• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Biologie und Psychologie (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Biologie und Psychologie (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Genetic factors driving the functional specification of spinal motor neurons

by Tsung-I Lee
Doctoral thesis
Date of Examination:2012-07-09
Date of issue:2012-11-06
Advisor:Prof. Dr. Till Marquardt
Referee:Prof. Dr. Till Marquardt
Referee:Prof. Dr. Swen Hülsmann
Referee:Prof. Dr. Klaus-Armin Nave
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-1443

 

 

Files in this item

Name:lee_tsung.pdf
Size:15.4Mb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

Spinal motor neurons which innervate different types of muscle fibers play a pivotal role in controlling body postures and locomotion. Spinal motor neurons can be broadly classified into alpha- and gamma-motor neuron subtypes. Alpha-motor neurons can be further subdivided into fast and slow functional subtypes. It is known that several spatially and temporally orchestrated transcriptional cascades are instrumental in determining and specifying various neuronal subtypes in the neural tube during neurogenesis. However, the factors responsible for determining the specification of functional spinal motor neuron subtypes (alpha versus gamma; slow versus fast) are still unknown. In this study, I performed transcriptome analysis in E18.5 mice to identify the gene expression profiles of functionally distinct motor pools to identify determinants of motor neuron subtype. Through this screen, I identified the orphan nuclear receptor Err2 as a selective marker for gamma-motor neurons. The expression of Err2 paralleled that of the closely related Err3, a previously identified gamma-motor neuron marker. Through novel transposon-mediated gene manipulation in the embryonic chick spinal cord, I found that both Err2 and Err3 are sufficient to promote gamma-motor neuron identity, based on morphological, molecular and initial physiological criteria. Fusion of heterologous transcriptional activation or repression domains further suggested that Err2 and Err3 act as transcriptional activators. My thesis project thereby uncovered first insights into the functional specification of motor neurons, and provided evidence that Err2 and Err3 act as genetically redundant transcription activators that promote the acquisition of gamma-motor neuron identity in subsets of motor neurons.
Keywords: gamma motor neuron; orphan nuclear receptor; Err2
Schlagwörter: none
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]