• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Jump estimation for noisy blurred step functions

Sprungschätzung für verrauschte Beobachtungen von verschmierten Treppenfunktionen

by Leif Boysen
Doctoral thesis
Date of Examination:2006-05-09
Date of issue:2006-09-18
Advisor:Prof. Dr. Axel Munk
Referee:Prof. Dr. Axel Munk
Referee:Prof. Dr. Lutz Dümbgen
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-2585

 

 

Files in this item

Name:boysen.pdf
Size:1.82Mb
Format:PDF
Description:Dissertation
ViewOpen

The following license files are associated with this item:


Abstract

English

We consider the estimation of a step function $f$ from noisy observations of $Kf$, where $K$ is some integral operator with bounded integral Kernel. We use a penalized least squares estimator to reconstruct the signal $f$ from the observations, with penalty equal to the number of jumps of the reconstruction. Asymptotically, it is possible to correctly estimate the number of jumps with probability one. Given that the number of jumps is correctly estimated, we show that the corresponding parameter estimates of the jump locations and jump heights are $n^{-1/2}$ consistent and converge to a joint normal distribution with covariance structure depending on the operator $K$. We find that the rate does not depend on the spectral information of the operator.
Keywords: Statistical inverse problems; change-point estimation; reconstruction with step functions

Other Languages

Wir betrachten das Schätzen einer Treppenfunktion $f$ aus verrauschten Beobachtungen von $Kf$, wobei $K$ ein Integraloperator mit beschränktem Integralkern ist. Zur Rekonstruktion von $f$ aus den Beobachtungen verwenden wir einen penalisierten kleinste Quadrate Schätzer, wobei der Penalisierungsterm der Anzahl der Sprünge der Rekonstruktion entspricht. Wir zeigen, dass asymptotisch die richtige Anzahl der Sprünge mit Wahrscheinlichkeit eins geschätzt werden kann. Unter der Vorraussetzung, dass diese Anzahl richtig geschätzt wurde, konvergieren die Schätzer der Sprungstellen und Sprunghöhen mit einer $n^{-1/2}$ Rate gegen die wahren Werte. Außerdem konvergiert die Verteilung des normalisierten Vektors der Schätzer gegen eine Normalverteilung deren Kovarianzstruktur vom Operator $K$ abhängt. Wir zeigen, dass die Konvergenzrate unabhängig von der Spektralinformation des Operators ist.
Schlagwörter: Statistische Inverse Probleme; Schätzen von Sprungstellen; Rekonstruktion mit Treppenfunktionen
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]