Zur Kurzanzeige

How introgressive hybridization shaped a genus' phylogeny

The case of Papio baboons

dc.contributor.advisorFischer, Julia Prof. Dr.de
dc.contributor.authorKeller, Christinade
dc.date.accessioned2010-06-24T06:54:08Zde
dc.date.accessioned2013-01-18T14:24:57Zde
dc.date.available2013-01-30T23:51:13Zde
dc.date.issued2010-06-24de
dc.identifier.urihttp://hdl.handle.net/11858/00-1735-0000-0006-B514-Ede
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-3226
dc.description.abstractPrimaten stellen eine sehr diverse Ordnung dar. Die verschiedenen Arten entwickelten vielfältige Verhaltensweisen und morphologische Merkmale. Um die Evolution dieser Merkmale zu untersuchen ist ein Verständnis der Phylogenie der entsprechenden Art unerlässlich, da zum Beispiel homologe Merkmale nur mit phylogenetischen Methoden erkannt werden können. Obwohl Paviane zu den am besten untersuchten Primaten gehören, wird über ihre Phylogenie und Taxonomie noch immer debattiert. Die Gattung Papio ist in ganz Afrika verbreitet mit Ausnahme von Regenwaldgebieten und sehr trockenen Wüsten. Fünf Arten werden im Allgemeinen anerkannt: Guineapavian (Papio papio), Anubispavian (Papio anubis), Mantelpavian (Papio hamadryas), Gelber Pavian (Papio cynocephalus) und Bärenpavian (Papio ursinus). Zusätzlich wurde der Kindapavian (Papio kindae) als sechste Art vorgeschlagen. Genfluss zwischen diesen Arten wurde wiederholt nachgewiesen und verkompliziert die Konstruktion phylogenetischer Bäume mit genetischen Methoden. Neben diesen gegenwärtigen Hybridisierungen könnte auch Hybridisierung in der Vergangenheit einen Einfluss auf die Phylogenie der Paviane gehabt haben. Die Ziele dieser Studie waren es evolutionäre Einheiten innerhalb der Gattung Papio zu identifizieren und die phylogenetischen Beziehungen zwischen ihnen zu untersuchen. Hierbei sollte auch der Einfluss von Hybridisierung in der Vergangenheit auf die Phylogenie der Paviane beleuchtet werden. Da bei Pavianen die Männchen abwandern, kann mitochondriale DNA als maternaler Marker Hinweise über alte Populationsstrukturen liefern. Kombiniert mit morphologischen Daten kann mitochondriale DNA auf potentielle, zurückliegende Hybridisierung hinweisen. Phylogenetische Rekonstruktionen ergaben mehrere gut unterstützte Haplogruppen. Große Unterschiede wurden zwischen Haplogruppen innerhalb einer Art gefunden, ebenso wie teilweise sehr geringe Unterschiede zwischen Haplogruppen verschiedener Arten. Manchmal fanden sich gar verschiedene Arten innerhalb einer Haplogruppe. Die geographische Verbreitung der mitochondrialen Haplogruppen stimmt nicht mit der Verbreitung der Arten überein. Da die Pavianarten anhand ihrer Morphologie bestimmt wurden, führen diese Gegensätze zwischen mitochondrialer DNA und Morphologie zu einer Paraphylie aller Pavianarten mit Ausnahme von Guinea- und Kindapavianen. Das phylogenetische Muster legt eine komplizierte Evolutionsgeschichte mit mehreren Isolations- und Kontaktphasen nahe. Höchstwahrscheinlich wurde die Gattung hierbei von klimatischen Veränderungen beeinflusst, z.B. von zyklischen Ausdehnungen und Verkleinerungen ihres Habitates, hauptsächlich Savannen, während der glazialen und inter-glazialen Phasen des Pleistozäns. Introgressive Hybridisierung, insbesondere die männliche Introgression, während der Kontaktphasen wurde als wahrscheinlicher Grund für die Unterschiede zwischen der Verbreitung von mitochondrialen Haplogruppen und Morphotypen identifiziert. Bei der männlichen Introgression wandern Männchen einer Art in das Gebiet einer anderen Art ein und pflanzen sich mit den ansässigen Weibchen fort. Wenn die Einwanderung über Generationen weiterhin nur einseitig von Männchen einer Art erfolgt, wird die andere Art das nukleäre Genom der Einwanderer annehmen, was entsprechende Änderungen des Morphotyps nach sich zieht. Hierbei bleibt das originale Mitochondrium unberührt. Der auffälligste Gegensatz zwischen Morphotyp und mitochondrialer DNA trat bei den Gelben Pavianen auf. Der tiefste phylogenetische Einschnitt der Gattung teilt die Paviane in eine nördliche und eine südliche Haplogruppe, welche sich vor ~2.09 Millionen Jahren trennten. Heutige Gelbe Paviane aus dem nördlichen Tansania gehören der nördlichen Haplogruppe an, während ihre Artgenossen aus dem südlichen Tansania der südlichen Haplogruppe angehören. Interessanterweise wurden bisher keine morphologischen Unterschiede zwischen den Pavianen aus dem nördlichen und südlichen Tansania gefunden. Um dieses Phänomen zu untersuchen, führte ich eine ausgiebige Sammlung von Kotproben in Tansania durch. Hierdurch wollte ich die genaue Lage der Grenze zwischen den Haplogruppen klären und dadurch Einblicke in mögliche Ursachen für ihre Existenz erlangen. Meine Ergebnisse legen nahe, dass die Grenze zwischen den Haplogruppen entlang eines Zentral-tansanischen Gebirges verläuft und dann dem Fluss lauf des Ruaha und des Rufiji folgt. Im Gegensatz zu den Flüssen stellt der erwähnte Gebirgszug heute keine Migrationsbarriere für Paviane dar. Allerdings könnte er während feuchter Klimaperioden von Regenwald bedeckt gewesen sein, welcher von Gelben Pavianen gemieden wird. Die Haplogruppen-Grenze ist möglicherweise ein Überbleibsel einer alten Artgrenze, welche heute anhand von Morphologie nicht mehr erkennbar ist, da männliche Introgression die Morphotypen, nicht jedoch die Mitochondrien verändert hat. Meine weiteren Analysen bezogen sich schwerpunktmäßig auf das südliche Afrika, da frühere Ergebnisse eine interessante Hybridisierungsgeschichte in diesem Gebiet vermuten ließen. Mein Ziel war die Klärung der Verbreitung verschiedener Haplogruppen und der Lage von möglichen Überlappungsgebieten. Die phylogenetische Rekonstruktion für die Paviane des südlichen Afrikas zeigte mitochondriale Paraphylie für beide dort vorkommenden Arten, Bären- und Gelber Pavian. Auch hier wurden die Gegensätze zwischen Morphologie und mitochondrialer DNA wahrscheinlich durch introgressive Hybridisierung verursacht. Hierbei sind vermutlich Männchen vom Chacma Morphotyp aus dem Süden in Populationen mit Gelbem Morphotyp eingewandert. Dadurch brachten die Chacma-Männchen ihren Morphotyp und ihr nukleäres Genom in die Gelbe Pavianpopulation, welche ihr ursprüngliches Mitochondrium jedoch bewahrte. Als Folge dieses Prozesses entstanden die sogenannten graufüßigen Chacmapaviane (P.u. griseipis), eine nördliche Unterart des Chacmapavians. Diese haben heute einen Chacma Morphotyp, aber tragen ein Mitochondrium welches näher mit dem der Gelben Paviane verwandt ist. Beide Chacma Haplogruppen überlappen heute im nördlichen Namibia und im Nord-östlichen Südafrika. Zusammenfassend können Paviane in mehrere, gut unterstützte mitochondriale Haplogruppen eingeteilt werden, welche jedoch oft nicht mit Artgrenzen übereinstimmen. Die Identifizierung solcher evolutionärer Einheiten kann möglicherweise den Artenschutz unterstützen. So unterstützen meine Ergebnisse zum Beispiel den Status des Kindapavians als eigene Art, welche bisher nicht von der IUCN gelistet wurde. Zusammen mit klimatischen Veränderungen, spielten vergangene Hybridisierungen vermutlich eine große Rolle in der Stammesgeschichte der Paviane. Dieselben klimatischen Einflüsse könnte auch die Evolution anderer Arten, welche dasselbe Habiat bevorzugten (z.B. frühe Hominide), beeinflusst haben. Daher stellt die Phylogenie der Paviane nicht nur ein interessantes Beispiel für die Stammesgeschichte einer diversen Gattung dar, welche über einen gesamten Kontinent verbreitet ist und ihre morphologischen Einheiten trotz Hybridisierung bewahrt hat. Vielmehr ist die Phylogenie der Paviane auch ein Stück des Puzzles der evolutionären Geschichte Afrikas. Weitere Details der Phylogenie der Paviane, zum Beispiel über gegenwärtige Hybridisierung sowie Wander- und Genflussrichtungen, können nur durch Analysen nukleärer DNA erforscht werden. Diese Analysen sollten auf einen kompletten Datensatz, der alle Taxa sowie ihre Kontaktbereiche abdeckt, angewendet werden.de
dc.format.mimetypeapplication/pdfde
dc.language.isoengde
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/de
dc.titleHow introgressive hybridization shaped a genus' phylogenyde
dc.title.alternativeThe case of Papio baboonsde
dc.typedoctoralThesisde
dc.title.translatedWie introgressive Hybridisierung die Phylogenie einer Gattung beeinflußtde
dc.contributor.refereeHeymann, Eckhard Prof. Dr.de
dc.date.examination2010-06-10de
dc.subject.dnb590 Tiere (Zoologie)de
dc.description.abstractengPrimates are a diverse order, which exhibits numerous behavioral and morphological traits. To elucidate the evolutionary history of those traits an understanding of the phylogeny of the respective species is essential as homologous traits for instance can only be detected with phylogenetic methods. Although their behavior, ecology and morphology have been studied intensively, the phylogeny and even taxonomy of baboons (genus Papio) is still a matter of debate. Baboons are distributed all over sub-Saharan Africa except for rain forests and dry deserts. Five species are generally acknowledged: Guinea baboon (Papio papio), olive baboon (Papio anubis), hamadryas baboon (Papio hamadryas), yellow baboon (Papio cynocephalus) and chacma baboon (Papio ursinus). In addition the Kinda baboon (Papio kindae) has been suggested to deserve species status. Gene flow between species has been documented repeatedly and complicates the reconstruction of phylogenetic relationships with genetic methods. Apart from ongoing hybridization, ancient hybridization via introgression has been suggested to have played a role in baboon phylogeny. The aims of the present study were to detect evolutionary units within the genus Papio, to elucidate the phylogenetic relationships between them and thereby shed light on the influence of ancient hybridization on the phylogenetic history of baboons. As female philopatry seems to be a plesiomorphic trait in baboons, mitochondrial DNA (mtDNA) as a maternal marker allows inferences on ancient population structures. Combined with morphological information mtDNA can reveal potential ancient hybridization. Phylogenetic reconstructions identified several well-supported mtDNA-clades. Deep divergences were found between clades within a single species as well as shallow divergences, sometimes even almost identical haplotypes, between different species. The geographical distribution of mtDNA clades does not reflect the distribution of species. As baboon species are defined by their morphology these discordances between mtDNA and morphology lead to paraphylies in all baboon species except Kinda and Guinea baboons. The phylogeographic patterns suggest a complex evolutionary history with multiple phases of isolation and reconnection of populations. Most likely, the phylogeography of the genus was triggered by climatic changes, namely multiple cycles of expansion and retreat of suitable habitats, mainly savannahs, during Pleistocene glacial and inter-glacial periods. Introgressive hybridization, especially male introgression, during contact phases was indentified to be the most likely reason for discordances between the phylogeography of mtDNA and morphology. During male introgression males of one species invade the range of a neighboring species and hybridize with the resident females. If backcrossing of hybrids with invading males occurs repeatedly over generations, the resident population will be swamped by nuclear DNA (nDNA) of the invading species with respective changes in their phenotype while they retain their original mitochondria. The most striking discordance between morphotype and mtDNA was found in yellow baboons. The deepest split in the phylogenetic tree divides the genus into a northern and southern mtDNA-clade, which diverged ~2.09 million years ago. Today yellow baboons from northern Tanzania belong to the northern clade while those from southern Tanzania belong to the southern clade. Interestingly, no morphological differences were reported between northern and southern Tanzanian yellow baboons. To investigate this divergence I conducted a dense sample collection in Tanzania to refine the border location between the ranges of these clades and determine the causal origins of its existence. I found the border to run along a central Tanzanian mountain range and further on along the Ruaha and Rufiji River. In contrast to these big rivers, the mountain range does not constitute a dispersal barrier today, but might have been densely forested during wet interglacial periods and yellow baboons normally do not enter deep into dense forests. The mtDNA border might reflect an ancient species border which is not detectable by morphology today as a result of male introgression and nuclear swamping. My further analyses focused on southern Africa as our earlier results suggest a multi-layered history of hybridization in this area. I aimed to clarify the distribution of different baboon mtDNA clades and to locate possible overlapping zones among them. The phylogenetic reconstruction for southern African baboons revealed mitochondrial paraphyly for the two autochthonous species, chacma and yellow baboons. Again discordance between mtDNA and morphology was probably caused by introgressive hybridization and subsequent nuclear swamping, whereby males of the chacma morphotype from the south invaded the yellow morphotype population further north bringing their nuclear genome and phenotype (morphology) into a population that maintained its yellow baboon mtDNA. As a result grayfooted chacma baboons (Papio ursinus griseipis), a northern subspecies of chacma baboons, show a chacma morphotype but carry mitochondria that are closer related to those of yellow baboons. The two clades with a chacma morphotype overlap in northern Namibia and north-eastern South Africa today. In conclusion baboons can be divided into several, well-supported mtDNA clades which are often not consistent with species distributions. The identification of evolutionary units might help conservation efforts. My results for instance support the species status of the Kinda baboon, which has not been listed by the IUCN so far. Together with climatic changes, ancient hybridization, especially male introgression, seems to play a major role in baboon phylogeny. These influences most likely affected the evolutionary history of other savannah living species as well, including early hominins. Therefore baboon phylogeny is not only an interesting example for the phylogenetic history of a diverse genus that spread over an entire continent and maintained morphological entities despite hybridization, but also a piece in the puzzle of the evolutionary history of Africa. Further details on baboon phylogeny for instance about ongoing hybridization, migration and gene flow direction can only be inferred if nDNA analyses are applied to a complete data set that includes samples from all taxa and all contact zones between them.de
dc.title.alternativeTranslatedDer Fall der Paviane (Papio)de
dc.subject.topicCentre for Biodiversity and Ecologyde
dc.subject.gerPhylogeniede
dc.subject.gerPaviande
dc.subject.gerHybridisierungde
dc.subject.gerPapiode
dc.subject.gerBiogeographiede
dc.subject.engphylogenyde
dc.subject.engbaboonde
dc.subject.enghybridizationde
dc.subject.engPapiode
dc.subject.engbiogeographyde
dc.subject.bk42.13de
dc.identifier.urnurn:nbn:de:gbv:7-webdoc-2513-3de
dc.identifier.purlwebdoc-2513de
dc.affiliation.instituteGöttinger Graduiertenschule für Neurowissenschaften und molekulare Biowissenschaften (GGNB)de
dc.subject.gokfullWL 000: Biogeographie {Biologie}de
dc.subject.gokfullWJ 000: Genetik {Biologie}de
dc.identifier.ppn632011203de


Dateien

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige