• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Multi-objective Ant Colony Optimisation-based Routing Approach for Wireless Sensor Networks Incorporating Trust

Ein Mehr-Zielvorgaben Ameisenkolonie-optimierungsbasierter Routing-Ansatz für drahtlose Sensornetzwerke unter Berücksichtigung von Vertrauen

by Ansgar Kellner
Doctoral thesis
Date of Examination:2012-06-21
Date of issue:2012-08-31
Advisor:Prof. Dr. Dieter Hogrefe
Referee:Prof. Dr. Dieter Hogrefe
Referee:Prof. Dr. Xiaoming Fu
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-2584

 

 

Files in this item

Name:kellner.pdf
Size:2.85Mb
Format:PDF
ViewOpen

The following license files are associated with this item:


Abstract

English

In the near future, Wireless Sensor Networks (WSNs) are expected to play an important role for sensing applications, in the civilian as well as in the military sector. WSNs are autonomous, distributed, self-organised networks consisting of multiple sensor nodes. Usually, the limited radio range of the nodes, arising from energy constrains, is overcome by the cooperation of nodes. As the Combinatorial Optimisation Problem (COP) of routing is computationally hard, often approximation algorithms are preferred, which are capable of finding near optimal solutions within polynomial time. A simple but robust way of solving the routing COP is the application of Ant Colony Optimisation (ACO)-based routing algorithms. When multiple (conflicting) objectives should be considered, ACO algorithms can be extended to Multi-objective Ant Colony Optimisation (MOACO) algorithms that are capable of considering multiple objectives at the same time within the optimisation process. Normally, the routing in WSNs is susceptible to adversaries due to their deployment in unattended or in hostile environments. Particularly, attacks from compromised nodes (insider attacks) are a severe problem in WSNs. As insider attacks cannot be alleviated by classical security measures, often soft security measures (trust and reputation) are applied to mitigate the impact of these attacks. In this thesis, the idea of using trust as security measure against insider attacks is seized and interweaved with an MOACO-based routing approach. The Multi-objective Ant Colony Optimisation Routing Framework for WSNs (MARFWSN) is developed, a routing framework for WSNs that provides an interface for the docking of MOACO-based algorithms that can be used for the routing. Different MOACO-based algorithms
Keywords: Wirless Sensor Networks; Routing; Trust; WSN; ACO; MOACO
Schlagwörter: drahtlose Sensornetzwerke; Routing; Vertrauen; WSN; ACO; MOACO
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]