• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Conformal Properties of Generalized Dirac Operator

by Varun Thakre
Doctoral thesis
Date of Examination:2013-06-05
Date of issue:2013-07-24
Advisor:Prof. Dr. Viktor Pidstrygach
Referee:Prof. Dr. Thomas Schick
Referee:Prof. Dr. Max Wardetzky
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-3957

 

 

Files in this item

Name:Thesis VarunThakre.pdf
Size:697.Kb
Format:PDF
Description:Doctoral dissertation
ViewOpen

The following license files are associated with this item:


Abstract

English

In this thesis we study the non-linear Dirac operator in dimension four and the associated generalization of the Seiberg-Witten equations in dimension four. The central object of this generalization is a hyperK ahler manifold M, admitting certain symmetries. The non-linear Dirac operator acts on generalized spinors, which are equivariant maps taking values in M. Restricting to a special case of Swann bundles allows us to study the behaviour of the non-linear Dirac operator under the conformal change of metrics on the base manifold. Harmonic spinors are generalizations of aholomorphic maps between hyperK ahler manifolds. The Weitzenb ock formula for the non-linear Dirac operator can be interpreted as an energy identity for generalized spinors, analogous to the one satisfi ed by maps between hyperK ahler manifolds. In the light of this comparison, we analyze the behaviour of the energies under smooth deformations of the base manifold.This is the fi rst step in deriving a blow-up condition for harmonic spinors with bounded energies, as in the case of aholomorphic maps. In the fi nal part, we prove that restricted to the case when the target hyperK ahler manifold is a hyperK ahler reduction of a flat-space, a harmonic spinor is L-infinity bounded. We conclude with some remarks towards understanding the singular set of harmonic spinors.
Keywords: generalised dirac operator, non-linear sigma model, generalised seiberg-witten, conformal behaviour, gauge theory
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information | Accessibility
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]