Show simple item record

Die Methode von Smolyak bei der multivariaten Interpolation

dc.contributor.advisorSchaback, Robert Prof. Dr.de
dc.contributor.authorSchreiber, Anjade
dc.date.accessioned2001-05-31T15:26:52Zde
dc.date.accessioned2013-01-18T13:24:36Zde
dc.date.available2013-01-30T23:50:56Zde
dc.date.issued2001-05-31de
dc.identifier.urihttp://hdl.handle.net/11858/00-1735-0000-0006-B37B-Bde
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-2577
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-2577
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-2577
dc.description.abstractUm mit Anstieg der Raumdimension gleichbleibend gute Resultate zu erzielen, muß bei vielen Interpolationsverfahren der Daten- und damit auch der Rechenaufwand in exponentieller Weise anwachsen. Abhilfe schafft die Methode von Smolyak, die in dieser Arbeit auf die Interpolation mit (radialen) Basisfunktionen angewandt wird. Als besonders geeignet erweist es sich, auf Basis von Tensorproduktfunktionen zu interpolieren, da diese bei entsprechender Wahl der univariaten Funktionen eine hinreichend hohe Glätte aufweisen. Bei gleichbleibender Datengröße ergeben sich damit Fehlerschranken, die im Vergleich zu eindimensionalen Ergebnissen fast optimal sind und sich mit Anwachsen der Raumdimension nicht wesentlich verschlechtern. In einigen Fällen werden dabei sogar exponentielle Approximationsgüten erzielt. Eine erhöhte Anwendungsbreite des Verfahrens wird dadurch erreicht, daß nicht nur ausschließlich auf dem dünnen Gitter, sondern auch auf einem allgemeineren Datensatz interpoliert werden kann.de
dc.format.mimetypeContentType:application/postscript Size:1761de
dc.language.isogerde
dc.rights.urihttp://webdoc.sub.gwdg.de/diss/copyrdiss.htmde
dc.titleDie Methode von Smolyak bei der multivariaten Interpolationde
dc.typedoctoralThesisde
dc.title.translatedSmolyak's method for multivariate interpolationde
dc.contributor.refereeSchaback, Robert Prof. Dr.de
dc.date.examination2000-06-22de
dc.subject.dnb510 Mathematikde
dc.description.abstractengMany classical interpolation methods obtain results of equal quality in any space dimension only if the amount of data grows exponentially. This problem can be cured by the method of Smolyak which is in this thesis applied to interpolation by (radial) basis functions. A particularly good choice for a basis are tensor product functions; this is due to their high smoothness. The results are error bounds which are almost optimal compared to the univariate case and don"t get considerably worse while the space dimension is growing. In some cases, even exponential approximation powers are achieved. The method has a wide range of application because it can be used not only on hyperbolic crosspoints but also on more universal data sets.de
dc.contributor.coRefereeWerner, Jochen Prof. Dr.de
dc.subject.topicMathematics and Computer Sciencede
dc.subject.gerInterpolationde
dc.subject.gerApproximationde
dc.subject.gerRadiale Basisfunktionende
dc.subject.gerDünne Gitterde
dc.subject.gerFluch der Dimensionde
dc.subject.gerSmolyakde
dc.subject.enginterpolationde
dc.subject.engapproximationde
dc.subject.enghyperbolic crosspointsde
dc.subject.engradial basis functionsde
dc.subject.engcurse of dimensionde
dc.subject.engSmolyakde
dc.subject.bk31.76 Numerische Mathematikde
dc.identifier.urnurn:nbn:de:gbv:7-webdoc-1082-4de
dc.identifier.purlwebdoc-1082de
dc.affiliation.instituteFakultät für Mathematik und Informatikde
dc.subject.gokfull41-EGFDde
dc.subject.gokfull41-EEBde
dc.identifier.ppn330823787


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record