dc.description.abstract | Zusammenfassung
Das in der westlichen Hälfte der Insel Neuguinea liegende Papua unterliegt einer raschen, unzureichend geplanten sozialen und ökonomischen Entwicklung. Zunehmende Umweltzerstörung (Habitatdegradierung) bedroht den hohen Artenreichtum und die einheimische Biodiversität. Süßwasserökosysteme sind sehr stark bedroht durch Umweltverschmutzung, Habitatsveränderung und das Einschleppen von fremden Arten. Bisher wurde dieser menschliche Einfluss an den Süßwasserarten unzureichend erforscht, speziell an den Fischen in stehenden und fliessenden Gewässern in Papua.
Der Sentani See liegt in Nordpapua, in der Nähe von Jayapura, der Hauptstadt der Provinz Papua. Es repräsentiert das größte Süßwasserökosystem in Papua und spielt somit eine wichtige Rolle für das Überleben der Menschen und anderer Lebewesen in dieser Gegend. Menschliche Aktivitäten beeinflussen die lokale Flora und Fauna, insbesondere solche mit engem Verbreitungsgebieten wie z.B. Regenbogenfische Chilatherinasentaniensis und Glossolepisincisus, und der Sentani Goby. (Glossogobius sp.) Der See liegt nahe an urbanen Zentren, sodass in allen Himmelsrichtungen Umweltverschmutzungen aller Art stattfinden., dies betrifft insbesondere Veränderungen im Uferbereich und das Einschleppen fremder Arten. Trotz dieser Bedenken und der Bedeutung für die lokale Regierung findet das Thema kaum Beachtung im Hinblick auf Erhalt des Ökosystems. Trotz einiger Forschung in Richtung Mollusken, Phytoplankton und Limnologie, und Wasserqualität des Sees gibt es keine spezifischen Untersuchungen über die Korrelation zwischen menschlichen Aktivitäten und der Artenveränderung im See. Deshalb ist das Ziel dieser Arbeit die Ökologie des roten Regenbogenfisches als einem der meistbedrohten endemischen Fischarten im Sentanisee sowie den menschlichen Einfluss auf sein Habitat zu dokumentieren. Im Speziellen beschreibt diese Arbeit den Einfluss auf die Häufigkeit, Größe, Geschlechterverteilung und Populationsveränderung nach Einführung fremder Arten. Um den menschlichen Faktor zu messen, wurden acht physiochemische Parameter untersucht, von denen der größte Einfluss auf die Häufigkeit des Vorkommens beschrieben wird in neun verschiedenen Gegenden dreier verschiedener Zonen. Die Gegenden wurden nach Kriterien unterschiedlicher menschlicher Aktivität ausgesucht unter der Hypothese, dass eine höhere menschlicher Population einen entsprechenden Einfluss auf die Fischpopulation hat. Zone I beschreibt hohen menschlichen Einfluss, Zone II mittelmäßige menschliche Aktivität, Zone III hat die niedrigste menschliche Aktivität und wurde als „Kontrollgegend“ genutzt. Diese Gegenden wurden später neu eingeteilt gemäß der physiochemischen Parameter des Wassers.
Fisch und Wasserproben wurden entlang des Ufers gesammelt, in bis zu zwei Meter Tiefe. Fisch wurde morgens in jeder Zone gefangen. Dies wurde dreimal an anderen Tagen wiederholt, sodass 27 verschieden Daten für jede Zone zusammenkamen, insgesamt 81 Daten für drei Zonen innerhalb eines Jahres, und somit 243 Daten in drei Jahren. Die gesammelten Regenbogenfische wurden nach Geschlecht gezählt, gemessen und wieder freigelassen. Wasserproben wurden nach dem gleichen Muster entnommen, dreimal täglich; morgens (6.00 – 9.00am), mittags (11.00 bis 13.00pm) und nachmittags (16.00 – 18.00pm) und dreimal in jeder Zone an drei weiteren Tagen gesammelt. So wurden ebenfalls 81 Wasserproben gewonnen. Die Wasserparameter, Nitrate, Nitrite, Phosphate, der biologische Sauerstoffbedarf und der chemische Sauerstoffbedarf wurden in einem Labor analysiert, während Wassertemperatur, PH Wert und gelöster Sauerstoff direkt vor Ort gemessen wurden. Dann wurde das Umfeld des Regenbogenfisches beschreibend analysiert, um die Habitatpräferenzen einschliesslich Substrat, Typ, Wassertiefe, Wasserbewegung und Vegetation kennezulernen. Um die physiochemischen Parameter des Wassers zu analysieren, wurde das RStatistikanalyse Programm benutzt., um somit Verbreitung und Größe des Regenbogenfisches in jeder Probe, und somit eine Korrelation zwischen den Wasserparametern und der Größe und Verteilung des Regenbogenfisches zu entdecken. Nachdem der Grad der Wasserverschmutzung bestimmt worden war, wurden die Fischproben in drei Gruppen eingeteilt, je nach Verschmutzungsgrad der Gebiete. Das Analysetool in Excel 2007 und die Version von SPSS 17.0 wurden genutzt, um die Fischgröße jeder Gruppe, sowie den Unterscheid der Gruppen zueinander, das Verhältnis der Anzahl der Fische zur Zahl der eingeführten fremden Fische, sowie die Korrelation der Zahl der Regenbogenfische zur Nitratkonzentration zu bestimmen.
Basierend auf den bereits erwähnten Wasserparametern wurden die Untersuchungsgebiete in drei Gruppen geteilt. 1 und 2 mit hohem menschlichen Einfluss, 3 mit geringem menschlichem Impact. Es gab signifikante Unterschiede bei bestimmten Wasserparametern innerhalb der Gruppen, insbesondere bei Nitraten und Nitriten, Phosphate, biologischem Sauerstoffbedarf und chemischen Sauerstoffbedarf. Die erste Gruppe hatte die höchste Konzentration an Nitraten und Nitriten, Gruppe II hatte die höchste Konzentration an Phosphaten, biologischem, sowie chemischen Sauerstoffbedarf . Gruppe drei hatte die beste Wasserqualität und niedere bis mittlere Konzentration der obengenannten Parameter. Die Phosphatlevel übersteigen den in Indonesien staatlich zugelassenen Grenzwert von Phosphat in Trinkwasser und Fischereiwasser. Nitrat und Nitritbelastung liegen unter den zulässigen Grenzwerten. Es wurde kein Bereich ohne nachweisbaren menschlichen Einfluss gefunden, nicht mal bei so geringer Bev.dichte wie 2Menschen /km2;
Diese Ergebnisse zeigen die deutliche Verschmutzung des Sentani Sees durch die Menschen.
Die Anzahl des roten Regenbogenfisches war in allen Gruppen gleich, ausser es wurde nach Geschlecht getrennt gezählt. Die männlichen Fische war in allen Gruppen ähnlich, während die Anzahl weinblichen Fische in der Gruppe drei niedriger war. Nitrat war der einzige Parameter, dem ein direkter inverser Zusammenhang mit der Anzahl der Regenbogenfische nachgewiesen werden konnte.
Die Körperlänge der Fische war signifikant unterschiedlich in den einzelnen Gruppen. Gruppe drei hatte das durchschnittlich größte Körpermass. Phosphat war der einzige Parameter mit Einfluss auf die Körperlänge, obwohl nicht signifikant. Die Anzahl der Fremdfische korrelierte schwach mit der Anzahl der Regenbogenfische. Gruppe zwei hatte eine leicht negative Korrelation, Gruppe eins und drei waren leicht positiv korreliert. Das bedeutet, dass die Anzahl der Fremdfische keinen Einfluss auf die Zahl der Regenbogenfische hat.
Die Zahl der männliche Regenbogenfische war in der Flachwasserzone am Ufer höher, während die weiblichen mehr in den tiefen Wassern gefunden wurden. Diese Korrelation war ähnlich in Gruppe eins und zwei, während in der dritten weniger verschmutzten Gruppe eine höhere Anzahl männlicher Fische war. Die unterschiedliche Geschlechterverteilung war abhängig von Habitat, Licht und Temperaturpräferenzen.
Grundsätzlich bevorzugen rote Regenbogenfische klares, flaches Wasser mit Sand, Kiesel und Steinsubstrat und halten sich gerne auf zwischen Hydrilla verticillata, Valisneria americana, Eichhornia crassipes, Metroxylon sagu und Gräsern. Das Angebot von Futter war ebenfalls attraktiv für die Fische, insbesondere unter traditionellen Pfahlhäusern, den Wurzeln einiger Pflanzen, Schmutz, Abfall und Holzresten. Pollen und Insekten waren ebenfalls eine bedeutende Nahrungsquelle für die Fische, sowie auch die Larven von Wasserinsekten und Algen. Pflanzwurzeln waren ebenfalls als Rückzugs- und Aufzuchtsgebiet sowie als Spielplatz attraktiv für die Fische. Die Fische vermieden Bereiche mit hohen Lichtintensitäten und zogen schattige Gebiete in tiefem Wasser vor. Diese Faktoren beeinflussten die Verbreitung der Regenbogenfische in den Habitaten und konsequenterweise auch ihre Anzahl.
Menschliche Aktivitäten haben Einfluss auf die Qualität des Habitats und des Wassers in und um den Sentanisee. Obwohl die Wasserqualität keinen signifikanten Einfluss auf die Verbreitung der Regenbogenfische hat, dank seiner Fähigkeit, sich auch an schlechtere Konditionen anzupassen, wird eine zunehmende Verschmutzung doch als Bedrohung gewertet. Zunehmende Verschmutzung des Wassers wird sich in einer Verschlechterung des Ökosystems zeigen und wird dazu führen, dass die Arten um geringere Ressourcen konkurrieren müssen. Das wird ultimativ zum Aussterben von endemischen Arten führen, von denen der rote Regenbogenfisch nur ein Vertreter ist. Deshalb sollte der Sentani See prioriär als Naturschutzgebiet in Papua behandelt werden, um einheimische und endemische Arten zu schützen.
Die Ergebnisse dieser Studie liefern Grundlagen Daten für den Schutz des roten Regenbogenfisches im Sentani See. Somit erhalten Politiker Strategien zum Erhalt des Habitats, Möglichkeiten Verschmutzung einzudämmen, und Kommunen zum Naturschutz zu motivieren. Weitere Studien werden benötigt, um das Verhältnis des roten Regenbogenfisches und seine Vorlieben, sowie seine Anfälligkeiten bestimmten Noxen gegenüber zu erforschen. Verschiedene Möglichkeiten der Kontrolle der Verschmutzung sollten ebenfalls erforscht werden. Andere Regionen des Sees, die in dieser Studie nicht erforscht werden konnten, sollten überwacht werden. Unabhängig von den bearbeiteten Untersuchungen am Ökosystem des "Sentani Sees" als Teil eines ganzheitlichen "Sentani See Programms" sollten weitere Studien zur Wasserqualität und insbesondere zum Einfluß anthropogener Umweltverschmutzung auf Flora und Fauna angestellt werden. Eine Überwachung des gesamten Sees zur Bestimmung der Ökologie wäre sinnvoll, damit ein Gesamtprogramm zur ökologischen Rehabilitation folgen kann.
| de |
dc.description.abstracteng | Summary
Located in the western half of New Guinea, Papua is facing rapid and poorly-planned social and economic development, increasing habitat degradation and threatening its high level of species richness and endemicity. Freshwater ecosystems, more than any other biotope in Papua, face the worst consequences from human development through sedimentation, habitat alteration, pollution, and the introduction of exotic species. However, little research has been conducted on the impact of human activities on aquatic species, and specifically fish in lentic and lotic ecosystems, in Papua.
Lake Sentani is located in northern Papua, near Jayapura, the capital of Papua Province. It is the largest lowland lake in Papua, and plays a critical role in the survival of the humans and organisms living in and around it. Human activities are negatively affecting its local flora and fauna, especially those with very narrow distributions, such as the rainbowfishes, Chilatherina sentaniensis and Glossolepis incisus, and the Sentani Goby (Glossogobius sp.). The lake is located close to an urban center and heavy development occurs in the north, east, and northeast, while other threats include non-point pollution of human activities, habitat alteration along the shoreline, and introduced species. Despite these concerns, and its proximity to the local government, the lake has received no attention in terms conserving its ecosystem. Moreover, although there is some research on the mollusks, phytoplankton, limnological aspects, and water quality of the lake, none exists specifically on the correlation between human activities and the lake’s inhabitants. Therefore, the aim of this study was to document the ecology of the Red Rainbowfish (Glossolepis incisus), one of the threatened endemic fishes in Lake Sentani, and the impact of human activities on its habitats. Specifically, this study was designed to focus on the impact of human activities on the abundance of the Red Rainbowfish, its body length, and sex ratio, and the abundance of introduced fishes and correlation between their abundance and Red Rainbowfish abundance. Assessing the impact of human activities was done by measuring eight water physicochemical parameters that were reported to have the most potential influence on the abundance of the Red Rainbowfish, in nine locations from three zones. The zones were predetermined based on visual assessments of the level of human activities, where higher numbers of people were assumed to have higher impacts on the environment. Zone I’s locations had heavy human activity, Zone II’s locations had medium human activity, and Zone III’s locations had the lowest human activity and was considered a “control area”. These zones’ locations were later regrouped following analyses of the water physicochemical parameters.
Fish and water samples were collected along the shoreline, at depths of up to two meters. Fish were sampled in the morning at each sampling site of a single location, and replicated three times on alternate days, yielding 27 data sets for each zone, or 81 data sets for all three zones within a year, and a total 243 data sets in three years. Collected rainbowfish were differentiated by sex, counted, measured, and released. Water parameters were measured in the same sites in which fish sampling was conducted, three times a day—morning (06.00–09.00 am), midday (11.00 am–13.00 pm), and afternoon (16.00–18.00 pm)—and repeated three times in each sampling site on three alternate days. Thus, a total of 81 water parameter data sets were collected. Water parameters, including nitrate, nitrite, phosphate, biological oxygen demand, and chemical oxygen demand were analyzed in a laboratory, while water temperature, pH, and dissolved oxygen were directly measured in the field. Then, the ecology of the rainbowfish was descriptively analyzed to assess the preferred habitat of the fish, including substrate type, water depth, turbidity, and vegetation. The R statistical analysis program was used to analyze the water physicochemical parameters in order to determine the level of pollution in the water, abundance of Red Rainbowfish in each sampling group, and correlation between water physicochemical parameters and Red Rainbowfish abundance and body size. After the level of water pollution was determined, fish samples were arranged into three groups based on the level of pollution in their location. The Analysis Toolpak in Microsoft Excel 2007, and SPSS version 17.0 were used to calculate Red Rainbowfish body length for each group, as well as the difference between groups, correlation between Red Rainbowfish abundance and introduced fish abundance, and Red Rainbowfish abundance and nitrate concentration.
Based on the aforementioned water physicochemical parameters, the sampling sites were distinguished into three groups: Groups 1 and 2 indicated heavy pollution (human impact) and Group 3 indicated low pollution (human impact) with fairly good water quality. There were significant differences in certain physicochemical parameters between groups, specifically in nitrate, nitrite, phosphate, BOD, and COD. Group 1 had the highest concentrations of nitrate and nitrite, while Group 2 had the highest concentrations of phosphate, BOD and COD. Group 3 had the best water quality of the three groups, with low to medium concentrations of each parameter. Phosphate levels in all three groups exceeded the Indonesian government’s phosphate limit in drinking water and fisheries, with BOD and COD. Nitrate and nitrite were both still within the limit. No area with zero human impact was found, even in sites with a population as low as two people. These results indicate that Lake Sentani already suffers from a high level of organic matter, which enters the lake as the result of human activities around it.
Red Rainbowfish abundance was not different between groups, except when fish were counted based on their sex. Male abundance remained similar across groups, whereas female abundance was similar in Groups 1 and 2, but much lower in Group 3. Nitrate was the only water parameter significantly correlating negatively with Red Rainbowfish abundance, suggesting that increased nitrate levels had an effect in decreasing fish abundance in Lake Sentani, although the impact was still low.
Red Rainbowfish body length was significantly different between groups, with Group 3 having the longest mean body length. Phosphate was the only parameter found to contribute to Red Rainbowfish body length, albeit non-significantly.
Introduced fish abundance correlated weakly with Red Rainbowfish abundance. While Group 2 showed a weak negative correlation, Group 1 and Group 3 revealed a weak positive correlation, suggesting that, whether positive or negative, introduced fish species had a very low influence on the abundance of the Red Rainbowfish.
Male Red Rainbowfish were more abundant than females in the shallow waters along the shoreline, the latter being found more commonly in deeper waters. This ratio was similar in Groups 1 and 2, whereas Group 3, whose habitats were the least polluted, had a higher ratio of males. The disparity in sex ratio was possibly caused by their different habitat preferences, as well as light and temperature preferences.
The overall habitat preference of the Red Rainbowfish was clear, shallow water, sand, gravel, and cobble substrate, and shoaling amidst Hydrilla verticillata, Valisneria americana, Eichhornia crassipes, Metroxylon sagu, and grasses. The availability of food also attracted fish to certain areas, such as under traditional stilt houses, roots of some plants, litter, and wood debris. The pollen of terrestrial plants, as well as terrestrial insects, also served as a food source for the fish, along with the larvae of aquatic insects and algae. Roots of plants were also important for refuge, and as nursery and playing grounds. Moreover, the fish avoided high light intensities by moving to shaded areas or deeper water. These factors influenced the Red Rainbowfish’s distribution and habitat selection, and consequently, its abundance.
Human activities in and around Lake Sentani have impacted the quality of its habitats and water. Although water quality did not have a significant influence on the Red Rainbowfish, owing to its ability to adapt to changes in water quality, changes to its habitat will have a significant impact on its ability to survive in Lake Sentani. The outcome of the present rate of pollution of its water will be further and more serious deterioration of its ecosystem, force its inhabitants to compete for increasingly fewer resources, and ultimately result in the extinction of its endemic species, of which the Red Rainbowfish is just one example. Therefore, Lake Sentani should be made a priority in Papuan conservation and management efforts, especially for native and endemic species.
The results of this study provide baseline data for Red Rainbowfish conservation in Lake Sentani, and will allow policy-makers to pursue the protection of its habitats, create a strategy to control pollutants, and encourage community-based environmental management. Further research is needed on the correlation between the Red Rainbowfish and its preferences, and its susceptibility to certain types and concentrations of pollutants. Different strategies of pollution control should also be investigated. Other parts of Lake Sentani that were beyond the scope of this research should also be surveyed, along with a lake-wide program examining the exact condition of Lake Sentani’s ecosystem, whether it be the quality of its water or the response of its flora and fauna to ongoing anthropogenic disturbance, after which a more comprehensive rehabilitation program may follow. | de |