Zur Kurzanzeige

Funktionelle Genomanalyse des Purinverwerters Clostridium acidurici 9a

dc.contributor.advisorDaniel, Rolf Prof. Dr.de
dc.contributor.authorHartwich, Katrinde
dc.date.accessioned2013-02-20T09:26:31Zde
dc.date.available2013-02-20T09:26:31Zde
dc.date.issued2013-02-20de
dc.identifier.urihttp://hdl.handle.net/11858/00-1735-0000-000D-FDE2-Bde
dc.identifier.urihttp://dx.doi.org/10.53846/goediss-3739
dc.language.isodeude
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/
dc.subject.ddc570de
dc.subject.ddc150de
dc.titleFunktionelle Genomanalyse des Purinverwerters Clostridium acidurici 9ade
dc.typedoctoralThesisde
dc.title.translatedFunctional genome analysis of the purine-utilizing bacterium Clostridium acidurici 9ade
dc.contributor.refereeDaniel, Rolf Prof. Dr.de
dc.date.examination2012-12-05de
dc.description.abstractengClostridium acidurici is an anaerobic, homoacetogenic bacterium, which is able to use purines such as uric acid as sole carbon, nitrogen, and energy source. Together with the two other known purinolytic clostridia C. cylindrosporum and C. purinilyticum, it served as a model organism to investigate the fermentation of purines. Here, the first complete sequence and analysis of a genome derived from a purinolytic Clostridium is presented. The genome of C. acidurici 9a consists of one chromosome (3,105,335 bp) and one small circular plasmid (2,913 bp). The lack of candidate genes encoding glycine reductase, the key enzyme of the glycine reductase pathway of purine-utilizing clostridia, indicates that C. acidurici 9a uses the energetically less favorable glycine-serine-pyruvate pathway for glycine degradation. In accordance with the specialized lifestyle and the corresponding narrow substrate spectrum of C. acidurici 9a, the number of genes involved in carbohydrate transport and metabolism is significantly lower than in other clostridia such as C. acetobutylicum, C. saccharolyticum, and C. beijerinckii. Besides purines, the only other substrate that can be degraded by C. acidurici is glycine, but growth on this amino acid only occurs in the presence of a fermentable purine. Nevertheless, the addition of glycine resulted in increased transcription levels of genes encoding enzymes involved in the glycine-serine-pyruvate pathway such as serine hydroxymethyl transferase and acetate kinase, whereas the transcription levels of formate dehydrogenase-encoding genes decreased. Sugars could not be utilized by C. acidurici but the full genetic repertoire for glycolysis was detected. Additionally, genes encoding enzymes that mediate resistance against several antimicrobials and metals were identified in the genome sequence and a high resistance of C. acidurici 9a towards bacitracin, acriflavine and azaleucine was experimentally confirmed.de
dc.contributor.coRefereeGottschalk, Gerhard Prof. Dr.de
dc.subject.gerClostridium aciduricide
dc.subject.gerGlycin-Reduktasede
dc.subject.gerGenomsequenzde
dc.subject.gerPurinabbaude
dc.subject.gerHarnsäure-Fermentationde
dc.subject.gerAntibiotika-Resistenzde
dc.subject.gerKupfer-Homeostasede
dc.subject.gercop-Operonde
dc.subject.engClostridium aciduricide
dc.subject.engglycine reductasede
dc.subject.enggenome sequencede
dc.subject.engpurine degradationde
dc.subject.enguric acid fermentationde
dc.subject.engantibiotic resistancede
dc.subject.engcopper homeostasisde
dc.subject.engcop operonde
dc.identifier.urnurn:nbn:de:gbv:7-11858/00-1735-0000-000D-FDE2-B-6de
dc.affiliation.instituteBiologische Fakultät inkl. Psychologiede
dc.subject.gokfullBiologie (PPN619462639)de
dc.identifier.ppn73734718Xde


Dateien

Thumbnail

Das Dokument erscheint in:

Zur Kurzanzeige