Show simple item record

Controlled delamination of metal films by hydrogen loading

dc.contributor.advisorKirchheim, Reiner Prof. Dr.de
dc.contributor.authorNikitin, Eugende
dc.date.accessioned2009-01-28T15:30:37Zde
dc.date.accessioned2013-01-18T13:34:48Zde
dc.date.available2013-01-30T23:51:08Zde
dc.date.issued2009-01-28de
dc.identifier.urihttp://hdl.handle.net/11858/00-1735-0000-0006-B47E-Ede
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-2745
dc.description.abstractIn dieser Arbeit wird die Adhäsionsenergie zwischen metallischen Schichten und ihren Substraten quantitativ bestimmt. Dazu wurde mit der Methode der kontrollierten Schichtablösung eine neue Technik entwickelt, bei der die starken Druckspannungen ausgenutzt werden, die während der Wasserstoffbeladung in dünnen, auf harten Substraten haftenden Schichten entstehen. Wenn die in einer H-beladenen dünnen Schicht gespeicherte elastische Energie die Adhäsionsenergie zwischen Schicht und Substrat übersteigt, so löst sich die Schicht lokal vom Substrat ab. Das Einsetzen der Schichtablösung wird durch eine kritische H-Konzentration, eine kritische mechanische Spannung und eine kritische Substratverbiegung charakterisiert, aus denen sich die Adhäsionsenergie quantitativ berechnen lässt. Da die kritischen Werte beim Einsetzen der Schichtablösung gemessen werden, ist plastische Verformung vernachlässigbar. In Mehrfachschichtsystemen kann die Adhäsionsenergie zwischen Substraten und Schichten, die praktisch keinen Wasserstoff absorbieren, mit der Methode der kontrollierten Schichtablösung gemessen werden, wenn die interessierende Schicht mit einem Material, das Wasserstoff gut absorbiert (aktive Schicht), beschichtet wird. Die Messungen sind einfach und können unter gleichen Bedingungen wiederholt werden, während Variablen wie die Dicke der wasserstoffabsorbierenden Schicht oder die Oberflächeneigenschaften des Substrats variiert und optimiert werden können. In dieser Arbeit werden die Adhäsionsenergien verschiedener Materialien auf Polycarbonat und von Niob-Schichten auf Saphir untersucht.de
dc.format.mimetypeapplication/pdfde
dc.language.isoengde
dc.rights.urihttp://creativecommons.org/licenses/by-nd/2.0/de/de
dc.titleControlled delamination of metal films by hydrogen loadingde
dc.typedoctoralThesisde
dc.title.translatedKontrollierte Ablösung dünner metallischer Schichten durch Wasserstoffbeladungde
dc.contributor.refereePundt, Astrid Prof. Dr.de
dc.date.examination2008-11-18de
dc.subject.dnb530 Physikde
dc.description.abstractengIn this work we quantitatively determine the adhesion energy between metal films and their substrates. Therefore a new controlled buckling technique is established, applying the strong compressive in-plane stress that results in thin films clamped on rigid substrates during hydrogen loading. When the elastic energy stored in the H-loaded thin film exceeds the adhesion energy between film and substrate, delamination occurs. At the onset of delamination, a critical hydrogen concentration, a critical stress value and a critical bending of the substrate are present, which are quantitative measures for the adhesion energy and permit its calculation. As the critical values are determined at the onset of delamination, plastic deformation is negligible, which denies the quantitative determination of adhesion energies in conventional test setups. In multilayer-systems, adhesion energies between substrates and films that hardly absorb hydrogen can be measured by the controlled buckling technique, when the films of interest are coated with hydrogen absorbing films (active layer). The measurements are performed easily and can be repeated under the same test conditions, while variables such as the thickness of the coating materials or the boundary surface structure can be varied and optimized. In this work the adhesion energies of different materials on polycarbonate and niobium on sapphire are investigated.de
dc.contributor.coRefereeHofsäss, Hans Christian Prof. Dr.de
dc.contributor.thirdRefereeLauterborn, Werner Prof. Dr.de
dc.subject.topicMathematics and Computer Sciencede
dc.subject.gerdünne Schichtende
dc.subject.gerFaltende
dc.subject.gerAblösungde
dc.subject.gerAdhäsionsenergiede
dc.subject.gerGrenzflächende
dc.subject.gerNiobiumde
dc.subject.gerPalladiumde
dc.subject.gerPolykarbonatde
dc.subject.gerSaphirde
dc.subject.engThin filmsde
dc.subject.engBucklesde
dc.subject.engAdhesionde
dc.subject.engDelaminationde
dc.subject.engInterfacesde
dc.subject.engNiobiumde
dc.subject.engPalladiumde
dc.subject.engPolycarbonatede
dc.subject.engSapphirede
dc.subject.bk33.05 Experimentalphysikde
dc.identifier.urnurn:nbn:de:gbv:7-webdoc-2013-6de
dc.identifier.purlwebdoc-2013de
dc.affiliation.instituteFakultät für Physikde
dc.subject.gokfullRVT 120 Mechanische Eigenschaften {51.32a}de
dc.identifier.ppn610577867de


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record