Zur Kurzanzeige

Die Atmung der verholzten Organe von Altbuchen (Fagus sylvatica L.) in einem Kalk- und einem Sauerhumusbuchenwald

dc.contributor.advisorRunge, Michael Prof. Dr.de
dc.contributor.authorStrobel, Jörgde
dc.date.accessioned2004-11-10T12:11:59Zde
dc.date.accessioned2013-01-18T10:57:40Zde
dc.date.available2013-01-30T23:51:26Zde
dc.date.issued2004-11-10de
dc.identifier.urihttp://hdl.handle.net/11858/00-1735-0000-0006-B6B5-Dde
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-2293
dc.description.abstractIm Rahmen der vorliegenden Studie wurde die Atmung der ober- und unterirdischen verholzten Sprossachsen von Altbuchen in einem Kalk- und einem Sauerhumusbuchenwald an den Standorten Göttinger Wald und Solling untersucht. Ziel war die Bilanzierung der damit verbundenen Kohlenstoffflüsse. Dabei wurde der Frage nachgegangen, in welchem Zusammenhang die zeitliche und räumliche Variabilität der Atmung mit der Variation endogener Prozesse und den Verläufen der Witterung steht und wie diese Zusammenhänge der extrapolierenden Modellierung zur Berechnung der Holzatmung auf Bestandesebene dienen können.Zur Messung der Atmungsaktivität wurde die CO2-Abgabe der verholzten Organe mit einem Infrarot-Gasanalysator im offenen System an einer Mehrkanal-Küvetten-Messanlage erfasst. An jedem Standort waren jeweils sechs Äste, Stämme und Grobwurzeln an einer Position und ein weiterer Stamm an 6 Positionen in unterschiedlicher Höhe und Orientierung mit Messküvetten versehen, in denen zeitgleich mit der CO2-Abgabe die oberflächennahe Xylemtemperatur gemessen wurde. In den Jahren 1997 und 1998 erfolgte etwa einmal monatlich an jedem der Kompartimente die Aufzeichnung von 2 bis 14 Tagesgänge von Atmung und Temperatur sowie die Messung des Umfangzuwachses nahe den Küvetten. Im Anschluss an den zweijährigen Zeitraum wurden die untersuchten Sprossachsen auf ihren Gehalt an Stickstoff, löslichem Protein und den TTC-Umsatz der lebenden Zellen analysiert Die Atmungsraten der Stämme lagen im Winterhalbjahr im Mittel bei 2 µmol C m-3 s-1 und stiegen während der Vegetationsperiode auf maximale Werte zwischen 7 und 11.5 µmol C m 3 s 1 an. Bei den Ästen und Grobwurzeln reichte die Spanne von 20 µmol C m-3 s-1 während der Vegetationsruhe bis 416 µmol m-3 s-1 im Sommer.Im Tagesgang verlief die CO2-Abgabe oft parallel zur Temperatur, jedoch konnten regelmäßig auch zeitverzögerte, ganz von der Temperatur unabhängige oder sogar zur Temperatur gegenläufige Tagesgänge der Atmung beobachtet werden. Die während der Nacht gemessene Atmungsrate war stets eng mit der Temperatur korreliert, wobei sich für die Stämme geringere Temperaturkoeffizienten (Q10 = 1.9) ergaben als für die Äste (2.45) und Grobwurzeln (2.7). Dies konnte in einem Modell allein mit dem Effekt der unterschiedlichen Wärmekapazität auf den zirkadianen Verlauf der Holztemperaturen erklärt werden. Die Entkopplung der CO2-Abgabe vom Temperaturverlauf am Tage ist darauf zurückzuführen, dass an einer gegebenen Messstelle zusätzlich zum lokal durch Atmung gebildeten CO2 auch mit dem Xylemsaft antransportiertes CO2 austreten kann und Atmungs-CO2 durch Rindenphotosynthese refixiert oder mit dem Xylemsaft abtransportiert werden kann.Dabei erreichte die Rindenphotosynthese maximale Raten von 10.2 µmol C m-2 s-1. Durch den An- oder Abransport im Xylemsaft wurde bis zu 1 µmol CO2 m-2 s-1 mehr oder weniger über die Rinde abgegeben. Gegenüber der vermutlich wahren lokalen Atmungsrate konnte die aktuelle CO2-Abgabe über die Oberfläche durch Rindenphotosynthese um mehr als 80 % vermindert sein und 30 % des CO2 mit dem Xylemsaft an- oder abtransportiert werden. Über das Winterhalbjahr bilanziert lag der Anteil des durch Rindenphotosynthese refixierten CO2 an der Bruttoatmung von Stämmen und Ästen im Mittel bei 2 bzw. 15 %. Während der Vegetationsperiode wurden bei Wurzeln im Mittel 1.5 % des abgegebenen CO2 mit dem Xylemsaft antransportiert. Bei Stämmen und Ästen war die CO2-Abgabe bei einer Kombination der Prozesse Rindenphotosynthese und CO2-Transport im Mittel um 3.2 bzw. 7 % reduziert. Der Anstieg der Atmungsraten während der Vegetationsperiode um das 3- bis 18fache der im Winterhalbjahr gemessenen Werte lässt sich nicht allein mit der für die Tagesgänge gefundenen Temperaturabhängigkeit der Atmung erklären. Auf der Zeitskala des Jahresgangs waren die Atmungsraten weniger eng mit der Temperatur korreliert und die Temperaturkoeffizienten lagen mit Werten zwischen 2.4 bis 5.06 deutlich über den Q10-Werten der Temperaturantwortkurven der Tagesgänge. Die bei Stämmen und Ästen ausgeprägten und bei den Grobwurzeln in Ansätzen beobachteten Jahresgänge der temperaturnormierten Atmungsraten verdeutlichen die weit über den direkten Temperatureinfluss hinausgehende Steigerung der Atmungskapazität und/oder -Aktivität während der Vegetationsperiode. Diese Steigerung steht vor allem im Zusammenhang mit einem erhöhten Energiebedarf für den Aufbau neuer Biomasse. Nach der mature tissue"-Methode ergaben sich für Stamm- und Astholz mittlere Wachstumskoeffizienten von 0.23 bzw. 0.43 mol Cveratmet pro mol CZuwachs.Die auf Grundlage der für das Winterhalbjahr gefundenen Temperaturbeziehungen berechnete, volumenbezogene 10 °C-Erhaltungsatmung nimmt bei dem Vergleich der Messstellen aller Kompartimente hyperbolisch mit zunehmendem Durchmesser der Sprossachsen ab. Stickstoffgehalte und TTC-Umsätze deuten darauf hin, dass dieser Rückgang auf eine abnehmende Konzentration und Aktivität lebender Zellen in den Parenchymen zurückgeht.Die oberflächenbezogenen Atmungsraten von Ästen und Grobwurzeln unterscheiden sich nicht von denen der Stämme. Der Vergleich der volumenbezogenen Atmungsraten innerhalb einzelner Kompartimente zeigt, dass die oberirdischen Sprossachsen in die drei Gruppen Stammholz, Äste der Schattenkrone und Äste der Sonnenkrone unterschieden werden können, deren volumenbezogene Erhaltungsatmung sich jeweils nicht mit dem Durchmesser ändert und bei Bezug auf die Oberfläche linear ansteigt. Innerhalb dieser Gruppen steigt auch der absolute Biomassezuwachs mit dem Durchmesser, der relative Biomassezuwachs jedoch nicht.Zwischen den Gruppen nimmt der relative Durchmesserzwachs in der genannten Reihenfolge zu, so dass die Variabilität des Biomassezuwachses die Unterschiede der volumenbezogenen Atmungsraten zwischen den verschiedenen Gruppen ebenso erklärt, wie die fehlende Durchmesserabhängigkeit innerhalb der Gruppen.Die bestandesflächenbezogenen C-Flüsse der Holzatmung wurden berechnet auf Basis:Der jährliche Kohlenstoffbedarf für die Holzatmung der Bestände in Solling und Göttinger Wald lag 1997 bei 36.1 und 46.1 mol C m-2 a-1. Davon entfielen auf Grobwurzeln, die nur 11 % Anteil am Holzvolumen hatten, 30 bzw. 36 % und auf Reisholz, das nur 8.5 % des Holzvolumens ausmacht, 40 bis 50%. Die standörtlichen Unterschiede waren bei gleichen spezifischen Atmungsraten auf die unterschiedlichen Holzvolumenvorräte der beiden Bestände zurückzuführen.1998 lag die Holzatmung bei geringerer Substratversorgung aus der Blattphotosynthese und geringerem Holzzuwachs um 30 % unter den Vorjahreswerten. Der Rückgang war bei Grobwurzeln und Reisig stärker ausgeprägt als beim Stammholz. Auf Bestandesebene war die Atmung der verholzten Sprossachsen ein- bis zweimal so hoch wie die Blattatmung und zwei- bis vierfach höher als die Feinwurzelatmung. Der Anteil der Holzatmung am jährlichen Bruttokohlenstoffgewinn (GPP) der Blätter lag zwischen 21 und 28 %. Eine enge Beziehung zwischen den standörtlichen und interannuellen Variationen von GPP und Holzatmung deutet darauf hin, dass der Kohlenstoffbedarf für die Holzatmung der Bestände nur kurzfristig von der Temperatur, langfristig über die Substratversorgung und das Wachstum reguliert wird.de
dc.format.mimetypeapplication/pdfde
dc.language.isogerde
dc.rights.urihttp://webdoc.sub.gwdg.de/diss/copyr_diss.htmlde
dc.titleDie Atmung der verholzten Organe von Altbuchen (Fagus sylvatica L.) in einem Kalk- und einem Sauerhumusbuchenwaldde
dc.typedoctoralThesisde
dc.title.translatedWoody tissue respiration of two old-growth beech forests on base-rich and acidic soilsde
dc.contributor.refereeRunge, Michael Prof. Dr.de
dc.date.examination2004-04-28de
dc.subject.dnb580 Pflanzen (Botanik)de
dc.description.abstractengIn this work the respiration of woody organs above and below ground in mature beech on one calcareous and one acid location was investigated. The studied stands were located at Göttinger Wald and at Solling, southern Lower Saxony.The aim of the study was to investigate the net carbon flux and to search for interrelations between temporal and spatial variations of respiration on one hand and endogenous processes and climate on the other. These relations were further used for modelling respiration of woody organs at stand level.The respiratory activity was measured as CO2-efflux from woody organs with a multi-channel-cuvette device. The superficial xylem temperature was recorded simultaneously. Perspex chambers were installed on six branches, stems and coarse roots in each stand. On one additional stem in each stand, chambers were installed at three stem heights and in two orientations at each height. Between two and 14 daily courses of respiration and temperature as well as the circumference increments close to each cuvette were recorded monthly in each compartment during 1997 and 1998. Subsequent to the two-year measurement period the sampled tissues were harvested and analysed for N, soluble proteins and the TTC-conversion capacity of living cells.Respiration rates of stems were around 2 mmol C m-3 s-1 during the winter, increasing to maximum values between 7 and 11.5 mmol C m-3 s-1 during the growing seasons. Branches and coarse roots showed rates from 20 µmol C m-3 s-1 in the winter to 416 µmol C m-3 s-1 in the summer. Daily courses of CO2-flux usually paralleled those of temperature. However, delayed, seemingly inverted or temperature independent CO2-flux curves occurred. Respiratory rates were generally closer correlated with temperature during night than at day time. Furthermore, stems showed a lower mean temperature coefficient (Q10=1.9) than branches (Q10=2.45) and coarse roots (Q10=2.7). A simple mechanistic model explained the latter result as possibly due to the different thermal capacities affecting the circadian rhythms of wood temperature.Temperature-independent variation of CO2 release during the day is probably caused by simultaneous release of allochtonous CO2 from, or difusion of local respiratory CO2 into the xylem sap as well as re-fixation of respiratory CO2 by corticular photosynthesis.Maximal corticular photosynthesis was 10.2 µmol m-2 s-1, and maximal CO2 release and absorption by xylem sap were both about 1 µmol m-2 s-1. Compared to the presumed true respiration rate, actual CO2 release rates were reduced by corticular photosynthesis by up to 80 %, and by xylem transport by up to 30 %. Total refixation of respiratory CO2 by corticular photosynthesis during the leafless period was estimated as 2 % of gross respiration in stems and 15 % in branches. About 1.5 % of the total CO2 released by coarse roots over the vegetation period originated from the xylem sap, not from local respiration. In stems and branches, the combined effect of corticular photosynthesis and xylem transport reduced total vegetation period CO2 release by 3.2 and 7 %, respectively.Respiration rates increased 3- to 18-fold during the vegetation period compared to winter values. This increase can not solely be ascribed to warmer summer temperatures, based on short-term temperature sensitivities exhibited in daily courses.On an annual time scale, respiration rates were less closely correlated to tissue temperature than in daily courses. Long term Q10 values of 2.4 to 5.06 exceeded the coefficients found for the temperature response in daily courses. The annual course of the 10° C respiration rates, which was more pronounced for stems and branches than for coarse roots, clearly shows the increase of respiratory capacity and activity during the growing period due to the higher energy requirements for growing tissues. The mean growth coefficients according to the mature tissue"-method were 0.23 mol Crespired per mol CGrowth for wood of stems and 0.43 mol Crespired per mol CGrowth for branches.The volume-based 10 °C maintenance respiration calculated from the temperature dependence of respiration observed during winter decreased hyperbolically with increasing sample diameter across all compartments . The nitrogen concentrations and TTC-conversion data suggest, that this might be a result of a decreasing fraction of live cell volume and activity in the parenchyma of larger organs.The area-based respiration rate of branches and coarse roots was similar to that of stems. Comparing respiration rates within and among compartments revealed that the above ground organs could be differentiated into the following three groups: stem wood, shadow branches, and sun branches. Within each of these groups volume-based respiration rate did not change with organ diameter, but area-based rates linearly increased with diameter. Accordingly, within each of the three groups the absolute biomass increment was correlated with diameter, but the relative increment was not. Across the three groups, the relative diameter increment increased from stems to shade branches and to sun branches.In conclusion, this emphasizes the importance of relative biomass increment, as its variance across the three groups explains the variance among their respiration rates, while its constancy within each group explains the absence of a diameter dependence of volume-based respiration.Stand level C-fluxes of woody tissue respiration were calculated based on:In 1997, annual carbon demand for woody tissue respiration at stand level was 36.1 mol C m-2 a-1 at Solling and 46.1 mol C m-2 a-1 at Göttinger Wald. 30 and 36 % of this was consumed by coarse roots alone, which represent only 11 % of the total wood volume. Twigs and branches, which represent 8.5 % of the total wood, consumed 40 to 50 %. Differences between stands could be ascribed to differences in stocks of wood and not to different specific respiration rates.The respiration of woody organs was 30 % lower in 1998 than in the year before. This might be a result of the lower photosynthetic carbon supply and diameter increment. This inter-annual difference was more pronounced in coarse roots and branches than in stems.At stand level, respiration of woody organs was equal to, or up to twice as high as leaf respiration, and between two and four-fold higher than fine root respiration. Total woody tissue respiration consumed 21 to 28 % of annual gross primary production (GPP). A close correlation between the inter-site and interannual variations of GPP and annual total woody tissue respiration suggests that the respiratory carbon demand is directly influenced by temperature only in the short term, but is primarily regulated by carbon supply and growth on longer time scales.de
dc.contributor.coRefereeLeuschner, Christoph Prof. Dr.de
dc.subject.topicMathematics and Computer Sciencede
dc.subject.gerBuchede
dc.subject.gerLaubwaldde
dc.subject.gerHolzatmungde
dc.subject.gerAstatmungde
dc.subject.gerGrobwurzelatmungde
dc.subject.gerErhaltungsatmungde
dc.subject.gerWachstumsatmung Wachstumskoeffizientde
dc.subject.gerRindenphotosynthesede
dc.subject.gerRefixierungde
dc.subject.gerC-Bilanzde
dc.subject.engbeechde
dc.subject.engdeciduous forestde
dc.subject.engwoody tissue respirationde
dc.subject.engbranch respirationde
dc.subject.engcoarse-root respirationde
dc.subject.engmaintenance respirationde
dc.subject.enggrowth respirationde
dc.subject.enggrowth coefficientde
dc.subject.engcorticular photosynthesisde
dc.subject.engrefixationde
dc.subject.engcarbon balancede
dc.subject.bk42.44de
dc.subject.bk42.41de
dc.subject.bk42.91de
dc.identifier.urnurn:nbn:de:gbv:7-webdoc-349-7de
dc.identifier.purlwebdoc-349de
dc.affiliation.instituteFakultät für Forstwissenschaften und Waldökologiede
dc.subject.gokfullWNA 250: Waldde
dc.subject.gokfullUrwald {Biologiede
dc.subject.gokfullÖkologie}de
dc.subject.gokfullWVE 400: Ernährung Stoffwechselde
dc.subject.gokfullStofftransport {Botanikde
dc.subject.gokfullPflanzenphysiologie und Phytochemie}de
dc.subject.gokfullWVR 200: Pflanzenökologie {Botanikde
dc.subject.gokfullPflanzengeographie}de
dc.identifier.ppn478926286de


Dateien

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige