• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Chemie (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Chemie (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Segregation von Wasserstoff und Deuterium an Versetzungen in Palladium

Segregation of hydrogen and deuterium at dislocations in palladium

by Michael Maxelon
Doctoral thesis
Date of Examination:2000-04-26
Date of issue:2000-12-13
Advisor:Prof. Dr. Reiner Kirchheim
Referee:Prof. Dr. Reiner Kirchheim
Referee:Prof. Dr. Wolfgang Felsch
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-2133

 

 

Files in this item

Name:Maxelon.pdf
Size:1.66Mb
Format:PDF
Description:Dissertation
ViewOpen

The following license files are associated with this item:


Abstract

English

Small angle neutron scattering (SANS) measurements on Pd samples containing dislocations with a high dislocation density reveal an additional intensity for a scattering vector of 0.02 to 0.2 1/ after loading with hydrogen or deuterium. The corresponding net cross section is proportional to the reciprocal scattering vector as expected for line type scattering objects with a superimposed exponential decrease stemming from scattering within the Guinier-regime. This experimental finding is in accordance with a model where extended segregation of H or D within the dilated regions of edge dislocations occurs. In a first order approximation this corresponds to a precipitation of cylindrically shaped hydrides along the dislocation line and can be treated quantitatively yielding radii in agreement with SANS data. Whereas gas volumetric measurements at the same total concentration reveal no difference for the amount of H- and D-segregation, there is a pronounced effective difference in SANS intensities which cannot be explained by the different scattering lengths alone. However, the different sign of the latter quantity in combinations with an expected volume expansion within the hydride/deuteride region provides a reasonable explanation of the intensity difference observed. Knowing the amount of segregated H or D from gas volumetry and the dislocation density from electron microscopy the SANS results can be explained in a self consistent way.
Keywords: neutron scattering; metals; hydrides; dislocations; segregation
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]