• Deutsch
    • English
  • English 
    • Deutsch
    • English
  • Login
Item View 
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
  •   Home
  • Naturwissenschaften, Mathematik und Informatik
  • Fakultät für Mathematik und Informatik (inkl. GAUSS)
  • Item View
JavaScript is disabled for your browser. Some features of this site may not work without it.

Brown-Resnick Processes: Analysis, Inference and Generalizations

by Sebastian Engelke
Doctoral thesis
Date of Examination:2012-12-14
Date of issue:2013-01-25
Advisor:Prof. Dr. Martin Schlather
Referee:Prof. Dr. Martin Schlather
Referee:Prof. Dr. Anja Sturm
Referee:Prof. Dr. Stilian Stoev
crossref-logoPersistent Address: http://dx.doi.org/10.53846/goediss-3370

 

 

Files in this item

Name:Dissertation_Engelke.pdf
Size:2.32Mb
Format:PDF
Description:Dissertation
ViewOpen

The following license files are associated with this item:


Abstract

English

This thesis deals with the analysis, inference and further generalizations of a rich and flexible class of max-stable random fields, the so-called Brown-Resnick processes. The first chapter gives the explicit distribution of the shape functions in the mixed moving maxima representation of the original Brown-Resnick process based on Brownian motions. The result is particularly useful for a fast simulation method. In chapter 2, a multivariate peaks-over-threshold approach for parameter estimation of Hüsler-Reiss distributions, a popular model in multivariate extreme value theory, is presented. As Hüsler-Reiss distributions constitute the finite dimensional margins of Brown-Resnick processes based on Gaussian random fields, the estimators directly enable statistical inference for this class of max-stable processes. As an application, a non-isotropic Brown-Resnick process is fitted to the extremes of 12-year data of daily wind speed measurements. Chapter 3 is concerned with the definition of Brown-Resnick processes based on Lévy processes on the whole real line. Amongst others, it is shown that these Lévy-Brown-Resnick processes naturally arise as limits of maxima of stationary stable Ornstein-Uhlenbeck processes. The last chapter is devoted to the study of maxima of d-variate Gaussian triangular arrays, where in each row the random vectors are assumed to be independent, but not necessarily identically distributed. The row-wise maxima converge to a new class of multivariate max-stable distributions, which can be seen as max-mixtures of Hüsler-Reiss distributions.
Keywords: Brown-Resnick processes; max-stable processes; Gaussian random fields; extreme value theory; mixed moving maxima; extreme value statistics; Hüsler-Reiss distributions; Lévy processes; triangular arrays; extremal correlation functions; max-limit theorems; Poisson point processes
 

Statistik

Publish here

Browse

All of eDissFaculties & ProgramsIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesTypeThis FacultyIssue DateAuthorAdvisor & RefereeAdvisorRefereeTitlesType

Help & Info

Publishing on eDissPDF GuideTerms of ContractFAQ

Contact Us | Impressum | Cookie Consents | Data Protection Information | Accessibility
eDiss Office - SUB Göttingen (Central Library)
Platz der Göttinger Sieben 1
Mo - Fr 10:00 – 12:00 h


Tel.: +49 (0)551 39-27809 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
ediss_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]
Göttingen State and University Library | Göttingen University
Medicine Library (Doctoral candidates of medicine only)
Robert-Koch-Str. 40
Mon – Fri 8:00 – 24:00 h
Sat - Sun 8:00 – 22:00 h
Holidays 10:00 – 20:00 h
Tel.: +49 551 39-8395 (general inquiries)
Tel.: +49 (0)551 39-28655 (open access/parallel publications)
bbmed_AT_sub.uni-goettingen.de
[Please replace "_AT_" with the "@" sign when using our email adresses.]