
40, 46, 51–54].

For a long time, it was assumed that memory B-cells are generated continuously
during affinity maturation [55]. Thus, memory B-cells would proliferate without strong
affinity-dependent selection [46, 51]. However, studies have shown that memory B-cells
often have lower affinity compared to long-lived plasma cells [56], and it has also been
found that memory cells show fewer hypermutations than plasma cells [57]. In addition,
recent experiments indicate that memory differentiation is highly regulated [58–63],
reflecting a preference for memory B-cells at early stages and long-lived plasma cells at
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1.2 The adaptive immune system and immune memory

later stages of affinity maturation [59].
To understand why this active regulation might result in the optimal strategy, we

look at immune memory response during reinfection. As described above, the immune
memory has two kinds of B-cell derived memory available. Akkaya et al. describe the
combination of long-lived plasma cells and memory B-cells as two walls of protection
[7]. In their analogy, plasma cells with their highly-selected high-affinity antibodies
build the first wall. As the plasma cells and antibodies are already circulating in the
blood, they provide a rapid response against homologous (unevolved) challenges.

In contrast, the second wall (memory B-cells) can produce a quick and effective
response against evolved pathogens whose mutations have escaped the plasma cells.
Various studies back up this idea. Purtha et al. used a mouse model to test the immune
memory produced for the wild-type West Nile virus [64]. In their study, the original
long-lived plasma cells secreted antibodies that only weakly bound to a mutated virus
that differed only by one amino acid. Remarkably, memory B-cells that turned into
plasma cells during the reexposure secreted antibodies with much stronger binding to
the mutated virus. More recently, Leach et al. found that long-lived plasma cells only
provide adequate protection against reexposure to a homologous strain of the Narita
virus. In contrast, a sufficient immune memory response to evolved viruses requires
memory B-cells [65].

The observation that less evolved memory B-cells provide better protection against
evolved pathogens introduces cross-reactivity, the ability to generalize, as an additional
component to memory production. The results suggest that less evolved and thus
lower-affinity B-cells have a larger cross-reactive range against similar or evolved
pathogens. Therefore, we can assume a tradeoff between affinity and cross-reactivity
during affinity maturation. Different subpopulations of memory B-cells further support
this tradeoff. Memory B-cells belong to one of two types, IgM and IgG, depending
on their respective constant region [66–69]. During primary infections, IgM B-cells
dominate the pre-germinal center region in the lymphoid organs and only some B-cells
switch their type to IgG after T-cell activation. IgM B-cells still dominate the early
germinal center, associated with fewer mutations and lower affinities. Over time, IgG
B-cells outcompete IgM B-cells and IgM B-cells are consequently depleted from the
germinal center [70]. Consistent with these results, studies suggest that IgM memory
B-cells are generated before or early in the germinal center while IgG B-cells are
produced in the later stages of affinity maturation [68].

During a memory response to reinfection, IgG memory B-cells quickly turn into long-
lived plasma cells that secrete antibodies of relatively large affinity [71]. Lower affinity
IgM memory B-cells, in contrast, are less evolved and can reenter germinal centers to
undergo further rounds of affinity maturation. Naturally, reentering a germinal center
delays the memory response of IgM memory cells. However, it also allows them to
differentiate into IgG memory cells or high-affinity long-lived plasma cells selected for
the current threat. While this form of memory response appears similar to a novel
naïve response, memory B-cells respond quicker and in higher numbers [72–74]. This
allows us to estimate a delay between memory and naïve response of about 1.5 − 5
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days [1].
Of course, the tradeoff between affinity and cross-reactivity is not absolute and

slight variations are expected. Nevertheless, the observations described above suggest
this tradeoff in some form. An apparent exception to this concept seems to be broadly
neutralizing antibodies (bnAbs). These antibodies can effectively bind to a wide range
of pathogens, seemingly violating the tradeoff. However, bnAbs do not actually bind
to many different antigens but are instead optimized for highly conserved regions
of pathogens [75, 76], i.e., when a pathogen evolves, the site on which the bnAb
binds remains unchanged, allowing recognition of the pathogen. Thus, bnAbs do
not contradict the affinity cross-reactivity tradeoff but demonstrate the complexity
of the interaction between immune receptors and pathogens. Indeed, many studies
are working towards an understanding of bnAbs and much effort goes towards finding
vaccination strategies to generate bnAbs against rapidly evolving pathogens such as
HIV [77–79]. However, the treatment of bnAbs is beyond the scope of this thesis, and
we will instead focus on the interplay between receptors and evolving binding sites.

Beyond bnAbs, the description of immune memory above already omits many
biological details about cell signaling and the interaction of all players in the immune
response. Nonetheless, it introduces the essential concepts of affinity maturation and
B-cell immune memory. However, for the scope of this thesis, it is sufficient to take
an even more abstract and simplified point of view and summarize immune memory
as follows. During primary infections, the adaptive immune system produces a highly
specific response derived from naïve B-cells. Throughout affinity maturation, naïve
B-cells receptors evolve from cross-reactive and low-affinity receptors to high-affinity
receptors with a small cross-reactive range. While this response can clear the pathogen,
it takes about two weeks to produce high-affinity antibodies through affinity maturation
[6, 59]. Importantly, this process is not only intended to clear the immediate threat
but is also used to produce memory. The memory follows a tradeoff between affinity
and cross-reactivity, with early memory showing more cross-reactive and low-affinity
properties (IgM memory B-cells). In contrast, memory produced at the final stages
of affinity maturation has the largest affinity to the current threat but only a small
cross-reactive range (long-lived plasma cells). Memory that is produced at intermediate
stages lies in between this tradeoff (IgG memory B-cells). Together, all parts build the
immune memory that can quickly respond to reinfections. As expected, cross-reactive
memory allows protection against evolved (mutated) pathogens, whereas the most
adapted memory can recognize only homologous pathogens.

It is important to note that most of the results on the different types of immune
memory and the active regulation of memory production have been published in the last
5 to 10 years, and our understanding is still growing. Thus, while theoretical work has
discussed repertoires of cross-reactive immune receptors, it is not surprising that there
is little to no theoretical work on optimal memory strategies against evolving threats.
These strategies, or from a more general point memory for evolving environments,
is the focus of this thesis. The published work [1] presented in chapter 3 uses the
tradeoff between cross-reactivity and affinity to discuss optimal memory strategies
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1.3 Models of the immune system, co-evolution and memory

against an evolving pathogen. While we study which strategies are optimal when
facing various pathogens with different evolutionary rates, this paper does not discuss
the formation of a repertoire that simultaneously memorizes multiple pathogens. The
repertoire for multiple evolving pathogens is the focus of the following chapters 4 & 5.
First, chapter 4 focuses on the optimal storage of evolving patterns. In particular, we
focus on the difference between an immune-like specialized repertoire that produces
individual B-cells for each different pathogen and other memory strategies such as fully
connected networks. Indeed we find that specialized repertoires are favored against a
set of evolving targets. Thus, beyond biological constraints, the evolution of pathogens
might be the reason for the immune system to encode memory in specialized receptors.
Finally, chapter 5 studies how memory repertoires should optimally adapt to evolving
targets. In the corresponding paper [1], we study the influence of cross-reactivity,
pathogen evolution, and risk on repertoire update rates.

Before we can turn to the methods and results of this thesis, the following chapter
will introduce some models that study either immune memory, adaptation to fluctuating
or evolving environments, or memory in general.

1.3 Models of the immune system, co-evolution and
memory

1.3.1 Models of immune memory
Building models that include the interaction between the immune system and pathogens
requires some understanding of the underlying binding between immune receptors and
antigens.

Modeling or predicting this binding from genomic sequences, i.e., genotypes of
immune receptors and antigens is a challenging problem by itself and goes far beyond
the scope of this thesis. To model immune recognition and study binding to evolved
pathogens, we rely on the commonly used shape-space introduced by Perelson and
Oster [80]. Here we can think of antigens and receptors as points in a high-dimensional
space, whose coordinates represent unspecified physicochemical properties [81]. In
this space, receptors near each other will recognize similar antigens, and the binding
between receptors and antigens depends on their distance. Further, we can interpret
random mutations of pathogens and their antigens as a random walk in this space with
a step size dependent on the mutation rate. This concept of shape-space is visualized
in Fig. 1.2, where the memory receptors have a cross-reactive range in which they can
bind to antigens. Through random mutations, the antigen can move away from the
neighborhood of the cross-reactive range and can thus avoid recognition during future
encounters.

Similar to this thesis, many studies have used a shape-space to describe the
interaction between immune receptors and pathogens. In [82], Mayer et al. used the
shape-space to introduce a cost function for pathogens given a memory repertoire.
They use this cost function to study the optimal resource allocation of a memory
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cross-reactive 
rangeantigenic 

evolution

antigen

B-cell receptor 

shape-space

Figure 1.2 Antigen-receptor shape-space. B-cell receptors have a cross-reactive range
in which they can bind to antigens. This range is centered around their cognate antigen to
which they have the largest affinity. Pathogens evade the immune pressure by evolving their
antigens through random mutations. If a pathogen evolves outside of the immune memory’s
range, the immune system mounts a new response and forms new memory cells with receptors
centered around the evolved antigen.

repertoire that faces a constant set of pathogens. In a later paper, they addressed the
reallocation of these resources when the encounter probabilities with the pathogens
change [81]. While they do include the effect of different cross-reactivity functions,
they constrain their analysis to static pathogens.

Marchi et al. used a different approach and studied the evolution of pathogens in a
multi-dimensional shape-space that is constrained by the immune pressure from the host
population [83]. Here the immune memories are modeled as regions of cross-reactive
binding in which the pathogen cannot evolve. However, the analysis only allows the
prediction of different types of viral evolution and does not include an analysis of
memory strategies.

Interestingly, most studies ignore the effect of pathogen evolution on the immune
strategy. If included at all, pathogen evolution is usually modeled as a fluctuation
of the pathogen. Of course for two consecutive encounters, fluctuation and evolution
appear identical. However, while fluctuations remain centered around the original
pathogen, evolution drives the pathogen away from its original position in shape-space
[84]. Thus, the evolution of pathogens plays a crucial role when memory strategies are
evaluated over multiple encounters with pathogens.

1.3.2 Models of co-evolution
While the theoretical work on the interaction between immune memory and evolving
pathogens has been sparse, much more research exists on evolution or adaptation
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in evolving environments. As we will discuss in this section, all models have their
justification and field of application. However, they are not suitable to describe the
process of memory production and utilization for evolving targets.

Most models rely on some model of fitness. In general, fitness is the measure of
evolutionary success, and it is most often interpreted as the long-term growth rate.
Biophysicists usually draw an analogy between fitness and negative energy. Similar to
energy differences between states, only the fitness differences determine the outcome,
with states of higher fitness being favored. A fitness landscape then, similar to an
energy landscape, defines the evolutionary success for each state. Thus, a population
that produces variance through mutations can explore the space and move towards the
fitness peaks through selection. Fisher famously stated his fundamental theorem of
natural selection that indeed “the rate of increase in the average fitness of a population
is equal to the genetic variance of fitness of that population” [85, 86]. Thus, the
evolution of a population can be interpreted as a fitness optimization protocol that
moves states of lower fitness towards the peaks in the landscape. Affinity maturation in
the germinal centers is an example of this process. During each round of mutations, new
states surrounding the original receptor are explored. Then during the selection phase
in the light zone, B-cells that bind strongest to the antigen have a fitness advantage as
they get more T-cell help. Thus, the population of germinal center B-cells moves up
the peaks in the fitness landscape.

To extend studies to changing environments, Mustonen and Lässig suggest dynamic
fitness seascapes with evolving fitness peaks [87]. Within these non-equilibrium models,
fitness flux, rather than fitness, turns out to be the correct quantity to measure adaptive
evolution of genotypes [88]. Models of dynamic fitness seascapes have been used to
study adaptive gen expression in drosophila [89] or the host-pathogen coevolution of
chronic infections such as HIV [90]. However, the models have not yet been able to
capture the effectiveness of states adapted to one landscape and then to a changing
landscape at a later point. Instead, these models might be more suited to study how
artificial changes to the fitness landscape can direct evolution in a desired direction.
References [91, 92] are examples of recent approaches to use control theory to steer
evolution. Related work [93] suggests chirp-protocols that rapidly switch between two
or more environments that share some fitness peaks. The different environments can,
for example, represent different viral strains and the shared peaks are conserved regions.
Thus, a protocol that can move the population to a shared peak can produce broadly
neutralizing antibodies.

A different approach to studying adaptation to evolving environments is phenotype
switching on a population level. Organisms might display different or even change
their phenotypes without any change in their genotypic states. For example, butterflies
can change their phenotype wing pattern, or mammals vary their fur colors depending
on the weather conditions and provide suitable seasonal camouflage [94]. Significantly,
these adaptations happen without changes to the genotype. The scenario described
here corresponds to a tracking strategy that occurs when the environment switches slow
enough, the transition is observable by organisms and the entire population can safely
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adapt their phenotype [95]. Depending on the transition speed between environments,
their observability, and the selectivity of the environment, the long-term optimal
solution may favor other strategies such as bet-hedging strategy [95]. In this limit, the
optimal solution for a population is always having all phenotypes present. Thus, even
though some states are suboptimal, the population will not die out because it does not
have a fitting solution. This tradeoff between the possible gain in one environment
and preparation for other environments illustrates a vital component of these models,
namely, focusing on long-term growth, not short-term gains, similar to many other
studies [96–101]. This concept is also the basis for the optimizations in this thesis.
Here the focus is not on one infection or encounter but instead on long-term outcomes.
Beyond this shared method, the results of phenotype switching research do not apply to
the memory of evolving environments. Even though the studied environments change,
they do not evolve but only switch between a predetermined set of states. However,
it would be interesting to see how these models would change if the environment not
only switched between states but instead included the evolution of these states.

1.3.3 Models of working memory
This thesis aims to go beyond immune memory and study memory for evolving
environments in general. This section will introduce some other forms of memory and
possible applications to evolving environments as a first step.

To bridge the gap from immune to other forms of memory, we will start with olfaction.
Similar to the immune system, olfactory sensing relies on molecular recognition between
olfactory receptors and odor molecules. However, the form of memory production
is widely different. In mammals, odor recognition begins with olfactory receptors
located in the olfactory bulb in the nasal cavity [102]. In contrast to immune receptors,
olfactory receptors can bind to many unrelated molecules. This broad binding allows
the olfactory system to recognize orders of magnitude more odors compared to the
number of olfactory receptors [103–105]. A given odor is composed of many mono-
molecules at different concentrations [106–108]. These molecules are drawn from a
space of about 104 distinct mono-molecules that react with the olfactory receptors
(a total of ∼ 300 − 1000 in mammals [109–113]). This interaction leads to a distinct
distributed signal and spatiotemporal activation pattern in the olfactory bulb [114,
115]. This pattern is then transmitted to the olfactory cortex. Interestingly, only few
synapses connect the receptors and cortex, making it one of the most direct links
between brain and environment [102]. The olfactory cortex serves as the actual pattern
recognition and storage device. Similar to other brain regions, the synaptic connections
in the olfactory cortex form when they are co-stimulated by a given odor pattern, thus
forming an associative memory [116–121]. This memory can then be retrieved when it
encounters the same or similar pattern.

To theoretically study how the associated memory of the olfactory system generates
and recovers patterns, artificial neural networks that store auto-associative memory can
be used. Neural networks also have activation patterns as their inputs. These patterns
(stimuli) then trigger interactions between the network’s encoding nodes, resembling the
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co-activation of synaptic connections in a cortex. This way, the ensemble of interactive
nodes builds a robust memory of the patterns. The simultaneous stimulation allows
pattern recovery when the network is re-exposed to a pattern or even just a fraction of
a pattern. One of the models used to study associated memory is the Hopfield neural
network [122] with Hebbian learning rule [123]. This energy-based model can encode a
set number of patterns as attractors in its energy minima. The number of patterns
that Hopfield networks can reliably store and recover grows linearly with the pattern
length. At the same time, the model is still analytically solvable. This allows a much
better understanding of network dynamics compared to the commonly used black-box
machine learning techniques. However, the connection between standard Hopfield
networks and real synaptic neural networks has been debated over the past decades.
Nevertheless, the Hopfield network provides a simple and solvable coarse-grained model
of the synaptic network, relevant for working memory in the olfactory system and the
hippocampus [121].

Research on Hopfield networks and other neural networks mostly focuses on dis-
entangling signal from noise. These systems are often highly effective in learning
static patterns, even when given noisy inputs [124]. In machine learning, noise inputs
are even a key ingredient during the training phase to prevent overfitting [125, 126].
However, research on evolving systems is still sparse, and only some specialized machine
learning approaches allow for learning dynamically evolving inputs [14, 127]. Thus, we
still lack a general framework for learning evolving patterns relevant to many real-life
applications [127].

The papers presented in chapters 4 and 5 aim to contribute to the research of
evolving environments. In [2], we show that in contrast to the static case, classical
Hopfield models [122] fail to recover evolving patterns efficiently. In particular, we
demonstrated that networks need an increased learning rate to follow the dynamics of
evolving environments. This heightened learning rate distorts the network’s energy
landscape so that energy minima become connected by narrow paths (mountain passes).
Through these passes, patterns can equilibrate into a wrong attractor and are thus
associated with a false memory. Further, we demonstrate that specialized memory
compartments can overcome this misclassification. Interestingly, the immune system’s
B-cell memory is a form of this specialization. We can thus postulate that the evolution
of pathogenic patterns may be one of the key reasons why the immune system keeps a
specialized memory.

In chapter 5, we use a general energy model, similar to the Hopfield energy function,
with Hebbian learning to study updates to a memory repertoire of specific receptors.
We introduce a tradeoff between the mean affinity and fluctuations in affinity to
investigate different regimes of learning when repertoires face evolving targets. Similar
to [2], we find that systems increase their learning rate to follow the evolution of the
targets. However, this faster learning also leads to increased fluctuations in performance.
Indeed we find that very risk-tolerant systems will use large learning rates and focus
the repertoire around the most recently encountered targets. In contrast, risk-avert
strategies will effectively shut down the learning when facing evolving targets. We
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show that moderate risk tolerance is desirable to build effective repertoires that can
distinguish between previously encountered and novel stimuli.

Beyond this biological intuition, both of our papers [2, 3] offer a principled analytical
framework to study learning and memory generation in out-of-equilibrium dynamical
systems. Thus, this work contributes to the understanding of immune memory and
is also a starting point for the needed theoretical framework of machine learning of
evolving environments [127].
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Chapter 2

Methods

This chapter will introduce the different models I have used to study memory strategies.
While I believe that it is helpful to read this section first, it is by no means necessary
to understand the articles presented in the next three chapters. All papers are self-
contained and introduce all required tools in the materials and methods section [1], or
their appendix respectively [2, 3]. Indeed, some overlap and repetition to these sections
is unavoidable.

This chapter follows the order of the thesis. First, I will introduce a biophysical
model for receptor-antigen binding in section 2.1 and the decision-making theory in
section 2.2. Together, these concepts build the foundation for the model of [1] (chapter
3). Section 2.3 introduces the notation of the Hopfield network that we use in [2]
(chapter 4). Section 2.4 bridges the gap between the standard description of the
Hopfield energy function to a model for the affinity of a memory repertoire. Section
2.5 generalizes this affinity function to the model we use in the final paper of the thesis
[3] (chapter 5).

2.1 Immune recognition
In this section, I will introduce a biophysics inspired model for the probability P (m)

recog. of
initiating an immune memory response against a pathogen. The first step towards this
probability is the binding affinity E(rm, ν) of memory receptors rm to antigens ν that
determines their binding during the immune response. To study this binding without
going into the physico-chemical details, we can use a common shape-space between
receptors and antigens (see Fig. 1.2). In that space, we assume that each receptor r has
a cognate antigen ν∗

r against which it has the highest affinity. For memory receptors,
this cognate antigen belongs to the pathogen that the receptor was optimized against.
As discussed above, receptors typically have some cross-reactive binding to related
antigens that allows them to recognize evolved pathogens. In the shared shape-space,
we can express the affinity between a receptor r and an arbitrary target antigen ν
in terms of the antigenic distance dr(ν) = ∥ν − ν∗

r ∥ between the receptor’s cognate
antigen ν∗

r and the target ν: E(r, ν) ≡ E(dr(ν)) (see Fig. 1.2).
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Beyond the binding affinity E(rm, ν), immune-pathogen recognition and thus the
initiation of a memory response depends on the encounter rate γν(t) between a memory
receptor rm and the antigen ν at a given time t. This encounter rate γν(t) depends on
the abundance of antigens and immune receptors, and hence, can vary during infections
within a host. For a short time interval [t, t+ dt], we can express the probability that a
receptor rm encounters and binds to an antigen ν by, γν(t)E(rm, ν)dt. This formulation
of the immune-pathogen recognition is similar to the notion used in reference [82].
An immune memory response is triggered through the recognition of an antigen by
a circulating memory receptor. However, if no such recognition occurs during the
early stage of the infection (τ ≈ 1.5 − 5 days [1]), the immune system initiates a naïve
response. In [1], we term this time τ the deliberation time, as during this time the
memory can be exploited.

As it turns out, it is much easier to calculate the probability that an antigen is
recognized through a novel naïve response P (0)

recog. , which is equivalent to the probability
that the memory receptor cannot recognize the antigen 1 − P (m)

recog. . To do so, we can
split the deliberation time τ into infinitesimal intervals limN→∞ τ/N during which we
calculate the probability of no memory-pathogen binding. We then multiply these
intervals to find

P (0)
recog.(ν) = lim

N→∞

N∏
i=1

(
1 − γν(ti)E(rm, ν) τ

N

)
= e−

∫ τ

0 γν(t)E(rm,ν)dt. (2.1)

This result shows the dependence on the binding affinity well. Suppose the memory
receptors rm have a large affinity E(rm, ν) for the current pathogen ν. In that case, the
exponent becomes large and no naïve response is needed, i.e., the memory responds
to the threat. On the other hand, if the pathogen has evolved too much, the affinity
E(rm, ν) will be close to zero, and the novel response is mounted with high probability.
Indeed, in the case of zero affinity (e.g., for a novel pathogen) the probability of a novel
response P (0)

recog.(ν) = 1.

2.2 Decision-making
In our publication [1], we study the adaptive value of immune memory under various
evolutionary scenarios, using the framework of decision theory. Simply put, decision-
making describes the probabilities of actions as a function of their utilities.

The following section will introduce the relevant concepts of equilibrium and non-
equilibrium decision-making. While initially inspired by the work of von Neumann
and Morgenstern [128], the concepts are mainly inspired by [129] for equilibrium and
[130] for non-equilibrium decision-making. The notation of this section will follow the
notation of [1].
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2.2.1 Equilibrium decision-making
We assume that the immune system can choose between mounting a memory response
or starting a new naïve response. In the language of decision-making theory, a rational
decision-maker can choose between two possible actions a ∈ {naïve, memory} with
corresponding utility Ua. In addition, the decision-maker may have a prior preference
for each action, denoted by the prior probability distribution Q0(a). This prior will
sway the decision and thus change the outcome probabilities. To tradeoff prior and
new information, the constrained decision-maker should choose its actions according
to the optimized probability density Q(a) that maximizes the expected utility while
satisfying constraints due to the prior assumption [128, 129],

Q(a) = argmax
Q(a)

(∑
a

UaQ(a) − 1
β
DKL (Q(a)||Q0(a))

)
. (2.2)

Here, DKL(Q(a)||Q0(a)) =
∑

a Q(a) log (Q(a)/Q0(a)) is the Kullback-Leibler distance
between the rational distribution Q(a) and the prior distribution Q0(a) and 1/β
is a Lagrange multiplier (bias factor) in the tradeoff between prior knowledge and
information about utilities of the outcomes. This tradeoff can either be interpreted as
the ability or willingness of decision-makers to process new information and deviate
from prior assumptions. Independent of the interpretation, the optimal solution for a
rational yet constrained decision follows,

Q(a) = 1
Z
Q0(a)eβUa , (2.3)

where Z = ∑
a Q0(a)eβUa is a normalization factor. This result allows a good under-

standing of the bias factor β. When information processing is highly efficient (i.e., the
bias factor 1/β → 0), the rational decision-maker deterministically chooses the action
with the highest utility. On the other hand, if the system cannot process the new
information or has a strong prior (i.e., 1/β → ∞), the decision-maker hardly changes
its opinion and acts according to its prior belief (i.e., Q(a) = Q0(a)). The solution in
eq. 2.3 resembles the equilibrium solution to the decision problem with expected free
utility

⟨U⟩ =
∑

a

UaQ(a). (2.4)

This thesis focuses on unbiased systems, i.e., systems where the prior distribution
is uniform across actions. In this case, rational decision-making is equivalent to a
maximal entropy system with energy constaint [131], resulting in the Bolzman-like
probability of actions Q(a) ∼ exp[βUa]. In the thermodynamic analogy, β is the inverse
temperature and the utilities Ua correspond to the negative energy of the states. In
the analysis of chapter 3, the resulting probabilities for utilizing a memory response
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Q(mem) or mounting a naïve response Q(naïve) are thus given by

Q(mem) = 1 −Q(naïve) = eβUmem

eβUmem + eβUnaïve
, (2.5)

which is a sigmoidal function, dependent on the utility of each action.
In [1], we connect these decision-making probabilities to the biophysical description

of the immune response through recognition of an antigen by either of these cell types
(2.1). This allows us to derive the utility gain of memory responses compared to a
naïve response as well as the bias factor β.

2.2.2 Non-equilibrium decision-making
Analogous to the standard description of thermodynamics, also decision-making theory
can be extended to non-equilibrium processes [130]. This extension is relevant when
decisions are made at finite time where the decision-maker cannot find the optimal
solution or cannot equilibrate to the optimum infinity slowly. Indeed, the response of
the immune memory to an evolved pathogen is such a non-equilibrium response as the
binding profile of the memory E(rm, ν) differs from the optimal solution E(rν , ν) with
the cognate receptor of the evolved pathogen.

In the non-equilibrium decision-making, using a suboptimal strategy Q̃(x) leads to
an extra cost. Analog to the information possessing factor in eq. 2.2, the cost depends
on the Kullback-Leibler divergence between the suboptimal strategy Q̃(x) and the
optimal equilibrium strategy Qeq(x) scaled by the temperature of the decision process
[130]. This dissipated utility

Udiss = 1
β
DKL

(
Q̃(x)||Qeq(x)

)
, (2.6)

similar to the dissipated energy, constitutes the loss of the non-equilibrium process.
Together with the equilibrium free utility (see eq. 2.4), we can then calculate the net
utility of a non-equilibrium process [130]

Unet = ⟨U⟩ − Udiss. (2.7)

This net utility can be interpreted as the extracted (information-theoretical) utility of
the non-equilibrium decision. In the corresponding thermodynamic framework, the net
utility equals the extracted work of an out-of-equilibrium process. In these systems,
the difference between extracted work and free energy is given by the dissipated heat
[132].

2.3 Hopfield networks
In [2] we move beyond our simplified picture of memory as antigenic snapshots, and
study how memory actually learns antigenic patterns. To contrast the specialized
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receptors of immune memory, we use one of the most widely used solvable models
of associative memory, the (Little-)Hopfield network. Some controversy exists about
the name as Hopfield based his work [122] on an earlier paper of William Little
[133]. Throughout this thesis, I will use the more widely used name Hopfield network.
Independent of the name, these networks have received considerable attention as it
has been hypothesized that their accessible memory operates according to the same
principle as biological associative memory [121, 134, 135].

The storage targets of Hopfield networks are binary patterns (stimuli) σ of length
L with entries: σ = (σ1, . . . , σL), with σi = ±1, ∀i. To store an associative memory
of these patterns, we define a fully connected graph (network) represented by an
interaction matrix J = (Ji,j) of size L× L (see Fig. 2.1). This interaction defines the
Ising-like Hopfield energy function (Hamiltonian) [122]

EJ(σ) = − 1
2L

∑
i,j

Ji,jσiσj, (2.8)

whose minima (attractors) correspond to the stored states of the system (see Fig. 2.1).

2.3.1 Hebbian learning
To train the network (i.e., store the patterns), we focus on an incremental Hebbian
learning process, during which different patterns are presented sequentially and in
random order. As a pattern σα is presented, the interaction matrix J is updated
according to the following Hebbian update rule [136]

Ji,j −→ J ′
i,j =

(1 − λ) Ji,j + λσα
i σ

α
j , if i ̸= j;

0, otherwise.
(2.9)

Here λ ∈ [0, 1] is the learning rate that stores the patterns in the energy minima
associated with the matrix J . With this particular Hebbian learning rule, Hopfield
networks have a capacity of N ≈ 0.14L patterns, i.e., they can reliably store and
recover up to N ≈ 0.14L patterns1 [122, 137, 138]. Interestingly, the Hebbian learning
rule also works for noisy inputs of patterns [124]. While other learning rules [139–144]
can achieve a higher capacity, Hebbian learning is analytically most tractable and we
stay well below the Hopfield capacity throughout this thesis. It should be further noted
that Hopfield networks have been criticized for the undesirable scaling of the capacity
with the length of the patterns (L) while the number of interactions Ji,j grows with
(L2) [145]. However, we do not demand optimal efficiency in that regard. Thus, we
do not exploit the scaling, instead we focus on the analytic tractability of Hopfield
networks.

1Networks also have minima close to the negated patterns, i.e., to −σα, but these do not contribute
the capacity and do not play any role in what follows.
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Hopfield network

σatt
σ

σ

σatt
∼ e−βHE(J,σ)

Ji,j

energy landscape

Figure 2.1 Hopfield network and energy landscape. Schematic of Hopfield network
(left) as a fully connected graph with coupling matrix Ji,j between the nodes. This interaction
defines the energy landscape E(J, σ) = − 1

2L

∑
i,j Ji,jσiσj (eq. 2.8) with equipotential lines are

shown in the bottom 2D plane (right) . The attractors of the system in the energy minima
correspond to stored states. To find an associative memory, a pattern σ with energy E(J, σ)
equilibrates with inverse temperature βH and falls into the attractor σatt (see eq. 2.10).

2.3.2 Memory retrieval
After a network is sufficiently trained, the patterns can be retrieved even from distorted
copies, i.e., copies where a fraction of the entries (spins) σi are flipped. To find the
associated attractor for a given pattern, the state of that pattern is equilibrated in the
energy landscape (eq 2.8). In [2] (see chapter 4) we use a Metropolis algorithm for the
equilibration. To do so, we make spin-flips in a presented pattern σα → σ̃α and accept
a spin-flip with probability

P (σα → σ̃α) = min
(
1, e−βH∆E

)
, (2.10)

where ∆E = E(J, σ̃α) − E(J, σα) and βH is the inverse (Hopfield) temperature for
pattern retrieval in the network. In the low temperature regime (i.e., high βH),
equilibration in networks with working memory drives a presented pattern σα towards
a similar attractor σα

att, reflecting the memory associated with the corresponding energy
minimum (see Fig. 2.1). In the limit of βH → ∞, this equilibration procedure becomes
deterministic and only spin-flips, that reduce the energy, are accepted.

A detailed description of the numerical implementation of the Hopfield network
with Hebbian learning as well as the pattern retrieval is given in Appendix A of [2]
(chapter 4).
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2.4 The Hopfield energy landscape as repertoire of
encountered patterns

The treatment of the Hopfield network given above is the classical description found in
many textbooks. The formulation of the energy function (eq. 2.8) and learning rule
(eq. 2.9) are beneficial when interpreting the system as a fully connected network. We
can, however, reformulate the problem to resemble the binding affinity of a memory
repertoire. As a first step, we introduce the bra-ket notation where |σ⟩ represents the
pattern, ⟨σ| its transpose, and ⟨σ|σ′⟩ ≡ ∑

i σiσ
′
i is the scalar product. As it turns out,

we can then rewrite the Hebbian learning rule for coupling matrix J (eq. 2.9) for an
update with pattern σα(t) at time t as

J(t) −→ J(t+ 1) = (1 − λ) J(t) + λ (|σα(t)⟩ ⟨σα(t)| − 1) , (2.11)

where the identity matrix 1 ensures Ji,i = 0. Let us now assume that we start with an
empty interaction matrix J at time zero2, i.e., Ji,j(t = 0) = 0; ∀i, j. We then present
the system with patterns σ(t) at each time point. After time T the interaction matrix
is then given by

J(T ) = λ
T −1∑
t=0

(1 − λ)T −1−t (|σ(t)⟩ ⟨σ(t)| − 1)

= λ
T −1∑
t=1

(1 − λ)T −1−t |σ(t)⟩ ⟨σ(t)| − λ
T −1∑
t=0

(1 − λ)t1. (2.12)

After a sufficiently large time T the weight in front of 1 (λ∑T −1
t=0 (1 − λ)t ) will go to 1

and only the wights for the encountered patterns σ(t) keep a time dependence. We
can further simplify eq. 2.12 by introducing the weights for the encountered patterns
ct = λ(1 − λ)T −1−t. This reformulation allows us to write the energy of any given
pattern χ as

E(J(T ), χ) = − 1
2L ⟨χ|J(T )|χ⟩ = − 1

2L

(∑
t

ct ⟨χ|σ(t)⟩ ⟨σ(t)|χ⟩ − ⟨χ|1|χ⟩
)

= − 1
2L

∑
t

ct| ⟨σ(t)|χ⟩ |2 + 1
2 . (2.13)

Importantly, this is just a reformulation of the original energy function in a Hopfield
network with Hebbian learning. However, the form in eq. 2.13 allows us to reinterpret
the energy of any given pattern χ as a weighted sum of squared overlaps with all
patterns σ(t) previously stored in the system. The sum is then scaled by a model-
dependent factor − 1

2L
and shifted by 1

2 . This shift is chosen such that the expected
energy of a random new pattern (i.e., a pattern unrelated to all per-encountered

2Indeed, the Hebbian learning rule ensures that the dependence on the initial state J(0) decays
exponentially ∼ (1 − λ)t but for simplicity, we will use Ji,j(t = 0) = 0 as an initial state.
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patterns) is equal to zero.
Indeed, this interpretation shows a great correspondence with the binding affinity of

the immune memory discussed at the beginning of this chapter. The squared distance
between the stored patterns σ(t) and the tested pattern χ fulfills our requirement of
the distance depended binding affinity E(rm, ν) between memory receptor r (here σ(t))
and the presented antigen ν (here χ). The sum over all pre-encountered patterns gives
the affinity of the entire memory repertoire (similar to the notation in [82]).

2.5 Binding affinity of a memory repertoire with
general affinity function

Using the Hopfield energy as the foundation for a model of memory repertoire limits
the analysis to a squared affinity function. In [3] (chapter 5), we extend the model to
arbitrary exponents Θ of the overlap between stored states and presented pattern. Here
we define the space of all 2L possible binary patterns ψα with α ∈ {1, . . . , 2L}. The
memory repertoire allocates normalized weights mα to each pattern ψα. In a Hebbian
learning setting, these weights are updated by mα(t+ 1) = (1 − λ)mα(t) + λδα,β, when
the pattern ψβ is presented at time t. Analog to the Hopfield energy as shown in
eq. 2.13, we define the affinity of the memory repertoire to a given pattern

A(χ) = A0
∑

α

mα| ⟨ψα|χ⟩ |Θ − Arand, (2.14)

where A0 sets the model’s affinity (energy) scale and Arand is a shift of the affinity
function that sets the expected affinity of novel patterns to zero. For A0 = − 1

2L
,

Arand = −1
2 , and Θ = 2 this model is equivalent to the Hopfield energy in eq. 2.13. In

[3], we use the general affinity function in eq. 2.14 to study the behavior of memory
repertoires in various scenarios analytically. However, comparing these analytic results
to simulations becomes exponentially hard with the size of the patterns (L) since
simulations would need to evaluate the vector mα of size 2L. At this point, the
correspondence between the affinity model (eq. 2.14) and the Hopfield energy (eq. 2.13)
comes in very handy, as it allows us to efficiently simulate the model (for Θ = 2) by
only keeping track of the interaction matrix Ji,j that is only of size L2.
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Chapter 3

Optimal evolutionary
decision-making to store immune
memory

The following section consists of the article

O. H. Schnaack and A. Nourmohammad. “Optimal evolutionary decision-
making to store immune memory”. In: eLife 10 (Apr. 2021), e61346. doi:
10.7554/eLife.61346

reprinted under the Creative Commons Attribution License (CC BY 4.0)1.
Armita and I designed the scope of this research together. I then built the model

and wrote the Julia code for the simulations and data analysis. All authors contributed
to the writing of the manuscript, and I produced all figures shown in the paper. The
figure supplements referenced in the paper are shown in appendix A.

In this publication, we build a model to evaluate the performance of immune
memory strategies against evolving pathogens. We base our model on an analogy
between the biophysical probability of mounting a memory immune response and the
theory of decision-making. Through this analogy, we derive a utility function for a
memory immune response that is independent of biological details.

The strength of our model lies in its ability to describe memory production and
usage with two parameters. These parameters are based on two observations about
immune memory. The first (α) describes the tradeoff between maximal binding affinity
and the range of cross-reactivity observed in memory B-cells. The second parameter β
depends on the delay between a memory and novel naïve response.

In the context of this thesis, this publication aims to answer the question of which
germinal center B-cells should differentiate into memory. Here we primarily focus
on the memory of one evolving pathogen and connect the evolutionary rate of these
pathogens to the optimal cross-reactivity of the memory. We also study what memory
strategy is best when fighting a multitude of independent pathogens with varying

1https://creativecommons.org/licenses/by/4.0/
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evolutionary rates. However, within this framework, we do not include the interaction
of different memories in a repertoire.
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Optimal evolutionary decision-making to
store immune memory
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1Max Planck Institute for Dynamics and Self-organization, Göttingen, Germany;
2Department of Physics, University of Washington, Seattle, United States; 3Fred
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Abstract The adaptive immune system provides a diverse set of molecules that can mount

specific responses against a multitude of pathogens. Memory is a key feature of adaptive

immunity, which allows organisms to respond more readily upon re-infections. However,

differentiation of memory cells is still one of the least understood cell fate decisions. Here, we

introduce a mathematical framework to characterize optimal strategies to store memory to

maximize the utility of immune response over an organism’s lifetime. We show that memory

production should be actively regulated to balance between affinity and cross-reactivity of immune

receptors for an effective protection against evolving pathogens. Moreover, we predict that

specificity of memory should depend on the organism’s lifespan, and shorter lived organisms with

fewer pathogenic encounters should store more cross-reactive memory. Our framework provides a

baseline to gauge the efficacy of immune memory in light of an organism’s coevolutionary history

with pathogens.

Introduction
Adaptive immunity in vertebrates develops during the lifetime of an organism to battle a multitude

of evolving pathogens. The central actors in our adaptive immune system are diverse B- and T-cells,

whose unique surface receptors are generated through genomic rearrangement, mutation, and

selection (Janeway et al., 2005). The diversity of receptors allows the immune system to mount spe-

cific responses against diverse pathogens. B-cell receptors (BCRs) in particular can specialize through

a process of affinity maturation, which is a form of somatic Darwinian evolution within an individual

to enhance the affinity of BCRs to pathogens. Several rounds of somatic mutation and selection dur-

ing affinity maturation can increase binding affinities of BCRs up to 10,000 fold (Victora and Nus-

senzweig, 2012; Meyer-Hermann et al., 2012).

Beside receptor diversity, immune cells also differentiate and specialize to take on different roles,

including plasma B-cells, which are antibody factories, effector T-cells, which can actively battle

infections, or memory cells. Memory responses are highly efficient because memory cells can be

reactivated faster than naive cells and can mount a more robust response to an infection

(McHeyzer-Williams et al., 2000; Tangye et al., 2003; Tangye and Hodgkin, 2004; Moens et al.,

2016). Memory generation is a form of cell fate decision in the immune system, which can occur at

different stages of an immune response. In B-cells, activated naive cells can differentiate into anti-

body-secreting long-lived plasma cells, a T-cell-independent un-hypermutated memory cells, or they

can initiate a germinal center (Goodnow et al., 2010). B-cells that enter germinal centers differenti-

ate during affinity maturation into high-affinity plasma cells or T-cell-dependent long-lived memory

cells that circulate in the blood for antigen surveillance; see schematic Figure 1.

The basis for differentiation of B-cells into memory, especially during affinity maturation, is among

the least understood in cell fate decision-making in the immune system (Goodnow et al., 2010). A

long-standing view was that memory is continuously produced during affinity maturation
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(Blink et al., 2005). Memory receptors often have lower affinity compared to plasma cells

(Smith et al., 1997), and therefore, if memory B-cells were to be generated continuously it should

be able to proliferate without strong affinity-dependent selection (Goodnow et al., 2010;

Victora and Nussenzweig, 2012). However, recent experiments indicate that memory
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Figure 1. Immune memory or naive response upon infection. (A) Schematic shows affinity maturation in germinal centers(right), where B-cell receptors

acquire mutations and undergo selection, resulting in an increase in their affinity to an antigen (from light to dark receptors), indicated by the

sharpening of receptors’ affinity profiles (on left). (B) Upon infection, the immune system can initiate a novel response (top) or a memory response

(bottom). A novel B-cell response could involve affinity maturation to generate memory or high-affinity plasma cells (pink) that can secrete antibodies to

battle the pathogen. A novel response can take 1–2 weeks, during which pathogen can replicate within a host and a patient can show symptoms from

the disease (top, left). During this time, the proliferation of pathogens within a host incurs a cost associated with a naive response Wt , which is a

monotonic function of the deliberation time t (top, right). If the host carries memory from a previous infection or vaccination (bottom), the immune

system can robustly and rapidly activate a memory response to battle the infection. The probability to mount such memory response Qmem: depends

non-linearly on the relative utilities of memory versus naı̈ve responses against a given infection DU ¼ Umem: � Unaive (bottom, right). (C) Affinity profile

Ea;�ðrm; �Þ ~a exp½�ðadÞ�� of a memory receptor rm is shown in orange as a function of the distance d ¼ k��r � �k in the antigenic shape space, between

the receptor’s cognate antigen ��r (orange) and an evolved novel target �i (red). The affinity of a receptor decays with increasing distance between

targets and its cognate antigen. The antigenic range over which a receptor is reactive inversely depends on its specificity a. The shape of the binding

profile is tuned by the factor q, here shown for � ¼ 2. The expected binding profile E
ðiÞ
a;�ð�Þ and the expected utility hUi for an immune response are

weighted averages of these quantities over memory and naı̈ve responses. The Kullback-Leibler distance between the expected profile E
ðiÞ
a;�ð�Þ and the

profile centered around the infecting antigen Ea;�ðr�i ; �Þ, in units of the deliberation factor b, defines the sub-optimality of a response, that is,,

dissipation Kdiss (Equation 1). The net utility Unet measures the goodness of a decision to mount a memory vs. naive response against an infection

(Equation 2). (D) Antigenic evolution of the H3N2 influenza virus is shown over 40 years along its first (most variable) antigenic dimension (data from

Bedford et al., 2014). The decision of an immune system to utilize memory or to mount a novel response (B,C) is determined by the specificity a of

receptors and the deliberation factor b. We characterize the optimal immune strategies (a�;b�) by maximizing the total net utility of immune responses

against pathogens with different antigenic divergences, experienced over the lifetime of an organisms (Equation 3).
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differentiation is highly regulated (Paus et al., 2006; Weisel et al., 2016; Shinnakasu et al., 2016;

Recaldin and Fear, 2016; Shinnakasu and Kurosaki, 2017; Viant et al., 2020), reflecting a tempo-

ral switch in germinal centers that preferentially produces memory at early stages and plasma at

later stages of affinity maturation (Weisel et al., 2016). This active regulation introduces an affinity-

dependent cell fate decision, leading to a preferential selection of low-affinity cells to the memory

compartment. Low-affinity memory may be at a disadvantage in mounting a protective immune

response since immune-pathogen recognition is largely determined by the binding affinity between

an immune receptor and antigenic epitopes. On the other hand, immune-pathogen recognition is

cross-reactive, which would allow memory receptors to recognize slightly evolved forms of the anti-

gen, in response to which they were originally generated.

We propose that the program for differentiation of immune cells to memory should be viewed in

light of the immune system’s coevolution with pathogens. We have developed a theoretical frame-

work that incorporates the kinetics and energetics of memory responses as ingredients of memory

strategy, which we seek to optimize under various evolutionary scenarios. We propose that the hard-

wired affinity-dependent regulatory measures for memory differentiation could be understood as a

way to optimize the long-term utility of immune memory against evolving pathogens. Individuals

encounter many distinct pathogens with varying evolutionary rates, ranging from relatively con-

served pathogens like chickenpox to rapidly evolving viruses like influenza. To battle such a spec-

trum of evolving pathogens, we propose that an optimal immune system should store a combination

of low-affinity memory with high cross-reactivity to counter evolving pathogens, and high-affinity

and specific memory to counter the relatively conserved pathogens—a strategy consistent with

B-cell memory, which often involves storage of both cross-reactive IgM and high-affinity IgG recep-

tors (Shlomchik, 2018; McHeyzer-Williams et al., 2018). Lastly, we study the impact of organisms’

life expectancy on their evolved memory strategies and predict that cross-reactive memory should

dominate the immune response in short-lived organisms that encounter only a few pathogens.

Previous work on theoretical modeling of cellular differentiation together with experiments has

been instrumental in understanding immune memory generation; for example see reviewed work in

Perelson and Weisbuch, 1997; Altan-Bonnet et al., 2020. For example, mechanistic models have

indicated the importance of signal integration at the cellular level (Laffleur et al., 2014) and the rel-

evance of stochastic effects at the population level (Hawkins et al., 2007), to explain heterogeneous

cell fate decisions for the generation of memory. Our statistical framework aims to characterize high-

level features for an optimal memory strategy, without relying on mechanistic details of the underly-

ing process, some of which are at least partially unknown (Bialek, 2012; Nourmohammad et al.,

2013). In the case of the immune system, statistical models have provided an intuition for how an

immune repertoire should be organized to optimally counter diverse pathogens (Perelson and

Oster, 1979; Mayer et al., 2015; Bradde et al., 2020). In a similar fashion, optimal memory strate-

gies identified by our model provide a baseline to gauge the performance of real immune systems

in storing and utilizing memory.

Model
The efficacy of an immune response to a pathogen is determined by two key factors: (i) the affinity

of immune-pathogen recognition (i.e. energetics) and (ii) the speed of response (i.e. kinetics) to neu-

tralize an infection.

Recognition of a pathogen (or its antigenic epitope) u by an immune receptor r is mediated by

the affinity of the molecular interactions Eðr; �Þ between them. We describe cross-reactive immune-

pathogen recognition in an immune shape space (Perelson and Oster, 1979), where receptors

located near each other in shape space can recognize similar antigens, and in the complementary

space, antigens that are close to each other can be recognized by the same immune receptor (Fig-

ure 1). We express the binding affinity between a receptor r and an arbitrary target antigen u in

terms of the antigenic distance drð�Þ ¼ k�� ��rk between the receptor’s cognate antigen ��r and the

target u: Eðr; �Þ � Eðdrð�ÞÞ.
Physico-chemical constraints in protein structures can introduce a tradeoff between immune

receptors’ affinity and cross-reactivity. Although we lack a systematic understanding of these struc-

tural constraints, affinity-specificity tradeoffs have been reported repeatedly for B-cells and antibod-

ies (Wedemayer et al., 1997; Frank, 2002; Li et al., 2003; Wu et al., 2017; Mishra and Mariuzza,

2018; Fernández-Quintero et al., 2020). Specifically, while affinity maturation can significantly
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increase the binding affinity of a B-cell receptor, it also makes the receptor more rigid and specific

to its cognate antigen (Wedemayer et al., 1997; Li et al., 2003; Mishra and Mariuzza, 2018; Fer-

nández-Quintero et al., 2020). Broadly neutralizing antibodies (bNAbs) appear to be an exception

to this rule since they have high potency and can react to a broad range of viral strains. However, it

should be noted that bNAbs often react to vulnerable regions of a virus where escape mutations are

very deleterious, including the CD4 binding site of HIV or the stem proteins in influenza

(Mascola and Haynes, 2013; Lee and Wilson, 2015). In other words, the majority of bNAbs are not

cross-reactive per se, but they are exceptionally successful in targeting conserved epitopes in other-

wise diverse viral strains.

To qualitatively capture this affinity-specificity tradeoff, we use a simple functional form: We

assume that the binding affinity of a receptor r to an antigen u depends on the antigenic distance

drð�Þ through a kernel with a specificity factor a and a shape factor q such that,

Eðr; �Þ � Ea;�ðdrð�ÞÞ ~a exp½� adrð�Þð Þ��, with � � 0. This affinity function defines a receptor’s binding

profile over the space of antigens. As specificity a increases (or cross-reactivity 1=a decays), the

binding affinity profile sharpens and binding becomes more restrictive to antigens closer to the

receptor’s cognate antigen (Figure 1). Moreover, the absolute strength of binding to the cognate

antigen (i.e. a receptor’s maximum affinity) increases with specificity a, resulting in a tradeoff

between affinity and cross-reactivity. The parameter q tunes the shape of the receptor’s binding pro-

file Ea;�ðdrð�ÞÞ, resulting in a flat function (i.e. no tradeoff) for � ¼ 0, a double-sided exponential func-

tion for � ¼ 1, a Gaussian (bell-curve) function for � ¼ 2, and top-hat functions for � � 2; see

Materials and methods.

Upon encountering a pathogen, the adaptive immune system mounts a response by activating

the naı̈ve repertoire (i.e. a novel response) and/or by triggering previously stored immune receptors

in the memory compartment. A memory receptor often shows a reduced affinity in interacting with

an evolved form of the pathogen. Nonetheless, memory plays a central role in protecting against re-

infections since even a suboptimal memory can be kinetically more efficient than a naı̈ve response,

both in B-cells (Tangye and Hodgkin, 2004) and T-cells (Whitmire et al., 2008; Martin et al.,

2012). Specifically, following an infection, memory B-cells initiate cell division about 1� 2 days ear-

lier, and they are recruited to proliferate in 2� 3 times larger numbers compared to the naı̈ve popu-

lation (Tangye et al., 2003; Tangye and Hodgkin, 2004; Blanchard-Rohner et al., 2009). Once

recruited, however, memory and naive cells have approximately a similar doubling time of about

t1=2 » 0:5� 2 days (Tangye et al., 2003; Macallan et al., 2005). Taken together, we can define an

effective deliberation time t » 1:5� 5 days for the naive population to reach an activity level (i.e. a

clone size) comparable to the memory; see Materials and methods and Figure 1.

The decision to mount a naı̈ve or a memory response depends on the energetics and the kinetics

of the immune machinery, including the cross-reactivity of memory to recognize evolved pathogens

and the deliberation time to mount a naive response upon infection—we refer to these choices as

memory strategies. We expect that the biochemical machinery involved in making this decision upon

an infection has been fine-tuned and selected over evolutionary time scales in order to utilize

immune memory and mount an effective response against recurring pathogens. The theory of deci-

sion-making (von Neumann and Morgenstern, 1944; Ortega and Braun, 2013) enables us to char-

acterize the response of the immune system as a rational decision-maker that chooses between two

possible actions a 2 fnaive;memoryg each contributing a utility Ua (Materials and methods). Specifi-

cally, the action of a rational decision-maker should follow an optimal distribution Qa, which maxi-

mizes the expected utility while satisfying the constraints in processing new information, for example

due to prior preferences (von Neumann and Morgenstern, 1944; Ortega and Braun, 2013). We

assume that the immune system has no intrinsic prior for mounting a naive or a memory response

against a given pathogen. In this case, the utility Ua of an action (memory vs. naive) determines the

type of response, and rational decisions follow a maximum entropy distribution Qa ~ exp½bUa�
(Jaynes, 1957), where b is the efficacy of information processing (see Materials and methods). As b

increases, a rational decision-maker more readily chooses the action with the highest utility. The

expected utility of the immune response to an infection is equal to the sum of the utilities of a naive

and a memory response, weighted by their respective probabilities: Uh i ¼ Umem Qmem: þ Unaive Qnaive.

If memory is effective, the utility difference between mounting a memory or a naive response is
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determined by the affinity of the interaction between the responding memory receptor rm and the

infecting antigen u: Umem � Unaive ¼ Ea;�ðrm; �Þ; see Figure 1 and Materials and methods for details.

The time lag (deliberation) between memory and naive response also plays a key role in the deci-

sion-making process. On the one hand, if memory is inefficient, long deliberations would allow

pathogens to proliferate, incurring a larger cost Wt to a host prior to activation of a novel response;

this cost can be interpreted as the negative utility of naı̈ve response Unaive � �Wt . On the other

hand, a long deliberation would allow the immune system to exploit the utility of a usable memory

(i.e. process information), even if the available memory has only a slight advantage over a responsive

naive receptor (see Materials and methods). Indeed, for a responsive memory, the information proc-

essing factor b is equal to accumulated pathogenic load Gt during the deliberation period t, and

thus, we refer to b as the deliberation factor.

The expected binding profile of stored memory E
ðiÞ
a;�ð�Þ after ith round of re-infection with an anti-

gen �i can be characterized as the superposition of the binding profiles following a memory or a

naive response, weighted by the respective probability of each of these events (Figure 1 and Materi-

als and methods). Since mounting a sub-optimal memory against evolved variants of a reinfecting

pathogen can still be kinetically favorable, the expected profile can deviate from the optimal profile

of the cognate receptor centered around the infecting pathogen Ea;�ðr�i ; �Þ (Figure 1). This tradeoff

between the kinetics and the energetics of immune response results in a non-equilibrium decision-

making Grau-Moya et al., 2018 by the immune system (Materials and methods). In analogy to non-

equilibrium thermodynamics, we express this deviation as a dissipative cost of memory response

Kdissðti;a; �Þ at the ith round of re-infection (time point ti), which we quantify by the Kullback-Leibler

distance between the expected and the optimal binding profiles DKL E
ðiÞ
a;�ð�ÞjjEa;�ðr�i ; �Þ

� �

, in units of

the deliberation factor b (Figure 1),

KdissðtiÞ ¼ 1

b
DKL E

ðiÞ
a;�ð�ÞjjEa;�ðr�i ; �Þ

� �

¼ 1

b

X

antigens:�

E
ðiÞ
a;�ð�Þ log

E
ðiÞ
a;�ð�Þ

Ea;�ðr�i ;�Þ

2

4

3

5:

(1)

An optimal memory strategy should be chosen such that it maximizes the expected utility of the

immune response hUi, while minimizing the dissipation cost due to the non-equilibrium response

Kdiss, over the lifetime of an organism. To infer an optimal strategy, we introduce net utility that

accounts for the tradeoff between the expected utility and dissipation at a given round of infection

at time point ti,

UnetðtiÞ ¼ UðtiÞh i�KdissðtiÞ (2)

We infer the optimal memory protocol (i.e. the optimal memory specificity a� and deliberation

factor b�) by maximizing the total net utility of memory responses throughout the lifetime of an

organism (Figure 1),

ða�;b�Þ ¼
a;b

argmax
X

i:infections

UnetðtiÞ: (3)

Results
Efficient immune memory balances specificity and speed. The extent of cross-reactivity and delibera-

tion needed for the memory to react to pathogens should be set by the amount of pathogenic evo-

lution and more specifically, the antigenic divergence d̂ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hk�i � �i�1k2i
q

that a pathogen traces

between two infections. An example of such antigenic divergence is shown in Fig. Figure 1D for 40

years of H3N2 Influenza evolution along it first (most variable) evolutionary dimension

(Bedford et al., 2014). We set to find an optimal immune protocol (i.e. specificity a� and delibera-

tion b�) by maximizing the net utility Unet of an immune system (Equation 3) that is trained to

counter pathogens with a given antigenic divergence d̂; see Fig. Figure 1D and Materials and meth-

ods for details on the optimization procedure.
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To battle slowly evolving pathogens (d̂ � 20%) an optimal immune system stores highly specific

memory receptors, with a specificity that approaches the upper bound amax; see Figure 2A and Fig-

ure 2—figure supplement 2, Figure 2—figure supplement 3. Importantly, the dependency of opti-

mal specificity on antigenic divergence is insensitive to the cost of deliberation W prior to mounting

a naive response (Figure 2A), the shape factor q for the specificity profile (Figure 2—figure supple-

ment 2), and the specificity threshold amax (Figure 2—figure supplement 3). For relatively con-

served pathogens (d̂ ’ 0), the highly specific memory (with â� � a�=amax ’ 1) stored from a previous

A B
Ω̂0 =

C

sc
a
le

d
sp

ec
ifi

ci
ty

,
α̂

∗

scaled antigenic divergence, δ̂

no cost linear quad.

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5

sc
a
le

d
d
el

ib
er

a
ti

o
n
,
β̂

∗

scaled antigenic divergence, δ̂

0.05 0.1 0.5 1

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
scaled antigenic divergence, δ̂

0.0

0.2

0.4

0.6

0.8

1.0

sc
a
le

d
d
el

ib
er

a
ti

o
n
,
β̂

∗

0.0

0.2

0.4

0.6

0.8

1.0

sca
led

n
et

u
tility,

Û
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Figure 2. Optimal memory strategies against evolving pathogens. (A) and (B) show the optimal specificity

â� � a�=amax and deliberation factor b̂� � b�=bmax, scaled by their respective upper bounds, as a function of the

antigenic divergence per infection, scaled by the cross-reactive range (or inverse of maximum specificity)

d̂ � d=ða�1

maxÞ. Colors/markers indicate different naı̈ve cost functions for deliberation, including no-cost

Ŵ � W=Emax ¼ 0, linear cost Ŵ ¼ Ŵ0b̂, and quadratic cost Ŵ ¼ Ŵ0b̂
2, with varying amplitudes W0. (C) The heat map

shows the expected rescaled net utility Ûnet ¼ Unet=Emax (Equation 2) per round of infection for an immune system

with an optimal specificity â�, as a function of rescaled antigenic divergence d̂ and deliberation factor b̂. Rescaling

by Emax sets the magnitude of net utility to one, for a response to conserved antigens (with d̂ ¼ 0) and in the limit

of zero deliberation cost W ! 0. Boundaries indicate different levels of dissipation, with orange and blue

encompassing regions of � 40% and � 70% of the maximum dissipation Kmax, respectively. The three modes of

immune response are indicate based on the magnitude of dissipation and net utility in each reagion: (i)

equilibrium memory, (ii) non-equilibrium memory, and (iii) equilibrium naive. Simulation parameters, (A–C):

amax ¼ 4, bmax ¼ 10, and � ¼ 2, (C): linear deliberation cost function Ŵ ¼ Ŵ0b̂ with Ŵ0 ¼ 0:1. Results for other shape

parameters q and specificity thresholds amax are shown in Figure 2—figure supplement 2, Figure 2—figure

supplement 3, respectively.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Utility, dissipation, and usage of optimal memory.

Figure supplement 2. Optimal memory strategies for different specificity shape factors q.

Figure supplement 3. Optimal memory strategies for different specificity thresholds amax.
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infection still has high affinity and remains centered and close to the reinfecting pathogens. There-

fore, the immune system maintains a moderate level of deliberation to exploit this efficient memory

during infections. However, as antigenic divergence grows, specific memory becomes less effective

against future infections and therefore, the immune system reduces the deliberation factor to allow

a timely novel response, once memory becomes inefficient (Figure 2B, Figure 2—figure supple-

ment 2, Figure 2—figure supplement 3). The magnitude of deliberation decays as the cost of

deliberation W increases but its overall dependency on antigenic divergence remains comparable for

different cost functions (shown in Figure 2B for zero cost, and cost functions that grow linearly and

quadratically with deliberation factor b). Overall, the net utility of the stored memory in response to

slowly evolving pathogens is high (Figure 2C, Figure 2—figure supplement 1, Figure 2—figure

supplement 2, Figure 2—figure supplement 3), while its dissipation remains small Kdiss ’ 0

(Figure 2C, Figure 2—figure supplement 1, Figure 2—figure supplement 2, Figure 2—figure

supplement 3). Therefore, in analogy to thermodynamics, we term this immune strategy with low

dissipation as equilibrium memory response; Figure 2C.

To battle moderately evolving pathogens (with d̂ ’ 20%� 60%), an optimal immune system stores

cross-reactive memory (i.e. with a lower specificity â) that can recognize moderately evolved form of

the primary antigen (Figure 2A, Figure 2—figure supplement 2, Figure 2—figure supplement 3).

However, cross-reactive receptors tend to have lower affinities (Wedemayer et al., 1997;

Frank, 2002), which could lead to deficient responses against antigens. Importantly, activation of

energetically sub-optimal yet cross-reactive memory could be detrimental as it may hinder a stron-

ger novel response without providing protective immunity to the host—a deficiency known as the

original antigenic sin (Francis, 1960; Vatti et al., 2017). An optimal immune system can mitigate

this problem by using kinetic optimization to tune the deliberation factor b in order to avoid an elon-

gated memory engagement prior to a naive response. This optimization results in a smaller delibera-

tion factor b (i.e. a faster naive response) compared to the scenario with slowly evolving pathogens,

yet a long enough deliberation to allow the energetically suboptimal memory to react to an infec-

tion, whenever feasible (Figure 2B, Figure 2—figure supplement 2, Figure 2—figure supplement

3). With this kinetic optimization, the immune system can utilize cross-reactive memories through

multiple rounds of infection (Figure 2—figure supplement 1C), yet with a declining efficiency and

net utility as pathogens evolve away from the primary infection (Figure 2C, Figure 2—figure supple-

ment 1, Figure 2—figure supplement 2, Figure 2—figure supplement 3). The prominent memory

response to moderately evolving pathogens is dissipative with Kdiss � 0 (Figure 2C, Figure 2—fig-

ure supplement 1, Figure 2—figure supplement 2, Figure 2—figure supplement 3), and in anal-

ogy with thermodynamics, we term this dissipative immune strategy as non-equilibrium memory

response; Figure 2C.

For extremely rapidly evolving pathogens (d̂>60%), the immune system would not be able to store

an efficient memory to battle future encounters, and hence, each infection would trigger a novel

naive response — the reduced net utility of memory and the decay of memory usage in this regime

are shown in Figure 2C, Figure 2—figure supplement 1, Figure 2—figure supplement 2, Fig-

ure 2—figure supplement 3, respectively. Without a protective memory, a novel response is trig-

gered to counter each infection and it maturates specifically around the infecting pathogen,

resulting in a non-dissipative naive-dominated immune response with Kdiss ’ 0, which we term equi-

librium naive response; Figure 2C.

It should be noted that when the cost of deliberation W is very high, utilizing memory against

pathogens with relatively high evolutionary rates becomes highly unfavorable. In this extreme case,

the immune system switches into a state where it invariably mounts a novel response upon an infec-

tion (Figure 2—figure supplement 1C), and it assures that memory is not utilized by setting the

parameters for specificity a and deliberation b to zero (Figure 2A,B).

Our analyses in Figure 2 indicate that a rational decision to become a memory or a plasma cell

during an immune response should depend on the affinity of a cell’s receptors and it should not be

a stochastic choice with a constant rate throughout affinity maturation. Indeed, cell fate decision for

B-cells during affinity maturation is highly regulated and dependent on receptors’ affinity (Good-

Jacobson and Shlomchik, 2010; Kometani et al., 2013; Shinnakasu et al., 2016; Weisel et al.,

2016; Shinnakasu and Kurosaki, 2017; Shlomchik et al., 2019). Recent experiments have demon-

strated that memory generation is highly correlated with the activity of the transcription factor
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Bach2 whose expression level is negatively regulated with the abundance of helper CD4+ T-cells

(Kometani et al., 2013; Shinnakasu et al., 2016; Shinnakasu and Kurosaki, 2017). As the affinity of

B-cell receptors increases during affinity maturation, more CD4+ T-cells are recruited to germinal

centers, resulting in suppression of Bach2 and a hence, a decline in production of memory cells

(Kometani et al., 2013; Shinnakasu et al., 2016; Shinnakasu and Kurosaki, 2017). In other words,

our adaptive immune system has encoded a negative feedback mechanism to store memory with

intermediate affinity and cross-reactivity to suppress the production of highly specific memory, which

is likely to be impotent against evolved pathogens in future infections.

A mixture memory strategy is necessary to counter pathogens with a
broad range of evolutionary rates
The decision to trigger an equilibrium or a non-equilibrium memory response depends on the extent

of antigenic divergence that an immune system is trained to cope with (Figure 2, Figure 2—figure

supplement 1, Figure 2—figure supplement 2, Figure 2—figure supplement 3). Equilibrium mem-

ory is highly effective (i.e. it has high net utility) against relatively conserved pathogens, however, it

fails to counter evolving pathogens (Figure 2C). On the other hand, cross-reactive non-equilibrium

memory is more versatile and can counter a broader range of evolved pathogens but at a cost of

reduced net utility in immune response; Figure 2C, Figure 2—figure supplement 1, Figure 2—fig-

ure supplement 2, Figure 2—figure supplement 3.

An optimal immune system should have memory strategies to counter pathogens with varying

evolutionary rates, ranging from relatively conserved pathogens like chickenpox to rapidly evolving

viruses like influenza. We use our optimization protocol to find such memory strategies that maxi-

mize the net utility of an immune system that encounters evolving pathogens with (scaled) antigenic

divergences uniformly drawn from a broad range of d̂ 2 ½0 1:6�; see Materials and methods. This opti-

mization results in a bimodal distribution of optimal specificity for functional memory receptors PðaÞ,
with separated peaks corresponding to equilibrium (â~ 1) and non-equilibrium (â~ 0:5) memory (Fig-

ure 3, Figure 3—figure supplement 1). This result suggests that specific and cross-reactive memory
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Figure 3. Mixed memory strategy against a mixture of pathogens with a broad range of evolutionary rates.

Distribution of scaled optimized specificities â� for functional memory (purple) is shown for an immune system with

a fixed deliberation factor b̂ ¼ 0:2. A mixture strategy with a bimodal distribution of specificities PðâÞ is
established to counter pathogens with a broad range of antigenic divergences. The dashed bar indicates stored

memory with specificity a ¼ 0, which is not further used in response to infections. The solid line indicates the

probability Pusage that a stored memory with a given specificity is utilized in future infections (Materials and

methods). Optimization is done by maximizing the net utility of immune response averaged over encounters with

1000 independently evolving antigens with (scaled) antigenic divergences drawn uniformly from a range d̂ 2 ð0; 1:6Þ
(Materials and methods). The distribution shows the ensemble statistics of functional memory accumulated from

200 independent optimizations, each starting from a flat prior for specificities (orange). The insert shows the

optimized mixture strategy for one optimization with 3000 steps. Simulation parameters: amax ¼ 4, bmax ¼ 10, and

� ¼ 2.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Mixed memory strategy against pathogens for different deliberation factors b̂.
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strategies are complementary modes of immune response that cannot substitute each other. More-

over, non-equilibrium memory tends to be flexible and moderate values of cross-reactivity 1=â can

counter a range of antigenic divergences, without a need for fine-tuning. Therefore, upon produc-

tion of memory, an optimal immune system should harvest both specific equilibrium memory and

cross-reactive non-equilibrium memory, as it does not have a priori knowledge about the evolution-

ary rate of the infecting pathogen.

Interestingly, the adaptive immune system stores a mixture of IgM and class-switched IgG iso-

types of B-cell memory that show different levels of specificity. IgM memory is an earlier product of

affinity maturation with higher cross-reactivity and a lower affinity to antigens, reflecting a non-equi-

librium memory that can counter evolving pathogens. On the other hand, memory from class-

switched (e.g. IgG) isotype is produced during later stages of affinity maturation and is highly spe-

cific to the infecting pathogen, reflecting equilibrium memory that is effective against relatively con-

served pathogens (Weisel et al., 2016). Storing a mixture of IgM and class-switched IgG memory is

consistent with our recipe for optimal immune strategies to counter pathogens with a broad range

of evolutionary rates.

Cross-reactive memory dominates immune response in organisms that
encounter fewer pathogens over a shorter lifetime
So far, our analysis has focused on maximizing the net utility of immune response, assuming that

organisms encounter many such infections throughout their lifetime. This optimization provides a

recipe for optimal immune strategies in response to commonly infecting pathogens. However, the

expected frequency of infections is also an important factor that can inform immune strategies. For

example, imagine the extreme case that an immune system expects to encounter a pathogen at

most only once during an organism’s lifetime, for example in short-lived organisms. In this case,

there is no benefit in keeping a memory even to counter extremely conserved pathogens, for which

memory would be otherwise very beneficial.

To study the impact of infection frequency on immune strategies, we use our optimization proce-

dure to maximize the net utility of immune response, while setting a bound on the number of infec-

tions throughout an organism’s lifetime (see Materials and methods). Organisms with an

unrealistically very short lifetime (measured in units of the number of infections) experience only a

few infections, and therefore, a small (cumulative) antigenic drift from the primary infection during

their lifetime d̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lifetime:
p

<~ 1. In this case, it would be sufficient for an optimal immune system to gen-

erate specific memory (â» 1), which can mount an effective response with only an intermediate delib-

eration (b̂ ~ 0:4) upon reinfection (Figure 4A–B), even for pathogens with a moderate evolutionary

rate (Figure 4B). Organisms with moderately short lifetime experience evolutionary divergence of

reinfecting antigens. In this regime, the immune system stores cross-reactive memory (smaller â) and

uses a larger deliberation factor b̂ such that this lower-affinity and often off-centered memory can

mount an effective response to evolved infections (Figure 4A–B). Since the organism is relatively

short-lived, such cross-reactive memory could be sufficient throughout the whole lifetime of the

organism, without a need for renewal.

Organisms with long lifetimes, with pathogen encounters that surpassing the threshold c�, expect

higher re-infections with pathogens that are highly diverged from the primary infection. In this case,

an optimal immune strategy switches from storing and utilizing cross-reactive memory to generating

more specific memory receptors (Figure 4A). This specific memory would not hinder activation of

preventive novel responses against evolved pathogens (the problem known as original antigenic sin),

resulting in continual renewal of memory during organisms’ lifetime. In this regime, the deliberation

factor also decreases to facilitate novel responses against antigens that are not readily recognized

by memory (Figure 4A–B). The increase in memory specificity from short- to long-lived organisms is

more substantial for immune strategies optimized to counter relatively conserved pathogens, that is

the specific equilibrium memory (Figure 2C, Figure 4A), compared to the memory against evolving

pathogens, that is the cross-reactive non-equilibrium memory (Figure 2C, Figure 4B). The exact

value of the transition threshold c� depends on the expected antigenic divergence d during patho-

genic evolution and the details of the immune machinery, and specifically the cost of deliberation

Wðt Þ due to an elevated level of pathogenic proliferation prior to a novel response (Figure 4—
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figure supplement 1). However, the qualitative trend for cross-reactivity as a function of the organ-

ism’s lifetime remain consistent across a range of parameters.

The results in Figure 4 predict that organisms with few pathogenic encounters or a shorter life-

span should generate more cross-reactive and lower affinity (i.e. a naive-type) memory receptors.

Indeed, consistent with our prediction, analysis of immune repertoire data indicates that sequence

features of memory and naı̈ve B-cell receptors tend to be more similar to each other in mouse com-

pared to humans that enjoy a longer life expectancy (Sethna et al., 2017). Nonetheless, more com-

prehensive data on cross-species comparison of immune strategies is needed to test our

predictions.

With the increase in human life expectancy, a pressing question is how well our immune system

could cope with a larger number of pathogenic challenges that we are now encountering throughout

our lifetimes? Aging has many implications for our immune machinery and the history of infections

throughout lifetime leaves a complex mark on immune memory that can have long-lasting conse-

quences (Saule et al., 2006), which has also been studied through theoretical modeling

(Mayer et al., 2019). In our framework, we can study one aspect of this problem and ask how an

immune strategy optimized to battle a given number of infections would perform if the organism

were to live longer or equivalently, to encounter pathogens more frequently. Figure 4C shows that

cross-reactive memory generated by an immune system optimized to counter few infections (short

life expectancy) becomes highly inefficient (i.e., with a lower net utility Unet) as the number of

encounters increases beyond the organism’s expectation (long life span)—an effect that may be in

part responsible for the observed decline in the efficacy of our adaptive immunity as we age.

Discussion
Memory is central to our adaptive immunity by providing a robust and preventive response to rein-

fecting pathogens. In the presence of continually evolving pathogens, immune memory is only bene-

ficial if receptors can recognize evolved antigens by cross-reactivity. However, biophysical

constraints can impose a trade-off between affinity and cross-reactivity of antibodies. Specifically, as

receptors undergo affinity maturation, their structures become more rigid and less cross-reactive,

A

c∗

life-expected antigenic divergence
B

c∗

life-expected antigenic divergence
C

life exp.
[enc.]

o
p
ti

m
a
l
st

ra
te

g
y

life expectancy [encounters]

α̂∗

β̂∗

0.0

0.2

0.4

0.6

0.8

1.0

8 12 16 20

0.8 1.0 1.2 1.4

o
p
ti

m
a
l
st

ra
te

g
y

life expectancy [encounters]

α̂∗

β̂∗

0.0

0.2

0.4

0.6

0.8

1.0

4 8 12 16 20

1.0 1.3 1.6 1.9 2.2

sc
a
le

d
n
et

u
ti

li
ty

,
Û
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Figure 4. Life expectancy influences the specificity of optimal memory. (A,B) Memory strategies, that is, optimal rescaled specificity â� (green) and

deliberation factor b̂� (orange) are shown as a function of the organism’s life expectancy (bottom axis) and the corresponding expected antigenic

divergence over the organism’s life-time d̂
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lifetime
p

(top axis). Antigenic divergence (per encounter) of the infecting pathogen is d̂ ¼ 0:35 in (A) and

d̂ ¼ 0:5 in (B). Memory is highly specific in organisms with very short lifetimes, during which re-infections with evolved forms of a pathogen are unlikely

(i.e. when life-expected antigenic divergence is smaller than 1, indicated by a dotted pink line). Memory becomes more cross-reactive with a smaller

deliberation in organisms with (realistic) short lifetimes, up to a transition point c� (indicated by dotted purple line), after which specificity increases

again. (C) Scaled net utility Ûnet is shown as a function of organism’s life span, whose immune strategies (â�, b̂�) are optimized for a specified life

expectancy (colors as indicated in the legend). Net utility for memory optimized against pathogens with antigenic divergence d̂ ¼ 0:35 (panel A) and

d̂ ¼ 0:5 (panel B) are shown by full and dashed lines, respectively. Life span and life expectancy are measured in units of the number of pathogenic

encounters during lifetime. Simulation parameters: linear deliberation cost function W ¼ W0b̂ with an amplitude Ŵ0 ¼ 0:1, amax ¼ 4, bmax ¼ 10, and

� ¼ 2.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Pathogen encounter threshold to transition between cross-reactive and specific memory.

Schnaack and Nourmohammad. eLife 2021;10:e61346. DOI: https://doi.org/10.7554/eLife.61346 10 of 22

Research article Physics of Living Systems



while affinity increases (Wedemayer et al., 1997; Frank, 2002; Li et al., 2003; Wu et al., 2017;

Mishra and Mariuzza, 2018; Fernández-Quintero et al., 2020). Consistent with recent experiments

(Weisel et al., 2016; Shinnakasu et al., 2016; Recaldin and Fear, 2016; Shinnakasu and Kurosaki,

2017; Viant et al., 2020), we show that memory differentiation should be regulated to preferentially

produce lower affinity receptors, which can allow cross-reactive recognition of evolved pathogens.

To overcome the resulting energetic impediment of these memory receptors, we infer that the

immune system should tune the kinetics of the immune response and allocate a longer deliberation

time for memory to react before initiating a novel response—a feature that is also in accordance

with observations (Tangye et al., 2003; Tangye and Hodgkin, 2004; Blanchard-Rohner et al.,

2009). Co-optimizing kinetics and energetics of memory ensures an effective response against evolv-

ing pathogens, throughout an organism’s lifetime.

Optimal cross-reactive immune memory provides a long-term advantage to an organism, yet it

may seem energetically sub-optimal over short time scales (Figure 1). One important consequence

of a sub-optimal memory response is known as original antigenic sin, where cross-reactive memory

from primary infections could interfere with and suppress a protective novel response (Francis, 1960;

Vatti et al., 2017). The viral exposure history and the original antigenic sin may have profound con-

sequences on protective immunity against evolving viruses (Cobey and Hensley, 2017). For exam-

ple, the 2009 H1N1 pandemic triggered memory responses in individuals with childhood exposures

to seasonal H1N1 (Linderman and Hensley, 2016; Li et al., 2013; Hensley, 2014), which in some

led to a highly focused antibody response toward the conserved epitopes of H1N1. This focus was a

problem when in 2013–2014 the pandemic H1N1 acquired mutations in those epitopes

(Linderman and Hensley, 2016), resulting in a disproportionate impact of infection on middle-aged

individuals with pre-existing memory (Petrie et al., 2016). This recent example, among others,

showcases how immune history and antigenic sin can impact a population’s immune response to the

a rapidly evolving virus like influenza.

Composition of the immune memory coupled with the exposure history of the host should be

taken into account when designing new vaccines (Cobey and Hensley, 2017). For example, current

vaccine strategies against influenza use sera isolated from ferrets infected with the virus to measure

the antigenic distance of circulating strains against the previous years (Smith et al., 2004). However,

these ferrets have no immune history for influenza and the antibodies they produce may be distinct

from the immune response in the adult population with prior memory, resulting in incorrect meas-

ures of antigenic distances (Hensley, 2014). This problem has been recognized by the World Health

Organization and there is now an effort to choose vaccine strains based on human serology.

The impact of immune deficiency related to the original antigenic sin can even be more pro-

nounced due to changes in an organism’s life expectancy. Importantly, we show that immune strate-

gies optimized to benefit short-lived organisms produce highly cross-reactive memory (Figure 4). If

an organism’s life-expectancy increases, which is the case for humans, it would be likely for individu-

als to encounter evolved forms of a pathogen at antigenic distances larger than expected by their

immune systems. In this case, cross-reactive memory, optimized for a shorter lifetime, could still be

activated but with lower efficacy, which could suppress a protective novel response, consistent with

original antigenic sin. It is therefore important to consider sub-optimality of immune strategies in the

face of extensive elongation of the human lifespan as one of the plausible factors responsible for

immune deficiencies brought by aging.

One characteristic of memory B-cells, which is currently missing from our model, is their abil-

ity to seed secondary germinal centers and undergo further affinity maturation upon reinfection.

Evolvability of memory B-cells can allow cross-reactive memory to further specialize against

evolved pathogens, without a need to start a germinal center reaction from an un-mutated naive

receptor. Interestingly, different experiments suggest that the capacity of memory to re-diversify

depends on various factors including the memory isotype (IgM vs. class-switch receptors), the

type of antigenic target (viruses vs. others) and the extent of memory maturation (Shlom-

chik, 2018; McHeyzer-Williams et al., 2018). Therefore, it is interesting to extend our model to

study how evolvability of memory can influence its longterm utility to respond to evolving patho-

gens, and especially viruses.

Evolvability of memory is also relevant for characterizing the dynamics of immune response to

chronic viral infections like HIV. Analyses of immune repertoires in HIV patients over multiple years

of infection have shown a rapid turnover and somatic evolution of B-cell clonal lineages to counter
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the evolution of the virus within hosts (Nourmohammad et al., 2019). It would be interesting to see

how the constant pressure from the evolving HIV on a host’s immune system impacts the dynamics

and efficacy of immune memory over time. In addition, understanding the limits of memory re-diver-

sification is instrumental in designing successive vaccination protocols with antigen cocktails to drive

extensive affinity maturation of BCR lineages to elicit broadly neutralizing antibodies Wang et al.,

2015; Shaffer et al., 2016; Stephenson et al., 2020—an approach that is the current hope for uni-

versal vaccines against rapidly evolving viruses like HIV.

Although mechanistically distinct from B-cells, T-cells also differentiate into effector and mem-

ory in response to infections. The T-cell response does not involve affinity maturation by hyper-

mutations. However, competition among T-cells with varying receptor affinities acts as selection

that leads to immuno-dominant responses by the high-affinity clones. Receptor affinity and the

subsequent T-cell signaling determine the extent of clonal expansion and differentiation to an

effector versus a memory T-cell population (Kim and Williams, 2010). Although it is still unre-

solved as how T-cell signaling determines cell fate decision, the process is known to be highly

regulated (Rutishauser et al., 2009; Roychoudhuri et al., 2016). Notably, the transcription fac-

tor IRF4 selectively promotes expansion and differentiation of high-affinity cytotoxic T-cells into

effectors. In contrast, low-affinity T-cells are lost or they could differentiate into early memory

(Man et al., 2013). There is also accumulating evidence for the circulation of cross-reactive

memory T-cells, which often result in protective immunity against evolving forms of a virus

(Greenbaum et al., 2009; Sette and Crotty, 2020), but could also be detrimental by suppress-

ing novel and specific responses—an effect similar to the original antigenic sin by B-cells

(Selin et al., 2004). Taken together, there are parallels between differentiation of T-cells and

B-cells to memory, and it will be interesting to investigate the advantages of storing cross-reac-

tive (and plausibly low-affinity) T-cell memory as a strategy to counter evolving pathogens.

Materials and methods
All codes for simulations and numerical analysis can be found at: https://github.com/StatPhysBio/

ImmuneMemoryDM (swh:1:rev:c71f7ab35ebcdd251e4a26fdf9628386fe404e86; Schnaack, 2021).

Numerical optimization
Numerical optimization is performed on ensembles of immune systems that encounter evolving

pathogens. Recognition of an evolved pathogen at the ith round of infection �i by a memory that

was stored in response to a primary infection �0 (0th round) depends on the antigenic distance

di ¼ k�i � �0k. We model pathogenic evolution as diffusion in the antigenic shape space. In this

model, the expected antigenic distance between the primary infection �0 and the evolved antigen �i

can be characterized as, hd2i i � hk�i � �0k2i ¼ z2ðti � t0Þ ¼ i d2, where z is the diffusion coefficient (i.e.

the evolutionary rate) and d is the (averaged) antigenic divergence per round of infection. Impor-

tantly, this relationship does not depend on the dimensionality of the antigenic shape space, which

in general, is difficult to characterize. We simulate pathogenic evolution relative to a primary infec-

tion by drawing the corresponding antigenic distance di of the ith round of infection from a normal

distribution with mean d
ffiffi

i
p

and standard deviation 0:05d
ffiffi

i
p

. The width of this normal distribution

characterizes the fluctuations in the mean divergence between infections and reflects how the evolu-

tionary trajectory of a pathogen samples the multi-dimensional shape space surrounding the antigen

from the primary infection. Nonetheless, our results are insensitive to the exact choice of this width.

To characterize optimal specificity a� and deliberation factor b� (Figure 2, Figure 3, Figure 4),

we simulate ensembles of immune systems with different immune strategies (a;b), chosen uniformly

from the range a 2 ½0;amax� and b 2 ½0;bmax�, with 500 increments in both parameters. Each immune

system experiences successive rounds of infection with an evolving pathogen with a given antigenic

divergence d. During each encounter, the immune system chooses between utilizing an existing

memory or initiating a novel response according to Equation 6. The net utility of each encounter is

calculated according to Equation 2. We estimate the expected net utility per encounter over a life-

time of 60 total encounters and repeat this experiment across 105 independent ensembles to find

the optimal immune strategies ða�;b�Þ with the highest net utility. As shown in Figure 4, simulating
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up to 60 encounters is sufficient for the inference of optimal strategies in the asymptotic regime (i.e.

a long lifetime).

To characterize optimal immune strategies against a mixture of pathogens with distinct levels of

antigenic divergences, we define the mixture immune strategy by a set of specificities

~a ¼ faig ¼ ðwith;i ¼ 1; . . . ;NmÞ, where each ai is a degree of specificity that a stored memory recep-

tor can potentially have, and Nm is the number of possible specificity strategies that an immune sys-

tem can choose from. The probability that an immune system with the mixture strategy ~a recognizes

a pathogen u through a memory response follows from an extension of = Equation 6,

PðmÞ
recog:ð~a;�Þ ¼ 1�

Y

specificity:ai

1�PðmÞ
recog:ðrai

m ;�Þ
� �

¼ 1�
Y

specificity:ai

e�E�ðraim ;�ÞGðt Þ ¼ 1� e
�
P

ai
E�ðraim ;�ÞGðt Þ � 1� e�

~bE�ð�Þ
(4)

where E�ð�Þ ¼ 1

Nm

P

ram
E�ðrai

m ; �Þ is the expected affinity of memory (with distinct specificities) against

antigen u in an immune repertoire and ~b�Nmb is an effective deliberation factor for all choices of

specificity. It should be noted that this effective deliberation factor ~b is an extensive quantity with

respect to the number of specificity strategies that an immune system can choose from, and there-

fore, is comparable across immune systems with different numbers of strategies.

We set out to characterize the mixture strategy as the probability PbðaÞ based on which an

immune system with a given effective deliberation factor ~b should store a memory receptor with

specificity a, in order to optimally counter infecting pathogens with distinct antigenic divergences,

drawn from a distribution PðdÞ. We start our optimization by defining a uniform mixture strategy,

where the elements of the immune specificity vector ~a ¼ faig (of size Nm ¼ 20), are drawn uniformly

from the range ½0;amax�. Each optimization step aims to improve the specificity vector ~a to maximize

the net utility (per encounter) of the mixture immune response Unetð~akÞ against 1000 independently

evolving antigens whose (scaled) antigenic divergences are drawn uniformly from the range

d̂ ¼ ½0; d̂max�. We use stochastic simulations to estimate the net utility of the mixture strategy

Unetð~akÞ, whereby the relative affinity of memory receptors (with varying specificities),

E�ðrai
m ; �Þ=E�ð�Þ, determines the stochastic rate of their response to the infecting antigen u. The net

utility (per encounter) of the immune response against each of the 1000 independently evolving anti-

gens is estimated by averaging over a host’s lifetime with 200 rounds of pathogenic encounters. We

update the mixture strategy over 3000 steps, using local gradient ascent by sampling 100 points in

the space of specificity vectors at each step to maximize net utility,

~akþ1 ¼~ak þ �rUnetð~akÞ (5)

Here, k indicates the optimization step and �¼ 0:1 is a hyper-parameter for gradient ascent. We

repeat the optimization process starting from 200 independently drawn initial uniform mixture strat-

egies ~a0 to characterize the ensemble of optimal memory strategies PbðaÞ against pathogens with

distinct antigenic divergences drawn uniformly from a given range d̂¼ ½0; d̂max�, as shown in Figure 3.

We also characterize the probability that a stored memory with a given specificity is utilized against

future infections (solid line in Figure 3). To do so, we test the optimized ensemble of specificities

PbðaÞ against 5000 independent pathogens with antigenic divergences drawn uniformly from the

range d̂¼ ½0; d̂max�. We evaluate the usage of a memory with a given specificity a (solid line in Fig-

ure 3) as the conditional probability PbðuseajproduceaÞ for using that memory given that it is pro-

duced (i.e. drawn from the distribution PbðaÞ).

Model of evolutionary decision-making for adaptive immune response
Kinetics of naive and memory immune response
Upon encountering a pathogen, the adaptive immune system mounts a response by activating the

naı̈ve repertoire (i.e. a novel response) and/or by triggering previously stored immune receptors in

the memory compartment. A memory receptor often shows a reduced affinity in interacting with an

evolved form of the pathogen. Nonetheless, memory plays a central role in protecting against re-

infections since even a suboptimal memory can be kinetically more efficient than a naive response,
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both in B-cells (Tangye and Hodgkin, 2004) and T-cells (Whitmire et al., 2008; Martin et al.,

2012). First, memory cells are fast responders and initiate cell division about t 0 » 1� 2 days before

naive cells (Tangye et al., 2003; Tangye and Hodgkin, 2004; Blanchard-Rohner et al., 2009). Sec-

ond, the number of memory cells that are recruited to proliferate and differentiate to effector cells is

b» 2� 3 times larger than the number of naive cells (Tangye et al., 2003; Tangye and Hodgkin,

2004). Once recruited, however, memory and naive cells have approximately a similar doubling time

of about t1=2 » 0:5� 2 days (Tangye et al., 2003; Macallan et al., 2005). Putting these kinetic factors

together, we can define an effective deliberation time t for the naive population to reach an activity

level (i.e. a population size) comparable to the memory. Assuming an exponential growth during the

early stages of memory and naı̈ve proliferation, the deliberation time can be estimated in terms of

the kinetic factors by t ¼ t 0 þ t1=2 ln b= ln 2 and it is within a range of t » 1:5� 5 days; see Figure 1.

Energetics of immune recognition
We assume that each immune receptor r has a cognate antigen ��r against which it has the highest

affinity. We express the binding affinity between a receptor r and an arbitrary target antigen u in

terms of the antigenic distance drð�Þ ¼ k�� ��rk between the receptor’s cognate antigen ��r and the

target u: Eðr; �Þ � Eðdrð�ÞÞ. This distance-dependent binding affinity is measured with respect to the

affinity of unspecific antigen-receptor interactions, sufficient to trigger a generic naı̈ve response.

Physico-chemical constraints in protein structures can introduce a tradeoff between immune

receptors’ affinity and cross-reactivity (i.e. ability to equally react to multiple targets). Prior to affinity

maturation, the structure of naı̈ve receptors is relatively flexible whereas hypermutations often

reconfigure the active sites of a receptor and make them more specific so that they match their tar-

get antigens like a lock and key (Wedemayer et al., 1997; Frank, 2002). As a result, the IgM class

of antibodies, which are the first line of defense in B-cell response, often have low affinities, yet they

are cross-reactive and can recognize mutated forms of the same epitope. On the other hand, the

high-affinity IgG class of antibodies, which are the late outcomes of affinity maturation in germinal

centers, have higher affinities but bind very specifically to their cognate antigen (Frank, 2002).

Broadly neutralizing antibodies (bNAbs) are exceptions to this rule since they often have high

potency and can react to a broad range of viral strains. However, bNAbs often react to vulnerable

regions of a virus where escape mutations are very deleterious (Mascola and Haynes, 2013). In

other words, the majority of bNAbs are not cross-reactive per se, but they are exceptionally success-

ful in targeting conserved epitopes in otherwise diverse viral strains. Nevertheless, an affinity-speci-

ficity tradeoff has been reported for a bNAb against the hemagglutinin epitope of influenza

(Wu et al., 2017).

We use a simple functional form to qualitatively capture the tradeoff between cross-reactivity and

affinity of antigen-receptor binding interactions: We assume that the binding affinity of a receptor r

to an antigen u depends on the antigenic distance drð�Þ ¼ k�� ��rk through a kernel with a specific-

ity factor a and a shape factor q such that, Eðr; �Þ � Ea;�ðdrð�ÞÞ ~a exp½� ak�� ��rk
� ���, with � � 0. The

width of this binding profile (i.e. the cross-reactivity) is set by the inverse of the specificity factor 1=a

(Figure 1), which decays as the height of the function (i.e. the maximum affinity) increases. The

parameter q tunes the shape of the receptor’s binding profile Ea;�ðdrð�ÞÞ, resulting in a flat function

(i.e. no tradeoff) for � ¼ 0, a double-sided exponential function for � ¼ 1, a Gaussian (bell-curve)

function for � ¼ 2, and top-hat functions for � � 2. Structural constraints and molecular features of

protein receptors define a bound on the minimum cross-reactivity or equivalently, a maximum speci-

ficity amax, achievable by a receptor. Using this bound, we define rescaled specificity â � a=amax to

characterize the energetics of an immune response in a dimensionless form.

Immune response to evolving pathogens
Upon primary infection (i.e. an encounter with a novel pathogen) naive immune receptors with mod-

erate affinity are activated to develop a specific response through affinity maturation (Figure 1).

Since the naive repertoire is diverse enough to contain receptors of moderate affinity against differ-

ent antigens, we assume that the affinity of responsive naı̈ve receptors, and hence, the strength of a

primary immune response to be approximately the same for all pathogens. This simplification

becomes less accurate as the immune system ages and the supply of effective receptors become

more scarce.
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Following a naive response to a primary infection and the subsequent affinity maturation, the

immune system stores memory cells with an enhanced affinity to use them against future infections

(Janeway et al., 2005; see Figure 1). Therefore, the cognate antigen ��rm for a given memory recep-

tor rm is an epitope derived from the primary infection that led to the formation of memory, which

we denote by �0 with a subscript that indicates round of infection. Thus, the binding profile

Ea;�ðrm; �Þ of the memory receptor rm is peaked around the primary antigenic epitope ��rm ¼ �0 (Fig-

ure 1). As pathogens evolve globally to escape the immune challenge, drugs, or vaccination, they

drift away from the primary antigen in antigenic space. We model this antigenic shift as a diffusion in

shape space whereby a reinfecting pathogen at the ith round of infection �i is on average at a dis-

tance d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

hk�i � �i�1k2i
q

from the previous infection �i�1. This antigenic shift is proportional to the

rate of pathogen evolution z� and the average time between infections Dt ¼ ti � ti�1, such that

d / z�
ffiffiffi

D
p

t. A cross-reactive memory can mount a response to an evolved antigen, yet with a reduced

affinity that decays with antigenic shift; see Figure 1. It should be noted that the minimum level of

receptor’s cross-reactivity (or maximum specificity) ðamaxÞ�1 defines a natural scale against which we

can measure antigenic divergence d and hence, form a dimensionless measure of antigenic diver-

gence d̂ � d=ðamaxÞ�1.

Immune-pathogen recognition depends both on the binding affinity Ea;�ðr; �Þ and the encounter

rate g�ðtÞ between an immune receptor r and the antigen u at a given time t. The encounter rate

g�ðtÞ depends on the abundance of the antigen and the immune receptor, and hence, can vary dur-

ing an infection within a host. The probability that a receptor r encounters and binds to an antigen u

in a short time interval ½t; t þ dt� can be expressed by, �ðr; �; tÞdt ¼ g�ðtÞEa;�ðr; �Þdt; a similar notion of

encounter rate has been previously used in Mayer et al., 2016. A memory response in an individual

is triggered through the recognition of an antigen by a circulating memory receptor. If no such rec-

ognition occurs during the deliberation time t » 1:5� 5 days, the immune system initiates a naı̈ve

response. Therefore, the probability that an antigen is recognized through a novel naive response

Pð0Þ
recog:

can be expressed as the probability of the antigen not being recognized 1� PðmÞ
recog:

by an avail-

able memory receptor rm over the deliberation period t,

Pð0Þ
recog:ð�Þ ¼ 1�PðmÞ

recog:ðrm;�Þ ¼ e
�
R t

0
�ð�;tÞdt ¼ e�Ea;�ðrm ;�ÞGð�;t Þ (6)

where Gð�;t Þ ¼
R t
0
g�ðtÞdt is the expected number of pathogenic encounters over the deliberation

time t and depends on the accumulated pathogenic load, as pathogens proliferate in the absence of

an effective memory prior to a naive response. Here, we have assumed that the affinity of the mem-

ory receptor does not change over the response time, which is a simplification since memory recep-

tor can undergo limited affinity maturation (Shlomchik, 2018; McHeyzer-Williams et al., 2018). To

further simplify, we also assume that the accumulated pathogenic load is independent of the type of

the pathogen Gð�;t Þ � Gðt Þ. As pathogens evolve away from the primary infector, the binding affin-

ity Ea;�ðrm;�Þ of the stored memory receptor rm, and hence, the probability to mount a memory

response PðmÞ
recog:ðrm; �;t Þ decays.

The deliberation time prior to a novel response provides a window for memory to react with an

antigen and mount an immune response by initiating an irreversible cascade of downstream events.

Although initiation of this pathogenic recognition can be modeled as an equilibrium process, the

resulting immune response is a non-equilibrium and an irreversible process, the details of which are

not included in our model.

Decision-making to mount a memory or naive response
In the theory of decision-making, a rational decision-maker chooses between two possible actions

a 2 fnaive;memoryg each contributing a utility Ua. If the decision-maker has prior preference for

each action, which we denote by the prior probability distribution Q0ðaÞ, its decisions could be

swayed by this knowledge. As a result, the constrained decision-maker should choose actions

according to an optimized probability density QðaÞ, which maximizes the expected utility while satis-

fying constraints due to the prior assumption (von Neumann and Morgenstern, 1944; Ortega and

Braun, 2013),
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QðaÞ ¼
QðaÞ

argmax
X

a

UaQðaÞ�
1

b
DKL QðaÞjjQ0ðaÞð Þ

 !

(7)

Here, DKLðQðaÞjjQ0ðaÞÞ ¼
P

aQðaÞ log QðaÞ=Q0ðaÞð Þ is the Kullback-Leibler distance between the

rational distribution QðaÞ and the prior distribution Q0ðaÞ and 1=b is a Lagrange multiplier that con-

strains the efficacy of a decision-maker to process new information and deviate from its prior

assumption. The optimal solution for a rational yet constrained decision follows,

QðaÞ ¼ 1

Z
Q0ðaÞebUa (8)

where Z ¼PaQ0ðaÞebUa is a normalization factor. If information processing is highly efficient (i.e. the

bias factor 1=b! 0) the rational decision-maker deterministically chooses the action with the highest

utility. On the other hand, if the prior is strong (i.e. 1=b!¥), the decision-maker hardly changes its

opinion and acts according to its prior belief (i.e. QðaÞ ¼Q0ðaÞ). Moreover, if the prior distribution is

uniform across actions (i.e. no prior preference), rational decision maximizes the entropy of the sys-

tem (Jaynes, 1957), resulting in the probability of actions QðaÞ~ exp½bUa�. In our analysis, we con-

sider the case of unbiased maximum entropy solution for decision-making. As a result the

probability to utilize memory Qmem: or naive Qnaive follows,

Qmem: ¼ 1�Qnaive ¼
ebUmem

ebUmem þ ebUnaive
(9)

which is a sigmoidal function, dependent on the utility of each action.

A decision to mount a memory or naive response QðaÞ based on their respective utilities (Equa-

tion 8) should be consistent with the biophysical description of the immune response through recog-

nition of an antigen by either of these cell types (Equation 6). By equating these two descriptions of

an immune response (Equation 6, Equation 8), we can specify the utility gain associated with

mounting a memory or a naı̈ve response in terms of the biophysics and kinetics of receptor-antigen

interactions,

Qmem: ¼ PðmÞ
recog:ðrm;�Þ �! ebUmem

ebUmem þ ebUnaive
¼ 1� e�Ea;�ðrm ;nÞGðn;t Þ

�! bðUmem:�UnaiveÞ ¼ log eEa;�ðrm ;nÞGðn;t Þ� 1

h i

(10)

Importantly, in the regime that memory is efficient and being utilized to mount a response (i.e. a

low chance for naive recognition: P
ð0Þ
recog: ¼ e�Eð�ÞGð�;t Þ � 1), the sigmoid form for decision to use mem-

ory (Equation 9) is dominated by an exponential factor. Therefore, the utility gain by a memory or a

naı̈ve response to an evolved antigen �i at an antigenic distance di ¼ k�i��0k from the memory

receptor’s cognate antigen ��rm � �0 follows (see Materials and methods),

Umemðk�i� �0k;a; �Þ ¼Unaive þEa;�ðrm;niÞ
¼�WðGt ÞþEa;�ðkni� n0kÞ

(11)

Here, we introduce the cost for deliberation WðGt Þ as the negative utility of the naive response

Una€ive. Deliberation cost WðGt Þ is a monotonically increasing function of the cumulative pathogen

load Gt and reflects the damage (cost) incurred by pathogens as they proliferate during the delibera-

tion time t prior to activation of the novel naive response; see Figure 1. It is important to note that

the difference in the memory and the naı̈ve utility DU ¼Umem �Unaive determines the decision to

mount either of these responses.

The same consistency criteria between decision-making (Equation 8) and cellular recognition

(Equation 6) indicates that the information processing factor b in Equation 8 should be equal to the

accumulated pathogenic load Gðt Þ during the deliberation period t: b ¼ Gðt Þ. A longer delibera-

tion, which on one hand leads to the accumulation of pathogens, would allow the immune system to

exploit the utility of a usable memory (i.e. process information), even if the memory has only a slight

advantage over a responsive naive receptor. As a result, we refer to b as the deliberation factor.

Moreover, this analogy relates the efficacy of information processing b, which plays the role of
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inverse temperature in thermodynamics, and the total accumulated pathogenic load Gð�; t Þ, which
acts as the sample size for memory receptors as they encounter and accumulate information about

pathogens. Interestingly, previous work has drawn a similar correspondence between the inverse

temperature in thermodynamics and the effect of sample size on statistical inference LaMont and

Wiggins, 2019.

The deliberation factor in the immune system should be bounded b � bmax in order for the organ-

ism to survive new infections by mounting a novel response that can suppress an exponentially repli-

cating pathogen before it overwhelms the host. Using this bound, we define rescaled deliberation

factor b̂ � b=bmax � 1 to characterize the kinetics of an immune response in a dimensionless fashion.

It should be noted that our decision-making formalism assumes that if memory is available, it can

be utilized much more efficiently and robustly than a naive response. Therefore, we do not consider

scenarios where memory and naive responses are equally involved in countering an infection—a pos-

sibility that could play a role in real immune responses. Nonetheless, since such mixed responses are

relatively rare, we expect that including them in our model would only result in a slightly different

interpretation of the deliberation factor b and should not qualitatively impact our results.

If the immune system decides to mount a memory response against an evolved antigen �i, the

binding profile of memory against the target pathogen remains unchanged and equal to the profile

Ea;�ðr�0 ; �Þ against the primary infection �0. However, if the immune system mounts a naı̈ve response,

a new memory receptor r�i would be generated with a binding profile Ea;�ðr�i ; �Þ, centered around

the latest infection �i. As a result, the expected binding profile E
ðiÞ
a;�ð�Þ at the ith round of infection is

an interpolation between the profiles associated with memory and naive response, weighted by the

likelihood of each decision (Equation 6),

E
ðiÞ
a;�ð�Þ ¼ PðmÞ

recog:ðr�0 ;�iÞEa;�ðr�0 ;�ÞþPð0Þ
recog:ð�iÞEa;�ðr�i ;�Þ (12)

The expected binding profile at the ith round of infection E
ðiÞ
a;�ð�Þ (Equation 12) deviates from the

optimal profile centered around the infecting pathogen Ea;�ðr�i ;�Þ (i.e. memory profile stored follow-

ing a novel response); see Figure 1. This deviation arises because an energetically sub-optimal mem-

ory response can still be favorable when time is of an essence and the decision has to be made on

the fly with short deliberation. This tradeoff between the kinetics and the energetics of immune

response results in a non-equilibrium decision-making Grau-Moya et al., 2018 by the immune sys-

tem. In analogy to non-equilibrium thermodynamics, we express this deviation as a dissipative cost

of memory response Kdissðti;a; �Þ at the ith round of infection (time point ti), which we quantify by the

Kullback-Leibler distance between the expected and the optimal binding profiles, in units of the

deliberation factor b,

Kdissðti;a; �Þ ¼ 1

b
DKL E

ðiÞ
a;�ð�ÞjjEa;�ðr�i ; �Þ

� �

¼ 1

b

X

antigens:�

E
ðiÞ
a;�ð�Þ log

E
ðiÞ
a;�ð�Þ

Ea;�ðr�i ; �Þ

2

4

3

5

(13)

where we ensure that binding profiles are normalized over the space of antigens. The dissipation

Kdiss measures the sub-optimality (cost) of the mounted response through non-equilibrium decision-

making and quantifies deviation from an equilibrium immune response Grau-Moya et al., 2018.

An optimal memory strategy should be chosen such that it maximizes the expected utility of the

immune response Uh i ¼ UmemP
ðmÞ
recog: þ UnaiveP

ð0Þ
recog:, while minimizing the dissipation cost due to the

non-equilibrium response Kdiss, over the lifetime of an organism. To infer an optimal strategy, we

introduce net utility Unet that accounts for the tradeoff between the expected utility and dissipation

at a given round of infection at time point ti,

Unetðti;a;b; �Þ ¼ Ua;b;�ðtiÞ

 �

�Kdissðti;a; �Þ (14)

Net utility can be interpreted as the extracted (information theoretical) work of a rational deci-

sion-maker that acts in a limited time, and hence, is constantly kept out of equilibrium (Grau-

Moya et al., 2018). We infer the optimal memory protocol (i.e. the optimal memory specificity a�
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and deliberation factor b�) by maximizing the total net utility of memory responses throughout the

lifetime of an organism,

ða�;b�Þ ¼
a;b

argmax
X

i:infections

Unetðti;a;b; �Þ: (15)

While we do not model time limits to memory, we effectively model only one memory at a time.

This effect is the consequence of modeling the memory as only being beneficial until a novel

immune response is triggered resulting in the storage of an updated memory centered around a

more recent antigen (Figure 1). After such an update, the old memory is no longer relevant as anti-

gens have drifted away.

In our model, the characteristic time for a novel response (and memory update) is set by the

expected antigenic divergence (Figure 2). Accordingly, cross-reactivity of memory is optimized so

that the organism can mount effective responses against evolved forms of antigens in this window of

time. However, if the lifetime of memory were to be shorter than this characteristic time of memory

update, we expect the organism to store more specific memory since this memory would be utilized

to counter a more limited antigenic evolution before it is lost. In other words, the shorter of either

the memory lifetime or the characteristic time for memory updates determines the optimal cross-

reactivity for immune memory.
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Chapter 4

Learning and organization of
memory for evolving patterns

The following chapter consists of the preprint

O. H. Schnaack, L. Peliti, and A. Nourmohammad. “Learning and organi-
zation of memory for evolving patterns”. In: arXiv:2106.02186 [physics]
(June 2021). arXiv: 2106.02186

that was submitted in July 2021 and is currently under revision. The corresponding
supplementary figures are shown in appendix B.

This work is part of a collaboration with Luca Peliti from the Santa Mariella
Institute. He had the idea to extend the original research of Hopfield networks with a
Hebbian learning rule to evolving patterns. All authors then conceptualized the project.
I wrote the Julia code for simulations and data analysis, performed all analytical
derivations, and produced all figures. All authors contributed to the writing and
editing of the manuscript.

In this paper, we study how Hopfield networks need to adapt to follow the evolution
of their target patterns. We investigate systems that can either solely solve this problem
by adjusting their learning rate or further compartmentalizing their network. We find
that fully compartmentalized solutions reach the maximal performance when learning
evolving patterns, while all other systems only retrieve the memory of a fraction of the
patterns.

In the context of this thesis, this project thus suggests that specialized memory
strategies, such as immune memory, are the optimal solution for evolving environments.
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Storing memory for molecular recognition is an efficient strategy for responding to external stimuli.
Biological processes use different strategies to store memory. In the olfactory cortex, synaptic
connections form when stimulated by an odor, and establish an associative distributed memory that
can be retrieved upon re-exposure to the same odors. In contrast, the immune system encodes
specialized memory by diverse receptors that can recognize a multitude of evolving pathogens.
Despite the mechanistic differences between memory storage in the olfactory and the immune system,
these processes can still be viewed as different information encoding strategies. Here, we develop
analytical and numerical techniques for a generalized Hopfield network to probe the utility of distinct
memory strategies against both static and dynamic (evolving) patterns. We find that while classical
Hopfield networks with distributed memory can efficiently encode a memory of static patterns, they
are inadequate against evolving patterns. To follow an evolving pattern, we show that a Hopfield
network should use a higher learning rate, which can in turn distort the energy landscape associated
with the stored memory attractors. Specifically, we observe the emergence of narrow connecting
paths between memory attractors that lead to misclassification of evolving patterns. We demonstrate
that compartmentalized networks with specialized subnetworks are the optimal solutions to memory
storage for evolving patterns. We postulate that evolution of pathogens may be the reason for the
immune system to be encoded in a focused memory, in contrast to the distributed memory used in
the olfactory cortex that interacts with mixtures of static odors. Our approach offers a principled
framework to study learning and memory retrieval in out-of-equilibrium dynamical systems.

I. INTRODUCTION

Storing memory for molecular recognition is an effi-
cient strategy for sensing and response to external stimuli
in biology. Apart from the cortical memory in the ner-
vous system, molecular memory is also an integral part
of the immune response, present in a broad range of or-
ganisms from the CRISPR-Cas system in bacteria [1–3]
to adaptive immunity in vertebrates [4–6]. In all of these
systems, an encounter with a pattern is encoded as a
memory and is later retrieved and activated in response
to a similar stimulus, be it a pathogenic reinfection or
a re-exposure to a pheromone. Despite this high-level
similarity, the immune system and the synaptic nervous
system utilize vastly distinct molecular mechanisms for
storage and retrieval of their memory.

Memory storage, and in particular, associative mem-
ory in the hippocampus and olfactory cortex has been

∗ Correspondence should be addressed to Armita Nourmoham-
mad: armita@uw.edu

a focus of theoretical and computational studies in neu-
roscience [7–11]. In the case of the olfactory cortex, the
input is a combinatorial pattern produced by olfactory re-
ceptors which recognize the constituent mono-molecules
of a given odor. An odor signal is transmitted from the
receptors to the olfactory cortex, which serves as a pat-
tern recognition device and enables an organism to dis-
tinguish orders of magnitudes more odors compared to
the number of olfactory receptors [12–14]. The synap-
tic connections in the cortex are formed as they are co-
stimulated by a given odor pattern, thus forming a dis-
tributed associative memory that can be retrieved in fu-
ture exposures [7–11, 15].

Immune memory is encoded very differently from as-
sociative memory in the nervous system. Immune recep-
tors are extremely diverse and can specifically recognize
pathogenic molecules without the need for a distributed
and combinatorial encoding. In vertebrates, for example,
the adaptive immune system consists of tens of billions
of diverse B- and T-cells that can recognize and mount
specific responses against the multitude of pathogens [5].
Immune cells activated in response to a pathogen can
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differentiate into memory cells, which are long lived and
can more efficiently respond upon reinfections. Unlike
the distributed memory in the olfactory cortex, the recep-
tors encoding immune memory are specialized for a given
pathogen class. However, within the same class, they can
recognize evolved variants of a primary pathogen, in re-
sponse to which memory was originally generated [5, 16–
21]

Learning and encoding of memory in nervous system
has inspired the development of efficient algorithms in
machine learning with artificial neural networks [22–25].
In one class of such networks, input patterns trigger inter-
actions between encoding nodes. The ensemble of inter-
active nodes keeps a robust memory of the pattern since
they can be simultaneously stimulated upon re-exposure
and thus a stored pattern can be recovered by just know-
ing part of its content. This mode of memory storage
resembles the co-activation of synaptic connections in a
cortex. Energy-based models, such as Hopfield neural
networks with Hebbian update rules [26], are among such
systems, in which memory is stored as the network’s en-
ergy minima [27]. These algorithms are effective in dis-
entangling signal from noise, which makes them highly
efficient in encoding static inputs with noise. Although
some specialized machine learning approaches allow for
learning dynamically evolving inputs [22, 23], we still lack
a general framework for learning evolving patterns, rele-
vant for many real-life applications [23].

Inspired by the ability of the immune memory in recog-
nizing evolving patterns (pathogens), we propose a flex-
ible model of learning with neural networks that can
interpolate between the specialized and the distributed
memory strategies used by the immune and the nervous
system. We formulate this problem as an optimization
task to find a strategy (i.e., learning rate and network
structure) that confers the highest accuracy for memory
retrieval from the static and the dynamic (evolving) pat-
terns.

In contrast to the static case, we show that a dis-
tributed memory in the style of a classical Hopfield
model [27] fails to efficiently work for evolving patterns.
We show that the optimal learning rate should increase
with faster evolution of patterns, so that a network
can follow the dynamics of the evolving patterns. This
heightened learning rate tends to carve narrow connect-
ing paths (mountain passes) between the memory attrac-
tors of a network’s energy landscape, through which pat-
terns can equilibrate in and be associated with a wrong
memory. Importantly, we demonstrate that the problem
of memory retrieval for continuously evolving patterns
is distinct from that of the noisy patterns [28]. Unlike
noise, evolution can systematically eliminate shared fea-
tures among patterns, making it difficult to retrieve a
pattern from an associative memory over time. To over-
come this misclassification, we demonstrate that special-
ized memory compartments emerge in a neural network
as an optimal solution to efficiently recognize and retrieve
a memory of out-of-equilibrium evolving patterns.

Our results suggest that evolution of pathogenic pat-
terns may be one of the key reasons why the immune
system encodes a focused (compartmentalized) memory,
as opposed to the distributed memory used in the olfac-
tory system, for which molecular mixtures largely present
static patterns. Beyond this biological intuition, our
model offers a principled analytical framework to study
learning and memory generation in out-of-equilibrium
dynamical systems.

II. RESULTS

A. Model of working memory for evolving patterns

To probe memory strategies against different types of
stimuli, we propose a generalized energy-based model
of associative memory, in which a Hopfield-like neu-
ral network is able to learn and subsequently recog-
nize binary patterns. This neural network is charac-
terized by an energy landscape and memory is stored
as the network’s energy minima. We encode the tar-
get of recognition (stimulus) in a binary vector σ (pat-
tern) with L entries: σ = (σ1, . . . , σL), with σi = ±1,
∀i (Fig. 1A). To store associative memory, we define a
fully connected network represented by an interaction
matrix J = (Ji,j) of size L × L, and use a Hopfield-
like energy function (Hamiltonian) to describe pattern
recognition EJ(σ) = − 1

2L

∑
ij Ji,jσiσj ≡ − 1

2 〈σ|J |σ〉 [27]

(Fig. 1C). Here, we used a short-hand notation to de-
note the normalized pattern vector by |σ〉 ≡ 1√

L
σ,

its transpose by 〈σ|, resulting in a normalized scalar
product 〈σ|σ′〉 ≡ 1

L

∑
i σiσ

′
i, and a matrix product

〈σ|J |σ〉 ≡ 1
L

∑
i,j σiJi,jσj .

The network undergoes a learning process, during
which different patterns are presented sequentially and
in random order (Fig. 1B). As a pattern σα is presented,
the interaction matrix J is updated according to the fol-
lowing Hebbian update rule [29]

Ji,j −→ J ′i,j =

{
(1− λ) Ji,j + λσαi σ

α
j , if i 6= j;

0, otherwise.
(1)

Here λ is the learning rate. In this model, the memo-
rized patterns are represented by energy minima asso-
ciated with the matrix J . We consider the case where
the number N of different pattern classes is below the
Hopfield capacity of the network (i.e., N . 0.14L; see
refs. [27, 30, 31]).

With the update rule in eq. 1, the network devel-
ops energy minima as associative memory close to each
of the previously presented pattern classes σα (α ∈
{1, . . . , N})(Fig. 1C). Although the network also has
minima close to the negated patterns, i.e., to −σα, they
do not play any role in what follows. To find an associa-
tive memory we let a presented pattern σα equilibrate
in the energy landscape, whereby we accept spin-flips
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FIG. 1. Model of Working memory for evolving patterns. (A) The targets of recognition are encoded by binary
vectors {σ} of length L. Patterns can evolve over time with a mutation rate µ, denoting the fraction of spin-flips in a pattern
per network update event. (B) Hebbian learning rule is shown for network J , which is presented a set of N patterns {σα}
(colors) over time. At each step, one pattern σα is randomly presented to the network and the network is updated with learning
rate λ (eq. 1). (C) The energy landscape for networks with distributed memory with optimal learning rate for static (left)
and evolving (right) patterns are shown. The equipotential lines are shown in the bottom 2D plane. The energy minima
correspond to memory attractors. For static patterns (left), equilibration in the network’s energy landscape drives a pattern
towards its associated memory attractor, resulting in an accurate reconstruction of the pattern. For evolving patterns (right),
the heightened optimal learning rate of the network results in the emergence of connecting paths (mountain passes) between the
energy minima. The equilibration process can drive a pattern through a mountain pass towards a wrong memory attractors,
resulting in pattern misclassification. (D) A network with distributed memory (left) is compared to a specialized network with
multiple compartments (right). To find an associative memory, a presented pattern σα with energy E(J, σα) in network J
equilibrates with inverse temperature βH in the network’s energy landscape and falls into an energy attractor σαatt. Memory
retrieval is a two-step process in a compartmentalized network (right): First, the sub-network J i is chosen with a probability
Pi ∼ exp[−βSE

i(J i, σα)], where βS is the inverse temperature for this decision. Second, the pattern equilibrates within the
sub-network and falls into an energy attractor σαatt.

σα → σ̃α with a probability min
(
1, e−βH(EJ (σ̃)−EJ (σ))

)
,

where βH is the inverse equilibration (Hopfield) temper-
ature (Appendix A). In the low temperature regime (i.e.,
high βH), equilibration in networks with working memory
drives a presented pattern σα towards a similar attractor
σαatt, reflecting the memory associated with the corre-
sponding energy minimum (Fig. 1C). This similarity is
measured by the overlap qα ≡ 〈σαatt|σα〉 and determines
the accuracy of the associative memory.

Unlike the classical cases of pattern recognition by
Hopfield networks, we assume that patterns can evolve
over time with a rate µ that reflects the average number
of spin-flips in a given pattern per network’s update event
(Fig. 1A). Therefore, the expected number of spin-flips
in a given pattern between two encounters is µeff = Nµ,
as two successive encounters of the same pattern are on

average separated by N − 1 encounters (and updates) of
the network with the other patterns. We work in the
regime where the mutation rate µ is small enough such
that the evolved patterns stemming from a common an-
cestor σα(t0) at time t0 (i.e., the members of the class
α) remain more similar to each other than to members
of the other classes (i.e., µNL� L/2).

The special case of static patterns (µeff = 0) can reflect
distinct odor molecules, for which associative memory is
stored in the olfactory cortex. On the other hand, the
distinct pattern classes in the dynamic case (µeff > 0)
can be attributed to different types of evolving pathogens
(e.g., influenza, HIV, etc), and the patterns within a class
as different variants of a given pathogen. In our model,
we will use the mutation rate as an order parameter to
characterize the different phases of memory strategies in
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FIG. 2. Reduced performance of Hopfield networks in retrieving memory of evolving patterns. (A) The optimal
performance of a network Q∗ ≡ Q(λ∗) (eq. 2) is shown as a function of the effective mutation rate µeff = Nµ. The solid lines
show the simulation results for networks encountering different number of patterns (colors). The black dotted line shows the
näıve expectation for the performance solely based on the evolutionary divergence of the patterns Q0 ≈ 1 − 2µeff, and the
colored dashed lines show the expected performance after accounting for the memory lag glag , Qlag ≈ 1− 2glagµeff; see Fig. S2
for more details. (B) The optimal learning rate λ∗ is shown as a function of effective mutation rate. The solid lines are the
numerical estimates and dashed lines show the theoretical predictions (eq. 4). (C) The mean energy obtained by simulations of
randomly ordered patterns (solid lines) and the analytical approximation (eq. 3) for ordered patterns (dotted lines) are shown.
Error bars show standard error from the independent realizations (Appendix A). The color code for the number of presented
patterns is consistent across panels, and the length of patterns is set to L = 800.

biological systems.

B. Optimal learning rate for evolving patterns

In the classical Hopfield model (µeff = 0) the learn-
ing rate λ is set to very small values for the network
to efficiently learn the patterns [29]. For evolving pat-
terns, the learning rate should be tuned so the net-
work can efficiently update the memory retained from
the prior learning steps. At each encounter, the over-
lap qα(t;λ) = 〈σαatt(t;λ)|σα(t)〉 between a pattern σα(t)
and the corresponding attractor for the associated energy
minimum σαatt(t;λ) determines the accuracy of pattern
recognition; the parameter λ explicitly indicates the de-
pendency of the network’s energy landscape on the learn-
ing rate. We declare pattern recognition as successful if
the accuracy of reconstruction (overlap) is larger than
a set threshold qα(t) ≥ 0.8, but our results are insen-
sitive to the exact value of this threshold (Appendix C
and Fig. S4). We define a network’s performance as the
asymptotic accuracy of its associative memory averaged
over the ensemble of pattern classes (Fig. 2A),

Q(λ) ≡ E [qα(t;λ)] ' lim
T→∞

1

T

T∑

t=0

1

N

N∑

α=1

〈σαatt(t)|σα(t)〉

(2)
The expectation E[·] is an empirical average over the
ensemble of presented pattern classes over time, which
in the stationary state approaches the asymptotic av-
erage of the argument. The optimal learning rate is
determined by maximizing the network’s performance,
λ∗ = argmaxλQ(λ).

The optimal learning rate increases with growing mu-
tation rate so that a network can follow the evolving pat-

terns (Fig. 2B). Although it is difficult to analytically
calculate the optimal learning rate, we can use an ap-
proximate approach and find the learning rate that min-
imizes the expected energy of the patterns E [Eλ,ρ(J, σ)],
assuming that patterns are shown to the network at a
fixed order (Appendix B). In this case, the expected en-
ergy is given by

E [Eλ,ρ(J, σ)] =
L− 1

2
× λ

1− λ ×
1

ρ−2N (1− λ)−N − 1
,(3)

where ρN ≡ (1−2µ)N ≈ 1−2µeff is the upper bound for
the overlap between a pattern and its evolved form, when
separated by the other N − 1 patterns that are shown
in between. The expected energy grows slowly with in-
creasing mutation rate (i.e., with decreasing overlap q),
and the approximation in eq. 3 agrees very well with the
numerical estimates for the scenario where patterns are
shown in a random order (Fig. 2C). In the regime where
memory can still be associated with the evolved patterns
(µeff � 0.5), minimization of the expected energy (eq. 3)
results in an optimal learning rate,

λ∗(µ) =
√

8µ/(N − 1), (4)

that scales with the square root of the mutation rate.
Notably, this theoretical approximation agrees well with
the numerical estimates (Fig. 2B).

C. Reduced accuracy of distributed associative
memory against evolving patterns

Despite using an optimized learning rate, a network’s
accuracy in pattern retrieval Q(λ) decays much faster
than the näıve expectation solely based on the evolu-
tionary divergence of patterns between two encounters
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with a given class (i.e., Q0 = (1 − 2µ)N ≈ 1 − 2µeff);
see Fig. 2A. It should be noted that a classical Hop-
field network with a small learning rate can accurately
retrieve the memory of noisy static patterns by relying
on the shared features of the patterns within a class [28]
(Fig. S1). However, continuous evolution can systemat-
ically eliminate the shared features among patterns of a
given class, resulting in a significant reduction in the ac-
curacy of memory retrieval for evolving patterns. There
are two reasons for such reduced accuracy: (i) the lag in
the network’s memory, and (ii) misclassification of pre-
sented patterns.

The memory attractors associated with a given pat-
tern class can lag behind and only reflect the older
patterns presented prior to the most recent encounter
of the network with the specified class. We char-
acterize this lag g

lag
by identifying a previous ver-

sion of the pattern that has the maximum overlap
with the network’s energy landscape at a given time t:
g
lag

= argmaxg≥0 E [〈σ(t− g N)|J(t)|σ(t− g N)〉] (Ap-
pendix B.2). g

lag
measures time in units of N (i.e., the

effective separation time of pattern of the same class). An
increase in the optimal learning rate reduces the time lag
and enables the network to follow the evolving patterns
more closely (Fig. S2). The accuracy of the memory sub-

ject to such a lag decays as Q
lag

= ρglagN ≈ 1− 2g
lag
µeff,

which is faster than the näıve expectation (i.e., 1−2µeff);
see Fig. 2A. This memory lag explains the loss of perfor-
mance for patterns that are still reconstructed by the
network’s memory attractors (i.e., those with qα > 0.8;
Fig. S2A). However, the overall performance of the net-
work Q(λ) remains lower than the expectation obtained
by taking into account this time lag (Fig. 2A)—a dis-
crepancy that leads us to the second root of reduction in
accuracy, i.e., pattern misclassification.

As the learning rate increases, the structure of the net-
work’s energy landscape changes. In particular, we see
that with large learning rates a few narrow paths emerge
between the memory attractors of networks (Fig. 1C). As
a result, the equilibration process for pattern retrieval
can drive a presented pattern through the connecting
paths towards a wrong memory attractor (i.e., one with
a small overlap 〈σatt|σ〉), which leads to pattern misclas-
sification (Fig. S3A and Fig. S4A,C). These paths are
narrow as there are only a few possible spin-flips (mu-
tations) that can drive a pattern from one valley to an-
other during equilibration (Fig. S4B,D and Fig. S5A,C).
In other words, a large learning rate carves narrow moun-
tain passes in the network’s energy landscape (Fig. 1C),
resulting in a growing fraction of patterns to be mis-
classified. Interestingly, pattern misclassification occurs
even in the absence of mutations for networks with an
increased learning rate (Fig. S3A). This suggests that
mutations only indirectly contribute to the misclassifica-
tion of memory, as they necessitate a larger learning rate
for the networks to optimally operate, which in turn re-
sults in the emergence of mountain passes in the energy
landscape.

To understand the memory misclassification, particu-
larly for patterns with moderately low (i.e., non-random)
energy (Fig. 2C), we use spectral decomposition to char-
acterize the relative positioning of patterns in the en-
ergy landscape (see Appendix C). The vector represent-
ing each pattern |σ〉 can be expressed in terms of the
network’s eigenvectors {Φi}, |σ〉 =

∑
imi |Φi〉, where the

overlap mi ≡ 〈Φi|σ〉 is the ith component of the pattern
in the network’s coordinate system. During equilibration,
we flip individual spins in a pattern and accept the flips
based on their contribution to the recognition energy.
We can view these spin-flips as rotations of the pattern
in the space spanned by the eigenvectors of the network.
Stability of a pattern depends on whether these rotations
could carry the pattern from its original subspace over to
an alternative region associated with a different energy
minimum.

There are two key factors that modulate the stabil-
ity of a pattern in a network. The dimensionality of the
subspace in which a pattern resides, i.e., support of a
pattern by the network’s eigenvectors, is one of the key
determining factors for pattern stability. We quantify
the support of a pattern σ using the participation ra-
tio π(σ) = (

∑
im

2
i )

2/
∑
im

4
i [32, 33] that counts the

number of eigenvectors that substantially overlap with
the pattern. A small support π(σ) ≈ 1 indicates that
the pattern is spanned by only a few eigenvectors and
is restricted to a small sub-space, whereas a large sup-
port indicates that the pattern is orthogonal to only a
few eigenvectors. As the learning rate increases, patterns
lie in lower dimensional sub-spaces supported by only a
few eigenvectors (Fig. S5B,D). This effect is exacerbated
by the fact the energy gap between the eigenstates of
the network also broaden with increasing learning rate
(Fig. S6). The combination of a smaller support for pat-
terns and a larger energy gap in networks with increased
learning rate leads to the destabilization of patterns by
enabling the spin-flips during equilibration to drive a pat-
tern from one subspace to another, through the mountain
passes carved within the landscape; see Appendix C and
Fig. S7 for the exact analytical criteria for pattern sta-
bility.

D. Compartmentalized learning and memory
storage

Hopfield-like networks can store accurate associative
memory for static patterns. However, these networks fail
to perform and store retrievable associative memory for
evolving patterns (e.g., pathogens), even when learning
is done at an optimal rate (Fig. 2). To overcome this
difficulty, we propose to store memory in compartmen-
talized networks, with C sub-networks of size Lc (i.e., the
number of nodes in a sub-network). Each compartment
(sub-network) can store a few of the total of N pattern
classes without interference from the other compartments
(Fig. 1D).
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Recognition of a pattern σ in a compartmentalized net-
work involves a two step process (Fig. 1D): First, we
choose a sub-network J i associated with compartment i
with a probability Pi = exp[−βSE(J i, σ)]/N , where βS

is the inverse temperature for this decision and N is the
normalizing factor. Once the compartment is chosen, we
follow the recipe for pattern retrieval in the energy land-
scape of the associated sub-network, whereby a pattern
equilibrates into a memory attractor.

On average, each compartment stores a memory for
Nc = N/C pattern classes. To keep the networks with
different number of compartments C comparable, we
scale the size of each compartment Lc to keep C × Lc =
constant, which keeps the (Hopfield) capacity of the net-
work α = Nc/Lc invariant under compartmentalization.
Moreover, the mutation rate experienced by each sub-
network scales with the number of compartments µc =
Cµ, which keeps the effective mutation rate µeff = Ncµc

invariant under compartmentalization. As a result, the
optimal learning rate (eq. 4) scales with the number of

compartments C as, λ∗c =
√

8µc/(Nc − 1) ≈ Cλ∗1. How-
ever, since updates are restricted to sub-networks of size
Lc at a time, the expected amount of updates within a
network Lcλc remains invariant under compartmental-
ization. Lastly, since the change in energy by a single
spin-flip scales as ∆E ∼ 1/Lc, we introduce the scaled
Hopfield temperature βHc

≡ CβH to make the equilibra-
tion process comparable across networks with different
number of compartments. No such scaling is necessary
for βS.

By restricting the networks to satisfy the aforemen-
tioned scaling relationships, we are left with two inde-
pendent variables, i.e., (i) the number of compartments
C, and (ii) the learning rate λc, which define a memory
strategy {C, λc}. A memory strategy can be then opti-
mized to achieve a maximum accuracy for retrieving an
associative memory for evolving patterns with a given
effective mutation rate µeff.

E. Phases of learning and memory production

Pattern retrieval can be stochastic due to the noise
in choosing the right compartment from the C sub-
networks (tuned by the inverse temperature βS), or the
noise in equilibrating into the right memory attractor in
the energy landscape of the chosen sub-network (tuned
by the Hopfield inverse temperature βHc). We use
mutual information to quantify the accuracy of pattern-
compartment association, where larger values indicate a
more accurate association; see Appendix A and Fig. 4.
The optimal performance Q∗ determines the overall
accuracy of memory retrieval, which depends on both
finding the right compartment and equilibrating into
the correct memory attractor. The amplitudes of intra-
versus inter- compartment stochasticity determine the
optimal strategy {C∗, λ∗c} used for learning and retrieval
of patterns with a specified mutation rate. Varying the
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FIG. 3. Compartmentalized memory storage. (A)
The optimal performance is shown as a function of the ef-
fective mutation rate (similar to Fig. 2A) for networks with
different number of compartments C (colors), ranging from a
network with distributed memory C = 1 (blue) to a 1-to-1
compartmentalized network C = N (red). (B) The optimal
(scaled) learning rate λc/C is shown as a function of the ef-
fective mutation rate for networks with different number of
compartments (colors according to (A)). Full lines show the
numerical estimates and the dashed line is from the analyti-
cal approximation, λ∗

c =
√

8µc/(Nc − 1) ≈ Cλ∗
1. The scaled

learning rates collapse on the analytical approximation for all
networks except for the 1-to-1 compartmentalized network
(red), where the maximal learning rate λ ≈ 1 is used and
each compartment is fully updated upon an encounter with a
new version of a pattern. The number of presented patterns
is set to N = 32. We keep L×C = const., with L = 800 used
for the network with C = 1.

corresponding inverse temperatures (βHc , βS) results in
three distinct phases of optimal memory storage.

i. Small intra- and inter-compartment noise (βHc � 1,

βS � 1). In this regime, neither the compartment
choice nor the pattern retrieval within a compartment
are subject to strong noise. As a result, networks
are functional with working memory and the optimal
strategies can achieve the highest overall performance.
For small mutation rates, we see that all networks
perform equally well and can achieve almost perfect
performance, irrespective of their number of compart-
ments (Figs. 3A, 4A,B). As the mutation rate increases,
networks with a larger number of compartments show
a more favorable performance, and the 1-to-1 spe-
cialized network, in which each pattern is stored in
a separate compartment (i.e., N = C), reaches the
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FIG. 4. Phases of learning and memory production. Different optimal memory strategies are shown. (A) The heatmap
shows the optimal memory performance Q∗ as a function of the (scaled) Hopfield inverse temperature βHc = βH · C and the
inverse temperature associated with compartmentalization βS for networks learning and retrieving a memory of static patterns
(µ = 0); colors indicated in the color bar. The optimal performance is achieved by using the optimal strategy (i.e., learning
rate λ∗

c and the number of compartments c∗) for networks at each value of βHc and βS. The three phases of accurate, partial,
and no-memory are indicated. (B) The heatmap shows the memory strategies for the optimal number of compartments (colors
as in the legend) corresponding to the memory performance shown in (A). We limit the optimization to the possible number of
compartments indicated in the legend to keep N/C an integer. The dashed region corresponds to the case where all strategies
perform equally well. Regions of distributed memory (C = 1) and the 1-to-1 specialized memory (C = N) are indicated. The
top panel shows the optimal performance Q∗ of different strategies as a function of the Hopfield inverse temperature βHc . The
right panel shows the mutual information MI(Σ, C) between the set of pattern classes Σ ≡ {σα} and the set of all compartments
C normalized by the entropy of the compartments H(C) as a function of the inverse temperature βS; see Appendix A.3. This
normalized mutual information quantifies the ability of the system to assign a pattern to the correct compartment. (C-D)
Similar to (A-B) but for evolving patterns with the effective mutation rate µeff = 0.01. The number of presented patterns is
set to N = 32 (all panels). Similar to Fig. 3 we keep L× C = const., with L = 800 used for networks with C = 1.

optimal performance 1 − 2µeff (Figs. 3A, 4C,D). As
predicted by the theory, the optimal learning rate for
compartmentalized networks scales with the mutation

rate as λ∗c ∼ µ1/2
c , except for the 1-to-1 network in which

λ∗c → 1 and sub-networks are steadily updated upon an
encounter with a pattern (Fig. 3B). This rapid update
is expected since there is no interference between the
stored memories in the 1-to-1 network, and a steady

update can keep the stored memory in each sub-network
close to its associated pattern class without disrupting
the other energy minima.

ii. Small intra- and large inter-compartment noise

(βHc � 1, βS � 1). In this regime there is low noise
for equilibration within a compartment but a high
level of noise in choosing the right compartment. The
optimal strategy in this regime is to store patterns
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in a single network with a distributed memory, since
identifying the correct compartment is difficult due
to noise (Fig. 4B,D). For static patterns this strategy
corresponds to the classical Hopfield model with a
high accuracy (Figs. 2A, 4A,B). On the other hand,
for evolving patterns this strategy results in a partial
memory (Fig. 4C,D) due to the reduced accuracy
of the distributed associative memory, as shown in
Fig. 2A. Interestingly, the transition between the opti-
mal strategy with highly specific (compartmentalized)
memory for evolving patterns in the first regime and the
generalized (distributed) memory in this regime is very
sharp (Fig. 4D). This sharp transition suggests that
depending on the noise in choosing the compartments
βS, an optimal strategy either stores memory in a 1-to-1
specialized fashion (C = N) or in a distributed general-
ized fashion (C = 1), but no intermediate solution (i.e.,
quasi-specialized memory with 1 < C < N) is desirable.

iii. Large intra-compartment noise (βHc < 1). In
this regime there is a high level of noise in equilibra-
tion within a network and memory cannot be reliably
retrieved (Fig. 4A,C), regardless of the compartmental-
ization temperature βS. However, the impact of the equi-
libration noise βHc

on the accuracy of memory retrieval
depends on the degree of compartmentalization. For the
1-to-1 specialized network (C = N), the transition be-
tween the high and the low accuracy is smooth and oc-
curs at βHc

= 1, below which no memory attractor can be
found. As we increase the equilibration noise (decrease
βHc

), the networks with distributed memory (C < N)
show two-step transitions, with a plateau in the range of
1/Nc . βHc

. 1. Similar to the 1-to-1 network, the first
transition at βHc

≈ 1 results in the reduced accuracy of
the networks’ memory retrieval. At this transition point,
the networks’ learning rate λc approaches its maximum
value 1 (Fig. S8), which implies that the memory is stored
(and steadily updated) for only C < N patterns (i.e., one
pattern per sub-network). Due to the invariance of the
networks’ mean energy under compartmentalization, the
depth of the energy minima associated with the stored
memory in each sub-network scales as N/C, resulting in
deeper and more stable energy minima in networks with
smaller number of compartments C. Therefore, as the
noise increases (i.e., βHc

decreases), we observe a gradi-
ent in transition from partial retrieval to a no-memory
state at βH ≈ 1/Nc, with the most compartmentalized
network (larger C) transitioning the fastest, reflecting the
shallowness of their energy minima.

Taken together, the optimal strategy leading to work-
ing memory depends on whether a network is trained to
learn and retrieve dynamic (evolving) patterns or static
patterns. Specifically, we see that the 1-to-1 special-
ized network is the unique optimal solution for storing
working memory for evolving patterns, whereas the dis-
tributed generalized memory (i.e., the classical Hopfield
network) performs equally well in learning and retrieval
of memory for static patterns. The contrast between

these memory strategies can shed light on the distinct
molecular mechanisms utilized by different biological sys-
tems to store memory.

III. DISCUSSION

Storing and retrieving memory from prior molecular
interactions is an efficient scheme to sense and respond
to external stimuli. Here, we introduced a flexible energy-
based neural network model that can adopt different
memory strategies, including distributed memory, sim-
ilar to the classical Hopfield network, or compartmental-
ized memory. The learning rate and the number of com-
partments in a network define a memory strategy, and
we probed the efficacy of different strategies for static
and dynamic patterns. We found that Hopfield-like net-
works with distributed memory are highly accurate in
storing associative memory for static patterns, even when
patterns are noisy. However, these networks fail to re-
liably store retrievable associative memory for evolving
patterns, even when learning is done at an optimal rate.

To achieve a high accuracy, we showed that a retriev-
able memory for evolving patterns should be compart-
mentalized, where each pattern class is stored in a sep-
arate sub-network. In addition, we found a sharp tran-
sition between the different phases of working memory
(i.e., compartmentalized and distributed memory), sug-
gesting that intermediate solutions (i.e., quasi-specialized
memory) are sub-optimal against evolving patterns.

The contrast between these memory strategies is re-
flective of the distinct molecular mechanisms used for
memory storage in the adaptive immune system and in
the olfactory cortex. In particular, the memory of odor
complexes, which can be assumed as static, is stored in a
distributed fashion in the olfactory cortex [7–11, 15]. On
the other hand, the adaptive immune system, which en-
counters evolving pathogens, allocates distinct immune
cells (i.e., compartments) to store a memory for different
types of pathogens (e.g. different variants of influenza
or HIV)—a strategy that resembles that of the 1-to-1
specialized networks [5, 16–21]. Our results suggest that
pathogenic evolution may be one of the reasons for the
immune system to encode a specialized memory, as op-
posed to the distributed memory used in the olfactory
system.

The increase in the optimal learning rate in anticipa-
tion of patterns’ evolution significantly changes the struc-
ture of the energy landscape for associative memory. In
particular, we found the emergence of narrow connectors
(mountain passes) between the memory attractors of a
network, which destabilize the equilibration process and
significantly reduce the accuracy of memory retrieval. In-
deed, tuning the learning rate as a hyper-parameter is
one of the challenges of current machine learning algo-
rithms with deep neural networks (DNNs) [24, 25]. The
goal is to navigate the tradeoff between the speed (i.e.,
rate of convergence) and accuracy without overshooting
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during optimization. It will be interesting to see how
the insights developed in this work can inform rational
approaches to choose an optimal learning rate in opti-
mization tasks with DNNs.

Machine learning algorithms with DNNs [24] and mod-
ified Hopfield networks [34–37] are able to accurately
classify hierarchically correlated patterns, where different
objects can be organized into an ultrametric tree based
on some specified relations of similarity. For example,
faces of cats and dogs have the oval shape in common
but they branch out in the ultrametric tree according
to the organism-specific features, e.g., whiskers in a cat,
and the cat branch can then further diversify based on
the breed-specific features. A classification algorithm can
use these hierarchical relations to find features common
among members of a given sub-type (cats) that can dis-
tinguish them from another sub-type (dogs). Although
evolving patterns within each class are correlated, the
random evolutionary dynamics of these patterns does
not build a hierarchical structure where a pattern class
branches in two sub-classes that share a common an-
cestral root. Therefore, the optimal memory strategies
found here for evolving patterns are distinct from those
of the hierarchically correlated patterns. It will be inter-
esting to see how our approaches can be implemented in
DNNs to classify dynamic and evolving patterns.
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Appendix A: Computational procedures

1. Initialization of the network

A network J (with elements Jij) is presented with N
random (orthogonal) patterns |σα〉 (with α = 1, . . . N),
with entries σαi ∈ {−1, 1}, reflecting the N pattern
classes. For a network with C compartments (with
1 ≤ C ≤ N), we initialize each sub-network Js at time
t0 as Jsi,j(t0) = 1

N/C

∑
α∈As σ

α
i σ

α
j and Jsii(t0) = 0; here,

As is a set of N/C randomly chosen (without replace-
ment) patterns initially assigned to the compartment
(sub-network) s. We then let the network undergo an
initial learning process. At each step an arbitrary pat-
tern σν is presented to the network and a sub-network
Js is chosen for an update with a probability

Ps =
exp [−βSE (Js(t), σν(t))]

∑C
r=1 exp [−βSE (Js(t), σν(t))]

, (A1)

where the energy is defined as,

E (Js(t), σν(t)) =
−1

2L

∑

i,j

Jsi,j(t)σ
ν
i (t)σνj (t)

≡ −1

2
〈σν(t)|Js(t)|σν(t)〉 (A2)

and βS is the inverse temperature associated with choos-
ing the right compartment. We then update the selected
sub-network Js, using the Hebbian update rule,

Jsi,j(t+ 1) =

{
(1− λ) Jsi,j(t) + λσνi σ

ν
j , if i 6= j;

0, otherwise.

(A3)
For dynamic patterns, the presented patterns undergo
evolution with mutation rate µ, which reflects the average
fraction of flipped spins in a given pattern per network’s
update event (Fig. 1). For noisy patterns, the actual
patterns remain unchanged, but the network is presented
with noisy versions of these patterns. Here, the noise
amplitude reflects the average fraction of flipped spins
between presented and actual patterns.

Our goal is to study the memory retrieval problem in
a network that has reached its steady state. The state of
a network J(tn) at the time step n can be traced back to
the initial state J(t0) as,

J(tn) = (1− λ)nJ(t0) + λ
n∑

i=1

(1− λ)n−i |σ(ti)〉 〈σ(ti)|

(A4)
The contribution of the initial state J(t0) to the state

of the network at time tn decays as (1 − λ)n (eq. A4).
Therefore, we choose the number of steps to reach the

steady state as nstat. = max
[
10N, 2C ceil

(
log 10−5

log(1−λ)

)]
.

This criteria ensures that (1 − λ)nstat. ≤ 10−5 and the
memory of the initial state J(t0) is removed from the
network J(t). We will then use this updated network
to collect the statistics for memory retrieval. To report
a specific quantity from the network (e.g., the energy),
we pool the nstat. samples collected from each of the 50
realizations.

2. Pattern retrieval from associative memory

Once the trained network approaches a stationary
state, we collect the statistics of the stored memory.

To find a memory attractor σαatt for a given pattern σα

we use a Metropolis algorithm in the energy landscape
E(Js, σα) (eq. A2). To do so, we make spin-flips in a
presented pattern σα → σ̃α and accept a spin-flip with
probability

P (σα → σ̃α) = min
(
1, e−βH∆E

)
, (A5)

where ∆E = E(Js, σ̃α)−E(Js, σα) and βH is the inverse
(Hopfield) temperature for pattern retrieval in the net-
work (see Fig. 1). We repeat this step for 2× 106 steps,
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which is sufficient to find a minimum of the landscape
(see Fig. S4).

For systems with more than one compartment C, we
first choose a compartment according to eq. A1, and then
perform the Metropolis algorithm within the associated
compartment.

After finding the energy minima, we update the sys-
tems for n′stat. = max[2·103, nstat.] steps. At each step we
present patterns as described above and collect the statis-
tics of the recognition energy E(Js(t), σα(t)) between
a presented pattern σα and the memory compartment
Js(t), assigned according to eq. A1. These measurements
are used to describe the energy statistics (Figs. 2,S3) of
the patterns and the accuracy of pattern-compartment
association (Fig. 4B,D). After the n′stat. steps, we again
use the Metropolis algorithm to find the memory attrac-
tors associated with the presented patterns. We repeat
this analysis for 50 independent realizations of the initial-
izing pattern classes {σα(t0)}, for each set of parameters
{L,N,C, λ, µ, βS, βH}.

When calculating the mean performance Q of a strat-
egy (see Figs. 2,3,4,S8), we set the overlap between at-
tractor and pattern qα = | 〈σαatt|σα〉 | equal to zero when
patterns are not recognized (qα < 0.8). As a result, sys-
tems can only achieve a non-zero performance if they
recognize some of the patterns. This choice eliminates
the finite size effect of a random overlap ∼ 1/

√
L be-

tween an attractor and a pattern (see Fig. S4). This
correction is especially important when comparing sys-
tems with different sub-network sizes (Lc ≡ L/C) in the
βH < 1 regime (Figs. 4,S8), where random overlaps for
small Lc could otherwise result in a larger mean perfor-
mance compared to larger systems that correctly recon-
struct a fraction of the patterns.

3. Accuracy of pattern-compartment association

We use the mutual information MI(Σ, C) between the
set of pattern classes Σ ≡ {σα} and the set of all com-
partments C to quantify the accuracy in associating a
presented pattern with the correct compartment,

MI(Σ, C) =H(C)−H(C|Σ)

=−
∑

c∈C
P (c) logP (c)

−
[
−
∑

σα∈Σ

P (σα)
∑

c∈C
P (c|σα) logP (c|σα)

]
.

(A6)

Here H(C) and H(C|Σ) are the entropy of the compart-
ments, and the conditional entropy of the compartments
given the presented patterns, respectively. If chosen ran-
domly, the entropy associated with choosing a compart-
ment is H random(C) = logC. The mutual information
(eq. A6) measures the reduction in the entropy of com-
partments due to the association between the patterns
and the compartments, measured by the conditional en-
tropy H(C|Σ). Figure 4B,D shows the mutual informa-
tion MI(Σ, C) scaled by its upper bound H(C), in order
to compare networks with a different number of compart-
ments.

Appendix B: Estimating energy and optimal
learning rate for working memory

1. Approximate solution for optimal learning rate

The optimal learning rate is determined by maximizing
the network’s performance Q(λ) (eq. 2) against evolving
patterns with a specified mutation rate:

λ∗ = argmax
λ

Q(λ) (B1)

We can numerically estimate the optimal learning rate as
defined eq. B1; see Figs. 2,3. However, the exact analyti-
cal evaluation of the optimal learning rate is difficult and
we use an approximate approach and find the learning
rate that minimizes the expected energy of the patterns
in the stationary state E

[
E
λ,ρ

(J, σ)
]
, assuming that pat-

terns are shown to the network at a fixed order. Here,
the subscripts explicitly indicate the learning rate of the
network λ, and the evolutionary overlap of the pattern ρ.
To evaluate an analytical approximation for the energy,
we first evaluate the state of the network J(t) at time
step t, given all the prior encounters of the networks with
patterns shown at a fixed order.
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1

L
(J(t) + 1) = λ

∞∑

j=1

(1− λ)(j−1) |σ(t− j)〉 〈σ(t− j)| (B2)

= λ
∞∑

i=1

(1− λ)(i−1)N
N∑

α=1

(1− λ)α−1 |σα(t− α− (i− 1)N)〉 〈σα(t− α− (i− 1)N)|
︸ ︷︷ ︸

sum over N pattern classes︸ ︷︷ ︸
sum over time (generations, i)

(B3)

= λ

N∑

α=1

∞∑

i=0

(1− λ)(α−1)+iN |σα(t− α− iN)〉 〈σα(t− α− iN)|
︸ ︷︷ ︸

sum over time︸ ︷︷ ︸
sum over patterns

. (B4)

Here, we referred to the (normalized) pattern vector from
the class α presented to the network at time step t by
|σα(t)〉 ≡ 1√

L
σα(t). Without loss of generality, we as-

sumed that the last pattern presented to the network at
time step t− 1 is from the first pattern class |σ1(t− 1)〉,
which enabled us to split the sum in eq. B2 into two
separate summations over pattern classes and N time-

steps generations (eq. B3). Adding the identity matrix 1
on the left-hand side of eq. B2 assures that the diagonal
elements vanish, as defined in eq. A3.

The mean energy of the patterns, which in our setup
is the energy of the pattern from the N th class at time t,
follows

E
[
E
λ,ρ

(J, σ)
]

= E
[
−1

2
〈σN (t)|J(t)|σN (t)〉

]

= E

[
−L− 1

2
λ

N∑

α=1

∞∑

i=0

(1− λ)(α−1)+iN 〈σN (t)|σα(t− α− iN)〉 〈σα(t− α− iN)|σN (t)〉
]
.

(B5)

Since the pattern families are orthogo-
nal to each other, we can express the over-

lap between patterns at different times as
〈σα(t1)|σν(t2)〉 = δα,ν(1− 2µ)|t2−t1| ≡ δα,νρ|t2−t1|,
and simplify the energy function in eq. B5,

E
[
E
λ,ρ

(J, σ)
]

= −L− 1

2
λ
∞∑

i=0

(1− λ)(N−1)+iNρ2(N+iN)

= −L− 1

2
λ(1− λ)(N−1)ρ2N

∞∑

i=0

(
(1− λ)Nρ2N

)i

= −L− 1

2
λ

(1− λ)(N−1)ρ2N

1− (1− λ)Nρ2N
.

(B6)

Since accurate pattern retrieval depends on the depth of
the energy valley for the associative memory, we will use
the expected energy of the patterns as a proxy for the
performance of the network. We can find the approxi-

mate optimal learning rate that minimized the expected
energy by setting ∂E

[
E
λ,ρ

(J, σ)
]
/∂λ = 0, which results
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in

(1− 2µ)2N = (1− λ∗)−N (1−Nλ∗)

=⇒ 1− 4Nµ+O(µ2) = 1 +
1

2
(N −N2)(λ∗)2 +O(λ3);

=⇒ λ∗(µ) '
√

8µ/(N − 1).
(B7)

where we used the fact that both the mutation rate µ and
the learning rate λ are small, and therefore, expanded
eq. B7 up to the leading orders in these parameters.

In addition, eq. B7 establishes an upper bound for the
learning rate: λ < 1

N . Therefore, our expansion in muta-

tion rate (eq. B7) is only valid for 8µ < 1
N , or equivalently

for µeff = Nµ < 12.5%; the rates used in our analyses lie
far below these upper bounds.

2. Lag of memory against evolving patterns

The memory attractors associated with a given pattern
class can lag behind and only reflect the older patterns
presented prior to the most recent encounter of the net-
work with the specified class. As a result, the upper

bound for the performance of a network Q
lag

= ρglagN ≈

1−2g
lag
µeff is determined by both the evolutionary diver-

gence of patterns between two encounters µeff and num-
ber of generations g

lag
by which the stored memory lags

behind; we measure g
lag

in units of generations; one gen-
eration is defined as the average time between a network’s
encounter with the same pattern class i.e., N . We char-
acterize this lag g

lag
by identifying the past pattern (at

time t − g
lag
N) that has the maximum overlap with the

network’s energy landscape at given time t:

g
lag

= argmax
g≥0

E [〈σ(t− g N)|J(t)|σ(t− g N)〉]

≡ argmin
g≥0

E
[
E

lag
(g)
]

(B8)

where we introduced the expected lagged energy
E
[
E

lag
(g)
]
. Here, the vector |σ(t)〉 refers to the pat-

tern σ presented to the network at time t, which can be
from any of the pattern classes. Because of the trans-
lational symmetry in time in the stationary state, the
lagged energy can also be expressed in terms of the over-
lap between a pattern at time t and the network at a
later time t+gN . We evaluate the lagged energy by sub-
stituting the expression for the network’s state J(t+gN)
from eq. B2, which entails,

2

L− 1
E [Elag(g)] = − 1

L− 1
E [〈σ(t)|J(t+ g N)|σ(t)〉] (B9)

= −E


 1

L− 1
(1− λ)Ng 〈σ(t)|J(t)|σ(t)〉+ λ

gN−1∑

j=0

(1− λ)gN−1−j 〈σ(t)|σ(t+ j)〉2

 (B10)

=
2

L− 1
(1− λ)NgE

[
E
λ,ρ

(J, σ)
]
− λ

g−1∑

i=0

N−1∑

α=0

(1− λ)gN−1−Ni−α 〈σN (t)|σN−α(t+Ni+ α)〉2 (B11)

=
2

L− 1
(1− λ)NgE

[
E
λ,ρ

(J, σ)
]
− λ

g−1∑

i=0

(1− λ)gN−1−Niρ2Ni (B12)

= −λ
(

(1− λ)N(g+1)ρ2N

1− (1− λ)Nρ2N
+

(1− λ)N(g+1)−1 − (1− λ)N−1ρ2Ng

(1− λ)N − ρ2N

)
. (B13)

Here, we used the expression of the network’s matrix J
in eq. A4 to arrive at eq. B10, and then followed the
procedure introduced in eq. B3 to arrived at the double-
summation in eq. B11. We then used the equation for
pattern overlap 〈σα(t1)|σν(t2)〉 = δα,νρ

|t2−t1| to reduce
the sum in eq. B12 and arrived at the result in eq. B13 by
evaluating the geometric sum and substituting the em-
pirical average for the energy E

[
E
λ,ρ

(J, σ)
]

from eq. B6.

We probe this lagged memory by looking at the perfor-
mance Q for patterns that are correctly associated with
their memory attractors (i.e., those with 〈σatt|σ〉 > 0.8).
As shown in Fig. S2, for a broad parameter regime,

the mean performance for these correctly associated pat-
terns agrees well with the theoretical expectation Q

lag
=

ρglagN , which is lower than the naive expectation Q0.
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Appendix C: Structure of the energy landscape for
working memory

1. Formation of mountain passes in the energy
landscape of memory for evolving patterns

As shown in Fig. 1, large learning rates in networks
with memory for evolving patterns result in the emer-
gence of narrow connecting paths between the minima of
the energy landscape. We refer to these narrow connect-
ing paths as mountain passes. In pattern retrieval, the
Monte Carlo search can drive a pattern out of one energy
minimum into another minimum and potentially lead to
pattern misclassification.

We use two features of the energy landscape to probe
the emergence of the mountain passes.

First, we show that if a pattern is misclassified, it has
fallen into a memory attractor associated with another
pattern class and not a spuriously made energy minima.
To do so, we compare the overlap of the attractor with
the original pattern | 〈σαatt|σα〉 | (i.e., the reconstruction
performance of the patterns) with the maximal overlap of
the attractor with all other patterns maxν 6=α | 〈σαatt|σν〉 |.
Indeed, as shown in Fig. S4A for evolving patterns, the
memory attractors associated with 99.4% of the origi-
nally stored patterns have either a large overlap with the
correct pattern or with one of the other previously pre-
sented pattern. 71.3% of the patterns are correctly clas-
sified (stable patterns in sector I in Fig. S4A), whereas
28.1% of them are associated with a secondary energy
minima after equilibration (unstable patterns in sec-
tor II in Fig. S4A). A very small fraction of patterns
(< 1%) fall into local minima given by the linear combi-
nations of the presented patterns (sector IV in Fig. S4A).
These minima are well-known in the classical Hopfield
model [38, 39]. Moreover, we see that equilibration of
a random pattern (i.e., a pattern orthogonal to all the
presented classes) in the energy landscape leads to mem-
ory attractors for one of the originally presented pattern
classes. The majority of these random patterns lie in sec-
tor II of Fig. S4A), i.e., they have a small overlap with
the network since they are orthogonal to the originally
presented pattern classes, and they fall into one of the
existing memory attractors after equilibration.

Second, we characterize the possible paths for a pat-
tern to move from one valley to another during equilibra-
tion, using Monte Carlo algorithm with the Metropolis
acceptance probability,

ρ(σ → σ′) = min
(

1, e−β(E(J,σ′)−E(J,σ))
)
. (C1)

We estimate the number of beneficial spin-flips (i.e.,
open paths) that decrease the energy of a pattern at the
start of equilibration (Fig. S4B). The average number
of open paths is smaller for stable patterns compared
to the unstable patterns that are be miscalssified during
retrieval (Fig. S4B). However, the distributions for the
number of open paths largely overlap for stable and un-

stable patterns. Therefore, the local energy landscape
of stable and unstable patterns are quite similar and it
is difficult to discriminate between them solely based on
the local gradients in the landscape. Fig. S5A shows that
the average number of beneficial spin-flips grows with the
mutation rate of the patterns but this number is com-
parable for stable and unstable patterns. Moreover, the
unstable stored patterns (blue) have far fewer open paths
available to them during equilibration compared to ran-
dom patterns (red) that are presented to the network
for the first time (Figs. S4B & S5A). Notably, on average
half of the spin-flips reduce the energy of for random pat-
terns, irrespective of the mutation rate. This indicates
that even though previously presented pattern classes are
statistically distinct from random patterns, they can still
become unstable, especially in networks which are pre-
sented with evolving patterns.

It should be noted that the evolution of the pat-
terns only indirectly contributes to the misclassification
of memory, as it necessitates a larger learning rate for
the networks to optimally operate, which in turn re-
sults in the emergence of mountain passes. To clearly
demonstrate this effect, Figs. S4C,D, and S5D shows the
misclassification behavior for a network trained to store
memory for static pattern, while using a larger learning
rate that is optimized for evolving patterns. Indeed, we
see that pattern misclassification in this case is consistent
with the existence of mountain passes in the network’s
energy landscape.

2. Spectral decomposition of the energy landscape

We use spectral decomposition of the energy land-
scape to characterize the relative positioning and the
stability of patterns in the landscape. As shown in
Figs. S4, S5, destabilization of patterns due to equili-
bration over mountain passes occurs in networks with
high learning rates, even for static patterns. Therefore,
we focus on how the learning rate impacts the spectral
decomposition of the energy landscape in networks pre-
sented with static patterns. This simplification will en-
able us to analytically probe the structure of the energy
landscape, which we will compare with numerical results
for evolving patterns.

We can represent the network J (of size L × L) that
store a memory of N static patterns with N non-trivial
eigenvectors |Φi〉 with corresponding eigenvalues Γi, and
N − L degenerate eigenvectors, |Ψk〉 with corresponding
trivial eigenvalues γk = γ = −1:

J =
N∑

i=1

Γi |Φi〉 〈Φi|+
L−N∑

k=1

γk |Ψk〉 〈Ψk| . (C2)

The non-trivial eigenvectors span the space of the pre-
sented patterns, for which the recognition energy can be
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expressed by

E(J, σα) = −1

2

N∑

i=1

Γi 〈σα|Φi〉 〈Φi|σα〉 . (C3)

An arbitrary configuration χ in general can have
components orthogonal to the N eigenvectors |Φi〉,
as it points to a vertex of the hypercube, and
should be expressed in terms of all the eigenvectors
{Φ1, . . . ,ΦN ,Ψ1, . . . ,ΨL−N}:

E(J, χ) = −1

2




N∑

i=1

Γi 〈χ|Φi〉 〈Φi|χ〉
︸ ︷︷ ︸

stored patterns

+
L−N∑

k=1

γ 〈χ|Ψk〉 〈Ψk|χ〉
︸ ︷︷ ︸

trivial space



.

(C4)

Any spin-flip in a pattern (e.g., during equilibration)
can be understood as a rotation in the eigenspace of the
network (eq. C4). As a first step in characterizing these
rotations we remind ourselves of the identity

|χ〉 =
N∑

i=1

〈Φi|χ〉 |Φi〉+
L−N∑

k=1

〈Ψk|χ〉 |Ψk〉 , (C5)

with the normalization condition

N∑

i=1

(
〈Φi|χ〉

)2
+
L−N∑

k=1

(
〈Ψk|χ〉

)2
= 1. (C6)

In addition, since the diagonal elements of the network
are set to Jii = 0 (eq. A3), the eigenvalues should sum
to zero, or alternatively,

N∑

i=1

Γi = −
L−N∑

k=1

γk = L−N. (C7)

To asses the stability of a pattern σν , we compare its
recognition energy E(J, σν) with the energy of the ro-
tated pattern after a spin-flip E(J, σ̃ν). To do so, we
first consider a simple scenario, where we assume that
the pattern σν has a large overlap with one dominant

non-trivial eigenvector ΦA (i.e., 〈σν |ΦA〉2 = m2 ≈ 1).
The other components of the pattern can be expressed
in terms of the remaining N − 1 non-trivial eigenvectors

with mean squared overlap 1−m2

N−1 . The expansion of the
recognition energy for the presented pattern is restricted
to the N non-trivial directions (eq. C4), resulting in

E(J, σν) = −1

2


m2ΓA +

∑

i6=A

1−m2

N − 1
Γi




= −1

2

(
m2ΓA + (1−m2)Γ̃

)
, (C8)

where Γ̃ = 1
N−1

∑
i 6=A Γi = N Γ̄−ΓA

N−1 is the mean eigen-
value for the non-dominant directions.

A spin-flip (|σν〉 → |σ̃ν〉 ) can rotate the pattern out of
the dominant direction ΦA and reduce the squared over-
lap by ε2. The rotated pattern |σ̃ν〉 in general lies in
the L-dimensional space and is not restricted to the N -
dimensional (non-trivial) subspace. We first take a mean-
field approach in describing the rotation of the pattern
after a spin-flip. Because of the normalization condition
(eq. C6), the loss in the overlap with the dominant direc-
tion should result in an average increase in the overlap

with the other L − 1 eigenvectors by ε2

L−1 . The energy

of the rotated pattern after a spin-flip E(J, σ̃ν) can be
expressed in terms of all the L eigenvectors (eq. C4),

E(J, σ̃ν) = −1

2


(m2 − ε2)ΓA +

∑

i 6=A

(
1−m2

N − 1
+

ε2

L− 1

)
Γi +

∑

k

ε2

L− 1
γk




= E(J, σν) +
ε2

2


ΓA −

1

L− 1


∑

i6=A
Γi +

∑

k

γk




 (C9)

= E(J, σν) +
ε2

2
ΓA

(
1 +

1

L− 1

)
. (C10)

where in eq. C10 we used the fact that the eigen-
values should sum up to zero. On average, a spin-
flip |σν〉 → |σ̃ν〉 increases the recognition energy by

E(J, σ̃ν) − E(J, σν) = ε2

2 ΓA
[
1 +O

(
L−1

)]
. This is

consistent with the results shown in Figs. S4B,D and
Figs. S5A,D, which indicate that the majority of the spin-
flips keep a pattern in the original energy minimum and
only a few of the spin-flips drive a pattern out of the
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original attractor.
In the analysis above, we assumed that the reduction

in overlap with the dominant eigenvector ε2 is absorbed
equally by all the other eigenvectors (i.e., the mean-field
approach). In this case, the change in energy is equally
distributed across the positive and the negative eigen-
values (Γ’s and γ’s in eq. C9), resulting in an overall
increase in the energy due to the reduced overlap with
the dominant direction |ΦA〉. The destabilizing spin-flips
are associated with atypical changes that rotate a pat-
tern onto a secondary non-trivial direction |ΦB〉 (with
positive eigenvalue ΓB), as a result of which the total
energy could be reduced. To better characterize the con-

ditions under which patterns become unstable, we will
introduce a perturbation to the mean-field approach used
in eq. C10. We will assume that a spin-flip results in a
rotation with a dominant component along a secondary
non-trivial direction |ΦB〉. Specifically, we will assume
the reduced overlap ε2 between the original pattern |σν〉
and the dominant direction |ΦA〉 is distributed in an im-
balanced fashion between the other eigenvectors, with a
fraction p projected onto a new (non-trivial) direction
|ΦB〉, while all the other L − 2 directions span the re-
maining (1− p)ε2. In this case, the energy of the rotated
pattern is given by

E(J, σ̃ν) =− 1

2


(m2 − ε2)ΓA +

(
1−m2

N − 1
+ pε2

)
ΓB +

∑

i6=A,B

(
1−m2

N − 1
+

(1− p)ε2
L− 2

)
Γi +

∑

k

(1− p)ε2
L− 2

γk




=E(J, σν) +
ε2

2

[
ΓA − pΓB +O

(
L−1

)]
. (C11)

Therefore, a spin-flip is beneficial if ΓA < pΓB . To fur-
ther concretize this condition, we will estimate the typical
loss ε2 and gain pε2 in the squared overlap between the
pattern and its dominating directions due to rotation by
a single spin-flip.

Let us consider a rotation |σν〉 → |σ̃ν〉 by a flip in the
n-th spin of the original pattern |σν〉. This spin flip re-
duces the original overlap of the pattern m = 〈σν |ΦA〉
with the dominant direction |ΦA〉 by the amount 2√

L
ΦAn ,

where ΦAn is the n-th entry of the eigenvector |ΦA〉. Since
the original overlap is large (i.e., m ' 1), all entries of the

dominant eigenvector are approximately ΦAi ' 1/
√
L, ∀i,

resulting in a reduced overlap of the rotated pattern
〈σν |ΦA〉 = m − 2

L . Therefore, the loss in the squared

overlap ε2 by a spin flip is given by

ε2 = 〈σν |Φj〉2 − 〈σ̃ν |Φj〉2 = m2 −
(
m2 − 4

m

L
+ 4

1

L2

)

= 4
m

L
+O(

1

L2
). (C12)

Similarly, we can derive the gain in the squared over-
lap pε2 between the pattern |σν〉 and the new dominant
direction |ΦB〉 after a spin-flip. Except for the direction
|ΦA〉, the expected squared overlap between the original
pattern (prior to the spin flip) and any of the non-trivial

eigenvectors including |ΦB〉 is 〈σν |ΦB〉2 = 1−m2

N−1 . The
flip in the n-th spin of the original pattern increases the
overlap of the rotated pattern with the new dominant

direction |ΦB〉 by 2
ΦBn√
L

, where ΦBn should be of the order

of
√

1/L. Therefore, the largest gain in overlap due to a
spin-flip is given by

pε2 = 〈σ̃ν |ΦB〉2 − 〈σν |ΦB〉2 '
(

1−m2

N − 1
+ 4

√
1−m2

N − 1

ΦBn√
L

+ 4
(ΦBn )2

L

)
− 1−m2

N − 1

=

√
1−m2

N − 1

ΦBn√
L

+O(
1

L2
).

(C13)

By using the results from eqs. C12 and C13, we can ex-
press the condition for beneficial spin-flips to drive a pat-
tern over the carved mountain passes during equilibration

(eq. C11),

ε2ΓA < ε2pΓB , −→ ΓA
ΓB

<

√
1−m2

m2

1√
α

ΦBn ,

(C14)
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where α = N/L. This result suggests that the stabil-
ity of a pattern depends on how the ratio of the eigen-
values associated with the dominant projections of the
pattern before and after the spin-flip ΓA/ΓB compare to
the overlap m of the original pattern with the dominant
eigenvector ΦA and the change due to the spin-flip ΦBn .

So far, we have constrained our analysis to patterns
that have a dominant contribution to only one eigen-
vector ΦA. To extend our analysis to patterns which
are instead constrained to a small sub-space A spanned
by non-trivial eigenvalues, we define the squared pat-
tern overlap with the subspace m2

A =
∑
a∈A 〈σν |Φa〉

2

and a weighted averaged eigenvalue in the subspace
ΓA =

∑
a∈A 〈σν |Φa〉

2
Γa. As a result, the difference

in the energy of a pattern before and after a spin-flip
(eq. C11) can be extended to E(J, σν) − E(J, σ̃ν) =
ε2

2

[
ΓA − pΓB +O

(
L−1

)]
. Similarly, the stability condi-

tion in eq. C14 can be extended to ΓA
ΓB

<

√
1−m2

A
m2
A

1√
α

ΦBn .

Patterns that are constrained to larger subspaces are
more stable, since the weighted averaged eigenvalue for
their containing subspace ΓA is closer to the mean of all
eigenvalues Γ̄ = 1−N/L (law of large numbers). There-
fore, in these cases a much larger eigenvalue gap (or a
broader eigenvalue spectrum) is necessary to satisfy the
condition for pattern instability.

Fig. S7 compares the loss in energy with the original
dominant direction ε2ΓA to the maximal gain in any of
the other directions ε2pΓB to test the pattern stability
criteria presented in eq. C14. To do so, we identify a
spin flip n in a secondary direction B that confers the

maximal energy gain: ε2pΓB ≈ maxn,B

√
1−m2

N−1
ΦBn√
L

ΓB .

In Fig. S7A,C we specifically focus on the subset of pat-
terns that show a large (squared) overlap with the one

dominant direction (i.e., m > 0.85). Given that evolv-
ing patterns are not constraint to the {Φ} (non-trivial)
sub-space, we find a smaller fraction of these patterns to
fulfill the condition for such large overlap m (Fig. S7A),
compared to the static patterns (Fig. S7C). Nonetheless,
we see that the criteria in eq. C14 can be used to pre-
dict the stability of patterns in a network for both static
and evolving patterns; note that here we use the same
learning rate for both the static and evolving patterns.

We then relax the overlap condition by including all
patterns that have a large overlap with a subspace
A, spanned by up to 10 eigenvectors (i.e., m2

A =∑
α∈A 〈σ|Φα〉

2
> 0.85). For these larger subspaces the

transition between stable and unstable patterns is no
longer exactly given by eq. C14. However, the two con-
tributions ε2ΓA and ε2pΓB still clearly separate the pat-
terns into stable and unstable classes for both static and
evolving patterns (Figs. S7B,D). The softening of this
condition is expected as in this regime we can no longer
assume that a single spin-flip can reduce the overlap with
all the eigenvectors in the original subspace. As a re-
sult, the effective loss in overlap become smaller than ε2

and patterns become unstable below the dotted line in
Fig. S7B,D.

As the learning rate increases, the gap between the
eigenvalues ΓB/ΓA (Fig. S6) become larger. At the same
time, patterns become more constrained to smaller sub-
spaces (Fig. S5C,D). As a result of these two effects, more
patterns satisfy the instability criteria in eq. C14. These
patterns are misclassified as they fall into a wrong energy
minimum by equilibrating through the mountain passes
carved in the energy landscape of networks with large
learning rates.
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4.1 Alternative learning rules

4.1 Alternative learning rules
In the preprint [2], we focus on the standard Hebbian learning rule (eq. 2.9), both for
the entire network and for individual compartments. Hopfield networks are among the
most studied models for learning. Thus, it is no surprise that many other learning
rules have been developed for these networks [144].

Here, we will discuss a number of these rules and assess their impact on our results.
We focus on local and incremental learning rules, in which the updates of the weights
only depend on one pattern at a time. Other learning rules, such as the Kraut-Mézard
class [140], use the information from all patterns during each round of update, which
makes them unrealistic for biological systems. With this condition in mind, we will
introduce and discuss the consequences of the Storkey learning rule [143], the gradient
descent learning rule [144], and the sparse Hebbian learning rule.

Storkey learning
Introduced by Storkey in 1997, this rule had the goal of increasing the capacity of
Hopfield networks [143]. Indeed, Hopfield networks that are trained with this rule
have a capacity of L/

√
2 lnL [143], which is significantly larger than the capacity of

L/(2 lnL), reached with the conventional Hebbian learning [138].
This rule was originally designed for a learning phase in which all patterns are

known. In that case, the update to the interaction matrix Ji,j is given by

∆Ji,j =


1
N

(σi − fi,j) (σj − fji) , if i ̸= j;
0, otherwise.

(4.1)

Where fi,j is the local field on the spin σi except for the contribution from σj

fi,j = 1
L− 2

(∑
k

Ji,kσk − Ji,iσi − Ji,jσj

)
. (4.2)

To use this learning rule for consecutive encounters with (evolving) patterns, we add a
learning rate λ to eq. 4.1 and then use the rule

∆Ji,j =

λ (σi − fi,j) (σj − fji) , if i ̸= j;
0, otherwise.

(4.3)

Gradient descent
The discussion of gradient descent in the Hopfield model follows from ref. [144].

Gradient descent is the foundation of many optimization problems. With respect
to the Hopfield model, we want to construct energy minima associated with the stored
memory that are as deep as possible. For any given pattern σ this is achieved if

65



Learning and organization of memory for evolving patterns

Wσ = σ, where Wi,j = 1
L−1Ji,j is a normalized interaction matrix. In other words, we

want to minimize the distance D(p) (σ,Wσ) between the pattern σ and its projection
Wσ. Here, D(p)(·, ·) is the distance measure for a general Lp-norm, which for the
L2-norm follows,

D(2) (σ,Wσ) =
∑

i

σi −
∑

j

Wi,jσj

2

. (4.4)

The derivative of the L2 distance with respect to the element Wi,j is given by,

d
dWi,j

D(2) (σ,Wσ) = −2
(
σi −

∑
k

Wi,kσk

)
σj. (4.5)

Therefore, we can define the gradient descent learning rule towards the energy minimum
with learning rate (step size) λ that is consistent with minimization of the L2 distance
as,

∆Ji,j =

λ (σi −∑
k Wi,kσk)σj, if i ̸= j;

0, otherwise.
(4.6)

Interestingly, when using an L1-norm distance, the gradient descent learning rule is
equivalent to the original Hebbian learning rule (eq. 2.9). This can be shown by first
evaluating the derivative of the distance for the L1-norm with respect to the element
Wi,j as,

d
dWi,j

D(1) (σ,Wσ) = − (σi −∑
k Wi,kσk)√

(σi −∑
k Wi,kσk)2

σj

= − sign
(
σi −

∑
k

Wi,kσk

)
σj

= −σiσj (4.7)

where we used the fact that |σi| ≥ |∑k Wi,kσk|, which results in sign (σi −∑
k Wi,kσk) =

sign(σi) = σi. Therefore, for the L1-norm distance, we recover the original Hebbian
learning rule with ∆Ji,j = λσiσj.

Sparse Hebbian learning
Machine learning algorithms often enforce sparsity to regularize neural networks to
avoid overfitting [126]. While a direct translation of such regularization to the Hopfield
model is non-trivial, we can enforce sparsity on the interaction matrix Ji,j. To achieve
a sparsity of X % in the interaction matrix Ji,j, we will use the standard Hebbian
learning rule (eq. 2.9) and set entries Ji,j with absolute values smaller than (100 −X)
% of all entries to zero.
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Performance of networks with alternative learning rules

To characterize the impact of learning rules on our results, we perform the same
optimization procedure as for the standard Hebbian learning in [2]. It should be
noted that these alternative learning protocols are substantially more complex than
the standard Hebbian learning, which limits our simulations to networks of maximum
size L = 100 and N = 8 (in contrast to L = 800 and N = 32 in [2]). As we increase
the ratio of N/L, we observe stronger finite-size effects. Still, we stay far below the
capacity of the network and have no reason to expect any qualitative changes in the
outcomes for networks of larger size.

In Fig. 4.1A we compare the performance of the networks trained with the standard
Hebbian learning, to that of the alternative models, i.e., the Storkey, the gradient
descent, and sparse Hebbian learning rules, in recognizing patterns evolving with a
range of effective mutation rates µeff. For small sparsity (10%), the networks trained
with sparse Hebbian learning perform similar to those with the standard Hebbian
learning. However, when sparsity is large (50%), the sparse networks appear to lose
the exact position of the minima. As a result, the system’s performance systematically
decays even for very slowly evolving patterns (small µeff). The Storkey and the gradient
descent learning rules perform slightly better than the Hebbian learning for evolving
patterns. This slight increase in performance is most likely a consequence of the
increased capacity. A similar effect is seen in Fig. 2, as emptier (larger) networks
perform better at a fixed effective mutation rate. However, the gain due to capacity is
negligible compared to the reduction in performance of all networks with increasing
mutation rate.

Aside from their similar performances, the distortion of the energy landscape for
networks following the alternative learning rules are also comparable to that of the
standard Hebbian learning. Specifically, we see that with all the alternative learning
rules the misclassified patterns fall into attractors associated with one of the other
pattern classes (Fig. 4.1B), consistent with the results for the standard Hebbian
learning in Fig. S4A. Moreover, alternative learning rules also give rise to network
structures in which the average number of open paths (i.e., number of beneficial spin-
flips during equilibration) is smaller for stable (correctly classified) patterns compared
to the unstable (misclassified) patterns, and both are smaller than for random patterns
(Fig. 4.1C). This result is also similar to that of the standard Hebbian learning in
Fig. S4B. It should be noted that the larger fluctuations seen in Figs. 4.1B,C compared
to the Figs. S4A,B are due to the smaller system size used for simulations with the
alternative learning rules.

In conclusion, the fraction of the correctly reconstructed patterns decay with
increasing evolutionary rates due to the emergence of narrow passes in a network’s
energy landscape, irrespective of the choice of the learning rule. While we cannot
exclude that other learning rules might achieve better performances, the results suggest
that local (in time) learning rules which act on all network weights cannot learn multiple
evolving patterns with maximal performance. Therefore, it is likely that the specialized
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Figure 4.1 Alternative learning rules to train a Hopfield network. (A) The optimal
performance of networks Q∗ = Q(λ∗) is shown as a function of the effective mutation rate
µeff = Nµ. The solid lines show the simulation results for networks with different learning
rules (colors), indicated in the legend and introduced in Appendix D (colors). The dashed
line shows the optimal performance for networks trained with the standard Hebbian learning
(similar to Fig. 2A). The dotted line shows the naïve expectation for the performance solely
based on the evolutionary divergence of the patterns (1 − 2µeff). (B) The overlap between
a presented pattern σα and the memory associated with the same pattern class σα

att(σα) is
shown against the overlap of the pattern with the next best memory attractor associated with
any of the other presented pattern classes maxν ̸=α | ⟨σα

att|σν⟩ |. Different colors indicate the
alternative learning rules, according to the color code in (A). Similar to Fig. S4A, patterns
are either correctly reconstructed (sector I), or they fall into an attractor associated with
one of the other stored patterns (sector II). (C) The number of beneficial spin-flips for a
presented pattern at the beginning of equilibration (i.e., the number of open equilibration
paths) is shown against pattens’ self-overlap (horizontal axis similar to (A)). For stable
patterns (sector I), the number of open paths is anti-correlated with the overlap between
the attractor and the presented pattern, consistent with the standard Hebbian learning in
Fig. S4B. For unstable patterns (sector II), the number of open paths is on average larger
than that of the stable patterns but smaller than for random patterns, shown in Fig. S4B.
Simulation parameters: L = 100, N = 8; µeff = 0.02 (for B and C).

1-to-1 memory to remain the only strategy that effectively learns and recovers evolving
patterns.
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Chapter 5

Risk-utility tradeoff shapes memory
strategies for evolving patterns

The following section consists of the preprint

O. H. Schnaack, L. Peliti, and A. Nourmohammad. “Risk-utility tradeoff
shapes memory strategies for evolving patterns”. In: arXiv:2110.15008
[physics] (Oct. 2021). arXiv: 2110.15008.

The corresponding supplementary figures are shown in appendix C.
This paper is the second part of the collaboration with Luca Peliti. However, it

should not be seen as an extension of the first project [2]. Instead, it is a different
approach to the problem that uses a related method.

Similar to the first project, we study different memory strategies for a set of evolving
patterns. In contrast to [2], we do not use a network structure that stores an associative
memory. Instead, our system resembles a repertoire of specialized memories. In this
setup, we investigate how the repertoire should be updated to follow the evolution of
patterns.

In the context of this thesis, this project builds on the result that memory for
evolving environments should be specialized [2]. As a result, we assume that different
specialized memories (compartments) can reconstruct the stored states. Here, we study
what the optimal resource allocation to these different compartments is.

Similar to [2], all authors did the conceptualization for the project. I performed
the analytic and numerical analysis and produced all figures. All authors contributed
to the writing and editing of the manuscript.
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Keeping a memory of evolving stimuli is ubiquitous in biology, an example of which is immune
memory for evolving pathogens. However, learning and memory storage for dynamic patterns still
pose challenges in machine learning. Here, we introduce an analytical energy-based framework
to address this problem. By accounting for the tradeo↵ between utility in keeping a high-a�nity
memory and the risk in forgetting some of the diverse stimuli, we show that a moderate tolerance
for risk enables a repertoire to robustly classify evolving patterns, without much fine-tuning. Our
approach o↵ers a general guideline for learning and memory storage in systems interacting with
diverse and evolving stimuli.

I. INTRODUCTION

Biological systems, ranging from the brain to the im-
mune system, store memory of molecular interactions to
e�ciently recognize and respond to stimuli. Memory en-
coding in biological networks has also inspired a growing
host of algorithms for learning and memory storage in
image and pattern recognition by artificial neural net-
works [1–3]. A critical step in these algorithms is to
find regularities in data to associate related patterns with
each other. As such, these learning algorithms often as-
sume that the set of training data comes from a station-
ary distribution that represents the regularities necessary
for pattern recognition in data well.

Memory recognition, however, is not limited to static
patterns and can be desirable when classifying evolv-
ing stimuli that drive the system out of equilibrium.
One such example is the adaptive immune system in
which memory can e↵ectively recognize evolved variants
of previously encountered pathogens [4–8]. In a recent
work, we have demonstrated that distributed learning
strategies, which are desirable for pattern recognition in
the stationary setup, can fail to reliably learn and clas-
sify dynamically evolving patterns [9]. Specifically, we
showed that to follow evolving patterns, an energy-based
Hopfield-like neural network [10] should use a higher
learning rate, which in turn, can distort the energy land-
scape associated with the stored memory attractors, lead-
ing to pattern misclassification. To remedy this problem,
we proposed compartmentalized networks as the optimal
solutions to memory storage for evolving patterns [9].

Irrespective of the network structure, an increase in
learning rate is necessary for a network to follow, recog-
nize, and store e↵ective memory of evolving patterns [9].
Increasing learning rate leads to a risky strategy, as the

⇤ Correspondence should be addressed to Armita Nourmoham-
mad: armita@uw.edu

memory repertoire begins to reflect only the most re-
cently encountered pattern while e↵ectively destroying
the memory of the prior encounters. Here, we present an
analytical approach to explore how the tradeo↵ between
utility and risk can determine learning strategies of a
repertoire in keeping a memory of evolving patterns. We
show that a moderate risk tolerance enables a repertoire
to store an e↵ective and robust memory. Our approach
puts forward a guideline for optimal learning and mem-
ory storage for systems interacting with multiple evolving
pattern classes without much fine-tuning.

II. MODEL

To probe memory strategies, we define a repertoire
M that can store stimuli (patterns)  and later uti-
lize them to recognize newly presented stimuli. We con-
sider the space of possible binary patterns of length L,
{ ↵} with ↵ 2 1, . . . , 2L enumerating all unique pat-
terns, with entries  ↵i = ±1, for i 2 1, . . . , L. The
memory repertoire M associates normalized weights m↵

(
P

m↵ = 1) to all patterns it encounters. The non-
zero weights reflect the relative importance of the stored
memory from di↵erent stimuli, and patterns that are not
encountered are associated with a zero weight. After
an encounter with a given stimulus  � at time t, all
weights are updated according to a Hebbian learning rule
m↵(t) = (1��)m↵(t�1)+�↵,��, where � is the learning
rate [11]. Thus, the weight m↵(t + ⌧) associated with
pattern ↵, which was previously encountered at time t,
decays in an approximate exponential form over time,

m↵(t + ⌧) = �(1 � �)⌧ ⇡ �e��⌧ . (1)

To determine the memory performance for a given
stimulus �, we define the a�nity A(M, �) as the overlap
between the patterns stored in the memory repertoire M
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FIG. 1. Optimal memory strategy for evolving patterns. (A) The objective function Q(�) (Eq. 3) is shown as a
function of the learning rate, for  = 1 and ⇥ = 2. Analytical approximations (dashed lines) are compared to numerical
estimates (full lines), for di↵erent mutation rates µe↵ (colors). (B, C) The optimal learning rate (Eq. 5) is shown as a function
of the mutation rate µe↵ (B) and the risk tolerance  (C), for di↵erent sets of parameters indicated in the legend. Insets show
collapsed plots after rescaling according to Eq. 5.

and the pattern �,

A(M, �) = A0

X

 ↵2M
m↵| h ↵|�i |⇥ � Arand, (2)

Here, we used a short-hand notation to denote the
normalized pattern vector by | i ⌘  /

p
L, its trans-

pose by h |, and a normalized scalar product h |�i ⌘
(
P

i  i�i) /L. We use the shape parameter ⇥ to modu-
late the dependency of the a�nity function on pattern
overlap. The scaling parameter A0 is model dependent
and sets the unit of a�nity in a given system, yet its pre-
cise value does not impact our analysis. The o↵set Arand

is chosen such that the expected a�nity of random pat-
terns remains zero. The choice of a�nity as a measure
of performance is inspired by memory retrieval in bio-
logical systems, where recognition is mediated through
biophysical interactions.

We characterize the response of a memory repertoire
to N independently evolving pattern classes  c (with
c 2 1, . . . , N). Each class  c denotes a set { }c of
patterns generated over time through evolution. Pat-
terns within each class evolve (mutate) by random spin-
flips of rate µ. At each time step t, a pattern from a
randomly chose class is presented to the memory reper-
toire, resulting in an e↵ective observed mutation rate of
µe↵ = Nµ per expected encounter with the same pattern
class. To simplify, we use  c(t) to denote the evolved
pattern from class c that is generated and presented to
the repertoire at time t. Since pattern classes are orthog-
onal to each other (up to finite-size e↵ects), the expected
overlap between patterns presented at di↵erent times fol-

lows
D
h c(t)| c0(t + ⌧)i

E
= �c,c0⇢

⌧ + O(1/
p

L), where

⇢ = (1 � 2µ) measures the similarity between evolved
patterns.

Interestingly, for ⇥ = 2 this model is equivalent to
the energy function of the classical Hopfield network
with Hebbian learning rule [9, 10, 12, 13] (Appendix B).
This correspondence enables us to simulate the memory
repertoire e�ciently and to test analytic predictions with

numerical experiments; see Appendix C for numerical
method.

III. RESULTS

A. Optimal learning for evolving patterns with
risk-return tradeo↵

We seek to find an optimal strategy to set the learn-
ing rate such that the stored memory in a repertoire can
be reliably retrieved for patterns evolving at a specified
rate µ. Learning and updates of memory repertoires over
time impact both the expected a�nity and the variance
of the a�nity across patterns. A high learning rate can
sustain a high a�nity in a repertoire for the most re-
cently presented patterns. However, keeping up with the
latest trend can be risky as the variance of the a�nity
across patterns can increase, with older patterns su↵er-
ing most from this tradeo↵. To account for this e↵ect,
we optimize an objective function Q(�; µ) that balances
the risk-utility tradeo↵ by maximizing the mean (utility)
hAi and minimizing the standard deviation (risk) �A of
the a�nity across patterns,

Q(�; µ) = hAi � 1


�A . (3)

Here,  measures the risk tolerance of the repertoire.
Such a risk-utility analysis was initially introduced in eco-
nomics [14, 15], but has since been used to characterize
tradeo↵s in biological and evolutionary processes [16–22].

We can analytically evaluate both the mean and the
variance of the a�nity by using explicit expansion of
the encounter history or by evaluating the cumulant-
generating function for the distribution of a�nities, valid
in the large-N limit (i.e, many patterns); see Appendix A
and Fig. S1. The expression for the nth cumulant of the
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a�nity follows,

cn = an
0

�n⇢⇥n

N (1 � (1 � �)n⇢⇥n)
+ O

�
N�2

�
(4)

where a0 = A0 � Arand, and the mean and the variance
are given by n = 1 and n = 2, respectively. For static
patterns (µ = 0 $ ⇢ = 1), the mean a�nity becomes
independent of the learning rate and reaches the näıve
expectation a0/N . For evolving patterns, a repertoire
with a maximal learning rate � = 1 can achieve the high-
est mean a�nity a0⇢

⇥/N by storing a memory of the
most recent pattern with the maximal a�nity a0, while
treating the other patterns as random.

For a broad range of evolutionary rates, the optimum
of the objective function Q(�; µ) is achieved for interme-
diate values of learning rate �, where the mean and vari-
ance of a�nity across patterns are balanced; see Fig. 1A
for analytical and numerical results. The optimal learn-
ing rate �⇤(µ) = max� Q(�; µ) that maximizes the ob-
jective function scales with di↵erent model parameters
as,

�⇤ =
2

N
(2⇥µe↵)

2/3
+ O

⇣µe↵

N

⌘
. (5)

The analytical scaling relation in Eq. 5 is in excellent
agreement with numerical simulations (Fig. 1B,C). As
the evolutionary rate of patterns µe↵ increases, the opti-
mal learning rate grows so that the repertoire closely fol-
lows the patterns’ evolution (Fig. 1B). As the shape pa-
rameter ⇥ increases, the a�nity function becomes more
peaked around the recently stored patterns (Eq. 2), re-
sulting in an increase in the optimal learning rate to keep
the memory focused on the more recent (less evolved)
encounters. The learning rate scales inversely with the
number of patterns N for the repertoire to evenly dis-
tribute the resources (allocate memory). Repertoires
with higher risk tolerance  use larger learning rates
(Fig. 1C) and store a risky but a high-a�nity memory
against recent encounters. As repertoire becomes more
risk-avert (small ), it stores a more equitable memory
across patterns but at a loss for a�nity. In the limit
of no risk tolerance ( ! 0), the repertoire stops learn-
ing (� = 0) and adopts a risk-free but impractical strat-
egy where the memory has zero a�nity for all patterns.
This tradeo↵ can be depicted by a Pareto front in the
a�nity-risk space, along which one cannot increase the
mean a�nity without increasing the risk or vice versa.
Fig. 2 shows these Pareto fronts parametrized by scaled
mean a�nity and risk, for di↵erent mutation rates (col-
ors) and by varying the risk tolerance  along each line.
The combinations of risk and a�nity values that lie be-
low the Pareto front are inaccessible, and those that lie
above are sub-optimal solutions for a memory repertoire.
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FIG. 2. Pareto front for risk-utility tradeo↵ of mem-
ory for evolving patterns. Optimized objective function
Q(�⇤) (Eq. 3) describes a Pareto front in the scaled a�nity-
risk plane by varying the risk tolerance  along each line, for
di↵erent mutation rates (colors). To present the Pareto front
in a dimensionless space, the mean a�nity is scaled by its
maximal value hAimax = a0

N
, and the standard deviation as

risk is scaled by the mean a�nity. Only the combinations of
risk and a�nity values that lie above the Pareto front (gray
shading) are accessible to a memory repertoire. Other pa-
rameters: N = 200 and ⇥ = 2. Results for other shape
parameters are shown in Fig. S2.

B. Discrimination of random and stored patterns

One key goal of memory usage is to recognize and accu-
rately classify presented patterns with a memory stored
from prior encounters. A misclassification could have
dire consequences. For example, in the case of immune
system, if memory response is not triggered by a sec-
ondary infection (i.e., false negative), the host would pay
a cost by enduring sickness and having to mount a novel
response and re-store a new memory. False positive re-
sponses are also costly, as they can be associated with au-
toimmunity if mounted against self-antigens [6], or they
can interfere with novel responses without preventing the
disease, e.g., in the case of original antigenic sin against
viruses like influenza [23].

Memory strategies optimized to operate under di↵er-
ent risk tolerance  can yield varying levels of pattern
misclassification. We characterize the discrimination ac-
curacy of a repertoire by quantifying the rate by which
it recognizes evolved patterns associated with previously
stored memory (true positive), or randomly generated
patterns without any prior encounter history (false posi-
tive). To do so, we need to characterize the distribution
of a�nities for patterns with prior encounter history, and
for novel (random) patterns.

The recognition a�nity of a memory repertoire for re-
curring patterns depends on the history of pattern en-
counters and on the learning rate �. For example, in
the case where patterns from a given class  c are pre-
sented at time points [t1, . . . , tn], the a�nity A( c(T ))
for an evolved pattern from the same class shown at time
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T > tn can be expressed as

A( c(T )) = a0

nX

i=1

�e��(T�ti�1)⇢⇥(T�ti) (6)

Here, the factor e��(T�ti�1) accounts for the exponential
decay for the a�nity of a memory stored at time ti from
its maximum level �, due to updates in the repertoire
(Eq. 1). ⇢⇥(T�ti) accounts for the decay in the overlap
between the memory stored at time ti and the presented
patterns in the future, due to evolution.

Patterns are presented to the repertoire in random
order, and the time ⌧i = ti � ti�1 between consec-
utive encounters with the same class is exponentially
distributed with a mean of N steps (i.e., number of
classes), p(⌧) ⇡ e�N⌧/N . The distribution of a�nities
P (A) for patterns of a given class can be derived by
convolving the a�nity function in Eq. 6 with the ex-
ponential waiting time distribution for pattern history.
Although the exact form of this a�nity distribution is
di�cult to evaluate, we expect it to be from an expo-
nential family. Indeed, the Gamma distribution is a
good approximation to the distribution of the a�nities
(Fig. S3). We quantify the accuracy of this approxima-
tion by the Kullback-Leibler distance DKL(P (A)k�A)
between the true a�nity distribution P (A) and a
Gamma distribution �A with the same mean and vari-
ance. By using an Edgeworth expansion [24, 25] with
the cumulants of the a�nity distribution in Eq. 4, we
can show that in the limit of small learning and mu-
tation rates the Kullback-Leibler distance between the
two distributions is small, with DKL(P (A)k�(A)) =

(25/27) (2⇥µe↵/)
2/3

+ O(⇥µe↵) ⌧ 1 (Appendix A 4).
This result can also be intuitively understood, since the
Gamma distribution arises in processes for which the
waiting times between events are relevant.

The distribution of a�nities for random patterns (i.e.,
not belonging to any of the presented classes) P0(A)
can be similarly characterized. The law of large num-
bers suggest that the overlap between unrelated patterns
should be normally distributed with mean zero and vari-
ance 1/(4L). The overlap between the memory repertoire
and a random pattern is the sum of the normally dis-
tributed random overlaps weighed by the weights {m↵},
associated with the stored patterns (Appendix A 5 and
Fig. S4). Thus, the distribution of a�nities for random
patterns P0(A) is well-approximated by a Gamma distri-
bution with mean / L�⇥/2 and variance / L�⇥. This
distribution should be contrasted to that of the a�nities
for patterns with prior encounter histories P (A), the
statistics of which primarily depends on the number of
patterns and the learning rate, with mean / 1/N , and
variance / �/N .

The sensitivity (fraction of true positives to all pat-
terns associated with memory) and specificity (fraction
of false negatives to all random patterns) of a repertoire
in classifying patterns depends on an a�nity cut-o↵ for
distinguishing between familiar and random patterns. A
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FIG. 3. Three phases of memory discrimination. The
phase diagram shows the discrimination ability of repertoires
(AUROC) between familiar patterns with prior encounter his-
tory and random patterns, based on their respective a�nities.
AUROC is estimated using numerical approximations to the
a�nity distributions P (A) and P0(A) for familiar and ran-
dom patterns (Appendix A). Each point in the phase diagram
shows AUROC for a repertoire optimized with a given risk
tolerance  for patterns with a specified mutation rate µe↵.
Other parameters: L = 200, N = 40, and ⇥ = 2. Results for
other shape parameters ⇥ are shown in Fig. S6. Full simula-
tion results are shown in Fig. S7.

receiver operating characteristic (ROC) curve shows the
relationship between sensitivity and specificity of a clas-
sification in a repertoire for every possible a�nity cut-o↵.
The area under the ROC curve (AUROC), which mea-
sures the discriminative ability of the repertoire, depends
on the evolutionary rate µe↵ of patterns it encounters, its
risk tolerance , and the parameter ⇥ that determines
the shape of the a�nity function (Eq. 4). These parame-
ters also determine the optimal learning rate �⇤ (Eq. 5),
which sets the memory strategy of a repertoire in a given
evolutionary setup.

The phase diagram for the discrimination ability of a
repertoire defines three distinct regions determined by
a combination of risk tolerance  and the evolutionary
rate of patterns µe↵, for a specified shape parameter ⇥
(Fig. 3): (i) A triangular region at the center of the phase
diagram with AUROC ' 1 indicates the range of param-
eters for which the repertoire can e�ciently discriminate
between familiar and novel patterns. Within this region,
as the evolutionary rate of patterns increases, the range
for risk tolerance that enables a repertoire to e�ciently
discriminate between familiar and random patterns nar-
rows, and the repertoire has to fine-tune its learning rate
to match the faster evolution of the patterns (Fig. S5).
(ii) When risk tolerance  is large, the repertoire up-
dates rapidly and only keeps a memory of the most re-
cent encounters, resulting in an ine�cient discrimination
between familiar and novel patterns with AUROC ' 0.5.
(iii) For risk avert strategies (small ), the memory ef-
fectively shuts down and the repertoire cannot anymore
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discriminate between random and familiar patterns. It
should be noted that a change in the a�nity shape pa-
rameter ⇥ can shift the exact boundaries between these
phases, but it does not impact the overall structure of
the phase diagram (Fig. S6).

Taken together, a moderate risk tolerance (⇥ = O(1))
enables a repertoire to store an e↵ective and a robust
memory and to operate without fine tuning. We fur-
ther confirm these results with simulations for ⇥ = 2 in
Fig. S7.

IV. DISCUSSION

Devising a learning strategy to store functional mem-
ory for evolving stimuli is an open problem with potential
applications in many fields. Inspired by immune memory
that reliably recognizes evolving threats, we present an
analytical energy-based memory model against evolving
patterns that captures the risk-utility tradeo↵ in memory
repertoires.

We found that risk-tolerant repertoires adopt faster
learning rates and keep a memory of the recent patterns
with high a�nity, at the risk of disregarding older pat-
terns. On the other hand, risk-avert repertoires e↵ec-
tively shut down their learning to minimize the variance
in their recognition a�nity for di↵erent patterns, at the
cost of having a low a�nity for all patterns. A moder-
ate risk tolerance enables a repertoire to achieve a desir-
able balance between risk and a�nity (utility) to robustly
classify evolving patterns and associate them with prior
memory. This risk-utility tradeo↵ defines Pareto front
for accessible memory strategies by a repertoire (Fig. 2).

One key role of memory storage is to reliably discrim-
inate between familiar and novel stimuli. The discrimi-
nation ability of an optimal memory repertoire depends
on its risk tolerance and the evolutionary rate of the
patterns that it encounters. Interestingly, as the evo-
lutionary rate of the presented patterns increases, the
range of risk tolerance that allows a repertoire to retain
a functional memory narrows and approaches a regime
where risk and utility are equally valued. The classi-
fication criteria in our analysis are solely based on the
a�nity of the memory repertoire to a presented pattern.
This stands in contrast to energy-based Hopfield-like net-
works that achieve recognition by retrieving associative
memory stored in the networks’ energy minima [10].

We have used the fluctuations (standard deviation) of
the memory’s a�nity over the ensemble of presented pat-
terns to measure the risk of misclassification by the stored
storage. While variance might be more suitable in other
settings [26, 27], using standard deviation as a measure of
risk keeps the risk tolerance  dimensionless and compa-
rable across di↵erent systems. Nonetheless, we expect
the Pareto front’s overall structure for the risk-utility
tradeo↵ and the phase diagram for discrimination ability
of the repertoires to remain qualitatively intact, irrespec-
tive of the exact choices made for the risk function.

Although our model is inspired by immune memory
repertoires, the introduced approach is general enough
that can be applied to other models of memory. In partic-
ular, incorporating risk and utility in training of artificial
neural networks can guide these machine learning e↵orts
to store e�cient of memory for evolving signals [28].
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Appendix A: Statistics of the a�nity distribution

1. The average a�nity of a repertoire for presented patterns

In the main text (Eq. 6) we express the a�nity of a pattern class at time T in terms of the prior encounters with
the patterns of the same class at times [t1, ..., tn] with tn�1 < tn < T . To compute the statistics (mean and variance)
of a repertoire’s a�nity, we first express the a�nity function in terms of the times t̂i = T � tn�i+1, passed since the
ith encounter, when counting backward in time. This allows us to write the a�nity as

A( c(T )) = a0�
nX

i=1

e��t̂i�1⇢2t̂i . (S1)

Similar to forward times ti, the reverse times t̂i are separated by exponentially distributed independent waiting times
⌧̂i = t̂i � t̂i�1,

p(⌧̂) =
(N � 1)⌧̂�1

N ⌧̂
⇡ 1

N
e�N⌧ . (S2)

Given the relationship
Pi

j=1 ⌧̂j = t̂i, we can express the a�nity of the patterns in Eq. S1 in terms of the statistically
independent ⌧̂i as,

A( ) = a0�
nX

g=1

(1 � �)
Pg

g0=1
⌧̂g0�1

⇢
⇥

Pg

g0=1
⌧̂g0 . (S3)

Here, we can interpret each term in the sum as the contribution of a memory from the corresponding prior generation
to the a�nity at the current time. These contributions decay due to the updates (learning) in the repertoire with
rate (1 � �) and due to evolution of the patterns with rate ⇢. The expected a�nity contribution hAgi from the gth

generation follows,

hAgi = a0�
X

⌧̂1

· · ·
X

⌧̂g

 
gY

i=1

p(⌧̂i)

!
(1 � �)

Pg
i=1 ⌧̂i�1⇢⇥

Pg
i=1 ⌧̂i

= a0�(1 � �)�1

gY

i=1

 X

⌧̂i

p(⌧̂i)(1 � �)⌧̂i⇢⇥⌧̂i

!

= a0�(1 � �)�1

✓
(1 � �)⇢⇥

N + (1 � �)⇢⇥ � N(1 � �)⇢⇥

◆g

(S4)

where we used the fact that the time windows ⌧̂i are independent from each other. The expected a�nity follows from
adding up the contributions from all generations,

hAi =
1X

g=1

hAgi = a0
�⇢⇥

N (1 � (1 � �)⇢⇥)
. (S5)

As mentioned in the main text, this result immediately shows that the system reaches the maximal mean a�nity
of a0/N⇢⇥ for the maximal learning rate � = 1. Moreover, the mean a�nity becomes independent of the learning
rate when the patterns are static (⇢ = 1).

2. The variance of repertoire’s a�nity across presented patterns

To calculate the variance of the a�nity (Eq. S4 in the main text) we need to account for the covariance cov(Ag1
, Ag2

)
between the contributions from di↵erent generations. Because the covariance is symmetric, we can write the variance
of the a�nity as

var (A) =

1X

g=1

var(Ag) + 2

1X

g1=1

1X

g2=g1+1

cov (Ag1 , Ag2) . (S6)
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First we calculate the variance of the individual terms Ag. Following the notation introduced in Eq. S4, we find

var(Ag) =var

 
a0�(1 � �)�1

gY

i=1

�
(1 � �)⌧̂i⇢⇥⌧̂i

�
!

=var

 
a0�(1 � �)�1

g�1Y

i=1

�
(1 � �)⌧̂i⇢⇥⌧̂i

� �
(1 � �)⌧̂g⇢⇥⌧̂g

�
!

(S7)

=
⌦
(1 � �)⌧̂g⇢⇥⌧̂g

↵2
var

 
a0�(1 � �)�1

g�1Y

i=1

�
(1 � �)⌧̂i⇢⇥⌧̂i

�
!

+

*
a0�(1 � �)�1

g�1Y

i=1

�
(1 � �)⌧̂i⇢⇥⌧̂i

�
+2

var
�
(1 � �)⌧̂g⇢⇥⌧̂g

�
(S8)

=
�
a0�(1 � �)�1

��2
⇣
hA1i2 var (Ag�1) + hAg�1i2 var (A1)

⌘
(S9)

=g
�
a0�(1 � �)�1

��(2g�2) hA1i2g�2
var (A1) . (S10)

Because the time intervals ⌧̂i are independent from each other, we could use error propagation to get from Eq. S7 to
Eq. S8. Moreover, since all time time intervals follow the same distribution (Eq. S2), we could insert the statistics of

Ag with the correct normalization
�
a0�(1 � �)�1

��2
to arrive at Eq. S9. Finally, we performed g�1 further iterations

to get a result that only depends on the statistics of the first contribution A1 in Eq. S10. Thus, it is su�cient to
calculate the variance of only one generation,

var(A1) = a2
0⇢

2⇥

 
1

N � (1 � �)2(N � 1)⇢2⇥
� 1

(N � (1 � �)(N � 1)⇢⇥)
2

!
. (S11)

To evaluate the variance of the a�nity (Eq. S6), we still need to calculate the covariance between the contributions
from di↵erent generations. Similar to Eq. S7, we use,

Ag = Ag�i ·
gY

j=g�i

�
(1 � �)⌧̂j⇢⇥⌧̂j

�
. (S12)

which entails the following relationship for the covariance between Ag and Ag�i ,

cov (Ag, Ag�i) = cov

 
Ag�i ·

gY

j=g�i

⇣
(1 � �)⌧̂j⇢⇥⌧̂j

⌘
, Ag�i

!
= var(Ag�i)

*
gY

j=g�i

⇣
(1 � �)⌧̂j⇢⇥⌧̂j

⌘
.

+

=
⇣
a0�(1 � �)�i

⌘�1

var(Ag�i)hA1ii. (S13)

Here, we again used the fact that all time intervals are independent and that they follow the same distribution in
Eq. S2. Using the expressions for variance of individual terms (Eq. S10) and the covariance between them (Eq. S13),
we can characterize the variance of the a�nity (Eq. S6) as,

var(A) = a2
0

"
�(N � 1)⇢2⇥

�
N � (1 � �)(N � 1)⇢⇥

�2 �
�N � (1 � �)⇢⇥(�(N + 2) � 2)

�

N2 (1 � (1 � �)⇢⇥) (N � (1 � �)(N � 2)⇢⇥)
2
(N � (1 � �)2(N � 1)⇢2⇥)

#
. (S14)

Note that the expression in Eq. S14 is accurate up to terms of order a2
0O(N�1L�⇥), which arise from the (negligible)

overlap between patterns of di↵erence classes due to the finite size of the patterns; see Appendix A 5.

3. Cumulant-generating function for the a�nity distribution

To characterize the distribution of the a�nities, we can rely on the corresponding cumulant-generating function.
The cumulant-generating function RX(q) of a random variable X is defined as the logarithm of the moment-generating
function

RX(q) = log
⌦
eqX

↵
. (S15)
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If we define a new random variable Y =
P

i Xi as the sum of independent random variables, its cumulant-generating
function is given by RY (q) =

P
i RXi

(q). To use this relation for the a�nity function, we need to rewrite the a�nity
of a pattern class (Eq. S1) as a sum of independent random variables. In Eq. S1 we calculate the a�nity as the sum
over the contributions of past encounters. In that view, the times of the past encounters t̂i are random variables while
the contributions to the a�nity at those times are deterministic.

We now change the point of view and write the a�nity function as sum of contributions from all time, instead of
only the past encounters (Eq. S1),

A( c) =
X

t̂=1

Ac( c0(t̂)) (S16)

Here, t̂ is the reverse time with the origin at the final (current) time point, as defined in Eq. S1. In this case, the

encounter of a network with pattern  c0(t̂) from class c0 at (reverse) time t̂ is accounted for by the contribution

Ac( c0(t̂)) to the network’s a�nity against the pattern  c. We then find

Ac( c0(t̂)) =

8
><
>:

0 if c 6= c0

a0�(1 � �)t̂�1⇢⇥ t̂ =: E(t̂) if c = c0
(S17)

which implies that a repertoire’s a�nity against a pattern from a given class is only determined by the prior history
of the repertoire’s encounters with patterns of the same class, and the memory of these prior encounters decay over
time according to Eq. S1.

The repertoire encounters a pattern of a specific class at a given time point with probably 1/N . As a result, the

distribution of a�nity contributions from a given time point Ac( c0(t̂)) can be expressed as,

P [Ac( c0(t̂))] =

✓
1 � 1

N

◆
�
⇣
Ac( c0(t̂)) � 0

⌘
+

1

N
�
⇣
Ac( c0(t̂)) � E(t̂)

⌘
, (S18)

where E(t̂) is defined in Eq. S17. As a result, the expectation value hA( c(T ))i for the a�nity of the repertoire
against a pattern from class c (Eq. S16) can be evaluated as,

hA( c)i =
X

t̂=1

Z
dAc,c0

t̂
Ac,c0

t̂
P [Ac,c0

t̂
]. (S19)

where we used the shorthand notation Ac,c0

t̂
⌘ Ac( c0(t̂)). Fig. S3 shows an agreement between simulations and the

expected a�nities estimated with this procedure.
We can now express the cumulant-generating function of the a�nity distribution P [Ac( c0(t̂))] as the sum of the

cumulant-generating functions of the independent terms Ac( c0(t̂). With the definition in Eq. S15 we can evaluate

the cumulant-generating functions Rt̂(q, t̂) for the contributions of each time point Ac( c0(t̂) to the a�nity function,

Rt̂(q, t̂) = log
D
eqAt̂(t̂)

E
= log

✓
(1 � 1

N
) +

1

N
eqE(t̂)

◆

⇡ � 1

N
+

1

N
eqE(t̂) + O

�
N�2

�
.

(S20)

The cumulant-generating function R(q) of the a�nity distribution P [A] can be expressed as the sum of the cumulant-
generating functions of the independent contributions from each time point (Eq. S20), which entail,

R(q) =
X

t̂=1

R(q, t̂) =
X

t̂=1


� 1

N
+

1

N
eqE(t̂)

�
+ O

�
N�2

�

=
X

t̂=1

"
� 1

N
+

1

N

X

n=0

qnE(t̂)n

n!

#
+ O

�
N�2

�

=
1

N

X

n=1

qn

n!
an
0

X

t̂=0

�n⇢⇥n
�
(1 � �)⇢⇥

�nt̂
+ O

�
N�2

�

=
1

N

X

n=1

qn

n!
⇥ an

0�
n⇢n⇥

1 � (1 � �)n⇢⇥n
+ O

�
N�2

�
.

(S21)
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where we have substituted the exponential function with an infinite sum, used the expression in Eq. S17 for E(t̂), and
performed the resulting geometric sum.

We can now evaluate the nth cumulant cn of the a�nity function as,

cn =
dnR(q)

dqn

����
q=0

= an
0

�n⇢n⇥

N (1 � (1 � �)n⇢⇥n)
+ O

�
N�2

�
. (S22)

While the first cumulant is equal to the mean a�nity in Eq. S5, obtained from the direct calculation of the moments,
the second cumulant di↵ers from the variance in Eq. S14. These di↵erences arise due to the expansion of the logarithm
in Eq. S20, which is only valid for large N . However, both results describe well the behavior of the variance in the
regime that we are interested in (Fig. S1), and therefore, it is warranted to use the simplified form in Eq. 2 for our
analysis.

To characterize the scaling relation between the cumulants cn and the model parameters, we can expand Eq. S22

for the case where the learning rate is close to its optimal value �⇤ ⇠ µ
2/3
e↵ (Eq. 5), which entails,

cn = an
0

�n�1

nN
+ O

✓
�n�2µe↵

nN2

◆
, (S23)

and thus, to the leading order, the mean a�nity scales as c1 ⇠ a0/N and the variance scales as c2 ⇠ a2
0�/(2N).

4. Approximating the a�nity distribution with a Gamma distribution

As mentioned in the main text, the interpretation of the a�nity as a sum of samples from an exponential function
separated by exponentially distributed times motivates us to model the a�nity distribution as a �-distribution. To
corroborate this choice, we evaluate the Kullback-Leibler divergence (DKL) between the distribution of patterns
a�nities in the repertoire P (A) and a Gamma distribution with matching mean and variance. Since we do not
have an analytical expression for P (A) we use an Edgeworth approximation [25] to evaluate the Kullback-Leibler
divergence between the two distribution, by relying on the cumulants of P (A) (Eq. S22).

In brief, Edgeworth series expands a probability density function around a normal distribution in terms of its
cumulants, and it provides a true asymptotic expansion with controlled error [25]. To use the Edgeworth series,
we transform the data to have mean zero and variance one, resulting in a modified probability density function for
a�nities P̂ (A). The second leading order approximation to P̂ (A) is given by

P̂ (A) ⇡ �(A)

✓
1 +

1

3!
ĉ3He3(A) +

1

4!
ĉ4He4(A) +

10

6!
ĉ2
3He6(A)

◆
:= �(A) (1 + uP ) , (S24)

where �(A) is a standard normal distribution, Hen is a Hermite polynomial of order n, and ĉn = cn/c
n/2
2 is the

nth normalized cumulant [24, 25]. As seen in Fig. S3, the approximation in Eq. S24 describes the distribution and
especially the bulk of the a�nity distribution very well.

To evaluate the Kullback-Leibler divergence DKL(P̂ ||�̂ ) between the modified a�nity distribution P̂ (A) and a

Gamma distribution �̂ with matching mean and variance, we use an Edgeworth expansion for both of these distribu-
tions,

DKL(P̂ (A)||�̂ (A)) =

Z

A
P̂ (A) log

P̂ (A)

�̂ (A)
=

Z

A
�(A) (1 + uP ) log

�(A) (1 + uP )

�(A) (1 + u� )

=

Z

A
�(A)

✓
uP +

1

2
u2

P 

◆
�
✓

u� + uP u� � 1

2
u2
� 

◆�
+ O(u3) (S25)

where u� arises from the Edgeworth expansion of the Gamma distribution, in analogy to Eq. S24. A similar approach
has previously been used to approximate the Kullback-Leibler divergence between two distributions [29, 30].

To evaluate the integral in Eq. S25, we use the orthogonality of the Hermit polynomials, i.e.,

Z

x

�(x)Hen(x)Hem(x) = n!�n,m (S26)



10

with He0 = 1. As a result, all the linear terms in Eq. S25 vanish and only the squared terms with equal polynomial
orders Hen contribute. We thus obtain,

DKL(P̂ (A)||�̂ (A)) =
1

2

✓
1

3!
ĉ2
3 +

1

4!
ĉ2
4 +

100

6!
ĉ4
3

◆
+

1

2

✓
1

3!
�̂2
3 +

1

4!
�̂2
4 +

100

6!
�̂4
3

◆

�
✓

1

3!
ĉ3�̂3 +

1

4!
ĉ4�̂4 +

100

6!
ĉ2
3�̂

2
3

◆

=
1

2


1

3!
(ĉ3 � �̂3)

2
+

1

4!
(ĉ4 � �̂4)

2
+

100

6!

�
ĉ2
3 � �̂2

3

�2
�

. (S27)

where �̂n is the nth cumulant of the modified Gamma distribution �̂ .

By substituting the cumulant of the a�nity distribution (Eq. S22) and that of the Gamma distribution, we arrive
at an approximation for the Kullback-Leibler distance between the two distributions,

DKL(P (A)||� (A)) =
25

27
(2⇥µe↵)

2/3
+ O(⇥µe↵) ⌧ 1. (S28)

indicating that the Gamma distribution is a good approximation for the true distribution of the a�nities P (A) for
small mutation rate µe↵ as long as ⇥ is of order 1. However, for risk tolerant strategies (large ), this approximation
fails. In this regime the repertoire only learns one pattern e↵ectively, resulting in a bi-modal distribution of the
a�nities with one mode reflecting the low-a�nity recognition and the other, the higher a�nity of the latest stored
pattern. This bimodal distribution cannot be approximated by a Gamma distribution.

5. A�nity of random patterns

The a�nity of a random pattern � (i.e., patterns unrelated to the previously encountered classes  c) is determined
by summing over the overlaps | h ↵|�i |⇥ between the random pattern � and all previously stored patterns in the
memory repertoire  ↵ 2 M, weighed by their contributions to memory m↵. It should be noted that the mean a�nity
of random patterns is set to be zero and therefore, the a�nity shift Arand, defined in Eq. 2, can be evaluated as,

Arand =

*
A0

X

 ↵2M
m↵| h ↵|�i |⇥

+
(S29)

= A0

⌦
| h |�i |⇥

↵
= A0

2⇥/2�
⇥
1+⇥

2

⇤
p
⇡L⇥

, (S30)

where we use the fact that random pattern � is independent of the stored patterns  ↵, and that on average their
overlap h |�i is a normally distributed random variable with mean zero and variance �2

rand = 1
4L , according to the

law of large numbers.

To evaluate the variance of random patterns, we first introduce a basis that spans all the stored patterns in a
repertoire  ↵ that have non-zero weights m↵ at a given time point t. One choice for this basis is to use the N directions
corresponding to the pattern classes  c(t) at time t. However, these N vectors do not fully span all the previously
presented patterns, due to the evolutionary divergence of these patterns over time. To account for this remaining
subspace, we introduce N 0 auxiliary directions �c(t) (with c0 = 1, . . . , N 0). In principle, the space encompassing all
possible the patterns is L-dimensional. However, the space of all stored patterns is typically more restricted (i.e.,
N + N 0 < L) due to the relatively fast updates in the repertoire such that it only keeps a memory of patterns that

are similar to the current states of the presented classes  c(t). Using the set of basis vectors { c(t),�c0(t)}, we can
express any stored pattern in the repertoire as,

h ↵| =
NX

c=1

h ↵| c(t)i h c(t)| +
N 0X

c0=1

h ↵|�c0(t)i h�c0(t)| . (S31)

As a result, the overlaps between a random pattern � and all the stored patterns in the repertoire in Eq. S29 can be
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expressed as,

X

 ↵2M
m↵| h ↵|�i |⇥ =

X

 ↵2M
m↵

������

NX

c=1

h c(t)|�i h ↵| c(t)i +
N0X

c0=1

h�c0(t)|�i h ↵|�c0(t)i

������

⇥

(S32)

⇡
NX

c=1

0
@ X

 ↵2M
m↵ |h ↵| c(t)i h c(t)|�i|⇥

1
A+

N0X

c0=1

0
@ X

 ↵2M
m↵

���h ↵|�c0(t)i h�c0(t)|�i
���
⇥

1
A (S33)

⌘
NX

c=1

Mc |h c(t)|�i|⇥ +
N0X

c0=1

M 0
c0

���h�c0(t)|�i
���
⇥

. (S34)

To arrive at Eq. S33, we assumed that the stored patterns  ↵ have non-vanishing overlaps with only one of the bases
in the set { c,�c0}. As a result, in the expansion of the expression to the power ⇥ in Eq. S32, all the cross terms
associated with di↵erent bases vanish, and the expression can be simply written as the sum of independent terms. The
final form in Eq. S34 expresses the overlap of a random pattern with the repertoire as a sum over the overlaps with

the bases { c(t),�c0(t)}, with e↵ective weights Mc(t) =
P
↵ m↵ |h ↵| c(t)i|⇥, and M 0

c0(t) =
P
↵ m↵

���h ↵|�c0(t)i
���
⇥

.

The e↵ective weight Mc associated with the presented pattern classes  c(t) follows,

Mc(t) =
X

↵

m↵ |h ↵| c(t)i|⇥ =
A ( c(t)) + Arand

A0
⇡ A ( c(t))

a0
, (S35)

where we used the approximation a0 = A0 � Arand = A0 + O(L�⇥/2).

When the shape parameter is ⇥ = 2, the e↵ective weights define a normalized set (i.e.,
PN

c=1 Mc +
PN 0

c0=1 M 0
c0 = 1).

However, for sharper a�nity functions (⇥ > 2), the relationship between the e↵ective weights is bounded from above

by
PN

c=1 Mc +
PN 0

c0=1 M 0
c0  1, and for broader a�nity functions (⇥ < 2), the weights are bounded from below as,

1 PN
c=1 Mc +

PN 0

c0=1 M 0
c0 . Here, we discuss the case with ⇥ > 2, which entails

N 0X

c0=1

M 0
c0(t)  1 �

NX

c=1

Mc(t) ⇡ 1 � N
hAi
a0

. (S36)

This upper bound implies that when the patterns are well represented in the repertoire (i.e., hAi ⇡ Amax = a0/N ;
see Eq. S5), the weights of the auxiliary bases shrink to zero, i.e., N 0 = 0. This result is in line with the eigen-
decomposition analysis of the generalized Hopfield network in Appendix C of ref. [9].

For the cases that M 0
c0 > 0, we will consider a mean field approximation, where all the auxiliary directions are

equally important (i.e., M 0
c0 = M 0, 8c0) and that on average the memory stored in the auxiliary directions has a

comparable weight to that of the bases spanned by the presented patterns, (i.e., Ec[Mc] = Ec0 [M
0
c0 ] = M 0, where

E?[·] denotes expectation over the argument in the subscript). These approximations together with Eq. S36 define an
upper bound for the number of auxiliary bases,

N 0  a0

hAi

✓
1 � N

hAi
a0

◆
. (S37)
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Using these relationships, we can now evaluated the variance of the a�nities across random patterns �, as,

varrand = var

2
4A0

X

 ↵2M
m↵| h ↵|�i |⇥ � Arand

3
5
�

(S38)

= A2
0 var

2
4

NX

c=1

Mc |h c(t)|�i|⇥ +
N 0X

c0=1

M 0
c0

���h�c0(t)|�i
���
⇥

3
5 (S39)

= A2
0

NX

c=1

(Mc)
2
var

⇣
|h c|�i|⇥

⌘
+ A2

0

N 0X

c0

(M 0
c0)

2
var

✓���h�c0 |�i
���
⇥
◆

(S40)

= A2
0

0
@

NX

c=1

(Mc)
2

+

N 0X

c0

(M 0
c0)

2

1
Avar

⇣
|h |�i|⇥

⌘
(S41)

 A2
0

✓
N

a2
0

�
var(A) + hAi2

�
+

1

a0
hAi

✓
1 � N

a0
hAi
◆◆

⇥
2⇥
⇣p

⇡�
⇥
1
2 +⇥

⇤
� �

⇥
1+⇥

2

⇤2⌘

⇡L⇥
, (S42)

where, we first used Eq. S30 to express the a�nity function in Eq. S38 in terms of the bases in Eq. S39. Given that
the projections of a random pattern along di↵erent bases are statistically independent from each other, we expressed
the variance of the sum of these contributions in Eq. S39 as the sum of their variances in Eq. S40. Next we used
the fact that the overlaps of a random pattern with all the bases (i.e., h c|�i , h�c0 |�i , 8c, c0) are Gaussian random
variates with mean zero and variance L/4. Thus, the variance of these overlaps to the power ⇥ are equal for all

bases, which we simply expressed as var
h
|h |�i|⇥

i
in Eq. S41. We then evaluated the term var

h
|h |�i|⇥

i
from the

underlying Gaussian distribution, and used the definition of the e↵ective weight Mc in Eq. S35 and the inequality in

Eq. S37 to substitute
PN

c=1(Mc)
2 +

PN 0

c0=1(M
0
c0)

2 and arrive at the upper bound of the variance for the a�nity for
random patterns in Eq. S42. The results in Eq. S42 match very well with simulations for the a�nity function with
the shape parameter ⇥ = 2 (Fig S4).

Appendix B: Mapping between immune memory repertoires and the Hopfield model

The Hopfield network is among the most frequently used models for associative memory [10]. A classical Hopfield
network describes a fully connected graph with interaction matrix Jij . A binary pattern  of length L presented to
the network J is assigned an energy E( , J),

E( , J) = � 1

2L

LX

i,j

Ji,j i j . (S1)

Hopfiled networks can learn and store an associative memory of the presented patterns as the minima of the energy
landscape [10]. One way to construct such network is by Hebbian learning, whereby the network is updated with a
learning rate � upon an encounter with a pattern  (t) at time t,

Ji,j(t + 1) =

(
(1 � �) Ji,j(t) + � i(t) j(t), if i 6= j;

0, otherwise.
(S2)

In the supplementary information of ref. [9], we show that this learning rule can be expressed as

J(t + 1) = (1 � �)J(t) + � (L | (t)i h (t)| � 1) . (S3)

Using this expression for the network J(T ) at time T with an encounter history with patterns  (t) (for t  T ), we
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can evaluate the energy E(�, J(T )) of an arbitrary pattern � presented to the network as,

E(�, J(T )) = �1

2
h�|J(T )|�i

= �L

2

T�1X

t=1

�(1 � �)T�1�t h�| (t)i h (t)|�i +
1

2

T�1X

t=1

�(1 � �)T�1�t h�|1|�i

= � L

2

T�1X

t=1

�(1 � �)T�1�t | h (t)|�i |2 +
1

2
+ O

�
(1 � �)T

�

= � L

2

T�1X

t=1

mt | h (t)|�i |2 +
1

2
+ O

�
(1 � �)T

�
(S4)

with the time-dependent weights, mt = �(1 � �)T�1�t. Note that the correction terms vanish in the limit of large
time T and that the weights sum up to one, i.e.,

P
mt = 1. In this limit, the energy function E(�, J) corresponds to

the a�nity function given in Eq. 2 of the main text, for the choice of the shape parameter ⇥ = 2, the energy scale
A0 = �L/2, and the random energy Arand = �1/2.

Appendix C: Numerical methods

As discussed in Section B, for the shape parameter ⇥ = 2 the a�nity function in Eq. 2 maps onto the energy
function of a Hopfield network with Hebbian learning [9, 10, 12], which is easily tractable with numerical techniques.
Specifically, using a Hopfield model for simulating the repertoire problem with ⇥ = 2 has the advantage that we only
need to keep track of the interaction matrix Ji,j of size L2 as opposed to all the 2L memory wights m↵. This dramatic
reduction in complexity makes the numerical simulations for ⇥ = 2 highly e�cient.

For the simulations, we use the same approach as in [9]. We initialize the interaction matrix J of size L ⇥ L with
all entries set to zero Ji,j = 0 and choose N independent random patterns of size L.

Before collecting any data, we first update the network until it reaches a quasi-stationary state so that it no
longer depends on the initial condition. Since the stored memory of a pattern within the network decays as (1 � �)s

with the number the number update steps s since the original encounter, we update the network following the

initialization by sstat. = ceil
⇣

log 10�5

log(1��)

⌘
steps for the network to reach a quasi-stationary state. This criterion ensures

that (1 � �)sstat.  10�5 and the memory of the initial state is removed. Moreover, this criterion implies that in the
quasi-stationary state the memory weights become normalized i.e., 1 �P↵ m↵(sstat.) < 10�5, after starting from a
no memory initial state of

P
↵ m↵(0) = 0. During each step of this preparation phase, we also evolve the patterns,

whereby we flip the spins of patterns within each class at rate µ. We then randomly choose one of the patterns to
present to the network and update the network according to the learning rule in Eq. S2.

After reaching the quasi-stationary state of memory, we collect data from the network over 104 steps. During
this process, the patterns evolve with rate µ and are presented at a random order to the network. We record the
a�nity of each presented pattern before updating the network. At each step we also record the a�nity of a randomly
generated pattern that belongs to none of the previously encountered pattern classes. For each learning rate �, we
repeat this process for 50 independent initial sets of pattern classes { c}. Overall, we perform a total of 5 ⇥ 105

a�nity measurements on both the previously encountered and the random patterns.
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Chapter 6

Discussion and outlook

Storing and retrieving memory from prior molecular interactions is an efficient scheme
to sense and respond to external stimuli. So far, the standard literature has focused
on learning strategies for constant stimuli, and though many studies have included
noisy inputs, most have neglected evolving stimuli. One field where learning and
storing memory of evolving signals is essential is immunology. A vital feature of
the adaptive immune system is its ability to store memory of pathogens for future
infections. Importantly, the immune system can also utilize this memory against evolved
forms of pathogens. While understanding immune memory for evolving pathogens
is an important and interesting problem on its own, understanding general learning
strategies for evolving stimuli is an open problem with potential applications far beyond
immunology.

In this thesis, I have presented three projects that study different aspects of learning
and memory of evolving targets. The key findings of these projects can be summarized
as follows. A single unit of memory encountering only one evolving target should have
some cross-reactivity even if its cross-reactivity is traded off against having maximal
affinity (utility) for some encounters. Further, it can be beneficial to delay a novel
response and first try to utilize the memory even if that increases the cost of the
novel response. When multiple evolving targets are encountered, fully connected
networks such as the Hopfield network fail to encode and retrieve the stored state of
all targets correctly. One strategy for maximal recognition performance is using a
compartmentalized memory with a specialized 1-to-1 memory for each target, akin
to what is used by the adaptive immune system. Moreover, repertoires of multiple
specialized memories need to increase their learning rate with the evolutionary rate
of the targets. This increased learning rate leads to broader distributions of memory
performance. Thus, although these memory repertoires need to have moderate levels of
risk tolerance to fluctuations in performance, they can be very efficient in distinguishing
between evolved versions of stored targets and novel random stimuli.
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6.1 Optimal memory of the immune system
In the first publication of this thesis ([1] see chapter 3), we studied the optimal choice of
memory B-cells. As naïve B-cells undergo affinity maturation, their receptors become
more specialized and less cross-reactive [146–150]. To characterize this phenomenon
and incorporate these biophysical constraints, we constructed a model which includes
a tradeoff between receptors’ (antibodies’) cross-reactivity and maximal affinity. We
found that B-cell differentiation into the memory compartment should be highly
regulated to produce lower affinity receptors, allowing cross-reactive recognition of
evolved pathogens. This prediction is consistent with recent experiments [59–63]. We
also found that it is beneficial to allocate more deliberation time when a novel antigen
is encountered so that lower affinity memory can react before initiating a novel response.
This delayed novel response has been reported in numerous studies [72–74].

To study different modes of the immune memory response, we co-optimized the
kinetics and energetics of memory for an effective response against evolving pathogens
over the organism’s lifetime. We found three distinct regimes of memory production. (1)
For non- or slowly evolving pathogens, the optimal solution uses maximally specialized
high-affinity receptors. (2) When pathogens evolve at moderate speed, the best solution
uses a non-equilibrium response with a less adapted, more cross-reactive memory. While
this is the best solution in this setting, it will always be suboptimal because the response
was initially adapted for a different version of the pathogen. (3) When the pathogen
evolution becomes too fast, the system should not use memory but instead rely only
on a naïve response.

While all these observations might appear to be intuitively clear, our work was
the first to propose a utility of an immune memory response to evolved pathogens.
Indeed, a recent (published after [1]) preprint suggests a different model for this
problem [101]. While they use a different function to model the cross-reactive affinity
function between receptors and antigens, their parameters to describe the immune
system are simply different interpretations of our model. First, they use receptors with
constant affinity and cross-reactive range, and instead introduce a tradeoff between
a monoclonal response (all receptors are centered at the pathogen) and a polyclonal
response (receptors are distributed further around the pathogen). Because they study a
repertoire with constant size, the effect of their tradeoff is equivalent to ours, a tradeoff
between the maximal affinity and cross-reactivity of receptors. The second parameter
they use is the cost of a naïve response1. Here the connection to our deliberation
parameter (β) is even clearer as we chose our naïve cost to be a monotonic function of
β. With this clear mapping to our model, it is no surprise that [101] finds the same
three regimes described above, while their model relies on more assumptions of the
actual biological process.

A further advantage of our model is that it features a stochastic choice between
memory and naïve response. This non-deterministic decision enables the usage of sub-

1Indeed, they use the naïve diversity as the quantity they discuss. But as pointed out in the paper,
the cost used for the naïve response is the inverse of the diversity.
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optimal memory in instances where a naïve response would be beneficial. A comparable
biological process is known as original antigenic sin, where cross-reactive memory from
primary infections interferes and suppresses a protective novel response [151]. Thus,
the viral exposure history may profoundly affect protective immunity against evolving
viruses [152].

Immune deficiency as a result of encounter history, such as in antigenic sin, can
be more pronounced when the life expectancy of organisms changes. Our work shows
that the immune strategy of short-lived organisms should favor highly cross-reactive
memory. If an organism’s life expectancy increases, individuals will likely encounter
more evolved forms of a pathogen with antigenic distances larger than expected by
their immune systems. Consistent with antigenic sin, cross-reactive memory optimized
for a shorter lifetime, can still be activated but with lower efficacy, thus suppressing a
protective novel response. Therefore, the elongation of the human lifespan is one of
the plausible factors responsible for immune deficiencies brought by aging.

When the immune system first encounters a pathogen, it cannot predict the
pathogen’s evolutionary rate. Thus, the memory strategy it uses (i.e., which B-cells
differentiate into memory B-cells) needs to be general for all pathogens it encounters.
To study this constraint, we optimized which distribution of memory strategies is
best when facing pathogens with different evolutionary rates. Here we found that the
optimal solution uses a mixture of high-affinity and lower affinity memories. This
mixture might be interpreted as the combination of low-affinity IgM and high-affinity
IgG memory B-cells. However, these memory B-cells also have different roles in the
memory response that go beyond our model. Nevertheless, it is interesting to observe
that the optimal strategy for multiple independent threats consists of a regulated
mixture between two strategies instead of constantly producing memory.

6.2 Memory structure for evolving inputs
The second publication of this thesis ([2] in chapter 4) studied different structures
that store and retrieve memory. We introduced a flexible energy-based neural network
model that can adopt different memory strategies. These strategies range from the
classical fully connected Hopfield network to a compartmentalized memory that stores
a specialized 1-to-1 memory for each state. The contrast between these strategies
reflects distinct molecular mechanisms used for memory storage in the adaptive immune
system and neural structures such as the olfactory cortex. In particular, the olfactory
system uses distributed memory in the olfactory cortex to recognize odor signals
from the receptors in the olfactory bulb [116–121]. On the other hand, the adaptive
immune system adopts a 1-to-1 strategy and generates specialized immune cells (i.e.,
compartments) for each pathogen [1, 60, 62, 63, 81, 82].

We studied different memory strategies, defined by the learning rate and the
number of compartments in the network, and we probed their efficiency for static and
dynamic patterns. We recovered the well-known result that Hopfield-like networks
with distributed memory are highly accurate in storing associative memory for static or
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noisy patterns. Thus for these patterns, specialized 1-to-1 memories have no advantage
over distributed memories. However, we found that fully connected networks fail
to reliably store retrievable associative memory for multiple evolving patterns. This
observation holds even when the networks learn at an optimal rate. We showed that
networks increase their learning rate to follow the patterns’ evolution. This increase
in the optimal learning rate drastically changes the structure of the energy landscape
for associative memory. In particular, we found the emergence of narrow connections
(mountain passes) between the memory attractors. These connections destabilized the
attractors of some stored states, and the corresponding patterns fall into an incorrect
attractor during the equilibration process, leading to a significant reduction in retrieval
accuracy.

We further showed that full compartmentalization of the network, where each
pattern class is stored in a separate sub-network, is one solution to achieve maximal
accuracy. Indeed, in our compartmentalization model, the 1-to-1 strategy is the only
solution that achieves the maximal accuracy for evolving patterns. We also found that
intermediate solutions (i.e., quasi-specialized memory) do not perform significantly
better than the fully connected strategy, as long as the total memory capacity is kept
constant.

Our study focuses on a Hebbian learning rule, but we additionally tested three
other incremental rules (Hebbian learning with a sparse matrix, gradient descent, and
Storkey learning). While all these results suggest that distributed networks cannot
efficiently learn evolving patterns, we cannot exclude that some specialized learning
rules can achieve a performance comparable to the 1-to-1 strategy. Particularly, learning
rules that disconnect the attractors of the energy function will be able to recognize
evolving patterns effectively. However, it is questionable whether these rules still
resemble a neural network or whether they represent a different form of our fully
compartmentalized solution. Further, the ongoing search for artificial neural network
structures that can learn evolving environments [127] suggests that optimal learning of
evolving stimuli requires a specialized 1-to-1 strategy.

Our results have significant implications for the learning of evolving stimuli. If
indeed only a 1-to-1 strategy can achieve the maximal performance, the size of the
memory would need to grow linearly with the number of states it stores. This scaling
contrasts current machine learning techniques that aim to reduce the input space
while still recognizing many signals. The resolution of this problem needs a nuanced
discussion.

First, we need to remind ourselves that the fully connected networks we used do
not lose the ability to retrieve the memory for all patterns. Instead, only a fraction
of stored states is incorrectly recognized. Thus, the optimal memory strategy might
follow a tradeoff between accepted error in recognition and resources allocated to the
memory. The results of this tradeoff will depend on the constraints of the model that is
used. Indeed, systems that can tolerate some degree of error will likely prefer connected
network structures. Interestingly, the quasi-specialized strategies do not outperform
the fully connected model of a generalized Hopfield memory with constant capacity.
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Thus, we would only expect either fully connected or 1-to-1 solutions in our model.
However, models with other constraints or different cost allocations might very well
find partially compartmentalized solutions to be optimal.

Independent of the used model, we predict that the 1-to-1 strategy is the only
solution that reaches the maximal performance. Thus systems that cannot tolerate any
error need to use this strategy. The immune memory might be seen as such a system
because false recognition of a pathogen can have severe consequences such as death.
Our results thus suggest that pathogenic evolution may be one of the reasons for the
immune system to encode a specialized memory, whereas distributed memory is used
in other systems.

The memory’s task also informs on the optimal storage strategy. As discussed,
the increased learning rate leads to narrow connections between the attractors in the
energy landscape. However, the stored states still lie in these attractors, and their
energy is easily distinguishable from random states. Thus, fully connected networks
are sufficient if the system only needs to distinguish between previously encountered
patterns and novel patterns. This distinction also has some overlap to the problem
studied in the final paper of this thesis ([3] see chapter 5).

Such a task can also influence the level of compartmentalization of the solution. For
example, if the task is to distinguish between many (evolving) harmful and non-harmful
signals, two compartments would be sufficient. One compartment would store harmful
inputs (e.g., lions and sharks), while the other compartment stores harmless inputs
(e.g., bunnies and goldfish). This system might confuse lions with sharks, but it would
have no problem distinguishing between sharks and goldfish, which arguably is much
more critical2.

In summary, we can say that the memory storage strategies can depend on many
model-dependent factors, such as a tradeoff between performance and cost or the
actual memory task. While tuning these factors will allow maneuvering in the solution
space, our model determines the standalone performance of the memory without
model-dependent constraints.

The third and final paper of this thesis ([3] see chapter 5) also studies the structure of
memory for evolving targets but takes a different approach and focuses on the memory
repertoire. The affinity function we used can be seen as the sum over the affinities of
all states in the repertoire with normalized weights. The affinity function thus implies
a 1-to-1 memory where each encoded state is stored individually. Importantly, we did
not model a retrieval of the memory in a Hopfield sense, where we equilibrate the
state in the affinity landscape. Instead, we assumed that the memory is 1-to-1 and the
stored states with the highest binding to a presented pattern will trigger a memory
response. Indeed the mapping to the Hopfield energy has a pure simulation purpose,
and the two projects represent different approaches to modeling memory. Nevertheless,
the affinity-energy correspondence allows us to translate the classification results to

2I am aware that the evolution of all these animals happens on time scales that are far beyond the
human lifetime. Thus, they appear static to us and are easy to learn by one single fully connected
network. However, this should be seen as an illustrative example, not a task humans face.
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the fully connected Hopfield model.
In [3] we studied how a repertoire of specific memories needs to be updated when

it attempts to store multiple evolving states. The 1-to-1 strategy in [2] is a special
state of such a repertoire with N specialized memories with equal weights. In [3] we
instead studied how a repertoire can update these weights when it incorporates new
information. Indeed, the model in [3] is equivalent to adding a new compartment every
time we encounter a new state.

With this model, we studied the distribution of affinities when facing evolving
targets. To describe different memory strategies (defined by the learning rate), we
introduced a tradeoff between the mean affinity and the fluctuations of the affinities.
These fluctuations can lead to a misclassification between stored and random patterns.
Therefore, we used the width of the affinity distribution (standard deviation) as the
risk measure of a strategy.

Interestingly, systems can learn with maximal mean affinity and risk-free when
patterns are static (i.e., do not evolve). In this case, systems will learn infinitely slow
to distribute the resources of the memory perfectly. However, once patterns start
evolving, memory repertoires need to adapt to the pattern evolution and learn faster,
a behavior similar to [2].

We found that, with a risk of discarding older patterns, risk-tolerant repertoires
adopt faster learning rates and keep a memory of the recent patterns with high
affinity. On the other hand, risk-avert repertoires effectively shut down their learning
to minimize the fluctuations in their recognition affinity for different patterns, taking
on the cost of having a low affinity for all patterns. Ideally, systems adopt a moderate
risk tolerance that enables the repertoire to achieve a desirable balance between risk
and affinity. In this regime, systems can robustly recognize previously encountered
patterns that evolved and distinguish them from random unseen patterns.

This classification also plays a vital role in immune memory. As discussed above,
it is not sufficient to only have a highly effective response to previously encountered
pathogens. Instead, the immune memory needs to be specific enough and not mount a
response against novel pathogens to avoid immune defects such as antigenic sin. Thus,
the classification in our model provides an understanding of the update rates immune
repertoires should use.

As our model focuses on evolving patterns, the learning and update behavior in our
paper is different from the results of Mayer et al., who studied the learning for memory
repertoires that face non-evolving pathogens with changing encounter probabilities [81].
Naturally, future work should investigate the combination of both models.

6.3 Outlook
The projects presented in this thesis introduce frameworks to study different aspects
of learning and memory for evolving targets. With these models, we can investigate
and predict optimal memory strategies for the immune system but also for general
memory systems. As described above, the results of this thesis already significantly
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enrich the understanding of memory for evolving targets. However, this thesis is still
just a starting point and much more research is needed to extend the results to more
systems.

The first natural extension of this thesis is the generalization of the framework
introduced in [1]. So far, our model only includes the decision between mounting a
naïve or memory response. Further, we assumed that the memory receptors remain
constant during reinfections. However, as discussed in the introduction, an immune
memory response has different components. These range from long-lived plasma cells
to IgG memory B-cells that turn into plasma cells to IgM memory B-cells that can seed
secondary germinal centers and undergo further affinity maturation upon reinfection.
While we found that an optimal solution should use a combination of high- and low-
affinity memory, we used the same time scale for all memory responses. It would
be interesting to model the memory response as a multilayer decision process in the
spirit of the two walls of protection [7]. In this process, memory B-cells could only be
activated if long-lived plasma cells do not neutralize the threat.

A different extension could include the evolution of memory cells and its influence on
their long-term utility for evolving pathogens. This evolvability of memory is relevant
for characterizing immune response dynamics to chronic viral infections like HIV. The
analysis of immune repertoires in HIV patients over multiple years shows a rapid
evolution of B-cell lineages to counter the evolution of the virus within hosts [153].

Including the possibility of reseeding germinal centers and thus the adaptation of
memory to evolved forms would also allow us to study the coevolution between evolving
pathogens and memory in more detail. This inclusion bridges the gap between [1] and
the treatment of a memory repertoire that adapts to changing targets in [3]. Indeed, it
would be interesting to see how the adaptation of stored memory and production of
new memory can be combined and how this might affect the memory performance.

Beyond immune memory, it would be interesting to study strategies for phenotype
switching similar to [95] but include the evolution of environments. Because the
phenotypes are connected through the genotype, a change (adaptation) in one phenotype
might significantly influence other phenotypes. This behavior resembles the fully
connected Hopfield network we studied in [2]. Thus, it would be interesting to see if,
similar to the attractors in the network, some phenotypes become unstable when the
system tries to adapt to changing environments.

Interestingly, Xue et al. trained a neural network to find optimal strategies depending
on switching rates and environmental noise levels [95]. Using a similar approach when
environments can evolve might be helpful to study the limits of artificial neural networks
further. So beyond studying phenotype strategies, it would be interesting to investigate
which network structures are able to find these strategies.

Indeed, understanding the learning of evolving environments remains an open
question in machine learning. Even though some specialized algorithms have been
successfully implemented [14, 127], a general theory for the learning of evolving signals
does not yet exist [127]. With the treatment of Hopfield networks in [2] and learning
strategies of other energy-based models [3], this thesis offers a starting point in the
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search for such a theory. Here the results regarding the increased learning rate for
evolving signals might be particularly interesting as tuning of this hyperparameter
is one of the challenges of current machine learning algorithms with deep neural
networks [125, 126].
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The following chapter consists of the figure supplements of the article
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Figure supplements for optimal evolutionary decision-making to store immune memory
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Figure A.1 Figure 2—figure supplement 1. Utility, dissipation, and usage of optimal
memory. (A) and (B) show the scaled net utility Ûnet ≡ Unet/Emax (Equation 1) and
dissipation K̂diss ≡ Kdiss/Emax (Equation 2) per round of infection as a function of the
antigenic divergence δ̂. Rescaling by Emax sets the magnitude of net utility for a response
to conserved antigens (with δ̂ = 0), and in the limit of zero deliberation cost Ω̂ → 0, to 1;
see Fig. 2 in the main text for comparison. (C) The expected number of rounds that a
memory receptor is utilized prior to a novel response in an optimal system is shown to decay
as the antigenic divergence δ̂ increases. The results are evaluated for immune systems with
optimized strategies (α̂∗, β̂∗) against pathogens with a given scaled antigenic divergence δ̂;
the corresponding strategies are shown in Fig. 2. Colors / markers indicate different naïve
cost functions for deliberation, including no-cost Ω̂ ≡ Ω/Emax = 0, linear cost Ω̂ = Ω̂0β̂, and
quadratic cost Ω̂ = Ω̂0β̂2, with varying amplitudes Ω̂0. Simulation parameters: αmax = 4,
βmax = 10, and θ = 2.
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Figure A.2 Figure 2—figure supplement 2. Optimal memory strategies for different
specificity shape factors θ. (A) Scaled specificity α̂∗ ≡ α∗/αmax, (B) scaled deliberation
factor β̂∗ ≡ β∗/βmax, (C) scaled net utility Ûnet ≡ Unet/Emax, and (D) scaled dissipation
are shown as a function of the scaled antigenic divergence per infection δ̂ = δ/(α−1

max) (similar
to Fig. 2). Colors indicate different shape factors θ of the specificity function, ranging
from a double-sided exponential (θ = 1), to Gaussian for θ = 2 (as in Fig. 2), and top-hat
functions θ > 2. The dependence of memory strategies on antigenic divergence is qualitatively
insensitive to the shape factor of the specificity function. Simulation parameters: linear
deliberation cost function Ω = Ω̂0β̂ with Ω̂0 = 0.1, αmax = 4, and βmax = 10.
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Figure A.3 Figure 2—figure supplement 3. Optimal memory strategies for different
specificity thresholds αmax. (A) Scaled specificity α̂∗ ≡ α∗/αmax, (B) scaled deliberation
factor β̂∗ ≡ β∗/βmax, (C) scaled net utility Ûnet ≡ Unet/Emax, and (D) scaled dissipation
are shown as a function of the scaled antigenic divergence per infection δ̂ = δ/(α−1

max)
(similar to Fig. 2). Colors indicate different specificity thresholds αmax. Memory strategies
are qualitatively insensitive to the specificity threshold. Simulation parameters: linear
deliberation cost function Ω = Ω̂0β̂ with Ω̂0 = 0.1 and βmax = 10.
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Figure A.4 Figure 3—figure supplement 1. Mixed memory strategy against pathogens
for different deliberation factors β̂. Distribution of scaled optimized specificities α̂∗ of
functional memories is shown for an immune system with a fixed deliberation factor β̂ = 0.2,
in which a mixture strategy with a bimodal distribution of specificities P (α̂) is established to
counter pathogens with a broad range of antigenic divergences, drawn uniformly from a range
δ̂ ∈ (0, 1.6) (similar to Fig. 3). The dashed bars indicate stored memory with specificity α = 0,
which is not further used in response to infections. Colors indicate different deliberation
factors. Simulation parameters: αmax = 4, and βmax = 10.
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Figure A.5 Figure 4—figure supplement 1. Pathogen encounter threshold to transition
between cross-reactive and specific memory. (A) The encounter threshold c∗, shown
in Fig. 4A,B, decays as a function of the antigenic divergence (per encounter) δ̂ and the
amplitude of the naive cost Ω̂0 (colors). (B) The expected antigenic divergence for the
duration of c∗ (threshold) encounters δ̂

√
c∗ is shown as a function of antigenic divergence (per

encounter) δ̂. Simulation parameters: linear deliberation cost function Ω = Ω0β̂, αmax = 4,
βmax = 10, and θ = 2.
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Appendix B

Supplementary figures for learning
and organization of memory for
evolving patterns

The following chapter consists of the figure supplements of the preprint

O. H. Schnaack, L. Peliti, and A. Nourmohammad. “Learning and organi-
zation of memory for evolving patterns”. In: arXiv:2106.02186 [physics]
(June 2021). arXiv: 2106.02186

in chapter 4.
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Figure B.1 S1 Performance of networks trained with noisy inputs. A network is
trained with inputs σ̃α which are the noisy version of the true static patterns σα. The noisy
inputs are generated by randomly flipping spins of a static pattern with a rate according
to the effective mutation rate, indicated on the x-axis. The performance of the network is
shown for different number of patterns (colors), which collapse on top of each other. As the
noise increases, the overlap between the attractor σα

att and the noisy version of the patterns
σ̃α (full line) decays and falls below the expected overlap for the true static patterns σα

at one (dashed line). The networks are trained with learning rate λ, which corresponds to
the optimal learning rate for nearly static patterns with µeff = 1.8 · 10−5. Other simulation
parameters: L = 800.
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Figure B.2 S2 Reduced performance of Hopfield networks due to memory delay.
(A) The optimal performance Q∗ for patterns that are correctly associated with their memory
attractors (i.e., they have an overlap q(σ) = ⟨σatt|σ⟩ > 0.8) is shown as a function of
the effective mutation rate µeff. The solid lines show the simulation results for networks
encountering a different number of patterns N (colors). The gray dashed line shows the
naïve expectation for the performance (Q0 = 1 − 2µeff), and the colored dashed lines show
the expected performance after accounting for the memory lag Qlag = 1 − 2glagµeff. (B) The
lag time glag for memory is shown in units of generations [N ] as a function of the effective
mutation rate for networks encountering a different number of patterns (colors similar to
(A)). The networks are trained with a learning rate λ∗(µ) optimized for the mutation rate
specified on the x-axis. Other simulation parameters: L = 800.
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Figure B.3 S3 Statistics of static and evolving patterns for networks with different
learning rates. We compare the statistics of evolving (green) and static (orange) patterns
in networks trained with a learning rate λ∗(µ) optimized for the mutation rate specified on
each panel’s x-axis; see Fig. 2B for dependency of the optimal learning rate on mutation rate.
The reported statistics are (A) Fraction Pwrong of misclassified patterns (i.e., patterns with
a small overlap q(σ) = ⟨σatt|σ⟩ < 0.8), (B) the mean energy of the patterns, and (C) the
standard error of the energy of the patterns in the network. Simulation parameters: L = 800
and N = 32.
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Figure B.4 S4 Attractors and equilibration paths in networks. Overlap of patterns with
the networks’ attractors are shown for both the patterns σα associated with one of the classes that
were previously presented to the network during training (blue) and the random patterns χ that are
on average orthogonal to the previously presented classes. (A) The overlap between a presented
pattern σα and the memory associated with the same pattern class σα

att(σα) is shown against the
overlap of the pattern with the next best memory attractor associated with any of the other presented
pattern classes maxν ̸=α | ⟨σα

att|σν⟩ |. Fractions of the previously presented patterns and the random
patterns that fall into different sectors of the plot are indicated in blue and red, respectively. Sector I
corresponds to patterns that fall into the correct energy attractors (i.e., ⟨σα

att|σα⟩ ≈ 1). In the limit
of large self-overlap, the maximal overlap to any other pattern family is close to zero, and thus, no
patterns are found in sector III. Patters with a small self-overlap could fall into three different sectors:
Sector II corresponds to misclassified patterns that fall into a valley associated with a different class
(maxν ̸=α | ⟨σα

att|σν⟩ | ≈ 1). Patterns in sectors IV and V fall into local valleys between the minima of
two pattern families. This mixture states are well known in the classical Hopfield model [154, 155].
Sector VI indicates patterns that fall into an attractor in the network that does not correspond to
any of the previously presented classes. The fact that neither the previously presented patterns nor
the random patterns fall into this sector suggests that the network indeed only stores memory of
the presented patterns and is not in the glassy regime. (B) The number of beneficial spin-flips for
presented pattern at the beginning of equilibration (i.e., the number of open equilibration paths)
is shown against pattens’ self-overlap (x-axis in (A)). For stable patterns (sector I) the number of
open paths is anti-correlated with the overlap between the attractor and the presented pattern. For
unstable patterns (sector II), the number of open paths is on average larger than that of the stable
patterns. However, there are fewer paths available to the previously presented patterns compared
to the random patterns. In (A,B) patterns evolve with rate µeff = 0.01 and the network’s learning
rate is optimized accordingly. The sharp transition between sector occupations indicates that our
results are insensitive to the classification threshold for self-overlap (currently set to qα > 0.8), i.e. any
threshold value between sectors I and II would result in the same classification of patterns. (C,D)
Similar to (A,B) but for static patterns in a network with a similar learning rate to (A,B). Simulation
parameters: L = 800 and N = 32. 111
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Figure B.5 S5 Open equilibration paths and participation ratio. (A) The mean
number of open paths (i.e., the beneficial spin-flips at the beginning of equilibration) is shown
for stable, unstable, and random patterns (colors) as a function of the effective mutation rate
µeff in networks trained with the optimal learning rate λ∗(µ). (B) The participation ratio

π(σj) = (
∑

i
m2

i,j)
2∑

i
m4

i,j

, with mi,j = ⟨Φi|σj⟩ is shown for the pattern σ1 with the lowest energy

(orange), the l pattern σN with the highest energy (purple). The mean participation ratio
averaged over all patterns is shown in green. (C,D) Similar to (A,B) but for static patterns
(µ = 0). The learning rate of the network in this case is tuned to be optimal for the mutation
rate specified on the x-axis. Simulation parameters: L = 800 and N = 32.
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Figure B.6 S6 Eigenvalues of networks with memory against dynamic and static
patterns. (A) The first Γ1, the 10-th (Γ10), the 20-th (Γ20), and the last (ΓN=32) non-
trivial eigenvalues of a network of size L = 800 presented with N = 32 patterns is shown
as a function the patterns’ effective mutation rate (different shades of blue). In each case,
the network is trained with the optimal learning rate λ∗(µ). The trivial eigenvalues are
shown in different shades of red, with their rank indicated in the legend. For small µeff all
trivial eigenvalues match the prediction γk = −1, which implies that the network updates
fast enough to keep the patterns within the N -dimensional sub-space. For larger mutation
rates, some of the trivial eigenvalues deviate from −1, indicating that evolving patterns start
spanning in a larger sub-space. Moreover, as the mutation rate (or learning rate) increases
the gap between between the non-trivial eigenvalues broadens. (B) Similar to (A) but for
static patterns in networks trained with a learning rate λ∗(µ) optimized for the mutation
rate specified on the panel’s x-axis. In contrast to (A) all trivial eigenvalues remain equal
to −1 independent of the learning rate, implying that the static patterns remained within
the non-trivial N -dimensional sub-space. Similar to (A) the gap between the nontrivial
eigenvalues broadens with increasing learning rate.
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Figure B.7 S7 Stability condition for patterns during equilibriation. The stability
condition in eq. C14 (dotted line) is used to classify stable (blue) and unstable (red) patterns
for (A) the patterns that have a squared overlap with one dominant eigenvector m2 =
⟨ΦA|σν⟩2

> 0.85, and (B) the patterns that are constrained to a small sub-space A spanned
by up to 10 nontrivial eigenvectors; in this case, m2

A =
∑

a∈A ⟨Φa|σν⟩2 > 0.85. The shading
indicate the number of eigenvectors needed to represent a pattern from dark (one) to light
(ten). (C, D) Similar to (A, B) but for static patterns in networks trained with the same
learning rate as in (A, B). In general more static patterns reach the threshold of m > 0.85 as
these patterns remain constrained to the N-dimensional subspace spanned by the non-trivial
eigenvectors {Φi}. Simulation parameters: N = 32, L = 800, µeff = 0.02, and networks are
trained with the optimal learning rate λ∗(µ).
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Appendix C

Supplementary figures for
risk-utility tradeoff shapes memory
strategies for evolving patterns

The following chapter consists of the figure supplements of the preprint

O. H. Schnaack, L. Peliti, and A. Nourmohammad. “Risk-utility tradeoff
shapes memory strategies for evolving patterns”. In: arXiv:2110.15008
[physics] (Oct. 2021). arXiv: 2110.15008

in chapter 5.
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Figure C.1 S1 Standard deviation of affinities for pre-encountered patterns. Solid
lines shown the numerical estimates for the standard deviation of pattern affinities (σA)
divided by the scale of the affinity (A0) for different numbers of patterns N (colors), using
Hopfield model to simulate of repertoires. Dotted lines show the analytical estimates, using
(A) the full solution in Eq. S14, and (B) the approximation in Eqs. 4 & S22. Simulation
parameters: L = 100, µeff = 0.01, Θ = 2.

115



Supplementary figures for risk-utility tradeoff shapes memory strategies for evolving
patterns

A B

ri
sk

,
σ
A
/
〈A

〉

mean affinity, 〈A〉/〈A〉max

µeff = 10−5

0.001
0.01
0.02
0.05

0.0

0.5

1.0

1.5

2.0

0.5 0.6 0.7 0.8 0.9 1.0

accessible region

κ

ri
sk

,
σ
A
/
〈A

〉

mean affinity, 〈A〉/〈A〉max

0.0

0.5

1.0

1.5

2.0

0.5 0.6 0.7 0.8 0.9 1.0

accessible region
κ

Figure C.2 S2 Pareto front for risk-utility tradeoff of memory for evolving patterns.
Similar to Fig. 2 in the main text, the risk-affinity Pareto front for the optimized objective
function Q(λ∗) (Eq. 3) is shown for different mutation rates (colors) by varying the risk
tolerance κ along each line, for the shape parameters (A) Θ = 4, and (B) Θ = 8. In both
cases, N = 200.
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Figure C.3 S3 Distribution of pattern affinities. The distribution of affinities between
a memory repertoire and patterns from previously enchanted classes are shown for different
effective mutation rates µeff and risk tolerance κ in different panels. The distributions are
characterized based on the simulations using Hopfield network (red; see Appendix C), the
process for deriving the cumulant-generating function in Eq S19 (blue), the Edgeworth
approximation for the probability density function in Eq. S24 (pink), and the Gamma
distribution with the matching mean and variance (dotted lines). For small (µeff · κ) in
(A-C) all distributions are comparable and as suggested by the Kullback-Leibler divergence
in Eq. S28, the Gamma distribution is a good approximation to the underlying distribution
of affinities. For larger (µeff · κ) in (D), the optimal learning rate becomes large (Eq. 5), and
the repertoire only remembers the most recently encountered patterns, resulting in the break
down of the analytical approximations. Simulation parameters: L = 200, N = 40, and Θ = 2.
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Figure C.4 S4 Standard deviation of affinities for random patterns. Solid lines show
simulation results for Θ = 2 and dashed lines give the analytic result from Eq. S42. (A) shows
results for constant number of pattern classes N = 30 and for different effective mutation
rates µeff (colors). (B) shows results for constant µeff = 0.01 and for different numbers of
pattern classes N (colors). In both cases we observe, that when the learning rate λ is large
and only one pattern class is stored in the system the fluctuations of random affinities are the
largest as there is no self averaging over all stored patterns. When the system can learn close
to the optimum (maximal affinity for stored patterns with small fluctuations) the prefactor
in Eq. S42 reaches the naïve expectation 1/N and the fluctuations of random overlaps are
averaged over all stored patterns. When the learning rate become small and the system can
no longer follow the evolution of the patterns, the system effectively stores many additional
states and the random fluctuations are averaged over all these states. As a consequence, the
fluctuations σχ go to zero. Simulation parameters: L = 100, Θ = 2.
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Figure C.5 S5 Optimal learning rate for three phases of memory. The optimal
learning rate λ∗ corresponding to the different strategies in Fig. 3 is shown for different
values of risk tolerance and mutation rate. Fast learning with λ ∼ 1 corresponds to the
phase of single memory storage (light), where only the memory of most recent encounter is
retained. On the other hand, slow learning λ ≪ 1 corresponds to the phase where effectively
no memory is stored (dark). The triangle of good memory is associated with intermediate
rates of learning. Simulation parameters: L = 200, N = 40, and Θ = 2.
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Figure C.6 S6 Three phases of memory discrimination for different shape parame-
ters of the affinity function. Similar to Fig. 3 the phase diagram shows the discrimination
ability of repertoires (AUROC) between familiar patterns with prior encounter history and
random patterns, for different shape parameters of the affinity function (A) Θ = 4 , and (B)
Θ = 8. Other parameters: Parameters: L = 200, N = 40.
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Figure C.7 S7 Three phases of memory discrimination uncovered with simula-
tions of Hopfield networks. Similar to Fig. 3 the phase diagram shows discrimination
ability of repertoires (AUROC) between familiar patterns with prior encounter history and
random patterns. The phase diagram is acquired by direct simulation of memory, using the
correspondence between repertoires with shape parameter Θ = 2 and Hopfield network; see
Appendix C for numeral technique. The low risk region on the left side of the dashed line is
not accessible by simulations, which explains the differences between the simulations and
results of the analytic approximation shown in Fig. 3. Parameters: L = 200, N = 40, and
Θ = 2.
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