Show simple item record

Mitochondrial metabolism in hypoglossal motoneurons from mouse – implications for amyotrophic lateral sclerosis (ALS)

dc.contributor.advisorKeller, Bernhard Prof. Dr.de
dc.contributor.authorBergmann, Friederikede
dc.date.accessioned2013-01-22T15:38:43Zde
dc.date.available2013-01-30T23:50:58Zde
dc.date.issued2004-03-03de
dc.identifier.urihttp://hdl.handle.net/11858/00-1735-0000-000D-F11F-0de
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-3397
dc.format.mimetypeapplication/pdfde
dc.language.isoengde
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/de
dc.titleMitochondrial metabolism in hypoglossal motoneurons from mouse – implications for amyotrophic lateral sclerosis (ALS)de
dc.typedoctoralThesisde
dc.title.translatedMitochondrialer Metabolismus in hypoglossalen Motoneuronen der Maus - Bedeutung für die Amyotrophe Lateral Sklerose (ALS)de
dc.contributor.refereeKeller, Bernhard Prof. Dr.de
dc.date.examination2004-02-12de
dc.subject.gokMED 310de
dc.description.abstractengMotoneurons (MNs) are selectively damaged both in human amyotrophic lateral sclerosis (ALS) and corresponding mouse models of this neurodegenerative disease. A variety of studies indicate that mitochondrial dysfunction and disruption of the cellular Ca2+ homeostasis represent critical events during the disease process. Since little is known about the involvement of mitochondria in regulation of Ca2+ levels in MNs, the first aim of this work was to define the contribution of mitochondria to the clearance of physiological type Ca2+ loads. Second, the work aimed at characterizing the cellular consequences of mitochondrial dysfunction in MNs, with particular attention to changes in electrical properties and alterations in Ca2+ homeostasis, as this may give clues to the understanding of processes involved in MN degeneration and the selective vulnerability of MNs in ALS. The contribution of mitochondria to buffering of Ca2+ loads was investigated employing acute mouse brainstem slices containing the hypoglossal motor nucleus and CCD camera based imaging techniques. It was demonstrated that in hypoglossal MNs, mitochondria constitute the dominant Ca2+ clearance mechanism accounting for buffering of ~50 % of voltage activated Ca2+ loads with amplitudes below 0.4de
dc.contributor.coRefereePaulus, Walter Prof. Dr.de
dc.contributor.thirdRefereeNeher, Erwin Prof. Dr.de
dc.subject.topicMathematics and Natural Sciencede
dc.subject.gerMotoneuronde
dc.subject.gerMitochondriende
dc.subject.gerKalziumde
dc.subject.gerNeurodegenerationde
dc.subject.gerALSde
dc.subject.gerHypoxiede
dc.subject.gerHypoglossusde
dc.subject.ger570 Biowissenschaftende
dc.subject.gerBiologiede
dc.subject.engmotoneuronde
dc.subject.engmitochondriade
dc.subject.engcalciumde
dc.subject.engneurodegenerationde
dc.subject.engALSde
dc.subject.enghypoxiade
dc.subject.enghypoglossalde
dc.subject.bk42.17de
dc.subject.bk42.15de
dc.identifier.urnurn:nbn:de:gbv:7-webdoc-172-0de
dc.identifier.purlwebdoc-172de
dc.identifier.ppn502446064de


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record