dc.contributor.advisor | Dobbelstein, Matthias Prof. Dr. | de |
dc.contributor.author | Köpper, Frederik | de |
dc.date.accessioned | 2013-01-14T15:06:30Z | de |
dc.date.available | 2013-10-17T22:50:04Z | |
dc.date.issued | 2013-01-11 | de |
dc.identifier.uri | http://hdl.handle.net/11858/00-1735-0000-000D-EF92-6 | de |
dc.identifier.uri | http://dx.doi.org/10.53846/goediss-1445 | |
dc.description.abstract | DNA-Schäden stellen eine ständige
Bedrohung der Genomintegrität dar. In Zellen haben sich von einem
komplexen Signalnetzwerk kontrollierte Programme entwickelt, um mit
diesen Läsionen zurechtzukommen und zu verhindern, dass Tumore
entstehen. Diese zellulären Prozesse und die von ihnen regulierten
Signalkaskaden bilden die Antwort auf DNA-Schäden (engl.: DNA
damage response, DDR). Während viele Aspekte der DDR bis ins Detail
untersucht worden sind, ist wenig darüber bekannt, wie Zellen auf
genotoxischen Stress während der DNA-Replikation reagieren. Wir
stellen in dieser Arbeit eine bislang unbekannte Funktion der
Kinase MK2 in der Kontrolle der Replikation nach genotoxischem
Stress während der S-Phase vor. MK2 ist ursprünglich als Mediator
der allgemeinen Signaltransduktion nach Stress identifiziert
worden, neuere Studien berichten jedoch von einer MK2-Funktion in
der checkpoint-Signalisierung. In unserem Labor wurde bereits
entdeckt, dass MK2 für die effiziente Phosphorylierung der
Histon-Variante H2AX (genannt γH2AX), einem Kennzeichen der DDR,
nach Schädigung der DNA durch ultraviolette (UV) Strahlung
notwendig ist. Dieser Befund weist | de |
dc.format.mimetype | application/pdf | de |
dc.language.iso | eng | de |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/ | de |
dc.title | The kinase MK2 in DNA replication upon genotoxic stress and chemotherapy | de |
dc.type | doctoralThesis | de |
dc.title.translated | Die Kinase MK2 in der DNA-Replikation nach genotoxischem Stress und Chemotherapie | de |
dc.contributor.referee | Dobbelstein, Matthias Prof. Dr. | de |
dc.date.examination | 2012-10-17 | de |
dc.subject.dnb | 570 Biowissenschaften, Biologie | de |
dc.subject.gok | WF 200 | de |
dc.description.abstracteng | DNA damage constitutes a constant threat
to genomic integrity. Cells evolved programs controlled by a
complex signaling network to cope with these lesions in order to
avoid tumorigenesis. These cellular processes and the signaling
cascades that regulate them form the DNA damage response (DDR).
Whereas many aspects of the DDR have been investigated in great
detail, comparably little is known about how cells respond to
genotoxic stress during DNA replication. Here, we identify a
hitherto unknown function for the kinase MK2 in the control of
replication upon genotoxic stress in S-phase. Originally described
as a mediator of general stress signaling in the p38/MK2 pathway,
recent studies reported a role of MK2 in checkpoint signaling. In
our lab MK2 was previously found to be required for efficient
phosphorylation of the histone variant H2AX (yielding γH2AX), a
hallmark of the DDR, upon DNA damage induced by ultraviolet (UV)
irradiation. This suggests a more general function of the kinase in
the DDR than anticipated. We now report that depletion or
inhibition of MK2 protects cells from the consequences of
UV-induced DNA damage, and mice with genetic ablation of MK2 and
its relative MK3 display strongly reduced apoptosis in the skin
after UV irradiation. As UV-induced DNA damage mainly affects cells
during replication but also in other phases of the cell cycle, we
tested whether DNA damage induced by the S-phase-specific drug
gemcitabine elicited an MK2-dependent DDR, as well. We found that
inhibition or depletion of MK2 indeed reduces the accumulation of
γH2AX and increases cell viability following gemcitabine treatment,
and this effect cannot be attributed to cell cycle modulation by
MK2. MK2 inhibition also rescues slow replication fork progression
and increased origin firing caused by gemcitabine, demonstrating
that the kinase affects replication in response to DNA damage in
S-phase. We furthermore observed that MK2 is required for the
genotoxic effects caused by inhibition or depletion of the
essential checkpoint kinase Chk1 and that MK2 inhibition also
alleviates deregulated replication caused by inhibition of Chk1.
Such antagonistic activity between the two kinases comes as a
surprise as both share the same target phosphorylation motif. We
speculate that MK2 and Chk1 target different proteins, mediated by
specific interaction partners not shared between the two. In search
for the mechanism underlying the effect of MK2 on replication, we
did not find any influence on regulators of origin firing, arguing
that MK2 acts directly at the replication fork. The rescue of
gemcitabine-induced slow fork speed by MK2 inhibition suggests that
the kinase controls lesion bypass mechanisms. Accordingly, we
observed that the rescue of deregulated replication by MK2
inhibition depends on translesion synthesis (TLS). We speculate
that MK2 directly targets components of the TLS machinery, thereby
repressing TLS. In conclusion, our data for the first time reveal
an activity of MK2 in replication upon DNA damage. MK2 is required
for slow fork speed and increased origin firing upon replicative
stress, and this activity depends on TLS. We propose that MK2
balances the DDR by repressing TLS to limit the mutagenic effects
of this lesion bypass mechanism, promoting DNA repair or cell
death. These findings also identify the p38/MK2 pathway as a
potential drug target as enhanced MK2 activation might sensitize
cells to chemotherapy. | de |
dc.contributor.coReferee | Wienands, Jürgen Prof. Dr. | de |
dc.subject.topic | Biology (incl. Psychology) | de |
dc.subject.ger | MK2 | de |
dc.subject.ger | MAPKAPK2 | de |
dc.subject.ger | p38 | de |
dc.subject.ger | replikativer Stress | de |
dc.subject.ger | ultraviolette Strahlung | de |
dc.subject.ger | Gemzitabin | de |
dc.subject.ger | Nukleosid-Analoga | de |
dc.subject.ger | Chemotherapie | de |
dc.subject.ger | DNA-Replikation | de |
dc.subject.ger | Transläsions-Synthese | de |
dc.subject.ger | PCNA | de |
dc.subject.ger | Chk1 | de |
dc.subject.ger | ATR | de |
dc.subject.ger | H2AX | de |
dc.subject.eng | MK2 | de |
dc.subject.eng | MAPKAPK2 | de |
dc.subject.eng | p38 | de |
dc.subject.eng | replicative stress | de |
dc.subject.eng | ultraviolet irradiation | de |
dc.subject.eng | gemcitabine | de |
dc.subject.eng | nucleoside analogues | de |
dc.subject.eng | chemotherapy | de |
dc.subject.eng | DNA replication | de |
dc.subject.eng | translesion synthesis | de |
dc.subject.eng | PCNA | de |
dc.subject.eng | Chk1 | de |
dc.subject.eng | ATR | de |
dc.subject.eng | H2AX | de |
dc.subject.bk | 42.13 | de |
dc.identifier.urn | urn:nbn:de:gbv:7-webdoc-3870-1 | de |
dc.identifier.purl | webdoc-3870 | de |
dc.affiliation.institute | Biologische Fakultät | de |
dc.description.embargoed | 2013-04-16 | de |
dc.identifier.ppn | 773354808 | |