• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Oktaven und Reduktionstheorie

Octonions and reduction theory

by Karsten Roeseler
Doctoral thesis
Date of Examination:2011-02-07
Date of issue:2012-02-02
Advisor:Prof. Dr. Ulrich Stuhler
Referee:Prof. Dr. Ulrich Stuhler
Referee:Prof. Dr. Ralf Meyer
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-2456

 

 

Files in this item

Name:roeseler.pdf
Size:535.Kb
Format:PDF
Description:Dissertation
ViewOpen

The following license files are associated with this item:


Abstract

English

The thesis studies the split octonion algebra and its automorphism group. This group is a Lie group of Type G2. One object of the thesis is to look at methods introduced by Behrend, Harder and Stuhler in the special case of this group. In this context, the various systems of norms on the octonions are of importance, which form either symmetric rooms or Bruhat-Tits buildings. Thereby, the algebra structure of the octonions is very helpful for the analyses. A by-product is that an invariant flag of the octonions under the Borel group almost completely consists of subalgebras. Finally it is shown that the complementary polyhedrons introduced by Behrend degenerate to a point when one looks at the standard apartment. It is possible to describe their location in terms of the grades (as Arakelov bundles) of the first two spaces of the invariant flag.
Keywords: Octonions; automorphism group; G<sub>2</sub>; building; norm; Lie algebra; flag

Other Languages

Die Arbeit untersucht die zerfallende Oktaven-Algebra und deren Automorphismengruppe. Diese Gruppe ist eine Lie-Gruppe vom Typ G2. Ein Ziel der Arbeit ist, Untersuchungen von Behrend, Harder und Stuhler für den konkreten Fall dieser Gruppe näher zu beleuchten. Von Bedeutung sind in diesem Zusammenhang die verschiedenen Systeme von Bewertungen auf den Oktaven, die als symmetrische Räume bzw. als Bruhat-Tits-Gebäude vorliegen. Dabei erleichtert die Algebrenstruktur der Oktaven wesentlich die Untersuchungen. Ein Nebenergebnis ist, dass unter einer Borelgruppe invariante Flaggen der Oktaven fast vollständig aus Unteralgebren bestehen. Schließlich wird gezeigt, dass die von Behrend eingeführten Komplementärpolyeder auf dem Standardapartment zu einem Punkt entarten; ihre Lage lässt sich auch über die Grade (als Arakelov-Bündel) der beiden kleinsten Flaggenräume beschreiben.
Schlagwörter: Oktaven; Automorphismengruppe; G<sub>2</sub>; Gebäude; Bewertung; Lie-Algebra; Flagge
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]