dc.contributor.advisor | Stuhler, Ulrich Prof. Dr. | de |
dc.contributor.author | Cerviño, Juan Marcos | de |
dc.date.accessioned | 2007-09-26T15:27:05Z | de |
dc.date.accessioned | 2013-01-18T13:20:40Z | de |
dc.date.available | 2013-01-30T23:50:54Z | de |
dc.date.issued | 2007-09-26 | de |
dc.identifier.uri | http://hdl.handle.net/11858/00-1735-0000-0006-B399-7 | de |
dc.identifier.uri | http://dx.doi.org/10.53846/goediss-2477 | |
dc.description.abstract | Das Thema dieser Arbeit ist die arithmetische Theorie der quadratischen Formen in der Sprache der algebraischen Geometrie. Das Hauptziel ist es, die Minkowski-Siegelsche Formel für definite quadratische Bündel auf Kurven über endlichen Körpern zu formulieren und zu beweisen. | de |
dc.format.mimetype | application/pdf | de |
dc.language.iso | eng | de |
dc.rights.uri | http://webdoc.sub.gwdg.de/diss/copyr_diss.html | de |
dc.title | The Minkowski-Siegel Formula for quadratic bundles on curves | de |
dc.type | doctoralThesis | de |
dc.title.translated | The Minkowski-Siegel Formula for quadratic bundles on curves | de |
dc.contributor.referee | Stuhler, Ulrich Prof. Dr. | de |
dc.date.examination | 2006-07-13 | de |
dc.subject.dnb | 510 Mathematik | de |
dc.description.abstracteng | The subject of this thesis is the arithmetic theory of quadratic forms in the language of algebraic geometry. The main goal is to formulate and prove the Minkowski-Siegel formula for definite quadratic bundles over curves over finite fields. | de |
dc.contributor.coReferee | Tschinkel, Yuri Prof. Dr. | de |
dc.subject.topic | Mathematics and Computer Science | de |
dc.subject.ger | Quadratische Formen | de |
dc.subject.ger | quadratische Bündel | de |
dc.subject.ger | orthogonale Gruppen | de |
dc.subject.eng | Quadratic forms | de |
dc.subject.eng | quadratic bundles | de |
dc.subject.eng | orthogonal groups | de |
dc.subject.bk | 31.14 | de |
dc.identifier.urn | urn:nbn:de:gbv:7-webdoc-1587-0 | de |
dc.identifier.purl | webdoc-1587 | de |
dc.affiliation.institute | Fakultät für Mathematik und Informatik | de |
dc.subject.gokfull | EBBE 120: Quadratic forms over global rings and fields {Forms and linear algebraic groups} | de |
dc.subject.gokfull | EBBE 000: Forms and linear algebraic groups | de |
dc.subject.gokfull | EBBG 000: Arithmetic algebraic geometry - Diophantine geometry | de |
dc.identifier.ppn | 617896348 | de |