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Abstract
One of the major challenges to enable automated driving is the perception of other road users in
the host vehicle’s vicinity. Various automotive sensors that provide detailed information about
other traffic participants have been developed to handle this challenge. Of particular interest for
this work are Light Detection and Ranging (LIDAR) and Radio Detection and Ranging (RADAR)
sensors, which generate multiple, spatially distributed, noise corrupted point measurements on
other traffic participants. Based on these point measurements, the traffic participant’s kinematic
and shape parameters have to be estimated.

The choice of a suitable extent model is paramount to accurately track a target’s position, orientation
and other parameters. How well a model performs typically depends on the type of target that
has to be tracked, e.g. pedestrians, bikes or cars, as well as the sensor’s setup and measurement
principle itself. This work considers the creation of extended object models and corresponding
inference strategies for tracking automotive vehicles based on accumulated point cloud data.

We gain insights into the extended object model’s requirements by analysing automotive LIDAR
and RADAR sensor data. This analysis aids in the identification of relevant features from the
measurement’s spatial distribution and their incorporation into an accurate target model. The
analysis lays the foundation for our main contributions.

We developed a constrained Spline-based geometric representation and a corresponding inference
strategy for the contour of cars in LIDAR data.

We further developed a heuristic to account for the integration of the measurement distribution on
cars, generated by LIDAR sensors mounted on the roof of the recording vessel.

Last, we developed an extended target model for cars based on automotive RADAR sensors. The
model provides an interpretation of a learned Gaussian Mixture Model (GMM) as scatter sources
and uses the Probabilistic Multi-Hypothesis Tracker (PMHT) to formulate a closed form Maximum
a Posteriori (MAP) update.

All developed approaches are evaluated on real world data sets.
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1
Introduction

Contents
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problems And Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Structural Outline Of The Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1 Motivation

A topic of increasing interest in the automotive industry is the advancement to secure autonomous
driving systems. This interest gave raise to Automated Driving (AD) and Advanced Driver
Assistant Systems (ADAS). These systems are informing or warning the driver, or are taking
control of some function of the vehicles, with respect to their level of automation. They are
required to ensure a safe interaction with the vehicle’s environment. Therefore, a major challenge
that needs to be accounted for is the perception of the environment and, in specific, other traffic
participants in the host vehicle’s vicinity. To get information about the environment, a set of sensors
have been developed. The most commonly used sensor systems are Ultrasonic, Radio Detection
and Ranging (RADAR) and Light Detection and Ranging (LIDAR) sensors, and also cameras. Each
of these sensors uses different measurement principles, leading to different information about the
environment. Cameras provide images with varying resolution and color channels, the Ultrasonic
sensor provides distance measurements, and RADAR and LIDAR sensors in general are point
cloud sensors. Here RADAR sensors are desirable as it is less affected by weather conditions like
rain, while LIDAR sensors provide a generally higher resolution with less noise. Each of these
data types requires a tailored approach to allow for the detection and tracking of other traffic
participants. The focus in this work is put on the point cloud sensors.

1



2 CHAPTER 1. Introduction

Modern LIDAR and RADAR sensor systems have an increasingly high resolution, which in turn
provides a relatively large number of point measurements from the environment. This high
resolution allows to receive multiple spatially distributed measurements from a single target as
it can occupy multiple resolution cells. This stands in contrast to classical sensor systems. Air
traffic RADARs, for example, provide at most a single measurement from a target. The additional
information about the target’s spatial occupancy in modern RADAR and LIDAR allows for the
estimation of the target’s shape as well as the kinematic parameters of a point target. This problem
is typically referred to as the extended target tracking problem [MCS+14, GBR17a].

The choice of a suitable extended target model is of most importance to find a good estimate
of a target’s dimensions. It has to account for the measurement distribution on the target, prior
knowledge about the target’s shape, and measurement noise properties.

The properties of these measurements vary strongly in the respective aforementioned point cloud
sensors. LIDAR sensors provide a larger amount of measurements distributed on the 3d contour
of the target per time step. In contrast to that, current RADAR sensors provide only a limited
number of planar measurements from material dependent scattering sources. Exemplary data of
single frames from the respective sensor data in the nuScenes data set [CBL+19] are provided in
Figure 1.1.

We will focus on the data driven development of suitable extended target models for tracking cars
based on modern automotive LIDAR and RADAR point cloud sensor systems.

1.2 Problems And Contributions

This thesis considers the problem of extended target tracking for automotive point cloud sensor
systems. The focus is specifically centered on the extended target models with respect to different
point cloud sensors and their setup dependent incorporation of prior knowledge. Here a special
interest is put on the measurement distribution and sizes of traffic participants as prior knowledge
and the development of closed form inference strategies.

Suitable requirements for extended target models are often stated on general assumptions, e.g.
that measurements from cars are generated from a 2d rectangular contour [GLO11, BRAD16] of
the target or radially defined shape models with symmetry constraints [WÖ15, HSRD16], that
measurements are generally following a uniform distribution on their volume or that the target’s
extent may be described by a general Gaussian distribution. Further works on the other hand
have analysed the measurement distribution of traffic participants for single targets or a small
set of recordings of multiple targets. These revealed general scan patterns and assumptions,
such as approximately rectangular shapes for cars in LIDAR data [GLO11], a scatter source
behaviour [BML+17, SD18] for cars in RADAR data and elliptical representations for bicycles in
both sensor types [GLO11, HDKD18].
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a) LIDAR Scene. b) RADAR Scene.

c) LIDAR single target zoom. d) RADAR single target zoom.

Figure 1.1: Example point clouds measured by LIDAR and RADAR sensors on a randomly picked
scene of the nuScenes data set [CBL+19]. The points are accumulated over 3 seconds. The lower
figures show the zoom on a single car, to illustrate the scattering data a single target generates.

We start with a minor contribution, by performing an analysis of point cloud sensor data on
large publicly available point cloud data sets in Chapter 3. We specifically seek to confirm the
measurement distributions found in the small scale or single target analysis and find further details
that can be integrated into an extended target model, for pedestrians, bicycles, and cars. The
analysis is based on the LIDAR and RADAR data from the nuScene [CBL+19] and LIDAR data
Lyft level 5 [KUH+19] data set. The typical assumptions for pedestrians and bicycles yield for all
sensor types, thus, they are not further considered in this thesis.

For cars in LIDAR data a general box with distinctly rounded corners can be determined. We
further note that an anisotropic scaling of length and width is desired due to the size distribution
of the analysed vehicles. These observations significantly differ from the corners of a rectangular
bounding box approximation [GLO11, BRAD16]. Radially defined contour models with symmetry
constraints [WÖ15, HSRD16] can handle these rounded corners well but they are not easily
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constrained to a prior shape while introducing anisotropic scaling. Determining a model that
contains the detailed shape features while providing anisotropic scaling would be desirable.

We further notice the influence of the mounting position of the LIDAR sensor on the measurement
distribution on the car. Sensors mounted on the height of the recording vessels bumper mostly
capture the 2d contour of the target car. For LIDAR sensors mounted on the roof, on the other hand,
a complex distribution is visible, measurements are mostly still generated from the target’s 2d
boundary but a smaller but significant amount of measurements stems from the volume. Efficiently
including this measurement distribution into the model would further be desirable, as typical
scenarios assume measurements to stem purely from the contour or to be uniformly distributed
over the complete volume of the target [GBR17b].

We further confirm the scatter source behaviour of RADAR data on a large scale. We note that an
extended target model was proposed in [SD18]. The work incorporates the complex measurement
generation based on Gaussian Mixture Model (GMM) densities learned on a large amount of
recorded data from a single vehicle. This model performed an update using particle filter methods,
in which the density served as a likelihood function for the particles themselves. This method,
however, depends on sampling methods and suffers from the curse of dimensionality [BBL+08].
Thus, avoiding the particle filter would be desirable.

The research questions arising can be stated as:

1. How can the contour structure of cars in LIDAR data be effectively incorporated into the
extended target model with a suitable inference strategy, while constraining the shape
changes to anisotropic scaling?

2. How can the structured distribution of measurements be efficiently incorporated into the
extended target model?

3. How can the complex distribution of scatter sources in RADAR data be incorporated into an
extended target model with closed form updates instead of particle filter methods?

The contributions for these questions are:

1. A Cartesian defined B-spline contour model for the tracking of cars and the statement of
a closed form update based on a radially defined measurement model. The focus of this
contribution lies on the introduction of the rounded corners as prior known shape features,
while constraining the shape changes to anisotropic scaling. This contribution is based on [2].

2. An asymmetric noise heuristic for the incorporation of the measurement distribution on the
target’s contour and volume based on the radially defined contour of a prior target estimate.
This contribution is based on [3].

3. We provide an interpretation of a learned GMM as an extent representation with scatter
sources. We relate the scatter source setup to multi target tracking and state a closed form



CHAPTER 1. Introduction 5

update based on the relation. We specifically use a Maximum a Posteriori (MAP) update with
the Probabilistic Multi-Hypothesis Tracker (PMHT) for extended targets. This contribution is
based on [1] and [4].

1.3 Structural Outline Of The Thesis

The remainder of this thesis is structured as follows. We start with the foundations in Chapter 2, in
which we lay out Bayesian inference and extended target tracking. We further investigate available
automotive point cloud sensors and corresponding data sets and provide a suitable metric for the
corresponding annotations. Thereafter, we move to the data analysis of typical automotive point
cloud sensors in Chapter 3, which lays out the structure of measurement on different target types
and cars in specific, based on which we move on to extended target models. For these we have
two sections which consider LIDAR and RADAR models separately, with respect to the previous
analysis of the point cloud distribution. In Chapter 4 we provide an extended target contour model
for LIDAR data based on Cartesian defined B-splines. The chapter also includes the asymmetric
noise heuristic to incorporate the distribution of measurements that is generated by a typical roof
mounted LIDAR sensor. In Chapter 5 we provide a suitable closed form update for a learned
Gaussian mixture based extended target model by exploiting the relation of extended and multi
target tracking. Finally, we provide a conclusion and an outlook as well as possible future work in
Chapter 6.
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This chapter is meant to lay the foundations for all contributions of this thesis. We start with the
basics to Bayesian tracking in Section 2.1 and a representation of linear and non-linear Kalman
filtering methods in Section 2.2 and Section 2.3. After this short review of filtering methods, we
continue with an introduction to extended target tracking and modelling in Section 2.4. We further
dive into suitable motion models for tracking vehicles in Section 2.5 and provide a small list of
available point cloud sensor types in Section 2.6 and public data sets that feature these sensor types
in Section 2.7. We end the chapter with a short overview of metrics for the evaluation of extended
targets in Section 2.8, where we focus on annotation bounding boxes which are typically used in
automotive data sets.

2.1 Bayesian Inference

The aim in Bayesian inference is to provide an estimate of a target’s true unobservable state xl by
incorporating the information provided by a new measurement zk [Koc16].

7
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The estimate in Bayesian estimation is generally represented as a Probability Density Func-
tion (PDF) p(xl|zk) which incorporates all information available on time step l based on all
measurements from time step 0 to time step k. The time varying relation between the state
and the measurements can be described by a Hidden Markov Model (HMM) where the state xk

at time k is a hidden variable that changes with transition function f(·) and emits dependent
observations zk at time k with the measurement function h(·). A typical representation of the true
state’s behavior and the relation to observed measurements can be found in Figure 2.1.

Figure 2.1: HMM of the typical state transition in recursive Bayesian estimation. The boxes describe
hidden variables and the circles describe observed variables.

From this Markov process follows the application of the Markov property, such that each state is
only dependent on the last state

p(xk|xk−1, ...,x0, zk−1, ..., z0) = p(xk|xk−1) (2.1)

and the assumption of conditional independence of measurements given the state on one time step

p(zk|xk−1, ...,x0, zk−1, ..., z0) = p(zk|xk) . (2.2)

For the estimation of the hidden variables based on the observed variables, three steps for updating
the knowledge about the state are generally available in the framework Bayesian.

The propagation of the estimated PDF from time k − 1 to time k is referred to as the prediction.
This procedure is used for l > k and by the use of the Markov process it can be formulated as the
propagation of our PDF to the next time step, as no further measurements will be available between
k and l, such that l = k + 1. Thus, the prediction can be performed via the Chapman-Kolmogorov
equation [Koc16], such that

p(xk+1|zk, ..., z0) =
∫
p(xk+1|xk)p(xk|zk), dxk . (2.3)

The incorporation of new measurements into the estimate is referred to as filtering or update and
provides the integration of the information of new measurements on time step k, such that l = k.
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This step is performed using the Bayes rule [Koc08] such that

p(xk|zk) =
p(zk|xk)p(xk|zk−1)∫
p(zk|xk)p(xk|zk−1)dxk

. (2.4)

Here p(zk|xk) states the measurement likelihood.

The backwards propagation of knowledge from measurements is the optional final step in Bayesian
tracking and is referred to as smoothing or retrodiction to update states in the past with information
from future measurements. This back-propagation is generally performed using the prediction
and filtering steps of future time steps. This propagation may be stated recursively, such that for
l < k

p(xl|zk) =
∫
p(xl+1|xl) p(xl|zl)

p(xl+1|zl)
p(xl+1|zk)dxl . (2.5)

This approach is specifically useful for the estimation on a batch of time steps or offline estimation
of entire trajectories.

2.2 Kalman Filter

The Kalman filter [Kal60] is the optimal Bayesian estimator for linear systems in which all random
variables are assumed to be Gaussian distributed.

Thus, the problem may be state based on a process model with a linear transition function

xk+1 = Fkxk + vk (2.6)

and respective linear measurement function

zk = Hkxk +wk , (2.7)

where the transition matrix Fk and measurement matrix Hk express the linear relation of the state
propagation from time k to k + 1 and of measurement and state on time step k, respectively. The
process noise vk and measurement noise wk are both assumed to be zero mean Gaussian white
noise, such that wk ∼ N (0,Rk) and vk ∼ N (0,Qk).

Further assuming our estimate xk on time step k to be another Gaussian distribution with xk ∼
N (x̂k,Pk) yields a conjugate prior and results in the Kalman filter with the prediction equations

x̂k|k−1 = Fkx̂k−1|k−1 , (2.8)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk , (2.9)
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and update equations

Sk = HkPk|k−1H
T
k +Rk , (2.10)

Kk = Pk|k−1H
T
k S

−1
k , (2.11)

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) , (2.12)

Pk|k = Pk|k−1 −KkHkPk|k−1 . (2.13)

These provide the best linear unbiased estimator. The proof may be found in the original work
[Kal60].

2.3 Nonlinear Kalman Filter

In the case of nonlinear transition or generation models, the Kalman filter can not be applied directly
as the nonlinearity, and related state dependency introduces arbitrary errors in the estimation. One
of three commonly used approaches to handle these nonlinearities can be deployed: the Extended
Kalman Filter (EKF), the Unscented Kalman Filter (UKF), and the particle filter. We will omit the
particle filter as it is not required for the contributions in this thesis, but it should be mentioned for
the sake of completeness.

The nonlinear transition function is typically described as

xk+1 = f (xk) +wk , (2.14)

whereas, the measurement function can be stated as

zk = h(xk) + vk . (2.15)

2.3.1 Extended Kalman Filter

The Extended Kalman filter linearises the non-linear functions h and f with respect to the current
state. While the linearisation removes any provable optimality, it is deployed in many applications.

The standard equations for the EKF with time index k are stated with the prediction equations

x̂k|k−1 = f (x̂k−1|k−1) , (2.16)

Pk|k−1 = FkPk−1|k−1F
T
k +Qk , (2.17)
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and the update equations

Sk = HkPk|k−1H
T
k +Rk , (2.18)

Kk = Pk|k−1H
T
k S

−1
k , (2.19)

x̂k|k = x̂k|k−1 +Kk(zk − h(x̂k)) , (2.20)

Pk|k = Pk|k−1 +KkHkPk|k−1 , (2.21)

in which the EKF uses the first order Taylor-series expansion to provide the Jacobians

Hk =
∂h

∂x

∣∣
x̂k|k−1

, (2.22)

Fk =
∂f

∂x

∣∣
x̂k|k

. (2.23)

We note that higher order Taylor series expansions can be used if appropriate.

2.3.2 Unscented Kalman Filter

The unscented Kalman filter uses a set of specific weighted samples referred to as sigma points
{Xi}2Li=0 and the actual mean. Here, L describes the state’s dimension such that two sigma points are
chosen per dimension. These are propagated through the nonlinear function, and the covariance
and mean are then reconstructed based on their weighted average calculated.

The sigma points and corresponding weights are defined as

X0 = x̂ , (2.24)

Xi = x̂+
(√

(L+ λ)P
)
i
, i = 1, ..., L , (2.25)

Xi = x̂−
(√

(L+ λ)P
)
i
, i = L+ 1, ..., 2L , (2.26)

Wm
0 = λ/(L+ λ) , (2.27)

Wm
i = 1/(2(L+ λ)), i = 1, ..., 2L , (2.28)

W c
0 = λ/(L+ λ) + (1− α2 + β) (2.29)

W c
i =Wm

i , i = 1, ..., 2L , (2.30)

where Wm
i are the first-order weights and W c

i are the second-order weights, while
(√

(L+ λ)P
)
i

denotes the ith row of square matrix root. Here λ = α2(L+ κ)− L, such that α and β describe the
spread of the sigma points with respect to the covariance matrix of the estimate.



12 CHAPTER 2. Foundations

With these weighted sigma points the prediction equations may be stated as

x̂k|k−1 =

2L∑
i=0

Wm
i f(Xj) , (2.31)

Pk|k−1 =

2L∑
j=0

W c
j (f(Xj)− x̂k|k−1)(f(Xj)− x̂k|k−1)

T +Qk, (2.32)

while the update may be stated as

ẑk =

2L∑
i=0

Wm
i h(Xi) , (2.33)

Sk =

2L∑
i=0

W c
i (h(Xi)− ẑk)(h(Xi)− ẑk)

T +R , (2.34)

Ck =

2L∑
i=0

W c
i (Xi − x̂k|k−1)(h(Xi)− ẑk)

T , (2.35)

Kk = CkS
−1 , (2.36)

x̂k|k = x̂k|k−1Kk(zk − ẑk) , (2.37)

ˆPk|k = Pk|k−1 −KSkK
T . (2.38)

2.4 Extended Target Tracking

In classic target tracking, a single scan is assumed to generate at most a single point measurement
on a target per time step. In extended target tracking, a single target may give rise to multiple
spatially distributed measurements per time step. The measurements provide information about
the target’s spatial occupancy and, therefore, its extent and shape. An overview of the topic was
presented in the surveys [MCS+14, GBR17b].

In Extended Target Tracking (ETT) targets can generate multiple spatially distributed noise cor-
rupted measurements per time step, a set of measurements Zk on time step k can be described
as

Zk = {zki }N
k

i=1, (2.39)

where Nk ≥ 0 is the number of measurements at time k, while zki is the kth measurement this time
step.



CHAPTER 2. Foundations 13

The aim is to estimate the PDF p(x|z) over the true state x of the target consisting of the kinematic
parameters xkin and the extent parameters xext over time such that

x =
[
xT
kin,x

T
ext

]T
. (2.40)

Here, it is useful to expand the HMM which we saw in Section 2.1. The Markov process can now
be modelled with multiple steps as the ith measurement is assumed to be generated via a source
ẑi on the target’s extent, with

Ẑk = {ẑkj }
Mk
j=1 , (2.41)

the set of all sources at time step k with cardinality Mk. This measurement generation process is
illustrated in Figure 2.2.

Figure 2.2: HMM for extended target tracking.

Three categories are often used for the description of the measurement sources. Measurements
either stem from a set of discrete reflection points on the target, measurements can be emitted from
the continuous contour of the target, or measurements can stem from the entire continuous volume
of the target. The scenarios are illustrated in Figure 2.3. Each of these scenarios poses a different
problem to be solved. We note that a model for tracking data in one of these scenarios needs to
incorporate the respective assumption to provide an accurate estimate.

2.4.1 State Of The Art Extended Target Models

State of the art extended target models are typically divided into categories. One of the differentia-
tion criteria for the target models is the degree of complexity. In [GBR17b] these complexity types
are separated into three levels.

The simplest way to model an extended target is to not track the extent parameters and, hence,
reduce the estimation to point targets that can generate multiple measurements per time step.
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: measurement : reflection point

Figure 2.3: Measurement generation scenarios in extended target tracking. The figures from
left to right show the scenarios with measurements originating from the contour, measurements
originating from the volume and measurements from discrete sources.

Another group is tracking the extent with basic geometric representations. A typical example for
this type is the representation as an ellipse, which is often represented by a density model based
on a Gaussian distribution. These models typically use the spread of the measurements to estimate
the extent of the target directly. One of the first developed and most commonly used elliptical
approaches are the Random Matrix (RM) approach [Koc08] and its extension [FFK10] which track
the target’s extent by using the measurement spread of new measurements and treating the extent
parameters independently from the target’s kinematics. Other elliptical representations have been
developed which focus on different aspects of the tracking problem. There are elliptical models
which focus on the inclusion of a measurement rate for the target in the Gamma Gauss Inverse
Wishart (GGIW) filter [GO12], models for the introduction of structured measurements on an
elliptical target’s boundary with the volcanormal density [BDD17] or the application of truncated
Gaussian distributions [XWB+20b], and models with the focus on the representation of the extent
via the semi axes length and orientation as separate state parameters in a joint state vector in the
MEM-EKF and MEM-EKF* [YB19]. Other simple geometric representations are circles, line like
models or rectangles [PMGA11, GLO11, BRAD16, BFH12, GS05].

Complex models can handle a large variety of shapes and measurement distributions and are not
necessarily constrained to basic geometries. Complex models can be based on a set of ellipses
joined by a shared kinematic state [GLO11]. A more general approach is the Random Hypersurface
Model (RHM), first introduced for elliptical targets in [BH09] and extended to general star-convex
targets in [BH14]. It is a general description of extended targets via a radial contour function
h(xext, α) with respect to a center point m, where α is the angle from center to surface. This
representation allows for modelling arbitrary star-convex shapes, based on the chosen contour
function as illustrated in Figure 2.4. Different contour functions have been developed for the RHM.
The original star-convex RHM [BH14] used Fourier coefficients to describe the contour, but other
approaches have been deployed, with the most notable being the Gaussian-process model [WÖ15].
The radially defined RHM allows for inference based on measurements from contour and volume
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Figure 2.4: A typical radial contour function.

by using a scaling factor s on the contour function h(xext, α) where measurement sources on a
continuous contour can be modelled. The RHM represents measurement sources on the targets
contour by using a scaling factor of 1. For measurements originating from the volume of the
shape, it is assumed that the squared scaling factor is uniformly distributed between 0 and 1, as a
property of the radial definition of the contour, can be deployed. This can be introduced to the
target by approximating the scaling factor with a Gaussian distribution as described in [BH14].
Further non star-convex models are developed with level set RHMs in [ZFBH16], deformation
functions [CLL17] on a set of control points as well as random polytopes in [Hei20], which is
effectively using a set of joint half spaces to model the extended target.

2.4.2 Update Strategies For Extended Targets

One of the important steps in extended target tracking is the update of the state parameters with a
set of new measurements. This requires to define a relation between state, measurement source
and measurement.

The description of the target’s volume and therefore the space of sources may be provided by a
probability density with prime examples like the RM approaches [Koc08, FFK10] in which the
extent will be updated with the spread matrices of all measurements on a time step, effectively
using the statistical distribution of measurements to update the extent parameters.

For continuous contour-based descriptions of the target’s extent, a continuous space of sources is
available. For these, an association to a single source, which is optimal in a determined measure
for exampe the Euclidean distance, is typically performed. A prime example where this is the case
is the radially defined RHMs [BH11, WÖ15]. The chosen measure is the angular distance from
mean to measurement and mean to contour. The radial contour function has a unique solution at
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the angle, defined by the line from mean to measurement with distance 0 for every measurement’s
position except the mean itself.

Other models assume fixed point sources with respect to sensor properties, for which an association
problem is established that has to be solved. An example of this is [GRMS14] in which multiple
sources on a contour are determined based on sensor cells.

One specific example of resolving these problems is the PMHT filter for extended target tracking.
The approach was used with discrete grid-based measurements and as the Histogram-PMHT
in [WD14], with RHM discretised contour functions in [5, 6] and [TLTK19], and with fixed, hand-
crafted measurement sources on a rigid target in [BWS+17]. We will elaborate on the PMHT for
extended target tracking in the following section as it will be used in the LIDAR and RADAR
target model contributions.

2.4.3 PMHT Multi Source Extended Target Update

We will refer to the use of the single extended target version of the PMHT from our prior
works [5], [6]. The setup of measurement generation considered with the extended target PMHT
may be described with the following scenario. For a batch of K time steps, a time-varying state rep-
resented as a set of state realisations X emits a set of measurements Z from a set of state-dependent
sources, where the set of emitting sources is described via the set Ẑ .

The quantities we are interested in, with respect to the batch nature of the problem, may be
described as

X = {xk}Kk=0 ,

Z = {Zk}Kk=0 ,

Ẑ = {Zk}Kk=0 ,

in which the sets of measurements and sources on a single time step k are

Zk = {zki }
Nk
i=1 ,

Ẑk = {ẑkj }
Mk
j=1 .

Here, Nk is the number of measurements and Mk is the number of measurements sources on time
step k, such that zki describes the ith measurement on time step k, while ẑkj is the jth potential
measurement source on time step k. Each measurement source is assumed to be state-dependent
via a potentially nonlinear function ẑkj = h(xk, j) such that the measurement equation for a single
measurement may be described as

zki = h(xk, qi) +wk
qi . (2.42)
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Here, wk
qi is the measurement noise with which the i’th measurement is generated on time step k,

where the noise is assumed to be zero-mean Gaussian white noise such that wk
qi ∼ N (0, Rk

qi) with
covariance matrix Rk

qi . We introduce the index qi, which denotes the real source ẑkqi , responsible
for generating the measurement zki . We note, that qki is inherently unobservable, thus, we must
assume all possible associations to measurement with qki ∈ [1, ...,Mk]. Here we will assume that
each source can generate multiple measurements and denote the set of all possible assignments as

A = {qki } . (2.43)

We further denote the probability of a source j generating a measurement as

P (qki = j) = πj , (2.44)

such that the sources are treated as independent random variables with respect to the measurement
generation.

The stated random variables may be described in the sense of a hidden Markov model. The
unknown data to be estimated is our set of states X , the observed data is our set of measurements over
all time steps Z , which express the dependent sources Ẑ over all time steps, while the unobserved
data is the set of unobservable parameters Ak which denote the associations to a source. We will
here assume that the set of sources Ẑ is fully described by the relation to the set of states and is not
treated as a random variable.

The PMHT uses the Expectation Maximization (EM) [NKM12] formulation for the calculation of a
MAP estimate of the state parameters

XMAP = argmax
X

p(X|Z) , (2.45)

which via marginalization over hidden parameters and Bayes rule, be expressed as

XMAP = argmax
X

∫
A
p(X ,A|Z) = argmax

X

∫
A
p(Z|X ,A) . (2.46)

The EM algorithm is an alternating optimization algorithm based on an initial guess. The two
steps are the Expectation and Maximization step.

• The Expectation step as the name suggests calculates the expectation of the log likelihood
function Q(X l+1;X l) based on the current estimate X l referred to as the Q-function based
on an initial estimate.

• The Maximization step then seeks to find the parameters that maximize the Q-function.

This procedure is repeated until the algorithm converges or is stopped after a fix set of iterations.
The important part is the statement of the Q- function and the provision of a suitable maximisation
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strategy. Based on this formulation the EM’s optimization function may be stated as

Q(X l+1;X l) =
∑
A

log
(
p(X l+1,A|Z)

)
p(A|X l,Z) , (2.47)

where l describes the EM iteration. The elements in X l will be denoted as xl
k. Here, the posterior

probability may be expressed using Bayes rule

p(A|X ,Z) =
p(Z,X ,A)

p(Z,X )
, (2.48)

in which the joint probabilities can be stated with the following proportionalities

p(Z,X ,A) ∝ p(x0)

K∏
k=1

p(xk|p(xk−1))

×
K∏

k=1

Nk∏
i=1

πqiN
(
zki ;h(xk, qi), R

k
qi

)
,

(2.49)

p(Z,X ) ∝ p(x0)

K∏
k=1

p(xk|p(xk−1)

×
K∏

k=1

Nk∏
i=1

Mk∑
j=1

πjN
(
zki ;h(xk, j), R

k
qi

) .

(2.50)

By inserting the Equations (2.49) and (2.50) into Equation (2.48) we get the conditional

p(A|Z,X ) =

K∏
k=1

Nk∏
i=1

ωk
i,qi , (2.51)

with

ωk
i,j =

πjN
(
zki ;h(xk, j), R

k
j

)∑Mk

t=1 πtN
(
zkt ;h(xk, j), Rk

t

) . (2.52)

Each ωk
i,j here has the interpretation of the posterior probability that the ith measurement was

generated by the jth source. Based on this reformulation, we are able to state the Q-function of the
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PMHT as
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∑
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(2.53)

This function includes all possible associations and reacquires the complete calculation of every
single one of them, which is not computationally feasible. However, following the same derivations
as in the classic PMHT [SL95], a new optimization function Q̃ can be stated, which is equivalent to
Q in its optimization, with

Q̃(X l+1;X l) = log
(
p
(
X l+1, C|Z

))
− 1

2

Mk∑
j=1

(z̃j − h(xk, j))
T
R̃k

i (z̃j − h(xk, j)) ,
(2.54)

where the pseudo measurements and covariance matrices are used with

z̃j =

∑|Z|
i=1 ω

k
i,j ẑ

t
i∑|Z|

i=1 ω
k
i,j

, j ∈ [1, ...,Mk] , (2.55)

R̃k
j =

Rk
j∑|Z|

i=1 ω
k
i,j

, j ∈ [1, ...,Mk] . (2.56)

This calculation provides us with an alternative Q function in the Expectation step of the EM
algorithm with only a single pseudo measurement and pseudo covariance per measurement source,
leaving the Maximization step to be performed. The optimisation is relatively easy, as the given
function Q̃ states a problem that may be optimised using respective Kalman smoothers [WRS02],
which allows for the calculation of

argmax
XL+1

= Q̃(X l+1;X l) . (2.57)

2.5 Dynamic Models

To predict an estimate between measurement updates, a process model needs to be stated. This
process model has to be suitable to describe the target’s motion properties. A wide range of motion
models with different targets has been developed [LJ05].
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A free mass model often describes the motion of pedestrians, and the motion of bicycles is often
modelled using a nearly constant velocity model. For this thesis, however, only one motion
model will be used to represent the motion of cars, the coordinated turn model with a polar
velocity [RHG14]. The kinematic parameters of the coordinated turn can be described as

xkin = [x, y, φ, v, ω]T , (2.58)

with the position [x, y] the yaw φ, the polar velocity v along the target’s yaw and the yaw rate ω. It
describes the transition from time k − 1 to k under the assumption that the torque and acceleration
can be modeled as zero-mean Gaussian white noise. The transition function in this model is

xk = f(xk−1) + g(xk−1)vk , (2.59)

where vk ∼ N (0,Q), in which

Q =

(
σv̇ 0

0 σω̇

)
(2.60)

is the covariance matrix modelling the assumption that the derivative of velocity and yaw rate is
modelled as independent zero-mean white noise. These are mapped to the state dimension based
on this relation with function

g(xk−1) =


0.5 cos(φ)t2 0

0.5 sin(φ)t2 0

t 0

0 t

0 0.5t2

 . (2.61)

The state transition function in this model is stated as

f (x) =


x+ 2v

ω sin(ωt
2 ) cos(φ+ ωt

2 )

y + 2v
ω sin(ωt

2 ) sin(φ+ ωt
2 )

φ+ ωt

v

ω

 . (2.62)

2.6 Automotive Point Cloud Sensors

The sensors we are interested in are point cloud generating sensors. They provide spatially
distributed point measurements of varying quality and quantities, based on their working principle
and mounting position. For this work, we will only categorise the sensors based on their type and
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work with the data on point cloud level and not on the low-level measurement principles as we
focus on the data fusion aspect.

Two major types of LIDAR sensors have been developed for automotive purposes, scanning
LIDARs with rotating mirrors and flash LIDARs which requires no moving parts [War19]. As of
now LIDAR sensors deployed in public data sets are mostly scanning LIDARs. These provide 3d
point measurements from the environment. Their major differentiation comes from the number of
layers, with 4, 16, 32 or 64 layers and in special cases a variation of the mounting position.

The deployed automotive RADARs are Frequency Modulated Continuous Wave (FMCW) systems
[HTS+12]. The RADAR sensors used in public data sets are long-range RADAR sensors with a 76 -
81 GHz band which can provide multiple measurements per target. These radars are often planar
sensors in contrast to the commonly used 3d LIDAR sensor systems.

The measurement patterns on the targets of interest need to be understood and accounted for in
the extended target model to allow for a correct estimation and inference strategy. This includes
the degree of freedom in the shape representation that needs to be modelled to accurately represent
the target, the distribution of the measurements’ origins on the target and sensor specific quantities
such as the noise which is present in the measurement generation.

2.7 Automotive Point Cloud Data Sets

data set LIDAR RADAR Camera Annotation boxes
Kitti [GLSU13]

√
×

√ √

Oxford RobotCar [MPLN17] [BGM+20]
√ √ √

×
nuScenes [CBL+20]

√ √ √ √

Lyft Level 5 [KUH+19]
√

×
√

×
Argoverse [CLS+19]

√
×

√ √

Woodscape [YHH+19]
√

×
√ √

H3D [PMGC19]
√

×
√ √

Astyx [MK19]
√ √ √ √

A2D2 [GKM+20]
√

×
√ √

Radiate [SDPM+21]
√

×
√ √

A*3D [PSP+20]
√

×
√ √

Toronto-3D [TQM+20]
√

×
√ √

Waymo [SKD+20]
√

×
√ √

PixSet [DMT+21]
√ √ √ √

Table 2.1: Available automotive data sets with attribution of available sensor types and the
availability of annotation bounding boxes.

In recent years a list of data sets with different point cloud sensors and sensor setups has been
released. These data sets are generated with different goals in mind.
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There are general data sets which provide 3d point cloud objects, e.g. the Shapenet data
set [CFG+15]. These data sets provide data of whole scenes or objects. They focus on a full
representation of a large set of objects as 3d point clouds.

We, however, are particularly looking for automotive data sets that feature point cloud sensors and
annotations of other traffic participants. For these a multitude of data sets has been provided over
the past decade shown in the following listing, in which we included only data sets that feature at
least one point cloud sensor.

• The Kitti data set [GLSU13] was released as an early contender featuring a car equipped with
a 64 layer LIDAR sensor on the roof and multiple front facing cameras, with bounding box
annotations for different traffic participants and with recent extensions of the semantic labels
in Semantic Kitti [BGM+19].

• The Oxford RobotCar data set [MPLN17] uses two 2d LIDAR sensors as well as a 4 layer
3d LIDAR sensor on the roof and 6 cameras and its RADAR extension [BGM+20] features a
high resolution 3d, 76 to 77 GHz RADAR.

• The nuScenes data set [CBL+20] featuring 32 layer LIDAR on the roof, a set of 5 77 GHz
RADAR sensors and a set of cameras with recent updates including point wise semantic
information and an environmental map. It further provides annotation bounding boxes with
a frequency of 5 Hz.

• The Lyft Level 5 data set [KUH+19] contains three LIDAR sensors in different mounting
positions, one 64 layer LIDAR on the roof and two 40 layer LIDAR sensors in the front
bumper. This data set is annotated as well and provides bounding boxes with a frequency of
5 Hz.

• The Argoverse data set [CLS+19] features 7 cameras and data from two 32 layer LIDAR
sensors combined with information from an environmental map. It further features bounding
box annotations for other traffic participants.

• The WoodScape data set [YHH+19] provides data from a 64 layer LIDAR sensor as well as
from a set of 4 fisheye cameras. It further adds annotation bounding boxes.

• The H3D data set [PMGC19] which features 3 cameras and a 64 layer LIDAR on the roof has
a focus on crowded scenarios and provides further 3d annotation bounding boxes.

• The A2D2 data set [GKM+20] features a set of 6 cameras and 5 16 layer LIDAR sensors on
the vessel’s roof with the focus on semantic information in the camera data and a mapping
on the respective LIDAR information. No bounding box annotations are available.

• Radiate [SDPM+21] is a data set that uses a high resolution 79 GHz RADAR, a 32 layer
LIDAR sensor and a stereo camera, with focus on different weather conditions. It also
provides 3d bounding boxes.
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• The A*3D data set [PSP+20] features a spinning 64 layer LIDAR and two front facing cameras.
It has one of the highest annotation frequencies with 0.2 Hz.

• The Astyx data set [MK19] provides data from a 16 layer LIDAR sensor and RADAR data
from their own sensors. In addition to camera data, annotations are provided. We note that
only a small set of annotated frames is available yet.

• The Toronto-3D data set [TQM+20] also provides data from a 32 layer LIDAR sensor and 5

panoramic cameras, with the aim of semantic segmentation. As the semantic segmentation is
the focus no annotation bounding boxes are provided.

• The Waymo open data set is one of the largest available data sets. It features a set of 5 LIDARs
in different mounting positions and five cameras [SKD+20]. The data set is notable as it uses
separate annotations on LIDAR and camera instead of joint annotations.

• The PixSet data set [DMT+21] is one of the newest data sets available with a 64 layer LIDAR
and a 76−81 GHz FMCW RADAR as well as 3 cameras. The LIDAR in this data set is a flash
LIDAR which stands in contrast to all aforementioned data sets which use LIDAR sensors
with rotating mirrors. It further features annotation bounding boxes.

An overview of automotive data sets with point cloud sensors is listed in Table 2.1. It shows
the availability of sensor types and annotations in the corresponding data set to provide a short
summary of the aforementioned data sets.

2.8 Metric for Extended Target Trackers Based On Bounding Box

Annotations

One of the most common annotations used for LIDAR and RADAR data are bounding box
annotations. These are typically generated based on camera and LIDAR data and require a lot of
manual effort from a team of annotators. While the bounding box itself is no perfect estimate of
the target’s shape it is the most deployed approach in the available data set.

To compare an estimate of an extended target to this bounding box different metrics can be used,
which provide different advantages and drawbacks. Even though the work is mostly considering
elliptical targets, a good overview over typical metrics is provided in [YBG16].

A simple and direct comparison of the state parameters is often performed using the Mean Squared
Error (MSE). This approach assumes, however, that the state can be represented in the same
manner as the ground truth bounding box’s parameters. A center point can typically be defined
for every extent model, it is, however, no suitable metric for extended target models that exceed
basic geometries and especially for models with incompatible shape parameters.
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From computer vision the Intersection over Union (IoU) is often deployed to determine the
similarity of rectangular estimates. If no overlap exists between an estimate with the ground truth
this score will always be 0. Even if one shape has a perfect estimate of the target’s shape and
another is completely different, there will be no difference in the score itself. We further note that
calculating this score for non polygon shapes can be a complex task.

Figure 2.5: Illustration of the Gaussian Wasserstein metric for rectangular extended targets. For
two different shapes the best association is provided.

A rather recent work for extended target metrics for elliptical targets was proposed in [YBG16]. In
this work the Gaussian Wasserstein [GS84] distance and more specifically a discretised version
based on the Optimal Subpattern Assignment (OSPA) [SVV08] distance was proposed to evaluate
the similarity of elliptical extended targets. For two sets of discretised points {p1x, ..., pnx} and
{p1x̂, ..., pnx̂} on the surface, defined by state x and the estimate x̂, the OSPA distance can be
expressed as

dOSPA = min
π∈Π

(
1

n

n∑
i=1

‖pix − p
π(i)
x̂ ‖p

) 1
p

. (2.63)

This definition allows to be used on other shapes as well. While the paper indicates that the use of
the 4 boundary points on the ellipses main axis can be used it also proposes to use the metric for
other shapes such as rectangles.

For this work we resort to using the Wasserstein distance for large scale evaluations. The discretised
points chosen for it are the corners of the rectangular bounding box as well as the points on the
middle of each side which is exemplarily illustrated in Figure 2.5. We will further use the p = 1

order Wasserstein distance as it is commonly used in the application of the OSPA metric in
multi-target-tracking [HVV15].
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Modelling extended targets typically depends on the sensor and the target type to be represented.
Here, we are interested in the distribution and patterns that automotive cloud sensors generate
on a specific target type and desirable features an extended target model has to fulfill to allow
for accurate inference strategies. We will first state the problem in Section 3.1. Next, an overview
on state of the art strategies for the analysis of measurement distributions for automotive point
cloud sensors is provided in Section 3.2. The analysis strategy we use in this chapter will then
be presented in Section 3.3. We will use representative data sets namely nuScenes [CBL+20] and
Lyft level 5 [KUH+19]. This choice and a more detailed overview of the data sets are discussed in
Section 3.4. The analysis executed on the chosen data sets is provided in Section 3.5. It is performed
with respect to typical target types of interest, which will be bicycles, pedestrians and cars. Based
on the analysis, we will state the requirements of a suitable extent model for the respective target
type in Section 3.6 and compare it to a state of the art radially defined extended target model.

3.1 Problem Setting

Recursive estimation typically tries to incorporate as much prior information into the target models
as possible to improve the estimation. This includes information about the measurement generation

25
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function as well as the process models. Examples from classical point target tracking are the
incorporation of sensor and target-dependent noise terms as well as physically motivated motion
models. In extended target tracking, more complex assumptions about the target’s measurement
generation process can be made, as the spatial distribution of measurements on the target needs
to be accounted for. This includes the distribution of measurements on the target, which is
an additional factor that needs to be incorporated and can vary with respect to the target type
and sensor used, resulting in different signatures and patterns. It is important to note that
the measurement distribution in this work will be considered in a bird-eye projection of the
measurements as it is commonly considered in extended target tracking.

Modelling extended targets and incorporating the distribution of measurements into their extent
becomes a more conquerable task with the availability of diverse automotive perception data sets.
Therefore, a large-scale analysis of the measurement distribution concerning the most prominent
sensor setups needs to be investigated to correctly incorporate it into the estimation procedure.
This analysis should provide information about the general requirements for specific target types in
the perception of different point cloud sensors and configurations. It includes the general size that
needs to be covered, the expected number and the distribution of measurements on the target, and
a determination of the measurement generation scenario for extended target tracking. Analysing
the distribution of the measurements for targets with the same type but different sizes can be
challenging as a shared space for a quantitative analysis is required.

Therefore, the problems we are facing in the analysis of the measurement of a specific target type
are the accumulation and extraction of point clouds belonging to the specified target type,the
determination of a space in which this data can be analysed over all instances of the same type,
and the establishment of the measurement scenario in extended target tracking. We will orient
ourselves on state of the art analysis strategies to tackle these problems and aim for the statement
of requirements an extended target model needs to incorporate to suit the data of a specific target
type well.

3.2 State Of The Art Analysis Methods

In [BML+17], the data points from a 77 GHz RADAR sensor reflected on a single standing target
Sport Utility Vehicle (SUV) have been accumulated in the SUVs ego coordinate system. This
allowed the authors to analyse the distribution of measurements on the car to find characteristics
on it with respect to reflection centers, penetration depth and relative distribution concerning the
angle under which the car was seen. The work emphasised that scattering centers, especially on
the car’s wheel housings, are prominent features that need to be accounted for and that RADAR
measurements are not simply generated on the surface of the target, as the RADAR is able to
penetrate the materials of the car. Similarly, the works of [SD18] accumulated short range RADAR
measurements in the targets coordinate system but accounts for the targets potentially varying size
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by scaling all measurements into a unit coordinate system, with the targets rotational center as the
origin, providing information about the cars shape independent from its extent. This work focused
on density representations of the data and also found the scatter source behaviour especially on
the wheelhouses, similar to the results from [BML+17]. This analysis system was further used
in [HDKD18] for a set of RADAR sensors as well as a 4 layer LIDAR sensor, providing further
statistical measurement distributions for a single car, a set of bikes, and a set of pedestrians in
scaled coordinates. In contrast to the aforementioned works [BML+17, SD18], [HDKD18] did not
focus on the aspect angles and the conditionals but used a single marginal over all measurements
instead. It is of further note that the marginal of the LIDAR data was split into the 4 layers of the
sensor to provide an insight into the specific behaviour available in this datatype. These strategies
all work with accurately annotated data which makes it possible to provide all measurements
for the same target by using the annotation bounding box on the scan to extract measurements
belonging to the target. In addition to these works, we note the work of [MWW+20] in which
the data from the nuScenes data set is accumulated and post-processed locally to allow for the
generation of synthetic measurements from the accumulated data for single target instances.

3.3 Data Preparation And Analysis Strategy

Our aim is the analysis of the point cloud data for a set of target types, namely pedestrians, bicycles,
and cars. Based on the state of the art strategies shown in Section 3.2, we will state our analysis
with respect to cuboidal bounding boxes. Given annotated data sets, we will use all annotations
belonging to a specific type to provide information about its model requirements.

First, we aim to calculate some basic statistics for cuboidal bounding box annotations to the general
dimension of each target type. This provides a general statistic of the expected extent in length,
width and height and, therefore, the scaling behaviour the model requires. We, however, note that
the cuboidal bounding box does not provide the actual structure, distribution or expected number
of detections posed by the measurements and instead serves as an approximation of the contour
of the target. A new coordinate system is required to represent the distribution of measurements
over all targets of the same type. For this purpose we use the coordinate system proposed in the
work [SD18] by Scheel et. al. in which all measurements are accumulated in the coordinate system
of the target’s bounding boxes and are scaled with respect to their annotation’s length and width
centered around the car’s rear axis, providing all measurements in a joint coordinate system. In
contrast to this approach, we use a bounding box centric coordinate system that removes the direct
correlation to the car’s rotation center but provides all measurements relative to the car’s center.
This step is necessary as we want to work with a large number of different targets, for which no
such common center exists.

Thus, given a bounding box with translation mbb = [x, y, z]T , the 3d orientation with roll, pitch
and yaw φ = [α, β, γ] and size Sbb = diag(l, w, h), where the sizes are the targets half length l,
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half width w and half height h, we can transform a single frame into the vehicle coordinates. The
relation from the global frame into the coordinates of an annotation can be described as

zg = Rφbb
(Sbbzl) +mbb (3.1)

where zg is the measurement in global coordinates, zl describes the measurement in the annotation
coordinates while Rφbb

is the rotation matrix. The inverse transformation, therefore, provides the
function from local to global coordinates. This transformation is exemplarily shown for a single
frame in Figure 3.1 which provides this transformation from a bird-eye perspective.
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Figure 3.1: Example of the coordinate transformation on a single frame of the nuScenes data set.

In principle, the complete data from the scene can be transformed into this coordinate system. We,
however, are only looking for data belonging to the target. We enforce this by using a threshold on
all target dimensions in scaled coordinates filtering measurements that are in the range [−1.2, 1.2]

in all three dimensions. We note that this may include ground detections and further set a lower
threshold in height to effectively remove these detections based on their distance to the annotation
bounding box’s ground plane. The third dimension is dropped for detections from planar sensors
but works analogously in the data extraction and requires no ground filtering otherwise. Based
on this data, we can provide the statistical distribution as histograms of measurements in scaled
coordinates allowing us to provide an approximation of the properties mentioned above, such
as structure and measurement distribution. We can further provide the number of extracted
detections on the target concerning the distance to the sensor.

We note that this histogram will include all data points in the data independent of the position
of the sensor. While it provides the general measurement pattern, it obfuscates effects like the
potential self-occlusion with respect to the relative viewpoint from the sensor to the annotated
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target, as it is visible in the single frame shown in Figure 3.1. To avoid this obfuscation, we will
further create conditional distributions for the aspect angle δ, the angle between the bounding
boxes orientation vector and the vector from the sensor to the annotations’ center in the unit
coordinate system, shown in Figure 3.2a. Here, we decided to specifically use eight conditionals
over data that fall into a specific aspect angle interval, each spanning a range of 0.25 π. The regions
are centred around

[−π,−0.75π,−0.5π,−0.25π, 0, 0.25π, 0.5π, 0.75π] (3.2)

as illustrated in Figure 3.2b.
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a) Illustration of the aspect angle δ for a 2d bound-
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b) Illustration of the angular ranges by the index
of center angles indicated in Equation (3.2).

Figure 3.2: Illustrations of the aspect angle and the conditional ranges.

These statistics and accumulations then allow for an interpretation and description of requirements
that an extended target model needs to provide for the combination of sensor setup and target
type. Here we specifically focus on the current view on the target concerning self-occlusion and
similar phenomenons.

3.4 Representative Data Sets

For this work, we will focus on two representative data sets from the list of available ones in
Section 2.7: the nuScenes data set [CBL+20] and the Lyft level 5 [KUH+19] data set.

The nuScenes data set provides a total of 750 scenes, with each covering approximately 20 seconds
of recordings. The sensors it features are

• one 32 layer LIDAR sensor on the roof of the car which captures data with a frequency of 30
Hz, and
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• five 77 GHz FMCW RADAR sensors that provides planar detections with a 13 Hz capture
frequency .

In addition to the sensor data, we are provided with target annotations on keyframes where a
keyframe occurs with a frequency of 2 Hz. Each of these annotations belongs to a single time-
varying target in the scene, which is referred to as an instance. These instances have class labels,
e.g. car, pedestrian, or bicycle.

This data set was chosen as it features both LIDAR and RADAR sensors. It further provides the
necessary cuboidal annotations that allow for interpolation of single instances to all sensor data
frames in between. Of these sensor types, the availability of RADAR data is a rare feature over all
automotive data sets, as most data sets focus on camera and lidar sensor systems. Only three other
data sets featuring the sensor type are available. As of today, there are, to our knowledge, only the
Oxford robotics data set [BGM+20], which provides no annotations, the Astyx data set [MK19],
which provides only a minimal amount of annotations and the newly released [DMT+21], which
was not considered, as the release was too recent.

The Lyft level 5 data set, on the other hand, provides 180 scenes of approximately 20 seconds of
recordings. The sensors it features are

• one 64 layer LIDAR sensor on the roof of the car which captures data with a frequency of
10 Hz, and

• five 40 layer LIDAR sensors in front at the height of the front bumper with a frequency of
10 Hz.

This data set provides keyframe annotations and instances in the same fashion as the nuScenes data
set. The keyframes occur with a frequency of 5 Hz and cover compatible classes to the nuScenes
data set. We note, however, that only annotated frames are provided, in contrast to nuScenes
which features all updates of every sensor, effectively reducing the available update frequency of
the sensors from 10 Hz to 5 Hz.

The Lyft level 5 data set is desirable for its variety in the sensors mounting positions. Roof-mounted
LIDAR sensors are commonly used in publicly available data sets. However, a setup with a set of
bumper-mounted sensors represents another setting that may be used. It is desirable as classic
automotive sensor setups like Ultrasonic already use it. Therefore, the data set allows for evaluating
the influence the mounting position can have on the typical measurement distribution available.

We summarize the data set choice of Lyft level 5 and nuScenes with the following points:

• The data sets feature a large set of scenes and in turn a large set of frames to analyze.

• Both of these data sets provide instance-based cuboidal bounding box annotations for their
respective sensors, which, as described in the state of the art in Section 3.2, is commonly
used.
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• Representative LIDAR and RADAR sensors are available.

• The influence of the mounting position on the LIDAR measurements on a target may be
observed.

With this choice of data sets we can proceed to the point cloud data analysis.

3.5 Point Cloud Analysis

We will provide the statistics shown in Section 3.4 for pedestrians, bicycles and cars for the data of
the LIDAR and RADAR sensors in the nuScenes [CBL+20] and Lyft level 5 [KUH+19] data set.

First, we will provide a statistical distribution over the width and length of each target type’s
general bounding boxes sizes, which will be aggregated jointly over both data sets in Section 3.5.1.
We illustrate histograms for length and width and jointly over both dimensions to illustrate the
ranges and correlations to indicate the model’s scaling behaviour.

Next, an analysis based on the extracted data points for every sensor will be generated. The
threshold for ground removal in LIDAR data in scaled coordinates, described in Section 3.3,
was chosen as 0.8 for all models after visual inspection of the accumulated point clouds. The
accumulated point cloud data will be shown as histograms with each sensor type’s marginal
and all eight conditionals. The histograms are spanned over the selected dimensions in scaled
coordinates covering the extracted spaces. The resolution of the histograms was tuned by hand
with the aim to capture visible features if possible. For LIDAR data, the histogram is created with
a resolution of 500x500 bins, while the resolution for RADAR data was selected with 100x100 bins.
The dimensions for the histogram will be length and width as it is available in all sensor types
and spans the typical projection used in extended target tracking. For cars and bicycles in LIDAR
data, an additional histogram view in logarithmic scale will be added, allowing to gain further
insights into the measurement distribution. The logarithmic scale is chosen to reveal secondary
measurement sources, as the Birdseye projection might obfuscate.

3.5.1 Bounding Box Size Distribution

We provide general statistics over the ranges covered on the bounding box ranges in Table 3.1. This
table lists the number of instance bounding boxes used by the target type as well as the respective
interval, mean and standard deviation of length and width. The histograms over length and width
are shown in Figure 3.3 for pedestrians, in Figure 3.4 for bicycles and in Figure 3.5 for cars.

Pedestrians For pedestrians, 12223 instances are used. The dimensions for pedestrians cover
lengths from 21 cm to 2.24 m with a 95-percentile of 1.04 m and widths from 22 cm to 1.97 m with
a 95-percentile of 0.91 m. We note that the sizes in the extrema of the ranges are kids as the smaller
end and pedestrian that carry or pull objects, as they are included in the annotation bounding box.



32 CHAPTER 3. Point Cloud Sensor Data Analysis

Target Type #Instances Length (m)
Range, mean, std , 95-percentile

Width (m)
Range, mean, std ,95-percentile

Pedestrian 12223 [0.21,2.24], 0.71, 0.19, 1.04 [0.22,1.97], 0.66, 0.14, 0.91
Bicycle 1759 [0.81,4.40], 1.77, 0.27, 2.08 [0.21,1.77], 1.67, 0.20, 0.88

Car 21578 [2.24,7.83], 4.65, 0.45, 5.48 [0.92,3.48], 1.92, 0.17, 2.22

Table 3.1: General statistics of the annotation bounding boxes length and width.

Both dimensions follow an approximately Gaussian distribution and are close to each other in
mean and variance as visible in the histograms over both dimensions and a difference of 5 cm in
the mean and 5 cm in the standard deviation. A general correlation can be found in the histogram
over both dimensions as the joint distributions orientation is in general about 0.25 π, suggesting a
direct relation of length and width. It is, however, noteworthy that it is slightly skewed towards
longer than broader targets. This skew can be attributed to the motion of arms and legs, which
provides a generally larger range in motion along with the orientation of the pedestrian.
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Figure 3.3: Histograms for pedestrian bounding box sizes.

Bicycles For bicycles, 1759 instances are available, which is the smallest number of instances for
all analyzed target types. Therefore, we expect potential biases in the aspect angle regions and
coverage of the targets. A significant difference in length and width is shown with the length
ranging from 81 cm to 4.40 m with a 95 percentile of 2.08 m and the width ranging from 21cm to
1.77 m with a 95 percentile of 0.88 m. The significant outliers in this distribution are unexpected at
first. However, it is explained with the annotation rules as a pedestrian walking and pushing his
bicycle as well as additional object’s on it are also included in the bounding box, leading to a larger
range of widths and length. The distribution is not simply Gaussian but seems to consist of an
overlap of different distributions emphasizing a larger variety in the annotated targets’ sizes.
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Figure 3.4: Histograms for bicycle bounding box sizes.

Cars The largest number of 21578 instances is available for cars. The space we cover in length
and width is significantly different from each other, as the length ranges from 2.24 m to 7.83 m
and provides a 95-percentile of 5.48 m. In comparison, the width ranges from 0.92 m to 3.48

m providing a 95-percentile of 2.22 m, with the upper limits being extreme outliers of atypical
cars. For the relation of length and width, we note that the length can vary significantly more
substantially than the width. This is expressed in the parameter wise and joint distribution where
the orientation of the distribution is nearly axis-aligned, suggesting a lower correlation between
the dimensions and, therefore, a larger independent range.
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3.5.2 Measurement Distribution

We provide the histograms in scaled coordinates for our selected data sets. For nuScenes in
Figure 3.6 and for Lyft level 5 in Figure 3.7. For both data sets, a group of distributions for each
combination of sensor and target type is generated. For every combination, nine histograms
are provided. These are eight aspect angle conditionals ordered according to the illustration in
Figure 3.2b and with the marginal in the center. The sensor types will specifically be the complete
set of RADAR sensors and the single roof-mounted LIDAR sensor in the nuScenes data set, as well
as the bumper- and roof-mounted LIDAR sensor from the Lyft level 5 data set. We further add the
histograms in logarithmic scale over the cars and bicycles marginals, and exemplary conditionals
in Figure 3.8 to illustrate the measurement distribution with respect to secondary structures as the
dominating part of measurements can obfuscate secondary measurement sources in these targets.
The number of extracted frames containing measurements provided per sensor and the target type
are listed in Table 3.2, which is strongly dependent on the sensor system and the data set size.

nuScenes
Pedestrian Bicycle Car

Roof LIDAR 1.816.693 94.800 3.311.451
77 GHz RADARs 153.715 18.180 1.755.623

Lyft
Pedestrian Bicycle Car

Front LIDARs 5.895 3.482 93.914
Roof LIDAR 27.411 22.998 570.362

Table 3.2: Number of Frames per target and sensor type for both of the selected data sets.

We will go through the target types in the following, describe the distribution available per target
type, and clarify sensor-specific similarities and details.

Pedestrians For pedestrians a general circular extent in scaled coordinates is available in the
marginal over all sensor types shown in Figures 3.6a, 3.6b, 3.7a, 3.7b. Comparing the LIDAR
sensors to each other reveals that the general measurement distribution over the conditionals is
similar as well. Each conditional shows a bias towards the sensor as the pedestrian is self occluding
the other side such that only half the pedestrians body generates measurements. The major
difference between the LIDAR sensors is the density of the measurements. The roof-mounted
sensors with 32 and 64 layers provide a dense coverage off the target, in the bumper-mounted
40 layer sensor a less dense coverage of the shape is visible in the bumper-mounted. This can be
attributed to the number of measurements accumulated which is smaller than that of the higher
resolution sensors, as well as a stronger coverage of the legs which are more dynamic and provide
a less rigid measurement source than the upper body. Comparing the RADAR data to the LIDAR
data instead reveals major differences in the density. The general density in scaled coordinates
covers more space and is less precise in covering the target’s true contour. The most interesting
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a) Lidar data b) Radar data

Pedestrian nuScenes

c) Lidar data d) Radar data

Bicycle nuScenes

e) Lidar data f) RADAR data

Cars in nuScenes

Figure 3.6: Accumulated data for the nuScenes data set.
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a) Bumper-mounted LIDAR data b) Roof mounted LIDAR data

Pedestrian Lyft level 5

c) Bumper mounted LIDAR data d) Roof mounted LIDAR data

Bicycle Lyft level 5

e) Bumper mounted LIDAR data. f) Roof mounted LIDAR data

Cars Lyft level 5.

Figure 3.7: Accumulated data for the Lyft level 5 data set.
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observation is however found in the conditionals. RADAR measurements, in contrast to the
LIDAR sensor measurements, are biased towards the direction of the self occluded side instead of
the sensor.
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Figure 3.8: Additional histograms for every LIDAR sensor in logarithmic scale for the marginal
over the accumulated data for cars and bicycles.

Bicycles The histograms for bicycles are shown in Figures 3.6c, 3.6d, 3.7c, 3.7d, the additional
logarithmic sacled heatmaps are found in Figure 3.8. As the number of bicycle measurements is
the lowest, we first acknowledge that biases in the visibility ranges are clearly available, especially
for the conditionals 4, 6 and 8 in the nuScene’s RADAR data and the conditionals 1, 2, 3 and 5

in the Lyft level 5’s front LIDARs only sparser measurements. We note that LIDAR and RADAR
behave significantly different. All LIDAR sensors provide visible structures from the driver and
bicycle with respective self occlusions based on the aspect angle. The relative distribution on the
bike and the driver is further changing as the driver provides a larger surface in conditionals 6 and
8. No such structure can be found in the RADAR data. The data represents a mostly unstructured
distribution around the center, while general biases towards the occluded side are visible in the
conditionals.

Cars Cars are rigid targets in contrast to the other target types with freely moving limbs. The data
for these sensors is shown in Figures 3.6e, 3.6f, 3.7e, 3.7f, the additional logarithmic sacled heatmaps
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are found in Figure 3.8. The data in all LIDAR sensors provides strong measurements from the
targets’ 2d boundary as it provides the largest horizontal surface. An astonishing feature in this
accumulation is the clear boundary and the structure of the corners visible in scaled coordinates.
As we scaled a large number of different cars with different length a larger variance in these
features would be expected. The data further shows that additional structures are available in
the measurement distribution for the mounting position and number of layers, specifically in the
Lyft Level 5 data set but also in the nuScenes data set. We can clearly see structures of the upper
part of the vehicle such as the A, B, and C Pillar and parts of the roof in the histogram for the
roof-mounted sensor while they are essentially not captured by the sensors mounted in bumper
height. In the LIDAR sensor of the nuScenes data set, these structures are also visible, but the
dominant part of measurements still stems from the targets’ boundary.

3.6 Discussion Of Target Types And Model Requirements

With the statistical analysis of the general extent and measurement distribution, we can discuss
requirements for extended target models for each analysed target type.

Based on the bounding box statistics, pedestrians may be modelled with a small extent, which
seems to be correlated in length and width. The complete accumulated pattern seen in scaled
coordinates provides an approximately circular measurement distribution. The conditionals
suggest that, with the relative orientation, a partial view on this circle is found in LIDAR, where
based on self-occlusion, only the side directed to the camera is visible, while an inverse effect
is visible in RADAR data. The distribution of pedestrians with respect to the aspect angle, in
essence, represents crescent density for LIDAR and skewed ellipses for RADAR. This allows
for the use of ellipse models, but a bias will be introduced due to the self-occlusion represented.
However, the error introduced is small in relation to the true extent and could be incorporated as a
symmetry effect or bias on the extent with respect to the sensor position. We further note that the
partial visibility based on the sensor field of view makes decoupling the motion direction from the
orientation of the shape desirable as the distribution is not oriented with the motion direction. The
extent models suitable for this are the elliptical models like the RM approach [Koc08, FFK10] and
newer models like the GGIW [GO12] or the MEM-EKF* [YB19]. We emphasize that a model that
may handle single measurements well would be recommended. We further note that, for RADAR
data perceived with a higher distance tracking the extent will mostly state a problem because
mostly a single measurement will be perceived from the target.

Bicycles are a complex type in comparison to pedestrians, as they are a combination of two
objects. We first note that the general length and width suggest a strong difference in the targets
dimensions. For LIDAR data a structured distribution of measurements may be found. While the
general measurements are distributed on both objects, a more significant amount is generated from
the pedestrians body as it vertically occupies more space. The bicycle, however, is still providing
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us with a significant amount of measurements which further allows for the reception of a clearly
elongated target with smaller width on the front and back. For RADAR data, no clear structure
was found. We still see penetration effects, especially on the side views, but the analysis suggests
that skewed elliptical distributions are found. The target’s orientation is here similar to the target’s
general motion direction which allows them to be coupled. Thus, the distribution of bicycles
can again be described by an ellipse for different reasons than the pedestrian. The extent models
suitable for this are the already mentioned elliptical models. This time we are suggesting the use
of a motion model that ties orientation and main axis of the ellipse together while higher moments
of the orientation change can be considered, such that e.g. a polar constant velocity or coordinated
turn model might be suitable. This is, however, not directly supported in the typical ellipse models
as extent and kinematic parameters are estimated without correlation.

The distribution for cars is rigid and more structured than the distribution of the former two target
types. Based on the scaling behaviour, an anisotropic scaling model is desirable as length and
width are, in general, independent. For LIDAR data, the general boundary of cars can be described
as a rectangle with rounded corners. The corners are significant features that should be included.
We further note that a set of secondary sources on the volume of the target is available due to the
structures identified on the upper part of the vehicle. These pose a measurement distribution that
needs to be incorporated into the target model to avoid biases in the estimation of the size of the
target. Cars based on RADAR data, however, pose a completely different scenario regarding the
measurement origin. While the LIDAR data provides measurements from the complete car’s 2d
boundary and structure on the volume due to the projection of 3d structures, measurements from
RADAR stem from specific scatter sources. Thus, the scenario provides measurement origins that
are neither just the surface nor the general volume. Instead, a model with distinct measurement
origins based on the accumulated measurements is desirable.
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Remark. This chapter is based on the conference publication [2] which create a cartesian B-spline model for
automotive vehicle tracking based on LIDAR data and compares it with Gaussian process based extended
target models with respect to model requirements. It also includes the asymmetric measurement noise
heuristic for the data from roof mounted LIDAR sensors to reduce estimating biases based on the conference
publication [3].

4.1 Problem Setting

We aim to create an extended target model that captures the features of a car provided in LIDAR
scans. Since the data consist of dense point clouds, we are aiming mainly to create a model which
incorporates a robust approximation of the vehicle’s shape and measurement distribution on the
target. In addition, we want this model to be constrained to the features required without creating
an unnecessary degree of freedom.

Based on the accumulated data from Chapter 3 we can identify the rounded corners of the vehicle
as the most prominent feature that the model needs to incorporate, while the sides and the front

41
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are in general straight lines. We further determined that an independent scaling of length and
width is desired to capture the variance in the vehicles’ extent. Thus we are looking for a state that
is described by the shape representation with

xext = [l, w]T , (4.1)

and a shape model that can describe the desired shape features relative to these parameters.
These requirements cover the geometric features of the model. However, the distribution of
measurements needs to be covered with respect to the sensor’s mounting position. The data
provided from a low mounted LIDAR scanner mostly consists of measurements from the 2d
boundary of the vehicle and, therefore, conforms with typical extended target tracking assumptions.
The measurement distribution for a sensor with a high mounting position differs significantly
from one with a low mounting position. Measurements from specific areas of the 3d boundary
are projected into the 2d coordinates which generate substantial measurements on the targets
volume which are not evenly distributed. This distribution is rather uncommon and needs to be
understood well to avoid the introduction of biases.

4.2 State Of The Art: LIDAR Extended Target Models

We listed the general extended target models of interest in Section 2.4 but emphasize on automotive
LIDAR based related work in this section. Tracking of extended targets based on LIDAR data is a
topic of interest for the scientific community as well as the automotive industry with respect to
automated driving assistance functionality of higher Society of Automotive Engineers (SAE) levels.
In this area different model types are employed in state of the art research.

First, there are models with simple shape representations which describe the target’s extent with a
birds eye view projection of measurements. In [GLO11] the authors explored dedicated extended
target models for different traffic participant types in LIDAR data. For pedestrians they proposed
the use of an elliptical extent model and for cars the authors provided a rectangle approximation
of the shape. In [GRMS14] another rectangular extended target model was used to generate
the origin of LIDAR measurements on the target’s extent to incorporate expected measurement
sources and exploit LIDAR sensor properties, like the implicit order of measurements, in the
source association. In [LOG10] a Gaussian mixture Probability Hypothesis Density (PHD) filter for
extended target tracking has been investigated on simulated data and in [BRG+15] the tracking of
pedestrian targets in automotive LIDAR data has been explored using the Generalized Labeled
Multi-Bernoulli (GLMB) with the GGIW as a target model.

Then, there are complex shape models applied to laser scanner data in the birds eye projection.
With prime examples of the RHM using the Gaussian process model which have been deployed
for vehicle tracking in [HSRD16] as well as in [WÖ15]. These works use, in general, free form
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star-convex models to estimate the target’s extent. In addition to the planar case, extended
target models for automotive targets in 3d space have been explored in [EW19] and [KÖ19], in
which 3d Gaussian processes have been deployed to model the target’s extent. Additionally, a 3d
unclosed non-uniform rational basis spline (NURBS) surface was used instead to model the extent
in [NBW19].

These models are typically simplified shapes with rectangular or elliptical approximations or they
are essentially free shape models which have an increasing degree of complexity with increasing
amount of extent parameters and dimensions. Rectangular approximations make the introduction
of prior knowledge of specific shape parts such as the identified corners very hard. While radial
functions with more expressiveness require a large number of free shape parameter which all
require to be tracked and updated, even though the shape is approximately known in advance. We
further note that constraining a radial function to a desired shape is possible but tedious due to the
radial function parameters that model a Cartesian contour and the non-Cartesian definition makes
the introduction of anisotropic scaling very complex with respect to the shape parameter.

4.3 A Spline Based Automotive Contour Model

To model the shape of extended vehicles with little complexity but the necessary expressiveness,
we propose to use a constrained spline surface as the contour function of an RHM [2]. To model
and track contours on dense data, such as images, splines have been used to great success [BI12].

We will start by stating a general spline contour model for RHMs and provide an update strategy
for dense data. On this free spline model, we introduce constraints forcing it to retain star-convex
shapes while keeping the shape features that are visible in the collected vehicle data.

4.3.1 B-Spline Model

A spline is, in general, a function consisting of polynomial segments of order d. While multiple
different representations of varying complexity can be defined, we will focus on B-splines.

B-splines B(τ) of order d are described as the weighted sum of Nb basis functions Bn,d−1(τ), n ∈
{0, . . . , Nb − 1}, such that

B(τ) =

Nb−1∑
n=0

Bn,d−1(τ) · Pn, (4.2)

with weights Pn and a running parameter τ ∈ T := [0, Nb] and with the additional constraint that

Nb−1∑
n=0

Bn,d−1(τ) = 1,∀τ ∈ T . (4.3)
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Figure 4.1: Example of a closed quadratic B-spline. We show a the weights Pn as orange dots and
the corresponding surface B(τ) in red.

This sum can be expressed as a matrix multiplication

B(τ) = [P0, . . . , PNb−1] ·Bτ , (4.4)

with Bτ = [B0,d−1(τ), . . . , BNb−1,d−1(τ)]
T . An example of a closed Quadratic B-spline is given in

Figure 4.1.

Here, each basis function is defined with finite support over segments of the running parameter
space. These segments are defined by their start and end point via knots {k0, . . . , kNb

} with
kj ∈ T, ∀j.

In the following, we will list a selection of properties that are relevant for the context of this thesis.
Detailed references can be found in [BI12].

• A B-Spline is called uniform, if all knots are equally spaced over the interval [0, Nb].

• A B-Spline is called periodic, if the basis function, weights and the corresponding knots are
defined periodically, such that the last knots act as copies of the first. In order to model the
transition in the period an additional d − 1 knots are required, i.e. a total of Nb + d − 1,
with d the order of the polynomial represented by Bn(τ). However, BN ′

b+i(τ) = Bi(τ) and
PN ′

b+i = Pi for all i ∈ N with the altered number of knots

N ′
b = Nb + d− 1. (4.5)

Note that in the context of periodic functions we will refer toN ′
b asNb for the sake of simplicity.

• B-splines possess d− 1 continuous derivatives. In the case of quadratic B-splines, we enforce
one continuous derivative.
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• Splines allow to reduce their order and, in turn, its continuity at the connection between
two segments by assigning the same weights to two consecutive basis functions such that
the same knot is defined twice. For example defining the two of the three active knots in a
quadratic B-spline, thus a B-spline of order 3 as the same knot results in a line segment. Thus,
polygon contour models are a special case of quadratic spline models where each weight is
defined twice, resulting in line segments.

In the general case the Coxde Boor recursion [DB72] can be used to construct the B-spline of order
d as

Bi,0(τ) =

1, if ki ≤ τ ≤ ki+1

0, otherwise
(4.6)

Bi,d(τ) =
τ − ki

ki+d − ki
Bi,d−1(τ) +

ki+d+1 − τ

ki+d+1 − ki+1
Bi+1,d−1(τ) . (4.7)

However, for the remainder of this paper we will focus on a contour definition with quadratic
B-splines. Therefore, we will omit the index for the order such that Bn(τ) = Bn,2(τ).

Evaluating the recursive formulation in Equation (4.7) for quadratic basis functions leads to a
simple definition of a uniform quadratic basis function [BI12], such that

Bn(τ) = B0(τ − n), (4.8)

B0(τ) =



0.5 · τ2, if 0 ≤ τ < 1

0.75− (τ − 1.5)2, if 1 ≤ τ < 2

0.5 · (τ − 3)2, if 2 ≤ τ < 3

0, otherwise,

(4.9)

with Nb knots defined at the integers n ∈ {0, 1, . . . , Nb}.

For the basis function B0(τ), the defining knots are [0, 1, 2, 3] while the defining knots for each
other basis function are shifted by their respective index.

Here, we note that exactly three basis functions are active for any given τ . An example of the
basis functions of a periodic quadratic B-spline is given in Figure 4.2. With these basis functions, a
contour in the dimensions of the weights can be constructed.

4.3.2 Free B-Spline Model

With the definitions in Section 4.3.1 we can formulate a Cartesian RHM contour function C (τ) via
periodic uniform quadratic B-splines, which are of order 3.



46 CHAPTER 4. LIDAR Extent Modelling And Tracking

0 1 2 3 4 5 6 7 8

0.0

0.2

0.4

0.6

0.8

1.0

Ba
si

s
fu

nc
ti

on
s

τ

Figure 4.2: Eight basis functions in different colors over the space of τ . The sum over all basic
functions is shown as the dotted line illustrating the sum property.

In contrast to typical RHM the running parameter τ will be used as a nuisance parameter in
contrast to the typical radial definition via an angle.

The surface in local coordinates is, in turn, defined via

C (τ) = P ·Bτ =

(
Px,0, . . . , Px,Nb−1

Py,0, . . . , Py,Nb−1

)
·Bτ , (4.10)

where P are the Cartesian weights which will be referred to as basis points consisting of the x and y
coordinates, such that a single basis point is determined by Px,i and Py,i.

In the context of extended target tracking, we are provided with extent parameters

xext := P , (4.11)

which contain the ordered weights of the spline in x- and y-dimension and fully define the shape
of the contour.

This definition of spline-based contours can, in general, represent non star-convex shapes as it is
done in image processing [BI12]. An update with contour fitting approaches can be formulated,
assuming that an appropriate measurement association scheme can be provided. An example is
the use of the PMHT update procedure with discretised surface points from our prior work [6].
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4.3.3 Free B-Spline Update With The PMHT

Using the update approach in our prior work [6] and using the PMHT formulation for extended
target tracking from Section 2.4.3, we may state a set of fix measurement origins determined by
specified run parameters [τ1, ..., τn]. The n hypotheses on the spline surface may be assumed to
generate measurements with equal prior probability πi = 1

m . It is then straightforward to state
the necessary measurement equation for a single measurement z using the contour function from
Equation (4.10):

z = C (τ) +w , (4.12)

with the assumption of additive Gaussian white noise, such that w ∼ N (0, R).

To illustrate the free spline model’s behaviour, we used a simple non star-convex surface modelling
the letter H. We randomly generate 20 equally distributed measurements from the surface per time
step, which are corrupted with zero mean Gaussian white noise with different covariance sizes
R = diag(0.12, 0.12), R = diag(0.22, 0.22), R = diag(0.52, 0.52) and R = diag(1, 1). We further set
the batch size in the update to one for the sake of simplicity as it leads to a simple Kalman filter
update as the measurement equation based for a fix source, denoted by τ , is linear as stated in
Equation (4.10). The process noise covariance matrix that is described by a diagonal matrix where
the variance 0.012 is used for all state extent parameters in between updates, and we initialize
the basis points on a circle of radius 1. The results for all three noise terms after 200 time steps is
shown in Figure 4.3.

The shape in the scenarios is well represented in the first three scenarios. In the fourth scenario,
no shape could be extracted anymore as the noise’s standard deviation exceeds the size of each
volume segment and makes the determination of the features very hard. Here, only a generic
rectangular shape can be determined.

We see that this strategy provides acceptable estimates on simple scenarios concerning different
noise terms. However, the model has three significant drawbacks, as is expected with free shape
models.

First, formulating the model such that it works relative to a position is not trivial as defining this
point is very complicated for free form models. The typical star-convex RHM [BH11] uses the
radial definition of the contour, which forces it to provide a relative shape with respect to the center
of the target. Introducing such constraints to a free moving contour in the same space as the center
point is not trivially possible, as it makes the relation between any basis point and a potential center
point ambiguous, as their relation is, without further constraints, linear. The ambiguity, in turn,
only depends on the choice of noise terms and does not guarantee that the correct interpretation
can simply be kept. On this note, it is also important to mention that no constraint removes the
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Figure 4.3: Measurement noise scenarios over 200 time steps with 10 measurements on each
instance, with an illustration of the prior on the first and posterior of the last time step. These
estimates include the basis points and contour.

self-intersection of the contour. This is a problem that may even occur in rare cases in typical radial
RHMs, if a negative radius occurs, which was noted in [WÖ15].

Second, using the volume scattering has to be adapted significantly, since the radial relation makes
approximations of a uniform distribution possible. Solving this issue would need to lean on a
similar approach to level set RHMs used for polygon tracking approaches presented in [ZFH16].

The third problem is the determination of the number of necessary base points to describe a given
shape, as too few points do not allow for a precise representation of the shape. At the same time,
too many points can easily lead to overfitting, which in turn may lead to self-intersections or
unassociated segments as well as computational load.
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While solving these problems is theoretically appealing, we will focus on the application of the
expressive spline formulation to the tracking of vehicles and introduce prior shape knowledge,
which includes the star-convex property of the target.

4.3.4 A Constraint B-Spline Contour Function

Constraining a spline to a single desired shape is trivial. By placing an appropriate amount of
basis points in desired places with respect to the target’s position, we can introduce handcrafted
shape features. Thus, using splines to model the rounded corners of the vehicle can be done
with relative ease by generating a model that fits the contour of accumulated measurements from
Section 3.5 with a minimal number of state parameters but the desired geometrical representation.
An example of a minimal model with rounded corners is provided in Figure 4.4 in which we orient
ourselves on the boundary visible in the accumulated data for cars in the unit coordinate system
from the data analysis in Section 3.5, specifically the marginals. The model uses 8 basis points
allowing for the design of sides and corners.

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Figure 4.4: Example of a minimal spline model representing the desired car model.

However, the general treatment of the basis points as state parameters would inherently lead to
the same problems we described in the free spline model. Constraining the points with respect to
the dimension of the general shape is desirable. It would reduce the problem and number of actual
state parameters, as the general shape is known and already well described in scaled coordinates.

To introduce the constraints required for the contour function, we focus on a spline surface that
uses a fixed set of basis points with respect to a reference coordinate system. Thus, instead of
keeping the basis points as free state parameters, they are constant, and the only extent parameters
are the parameters of the parent system.

To incorporate the desired anisotropic scaling of the model, we choose the basis points as relative
positions on a bounding box where the bounding boxes half length l and width w are kept as free
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state parameters. Thus, the state can be represented as

xkin = [mT , φ]T , (4.13)

xext = [l, w]T , (4.14)

where the kinematic parameters are the position m = [x, y] and φ as the target’s yaw angle. This
state provides us with the definition of a yaw oriented bounding box, which may be extended to
a coordinated turn motion model as stated in Section 2.5 by introducing higher moments of the
kinematic parameters with the radial velocity and yaw rate. The higher parameters are omitted as
they are not relevant for the extent model.

This state definition allows our contour to be described as scaled versions of a set of fix basis points
with

S C (τ) = S P Bτ , (4.15)

where S = diag(l, w) is the scaling of the bounding box itself.

Based on this equation, we can state a general measurement equation for a measurement from the
surface as

zi = h(x, τi) +w (4.16)

= Rφ S C (τ) +m+w , (4.17)

where w again represents additive Gaussian white noise with w ∼ N (0,R) in which R is the
measurement noise covariance matrix and where Rφ is the 2 dimensional rotation matrix for the
yaw angle φ with

Rφ =

(
cos(φ) − sin(φ)

sin(φ) cos(φ)

)
. (4.18)

We note that other coordinate systems and alternative relations based on the geometries of targets
could be introduced, but for modelling an appropriate shape for other targets or scaling behaviour,
we keep the system simple as it fits the desired shapes. We further note that as long as the basis
points are chosen as a convex shape, every anisotropic shape scaled with l > 0 and w > 0 is a
convex shape. This behaviour is due to the fact that every segment of the spline is contained in the
convex hull determined by the three active basis points. Thus, we can immediately incorporate
features from a star-convex RHM such as the use of a scaled surface for the representation of
volume scattering. While the shape can now be represented as a star-convex RHM we are missing
an efficient measurement-to-surface association technique as the running parameter of our model
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differs from classical radially defined RHMs. Thus, we need to define a consistent association
procedure for our running parameter.

4.3.5 Surface Point Association

Our model fully describes a specific measurement origin on the boundary of the target via the
running parameter τ . The relation between measurement and origin on the target is a known
challenge in extended target tracking. The origin of a measurement and, therefore, the respective
running parameter τ on an extended target is inherently a hidden variable, as it cannot be captured
by a sensor system [GBR17b]. The choice of either a single parameter or a set of parameter
hypotheses is necessary for the measurement association to formulate a complete measurement
equation for the update of the current shape’s estimate.

In typical star-convex RHMs the nuisance parameter for a new measurement zi is selected by
finding the hypothesis τi and the corresponding position on the contour of the target h(τi, x) which
minimizes a defined score

τi := argmin
τ
f(τ, zi) , (4.19)

with respect to a given score function f(τ, z).

As most star-convex shape models use a radially defined contour model [BH09, WÖ15], this
definition can be exploited to choose a convenient score function f(·) via the radial difference of
origin and measurement. Thus, an association can be performed via the relative angle from the
shape’s center to the measurement. This association is convenient as the minimal distance of f
can uniquely be found as 0 and is easy to calculate, as the hidden parameter states a quantity that
already needs to be calculated. More general associations would be the use of the minimal distance
to the shape. However, this approach does not necessarily yield a unique hypothesis as multiple
points on the shape can have the same distance and requires optimization algorithms to find a
hypothesis for detailed shape models.

Alternatively, multiple hypotheses of measurement origins can be used with respect to the sensor’s
measurement principle but they introduce an association problem instead [GRMS14].

In this thesis we will derive a radial association scheme with respect to the abstract running
parameter τ and establish the relationship between measurement and measurement origin via the
association angle. We make this choice for the sake of simplicity and to provide a better comparison
to state of the art radially defined models.

Association Derivation

We will consider a single measurement association for this derivation and drop the index i as
the association is the same for each measurement. Thus, we define the measurements in global
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coordinates as z and the expected source on the surface as y. It is convenient to work in the target
coordinate system for this derivation. Hence, we will further denote the respective points in the
target’s local coordinate system as z̄ and ȳ, respectively, and state their relation by rotation and
translation via the equations

z̄ = R−1
φ (z−m), (4.20)

ȳ = R−1
φ (y −m). (4.21)

In the following, we are assuming that there is a bijective relation between the angle and the
hidden running parameter concerning a single point on the surface of the measurement, which we
enforced by the placement of the basis points. Exploiting this assumption, we can determine the
knots between which τ lies and find the active basis functions. Thus, we can determine the knot as

k = j,where ^ (C(j)) ≤ ^ (z̄) < ^ (C(j + 1)) , j ∈ [0, ..., NB ], (4.22)

with ^(z) = arctan2(z2, z1) and z ∈ R2 . This determines the segment of the spline and imposes
the constraint that k ≤ τ < k + 1. By defining

τ0 = τ − k (4.23)

such that 0 ≤ τ0 < 1 we can plug it into the definition of the basis functions Equation (4.8) which
allows for a commonly used reformulation of the contour function as a matrix multiplication [BI12]:

C(τ0) = Pk M [τ20 , τ0, 1]
T , (4.24)

where Pk ∈ R is a matrix of the three active basis points from the complete matrix from Equation
(4.10). Here, the evaluation of the basis functions, shifted with the according knot, leads to the
coefficient matrix

M =

0.5 −1 0.5

−1 1 0.5

0.5 0 0

 (4.25)

and the vector of the running parameter’s polynomial variables [τ20 , τ0, 1]T .

Thus, we can write the expected measurement source in local coordinates as

ȳ = S Pk M [τ20 , τ0, 1]
T = S C(τ0), (4.26)
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simply by applying the measurement Equation 4.17. We further define the full multiplication of
the constant terms as

[a,b, c] := Pk M . (4.27)

With these definitions we can state the association model via the condition that the predicted
measurement y on the surface lies on the vector from the center point m = [x, y] to the predicted
measurement z, which can be expressed via setting the cross product of these vectors to 0:

0 = (y −m) ∧ (z−m) (4.28)

= ȳ ∧ z̄ (4.29)

= (aS ∧ z̄)τ20 + (bS ∧ z̄)τ0 + (cS ∧ z̄) (4.30)

=: uSaτ
2
0 + uSbτ0 + uSc , (4.31)

with

uSq = qS ∧ z̄, q ∈ {a,b, c} . (4.32)

Note that in the second line we exploited that the cross product is invariant under the rotation of
both vectors. (This can easily be seen from a ∧ b = ‖a‖‖b‖ sin(ψ).)

The statement in Equation (4.31) provides us with a quadratic polynomial with respect to τ , which
provides different solutions based on the parameters of the polynomial. Here, we specifically need
to treat the linear and quadratic cases.

The solution for the linear case, i.e. uSa = 0, is

τ0 = −u
S
c

uSb
. (4.33)

For the quadratic case (uSa 6= 0) we find

τ0 =
−uSb ±

√
(uSb)

2 − 4uSau
S
c

2uSa
. (4.34)

In order to determine the sign in (4.34) we use ȳ · z̄ > 0.

This definition fully describes the association method and, therefore, the relation of state and
measurement. With this formulation, we can state the parameter τ and therefore the measurement
source on the contour for a given measurement based on the radial association.
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4.3.6 Spline Model: Jacobian

For tracking an extended target with the B-spline model, the implementation of a Bayesian filter
is necessary. Due to the non-linearity of the spline formulation, either an UKF or an EKF can be
applied. For this purpose we will implement an EKF as described in Section 2.3.1.

The EKF in turn requires the calculation of the predicted measurement h(x̂k) based on the prior
estimates mean x̂ which has been defined in the previous section and the measurement model’s
Jacobian matrix Hk. In the following, the calculation of the Jacobian will be derived. For the
simultaneous integration of the measurements {zk,i}nk

i=1 received at time k and the corresponding
associated nuisance parameter τi for each zk,i we can state the stacked measurements, measurement
noise covariances and stacked measurement sources

zk = [zTk,1, . . . , z
T
k,nk

] (4.35)

Rk = diag(Rk,1, . . . ,Rk,nk
) (4.36)

h(x̂k) = [h(τ1, x̂k)
T , . . . , h(τnk

, x̂k)
T ] . (4.37)

In this work, we are going to apply the spline model for constant but scalable star-convex vehicle
shapes with line segments for sides and quadratic segments for its corners. We enforce the star-
convex shape by placing the basis points as a rectangular box. As stated previously, the complete
freedom of shape parameters is not desired for tracking vehicles. Instead, as in the case of a box
tracker, an anisotropically scalable version of a given contour should be provided such that it is
possible to model trucks and small cars alike. Thus, with the corresponding nuisance parameter τi
for measurement zk, the Jacobian of h(x̂k) in equation (4.37) evaluates to

Hk =

[
∂h(τ1, x̂k)

∂x̂k
, . . . ,

∂h(τnk
, x̂k)

∂x̂k

]
, (4.38)

∂h(τ, x̂)

∂x̂k
=

[
∂h(τ, x̂)

∂m
,
∂h(τ, x̂)

∂φ
,
∂h(τ, x̂)

∂xshape

]
, (4.39)

∂h(τ, x̂)

∂m
= I2 +Rφ S

∂C(τ)

∂τ
⊗ ∂τ

∂m
, (4.40)

∂h(τ, x̂)

∂φ
= Rφ S

∂C(τ)

∂τ

∂τ

∂φ
+
∂Rφ

∂φ
S C(τ) , (4.41)

∂h(τ, x̂)

∂xshape
= Rφ S

∂C(τ)

∂τ
⊗ ∂τ

∂xshape
+Rφ diag C (τ) , (4.42)

for which a set of partial derivatives are required to be calculated, specifically the derivative of
the contour C with respect to τ and the derivatives of τ by m, φ and xshape. In the following
paragraphs the derivation of the partial derivatives will be stated. We will use Ŝ = diag(sy, sx),
for the sake of simplicity, such that the scaling factor is applied to the measurement with respect to
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the cross product, based on the following reorganisation of terms

Sq ∧ z̄ =

(
qxsx

qysy

)
∧

(
z̄x

z̄y

)
= qxsxz̄y − qysy z̄x (4.43)

=

(
qx

qy

)
∧

(
z̄xsy

z̄ysx

)
= q ∧ Ŝz̄ . (4.44)

Contour Derivative

The derivative of the contour C(τ) with respect to τ is based on Equation (4.24), it is straight for-
ward with the application of the reformulation of Equation (4.27) and only requires the derivation
of a polynomial, it yields

∂C(τ)

∂τ
= Pk M [2τ, 1, 0]T = 2aτ + bτ . (4.45)

τ Derivatives

The derivatives of the running parameter τ with respect to the state parameters are split into the
linear and the quadratic case. In both cases we can state a general derivative with respect to an
arbitrary variable g, which can take the form of any shape parameter.

Linear Case The solution for the linear case (4.33) may be rewritten, by moving the scaling factor
to the right

τ = −u
S
c

uSb
= − c ∧ Ŝz̄

b ∧ Ŝz̄
. (4.46)

Based on Equation (4.46), we can calculate the derivative of τ with respect to an arbitrary factor g
as

∂τ

∂g
= − 1

uSb
c ∧ ∂(Ŝz̄)

∂g
+

uSc
(uSb)

2
b ∧ ∂(Ŝz̄)

∂g
=

1

(uSb)
2

[
uScb− uSbc

]
∧ ∂(Ŝz̄)

∂g
, (4.47)

which only depends on g in the right-hand side of the cross product requiring the solution for the
partial derivative

∂(Ŝz̄)

∂g
. (4.48)
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Quadratic Case For the quadratic case we use the statement of the solution in Equation (4.34)
with the reformulation of

θ :=
√
(uSb)

2 − 4uSau
S
c . (4.49)

This allows us to state the partial derivative of τ with regards to the arbitrary factor g such that

2
∂τ

∂g
= − 1

(uSa)
2
a ∧ ∂(Ŝz̄)

∂g

[
± θ − usb

]
(4.50)

− 1

uSa
b ∧ ∂(Ŝz̄)

∂g
(4.51)

+
1

±2θuSa

[
2uSbb ∧ ∂(Ŝz̄)

∂g
− 4

(
a ∧ ∂(Ŝz̄)

∂g

)
usc − 4usa

(
c ∧ ∂(Ŝz̄)

∂g

)]
, (4.52)

where we shifted the factor 2 over to the left side for sake of readability.

Hence, we are able to state

±2(uSa)
2θ
∂τ

∂g
=

[
∓ θ
[
± θ − uSb

]
a∓ θuSab+ uSa

[
uSbb− 2uSca− 2uSac

]]
∧ ∂(z̄Ŝ)

∂g
(4.53)

=

[ (
∓θ
[
± θ − uSb

]
− 2uSau

S
c

)
a+ uSa

(
uSb ∓ θ

)
b− 2(uSa)

2c

]
∧ ∂(Ŝz̄)

∂g
(4.54)

=

[ ([
− θ2 ± θuSb

]
− 2uSau

S
c

)
a+ uSa

(
uSb ∓ θ

)
b− 2(uSa)

2c

]
∧ ∂(Ŝz̄)

∂g
(4.55)

=

[ ([
− (uSb)

2 + 4uau
S
c ± θuSb

]
− 2uSau

S
c

)
a+ uSa

(
uSb ∓ θ

)
b− 2(uSa)

2c

]
∧ ∂(Ŝz̄)

∂g

(4.56)

=

[ ([
− (uSb)

2 + 2uSau
S
c ± θuSb

])
a+ uSa

(
uSb ∓ θ

)
b− 2(uSa)

2c

]
∧ ∂(Ŝz̄)

∂g
(4.57)

and ultimately

±2(uSa)
2θ
∂τ

∂g
=

[(
− uSb

(
uSb ∓ θ

)
+ 2uSau

S
c

)
a+ uSa

((
uSb ∓ θ

)
b− 2uSac

)]
∧ ∂(Ŝz̄)

∂g
. (4.58)

Here, we use the cross product with matrices on the right-hand side. We define this as column-wise
cross-products similar to dot products, namely

a ∧B = a ∧

(
b00 b01

b10 b11

)
, (4.59)
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such that

a ∧B = a ∧ [b0,b1] = [a ∧ b0,a ∧ b1] , (4.60)

with column vectors a,b0,b1 ∈ Rn. Note that in the case of R2, a ∧ bi ∈ R, and the above equation
yields a row vector.

Analogous to the linear case this only depends on g in the partial derivative in Equation (4.48).

∂(z̄Ŝ)/∂g-Factors To complete the derivation for both the linear and the quadratic case, we need
to calculate the partial derivatives of the form

∂(Ŝz̄)

∂g
= Ŝ

∂R−1
φ (z−m)

∂g
. (4.61)

These need to be calculated with respect to our state parameters which we will be grouped as m, φ,
xshape, for the sake of convenience.

For the center g = m we find

∂(Ŝz̄)

∂m
= ŜR−1

φ (−I2) = −ŜR−1
φ . (4.62)

The derivative with regards to the yaw angle, with g = φ, yields

∂(Ŝz̄)

∂φ
= Ŝ

∂R−1
φ

∂φ
(z−m) = Ŝ

∂R−1
φ

∂φ
Rφz̄ , (4.63)

in which the partial derivative of the inverse rotation matrix with regards to the angle is straight
forward, with

∂R−1
φ

∂φ
=

(
− sin(φ) − cos(φ)

cos(φ) − sin(φ)

)
. (4.64)

The partial derivative for the shape parameters, with g = xshape, yields

∂(Ŝz̄)

∂xshape
=

(
0 1

1 0

)
z̄ . (4.65)

With the association and the derivatives stated we are now able to use the spline model with an
EKF to perform a Bayesian updated. This model specifically combines the convenient definition of
a Cartesian defined contour with the advantage of a radial association.
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4.4 Modelling the Measurement Distribution With Asymmetric

Noise

Based on the analysis of the measurement distribution from a roof-mounted LIDAR in Chapter 3 it
can be observed that the distribution of the measurements on the target differs significantly for an
elevated mounting position on the roof in contrast to a low mounting position on the bumper such
as the visibility of the structures changes. While we can assume that measurements stem from the
2d boundary for low mounted sensors, we need to account for the distribution of measurements
when concerning roof-mounted sensors.

4.4.1 Distribution Analysis For Radial Random Hypersurface Models

We will evaluate the complex measurement distribution over the targets 2d volume with respect
to the use of a radially defined RHM described in Section 2.4.1 in comparison to the typical
assumption of measurement origin. The measurement distribution in the RHM is modelled by
using a scalar scaling parameter s, which is assumed to be 1 in case of measurement origins on the
target’s boundary, while the distribution of measurements around this boundary is assumed to be
the measurement noise covariance. Alternatively, the squared scaling factor s2 is assumed to be
uniformly distributed in [0,1] [BH11] as described in Section 2.4.

To show the discrepancy between the typical assumptions in literature and the actually present
scaling factors, we use the data from the nuScenes accumulated dataset in Chapter 3 in the unit
coordinate system. For this data we calculate the scaling factor of each measurement z with respect
to an approximated boundary based on the B-spline model, which is already designed to fit a cars
boundary in scaled coordinates, as

szc =
||z−m||2

||ẑradial −m||2
, (4.66)

such that the scaling factor szc calculates as the radial distance from the targets center m to the
measurement divided by the distance from the center to the surface point ẑradial under the same
angle that is posed by the center to measurement. Thus a scaling factor szc < 1 indicates that a
measurements stems from the interior, while a scaling factor szc ≥ 1 indicates a measurement on
or outside the boundary. We show the approximated boundary over the accumulated data of a
measurement to the boundary in Figure 4.5.

The resulting distributions of the scaling factor as well as the squared scaling factor is illustrated in
Figure 4.6a and Figure 4.6b respectively.

The histogram of the scaling factor shows a relatively sharp drop-off towards the outside of the
vehicle, while a slower drop-off is visible from the peak to 0. This translates to the realization that
a large amount of measurements is generated on the target’s boundary, which is not exclusive
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Figure 4.5: Logarithmically scaled heat map of all LIDAR points from cars in the nuScenes dataset
in unit coordinates. The black dotted line shows an approximation of the average shape of cars in
scaled coordinates and measurement surface point and association to the center are indicated.

as a relevant amount of measurements is generated with a lower scaling factor. Consequently,
the squared scaling factor also shows a shift of the mass of the distribution towards the peak,
illustrating that it’s not feasible to assume a normal distribution on the squared scaling factor.
Thus, the typical literature assumption of measurement origin will yield a bias that either will over-
or underestimate the target’s size with respect to the chosen assumptions as the true distribution
of measurements is more complex than a simple uniform distribution over the volume or exclusive
measurement origins on the targets boundary.

4.4.2 Proposed Asymmetric Noise Model

Based on the comparison in the previous analysis, we propose to use an asymmetric noise model
which incorporates the distribution of the measurements. By interpreting all measurements to have
an origin on the target’s boundary but different noise terms, we break the symmetry that is typically
given with measurements that only originate from the target’s boundary. We specifically interpret
measurements that are generated towards the target’s outside to be generated with standard
deviation rout, while measurements that are generated towards the target’s volume are interpreted
to be generated with measurement noise rin. Under the constraint that rin ≥ rout we can enforce
a model which incorporates that the measurements on the boundary have a more substantial
influence on the target’s shape estimate than measurements on the inside. This condition reflects
that the measurements are mostly but not exclusively generated on the target’s boundary while a
tighter distribution of measurements is available on the contour.

We, however, understand that the noise term with which a measurement was generated is in-
herently a hidden variable in this asymmetric model and needs to be determined. While this
problem could be solved by introducing multi modality to treat the hidden assignment, we use a
simple heuristic to determine the noise term with respect to the target’s predicted boundary. This
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Figure 4.6: Histograms of the scaling factor szc in 4.6a and the squared scaling factor sz
2

c in 4.6b for
all measurements from moving cars in the nuScenes dataset.

avoids the arising association problem with multi hypothesis and the explicit generation of these
hypotheses.

We assign the noise term based on the relative position of the measurement to the assumed
measurement source on the target’s boundary, such that measurements on the inside of the
predicted boundary are assumed to be generated with a noise term based on the standard deviation
rin while measurement on the outside of the boundary are assumed to be generated with rout. The
calculation of this criterion can be performed using the normal vector on the assumed measurement
source ẑ, which can be calculated as the 90◦ rotated derivative of the contour and the vector from
the measurement source to the actual measurement. This is possible as the sign of the dot product
of the normal vector and the vector from the assumed noiseless measurement origin to the
measurement indicates whether the measurement zi lies inside or outside the target’s contour.

With

gi =

(
Rπ/2

∂C(α,x)

∂α

)
· (zi − ẑi) (4.67)

we find that gi > 0 is equivalent to the measurement lying inside the target’s surface and that
gi ≤ 0 is equivalent to the measurement lying outside. This criterion would also be usable in
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three dimensions and only calculates terms that are not computationally heavy. Furthermore, the
application of our asymmetric noise model to the Kalman Filter is simple, as only the noise terms
need to be adapted depending on the measurement’s origin.

The effect of this assignment to surface and volume leads to a stronger reaction to measurements
assigned to rout as the noise is smaller; thus, a correction toward these measurements is stronger,
which, as the boundary is supposed to be the origin, is the desired behaviour. Thus, this method im-
plicitly acts as a boundary extraction that is not necessarily bound to radially defined measurement
models and association functions.

We need to discuss the implications the hard decision of measurement assignment generates as
misassignments of measurements on the volume to rin and measurements on the boundary to rout
are prone to happen and need to be understood.

First, we discuss the case in which measurements on the volume are assigned to the boundary
of the target. Based on the distribution of data and the behaviour of the scanner, this case can
only occur if the contour of the prior shape is estimated on the target’s inside. In turn, the lower
measurement noise and the assumed larger number of measurements on the boundary implicates
a shape change towards the measurement and as they reside in the direction of the actual boundary
with respect to the prior estimate, thus, towards the boundary of the true target. Moreover, it
should be noted that each update forces the estimated boundary further towards the outside. Thus,
less of the volume from the inside allows measurements to be assigned to the wrong noise term
until only measurements on or close to the boundary are assigned to rout.

Second, we have measurements on the boundary which are assigned to the volume. Again,
based on the measurement distribution this can only happen if the measurements are inside the
current estimate’s contour, implying that the current prior estimate must overestimate the target’s
boundary. This means that all measurements for this part of the boundary are inside the current
estimate, implying a shape reduction as no other residuum towards the outside can be generated.
Thus, the shape will have to correct towards the boundary or inside the boundary, where the case
of underestimating the boundary will result in the first case of misassignment. We note that this
process will be slower due to the larger measurement noise term rin.

In both cases, the estimated boundary will only be able to correct towards the point clouds actual
boundary over time, thus avoiding the estimation errors typical assumptions with surface noise or
a uniform measurement distribution over the volume would introduce.

4.4.3 Application Of The Asymmetric Noise To Spline Target Model

For this work, the asymmetric noise shall be integrated into the B-spline model. Thus, the
classification as inside/outside of target and, therefore, of the assignment to a noise term has to be
calculated. As we already calculated the contour derivative with respect to the running parameter
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τ , the generic calculation of gi in (4.67) can be combined with the definition of the B-splines contour
derivative in (4.45):

∂C(τi,x)

∂τi
= Rφ ·

(
S ·Pk ·M · [2τi, 1, 0]T

)
. (4.68)

The criterion in Equation (4.67) is then

gi =
(
Rπ/2+φ

(
S ·Pk ·M · [2τi, 1, 0]T

))
· (zi − ẑi). (4.69)

4.5 Evaluation

To evaluate the behaviour of the proposed method, we will perform experiments for LIDAR
sensors in bumper height and roof-mounted LIDAR sensors.

In Section 4.5.1 basic experiments regarding the spline model’s performance are conducted. These
are concerning the scaling and tracking performance in comparison to a state of the art Gaussian
process model constrained to vehicle shapes.

The next Section 4.5.2 concerns the evaluation of the asymmetric noise heuristic. It covers experi-
ments regarding the inclusion of the asymmetric noise heuristic and special cases of misassignment
that may occur. We specifically conduct experiments regarding false initialization and the tracking
performance in comparison to the typically deployed surface noise assumption. The experiments
are performed on a large selection of instances from the nuScenes dataset [CBL+20].

4.5.1 Bumper Mounted LIDAR Experiments

For the evaluation of the proposed spline target model with the assumption of measurements on
the contour, we will perform basic experiments with a LIDAR mounted in bumper height. The
data stems from a Valeo ScaLa Generation 1. In these experiments we compare the performance of
a state of the art handcrafted Gaussian process with a predefined, constrained shape, modelled to
represent a typical car’s shape based on prior knowledge. Please note that the Lyft Level 5 dataset
was not used in this experiment as only key frames are available, which span large time gaps
and make the estimation very unreliable, as the prior’s mean becomes unreliable, and the state
uncertainty gets very large.

Fine-tuning a contour to match a given shape means the tuning of all shape relevant parameters. In
the case of a Gaussian process, the angles defining points on the contour have to be chosen, and the
distance function needs to be tuned. This is a cumbersome process as the relation between Cartesian
and radial coordinates can be very counterintuitive. Another problem is that changing the scaling
parameters anisotropically will lead to strong shape distortions such as strong oscillations. Scaling
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the complete contour, on the other hand, introduces strong nonlinearities in the measurement
equation.

A Cartesian defined model, on the other hand, has an intuitive meaning. Our splines, in particular,
may be scaled anisotropically by scaling the basis points in one dimension. The effects of anisotrop-
ically scaling the basis angles for a Gaussian process with 20 spanning angles and the eight 2d
basis points of our spline model are shown in Figure 4.7. Here, we compare a hand-tuned Gaussian
process to our spline model and find that a naïve scaling of the model’s spanning parameters can
lead to strong shape distortions.
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Figure 4.7: Comparison of modelling prior knowledge with spline and Gaussian process models.
The spline model is shown as a solid red boundary and the Gaussian process model is shown as
a solid blue dashed boundary. The left figure shows the prior model with 20 shape parameters
for a vehicle boundary and the spline model’s shape guess with 16 parameters. The right figure
shows the prior guess of the same models on an elongated version of the vehicle’s shape. Based
on [2]©2018IEEE.

This makes the direct comparison of the shapes very complicated without allowing a full update
for the radial function. The closest approximation of scaling behaviour in literature is the use of
isotropic scaling, as it is trivial to implement with a scalar factor in radially defined shapes. Thus,
we aim for a simple comparison of this scaling behavior.

For the experiments the priors are set to the shape models from Figure 4.7. We, however, constrain
the Gaussian process to a uniformly scaling parameter for the scaling experiments. For the tracking
experiment, we will keep the shapes constant to avoid unfair comparisons in the performance.
The implementation of an extension of a radial function to anisotropic scaling requires a mapping
from radial parameters to the Cartesian as well as the scaled shape’s angle to the non-scaled
angle in every calculation, which is based on the two different spaces of the contour and the state
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parameters, which again would make the shape model more unintuitive and hard to handle. As of
now, we are not aware of a work that handles this problem.

Shape Scaling

We first illustrate the scaling behaviour of the spline based model based on the basis functions
compared to the scaling of a hand-tuned Gaussian process with isotropic scaling, illustrating the
advantage of this behaviour based on a simulation of measurements.

The true boundary in this simulation is represented as a polyline of three segments that cover two
sides of a car’s approximated contour as well as a corner approximated as a line segment. The
measurement noise covariance matrix for this experiment is set to R = diag(0.12, 0.12) and we
provide 20 measurements per update.

We compared the proposed spline model with eight basis points with the handcrafted state of the
art Gaussian process 20 shape defining angles and according fix distances to the surface.

The initial state for the spline is set to

x0,spline = [3, 1, 0, 1.3, 1.3]T (4.70)

P0,spline = diag(102, 102, 0.12, 1, 1), (4.71)

and

x0,gp = [3, 1, 0, 1.3]T (4.72)

P0,gp = diag(102, 102, 0.12, 1), (4.73)

for the Gaussian process model, while no process model is assumed to be present in this static
scenario.

The results from 10 as well as 100 updates in this experiment are presented in Figure 4.8.

While both models fit the shape with respect to their limitations, the advantage of the anisotropic
scaling is clearly visible as the shape can only be represented by altering length and width
independently. Therefore, the Cartesian defined spline model can alter length and width to fit the
shape after 10 updates and sticks to this boundary after 190 further updates. On the other hand,
the isotropic Gaussian process finds an estimate with well-estimated length but slightly wrong
rotation and underestimated width, which grows towards the correct estimate of the width after
100 iterations while overestimating the length as a trade-off for a correctly estimated orientation
and width.



CHAPTER 4. LIDAR Extent Modelling And Tracking 65

0 1 2 3 4 5 6

0

2

4

6

a) Gaussian process after 10 updates.

0 1 2 3 4 5 6

0

2

4

6

b) Spline model after 10 updates.

0 1 2 3 4 5 6

0

2

4

6

c) Gaussian process after 100 updates.

0 1 2 3 4 5 6

0

2

4

6

d) Spline model after 100 updates.

Figure 4.8: Scaling differences in hand tuned Gaussian process with constrained shape but isotropic
scaling and the spline model with anisotropic scaling.

Tracking

We evaluate the tracking performance of this extended target model with respect to the state of the
art Gaussian process model. For a fair comparison, we restrict the models to constant shapes and
focus on the similarity of their performance. This is done because the free shape updates make the
comparison of the likelihoods as well as the difference in state parameters incompatible. Here a
similarity in the likelihood is a strong indicator that these models are interchangeable in typical
multi extended target tracking approaches. The data used for this experiment is provided by a
ScaLa 1 mounted in bumper height as described in 4.5.1.

For both target models we use the coordinated turn motion model described in Chapter 2 Section
2.5. With constant shapes the state in both models can be fully described by the kinematic
parameters of the coordinated turn motion model with the center in meters, orientation in radiant,
radial velocity in meter per second and finally the yaw rate in radiant per second, such that

xkin = [m, φ, v, φ̇]T . (4.74)
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We set the process noise terms to

σa = 2.25, (4.75)

σw = 1.5, (4.76)

while the measurement noise covariance matrix is set to

R = diag(0.02, 0.02) . (4.77)

We extract two single targets for the evaluation, which cover the two most common scenarios
that occur in vehicle tracking. First, a car driving in a straight line and second, a car in a turning
manoeuvre is extracted. For both scenarios the estimated tracks of every fourth time step are
shown for both algorithms. We additionally provide the comparison of every state parameter and
likelihood. The results of both tracking algorithms on a straight trajectory can be found in Figure
4.9 while the result on a curved track can be found in Figure 4.12. The state prior is set to

x0,l = [41, 10, π, 0, 0]T , (4.78)

in the straight trajectory and to

x0,s = [92.0,−1.5, 0.0, 0]T , (4.79)

in the curved one. The prior covariance matrix in both scenarios is set to

P0 = diag(10, 10, 0.01, 5, 5) . (4.80)

In addition to the tracked shapes over time, the state parameters of both algorithms, as well as the
innovation and association log-likelihood of the measurements to their source, are provided in
Fig. 4.14 for the curved trajectory with the corresponding differences. The likelihood measures are
chosen to evaluate the usability of the model in multi-target-tracking algorithms as it is often used,
e.g. in [HSRD16].

All state parameters show significant similarity to each other, which supports the equivalence of
both methods in their performance for a given shape. Please note that we do not expect the exact
same behaviour of both models due to the fact that the shapes are not equivalent. Nevertheless,
the state parameters are close to each other over all time steps, where the highest deviation is
available for the yaw angle, which on average differs by less than 0.01 and a maximum of 0.025, in
the curved trajectory, between the target models. The similarity in the likelihoods is essential. It
allows using the provided spline model for every multi-target tracker that currently implements
the Gaussian process as an extended target model for the tracking of vehicles [HSRD16]. The
experiments showed that both likelihoods follow the same trend. The association log-likelihood
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differs in a range of 10−4 while the innovation log-likelihood varies to a more notable degree with
an average difference of 0.23 which happened in the curved trajectory, which is still exceptionally
small.

4.5.2 Roof Mounted LIDAR Experiments

To evaluate the asymmetric noise heuristic, we will perform a set of experiments and a direct
comparison to naïve assumptions of the measurement origin.

We start by illustrating the behaviour of falsely initialized sizes to cover the two cases of misassign-
ment discussed in Section 4.4.

Next, we will compare the behaviour of the asymmetric noise to the naïve assumption that
measurements are generated from the 2d contour, as it is the most comparable assumption available
in literature [HSRD16, GRMS14]. This evaluation will be performed for a large set of instances
from the nuScenes dataset using the Wasserstein distance from Section 2.8. For which we first
illustrate and explain the measures and performance on a single representative instance.

Dataset The sensor data used for all experiments is a set of single target instances from the
nuScenes dataset, labelled as a car. We recognize here that these instances cover a maximal period
of 20 seconds. The extraction of the data belonging to a single instance is performed analogously
to the extraction for the data analysis in Chapter 3. Thus, it is based on the annotation bounding
box, linearly interpolated to the non-annotated frames.

The instances are further filtered as the experiments aim to provide a measure of the tracking per-
formance of the approach. Thus, the recovery from long times of misdetection or a sparse coverage
of the target are to be filtered out. Another goal of this evaluation is to examine the applicability to
dynamic targets. Thus, we are primarily interested in moving targets in our evaluation. Our last
goal is to avoid data starved scenarios, which can stem from various environmental factors, such
as occlusions. Based on these reasons, we perform a track selection based on a set of criteria.

First, we select only instances in which the maximum time without measurements is at most 1
second, and we filter these such that the maximum distance between 2 frames is below 5 meters to
ensure that no large gaps exist in the instance. From these instances we select only those which
moved a minimum of 5 meters to enforce the selection of moving targets. And last, we reduce
these to only include traces in which the average number of measurements per frame exceeds
5 to filter out strongly occluded targets. This selection provides us with 2719 relevant instances
based on which we can evaluate the behaviour of extended target models for roof-mounted LIDAR
sensors on a large scale.
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Figure 4.9: Plot of every 4th update for spline and the Gaussian process model on the straight
trajectory. Predicted estimate (dashed shape), corrected estimate (full shape), and measurements
(dots) of each time step are shown in the same color.
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Figure 4.11: Measurements association and innovation log likelihood of the Gaussian process in
orange and the spline model in blue over time. Innovation log likelihood in the left and association
log likelihoods in the right Figure. For the innovation likelihood the difference is shown in green,
for the association it is omitted as it is too close.
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Figure 4.12: Plot of every 4th update for spline and the Gaussian process model on the curved
trajectory. Predicted estimate (dashed shape), corrected estimate (full shape), and measurements
(dots) of each time step are shown in the same color. Based on [2]©2018IEEE.
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Figure 4.13: State parameters and their difference. Parameters of the spline model in blue, pa-
rameters of the Gaussian process in orange and the difference between them in green. Based
on [2]©2018IEEE.
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Figure 4.14: Measurements association and innovation log likelihood of the Gaussian process in
orange and the spline model in blue over time. Innovation log likelihood in the left and association
log likelihoods in the right Figure. For the innovation likelihood the difference is shown in green,
for the association it is omitted as it is too close. Based on [2]©2018IEEE.
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Model Parameters The extent model we choose for the experiments regarding the roof-mounted
LIDAR is the proposed B-spline model with 8 basis points. The chosen motion model is the
coordinated turn motion model described in Section 2.5.

The measurement noise parameters are chosen as

Qi = diag(0.012, 0.012), (4.81)

while the noise for the asymmetric noise heuristic is selected as

rout = 0.012 and (4.82)

rin = max
(
0.32

||ẑi −m||
2

, rout

)
. (4.83)

The parameters for the motion model are σa = 1 and σω = 0.1; an additional uncertainty of the
target’s slip is σslip = 0.01. To allow for changes in the shape parameters we assume the extent in
length and width to be noise corrupted as well with σext = [0.01, 0.01].

For the initialization we choose the shape estimate with respect to the annotation and the ex-
periment. The state covariance for all experiments is chosen as diag([2.5, 2.5, 0.5, 0.0, 0.0) +Qinit,
where Qinit is the prediction uncertainty for a prediction driving straight for 0.01 seconds.

Misassignment of measurements

We start the experiments with an assessment of the cases in which the measurements are assigned
to the wrong noise term. We create such scenarios by initializing the target with a boundary that is
too large and too small, respectively, thus enforcing the cases of assigning all measurements to
the interior as well as part of the interior to the surface. For this experiment, we use the instance
with hash 0c06998e67cd4fbbbd89c9618806353f as an example. We initialize the shape with the
annotated length and width scaled by respective factors 0.5 and 1.5. The first and seventh update
for the scenarios can be found in Figure 4.15a and Figure 4.15b, respectively. In the update with
the half-sized shape, an update to the boundary of the proper exterior can be observed. Both
directly correct towards the target’s actual boundary. The seventh update further illustrates that
the boundary is kept over time.

Model Comparison

We use the extracted data from the nuScenes dataset to evaluate the asymmetric noise assumption
on a large scale. The measurement noise assumption we compare it to is the assumption that
measurements are generated on the targets surface which only are corrupted by Gaussian white
noise. This generation model is the typical assumption concerning the generation of measurements
in literature [HSRD16, GLO11]. As mentioned before, the tracking performance of the asymmetric
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b) Asymmetric noise behavior on an initialization with 1.5 times the shapes size. Illustrated are frame 1 and 7.

Figure 4.15: Initialization effects for asymmetric noise.

noise assumption shall be evaluated and the initial state will be set to the first available annotation
bounding box.

We start this evaluation with a single instance shown in Figure 4.16. In this example, the assumption
of a measurement origin on the target’s boundary is evaluated against the asymmetric noise
heuristic. We illustrate a single frame from the trajectory as well as the Wasserstein distance over
the whole trajectory.

Figure 4.16 illustrates some base observations. First, we can observe the shrinking effects implicated
by the assumptions of having only measurements on the target’s boundary as this assumption
is only partially valid. While the boundary is extracted correctly in the front and the visible side
of the vehicle an obvious discrepancy generated by the interior can be seen, which leads to an
underestimation of the size of the target especially on the non visible sides. This observation
is in line with the expected behaviour as suggested by the accumulated distribution in scaled
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Figure 4.16: Example frame from the nuScenes dataset illustrating the typical estimation bias
from instance 0c06998e67cd4fbbbd89c9618806353f . The first figure provides the estimate on frame
285 with the assumption that measurements are generated from the boundary of the target. The
second figure shows the same frame with the assumption that measurements are generated
asymmetrically. The third figure illustrates the Wasserstein distance over the whole instance. Based
on [3]©2020IEEE.

coordinates in Section 3.5.2 as well as the scaling factor distribution in Section 4.4. The asymmetric
noise assumption, on the other hand, fits the measurements on the boundary of the target as they
are implicitly extracted in the update step, whereas measurements on the interior are weighted
less, due to the larger variance in the noise term.

The Wasserstein distance over all frames indicates that this behaviour is consistent over the
entire trajectory. Both algorithms start with the same estimate and therefore provide the same
Wasserstein distance in the first frame. Thereafter, the asymmetric noise outperforms the surface
noise assumption on every frame as the shrinking of the shape leads to a larger distance. We note
that both algorithms have the highest Wasserstein distance in the segment starting from frame
300, which in the trajectory is a section with a curve segment in which the target is moving very
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slowly. From frame 340 onward, the target accelerates again and moves straight. In this section,
the Wasserstein distance is reduced again in both algorithms.

After the exemplary analysis on a single instance, we perform the same evaluation with the selec-
tion of nuScenes traces and use statistics on the Wasserstein metrics to evaluate the performance
on each instance. For each instance, the average, as well as the 95th percentile of the Wasserstein
distance over each time step of the trajectory, is calculated over all time steps with data. These
statistics, as well as the mean of the averaged Wasserstein distance per trace, is provided for all
traces. The results of this evaluation are shown in Figure 4.17 in which three plots over the data are
presented that provide insights into the relative performance of the algorithms. For the reader’s
intuition of the metric we note that the score the score essentially describes the average distance
from the eight discrete points to their pair on the ground truth, a score of 0.2 therefore implies 20
cm offset.

In Figure 4.17a the Wasserstein distances average and 95th percentile are shown. Here they are
ordered by the average per instance, which is done for both algorithms individually. We further
added the total average in the Wasserstein distance over all traces. In this Figure, the trend of a
lower estimation error is clearly visible in the average and 95th percentile. We can further see that
the overall average reduces from 0.533 for the surface noise assumption to 0.274 for the asymmetric
noise assumption.

In Figure 4.17b the average Wasserstein distance is shown ordered by the total difference between
the algorithms. Hence, the average Wasserstein distance for the ith instances is WSDi

s for the
surface noise assumption and WSDi

a asymmetric noise assumption. Thus, the order is determined
by score

WSDi
d = WSDi

s − WSDi
a . (4.84)

The third Figure 4.17c shows the total difference WSDd. In it the direct comparison of the gain
or loss in average Wasserstein per trace can be made. We further marked specific sections of the
gain with vertical lines. A gain greater than 0.2 can be found in 0.43 % of the instances, while a
gain greater than 0.1 can be found in 0.76 % of the instances and a total gain greater than 0 can
be found in 92.9 % of the instances. The surface noise assumption exceeds the performance of
the asymmetric noise assumption in the rest of the instances, these are instances in which the
surface noise can actually lead to a stabilization. They were inspected and are instances with high
dynamics and only a few stabilizing measurements on a single side which under the asymmetric
noise assumption only lead to slow convergence to the surface, due to the interpretation as an
interior, which in combination with strong curves can lead to misassociations of the measurements
to a wrong side which in turn leads to wrong state as the rotation cannot be estimated correctly.
However, this behaviour only occurs if the rotation indicating measurements are sparse, and the
misestimation can also occur in the surface noise assumption in similar scenarios.
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Figure 4.17: Results over the entire batch of traces, the first plot provides the average and the 95
percentile of the WSD per trace sorted by the average. The second plot shows the average WSD
for each trace sorted by the difference between the asymmetric noise assumption to the surface
assumption in the average WSD allowing for a trace wise comparison. The third figure provides
the difference per trace in the average WSD. Based on [3]©2020IEEE.
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4.6 Discussion Of The Spline Model And The Asymmetric

Noise Assumption For Cars In LIDAR Data

In this section, we will discuss the advantages and disadvantages of the spline model for cars and
the asymmetric noise assumption for the complex measurement distribution, both with respect to
the stated model requirements.

First, we note that modelling the target’s shape with splines is done with a straightforward
approach, and the desired shape features in scaled coordinates are directly modelled, and the
scaling of this shape is simply modelled by a scaling of the splines basis points. We showed a
similar, tediously handcrafted Gaussian process with the same shape features but pointed to the
problems regarding targeted scaling behaviour. We compared the isotropic scaling of a Gaussian
as the closest scaling behaviour that may be introduced. Here we note that a fairer comparison is
currently unavailable for radially defined shapes that still model the desired contour.

Regarding the tracking with fixed shapes, we illustrated that the spline model performs similar to
the Gaussian process in the estimation of the targets parameters and the likelihood, which directly
allows for the use of the spline model instead of the Gaussian process in multi-target tracking
frameworks. We note the multi-target tracking aspect was subsequently evaluated in [BBWR19],
this work compared the performance of the spline model in a PHD filter for extended targets to
a rectangular shape model from [BRAD16], based on a simulated environment. It showed the
better performance of the B-spline based model and its stability against a different number of
measurements, even though the simulation produced measurements based on rectangular shapes.

We further analysed the distribution of measurements from a roof-mounted LIDAR for radial
RHMs and introduced a lightweight heuristic to model the observed behaviour with the asymmet-
ric noise assumption and compared it to the assumption of surface noise as assumed in other state
of the art car models such as [HSRD16, GRMS14, BRAD16].

Thus, the advantages of the spline model with the asymmetric noise are summarized as

• modelling shape features is a simple process and is produced with a minimal amount of
basis points,

• the inclusion of anisotropic scaling can be performed directly on the splines basis points,

• the model may directly be used in a multi-target-tracking framework for cars,

• the surface distribution may be included via the asymmetric noise assumption.

Thus, we provided a model that fulfilled all of our car’s extent model requirements stated based
on the data analysis in Chapter 3.

However, we are aware that the model, as it was developed data-driven, may not simply be altered
to serve other targets or scenarios. A relaxation to other shapes as removing the prior knowledge
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of the shape of the target requires the basis points to be free. This would result in a free shape
model, for which the radial association is no longer valid. We noted that an approach for this
is available with the extended target PMHT but a significant drawback of this approach may be
summarized as,

• there is no easy relaxation of the model to general shapes, especially for volume scattering.

This drawback, however, is not important for the specific problem of modelling the extent of cars.
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Remark. This chapter is based on the conference publications [4], [1], which use multi-target algorithms
to approach the problem of single extended target tracking in the automotive area based on learned GMMs.

RADAR sensor data provide two features that differentiate it entirely from data a LIDAR sensor
generates. These features result in a different measurement generation process and, therefore, the
different requirements an extent model has to fulfil, as shown in Section 3.5. First, the data provide
a significantly lower number of planar measurements per time step than the large amount of 3d
LIDAR measurements. Second, the measurements originate from specific measurement sources
as was further discussed in Section 3.5 and are not simply distributed on the target’s surface or
volume. Thus, to provide a full shape estimate a suitable extent model needs to be created that
accounts for specific measurement sources that emit a low amount of measurements.

5.1 Problem Setting

With respect to the complex density that is present in the RADAR data analysed in Section 3.5,
we realised that specific measurement sources are present in the conditionals of the accumulated
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RADAR data, thus, based on the aspect angles and the relative view on the target. These origins
are, broadly speaking, the wheelhouses and the number plates, depending on the aspect angle
under which the target is seen. This poses problems to be solved for RADAR data, which we will
elaborate on.

The first problem is modelling these sources based on the available data, which contain the
discrete origin points as well as the spatial distribution on the target that each source provides.
Thus, we need a description that captures the distribution of measurement origins and their
individual measurement generating process on the target. The next problem is the statement of
an appropriate update incorporating the sources. Assuming that we can model these origins as
discrete measurement sources on a target, we state the measurement association as well as the
update as a measurement generating process with multiple related hidden variables. We can start
by specifying the relation of sources and measurements with this statement, as it is independent of
the realization of the sources.

Given an extended target with measurement sources ẑj(x) and measurement index j ∈ [1, ..., N ],
which are defined with respect to a target’s state parameters x, we can state the general measure-
ment equation of the ith measurement zi as

zi = ẑ(zi)(x) +w (5.1)

= h(x, qi) +w , (5.2)

where qi denotes the index of the source which generated the measurement. This relation is our
hidden variable as the true origin cannot be observed by the sensor and w is, again, the zero mean
Gaussian white noise. Here, we state the source ẑqi(x) based on the state x via the potentially
non linear measurement function h(·, ·). We note that a major problem is the hidden nature of the
assignment qi, for which a resolution strategy needs to be determined.

Based on this statement and the work of Swain [Swa13] the problem can be interpreted via point
process theory. In this manner, the problem can be described as a three-layer process model in
which the target state x poses as a parent process. It is related to a set of child processes, namely
the discrete measurement sources on the target ẑ. Here, each of the sources pose as their own
measurement generation process that relates the source ẑ to the measurements z, based on the
respective noise term w. This relation of measurements z, measurement origins ẑ and the target
state x in an extended target tracking problem is shown exemplarily in Figure 5.1.

A related problem in data fusion is the multi target tracking problem where multiple point targets
are to be tracked where each target acts as an independent measurement generating source. Based
on the work [Swa13] we realize that the significant difference between multi and extended target
tracking can be stated as the dependency of the state to the measurement sources, which for
multiple point targets are the single states themselves. In extended target tracking, the sources
are a fixed set of origins on the target, tied together by their relation to the parent state. Thus,
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Figure 5.1: Illustration of the representative spaces and measurement generation relations for
extended target tracking with discrete measurement sources.

the resolution of the association of a measurement to the single measurement origin is also fixed
in relation to the parent state, allowing for the use of association and update procedures from
multi-target tracking, where the update only changes the parent states parameters based on the
parent child relation. For a closer comparison, we can formulate the multi-target tracking problem,
where we reuse the equivalent notation for comparable entities from extended target tracking, as
follows.

Given a set of point targets xj with j ∈ [0, ..., N ] we can state the measurement equation of the ith
measurement zi as

zi = h(xqi) +w (5.3)

where qi denotes the index of the target which generated the measurement and is our hidden
variable as the true origin cannot be observed with the sensor. The relation of measurements z and
targets xj is shown in Figure 5.2.

Thus, we aim to generate an appropriate extent model based on discrete measurement sources
while exploiting the relation between multi-target and extended target tracking, resulting in the
use of multi-target procedures for the update of extended target models. We specifically aim to
integrate it into the PMHT update explained in Section 2.4.3.

5.2 State Of The Art: Radar Extended Target Models

Tracking extended targets based on automotive RADAR data has been the focus of different
research groups with a different focus on the properties RADAR scan points provide. We are
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Figure 5.2: Illustration of the representative spaces and the measurement generation relations for
multi target tracking.

looking for the incorporation of measurements from high-resolution RADAR systems, as the
higher resolution gives raise to the extended target tracking problem.

In [GNB+15] the GGIW model is used to track automotive targets based on RADAR measurements,
thus representing targets based on elliptical shapes. In [BRAD16] a rectangular extended target
model is proposed concerning the distribution of measurements on the target. As an extension of it,
the volcanormal model was developed [BDD17] which rightfully assumes that the measurements
are not generated based on a commonly assumed Gaussian distribution. Instead a model is
provided that alters the Mahanalobis distance in the RM approach, such that a density is generated
that mostly but not uniquely generates measurements on the target’s boundary instead of the
target’s center. In [TBH18] the Doppler measurement is included in the Gaussian process RHM for
rigid vehicle shapes, such that the relation of the measured radial velocity is exploited. In [KBK+15]
extended target tracking with high-resolution RADAR measurements has been investigated based
on a detailed kinematic state. In [SD18] a particle filter solution using a learned Variational
Gaussian Mixture model (VGM) as a spatial density in a unit coordinate system has been proposed.
A set of publications regarding the use of truncated Gaussians for tracking automotive targets were
provided with the initial approach in [XWB+20b] and extensions to partial visibility in [XWB+20c].
In [XWB+20a] and [XWB+21] learning the extent as a density based on truncated Gaussians was
proposed 1.

Among the approaches using learned distributions, we especially note the work of Scheel et al.
[SD18], as it provides a likelihood function that closely models the distribution on selected targets
via a mixture of Gaussians. The major drawback of this method is that it is based on a particle
filter and therefore suffers from the so-called curse of dimensionality [BBL+08], which means that
the number of samples the particle filter requires scales exponentially with the dimension of the
state. It would therefore be desirable to combine the learned representation of the measurement
distribution with a closed-form update.

1Please note that [XWB+21] compares their approach against the closed form PMHT update on learned GMMs presented
in [1] which will be elaborated on in this chapter.
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5.3 Gaussian Mixture As An Extended Target Model

We aim to approach the problem by using prior knowledge embedded in a learned spatial dis-
tribution on the target’s volume, similar to [SD18]. We want to use a similarly trained model
with stronger discretisation for the aspect angle, which will be explained in Section 5.4 while we
formulate an EKF update based on the PMHT in Section 5.5. We aim to interpret a learned GMM
such that it acts as a scatter source model based on the distribution of measurements the actual data
offers. Our interest for this mixture is mostly to represent the spatial distribution of measurements
with respect to the relative sensor position and the targets orientation, as we saw distinct modes
based on simple conditioning on the aspect angle in the data analysis in Section 3.3, which is stated
as the angle between the target’s orientation vector and the vector from the sensor to the target’s
center.

We are able to describe a single Gaussian mixture model, representing the measurement distribution
with respect to the aspect angle ψ from the sensor to the target’s center as

p(z|x, ψ) =
M∑
i=1

πi(ψ)N (z;µi(x, ψ),Σi(x, ψ)), (5.4)

whereM is the number of components in the mixture, µi(x, ψ) describes a single components mean,
Σi(x, ψ)) is the mixture component’s covariance matrix and πi(ψ) is the mixture component’s
prior weight. In contrast to using the GMM as a likelihood function, we aim for an interpretation
of the GMM as a mixed set of the most prevalent measurement origins on the target. In this
interpretation an origin is described by a mixture component’s mean, while the measurement noise
for this component is assumed to be the spatial distribution this component provides. Thus, the
measurement equation for such a GMM can be stated as

zi = µqi(x, ψ) +wqi , (5.5)

assuming that measurements originate from a single Gaussian of the GMM. Here qi denotes
the index from which the measurement is emitted, µqi(x, ψ) is the components mean, and w is
zero-mean Gaussian white noise with wi ∼ N (0,Σi(x, ψ)). Please note that the probability that
this measurement was emitted by the source with index i is defined by the weight πqi as it is the
relative weight of the component in the mixture. This representation is close to the definition of
the general spatial distribution model in [GS05], and it essentially provides the generation process
in the child space by assuming that a measurement was generated from the mixture itself.

Using the notation from the PMHT in Section 2.4.3, we can state the required quantities in the
child and measurement space for the application of the PMHT for extended target tracking. In
the formulation, A = {qi} is the set of associations to the measurement sources described by the
component means {µi(x, ψ)}Mi , which have individual noise terms described by the respective
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covariances {Σi(x, ψ)}Mi . The state source relation is the final missing part and depends entirely
on the relation between the parent process and the child process. For this relation, we will use a
modified version of the approach from [SD18].

5.4 Learned Gaussian Mixture Model

The RADAR model we aim to learn is based on the nuScenes data set [CBL+20] accumulation from
Section 3.5, which specifically provides us with 2d, bounding box filtered measurements in scaled
coordinates, which is a common, scale-independent coordinate space. We specifically only use a
subset of the data from the nuScenes teaser data set [CBL+19] for the training to avoid overfitting
to the whole data set.

For the individual GMM, we use discretised aspect angle ranges to cover the visible sources with
respect to the relative position of the sensor and target which were shown in the data analysis in
Section 3.5. These ranges are chosen to reduce the dependency on the prior pose as we only use a
single state estimate, which makes the estimation more robust against errors in the orientation. This
differentiates our GMM from the model trained in [SD18], which uses a continuous representation
over the aspect angle. This leads to more precise likelihoods with respect to the angle, which
is desirable if multiple particles are to be differentiated and when the target itself does not vary
significantly, which for a single learned target is the case.

Thus, we learn a single mixture for each of eight equally large bins in scaled coordinates. We
choose the data for the training of each mixture depending on the respective aspect angle range,
which allows us to implicitly include a more considerable variance in aspect angles in a single
GMM. We specifically choose eight ranges to cover the front, side and back views as well as views
on the corners of the vehicle. These are precisely the ranges used in the data analysis from Section
3.5. For the training, we use the variational mixture training from sklearn 2 and the theory of
the variational training can be found in [Att99]. We further use a fixed number of 20 mixture
components per conditional. A set of eight GMMs is learned in the unit coordinate system, in
which the data resides. They are exemplarily shown in Figure 5.3, in it the heatmap is shown with
a resolution of 30x30 bins. We show a trained model on the accumulated points as well as the
points conditioned on viewpoints behind the target, on the left side as well as the front right of the
target.

The learned GMM now represents the measurement origins in scaled coordinates and the compo-
nents act as the measurement sources in the generating child process. We note that the model in
scaled coordinates is now constant and can be describe as

p(z|ψ) =
M∑
i=1

πi(ψ)N (z;µi(ψ),Σi(ψ)) , (5.6)

2(sklearn.mixture.BayesianGaussianMixture) [BLB+13]
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a) Density trained on the full data set. b) Density trained on measurements conditioned
on seeing the target’s rear.

c) Density trained on measurements conditioned
on seeing the target’s front right corner.

d) Density trained on measurements conditioned
on seeing the target’s left side.

Figure 5.3: Example GMM densities over the histogram of the used training data consisting of
30x30 bins.

which removes the state dependency from the learned mixture. These sources now need to be
related to the measurements in global coordinates and target’s state as the parent process. For this
relation, a measurement equation can be stated to allow for the formulation of an update with an
appropriate filter.

5.5 Extent Model And PMHT Update

The learned density provides us with a measurement generating model in scaled coordinates.
This relation is relatively uncommon for typical measurement scenarios as we do not use the
measurement model in global coordinates, where measurements are generated from sources in
the space the sensor can cover. We instead replace the measurement generation process with a
learned GMM that acts as an alternative generating model. With this knowledge, we may now
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state the parent-child relationship, as the learned mixture model representing the child process is
now available.

To state the measurement equation for the learned distribution from the previous section, we
denote the state parameters as

xkin = [m, φ]
T
,

xshape = [l, w]
T
,

(5.7)

with m being the position of the bounding box center in x- and y-coordinates, φ the target’s yaw,
l the targets half length and w the targets half width. Similar to the definition in the LIDAR
model, higher-order kinematic terms can be introduced to the motion model. However, the stated
parameters fully describe the parent state in global coordinates. They essentially provide an extent
model that acts as an oriented, scaled bounding box relating new measurements to the sources in
the learned mixture density in scaled coordinates. Now the relation to the measurement sources
needs to be stated based on these state parameters.

In the first step for this relation, we need to determine the appropriate aspect angle ψ or use
multiple hypotheses. For this thesis, we choose the fixed aspect angle ψ based on the prior state
estimate x and the sensor coordinates, which, in turn, determines the appropriate conditional.
Under this assumption we will omit the dependency of πi(ψ), µi(ψ) and Σi(ψ) on ψ for the rest of
the section and refer to them as πi, µi and Σi to avoid cluttered notation.

It is convenient to state the relationship between the learned mixture and new measurements
in local target coordinates, i.e., the coordinate system that resides in m with the orientation φ.
The relation of the measurement in scaled coordinates z̄i(x) and a new measurement zi in global
coordinates can be stated as

z̄i(x) = S−1 ·
(
R−1

φ · (zi −m)
)
, (5.8)

with the rotation matrix Rφ and scaling matrix S, defined via

Rφ =

(
cos(φ) − sin(φ)

sin(φ) cos(φ)

)
, S =

(
l 0

0 w

)
. (5.9)

We can then state the measurement equation for a single measurement zi originating from a specific
mixture component of the GMM, denoted by qi, namely

zi = RφS(µqi +wqi) +m , (5.10)

where µqi is the mixture component’s mean while wqi is a random sample generated from a
zero-mean Gaussian with the mixture component’s covariance matrix Σqi .
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The transformation in Equation 5.10 generally introduces a state dependency to the measurement
noise through rotation and scaling, which we avoid by applying an implicit measurement model
with

02 = µqi − z̄i(x) +wqi

= h̃i (x, zi, µqi) +wqi .
(5.11)

This new measurement model states the difference in local coordinates. Thus, with the statement of
the measurement model, we now replace qi by the index j ∈ [1, ...,M ], as it is inherently unknown
and we need to incorporate all potential associations of a measurement to all sources. Now, it is
possible to associate each measurement with each GM component in the mixture, such that we can
state the measurement equation for the ith measurement and the jth component of the mixture as

02 = h̃i (x, zi, µj) +wj . (5.12)

We now combine the reformulation of the measurement equation in Equation (5.11) with EM
formalism of the PMHT, with which we already made good experience in the prior works [5, 6], to
calculate the posterior weights ωk

i,j from Equation (2.52), for a fixed time

ωi,j =
πjN

(
02; h̃i (x, zi, µj) ,Σj

)
∑M

t=1 πtN
(
02; h̃i (x, zi, µj) ,Σt

) . (5.13)

The statement of the weights allows for the calculation of the pseudo measurements based on
Equation (2.56), such that every source with index j has only one exact pseudo measurement which
we also denote with the same index. We note that we are technically weighting h̃i (x, zi, µj) and
not the measurements z̄i. However, an individual pseudo measurement can directly be applied to
z̄i instead, due to the linear nature of the measurement function in Equation (5.12) and the fact
that µj is fixed for the calculation of the individual weights.

We, therefore, denote that the pseudo measurement in local coordinates is z̃j which, analogously,
can be expressed as the weighted sum of the measurements in global coordinates ẑj according to
(5.8). In turn, we find the relation between them as

ẑj = RφSz̃j +m . (5.14)

The resulting measurement equation stating the relation of source and pseudo measurement is
then given by

02 = h̃j (x, ẑj , µj) +wj . (5.15)

We further denote the pseudo covariance matrix in scaled coordinates as Σ̃j .
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This statement can now be used in an appropriate filter for nonlinear problems to find the MAP
estimate, since the measurement equation (5.15) for each measurement source and pseudo mea-
surement is still nonlinear. Thus, an EKF or UKF may be used. The application of the UKF is again
straightforward, but the EKF requires the derivation of the Jacobian, which will be provided in the
following.

For the application of the EKF the Jacobian of the measurement equation h̃j (x, ẑj , µj) in the
unscaled coordinate system is calculated as

∂h̃j (x, ẑj , µj)

∂x
=

[
∂h̃j (x, ẑj , µj)

∂m
,
∂h̃j (x, ẑj , µj)

∂φ
,
∂h̃j (x, ẑj , µj)

∂l
,
∂h̃j (x, ẑj , µja)

∂w

]
, (5.16)

where

∂h̃j (x, ẑj , µj)

∂m
= −S−1R−1

φ I2 (5.17)

∂h̃j (x, ẑj , µj)

∂φ
= S−1

∂R−1
φ

∂φ
(z̃j −m) , (5.18)

∂h̃j (x, ẑj , µj)

∂l
= −

(
2
l2 0

0 0

)
R−1

φ (z̃j −m) , (5.19)

∂h̃j (x, ẑj , µj)

∂w
= −

(
0 0

0 2
w2

)
R−1

φ (z̃j −m) . (5.20)

We note that the PMHT performs a batch update over multiple time steps. This kind of update, in
general, is optimized using a Kalman smoother. For all intents and purposes we would need to
use a nonlinear Kalman smoother as the measurement equation is nonlinear due to the relation
of parent and child space. We instead choose to constrain the batch size to one, which makes the
backwards propagation in the retrodiction of the PMHT obsolete and results in a simple nonlinear
Kalman update. We will refer to this model as the GMM_PMHT for the remainder of this thesis.

We illustrate the general relation in Figure 5.4, please note that we omit the transformation to local
coordinates to avoid an overcomplicated structure in the figure, since the pseudo measurements
can be expressed in global coordinates via a simple transformation.

5.6 Evaluation

For this evaluation, we start with a small set of example instances from the nuScenes teaser data set
based on which the performance of the derived GMM_PMHT algorithm is tested and compared
against the spline model for LIDAR data as well as the GGIW. After this small scale evaluation,
we move on to the set of selected traces from the full nuScenes data set. On these traces we use the
same evaluation against the spline model as a direct comparison of a learned model against typical
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Figure 5.4: Schematic illustration of the update for the PMHT model.

extended target assumptions, of measurements generated on the targets surface, with closed-form
solutions in RADAR data.

5.6.1 Single Target Evaluation

Our initial aim is the comparison of the GMM_PMHT update on real data from typical automotive
use cases against commonly used extended target tracking models. We specifically compare against
representatives for classical contour models with our spline model and elliptical extended target
models.

Data Set We use a set of 4 scenarios to show the base performance of these algorithms in
comparison. For these scenarios, the trajectory of the ego vehicle and the key-frame annotations of
the target are shown in Figure 5.5.

The target in the first scenario is a slow-moving car in a parking area that follows the ego vehicle.
This scenario shows substantial changes in the orientation. It provides a view on multiple sides of
the target as the front, left, and right sides are visible at different times of the trajectory. The targets
in the following two scenarios are similar. They both start in a curve and quickly go into a straight
motion. The significant difference between the scenarios is the curvature of the targets trajectory
and the relative position of sensor and target. The second scenario provides a view on the front
of the target, while the third scenario provides a view of the target’s rear. In the last scenario the
target and ego vehicle separate, the ego vehicle takes a left turn while the target takes a right turn.
This provides a view on the rear of the target, given the diverging paths. It should be noted that
this target is not visible over the entire scene, which results in a lower number of annotated frames.
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Figure 5.5: Ground truth annotation data for the four picked scenarios in global coordinates.
Depicted are the annotation boxes in black, as well as the trajectory of the ego vehicle in blue.
Based on [1]©2019IEEE

Models And Parameters For the evaluation of the developed approach, we use the spline model
for LIDAR data under the assumption of surface noise as it provides us with a model designed
for automotive targets. We emphasise that the model was specifically designed to provide a
better approximation of contour features which, while visible in the accumulated RADAR data
in Section 3.5 is not necessarily present in a single scan due to the sparse nature of the RADAR
data in comparison to LIDAR data. As a representative of elliptical models, we use the GGIW
from [GO12], which describes the extent as a distribution.

We choose the initial prior kinematic and extent parameters as the position, rotation, length and
width as the corresponding parameters of the first annotation, for all algorithms in the experiments.
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This annotation is chosen on the first available time step that provides measurements. The initial
velocity and yaw rate were set to 0. For the last scenario, we add an additional offset of 2 meters in
y to the target’s position to illustrate the influence of an erroneous initialisation on the algorithms.

The motion model for the B-spline model and the PMHT model is chosen as the coordinated turn
motion model from Section 2.5, such that their state may be described as

xkin = [mT , φ, v, φ̇]T . (5.21)

We choose the noise parameters for these models as

σ2
a = 1.52 , σ2

ω = 0.052 , (5.22)

(5.23)

while additional noise on the extent parameters is added with

σ2
ω = 0.052, σ2

l = 10−5 . (5.24)

The difference in the noise for the shape parameters is motivated by the general size distribution
shown in the cars dimensions in Section 3.5. The accumulated shape over all instances suggests that
the width varies significantly less than the length. We further note that we introduce an alteration
to the GMM_PMHT, shifting the center to the rear, which is modelled in scaled coordinate in this
case by the vector [0, 0.5].

For the GGIW, which typically tracks the velocity independently of the orientation of the state, the
motion model is assumed to be a vectorial defined constant velocity model in which the noise is
defined as

σv = diag(1.5, 1.5) . (5.25)

Additionally, the temporal decay of the model is set to τ = 3s while the window size is set to
w = 20 according to the definitions in [BRG+15].

Model Comparison For the evaluation we use the eight point WSD distance for bounding boxes
defined in Section 2.8 on the annotated frames from the nuScenes data set. The bounding box
for spline and learned model can simply be stated by interpreting the model’s shape parameters
as a rectangular, oriented bounding box. The parameters of the GGIW are also interpreted as a
bounding box, by using the orientation, length and width of the represented ellipse as parameters.

We show a set of frames from each scenario in Figure 5.6, while the resulting Wasserstein distances
on each keyframe are shown in Figure 5.7.
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Figure 5.6: Updated estimates from all algorithms are shown on sample excerpts from the different
scenarios. For each algorithm, the center of the estimate is provided as a coloured line where blue
indicates the GMM_PMHT, orange indicates the GGIW and green indicates the spline’s bounding
box. For the selected updates, the corresponding measurements are shown as black dots, while the
bounding boxes of each model are shown in their corresponding colour, and the GGIW estimate is
indicated as an ellipse. Based on [1]©2019IEEE

Scenario 1 shows that all trackers follow the target’s trajectory to a certain degree. The GGIW fits the
measurements very well, which due to their sparse nature, only cover a smaller section of the full
extent of the target. This behaviour, however, results in a bad estimate with regards to the full shape
which is visible in the Wasserstein distance. The spline model follows the measurements well but
attributes measurements that are slightly on the inside of the target directly to the surface, which
results in slight misplacements of the shape in general. A substantial deviation in the estimation
of the orientation is visible in the final curve as the greedy radial association cannot stabilise the
orientation with the sparse measurements available. The learned model, however, follows the
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measurements closely, even in solid manoeuvres. Every model’s behaviour results in a respective
Wasserstein distance. The GGIW estimates the shape smaller than expected, which increases
the Wasserstein distance significantly. The spline model does not change the shape significantly.
However, the precise attribution of measurements to the surface increases the Wasserstein distance,
especially in the last curve. The GMM_PMHT provides the lowest Wasserstein distance as the
attribution of the measurements to the learned sources, which represent the typical car’s spatial
distribution and seems to be more stable.

Scenario 2 provides a similar behaviour for the GGIW as it fits the visible front of the target. The
spline model, on the other hand, shows a divergent behaviour in the beginning as measurements
are attributed to the wrong side of the target. An appropriate association is found after a set of
iterations, after which the target is tracked accurately again. The learned model, again, seems to
find a reasonable estimate of the target. The model-specific behaviour is shown in the Wasserstein
distance. The specific misassignment of the measurements is visible in the first 7 keyframes. The
Wasserstein distance in the GMM_PMHT is the lowest as the model fits the measurements well.

Scenario 3 shows similar results as scenario 2, as the trajectories are alike, except for the visibility
of the respective sides. The GGIW fits the rear instead of the front. The major difference to scenario
2 can be seen in the GGIW, where a strong reduction of the Wasserstein distance is found after
keyframe 30, as more measurements indicating the true extent are visible. The spline model
recovers quicker from the wrong associations and is closer to the learned model’s performance in
contrast to scenario 2, while the learned model again performs with the lowest overall Wasserstein
distance.

Scenario 4 powerfully illustrates the effects of the erroneous initialisation. All models suffer
significantly from the displacement. We note that the estimated position of the GGIW fits firmly
on the visible measurements but is slightly skewed due to the initial shift. On the other hand, the
spline model is strongly affected as the greedy association assigns the measurements to the wrong
side which in turn is compensated by changes in the kinematic parameters, such that the model
eventually fits the estimates front to measurements on the annotations rear. The spline model
recovers in the later phase due to long term predictions but is off significantly in between estimates.
The learned distribution, on the other hand, recovers quickly from the shift as the measurement
sources are still limited to the target’s visible side. We note that other shifts would potentially lead
to less recovery potential, if the aspect angle changes such that the assumed measurement origins
are also on a completely different side.

The overall lowest Wasserstein distance can be found with the learned model. The spline model
suffers from the assumption of a surface origin, which in most cases results in a slight offset from
the target’s visible boundary but becomes significant as soon as the association goes to the wrong
side of the target. The GGIW suffers from the partial coverage of the actual spatial occupancy of
the target. We, however, note that the available spatial distribution is covered well over time. The
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learned model accounts for this with the aspect angle conditionals, by learning the measurement
sources on target’s visible parts and, thus, as part of the measurement distribution on cars.
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d) Wasserstein distance for Scenario 4.

Figure 5.7: Wasserstein distances for the key-frames of all scenarios. [1]©2019IEEE

5.6.2 Large Scale Evaluation

After the experiments on single instances we move to an evaluation of the model on a large scale
similar to the LIDAR evaluation. We drop the GGIW as it is rather unsuitable for the representation
of the target’s full extent based on the available measurements patterns. We, however, note that it
performs very well in representing the available density of measurements.

Data Set For this evaluation, we consider a subset of RADAR data from the complete nuScenes
data set as extracted in Section 3.5. We specifically used 650 selected instances from the full
nuScenes data set. This selection is the same as in [4]. The tracks in this selection were filtered
to remove pathological cases, which are tracks with at most three frames on which RADAR
measurements were generated. This resulted in a total of 170.887 frames for the evaluation. We
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also move away from only comparing the performance on keyframes and use all interpolated
frames with RADAR measurements instead.

Models And Parameters This comparison will be made between the spline model and the
GMM_PMHT. We, however, changed the initialisation to include the velocity by setting it via the
spatial difference of the annotation centers over the time between the initial frames. We further
altered the respective model parameters based on the large scale data set.

First, we increased the uncertainty of the extent parameters to σl,w = 10−2 m/s allowing for
stronger shape changes. Next, we changed the motion models noise parameters based on a grid
search on the data. This change was motivated by the realisation that each extent model performed
differently concerning the noise parameter setting of the motion model. As we were interested in
the optimal performance of both models, we performed a grid search for the noise parameters σa
and σα of the coordinated turn motion model, based on the mean Wasserstein distance over all
frames of the data set, to find the optimal process noise parameters for both target models. The
optimisation was conducted in the intervals σa ∈ [0.1, 2] m s−2 and σα ∈ [0.1, 1] rad s−2. The step
size was set to 0.1 for both parameters. The result of this grid search is provided in Table 5.1.

Algorithm spline model GMM_PMHT
σa [m s−2] 0.5 1.9
σα [rad s−2] 0.1 1.0

Table 5.1: Optimised parameters for the noise parameters σα and σa for both target models.

Last, we investigated which number of iterations suffices for the GMM_PMHT to converge. We
show the total mean, 95th percentile and median over the number of iterations for this target
model in Figure 5.8. The result seems to be relatively stable after 10 iterations and the optimal
number of iterations seems to be at 13 iterations. Therefore, we used 13 iterations for the large
scale evaluation.
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Figure 5.8: Performance evaluation for different numbers of PMHT iterations.
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Model Comparison We performed a complete evaluation of the used instances for both algo-
rithms with the tuned parameters. The resulting Wasserstein distance per trace for both algorithms
is shown in Figure 5. We illustrate mean, median and 95th-percentile per instance as well as the
statistics over all frames of these instances. The statistics over all instances are further provided in
Table 5.2.

The statistics show an overall lower Wasserstein distance in average, median and 95th-percentile
with the GMM_PMHT in contrast to the spline model, which results from the same issues illustrated
in the selected single target scenarios. The learned GMM model allows for an association to sources
that represent the target well. In contrast, the greedy association to the surface of the spline contour
introduces erroneous updates for a small number of measurements.
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Figure 5.9: Statistics over the compared algorithms. Shown are mean, median and 95th percentile



CHAPTER 5. Radar Extent Modelling and Tracking 95

Algorithm GMM_PMHT B-spline
Average WSD 0.538 0.738
Median WSD 0.434 0.541

95 percentile WSD 1.207 1.989

Table 5.2: Summary of the WSD statistics over all 650 traces.

5.7 Discussion Of The GMM_PMHT

In this chapter, a closed-form MAP estimator for a learned Gaussian mixture model for RADAR
data was derived by exploiting the interpretation of individual components as discrete measure-
ment sources with defined noise covariances. We have shown that a better estimation performance
can be gained against closed-form sequential updates of classical extent models.

The advantages of the model can be stated as

• the Gaussian mixture incorporates the measurement origins on the target based on real data,

• the model exploits known relations from multi-target tracking,

• the PMHT only provides a single estimate and the multimodality of the associations is
avoided using the pseudo measurements which state a single measurement per source,

• the model uses a closed-form update instead of particle filtering methods.

The model does not account for the number of measurements a source emits as the GMM does
not account for it and only provides relative emission probabilities by the mixture weights. The
number of measurements is however often used as a Poisson point process in multi target tracking
algorithms and might be of interest for further development. We further want to emphasise that
we did not include the Doppler measurements in the target model as we focused on the spatial
distribution. This stands in contrast to the work of Scheel et. al. [SD18], which learned the deviation
in the measured Doppler velocity from the model’s assumed Doppler velocity, based on detailed
knowledge of targets motion model. As we accumulated the data over a large set of different
targets, no knowledge of a standard motion model was available. This makes the calculation
of the true Doppler measurements extremely complex, which, in turn, impedes the calculation.
Assuming a standard calculation of the rotation center for a large set of different targets becomes
available, the Doppler measurements could be included. Other approaches for modelling the
Doppler velocity can be considered, such as [TBH18].

Thus, we can list the disadvantages as

• the measurement noise of the sensor cannot be separated from the spatial distribution on the
target as they are treated as a singular noise term,

• the PMHT provides a MAP estimate and not a typically used posterior,
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• the Doppler measurements are not included.

We note that the work in [XWB+21] compared the GMM_PMHT to their novel approach based on
learned truncated Gaussian model and showed comparable performance with better and worse
performance in different state parameters. We further note that our model was already extended
in our work [4]. It uses cluster processes based on the work of [Swa13] to resolve the association
problem. This cluster processes based approach uses multiple hypotheses that are merged, pruned
and lead to a posterior update instead of the MAP update. Thus, it uses an alternative multi-target
tracking approach to resolve the posed association problem3.

3Please note that this work is not included in this chapter, as the main contribution, namely the use of cluster processes,
was developed by Dr. Jens Honer.



6
Conclusion And Future Work

We considered the problem of creating accurate extended target models with appropriate closed
form inference strategies for automotive use cases in this thesis.

First, we analysed the properties of LIDAR and RADAR data, as a minor contribution in Chapter 3.
Based on this analysis we determined the extended target model requirements for the respective
sensor types. We found that state of the art elliptical models are already good representations
for pedestrians and bicycles. We, however, were able to state requirements for the extended
target models representing cars, laying the foundation for the major contributions. We first used
the bounding boxes to find that an anisotropic scaling behaviour is suitable for representing a
car’s general extent. In LIDAR data, high-resolution measurements are generated from the target,
allowing for the perception of shape details like the target’s rounded corners, which are to be
incorporated. We further showed that the scattering behaviour on the target changes with respect
to the sensor’s mounting position and should be considered in the target’s model. For RADAR
data, a scatter source behaviour based on the relative orientation of the target in the sensor’s field
of view was found on a large scale of recorded vehicles, confirming the results of works like [SD18]
and [BML+17].

Our main contributions are summarized as follows.

To approach the problems presented in LIDAR, we developed a Cartesian defined 2d B-spline
model, Chapter 4, which incorporates the desired anisotropic scaling and contour features into the
extent representation. We started by stating a RHM like formulation for a free B-spline contour
model with a MAP update but constrained it to suitable contour models and provided an inference
strategy based on a radial associations and measurement equation. We evaluated this spline model
against a well-tuned state of the art Gaussian process model showing the advantage of the scaling
behaviour and a comparable performance in tracking.

97
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We further developed a heuristic to accomplish the incorporation of measurements from LIDAR
sensors mounted on the roof of the recording vessel, based on the relative position of measurements
to the prior estimate’s contour. This heuristic was applied to the B-spline model and has been
evaluated against the naïve assumption of measurements stemming from the target’s contour,
showing strong improvements in the estimation of the target’s extent.

We stated the general problem for RADAR based models in relation to multi-target tracking in
Chapter 5 and exploited the similarities in the problem formulations to allow for the use of multi-
target tracking algorithms in extended target tracking. We specifically deployed the PMHT for
extended target tracking based on a learned GMM in which each component of the mixture is
interpreted as a potential measurement source. This allowed for the use of the learned distribution
with closed-form updates which previously only were used with particle filtering methods. We
evaluated this model against other closed form solutions with contour and ellipse representations
and showed a performance increase.

A set of extensions based on this thesis are possible as future work, with focus on the sensor types.

The Cartesian B-spline vehicle model was explicitly designed for tracking of cars based on LIDAR
data, but there a numerous other road users. While pedestrians and bikes are well represented by
elliptical target models, trucks and busses pose more complex structures that splines could model.
An exemplary measurement accumulation of trucks is shown in Figure 6.1. We note that the truck
is in general less rigid with the separation of the drivers cab and trailer. Integrating this dynamic
as a degree of freedom in the extended target model would be desirable as future work.

a) Bumper mounted LIDAR b) Roof mounted LIDAR

Figure 6.1: Example accumulation for trucks in logarithmic scale.

For RADAR data, we explored the application of the PMHT for a learned GMM, with varying
aspect angle, for tracking cars in radar data. Here, improvements developed for the PMHT could
be introduced. This, for example, includes the exchange of the association likelihood with the
predicted likelihood in the expectation step as proposed in [WK07]. Another direction that can
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be pursued is the application of other multi-target algorithms for the statement of an update.
We have already deployed another approach in [4], in which the learned GMM was used with a
cluster process interpretation in the sense of random finite sets which allowed for an update with
multi-modal posterior. However, further interpretations and inference strategies can be developed.
Last, we note that learning other models than a GMM can be considered.
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