Quantitative imaging of water flow in soil and roots using neutron radiography and deuterated water
by Mohsen Zarebanadkouki
Date of Examination:2013-05-08
Date of issue:2013-10-07
Advisor:Prof. Dr. Andrea Carminati
Referee:Prof. Dr. Christoph Leuschner
Referee:Prof. Dr. Hans-Jörg Vogel
Files in this item
Name:Thesis 29.05.2013.pdf
Size:4.16Mb
Format:PDF
Abstract
English
Where and how fast do roots take up water? Despite its importance in plant and soil sciences, there is limited experimental information on the location of water uptake along the roots of transpiring plants growing in soil. The answer to this question requires direct and in-situ measurement of the local flow of water into the roots. The aim of this study was to develop and apply a new method to quantify the local fluxes of water into different segments of the roots of intact plants. To this end, neutron radiography was used to trace the transport of deuterated water (D2O) into the roots of lupines. Lupines were grown in aluminum containers filled with sandy soil. The soil was partitioned into different compartments using 1cm-thick layers of coarse sand as capillary barriers. These barriers limited the diffusion of D2O within the soil compartments. D2O was locally injected into the selected soil compartments during the day (transpiring plants) and night (non-transpiring plants). Transport of D2O into roots was then monitored by neutron radiography with spatial resolution of 100 µm and time intervals of 10 seconds. Neutron radiographs showed that: i) transport of D2O into roots was faster during the day than during the night; 2) D2O quickly moved along the roots towards the shoots during the day, while at night this axial transport was negligible. The differences between day and night measurements were explained by convective transport of D2O into the roots. To quantify the net flow of water into roots, a simple convection-diffusion model was developed, where the increase rate of D2O concentration in roots depended on the convective transport (net root water uptake) and the diffusion of D2O into roots. The results showed that water uptake was not uniform along the roots. Water uptake was higher in the upper soil layers than in the deeper ones. Along an individual roots, the water uptake rate was higher in the proximal segments than in the distal segments. In lupines most of the water uptake occurred in the lateral roots. The function of the taproot was to collect water from the laterals and transport it to the shoots. This function is ensured by a low radial conductivity and a high axial conductive. We also applied the technique to measure how rhizosphere affects root water uptake. As was recently reported in the literature, in this study was also observed that the soil in the immediate vicinity of the roots, the so called rhizosphere, becomes hydrophobic as the soil dries. For the first time, it was shown that hydrophobicity of the rhizosphere decreased root water uptake after drying and subsequent irrigation. It was concluded that, after drying, the rhizosphere became a significant resistance to the local flow of water into the roots. This may change the pattern of the water uptake zone along the roots. The significance of this study is the development of a new method to locally quantify water flow into roots of living plants. This method makes it possible to quantitatively measure where and how fast roots take up water in soils. This technique will allow understanding the function of roots in different plants, during root maturation and in response to varying external conditions, such as water content, transpiration demand, nutrient supply, and many other factors. The answer to these questions would open wide ranges of agronomy applications aimed at managing irrigation practice.
Keywords: Root water uptake; Neutron radiography; Rhizosphere; Hydrophobicity; Radial flux; Axial flux; Root hydraulic conductivity; Lupine; Deuterated water
Other Languages
Wo und wie schnell nehmen Wurzeln Wasser auf? Obwohl diese Frage in Pflanzen- und Bodenwissenschaften von großer Bedeutung ist, gibt es nur wenige experimentelle Daten darüber, an welcher Stelle der Wurzeln eine transpirierende Pflanze das Wasser aus dem Boden erhält. Die Antwort auf diese Frage erfordert direkte und in-situ Messungen des lokalen Wasserflusses in die Wurzel hinein. Ziel dieser Arbeit war es, eine neue Methode zu entwickeln und anzuwenden, um den lokalen Wasserfluss in unterschiedliche Segmente der Pflanzenwurzeln zu quantifizieren.
Dabei wurde Neutronenradiographie eingesetzt um den Transport von deuteriertem Wasser (D2O) in die Wurzel von Lupinen zu untersuchen.
Die Lupinen wuchsen in Aluminium Containern, die mit sandigem Boden gefüllt waren. Der sandige Boden wurde mit Hilfe von 1cm-dicken Schichten groben Sandes in verschiedene Bereiche eingeteilt. Diese Schichten reduzierten die Diffusion von D2O zwischen den verschiedenen Bereichen. D2O wurde in ausgewählte Bereiche tagsüber (transpiriende Pflanzen) und nachts (nicht transpiriernde Pflanze) injiziert. Transport von D2O in die Wurzeln hinein wurde durch Neutronenradiographie mit einer räumlichen Auflösung von 100 µm in Intervallen von 10 Sekunden aufgezeichnet. Die Messungen zeigten: i) Transport von D2O in die Wurzel hinein war tagsüber schneller als nachst; ii) D2O wurde tagsüber schnell entlang der Wurzel in Richtung Spross transportiert, während dieser axiale Fluss nachts vernachlässigbar war. Die Unterschiede zwischen Tag- und Nachtmessungen wurden durch konvektiven Transport von D2O in den Wurzeln erklärt. Um den effektiven Wasserfluss in die Wurzeln hinein zu quantifizieren, wurde ein einfaches Konvektions-Diffusions Modell entwickelt, wobei die Zunahme der D2O Konzentration in Wurzeln vom konvektiven Transport abhängt und von the Diffusion des D2O in die Wurzeln.
Die Ergebnisse zeigten, dass die Wasseraufnahme nicht gleichmäßig entlang der Wurzel stattfindet. Die Wasseraufnahme war in den oberen Bodenschichten höher als in den tieferen. Entlang einzelner Wurzeln war der radiale Fluss in nahen Teilen der Wurzel höher als in den weiter entfernten Teilen der Wurzel. In Lupinen fand die Wasseraufnahme im Wesentlichen in den lateralen Wurzeln statt. Die Funktion der Pfahlwurzel war es, das Wasser der lateralen Wurzeln zu sammeln und zum Spross zu transportieren. Diese Funktion wird durch eine geringe radiale und eine hohe axiale Leitfähigkeit sichergestellt.
Wir haben diese Technik auch angewandt um den Einfluss der Rhizosphäre auf die Wasseraufnahme zu untersuchen. Wie vor Kurzem auch in der Literatur berichtet wurde, wurde auch in dieser Arbeit beobachtet, dass der Boden in der unmittelbaren Nähe der Wurzeln, der sogenannten Rhizosphäre, hydrophob wird, wenn der Boden trocken wird. Zum ersten Mal konnte gezeigt werden, dass durch die Hydrophobizität der Rhizosphäre die Wasseraufnahme nach Trocknung und folgender Bewässerung reduziert wird. Es wurde die Schlussfolgerung gezogen, dass nach Trocknung die Rhizosphäre einen entscheidenden Wiederstand für den Wasserfluss zur Wurzel darstellt. Das beeinflusst vermutlich auch die Ausdehnung des Bereiches der Wurzeln, in dem Wasser aufgenommen wird.
Die Bedeutung dieser Arbeit ist die Entwicklung einer neuen Methode, um Wasseraufnahme durch Wurzeln lebender Pflanzen lokal zu quantifizieren. Diese Methode macht es möglich quantitativ zu messen, wo und wie schnell Wurzeln Wasser im Boden aufnehmen.
Diese Technik wird es erleichtern, die Funktionsweise der Wurzeln verschiedener Pflanzen zu verstehen und den Einfluss von Wurzelwachstum und wechselnder äußerer Bedingungen, wie Wassergehalt, Transpiration und Verfügbarkeit von Nährstoffen und vieler weiterer Faktoren zu untersuchen.
Die Antwort auf diese Fragen könnten einen weiten Bereich für landwirtschaftliche Anwendungen eröffnen, die darauf abzielen, Bewässerungsmethoden zu verbessern.