Show simple item record

Transport in nicht-hermiteschen niedrigdimensionalen Systemen

dc.contributor.advisorFleischmann, Ragnar Dr.de
dc.contributor.authorBendix, Oliverde
dc.date.accessioned2012-01-05T15:32:45Zde
dc.date.accessioned2013-01-18T13:36:50Zde
dc.date.available2013-01-30T23:51:10Zde
dc.date.issued2012-01-05de
dc.identifier.urihttp://hdl.handle.net/11858/00-1735-0000-0006-B542-6de
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-2800
dc.description.abstractIn der vorliegenden Arbeit wird die Analogie zwischen mesoskopischem ballistischem Transport und Transportvorgängen in der Photonik genutzt, um Methoden und Erkenntnisse aus der Theorie der mesoskopischen Physik, die bisher vornehmlich auf Halbleiter-Nanostrukturen angewandt wurden, auf photonische Systeme zu übertragen. Dazu wird eine numerische Methode entwickelt, die ihren Ursprung in der Theorie der Greenschen Funktionen in Verbindung mit dem Landauer-Büttiker-Formalismus zur Beschreibung von kohärenten Transportvorgängen in niedrigdimensionalen Halbleiterstrukturen hat. Am Beispiel des ballistischen Gleichrichters wird diese im Weiteren genutzte numerische Methode des Streuformalismus erläutert und getestet. Sie erweist sich als äußerst effizient, um zu substanziellen Erkenntnissen über hier entwickelte und eingehend untersuchte optische Systeme zu gelangen den chaotischen Strahlenteiler mit seinen hier abgeleiteten vielfältigen Anwendungen für die Photonik und die Müllerschen Zellen als biologische Wellenleiter der Wirbeltier-Retina, die den Lichttransport in der Netzhaut gewährleisten und dabei zugleich die Leistung des Auges optimieren. Der quantenmechanische Streuformalismus gestattet zudem die Untersuchung neuartiger Aspekte des Transports in optischen Systemen. So werden in dieser Arbeit eine auf dem dynamischen Tunneleffekt basierende Konstruktion eines effektiven Einmodenlasers und vielfältige andere Anwendungen auf der Grundlage deformierter Wellenleiter vorgestellt und die Streulichtreduktion in der Fovea des menschlichen Auges durch Ableitung optischer Eigenschaften der Müllerzelle untersucht. Neben dem intensiven Studium dieser beiden passiven optischen Systeme widmet sich diese Arbeit dem Studium von PT-symmetrischen aktiven optischen Systemen. Hierbei werden grundlegende analytische Resultate zur Bedeutung und Auswirkung von Lokalisierung und Unordnung in solchen Systemen hergeleitet. Darauf aufbauend wird die Möglichkeit untersucht, die PT-Symmetrie ausnutzende quasiverlustfreie optische Metamaterialien zu entwickeln, die aus räumlich speziell angeordneten Bereichen lichtverstärkender und verlustbehafteter Materialien bestehen. Die Übertragung des Streuformalismus auf diese aktiven optischen Systeme zur Beschreibung und Klassifizierung von Transporteigenschaften bildet den Abschluss dieser Untersuchungen.de
dc.format.mimetypeapplication/pdfde
dc.language.isogerde
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/de
dc.titleTransport in nicht-hermiteschen niedrigdimensionalen Systemende
dc.typedoctoralThesisde
dc.title.translatedTransport in Non-Hermitian Low-Dimensional Systemsde
dc.contributor.refereeGeisel, Theo Prof. Dr.de
dc.date.examination2011-09-20de
dc.subject.dnb530 Physikde
dc.description.abstractengIn this work, scientific methods and findings known from mesoscopic physics, primarily used for semiconductor nanostructures, will be transferred to photonic systems, enabled by the analogy of mesoscopic ballistic transport and transport processes in photonics. Therefore a numerical method is developed that is based on Greens functions in combination with the Landauer-Büttiker formalism, and that allows describing coherent transport processes in low-dimensional semiconductor structures. This so-called scattering formalism is tested and elucidated in the framework of the ballistic rectifier. It is furthermore shown to be fruitful in gaining substantial results of comprehensively examined optical systems developed within this work the chaotic beam splitter with its broad range of applications for photonic devices and the Müller cell, which acts as a biological wave guide in the retina of vertebrates, ensuring light transport through the retina while increasing the optical performance in most parts of the entire eye. The quantum scattering formalism allows investigating novel aspects of transport in optical systems. Based on dynamical tunneling a high effective single-mode laser and a variety of other applications within the context of deformed waveguides are presented and the reduction of scattering light in the surrounding area of the fovea in the human eye is predicted via theoretical analysis of the properties of human Müller cells. In addition to the intense study of these last two passive optical systems, this work gives special attention to PT-symmetric active optical systems. Fundamental analytical results for the impact and implication of localization and disorder in such active PT-symmetric systems are investigated here. Based on this, the possibility of designing optical metamaterials with particular spatial ordered regions of gain and loss are inspected. The study concludes by transferring the scattering formalism to these active optical systems for characterization and classification of transport properties.de
dc.contributor.coRefereeParlitz, Ulrich Prof. Dr.de
dc.subject.topicPhysicsde
dc.subject.gerBallistischer Transportde
dc.subject.gerLichttransportde
dc.subject.gerGreensche Funktionende
dc.subject.gerLandauer-Büttiker-Formalismusde
dc.subject.gerMüllerzellende
dc.subject.gerPhotonikde
dc.subject.gerWellenleiterde
dc.subject.gerPT-Symmetriede
dc.subject.gerUnordnungde
dc.subject.gerQuantenmechanikde
dc.subject.gerStreuformalismusde
dc.subject.engballistic transportde
dc.subject.englight transportde
dc.subject.engGreens functionsde
dc.subject.engLandauer-Büttiker-formalismde
dc.subject.engMüller cellsde
dc.subject.engphotonicde
dc.subject.engwaveguidesde
dc.subject.engPT-symmetryde
dc.subject.engdisorderde
dc.subject.engquantum mechanicsde
dc.subject.engscattering formalismde
dc.subject.bk33.10de
dc.identifier.urnurn:nbn:de:gbv:7-webdoc-3298-0de
dc.identifier.purlwebdoc-3298de
dc.affiliation.instituteFakultät für Physikde
dc.subject.gokfullRDI 240: Streutheoriede
dc.subject.gokfullquantenmechanische {Theoretische Physik}de
dc.identifier.ppn684919389de


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record