• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Point Source Approximation Methods in Inverse Obstacle Reconstruction Problems

Point Source Approximation Methods in Inverse Obstacle Reconstruction Problems

by Klaus Erhard
Doctoral thesis
Date of Examination:2005-11-07
Date of issue:2006-02-09
Advisor:Prof. Dr. Roland Potthast
Referee:Prof. Dr. Roland Potthast
Referee:Prof. Dr. Rainer Kreß
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-2518

 

 

Files in this item

Name:erhard.pdf
Size:4.00Mb
Format:PDF
Description:Dissertation
ViewOpen

The following license files are associated with this item:


Abstract

English

We consider point source approximation methods for the solution of inverse object reconstruction problems for the Laplace and the Helmholtz equation. We present a two-step algorithm to reconstruct the neighbourhood of the obstacle by a proper choice of approximation domains, first. Then we reconstruct the obstacle in the second step of the algorithm by varying the approximation domains adaptively. We formulate this two-step algorithm for the point source method, the singular sources method and the probe method. Moreover we show numerical examples both for the Laplace and the Helmholtz equation in two and three dimensions, respectively. Finally, we compare the point source approximation methods with the factorisation and the linear sampling method both for exact data and noisy data.
Keywords: Point source method; singular sources method; probe method; linear sampling method; factorisation method

Other Languages

Wir untersuchen verschiedene Punktquellenverfahren zur Lösung inverser Objektrekonstruktionsprobleme für die Laplace- und Helmholtz-Gleichung. Dabei stellen wir einen Zweischritt-Algorithmus vor, der durch eine geeignete Wahl von Approximationsgebieten zunächst die Umgebung des Objekts rekonstruiert. In einem zweiten Schritt wird durch Adaption des Approximationsgebietes das unbekannte Gebiet selbst rekonstruiert. Wir formulieren den Zweischrittalgorithmus für die Punktquellenmethode, die Methode singulärer Quellen und die Probe Methode. Hierbei zeigen wir Rekonstruktionsergebnisse für die Laplace und die Helmholtzgleichung in zwei bzw. drei Dimensionen. Schließlich vergleichen wir die Punktquellenverfahren mit der Faktorisierungs- und der Linear Sampling Methode sowohl für exakte als auch für fehlerbehaftete Daten.
Schlagwörter: Punktquellenmethode; Methode singulärer Quellen; Probe Methode; Faktorisierungsmethode; Linear Sampling Methode
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]