Show simple item record

The Quintic Gauss Sums

dc.contributor.advisorPatterson, Samuel James Prof. Dr.de
dc.contributor.authorFossi, Talom Leopoldde
dc.date.accessioned2004-09-14T15:27:25Zde
dc.date.accessioned2013-01-18T13:20:25Zde
dc.date.available2013-01-30T23:51:28Zde
dc.date.issued2004-09-14de
dc.identifier.urihttp://hdl.handle.net/11858/00-1735-0000-0006-B3BD-8de
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-2471
dc.description.abstractEine moeglische Veralgeneinerung von Casselscher Formel ist in der Fassung nicht moglich. Wir konstruiiren fundamentale Bereiche zyklotomischer Koerper und dessen kombinatorischen Geometrie. Die Eulersche relation is erfuelt. wir zeigen, wie man am besten eine kanonische Einheitswuerzel herausfinden kann. Einige Vermutungen ueber die Gaussschen summen mit solchen kononischen Einheitswuerzel, nach unseren numerische Ausgabe, sind gegeben. Wir haben an Anhang noch einn Beweise ueber die gaussschen Summen die rational sind gegeben.de
dc.format.mimetypeapplication/pdfde
dc.language.isoengde
dc.rights.urihttp://webdoc.sub.gwdg.de/diss/copyr_diss.htmlde
dc.titleThe Quintic Gauss Sumsde
dc.typedoctoralThesisde
dc.title.translatedDie Gaussschen Summen von Ordnung fuenfde
dc.contributor.refereeStuhler, Ulrich Prof. Dr.de
dc.date.examination2002-10-25de
dc.subject.dnb510 Mathematikde
dc.description.abstractengWe investigate the possibility of generalization of the Cassel-McGettrick formula for the quintic Gauss sums. We construct a fundamental region for the fifth cyclotomic field. we describe in general the combinatoric of their geometry. The formula obtained so far satisfied a recurrence relation. The Euler relation is proved. We show how to extract canonicaly a root of unity once we have contructed the fundamental region. The numerical computation shows that a generalization of Cassels-McGettrick formula fails. One should actually attempt to modify the shape of the fundamental region to see if there is a new formula. We prove that there are new conjectures involving Gauss sums. This is actually supported by strong computation within a certain range. In the appendix we show that, there are Gauss sums which are rational intgers. we explicitely give a proof and how to find them.de
dc.contributor.coRefereeKersten, Ina Prof. Dr.de
dc.contributor.thirdRefereeHartje, Kriete PDde
dc.subject.topicMathematics and Computer Sciencede
dc.subject.gerZyklotomische Koerperde
dc.subject.gerCassels conjecturede
dc.subject.gerGausssche Summende
dc.subject.gerJacobische Summende
dc.subject.gerresidue symbolde
dc.subject.engcyclotomic fieldsde
dc.subject.engcassels conjecturede
dc.subject.engGauss sumsde
dc.subject.engJacobi sumsde
dc.subject.engcharacter sumsde
dc.subject.engresidue symbolde
dc.subject.engfundamental regionde
dc.subject.bk31.14 Zahlentheoriede
dc.identifier.urnurn:nbn:de:gbv:7-webdoc-210-2de
dc.identifier.purlwebdoc-210de
dc.affiliation.instituteFakultät für Mathematik und Informatikde
dc.subject.gokfull31.14 Zahlentheoriede
dc.identifier.ppn478434308de


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record